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A combined theoretical and experimental study is
presented for the flow-induced compaction of a one-
dimensional fibrous porous medium near its gel point
for deformation at low and high rates. The theory is
based on a two-phase model in which the permeability
is a function of local solid fraction, and the deforma-
tion of the solid is resisted by both a compressive yield
stress and a rate-dependent bulk viscosity. All three ma-
terial properties are parameterized and calibrated for cel-
lulose fibres using sedimentation, permeation and filtra-
tion experiments. It is shown that the incorporation of
rate-dependence in the solid stress significantly improves
the agreement between theory and experiment when the
drainage flow is relatively rapid. The model is extended
to rates outside the range where it was calibrated to un-
derstand the dynamics of a standard test for pulp suspen-
sions: the Canadian Standard Freeness test. The model
adequately captures all of the experimental findings, in-
cluding the score of the freeness test, which is found to
be sensitively controlled by the bulk solid viscosity and
to a lesser degree by the permeability law, but depends
only weakly on the compressive yield stress.

I. INTRODUCTION

A suspension of fibres can establish a connected net-
work that supports stress and resists deformation even
at relatively low solid concentrations. This structure
provides a porous matrix that can be substantially com-
pacted and reorganized by flow, at solid volume fractions
ranging from as low as a fraction of a percent, up to close
to the maximum packing. The dynamics of such consoli-
dation is relevant to a variety of problems in the physical
and engineering sciences, including in the pulp and paper
industry where the processing of suspensions of cellulose
fibres constitutes an extensive and costly enterprise.

The purpose of the present paper is to explore the flow-
induced compaction of a fibrous porous medium from
near its gel point up to much higher solid fraction, in situ-
ations in which deformations occur at increasingly higher
rates. We complement a theoretical approach based on
a two-phase model with an experimental investigation
using a particular suspension of cellulose fibres. By com-
paring the two whilst ramping up the deformation rates,
our goal is to provide insight into the effective rheology
of the fibre suspension, and thereby constrain the fluid-
structure interaction occurring at the micro-scale.

Phenomenological study of the compaction of two-
phase mixtures dates back more than a century (e.g. Coe
and Clevenger [1] studied ‘slime-settling’ in 1916), with
independent theoretical developments following over the
next thirty years in studies of industrial filtration [2, 3]
and soil mechanics [4, 5]. The concepts behind these
modelling approaches have been extended, adapted or
rediscovered in a wide range of contexts, from geological
compaction to waste treatment [6–11]. While the for-
mulations of these models take a number of forms, they
typically have two key constitutive ingredients that pa-
rameterize the rheology of the compressible medium: a
solid-fraction-dependent permeability and a compressive
stress gauging the ‘strength’ of the material [6].

Although in some situations (such as classical poroelas-
ticity), the porous matrix provides an elastic solid stress
and deformations are recoverable, many complex suspen-
sions can exhibit a significant plastic stress, owing to
rearrangements, entanglement and damage on the mi-
croscale. In contexts for which the material strength can
be interpreted partly as a compressive yield stress, it is
not clear whether the solid resistance contains only that
rate-independent contribution. Indeed, the bulk matrix
may deform viscously if the stress exceeds the compres-
sive yield stress, as in the theory of dense suspensions
of spheres [12] or geological compaction [13], and such
rate-dependent stresses are generic in the framework of
two-phase flow theory [14]. Despite this being noted by
a number of authors (e.g. [15]), for colloidal suspensions
it is common to adopt only the compressive yield stress
for the solid and argue that any rate-dependence is neg-
ligible. Recent work has, however, shown that a viscous
term is crucially important in rapid mechanical dewater-
ing tests on cellulose fibre suspensions at relatively large
solid fractions [16]. Similar conclusions have been drawn
from experiments involving the deformation of hydrogel
spheres suspended in water [17, 18] or during capillary
imbibition of water in paper sheets [19].

For our theoretical approach, we therefore adopt an ex-
tension of conventional two-phase models of compaction
that includes a rate-dependent solid stress via a bulk
viscosity (§II). To compare with this theory, we then
perform a sequence of sedimentation and drainage ex-
periments with cellulose fibre suspensions (§III). At the
very low rates of compaction encountered in sedimen-
tation, the solid is expected to mostly provide a com-
pressive yield stress. With the faster compactions of
gravity-driven drainage, rate-dependent stresses may be-
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come more prominent, allowing us to gauge whether a
solid viscosity is again needed to reproduce the dynam-
ics, but this time at relatively low solid fraction.

The sequence of experiments begins with steady state
tests (gravitational sedimentation and compaction under
a steady background flow, §V and §IV, respectively) de-
signed to calibrate the compressive yield strength and
permeability near the gel point; we document how the
newly networked porous structure gains in strength as
the solid fraction increases, and make contact with exist-
ing theories for dilute fibre suspensions [20, 21]. We then
explore the unsteady dynamics of sedimentation, with-
out or with flow-through, and more rapid compactions
induced by drainage (§VI). To directly infer the defor-
mation of the solid in these tests, we use particle image
velocimetry (PIV) to track the motion of marked tracers
in the suspension through a transparent side wall.

Finally, we turn to a widely used, gravity-driven
drainage test for pulp, Canadian Standard Freeness
(TAPPI Standard T221). In this industrial standard,
a simple funnel geometry is employed to divert a fraction
of the water drained from a pulp sample into a collec-
tion chamber. The volume of the diverted water, or the
“freeness score,” is set by the rate at which water leaves
the pulp sample, which is controlled by the degree to
which the cellulose matrix compacts and impedes flow as
it drains. Although the test is beguilingly simple, the
precise relationship between the freeness score and the
different material properties of the fibrous medium is not
transparent. Moreover, the only existing models of free-
ness are semi-empirical and based on the average filter
resistance of the compacting pulp [22–24]. We therefore
apply our two-phase model to the freeness test (§VII),
to explore whether its predictions match the observed
freeness score, to dissect the underlying dynamics and to
identify the controlling material properties. A more gen-
eral aim is to determine whether the freeness test pro-
vides a useful device to interrogate the behaviour of a
deformable porous media under relatively rapid and sub-
stantial compaction.

II. TWO-PHASE MODEL FORMULATION

The geometries of the three types of compaction prob-
lems that we investigate are sketched in figure 1(a)–(c).
The first is a fixed volume chamber through which water
can be recirculated to assist the gravitational sedimen-
tation of fibres. In the second, water is allowed to drain
through the base of a chamber containing the suspension
so that the surface falls to a predetermined height. The
third is the freeness test, where the water raining from
the bottom of a sample of the suspension enters a funnel
with a side channel. For all three, we ignore any interac-
tion of the suspension with the side walls of the surround-
ing container, and consider the vertical compaction of a
one-dimensional two-phase medium with a non-Brownian
solid, as discussed by [6–9]. In this formulation, spatial

differentiation can lead to the three arrangements of fluid
and solid sketched in figure 1(d).

A. Governing equations

The solid phase has volume fraction φ(z, t) and veloc-
ity u(z, t), at height z and time t. The solid and fluid
densities, ρs and ρf , are both assumed constant. The
mixture is contained between a lower boundary at z = 0
and upper surface at z = h that is fixed for our mod-
els of fixed-volume compaction, but falls over time in the
drainage problems where water leaks through the bot-
tom. At t = 0, the mixture is assumed to be uniform,
with initial solid fraction φ(z, 0) = φ0. The solid phase
cannot leave the column, and so∫ h

0

φ(z, t)dz = φ0h0, (1)

if h0 denotes the initial height.
Conservation of mass for the solid phase and the bulk

medium implies

∂φ

∂t
+
∂

∂z
(uφ) = 0 &

∂

∂z
[uφ+uf (1−φ)] = 0, (2)

where uf is the velocity of the fluid phase. In all of the
variations of the problem that we consider, the medium is
supported from below by a rigid surface that is permeable
to the fluid, but not the solid. Thence, the relative
velocity between phases is

uf − u =
U(t)− u

1− φ
, (3)

given that U(t) ≡ φu + uf (1 − φ) is the net bulk flow
velocity, which represents the fluid leakage through the
lower surface.

Adopting Terzaghi’s principle [4], the total stress is
composed of the pore pressure p(z, t) and (compressive)
effective solid stress P(z, t). With the neglect of inertia,
the force balance on the bulk mixture demands that these
stresses balance gravity; i.e.

∂

∂z
(p+ P) = −ρg ≡ −[ρf + φ(ρs − ρf )]g, (4)

where ρ is the bulk density and g is gravity. Finally,
Darcy’s law provides the relation,

∂p

∂z
+ ρfg =

µ(1− φ)

k(φ)
(u− uf ) ≡ µ

k(φ)
(u− U), (5)

where µ is the fluid viscosity and k(φ) is the permeability
of the solid matrix.

