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ABSTRACT 

 

Dr Onajite Kousin-Ezewu 

 

Investigation of the role of antagonism of the Interleukin-7 receptor in the treatment 

of multiple sclerosis in humans and in vitro differences between genetically stratified 

subjects based on Interleukin-7 receptor genotype 

 

Multiple Sclerosis is an autoimmune disease mediated by activated lymphocytes 

entering the central nervous system. Treatments with the greatest efficacy either 

prevent the entry of activated lymphocytes, or deplete the lymphocyte population, 

before allowing lymphocyte reconstitution. IL-7Rα was identified by genetic studies in 

MS pathogenesis and is involved in the homeostasis and proliferation of 

lymphocytes.  

 

This thesis investigates the role of antagonism of IL-7Rα in the treatment of MS in 

humans and in vitro differences between genetically stratified subjects based on IL-

7Rα genotype. It also explores the role for biomarkers during reconstitution of 

lymphocytes after Alemtuzumab treatment in MS, in which IL-7Rα plays a major role. 

 

Chapter 3 describes the prematurely aborted clinical trial of subjects with an IL-7Rα 

antagonist. This first-time-in-human trial demonstrated the drug was safe and well 

tolerated in this limited cohort of subjects.  

 

Chapter 4 investigated the differences between individuals based on IL-7Rα 

genotype with in vitro IL-7Rα antagonism and stimulation. It demonstrated greater 

activation through IL-7Rα in individuals with the protective genotype. Differences in 

negative feedback mechanisms of IL-7Rα were explored. 

 

Chapter 5 investigated the tolerability of palifermin, a keratinocyte growth factor, with 

alemtuzumab, which was well tolerated as part of a dose escalation sub-study of the 

CAMTHY trial. The main CAMTHY trial investigated if palifermin could cause 

increased thymic lymphopoiesis, offsetting the IL-7 driven homeostatic proliferation of 

lymphocytes and secondary autoimmunity associated with alemtuzumab.  
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Chapter 6 investigated the use of CD4+ lymphocytes as a biomarker for relapses 

after Alemtuzumab treatment. This contradicted the findings of a previously 

published paper, using a much larger cohort of patients in Cambridge. 

 

This work underlines the importance of IL-7 in the pathogenesis and treatment of 

MS. It points towards the IL-7Rα pathway as a future avenue for biomarkers and 

novel treatments for MS. 
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PREFACE 

 

The overall aim at the start of my PhD was to train in translational medicine in order 

to become a clinical trials specialist. Therefore the funding from the Wellcome Trust 

for the translational medicine and therapeutics PhD incorporated funding from the 

Wellcome Trust and GlaxoSmithKline (GSK).  

 

The aim was to take a translational project at GSK. This was a first time in human 

trial of an IL-7Rα antagonist. During the first two parts of the trial I was due to work 

as a sub-investigator on the trial, learning about clinical trials in healthy volunteers. 

The final part of the trial was a novel approach to Phase 1 trials with the introduction 

of Multiple Sclerosis (MS) patients early in the clinical trial process. It was intended 

that I would be the chief investigator leading this part of the trial.  

 

Unfortunately after dosing 16 healthy volunteers my PhD had to change course due 

to the trial being prematurely terminated by GSK due to data fraud in the pre-clinical 

scientific work. My experiences of this is described in more detail in chapter 3, where 

I also describe the observations of the healthy volunteers that were dosed prior to 

termination of the trial.  

 

After termination of the IL-7Rα trial, GSK stopped all work on the IL-7Rα pathway 

within the organization. Therefore I had to change course during my research period. 

However once work could re-start on the IL-7Rα pathway after an investigation into 

what had led up to the data fraud in China, I moved my focus away from the clinical 

aspect of IL-7Rα and focused on signaling through IL-7Rα. This was due to the fact 

that there was continuing uncertainty about how blocking IL-7Rα would affect 

patients. This led to a genetic study, with the genetic stratification by IL-7Rα 

genotype drawn up by geneticists at GSK before I began my period of research. This 

investigated if IL-7Rα antagonism affected subjects differently according to IL-7Rα 

genotype. The data from this first project led to further questions about if the 

differences seen between the genetic groups in the first project was due to negative 

feedback mechanisms such as downregulation of IL-7Rα after stimulation of the 

receptor. Therefore the second project in chapter 4 investigated this further with an 

IL-7 stimulation in vitro of blood from subjects stratified according to IL-7Rα 

genotype.  
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During the period when work on the IL-7Rα pathway had been stopped by GSK, I 

wanted to continue my interest in translational medicine, the original purpose of my 

PhD. Therefore I became a sub-investigator on the CAMTHY trial, a study 

investigating lymphocyte reconstitution post alemtuzumab (in which IL-7 plays a 

major role), a drug known to deplete lymphocytes, which is a highly effective 

treatment for MS. The aim of the study was to use palifermin, a keratinocyte growth 

factor, in order to drive thymic reconstitution of lymphocytes and increase the 

diversity of the lymphocyte population, rather than peripheral reconstitution of 

lymphocytes that were not depleted after alemtuzumab. Prior to this trial 

commencing a safety sub-study was performed to investigate if palifermin was 

tolerable as this was a dose that had never before been used in humans. I was 

heavily involved in the practical administration of this study whilst also investigating 

and collecting the clinical data on the patients that were dosed. I have described my 

experiences of this study in chapter 5. I have also included in the appendix a paper, 

which has been published, of the main CAMTHY trial, which followed this sub-study 

(Coles et al., 2019).  

 

During the period when I was unable to work on the IL-7Rα pathway at GSK I also 

did further work investigating the reconstitution of lymphocytes post alemtuzumab. I 

investigated if there was a relationship between the level of reconstitution of 

lymphocytes and the clinical outcome in MS patients such as disability, relapses and 

MRI imaging. This work followed a controversial paper, which claimed increased 

CD4+ counts post alemtuzumab was associated with increased MS disease activity. I 

have summarized this work in chapter 6, which led to a publication in the journal 

Neurology (Kousin-Ezewu et al., 2014). 

 

In summary this thesis explores the role of the IL-7Rα pathway in MS, first through 

antagonism of IL-7Rα in vitro, but also in a first time in human trial. It also explores 

the effects in vitro of stimulation of the IL-7Rα pathway and how this differs between 

genetic groups stratified according to IL-7Rα genotype. Whilst working with 

alemtuzumab, a potent lymphocyte depleting monoclonal antibody, I was able to 

explore reconstitution of lymphocytes, a process in which IL-7 and its receptor play a 

very important role. I also explored if this reconstitution could be altered in humans 

by attempting to stimulate increased thymic reconstitution, ultimately attempting to 

reduce the autoimmune clinical side effects of alemtuzumab, which could improve 

the suitability of this highly effective drug for a wider range of MS patients.  
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CHAPTER 1 - INTRODUCTION 

 

1.1 THE NATURAL HISTORY OF MULTIPLE SCLEROSIS 

 

The clinical presentation and course of multiple sclerosis can be variable and 

unpredictable in nature although four broad clinical categories are generally 

accepted: relapsing-remitting, secondary progressive, primary progressive and 

progressive relapsing multiple sclerosis (Lublin and Reingold, 1996). 

 

1.1.1 RELAPSING REMITTING MULTIPLE SCLEROSIS 

 

85% of patients with multiple sclerosis present with relapses. Relapses are defined 

as acute or subacute neurological dysfunction attributable to demyelinating disease, 

in the absence of a fever, which persists for at least 24 hours (Poser et al., 1983). It 

normally evolves over days to weeks; plateaus and then the symptoms slowly 

improve. Recovery varies from minimal to complete. The average relapse rate is 

higher early in the disease (one per year) and diminishes over time (Alastair 

Compston, 2008) (Clarke, 2016). 

 

1.1.2 SECONDARY PROGRESSIVE MULTIPLE SCLEROSIS 

 

This is defined as when patients move from relapsing-remitting disease to 

accumulating disability progressively, outside of relapses. The proportion of people 

who develop secondary progressive multiple sclerosis increases with follow-up. One 

Canadian study found 41% of people with relapsing remitting multiple sclerosis 

entered the progressive phase 6-10 years after disease onset. After 11-15 years it 

was 58%. After 20 years it was 80% of people who entered the secondary 

progressive phase of the disease (Weinshenker et al., 1989). It is still possible that 

some relapses may occur in this phase of the illness but it is less frequent than in the 

relapsing remitting phase of the disease (Lublin and Reingold, 1996).  

 

1.1.3 PRIMARY PROGRESSIVE MULTIPLE SCLEROSIS 

 

This is defined when there is progression of disability from the onset of the disease, 

in the absence of relapses and accounts for 11-18% of the cases seen with multiple 
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sclerosis (Runmarker and Andersen, 1993) (Weinshenker et al., 1989) (Thompson et 

al., 1997). The onset is slightly older at approximately 40 years of age (compared to 

approximately 30 years of age in relapsing remitting disease) (Thompson et al., 

1997). There is also an equal frequency between males and females (in relapsing 

remitting disease there is a 3:1 difference in favour of females) (Thompson et al., 

1997) (Orton et al., 2006). 

 

1.1.4 PROGRESSIVE RELAPSING MULTIPLE SCLEROSIS 

 

Although clinically this term is not used frequently, it refers to patients that have 

progressive disease with superimposed relapses (Lublin and Reingold, 1996). The 

relapses are normally mild and the insidious progression is normally the most 

dominant feature, in a similar way to that seen in primary progressive multiple 

sclerosis (Clarke, 2016).  

 

These descriptive terms were based on consensus data amongst neurologists in the 

1990s (Lublin and Reingold, 1996). There has more recently been a move to keep 

the descriptions of relapsing and progressive, but also to acknowledge that 

assessment of disease activity is now not just based on clinical assessment but also 

with the use of imaging of the central nervous system (Lublin et al., 2014).  
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1.1.5 PROGNOSIS 

 

The clinically isolated syndrome is the first clinical event suggestive of acute 

demyelination. Those who also have an abnormal MRI scan have also shown 

consistently in studies to have a higher risk of converting to clinically definite multiple 

sclerosis. In long-term follow-up studies ranging from 7-20 years those with an 

abnormal MRI scan, with at least three typical demyelinating lesions, develop 

multiple sclerosis in 56-88% of people and those with a normal scan develop multiple 

sclerosis in 8-22% of those affected with an isolated demyelinating event (Brownlee 

and Miller, 2014) (Fisniku et al., 2008). 

 

Natural history studies have shown that the median time to develop the need for 

assistance to walking is between 15 and 30 years. Although the accumulation of 

disability is slower in the relapsing remitting disease group of patients, once the 

progressive phase starts the initial course of the disease does not seem to affect the 

future prognosis (Weinshenker et al., 1989) (Confavreux et al., 2000). 

 

It is difficult at this stage to comment on the role of relapses on the course of long-

term disability. Ideally there would be 30 year follow-up data with a drug that has 

potent efficacy in reducing relapses and relapse associated short-term disability such 

as natalizumab and alemtuzumab, in order to confidently assert a view on how 

reducing the number of relapses may affect long-term disability.  

 

However, work by George Ebers from a Canadian cohort of patients studying the 

natural history of multiple sclerosis, has shown that early clinical features can predict 

disability outcomes. An increased relapse rate in the first two years of the disease 

and a shortened first inter-attack interval decreases the time to onset of progressive 

disease. It can also increase the latency of the progressive phase of the disease 

(Scalfari et al., 2010).  

 

The late Christian Confavreux showed that relapses occurring once the progressive 

phase had commenced do not alter the long-term prognosis for disability. However 

his viewpoint that MS relapses have only a marginal effect on the overall 

accumulation of disability in the long-term, contrasted with the work of George Ebers 

mentioned above. He felt the predictors of early milestones of irreversible disability in 

multiple sclerosis lose their predictive value once a certain level of disability has been 
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reached, a process he referred to as the ‘amnesia’ of multiple sclerosis. He felt that 

the attainment of irreversible disability outcomes was largely determined by the 

patient’s age, regardless of age of onset (Confavreux and Vukusic, 2006).  

 

Factors which confer a better prognosis include, a complete recovery from the first 

attack of demyelination; a long period between the first and the second relapse; a 

low relapse frequency in early disease; no disability after 5 years and a normal MRI 

scan (Miller et al., 2005). Others point towards the existence of a monosymptomatic 

relapse and also sensory relapses (e.g. optic neuritis and paraesthesiae) 

(Confavreux et al., 2003). It is important to point out that some of these historical 

associations are weak and although important at a population level it is more difficult 

to attribute this reliably to predict the prognosis for a particular individual (Clarke, 

2016).  

 

Mortality in multiple sclerosis is increased. In one Canadian study, lifespan was 

reduced by 7 years compared to a control population (Weinshenker et al., 1989). 

Causes of death in at least half of patients were due to complications directly 

attributable to multiple sclerosis. There have also been higher rates of suicide in the 

multiple sclerosis population (7.5 times in the Canadian study). In a Danish study, 

lifespan was 10 years less than the control population with suicide rates more than 

twice that of the general population (Brønnum‐Hansen et al., 2004).  
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1.2 THE PATHOLOGY OF MULTIPLE SCLEROSIS 

 

The pathological hallmark of multiple sclerosis is multiple areas of myelin loss called 

‘plaques’ in the central nervous system.  Associated with these areas of 

demyelination is gliosis and inflammation with relative sparing of the axons (Popescu 

and Lucchinetti, 2012b). Although these lesions are spread throughout the central 

nervous system there is a predilection for certain areas such as the optic nerves, 

spinal cord, brainstem, the juxtacortical and periventricular white matter. There has 

also been recent interest in the presence of cortical plaques that has demonstrated 

demyelination within cortical gray matter (Calabrese et al., 2010) (Pirko et al., 2007). 

 

The pathology in multiple sclerosis changes dependent on the stage of the disease 

process (Popescu et al., 2013). Within each stage of the disease the plaques 

undergo pathological changes, which are described below.  

 

1.2.1 ACUTE ACTIVE PLAQUES 

 

Acute active MS lesions are infiltrated with macrophages that contain myelin 

degradation products, the analysis of which can denote the stage of acute 

demyelination (Brück et al., 1995). Degradation of minor myelin proteins such as 2’3’-

cyclic nucleotide 3’-phosphodiesterase (CNPase), myelin oligodendrocyte 

glycoprotein (MOG) and myelin-associated glycoprotein (MAG) occur rapidly, 

indicating early active demyelination. The larger major myelin proteins such as 

proteolipid protein and myelin basic protein (MBP) are digested more slowly by 

macrophages and can persist within them for up to 10 days. The presence of these 

major myelin proteins in the absence of minor proteins denotes a late active 

demyelinating lesion. Inactive demyelinating lesions still contain macrophages but 

they lack myelin debris and may contain empty vacuoles and periodic acid Schiff 

positive degradation products (Popescu et al., 2013). 

 

Demyelinating lesions also contain inflammatory infiltrates suggesting that the 

demyelination is inflammatory in nature (Popescu and Lucchinetti, 2012b). However, 

it is still not clear from pathology that inflammation leads to secondary axonal 

degeneration.  

 



 26	

Alongside the activated macrophages there are lymphocytes, the majority of which 

are CD8+ T cells, with fewer CD4+ T cells, B cells and plasma cells. There is a 

damaged blood brain barrier as evidenced by gadolinium enhancement in MRI scans 

of active multiple sclerosis lesions. B cells and plasma cells tend to accumulate in the 

perivascular spaces (Frischer et al., 2009). There is also proliferation of astrocytes 

within active lesions, which help to form a matrix from which other cells are 

suspended. 

 

In addition to demyelination the progressive overall loss of oligodendrocytes, which 

precludes effective remyelination of remaining axons is another hallmark of multiple 

sclerosis pathology. Oligodendrocyte progenitors have been demonstrated in the 

multiple sclerosis brain and are responsible for the partial remyelination seen even 

within early lesions (Halfpenny et al., 2002). There is only partial remyelination, 

although this is more extensive and widespread than originally thought (Patani et al., 

2007), as these oligodendrocyte precursors do not get the signal to differentiate. One 

of the mechanisms preventing the differentiation of the oligodendrocyte precursors is 

myelin debris (Fancy et al., 2010).  

 

There is conflicting evidence on the role of oligodendrocytes in active multiple 

sclerosis lesions. Some authors suggest that they are preferentially destroyed in 

early lesions (Prineas JW, 1997), whilst another study suggests the injury to 

oligodendrocytes is more variable with several oligodendrocytes present in some 

active lesions, possibly denoting concurrent early remyelination (Brück et al., 1995). 

 

1.2.2 CLASSIFICATION OF EARLY WHITE MATTER LESIONS 

 

Despite the pathologic heterogeneity found in early demyelinating white matter 

lesions, Luchinetti and colleagues have demonstrated that these active 

demyelinating lesions can be classified into four categories depending on specific 

myelin protein loss, plaque extent and topography, oligodendrocyte destruction, 

immunoglobulin deposition, complement activation and the presence or absence of 

remyelination (Lucchinetti et al., 2000). 

 

Pattern 1 lesions are found in 15% of patients that have sharply demarcated lesions 

with equal involvement of all myelin components. There is a variable loss of 

oligodendrocytes at the active lesional border with numerous oligodendrocytes 
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reappearing at the more inactive plaque center. There is a high incidence of plaque 

remyelination. In pattern 1 lesions there is an activated macrophage and T 

lymphocyte background but a lack of immunoglobulin deposition and complement 

activation. Therefore the pattern of damage seen is mediated by toxic factors 

produced by activated macrophages.  

 

Pattern 2 lesions are found in 58% of multiple sclerosis lesions that are biopsied. 

There is equal loss of all myelin protein components and the lesions are sharply 

demarcated. There is a high incidence of remyelinated shadow plaques, with a 

variable loss of oligodendrocytes at the active border of the lesion but a 

reappearance of the oligodendrocytes at the inactive plaque center. In pattern 2 

lesions there is immunoglobulin and complement deposition on myelin as well as 

phagocytosis by opsonized macrophages of myelin that has been previously targeted 

by complement. This is on an inflammatory background of T cell inflammation.  

These findings suggest that the demyelination found in pattern 2 lesions may be 

induced by antibody mediated and complement mediated mechanisms. It has been 

known for sometime that elevated immunoglobulins are present in the cerebrospinal 

fluid of multiple sclerosis patients in the form of oligoclonal bands. However the 

specific target of these antibodies has not yet been identified.  

 

Pattern 3 lesions are found in 26% of biopsied MS patients and show a preferential 

loss of periaxonal myelin components (minor myelin proteins such as MAG and 

CNPase). The lesions are more ill defined but do show active demyelination. There is 

oligodendrocyte apoptosis on the plaque border, which extends into the normal 

appearing white matter. There is an absence of remyelination with the center of the 

plaque devoid of oligodendrocytes. There is no evidence of immunoglobulin or 

complement activation.  These changes occur on an inflammatory background of 

mainly a CD8+ T cell infiltrate. The type of pathological appearances seen in pattern 

3 lesions are reflected in inflammatory demyelination induced by viruses and damage 

of oligodendrocytes induced by toxicity such as cuprizone.  

 

Pattern 4 lesions are found in 1% of multiple sclerosis biopsies. They demonstrate 

non-apoptotic cell death of oligodendrocytes in the peri-plaque white matter, without 

inflammation. Some authors suggest this demonstrates a potential primary metabolic 

oligodendrocyte disturbance that makes oligodendrocytes particularly vulnerable to 

the toxic effects of inflammatory mediators (Prineas JW, 1997).  
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One of the pathological hallmarks of multiple sclerosis is demyelination with relative 

axonal sparing. However axonal injury does occur, evidenced by axonal swellings 

with a beaded appearance. There is also accumulation of amyloid beta precursor 

protein, which acts as a marker for focal accumulations of proteins that are normally 

moved along axons by axon transport. Mild axonal loss is also seen (Bjartmar et al., 

2003). The axonal injury is most pronounced during active inflammatory 

demyelination and contributes to the relapse associated disability seen in multiple 

sclerosis (Filippi et al., 2012) (Popescu et al., 2013).	The extent of axonal damage 

correlated with the number of lymphocytes and activated microglia. The axonal 

damage is caused by the release of toxic mediators by the inflammatory cells in 

close apposition with the axons, which leads to increased mitochondrial damage, 

oxidative stress and energy deficiency (Dutta and Trapp, 2011) (Fischer et al., 2012). 

 

1.2.3 CHRONIC PLAQUES 

 

Chronic active plaques are seen in those patients with progressive multiple sclerosis. 

The lesions are sharply demarcated with myelin rich macrophages expanding around 

the edge of the plaque with an ever-decreasing number of myelin-laden 

macrophages as you get towards the plaque’s more inactive center. Some 

‘smouldering’ chronic active plaques contribute to progression and are characterized 

by an increase in the number of activated microglia, which contain little in the way of 

myelin degradation products, surrounding the inactive center (Prineas et al., 2001). 

 

Chronic inactive plaques are sharply demarcated and are completely demyelinated. 

There is substantial loss of axons and oligodendrocytes.  There is astrogliosis, with 

some infiltration by microglia and lymphocytes. As the plaques progress from a 

chronically active to inactive state, astrocytes produce glial fibers and eventually a 

glial scar fills the demyelinated plaque (Popescu and Lucchinetti, 2012b) (Fawcett 

and Asher, 1999).  

 

Perivascular inflammatory infiltrates are seen in chronic lesions but the blood brain 

barrier remains intact (Frischer et al., 2009). Hans Lassman has described the idea 

of inflammation ‘trapped’ behind the blood brain barrier in chronic multiple sclerosis. 

One mechanism for this could be the formation of lymphoid follicular structures in 

perivascular spaces, which have been found post mortem in patients with secondary 

progressive multiple sclerosis (Magliozzi et al., 2007). Plasma cells are hypothesized 
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to have formed even in the chronic disease stage and persist when the initial 

inflammation has cleared. Thus the inflammation seen in chronic multiple sclerosis is 

trapped behind the blood brain barrier (Frischer et al., 2009). 

 

1.2.4 NEURODEGENERATION 

 

Axonal damage and axon loss is one of the features of chronic multiple sclerosis. In 

chronic inactive plaques axonal density is reduced up to 80% within the plaque 

(Kutzelnigg et al., 2005). 

 

Neurodegeneration within demyelinated lesions is associated with inflammation. 

However in older patients with chronic inactive lesions the levels of inflammation are 

similar to those seen in controls, so the inflammatory process dies out over time 

(Frischer et al., 2009). 

 

There are a number of mechanisms purported to account for the chronic axonal 

damage and neurodegeneration seen in multiple sclerosis:  

 

1. Repeated demyelination and oxidative stress caused by inflammation.  

 

Early axonal transection is thought to occur due to the vulnerability of 

demyelinated axons to inflammation as evidenced by SMI32 staining 

denoting axonal spheroids (Dutta and Trapp, 2011). Higher levels of axonal 

spheroids are seen in acute active lesions than chronic lesions. There is also 

evidence of inflammation in acute lesions by the accumulation of amyloid 

precursor protein (APP) on the edge of acute active lesions, but not in their 

center. Chronic lesions showed minimal APP staining (Ferguson et al., 1997). 

Activated immune and glial cells release many substances including 

proteolytic enzymes, matrix metalloproteinases, cytokines, oxidative products 

and free radicals that can damage axons (Hohlfeld, 1997) (Nave and Trapp, 

2008).  

 

It is more controversial to say if there is direct and specific immune attack of 

axons. This can be suggested by the correlation suggested above between 

inflammation and axonal transection. There is direct immune attack of axons 

in the peripheral nervous system in acute motor axonal neuropathy (AMAN), 
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a variant of Guillan Barre syndrome (Ho et al., 1998). Also pathologically in 

multiple sclerosis the terminal axonal ovoids are surrounded by macrophages 

and activated microglia. There is uncertainty about the role of the 

inflammatory cells surrounding the ovoids. Do they play a role in directly 

attacking the axon, or do they help to protect the axon and remove debris? 

Although there is not a large amount of evidence supporting direct and 

specific immune attack of axons it is important to acknowledge that cell-

mediated mechanisms of axon loss is still a possibility. However the 

overriding point that should be made is most axons survive the demyelination 

process, therefore it is still unlikely that there is a specific immunological 

attack of axons (Dutta and Trapp, 2011). 

 

The attempt to correlate inflammation with axonal transection and axon loss 

may be too simplistic. Other studies have suggested that the correlation 

between plaque load and axon loss is poor (Kutzelnigg et al., 2005) (DeLuca 

et al., 2006).  

 

DeLuca et al demonstrate the poor correlation between plaque load and 

axonal loss in a population with multiple sclerosis with disease duration of 17 

years (DeLuca et al., 2006). Therefore this demonstrated poor correlation in 

patients who have already acquired disability and would fit with the 

epidemiological data by Confavreux (Confavreux and Vukusic, 2006). The 

amount of APP and inflammation correlate in early stages of multiple 

sclerosis but this correlation falls away as the disease progresses. Therefore 

early axonal damage is more likely to be linked to inflammation but it is more 

difficult to draw this conclusion with later axonal loss (Wilkins and Scolding, 

2008). 

 

2. Axonal degeneration due to lack of trophic support from myelin and 

oligodendrocytes.  

 

Studies involving mice that lack myelin proteins such as MAG, CNPase and 

PLP have shown that these proteins can be removed from oligodendrocytes 

without too much effect on myelination (Nave, 2010) (Nave and Trapp, 2008) 

(Nave, 1996).  All three lines of mice develop a late onset slowly progressive 

axonal degeneration, which in itself shows that alterations in single myelin 
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proteins can cause axonal degeneration (Nave, 2010) (Nave and Trapp, 

2008).  

 

It has been shown that cortical oligodendrocyte precursor cells increase 

cortical neuronal survival via direct cell contact with neurons and also through 

the secretion of soluble growth factors such as IGF-1 (Wilkins et al., 2001). 

Other studies also show that in addition to insulaton of axons, 

oligodendrocytes provide trophic support to axons (Byravan et al., 1994) (Dai 

et al., 2001) (Dougherty et al., 2000).  

 

In MAG-null mice there is a reduction in axonal caliber quite prominent in the 

paranodal regions, in part due to reduced phosphorylation of neurofilaments 

(Yin et al., 1998). In CNP and PLP-null mice there is axonal swelling at the 

distal paranodes (Griffiths et al., 1998) (Klugmann et al., 1997). This suggests 

there is a defect in retrograde axonal transport at the Nodes of Ranvier.  

 

3. Accumulation of mitochondria in a setting of increased energy demands 

and mitochondrial oxidative stress.  

 

The central hypothesis of degeneration of chronically demyelinated axons is 

an imbalance between energy demand and energy supply. The Na+/K+ 

ATPases which are necessary for the maintenance of the ionic gradients 

necessary for neurotransmission are the largest consumers of ATP in the 

central nervous system (Ames, 2000). Therefore normal myelination should 

not just be seen as a way of promoting rapid nerve conduction but it should 

also be seen as a way of conserving energy.   

 

Demyelination renders axons far more vulnerable to physiological stress and 

degeneration, by increasing the energy requirements for nerve conduction. 

Due to the redistribution of sodium channels along demyelinated axons, the 

neuron is loaded with greater intracellular sodium and their extrusion through 

the Na+/K+ exchanger leads to increased ATP demand (Peterson et al., 

2005). This consistent feature of demyelinated axons may allow the 

continuation of action potentials and in the context of multiple sclerosis, 

allows some recovery of clinical function. 
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In demyelinated axons there is an increase in activity of complex IV, the 

terminal subunit in the electron transport chain, which consumes 90% of 

cellular oxygen. In all models where there has been demyelination with a 

resultant increase in complex IV activity, an increase in mitochondrial content 

has been observed.  

 

There has been some debate as to the effects over time of increased 

mitochondria in the axon. In the short term increased mitochondria lead to 

increased survival of the axon. There is some more recent evidence that in 

the long term there is a detrimental outcome of increased mitochondria in the 

axon. When the axon specific mitochondrial docking protein syntaphilin 

(which is normally increased in demyelinated axons) is knocked out in the 

Shiverer dysmelinated mouse model (when the gene for myelin basic protein 

is also knocked out), an improved clinical outcome was noted with less axon 

degeneration. This lead to the conclusion that the degradation of unhealthy 

mitochondria, which over a prolonged period can produce harmful reactive 

oxygen species, is important in the survival of demyelinating axons (Campbell 

and Mahad, 2018).  

 

 

Neurodegeneration is a fundamental aspect of multiple sclerosis pathogenesis as a 

loss of axons, dendrites and neurons is a major cause of permanent disability in 

multiple sclerosis patients. Axon loss does occur early in the course of the disease, 

which then progresses slowly. The transition from relapsing remitting multiple 

sclerosis to secondary progressive multiple sclerosis is thought to occur when the 

compensatory mechanisms of the central nervous system (repair, plasticity and 

remyelination) is reached, leading to the steady progression of permanent 

neurological symptoms (Dutta and Trapp, 2011).  
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1.2.5 REMYELINATION 

 

Remyelinated plaques are characterized by thinly myelinated axons with short inter-

nodal distances. When remyelination is more extensive it is characterized by new 

myelin sheaths and the presence of oligodendrocyte precursor cells. 

Oligodendrocyte precursor cells are frequently found in the active plaques of multiple 

sclerosis (Wilson et al., 2006) (Popescu and Lucchinetti, 2012b). 

 

Remyelination is seen in Pattern 1 and 2 lesions. Oligodendrocytes are frequently 

lost at the expanding peripheral edge of the plaque, with oligodendrocyte precursor 

cells found in the center of the plaque, which is less active than the periphery. In 

Pattern 3 and 4 lesions there is loss of oligodendrocytes without oligodendrocyte 

precursor cell recruitment and remyelination. This points towards the fact that 

oligodendrocyte precursor cells are key to remyelination (Lucchinetti et al., 2000). 

 

Remyelinated plaques are seen macroscopically as ‘shadow’ plaques, with reduced 

myelin density and thin myelin sheaths. Shadow plaques are extensive in 

progressive multiple sclerosis. Evidence for remyelination can be found in almost half 

of chronic multiple sclerosis lesions in people with relapsing-remitting multiple 

sclerosis (Barkhof et al., 2003). 

 

Older remyelinated plaques show a near normal thickness of myelin and are 

sometimes difficult to pathologically distinguish from normal appearing white matter. 

Interestingly remyelinated plaques are more likely to be struck again with a second 

inflammatory episode than normal appearing white matter (Bramow et al., 2010). 

 

It is important to note that remyelination tends to progressively fail in multiple 

sclerosis. This failure of remyelination may be due to age dependent loss of trophic 

support from microglia. It may also be due to oligodendrocyte precursor cell 

exhaustion by repeated demyelinating insults. Also the dense glial scar created by 

astrocytes may act as a barrier to oligodendrocyte precursor cells migrating into 

lesions (Popescu et al., 2013).  
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1.2.6 CORTICAL LESIONS IN EARLY MULTIPLE SCLEROSIS 

 

In the cortex, multiple sclerosis leads not only to axon loss and cortical atrophy but 

also to cortical demyelinating lesions.  

 

Three different types of cortical lesions have been described. The first is the subpial 

lesion, which can extend throughout the entire width of the cortex and may involve 

many gyri. The second are intracortical lesions, which are perivascular in nature and 

are small demyelinating lesions. These lesions spare both the superficial cortex and 

the adjacent white matter. The third type of lesion are leukocortical lesions, which 

involve the gray-white matter junction with sparing of superficial cortical layers 

(Popescu et al., 2013) (Peterson et al., 2001). 

 

It has been noted that patients with early cortical involvement may have a worse 

prognosis. Early cortical lesions may be linked to early cognitive impairment and 

epilepsy. The accumulation of cortical lesions has been linked with disease 

progression and disability. The cortical lesion load also positively correlates with 

white matter MRI T2 lesion load and brain atrophy. Minimal cortical lesion load has 

also been linked with a more benign multiple sclerosis course (Calabrese et al., 

2010) (Geurts and Barkhof, 2008) (Popescu and Lucchinetti, 2012a). 

 

The majority of cortical lesion types will show demyelination as evidenced by myelin-

laden macrophages. Perivascular and parenchymal inflammatory infiltrates of 

macrophages, T cells, B cells and plasma cells, with breakdown of the blood brain 

barrier, are also present (Lucchinetti et al., 2011). 

 

Focal perivascular and diffuse meningeal inflammation are strongly associated with 

the cortical lesions of early multiple sclerosis. The production and release of 

inflammatory cytokines in the subarachnoid space in early multiple sclerosis may 

drive cortical demyelination and promote inflammation and demyelination of the 

underlying subcortical white matter as a consequence (Lucchinetti et al., 2011). 

Some EAE models have demonstrated the importance of trafficking of T cells via 

CCL20 into the central nervous system with subsequent antigen presented to T cells 

and then release of cytokines leading to a second wave of T cell infiltration across 

pia vessels, with an upregulation of vascular cell adhesion molecules in the deeper 
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brain vasculature with subsequent parenchymal invasion and onset of disease 

(Reboldi et al., 2009) (Bartholomäus et al., 2009).  
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1.2.7 CORTICAL LESIONS IN CHRONIC MULTIPLE SCLEROSIS 

 

Cortical demyelinated lesions in progressive multiple sclerosis may represent the 

substrate for irreversible disability, progression and cognitive decline. In progressive 

multiple sclerosis extensive demyelination can be seen throughout the cortex 

(Kutzelnigg and Lassmann, 2006). 

 

In progressive multiple sclerosis cortical lesions lack the breakdown of the blood 

brain barrier and so are less easily visualized with gadolinium enhanced scans, 

although may be seen with triple dose gadolinium (Filippi et al., 1998). They also lack 

extensive inflammatory cell infiltration and complement deposition. They do have 

activated microglia, which is associated with atrophy and apoptosis of neurons with 

damage to oligodendrocytes (Peterson et al., 2001) (Wegner et al., 2006). 

 

There are also meningeal inflammatory infiltrates. These are composed of T cells, B 

cells and macrophages and are found in patients with both primary and secondary 

progressive multiple sclerosis. The extent of the meningeal inflammation correlates 

with microglial activation and the degree of demyelination and neurodegeneration in 

the underlying cortex (Magliozzi et al., 2007) (Choi et al., 2012) (Howell et al., 2011). 

Meningeal inflammation with ectopic B cell follicles have been described in 

secondary progressive multiple sclerosis. These are located in the deep sulci of the 

temporal, cingulate, insular, and frontal cortices and are associated with subpial 

lesions (Howell et al., 2011). This meningeal inflammation drives cortical injury with 

soluble cytokines produced by activated lymphocytes diffusing into local cortical 

tissue, causing demyelination and neurodegeneration either directly or indirectly 

through activation of microglia (Popescu et al., 2013). 
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1.3 THE GENETICS OF MULTIPLE SCLEROSIS 

 

Epidemiological studies have revealed that you have an increased risk of developing 

multiple sclerosis if you are related to someone with the disease. The background 

population risk for MS is 0.3% in northern white European populations. With identical 

monozygotic twins the risk is 25%. For dizygotic twins the rate is 5% (Compston et 

al., 2008).  

 

The risk for first-degree relatives remains at approximately 3% with siblings 

remaining at 5% and parents and children at 2%.  For second and third degree 

relatives the risk is approximately 1% (Compston et al., 2008) (Oksenberg et al., 

2008). 

 

With all of these studies taken together, it points towards a significant but complex 

genetic burden to the underlying risk for multiple sclerosis. This is not to undermine 

the potential role of environmental factors in the aetiology and pathogenesis of 

multiple sclerosis, which is discussed elsewhere in the introduction.  

 

 

1.3.1 GENE LINKAGE STUDIES AND CANDIDATE GENE STUDIES 

 

Up until ten years ago the dominant techniques of studying genetics within multiple 

sclerosis was by two means. The first was the analysis of multiple case families to 

determine linkage to broad chromosomal regions. The second was to collect a 

modest amount of cases and controls and investigate candidate genes (Oksenberg 

et al., 2008). 

 

Linkage studies would involve analysis of the data from families that are affected by 

the disease.  More than one family member would need to be affected and discrete 

chromosomal segments that co-segregated with those who suffered from multiple 

sclerosis could potentially be identified. Once several different families have been 

analysed, regions of the genome that co-segregate with the disease with each 

generation in families are identified.  

 

The success of monogenic genetic disorders with linkage analysis and also the initial 

success in some more complicated polygenic disorders (e.g. ApoE gene and 
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Alzheimer’s disease) (Corder et al., 1993) (Ogura et al., 2001) drove the application 

of this technique to multiple family data sets in multiple sclerosis. Many different loci 

were identified as potential candidates for driving susceptibility in multiple sclerosis 

(Fernald et al., 2005), which was consistent with the consensus view of multiple 

sclerosis being a polygenic disorder. However only one locus at 6p21, coding for 

HLA Class II reached the threshold for statistical significance 

 

The Human Leukocyte Antigen (HLA) is a cluster of genes on 6p21 that encode for 

proteins that function in the immune system. More specifically within this cluster of 

genes is HLA Class II, which is comprised of proteins that participate in the 

recognition and presentation of antigen to T lymphocytes. HLA Class II molecules 

have been associated with several autoimmune disorders and it is due to the fact 

that they are able to recognize and present self-antigen to T lymphocytes.  There are 

three HLA Class II molecules DP, DQ and DR. They are a combination of two 

proteins, an alpha and beta chain. These combine inside the antigen-presenting cell, 

bind to a peptide and travel to the cell surface for presentation of the peptide to T 

cells.  

 

The first discovery of the HLA locus in MS was the HLA-DRB1 gene (DRB1*1501) 

(Compston et al., 1976) (Terasaki and Mickey, 1976). Although the discovery of the 

HLA association with MS was made in the 1970s this HLA-DRB1 gene has only been 

consistently found in Northern European Caucasian populations. One review looked 

at 72 studies (Schmidt et al., 2007), which examined the differences between cases 

of MS and controls and again the DRB1 gene came through as the predominant 

marker of the major histocompatibility complex in multiple sclerosis. This DRB1 gene 

has also been linked with other conditions apart from MS such as narcolepsy and 

systemic lupus erythematosus. The HLA-DRB1*1501 haplotype has also been 

associated with disease severity, as females with a younger age of onset are 

associated with this haplotype (Hensiek et al., 2002). This points towards genetics 

not just influencing susceptibility to multiple sclerosis but also disease course and 

severity.  

 

The HLA-DRB1*1401 gene has been found to be protective for MS, overcoming the 

effect of HLA-DRB1*1501 in those carrying this gene (Barcellos et al., 2006). The 

mechanism of action of this protection is unknown but various mechanisms have 

been proposed including engagement of MHC-promiscuous, auto-reactive 
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thymocytes with resultant T regulatory cell formation as an explanation (Tsai and 

Santamaria, 2013) (Hollenbach and Oksenberg, 2015).   

 

1.3.2 GENOME WIDE ASSOCIATION STUDIES 

 

The study of the genetics of multiple sclerosis really developed with the advent of 

genome wide association studies. It had become clear that linkage studies were not 

powered to detect the small effects seen from the differences between genes in 

complex disorders. It was also apparent that these differences were not necessarily 

inherited in a Mendelian fashion. Alleles that are associated with complex diseases 

of multifactorial aetiology like multiple sclerosis are often common traits, which make 

up most of the genetic differences between individuals. These alleles tend to occur 

with a minor allele frequency of greater than 1%.  

 

In the human genome there are approximately ten million variants of genes that are 

considered ‘common’ with a minor allele frequency of greater than 1%.  This is 

among all genetic variants, which are thought to run into the billions. However these 

common genetic variants are said to account for >90% of the genetic differences 

between any two individuals (Wang et al., 2005) (Oksenberg et al., 2008). 

 

Genome Wide Association Studies (GWAS) were conducted assessing multiple 

variations in genes called single nucleotide polymorphisms (SNPs), comparing the 

likely odds of those variations being associated with the cases rather than the 

controls. The principle of Linkage Disequilibrium whereby groups of genes are 

inherited together in ‘linkage disequilibrium (LD) bins’, meant that analysis of tagging 

SNPs using commercially available assays of approximately 500000 of such ‘LD 

bins’ meant it was possible to survey the whole genome.  

 

Due to the nature of genetics in complex diseases, the Wellcome Trust Case 

Consortium proposed GWAS needed to include at least 2000 cases and controls, to 

ensure adequately powered studies (Oksenberg et al., 2008). They also suggested a 

newer level of significance of p < 5 x 10-8 was adopted in GWAS, to ensure results 

were more likely to be true than false. The very large numbers of cases and controls 

that were needed (approximately 10000 each) was finally achieved in 2011 with a 

worldwide collaboration with the International Multiple Sclerosis Genetics Consortium 

(IMSGC) (International Multiple Sclerosis Genetics et al., 2011).  
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Prior to this, a number of GWAS were conducted which helped to identify 26 loci in 

multiple sclerosis.  

 

 

Table 1. 1: GWAS conducted which helped to identify loci in multiple sclerosis 

 

The significance of the GWAS conducted was not only deciphering the genetic basis 

for multiple sclerosis susceptibility, as when combined with the loci identified in the 

GWAS taken alongside candidate gene studies, this explains up to 30% of the 

GWAS  Number of cases and 

controls 

A genome screen in multiple sclerosis reveals 

susceptibilty loci on chromosome 6p21 and 17q22 

(Sawcer et al., 1996)  

466 cases; 303 controls 

Risk alleles for multiple sclerosis identified by a 

genomewide study. New England Journal of Medicine 

(Hafler et al., 2007)  

2322 cases; 789 controls 

Association scan of 14,500 nonsynonymous SNPs in 

four diseases identifies autoimmunity variants. Nature 

Genetics (Newport et al., 2007) 

1000 cases; 1500 controls 

Genome-wide association analysis of susceptibility and 

clinical phenotype in multiple sclerosis. Human 

Molecular Genetics (Baranzini et al., 2009) 

978 cases; 883 controls 

Genome-wide association study identifies new multiple 

sclerosis susceptibility loci on chromosomes 12 and 20. 

Nature Genetics (Bahlo et al., 2009) 

1618 cases; 3413 controls 

Meta-analysis of genome scans and replication identify 

CD6, IRF8 and TNFRSF1A as new multiple sclerosis 

susceptibility loci. Nature Genetics (De Jager et al., 

2009) 

Meta-analysis of 2624 

cases; 7220 controls 

Replication in 2215 cases 

2116 controls 

Variants within the immunoregulatory CBLB gene are 

associated with multiple sclerosis. Nature Genetics 

(Sanna et al., 2010) 

882 cases; 872 controls 

Replication in 1775 cases; 

2005 controls 

Genetic risk and a primary role for cell-mediated 

immune mechanisms in multiple sclerosis. Nature 

(International Multiple Sclerosis Genetics et al., 2011)  

9772 cases; 17376 

controls 
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heritability of multiple sclerosis. This is equivalent to 5% of the causation of multiple 

sclerosis. However identification of the genes associated with the identified loci 

showed that they were mainly associated with the immune system. This helped to 

emphasize the immune pathogenesis behind multiple sclerosis (International Multiple 

Sclerosis Genetics et al., 2011). 

 

Further work will need to be done to explore the functional role of each of the genes 

identified within multiple sclerosis pathogenesis. The identification of these pathways 

may lead to the eventual identification of new therapeutic agents for multiple 

sclerosis. 

 

1.3.3 FINE MAPPING OF THE GENOME – IMMUNOCHIP 

 

Following the extensive contribution of the GWAS to both our understanding of the 

aetiology of multiple sclerosis and identification of potential pathways to target with 

immunotherapies, it was still clear that a large component of the heritability of a 

number of complex autoimmune conditions could still not be explained.  

 

We may have been starting to see the limitations of the GWAS as it depended on the 

phenomenon of linkage disequilibrium. Therefore reliance on tagging SNPs may 

have missed some of the more rare variations in the genome. Some of the missing 

heritability may also have been explained by gene-gene interactions and gene-

environment interactions.  

 

A number of the loci found in the GWAS from 2011 have subsequently been mapped 

in greater detail. This is by use of the ‘Immunochip’ which was a collaboration 

between groups working on a range of autoimmune diseases (Cortes and Brown, 

2011). The ‘Immunochip’ is a genotyping chip containing 196,524 polymorphisms. 

This collaboration determined 184 regions for fine mapping. From the 57 loci that 

were identified in the 2011 GWAS, 38 of these loci were contained on the 

Immunochip and were mapped in greater detail.  

 

The immunochip was able to cover in finer detail the top-ranking SNPs from the 

original GWAS. It was also able to identify genes, which are applicable to a number 

of different autoimmune diseases. 
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As a result of the Immunochip, where 14,498 cases and 24,091 controls were 

analysed, the number of SNPs associated with multiple sclerosis rose from the 57 

SNPs identified in 2011 (International Multiple Sclerosis Genetics et al., 2011) to 110 

SNPs (International Multiple Sclerosis Genetics et al., 2013).  