1. Constitutive Laws

Inspired by the φ� 1 asymptotic limit of an array of
rigid rods (e.g. [21]), we define a permeability function,

k(φ) =
A

φ
log(αφ−1) (0 < φ . 0.006), (6)
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FIG. 1. Sketches of the flow configurations. The recirculation loop of the rectangular tank in the flow-through experiments is
sketched in (a), the tank for the drainage experiments in (b), and the freeness device in (c). Panel (d) illustrates the geometry
of the three possible phase arrangements: (i) and (ii) illustrate the clear, freely falling and gelled layers in a closed container, in
the manner of the sedimentation experiments. (iii) shows the final drainage stage of a configuration in which water is withdrawn
and the top surface of the clear water layer meets that of the solid.

where A and α are parameters. Results presented by
Higdon & Ford [21] suggest that this form is adequate
over the required range of solid fraction. Away from this
low-φ limit, we extend (6) by bridging to literature rela-
tionships [16], using a simple interpolation based on the
variable log φ (Appendix A 2 b).

If the solid fraction of the material lies below the net-
work’s gel fraction φg, then we assume that the solid
cannot sustain compressive stress and P = 0. If instead
φ > φg, then we adopt a visco-plastic constitutive law
(cf. [6]) in which the solid fails under compression and
deforms provided the stress exceeds the compressive yield
stress Py(φ):

P = −

[
Py(φ)

|∂u∂z |
+ Λ(φ)

]
∂u

∂z
, if |P| > Py(φ), (7)

wherethe rate-dependence of the solid is modeled by a
bulk extensional viscosity Λ(φ). When |P| < Py(φ), on
the other hand, the solid is assumed to withstand the
imposed stress without deforming and so ∂u/∂z = 0,
with the solid stress remaining otherwise undetermined
(as for any material with a yield condition, or a friction
law with a threshold).

Near the gel point φ = φg, we adopt the simple power

law (cf. [6]),

Py(φ) =

{
0, φ < φg,

m(φ− φg)n, φ > φg,
(8)

with the experiments outlined in §IV designed to deter-
mine the exponent n and calibrate the constants m and
φg. In fact, we find that n is not significantly differ-
ent from unity, suggesting a simple linear relationship, as
found previously for cellulose fibres [25], but rather unlike
measurements for other flocculated dispersions [6]. How-
ever, as for the permeability function, the higher solid
fractions of our drainage experiments demand a nonlin-
ear extension of (8), as described in Appendix A 2 a.

For the solid extensional viscosity Λ, we adopt the form

Λ =

{
0, φ < φg,
ηφ2, φ > φg,

(9)

where η is a characteristic value. This functional form is
crudely based on the phenomenology of collapsing fibre
lumen at higher φ suggested by [16]. We continue with
this form here, in part to assess the significance of such
a rate-dependent solid stress, and also to examine how
well this functional form reproduces experimental obser-
vations at lower φ. Importantly, we assume that (9) only
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applies in the gelled state, and include the switch to zero
viscosity for φ < φg. Nevertheless, at the relatively
low solid fractions of our study, the fibres are unlikely to
collapse under the imposed loads and the rate-dependent
solid stress must have a different microstructural origin,
a detail we return to in our conclusions.

The yield condition |P| > Py(φ) can be awkward to
deal with in situations in which unyielded plugs of solid
appear in the suspension. Although one does not expect
such plugs to appear in sedimentation tests, they can in
fact appear in the drainage problems we consider. In
principle, one is then forced to track moving yield sur-
faces and ensure the plugs remain rigid. Rather than deal
with such complications, we adopt a “regularization” of
the constitutive model in (7) similar to to that used for
viscoplastic fluid models [26]:

P = −

[
Py(φ)

|∂u∂z |+ ε
+ Λ(φ)

]
∂u

∂z
, (10)

where ε � 1 is a regularization parameter. The law in
(10) applies everywhere; the unyielded regions are taken
care of approximately in that, when |∂u/∂z| � ε, the
regularization renders the first term into a relatively large
viscous-like stress supplementing Λ(φ)∂u/∂z. But where
|∂u/∂z| � ε, the regularized law (10) coincides with the
original model (7). In practice, we take ε = 10−7s−1,
the precise value having been verified as irrelevant.

The regularization of the constitutive law permits a rel-
atively straightforward implementation scheme to solve
the model equations numerically. However, the choice
η = 0 is inaccessible in this scheme. To access and com-
pare with the rate-independent limit η → 0, and reduce
the model to more conventional formulations [6, 15], we
therefore select a relatively small value for η to minimize
the effect of the solid viscosity.

B. Ungelled and clear layers

If φ < φg, P = 0 and it then follows from (4) and
(5) that the pore pressure is hydrostatic and the solid
sediments at the local free-fall velocity Vsed:

∂p

∂z
= −ρg, ∂φ

∂t
+

∂

∂z
(φVsed) = 0. (11)

and

u = Vsed(φ, t) = U − φk(φ)g

µ
(ρs − ρf ), (12)

This hyperbolic problem implies that an initially uniform
state with φ = φ0 < φg falls uniformly and a shock forms
underneath where the solid consolidates to the gel point
at height z = zg(t). The ungelled solid also falls away
from the top surface leaving behind an overlying clear-
fluid layer occupying zf (t) < z < h ; see figure 1d(i).
In the constant-volume experiments (figure 1a), the top

surface is fixed, so that h = h0 and U is set by the im-
posed background flow. For the drainage problems (fig-

ure 1b,c), that surface falls as water leaks out, and U = ḣ.
The top of the free-fall zone is given by

żf = Vsed(φ0, t), (13)

or

zf (t) = h(t) +

[
U − ḣ− φ0k(φ0)g

µ
(ρs − ρf )

]
t. (14)

Note that there is only a free-fall zone when zf > zg;
eventually, the freely falling ungelled solid completely
falls into the compacting layer, leaving clear fluid above
and zf = zg (see figure 1d(ii)).

C. Reduction

Substituting the constitutive law for the solid stress
into (4) and (5) furnishes an equation for the solid veloc-
ity over the consolidated layer where φ ≥ φg:

u+
k

µ

∂

∂z

[(
Py

|∂u∂z |+ ε
+ Λ

)
∂u

∂z

]
= U − (ρs − ρf )g

µ
kφ.

(15)
This equation must be solved along with the first mass-
conservation equation in (2) subject to the boundary con-
ditions given below.

At the shock at the top of the consolidated layer,
z = zg(t), the effective stress vanishes and mass must
be conserved, implying

φ = φg and
∂u

∂z
= 0 at z = z−g , (16)

and

żg =
φ(z+

g , t)Vsed(φ(z+
g , t), t)− φgu(z−g , t)

φ(z+
g , t)− φg

, (17)

where the ± superscripts indicate the limits from above
and below (respectively). Also, φ(z+

g , t) = φ0 if zf > zg
and there is an overlying free-fall zone, or φ(z+

g , t) = 0 if
zf = zg and clear fluid overlies the compacting layer.

For fixed-volume compaction as in figure 1a, ḣ = 0 and
U is a prescribed parameter. We then impose u(0, t) = 0,
to complete the formulation of the model for sedimenta-
tion with or without flow-through.

For drainage experiments, the net bulk flow U(t) is set
self-consistently by the stress conditions at the perme-
able lower boundary. In particular, there is an outflow
condition that dictates the pore pressure at z = 0:

p(0, t) = ρf (ghexit + cU2), (18)

where ρfghexit denotes the hydrostatic head at the out-
flow and ρfcU

2 is the resistance to the outflow velocity
U , modeled using a friction coefficient c. Global force
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balance now demands that the fluid and solid stresses at
z = 0 balance the overlying weight of the suspension:

P(0, t) + p(0, t) = ρfgh+ φ0h0(ρs − ρf )g. (19)

As a consequence,

P(0, t) + ρfcU
2 = ρfg(h−hexit) +φ0h0(ρs− ρf )g, (20)

which completes the model for drainage.

D. Capillary stresses for drainage and freeness

If the water drains from the chamber, the model out-
lined above applies only as long as zg < h and there is
an ungelled or clear-fluid layer above the compacting re-
gion. However, the fluid surface eventually descends to
z = zg(t). Any subsequent drainage must either ex-
pose a dry solid phase, or prompt capillary stresses to
appear that maintain contact between the solid and fluid
surfaces. In the experiments, the top surface always re-
mains wet, with no evidence of an overlying unsaturated
solid. Therefore, we assume that capillary stresses act
to hold the fluid and solid surfaces together once they
meet, and zg = h (see figure 1d(iii)). This demands that
we abandon the upper boundary conditions, φ = φg and
∂u/∂z = 0 at z = z−g , and instead apply

u(z−g , t) = żg = ḣ. (21)

A similar situation aises when the initial suspension is
already gelled, φ0 > φg, and the water and solid surfaces
coincide at t = 0. Such initial states turn out to charac-
terize the freeness test for the pulp suspension we employ
in our experiments, which begin from a well-mixed ini-
tial condition that is slightly above the gel point. In
this situation, and without any interfacial interaction,
the phases separate at the top under sedimentation. But
by including capillary effects, we may again prevent the
water surface from detaching from the top of the solid.