 

 

1.3.4 FUNCTIONAL STUDIES OF CANDIDATE GENES 

 

We are still in the infancy of understanding the pathways involving the loci identified 

in the multiple sclerosis GWAS. There has been some work that has underlined the 

importance of understanding the underlying nature of the pathogenesis of the 

disease. This may lead to increased understanding of the clinical relevance of these 

associations and also eventually to manipulation of these immune pathways with 

pharmacological therapies.  

 

There have been three SNPs identified in the GWAS that have led to increased 

levels of soluble protein receptors associated with the at risk variant. The first was 

the discovery that the SNP rs1800693 was associated with increased levels of the 

soluble form of TNFR1, which blocks TNF. This SNP was associated with multiple 

sclerosis but not with other autoimmune disorders in which there has been 

successful use of anti-TNF drugs, whereas in multiple sclerosis use of anti-TNF 

drugs exacerbates the disease (Gregory et al., 2012). It is not clear how TNF 

blockade leads to multiple sclerosis. 

 

The second was the SNP rs6897932, which was associated with increased levels of 

soluble IL-7Rα.  This will be discussed in more detail in the section on the Interleukin 

7 receptor. However the at risk SNP resides in the trans membrane domain of IL-7Rα 

and is associated with skipping of the exon 6 part of the protein. This results in 

increased levels of soluble IL-7Rα (Gregory et al., 2007). I will discuss in more detail 

in later chapters the pursuit of the role of IL-7 receptor antagonism in multiple 

sclerosis. 

 

The third was the SNP rs2104286, which is associated with increased levels of 

soluble IL-2R. This soluble form of the protein is associated with inhibition of 

signaling through the Interleukin 2 receptor (Maier et al., 2009). The effects on further 
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downstream events are not yet clear. Knowledge and analysis of the IL-2R pathway 

has led to the use of Daclizumab in multiple sclerosis (Kappos et al., 2015). 

 

Other mechanisms apart from the role of soluble receptors have been identified. The 

at risk SNP rs6677309 resulted in reduced expression of CD58 which is a co-

stimulatory cell adhesion molecule involved in strengthening the T cell and antigen 

presenting cell interaction. Reduced expression of CD58 resulted in reduced function 

of T regulatory cells due to concomitant reduced expression of FoxP3 (De Jager et 

al.). 

 

In another study the protective SNP rs34536443 was associated with a reduction in 

tyrosine kinase 2 activity, which led to a reduced inflammatory environment with the 

enhancement of T helper 2 lymphocyte cytokine profiles (Couturier et al., 2011). 

 

The functional work on the variants found in the GWAS will continue and this will help 

to build the body of knowledge about multiple sclerosis pathogenesis. Hopefully in 

the future a consensus will build about the pathways that will become the most 

amenable to drug treatment.  
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1.4 ENVIRONMENTAL RISKS IN MULTIPLE SCLEROSIS 

 

Multiple Sclerosis is triggered by a combination of environmental risk factors and an 

individual’s genetics. The closer to the equator one is born, the lower the risk of 

developing multiple sclerosis. However this risk is decreased twofold if migrants 

move from high risk areas to low risk areas (Kurtzke et al., 1985). This has led to 

different hypotheses on the environmental factors involved in the triggering of 

multiple sclerosis. The most notable environmental risk factors associated with 

multiple sclerosis are – Epstein Barr Virus (odds ratio 3.6), Vitamin D (levels below 

50nM odds ratio 1.4), smoking (odds ratio 1.6), adolescent obesity (odds ratio 2), 

nighttime working (odds ratio 1.7) and organic solvent exposure (odds ratio 1.5) 

(Olsson et al., 2017). In this chapter I will focus on some of the more prominent 

environmental risk factors postulated including Epstein Barr Virus, Vitamin D levels 

and smoking. 

 

1.4.1 EPSTEIN BARR VIRUS 

 

Epstein Barr Virus (EBV) is a B lymphotrophic human DNA herpes virus that can 

cause glandular fever in children and young adults but more commonly is carried 

asymptomatically in adults.  

 

Many studies have shown a higher rate of seropositivity with EBV in multiple 

sclerosis patients than controls (Haahr and Hollsberg, 2006) (Ascherio and Munger, 

2007) (Sumaya et al., 1985). If you are infected with EBV at a young age you have a 

subsequently increased risk of developing multiple sclerosis (Martyn et al., 1993). 

This was reviewed in a meta-analysis and those who have had clinically overt 

glandular fever (clinical syndrome secondary to EBV infection), have a two fold 

increase in risk of developing subsequent multiple sclerosis (Handel et al., 2010). 

 

There have also been several studies implicating abnormal immune activation to 

EBV in multiple sclerosis patients, with increased CD4+ and CD8+ T lymphocyte 

immune responses in both the cerebrospinal fluid (Holmoy and Vartdal, 2004) and 

blood (Cepok et al., 2005) (Lunemann et al., 2006).  

 

One study also suggested that B lymphocytes are infected with EBV in B cell follicles 

in the meninges in the brains of patients with secondary progressive multiple 
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sclerosis (Serafini et al., 2007). However this finding has only been partially 

replicated in other studies (Olsson et al., 2017) and concerns still remain about the 

sensitivity and specificity of the techniques for detection of EBV in multiple sclerosis 

lesions (Lassmann et al., 2011).  

 

There seems to be a remarkable difference in the seropositivity to EBV of individuals 

who go on to develop multiple sclerosis. There are much higher levels (at least four-

fold) of antibodies to EBV nuclear antigen 1 (EBVNA1). In one case-control study all 

individuals previously negative for EBVNA1 converted to being positive for EBVNA1 

prior to developing multiple sclerosis (Levin et al., 2010). Other diseases with an 

established causal role of EBV such as Burkitt’s lymphoma, nasopharyngeal 

carcinoma and EBV related Hodgkin’s disease also have antibodies to EBV 

increased several years prior to diagnosis (Ascherio and Munger, 2007). 

 

One of the arguments against a causal role for EBV is that many individuals do not 

develop multiple sclerosis following infection with EBV, as it is a common infection 

affecting 95% of the adult population. This goes against the fact that a virus that is 

commonly contracted can then go on to cause a relatively rare disease such as 

multiple sclerosis. This would lead others to argue against the actual association of 

EBV with multiple sclerosis.  Those in favour of the EBV hypothesis would point 

towards the example of polio, with infection being endemic in certain countries during 

the last century with only a small proportion going on to develop clinical poliomyelitis.  

 

The increased antibody titers to EBV in people with multiple sclerosis may be a 

consequence of the immune-genetic environment found in those patients, with 

subsequent poor clearance of the virus as opposed to a causal role for the virus 

(Olsson et al., 2017). Finally some have pointed out that belief in the association of 

EBV with multiple sclerosis is paradoxical as this would go against the ‘hygiene 

hypothesis’ that those who tend to get infections with viruses at a younger age have 

a smaller chance of going on to develop autoimmune disorders (Ascherio and 

Munger, 2007). However others who support the EBV association with MS would 

point out that children who later develop multiple sclerosis would still share the same 

clean hygienic environment as those who develop other autoimmune disorders, but 

the key to the development of multiple sclerosis is the infection with EBV in later 

adolescence as opposed to their ‘cleaner’ childhood environment.   
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EBV stands out as the main infectious agent associated with multiple sclerosis. 

However some features of MS epidemiology, particularly the reduction in risk with 

migration from high to low risk areas for multiple sclerosis, are not explained by EBV 

and point towards the involvement of other factors in multiple sclerosis pathogenesis 

(Ascherio and Munger, 2007). 

 

1.4.2 VITAMIN D 

 

Low sun exposure has also been associated with multiple sclerosis. This is primarily 

from the observation that there is increasing MS prevalence with increasing 

worldwide latitude. Therefore as you get further away from the equator, more people 

suffer from multiple sclerosis. These results are slightly confounded by the 

distribution of the HLA-DRB1*1501, which is also more commonly found within these 

populations.  

 

One of the strongest correlates of latitude is the duration and intensity of sunlight. 

Several studies have found similar results finding that the annual hours of sunshine 

is inversely correlated with the prevalence of multiple sclerosis (Acheson et al., 1960) 

(van der Mei et al., 2001) (Leibowitz et al., 1967). An interesting study in Switzerland 

also found an inverse correlation between MS prevalence and altitude, which is also 

a marker of sunlight intensity (Kurtzke, 1967). Although subject to recall bias a 

discordant twin study also looked at sunlight exposure. Twins with MS reported on 

average lower sun exposure during childhood (Islam et al., 2007).  

 

Unsurprisingly significant inverse correlations have been found between risk of 

multiple sclerosis, sun exposure and Vitamin D levels. For the majority, vitamin D is 

generated from Ultraviolet B radiation (290-320 nm), which converts 7-

dehydrocholesterol in the skin to pre-vitamin D3 that then spontaneously converts to 

vitamin D3. Vitamin D3 then undergoes a series of hydroxylations before it becomes 

the active form 1,25 dihydroxy vitamin D3.    

 

Some of this information has come from longitudinal studies from the US army 

whereby bloods were taken prospectively and 257 subjects who subsequently 

developed multiple sclerosis had their 25 hydroxy vitamin D levels checked which 

showed significantly lower levels (Munger et al., 2006). These results as with all 

observational studies may be subject to unknown confounders with particularly 
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sunlight itself potentially being a confounder as it is known to have 

immunosuppressant effects and ultraviolet light has been seen to suppress EAE 

(Hauser et al., 1984) and enhance T regulatory cell function (Aubin, 2003). 

 

Some groups have pointed towards the fact that a month of birth effect (Bayes et al., 

2010) was previously attributed to lower levels of Vitamin D and less sun exposure at 

the time of conception and during the first trimester of pregnancy as a potential 

reason for an increased incidence of multiple sclerosis births in the spring as 

opposed to the autumn (Willer et al., 2005) (Dobson et al., 2013). The month of birth 

effect has been disputed due to previously unidentified heterogeneity in the numbers 

of births at different times of the year in populations at higher latitudes (Fiddes et al., 

2013).  

 

Single Nucleotide Polymorphisms (SNPs) in CYP27B1, which predisposes patients 

homozygous for the variant to Vitamin D deficient rickets, has shown an increased 

predisposition to multiple sclerosis in heterozygote carriers (Ramagopalan et al., 

2011). The variation in CYP27B1 was thought to be a plausible candidate as the 

cytochrome p450 system is involved in synthesizing the active ingredient of Vitamin 

D - 1,25 hydroxy Vitamin D3. However these findings have not been replicated in 

other studies so some doubt remains about the validity of these earlier claims (Ban et 

al., 2013) (Barizzone et al., 2013). 

 

Studies with experimental autoimmune encephalomyelitis (EAE) mice has shown 

that injection of 1,25 dihydroxy vitamin D3 has been shown to prevent clinical and 

pathological signs of EAE (Lemire and Archer, 1991). Supplementing mice with 

vitamin D prior to the induction of EAE reduces the severity of the disease in mice 

(Pedersen et al., 2007) (Spanier et al., 2012). The onset of EAE has also been 

shown to be accelerated in vitamin D deficient mice (Cantorna et al., 1996). EAE has 

also been attenuated and delayed by providing vitamin D supplements (Spach and 

Hayes, 2005).  

 

In humans, vitamin D supplementation in multiple sclerosis patients has reduced 

CSF neurofilament levels (Sandberg et al., 2016). It has also been negatively 

correlated with increasing disease progression as evidenced by clinical measures 

and MRI imaging (Ascherio et al., 2014) (Fitzgerald et al., 2015). 
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How vitamin D exerts its effects are unknown, although it is thought to mediate its 

immunological effects via the vitamin D receptor which has increased the effect of 

regulatory T cells (Smolders et al., 2008), regulates cytokine secretion by antigen 

presenting cells and modulates the Th17 cell response (Joshi et al., 2011), which is 

thought to play a key role in autoimmune diseases (Peelen et al., 2011). 

 

Despite the evidence on vitamin D discussed above, some neurologists are yet to be 

convinced that there is clear-cut evidence that vitamin D supplementation affects 

clinical relapse rate or expanded disability status scale (EDSS).  Despite these 

reservations, replacement of vitamin D among the multiple sclerosis population has 

become common practice, mainly due to the fact that a large trial has shown that 

large doses of vitamin D can be given safely (Wingerchuk et al., 2005). 

 

1.4.3 SMOKING 

 

Smoking associated with multiple sclerosis was suggested after a pooled analysis on 

a number of smaller studies (Hawkes, 2007) (Handel et al., 2011). This was then 

replicated in a much larger case-control study (Hedström et al., 2009). According to 

some authors there is a dose-dependent relationship between smoking and multiple 

sclerosis (Hedström et al., 2009) (Ghadirian et al., 2001). 

 

The mechanism for the smoking association with multiple sclerosis is purported to be 

due to the fact that smoking is irritant to the lungs and causes inflammation 

(Hedström et al., 2011a) (Olsson et al., 2017). Other autoimmune diseases such as 

rheumatoid arthritis have been associated with smoking (Klareskog et al., 2009). It 

has also been shown in EAE that smoking can activate encephalitogenic cells 

present in the lungs to become ‘migratory’ in their behaviour, causing more disease 

in the central nervous system (Odoardi et al., 2012). 

 

The hypothesis of inflammation in the lungs rather than a nicotinic effect is supported 

by studies from Sweden, where a large amount of oral tobacco is consumed. A dose 

dependent protective effect of oral tobacco consumption was seen in this study 

(Hedström et al., 2009).  

 

Smoking as a risk factor in multiple sclerosis displays some interaction with the HLA 

genetic risk factor. The HLA Class II genetic variant (HLA-DRB1*1501 with lack of 
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HLA-A*02) gives an odds ratio of 5 and when dividing the population into smokers 

gives an odds ratio of 14 (Hedström et al., 2011b). Therefore the effect of smoking 

impacting on the subsequent risk of multiple sclerosis is dependent on the 

individual’s HLA genotype. This data suggests smoking interacts with antigen 

presentation to T lymphocytes. 

 

With this knowledge about smoking as a risk factor for multiple sclerosis it would be 

possible to reduce MS incidence with public health measures, which reduce tobacco 

smoking and passive smoking.  

 

Smoking is associated with a worse prognosis in multiple sclerosis (Sundström and 

Nyström, 2008) and an aggravated disease course (Manouchehrinia et al., 2013) 

(Zivadinov et al., 2009). It has also been associated with an increase in the 

neutralizing antibodies following treatment with natalizumab (Hedström et al., 2014a) 

and interferon-beta (Hedström et al., 2014b). Physicians caring for patients with 

multiple sclerosis should strongly encourage them to stop smoking.  
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1.5 EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS (EAE) – 

STRENGTHS AND WEAKNESSES OF THIS ANIMAL MODEL 

 

Multiple Sclerosis is a disease involving many different facets of the immune system. 

In order for an animal model to be useful in depicting the disease it should be able to 

demonstrate the different facets of multiple sclerosis, mainly a period of 

inflammation, initiated by CD4+ T cells, then subsequently driven by CD8 T cells and 

B cells. There would also have to be a subsequent period of neurodegeneration.  

 

The EAE model evolved from when a small number of patients receiving the live 

rabies virus vaccine (a live attenuated strain grown in a rabbit’s central nervous 

system) developed encephalomyelitis. The realization was that the encephalomyelitis 

was not a result of the rabies vaccine itself but a hypersensitivity reaction to the 

rabbit central nervous system constituents contaminating the vaccine. This initiated 

the development of EAE as a model for multiple sclerosis (Lovett-Racke et al., 2011). 

 

There are many different types of EAE models. I will go on to describe the different 

types of EAE and their particular strengths, but also how they may not resemble the 

pathology seen in multiple sclerosis.  

 

1.5.1 MODELS WITH CD4+ T CELL INFLAMMATION 

 

Transfer of encephalitogenic T cells as a model for EAE was first shown in work by 

Philip Paterson (Paterson, 1960). Once animals were sensitized to brain tissue, 

lymphocytes were drawn from the peripheral blood and then transferred to a naïve 

recipient; this stimulated a neuroinflammatory disease. This principal was 

demonstrated when T cells specific for myelin basic protein were intravenously 

transferred to animals which triggered an encephalomyelitis (Ben-Nun et al., 2017).  

 

This passive transfer of T cells is a good model for studying the mechanisms of 

inflammation by T cells and macrophages with limited microglial activation. In this 

model there is little axonal loss or demyelination. This model tends to be used to 

analyse the molecular mechanisms involved in brain inflammation related to CD4+ 

cells and may be useful for in vivo testing of anti-inflammatory treatments (Lassmann 

and Bradl, 2017). 

 



 51	

Some of the limitations of this model is it only tends to involve inflammation mediated 

solely by CD4+ cells which is unlike the pathology seen in multiple sclerosis, where 

many different types of cells are involved such as microglia, CD8+ cells and B cells, 

with relatively few CD4+ cells found in CNS lesions. It also tends to cause 

inflammatory disease of the central nervous system with variable axonal injury and 

secondary demyelination, but without the more widespread primary demyelination 

seen in multiple sclerosis. Therefore the relevance this type of inflammation has for 

multiple sclerosis patients is currently unclear. 

 

There are also active sensitization models of EAE whereby active immunization with 

an antigen from the central nervous system together with a strong adjuvant (e.g. CFA 

or complete Freund’s adjuvant) (Baxter and Hodgkin, 2002) and administration of 

pertussis toxin is another mechanism by which to induce EAE (Bernard, 1976). The 

most frequently used method is induction in mice with myelin oligodendrocyte 

glycoprotein33-55 (MOG) peptides in CFA (Mendel et al., 1995). 

 

Some of the strengths of this model are that it is relatively easy to induce an acute or 

chronic inflammatory disease. However some of the drawbacks of this model are that 

it tends to only affect the spinal cord, with larger lesions due to axonal degeneration 

with secondary demyelination, with not much in the way of primary demyelination, 

which is normally seen in multiple sclerosis. The limitations to this model make it 

difficult to predict what will happen in MS patients, as the type of inflammation seen 

in humans is very different (Lassmann and Bradl, 2017). 

 

Another model using active sensitization that more closely resembles multiple 

sclerosis is sensitization of either rats (Storch et al., 1998), guinea pigs (Lassmann 

and Wisniewski, 1979) or primates (Jagessar et al., 2015) with the recombinant 

extracellular domain (amino acids 1-125) of MOG with either myelin or brain tissue in 

CFA. This model induces not only a CD4+ T cell encephalitogenic response but also 

encompasses a demyelinating autoantibody response against MOG (Linington et al., 

1988). This model produces large confluent plaques of demyelination with areas of 

axonal sparing similar to what is seen in multiple sclerosis. The distribution of the 

lesions depends upon how severe the disease is in the affected animal but also the 

genetic background of the animals used (Weissert et al., 1998). In this model the 

disease is not just restricted to the spinal cord and in certain rat strains large cortical 

demyelinated lesions are seen, related to chronic inflammation in the meninges 

(Pomeroy et al., 2005).  
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Although one of the positives of this model is that it closely resembles the pathology 

seen in multiple sclerosis, it has to be said that the use of MOG antibodies means 

that it will always be a questionable about how representative of multiple sclerosis 

this model can be. MOG antibodies are on the whole not found in patients with 

multiple sclerosis and when present the clinical presentation differs from typical 

multiple sclerosis and is more likely to resemble aquaporin-4 antibody negative 

neuromyelitis optica or acute disseminated encephalomyelitis. Therefore this model 

may be good for these other clinical syndromes, which are distinct to multiple 

sclerosis (Sepúlveda et al., 2016) (Kim et al., 2015). 

 

1.5.2 MODELS WITH CD8+ T CELL INFLAMMATION 

 

Passive transfer of T cells can also occur with CD8+ T cells (Saxena et al., 2008). 

With this model inflammation is associated with destruction of antigen contained 

within oligodendrocytes by cytotoxic T cells resulting in demyelinating plaques.  

 

Another method used to induce CD8+ T cell inflammation was to actively sensitize 

mice with myelin basic protein and then withdraw their CD8+ T cells and 

subsequently transfer the CD8+ T cells into naïve mice (Huseby et al., 2001). 

 

With CD8+ T cell mediated inflammation you get low macrophage recruitment with 

significant microglial activation (Lassmann and Bradl, 2017). The direct tissue injury 

is mediated by CD8+ cytotoxic T cells. The studies above show that CD8 T cells 

alone can induce brain inflammation without the need for recruitment of other T cell 

populations.  

 

One of the advantages of the CD8+ T cell EAE models are that it presents a good 

opportunity to analyze molecular mechanisms involved in inflammation and tissue 

injury induced by Class I MHC restricted T cells. There are also a lot of CD8+ T cells 

within MS lesions, which suggests that CD8+ T cells play an important role in MS 

pathogenesis.  

 

Some of the disadvantages of these models are that they have high intra-

experimental variation. Also more importantly the evidence for direct CD8+ T cell 

cytotoxicity in the pathogenesis of MS is limited. It has proved very difficult to induce 
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active CD8+ T cell autoimmunity by active immunization (Lassmann and Bradl, 

2017).  

 

1.5.3 VIRUS MODELS OF INFLAMMATORY DEYMELINATION 

 

Virus infections in animals can give rise to a central nervous system inflammatory 

disease (Denic et al., 2011).  

 

The Theiler’s virus model is induced by direct intracerebral infection of animals with a 

virus. The disease course and mortality depend upon the virulence of the virus strain 

and the genetic background of the host animal to mount a specific T cell response 

(Lassmann and Bradl, 2017). Popular virus strains include BeAn and Daniel’s strains, 

with mice MHC haplotypes H-2qrsvfp which causes an acute encephalitic phase 

followed by chronic demyelination which mostly affects the spinal cord (Denic et al., 

2011). These spinal cord lesions include the formation of confluent plaques of 

primary demyelination with a variable extent of axonal injury and remyelination 

depending on the particular host animal used. Many of the pathological features seen 

in the model share the pathological features seen in multiple sclerosis.   

 

The Mouse Hepatitis Virus (MHV) model was first discovered after MHV virus was 

isolated from a paralysed mouse that had disseminated encephalomyelitis with 

demyelination (Bailey et al., 1949). Neurological disease develops after nasal or 

intracranial infection with MHV. The neurological disease has two phases. The first is 

a pan-encephalitis. A second phase occurs four weeks later, with inflammatory 

demyelinating lesions, which cause paralysis. This secondary phase is pathologically 

characterized by the formation of confluent plaques of demyelination followed by 

variable degrees of acute axonal injury. The viral antigen is seen in the acute phase 

of the disease and is seen in many different types of immune cells (Bender and 

Weiss, 2010). Once there has been recovery of the acute phase the virus is cleared, 

but viral DNA persists throughout the chronic demyelination phase of the disease. 

 

Findings using the drug fingolimod to treat mice from the MHV model tend to suggest 

that the inflammatory mechanisms involved in virus clearance and the induction of 

demyelination are different. This is because fingolimod tends to increase the severity 

of the first stage of the illness and decrease the demyelination phase of the illness 

(Blanc et al., 2014). 
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There are some drawbacks to these models. The first is complexity. Virus models 

have a very complex pathogenesis, involving direct virus effects, anti-viral immunity 

with additional autoimmune mechanisms most likely through antigen/epitope 

spreading. This makes it extremely difficult to dissect the effects of these different 

components (Denic et al., 2011). 

 

1.5.4 TOXIC MODELS OF DEMYELINATION AND REMYELINATION 

 

The toxic models used such as with cuprizone (Gudi et al., 2014) (Praet et al., 2014), 

Lysolecitin (Hall, 1972) (Jeffery and Blakemore, 1995) and ethidium bromide (Jeffery 

and Blakemore, 1995) are very good models to study the biology of demyelination 

and remyelination.  

 

These models have the advantage of being highly reproducible, producing well-

defined pathophysiological mechanisms for demyelination. Another advantage of 

these models is that they are not complicated by the changes in the central nervous 

system due to the inflammatory processes driven by the adaptive immune system 

(Lassmann and Bradl, 2017). 

 

Cuprizone is a copper chelating drug which induces apoptosis in oligodendrocytes 

and induces demyelination by oxidative injury (Gudi et al., 2014) (Praet et al., 2014). 

Most of the cuprizone models are with C57BL/6 mice, that have cuprizone applied for 

4 weeks, which induces demyelination and is followed by extensive remyelination 

(Hiremath et al., 1998). Demyelination is predictably seen in the corpus callosum and 

the relatively predictable time course of lesions with subsequent remyelination 

provides an excellent template for understanding mechanisms involved in 

demyelination and remyelination.  

 

The rapid and extensive remyelination seen is a limitation when using this model in 

order to predict what occurs within multiple sclerosis as it does not show the 

progressive permanent remyelination failure which is particularly characteristic of 

progressive multiple sclerosis (Lassmann and Bradl, 2017). It is worth noting that 

despite the extensive remyelination, progressive motor decline does occur within 

cuprizone treated animals with ongoing axonal injury occurring within remyelinated 

axons (Manrique‐Hoyos et al., 2012). 
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Therefore a different model was developed to overcome the problem of rapid 

remyelination. This involved the exposure of animals to cuprizone for 12 weeks 

rather than 4 (Matsushima and Morell, 2001). This difference lead to chronic 

demyelinated lesions with little remyelination. The impaired remyelination is due to a 

reduction in the oligodendrocyte progenitor cell population and changes in the local 

cytokine environment (Praet et al., 2014). Similar factors have been implicated in the 

failure of remyelination seen in multiple sclerosis and also in the age related decline 

in remyelination (Doucette et al., 2010) (Shen et al., 2008).  

 

When lysolecitin is injected into the white matter tracts of the central nervous system, 

it induces focal plaques of demyelination due to a direct action of the toxin, which 

damages the myelin sheath (Jeffery and Blakemore, 1995). This model has the 

advantage of being highly reproducible, however similar to the cuprizone model it is 

followed by rapid and extensive remyelination. However the speed and degree of 

remyelination is age-dependent (Franklin et al., 2002). This shares features with the 

remyelination failure seen in multiple sclerosis (Lassmann and Bradl, 2017).  

 

Another model for focal demyelination is when ethidium bromide is injected into the 

white matter tracts (Blakemore, 1982). This leads to the degeneration of astrocytes 

as well as oligodendrocytes. This model was key to demonstrating that 

oligodendrocyte remyelination required the presence of astrocytes. Without the 

presence of astrocytes, Schwann cells were responsible for the remyelination that 

occurred. Extensive Schwann cell remyelination is seen in Neuromyelitis optica, 

when there is involvement of astrocytes within the pathophysiology with secondary 

demyelination (Ikota et al., 2010). There is also a small subset of fulminant multiple 

sclerosis cases with severe astrocyte injury.  

 

We know that the EAE mouse model is not completely analogous with multiple 

sclerosis as has been demonstrated with other drugs in the past that have been 

shown to ameliorate EAE, but have also been shown to worsen multiple sclerosis. 

Other drugs to have caused suppression of EAE but subsequently shown to activate 

multiple sclerosis include anti-TNF (The Lenercept Multiple Sclerosis Study Group, 

1999) (Mohan et al., 2001), altered peptide ligands of myelin basic protein (Bielekova 

et al., 2000), interferon-gamma (Panitch et al., 1987),  and Atacicept which binds to 

cytokines BLyS (B Lymphocyte Stimulator) and APRIL, which are involved in B cell 

stimulation, maturation and survival (Kappos et al., 2014). 
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Overall the use of these animal models has provided significant insights into 

mechanisms underlying the pathology of multiple sclerosis. However many of these 

animal models fail to represent the complicated nature of all aspects of the immune 

response in multiple sclerosis, particularly the primary demyelination seen with the 

disease. Due to a number of different factors, it has also been difficult to develop 

animal models that accurately represent the progressive phase of multiple sclerosis. 

Therefore in order to more appropriately understand how a particular molecule will 

affect multiple sclerosis, in my view; it has to be tested in humans affected by the 

disease. 
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1.6 THE TH1/TH2 PARADIGM IN MULTIPLE SCLEROSIS 

 

Once T cells come into contact with antigen, they expand and become activated and 

form into many different phenotypes. MS susceptibility genes play a role in this 

process of activation and expansion, particularly IL-7Rα. 

 

In 1986 Mossman and Kaufer (Mosmann et al., 1986) developed the theory of 

reciprocal inhibition for subsets of helper T cells. Th1 cells are derived from naïve T 

helper cells when these naïve T helper cells are stimulated with interleukin-12 and 

interleukin-18. The Th1 lymphocytes then go on to secrete the cytokine interferon 

gamma (please refer to figure 1.1). Interferon gamma causes the upregulation of 

MHC class II on a variety of immune cells and activates macrophages.  

 

Interleukin-4 is crucial for the development and maintenance of Th2 responses. Th2 

cells also produced interleukin-4.  Dysregulated Th2 responses play an important 

role in allergic responses mediated by eosinophils (please refer to figure 1.1). 

 

Th1 cells were thought to drive the inflammation seen in multiple sclerosis. This 

comes from experiments (Ando et al., 1989) (Wildbaum et al., 1998) that 

demonstrated encephalitogenic T cells in EAE produced interferon gamma. Also 

myelin basic protein stimulated T cells from multiple sclerosis patients produced 

more interferon gamma then healthy controls (Voskuhl et al., 1993).  

 

EAE resistant mice produce Th2 responses. Preventing the functioning of IL-4 

removes this resistance to EAE. Also by blocking the p40 subunit of interleukin-12 

with neutralizing antibodies, EAE was ameliorated (Constantinescu et al., 2001). 

These studies served to underline the interplay between Th1 and Th2 pathways in 

activation and abrogation of EAE and other organ specific autoimmune diseases.  

 

On the other hand, challenging the hypothesis of the Th1/Th2 paradigm and EAE 

was the observation that interferon gamma knockout mice can develop EAE (Ferber 

et al., 1996). Therefore some authors concluded that interferon gamma was not 

crucial to the development of EAE. This led to the search for other mechanisms 

involved in the induction and clinical course of EAE, which are described below. 
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1.7 THE TH1/TH17 PARADIGM IN MULTIPLE SCLEROSIS 

 

It has been known for some time that innate cells of the immune system have 

produced IL-17 (Cua and Tato, 2010). However in 1995 CD4+ T cells were 

discovered to secrete IL-17 (Yao et al., 1995). A few years later a distinct subset of 

CD4+ T cells were found to secrete IL-17 (Park et al., 2005) (Langrish et al., 2005). 

This subset of CD4+ T cells was distinct from Th1 cells that secreted IFN-γ and Th2 

cells which secreted IL-4. In fact during the discovery of Th-17 cells it was found that 

the cytokines IFN-γ and IL-4 inhibited the secretion of IL-17. 

 

Experimental autoimmune encephalomyelitis (EAE), a mouse model for human 

multiple sclerosis, has been used to investigate T cell driven organ specific 

autoimmune diseases (Lassmann and Bradl, 2017). T cells that secrete IFN-γ can 

induce EAE. It has also been shown that EAE can be induced in mice deficient in the 

Th1 effector cytokine IFN-γ (Ferber et al., 1996). Therefore this indicates that Th1 

cells are not the only type of T helper cells vital for the induction of EAE. It was 

shown in 2003 that IL-23p19 mice have complete resistance to EAE. This implicated 

Th17 cells as the major T helper subset in inducing autoimmunity, as without the 

support of IL-23 the Th17 cell secretion of IL-17 cannot be sustained. Without the 

continued secretion of IL-17, the IL-23p19 mice did not develop EAE (Cua et al., 

2003). Please refer to section 1.5 for more information about EAE. IL-23 is not only 

responsible for stabilizing IL-17. It is responsible for a host of other reactions within T 

cells including secretion of IL-10 (Stumhofer et al., 2007) and induction of IL-7Rα 

(McGeachy et al., 2009) (Arbelaez et al., 2015).  

 

However it is clear that T-bet KO mice are resistant to EAE (Bettelli et al., 2004) and 

the clear role for T-bet in the development of Th1 cells is well established (Szabo et 

al., 2000) (Mullen et al., 2001). Therefore both Th1 and Th17 with its associated 

cytokines and transcription factors are essential for the generation of pathogenic T 

cells and the development of EAE.  

 

We now recognize IL-17 as IL-17A, as there is a whole host of cytokines within the 

IL-17 family (IL-17A – IL-17F). IL-17A is proinflammatory and has been linked with 

defense against microbial infections and with cell-mediated autoimmune disease. 

Although we know that IL-17A is the signature cytokine of Th17 cells, it has been 

shown that IL-17A is not solely secreted by Th17 cells and is also secreted by cells 

of the innate immune system such as γδ T cells (Martin et al., 2009) (Shibata et al., 
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2007), lymphoid tissue inducer-like (LTi) cells (Takatori et al., 2009)  and Tc17 cells 

(Huber et al., 2013) (reviewed in Gu et al., 2013). 

 

The discovery of Th-17 cells further illuminated the discoveries mentioned above by 

Mossman et al in 1986. This highlighted the development of particular T effector 

CD4+ cells for particular types of inflammation. For example Th1 cells induced by IL-

12, with activation of transcription factor T-bet (STAT 1 dependent) and secreting 

IFN-γ, upregulate MHC class II on many immune cells which helps to activate 

macrophages and induce them to destroy intracellular pathogens (e.g. Listeria). Th2 

cells induced by IL-4, with activation of the transcription factor Gata-3 (STAT 6 

dependent) and secretion of IL-4; help to induce eosinophils in the fight against 

parasites. Th17 cells are induced by TGF-β and IL-6 (subsequent exposure to IL-23 

helps to continue the stimulation and maintenance of Th17 cells from naïve CD4+ 

cells), with activation of the transcription factor Retinoic Acid Receptor related orphan 

receptor gamma t (RORγt) and secretion of IL-17 (also IL-21, IL-22 and granulocyte 

macrophage colony stimulating factor). Please refer to figure 1.1. 

 

Th17 cells in MS have been identified in tissue from acute brain and spinal cord 

lesions in MS patients (Montes et al., 2009). Prior to this finding there had been 

interest in IL-17 secreting lymphocytes in the blood and CSF of patients 

(Matusevicius et al., 1999), and that there was over-representation of IL-17 

expressing immune cells in chronic MS lesions (Lock et al., 2002) (Tzartos et al., 

2008).  

 

In terms of treatment of MS, fingolimod has been purported to have a preferential 

effect on IL-17 producing T helper cells (Mehling et al., 2010). On the one hand this 

has directly linked Th17 cells with promoting inflammation in MS. On the other hand 

neutralizing antibodies to the common p40 subunit of IL-12 and IL-23 did not 

demonstrate efficacy in reducing inflammation in MS patients (Segal et al., 2008), 

however some authors have pointed towards the fact that these patients had 

advanced disease as a reason for the lack of efficacy of ustekinumab with MS 

patients (Longbrake and Racke, 2009).   

 

In summary, the evidence points towards the involvement of Th17 cells in MS. These 

cells however are plastic and commonly co-produce IFN-γ (Kebir et al., 2009), 

particularly when they enter the central nervous system. However, they have distinct 

properties, which are separate from Th1 cells.  
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Figure 1. 1: Paradigms of CD4+ subsets involved in Multiple Sclerosis Pathogenesis.  

Naïve T helper cells are stimulated with cytokines (red) to differentiate into the CD4+ cells Th1, Th2, Th17 and naturally occurring T regulatory 
cells. These differentiated CD4+ cells then secrete cytokines (blue) that have specific effects on the immune response as outlined. Naturally 
occurring T regulatory cells have defective function in autoimmune disease.   
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1.8 T REGULATORY CELLS IN MULTIPLE SCLEROSIS 

 

Experiments in mice in 1985 demonstrated the existence of a T cell subset that if 

depleted led to the development of autoimmune disease. This T cell subset was 

thought to be involved in maintaining self-tolerance (Sakaguchi et al., 1985). The 

same group, ten years later, demonstrated how these T regulatory cells (defined in 

mice as CD4+ CD25+ T cells) were involved in down regulation of peripheral immune 

responses to self and non-self antigens. In humans they were subsequently defined 

as CD4+ CD25high T cells. In this seminal paper it was proposed that abnormalities in 

this T regulatory cell subset could be a cause of autoimmune disease. Before this 

time it was not widely believed that regulatory T cells existed (Sakaguchi et al., 

1995). 

 

T regulatory cells are split into naturally occurring T regulatory cells (Tregs) and 

induced T regulatory cells. Naturally occurring Tregs are a distinct T cell population 

optimized for suppressive function during its development in the thymus. The 

transcription factor Forkhead Box P3 (Foxp3) has been shown to be a specific 

marker for T regulatory cells. Mutations in FoxP3 in humans have been associated 

with the immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) 

syndrome that manifests in humans as neonatal onset of type 1 diabetes mellitus, 

anaemia, eczema, thrombocytopenia, immune dysregulation and hypothyroidism. 

 

However the characterization of the human T regulatory cell was more difficult than 

in mice as the population was more heterogeneous. Human T cells express CD25+ 

when they become activated so it is more difficult to distinguish human T regulatory 

cells from activated T cells.  The discovery of CD4+ CD25high cells (only 1-2% of the 

total CD4+ T cell population consists of CD25high cells) as human T regulatory cells 

(Baecher-Allan et al., 2001) was an important first step.  However there was always 

controversy as to where the boundary stood for CD25high and CD25 intermediate 

CD4+ cells. With the discovery of FoxP3 as a marker for T regulatory cells in 

humans, identification of these cells became easier (Roncador et al., 2005) (Hori et 

al., 2003).  

 

T regulatory cells were also discovered to exhibit low levels of IL-7Rα. This was 

discovered in humans during investigation of lymphocyte homeostasis following 
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treatment with alemtuzumab (Cox et al., 2005). This discovery had earlier been 

made in mice (Cozzo et al., 2003). 

 

T regulatory cells in Multiple Sclerosis were found to be defective in function in 2004. 

The actual number of T regulatory cells was the same as in healthy controls. A series 

of experiments in which varying ratios of regulatory T cells when mixed with 

responder cells demonstrated the lesser degree to which T regulatory cells from MS 

patients were able to suppress the responder cell population (Viglietta et al., 2004). 

These results were also replicated in 2005 (Haas et al., 2005). Another group have 

shown that in untreated MS patients there was reduced levels of FoxP3 mRNA and 

reduced levels of protein expression in the CD4+CD25+ T regulatory cell population, 

which would be in keeping with the reduced level of suppressive function in the cells 

of MS patients (Huan et al., 2005).  

 

Haas et al in 2007 (Haas et al., 2007) went on to further explain the poor function of 

T regulatory cells in MS patients. It was found that the decreased suppressive 

function disappeared with the depletion of naïve T regulatory cells that had recently 

emigrated from the thymus. This was also found by another group looking into the 

function of memory (mature) T regulatory cells and naïve T regulatory cells. In both 

secondary progressive MS (SPMS) and relapsing remitting MS the naïve T 

regulatory cells were deficient in both number and function. There was an increase in 

the number of memory T regulatory cells in these patients, with an increase in the 

suppressive function of memory T regulatory cells in those with a long disease 

course (>10 years) and also in those with SPMS (Venken et al., 2008). 

 

The same group in 2011 linked altered T regulatory cell function to expression and 

signaling through the IL-7Rα and TSPLR during thymic development. They were 

unable to demonstrate a link to IL-7Rα genotype. They thought that impaired genesis 

of naïve T regulatory cells via reduced signaling in IL-7Rα resulted in the defective 

overall function of the T regulatory cells in multiple sclerosis patients (Haas et al., 

2011). 

 

There are a number of mechanisms by which T regulatory cells suppress other T 

cells. The first is by secretion of regulatory cytokines TGF-β and IL-10. Another 

mechanism is by competing for IL-2 due to the high expression of IL-2R present on T 

regulatory cells. IL-2 is a key cytokine involved in activation of cells. Another 

mechanism is via cell-to-cell contact. There is TGF-β on the cell membrane of T 
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regulatory cells but there is also a host of other molecules such as CTLA-4, Fas 

ligand receptor, Granzyme B and LAG3. For example with T regulatory cells 

overexpressing CTLA-4, this successfully competes with the co-stimulatory receptors 

on the effector T cells reducing activation of effector T cells (Sakaguchi et al., 2010). 

Finally some T regulatory cells express CD39 and CD79, which are 

ectonucleotidases that convert ATP to adenosine. Effector T cells have A2A 

receptors on their cell surface and the uptake of adenosine rather than ATP initiates 

suppressive signaling in effector T cells (Fletcher et al., 2009). 
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1.9 THE ROLE OF B CELLS AND ANTIBODIES IN MULTIPLE SCLEROSIS 

 

B lymphocytes are involved in the early stages of the formation of multiple sclerosis 

plaques. In pattern II lesions, found in 58% of MS biopsies, there is immunoglobulin 

and complement deposition on myelin. There is phagocytosis of complement-

opsonized myelin debris by macrophages (Popescu et al., 2013). B cells also form 

packed aggregates in the leptomeningeal space covering the cortex (Serafini et al., 

2004). These lymphoid follicles seem to resemble germinal centers. Leptomeningeal 

aggregates are a common feature of progressive multiple sclerosis but this 

phenomenon has also been recognised in early relapsing-remitting multiple sclerosis 

(Lucchinetti et al., 2011).  

 

It was postulated that B cells mitigate their effects in multiple sclerosis by (Wekerle, 

2017) (Hohlfeld and Meinl, 2017): 

 

1. Secretion of pathogenic autoantibodies. 

2. Antigen presentation to T lymphocytes. 

3. Secretion of cytokines either pro-inflammatory such as GM-CSF or the failure 

to produce anti-inflammatory cytokines such as TGF-β or IL-10 from B 

regulatory cells. 

 

Investigation into these mechanisms in vitro has been difficult due to the traditional 

methods of investigation in experimental autoimmune encephalomyelitis (EAE), 

which normally uses adjuvant immunization or passive immune cell transfer. These 

are artificial methods of induction of EAE and therefore spontaneous models of EAE 

have been introduced via the use of transgenic mice (Wekerle, 2017). 

 

The OSE (C57BL/6) and RR (SJL/J) mice are spontaneous models of EAE with 

between 60 and 100% of mice eventually developing EAE. B cells play a significant 

role in both models. In OSE mice B cells capture soluble myelin oligodendrocyte 

glycoprotein present in high dilutions, concentrate and process the antigen and 

present it to T cells (Krishnamoorthy et al., 2006). This amplifies the autoimmune 

process.  

 

In RR mice the role of B cells is the production of autoantibodies (Pollinger et al., 

2009). Anti-MOG antibodies appear in the plasma from 4 weeks of age in RR mice 

and recognise MOG epitopes on the myelin surface. The B cells are crucial in this 
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mouse model as when depleted from this model EAE does not develop. When 

present EAE develops in 100% of mice. When these autoantibodies are transferred 

to recipient mice they develop large confluent demyelinating lesions, which are 

strongly reminiscent of multiple sclerosis plaques.  

 

1.9.1 OLIGOCLONAL BANDS IN MULTIPLE SCLEROSIS 

 

Normally the healthy cerebrospinal fluid (CSF) does not contain immunoglobulins 

and other plasma proteins. In multiple sclerosis the CSF typically contains 

immunoglobulins detected as individual bands on gel agarose electrophoresis. The 

principle involves the separation of proteins (IgG) in the paired serum and CSF using 

agarose gel electrophoresis followed by passive transfer onto a nitrocellulose 

membrane. The separated immunoglobulins are then detected by horseradish 

peroxidase labeled anti-human antibody. If immunoglobulin bands are present in the 

CSF that is not present in the serum, this represents intrathecal synthesis of IgG, 

which is seen in multiple sclerosis.   

 

Freedman and colleagues described in a consensus statement on CSF analysis for 

diagnosis of MS that oligoclonal bands (OCBs) were the ‘gold standard’ with 

sensitivity greater than 95% and excellent specificity (Freedman et al., 2005). 

 

Neither the cellular origin nor the target antigens of the IgG bands seen in the CSF of 

multiple sclerosis patients have been identified. However one group using 

transcriptomics to characterize the gene repertoire of CSF B cells and proteomics in 

order to sequence the individual immunoglobulin bands, showed that most of the 

OCBs were produced by local, CSF or parenchymal B lymphocytes (Obermeier et 

al., 2008). Several groups have been able to clone the paired genes of CSF 

immunoglobulins in order to produce recombinant antibodies. However the antigen 

target of these antibodies have given divergent results. Some of these results have 

shown ubiquitous proteins (Brändle et al., 2016) as targets for the antibodies with 

another group showing binding of antibodies to lipids (Brennan et al., 2011). 

Therefore there has been a failure to demonstrate conclusively autoantibodies in 

multiple sclerosis binding to major myelin structures.  