III. EXPERIMENTAL DETAILS

To calibrate the compressive yield stress Py(φ) and
permeability k(φ) and then gauge the importance of any
rate-dependent solid stress, we perform laboratory exper-
iments using northern bleached softwood Kraft (NBSK)
pulp suspended in water (obtained from Canfor Pulp).
NBSK pulp is produced from a blend of tree species
(pine, spruce, and fur); the fibres have a mean length and
equivalent diameter of 2.6mm and 26µm respectively, as
measured by a fibre quality analyzer (Optest) [16, 27].

In a first series of tests, we conducted sedimentation
experiments in a selection of three cylinders with interior
diameters of 10.0, 13.6 and 19.0 cm. The initial depth of
the suspension h0 was varied from 3.1 to 88.3 cm. From
these tests, we measured the final sedimented height; i.e.

the level of the top surface of solid. As described in §IV,
this measure can be used to calibrate Py(φ).

The second set of tests used a tank comprised of a large
rectangular chamber and a water reservoir as sketched in
figure 1(a). The suspension was placed in the chamber
and was confined between screen meshes. Water could
be recirculated between the reservoir and test chamber
by a pump, providing a closed flow-loop. In this sec-
ond arrangement, we first performed more sedimentation
tests without flow-through (U = 0) to supplement the fi-
nal height data from the cylinders and further constrain
Py(φ). We then activated the pumps and measured the
effect of the additional flow-induced compaction on the
final solid height, which allows us to calibrate the per-
meability (§V). The rectangular chambers had a cross-
section of 15.2 cm by 14.0 cm, and the depth of the
pulp compartment was h0 = 28.2 cm. Flow speeds in the
range 2.26×10−5m/s to 2.07×10−4m/s were attained. A
variant of the flow-through experiments, in which water
was drained from the arrangement at fixed rate, also al-
lowed a cruder estimation of the compressive yield stress
at higher solid fraction (Appendix A 1).

For the flow-through tank, we also recorded high res-
olution camera images of the compacting suspension
through the sidewall during the experiments. From these
images we measured the instantaneous height of the top
surface of the solid, zf (t). We also seeded the pulp with
small pieces of black paper (of a few mm in size) to act
as tracers for one-dimensional particle image velocimetry
(PIV). The PIV extracts the horizontally averaged ver-
tical displacements between consecutive frames, which
were spaced by 10 seconds in these tests with relatively
slow flow speeds. Both measures of the time-dependent
dynamics allowed us to quantify the transient adjust-
ments that took place after the suspension was mixed
up and left to settle (with or without flow-through), and
when the pump was suddenly switched on or changed in
flow rate.

A third suite of experiments focussed on the time-
dependent dynamics of drainage tests in a large, open top
rectangular tank within which the pulp was suspended
above a permeable screen; see figure 1(b). The bottom
of the tank was connected to an outlet pipe ending in a
tap fixed at an adjustable vertical position that was be-
low the initial top surface of the suspension. The height
of the tap sets a net hydrostatic pressure drop across
the system that forces water within the pulp chamber
to drain to a given level, thereby compacting the solid
against the screen. The initial height of the suspension
in the drainage tank was h0 = 41.9 cm; the tank’s cross-
sectional area was approximately 390 cm2. The exit pipe
was one metre long and 2.54cm in diameter and its end
was held at a range of heights from 28.5cm down to
3.5cm. The resistance coefficient was measured to be
c = 3.44× 104 from steady flow-through tests with pure
water. Again, we use the black paper tracers to per-
form PIV for the arrangement; this time the images were
spaced by 1 second in view of the faster flow speeds that
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were achieved. Both the drainage tests and the transient
adjustments in the flow-through tank are used to gauge
the importance of any solid viscosity Λ(φ) in §VI.

IV. SEDIMENTATION TESTS; CALIBRATION
OF Py(φ)

For a vertical tube filled with a suspension of solid
fraction φ0 to a height h0, sedimentation proceeds un-
til the total weight of solid material (ρs − ρg)gφ0h0 is
balanced by the compressive yield stress at the bottom,
Py(φ

B
). Moreover, in the steady state, the gravitational

stratification of the solid dictates the final height hf , es-
tablishing a connection with the base solid fraction φ

B

that provides us the means to calibrate the compressive
yield stress. For the task, we conducted sedimentation
tests in the three cylinders and the rectangular tank of
the flow-loop arrangement, beginning with initial con-
centrations below φg. For equivalent selections of φ0 and
h0, the final settled height was consistent across all four
containers. However, the time taken to reach the final
settled height was significantly larger in the smallest di-
ameter cylinder than for the other containers, for which
the sedimentation rates were similar.

Figure 2(a) shows the average final solid fraction,
φ = φ0h0/hf , against the total gravitational stress on
the solid, (ρs − ρf )gφ0h0. When the final sedimented
state is almost uniform, that overburden is balanced by
Py(φ). Thus, aside from any gravitational stratification,
the plot in figure 2(a) reflects the compressive yield stress
function. Although there is some spread, the data are
suggestive of a linear dependence of Py(φ) on solid frac-
tion, which guides us to take n = 1 in (8) for a deeper
analysis of the experimental results. Further evidence for
this choice is provided later.

For Py(φ) = m(φ − φg) and no flow-through (U = 0),
the steady-state equations reduce to

dP
dz

= m
dφ

dz
= −(ρs − ρf )gφ (22)

which, given that φ = φg at z = hf , has solution

φ = φg exp
[ g
m

(ρs − ρf )(hf − z)
]
. (23)

The base solid fraction is therefore

φ
B

= φge
(ρs−ρf )ghf/m. (24)

The integral of (22) across the height of the solid also
provides the global force balance condition,

Py(φ
B

) = m(φ
B
− φg) = (ρs − ρf )gφ0h0, (25)

which leads to a prediction for the final settled height,

hf =
m

g(ρs − ρf )
log

[
1 +

(ρs − ρf )gφ0h0

mφg

]
. (26)

The constant (ρs − ρf )g ≈ 5× 103kg/m2/sec2, and each
experiment furnishes a pair (φ0h0, hf ). We therefore de-
termine the values for m and φg that best approximates
this equation in a least squares sense over all 49 experi-
ments. We find m = 1.756× 103Pa and φg = 0.00178.

The fitted linear compressive yield stress function is
plotted in figure 2(b) along with the experimental data
for Py(φ

B
) and φ

B
, implied by (25) and (24), given the

fitted values of m and φg. The agreement between the
model fit and the experimental data is satisfactory, lead-
ing us to conclude that Py(φ) is well represented by a
linear function near the gel point. This conclusion is
reinforced by repeating the analysis, but including the
exponent n as a further free parameter: the nonlinear
least squares fit to the generalization of (26) predicts
that n ≈ 0.93. This fitted exponent is not significantly
different from unity given that it leads to no qualitative
change to figure 2. In particular, the RMS error in (26)
normalised by the observed hf is reduced from 4.55% to
4.52% upon changing n from 1 to 0.93.

V. FLOW-ASSISTED COMPACTION TESTS;
CALIBRATION OF k(φ)

The permeability function can be calibrated by mea-
suring the steady-state solid heights for given bulk flow
velocities U in the flow-through tank. To build such
a data set, we first mixed the suspension and then let
the solid settle to steady state without any flow-through
(U = 0). The pumps were then turned on and the rate
increased sequentially, waiting at each pump setting for
the steady state to be reached. The settled heights ob-
tained in this way are plotted against U in figure 3(a).

In steady state flow-through the force balance equation
becomes

m
dφ

dz
=

µU

k(φ)
− (ρs − ρf )gφ, (27)

which, for a nearly uniform suspension, indicates that

k(φ) ∼
µUh2

f

φ2
0h

2
0

[
2m

(
1− φghf

φ0h0

)
− (ρs − ρf )g

]−1

. (28)

Figure 3(b) plots the implied k(φ) against φ ≡ φ0h0/hf
for our steady-state flow-through experiments. This data
suggests that the main dependence of the permeability on
the solid fraction is through a factor φ−1, as in the fit (6)
and found by previous studies [25].