 

Despite being unable to find specific antigen targets for the autoantibodies in the 

CSF of multiple sclerosis patients there have been successful therapies used that 
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principally target B lymphocytes. This in itself underpins how fundamental B 

lymphocytes are to the pathogenesis of multiple sclerosis. Therapies such as 

rituximab and ocrelizumab target CD20+ cells. CD20+ cells comprise a substantial 

part of the B cell population ranging from pro-B cells in the bone marrow to short 

lived plasmablasts, but it excludes CD20+ negative long-lived plasma cells, which 

secrete antibodies of previously encountered pathogens (Hohlfeld and Meinl, 2017). 

Ocrelizumab has now become part of the armamentarium of treatments available to 

neurologists caring for multiple sclerosis patients.  Plasmapheresis, which removes 

autoantibodies from the blood, has also been used in fulminant relapses of multiple 

sclerosis.  

 

Rituximab substantially reduced MRI lesion load (relative reduction of 91%) over a 48 

week period when compared to placebo. There was also a significant reduction in 

relapse rate over this period (Hauser et al., 2008). 

 

Ocrelizumab has had two phase 3 trials OPERA I and II, which showed a reduction 

in relapse rate compared to interferon-beta of 46% and 47%. There was also a 95% 

lower rate of gadolinium enhancing lesions on the MRI scan when compared to 

interferon-beta (Hauser et al., 2017). 

 

1.9.2 MECHANISM OF ACTION OF B LYMPHOCYTES IN MULTIPLE SCLEROSIS 

 

These drug trials help us to determine the role of B cells in the pathogenesis of 

multiple sclerosis. It is clear that the number of both B and T cells reduced with anti-

CD20+ therapies. This may be due to both the function of B cells as antigen 

presenting cells and also to the fact that B cells contribute to the autoimmune 

cytokine milieu. There are also a group of CD20+ T cells which contribute 

approximately 5% of the T cell population (Palanichamy et al., 2014). In the CSF of 

multiple sclerosis patients these CD20+ T cells have a similar frequency to the 

number of B lymphocytes and therefore it is postulated that they have a significant 

contribution to multiple sclerosis pathogenesis (Schuh et al., 2016). 

 

According to some authors the intrathecal antibody response seen in multiple 

sclerosis is partly due to intracellular antigens released during tissue injury (Brändle 

et al., 2016). Although (as referred to above) in my view there is no consensus on the 

antigenic target of oligoclonal bands. It is unlikely that these intracellular antigens are 
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pathogenic in the same way as the newly described cell surface antibodies in 

autoimmune encephalitis (Hohlfeld and Meinl, 2017). However there may be 

enhanced recruitment of T lymphocytes that recognize the same antigens released in 

the debris following tissue injury. This mechanism for superadded recruitment of T 

cells into the central nervous system in multiple sclerosis may lead to renewed 

interest in reducing the antibodies produced in the central nervous system in multiple 

sclerosis (Flach et al., 2016). 
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1.10 THE TREATMENT SPECTRUM IN MULTIPLE SCLEROSIS 

 

A lot of progress has been made from the 1990s after the introduction of the 

Interferons as the first disease modifying therapy for multiple sclerosis (IFNB Multiple 

Sclerosis Study Group, 1993) (Paty and Li, 1993). There are an increasing number of 

treatments for relapsing-remitting multiple sclerosis. However there are also no drugs 

that have been shown to be significantly neuroprotective in multiple sclerosis and 

therapies targeting remyelination of the central nervous system are still in their 

infancy.  

 

Drugs such as the Interferons and Glatiramer Acetate (Johnson et al., 1995) tend to 

reduce relapses by approximately 30% with a very small effect on long-term disability 

(Palace et al., 2015) (Ebers et al., 2010). They have a relatively benign side effect 

profile when compared to the other disease modifying multiple sclerosis drugs. Side 

effects include flu-like symptoms, neutropenia, liver dysfunction and anti-drug 

antibodies (Interferons). Both drugs can give skin injection site reactions. 

 

Teriflunomide (O'Connor et al., 2011) reduces the annualized relapse rate by 

approximately 30% when compared to placebo with a modest effect on disability in a 

similar way to the Interferons and Glatiramer Acetate. It interferes with pyrimidine 

synthesis by inhibiting the enzyme dihydroorotate dehydrogenase (DHODH) 

(Claussen and Korn, 2012). This effects rapidly dividing lymphocytes but spares 

more quiescent or homeostatically expanding lymphocytes which use a different 

pathway to DHODH. It has the advantage that it is given in a tablet form but patients 

have to undergo regular monitoring of blood counts and liver function. It is also 

unsafe in pregnancy with a risk of teratogenicity (Beart et al., 2017). 

 

Dimethyl Fumarate (BG-12) (Gold et al., 2012) (Fox et al., 2012) reduced relapse 

rates by approximately 53% and MRI lesions by 90% when compared to placebo. In 

one phase 3 trial there was a 38% reduction in disability compared to placebo (but no 

effect compared to copaxone) (Gold et al., 2012). The actual mechanism of action is 

unknown but it is purported to have effects on oxidant pathways and it also affects 

nuclear-kappa-light-chain-enhancer of activated B cells (NF-κB) (Albrecht et al., 

2012) (Scannevin et al., 2012). It again has the advantage of being an oral tablet and 

has a modest side effect profile of flushing and gastrointestinal side effects, with a 

drop in the lymphocyte count and elevated liver aminotransferase levels. 
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Daclizumab (Kappos et al., 2015) is a monoclonal antibody, which acts against 

CD25, the interleukin-2 receptor alpha chain (IL-2Rα), which activates T cells. Its 

mechanism of action also involves expansion of a natural killer (NK) cell regulatory 

population (Bielekova et al., 2006). When compared to placebo it reduced relapse 

rates by 54% with the risk of 3 month sustained disability reduced by 57% when 

compared to placebo (Gold et al., 2013). In a phase 2 add-on treatment trial with 

interferon-beta, the reduction in relapse rate was 30% when compared with 

interferon-beta (Wynn et al., 2010). This is a parenteral treatment (subcutaneous 

injections given each month) with side effects of an increase in infections, 

eczematous rashes and abnormalities in liver function testing. Recently the concern 

over ‘unpredictable and potentially fatal immune-mediated’ liver injury has led to 

restrictions on the use of daclizumab in multiple sclerosis. It has now been 

recommended for relapsing-remitting multiple sclerosis patients who have ‘failed at 

least two disease modifying therapies and unable to be treated with other therapies’. 

These recommendations due to the risk of liver damage were made by the European 

Medicines Agency Pharmacovigilance Risk Assessment Committee, following a 

review of safety of daclizumab following the death of a patient from liver failure and 

the occurrence of four other cases of serious liver injury (European Medicines 

Agency, 2017). Daclizumab has now been withdrawn from the market due to these 

safety concerns.  

 

Natalizumab (Polman et al., 2006) reduces relapses by approximately 68% with a 

significant reduction in disability of 42% at 2 years post treatment, when compared 

against placebo. It is a monthly infusion, which works by blocking the α4β1 integrin 

receptor (molecules found on the surface of lymphocytes and monocytes) from 

combining to vascular cell adhesion molecule-1 (VCAM-1), which is a mechanism 

that enables lymphocytes to cross the blood-brain-barrier and enter the central 

nervous system.  The side effect profile of natalizumab includes the very rare but 

very serious Progressive Multifocal Leucoencephalopathy (PML) (Kleinschmidt-

DeMasters and Tyler, 2005) (Langer-Gould et al., 2005). Natalizumab associated 

PML will be discussed in more detail later in this chapter.  

 

Fingolimod (Kappos et al., 2010) (Cohen et al., 2010) reduces relapses by 52% 

when compared against placebo and is a once daily tablet medication, which acts 

against sphingosophine receptors. This prevents the egress of lymphocytes from 

lymph nodes, thus preventing the migration of lymphocytes into the central nervous 

system. There have been case reports of PML in patients who have received 



 70	

fingolimod who had previously not received natalizumab (Food and Drug 

Administration, 2013). This is discussed in more detail later in this chapter. There is 

also a risk of opportunistic infections particularly with Herpes Zoster Virus, cardiac 

conduction defects and macular oedema. 

 

Ocrelizumab is a fully humanized anti-CD20+ monoclonal antibody. It is purported to 

have greater antibody dependent cell cytotoxicity and less complement mediated 

cytotoxicity than rituximab (Beart et al., 2017). It is a chimeric anti-CD20+ monoclonal 

antibody, which had previously shown promise in reducing MRI activity in multiple 

sclerosis in phase 2 trials (Hauser et al., 2008). Ocrelizumab reduces relapses by at 

least 46% when compared to Interferon-β1a. It also showed a significant reduction in 

disability of up to 43% compared to Interferon-β1a over a period of 24 weeks. 

Importantly it is given as an intravenous infusion every 6 months with infusion related 

reactions its most common side effect. The side effect profile was benign and similar 

to the Interferon-β1a group (Fernandez et al., 2016). However there was a slight 

signal of an increased number of malignancies in the treatment versus the placebo 

group (2.9% vs 0.8%). Ocrelizumab also showed a 24% reduction in progression of 

disability and a 29% reduction in walking time in primary progressive multiple 

sclerosis (Montalban et al., 2016). Significant reductions in T2 brain lesions and 

whole brain volume loss were also observed (Montalban et al., 2017).  

 

Alemtuzumab was first used in multiple sclerosis in 1991. It is a monoclonal antibody, 

which is directed against CD52, a protein of unknown function on lymphocytes. 

Alemtuzumab causes a lymphopenia, following which homeostatic reconstitution 

leads to prolonged alteration of the immune repertoire. This reduces the risk of 

relapse and disability accumulation in multiple sclerosis (Kousin-Ezewu and Coles, 

2013). Alemtuzumab reduces relapses between 55% (Cohen et al., 2012) and 69% 

(Coles et al., 2012a), with significant effects on disability when compared to 

Interferon-β1a. It is a once yearly infusion given for two years and then as needed. 

There have been no reports of PML when alemtuzumab has been used alone, but it 

does have a significant side effect profile with the later emergence of other 

autoimmune diseases such as thyroid disease and immune thrombocytopenic 

purpura, which will be discussed later in the chapter. 

 

Hematopoietic stem cell transplantation (HSCT) has been used in patients with 

aggressive forms of multiple sclerosis (Saccardi et al., 2012). The theory behind its 

use is similar to alemtuzumab, as the aim is to reset the immune system by first 
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suppressing the mature immune system through the use of a conditioning regimen 

(which often includes alemtuzumab) and then rebooting the immune system, 

hopefully free from aberrant immune responses to myelin, with the aid of autologous 

hematopoietic stem cells (Abrahamsson et al., 2013). The efficacy of HSCT has 

been good with the proportion of patients with no evidence of disease activity 

(NEDA) after 2 years being 78% in the HALT-MS study (Nash et al., 2015) with 

continuing high proportions maintained after a longer follow-up period (65-70% after 

5 years) from a combination of studies (Burman et al., 2014) (Burt et al., 2014). 

These are remarkable figures considering the median EDSS for patients in these 

studies ranged between 4 and 5.5. However it has thus far been reserved for 

patients with either secondary progressive multiple sclerosis or aggressive relapsing-

remitting multiple sclerosis as there is a mortality rate of 1.3% with HSCT (Mancardi 

and Saccardi, 2008). Approximately 10% of patients may also develop secondary 

autoimmune diseases following HSCT (Bakhuraysah et al., 2016). 

 

1.10.1 LESSONS FROM EFFECTIVE TREATMENT 

 

Although important pre-clinical studies have shed light and offered possible 

explanations for mechanisms of the pathogenesis of multiple sclerosis, testing 

pathways with drugs that either block or activate a particular pathway in a large 

number of specially selected patients is a fundamental way of testing hypotheses 

and learning about the mechanisms of disease. 

 

1.10.1.1 NATALIZUMAB – FIRST ACTIVATION OF T CELLS IS IN THE 

PERIPHERY 

 

For some time it was postulated that the first ‘event’ in the pathogenesis of multiple 

sclerosis was the activation of lymphocytes in the periphery, which then entered the 

central nervous system. With the efficacy shown by natalizumab in multiple sclerosis, 

this underlined the principle of immune cells being activated in the periphery before 

relocating to the central nervous system as a key event in multiple sclerosis 

pathogenesis, prior to the inflammatory effects on myelin in the central nervous 

system (Jones and Coles, 2010). 
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1.10.1.2 ANTI-CD20 – B CELL INVOLVEMENT  

 

The seminal paper showing the reduction of MRI lesions in multiple sclerosis patients 

with the use of rituximab has underlined the importance of B cells in the 

pathogenesis of multiple sclerosis (Hauser et al., 2008). It is still unknown which 

function of B cells has the most important role. This has previously been discussed in 

section 1.9.2. 

 

1.10.1.3 ALEMTUZUMAB – IMPROVED OUTCOMES FROM EARLIER 

TREATMENT  

 

Induction therapies in multiple sclerosis such as Alemtuzumab and HSCT tend to 

have better outcomes if treatment is commenced earlier in the disease course rather 

than later once irreversible cerebral atrophy has begun. 

 

This was discovered after the initial trials of Alemtuzumab in multiple sclerosis 

patients in 1991. There was approximately a 90% reduction in the amount of MRI 

lesions for at least 18 months after a single pulse of treatment (Coles et al., 1999). 

Unfortunately, this did not lead to a clinical improvement in the disability in these 

patients. In fact, their disability worsened with time at a rate of 0.02 EDSS points for 

each patient each year (Kousin-Ezewu and Coles, 2013). 

 

The first use of alemtuzumab in relapsing–remitting multiple sclerosis was in an 

open-label pilot study of 22 patients. These patients had disease that had failed to 

respond to standard disease-modifying therapy or they had a high relapse rate early 

in the course of the disease, indicating a poor prognosis. Disease duration had a 

mean of 2.7 years in this patient group, with an annualized mean relapse rate of 2.21 

per year (with an annualized relapse rate of 2.94 in the year prior to treatment). In the 

year before treatment their EDSS score had increased by a mean of 2.2 EDSS 

points (range 0–7.5). After alemtuzumab, there was a reduction in relapse rate by 

91%. Mean EDSS scores fell by 1.4 points in this patient group, with 16/22 patients 

having had an improvement in their disability by 1 year (Coles et al., 2006). 

 

From this early experience of the contrasting effects of alemtuzumab on progressive 

and early relapsing–remitting multiple sclerosis, it was concluded that there is a 

‘window of opportunity’ early in the disease course, before there is fixed disability or 
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secondary progression, when inflammation is the dominant process driving multiple 

sclerosis.  

 

1.10.2 PROBLEMS WITH EFFECTIVE TREATMENTS – NATALIZUMAB AND 

ALEMTUZUMAB 

 

There have been major developments over the last 20 years in the armamentarium 

of drugs that physicians can use to treat multiple sclerosis. Unfortunately there has 

been a trend that those drugs with the greatest efficacy tend to have the greatest risk 

of harmful effects. Detailed below are some of the major harmful effects of 

treatments used in multiple sclerosis. 

 

1.10.2.1 PROGRESSIVE MULTIFOCAL LEUCOENCEPHALOPATHY 

 

Although natalizumab leads to infusion reactions, it was otherwise thought to have a 

benign side effect profile. However there began to be cases of PML associated with 

the drug which led to the withdrawal of the drug for multiple sclerosis in 2004, before 

it was reinstated in 2006 with a safety management program (Traynor, 2006).  

 

Subsequent risk factors for PML associated with natalizumab were identified such as 

previous immunosuppressant use, JC virus seropositivity and use of natalizumab for 

greater than 24 months.  

 

The risk of individuals who were not previously exposed to prior immunosuppressant 

use was clarified further with those seropositive for JC virus but with titres < 0.9 

carrying a small risk for PML of 1 in 10000 compared to those with titres >1.5 who 

appear to be at a much higher risk of developing PML with a risk of 1 in 1000, within 

the first 24 months of treatment. The cumulative risk of PML increases over time and 

one group was keen to stress from month 24 to month 25 the risk does not 

dramatically change (Mowry and McArthur, 2017). However with a titre >1.5 after 60 

months of treatment with natalizumab the risk is 1 in 100 (Plavina et al., 2014). 
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 MONTHS OF TREATMENT 

JCV 

STATUS 

1-12 13-24 25-36 37-48 49-60 >60 

NEGATIVE 1 in 

10000 

1 in 

10000 

1 in 

10000 

1 in 

10000 

1 in 

10000 

1 in 

10000 

< 0.9 1 in 

10000 

1 in 

10000 

1 in 5000 1 in 2500 1 in 2000 1 in 1667 

0.9 – 1.5 1 in 

10000 

1 in 3333 1 in 1250 1 in 500 1 in 500 1 in 333 

> 1.5 1 in 5000 1 in 1111 1 in 333 1 in 143 1 in 125 1 in 100 

 

Table 1. 2: the risk of PML with natalizumab and how this changes over time 

 

Some would point to the rather benign side effect profile of ocrelizumab as a 

potential candidate for an effective drug that goes against the trend, but looking at 

rituximab, another anti-CD20+ agent, a known side effect is PML. In February 2006, 

9 years after rituximab received its initial Food and Drug Administration approval, the 

labeling for rituximab was changed after the discovery of increased incidence of viral 

infections post treatment. These viruses included Hepatitis B, Cytomegalovirus, 

varicella zoster virus, West Nile virus and JC virus (Steurer et al., 2003). As with 

natalizumab, PML associated with rituximab is seen in previously 

immunocompromised patients. This was reviewed in 2009 in 57 patients, following a 

literature search covering the period of patients treated with rituximab from 1997 to 

December 2008. All of these patients had received concomitant or prior 

immunosuppression, including alkylating agents, corticosteroids, purine analogs or 

drugs to prevent allogeneic stem cell or solid organ graft rejection. The median time 

from the last rituximab dose to PML diagnosis was 5.5 months with median time to 

death 2.0 months after PML diagnosis. In this series of patients the case fatality rate 

was 90% (Carson et al., 2009).  

 

Estimates vary about the incidence of rituximab associated PML. One group found a 

1 in 4000 incidence among 8000 rituximab-treated SLE cases (Kavanaugh and 

Matteson, 2008). However the incidence is expected to be much lower than this with 

no cases of PML found in an observational retrospective study in Sweden in 822 

cases (Salzer et al., 2016). Unfortunately this study had a mean follow-up time of 14 
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months and we know from experience with natalizumab, PML incidence increases 

when treatment is continued for greater than 2 years. Other authors quote a lower 

incidence of PML associated with rituximab with one set of authors quoting 1 in 

32000 patients (Bohra et al., 2017). This figure was determined from a study in 

129000 rheumatoid arthritis treated patients, of whom 4 contracted PML (Clifford et 

al., 2011). The cause of these fluctuations in the estimated incidence of rituximab 

associated PML is due to the fact that these patient populations are normally 

immunosuppressed with other agents which have also been associated with PML, 

therefore causality and true risk are difficult to determine (Castillo-Trivino et al., 

2013). 

 

Thus far there has not been a single case of rituximab associated PML in a multiple 

sclerosis patient. However with the more prolonged use of anti-CD20 monoclonal 

antibodies that will occur in the future, continued vigilance and reporting of this 

serious complication will be necessary.  

 

With dimethyl fumurate there have been several cases of PML in patients taking 

fumaric acid esters for multiple sclerosis and psoriasis (van Oosten et al., 2013) 

(Ermis et al., 2013). If lymphocyte levels drop for a prolonged period (with counts 

below 0.5 x 109 cells/L said to be a particular risk factor) then there is an increased 

risk of PML. The guidelines for physicians prescribing dimethyl fumarate indicate to 

stop the drug if lymphocytes fall below the level of 0.5 x 109 cells/L.  

 

Fingolimod has a risk of PML of less than 1 in 10000, following the most recent 

report by the drug company that are overseeing the post marketing development of 

this drug. There is now a periodic update from Novartis on PML associated with 

Fingolimod. The latest update from May 2017 showed that there had been 13 cases 

of PML (out of the >213000 patients receiving fingolimod) who had not previously 

received Natalizumab. This represents a less than 1 in 10000 risk (Giovannoni, 

2017). 

 

1.10.2.2 SECONDARY AUTOIMMUNITY WITH ALEMTUZUMAB 

 

From early on in the development of alemtuzumab for multiple sclerosis there was an 

acknowledgement that a third of patients tended to develop secondary autoimmunity 

while their immune system was reconstituting. 
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20-30% of treated patients develop thyroid autoimmunity. 1% of treated patients 

develop immune thrombocytopenic purpura with the index case suffering a fatal brain 

haemorrhage. Subsequently patients were educated about the clinical signs of 

bleeding and regular blood counts were taken. There have been a few cases of 

Goodpasture’s disease with a small number of cases needing renal transplantation 

due to renal failure. There was also a case of Castleman’s disease which was 

successfully put into remission with R-CHOP and there was another case of a non-

EBV associated Burkitt’s lymphoma which resulted in the death of a patient. There 

have also been single cases of autoimmune neutropenia and autoimmune 

haemolytic anaemia (Coles, 2013). 

 

Autoimmunity as a side effect of lymphocyte reconstitution has been recognised 

before in HIV and bone marrow transplantation (Gilquin et al., 1998) (Hsiao et al., 

2001). Multiple sclerosis patients and physicians have to weigh up the risks of 

secondary autoimmunity, particularly keeping in mind some of the disastrous 

outcomes from some of these autoimmune events, when deciding on beginning a 

patient on alemtuzumab. Due to its side effect profile, it has been recommended to 

start alemtuzumab only in patients with active disease, although the licence it has 

received is actually much wider than this (Scolding et al., 2015) and is for ‘active 

multiple sclerosis defined clinically or radiologically’. Alemtuzumab can be used as 

an ‘induction’ agent in newly diagnosed highly active patients or as an escalation 

strategy, with patients still experiencing active disease whilst on other disease 

modifying therapies.  

 

1.10.3 FUTURE CHALLENGES FOR MULTIPLE SCLEROSIS DRUG 

DEVELOPMENT 

 

Although the multiple sclerosis treatment spectrum has broadened, those drugs with 

the highest efficacy still present the greatest risk to patients in terms of side effects. 

Therefore difficult decisions are made between neurologists and multiple sclerosis 

patients when deciding which disease-modifying agent to use. 

 

One response to this situation is to develop novel therapies, which are more targeted 

to the underlying disease pathogenesis. In the third chapter I describe the experience 
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of one such approach: a trial of a novel monoclonal antibody against the Interleukin 7 

(IL-7) receptor. 

 

1.11 INTRODUCTION TO THE IL-7 PATHWAY AND ITS ROLE IN MULTIPLE 

SCLEROSIS – THE NORMAL BIOLOGY OF IL-7 AND IL-7Rα 

 

1.11.1 INTERLEUKIN-7 

 

Interleukin 7 (IL-7) is a 25 kilodalton protein cytokine. It is released mainly by stromal 

cells in the thymus and bone marrow, but also by platelets, intestinal epithelium, 

keratinocytes and dendritic cells (Sarah C. Sasson, 2006). IL-7 was first described as 

a murine pro-B-cell growth factor (Namen et al., 1988) and has subsequently been 

shown to be fundamental to the generation of new T lymphocytes and the 

maintenance of T lymphocytes. IL-7 is thus responsible for the homeostasis of T 

lymphocytes by increasing their proliferation and maturation via the thymus (Mackall 

et al., 2011). 

 

In the thymus the earliest stem cells require IL-7 for proliferation, survival and T cell 

receptor (TCR) gene rearrangement. IL-7 is also involved in the positive selection of 

CD8+ cells (Schluns et al., 2000). IL-7Rα forms a heterodimer with the thymic 

stromal lymphopoietin receptor (TSLPR) to form a receptor, which recognizes thymic 

stromal lymphopoietin (TSLP), which helps to develop immature T and B cells, 

dendritic cells and monocytes (Soumelis et al., 2002) (Pandey et al., 2000).  

 

TSLP has been shown to act in the thymus particularly with the positive selection of 

CD4+ T regulatory cells. It also stimulates CD4+ homeostatic expansion in the 

periphery. However mice deficient in TSLPR have normal B and T cell development, 

indicating that although there may be some involvement of TSLP in lymphocyte 

development it is not necessary for normal lymphopoiesis. In disease it has been 

associated with allergic inflammation in atopic dermatitis with TSLP acting on 

dendritic cells, which migrate to lymph nodes that prime CD4+ T cells to produceTh2 

cytokines (Ziegler and Liu, 2006). 

 

IL-7 promotes the proliferation of T cells by engaging with its receptor and activating 

the JAK-STAT pathway. Phosphorylated STAT5 transfers to the nucleus and acts as 

a transcription factor in order to promote the anti-apoptotic molecules within the B 
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cell Lymphoma 2 (bcl-2) family of proteins (bcl-2 and mcl-1). At the same time it 

inhibits the pro-apoptotic members of the bcl-2 family (BAX and BAK) (Mackall et al., 

2011). The IL-7 pathway also downregulates CD95 (Fas ligand receptor), which is 

involved in the extrinsic pathway of programmed cell death (Lundstrom et al., 2013). 

 

IL-7 is a limited resource in vivo (Guimond et al., 2009) (Park et al., 2004), and in 

states of lymphopenia IL-7 levels increase, as less IL-7 is consumed (Cox et al., 

2005). There is a strong inverse correlation between IL-7 levels and CD4+ T cell 

numbers as the amount of IL-7 regulates the number of T lymphocytes in the 

periphery – if numbers of T lymphocytes are reduced, then excess IL-7 augments 

proliferation, if there are too many lymphocytes then there is insufficient IL-7 to 

support the number of T lymphocytes and they die (Jiang et al., 2005). Levels of IL-7 

are normally between 2 to 8 pg/ml but in a lymphopenic setting can be as high as 60 

pg/ml (Lundstrom et al., 2012). IL-7 production is actually reduced during 

lymphopenia due to a negative feedback loop mediated by IL-7Rα on stromal cells. 

Therefore elevation in IL-7 during lymphopenia is due to a lack of uptake from cells 

(Guimond et al., 2009).  
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Figure 1. 2: The IL-7/IL-7R pathway  

The IL-7 receptor is a heterodimer made up of IL-7Rα (CD127) and the common 

gamma chain receptor for cytokines (CD132). Signaling of IL-7 through its receptor 

activates downstream signaling mainly through the Janus Kinase-Signal Transducer 

and Activator of Transcription (JAK-STAT) pathway (particularly STAT5). Through 

activation of these downstream signaling pathways there is mediation of anti-

apoptotic and proliferative signals through modulation of transcription factors within 

the Bcl-2 family.  
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1.11.2 INTERLEUKIN-7 RECEPTOR ALPHA 

 

IL-7Rα is expressed abundantly on naive and memory T cells and to a much lesser 

extent on naturally occurring T regulatory cells and its expression is down regulated 

on activation (Park et al., 2004). IL-7Rα is expressed continuously on most resting T 

cells. This expression is different to that of the normal gamma chain family of 

cytokine receptors, which tend to be increased on stimulation of T cells through the T 

cell receptor. IL-7 is released by stromal cells continuously in picomolar 

concentrations therefore T cells are continuously exposed to IL-7 sufficiently to 

induce signaling through IL-7Rα (Lundstrom et al., 2012).  

 

Soluble IL-7Rα is secreted by fibroblasts and activated CD4+ T lymphocytes (Badot 

et al., 2011). It is produced by alternative splicing of the full-length transcript, with the 

difference between the two isoforms being the soluble isoform is without exon 6 

(Goodwin and Namen, 1989) (Pleiman et al., 1991). One study has found increased 

amounts of soluble IL-7Rα induced by the addition of pro-inflammatory cytokines 

TNF-α and IL-17 (Badot et al., 2011). The biological function of soluble IL-7Rα has 

been heavily debated and this is discussed in more detail below. 

 

IL-7Rα is not expressed on mature B cells. However it is expressed on common 

lymphoid progenitors and on pre-B cells. There is then a down regulation on pro-B 

cells before a complete loss of the IL-7Rα on mature B cells. Infants with mutations in 

IL-7Rα with SCID tend to have circulating B cells. This has led to some authors 

hypothesising that IL-7 has no direct role in production of B cells. However in a 

phase one trial where recombinant IL-7 (rhIL-7) was given as a treatment there was 

an increase in immature and transitional B cells (Sportes et al., 2010). There are also 

increased levels of immature/transitional B cells in HIV infection in the peripheral 

blood (Malaspina et al., 2006). Development of B cells independent of IL-7 ex-vivo 

has been achieved using umbilical cord blood but not with progenitors from adult 

bone marrow, suggesting there is some dependence on IL-7 for generation of B cells 

as we age (Lundstrom et al., 2012).  

 

IL-7 binding to IL-7Rα induces activation of the JAK-STAT pathway. IL-7Rα and the 

common gamma chains are associated with Janus Kinase 1 (JAK1) and JAK3 

(Suzuki et al., 2000). Once IL-7 engages with its receptor, JAK1 and JAK3 

phosphorylate each other. Once JAK3 is phosphorylated it can then bind to tyrosine 
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residue 449 of IL-7Rα. Tyrosine residue 449 specifically recruits the transcription 

factor Signal Transducer and Activator of Transcription 5 (STAT5). STAT5 is a 

heterodimer of STAT5a and STAT5b and once bound STAT5 is phosphorylated by 

JAK1 and JAK3 (Foxwell et al., 1995). As featured in figure 1.2, the phosphorylated 

STAT5 transfers to the nucleus where it controls the expression of anti-apoptotic 

target genes from the B Cell Lymphoma 2 family of proteins, particularly Bcl-2 and 

Mcl-1, which inhibit the mitochondrial apoptotic pathway, promoting survival and 

proliferation of T cells (Mackall et al., 2011).  

 

At high concentrations of IL-7, binding its receptor also induces Phosphoinositide-3 

Kinase (PI3K) activation demonstrated by phosphorylation of its downstream target 

AKT (Palmer et al., 2011), which may be responsible for promoting T cell proliferation 

(as opposed to simply survival in the JAK/STAT system) in a lymphopenic 

environment.  

 

Humans can develop severe combined immunodeficiency (SCID) with a loss of 

function mutation in IL-7Rα. SCID can also develop if there are loss of function 

mutations in JAK3 and IL-2Rγ (the common gamma chain receptor - CD132). The 

syndrome of SCID is characterised by humans presenting in infancy with 

opportunistic infection, rash, diarrhoea and failure to thrive. The immunodeficiency 

does vary depending on the type of mutation. With IL-7Rα there is a lack of T cells 

but B cells and natural killer cells are still present. With mutations in JAK3 and 

CD132 B cells are present but there is also a deficiency in natural killer cells as well 

as T cells due to the lack of IL-15 with these mutations. SCID is normally a fatal 

condition without treatment, which consists of bone marrow replacement or gene 

replacement therapy (Lundstrom et al., 2012).  

 

1.11.3 REGULATION OF IL-7Rα 

 

Expression of IL-7Rα on T cells controls the sensitivity of the cells to IL-7. IL-7 is 

limited in vivo and therefore IL-7 consumption is controlled by IL-7Rα downregulation 

in order to maximise the number of cells that can benefit from IL-7 support (Park et 

al., 2004).  

 

Downregulation of IL-7Rα is regulated at a transcriptional and a post-translational 

level. IL-7Rα is constantly recycled, being endocytosed into the cell via clathrin 
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coated pits with the majority of the IL-7Rα not being degraded via lysosomal 

pathways when there is little IL-7 available; however in higher IL-7 concentrations, 

there is greater lysosomal degradation than recycling of IL-7Rα leading to IL-7Rα 

downregulation. This increased degradation depends on JAK3 activity on the IL-7Rα 

chain of the IL-7 receptor (Henriques et al., 2010). When there is a lack of IL-7 

signaling, IL-7Rα expression at the cell surface is maintained by Ephrin molecules 

efnb1 and efnb2, which interact directly with IL-7Rα and stabilise it on the cell 

membrane. Recycling of IL-7Rα is also dependent on the class 3 PI3K Vsp34. Mice 

with Vsp34 deficiency have decreased T cell numbers in the thymus and the 

periphery. Vsp34 deficient naive T cells also have a reduction in the cell surface 

expression of IL-7Rα, despite having normal total levels of IL-7Rα (McLeod et al., 

2011). 

 

Regulation of IL-7Rα expression also occurs at the transcriptional level. Gfi-1 acts as 

a transcriptional repressor of IL-7Rα and downregulates new protein synthesis in 

CD8+ T cells after IL-7 stimulation (Park et al., 2004). In memory CD8+ cells with 

high expression of IL-7Rα,  GABPα, a transcription factor from the Ets family, has 

been shown to promote IL-7Rα expression by increasing histone acetylation on the 

IL-7Rα promoter. By contrast Gfi-1 acts by antagonising GABPα’s binding and 

recruiting of histone deacetylase 1, which deacetylates the IL-7Rα promoter. 

Therefore reciprocal binding of Gfi-1 and GABPα provides the mechanism for IL-7Rα 

promoter acetylation and activity, which leads to expression of IL-7Rα on the cell 

surface (Chandele et al., 2008). Ets-1, belonging to the Ets family of transcription 

factors, has been shown to maintain IL-7Rα expression on CD4+ and CD8+ cells 

(Grenningloh et al., 2011). Deficiency in Ets-1 leads to reduced numbers of T cells in 

vivo (Clements et al., 2006).  

 

1.12 THE IL-7 PATHWAY AND MULTIPLE SCLEROSIS 

 

The evidence for the IL-7 pathway and its role in the pathogenesis of multiple 

sclerosis began in the late 1990s through studies investigating the effect of IL-7 on 

human leukocyte responses to candidate myelin auto antigens (Bielekova et al., 

1999). In 2001, IL-7 enhanced the T cell proliferation response to myelin basic 

protein (MBP) in patients with multiple sclerosis, suggesting higher activity of myelin 

specific T cells in multiple sclerosis patients compared to healthy controls (Traggiai et 

al., 2001). These results were replicated in 2004 (Lunemann et al., 2004). Later 
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evidence emerged that there was increased IL-7 in multiple sclerosis lesions 

(Kremlev et al., 2008) (Jana et al., 2014). 

 

Later genetic evidence for the IL-7 pathway in the pathogenesis of multiple sclerosis 

began to emerge, first through linkage analysis, then the discovery of single 

nucleotide polymorphisms in IL-7Rα, and finally the confirmation of these genetic 

variations in the genome wide association studies in multiple sclerosis and the 

Immunochip fine mapping analysis. The details of these discoveries will be covered 

in more detail below, particularly where controversy still exists regarding the 

functional consequences of the genetic variations discovered, particularly involving 

the role of soluble IL-7Rα. 

 

Finally with more interest in the IL-7 pathway following the genetic association with 

multiple sclerosis, more evidence began to emerge in in vivo models with EAE mice. 

The first experiments on IL-7 null mice demonstrated reduced severity of EAE 

(Ashbaugh et al., 2013). Others showed increased IL-7 in the neuroinflammatory 

environment at the onset and peak of EAE (Arbelaez et al., 2015). There have also 

been specific effects demonstrated on differentiation of CD4+ cells with effects 

discovered on both Th1 and Th17 cells (Liu et al., 2010) (Lee et al., 2011) (Arbelaez 

et al., 2015). Amelioration of EAE was also demonstrated with the use of antibodies 

antagonistic to IL-7Rα (Liu et al., 2010) (Lee et al., 2011) (Ashbaugh et al., 2013). 

 

Taken together there is a lot of evidence for a significant role of the IL-7 pathway in 

multiple sclerosis pathogenesis. This has encouraged pharmaceutical companies 

such as GlaxoSmithKline to become interested in developing therapeutics, which 

target this pathway.  

 

 

1.12.1 IDENTIFICATION BY GENE LINKAGE OF THE REGION AT 5p12-14 

 

Outside of HLA, early multiple sclerosis genome screens did not identify MS 

susceptibility loci but multiple chromosomal regions showing suggestive linkage was 

observed. This suggested that many genes exerting modest effects might determine 

MS susceptibility.  
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One of the multiple chromosomal regions showing suggestive linkage was 5p12-14 

which was first identified in 1996 in a Canadian MS genome screen (Ebers et al., 

1996), and then subsequently confirmed in a Scandinavian study of chromosome 5p 

markers (Oturai et al., 1999).  

 

1.12.2 FIRST IDENTIFICATION OF SINGLE NUCLEOTIDE POLYMORPHISM IN 

IL-7Rα  

 

An Australian group decided to investigate IL-7Rα based on its location following 

previous studies associating this location with linkage in multiple sclerosis. 

Knowledge of the function of IL-7Rα and its role in T and B cell proliferation and 

homeostasis also alerted the authors to the potential for IL-7Rα being a candidate 

gene. Thirteen single nucleotide polymorphisms associated with multiple sclerosis 

were identified from 728 subjects (Teutsch et al., 2003). 

 

1.12.3 IDENTIFICATION OF THE FUNCTIONAL CONSEQUENCES OF 

DIFFERING GENETIC POLYMORPHISMS OF IL-7Rα  

 

The first functional analysis of IL-7Rα SNPs was in 2007 by Gregory and colleagues 

(Gregory et al., 2007). This paper confirmed the association of the SNP rs6897932 

with multiple sclerosis, and showed its functional effect. The high-risk allele for 

rs6897932 encodes for the amino acid Threonine at residue 244 on exon 6 of the 

extracellular domain of IL-7Rα at the border of the transmembrane region of the 

protein. The low risk allele encodes Isoleucine at residue 244. 

 

By splicing analysis of IL-7Rα in a minigene construct, the authors demonstrated that 

the at risk allele led to an increase in frequency of skipping exon 6 during 

transcription, resulting in the transcript lacking the transmembrane region of IL-7Rα 

and thus increased concentrations of the soluble isoform of the IL-7Rα protein. Later 

studies confirmed greater amounts of the soluble form of IL-7Rα being secreted due 

to this SNP (Hoe et al., 2010) (Lundstrom et al., 2013).  

 

The SNP rs6897932 was confirmed as the candidate SNP in the multiple sclerosis 

Genome Wide Association Study (GWAS) in 2011 (International Multiple Sclerosis 

Genetics et al., 2011). In the subsequent Immunochip paper when these SNPs 

underwent more detailed fine mapping, a new intergenic SNP (rs6881706) was 
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identified that lies next to the gene for IL-7Rα. Although this new SNP had not been 

previously described it remains in complete linkage disequilibrium (r2=0.99) with the 

previous SNP rs6897932, which was acting as the signal to this new SNP 

(International Multiple Sclerosis Genetics et al., 2013). 

	

1.12.4 SOLUBLE IL-7Rα COMPETITIVELY INHIBITS ACTIVATION THROUGH IL-

7Rα – CRAWLEY ET AL 2010 

 

The work in this paper is the first to demonstrate the potential bioactivity of soluble 

IL-7Rα in humans. It did this in a variety of ways focusing on short-term culture 

experiments. There were no in vivo studies in this paper and the authors 

acknowledged the role of soluble IL-7Rα in vivo was still yet to be established. 

 

The authors showed that native (through collecting supernatant from cells cultured 

from a bronchial cell line known to secrete IL-7Rα) and to a lesser extent, 

recombinant sources of soluble IL-7Rα inhibited signaling through IL-7Rα. IL-7 

mediated proliferation and bcl-2 expression was also reduced by soluble IL-7Rα. The 

authors were able to directly pinpoint soluble IL-7Rα by depleting the molecule from 

a culture containing IL-7 and T cells. 10/13 samples showed anti-IL7 activity. This 

effect was reversed after depletion. However in the samples that did not show anti-

IL-7 activity there was no effect on pSTAT5 after depleting soluble IL-7Rα.  

 

1.12.5 SOLUBLE IL-7Rα POTENTIATES IL-7 BIOACTIVITY - LUNDSTROM ET AL 

2013 

 

The work in this paper (Lundstrom et al., 2013) demonstrated the increased 

bioactivity through the IL-7Rα pathway in individuals with the predisposing IL-7Rα 

genotype (those individuals with greater levels of soluble IL-7Rα), providing a basis 

for explaining the increased levels of autoimmunity seen within these individuals. 

 

In an IL-7 dependent murine cell line (2E8) soluble IL-7Rα in combination with IL-7, 

enhanced IL-7 induced survival of cells and also diminished IL-7 consumption, 

evidenced by greater levels of IL-7 in the culture.   

 

In vitro experiments on human T cells showed potentiation of the signaling through 

membrane-bound IL-7Rα in cultures containing soluble IL-7Rα and IL-7. This was 
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evidenced by increased levels of pSTAT5. There were also effects on negative 

regulators of cell proliferation evidenced by diminished upregulation of CD95 (Fas 

ligand receptor) and SOCS-1 (suppressor of cytokine signaling 1). Increased IL-7 in 

the cultures with soluble IL-7Rα again emphasised the increased bioavailability and 

decreased consumption of IL-7 in the presence of soluble IL-7Rα.  

 

In vivo potentiation of IL-7 bioactivity was demonstrated first in IL-7 null mice when 

recombinant IL-7 and soluble IL-7Rα were injected and greater homeostatic 

expansion of lymphocytes was observed when compared to injecting with either IL-7 

or soluble IL-7Rα alone. Second, C57/BL6 EAE mice showed significant worsening 

of their disease when injected with both soluble IL-7Rα and IL-7 than when 

compared to injection with IL-7 alone (which itself has been shown to overcome 

immune tolerance and has been shown to worsen EAE). Taken together, this was 

the first in vivo evidence that soluble IL-7Rα potentiated IL-7 mediated autoimmune 

disease.  

 

This paper confirmed previous work of demonstrating increased levels of soluble IL-

7Rα in individuals CC homozygous for the at risk genotype at rs6897932. In fact the 

paper demonstrated a dose allele effect with those CC homozygous (mean 64 ng/ml) 

demonstrating a threefold increase in soluble IL-7Rα levels over the protective 

homozygous TT genotype (mean 16 ng/ml), with the heterozygotes having 

intermediate levels of soluble IL-7Rα (mean 32 ng/ml). The authors also 

demonstrated increased IL-7 levels in multiple sclerosis patients with the CC 

homozygous at risk genotype when compared to the other genotypes. This would 

provide further evidence for the model of increased bioactivity over time of IL-7 due 

to reduced consumption in the presence of increased levels of soluble IL-7Rα. 

Interestingly this difference was only found in subjects with multiple sclerosis rather 

than healthy controls. 
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1.12.6 SOLUBLE IL-7Rα POTENTIATES IL-7 BIOACTIVITY – COTE ET AL 2015 

 

The Crawley group brought out a second paper looking at the function of soluble IL-

7Rα which somewhat contradicted their first paper. When human CD8+ cells were 

cultured over 7 days with soluble IL-7Rα and IL-7 there was an increase in the 

proliferation of CD8+ cells when compared to IL-7 alone.  

 

The authors also looked at the increase in the number of IFNγ producing cells and 

commented that this represented an increase in function of these cells potentiated by 

the addition of soluble IL-7Rα to IL-7, compared to IL-7 used alone. The authors also 

used murine CD8+ cells to measure proliferation with IL-7 preincubated with soluble 

IL-7Rα compared to IL-7 without this preincubation step. They demonstrated that 

higher ratios of soluble IL-7Rα to IL-7 (10:1 compared to 1000:1) resulted in greater 

proliferation and survival of murine CD8+ cells. This excess of soluble IL-7Rα is more 

akin to the ratios of soluble IL-7Rα and IL-7 found in vivo.  

 

These results contrast with the previous results by the same group in 2010 when 

they suggested the opposite effect from recombinant soluble IL-7Rα. This paper 

confirmed the finding from Lundstrom et al in 2013 about the agonistic overall effects 

of soluble IL-7Rα. In contrast to the Lundstrom paper they found a dose response 

effect. Therefore they suggested that soluble IL-7Rα could be used as an adjunct to 

IL-7 treatment in diseases where CD8+ cell function is impaired such as HIV and 

Hepatitis C virus infections.  

 

1.12.7 HYPOTHESIS FOR ROLE OF IL-7/IL-7Rα/SOLUBLE IL-7Rα IN MS 

 

My personal view on the role of soluble IL-7Rα within the IL-7/ IL-7Rα cascade is that 

it potentiates the effects of IL-7 over time. The arguments for this have been 

eloquently laid out by Lundstrom et al (Lundstrom et al., 2013) and importantly the 

group that had originally published the paper stating the opposite view (Crawley et 

al., 2010) have published work that contradicts their original view and advances the 

opinion that soluble IL-7Rα potentiates the effects of IL-7 (Cote et al., 2015).  

 

It is not clear from Crawley’s study in 2010 that the inhibitory properties of soluble IL-

7Rα may be biologically relevant in vivo as it occurred in 62% (13/21) of individuals. 