With the adopted form k(φ) = Aφ−1 log(α/φ), the im-
plicit solution to (27) is

hf − z = −mAΓ

µU
log

[
φ

φg

(
Γ− log(φ/α)

Γ− log(φg/α)

)Γ
]
, (29)

where Γ = −µU/[(ρs−ρf )gA]. The global stress balance
obtained by integrating (27) now gives

e−Γ

(
φg − φB

Γα
− µU

mAΓ2α
φ0h0

)
=
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FIG. 2. Results of the sedimentation experiments, plotting (in (a)) the total gravitational stress on the solid, (ρs − ρf )gφ0h0,
against the average final solid fraction, φ = φ0h0/hf . This data is replotted in (b) as Py(φB ) against φB , using (24) and (25),
having fitted the parameters m = 1.756× 103Pa and φg = 0.00178 according to the procedure outlined in §IV; the fit itself is
shown by the dashed line. The different symbols refer to the two batches of pulp with different φ0 (blue for φ0 = 0.00165 and
red for φ0 = 0.00167), and the different containers (circles for the cylinders, with size corresponding to radii; squares for the
rectangular flow-through tank).
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FIG. 3. (a) Settled heights hf against flow velocity U , showing both the experimental results (filled squares and circles) and the
theoretical predictions (solid lines), given the fits established in §V. (b) The implied mean permeability for a nearly uniform
suspension given by (28), plotted against φ = φ0h0/hf ; the dashed line shows (6) with the calibrated A and α. The (blue)
circles have φ0 = 0.0015 and are used in the fits for A and α; the (red) squares show an independent data set with φ0 = 0.0017.

E1

[
Γ− log

(
φg
α

)]
− E1

[
Γ− log

(
φ

B

α

)]
, (30)

where E1(x) =
∫∞
x
e−t/tdt is an exponential integral and

φ
B

follows from (29) with z = 0. We use this expression
to fit A and α in a least squares sense, given the pre-
viously determined values of m and φg. This procedure
leads to A = 3 × 10−12m2 and α = 0.84. The effective-
ness of the fit can be judged by figure 3, which includes
the theoretical predictions for the final height (given the
fitted values of the parameters). The figure contains two
sets of data with slightly different φ0; only one of these
sets (shown with blue circles) was used to fit A and α.

Given those parameter settings, the second set of data
is reproduced with an RMS error (normalised by the ob-
served hf ) of 1.23%; the first set has error 0.32%.

The fidelity of the fit can be further justified by us-
ing a more general permeability function of the form
Aφ−` log(α/φ) and varying `. We find that ` = 1 pro-
vides a superior fit than any other power larger than 1.1
or less than 0.9; the RMS error when ` = 1.1 or 0.9 is
larger than that for ` = 1 by 30% or so.

Note that the pump rate was only increased in steps in
this series of experiments. With a reduction of the flow
rate, the suspension shows highly hysteretic behaviour,
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FIG. 4. Dynamics of a sedimentation experiment with φ0 = 0.00154 and h0 = 0.272m. Shown are plots of the solid velocity
as a density on the (t, z)−plane for (a) experimental PIV and (c) a model solution with η = η∗ = 107 Pa sec. In (b), the PIV
displacements are integrated to determine the final positions of tracers that were uniformly distributed through the column
(dots), with solid line showing the corresponding theoretical prediction. Panel (d) shows time series of the interface zf (solid)
and gel height zg (dashed) for further theoretical solutions with η/η∗ = 10−3, 10−2, 0.1, 1, 10 and 100; the dotted line shows
the experimental observation of zf .

with very little recovery and expansion to a less consoli-
dated structure. In the most extreme case of turning off
a test with the highest pump rate, the top surface of the
solid rebounds upwards by at most a millimeter or two.
By comparison, when that pump rate is switched on to
compress the gravitationally sedimented state, the top
surface is pushed down by around 7cm. Thus, at least
for the degree of consolidation experienced in the current
tests, the fibre matrix must deform almost plastically on
compression, as assumed in the model.

VI. DYNAMICS AND THE
RATE-DEPENDENCE OF THE SOLID STRESS

A. Fixed-volume compaction dynamics

We begin our assessment of the time-dependent dy-
namics predicted by the model with the transient dy-
namics observed in the flow-through tank. Figures 4a
and 5a show the solid velocity measured by PIV dur-
ing fixed-volume sedimentation experiments either with-
out flow-through (U = 0; figure 4a) or assisted with
U = −2.07× 10−4 m/s (figure 5a). The figures compare
these results with model predictions, computed using the

calibrations of Py(φ) and k(φ), described in §IV and V,
bridged to higher solid fractions as summarized in Ap-
pendix A. For the rate-dependent solid stress, we use
the bulk viscosity in (7) and (9), leaving η as a variable
parameter. Note that pressure filtration studies [16] sug-
gest that η ≈ 107 Pa sec for NBSK, a parameter setting
that we denote by η∗ (in [16], this material parameter
was written as λ∗, the inverse of η∗).

The model solutions are weakly sensitive to the value
of η in these calculations, as illustrated by the time series
of zf (t) and zg(t) for different choices of the bulk viscos-
ity in figures 4d and 5d; only for relatively large values of
η (in comparison to η∗) is there any suggestion that the
rate-dependent solid stress participates in the settling dy-
namics. Moreover, the comparison with the experimental
PIV, which is otherwise qualitatively successful, implies
that such cases are not realistic. The insignificance of the
bulk solid viscosity in these tests for η = O(η∗) can be
established more directly by dimensional analysis with
the model equations: in comparison to the relative ve-
locity u − ḣ, the viscous term on the left of (15) is of
order η∗φ

2
gk(φg)/(µh

2
0) = O(10−3), if we use the initial

height h0 and gel fraction φg as characteristic scales for
length and solid fraction. Our fixed-volume compaction
tests can therefore be adequately reproduced by the two-
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FIG. 5. A similar set of plots as in figure 4, but for a flow-assisted sedimentation experiment with U = −2.07 × 10−4m/s,
φ0 = 0.00166 and h0 = 0.282m.

phase model with just a compressive yield stress, as found
by previous studies (e.g. [8]).

A different comparison of theory and experiment is
given by the φ−distribution of the final steady state.
This distribution is, however, difficult to extract from the
PIV measurements because of the need to differentiate
the particle displacements in z: in our one-dimensional
approximation of the compaction problem, conservation
of mass demands that the solid fraction at any time t be
related to the initial distribution by

dz

dz0
=
φ(z0, 0)

φ(z, t)
=

φ0

φ(z, t)
, (31)

where z0 is the the initial position of an element of solid.
The mapping from initial to final positions of tracers en-
coded in z(z0; t) provides an alternative means of com-
paring the theory and experiments. For example, for
sedimentation without flow-through (U = 0),

z =
m

(ρs − ρf )g
log

[
mφg + (ρs − ρf )gφ0h0

mφg + (ρs − ρf )gφ0(h0 − z0)

]
,

(32)
corresponding to (23). The mapping z = z(z0; t) is conve-
niently extracted from the experiments using the cumu-
lative displacements between consecutive images found
by PIV. Figures 4(b) and 5(b) include the experimen-
tally measured and theoretically predicted final profiles
of z(z0) for those two particular experiments. Over-
all, the experiment and theory are in agreement (with

the example in figure 5 being one of the more demand-
ing cases), providing further confidence in our fits of the
constitutive functions Py(φ) and k(φ).

Despite the qualitative agreement of theory and exper-
iment in figure 4, there is a notable difference between
the two over in the free-fall zone zg(t) < z < zf (t) which,
according to the model, should contain solid with the
initial fraction φ0 falling at the constant free-fall veloc-
ity Vsed(φ0, t). By contrast, the experimental PIV data
indicate a variable fall velocity over this region, which
was also noticeable in the descent of the solid surface h(t)
(see figure 4(d)), and evident in all our experiments. A
variable fall speed may arise because a well-mixed initial
condition is hard to establish in the experiments, furnish-
ing a non-uniform initial solid fraction. Indeed, assum-
ing that the final sedimented state is given by (23), one
can use (31) and the PIV data to trace φ back to where
the solid was ungelled and in free fall. This procedure
implies an initial state characterized by irregular spatial
structure with φ0 = 0.0017± 0.0008.

It is also possible that a non-monotonic sedimentation
flux could generate a non-uniform free-fall zone, as sug-
gested previously for other suspensions [28, 29]. However,
one still expects a uniform region embedded within that
zone (if φ(z, 0) = φ0), unlike what is seen in figure 4(a).
Moreover, although the spatial differentiation of the PIV
measurements introduces significant noise in the local es-
timates of φ, the same data also suggests that the sedi-
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FIG. 6. Root-mean-square error in the interface position
zf (t), normalized by its mean value for a number of sedi-
mentation and flow-through experiments. These experiments
include an example of pure sedimentation (red squares), a test
in which sedimentation was assisted with the largest bulk flow
rate (U = −2.07×10−4 m/sec; black stars), and tests in which
the solid was allowed to sediment before turning the pumps
on. For the latter, two cases are shown: one in which the
pumps were again turned to the maximum (green filled cir-
cles), and a second in which the pump rate was increased in
five steps up to that maximum (blue open circles; this test
corresponds the squares in figure 3).

mentation flux is not a simple function of the local solid
fraction. The discrepancy may well therefore point to
some other behaviour in the free-fall zone that is not ac-
counted for in the model (such as spatial inhomogeneity
induced by the flocculation of fibres, or the additional
drag experienced by the markers nearer the side walls).
Awkwardly, this feature also precludes us from exploiting
the PIV data to directly infer reliable permeability data
from the sedimentation experiments.

A measure of the goodness-of-fit of the theoretical
model over all of the sedimentation and flow-through ex-
periments is shown in figure 6. This figure plots the root-
mean-square error in the interface position zf (t) for the
model using a spread of values of η. The error is normal-
ized by the mean interface position and, unless the solid
viscosity is chosen to be excessively high, is of the order
of a few percent.

B. Drainage

The higher fall speeds achieved during the drainage ex-
periments provide a more demanding test of the model
and an indication as to whether or not a solid vis-
cous stress is needed: in the most extreme case with
hexit = 0.035m, the mean solid fraction reaches approx-
imately 0.02 and the solid speed peaks at around 1cm/s
(about four times denser and fifty times faster than in
the constant-volume tests). Importantly, in the drainage
tests, the relatively high resistance of the output pipe

has the effect of throttling the fall speed of the water.
Consequently, the water height h(t) is largely set by the

“pipe law” cḣ2 ≈ g(h − hexit), in all but the most ex-
treme cases of hexit where the densification of the solid
can offset the pipe resistance. Moreover, in most cases,
the interface zf (t) does not have sufficient time to sedi-
ment below the free surface to create an observable clear
layer at the top. Thus, the time series of both h(t) and
zf (t) are not the best statistics to gauge the solid exten-
sional viscosity. Instead, we use the growth of the gelled
layer at the base of the column as a clearer diagnostic.

Figure 7a shows the solid velocities obtained by PIV
for a number of drainage experiments with varying hexit
starting from h0 = 0.419m with φ0 = 0.0016. Except
for the cases with small hexit, the water heights follow
the parabolas predicted by the pipe law, and the bulk
of the solid falls at roughly uniform velocity given by
ḣ. More significant is the sharp decline of the fall speed
into the gelled layer underneath, which is highlighted by
plotting the fall velocity normalized by the free surface
velocity, u(x, t)/ḣ (figure 7b); although the division intro-
duces some noise, the free-fall zone and compacted layer
become more apparent. Figure 7c adds complementary
model computations of u(x, t)/ḣ using a solid extensional
viscosity parameter of η = 1

2η∗, a choice that is motivated
below.

Figure 8 shows further details of the theoretical solu-
tions for one of the tests. Computations with different
bulk viscosities η are shown, illustrating how the posi-
tion of the top surface is not particularly sensitive to this
parameter. The degree of compaction at the base of the
column is, however, controlled by η, with low bulk vis-
cosities generating a compacted layer bordered from the
overlying falling zone by a relatively sharp interface with
pronounced velocity gradients. Raising the solid exten-
sional viscosity smooths these gradients to furnish a more
gradual transition. Furthermore, bulk viscosities close to
the value suggested by pressure filtration, η = η∗, lead to
velocity gradients that are more consistent with the PIV
observations. Thus, the qualitative comparison of the
PIV and theoretical velocity plots, and in particular the
transition above the compacted layer, indicates that the
model performs better with a solid extensional viscosity
η = O(η∗) than without one.

A more quantitative evaluation of this conclusion is
given in Figure 9, which reports, for all the drainage tests,
the root-mean-square error in the free surface height
h(t) (again normalized by the mean surface height) and
the average distance between the contours for which
u(z, t)/ḣ = 0.5 and 0.8; see figure 8. The latter is a
direct measure of the sharpness of the transition in solid
velocity above the compacted layer, and has the curious
feature of being roughly independent of time and hexit for
both the experiments and model solutions. The plots of
this diagnostic in figure 9(b) suggest that that the model
fits the experiments best for bulk viscosities close to η∗;
a near-optimal choice indicated by figure 9b is η = 1

2η∗,
as used in figure 7(c).
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FIG. 7. (a) Solid velocity (in m/sec) obtained from PIV of eight drainage tests, plotted in series. The tests drain to the heights
hexit terminating each case. Also shown is the experimentally observed water height h(t) (solid black) and the solution to the

pipe law cḣ2 = ρfg(h − hexit) (dashed red). In (b) we re-plot the data using the scaling u(x, t)/ḣ(t). In (c), we show the
theoretical counterpart to (b) using the solid extensional viscosity η = 1

2
η∗.

Note that the PIV detects some degree of rebound of
the solid once the water drainage terminates: although
there is no change in the position of the top surface of the
solid, fibres near the base of the column deform back up-
wards over distances of up to a few millimetres over times
of order tens of seconds. We interpret this rebound to be

the signature of recovery from a small amount of elas-
tic stress superposed on the plastic compression. As the
model incorporates no such dynamics, we have avoided
any comparisons with the PIV after the termination of
the drainage.
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FIG. 8. A drainage test with hexit = 10.3cm. Panels (a)–(c)

show plots of the scaled solid velocity u/ḣ as densities over
the (z, t)−plane for (a) the experimental PIV, and model so-
lutions with (b) η = 10−3η∗ and (c) η = η∗. The lines indicate

the contours along which u/ḣ = 0.5 and 0.8. Panel (d) plots
time series of the interfaces h ≈ zf and zg for solutions with
η/η∗ = 10−3, 10−2, 0.1, 0.2, 0.333, 0.5, 1, 10 and 100; the
dashed line shows the free surface of the experiment.
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FIG. 9. (a) Root-mean-square error in h(t) and (b) the aver-

age distance between the contours along which u(z, t)/ḣ = 0.5
and 0.8; see figure 8. In (a), the error is normalized by h0. In
(b), the dots show model predictions; the grey shaded region
indicates the range of experimental measurement as defined
from the cumulative distribution of observed values (the dis-
tribution is strongly skewed; we use the limits within which
68% of the data lie). The colour bar in (a) maps the colour
of the dots in both panels to hexit.

VII. UNDERSTANDING FREENESS

Equipped with a calibrated two-phase model for a spe-
cific suspension of cellulose fibres, we now turn to an
exploration of the Canadian Standard Freeness test. In
particular, in addition to verifying that the calibrated
model reproduces the freeness score for the pulp suspen-
sion, we explore the dynamics of the test in order to
gauge what material metric the freeness score provides
for a two-phase medium.

A. Freeness scores

The arrangement of the Canadian Standard Freeness
(CSF) test is sketched in figure 1(c): a suspension of pulp
held in a cup drains through a thin permeable screen
into a funnel; a side channel diverts part of the discharge
into a collection tube to register the “freeness score” (in
mL). Because the build-up of solid above the screen lim-
its the drainage, the freeness score represents a nonlin-
ear integral measure of the drainage dynamics. Under
standard conditions, the tester is initialised with 1L of
the suspension (leading to h0 ≈ 0.122m) with a consis-
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FIG. 10. Freeness score measured experimentally and pre-
dicted by the model against initial volume for the initial con-
centrations C (by mass) indicated. Solid lines show the model
results for η = η∗, and dotted lines for η = 10−3η∗.

tency of 0.3%-by-weight (corresponding to φ0 ≈ 0.002, if
ρs = 1500kg/m3 and ρf = 1000kg/m3). Clear water has
a freeness score in the range 880 to 890 mL.

To compute theoretical predictions for the freeness
score, we supplement the theory in §II with a model of
the funnel that determines how much of the discharge
from the cup enters the side channel. We relegate the
details of that extension to Appendix B, its sole purpose
being to convert the flow history to the freeness score.

Because the permeable screen of the cup presents less
resistance to outflow than the pipe of our drainage tests
(the resistance coefficient of the screen is estimated to
be c = 180, in comparison to the pipe coefficient c =
3.4 × 104), the dynamics of the freeness score are richer
than the experiments in §VI. Thus, as well as performing
a further verification of the model and its calibration, the
freeness test serves up a potentially informative applica-
tion of the model. However, a single score for a given
pulp suspension is limiting, leading us to perform a se-
ries of freeness tests in which we departed from standard
procedure and varied the amount of pulp in the cup and
its initial solid fraction.

The results of these tests are displayed in figure 10; the
freeness score shows a remarkably linear dependence on
the initial weight of pulp, over a range of initial consisten-
cies. Both the values of freeness and the trend with initial
weight and consistency are recovered by the model when
the solid extensional viscosity is included with a value
close to η∗. By contrast, solutions in the limit η � η∗
of traditional compaction theory [6, 15] significantly un-
derestimate the freeness score and furnish a trend with
initial weight that is noticeably nonlinear, except at the
lowest solid concentrations.
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FIG. 11. Model solutions for the freeness test of NBSK for
η = 0.01η∗, η∗ and 100η∗. Panel (a) plots the free surface
position h(t) against time. Also shown are the asymptotic
predictions for η � 1 (§VII B 1) and η � 1 (from (38) with
η = 100η∗). Panels (b-d) and (e-g) show snapshots of φ and u
at the times indicated in (a) by thin vertical lines. Thick red
lines in (e-g) show unyielded zones, defined for our regularized
constitutive law by the condition |P| < Py(φ).