In two individuals where this occurred depletion of soluble IL-7Rα led to a further 
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decrease in IL-7 activity suggesting that there are other factors involved in this 

pathway. It should also be noted from the example of IL-15 when initially it was 

thought that the soluble form of IL-15Rα was antagonistic to the IL-15 pathway and 

was later found to be agonistic through a different mechanism in vivo (Stoklasek et 

al., 2006) (Mortier et al., 2006). 

 

Interestingly Crawley’s study in 2010 suggested that perhaps soluble IL-7Rα could 

act as a carrier for IL-7 over time in vivo, unknowingly providing the hypothesis for 

the later work by Lundstrom, by effectively increasing its half-life in a similar way to 

IL-15 (Mortier et al., 2006). This was suggested, as despite giving excess soluble IL-

7Rα, IL-7 activity was not completely halted. This was explained by the low affinity 

binding between soluble IL-7Rα and IL-7, compared to the relatively high affinity 

interaction between IL-7 and membrane-bound IL-7Rα. This was consistent with 

other work, which demonstrated enhanced IL-7 activity in vivo using an anti-IL-7 

monoclonal antibody where there was greater T cell expansion than using IL-7 alone 

(Boyman et al., 2008). 

 

This model also would fit with the functional studies on the outcome of the risk SNP 

in multiple sclerosis for IL-7Rα, which has been shown to increase soluble IL-7Rα 

levels (Gregory et al., 2007). It would be difficult otherwise to explain how the risk 

SNP causes its effects. Importantly the agonistic effects of soluble cytokine receptors 

have been demonstrated elsewhere with IL-15R (Stoklasek et al., 2006) (Mortier et 

al., 2006) and IL-6R (Peters et al., 1996). With the evidence that has accumulated IL-

7Rα should be added to that list. 
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1.13 IL-7Rα ANTAGONISTS AND EXPERIMENTAL AUTOIMMUNE 

ENCEPHALOMYELITIS  

 

1.13.1 IL-7 AND IL-7Rα IN EAE 

 

Following the success in discovery of the genetic variations in IL-7Rα associated with 

multiple sclerosis, a number of groups developed an interest in discovering the 

effects of manipulation of the IL-7Rα pathway on EAE.  

 

One group compared IL-7 null mice with the C57BL/6 wild type mice. The IL-7 null 

mice showed a significant reduction in the inflammation and demyelination in the 

central nervous system. This was associated with a decrease in the Th1 and Th17 

responses in the central nervous system and in peripheral lymphoid organs (Walline 

et al., 2011).  

 

Another group pointed out some limitations in using IL-7 null mice as it severely 

restricted T cell development, which is normally driven by IL-7. As a result, IL-7 null 

mice lack the T cell repertoire necessary for normal EAE pathogenesis. This group 

demonstrated that in mice with IL-7Rα expression limited solely to the thymus, when 

compared with wild type mice, a less severe form of EAE was seen with a significant 

reduction in paralysis and myelin damage which correlated with decreased IFNγ and 

TNF production (Ashbaugh et al., 2013).   

 

In this paper they also compared mice that had IL-7Rα restricted to hematopoietic 

and non-hematopoietic compartments and found that mice that had IL-7Rα restricted 

to both compartments were dramatically protected from EAE. Interestingly mice 

lacking IL-7Rα only on hematopoietic stem cells developed severe EAE pointing 

towards IL-7Rα expression in the non-hematopoietic compartment contributing 

significantly to the burden of the disease. They went on to demonstrate IL-7Rα 

expression on astrocytes and oligodendrocytes within the central nervous system 

(Ashbaugh et al., 2013). 
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1.13.2 ANTI-IL-7Rα IN EAE 

 

There have been studies using the experimental autoimmune encephalomyelitis 

(EAE) mouse models and anti-IL-7Rα antibodies. In a paper in 2010 (Liu et al., 2010) 

an IL-7Rα antagonist was found to ameliorate experimental autoimmune 

encephalomyelitis (EAE) with a specific effect on Th17 cells, not only enabling their 

survival but also specifically helping Th17 cell expansion via the STAT5 pathway. 

This study was withdrawn 3 years after its original publication following claims of 

fraudulent data with in vitro human peripheral blood mononuclear cells (Liu et al., 

2013). 

 

In a paper by authors from Stanford University (Lee et al., 2011), attempting to 

replicate the results from the nature medicine paper discussed above by Liu et al, 

they examined the importance of the role of IL-7 in EAE, particularly in the generation 

of Th1 versus Th17 cells. They found IL-7 was able to promote the differentiation of 

naive T cells into Th1 cells rather than solely Th17 cells in contrast to Liu et al. In fact 

they did not find an effect of IL-7 on differentiation or expansion of Th17 cells. The 

effect of IL-7 on Th1 cells was only demonstrated in vitro in both analysis on mouse 

cells stimulated with myelin oligodendrocyte glycoprotein and in human healthy 

control naïve T cells. They were unable to replicate these results in the in vivo EAE 

model, where IL-7 had no effect on Th1 and Th17 differentiation.  

 

They also showed through the use of another IL-7Rα antagonist (28G9), rather than 

the GSK IL-7Rα antagonist (SB/14), that several different types of EAE could be 

ameliorated even after the onset of paralysis at day 14.  The SB/14 antibody did not 

significantly reduce disease severity of EAE with three injections as the 28G9 

antibody had. The authors were initially confused at the difference between the two 

antibodies, as in vitro studies showed both antibodies binding to IL-7Rα inhibited 

phosphorylation of STAT5 in a similar dose dependent manner. However there was a 

difference in the antibodies’ immune effector function via binding of the IgG Fc 

receptors. The 28G9 (rat IgG1) antibody bound more effectively to mouse Fc gamma 

receptors then the SB/14 (rat IgG2a) antibody. Therefore this emphasised that Fcγ 

receptor binding by the antibody could have a severe effect on the efficacy of the 

drug.  
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The authors in the paper then interestingly separated multiple sclerosis into Th1 

driven disease and Th17 driven disease, with Th1 driven disease exhibiting higher 

serum levels of IL-7 (>150 pg/ml) and low levels of IL17F (< 46 pg/ml) more likely to 

respond to interferon beta treatment. They thought that IL-7 levels could act as a 

biomarker for patients with a Th1 driven form of multiple sclerosis as they had higher 

IL-7 levels in their serum.  

 

My own view is that this aspect of this paper is controversial. Multiple sclerosis is a 

heterogeneous disease with many different immune cells contributing to the 

underlying pathogenesis. It is thought to be mediated by CD4+ cells which have had 

myelin associated antigens presented to it. This involves stimulation via the T cell 

receptor and co-stimulation with CD28 and B7. Following this the cytokine milieu in 

the microenvironment of the T cell contributes to the differentiation of a naïve CD4+ T 

cell into its different forms. Therefore in such a heterogeneous system it is difficult to 

ascribe disease causation to one type of CD4+ cell. However it is interesting to point 

out that in EAE there are differences in the clinical presentation between Th1 and 

Th17 phenotypes with the Th1 phenotype having inflammation based primarily in the 

spinal cord with ascending inflammation. In later stages when the Th17 cells 

increase in number there is infiltration of the brain parenchyma and there are clinical 

signs of ataxia (Stromnes et al., 2008) (Lovett-Racke et al., 2011). It has also been 

shown in one study that IL-7 may drive not only enhanced Th1 responses, but it also 

induces the plasticity of Th17 cells enabling them to convert into IFNγ producing 

Th17 cells. This adds further doubt to the theory of Th1 driven multiple sclerosis 

(Ashbaugh et al., 2013). It is difficult to draw parallels in this regard between EAE 

and multiple sclerosis in humans and I would disagree with the nomenclature of Th1 

and Th17 disease.  

 

Ashbaugh et al also used an IL-7Rα antagonist to ameliorate EAE. They 

demonstrated this by using the IL-7Rα antibody at the peak of EAE and found mice 

that recovered from the disease was similar in clinical scores to the disease burden 

in the thymic null mice they had used previously. This recovery in mice treated with 

IL-7Rα antagonist was demonstrated with reduced levels of demyelination in thoracic 

spinal cord sections taken 55 days after the inducement of EAE when compared to 

control mice (Ashbaugh et al., 2013). 
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1.14 IL-7Rα ANTAGONISM WITH GSK2618960 

 

Following the functional analysis of IL-7Rα, GlaxoSmithKline (GSK) decided to target 

this pathway, as it was fundamental to the homeostasis and survival of T 

lymphocytes.  

 

GSK developed GSK2618960, which is a humanised IgG1 monoclonal antibody 

acting specifically against the extracellular domain of the IL-7Rα chain with low 

affinity. The Fc portion of this antibody was disabled in order to reduce activation of 

antibody-dependent cell-mediated cytotoxicity (ADCC). This enabled GSK2618960 to 

inhibit IL-7 signaling via IL-7Rα without direct cell cytotoxicity for the period of time 

that GSK2618960 was bound to the cell expressing IL-7Rα.  

 

It is important to note that it is conceivable that a monoclonal antibody blocking IL-

7Rα could in theory potentiate autoimmunity in conditions such as multiple sclerosis. 

Potentiation of autoimmunity could occur as IL-7Rα antagonism could affect not just 

the membrane bound receptor but also the soluble IL-7Rα in the circulation. This 

soluble receptor would normally be binding with excess IL-7. If this soluble receptor 

was bound by the monoclonal antibody then there would be excess free IL-7 which 

could bind to membrane bound IL-7, leading to increased T lymphocyte proliferation 

and survival of autoreactive T cell clones.   

 

Small changes in the level of IL-7 can induce large changes in lymphocyte 

homeostasis, as has been established either when exogenous IL-7 is given (Mackall 

et al., 2011) or if there are greater levels of IL-7 in a lymphopenic environment, (Cox 

et al., 2005).  We know that those subjects carrying the multiple sclerosis at risk SNP 

for IL-7Rα rs6897932, have a greater ratio of soluble IL-7Rα to membrane IL-7Rα 

(Gregory et al., 2007) and some authors postulate that increased bioavailability of IL-

7 from soluble IL-7Rα binding to IL-7, enables greater effects of IL-7 over time 

(Lundstrom et al., 2013).  

 

This effect could potentially be exacerbated by blockade of membrane IL-7Rα with 

GSK2618960, enabling free IL-7 to bind with soluble IL-7Rα. This could put multiple 

sclerosis patients at risk of unexpected lymphocyte proliferation, particularly on 

stopping the drug, if GSK2618960 plasma levels lowered, enabling IL-7 once more to 

able to bind to membrane IL-7Rα. 
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Prompted by the data in the 2010 nature medicine paper GSK were keen to 

accelerate the drug development of an IL-7Rα antagonist for multiple sclerosis. This 

led to discussions with Alasdair Coles and the beginning of a Phase 1 first-in-human 

trial in healthy volunteers and multiple sclerosis patients in GSK’s Clinical Trials Unit 

in Cambridge. 

 

1.15 AIMS 

 

The aim of my PhD (funded by a Wellcome-GSK translational medicine studentship) 

was to gain experience in the early human development of a novel drug, in this case 

a GSK anti-IL-7Rα antibody. I was the main sub-investigator in a first-in-human dose-

escalation trial which first involved healthy controls and was planned to progress to 

involve people with multiple sclerosis. Unfortunately, as will be described, the trial 

was halted early for reasons outside of my control. So, I shifted my clinical trial work 

to ongoing trials of alemtuzumab in multiple sclerosis, from which I published a paper 

on the relationship between lymphocyte reconstitution and multiple sclerosis disease 

activity. I am also an author on the paper published for the CAMTHY trial, on 

increasing thymic production of T cells with palifermin, a keratinocyte growth factor, 

in an attempt to offset the homeostatic proliferation of lymphocytes post 

alemtuzumab and with that secondary autoimmunity.  

 

The laboratory component of my PhD was to examine the effects of the anti-IL-7Rα 

antibody on human cells in vitro, particularly to establish whether its efficacy was 

affected by IL-7Rα genotype. I also investigated how the IL-7Rα antibody impacted 

on IL-7 bioavailability, and explored its partial agonistic effect. Following this I went 

on to investigate by stimulating IL-7Rα, negative feedback pathways associated with 

IL-7Rα and how this was affected by IL-7Rα genotype.  

 

1.16 HYPOTHESES 

 

- The antibody to IL-7Rα reduces the bioactivity of IL-7 ex vivo 

- The effects of the antibody to IL-7Rα may depend on IL-7Rα genotype 

- The antibody to IL-7Rα will be well tolerated in healthy volunteers when 

tested in a first-in-human dose escalation study 

- The antibody to IL-7Rα will reduce multiple sclerosis disease activity when 

tested in a first-in-human trial 
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- Palifermin will be well tolerated in patients with MS being treated with 

alemtuzumab, with increased thymic lymphopoiesis and reduced secondary 

autoimmunity with alemtuzumab 

- CD4+ lymphocyte reconstitution cannot be used as a marker for return of 

multiple sclerosis disease activity post alemtuzumab 
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CHAPTER 2 - METHODS FOR IN VITRO ANTAGONISM AND STIMULATION OF 

IL-7Rα 

 

2.1 STRATIFICATION ACCORDING TO IL-7Rα GENETICS 

 

GSK originally presented to me this project as an analysis of haplotypes derived from 

the Lundmark paper (Lundmark et al., 2007), which confirmed the association of IL-

7Rα with multiple sclerosis. GSK included a haplotype selection as it was interested 

in a particular SNP rs3194051, which was later associated with ulcerative colitis 

(Anderson et al., 2011). This SNP was included for commercial reasons as ulcerative 

colitis was planned as a future indication for the IL-7Rα antagonist GSK2618960. 

 

Despite using a haplotype analysis the Lundmark paper confirmed that all the SNPs 

used were in complete linkage disequilibrium and in fact the association of the 

haplotypes with MS was due to the SNP rs6897932 (Lundmark et al., 2007), which 

was later confirmed in the GWAS in 2011 (International Multiple Sclerosis Genetics 

et al., 2011). Further fine mapping of the region showed a new intergenic SNP 

rs6881706, which was in complete linkage disequilibrium with rs6897932 (D’ and r2 

values of 1.0). Using rs6897932 as the at risk SNP, the Gregory paper in 2007 

demonstrated increased levels of soluble IL-7Rα as a result of alternative splicing 

from exon 6 skipping (Gregory et al., 2007), which was confirmed by other groups 

(Hoe et al., 2010) (Lundstrom et al., 2013). Therefore with the focus of the 

investigation on differences in soluble IL-7Rα between populations, I used the SNP 

rs6897932 to stratify the population. The ‘at-risk’ SNP was homozygous for CC at 

rs6897932. The ‘protective’ SNP was homozygous for TT at rs6897932.  
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2.2 FLOW CYTOMETRY ASSAYS 

 

The list of reagents used in the flow cytometry assays during chapter 4 is outlined in 

the tables below. The flow cytometry assays used are the receptor occupancy assay 

(please refer to section 2.4), the phosphorylated STAT5 assay (please refer to 

section 2.5) and the IL-7 titration assay (please refer to section 2.6.5).  

 

  



 97	

2.2.1 TABLE OF REAGENTS 

 

Product Description Catalogue/ Item 

Number 

Supplier 

Diluent for IL-7 Lab stock In-house 

FACS Buffer  Lab stock In-house 

5 X Fix/lyse buffer 558049 BD 

Perm Buffer III 558050 BD 

Phosphate Buffered Saline 10010-056 Gibco 

Rh IL-7  554608 BD 

pSTAT5 PE 612567 BD 

CD127 AF647 317605 Biolegend 

CD3 V450 560365 BD 

CD4 APC 555349 BD 

PE- labeled GSK2618960 4356 GSK/Innova 

Unlabeled GSK2618960 111287554 GSK 

Rosette Sep Human T cell 

enrichment cocktail 

Stemcell 15061 

Foetal calf serum In-house Lab stock 

Ficoll 17-1440-02 GE Healthcare 

Life Sciences 

RPMI 1640 R5886 Sigma 

Glutamax-I 35050-038 Gibco 

Penicillin/Streptomycin  P0781 Sigma 

Compensation (CST) beads 642412 BD 

 

Table 2. 1: Reagents used in the flow cytometry assays 
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2.2.3 IL-7 DILUENT PREPARATION 

 

 

Product Description Catalogue/ Item 

Number 

Supplier 

Fatty acid-free Bovine Serum 

Albumin (BSA) 

A6003-1G Sigma 

Phosphate Buffered Saline 10010-056 Gibco 

Fine Balance HR-202 Biomax 

 

Table 2. 2: Products used to produce ‘IL-7 Diluent’ 

 

0.1 g of fatty acid-free BSA was weighed out on a fine balance and dissolved in 100 

ml of phosphate buffered saline in the upper reservoir of a Nalgene filtration unit. A 

vacuum was applied to aseptically filter the solution into the lower reservoir, which 

was then stored at -4 degrees Celsius. 

 

2.2.4 FACS BUFFER PREPARATION 

 

15 g of BSA was dissolved in a 500ml bottle of phosphate buffered saline. Under 

aseptic conditions, the contents were filtered into a 500 ml Nalgene unit bottle. The 

bottle was then capped securely and stored at -4 degrees Celsius.  
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2.3 IN VITRO ANTAGONISM OF IL-7Rα 

 

2.3.1 DEMOGRAPHICS 

 

Volunteers were drawn from the GSK volunteer panel. Subjects were selected based 

on their genotype for the rs6897932 polymorphism in IL-7Rα.  

 

Initially the plan derived from GSK was to do the analysis on approximately 30 (29 

subjects analysed) subjects based on a previous genetic analysis they had 

completed which had given 80% power. After an initial analysis of the data a power 

analysis showed that a further 11 subjects were required to detect a significant 

difference in the pSTAT5 assay with 90% power. Therefore the pSTAT5 analysis 

was based on a population of 41 rather than 29 subjects from the GSK volunteer 

panel. The ELISA for serum IL-7 was also completed on 29 subjects (R+D systems 

Cat No: HS750). 

 

 

2.3.2 PREPARATION OF GSK2618960 FOR ANTIBODY TITRATION 

 

As GSK2618960 was added to blood in a 1:1 ratio, a 200µg/ml concentration would 

have a working concentration of 100 µg/ml. Serial dilutions of GSK2618960 (in 

µg/ml) was conducted on a logarithmic scale - 100 (positive control), 30, 10, 3, 1, 0.3, 

0.1, 0.03, 0.01, 0.003, 0.001 and 0 (negative control). 
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2.4 RECEPTOR OCCUPANCY ASSAY 

 

The main purpose of the receptor occupancy assay was to demonstrate the binding 

of the GSK antibody to IL-7Rα receptors on human T lymphocytes. Although this 

assay was originally developed in-house by GSK it has been used elsewhere for 

measuring IL-7Rα occupancy (Kern et al., 2016). 

 

A PE labeled GSK2618960 IL-7Rα antagonist identified unbound IL-7Rα receptors 

following incubation of subjects’ blood with unlabeled GSK2618960 IL-7Rα 

antagonist. As unlabeled GSK antibody levels increased, there were lower median 

fluorescence intensities of PE (due to less binding of PE labeled GSK antibody), 

when assessed by flow cytometry.  

 

12 ml of blood was collected in two 6 ml sodium heparin blood tubes from volunteers 

from the GSK volunteer panel according to genotype (please refer to section 2.3.1). 

Volunteers from each genotype group were selected for blood draw in a randomised 

manner (in order to make sure genotypes were analysed throughout the assay 

period with no bias towards a particular genotype throughout the period the receptor 

occupancy assay was conducted) and blinded to the person doing the assay.  

 

50µl of unlabeled GSK antibody (please refer to section 2.3.2 for details of the 

unlabeled GSK antibody titration which was performed prior to the receptor 

occupancy assay) was added to 50µl of the subject’s blood in FACS tubes and 

incubated for 30 minutes at room temperature.  

 

The subjects’ T lymphocytes were identified by antibody staining of CD3+ cells (1µl 

CD3 V450). The IL-7 receptor (2µl CD127 AF647) was also stained (this antibody 

binds to a different epitope on IL-7Rα from unlabeled GSK2618960, enabling a 

calculation of total IL-7Rα). 7µl of PE-labeled GSK antibody was added to the 

‘antibody mix’ (10µl of ‘antibody mix’ made up of the different antibodies used in this 

assay was added to the 100µl in the FACS tube) to identify unbound IL-7 receptors. 

Antibody concentrations were applied, as described above, at concentrations 

determined by titration experiments. Once the ‘antibody mix’ was added to the FACS 

tube, samples were incubated at room temperature for 30 minutes.  

 

1ml of fix/lyse buffer was added to the samples and incubated for 10 minutes at 37 

degrees Celsius. The fix/lyse buffer has been shown to preserve the light scattering 
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properties of cells and whole blood lysis has been shown to be as effective as 

density gradient centrifugation in the preparation of PBMCs for lymphocyte subset 

analysis (Renzi and Ginns, 1987).  

 

Following this incubation step, the samples were centrifuged for 6 minutes at 500 g. 

The samples were then washed in 2ml phosphate buffered saline and centrifuged 

again for 6 minutes at 500 g. 

 

The supernatant was poured off and the cells were re-suspended in their residual 

volume with 300µl of phosphate buffered saline. The samples were run immediately 

on a BD FACS CANTO flow cytometer. Data was analysed using FlowJo software 

v10.0.4 (Treestar) to calculate the Median Fluorescence Intensity (MFI) of PE, which 

was used to determine the percentage of unbound IL-7 receptors. 

 

The MFIs from the different doses were calculated to represent a percentage of 

maximal signal to derive a dose response curve for each subject: 

 

(MFI – MFI negative control) / (MFI positive control – MFI negative control) x 100 

 

The MFI of the negative control was used to account for background signal. The 

inverse of this would then account for the numbers of receptors occupied by 

GSK2618960 rather than the numbers of unbound receptors. The receptor 

occupancy results have been graphically represented in this manner.  

	
Please refer to figure 4.1 for an overall scheme of the receptor occupancy assay. 
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Figure 2. 1: Receptor Occupancy   

Lymphocytes derived from whole blood were gated based on forward scatter (FS) 

and side scatter (SS). CD3+ T cells expressing IL-7Rα (CD127) were selected 

(upper right quadrant). The histogram represents PE labeled GSK2618960 which 

depicts the difference between the complete occupation of IL-7 receptors with 100 

µg/ml of GSK2618960 (blue) and the number of unbound IL-7 receptors with 0 µg/ml 

GSK261896 (red). 
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2.5 PHOSPHORYLATED STAT5 ASSAY 

 

The STAT5 phosphorylation (pSTAT5) assay measured the levels of pSTAT5 in 

CD3+ cells, taken from whole blood after incubation with a range of concentrations of 

IL-7Rα antagonist and IL-7.  

 

12 ml of blood was collected in two 6 ml sodium heparin blood tubes from volunteers 

from the GSK volunteer panel according to genotype (please refer to sections 2.3.1 

and 2.4).  

 

50µl of unlabeled GSK antibody (please refer to section 2.3.2 for details of the 

unlabeled GSK antibody titration which was performed prior to the receptor 

occupancy assay) was added to 50µl of the subject’s blood in FACS tubes and 

incubated for 30 minutes at room temperature. Negative and positive controls 

(comprised of 50µl phosphate buffered saline) were also added to 50µl of the 

subject’s blood in a FACS tube for 30 minutes at room temperature.  

 

Following this the cells were concurrently stimulated with 5ng/ml rhIL-7 (PBS used 

for negative control) for 20 minutes, whilst being stained with 1µl CD3 V450 and 2µl 

CD4 APC surface antibodies (antibody concentrations determined by titration 

experiments) for 20 minutes at room temperature.  

 

Red blood cells were lysed by 1 ml of 1X fix/lyse buffer, which was incubated at 37 

degrees Celsius for 10 minutes (as described in section 2.4). Following this step, the 

samples were washed twice in PBS, and centrifuged for 6 minutes at 500 g. 

 

For the intracellular detection of the transcription factor pSTAT5, reagents were used 

to permeabilise the cells to allow intracellular staining. 1 ml of Perm Buffer was 

added to the FACS tubes containing the cells and incubated on ice for 30 minutes. 

 

Following this step, the samples were washed twice in FACS buffer, centrifuged for 6 

minutes at 500 g. Cells were then stained with 5µl of pSTAT5 for 30 minutes on ice, 

in the dark.  

 

The supernatant was removed and the cells were re-suspended in their residual 

volume. 300µl of phosphate buffered saline was added and the samples were run 

immediately on a BD FACS CANTO flow cytometer. Data was analysed using 
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FlowJo software v10.0.4 (Treestar) to calculate the Median Fluorescence Intensity 

(MFI) of pSTAT5.  

 

The MFIs from the different doses were calculated to represent a percentage of 

maximal signal, as described in section 2.4, deriving a dose response curve for each 

subject.  

 
Please refer to figure 4.2 for an overall scheme of the pSTAT5 assay. 
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Figure 2. 2: Phosphorylated STAT5  

Lymphocytes derived from whole blood were gated based on forward scatter (FS) 

and side scatter (SS). CD3+ CD4+ T cells were selected. The histogram represents 

downstream activation through the IL-7 receptor as depicted by phosphorylated 

STAT5 (pSTAT5). The histogram shows the partial agonist effect of GSK2618960 

with abrogation of the pSTAT5 signal when compared to the positive (5 ng/ml rhIL-7) 

and negative (PBS) controls.  
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2.6 IN VIVO STIMULATION OF IL-7Rα 

 

An overall scheme of the methods is depicted in the diagram below. 

 

 
Figure 2. 3: In vitro stimulation of IL-7Rα  

T lymphocytes were isolated from whole blood by ficoll gradient. T lymphocytes were 

then cultured with an IL-7 titration up to 11 days. Flow cytometry and ELISAs on the 

cell culture supernatant were then measured. 
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2.6.1 DEMOGRAPHICS 

 

22 Volunteers were drawn from the GSK volunteer panel. Subjects were selected 

based on their genotype for the rs6897932 polymorphism in IL-7Rα. 14 subjects 

were included in the at risk group and 8 subjects in the protective group. The ELISAs 

on serum soluble IL-7Rα, supernatant serum soluble IL-7Rα and supernatant IL-7 

were also completed on 22 subjects.  

 

2.6.2 PREPARATION OF T CELLS FROM WHOLE BLOOD 

 

Blood was collected from subjects in heparinized tubes. 2 ml of T cell cocktail from 

Rosette Sep was added to 40ml of blood. Rosette Sep was used as it is a highly 

efficient method of sorting T lymphocytes from whole blood without the need for 

magnetic separation kits (Stem Cell Technologies, 2018). The blood and T cell 

cocktail was mixed using a vortex and incubated for 20 minutes at room temperature.  

 

20 ml of Phosphate buffered saline (PBS) and 2% foetal calf serum (FCS) was gently 

mixed with the blood after incubation with the Rosette Sep. This mixture was 

separated using Ficoll density gradient centrifugation (Ficoll Paque Plus; GE 

Healthcare Life Sciences, cat. no. 17-1440-03). 

 

T cells were counted using a Beckman-Coulter cell counter. 

 

 

2.6.3 PREPARATION OF COMPLETE MEDIUM 

 

Subjects’ blood contained in sodium-heparin tubes were incubated at room 

temperature for 30 minutes. These tubes were centrifuged for 10 minutes at 1300 g. 

The serum was taken for preparation of complete medium. 

 

To make up 25 ml of the complete medium, 19.5 ml of RPMI 1640 was mixed with 5 

ml of serum, 0.25 ml of Glutamax-I and 0.25 ml of Penicillin/Streptomycin.  

 

Following Ficoll density gradient centrifugation, the cells were re-suspended in as 

minimal an amount of residual fluid as possible. The appropriate amount of complete 

medium was added to the falcon tube in order to have 1 x 106 cells per ml (e.g. If you 
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have 3.76 x 106 cells in the falcon tube then 3.76 ml of complete medium should be 

added to the falcon tube). In order to do this assay a minimum of 32 million T cells 

were needed per subject with 1 ml of cells in complete medium added to each well in 

the culture plate.  

 

2.6.4 IL-7 TITRATION 

 

The IL-7 titrations were based on the molar ratios (soluble IL-7Rα:IL-7) from the 

Lundstrom paper of 5000:1, 500:1 and 50:1 (Lundstrom et al., 2013). In the 

Lundstrom paper IL-7 activity was augmented over time only at ‘middle molar ratios’ 

of approximately 500:1, which equated to the ratio found in vivo.  

 

Therefore this assay attempted to recreate the different molar ratios used in the 

Lundstrom paper using the rhIL-7 mixed with the soluble IL-7Rα present in the 

autologous serum in the culture. Previous studies had measured average soluble IL-

7Rα concentration in serum at approximately 100 ng/ml soluble IL-7Rα (Lundstrom 

et al., 2013). Therefore I used this calculation to predict the average amount of 

soluble IL-7Rα present within the cell culture. 

 

In this assay 1ml of complete medium was used in which 20% of the complete 

medium was serum. Therefore an approximate soluble IL-7Rα concentration of 20 

ng/ml was present within the cell culture. This gave a molar concentration of 0.4nM. 

Therefore 2pg/ml (5000:1), 20pg/ml (500:1) and 5000pg/ml (2:1 but used as the 

positive IL-7 control) rhIL-7 gave similar molar ratios as the Lundstrom paper.  

 

There were 4 titrations - an IL-7 negative control, 2 pg/ml, 20 pg/ml and 5000 pg/ml 

IL-7 wells. There were duplicates of each of the IL-7 titrations at each time point.  

 

For the 2 pg/ml IL-7 titration, 2 µL of 1 ng/ml rhIL-7 was added to 1 ml cell culture.  

 

For the 20 pg/ml IL-7 titration, 20 µL of 1 ng/ml rhIL-7 was added to 1 ml cell culture.  

 

For the 5000pg/ml IL-7 titration positive control, 50 µL of 100 ng/ml rhIL-7 was added 

to 1 ml cell culture.  

 

50 µL of PBS was added to the IL-7 negative control wells.  
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Once IL-7 was added, the plates were incubated at 37 degrees Celsius in a cell 

culture incubator.  

 

 

2.6.5 POST CELL CULTURE 

 

The time points used in this assay were days 0, 4, 7 and 11.  

 

Once a particular time point was reached the plates were taken out of the cell culture 

incubator and centrifuged at 500g for 6 minutes. 

 

950 µL of cell culture supernatant was removed and stored at -80 degrees Celsius 

for later ELISA analysis.  

 

1ml of PBS was then added to each well and the cells were centrifuged again at 

500g for 6 minutes.  

 

The supernatant was then removed and the cells were re-suspended in 600 µL of 

PBS. Each well therefore had two samples, one for cell surface staining (please refer 

to table 2.3) and one for intracellular staining (please refer to table 2.4).   
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Samples underwent cell surface staining and intracellular staining with the staining 

panels depicted below.  

 

Compensation controls were prepared using BD biosciences compensation beads. 

500 µL of PBS was added to a FACS tube and then 4 drops of both positive and 

negative beads were added. This tube was mixed by a vortex and 80 µL was added 

to 6 FACS tubes (one FACS tube for each antibody used in the assay). 2 µL of each 

antibody was added to its appropriately labeled tube.  

 

 

 

Antibody Company Catalogue Number Amount (µL) 

CD3 V450 BD 560365 1 

CD8 V500 BD 561617 2 

CD4 PerCP5.5 BD 560650 2 

CD127 AF647 Biolegend 317605 2 

CD95 PE Biolegend 305608 5 

 

Table 2. 3: Cell surface antibody staining panel 

 

Antibody Company Catalogue Number Amount (µL) 

CD3 V450 BD 560365 1 

CD8 V500 BD 561617 2 

CD4 APC BD 555349 2 

pSTAT5 PE BD 612567 5 

 

Table 2. 4: Intracellular antibody staining panel 

 

All samples stained were incubated at room temperature for 30 minutes. The 

samples were washed twice in PBS, and centrifuged for 6 minutes at 500g.  
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The supernatant was removed and the cells were re-suspended in their residual 

volume with 300µl of phosphate buffered saline. The samples were run immediately 

on a BD FACS CANTO flow cytometer. Data was analysed using FlowJo software 

v10.0.4 (Treestar). 

 

For the intracellular detection of the transcription factor pSTAT5, reagents were used 

to permeabilise the cells to allow intracellular staining. Samples for intracellular 

staining had 1 ml of Perm Buffer III added followed by incubation for 30 minutes on 

ice.  

 

The samples were washed twice in FACS buffer, and centrifuged for 6 minutes at 

500 g. Cells were then stained with 5µl of pSTAT5 for 30 minutes on ice, in the dark.  

 

The supernatant was removed and the cells were re-suspended in their residual 

volume. 300µl of phosphate buffered saline was added and the samples were run 

immediately on a BD FACS CANTO flow cytometer. Data was analysed using 

FlowJo software v10.0.4 (Treestar) to calculate the Median Fluorescence Intensity 

(MFI) of pSTAT5.  
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Figure 2. 4: Gating strategy for IL-7 Stimulation assay  

After gating for lymphocytes, gating for CD4+ and CD8+ T cells was performed as 

above. From this MFIs for CD95 (Fas Ligand), IL-7Rα and pSTAT5 were recorded.  
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2.7 ENZYME-LINKED IMMUNOSORBENT ASSAYS (ELISAs)  

 

The purpose of the serum ELISAs was to measure the cytokines that were relevant 
to the IL-7 signaling pathway within the cohort used. This would allow for analysis to 
determine if the haplotypes used mirror what has been described previously in the 
literature.  

Serum was taken from subjects on day 0. This was stored in a -80 degrees Celsius 
freezer until ready for ELISA analysis. Duplicate serum samples were used for 
analysis.  

Analysis of the supernatant ELISAs allowed examination of the effect of stimulation 
of IL-7Rα on the production and bioavailability of soluble IL-7Rα and IL-7, and the 
difference, if any, between the genotype groups.  

The supernatants were harvested from T lymphocytes stimulated with differing 
amounts of IL-7 after 30 minutes, 4,7 and 11 days. Samples were stored in a -80 
degrees Celsius freezer until ready for ELISA analysis. Duplicate supernatant 
samples were used for analysis.  

IL-7 was measured using the commercially available IL-7 high sensitivity ELISA kit by 
R&D Systems. This is described in more detail in section 2.7.2. 

The soluble IL-7 receptor ELISA, described in section 2.7.1, measured soluble IL-7 
receptor with a highly sensitive non-isotopic time-resolved fluoroimmunoassay using 
dissociative fluorescence enhancement (DELFIA; PerkinElmer). This assay was 
used in collaboration with Ricardo Ferreira who developed the assay, based on his 
previous experience using DELFIA assays (Ferreira et al., 2013).  
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2.7.1 SOLUBLE IL-7Rα ELISA 

 

2.7.1.1 TABLE OF REAGENTS 

Product Description Catalogue/Item 

Number 

Supplier 

ELISA Coating 

Buffer (5x) 

421701 Biolegend 

Foetal Bovine 

Serum 

Lab Stock In-house 

Phosphate 

Buffered Saline 

10010-056 Gibco 

Tween Lab Stock In-house 

Monoclonal anti-

IL7R Antibody 

(Capture Antibody) 

MAB 306 R&D Systems 

Delfia Eu-N1 

Streptavidin 

1244-360 PerkinElmer 

Co-star 3590 flat 

bottom 96 well 

plates without lid 

07-200-36 Fisher Scientific 

Anti-Human IL7R-

Biotin (Detection 

Antibody) 

13-1278 eBioscience 

Recombinant 

Human IL7Rα-Fc 

chimera 

306-IR R&D Systems 

Delfia Assay Buffer CR85-100 PerkinElmer 

Delfia 

Enhancement 

Solution 

1244-104 PerkinElmer 

 

Table 2. 5: Reagents used for the soluble IL-7Rα ELISA   
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Circulating soluble IL-7 receptor concentrations were measured using a highly 
sensitive non-isotopic time-resolved fluorescence ELISA assay based on the 
dissociation-enhanced lanthanide fluorescent immunoassay technology (DELFIA; 
PerkinElmer). 

The assay diluent contained 1x phosphate buffered saline and 10% foetal bovine 
serum. The wash Buffer contained 1x Phosphate Buffered Saline and 0.05% Tween. 
This ELISA was completed over the course of three days.  

On Day 1, in order to enable binding of soluble IL-7 receptor in the serum, the 96 well 
plate was coated with 100 µL Capture antibody, which had been diluted in Coating 
buffer to a final concentration of 1 µg/ml. The plates were sealed overnight and 
incubated at 4 degrees Celsius.  

On Day 2, the plates were ‘washed’ by aspirating the liquid in the wells and adding 
250 µL wash buffer. This was completed manually using a multi-pipette tool (or 
alternatively a plate washing machine could be used). This process was completed 
three times. 

After washing, the ELISA plates were ‘blocked’, reducing non-specific binding of 
other proteins in the serum or cell culture supernatant, with 200 µL of assay diluent 
added to each well. The plates were incubated for 90 minutes at room temperature. 

The ELISA Standards were derived from recombinant human IL7Rα/Fc chimera 
diluted in assay diluent to a final concentration of 10 ng/ml. Six further 1:2 dilutions 
were made to make up a standard curve.  

Serum samples were diluted 1:20 with assay diluent before being added to the 
ELISA plate. Cell culture supernatant samples were diluted 1:2 with assay diluent 
before being added to the ELISA plate.  

The plates were washed three times as described above. 100 µL of standards and 
samples were added according to the desired plate layout. The ELISA plates were 
incubated at room temperature for two hours before being incubated overnight at 4 
degrees Celsius.  

On Day 3, the plates were washed five times as described above. In order to detect 
the soluble IL-7 receptor bound by the capture antibody, a biotinylated mouse anti-
CD127 monoclonal antibody was diluted in assay diluent to a final concentration of 
50 ng/ml, before 100 µL was added to each well. The plates were incubated for one 
hour at room temperature.  
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The plates were washed three times as described above. Europium-Streptavidin was 
then diluted in DELFIA buffer to a concentration of 0.1 µg/ml. 100 µL was added to 
each well. The ELISA plates were incubated for one hour at room temperature.  

The plates were washed three times as described above. 100 µL of DELFIA 
enhancement solution was added to each well. The ELISA plates were incubated at 
room temperature for ten minutes (when colour change occurs) before being read on 
the Victor plate reader using the factory-set DELFIA Europium protocol (excitation at 
340 nM and emission at 615 nM). Quantification of test samples was obtained by 
fitting the readings to a human recombinant IL-7Rα serial dilution standard curve 
plated in duplicate on each plate. 
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2.7.2 INTERLEUKIN 7 HIGH SENSITIVITY QUANTIKINE ELISA 

The following ELISA was performed as per the manufacturer’s instructions using a 
commercially available kit from R+D systems (Cat No: HS750). This ELISA was used 
on both the serum and cell culture supernatant samples. The methods for this ELISA 
are briefly described below.  

The assay employed the quantitative sandwich enzyme immunoassay technique. In 
order to bind IL-7, a monoclonal antibody specific for human IL-7 had been pre-
coated onto the 96 well plates. The IL-7 Standard (lyophilized recombinant human IL-
7 in a buffered protein base) was reconstituted with ‘calibrator diluent’ (a protein 
buffered base). Serial two-fold dilutions were performed in order to generate a seven 
point standard curve. 200 µL of standards and samples were pipetted into the wells 
and the immobilised antibody bound any IL-7 present. The 96 well plates were kept 
in a moist environment to minimize the edge effect that may occur in immunoassays 
and it was incubated at room temperature overnight (for at least 14 hours).   

In order to wash away unbound substances a series of wash steps were performed. 
Wash buffer was prepared by diluting the 100 ml of stock ‘wash buffer concentrate’ 
with 900 ml of distilled water. Liquid was aspirated from each of the wells in the plate. 
400 µL of wash buffer was added to each of the wells. This process was completed 
six times. After the final wash the wells were aspirated to dryness.  

200 µL of ‘IL-7 conjugate’ (an enzyme-linked polyclonal antibody specific for human 
IL-7, conjugated to alkaline phosphatase) was added to each well. The 96 well plates 
were incubated at room temperature for two hours at this point.  

In order to remove any unbound antibody-enzyme reagent, the plates were washed 
six times as described above. 50 µL of ‘substrate solution’ was added to the wells 
and incubated for 45 minutes at room temperature. Without further washing, 50 µL of 
‘amplifier solution’ was added to the wells, and left to incubate for 45 minutes at room 
temperature. It is at this step that colour developed in proportion to the amount of IL-
7.  

The colour development was stopped using a stop solution (composed of 2N 
sulphuric acid) and the intensity of the colour was measured.  

Absorbance was read on the MultiSkan Ascent Reader within 30 minutes at 490/690 
Nm. Quantification of samples was obtained by fitting the readings to the standard 
curve.  
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2.8 STATISTICAL ANALYSIS FOR ANTAGONISM AND STIMULATION OF IL-7Rα 

 

For analysis from the receptor occupancy and phosphorylated STAT5 curves from 

antagonism of the IL-7 receptor this was completed with the help of GSK statistician 

Philip Overend.  

 

Curves from the raw data were generated from the duplicate results for each subject.  

 

Each curve was split into 4 parts: 

 

A – curve start (e.g. minimum receptor occupancy/maximum pSTAT5 response) 

B – slope of the curve 

C – log10 EC50 (the halfway maximal response) 

D – curve end (e.g. maximal receptor occupancy/minimal pSTAT5 response) 

 

The mean and standard error was generated from the data for each part of the curve 

for each subject. Subsequently the means and standard errors were pooled within 

each genetic group. ‘Weighted’ analysis of the results was used for the curve 

parameters based on the standard error from the duplicate results for each subject. 

Subjects with the smaller standard error were given more importance in the 

‘weighted’ analysis of variance.  

 

Analysis of variance (ANOVA) was used, as this was the statistical test that could 

compare multiple means across a normalized distribution avoiding inflating the risk of 

the type 1 error rate by making too many comparisons within the data.  

 

I completed the statistical analysis of the ELISAs, the effect of the drug up to and 

beyond the EC50 and the flow cytometry results from stimulation of IL-7Rα.  

 

Generation of the Fas Ligand receptor (CD95), IL-7Rα and pSTAT5 results: 

 

The median fluorescence intensity of membrane bound IL-7Rα, Fas Ligand (CD95) 

and pSTAT5 was taken from each sample at day 0, 4, 7 and 11. Duplicate samples 

were taken for each titration point. The mean of these duplicate data points were 

then entered into the analysis. 
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To analyse both the flow cytometry results and the ELISAs, multiple t tests were 

used to compare the means of the different genetic groups at the various time points 

at different concentrations of IL-7. This was corrected using the Bonferroni method to 

arrive at p values indicating if there was a significant difference between the genetic 

groups. 
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2.9 GSK TRIAL OF AN IL-7 RECEPTOR ANTAGONIST 

 

2.9.1 PATIENTS AND PROCEDURES 

 

This was a Phase I randomised, double-blind, placebo-controlled study performed in 

a single centre in Cambridge. The study was conducted in accordance with Good 

Clinical Practice and the Declaration of Helsinki 2013, and local regulations. The 

protocol was approved by the local ethics committee (14/LO/1670, National 

Research Ethics Service Committee, London, UK) and all study subjects provided 

written informed consent. The study was registered on Clinicaltrials.gov (identifier: 

NCT01808482). 

 

Healthy male participants were included in the trial if they were between 18 and 55 

years of age at the time of signing the informed consent with a body weight 50-100 

kg and BMI within the range 19.0–29.9 kg/m2, with history of current vaccination 

status for tetanus, diphtheria, pertussis, measles, mumps and rubella (or consent to 

vaccination at screening); with history of current vaccination status for influenza or 

who consent to receive influenza vaccine at screening; with no suicide risk; no live 

vaccination within one month of screening; no history of anaphylaxis or severe 

allergic reaction and consented to use contraception from the time of the first dose of 

study medication until the final follow-up visit.  

Exclusion criteria for healthy male participants included history of smoking within the 

previous 6 months; history or evidence of alcoholism; inability to refrain from the use 

of prescription medications and if the participant had received another investigational 

product within 30 days or 5 half-lives of the product (whichever was longer).  

Multiple sclerosis patients were included in the trial if they had relapsing-remitting MS 

according to the 2010 revisions of the McDonald criteria; had at least 2 relapses; 

have demonstrated active disease activity within the previous 12 months; expanded 

disability status score (EDSS) of ≤5.0 at the screening; male or female between 18 

and 55 years of age at the time of signing informed consent; with history of current 

vaccination status for tetanus, diphtheria, pertussis, measles, mumps and rubella (or 

consent to vaccination at screening); with history of current vaccination status for 

influenza (or who consent to receive influenza vaccine at screening) and consented 

to use of contraception from the time of the first dose of study medication until the 

final follow-up visit.  
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Exclusion criteria for multiple sclerosis patients within the trial included intolerance to 

undergo MRI scanning; treatment with steroids for a relapse or otherwise within 30 

days of dosing; within the previous 6 weeks treatment with first line disease 

modifying therapies such as glatiramer acetate or beta-interferons; within the 

previous 12 months treatment with alemtuzumab, natalizumab, mitoxantrone, 

cladribine, fingolimod, methotrexate, azathioprine, or any other immunosuppressant 

or cytotoxic therapy; a history of malignancy, or a history of clinically significant 

autoimmunity other than multiple sclerosis. 

 

Subjects were screened up to 28 days (42 days for those subjects consenting to 

vaccination) before admission to the clinical unit on Day -1 (pre-dose). All subjects 

remained in the unit for at least 24 hours following dosing and were monitored at 

least weekly during the period of full receptor occupancy and then every 4 weeks 

thereafter until week 24 (in case of latent lymphopenia). 

 

The dose level of GSK2618960 that was predicted to provide not more than 30 days 

maximal receptor occupancy (RO) was 12.0 mg/kg. The no observed adverse effect 

(NOAEL) dose level in the 4-weekly repeat IV bolus cynomolgus monkey toxicity 

study was 300 mg/kg (Leung et al., 2012).  
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2.9.2 TRIAL OUTLINE 

 

2.9.2.1 Part A 

 

Based on preclinical repeat dose toxicology studies in cynomolgus monkeys (I was 

not involved with this pre-clinical work), dose levels were set at 0.001, 0.006, 0.03, 

0.15, 0.6, 2, 6 and 12 mg/kg. Predicted human pharmacokinetics was calculated 

based on the preclinical monkey data and a safety margin was built into the planning 

for the study. 24 healthy subjects were due to be dosed in Part A.  

 

2.9.2.2 Part B 

 

Healthy volunteers in this part of the study would undergo repeat doses of the drug 

(i.e. second dose approximately 4-5 weeks after the first dose). The aim was to have 

full receptor occupancy for 8-10 weeks. The size of dose and the frequency of doses 

used in Part B would be decided by the dose escalation committee after the finish of 

Part A. 

 

For this part of the study an initial 12 subjects were due to be recruited, but another 

12 subjects would undergo multiple doses if receptor occupancy from a single dose 

turned out to be less than 4 weeks (after a dose escalation committee decision that 

this would be safe).  
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Figure 2. 5: Outline to Part B   

Conduct of cohort B2 was optional and based on the decision of the dose escalation 

committee. 
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receptor occupancy for 8-10 
week
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2.9.2.3 Part C 

 

Part C was due to involve 20 multiple sclerosis patients. Safety, tolerability, 

pharmacokinetics and pharmacodynamics were due to be investigated. Several pre 

and post-dose MRI scans to investigate subclinical disease activity were also 

planned, exploring any potential for rebound disease activity (whilst also being able 

to assess any potential benefit from the drug).  

 

Laboratory experiments would also be carried out looking at lymphocyte subsets 

including regulatory T cells and downstream signaling from the IL-7 receptor to see 

what effect antagonising IL-7Rα would have on the T cell population.  

 

Dose selection for part C would be dependent on what happened in Parts A and B 

and the final decision on this would be taken by the dose escalation committee.  
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Figure 2. 6: Outline to Part C   

The upper arm to this figure denotes the course of part C with 2 doses of the drug 

with the lower arm outlining the course of Part C if the drug had less than 4 weeks 

full IL-7 receptor occupancy. 
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2.9.3 LABORATORY ANALYSIS OF SAMPLES 

 

During the trial as part of my role assessing clinical safety I had access to and 

regularly reviewed blood results including full blood counts (without lymphocyte 

subsets), liver function tests and ECGs. During the dose escalation meetings I was 

able to see results involving the pharmacokinetics of the drug. There was also some 

pharmacodynamic data reviewed such as the percentage of receptors the drug was 

occupying.  

 

I was not involved in the laboratory analysis of blood samples from the trial as I was 

involved in the clinical work in the trial and could possibly have been unblinded to the 

trial participants. Specific laboratory results referred to in the results section but not 

undertaken by myself are outlined below.  These analyses were undertaken 

internally within GSK. 

 

• Flow cytometry investigating the receptor occupancy on CD3+ T cells by 

GSK2618960. This used PE labeled GSK2618960 IL-7Rα antagonist to identify the 

percentage of IL-7Rα receptors that were unbound after ex-vivo incubation of the 

subjects’ blood with unlabeled GSK2618960 IL-7Rα antagonist. 

•   Flow cytometry investigating intracellular STAT5 phosphorylation (a measure of 

downstream IL-7Rα signaling) in CD4+ T cells after ex-vivo incubation of whole blood 

with IL-7.  

• Flow cytometry of ex-vivo blood investigating lymphocyte subsets including B 

cells, CD3+ T cells, NK cells, regulatory T cells, recent thymic emigrants, CD4+ T 

cells, CD8+ T cells, naïve CD4+ T cells, effector memory CD4+ T cells, and central 

memory CD4+ T cells. 

• IL-7 and soluble IL-7Rα ELISAs from blood plasma.  

• Presence and titre of antibodies to GSK2618960. 

• Blood sampling for pharmacokinetics of GSK2618960. 

 

 

No statistical analyses were carried out due to the small number of subjects in the 

trial. A description of what happened is outlined in the results chapter. 
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2.10 LYMPHOCYTE RECOVERY AFTER ALEMTUZUMAB DOES NOT PREDICT 

MULTIPLE SCLEROSIS DISEASE ACTIVITY 

 

2.10.1 PATIENTS AND PROCEDURES 

 

All patients had relapsing-remitting multiple sclerosis (RRMS) and had participated in 

CAMMS223 (a Phase 2 randomised control trial) and CAMMS 224 or SM3 (both 

investigator-led, open label studies). CAMMS223 key eligibility criteria were disease 

onset within 3 years, at least two clinical relapses during the previous 2 years and a 

score of 3 or less on the Expanded Disability Status Scale (EDSS). Patients were 

included in CAMMS 224 and SM3 if they had at least 1 relapse in the previous year, 

an EDSS score of 6.0 or less, with disease duration of less than ten years. 

Subsequently all patients entered either CAMSAFE (an investigator led long-term 

observational study), or the extension phase of the CAMMS223 trial. The first patient 

from this cohort was treated on 22 November 1999 with the date for final collection of 

data on 1 January 2013. 

 

All studies were approved by a regional ethics board and institutional research 

committee. All patients gave written informed consent.  

 

2.10.2 CLINICAL TREATMENT AND FOLLOW-UP PROTOCOL 

 

All patients received at least 2 elective cycles of alemtuzumab given annually, with 

the potential for further cycles if there was clinical or radiological evidence for on-

going disease activity. Patients were reviewed at 1 and 3 months and then quarterly 

for the first two years after each treatment cycle. For the following two years, they 

were seen biannually and then at least annually thereafter. Patients were also seen 

whenever a relapse was suspected. 

 

2.10.3 OUTCOME ASSESSMENTS  

 

For participants in the CAMMS223 study, EDSS scores were determined quarterly in 

a blinded fashion by a neurologist who also adjudicated possible relapses. The same 

assessor measured the EDSS of patients in the CAMMS224 and SM3 studies, albeit 

less frequently. Sustained accumulation of disability was defined as an increase of 

1.5 EDSS points from a baseline of 0, or an increase of ≥1.0 if the baseline was ≥1.0 
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confirmed over 6 months. A relapse was defined as new neurological symptoms 

attributable to multiple sclerosis, lasting >48 hours with an objective change in 

neurological examination.  

 

Peripheral blood mononuclear cell phenotyping was performed at baseline and then 

quarterly for the first 36 months and then at least annually (including - total 

lymphocyte count, CD4+, CD8+, CD19+, CD56-NK, and monocyte counts).  

 

Brain MRI scans were performed in most patients with a suspicion of active disease 

prior to re-treatment with alemtuzumab. Monthly MRI scans were performed in a 

subset of patients from the SM3 study. A number of clinically inactive patients had 

interval MRI scans to look for subclinical activity, and to provide a means for 

comparison in case of future disease activity. 

 

2.10.4 STATISTICAL ANALYSIS  

 

Statistical analysis was done in consultation with Mr Richard Parker, a statistician at 

the University of Cambridge. 

 

Median time for recovery to the lower limit of normal (LLN) was calculated for each 

cell subset.  All data was categorised depending on the cycle of alemtuzumab 

treatment. Patients were placed into ‘active’ or ‘non-active’ groups independent of 

when an event took place within a particular treatment cycle.  Therefore, within each 

cycle, patients were defined as being ‘relapse-free’ or ‘relapsing’, ‘disability-free’ or 

having ‘accumulated disability’, or having reached a ‘positive composite endpoint’ 

(defined as: having relapsed, and/or accumulated disability, and/or having had an 

‘active’ MRI scan); or with a ‘negative composite endpoint’ based on all three 

negative outcomes. A subgroup of patients (n=91), scanned after treatment, were 

classified as MRI ‘active’ or ‘non-active’.  

 

To assess differential lymphocyte reconstitution between groups, a linear mixed 

effects regression method was undertaken with CD4+/CD8+/CD19+/CD56+/ 

monocytes or total lymphocyte count as the outcome variable, and ‘relapse/ 

disability/ active MRI/ composite score’ and time point as explanatory variables.  
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This method was used as it was the optimum way to explore the relationship 

between the outcome variable (e.g. CD4+ count) and the different explanatory 

variables (e.g. time point and relapse), which needed to be accounted for.  

A quadratic term (time point squared) was also included due to the observed 

relationship between time point and outcome. A separate linear mixed effects model 

was fitted within each cycle. A continuous autoregressive (order 1) correlation 

structure was assumed for all models. Model coefficients were presented with 95% 

confidence intervals and p-values.  

 

A Fisher exact test was used to assess whether a CD4+ count of 388.5 x 106/mL or 

greater at 12 months predicts disease activity - either clinically or radiologically. A 

Fisher exact test was used as it was the optimum way to compare categorical data 

and to see if there is a relationship between those values.  

 

The standard 5% significance level was used throughout, and no adjustment made 

for multiple testing in order to avoid inflating the Type II error rate. The linear mixed 

effects regression method was implemented in R software using the ‘nlme’ package 

(Pinheiro et al., 2013). R software was also used to compute the Fisher’s exact tests. 

All other analyses were performed in GraphPad PRISM (version 5.00 for Windows; 

www.graphpad.com).   
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CHAPTER 3 - FIRST TIME IN HUMAN TRIAL OF IL-7 RECEPTOR ANTAGONIST 

3.1 INTRODUCTION 

 

GSK2618960 was developed by GSK for a first time in human study in healthy 

subjects but also in MS patients.  

 

3.1.1 THE RATIONALE FOR THE DEVELOPMENT OF AN IL-7 RECEPTOR 

ANTAGONIST 

 

As previously described in section 1.10 of the main introduction there is a need within 

the MS treatment armamentarium for the development of therapies with fewer side 

effects and less rigorous monitoring requirements. There has been some interest in 

the IL-7 pathway and MS for a number of years. By 2008 increased IL-7 levels were 

found within MS lesions (Kremlev et al., 2008) (Jana et al., 2014). ϒδ cells are one of 

the first cells involved in the MS plaque (Wucherpfennig et al., 1992) and IL-7 is 

involved in the maturation of T lymphocytes in the thymus, which leads to the 

production of ϒδ cells (Mackall et al., 2011).  

 

Subsequently the discovery of IL-7Rα as one of the first SNPs in MS outside of HLA 

(Teutsch et al., 2003) further strengthened the case for IL-7Rα within the 

pathophysiology of MS. Furthermore in 2007 increased levels of soluble IL-7Rα were 

discovered in individuals with the at risk SNP for IL-7Rα (Gregory et al., 2007) 

(Lundmark et al., 2007). 

 

In EAE there is increased levels of IL-7 at the onset and peak of the disease 

(Arbelaez et al., 2015).  It has also been demonstrated that partial or complete 

deficiency of IL-7Rα reduces the severity of EAE or prevents the disease entirely 

(Walline et al., 2011) (Ashbaugh et al., 2013). IL-7 has been purported to increase 

the levels of GM-CSF, which has been shown to increase the pathogenicity of T 

lymphocytes in EAE (Sheng et al., 2014). The use of IL-7Rα antagonists has also 

been shown to ameliorate EAE (Lee et al., 2011, Ashbaugh et al., 2013) (Liu et al., 

2010). 

 

Following the success by GSK scientists of the IL-7 antagonist in EAE (Liu et al., 

2010), GSK decided to develop this drug for a wide range of autoimmune indications 

including multiple sclerosis. Pre-clinical work showed that the drug was well tolerated 
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by cynamolgous monkeys (Leung et al., 2012). However there was some evidence in 

this pre-clinical work that the monkeys developed anti-drug antibodies (ADA). 

Therefore the trial design included repeat dosing of subjects in an attempt to detect 

ADAs at an early stage.  

 

3.1.2 EARLY INCLUSION OF MS PATIENTS IN DRUG DEVELOPMENT 

 

It was planned for MS patients to be included at the early stages of drug 

development (i.e. within this first time in human trial), as there had been some 

conjecture about if there would be a difference seen between MS patients and 

healthy human subjects.  MS patients can also benefit in being part of the drug 

development process at an early stage, as they will be able to receive drug 

treatments in clinical trials many years prior to the drug becoming available if it 

passes through phase 3 trials and regulatory approval. 

 

The ‘exon skipping hypothesis’, developed by Gregory and colleagues in Cambridge, 

was based on the increased amounts of soluble IL-7Rα in those carrying the at risk 

SNP for multiple sclerosis. This was the result of an amino acid change from 

threonine to isoleucine in the transmembrane section of the protein, leading to 

skipping of exon 6 and formulation of greater levels of soluble IL-7Rα (Gregory et al., 

2007). T lymphocytes would have lower levels of available IL-7 as increased levels of 

soluble IL-7Rα compete with cell-associated IL-7Rα for IL-7. Following this 

hypothesis to its logical conclusion would suggest that administering IL-7 would 

ameliorate multiple sclerosis, while antagonism of this pathway would lead to disease 

worsening (Gregory et al., 2007) (Mazzucchelli et al., 2012).  

 

This goes against the evidence seen with EAE. When IL-7 was administered in EAE 

this led to a worsening of disease rather than an improvement as suggested by 

Gregory and colleagues (Bebo et al., 2000). In the main introduction in section 1.13.2 

I have described how antagonism of IL-7Rα led to an improvement in EAE clinical 

scores (Ashbaugh et al., 2013) (Liu et al., 2010) (Lee et al., 2011).  

 

The exon skipping hypothesis as proposed by Gregory et al also assumed the 

function of soluble IL-7Rα was to compete with cell-associated IL-7Rα for IL-7, 

thereby limiting the amount of IL-7 available to T lymphocytes in patients with 

multiple sclerosis. However as discussed in the main introduction in section 1.12.5 
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Lundstrom and colleagues (Lundstrom et al., 2013) have demonstrated increased IL-

7 bioavailability over time with increased levels of soluble IL-7Rα. This would be 

entirely consistent with the studies in EAE of amelioration with the use of IL-7Rα 

antagonists.  

 

However a note of caution should always be used when extrapolating from studies in 

EAE mice, which have led to increased disease severity in individuals with MS, as 

has been demonstrated with other treatments, most notably anti-TNF drugs (The 

Lenercept Multiple Sclerosis Study Group, 1999). Therefore to truly understand how 

the drug might affect MS patients is to test the drug in the MS population early in the 

drug development process.  

 

3.1.3 AIMS 

 

To assess the safety of the drug GSK2618960 in humans in a first-in-human trial and 

explore secondary endpoints of pharmacokinetics and pharmacodynamics of 

GSK2618960. 

 

To assess the safety of the drug in multiple sclerosis patients but also to look at 

secondary MRI endpoints which may give an indication of efficacy and safety of 

GSK2618960.  

 

3.1.4 HYPOTHESIS 

 

The drug GSK2618960 will be safe in humans. 

 

The drug GSK2618960 will show efficacy in treating multiple sclerosis, by reducing 

the formation of new MRI MS lesions. 
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3.2 TRIAL METHODS 

 

Outlined below is my personal involvement within the trial, which was initially meant 

to be involvement in Parts A and B of the trial (please refer to figure 3.1), learning 

about Phase 1 clinical trials as part of my training as a translational doctor. Finally I 

was due to lead and oversee part C of the trial, an open label study of GSK2618960 

in MS patients.   

 

3.2.1 PERSONAL INVOLVEMENT IN THE GSK TRIAL 

 

I was involved in the design of the trial, as well as writing parts of the protocol 

focusing on the multiple sclerosis patients. I also attended planning meetings on the 

practical aspects of the trial and helped to prepare the clinical trials unit team within 

GSK at Cambridge by speaking to them about the trial and helping to prepare useful 

documents, which could be used by members of the team, when referring to the trial, 

as needed. Finally I was heavily involved with the application for ethical approval of 

the trial through IRAS (Integrated Research Application System) by writing the ethics 

application and by writing the participant information sheets for the trial. This also 

involved attending the ethics committee hearing for the trial. The participant 

information sheet for part C can be viewed in the appendix (please refer to section 

9.1). 

 

During meetings focused on the trial protocol, I was also involved in discussions 

regarding the development of the assays to be used on the trial. However, I did not 

participate in these assays during the trial to prevent unblinding.  

 

I was heavily involved in the clinical work on the trial, including screening and 

consenting participants for the trial and then supervising each participant as they 

went through the trial. This involved dosing and monitoring of the participants whilst 

helping to review results from clinical investigations and responding to adverse 

events. I drafted the clinical safety report prior to each of the dose escalation 

committee meetings which would help to inform those present whether to proceed 

onto the next dose level. I gathered this information using the PIMS (Phase 1 

Management System) computer system at GSK, which has all the information on 

dosing, adverse events and the investigations carried out on subjects during the trial. 

This information would include my opinion on if a particular adverse event was 
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related to the drug. I would present at the dose escalation committee meetings the 

main clinical findings. I would also participate in the discussions, however the final 

decision on whether to proceed to the next dose would be made by the principal 

investigator and the medical monitor for the trial. 

 

I was not involved in the preclinical toxicology studies on cynomolgus monkeys that 

led to some of the decisions made on minimum anticipated biological effect level 

(MABEL) for the initial doses used in Part A. I was also not involved in the laboratory 

assays (to prevent unblinding of subjects during the trial), which led to some of the 

results given, and also which helped to inform the discussions at the dose escalation 

meetings during the trial.   

 

The original intention was that I would lead the trial through to completion but 

unfortunately the study was terminated early, due to concerns within GSK about the 

data on which the study rationale was based. This meant that I was not able to 

complete all the aims from this part of my research. 

 

3.2.2 TRIAL OUTLINE 

 

I have given here a broad outline of the trial design. For a more detailed description 

of each part of the trial please refer to chapter 2.9.2. 

 

The study was due to be conducted in three parts. Part A in 24 healthy individuals 

with single ascending doses of the drug being given. This part was designed in such 

a way that one individual could receive two different doses of the drug after a period 

where the drug was deemed to have been cleared and was not having any on-going 

effects in the body (predicted to be 12 weeks for this study although in this adaptive 

trial design this could change).  Part B would have been in 12 or 24 healthy 

volunteers with repeat doses given to individuals. Part C was due to be in 20 multiple 

sclerosis patients where repeat doses of drug would have been given.  

 

Study subjects for Parts A and B were recruited via the GSK recruitment team. They 

were healthy men screened to make sure they had no underlying illness or 

intercurrent infection. Screening and consent for the trial ensured they fit the 

inclusion criteria for the trial as outlined in the trial protocol. Multiple Sclerosis 

patients for Part C were due to be recruited nationally from referral from neurologists 
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to Cambridge for consideration of the trial. Demographics for the subjects used in the 

trial are shown in the results section. 

 

Throughout the study clinical data would be collected by interview, with the use of 

investigations such as ECGs; with laboratory data looking at the full blood count 

(particularly lymphocyte counts), liver and renal function. Blood samples were drawn 

for laboratory analysis of pharmacokinetics (PK), receptor occupancy (RO), 

phosphorylated STAT5 (pSTAT5) and lymphocyte subsets (determined by flow 

cytometry).  

 

Parts A and B were due to be a double-blind, placebo-controlled, randomised trial. A 

dose escalation committee comprising of the Principal Investigator, medical monitor 

and key trial staff (including myself), would review dose escalations. Part C would be 

an open-label study. 
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Figure 3. 1: Outline of Trial with Parts A, B and C   

‘Receptor occupancy’ refers to binding of GSK2618960 at the membrane-bound IL-7 

receptor. 

  

Part A: Single ascending 
dose - 24 subjects

Part B: Repeat doses - up 
to 2 cohorts with total of 
24 subjects

Part C: 2-4 repeat doses for 
8-10 weeks of receptor 
occupancy in 20 MS patients
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3.3 GSK TRIAL RESULTS 

 

Although the overall intended methods of the trial have been presented, in fact the 

study was terminated after the fourth dose level (0.15mg/kg) in Part A due to data 

misrepresentation in an important preclinical study (Liu et al., 2013).  

 

3.3.1 DEMOGRAPHICS 

 

Participants in the trial were recruited by GSK. The demographics of the study 

population can be viewed in table 3.1 below.  

	

Age in Years, Mean (SD) 38.9, (5.86) 

Sex, n   

Female: 0 

Male: 16 

BMI (kg/m2), Mean (SD) 25.53, (2.580) 

Height (cm), Mean (SD) 179.00, (5.831) 

Weight (kg), Mean (SD) 82.06, (11.492) 

Race, n  

Asian – South East Asian Heritage 1 

White – White/Caucasian/European 

Heritage 

14 

Mixed 1 

	

Table 3. 1: the demographics of the population in the first time in human trial  
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3.3.2 CLINICAL SAFETY RESULTS 

 

16 patients entered the trial before trial termination. There were 4 dose levels 

undertaken during the trial – subjects received 0.001 mg/kg (or placebo) as an 

intravenous bolus dose (subjects 1001, 1002, 1003, 1004), 0.006 mg/kg (or placebo) 

as an intravenous infusion for 5 min (subjects 2001, 2902, 2003, 2004), 0.03mg/kg 

(or placebo) infusion for one hour (subjects 3001, 3002, 3003, 3004) and 0.15mg/kg 

(or placebo) infusion for one hour (subjects 4001, 4002, 4003, 4004).  

 

There were 19 Adverse Events in total. There were no Serious Adverse Events. 

Three adverse events were as a result of the study drug. For detailed adverse event 

statistics please refer to table 3.2.  

 

Subject 3003 had an irregular broad complex tachycardia lasting for 7 beats at 200 

beats per minute at approximately 11 hours post dosing. This subject was 

asymptomatic with no evidence of QT prolongation or any other morphological 

change on 12-lead ECG monitoring. The Cardiology department reviewed this 

subject and no further action was deemed necessary. This adverse effect was 

unrelated to the study drug.  

 

Two subjects had a lymphopenia (subjects 2001 and 3002). Lymphopenia was a 

theoretical side effect that had been predicted prior to the trial commencing, as an IL-

7Rα antagonist would prevent proliferation of T lymphocytes. However, both of these 

episodes resolved without any specific action taken. Subject 2001 (0.006 mg/kg 

GSK2618960) had a baseline lymphocyte count of 1.49 x106 cells/µL (normal range 

1.2-3.65 x106 cells/ µL) and this reduced to 1.02 x106 cells/µL on day 8 and resolved 

by day 30. This adverse effect was due to the study drug although the reduction in 

lymphocyte counts was so small it is difficult to be certain of this conclusion.   

 

Subject 3002 (placebo) had a baseline lymphocyte count of 1.84 x106 cells/µL that 

reduced to 0.66 x106 cells/µL on day 8 and resolved by day 41. This was related to a 

concurrent viral illness and not due to the study drug.  

 

There were no adverse events, which led to subject withdrawal. All adverse events 

were resolved prior to study completion, with the exception of one episode of 

seasonal allergy, which was resolving at the time of follow up. 
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Adverse Event Placebo 

(n=6) 
GSK2618960 
0.001mg/kg 
(n=1) 

GSK2618960 
0.006mg/kg 
(n=1) 

GSK2618960 
0.03mg/kg 
(n=1) 

GSK2618960 
0.15mg/kg 
(n=1) 

Total 
(n=19) 

Lymphopenia 1 0 1* 0 0 2 
Tachycardia 0 0 0 1 0 1 
Vomiting 1 0 0 0 0 1 
Catheter site 0 0 1 0 0 1 
Seasonal allergy 2 0 0 0 0 2 
Nasopharyngitis 1 0 1 0 1 3 
Hand fracture 0 0 1 0 0 1 
Laceration 0 0 1 0 0 1 
Neck pain 0 0 1 0 0 1 
Dysgeusia 0 0 0 1* 0 1 
Headache 0 1* 0 1 0 2 
Paraesthesia 0 0 0 1 0 1 
Oropharyngeal 0 0 0 1 0 1 
Rhinorrhea 1 0 0 0 0 1 

	
Table 3. 2: Adverse Events during the Trial  

The table is presented as the total number of subjects reporting the event for each 

dosing session. Asterisked numbers indicate drug related adverse effects. 
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3.3.3 PHARMACOKINETIC RESULTS 

 

These pharmacokinetic (PK) results were measured from plasma samples. I 

reviewed the PK results as part of the dose escalation committee of the study. I did 

not partake in the PK assay. PK results enabled investigators to examine how long 

the drug was present within the body and if this was coherent with the predictions 

made from the pre-clinical studies. This would give investigators information on the 

length of time the drug was active within humans.  

 

Due to the limited plasma concentrations of the study drug GSK2618960 at low 

doses, pharmacokinetic parameters were only available for the two higher dose 

levels (0.03 mg/kg and 0.15 mg/kg). Subjects within the first dose level of 

0.001mg/kg did not reach the lower limit of quantification (LLQ) for pharmacokinetic 

results to be derived. One subject reached the LLQ on the second dose level of 

0.006mg/kg and therefore only one result was available at one-hour post dose.  

 

Unexpectedly only 2 subjects (rather than the expected 3 subjects with one subject 

treated with placebo) were given the study medication for the third dose level of 

0.03mg/kg  (an internal investigation took place to investigate why this happened but 

no clear explanation was found for why two subjects in this group were dosed with 

placebo).  The maximal concentration of the drug (Cmax) was about half of what was 

predicted from the previously calculated mathematical modeling of the preclinical 

monkey data.  

 

For dose level 0.15mg/kg, maximal concentrations of the study medication were 

close to what was predicted (Cmax 1820 ng/ml to last for 60 hours). However the 

drug was cleared more quickly than expected, so the terminal phase predictions 

were incorrect. The study medication was cleared between 48 and 72 hours (please 

refer to figure 3.2).	 	
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Figure 3. 2: Predicted and Observed Pharmacokinetics at 0.15mg/kg  

Maximal concentrations of the drug were close to what was predicted from pre-

clinical studies, the drug was cleared more quickly than expected between 48-72 

hours. 3 subjects (A, B, and C) received the study drug. Y-axis represents the 

concentration of the drug GSK2618960 (ng/ml) with the x-axis representing time post 

dosing in hours. The green dash line represents the lower limit of quantification 

(LLQ). The black dash line represents the concentration of the drug expected from 

95% receptor occupancy (RO) of IL-7Rα by GSK2618960. The blue dash line 

represents the predicted concentration of GSK2618960 (ng/ml) from pre-clinical 

studies. 	 	
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3.3.4 PHARMACODYNAMIC RESULTS 

 

3.3.4.1 RECEPTOR OCCUPANCY OF IL-7Rα WITH GSK2618960 

 

Results from Receptor Occupancy (RO) of GSK2618960 at the IL-7 receptor were 

reviewed during the dose escalation committee meetings. The RO showed if the drug 

was binding to T cells and how long this lasted. This enabled the investigators to see 

if the drug bound to its target and how long it was having an effect on T cells.  

 

For the 3 subjects dosed at the first dose level of 0.001mg/kg receptor occupancy 

was measured at 10.6%, 5.4% and 0.3% at 1 hour post dose. It is difficult to 

comment on receptor occupancy results with such a small dose of GSK2618960.  

 

For the 3 subjects dosed at the second dose level of 0.006mg/kg receptor occupancy 

values 1 hour post dose was between 66.1 and 82.1%, with a mean RO of 75.0%. At 

4 hours post dose, the mean RO was 53.0%. At 24 hours post dose, the mean RO 

was less than 10%. 

 

For the 2 subjects dosed with 0.03mg/kg, greater than 90% RO was found at the 1 

and 4 hours post-dosing, decreasing to 50.0% at the 24 hours post-dosing.  

 

For those subjects who received 0.15mg/kg, full receptor occupancy (>90%) was 

seen for 24-48 hours. At 72 hours, RO values for the 3 subjects were 90.6, 60.4, and 

91.5% (Please refer to figure 3.3).  
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Figure 3. 3: Predicted and Observed Receptor Occupancy (RO) at 0.15mg/kg  

Subjects A, B and C received the study drug. Subject D received placebo. The Y-axis 

represents the percentage of IL-7 receptors occupied by GSK2618960. The X-axis 

represents the time post dosing in hours. The blue line indicates the predicted RO 

percentage of GSK2618960 from pre-clinical studies. Subjects dosed with 

GSK2618960 demonstrated RO >90% for 48 hours.		 	
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3.3.4.2 PHOSPHORYLATED STAT5 

 

Other pharmacodynamic markers measured by flow cytometry such as 

phosphorylated STAT5 (pSTAT5) and lymphocyte subsets were not yet available at 

the time of the dose escalation meetings but were available from the final clinical 

study report.  I was not involved in the assays or the analysis of this data. 

 

For pSTAT5 (a classical marker for downstream signaling from IL-7 receptor 

activation by IL-7) data from subjects dosed with 0.15mg/kg showed that mean 

pSTAT5 inhibition was greater than 90% up to and including 72 hours post-dosing. 

 

As a consequence of early termination of the trial, the limited number of data points 

for lymphocyte subsets, plasma soluble IL-7Rα and plasma IL-7 precludes 

meaningful interpretation. 

 

3.3.4.3 IMMUNOGENICITY 

 

I was not involved in measuring anti-drug antibodies, however anti-drug antibodies 

were not detectable at day 1, day 15 or week 8 in any of the subjects.  

 

Interestingly in a follow-up study (Ellis et al., 2019) anti-drug antibodies were 

detected in 5/6 subjects administered 0.6 mg/kg and in 6/6 subjects administered 2.0 

mg/kg GSK2618960.   
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3.4 THE PREMATURE TERMINATION OF THE TRIAL 

 

I first learnt that there was a problem with the continuation of the trial on the 7th June 

2013. This was from telephone calls from both principal investigators for the trial 

Joseph Cheriyan and Alasdair Coles.  

 

They alerted me to the accusations that had been made on internet forums of 

fraudulent data concerning some of the preclinical data in the lead up to the trial from 

China (FierceBiotech, 2013) (McBride, 2013a). The rest of the clinical team on the 

trial were informed after the final dose escalation committee meeting on the 13th 

June 2013. For this meeting the medical monitor of the trial Frank Gray was present 

along with the Scientific Lead for the trial Paul Thompson. Marina Zvartau-Hind 

represented Senior GSK management.  

 

GSK were aware of the allegations on 31st March 2013 after an internal allegation 

was made (before the first subject was dosed). At this stage they had an internal 

investigation of this allegation but comments made by senior GSK management to 

the GSK Clinical Trials Unit in Cambridge suggested that from ‘time to time they 

received allegations’ and after an initial inquiry into the matter, GSK’s leadership did 

not see that it was necessary to launch any further investigations. GSK’s leadership 

certainly did not see the need to stop the trial before a subject had been dosed. This 

information was revealed during a meeting with the Cambridge GSK Clinical Trials 

Unit on 13th June 2013.  

 

It is difficult to know if the allegations made over the internet were more substantial 

than the allegations made at the end of March, however GSK’s leadership were now 

of the opinion that the trial needed to be stopped immediately before any further 

subjects were dosed (McBride, 2013b) and the author of the Nature Medicine paper 

in question (Liu et al., 2010) (Liu et al., 2013) was suspended pending further 

investigation (GlaxoSmithKline, 2013). Those aware of the allegations about the 

veracity of some of the data, which according to GSK was fundamental to the 

rationale of this trial, did not inform the Principal Investigators until many months 

later. In the meantime healthy volunteers were exposed to the drug during this time 

period.  

 

At this stage GSK launched a more thorough inquiry into the data misrepresentation. 

They revealed in the meeting on 13th June 2013 with the other members of the 
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Cambridge GSK Clinical Trials Unit that it was believed the misrepresented data was 

not of the experimental allergic encephalomyelitis mouse data but of the in vitro 

multiple sclerosis patient data which was actually healthy volunteer data (Liu et al., 

2013). If this was the case then the scientific rationale for the trial was still very 

strong and would not in itself have meant that the trial needed to be terminated.  

 

GSK approved all other work to continue on the IL-7/IL-7Rα pathway on the 16th July 

2013 after an initial termination of all work on the pathway within the company. Work 

has already started on seeking approvals for a new study, again looking at healthy 

volunteers in Parts A and B, with the new potential indication of psoriasis as a 

potential therapeutic target instead of multiple sclerosis. 

 

From the multiple sclerosis point of view it is very disappointing that GSK have, for 

now, dropped their interest in this disease. It is very difficult to know why this is the 

case based on scientific reasoning, particularly as the EAE mouse data is thought to 

be good data which has also been reported by another group (Lee et al., 2011). This 

however would not take into account the political pressure that was on 

GlaxoSmithKline due to the nature of this fraudulent material entering the public 

domain. It is true to say GSK were always planning to use the drug for other 

indications such as Psoriasis and Inflammatory Bowel Disease but this does not 

explain the lack of interest now seen in multiple sclerosis. Again in the meeting held 

with the Cambridge Clinical Trials Unit team on 13th June 2013, no clear explanation 

was given for the change in indication for the drug, although the perception in the 

wider public may be any further work in multiple sclerosis by GSK may always be 

clouded by the perception of scientific fraud. 
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3.5 DISCUSSION 

 

More information is required to know if this drug will proceed further in the drug 

discovery process. Another trial in healthy volunteers was completed (Ellis et al., 

2019), as there was insufficient data to reach firm conclusions due to the premature 

conclusion to the trial due to fraud in some of the pre-clinical trial data (Liu et al., 

2013). 

 

The conclusion we can draw from this first-in-human trial of 16 patients dosed in this 

curtailed study is that so far the drug is safe and tolerable. There were no deaths or 

serious adverse events. There were no adverse events that led to the withdrawal 

from the trial of a study subject, and no infusion reactions or acute immune system 

stimulation was observed. The mild lymphopenia seen in one subject was short-lived. 

It remains to be determined if at higher doses this would have become more of a 

problematic side effect. Having a low lymphocyte count would mean great care would 

have to be taken of the subject’s long-term risk of potential opportunistic infections. 

No opportunistic infections were acquired as a result of the short-term lymphopenia 

in one subject as a result of the study drug in this cohort.  

 

Some pharmacokinetic data was derived from the study with a suggestion that the 

drug was cleared more quickly than had been predicted from preclinical monkey 

studies. Although no evidence of anti-drug antibodies could be found perhaps the 

immune system had a role in removing the drug from the body as anti-drug 

antibodies were found in pre-clinical testing in cynomolgus monkeys (Leung et al., 

2012). With the relatively short follow-up period of eight weeks when anti-drug 

antibodies were measured, and a failure of the study to reach the repeat dosing 

stage it is not possible to say if GSK2618960 at the dose level used in this study, is 

capable of producing anti-drug antibodies in humans. It is interesting to note the 

appearance of anti-drug neutralising antibodies at slightly higher doses of the study 

drug (Ellis et al., 2019). In this follow-up study they were unable to comment whether 

the anti-drug antibodies contributed to the faster than predicted clearance of 

GSK2618960, as anti-drug antibodies were only detected after 21 days, which 

coincides with the expected clearance for IgG monoclonal antibodies such as 

GSK2618960.  

 

Although few firm conclusions can be made about this drug due to the premature 

termination of the drug trial, this early work with the drug does not reduce its potential 
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to be a drug which could benefit multiple sclerosis and other autoimmune diseases in 

the future if further drug trials are conducted of this antibody or similar antibodies 

targeted to the IL-7 receptor. However the appearance of anti-drug antibodies in this 

subsequent study would severely limit the potential of GSK2618960 as a potential 

therapeutic option for MS patients.  
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CHAPTER 4 - ANTAGONISM AND STIMULATION OF THE IL-7 RECEPTOR 

 

4.1 INTRODUCTION AND AIMS  

 

This chapter describes the laboratory work I have done during my PhD, which 

consists of two main projects (i) understanding whether IL-7Rα genotype affects T 

cell responses to GSK2618960, a novel IL-7Rα antagonist being developed by GSK 

as a potential new treatment for autoimmunity and (ii) whether IL-7Rα genotype 

affects IL-7 bioavailability and signaling in vitro. Each project will be introduced 

below.  

 

Prior to the IL-7Rα trial with GSK2618960 there were concerns about worsening of 

disease activity with antagonism of the IL-7 receptor, despite the evidence with use 

of the drug in EAE mice demonstrating disease improvement with IL-7Rα 

antagonism. This stems back to the 2007 paper (Gregory et al., 2007), which 

depicted greater soluble IL-7Rα in the at risk group with potentially less cell-

associated IL-7Rα and potentially a lower level of IL-7 baseline activity in this group. 

This pharmacogenomic work could also identify genetic groups in which the drug 

was more dangerous or potentially more effective.  

 

The aim of the in vitro work was to explore the effects the SNP rs6897932 had on the 

IL-7Rα pathway. This would explore the increase in soluble IL-7Rα and investigate if 

this reduced cell signaling through the IL-7 pathway. In the Lundstrom paper it points 

towards the opposite effect with increased bioactivity of IL-7 over time with the 

increased soluble IL-7Rα levels with the at risk SNP for rs6897932 (Lundstrom et al., 

2013).  

 

Increased soluble IL-7Rα may not be the sole method by which IL-7 signaling is 

altered. The at risk SNP causes an amino acid change from threonine to isoleucine 

at codon 244 (T244 to I244). Threonine is a polar amino acid with isoleucine being 

hydrophobic. This could lead to a change in signaling strength (Mazzucchelli et al., 

2012). The at risk group could exhibit increased signaling through IL-7Rα which 

could be an alternative method of augmenting IL-7 bioactivity. Gain of function 

mutations have been shown to act as oncogenes in T-ALL and B-ALL (Shochat et 

al., 2011). These mutations are generally insertion of bases encoding a cysteine and 

a proline into exon 6 of IL-7Rα in the extracellular domain at the border with the 
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transmembrane region close to the T244I residue. The cysteines form divalent bonds 

causing homodimerisation of IL-7Rα causing ligand independent signaling through 

the IL-7Rα pathway. This first example of a gain of function mutation causing 

increased signaling points towards another mechanism for potentiating the IL-7Rα 

signal in the at risk group for rs6897932.  

 

Lundstrom et al also demonstrated differences in negative feedback pathways of IL-

7Rα with increased levels of soluble IL-7Rα (Lundstrom et al., 2013). The two major 

examples of these pathways are downregulation of IL-7Rα and upregulation of the 

Fas Ligand receptor (CD95), which causes programmed cell death. Lundstrom 

demonstrated reduced upregulation of CD95 with reduced Fas-mediated cell death in 

vitro with increased soluble IL-7Rα levels. Therefore soluble IL-7Rα changed the 

normal upregulation in CD95 that occurs with increased levels of IL-7. 

Downregulation of IL-7Rα was associated with increased levels of soluble IL-7Rα, 

mimicking augmented IL-7 bioactivity. In the second part of this chapter these 

pathways are explored with in vitro IL-7 stimulation in genetically stratified 

populations according to the SNP rs6897932.  

 

This chapter will investigate not only if there are differences between the genetic 

groups with antagonism of IL-7Rα, but in the second part of this chapter with in vitro 

rhIL-7 stimulation are there differences in IL-7 physiology between the genetic 

groups, particularly in downstream signaling and negative feedback mechanisms of 

the IL-7 receptor.   
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4.2 PROJECT 1: THE EFFECT OF IL-7Rα GENOTYPE T CELL RESPONSES TO 

GSK2618960 

 

As discussed in the main introduction, IL-7 has been implicated as a cofactor in a 

number of autoimmune diseases – including lupus (Gonzalez-Quintial et al., 2011), 

EAE (Lee et al., 2011) and autoimmune diabetes (Penaranda et al., 2012).The 

mechanism by which IL-7 leads to autoimmunity is not fully understood, but is 

believed to include promoting T cell survival, and enhancing the proliferative 

responses of T-cells to weak self-antigens (Fry and Mackall, 2005). Given this, IL-7 

has been considered as a potential therapeutic target.  

 

GSK2618960 is humanized IgG1 monoclonal antibody, developed by GSK, which 

binds to the extracellular domain of human IL-7Rα, which as part of a heterodimer 

with the common gamma receptor forms the IL-7 receptor. It functions as an 

antagonist, competitively inhibiting IL-7 binding and therefore downstream 

phosphorylation of STAT5 (Leung et al., 2012). Although a significant amount of pre-

clinical work had been done by GSK prior to the start of my PhD, no one had asked 

whether or not the effect of GSK2618960 was influenced by IL-7Rα genotype.  

 

This in vitro project was performed in parallel with a first-time-in-human clinical trial 

using GSK2618960 in which I was the chief sub-investigator. The trial is discussed in 

Chapter 3. 
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4.3 METHODS 

 

This section provides an overview of the experimental methods used for each part of 

this chapter. For more detailed information about the methods used please refer to 

the methods section in chapter 2.  

 

4.3.1 PARTICIPANTS 

 

Healthy subjects from the GSK volunteer panel donated blood for the project 

according to IL-7Rα genetic stratification as outlined in the methods section 2.1. 

However I will briefly revisit why the panel was stratified by IL-7Rα in the manner 

used during this study.  

 

The ‘at risk’ allele for soluble IL-7Rα is the C allele for rs6897932. This is in high 

linkage disequilibrium with all identified SNPs in IL-7Rα for multiple sclerosis and all 

other autoimmune diseases. In the Lundstrom paper in 2013, they demonstrated that 

there was an allele dose effect on soluble IL-7Rα levels measured in the serum, 

when comparing the differing genotypes CC (homozygous at risk), CT and TT 

(homozygous protective) at rs6897932. The Lundstrom paper had previously 

demonstrated the highest levels of soluble IL-7Rα with homozygous CC at 

rs6897832 and the lowest levels of soluble IL-7Rα with homozygous TT at 

rs6897932. The heterozygous CT showed intermediate levels of soluble IL-7Rα and 

therefore inclusion of this would reduce the power of the effect that was being 

investigated.  

 

As the effects of soluble IL-7Rα on IL-7-IL-7Rα physiology were being investigated 

and how this was driven by the different genotypes of rs6897932, I decided to 

compare the ‘at-risk’ group (homozygous CC at rs6897932) with the ‘protective’ 

group (homozygous TT at rs6897932) in order to enhance the power of the effect 

being investigated.   

   

There were two flow cytometry assays, the receptor occupancy assay and the 

phosphorylated STAT5 assay. There were two enzyme-linked immunosorbent 

assays (ELISAs) for soluble IL-7Rα and IL-7.  
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4.3.2 DETERMINING THE RECEPTOR OCCUPANCY OF IL-7Rα BY GSK2618960 

 

For the receptor occupancy assay and the ELISAs 30 subjects in total, 10 from each 

genotype group, were investigated. For an overview of the receptor occupancy assay 

please refer to figure 4.1. For more detailed information on the receptor occupancy 

assay and the ELISAs please refer to the methods section 2.4 and 2.7.  

 

4.3.3 MEASURING PSTAT5 FOLLOWING BINDING OF GSK2618960 

 

For the pSTAT5 assay the investigation was initially on 30 subjects but following a 

preliminary analysis a power calculation to 90% power indicated to reach statistical 

significance further subjects would need to be added. Therefore the pSTAT5 assay 

was completed on 41 subjects in total. For an overview of the pSTAT5 assay please 

refer to figure 4.2.  
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Figure 4. 1: Receptor Occupancy Assay  

 

A PE labeled GSK2618960 IL-7Rα antagonist was used to identify the percentage of 

unbound IL-7Rα receptors following incubation of the subjects’ blood with unlabeled 

GSK2618960 IL-7Rα antagonist. 