B. The dynamics of freeness

For a more complete analysis of the freeness dynamics,
we interrogate the model solutions. Figure 11 presents
solutions for the parameters of the CSF test with η =
0.01η∗, η∗ and 100η∗. Shown are the predictions for h(t)
and a selection of snapshots of φ and solid velocity dur-
ing the period before the discharge from the side chan-
nel in the cone switches off. For small solid extensional
viscosity (figure 11(b,e)), the bulk of the material falls
as an unyielded plug against the screen, rapidly crushing
the material there so that the solid stress and hydrostatic
pressure come into balance. A boundary layer forms near
the screen in which the solid is significantly compacted,
and this layer subsequently chokes the falling plug flow
because of its low permeability. Consequently, the initial
fall of the suspension is rapid, but soon decelerates. At
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large solid extensional viscosity (figure 11(d,g)), the rate-
dependent stress significantly supports the suspension,
reducing the hydrostatic head and the drainage rate; the
material remains roughly uniform and the velocity pro-
files are linear. Extensional viscosities with η = O(η∗)
lead to solutions with characteristics between these two
extremes (figure 11(c,f)). The different dynamics of the
three cases is reflected by the resulting freeness scores
(which are 490mL for panels (b,e), 736mL for panels (c,f)
and 243mL for panels (d,g)).

1. The limit of zero solid extensional viscosity

In the limit η → 0 described by the traditional rate-
independent models [6, 15], the equations for the freeness
problem can be simplified owing to the plastic form of
the solid stress: when φ0 < φg, the release of the flow at
the base of the container immediatelly causes the bulk
of the solid to move downwards with the speed of the
top surface and to compact into a much thinner consoli-
dated layer above the screen. If the screen resistance and
the contribution of the solid to the weight are relatively
small, the force balance at the base implies that

P(0, t) = ρfgh. (33)

Thus, at the moment of release, the solid phase must im-
mediately compact at the base to a solid fraction given
by Py(φ) = ρfgh0. Thereafter, however, the overlying
weight declines due to the falling height of the suspen-
sion, leaving the stress P(0, t) below the compressive
yield stress Py(φ(0, t)) and the solid over-consolidated
there. Immediately above, the downward flow continues
to push solid into the compacted layer, thickening it and
forcing the solid to consolidate locally up to a yield stress
Py(φ) that balances the instantaeous overlying weight.
In other words, an upward-migrating compaction front
forms at z = Y (t) where

P(Y, t) = Py(φ(Y, t)) = ρfg[h(t)− Y (t)]. (34)

Above the front, the bulk of the solid still moves down
with φ = φ0, whereas within the compacted layer, the
φ−distribution is a frozen record of the evolving yield
condition. For φ0 > φg, this simple structure is compli-
cated by the fact that the solid is gelled above the com-
paction front and the sharp jump above z = Y (t) begins
to diffuse upwards into the bulk of the falling layer. Pro-
vided the jump remains sharp, we may approximate it
as a discontinuity at the compaction front and apply the
mass conservation constraint,

Ẏ =
φ0ḣ

φ0 − φ(Y, t)
, (35)

given that φ0ḣ is the flux into the front from above, and
the unyield layer below is stationary. Last, Darcy’s law

integrated across the unyielded layer implies that

p(Y, t) ≡ ρfg(h− Y )− Py(φ0) = −µḣ
∫ Y

0

dz

k(φ)
− ρfgY

(36)
(since p(0, t) = 0), where we have used the hydrostatic
pressure p = ρfg(h − z) − Py(φ0) in Y < z < h, which
includes the contribution of the capillary pressure at the
top if φ0 > φg. Equations (35) and (36), along with
(34), constitute two coupled ODEs for the yield surface
and suspension height; the solution for the conditions
of the CSF is included in figure 11(a). Both the com-
pressive yield stress and permeability feature in this re-
duced model: Py(φ) determines the solid distribution at
the bottom via force balance, whereas the permeability
controls the water flow across the solidified cake above
the screen. The main limitation of the approximation in
(35)–(36) is the diffusive spread of the jump in φ above
the compaction front.

2. The limit of large solid extensional viscosity

In the opposite limit of large solid extensional viscosity,
the solid becomes almost uniform throughout the com-
pacting column. This implies that φ = φ0h0/h(t) and

u = zḣ/h. The bottom boundary condition now demands
that

ḣ ∼ −ρfg
Λ
h2 ≡ − ρfg

ηφ2
0h

2
0

h4, (37)

if the compressive yield stress, screen resistance ρfcḣ
2

and solid buoyancy φ0h0(ρs − ρf )g are all small in com-
parison to the bulk viscous stress. Thus,

h ∼ h0

(
1 +

3ρfgh0

ηφ2
0

t

)−1/3

, (38)

which is also plotted in figure 11(a) for η = 100η∗.
In this limit, the freeness score is therefore completely

determined by the solid extensional viscosity; the per-
meability and compressive yield stress play no role. To
understand how those additional effects come into play,
we estimate the corrections to (37) as follows: from (15)
we observe that the permeability enters when the Darcy
drag is no longer negligible in comparison to the rate-
dependent stress, implying

k
∂

∂z

(
Λ

µ

∂u

∂z

)
∼ ḣ− u ∼

(
1− z

h

)
ḣ. (39)

The bulk viscous stress at the bottom is then,

Λ
∂u

∂z
(0, t) ∼ ηφ2

0h
2
0

ḣ

h3
− µhḣ

3k(φ0h0/h)
. (40)

Hence, (37) can be generalized to

Py(φ)− ηφ2 ḣ

h
+

µhḣ

3k(φ)
+ ρfcḣ

2 = ρfgh+ (ρs− ρf )gφ0h0,

(41)
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with φ ∼ φ0h0/h. Equation (41) can be attacked with
dimensional analysis to gauge when effects other than the
solid extensional viscosity come into play. In fact, (41)
offers a convenient setting in which to assess parameter
sensitivity more generally, as we detail next.

C. Parameter sensitivity

To understand in more detail how the freeness score
relates to the underlying material behaviour of a fibrous
suspension, we vary parameters in the model solutions
and perform a dimensional analysis based on the simpli-
fications afforded by the η � 1 limit exposed above: first,
by varying the resistance parameter in the computations,
we find that the screen resistance is important in limiting
fall speeds at early times. Thus, the initial velocity scale
is provided by balancing the screen resistance against the
hydrostatic head in (41), giving

|ḣ| ∼
√
gh0

c
∼ 0.07 m/sec. (42)

The rate-dependent stress, of order ηφ2ḣ/h ∼
ηφ3ḣ/(φ0h0), only enters in the main balance of (41)
when the compaction at the bottom becomes sufficiently
high, which suggests a typical solid fraction there:

φ(0, t) = φ
B
∼
(
ρfgh

2
0φ

2
0

ηḣ

)1/4

∼ 5× 10−3. (43)

Both estimates in (42) and (43) compare well with the
model solutions in figure 11(c,f).

Given these estimates, we now gauge the importance of
the remaining terms in (41). From our calibrations of the
compressive yield stress, and with η = η∗, we find that
φ

B
Py(φ

B
)/(ρfgφ0h0) ∼ 0.03 (since Py(φ

B
) ∼ 10 Pa).

Thus, the compressive yield stress is likely to be a rel-
atively small contributor to the freeness score unless it
is made larger by a factor of order ten or more. On the
other hand, the relative size of the term originating from
the Darcy drag is µ

√
φ0h0/gc/[3ρfk(φ

B
)
√
φ

B
] ∼ 0.7 (us-

ing k(φ
B

) ∼ 2×10−9 m2). The permeability is therefore
expected to affect the freeness score except when made
larger by a factor of ten or so. Last, the overlying solid
weight (ρs − ρf )gφ0h0 is negligible in view of the rela-
tively small initial solid fraction.

Since the screen resistance is fixed, these scalings sug-
gest that the solid extensional viscosity and permeability
have the most immediate effect on the freeness score,
whereas a material requires substantially larger values of
Py for the compressive yield stress to become important.
These predictions are confirmed in figure 12(a), which
displays freeness scores obtained from model solutions in
which relevant parameters are varied.

More specifically, when we vary η, holding all the other
parameters fixed, we see that the freeness score does in-
deed depend sensitively on the solid extensional viscosity.