 

T lymphocytes were identified by antibody staining of CD3+ cells (CD3 V450). The 

IL-7 receptor (CD127 AF647) was also stained (this antibody binds to a different 

epitope on IL-7Rα from GSK2618960). PE labeled GSK antibody was added to 

identify unbound IL-7 receptors.  
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(PE	–	UNBOUND	
IL7R)	
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Figure 4. 2: pSTAT5 assay 

 

Whole blood was incubated with GSK2618960 for 30 minutes. Cell surface antibody 

staining (CD3 V450 and CD4 APC) was followed by a 20-minute incubation with IL-7 

prior to intracellular staining with pSTAT5.  
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4.4 RESULTS 

 

4.4.1 SERUM SOLUBLE IL-7Rα 

 

First I attempted to replicate the reported effects of IL-7Rα genotype on serum 

soluble IL-7Rα levels in my patient cohort (n=22). Using ELISA, serum soluble IL-

7Rα was found to be significantly higher in subjects in the at risk groups compared to 

the protective group (Figure 4.3 mean 78.6 ng/mL vs 29.7 ng/mL; p < 0.0001).   
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Figure 4. 3: ELISA of serum soluble IL-7Rα   

This confirms the genetic differences in soluble IL-7Rα levels based on IL-7Rα 

genetic stratification by genotype with higher levels in the at risk group compared to 

the protective group (mean 78.6 ng/mL vs 29.7 ng/mL; p < 0.0001). Each genetic 

group is represented on the x-axis (at risk group 14 subjects, protective group 8 

subjects, total number = 22) and soluble IL-7Rα (CD127) on the y-axis. The error 

bars indicate the 95% confidence interval. 
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4.4.2 SERUM INTERLEUKIN 7  

 

Next I went on to determine if serum IL-7 varied by IL-7Rα genotype as had 

previously been reported (Lundstrom et al., 2013). IL-7 was measured by ELISA. 

There was no significant difference in this cohort (n=29) between those in the at risk 

group compared to subjects in the protective group, although there was a trend for 

increased IL-7 levels in the at risk group, similar to what was discovered in the 

Lundstrom paper (Figure 4.4, mean 8.22 pg/mL vs 6.02 pg/mL; p = 0.0643). 
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Figure 4. 4: ELISA of serum IL-7 levels based on IL-7Rα genotype  

There was no significant difference between the genetic groups, although there was 

a trend for higher IL-7 levels in the at risk group (mean 8.22 pg/mL vs 6.02 pg/mL; p 

= 0.0643). Each genetic group is represented on the x-axis (at risk group 19 subjects, 

protective group 10 subjects, total number = 29) and IL-7 on the y-axis. The error 

bars indicate the 95% confidence interval. 

	
  

IL
-7

 p
g/

m
l

at 
ris

k

pro
te

ct
ive

0

5

10

15
at risk
protective



 160	

4.4.3 EXPLORING THE EFFECT OF GSK2618960 ON IL-7Rα EXPRESSION AND 

DETERMINING IF THIS IS AFFECTED BY IL-7Rα GENOTYPE 

	
The data presented below was obtained by performing receptor occupancy assays, 

and was analysed with the help of Mr Philip Overend, a statistician from GSK.  

 

In brief the receptor occupancy assays involved incubation of whole blood with 

unlabeled titrated GSK2618960 followed by staining for CD3+ T cells and IL-7Rα to 

measure overall expression of total surface IL-7Rα on T cells. PE labeled 

GSK2618960 was then added to determine the overall expression of unbound IL-

7Rα. The inverse of this expression determined the overall receptor occupancy of IL-

7Rα with unlabeled GSK2618960. Please refer to figure 4.1 for an overview of this 

assay.  

 

From this assay I was able to determine (i) IL-7Rα surface expression of untreated 

cells, and how this varied by genotype (ii) how IL-7Rα expression was affected by 

GSK2618960 and (iii) receptor occupancy and whether it was influenced by 

genotype. 
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4.4.4 NO SIGNIFICANT DIFFERENCE IN EXPRESSION OF SURFACE IL-7Rα BY 

GENOTYPE 

 

In order to compare the genotypic effect on IL-7Rα expression the groups were 

compared with no drug present. There was no statistically significant difference 

between the genetic groups. However, there was a trend for the protective group to 

have greater expression of IL-7Rα than the at risk groups (please refer to figure 4.5) 

but this did not reach statistical significance (mean MFI 1696.80 vs 1524.08; 

p=0.2266).   

 

The trend for the protective group to express higher levels of IL-7Rα has been 

reported elsewhere (Hoe et al., 2010).  
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Figure 4. 5: CD127 MFI according to genetic group 

This figure demonstrates a non-significant trend for greater values of cell-associated 

IL-7Rα (CD127) median fluorescence intensity (MFI) in the protective group (mean 

MFI 1696.80 vs 1524.08; p=0.2266). The MFI values for IL-7Rα are on the y-axis, 

with the Log10 GSK2618960 concentration on the x-axis. IL-7Rα genetics was 

stratified by genotype (at risk group 20 subjects, protective group 10 subjects, total 

number = 30). 
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4.4.5 GSK2618960 LEADS TO INCREASED SURFACE IL-7Rα EXPRESSION 

 

After reviewing the data from figure 4.5, I hypothesized that increasing doses of 

GSK2618960 up to 0.1 µg/ml caused an initial upregulation of IL-7Rα due to a 

negative feedback loop from antagonism of IL-7 signaling, as a result of the blockade 

of signaling via IL-7Rα. From 0.1 µg/ml to maximum dosing of GSK2618960 there 

was a subsequent plateau of this effect.  

 

I tested this hypothesis by analysing the effect of the drug on IL-7Rα expression by 

comparing the mean of IL-7Rα MFI from zero concentration of GSK2618960 to the 

concentration of drug that gives half-maximal response (EC50), as measured by 

pSTAT5, at 0.1 µg/ml. The mean of IL-7Rα MFI covering the plateau phase (from the 

EC50 at 0.1 µg/ml to 100 µg/ml GSK2618960) was also compared.  

 

4.4.6 GSK2618960 INCREASES IL-7Rα MFI UP TO EC50 

 

A paired t test was used to compare the mean of IL-7Rα MFI at zero concentration of 

GSK2618960 with the concentration of drug that gives half-maximal response 

(EC50) as measured by pSTAT5, which was 0.1 µg/ml. 

 

This showed a significant difference between the IL-7Rα MFI at zero concentration of 

drug compared to the EC50 (mean MFI 1582 vs 1791; p = 0.0215). The difference 

between the groups is represented in figure 4.6.  

 

 

4.4.7 GSK2618960 IS NOT RESPONSIBLE FOR THE PLATEAU IN IL-7Rα MFI 

BETWEEN THE EC50 AND 100 µG/ML 

 

A paired t test was used to compare the mean of IL-7Rα MFI at 0.1 µg/ml, the EC50 

of GSK2618960, with 100 µg/ml, the concentration of drug at maximum receptor 

occupancy. 

 

This did not show a difference in IL-7Rα MFI between 0.1 µg/ml and 100 µg/ml 

(mean MFI 1791 vs 1727; p = 0.4738). This data is represented in figure 4.7. 
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Figure 4. 6: IL-7Rα surface expression from baseline up to EC50  

The mean IL-7Rα (CD127) MFI of the cohort at zero concentration and the EC50 of 

GSK2618960 was compared, with a statistically significant increase in CD127 MFI at 

0.1 µg/ml, indicating that GSK2618960 is responsible for the increase in CD127 MFI 

(mean MFI 1582 vs 1791; p = 0.0215; n=30).  The columns represent the mean with 

the 95% confidence interval.  
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Figure 4. 7: IL-7Rα surface expression from EC50 to maximum receptor 
occupancy 

The mean IL-7Rα (CD127) MFI at the EC50 of GSK2618960 and at maximum 

receptor occupancy (100 µg/ml GSK2618960) was compared, with no difference 

found between the groups (mean MFI 1791 vs 1727; p = 0.4738; n=30).  The 

columns represent the mean with the 95% confidence interval.	
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4.4.8 RECEPTOR OCCUPANCY  

	
Next I investigated the effect of genotype on receptor occupancy of GSK2618960. 

This would investigate if differences in IL-7Rα genotype would lead to a difference in 

binding capacity of the drug to the IL-7 receptor.  

 

As described in the methods section, curve fitting was completed for each subject 

and split into four parts:  

 

Part A - minimum receptor occupancy  

Part B - the slope of the curve  

Part C - the log10 EC50  

Part D – maximal receptor occupancy 

 

The data (please refer to figure 4.8) shows that as the concentration of GSK2618960 

increases, as expected, receptor occupancy increases.  

 

4.4.9 COMPARISON OF RECEPTOR OCCUPANCY BETWEEN THE GENETIC 

GROUPS 

 

There were no statistical differences between the genetic groups, including for Part D 

of the curve at maximal receptor occupancy with GSK2618960. 
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Figure 4. 8: Percentage IL-7 receptor occupancy with GSK2618960 

As the concentration of GSK2618960 increased the percentage IL-7 receptor 

occupancy increased. This effect did not show a difference (e.g. Part D of curve at 

maximal receptor occupancy - mean at risk 99.33 vs mean protective 98.67; p = 

0.1140) between the genetic groups (at risk group 20 subjects, protective group 10 

subjects, total number =30). Calculation was from the inverse of the signal from 

unbound IL-7Rα MFI on the y-axis, with the Log10 GSK2618960 concentration on 

the x-axis. IL-7Rα genetics was stratified by genotype. Results are representative of 

two biological duplicates.	
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4.4.10 PHOSPHORYLATED STAT5 MEDIAN FLUORESCENCE INTENSITY 

	
Next I measured pSTAT5 as a measure of downstream signalling from the IL-7 

receptor. I investigated if there was a difference between the genetic groups in 

abrogation of signaling from the IL-7 receptor with increasing doses of GSK2618960.	

 

As described in the methods section, curve fitting was completed for each subject 

and split into four parts:  

 

Part A - maximum response of pSTAT5  

Part B - the slope of the curve  

Part C - the log10 EC50  

Part D – minimum response of pSTAT5 

 

The data (please refer to figure 4.9) shows that as expected, as the concentration of 

GSK2618960 increases phosphorylation of STAT5 decreases, due to antagonism 

through IL-7Rα.  

 

4.4.11 ANTAGONISM BY GSK2618960 IS CAUSED BY PARTIAL AGONISM 

 

At maximal receptor occupancy of GSK2618960 there continued to be stimulation 

through IL-7Rα, indicating that the drug works by partial agonism as evidenced by 

the continued signaling in Part D of the curve for the at risk group (mean 3.75) and 

the protective group (mean 7.03). 

 

This was noted in pre-clinical testing before the commencement of the first-time-in-

human trial. GSK2618960 was used between 0.3 and 100 µg/ml with human whole 

blood T cells, which demonstrated a low but significant phosphorylation of STAT5 

(Leung et al., 2012).   
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4.4.12 AT MAXIMAL RECEPTOR OCCUPANCY THERE IS GREATER ONGOING 

STIMULATION IN THE PROTECTIVE GROUP 

 

For Part D of the curve, at maximal doses of GSK2618960, there was significantly 

greater stimulation through IL-7Rα, as evidenced by pSTAT5, in the protective group 

compared to the at risk group (mean 7.03 vs 3.75; p = 0.0360).  

For the other parts of the curve there were no statistical differences between the 

genetic groups. 
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Figure 4. 9: pSTAT5 signaling with GSK2618960  

At maximal doses of GSK2618960, there was greater signaling through the IL-7 

receptor in the protective group (e.g. Part D of curve at minimum response of 

pSTAT5 - mean 7.03 vs 3.75; p = 0.0360). Percentage maximum signal of pSTAT5 

MFI is on the y-axis and the Log10 GSK2618960 concentration on the x-axis. IL-7Rα 

genetics was stratified by genotype (at risk group 20 subjects, protective group 9 

subjects, total number =29). Results are representative of two biological duplicates.  
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4.5 PROJECT 2: THE EFFECT OF IL-7Rα GENOTYPE ON IL-7 BIOAVAILABILITY 

AND SIGNALING 

 

As discussed in the introduction, in 2013 Lundstrom et al (Lundstrom et al., 2013) 

reported that soluble IL-7Rα (sIL-7Rα) competes with cell-associated IL-7Rα 

complex for binding to IL-7, leading to reduced IL-7 consumption and overall 

increased IL-7 bioavailability and bioactivity. For example, the addition of sIL-7Rα to 

human T cells cultured in the presence of rhIL-7 reduced initial signaling (as 

evidenced by diminished STAT5 phosphorylation); however at later time points sIL-

7Rα augmented IL-7 induced effects – such as IL-7Rα down regulation and CXCR4 

up-regulation. Furthermore IL-7 levels were higher at the end of cultures when sIL-

7Rα was present, confirming its reduced consumption. 

 

In this section I asked, does genotype rs6897932, which is known to effect soluble 

IL-7Rα levels, alter early and/or late IL-7 signaling in vitro? My hypothesis was that 

those carrying the risk variant (homozygous for CC at rs6897932) would lead to 

reduced IL-7 signaling at early time-points, but increased IL-7 signaling overall with 

more prolonged culture. As per the Lundstrom paper I assessed IL-7 signaling by 

measuring IL-7Rα down regulation, and pSTAT5. I also measured CD95, which was 

shown in the Lundstrom paper to have decreased up-regulation in the presence of 

soluble IL-7Rα compared to IL-7 alone. In the Lundstrom paper this was shown to 

have significant effects with reduced Fas ligand mediated cell death. 

 

For this experiment, rather than adding recombinant soluble IL-7Rα to the cell culture 

media I chose to culture the cells in 20% autologous serum – this was done in order 

to determine if the magnitude of difference seen between genotypes was sufficient to 

have a biologically meaningful effect. So as to mimic the molar ratios of sIL-7Rα: 

rhIL-7 used in the Lundstrom paper 2, 20 and 5000 pg/ml of rhIL-7 was added to the 

media. My early and late time points were 30 minutes, 4, 7 and 11 days.  
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4.5.1 CELL CULTURE MEDIA SOLUBLE IL-7Rα DIFFERENCES BETWEEN 

GENOTYPE 

	

Significant differences were found between the at risk group and the protective group 

in soluble IL-7Rα levels in the cell culture supernatants (please refer to figure 4.10).  

 

This confirms that the genetic differences in serum soluble IL-7Rα was present in our 

cohort (demonstrated in figure 4.3), and as reported in the literature (Gregory et al., 

2007) (Lundstrom et al., 2013) maintained in the cell culture media.  

 

	
4.5.2 NO DIFFERENCE IN IL-7 CONSUMPTION BETWEEN THE GROUPS 

	

Multiple t tests with bonferroni correction were used to compare IL-7 levels in the cell 

culture supernatants between the genetic groups. There was no significant difference 

found in IL-7 levels between the genetic groups (please refer to figure 4.11). 
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Figure 4. 10: ELISA of cell culture supernatant soluble IL-7Rα levels 

The genetic differences between the groups was confirmed by the significant 

differences in soluble IL-7Rα with higher levels in the at risk group compared to the 

protective group. Multiple t tests with bonferroni correction generated multiple p 

values, each one below the significance threshold of p=<0.05. Each graph showed a 

particular rh-IL7 titration from the negative control, 2 pg/ml, 20 pg/ml and 5000 pg/ml.  
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group 8 subjects, total number =22). The time point is on the x-axis, with the mean of 

the duplicate median fluorescence intensity (MFI) values of soluble IL-7Rα on the y-

axis. The 95% confidence intervals represent the error bars. Results are 

representative of two biological duplicates.  
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Figure 4. 11: ELISA of cell culture supernatant IL-7 levels  

There was no difference in IL-7 consumption between the genetic groups. Multiple t 

tests with bonferroni correction generated multiple p values, each one above the 

significance threshold of p=<0.05.  Each graph showed a particular rh-IL7 titration 

from the negative control, 2 pg/ml, 20 pg/ml and 5000 pg/ml.  IL-7Rα genetics was 

stratified by genotype (at risk group 14 subjects, protective group 8 subjects, total 
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number =22). The time point is on the x-axis and the mean of the duplicate median 

fluorescence intensity (MFI) values of IL-7 on the y-axis. The 95% confidence 

intervals represent the error bars. Results are representative of two biological 

duplicates.  
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4.5.3 DOWNREGULATION OF IL-7Rα  

	

Independent of genetic group, using t tests to compare IL-7Rα MFI at each dose 

titration of IL-7 at Days 4, 7 and 11, with IL-7Rα MFI at Day 0, there was a significant 

decrease in IL-7Rα MFI at each timepoint. For example at 5000 pg/ml there were 

significant decreases compared to Day 0 at Day 4 (mean MFI difference -908.62, p= 

< 0.0001), Day 7 (mean MFI difference -494.2, p= < 0.0001) and Day 11 (mean MFI 

difference -187.5, p= 0.0320). 

 

Multiple t tests were used to compare the downregulation of IL-7Rα between the 

genetic groups. There was no significant difference found in downregulation of IL-

7Rα between the genetic groups, in particular there was no trend for a decrease in 

IL-7Rα downregulation from the protective group compared to the at risk group (the 

potential mechanism for the results seen with pSTAT5 with project 1).   

 

Figure 4.12 depicts the downregulation of IL-7Rα in CD4+ and CD8+ cells following 

stimulation with rhIL-7, comparing the at risk group with the protective group.   
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Figure 4. 12: IL-7Rα (CD127) downregulation following rhIL-7 stimulation 

No difference was seen for CD4+ (left panel) and CD8+ (right panel) T cells between 

the genetic groups in downregulation of IL-7Rα. Multiple t tests with bonferroni 

correction generated multiple p values, each one above the significance threshold of 

p=<0.05.  Each graph showed a particular rh-IL7 titration from the negative control, 2 

pg/ml, 20 pg/ml and 5000 pg/ml.  IL-7Rα genetics was stratified by genotype (at risk 
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group 14 subjects, protective group 8 subjects, total number =22). The time point is 

on the x-axis and the mean of the duplicate median fluorescence intensity (MFI) 

values of CD127 on the y-axis. The 95% confidence intervals represent the error 

bars. Results are representative of two biological duplicates.  
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4.5.4 UPREGULATION OF CD95 

	

Independent of genetic group, using t tests to compare the Fas Ligand receptor 

(CD95) MFI at each dose titration of rhIL-7 at Days 4, 7 and 11, with CD95 MFI at 

Day 0, there was a significant upregulation of CD95 at 5000 pg/ml of rhIL-7 for days 

4 (mean MFI difference 5113, p= 0.0003) and 7 (mean MFI difference 4820, p= 

0.0007). For Day 11 there was a trend towards upregulation without reaching 

significance (mean MFI difference 1088, p= 0.2489). Smaller doses of rhIL-7 added 

to the culture did not upregulate of CD95 expression. 	

 

Multiple t tests were used to compare the upregulation of CD95 between the genetic 

groups. There was no significant difference found in upregulation of CD95 in CD4+ 

and CD8+ cells between the genetic groups (please refer to figure 4.13). 
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Figure 4. 13: CD95 upregulation following rhIL-7 stimulation 

No difference was seen for CD4+ (left panel) and CD8+ (right panel) T cells between 

the genetic groups in upregulation of CD95 (Fas Ligand Receptor). Multiple t tests 

with bonferroni correction generated multiple p values, each one above the 

significance threshold of p=<0.05.  Each graph showed a particular rh-IL7 titration 

from the negative control, 2 pg/ml, 20 pg/ml and 5000 pg/ml.  IL-7Rα genetics was 
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stratified by genotype (at risk group 14 subjects, protective group 8 subjects, total 

number =22). The time point is on the x-axis and the mean of the duplicate median 

fluorescence intensity (MFI) values of CD95 on the y-axis. The 95% confidence 

intervals represent the error bars. Results are representative of two biological 

duplicates.   
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4.5.5 NO DIFFERENCE IN DOWNSTREAM SIGNALING VIA PSTAT5 BETWEEN 

THE GROUPS 

	

Independent of genetic group, using t tests to compare pSTAT5 MFI at each dose 

titration of IL-7 at Days 4, 7 and 11, with pSTAT5 MFI at Day 0, there was no 

significant increase in pSTAT5 MFI with IL-7 stimulation over the 11 days of the 

culture. Over a short time period there was a significant increase in pSTAT5 MFI on 

Day 0 (30 minutes incubation with IL-7) between the negative control and 5000 pg/ml 

(mean MFI difference 1076, p= < 0.0001).	

	

Multiple t tests were used to compare downstream signaling from IL-7Rα, measured 

by the MFI of pSTAT5, between the genetic groups. There was no significant 

difference found in pSTAT5 in CD4+ and CD8+ cells between the genetic groups 

(please refer to figure 4.14). 
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Figure 4. 14: pSTAT5 following rhIL-7 stimulation 

There was no difference in phosphorylation of STAT5 for CD4+ (left panel) and 

CD8+ (right panel) T cells between the genetic groups. Multiple t tests with bonferroni 

correction generated multiple p values, each one above the significance threshold of 

p=<0.05.  Each graph showed a particular rh-IL7 titration from the negative control, 2 

pg/ml, 20 pg/ml and 5000 pg/ml.  IL-7Rα genetics was stratified by genotype (at risk 
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group 14 subjects, protective group 8 subjects, total number =22). The time point is 

on the x-axis and the mean of the duplicate median fluorescence intensity (MFI) 

values of pSTAT5 on the y-axis. The 95% confidence intervals represent the error 

bars. Results are representative of two biological duplicates. 
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4.6 DISCUSSION  
 
4.6.1 MANIPULATION OF THE IL-7Rα PATHWAY BY GSK2618960 

	
GSK2618960 antagonises IL-7Rα by partial agonism. This is independent of genetic 

group, however its partial agonistic effects are most easily seen in the protective 

group. The literature does not describe the mechanisms of other IL-7Rα antagonists 

used so it is difficult to comment if the partial agonist mechanism is specific to 

GSK2618960.  

 

GSK2618960 increased the expression of IL-7Rα caused by the reduced stimulation 

through IL-7Rα with antagonism of the drug. This resulted in a steady increase in IL-

7Rα expression up to the half maximal concentration of the drug (EC50). However 

although the subsequent plateau in the curve was not found to be statistically 

significant, increased downregulation of IL-7Rα with partial agonism by increasing 

concentrations of GSK2618960 is biologically plausible. This is the first time an IL-

7Rα antagonist has had this effect described, although elsewhere in the literature a 

dose dependent reduction in pSTAT5 following IL-7Rα antagonism in mice is 

described and it would be reasonable to assume similar effects on IL-7Rα was also 

observed, however this report focuses on the use of IL-7Rα antagonists in mice 

rather than humans (Lee et al., 2011). 
 
4.6.2 INHERENT DIFFERENCES BETWEEN THE GENETIC GROUPS 

 
There were increased levels of soluble IL-7Rα in the serum of the at risk group. This 

was the first in vitro study investigating the genetic differences in IL-7 activity over 

several days, based solely on the expression of serum soluble IL-7Rα as determined 

by IL-7Rα genotype. Autologous serum was used which successfully transferred the 

genetic differences seen with levels of soluble IL-7Rα to the cell culture assay 

demonstrated by the ELISA of the cell culture supernatant. Other studies have found 

greater soluble IL-7Rα in the at risk groups, with this difference first found with mRNA 

from PCR (Gregory et al., 2007) and then subsequently using ELISA (Hoe et al., 

2010) (Lundstrom et al., 2013).   

 

There was a trend for greater expression of IL-7Rα in the protective group. Although 

this trend was not found to be statistically significant, the study was not powered to 

assess this observation. However this is not the first study to have seen this trend as 
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it was also observed in a paper from 2010 (Hoe et al., 2010). This difference could 

account for the effect on pSTAT5 signaling seen in the protective group, although it 

would not account for why this effect is only seen at maximal concentrations of IL-

7Rα antagonist.  

 

This led to the hypothesis that differences in negative feedback of the IL-7 pathway 

was the mechanism responsible for the difference seen between the genetic groups 

at maximal concentrations of IL-7Rα antagonism. Therefore in the second part of the 

chapter I explored the negative feedback mechanisms of IL-7Rα downregulation and 

CD95, which had previously been investigated by Lundstrom in vitro with excess 

soluble IL-7Rα. This had previously not been investigated in genetic groups stratified 

by IL-7Rα genotype.  

 

4.6.3 STIMULATION OF IL-7Rα BY IL-7 CAUSES DOWNREGULATION OF IL-7Rα 

MFI 

 

The data following stimulation of IL-7Rα with IL-7 showed significant increases in 

downregulation of IL-7Rα independent of genetic group. This has been demonstrated 

previously in other studies (Park et al., 2004). IL-7Rα is the only γc cytokine receptor 

that downregulates in response to activation (Park et al., 2004). This enables the 

most efficient use of IL-7, a limited resource in vivo, normally produced by stromal 

cells and monocytes (Mackall et al., 2011) to maintain the diversity of the peripheral 

T cell pool (Park et al., 2004). 

 

4.6.4 STIMULATION OF IL-7Rα BY HIGH DOSE IN VITRO IL-7 CAUSES 

UPREGULATION OF CD95  

 

Lundstrom et al demonstrated that increased levels of soluble IL-7Rα reduced the 

normal IL-7 induced upregulation of CD95. This resulted in reduced Fas mediated 

cell death (Lundstrom et al., 2013). This study sought to investigate this relationship 

between in vivo dose levels of IL-7 (2-20 pg/ml) and upregulation of CD95. This 

study did not demonstrate upregulation of CD95 at in vivo doses of IL-7 but did show 

at higher doses of IL-7 (5000 pg/ml) an upregulation of CD95. There was no 

difference between the genetic groups at higher doses of IL-7. This data highlights 

the uncertainty around the role of the IL-7 pathway in vivo in the extrinsic apoptosis 

pathway as mediated by the Fas ligand receptor. This data suggests that at in vivo 
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levels of IL-7, reduction in CD95 upregulation, as suggested by Lundstrom et al, by 

increased soluble IL-7Rα is not possible. However within lymph nodes and areas of 

lymphopoiesis IL-7 is secreted by stromal cells and vascular endothelium and IL-7 

levels will be higher than the normal range of IL-7 in the plasma (2-8 pg/ml) (Sprent 

and Surh, 2012). Also raised IL-7 levels within a lymphopenic environment could 

invoke this mechanism and warrants further investigation.  

 

 

4.6.5 STIMULATION OF IL-7Rα BY IL-7 CAUSES EARLY RATHER THAN LATE 

INCREASES IN SIGNALING OF PSTAT5 

 
The data in this study demonstrated significant early increases (approximately 30 

minutes incubation on Day 0) in pSTAT5 signaling with administration of IL-7. This is 

concordant with the data from other studies (Lundstrom et al., 2013). The data does 

not support ongoing later activation of pSTAT5 from IL-7Rα activation. The duration 

and intensity of IL-7Rα signaling that supports survival and homeostatic proliferation 

of T cells is unknown (Carrette and Surh, 2012). It is unlikely that T cells are 

supported by a continuous stimulation with high concentrations of IL-7, particularly 

considering that IL-7 is present in low concentrations in vivo and on IL-7 binding to 

IL-7Rα this promotes IL-7Rα downregulation as evidenced from the data in this 

chapter.  

 
	
4.6.6 DIFFERENCES BETWEEN THE GENETIC GROUPS FOLLOWING 

MANIPULATION OF THE IL-7Rα PATHWAY 

 
 
There was greater pSTAT5 signaling in the protective group at maximal 

concentrations of GSK2618960. The partial agonist effect of this IL-7Rα antagonist 

enabled this observation of this difference between the protective genotype group 

and the at-risk groups. A mean difference of -3.28 (p=0.0360) when IL-7Rα receptors 

were fully bound with the IL-7Rα antagonist pointed towards differential activation 

through the IL-7Rα pathway between genetic groups, with greater activation through 

IL-7Rα in the protective group.  

 

Up until this point, there has been no demonstrable genotype effect on IL-7 signaling 

via pSTAT5 in cells. This novel observation on cell signaling is particularly important 

as the only previously significant genetic difference between individuals based on IL-
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7Rα SNPs was the amount of soluble IL-7Rα, first with soluble IL-7Rα mRNA 

(Gregory et al., 2007) in PBMCs and cell lines and later with CD4+ T cells and 

dendritic cells (Lundstrom et al., 2013) (Hoe et al., 2010), but also at the level of 

protein expression of soluble IL-7Rα (Hoe et al., 2010). In the lymphopenic setting in 

individuals with HIV, patients with ‘haplotype 2’ (protective for rs6897932 with lower 

levels of soluble IL-7Rα) showed faster reconstitution of T cells following treatment 

with HAART (Rajasuriar et al., 2010). However these studies did not demonstrate 

these genetic differences by pSTAT5 and this study is the first to demonstrate 

differential pSTAT5 signaling based on IL-7Rα genotype.  

 

A potential mechanism to explain the phenomenon of greater signaling in the 

protective group at maximal concentrations of IL-7Rα antagonist could be a 

difference in the relative strength of negative feedback signaling between the genetic 

groups. Based on our findings, the protective group would have less negative 

feedback regulation than the at risk group. The major mechanism of negative 

feedback in IL-7Rα physiology is downregulation of IL-7Rα receptors upon exposure 

to IL-7. As discussed in the introduction to this thesis, there are many mechanisms 

which cells use to downregulate IL-7Rα, including increased JAK3 activity on IL-7Rα 

leading to greater lysosomal degradation of IL-7Rα (Henriques et al., 2010). 

Following IL-7 stimulation, there is increased expression of Gfi-1, a transcriptional 

repressor which downregulates new protein synthesis of IL-7Rα (Park et al., 2004).  

 

The second part of the chapter focused on stimulation of IL-7Rα, which tested the 

hypothesis of differential relative negative feedback of IL-7Rα between the genetic 

groups being responsible for the increased pSTAT5 signal at maximal antagonism of 

IL-7Rα by GSK2618960.  

 

There were no differences found between the genetic groups for the negative 

feedback mechanisms (downregulation of IL-7Rα and upregulation of CD95) 

investigated in this study. This is contrary to the evidence that was presented by 

Lundstrom et al that increased soluble IL-7Rα, the effective difference between the 

genetic groups, would lead to differences in downregulation of IL-7Rα.   

 

There was also no difference between the genetic groups in IL-7 consumption, as 

demonstrated by IL-7 ELISA of the cell culture supernatants, which was the major 

mechanism suggested by Lundstrom et al for the differences seen between the 

genetic groups.  
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There were also no significant differences seen in pSTAT5 signaling between the 

genetic groups with stimulation of IL-7Rα. Although this was not demonstrated in 

previous publications according to IL-7Rα genotype, Lundstrom et al demonstrated 

that independent of genotype, an increasing ratio of soluble IL-7Rα to IL-7 led to a 

reduction of the pSTAT5 signal at early timepoints. This effect was not reproduced in 

this study.   

 

One limitation of the study is that it could be argued that the study did not have the 

power to detect differences between the genetic groups. Perhaps the actual levels of 

IL-7 and soluble IL-7Rα used were too small to detect a difference. For example we 

detected with the soluble IL-7Rα ELISA between 6-10 ng/ml in the at risk group and 

2-3 ng/ml in the protective group in the supernatants used in the cell culture. This 

value for soluble IL-7Rα was lower than what we originally predicted and did not 

equate to the middle molar ratios seen in the Lundstrom paper when a significant 

effect from soluble IL-7Rα was seen. This middle molar ratio was also postulated to 

be the ratio seen in vivo between soluble IL-7Rα and IL-7 as soluble IL-7Rα 

circulates in relative molar excess to IL-7. Based on previous studies we initially 

predicted approximately 100ng/ml as the average serum soluble IL-7Rα 

concentration. In our study cohort there was 80 ng/ml soluble IL-7Rα for the at risk 

group and 30 ng/ml approximately for protective group. This would mean lower levels 

of IL-7 were needed to reach the 500:1 middle molar ratio as postulated by 

Lundstrom et al.   

 

However, the 500:1 molar ratio has not been reproduced in subsequent studies 

(Cote et al., 2015) and even in the Lundstrom paper it is not clear if the 500:1 molar 

ratio was significant when working with human T cells. In one study (Cote et al., 

2015) using recombinant soluble IL-7Rα a minimum of 200 µg/ml and a maximum of 

1000 µg/ml was used which is several thousand fold more than what was found in 

the cultures used in our study. In this study they found a dose response relationship 

between the amount of soluble IL-7Rα and increased IL-7 activity. In the Lundstrom 

paper they used smaller amounts of soluble IL-7Rα but nevertheless started at a 

minimum of 1 µg/ml and went up to 10 µg/ml, which was several hundred fold more 

than the cultures used in our study. Perhaps in the effort to recreate in vivo 

conditions within our cultures, too low a level of soluble IL-7Rα and IL-7 was used to 

see differential effects between the genetic groups. 
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In summary this was the first study to find differences between the genetic groups for 

IL-7Rα downstream signaling with pSTAT5. Although this pointed towards a 

difference in negative feedback between the genetic groups I was unable to 

demonstrate this with in vitro rhIL-7 stimulation, using rhIL-7 levels analogous to that 

found in vivo.   
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CHAPTER 5 – THE CAMTHY TRIAL 

 

5.1 INTRODUCTION TO THE CAMTHY TRIAL 

 

CAMTHY is a study aimed at increasing thymopoiesis of T lymphocytes in order to 

re-balance and diversify the population of lymphocytes post alemtuzumab, which 

was hypothesized to reduce the autoimmune side effects, associated with 

alemtuzumab.  

 

In this section of the thesis I describe the outcome of the dose tolerability sub-study 

part of the CAMTHY trial, as I was heavily involved at this stage of the trial. Please 

refer to section 5.2.4 for more details on my role within the CAMTHY trial.  

 

Alemtuzumab is a monoclonal antibody, which is directed against CD52, a protein of 

unknown function on lymphocytes. Alemtuzumab causes a lymphopenia, following 

which homeostatic reconstitution leads to prolonged alteration of the immune 

repertoire.  

 

Lymphocytes recover at different speeds following treatment, with B lymphocytes 

recovering the fastest, reaching the lower limit of normal (LLN) at 3 months. CD8+ T 

lymphocytes recover to the LLN at 19.5 months post treatment. CD4+ T lymphocytes 

are slowest to recover at 32 months (Kousin-Ezewu et al., 2014).  

 

Despite the high clinical efficacy of alemtuzumab in reducing the disability in MS 

patients (Cohen et al., 2012) (Coles et al., 2012b) (Coles et al., 2012a), its use does 

come with side effects, specifically the development of secondary autoimmunity in 

30-40% of patients following administration (Tuohy et al., 2015) (Kousin-Ezewu and 

Coles, 2013). The efficacy and secondary autoimmunity experienced with 

alemtuzumab use is explained in more detail in the main Introduction in sections 1.10 

and 1.10.2.2. 

 

The lymphopenia following alemtuzumab and the subsequent reconstitution of 

lymphocytes occurs when the clones of lymphocytes that remain following depletion 

are activated by cytokines such as IL-7, IL-15 and IL-21 (Jameson, 2002). IL-7 is a 

particularly important cytokine, which stimulates increased thymic production of T 

lymphocytes, activation of anti-apoptotic signaling via the IL-7 receptor on 
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lymphocytes and the expansion and survival of peripheral T lymphocytes (Fry and 

Mackall, 2005).   

 

There is also continuous engagement of the T cell receptors with self-peptide/MHC 

complexes, particularly in the lymphopenic environment that prevails after 

alemtuzumab (Takeda et al., 1996) (Tanchot et al., 1997). Together with the release 

of homeostatic cytokines this leads to the process of controlled peripheral (i.e. 

outside of the thymus) repopulation of lymphocytes referred to as ‘homeostatic 

proliferation’. 

 

Joanne Jones et al investigated the reconstitution of lymphocytes post alemtuzumab 

and compared this to the occurrence of secondary autoimmunity (Jones et al., 2013). 

It had previously been established that there was no difference in clinical efficacy of 

alemtuzumab for MS between patients affected by secondary autoimmunity and 

those not affected (Habek et al., 2012). Jones et al established that there was no 

difference in the speed of lymphocyte reconstitution between the autoimmune and 

non-autoimmune groups post alemtuzumab (Jones et al., 2013).  

 

The paper eloquently described measuring thymic output by analysing naïve T cells. 

T cell receptor excision circles, small sections of DNA that are produced following T 

cell maturation in the thymus that persist in mature T cells (Douek et al., 1998), were 

also measured. It has been previously demonstrated that MS patients had reduced 

thymic thymopoiesis (Hug et al., 2003). The paper by Jones et al showed that this 

was exacerbated by alemtuzumab (Jones et al., 2013).  

 

Alemtuzumab also increased peripheral expansion of the remaining lymphocyte 

clones, as measured by CDR3 and TCR spectratyping and sequencing, leading to a 

less diverse lymphocyte pool.  The clones of cells remaining after alemtuzumab have 

previously been shown to be enriched for autoreactive cells (Jones et al., 2009). In 

the early reconstitution phase post alemtuzumab, the peripheral expansion of 

lymphocytes was greater in CD8+ cells than CD4+ cells. CD28-

CD57+CD8+TEMRAS, previously associated with Grave’s disease (Sun et al., 

2008), particularly dominated the CD8+ population post alemtuzumab treatment.  

 

It is interesting that early peripheral reconstitution of T cells affects CD8+ cells when 

the cell count is lowest, as this is when IL-7 levels will be high. It has already been 

established that IL-7 is an important cytokine in homeostatic proliferation (Fry and 
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Mackall, 2005) and it has been demonstrated that CD8+ lymphocytes are more 

sensitive to IL-7 than CD4+ lymphocytes (Guimond et al., 2009). This results in 

greater homeostatic proliferation in CD8+ lymphocytes during early reconstitution 

following alemtuzumab (Jones et al., 2013).  

 

The observation that those with secondary autoimmunity post alemtuzumab were 

more likely to have reduced thymic function and greater homeostatic proliferation 

(Jones et al., 2013), lead to the hypothesis that altering this process by increasing 

thymic output with keratinocyte growth factor (palifermin), would reduce secondary 

autoimmunity following alemtuzumab. This is the hypothesis that led to the CAMTHY 

trial.  
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5.2 METHODS 

 

5.2.1 STUDY DESIGN AND PARTICIPANTS 

 

The final 3 patients from the sub-study would enter the main ‘CAMTHY’ trial, a single 

centre, randomised, double-blind, placebo-controlled trial, which was powered to 

investigate 80 patients with relapsing-remitting MS to assess if preserving thymic 

function with the use of Palifermin would help to reduce the autoimmune side effects 

associated with alemtuzumab. All patients gave written informed consent in 

accordance with Good Clinical Practice (REC 12/LO/0393). 

 

The inclusion criteria for the trial were patients who were between 18 and 50 years of 

age with relapsing-remitting multiple sclerosis; disease duration of 10 years or less; 

at least two relapses in the previous 2 years with at least one in the previous 12 

months (untreated or on beta interferon or glatiramer acetate) and an expanded 

disability status scale (EDSS) score of 5.0 or less.  

 

Exclusion criteria for the trial included progressive forms of multiple sclerosis; 

previous thymectomy; previous treatment with alemtuzumab, natalizumab, 

mitoxantrone, cyclophosphamide, cladribine, rituximab or any other 

immunosuppressant or cytotoxic therapy; a history of malignancy, or a history of 

clinically significant autoimmunity other than multiple sclerosis. 

 

5.2.2 DRUG TREATMENTS 

 

Please refer to figure 5.1 for an overview of the trial. All patients received 12mg/day 

alemtuzumab for 5 days at baseline and 3 days at month 12. Following a dose-

tolerability sub-study, patients were assigned (1:1) to receive placebo or palifermin, 

given for 3 days immediately prior to and after each cycle of alemtuzumab, with 

repeat doses at month 1 and month 3. 

 

The sub-study was an open-label dose escalation tolerability study, which 

investigated if the doses of palifermin to be used in the study would be tolerable.  

The sub-study was made up of 9 patients in total with 3 different dose levels of 

palifermin – 90 mcg/kg/day, 120 mcg/kg/day and 180 mcg/kg/day. 3 patients were 

used at each dose level. Although the top dose of 180 mcg/kg/day had been used 
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previously in humans (Vadhan-Raj et al., 2010), it had never been used with a 

repeated dosing strategy at such frequent intervals in human studies.  

 

Palifermin was given as an intravenous bolus injection on days -5, -4 and -3 prior to 

each cycle of alemtuzumab and on days 8, 9 and 10. Three further doses were given 

at month 1 and month 3 after each cycle of alemtuzumab.  

 

Each dose level was separated by a minimum of 10 days (from the day 10 dose) and 

escalation between doses only occurred if no more than mild (grade 1) or moderate 

adverse events (grade 2) occurred, according to the Common Terminology Criteria 

for Adverse Events version 3.0 (Trotti et al., 2003).  

 

Subjects were seen at 3-month intervals for standard monitoring of alemtuzumab and 

at the same time were monitored for adverse effects from palifermin up to month 30.  

 

Following completion of the sub-study, the trial steering committee would be 

consulted with the clinical results. If 180 mcg/kg/day of palifermin was deemed 

tolerable (no adverse events greater than grade 2), the main CAMTHY study would 

be able to proceed.  

 

The major primary endpoint of the main CAMTHY trial was measurement of thymic 

reconstitution with naïve CD4+ (CD45RA+CCR7+) cell count at month 6. The results 

from the main CAMTHY trial can be viewed in the paper that has been published in 

the appendix (Coles et al., 2019).  

 

5.2.3 STATISTICAL ANALYSIS 

 

The decision to proceed to the main CAMTHY trial from the sub-study was made by 

the trial steering committee following review of the sub-study adverse events; 

therefore no formal statistical analysis was needed. In the main study 28 patients 

were needed for 80% power to calculate a 50% increase in the percentage of naïve 

CD4+ cells at month 6. For further information on the statistical analysis please refer 

to the manuscript of the CAMTHY trial in the appendix.  
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5.2.4 MY PERSONAL ROLE WITHIN THE CAMTHY TRIAL 

 

At the beginning of my research period, prior to the commencement of the IL-7Rα 

trial, I was heavily involved with some of the administrative work before the CAMTHY 

trial began. This involved liaising with local general practitioners about the taking and 

monitoring of blood results for patients on the trial with the help of the Cambridge 

Local Research Network (CLRN). I also liaised with the staff on the Clinical research 

Facility (CRF), where the patients would be dosed with palifermin and alemtuzumab. 

I administered the first dose of palifermin to the first patient on the sub-study.  

 

I helped to consent patients for the trial and explained to them the rationale for the 

CAMTHY trial and what they could expect from participating in the trial. 

 

Following this I was the main doctor on the sub-study assessing patients during their 

treatment, monitoring for side effects from palifermin and helping to document the 

adverse events that occurred. This was during the treatment that patients received 

but also in the follow-up clinic visits. I helped to field and reply to queries from 

patients during the trial period outside of these scheduled visits.  

 

As part of this work I took blood from patients for immune phenotyping. Within the 

laboratory I helped to prepare the peripheral blood mononuclear cell (PBMC) layer 

for use in subsequent assays. However I was not involved in further laboratory or 

statistical analysis of the samples taken. 

 

The information and knowledge gathered during the completion of the sub-study and 

the beginning of the main CAMTHY trial helped me to prepare for the IL-7Rα trial, 

which aided my development as a translational clinician. 
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Figure 5. 1: Overview of the CAMTHY trial and tolerability sub-study.  

Patients for the open label dose escalation tolerability sub-study were given either 
90, 120 or 180 mcg/kg/day of palifermin. The treatment cycle outlined above was 
repeated at month 12. If doses were tolerated with no serious adverse events (AEs), 
the 3 patients dosed with 180 mcg/kg/day of palifermin would proceed to the main 
CAMTHY trial of 80 patients, which was a placebo-controlled trial with outcomes 
measuring thymic function (e.g. naïve CD4+ cell count) and clinical autoimmunity.  
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5.3 RESULTS 

  

5.3.1 CLINICAL RESULTS OF THE DOSE TOLERABILITY SUB-STUDY 

 

Palifermin was deemed tolerable by the trial steering committee as no patient had an 

adverse event that was deemed serious or life threatening (all adverse events grade 

2 and below).  Therefore the main CAMTHY trial of 28 patients was allowed to 

proceed following the sub-study in 9 patients.  

 

Please refer to table 5.1 for a full outline of the adverse events that occurred during 

this sub-study. Here I will detail some of the more common side effects that were 

encountered by patients during the study.  

 

Palifermin caused an infusion syndrome in which patients developed an 

erythematous rash that would later lead to some experiencing peeling of the skin, 

hair thinning and in a few cases hair loss.  

 

Patients also experienced swelling of the hands and face. Some patients noticed 

discolouration of the tongue with altered taste for a short period after the transfusion.  

 

Palifermin administration prior to alemtuzumab did not alter the adverse effects 

experienced during alemtuzumab which has been well described elsewhere (Coles 

et al., 1999).  
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	 	 90mcg/kg/day 120mcg/kg/day 180mcg/kg/day 

Infusion-
associated 
symptoms 
at baseline 

Erythematous skin 
rash 

3 3 3 

Oral symptoms 3 3 3 
Oedema 
(facial/hands) 

1 3 3 

Urticarial skin rash 1 0 2 
Discoloured tongue 3 3 3 
Pyrexia 3 2 1 
Headache 2 0 2 
Skin sensitivity 0 0 2 
Fatigue 0 0 1 
Chest tightness 2 0 1 
GI upset 1 1 2 

Infusion-
associated 
symptoms 
at months 1 
and 3 

Erythematous skin 
rash 

2 3 2 

Oral symptoms 3 3 3 
Oedema 
(facial/hands)  

3 3 3 

Discoloured tongue 3 3 3 
Skin sensitivity 0 0 1 
Peeling skin 0 1 0 
Pyrexia 1 1 0 
GI upset 1 0 1 

Adverse 
Events 
unrelated to 
infusions 

Hair loss 1 1 2 
Dry skin 2 1 2 
Nail changes 
(ridging) 

1 0 1 

Upper respiratory 
tract infection 

2 0 1 

Fatigue 1 0 0 
Low mood 1 1 0 

	
Table 5. 1: Adverse event data for sub-study patients by dose of Palifermin  

This displays the incidence of all adverse events during the sub-study. The severity 
of the adverse events were categorised as either grade 1 or 2. Adjusted with 
permission from Joanne Jones, principal investigator of the CAMTHY trial. 
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5.3.2 SUMMARY OF THE MAIN CAMTHY TRIAL RESULTS 

 

The main trial was stopped following a pre-planned interim analysis after 28 patients 

had reached month 6 post-treatment.  

 

The primary outcome of the CAMTHY trial assessed thymic production of T 

lymphocytes by measuring the CD4+ naïve T cell count (CD45RA+ CCR7+) at month 

6. Patients treated with palifermin displayed less naïve CD4+ cells than patients 

treated with placebo at month 6 (2.229x107/L vs. 7.733x107/L; p=0.007).   

 

Thymopoiesis within the dose tolerability sub-study was assessed following this 

result. A dose dependent effect was seen on the reduction of thymic reconstitution by 

palifermin. Naïve CD4+ T-cells at 6 months were lower in the 90mcg/Kg arm of the 

sub-study compared to placebo. Naïve CD4+ counts continued to reduce in the three 

patients on 120mcg/Kg and 180mcg/Kg of palifermin (table 5.2). 

 

There was no difference in rates of autoimmunity between the two treatment groups 

after 30 months of follow-up with 4/14 palifermin versus 5/13 placebo developing 

clinical autoimmunity (one patient was lost to follow-up; Fisher’s exact test, two-

sided, p=0.69).  

 

For further details of the results from the main CAMTHY trial please refer to the 

appendix of the paper from the trial, which has been published (Coles et al., 2019). 
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Variable	 Group	 Statistic	 Baseline	 M1	 M3	 M6	

Sample	Numbers	

Low	dose	
(90mcg/Kg)	

n	

2	 3	 2	 2	

Median	dose	
(120mcg/Kg)	

3	 3	 3	 3	

High	doses	
(180mcg/Kg)	

3	 2	 3	 3	

Total	CD4	Count	
(x109/mL)		

90mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

0.870	
(0.270)	
0.740	
0.69,	1.18	

0.065	
(0.099)	
0.010	
0.006,	0.18	

0.130	
(0.130)	
0.060	
0.05,	0.28	

0.127	
(0.050)	
0.120	
0.08,	0.18	

120mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

1.043	
(0.463)	
1.140	
0.54,	1.45	

0.006	
(0.00)	
0.006	
0.006,	
0.006	

0.077	
(0.046)	
0.050	
0.05,	0.13	

0.087	
(0.064)	
0.060	
0.04,	0.16	

180	mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

0.88	
(0.352)	
0.920	
0.51,	1.210	

0.024	
(0.031)	
0.006	
0.006,	
0.060	

0.039	
(0.029)	
0.050	
0.006,	
0.060	

0.057	
(0.015)	
0.060	
0.04,	
0.070	

%	of	naïve	CD4	
(CCR7+CD45RA+)	

90mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

44.65	
(0.495)	
44.650	
44.3,	45.00	

3.55	
(2.686)	
5.020	
0.45,	5.180	

1.62	
(0.877)	
1.620	
1.00,	2.240	

23.45	
(11.950)	
23.450	
15.0,	
31.90	

120mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

37.8	
(16.441)	
45.700	
18.9,	48.80	

2.617	
(2.724)	
1.820	
0.38,	5.65	

4.19	
(2.745)	
2.820	
2.4,	2.35	

7.587	
(8.325)	
2.810	
2.75,	
17.20	

180mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

30.567	
(6.527)	
27.000	
26.6,	38.10	

1.575	
(0.134)	
1.575	
1.48,	1.670	

7.83	
(3.189)	
8.230	
4.46,	10.80	

10.963	
(9.595)	
7.540	
3.55,	
21.80	

Naïve	CD4	
(CCR7+CD45RA+)	

count	
(x107/mL)	

90mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

42.787	
(13.42)	
42.787	
33.3,	
52.274	

0.05492	
(0.02467)	
0.0518	
0.031947,	
0.081	

0.2072	
(0.1296)	
0.2072	
0.1344,	
0.28	

2.176	
(0.5317)	
2.176	
1.8,	2.552	

120mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

44.3547	
(31.0107)	
52.098	
10.206,	
70.76	

0.01665	
(0.01733)	
0.011582	
0.00242,	
0.03596	

0.2847	
(0.14264)	
0.3666	
0.12,	
0.3675	

0.52813	
(0.4661)	
0.44	
0.1124,	
1.032	

180mcg/Kg	

Mean	(SD)	
	
Median	
Min,	Max	

28.114	
(16.470)	
24.472	
13.77,	
46.101	

0.04971	
(0.05528	
0.04971	
0.01063,	
0.0888	

0.26184	
(0.2152)	
0.223	
0.0687,	
0.4938		

0.5376	
(0.3296)	
0.5278	
0.213,	
0.872	

	
	
	
Table 5. 2: Sub-study results of naïve (CD45RA+CCR7+) CD4+ cells  

A dose dependent effect was seen on the reduction of thymic reconstitution by 
palifermin. Naïve CD4+ T-cells at 6 months were lower in the 90mcg/Kg arm of the 
sub-study compared to placebo. Naïve CD4+ counts continued to reduce in the three 
patients on 120mcg/Kg and 180mcg/Kg of palifermin. The data shows either cell 
subset count or percentage of the total CD4+ T cell population. The data shows 
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mean (SD), median, minimum and maximum	values. Adjusted with permission from 
Joanne Jones, principal investigator of the CAMTHY trial.  
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5.4 DISCUSSION 

 

Palifermin at doses of up to 180 mcg/kg/day over consecutive days, the first time this 

dose regimen has been used in humans, was tolerable. However there was a 

significant burden of side effects experienced with the drug described above in the 

results section. However none of these side effects were deemed serious.  It should 

be taken into account that the side effects mainly affected the integument and were 

therefore visible, which could potentially act as a significant deterrent to patients. For 

example 4/9 patients treated with palifermin suffered with hair loss. In at least one 

patient the hair loss was significant.  

 

Palifermin exacerbated alemtuzumab’s negative effect on thymopoiesis of T 

lymphocytes. In this tolerability sub-study this demonstrated an apparent dose effect 

of impaired thymic function after palifermin and alemtuzumab co-administration. This 

was a novel finding and a wholly unexpected result, particularly the increased 

thymopoiesis seen with palifermin administration in animal studies (Seggewiss et al., 

2007). This paper had given 250mcg/Kg/day for 3 days to macaques, which had 

been well tolerated with effects lasting up to 12 months on thymopoiesis. Therefore it 

could be argued that a greater dose of palifermin was required in humans, however 

with the evidence from the sub-study demonstrating a dose effect this undermines 

this line of argument. 

 

Previous studies of palifermin in humans in preventing graft vs host disease following 

allogeneic HSCT (Rizwan et al., 2011) and in HIV patients with a CD4+ lymphopenia 

despite HAART (Jacobson et al., 2014) demonstrated that at 90 mcg/kg/day 

palifermin did not improve thymopoiesis. The aim of the CAMTHY trial and the 

tolerability sub-study was to test the hypothesis that suboptimal dosing was the 

cause of the failure of an improvement in thymic function with previous use of 

palifermin in humans. The unexpected negative effect of palifermin at doses of 180 

mcg/kg/day when co-administered with alemtuzumab may be due to upregulation of 

CD52 on thymic epithelial cells by palifermin, with subsequent greater depletion of 

these cells by alemtuzumab.  

 

This trial has failed to answer the critical question of whether the thymus can be 

successfully manipulated post alemtuzumab, to increase thymopoiesis of T 

lymphocytes, leading to a decrease in the secondary autoimmune side effects 

encountered post alemtuzumab. Future strategies could include use other agents 
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such as IL-7 and IL-15 (Rizwan et al., 2011), either alone or in tandem to boost the 

role of the thymus in lymphocyte reconstitution following use of alemtuzumab. 
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CHAPTER 6 - LYMPHOCTYE RECOVERY AFTER ALEMTUZUMAB DOES NOT 

PREDICT MULTIPLE SCLEROSIS DISEASE ACTIVITY 

 

This section of my thesis has been modified from my paper published in the 

American academy of neurology journal ‘Neurology’. This section of my PhD enabled 

an important clinical question on prediction of autoimmunity based upon lymphocyte 

reconstitution to be answered. IL-7 has an integral role in the homeostatic 

proliferation of lymphocytes after alemtuzumab, and this part of my PhD enabled a 

deeper understanding of the behaviour of lymphocytes following alemtuzumab 

administration.   

 

6.1 INTRODUCTION 

 

Alemtuzumab has proven efficacy as a treatment for relapsing remitting multiple 

sclerosis. In a phase-2 trial, compared with interferon beta-1a, alemtuzumab reduced 

the risk of relapse and sustained accumulation of disability by more than 70% at 

three years, with sustained efficacy at five years (Coles et al., 2008) (Cohen et al., 

2012).  Two phase-3 trials (CARE-MS I and CARE-MS II) have confirmed efficacy in 

treatment-naïve patients, and established superiority over interferon beta-1a in 

patients who continue to relapse despite first-line therapy (Cohen et al., 2012) (Coles 

et al., 2012b). Alemtuzumab was licensed by the European Medicine Agency (EMA) 

(Genzyme, 2013) and is entering routine clinical practice, as a treatment for active 

multiple sclerosis.  

 

Alemtuzumab is a lymphocyte depleting anti-CD52 monoclonal antibody. Each cycle 

causes profound pan-lymphocyte depletion, but the relatively infrequent dosing 

regimen (one treatment a year for two years followed by further treatments when 

there is breakthrough disease activity) allows reconstitution to occur. The rate and 

degree of recovery varies with cell type: B cells recover rapidly, whereas T cell 

lymphopenia is prolonged with CD4+ and CD8+ cells taking 35 and 20 months, 

respectively, to reach the lower limit of normal (Hill-Cawthorne et al., 2012). During 

this period of immune reconstitution, 30% of individuals experience thyroid 

autoimmunity, and 1% develop immune thrombocytopenic purpura (ITP); with rare 

cases of Goodpasture's syndrome, autoimmune haemolytic anaemia and 

autoimmune neutropenia also being reported (Coles et al., 2012a).  It has been 

shown that the risk of developing autoimmunity after alemtuzumab is unrelated to 
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rate of T cell reconstitution (but rather reflects the degree to which recovery occurs 

by expansion of cells that have escaped depletion, rather than thymopoiesis) (Jones 

et al., 2013).   

 

However, a report published in 2013 (Cossburn et al., 2013), has suggested that 

peripheral CD4+ recovery can be used to predict multiple sclerosis disease activity 

after treatment, with counts greater than 388.5 x106 cells per mL at 12 months 

following therapy identifying patients who are likely to have recurrent disease activity 

and who may therefore benefit from further treatment. Given the clear clinical 

implications of this claim, we re-assessed this finding in the 'Cambridge cohort’ - a 

larger group of patients in whom the role of alemtuzumab in relapsing-remitting 

multiple sclerosis was originally evaluated and which therefore provides the most 

prolonged duration of follow-up in multiple sclerosis patients who have received 

alemtuzumab.  
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6.2 METHODS 

 
I designed and conducted the study, analysed data in the study with the statistician 

Mr Richard Parker. I interpreted the data in the study, drafted and revised the 

manuscript. I am grateful to Dr Joanne Jones who also helped with the study design, 

data analysis and revision of the manuscript prior to publication.  

 
6.2.1 PATIENTS AND PROCEDURES 

 

All patients had relapsing-remitting multiple sclerosis (RRMS) and had participated 

in: CAMMS223 (a Phase 2 randomised control trial) and CAMMS 224 or SM3 (both 

investigator-led, open label studies). CAMMS223 key eligibility criteria were: disease 

onset within 3 years, at least two clinical relapses during the previous 2 years and a 

score of 3 or less on the Expanded Disability Status Scale (EDSS). Patients were 

included in CAMMS 224 and SM3 if they had at least 1 relapse in the previous year, 

an EDSS score of 6.0 or less, with disease duration of less than ten years. 

Subsequently all patients entered either CAMSAFE (an investigator led long-term 

observational study), or the extension phase of the CAMMS223 trial. The first patient 

from this cohort was treated on 22 November 1999 with the date for final collection of 

data on 1 January 2013. 

 

All studies were approved by a regional ethics board and institutional research 

committee. All patients gave written informed consent.  

 

6.2.2 CLINICAL TREATMENT AND FOLLOW-UP PROTOCOL 

 

All patients received at least 2 elective cycles of alemtuzumab given annually, with 

the potential for further cycles if there was clinical or radiological evidence for on-

going disease activity. Patients were reviewed at 1 and 3 months and then quarterly 

for the first two years after each treatment cycle. For the following two years, they 

were seen biannually and then at least annually thereafter. Patients were also seen 

whenever a relapse was suspected. 
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6.2.3 OUTCOME ASSESSMENTS  

 

For participants in CAMMS223 study, EDSS scores were determined quarterly in a 

blinded fashion by a neurologist who also adjudicated possible relapses. The same 

assessor measured the EDSS of patients in the CAMMS224 and SM3 studies, albeit 

less frequently. Sustained accumulation of disability was defined as an increase of 

1.5 EDSS points from a baseline of 0, or an increase of ≥1.0 if the baseline was ≥1.0 

confirmed over 6 months. A relapse was defined as new neurological symptoms 

attributable to multiple sclerosis, lasting >48 hours with an objective change in 

neurological examination.  

 

Peripheral blood mononuclear cell phenotyping was performed at baseline and then 

quarterly for the first 36 months and then at least annually (including total lymphocyte 

count, CD4+, CD8+, CD19+, CD56-NK, and monocyte counts).  

 

Brain MRI scans were performed in most patients with a suspicion of active disease 

prior to re-treatment with alemtuzumab. Monthly MRI scans were performed in a 

subset of patients from the SM3 study. A number of clinically inactive patients had 

interval MRI scans to look for subclinical activity, and to provide a means for 

comparison in case of future disease activity. 

 

6.2.4 STATISTICAL ANALYSIS  

 

Statistical analysis was done in consultation with Mr Richard Parker, a statistician at 

the University of Cambridge. 

 

Median time for recovery to the lower limit of normal (LLN) was calculated for each 

cell subset.  All data was categorised depending on the cycle of alemtuzumab 

treatment. Patients were placed into ‘active’ or ‘non-active’ groups independent of 

when an event took place within a particular treatment cycle.  Therefore, within each 

cycle, patients were defined as being ‘relapse-free’ or ‘relapsing’, ‘disability-free’ or 

having ‘accumulated disability’, or having reached a ‘positive composite endpoint’ 

(defined as: having relapsed, and/or accumulated disability, and/or having had an 

‘active’ MRI scan); or with a ‘negative composite endpoint’ based on all three 

negative outcomes. A subgroup of patients (n=91), scanned after treatment, were 

classified as MRI ‘active’ or ‘non-active’.  
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To assess differential lymphocyte reconstitution between groups, a linear mixed 

effects regression method was undertaken with CD4+/CD8+/CD19+/CD56+/ 

monocytes or total lymphocyte count as the outcome variable, and ‘relapse/ 

disability/ active MRI/ composite score’ and time point as explanatory variables.  

 

This method was used as it was the optimum way to explore the relationship 

between the outcome variable (e.g. CD4+ count) and the different explanatory 

variables (e.g. time point and relapse), which needed to be accounted for.  

A quadratic term (time point squared) was also included due to the observed 

relationship between time point and outcome. A separate linear mixed effects model 

was fitted within each cycle. A continuous autoregressive (order 1) correlation 

structure was assumed for all models. Model coefficients are presented with 95% 

confidence intervals and p-values.  

 

A Fisher exact test was used to assess whether a CD4+ count of 388.5 x 106/mL or 

greater at 12 months predicts disease activity - either clinically or radiologically. A 

Fisher exact test was used, as it was the optimum way to compare categorical data 

and to see if there is a relationship between those values.  

 

The standard 5% significance level was used throughout, and no adjustment made 

for multiple testing in order to avoid inflating the Type II error rate. The linear mixed 

effects regression method was implemented in R software using the ‘nlme’ package 

(Pinheiro et al., 2013). R software was also used to compute the Fisher’s exact tests. 

All other analyses were performed in GraphPad PRISM (version 5.00 for Windows; 

www.graphpad.com).   
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6.3 RESULTS 

 

6.3.1 STUDY POPULATION CHARACTERISTICS 

 

Data was derived from 108 patients of whom 73 (67.6%) were female. The median 

follow-up from first treatment was 99 months (inter-quartile range [IQR] 74.75-

117.25).  The mean age of patients at first treatment with alemtuzumab was 32.8 

years (SD 7.99). The median EDSS at baseline was 3.0 (IQR 1.5-4.75). Mean 

relapse frequency prior to treatment was 1.7 relapses per annum (SD 0.81).  

 

6.3.2 LYMPHOCYTE RECONSTITUTION 

 

As previously reported (Cossburn et al., 2013) (Coles et al., 2006) (Hill-Cawthorne et 

al., 2012), treatment with alemtuzumab led to profound pan-lymphocyte depletion, 

followed by differential recovery. CD19+ lymphocytes reached the LLN most rapidly, 

with a median recovery time of 3 months (IQR 3-6). The intervals for CD8+ and 

CD4+ lymphocytes were median times of 19.5 (IQR 10-34.5) and 32 (IQR 21.75-41) 

months, respectively.  

 

6.3.3 CLINICAL OUTCOMES 

 

The total number of patients who experienced at least 1 relapse during the follow-up 

period was 56 (51.85%).  The mean relapse frequency post-treatment was 0.17 

relapses per annum, equating to an 89.8% reduction in the annualised relapse rate 

compared to pre-treatment.  

 

28 patients (25.9%) met the definition for sustained accumulation of disability.  

 

91 patients had an MRI scan: 16 individuals (17.6%) had an ‘active’ scan (new 

T2/enhancing lesions) at some point during the follow-up period (please refer to 

Table 6.2 for a detailed breakdown of each alemtuzumab cycle).  
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6.3.4 ASSOCIATION OF PERIPHERAL MONONUCLEAR CELL SUBSETS WITH 

DISEASE ACTIVITY 

 

Relapse: 

 

Within each treatment cycle, there was no difference in the number of CD4+ T cells, 

CD8+ T cells, CD19+ B cells, CD56+ NK cells or monocytes between those with and 

without clinically defined relapses (Figure 6.1 and Table 6.1 for cycles 1-4; data not 

shown for NK cells and monocytes).  

 

Using Fisher’s exact test, we found no association between a CD4+ count of >388.5 

cells x 106/mL at 12 months and risk of relapse (p=0.28). Given the possibility that 

relapses within the first few months of treatment may be due to lymphocytes that 

have already entered the central nervous system (Coles et al., 1999), we looked at 

timing of relapses following cycle 2 (chosen as it is the most informative cycle in 

terms of patient numbers, number of relapses and length of follow up). Only 3 out of 

106 patients relapsed within 2 months of treatment, and of these, 2 went on to have 

additional relapses within cycle 2, leaving only one patient who was potentially 

misclassified using our method, increasing the confidence in our conclusion.  

 

MRI activity: 

 

Within each treatment cycle, there was no difference in the number of CD19+ B cells, 

CD56+ NK cells or monocytes between those with and without active MRI scans 

(Figure 6.2 and Table 6.1 for cycles 1-4; data not shown for NK cells and 

monocytes). CD4+ cells (p=0.016) and CD8+ cells (p=0.008) were found to be higher 

(on average by 0.146 and 0.125 x109/mL cells respectively) in the ‘active MRI group’ 

(n=5) vs. the inactive group (n=28) within treatment cycle 3.  No difference was found 

in any other treatment cycle; indeed in cycles 1 and 2 (the most informative periods 

numerically), the trend was in the opposite direction (Figure 6.2, Table 6.1).  

 

Using Fisher’s exact test, we found an association between a CD4+ cell count of 

>388.5 x 106/mL at 12 months and the risk of having an ‘active’ MRI scan (overall 

p=0.02). However, further analysis of this result demonstrated that the difference was 

driven by patients within cycle 3 (p<0.0001), with no difference observed within 

cycles 1 (p= 1.0), cycle 2 (p= 0.91) or cycle 4 (p= 0.05). 
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Disability Accumulation: 

 

Within each treatment cycle, there was no difference in the number of CD8+ T cells, 

CD19+ B cells, CD56+ NK cells or monocytes between those with and without 

accumulation of disability (Figure 6.3 for cycles 1-3 and Table 6.1). CD4+ T cells 

were found to be lower in patients who accumulated disability in cycle 1 (adjusted 

mean difference across the cycle 0.063 x109; p=0.002). No difference was found in 

any other treatment cycle, although the trend was in the same direction (Figure 6.3, 

Table 6.1). 

 

Composite: 

 

Within each treatment cycle, there was no difference in the number of CD8+ T cells, 

CD19+ B cells, CD56+ NK cells or monocytes between those who did and did not 

reach the composite end point (Table 6.1; data not shown for non-lymphocyte cell 

populations). Within cycle 4, CD4+ T cells were found to be lower in patients who 

met the composite end point compared to those who did not. No difference was 

found in any other treatment cycle (Table 6.1). 
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Figure 6. 1: Comparison CD4+, CD8+ and CD19+ cell counts after each cycle of 
alemtuzumab in patients with and without on-study relapses.   

Patients were defined as having relapsed (shown in red) if they developed 
neurological symptoms attributable to multiple sclerosis, lasting >48 hours with an 
objective change in neurological examination in the absence of infection. Cell units 
are x109/L. Error bars indicate standard deviation. 
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Figure 6. 2: Comparison of CD4+, CD8+ and CD19+ cell counts after each cycle 
of alemtuzumab in patients with and without on-study active MRI scans.  

Patients were defined as having an active MRI scan (shown in red) if they had 
acquired new T2 lesions, or enhancing lesions. Cell units are x109/L. Error bars 
indicate standard deviation. 
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Figure 6. 3: Comparison of CD4+, CD8+, CD19+ cell counts after each cycle of 
alemtuzumab in patients with and without acquisition of disability.  

Patients were deemed to have met the definition of sustained accumulation of 
disability if their EDSS increased by 1.5 points from a baseline of 0, or by 1.0 point 
from a baseline of 1.0. Patients meeting this definition are shown in red. Cell units 
are x109/L. Error bars indicate standard deviation.  
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CD4	 CD8	 CD19	

R
e
la
p
se

	

Cycle	 Coefficient	 95%	CI	 P	value	 Coefficient	 95%	CI	 P	value	 Coefficient	 95%	CI	 P	

value	

1	 0.003		 0.028	to	
0.034	

0.859	 -0.020		 -0.069	to	
0.030	

0.438	 0.025		 -0.026	to	
0.077	

0.330	

2	 -0.029		 -0.075	to	
0.017	

0.209	 -0.011		 -0.051	to	
0.028	

0.577	 0.040		 -0.007	to	
0.087	

0.095	

3	 -0.009		 -0.083	to	
0.065		

0.806	 0.037		 -0.017	to	
0.090	

0.173	 0.005		 -0.069	to	
0.079	

0.901	

4	 -0.042			 -0.333	to	
0.248	

0.741	 -0.046	 -0.255	to	
0.163	

0.620	 -0.031		 -0.376	to	
0.314	

0.839	

M
R
I	

1	 -0.053		 -0.117	to	
0.012	

0.104	 -0.071		 -0.168	to	
0.027	

0.144	 0.011		 -0.124	to	
0.146	

0.865	

2	 -0.007		 -0.094	to	
0.080	

0.873	 -0.026		 -0.116	to	
0.063	

0.558	 0.010			 -0.086	to	
0.106	

0.831	

3	 0.146			 0.029	to	
0.264	

0.016	*	 0.125			 0.035	to	
0.214	

0.008	*	 0.029		 -0.101	to	
0.159	

0.653	

4	 0.068	 -0.239	to	
0.375	

0.606	 0.107	 -0.134	to	
0.348	

0.319	 -0.228		 -0.588	to	
0.131	

0.171	

D
is
ab
il
it
y	

1	 -0.063	 -0.103	to	
-0.024	

0.002*	 -0.008		 -0.076	to	
0.060	

0.813	 0.042		 -0.027	to	
0.111	

0.226	

2	 -0.041		 -0.099	to	
0.016	

0.154	 -0.009		 -0.057	to	
0.039	

0.709	 0.005		 -0.055	to	
0.065	

0.861	

3	 -0.028		 -0.114	to	
0.058	

0.522	 -0.022		 -0.084	to	
0.040	

0.473	 -0.001		 -0.087	to	
0.084	

0.977	

4	 -0.204		 -0.546	to	
0.139	

0.203	 -0.104	 -0.374	to	
0.166	

0.392	 -0.054		 -0.508	to	
0.399	

0.784	

Co
m
p
os
it
e	

1	 -0.019		 -0.047	to	
0.009	

0.179	 -0.004		 -0.050	to	
0.041	

0.860	 0.013		 -0.033	to	
0.060	

0.571	

2	 -0.028		 -0.074	to	
0.018	

0.233	 0.002	 -0.035	to	
0.039	

0.923	 0.021			 -0.025	to	
0.068	

0.367	

3	 -0.022		 -0.095	to	
0.051	

0.550	 0.021		 -0.032	to	
0.074	

0.432	 0.004		 -0.069	to	
0.077	

0.915	

4	 -0.285	 -0.548	to	
-0.023	

0.037*	 -0.184	 -0.390	to	
0.022	

0.073	 -0.107		 -0.548	to	
0.335	

0.587	

	

Table 6. 1: Comparison of CD4+, CD8+ and CD19+ counts after each cycle of 
alemtuzumab in those with and without active disease.  

For each cycle patients were defined as active or not based on: clinical relapse, MRI 
activity, disability acquisition and the composite endpoint. A linear mixed effects 
regression method was used with CD4+ CD8+ CD19+ CD56+NK cells or monocytes 
as the outcome variable, and with relapse, disability, MRI activity or composite score 
and time point as explanatory variables. A quadratic term (time point squared) was 
also included due to the observed relationship between time point and outcome. A 
separate linear mixed effects model was fitted within each cycle. A continuous 
autoregressive (order 1) correlation structure was assumed for all models. Model 
coefficients are presented with 95% confidence intervals and p-values are shown for 
CD4+ CD8+ and CD19+ cells (other subpopulations are reported in the text). * p 
<0.05. 
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A) 
	

Cycle	
Total	number	of	
patients	per	cycle	

Number	who	
relapsed	per	cycle	

Number	who	
accumulated	
disability	per	
cycle	

Number	who	met	
the	composite	
endpoint	per	
cycle	

1	 108	 22	 10	 28	

2	 106	 40	 19	 50	

3	 52	 20	 12	 24	

4	 11	 7	 2	 9	
	
B) 
	
Cycle		 Number	of	who	had	an	

MRI	scan	per	cycle.	
Number	with	an	"active"	
MRI	per	cycle		

Number	with	a	"non-
active"	scan	per	cycle.	

1	 19	 4	 15	

2	 59	 7	 52	

3	 33	 5	 28	

4	 10	 4	 6	
	
Table 6. 2: Breakdown of patient numbers by treatment cycle.  

A) Shows the number of patients following each cycle of alemtuzumab who had a 
clinical relapse, met the definition for sustained accumulation of disability or the 
definition of a ‘positive composite endpoint’ 
  
B) Shows the number of patients who had an MRI scan following each cycle of 
alemtuzumab. Patients were considered to have an active scan if they had acquired 
new T2 lesions or if they had enhancing lesions. 
	
	
	
	
	
	
	
	
	
 

 

 

 

 

 



 219	

 

6.4 DISCUSSION 

 

Using a much larger cohort and more prolonged follow-up, we fail to confirm the 

claim that accelerated CD4+ T cell recovery after treatment is a biomarker for 

recurrent multiple sclerosis disease activity following lymphocyte depletion with 

alemtuzumab. We also find no evidence that a CD4+ T cell count of greater than 

388.5x106 cells per mL at 12 months has utility in selecting a group of patients who 

may benefit from more intensive monitoring or perhaps even prophylactic repeat 

dosing. 

 

There are a number of differences between our work and the previous report 

(Cossburn et al., 2013). Firstly, our cohort is larger (108 versus 56 patients) with a 

longer duration of follow up (median follow up of 99 months IQR 74.75-117.25 vs. 55 

months IQR 24–115). Although both studies selected patients with active RRMS, 

baseline MS disease activity was somewhat higher in the previous study (ARR of 2.6 

SD 0.9 vs. 1.7 SD 0.8), however, very few of their patients experienced disease 

activity post alemtuzumab (probably reflecting their shorter follow-up): only 8/56 

experienced a clinical relapse, with a further 4 patients showing MRI disease activity 

alone; this small number of data points makes the study susceptible to extreme 

outliers.  Unlike the previous study, we did not perform routine MRI brain scans at 

month 24. As a consequence analysis of MRI outcome is based on data from fewer 

patients (19 for cycle 1, 59 for cycle 2, 33 for cycle 3 and 10 for cycle 4); this is a 

limitation of our study.  

 

However, we do not believe these differences explain why our two studies have 

reached opposite conclusions; we believe this is best explained by weaknesses in 

their statistical methods. Firstly, they did not account for repeated treatments only 

cell counts from the most recent alemtuzumab dose were analysed: post-cycle 2 

CD4+ counts for those who remain in remission were compared to post-cycle 3 

counts for those with active disease prompting re-dosing; and CD4+ counts post-

cycle 3 were then correlated with disease activity prior to cycle 3, and used to 

“predict” an event that had already occurred. This method assumes that 

reconstitution is identical after each round of treatment, representing, in our opinion, 

a major limitation of their study. We controlled for this bias by looking at 

reconstitution and disease activity after and within each treatment cycle. Due to the 
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complexity of the analysis, the timing of the event within each cycle is still not 

accounted for.  Secondly, the previous report compared mean cell counts at multiple 

time points using Student T tests, or Mann-Whitney U when non-normally distributed, 

without taking into account multiple non-independent observations per patient (an 

individual's CD4+ count at month 12 is not independent of their month 9 count, and 

so on). Furthermore they did not correct their p-values for multiple comparisons, of 

which there were many; so it is likely that some of their statistically significant results 

occurred by chance; when we repeated their analysis using our data; no p-value 

survived correction (data not shown).  

 

The wish to identify a biomarker for recurrent disease activity after alemtuzumab is to 

be welcomed. This would reduce the need to monitor patients at low risk of relapse, 

and allow the pre-emptive treatment of high-risk patients. Although CD4+ counts may 

be an attractive candidate - they are readily measurable and T cells are undoubtedly 

involved in disease pathogenesis, given the complex nature of the immune system it 

is not surprising that peripheral CD4+ counts alone do not predict CNS inflammation. 

Indeed, it is known that selective anti-CD4+ depleting therapies do not suppress 

disease activity in multiple sclerosis (van Oosten et al., 1997). Also, after 

alemtuzumab treatment, composition of the circulating immune repertoire is radically 

altered. For example, for at least 6 months following each cycle the CD4+ T cell pool 

is dominated by memory cells, particularly those with a regulatory phenotype 

(CD4+CD45RA-CD35hiFoxP3+IL-7Rlo) (Cox et al., 2005). Self evidently, investing 

confidence in a single measure of a major cellular constituent of peripheral blood 

disregards the complexity of the immunopathogenesis of multiple sclerosis and is 

misplaced.  

 

Arguably our data does not prove or disprove whether long-term disease stability is 

associated with lower CD4+ counts, as patients with clinical or radiological evidence 

of disease activity are automatically retreated.  However this data demonstrates that 

peripheral CD4+ counts have no utility in predicting multiple sclerosis disease activity 

after alemtuzumab, and we strongly advise neurologists against using them to 

personalise treatment protocols. In particular, CD4+ counts should not be used as a 

marker of the need for pre-emptive re-treatment, thereby exposing patients to 

potential risk (Coles et al., 2008) (Cohen et al., 2012) (Coles et al., 2012b). Our 

cautionary message, refuting the claims of the previous report (Cossburn et al., 

2013), is timely since alemtuzumab has now entered the clinic as a treatment for 

active relapsing remitting multiple sclerosis.  
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CHAPTER 7 – SUMMARY 

 

This thesis investigates the role of IL-7Rα in multiple sclerosis. It first looks at 

antagonism of IL-7Rα in a first time in human trial. Although this trial was curtailed 

prior to the investigation into MS patients, as part of a translational medicine PhD this 

gave me a good insight into phase I trials. The original observations made by 

Gregory on increased soluble IL-7Rα in those with the at risk genotype for rs6897932 

(Gregory et al., 2007) was made in Cambridge and it was this interest in IL-7Rα that 

persuaded GSK to have the trial in Cambridge. Despite the eventual curtailing of the 

trial it was a good example of translational medicine in action. However with the early 

termination of the trial the fundamental question of what effect (good or bad) the drug 

would have in MS patients remains unanswered. 

 

The trial enabled in vitro investigation of antagonism of IL-7Rα. This enabled further 

investigation into how IL-7Rα mitigates its effect on MS risk between genotypes. This 

is the first time in the literature it has been demonstrated that IL-7Rα genotype has 

caused differences in downstream signaling from IL-7Rα. This led to further 

investigation into negative feedback mechanisms associated with IL-7Rα. 

 

In the Lundstrom paper (Lundstrom et al., 2013) there had been investigation into 

downregulation of IL-7Rα and the Fas Ligand receptor (CD95), in which there had 

been demonstration of alteration of negative feedback of cell associated IL-7Rα with 

increased levels of soluble IL-7Rα, which is the consequence of the at risk SNP 

rs6897932 for MS. Therefore in the in vitro stimulation of IL-7Rα I focused on these 

two pathways with the first investigation into IL-7Rα using autologous serum from 

patients stratified according to IL-7Rα genotype. I was unable to reproduce the 

effects of soluble IL-7Rα on downregulation of IL-7Rα and CD95 that had been 

demonstrated in the Lundstrom paper. The study may have been limited by a lack of 

power. However, further investigation into the level of IL-7 in secondary lymphoid 

organs where it is produced, may lead to a different molar ratio that could produce 

effects on cell associated IL-7Rα from increased soluble IL-7Rα. Indeed although the 

Lundstrom paper quoted a soluble IL-7Rα:IL-7 molar ratio of 500:1, in vivo this ratio 

is dynamic as IL-7 is consumed and the molar ratio observation has not been 

replicated in other studies (Cote et al., 2015). Further investigation using different 

techniques such as PCR for alternative methods of negative feedback such as 
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suppressor of cytokine signaling 1 (SOCS-1) or Gfi-1 (involved in IL-7Rα 

downregulation) may provide further insights into negative feedback of IL-7Rα.  

 

I was able to draw on the extensive experience of my laboratory group in Cambridge 

on alemtuzumab, a highly efficacious therapy for MS. This therapy depletes 

lymphocytes causing lymphocytes to repopulate in the periphery, driven by IL-7 and 

self-peptide-MHC interactions, which leads to a high incidence of secondary 

autoimmunity. IL-7 is fundamental to homeostatic proliferation, the process by which 

lymphocytes repopulate from lymphopenic conditions in the periphery, which 

propagates autoimmunity, examples of which also include post autologous stem cell 

therapy (Bakhuraysah et al., 2016) and post HAART with HIV treatment (G. 

Zandman-Goddard, 2002).   

 

In chapter 5 with the CAMTHY trial I was heavily involved in the dose escalation sub-

study of the trial. Palifermin was used to investigate if repopulation of lymphocytes 

could be driven from increasing thymic lymphopoiesis rather than from homeostatic 

proliferation in the periphery. The sub-study demonstrated the regime of Palifermin 

used was tolerable, but unfortunately when given with alemtuzumab the opposite 

effect to what was predicted was seen with a reduction in thymic lymphopoiesis. This 

was possibly driven by Palifermin causing increased expression of thymic CD52, 

which would lead to increased action of alemtuzumab on the thymus. Therefore the 

question of whether re-direction of lymphocyte proliferation in a lymphopenic 

environment more centrally to the thymus could lead to a reduction in secondary 

autoimmunity remains unanswered. My clinical work on the CAMTHY trial gave good 

exposure to how a clinical trial is run and the administration associated with running 

a clinical trial. The interaction I had with patients enabled me to see all of the side 

effects from Palifermin and although it was tolerable with no severe side effects, 

some of the symptoms experienced by patients were significant at the time. 

Therefore following the outcome of the CAMTHY trial I think palifermin will not be 

used outside of its current indication for mucositis associated with chemotherapy, 

particularly for use in preventing autoimmunity by offsetting the effects of 

homeostatic proliferation (e.g. for example in the treated HIV population). Future 

investigation may include the use of other products, which increase thymic 

lymphopoiesis such as IL-7.  

 

In chapter 6 I investigated reconstitution of lymphocytes, which as described above is 

driven by IL-7, following treatment with alemtuzumab. I particularly investigated if 
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CD4+ T cells could be used as a biomarker for disease activity. The use of 

biomarkers for MS should be encouraged as it can lead to better utilization of the 

treatments that are currently available. However following the publication of a paper 

suggesting CD4+ T cells could act as a biomarker post alemtuzumab (Cossburn et 

al., 2013) I investigated this and found that in our Cambridge cohort this was not the 

case. This contributed to the practical knowledge on how to monitor alemtuzumab at 

a time when there were unanswered questions about how the drug would be used in 

clinical practice as it had just been licensed. Although this work did not lead to the 

discovery of a new biomarker for MS disease activity, future work into the possibility 

of IL-7Rα as a potential biomarker, as described in other autoimmune conditions 

such as lupus nephritis (Badot et al., 2013), could possibly lead to an improvement in 

patient care.  

 

In summary this thesis investigates the role of IL-7 and its receptor in MS both in 

terms of the mechanism by which it exerts its risk, but also how it propagates some 

of the side effects experienced by patients post treatment with alemtuzumab. It also 

investigated homeostatic proliferation of lymphocytes post alemtuzumab with the 

potential use of biomarkers for MS treatment. It investigated antagonism of IL-7Rα in 

a phase 1 trial. It was able to shed some light on aspects of IL-7Rα physiology, 

particularly highlighting how negative feedback of IL-7Rα may mitigate the risk 

between individuals based on IL-7Rα genotype.   
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CHAPTER 9 – APPENDICES 

 
Appendix 9.1 is the Participant Information Sheet from the first time in human trial. I 
wrote this document as part of the Integrated Research Application System (IRAS) 
documentation that had to be submitted in order to gain ethical approval for the trial.  
 
Appendix 9.2 is the paper written for the CAMTHY trial. It has been published in the 
Journal of Clinical Investigation Insight (Coles et al., 2019). 
 
Appendix 9.3 is a paper written as a case report for a patient from the CAMTHY trial 
that suffered from anaphylaxis following administration with alemtuzumab. This has 
been published in the Journal of Neurology (Nye et al., 2019).  
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9.1 PARTICIPANT INFORMATION SHEET FOR ANTI-IL-7R TRIAL 

 

PARTICIPANT INFORMATION SHEET 

First in human study of GSK2618960, an anti-IL7R monoclonal antibody  
STUDY PART C 

Study doctors:  
Dr. Alasdair Coles,  
Institution name: Cambridge University Hospitals Trust 
Site address: Dept of Clinical Neurosciences, University of Cambridge, Box 165, Addenbrookes 
Hospital, Cambridge, CB2 2QQ 
Phone number: 01223 216751 
 
Dr Joseph Cheriyan  
Institution name: Clinical Unit Cambridge, GlaxoSmithKline 
Site address: ACCI, Box 128, Addenbrookes Hospital, Cambridge, CB2 0GG 
Phone number: 01223 296001 
 
 

 
Introduction 

You have been provided the information booklet explaining clinical 
trials.  This document is the Participant Information Sheet, 
accompanied with the Consent Form (together make the Informed 
Consent Form mentioned in the leaflet).  It contains specific 
information about this clinical trial. To keep the information in this 
form simple we shall refer to a clinical trial as a “study”.  

This information sheet and the consent form have been reviewed and 
given a favourable opinion by an Ethics Committee (EC).  This 
committee reviews research studies to protect the rights and well-
being of the people taking part.  Some of the information in this 
information sheet is required by law. 

Why is this research study being done?  

GlaxoSmithKline (GSK) is developing GSK2618960 as a potential 
medicine for treatment of Multiple sclerosis (MS), which is a disease 
where patients’ own immune system cells, called lymphocytes, attack 
the brain and spinal cord causing damage.  

GSK2618960 is a humanised monoclonal antibody that blocks a 
protein present in the body called Interleukin-7 receptor (IL7-R in 
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short). IL7R is involved in a pathway that is crucial to the 
lymphocytes, causing multiple sclerosis.  

Study Part C is the third, final part of the first-in-human clinical trial 
of GSK2618960. The purpose of Study Part C is to check, for the first 
time in patients with multiple sclerosis,  

• the safety and tolerability of different doses of a new medicine 
called GSK2618960, 

• how the medicine works in your body and how long it blocks 
IL7R,  

• how long the body takes to get rid of the medicine, 

when GSK2618960 is given by intravenous injection (directly into the 
blood stream). GSK2618960 has been given to people only in Study 
Part A and Study Part B. In Study Part A, 24 healthy volunteers 
received up to 2 doses of GSK2618960 (at about 3 months apart), and 
in Study Part B, up to 24 healthy volunteers received up to 4 doses so 
that IL7R was blocked for up to 10 weeks.  Before Study Part A, 
GSK2618960 had only been tested in animals and in the laboratory.  

You have been asked to take part in the study because you have 
relapsing remitting multiple sclerosis.  

How does the study work? 

You are invited to take part in Study Part C only, which involves 20 
multiple sclerosis patients. Study Part C will see how GSK2618960 
affects multiple sclerosis patients and if it is safe – GSK2618960 is 
called ‘study medication’ or ‘treatment’ to keep the information simple.   

All 20 patients will get the study medication. Each subject will receive 
an intravenous (injection into the vein) dose of study medication two, 
three or four times during Study Part C at several weeks interval. The 
dose and dosing interval is dependent on the information on the study 
medication we get from Parts A and B of the study, where the study 
medication is used in healthy volunteers. 

All patients will have 3 MRI scans of the brain at various times before 
receiving study medication (at approximately 8 weeks before, 4 weeks 
before and just prior to receiving study medication). MRI scans will 
also occur at 6, 10, 14 and 18 weeks after receiving the study 
medication. The purpose of the scans is to see how the treatment may 
be affecting the inflammatory brain lesions causing your multiple 
sclerosis.  

The study will take place in the Wellcome Trust Clinical Research 
Facility (CRF for short) and in the GSK Clinical Unit Cambridge (CUC 
for short), which are situated on Level 5 and on Level 2 respectively of 
the Addenbrooke’s Centre for Clinical Investigation (ACCI for short). 
The MRI scans of the brain will be done in the MRIS Unit (Magnetic 
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Resonance Imaging and Spectroscopy). These 3 places are all in 
Addenbrooke’s Hospital in Cambridge. 

What am I expected to do in this study?  How will being part of 
this study affect my lifestyle? 

If you agree to participate in this study, you will be invited to a 
screening visit. During the screening visit, a study doctor will discuss 
the study with you and you will be asked to sign the Informed 
Consent Form. You will be given a copy of this form to keep. 