Interestingly, the freeness is maximized for η = O(η∗),
and the observed values in the actual freeness tester lie
close to the maximum. Evidently, freeness is effectively
reduced by the choking of the drainage rate by exces-
sive compaction at low solid extensional viscosity, or the
viscous support of the suspension at high values of η. No-
tably, neither reduction is compatible with the observed
freeness score.

Likewise, figure 12(a) also highlights how reducing the
permeability by a constant factor has a dramatic effect
on the freeness score, an effect we attribute to the ele-
vated Darcy drag enhancing the compaction of the solid
above the screen. By contrast, increasing the perme-
ability by a constant factor has little effect on freeness,
because the Darcy drag is then made unimportant, pre-
cisely as anticipated by the scaling analysis. Similarly,
changing the compressive yield stress by a constant fac-
tor has no effect on the predicted freeness except when
Py(φ) is increased by more than a factor of ten, to enable
the solid yield stress to contribute to the support of the
hydrostatic load above the screen.

D. More pulp

From the preceding discussion, we conclude that the
model is able to reproduce the freeness score of NBSK.
A rate-dependent stress is certainly needed, and the ma-
terial parameters that most strongly affect the freeness
score are the solid extensional viscosity and the perme-
ability of the pulp matrix. Moreover, the best-fitting
choice of the solid extensional viscosity parameter is con-
sistent with that found in pressure filtration tests [16].

To investigate the robustness of these conclusions we
have also tested a number of other cellulose suspen-
sions. These include further NBSK mixtures with dif-
ferent chemical additives and other pulps consisting of
hardwood fibres or a mixture of hardwood and softwood.
Given that the preceding results suggest that the detailed
form of the constitutive functions nearer the gel point are
not key, we use calibrations of Py(φ), k(φ) and η from
pressure filtration studies [27]. The full set of pulps dis-
play a range of material parameters and freeness scores.
Notably, however, the permeabilities measured for the
pulps also have a remarkable correlation with the solid
extensional viscosity (although their compressive yield
stresses are similar, varying by at most a factor of two).
In particular, given a characteristic measure k∗ of the
permeability at a representative solid fraction, we find
that the combination ηk∗ is roughly constant over the “li-
brary” (see the inset of figure 12(b)). Thus, to compare
model predictions with the pulp library, we conduct more
computations in which both the solid extensional viscos-
ity and permeability were varied, keeping ηk(φ) fixed.
As shown in figure 12(b), we find a similar trend for the
freeness score with η, although none of the pulps tested
have substantially lower values of the bulk viscosity.
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FIG. 12. (a) Freeness score against constant multiplier of η (blue circles), k(φ) (red diamonds) and Py(φ) (yellow triangles). The
experimental freeness of NBSK pulp (714mL) is shown by dashed line. (b) Freeness score against solid extensional viscosity for
the pulp library (filled circles) along with the model predictions for NBSK, varying η whilst keeping the product ηk(φ) constant
(solid line connecting open circles). The inset shows the inverse correlation between η and a characteristic permeability
k∗ = k(0.1).

VIII. DISCUSSION

In this study we have explored a two-phase model for
the flow-induced compaction of a fibrous porous medium
over increasingly rapid rates of compaction. Sedimen-
tation and flow-through tests were used to calibrate the
permeability and compressive yield stress of the model.
The calibrations were bridged to previous fits for higher
solid fraction from pressure filtration studies, and pro-
vide a useful characterization of a particular cellulose fi-
bre (NBSK) over almost the entire range of relevant solid
fractions. By studying the time-dependence of both these
and further drainage tests, we demonstrated that the
model was capable of reproducing the experiments be-
yond the steady state dynamics. Importantly, the model
performed significantly better when generalized to incor-
porate the same bulk solid viscosity used in the previous
pressure filtration studies.

We then explored the dynamics of the Canadian Stan-
dard Freeness test, whose “freeness score” measures the
rapidity of water drainage from a standardized sample of
pulp. The model reproduced the observed freeness score
for NBSK, both under standard test conditions and over
a wider range of initial solid concentrations and suspen-
sion volumes. By interrogating the model, we found that
the most important material properties for the freeness
score are the solid extensional viscosity and the perme-
ability, with the compressive yield stress playing only a
minor role. Thus, given that the test is a readily avail-
able industrial-standard device, our analysis opens up the
possibility of utilising the freeness score more widely for
the rheological characterisation of two-phase materials
undergoing rapid deformation.

Nevertheless, because we have focussed on a particu-

lar experimental material, it is unclear how significant
rate-dependent solid stresses might be for different dis-
persions. In fact, our results for cellulose fibres run some-
what counter to intuition: as remarked by Buscall and
White [6], although solid viscous stresses are to be ex-
pected in two-phase media, they are normally ignored
because dimensional analysis suggests the viscosity to be
relatively small. The core of the argument is that the
rate-dependent solid stress originates from the viscous
flow of the solvent around the solid particles during com-
paction. Thus, in the low−φ limit, the solid viscosity
scales with that of the solvent, as also predicted by gen-
eral two-phase flow theory [14]. For our fibre suspension,
this suggests that Λ ∼ µ = 10−3 Pa secs. The bulk
viscosity adopted in our model, Λ = ηφ2, is four orders
of magnitude larger with the calibrated value for η and
φ = O(10−3). This anomaly mirrors two other curious
results: the compressive yield stress depends linearly on
φ−φg near the gel point, whereas a stronger dependence
is found for other suspensions (§A 2 a), and pulp perme-
ability is unusually low in comparison to other fibres (see
§A 2 b).

A rationalization of all these observations requires a
micromechanical model of the cellulose fibre suspension,
which is beyond our current scope. Nevertheless, we
speculate that the unexpected material behaviour origi-
nates from the structure of the hollow, deformable fibres
themselves. The linear increase in the solid stress with
φ − φg, for example, might arise through elastic bend-
ing of individual fibres, either facilitating or preceding
a plastic rearrangement of the bulk network. Similarly,
the abnormally low permeability may arise because the
effective solid fraction is misidentified in the suspension:
at low concentrations, the fluid inside the hollow fibres is
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unable to leak out, implying that the fluid interior should
be counted as part of the solid [30]. Finally, because
the fibres must be in mechanical contact in the gelled
state, it is possible that the relatively high solid viscosity
originates not from the larger-scale viscous flow around
fibres, but from flow within the much narrower regions
where the fibres are in sliding contact. The reduced scale
of those regions could, in principle, enhance the viscous
dissipation, and therefore the solid viscosity.

Overall, cellulose fibre suspensions constitute an inter-
esting two-phase material with somewhat poorly under-
stood microstructural properties, despite widespread use-
age. Our efforts here have highlighted the macroscopic
rheology that this microstructure must dictate. Whether
many other materials share similar properties remains to
be seen, although our speculations about the microstruc-
ture dynamics are not particularly specific to cellulose.
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Appendix A: Extended empirical fits

1. Extension to higher solid fraction; a withdrawal
experiment

The fits for Py(φ) and k(φ) span a relatively low range
of solid fractions near φg (φ . 0.006). By contrast, the
fits of these functions from pressure filtration tests [16]
cover rather higher solid concentrations (0.05 . φ). The
order of magnitude gap between these ranges provides a
potential source of error when bridging between the two
fits via interpolation formulae of the sort outlined below.
To shore up the interpolation of the compressive yield
stress, we therefore conducted another simple experiment
in the flow-through arrangement, designed to extract a
cruder estimate of Py(φ) over a wider range of φ.

More specifically, for an equilibrated test in which the
solid had been compressed at the maximum pump rate,
we removed the return pipe of the pump from above the
pulp chamber, and instead withdrew water from the back
tank at the same fixed rate. Although the pump rate
was at maximum, this withdrawal experiment is still rel-
atively slow, taking about an hour to remove the 12 litres
of water from the two tanks. This leads us to assume that
the solid adjusts quasi-statically during the withdrawal,
allowing us to estimate the compressive yield stress as
outlined below.

To begin with, the slowly descending top surface of the
water remains above the solid. In this state, the draining
of the fluid from the arrangement is not expected to af-
fect the pulp, and no changes in the solid were observed
during this phase of the experiment. Once the water
level in the pulp chamber meets the top of the compacted
solid layer, however, capillary stresses prevent drainage
through that matrix. The top surface of the suspension

then begins to fall less quickly than in the reservoir con-
nected to it because the solid matrix supports a hydro-
static pressure drop across the two. If 2Uw denotes the
flux at which water is withdrawn, per unit cross sectional
area of the two tanks, then

h+ hb = 2(h0 − Uwt), (A1)

where hb is the water level in the back reservoir.
At this stage, the pulp is also relatively compacted,

with an elevated solid stress countering the capillary pres-
sure that is exerted at z = h to maintain the coincidence
of the top surfaces of the water and pulp. This leads
us to suppose that the solid becomes relatively uniform,
φ ≈ φ(t) ≈ φ0h0/h, in which case u ≈ ḣz/h. Ignoring
the rate-dependent stress in view of the relatively slow
withdrawal, (4) then reduces to

∂

∂z
[Py(φ) + p] = −ρfg − φ(ρs − ρf )g. (A2)

Given that Py(φ) + p = 0 at z = h, p(0, t) = ρfghb, and
φ(ρs − ρf )� ρf , the integral of (A2) now implies

Py

(
φ0h0

h

)
≈ 2ρfg(h− h0 + Uwt). (A3)

This allows us to extend the compressive yield stress
function to higher φ using the observed h(t) from the
withdrawal experiment, as shown in figure 13(a).

2. Interpolations

The explicit interpolation formulae for the permeabil-
ity and compressive yield stress functions are provided
below; figure 13 illustrates how they bridge between the
fits for the experiments of §III and the pressure filtration
studies of [16].

a. Compressive yield stress

Our fit for the compressive yield stress is:

Py = exp

{
log [m(φ− φg)]S + [1− S] log

[
Bφj

(1− φ)l

]}
,

(A4)
where the interpolant is

S(φ) = 1
2

[
1− tanh Υ

(
1− log φ

log Φ

)]
, (A5)

and the parameters are Φ = 0.01 and Υ = 10. The
sedimentation tests give m = 1756 Pa and φg = 0.00178.
Pressure filtration studies provide the fitting parameters
B = 6× 105 Pa, j = 1.84 and l = 3.12.

Note that the fit of Py(φ) implies an unphysical maxi-
mum packing of unity. Part of the reason for this is that
the pressure filtration studies do not access sufficiently
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FIG. 13. Plots of the extended fits to the (a) Py(φ) and (b) k(φ) functions. In each case, the thicker blue and red lines show
the fits from our calibration experiments (§IV and V) and from pressure filtration studies [16], respectively. In (a), the dots
show the cruder estimates from §A 1. The thinner (purple) lines shows the interpolations of §A 2 a and A 2 b. In (b) the fitted
permeability for suspensions of rigid fibres of [20] is plotted with a dashed line, and estimates of an effective bulk permeability
obtained via a Pulmac tester are shown with red triangles.

high φ that one can reliably approach this limit. The lin-
ear behaviour near the gel point is also somewhat surpris-
ing, with extrapolations from higher solid fraction sug-
gesting the low-φ limit Py(φ) ∼ φ2 for fibrous suspensions
[16, 31], and the stronger dependence Py ∝ (φ − φg)n,
with n between 2 and 4, for other flocculated dispersions
[6].

b. Permeability

For the permeability we use

k = exp

{
log

[
A

φ
log(αφ−1)

]
S +

[1− S] log

[
Â

φ
e−dφ log φ−1

]}
. (A6)

The flow-assisted compaction tests indicate that A =
3× 10−12m2 and α = 0.84, whilst the pressure filtration
studies give Â = 3.6× 10−13m2 and d = 18.52.

The fit (A6) exploits the interpolant function S(φ) of
the compressive yield stress function in (A5) because the
results of the withdrawal experiment do not constrain
k(φ). However, the interpolation is supported by an in-
dependent set of permeability measurements of the same
pulp using a commercial device (a Pulmac tester), which
is also included in figure 13(b). This device places the
pulp under a given compression and a given pore pres-
sure drop to measure the mean permeability of a sample.
Differential compaction at low φ implies that these mea-
surements become inaccurate, and too low in comparison
to the actual permeability for φ→ φg.

The pulp permeability is anomalously low in compar-
ison to what is expected for other fibrous porous media.

This can be judged by the comparison between the data
in figure 13(b) and a fit provided by Jackson & James
[20], which is also included (using the fibre radius of our
pulp). The measured permeabilities are orders of magni-
tude below the Jackson & James fit over the full range
of solid fraction, particularly at higher φ, in agreement
with previous studies (see [16, 32]).

Another perspective on this anomaly is provided by
the fit of the constant A, which in the dilute limit should
equal a2, where a is the typical radius of a pulp fibre,
times a constant between 0.125 and 0.25 dependent on
fibre orientation [21]. For NBSK, the typical fibre radius
is about 15 microns, implying that A should be of order
(3− 6)× 10−11m2, which is an order of magnitude larger
than the fitted value quoted in §V. This may arise be-
cause the dilute theory assumes that the fibres are solid
and straight rigid rods, whereas in reality the cellulose
is hollow and deformable. Moreover, the conduits in the
fibre walls through which the water inside may leak out
are small, suggesting that at low solid fractions, it may
be more appropriate to consider the fluid contents of the
fibres as part of the solid matrix (cf. [30]). Thus, the
effective solid fraction is higher than expected by a fac-
tor corresponding to the volume ratio of the fibre to its
interior, which is about five for NBSK [33].

Appendix B: Freeness Cone

A sketch of the cone in the freeness device is shown in
figure 14. Water is fed in at the top with a flux Q(t) and
fills the main chamber of the freeness device to a depth of
Z(t); just below that interface, the instantaneous (down-
ward) flow speed is v. At the bottom of the chamber,
water enters an exit channel with flow speed v

E
. A side
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FIG. 14. Sketch of the funnel geometry of the freeness device.

channel with an entrance at a height Z
S

= 6.6cm above
the bottom of the chamber removes water with speed v

S

to register the freeness score.
Taking atmospheric pressure to be zero and assuming

that the flow inside the cone is quasi-steady, we apply
Bernoulli’s law to determine the pressures at the bottom
of the vessel and the entrance to the side channel,

p
E

+ 1
2ρv

2
E

= ρgZ + 1
2ρv

2 (B1)

and

p
S

+ ρgZ
S

+ 1
2ρv

2
S

= ρgZ + 1
2ρv

2, (B2)

respectively. We also adopt the friction factors f
E
≈ 0.14

and f
S
≈ 0.36 to model the resistance of the two outflow

channels (as estimated by circulating water through the
cone at various constant flow rates), so that

p
E

= f
E
ρv2

E
−ρgh

E
& p

S
= f

S
ρv2

S
−ρgh

S
, (B3)

where h
E

= 1cm and h
S

= 7cm denote the vertical
lengths of the exit and side channels. Thus,

v
E

=

√
v2 + 2g(Z + h

E
)

(1 + 2f
E

)
(B4)

and

v
S

=

√
v2 + 2g(Z − Z

S
+ h

S
)

(1 + 2f
S
)

(B5)

provided Z > Z
S

the side-channel discharge switches off
if Z < Z

S
.

Mass conservation within the vessel demands that

V̇ = AŻ = Q−A
E
v
E
−A

S
v
S
, (B6)

where A(Z), A
E

= 0.086cm2 and A
S

= 1.29cm2 are
the horizontal cross-sectional areas at the top free sur-
face withing the cone and of the exit and side channels
respectively, and the volume of water in the main com-
partment V can be related to Z through an empirical re-
lation accounting for the geometry; a simple fit suggests
that V (Z) = 442Z9− 0.639Z6 + 0.060Z3 + 1.7× 10−5m3

(measuring Z in metres).

We simplify further by observing that in the freeness
test the main compartment fills up to a depth of or-
der tens of centimetres in a few seconds. Thus Ż =
O(0.1)m/s. By contrast, (v

E
, v

S
) ∼

√
gZ = O(1)m/s.

This disparity implies that the flow within the cone is
quasi-steady, and suggests that we reduce (B6) to

Ż =
Q

A
− A

E

A

√
2g(Z + h

E
)

1 + 2f
E

−Θ
A

S

A

√
2g(Z − Z

S
+ h

S
)

1 + 2f
S

,

(B7)
where Θ = 1 if Z > Z

S
and Θ = 0 otherwise. We

solve equation (B7), starting from Z(0) = 0 and given
the input flux Q(t), up until the height Z(t) falls back
below Z

S
. The integral of the discharge through the side

channel provides the freeness score.

As a check of the applicability of the model, we perform
two tests: first, we record the freeness scores (i.e. the
total discharge through the side channel) when draining
a fixed amount of water from the cone. For 1 litre of
water in the cone, the model predicts a score of 902mL,
in comparison to a measurement of 899mL; for 500mL of
water, the theoretical score is 440mL, whereas we observe
436mL. Second, conducting the freeness test itself with
pure water (and using the calibrated value for the screen
friction factor quoted earlier, c = 180) we calculate a
score of 903mL, in comparison to the operating range of
880-890mL stated in the CSF documentation.

Earlier models [22–24] adopt a rather simpler descrip-
tion of the cone, taking the flux through the bottom to
be a fixed discharge (i.e. A

E
v
E
≈ 8.833 ml/sec) and as-

suming the main compartment fills instantaneously. This
approximation allows one to relate the influx Q directly
to the side-channel discharge A

S
v
S
. If we introduce the

same assumption into (B6), we find that the freeness
score is higher by roughly 20 points.
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