We will then do a physical examination and ask details of your 
medical history, and take blood tests and other measurements, to 
verify whether you meet the eligibility criteria of the study. If you 
qualify for the study and wish to join, you will be asked to have a 
brain MRI scan, which will be similar to the MRI scan used in your 
diagnosis (This will be called the ‘first baseline’ MRI), within 28 days of 
the screening visit. You will have a second baseline MRI approximately 
4 weeks after the first baseline MRI, and you will be asked to return to 
the clinic for the first treatment period approximately 4 weeks after 
the second baseline MRI. During the study, you will need to visit the 
clinic on schedule, and to tell the staff about any changes to your 
health. A list of the planned study visits is given in the table below, 
followed by descriptions of what happens during the study visits. 
It is expected that the total participation time in this study will be 
approximately 7 months, from the initial screening visit to the final 
visit (the follow-up visit). 
In total, you will need to come to the CUC on at least 14 to 20 
separate occasions.  Two to four of the visits are the treatment visits, 
during which you will be resident in the CUC for up to 6 days/5 
nights (you may be discharged earlier than this at the discretion of the 
study doctors). The other ones are out-patient clinical visits or for MRI 
scans. You will also be asked to receive phone calls from the study 
staff, approximately 8 times, on the weeks when you do not have a 
visit, as shown below. 

Study Visit Location Time involved  

Screening  (Week -12) 
Out-patient 
visit at 
WTCRF 

Within 12 weeks of the first day of 
treatment (about 2 to 4 hours) 

1st baseline 
MRI scan 

(Week -8) 
Out-patient 
MRI scan at 
MRIS Unit 

1 day (MRI scan takes approximately 30 – 
60 minutes)  

2nd baseline 
MRI scan 

(Week -4) 
Out-patient 
MRI scan at 
MRIS Unit 

1 day (MRI scan takes approximately 30 – 
60 minutes)  

Treatment 
Period 1 

Day -1 to Day 5 
MRI scan at 
MRIS Unit 
and then start 

From Day -1 until discharge in the 
morning of Day 5, probably before noon 
after having been reviewed by the study 
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The duration of the study may be longer and/or additional visits may 
be required, for additional blood samples or safety tests if indicated by 
events during the study – we will let you know as soon as we know 
and these tests would not differ from those already specified. 

in-patient 
stay at CUC 

doctor. If the study doctor deems it 
necessary, they may ask you to stay 
another night in CUC.   
It may be possible that the in-patient stay 
will be shorter than 6 days/5 nights, 
based on the safety data during Part A 
and Part B. The study doctor will let you 
know. 

Days 8, 15, 29, 
42, 56, 70, 84, 
98 and 112 
(approximately 1, 
2, 4, 6* and 8 
10*, 12, 14* and 
16 weeks after 1st 
dose on Day 1) 

Out-patient 
visit at CUC 

Approximately 1 hour, up to 2 hours at 
most (*except MRI visits: 1 day, see below) 

Days 21, 35, 49, 
63, 70, 77  105, 
119, 133, 147, 
154 and 161  (3, 
5, 7, 9, 11, 13, 
15, 17, weeks 
after 1st dose on 
Day 1) 

At home 
Phone call, up to approximately 15 
minutes 

Possibly 
other 
Treatment 
Periods 

Depending on results of Study Part A and Study Part B, you may need to 
receive a total of 2, 3, or 4 doses. The study staff will give you the details of all 
the visits if you need to receive more than 1 dose. 
If you are due to receive several doses of GSK2618960, the doses will be given 
within a period of up to about 8 to 10 weeks, i.e. likely to be included in the 
visits above. 

Post 
treatment 
MRI visits 
visits for 
tests 

Week 6 (after 1st 
dose on Day 1) 

MRI scan at 
MRIS Unit 

1 day (scan takes approximately 30-60 
minutes) 

Week 10 (after 1st 
dose on Day 1) 

MRI scan  at 
MRIS Unit 

1 day (scan takes approximately 30-60 
minutes) 

Week 14 (after 1st 
dose on Day 1) 

MRI scan  at 
MRIS Unit 

1 day (scan takes approximately 30-60 
minutes) 

Follow-up 
visit = end 
of study 

Week 18 (after 1st 
dose on Day 1)  
(approximately 4 
½ months)  

Out-patient 
visit at CUC 

Approximately 1 day (includes an MRI 
scan of 30 to 60 minutes) 
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Please keep in mind how the study tests and visits described here will 
affect your work and family schedules.  Consider if you need 
transportation to and from the clinic.  You may find that these tests 
and visits need some planning.  Some tests may be uncomfortable.  
Ask the study doctor if you have any questions about the tests and 
procedures for the study. 

You will need to be prepared for the phone calls from study staff.  

 

You are required to comply with the following instructions and 
restrictions: 

Adverse 
Events 

You should report any adverse events to the study staff.  An 
adverse event is when you feel unwell or different in any way.  
After you have left the CUC, you need to tell the study staff when 
any ongoing adverse events that you experienced during the study 
have finished. 

Blood 
Donation 

You should not have donated blood 3 months before the study 
start and you should not donate blood for 3 months after you have 
completed the study.  

Participation 
in Other 
Studies 

You should not have been dosed with another study drug within 
30 days or longer before dosing in this study. You must inform the 
study doctor of any studies you have participated in so that 
he/she can advise you on your participation in this study. 

You should also not take part in another drug study for at least 30 
days after you have completed this study If these timelines change, 
you will be informed by the study doctor. 

You should not have been dosed with more than 4 different study 
drugs within the 12 months before dosing in this study.   

Recreational / 
Illegal drugs 

The use of these drugs is forbidden from screening to final follow-
up visit. We will perform a urine drug test at screening and before 
the dosing of study medication.  If your urine drug screen is 
positive, you will be excluded from the study.  

Smoking Smokers must not smoke over 10 cigarettes a day during the 
course of the study. Smoking and use of nicotine-containing 
products (including nicotine patches) will not be permitted while 
you are in the CUC or during the out-patient visits.  

Alcohol You must not consume alcohol from 24 hours prior to dosing until 
discharge from the CUC on each treatment period.  

You must also refrain from alcohol for 24 hours prior to all 
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outpatient visits.   

You should not consume more than 2 units of alcohol per day 
throughout the remainder of the study until after your last study 
visit.  

For guidance, 1 unit is equivalent to a half-pint (220mL) of beer or 
1 measure (25mL) of spirits or 1 glass (125mL) of wine. 

Medications You should inform the study doctor or nurse if you are taking or 
are prescribed any medication during the study.  If necessary, you 
may receive medications for treating adverse events during the 
study. Do not take other medicines unless you talk first to the 
study doctor. 

You must inform the study doctor during your screening visit of 
any medicines you have been taking so that he/she can advise 
you whether a wash-out period is needed before your intravenous 
dose. For example you are ineligible for the study if you have used 
first-line multiple sclerosis therapies such as the interferons or 
glatiramer acetate in the 6 weeks prior to the screening visit. 

If you have taken certain medications such as Natalizumab 
(Tysabri) in the past 12 months you will not be able to participate 
in the study. 

If you have taken other medications such as Fingolimod (Gilenya) 
in the past 6 months you will be unable to participate in the 
study. 

You will be unable to join the study if you have been treated with 
steroids for a relapse or other reason within 30 days of dosing with 
another investigational product. 

You will be unable to do the study if you are intolerant to 
paracetamol or other anti-inflammatory medicines. 

 

Vaccinations The eligibility for the study requires that you are up-to-date with 
your vaccinations of tetanus, diphtheria, pertussis, measles, 
mumps and rubella. If you are not up-to-date and are willing to be 
vaccinated, you will be asked to go to your GP surgery to ask to be 
vaccinated. If you are vaccinated then, you will be asked to provide 
us with the date of your vaccination, and the vaccination should 
be 8 weeks or more before the planned date for the 1st dose of 
GSK2618960. 

For subjects with expected study during flu (influenza) season 
(October – April), the eligibility for the study also requires that you 
are up-to-date with your flu vaccination (within 1 year) or you will 
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be invited to have flu vaccine at the CUC if possible.  

Dosing cannot start before 8 weeks after a vaccination.  Please tell 
us if you have had any recent vaccinations. 

You should also not receive live vaccines such as yellow fever; 
measles, mumps and rubella (MMR); and BCG from 1 month 
before screening until the last visit of the study (the follow-up 
study).  

Food and Drink You are required not to eat poppy seed-containing food (e.g. poppy 
cake or bread covered with poppy seeds) during the 4 days before 
the screening visit and for 4 days before the day of admission to 
the CUC.  

You must not consume any caffeine- or xanthine-containing 
products (e.g. coffee, tea, cola drinks or chocolate) for 24 hours 
before the start of dosing and while you are in the CUC or CRF. 

During your in-clinic stay you will be required to eat the standard 
meals provided by the CUC; no other food will be allowed. On Day 
1 of each treatment period, the first meal will be served 4 hours 
after start of dosing and the dinner approximately 8 hours after 
dosing. You will be allowed to drink small quantities of water at 
room temperature from 1 hour after start of dosing. 

Activity and 
Travel 

You will be required to refrain for strenuous exercise for 48 hours 
before your screening visits, during the in-clinic stay and the 
remaining visit days. 

You must refrain from traveling abroad to countries with a high 
prevalence of infectious diseases.  

Please check with the study team before you book any trips abroad 
to check whether your destination will be acceptable and also to 
confirm the timelines as these might change during the study.   

 

Contraception 
/ Reproductive 

Risks 

Men in this study should not father a baby while they are in this 
study.  You will be asked whether you can father a child. If you 
can father a child, you must agree to one of the following methods 
of contraception from the day of dosing until the final study visit 
(the follow-up visit).  

Acceptable methods of contraception: 

• Complete abstinence from intercourse. This must be 
consistent with your preferred and usual lifestyle. Periodic 
abstinence and withdrawal are not acceptable methods of 
contraception.  

• Condom (during non-vaginal intercourse with any partner – 
male or female). The female partner must also use: oral 
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contraception, OR injectable contraception, OR implants 
contraception, OR hormonal vaginal ring, OR contraception 
patch, OR intrauterine device, OR occlusive cap (diaphragm 
or cervical/vault caps), OR vaginal spermicidal agent 
(foam/gel/film/cream/suppository). 

If the above is not entirely clear, please consult one of the study 
physicians. 

If your partner gets pregnant during this study, call the study 
doctor right away. You may be asked questions later about the 
pregnancy and the baby. 

Women must be abstinent from sex or must use one of the 
following contraceptive methods: 

• Oral contraceptive, either combined or progestogen alone 

• Injectable progestogen  

• Implants of etonogestrel or levonorgestrel 

• Estrogenic vaginal ring 

• Percutaneous contraceptive patches 

• Intrauterine device (IUD) or intrauterine system (IUS) that 
meets the <1% failure rate as stated in the product label 

• Male partner sterilization (successful vasectomy) prior to the 
female subject's entry into the study, and this male is the 
sole partner for that subject.   

• Male condom combined with a female diaphragm, either with 
or without a vaginal spermicide (foam, gel, cream or 
suppository). 

• Male condom combined with a vaginal spermicide (foam, gel, 
cream or suppository). 

 

Screening visit: 

At the screening visit, you will need to have the following 
examinations, tests or procedures to find out if you can be enrolled 
into the study. The information and samples collected as part of these 
screening activities will be kept and used like the rest of the study 
results.  These tests are sometimes part of regular medical care.  They 
may be done even if you do not join the study.  If you have had some 
of them recently, they may not need to be repeated.  This is up to the 
study doctor.  

• The screening visit may take up to 4 hours, and some parts will 
take place in the hospital’s CRF and some others in the GSK 
CUC. 
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• Consent talk: the doctor will explain the study. If you are happy 
to join the study, you will continue with the rest of screening 
visit.  

• Medical history: You will be asked about your health and any 
illnesses you may have or had in the past.  You will be asked 
about medicines you are taking (including over-the-counter 
medicine, vitamins or herbal treatments), and your possible use 
of tobacco, alcohol and recreational drugs. You will also be asked 
whether you are up-to-date with your vaccinations.  

• Physical examination: You will receive a complete physical 
examination, which will include body weight and height, with 
calculation of Body Mass Index.  

• During the study you will also have to undergo the expanded 
disability status scale (EDSS) which is a neurological 
examination which helps clinical trials to assess the level of 
disability you have from your multiple sclerosis. This will be done 
at the screening visit, once before you receive the study 
medication and once at week 14 (to count from the first dose of 
study medication in case you get several doses, and at the follow-
up visit). 

• Electrocardiograms (ECG): a test that records the electrical 
activity of your heart (there will be leads connected to some 
stickers on your chest, wrists and ankles). 

• 24 hour monitoring of your heart with a Holter machine (a small 
box with leads connected to some stickers on your chest, you will 
have to carry the small box with you at home and the collection 
of the Holter machine will be arranged by the CUC staff). 

• Vital signs: Your weight, height, blood pressure, heart rate and 
body temperature.  

• Blood tests will be taken from a vein in your arm for laboratory 
tests to check for general health. This will include blood samples 
to check if you have Hepatitis B or Hepatitis C or HIV. 

• You will be asked to provide a urine sample in the CUC. 
• An alcohol breath test. 
• Questionnaire: You will be asked about your personality and any 

suicidal thoughts and feelings and any past experiences (see the 
reason below). 

The study physician will review all screening results and you will be 
invited to participate in the study only if you fulfil all the inclusion 
criteria for the study.  You will not be eligible for the study based on 
certain medical conditions or blood results that the doctor will be able 
to explain, or if you are not able or not willing to do the MRI scans, or 
if you do not consent for the flu vaccination if it is required for the 
study in your case, or if you meet, or are unable to commit to, some of 
the restrictions that are listed in the table above. If you cannot be in 
the study, we will destroy all your blood and urine samples. Should 
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the doctor at the clinic have any concerns about your test results they 
will discuss with you and ask for your permission to write to you GP 
so they can assess you for treatment and/or further investigations. 

If you qualify for the study and wish to join, you will be asked to come 
to the 1st and 2nd baseline MRI visits. And approximately 4 weeks after 
the 2nd baseline MRI, you will be asked to start Treatment Period 1. 

During the Study Days 

Treatment Period 1: 

You will be expected to do the following things during the inpatient 
stay: 

• Arrive at the CUC, in the morning to get ready for the MRI scan 
for brain imaging. 

• The MRI scan takes place in the MRIS unit in Addenbrookes 
Hospital, Cambridge.  At several times during the study, you will 
have a MRI scan, which will be similar to the MRI scan used in 
your diagnosis. For each occasion, the scan will last 
approximately 30 to 60 minutes.  The technician will take you 
into the MRI scan room where you will lie down on the patient 
table.  The technician positions your head in the middle of the 
MRI-scanner.  The scanner does not touch you, nor do you feel 
anything.  The scanner does make a loud knocking noise as it 
takes the images.  The technician will offer you headphones to 
listen to music or ear plugs to lessen the sound.  The technician 
leaves the room, while you are in the scanner, but is in full view 
and communication with you through the observation window in 
the adjoining room.  There is also voice communication at all 
times through an intercom.  It is important for you to lie very 
still; you may be asked to briefly hold your breath while the scan 
is taken.  You will be given an injection of dye, called gadolinium, 
into your veins during the scan, which is necessary to detect 
areas in the brain where your multiple sclerosis may be currently 
active. 

• In the CUC or CRF, you will have a brief consultation, physical 
exam, ECG, vital signs, alcohol breath test, urine test and blood 
tests. 

• Meal on the CUC then fast from midnight, however water will be 
permitted until 1 hour pre-dosing. 

• On Day 1, you will woken early and have the following 
procedures to be done to see how the study medicine is affecting 
your body.  

- You will have 2 Cannula – one in your arm for the 
frequent blood samples of the day, and one in the 
other arm for the study medication to be given 
intravenously. 
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- ECGs 
- Vital signs (blood pressure, heart rate and body 

temperature) 
- Blood tests to check study medication levels and 

effects on the blood cells 
- Heart monitoring: this will be done 1) as continuous 

heart monitoring (with leads and stickers on your 
chest) from 1 hour before dosing starts for 6 hours 
after the dosing starts (you will see your heart activity 
on the screen next to your bed), and 2) by monitoring 
of your heart with a Holter machine starting before 
dosing for 24 hours after dosing started (a small box 
with leads connected to some stickers on your chest, 
you will have to carry the small box with you) 

• The study medicine will be given intravenously (direct into the 
blood stream via a vein) as explained on Day 1, and you will have 
to stay in bed for 6 hours after dosing. 

• The tests described above will be done at intervals during the day 
and night after dosing. 

• On the next days you will have a combination of the tests 
described above at different times. 

• It is anticipated that you will be resident in the CUC for 6 days/5 
nights, until discharge in the morning of Day 5 before noon after 
review by the study doctor (you may be discharged earlier at the 
discretion of the study doctors, but not before noon on Day 2). 

• On the morning when you go home, there will be further tests 
and the suicidality questionnaire, and you will most likely be 
discharged during the morning. 

In the out-patient visits, tests similar to those described will be done 
(but not the heart monitoring, and not all tests done at all visits), 
including at the last study visit (See Table above).  

What side effects and risks can I expect from this study? 

You may have side effects while on this study.  Ask the study doctor if 
you have any questions about the side effects described here. 

Side effects may be mild or severe.  The study doctor may give you 
medicine(s) to help lessen any side effects.  Some side effects may go 
away as soon as you stop taking the study medicine.  In some cases, 
side effects can be serious, lasting or may never go away. 

Possible side effects from the medicine GSK2618960 

GSK2618960 is very specific and does not block IL7R in non-primates 
so it has not been given to animals other than monkeys. This study 
will be the first time that GSK2618960 will be administered into 
humans. In study Part A and Part B, up to 48 healthy volunteers have 
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received GSK2618960, and the study doctor will let you know what 
side effects were observed in this small number of subjects when they 
discuss the study with you. Therefore, there are no known side effects 
in humans so far. You will be closely monitored for the side effects. 

You will receive the study drug in liquid form as intravenous doses 
(directly into the blood stream). The dose used in Part C of the study 
will be determined from the information received from the earlier parts 
of the trial. The study doctor will inform you of the side effects that 
were observed in the earlier part of the trial, in healthy volunteers. 

When GSK2618960 was given to monkeys in very high doses, a very 
small drop in body temperature of less than a degree was observed in 
monkeys which were given moderately high doses, but these were not 
regarded as clinically concerning. Some monkeys developed (in their 
blood results) some antibodies to GSK2618960 but with no side 
effects. The body makes such antibodies when it recognises that 
GSK2618960 is a “foreign drug” so it tries to block it.  

During the study, you will be closely monitored for safety and this will 
include your body temperature and looking for antibodies in your 
blood tests. The risk of the antibodies is that the medicine will not 
work if given again in the future as the body will “remember” the 
medicine. 

GSK2618960 blocks a protein present in the body called Interleukin-7 
receptor (IL7-R in short) which is involved in a pathway that is crucial 
to the lymphocytes (which are white blood cells and cells of the 
immune system). It is anticipated that the number of lymphocytes in 
the blood (called lymphocyte count) will drop. The drop is not expected 
to be too large and it is not expected to cause health problems. 
However, with lower lymphocyte count, there is a theoretical risk that 
the body's immune system may be less effective at fighting infections, 
which means that you may have a slightly increased risk of infection 
during the study.  

The following reasons may mean you will not be allowed to take part 
in the study:  

- if you have a low lymphocyte at screening, or  

- if you have a history of tuberculosis or fungal infections, or  

- if you are not up-to-date with vaccinations (including flu (influenza) 
vaccine as discussed earlier, or  

- if you have a positive screening test result for hepatitis B or C, or 
HIV 

In addition, you will be watched closely during the study for any signs 
of infection and will need to receive treatment if appropriate if you 
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develop an infection, whether it is due to participation in the study or 
not. This is also why there are travel restrictions during the study. 

We will also watch the results of other blood tests which show how 
GSK2618960 works in the body. 

There is a risk of an allergic reaction with any drug, particularly those 
that act on the immune system. No allergic reactions were seen in 
monkeys given GSK2618960.  Allergic reactions can be dangerous if 
not treated quickly.  You will be watched closely for allergic reactions.  
Symptoms of an allergic reaction may include an itchy rash, having 
difficulty breathing, wheezing, chest tightness or swelling around the 
mouth, throat or eyes. 

In the unlikely event that you develop signs of allergy or anaphylaxis 
(a severe allergic reaction) during the observation period, you will be 
treated within the CUC where all clinical staff are trained to deal with 
the recognition and treatment of anaphylaxis. You may need to 
undergo further tests/investigations and you may be transferred to 
the hospital if required. 

Should you develop a generalised rash, itching, severe nausea, 
swelling of the lips or tongue or difficulty in breathing at any time 
during your stay in the CUC or after leaving the CUC, you should seek 
immediate medical attention. 

With the understanding of how GSK2618960 works and together with 
the information from animal studies, we consider the risk of this 
study to be minimal and we will monitor you closely for side effects.  

If there are any changes to the organisation of the study or any dose 
regimen changes, we will let you know in advance.  

Side effects from the study procedures 

When you give blood you may feel faint, or experience mild pain, 
bruising, irritation or redness at the site. In rare cases, you may get 
an infection. The total amount of blood to be taken during the study is 
no more than a pint (500 mL), a little bit more than would be donated 
to the Blood Transfusion Service by a donor in a single session.  This 
should not cause ill effects.  

MRI Scan:  Risks Associated with gadolinium contrast agent for 
MRI 

Side effects of the gadolinium contrast agent injection may include 
mild headache, nausea and local pain.  Rarely (less than 1% of the 
time) low blood pressure and light-headedness occurs.  This can be 
treated immediately with intravenous fluids.  Very rarely (less than 
one in one thousand), patients are allergic to the contrast agent.  
These effects are most commonly a nettle rash and itchy eyes, but 
more severe reactions have been seen which result in shortness of 
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breath. 

 

Screening for HIV, Hepatitis B and C 

At the screening visit you will have a blood test for HIV, Hepatitis B 
and C viruses. We test for these viruses to ensure that subjects are 
completely well, to avoid the risk of the GSK medicine of harming 
them, and to stop the risk of interference of HIV in the results of the 
study.  These infections can be treated with anti-viral medication to 
prevent a serious illness developing in the future. If you are infected 
with one of these viruses then it could affect your relationships with 
friends and family, and you might find it more difficult to get life 
insurance or a mortgage. It could also limit the type of work that you 
can do. If your viral test is positive, you will be asked to have a repeat 
blood test. Please note tests can sometimes show a positive result 
even though you may not be infected. These are called false positives. 
If the repeat test confirms that you have been infected with one of 
these viruses then we will refer you to your GP or to an appropriate 
hospital specialist for counselling and follow-up treatment with your 
permission. Please ask us if you have any questions about testing for 
viruses. 

Screening for drugs of abuse 

During the screening and before the dose of study medicine is taken on 
the study days, your urine will be tested for drugs (cocaine, morphine, 
amphetamines, benzodiazepines, barbiturates, cannabis, tricyclic 
antidepressants and methadone). For this purpose, you will be required 
to provide a sample of your urine, which has been produced in the 
study centre, prior to any other study procedures. If any of these tests 
are positive you will not be able to continue in the study. The results of 
the test will be discussed with you privately, and will be kept 
confidential. 

Suicidality questionnaire 

GSK2618960 is a potential treatment for immune pathways that 
interact with the nervous system and therefore has the small potential 
to change your mood or the way you think, including having thoughts 
about hurting or killing yourself (committing suicide). Although there 
is no evidence to show that the study medication is associated with 
people having these thoughts in people in your age group, GSK 
considers it important to monitor for such events in clinical studies. 

If you have thoughts of hurting or killing yourself or have any other 
unusual or distressing thoughts or feelings at any time during this 
clinical study, you should tell the study doctor or go to the nearest 
hospital immediately.   
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Other risks 

There may be other side effects that may happen that are not known 
now.  For example, all medicines can cause an allergic reaction in 
some patients.  Certain problems can become worse if not treated 
quickly.  

If the study doctor notices changes for example in your liver or kidney 
function, or heart rhythm, you may be asked to return to the CUC or 
the CRF for more tests (may include further blood tests).  The study 
doctor will explain these tests to you if required.  You may also need 
to stop taking the study medicine after talking with the study doctor. 

If you experience an adverse event which you or your family consider 
is serious or life threatening (e.g. feel very tired or faint, difficulty 
breathing, develop itching or a bad skin rash, have yellow eyes or 
skin, or dark urine, or become confused), dial 999 for an ambulance 
and do not delay treatment by attempting to contact the doctor in 
charge of the study. 

Multiple sclerosis relapse 

It is possible that the study medication may cause worsening of 
multiple sclerosis. The study team do not think this is at all likely, but 
one genetic study showed multiple sclerosis patients might have more 
‘active’ IL7R than people who do not have multiple sclerosis. On the 
other hand, a similar drug to the study medication was successful in 
treating a disease similar to multiple sclerosis in animals called 
“EAE”. However if you do experience new neurological symptom/s or 
worsening symptoms during the trial then you must contact the study 
staff within 48 hours of the start of the new symptom/s for 
assessment. You may be asked to come for an extra visit to the clinic 
within 7 days of the start of the new symptoms. At this clinic visit, the 
EDSS neurological examination will be performed and you may have 
other tests done.  The study doctor may require an extra MRI if it is 
required for the diagnosis of a relapse. In some circumstances, you 
may not be allowed to receive the next dose of GSK2618960, and the 
study doctor will discuss this with you. In that case, you will be asked 
to continue with the study visits to continue monitoring for the safety 
of the dose/s of GSK2618960 have already received. 

What benefits can I expect from this study? 

You may not benefit from taking the study medication. Not enough is 
known about its effect on multiple sclerosis to be sure, at this stage. 
Certainly, other people with multiple sclerosis, now and in the future, 
will benefit from the knowledge that this study will bring, on the effect 
of GSK2618960 on the body and on multiple sclerosis. It may help 
doctors better understand the different ways the body handles 
GSK2618960 (for example blood levels or results of blood tests), or 
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different ways people tolerate the study medication, and help to 
further develop anti-IL7R monoclonal antibodies. Improved knowledge 
of the safety and tolerability of the study medication can potentially 
help doctors conduct further studies to investigate its effectiveness. 

Are there alternatives to taking part in this study? 

You may continue to take your current disease-modifying treatment, if 
any, for multiple sclerosis. You may be eligible for other multiple 
sclerosis therapies on the NHS; the study team will make this clear at 
your screening visit. 

 

Will I receive payment to be part of this study? 

No. 

GSK will reimburse you for the reasonable costs of travelling to and 
from study visits, including – if appropriate - for occasional overnight 
accommodation. Please provide receipts for your expenses. 

Will I have to pay anything to be part of this study? 

As part of the study, you will receive the study medicine and all the 
study tests and procedures at no cost to you. 

Do I have to stay in the study? 

No. Your participation in the study is voluntary.  You may choose to 
stop taking part in the study at any time, without giving a reason.  
Tell the study staff if you want to stop being in the study.  Your 
decision will not affect your medical care now or in the future. It will 
not affect other benefits you receive outside of the study. 

What happens if I leave the study? 

In some circumstances if you experience a relapse, the study doctor 
will ask you to be withdrawn from the study for safety reasons. In this 
situation, or in the situation where you decide to leave the study, you 
and the study doctor will discuss the best way to do this. You will be 
asked to attend the clinic to continue monitoring for the safety of the 
dose/s of GSK2618960 that you have already received.  All the data 
and samples collected before you left the study will still be used for 
the study. 

What happens to my personal and medical information? 

It is very important that your personal and medical information stay 
confidential and secure.  GSK will protect your information in 
accordance with current law. 

When you sign this consent form you agree that GSK can use your 
personal and medical information as described here: 

• Your personal and medical information may be checked by GSK 
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and others (like agencies that approve and monitor studies).  This is to 
make sure that the study is being run properly. 

• Only the researchers at this study site can use information that 
identifies you (such as name and address) and only for the purpose of 
the study.  

• Your study information will be labeled with a code number (for 
example, 1234782).  It will not include your name or address.  The 
study doctor will have the link between your name and the code 
number. 

• The link between your name and the code number will not be 
shared.  Only the code number and coded information will be sent to 
GSK. 

• GSK will use your coded information for research only. 

GSK may: 

• Keep your coded information electronically, and analyse it by 
computer to find out what the study is telling us.  This may be done 
by GSK or a third party, in which case GSK will ensure that the third 
party is required to keep your data secure, 

• Share the information with regulatory agencies that approve 
new medicines, 

• Share the information with people who check that the study is 
done properly (like the ethics committee or review boards), 

• Combine the information with results from other studies to 
improve disease understanding. This may help us to assess the risks 
and benefits of the study medication. 

• Publish study results for medical journals, meetings and on the 
internet for other researchers to use; your name will not appear in any 
publication, 

• Share coded information with other companies, organisations or 
universities to carry out research. This may include research looking 
at improving the quality and efficiency in conducting clinical research 
trials in general. 

Personal and medical data collected during the study may be moved, 
stored and used in the country where you live or another country 
where GSK or those working with GSK work.  

Use of this information may take place in countries with lower data 
protection rules than the country where you live. GSK will make sure 
that if your data are moved to another country, it will still be treated 
as stated in this Participant Information Sheet and Consent Form.  

A description of this clinical study will be available on the GSK 
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Clinical Study Register: http://www.gsk-clinicalstudyregister.com/ 
and may also appear in clinical trial/study registries in the UK.  

GSK will be the owner of the study results. GSK plans to use the 
results, and may get patents, or sell the study medicine in the future, 
or make profits other ways.  You will not be paid any part of this. 

If you withdraw your consent for use of your personal information, 
you will no longer be able to continue in the study.  However all the 
information and samples collected before you left the study, or at any 
follow up visit, will still be used as set out in this consent form. 

At any time, you may ask the study doctor to see your personal 
information and correct it, if necessary.  In some circumstances, you 
may not be able to access your study information while the study is 
ongoing.  However, the study doctor will share any important medical 
information if it is relevant to your health during the course of the 
study. 

What happens to my blood/tissue samples? 

If you take part in this study, you will be asked to give blood and 
urine samples for doing laboratory tests to check your well-being, 
laboratory tests to check the way the body breaks down GSK2618960 
and to check the effect of GSK2618960 on various aspects of the 
activity of lymphocytes, and urine tests of drugs of abuse, and alcohol 
breath test. Similar to information collected in the study, your 
samples may also be used by GSK or shared by GSK with other 
companies or universities to better understand the effect of 
GSK2618960 on the body, the different ways the body handles 
GSK2618960 (for example blood levels or results of blood tests), or 
different ways people tolerate GSK2618960, and help to further 
develop anti-IL7R monoclonal antibodies. In addition, improved 
knowledge of the safety and tolerability of GSK2618960 can 
potentially help doctors conduct further studies to investigate its 
effectiveness. 

Your blood and urine samples will be given the same code as your 
other study information and kept in locked storage.  Anyone who 
works with your samples will hold the information and results in 
confidence. 

GSK may store your tissue samples for up to 15 years after the end of 
the study after which time your samples will be destroyed. 

Whom should I call if I have questions?  

You will receive a yellow emergency contact card recording the study 
reference number, treatment and emergency telephone numbers 
should you wish to contact a doctor outside normal working hours. 
You should keep this card with you for the duration of the study. 
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Who has reviewed this study?  

This study has been reviewed by GSK internal review committees to 
ensure that the relevant scientific and safety issues are addressed.  

This study has also been reviewed and approved by an independent 
research ethics committee (14/LO/1670 National Research Ethics 
Service Committee, London, UK). An ethics committee consists of an 
independent group of people who review research studies to protect 
the rights and well being of the people taking part in the study. 

What is the “pharmacogenetics” part of this study and why is it 
being done?  

Scientists intend to look at whether variations in people’s genes (DNA) 
for IL7R might be associated with different ways the body handles 
GSK2618960 (for example blood levels or results of blood tests), or 
different ways people tolerated GSK2618960, or different levels of 
efficacy of GSK2618960. 

A blood sample of about 2 teaspoons will be required to do the 
pharmacogenetics research. If there is a problem looking at your blood 
sample, we will ask to take the sample again.  The risks associated 
with giving a pharmacogenetics blood sample are the same as the 
risks for giving any blood sample in this study. 

Your blood sample will be given the same code as your other study 
information and kept in locked storage.  Anyone who works with your 
sample will hold your sample and results in confidence, and the rules 
are as follows: 

• Patients who consent for the pharmacogenetics study will not be 
able to deduce any individual genotype investigated, as studies 
conducted using this information will always be blinded to the 
patient, to the study staff in the CUC and CRF, and the scientists 
who analyse the gene results.   

• Genetic data will be anonymised and pooled for statistical testing 
for research, so results of individual gene tests will not be provided 
to any study participant or to any party. 

• All genetic analyses will be conducted at the end of the study. 

• Genetic results from research will not be disclosed to insurers 
according to the Department of Health (UK) and Association of 
British Insurers (ABI) Concordat and Moratorium on Genetics 
(2011). 

Your sample and information derived will be used by GSK or shared 
by GSK with other companies or universities to better understand the 
different ways the body handles GSK2618960 (for example blood 
levels or results of blood tests), or different ways people tolerated 
GSK2618960, or the treatment of multiple sclerosis, and to further 
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develop anti-IL7R monoclonal antibodies.   

GSK may store and use your sample for up to 15 years after the end 
of the study.  After 15 years, your sample will be destroyed.   

In this study, participation in the pharmacogenetics research is part 
of the protocol and if you do not wish to participate in the 
pharmacogenetics study, you will not be eligible to participate in the 
rest of the study. If you withdraw from the study during the study and 
you already have given your DNA sample, the sample will be tested as 
described and will only be destroyed after all results have been 
analysed and the study results published. 

What benefits can I expect from the pharmacogenetics part of the 
study? 

You will not receive any direct benefit from taking part in the 
pharmacogenetics part of the study. The analysis may help scientists 
understand whether variations in people’s genes (DNA) for IL7R might 
be associated with different ways the body handles GSK2618960 (for 
example blood levels or results of results of blood tests), or different 
ways people tolerated GSK2618960, or different levels of efficacy of 
GSK2618960.  This may help identify better ways to treat multiple 
sclerosis and who is more likely to benefit from GSK2618960 and who 
may have side effects. 

 

 

 

Further information and contact details 
If you have any questions about this study please phone the dedicated answer 
phone on: 
01223 216187. We will respond within one working day. 
 
We can also be contacted by email: 
Alasdair Coles  (Chief Investigator)  
 ajc1020@medschl.cam.ac.uk   
Onajite Kousin-Ezewu (Co-Investigator)  
 ok256@medschl.cam.ac.uk   
Karen May   (Research Nurse)  
 km480@medschl.cam.ac.uk    
  
 
In the event of an emergency please call: 
The Addenbrooke's contact centre on 01223 245151 and ask to be put through 
to a member of the “Campath team” (Drugs Trial Rota).  
 
Thank you for taking the time to read this document, and for considering taking 
part in the study. 
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9.2 THE CAMTHY TRIAL 

	
Keratinocyte	 growth	 factor	 and	 thymic	 recovery	 from	 lymphopenia	 in	
humans	 (CAMTHY):	 a	 single	 centre,	 double-blind	 randomised,	 placebo	
control	phase	2	trial.	
	
Authors	Alasdair	J	Coles,	Laura	Azzopardi,	Onajite	Kousin-Ezewu,	Harpreet	Kaur	
Mullay,	 Sara	 J	 Thompson,	 Lorna	 Jarvis,	 Jessica	 Davies,	 Sarah	 Howlett,	 Judith	
Babar,	Timothy	J	Sadler,	William	Brown,	Edward	Needham,	Sarah	Dawson,	Ruth	
Seggewiss,	Daniel	C	Douek,	John	Isaacs	and	Joanne	L	Jones.		
	
Abstract		
	
Background:	 The	 lymphocyte-depleting	 antibody	 alemtuzumab	 is	 a	 highly	
effective	 treatment	 of	 relapsing-remitting	 multiple	 sclerosis	 (RRMS);	 however	
50%	 of	 patients	 develop	 novel	 autoimmunity	 post-treatment.	Most	 at	 risk	 are	
individuals	 who	 reconstitute	 their	 T-cell	 pool	 by	 proliferating	 residual	 cells,	
rather	 than	 producing	 new	 T-cells	 via	 the	 thymus;	 raising	 the	 possibility	 that	
autoimmunity	 might	 be	 prevented	 by	 increasing	 thymopoiesis.	 Keratinocyte	
growth	 factor	 (KGF)	promotes	 thymopoiesis	 in	non-human	primates.	So	 in	 this	
study	 we	 tested	 its	 ability	 to:	 (i)	 increase	 thymopoiesis	 and	 (ii)	 reduce	
autoimmunity	post-alemtuzumab.	Here	we	report	results	 from	the	pre-planned	
interim	analysis.	
	
Methods:	In	this	randomised,	double-blind,	placebo-controlled	trial	we	recruited	
individuals	with	RRMS	 (disease	duration	≤10	years;	 expanded	disability	 status	
scale	 ≤5.0;	 with	 ≥2	 relapses	 in	 the	 previous	 2	 years).	 All	 patients	 received	
12mg/day	alemtuzumab	 for	5	days	at	baseline	and	3	days	at	M12.	Following	a	
dose-tolerability	 sub-study,	 patients	were	 assigned	 (1:1)	 to	 receive	 placebo	 or	
180mcg/kg/day	palifermin,	given	for	3	days	immediately	prior	to	and	after	each	
cycle	 of	 alemtuzumab,	 with	 repeat	 doses	 at	 M1	 and	M3.	 The	 interim	 primary	
endpoint	was	naïve	(CCR7+CD45RA+)	CD4+	count	at	M6.	Exploratory	endpoints	
included:	 number	 of	 recent	 thymic-emigrants	 (RTEs:	
CD31+CCR7+CD45RA+CD4+)	 and	 signal-joint	 T-cell	 receptor	 excision	 circles	
(SjTRECs)/mL	of	blood.		
	
Findings:	 Individuals	 receiving	 palifermin	 had	 fewer	 naïve	 CD4+T-cells	 at	M6	
compared	 to	 placebo	 (2.229x107/L	 vs.	 7.733x107/L;	 p=0.007).	 Those	 treated	
with	 palifermin	 also	 had	 fewer	 RTEs	 (M6:	 16.05%	 vs.	 33.95%)	 and	 lower	
SjTRECs/mL	(M6:	1100	vs.	3396).	At	M30,	no	difference	was	observed	in	the	rate	
of	 autoimmunity	 between	 the	 two	 groups:	 4/14	 palifermin	 vs.	 	 5/13	 placebo	
(one	patient	was	lost	to	follow-up).	
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Interpretation:	 Unexpectedly,	 in	 contrast	 to	 animal	 studies,	 KGF	 significantly	
reduced	 thymopoiesis	 after	 alemtuzumab	 treatment	 of	 RRMS.	 Following	 this	
result,	 recruitment	 to	 the	 trial	 was	 terminated.	 To	 date	 no	 increase	 in	
autoimmunity	has	been	observed.			
	
Funding:	MRC	and	Moulton	Charitable	Trust	 	
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Introduction	
	
T-cell	 lymphopenia	 is	 strongly	 associated	 with	 autoimmunity	 (Datta	 and	
Sarvetnick,	 2009,	King	 et	 al.,	 2004,	Krupica	 jr	 et	 al.,	 2006,	Khoruts	 and	Fraser,	
2005,	 Le	 Campion	 et	 al.,	 2009).	 A	 striking	 example	 is	 autoimmunity	 following	
treatment	of	relapsing	remitting	multiple	sclerosis	(RRMS)	with	the	lymphocyte-
depleting	humanised	anti-CD52	monoclonal	antibody	alemtuzumab	(Lemtrada).	
Two	short	courses	of	alemtuzumab	given	12	months	apart	effectively	suppress	
RRMS	for	many	years	(Coles	et	al.,	2008a,	Coles	et	al.,	2012c,	Cohen	et	al.,	2012a,	
Coles	et	al.,	2012a,	Havrdova	et	al.,	2017),	however	between	6	months	and	five	
years	after	 treatment	40%	of	patients	develop	 thyroid	autoimmunity	 (typically	
Graves’	 disease).	 A	 further	 2%	 of	 individuals	 develop	 idiopathic	
thromobocytopenia	purpura	(ITP),	0.1%	Goodpasture’s	syndrome	and	rare	cases	
of	autoimmune	haemolytic	anaemia,	autoimmune	neutropenia	and	autoimmune	
pancytopenia	have	been	reported.	An	additional	20%	of	patients	develop	novel	
asymptomatic	autoantibodies	(Coles	et	al.,	2008a,	Coles	et	al.,	2012c,	Cohen	et	al.,	
2012a,	D.	Wynn,	2013,	M	Habek,	2012,	Tuohy	et	al.,	2014).			
	
We	have	previously	shown	that	while	B-cell	reconstitution	after	alemtuzumab		is	
rapid,	 via	 the	generation	of	new	cells	 from	 the	bone	marrow,(Thompson	et	al.,	
2009)	CD4	and	CD8	 cells	 take	35	and	20	months	 respectively	 to	 reach	normal	
range	 (Hill-Cawthorne	 et	 al.,	 2011).	 And	 that	 paradoxically,	 for	 at	 least	 nine	
months	 after	 treatment,	 thymopoiesis	 (determined	 by	 measuring	 naïve	 T-cell	
production,	 recent	 thymic	 emigrants	 and	 T-cell	 receptor	 excision	 circles)	 is	
reduced	 (Jones	 et	 al.,	 2013).	 Instead,	 T-cell	 reconstitution	 occurs	 by	 the	
proliferation	of	cells	that	have	escaped	depletion.	As	result	the	post-treatment	T-
cell	 pool	 is	 dominated	 by	 “memory-like	 cells”	with	 a	 restricted	 T-cell	 receptor	
(TCR)	 repertoire	 (Jones	 et	 al.,	 2013).	 In	 keeping	 with	 animal	 studies	
demonstrating	 the	 pro-autoimmune	 nature	 of	 lymphopenia	 induced	 T-cell	
proliferation	 (Baccala	 and	 Theofilopoulos,	 2005,	 Khoruts	 and	 Fraser,	 2005,	
Krupica	jr	et	al.,	2006,	King	et	al.,	2004),	we	have	shown	that	individuals	with	the	
least	thymic	function	and	most	restricted	TCR	repertoire	after	alemtuzumab	are	
at	 greatest	 risk	 of	 developing	 autoimmune	 complications	 (Jones	 et	 al.,	 2013).	
These	observations	raised	the	possibility	that	autoimmunity	after	alemtuzumab	
might	be	reduced	if	thymic	function	could	be	restored.	
	
Keratinocyte	 growth	 factor	 (KGF)	 promotes	 thymopoiesis	 through	 its	 trophic	
effects	 on	 thymic	 epithelial	 cells	 (TECs).	 TECs	 play	 a	 pivotal	 role	 in	 T-cell	
development	 providing	 essential	 growth	 factors	 and	 presenting	 self-antigen	 to	
developing	 thymocytes.	When	 administered	 to	mice	 undergoing	 bone	marrow	
transplantation	 (BMT)	 or	 experimental	 graft-versus-host	 disease	 (GvHD)	 KGF	
enhanced	 thymopoiesis	 (Min	et	 al.,	 2002,	Rossi	 et	 al.,	 2002).	And	 in	macaques,	
KGF	enhanced	thymic	naive	T	cell	production	and	reduced	lymphopenia-induced	
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T-cell	 proliferation	 after	 myeloablation	 and	 peripheral	 blood	 progenitor	 cell	
autologous	transplantation	(Seggewiss	et	al.,	2007).	In	this	model	KGF	(given	as	
palifermin	 at	 a	 dose	 of	 250mcg/kg	 per	 day	 for	 three	 days	 before	 and	 after	
transplantation)	was	well	tolerated,	and	its	positive	effects	on	the	thymus	were	
maintained	for	up	to	12	months.	In	2005	palifermin	was	licensed	(as	Kepivance)	
to	prevent	mucositis	 induced	by	chemotherapy.	 In	 its	pivotal	 trial	60mcg/kg	of	
palifermin	was	 given	 for	 three	 days	 prior	 to	 conditioning,	 then	 for	 three	 days	
after	haematopoietic	stem	cell	transplantation	(HSCT)	(Spielberger	et	al.,	2004).	
This	 regime	 was	 well	 tolerated.	 	 Later,	 a	 trial	 of	 three	 doses	 of	 palifermin	
(60mcg/Kg)	before	conditioning	and	up	to	nine	doses	after	allogenic	HSCT	was	
shown	to	be	safe,	but	it	had	no	impact	the	incidence	of	acute	GVHD(Blazar	et	al.,	
2006)	or	absolute	 lymphocyte	count	 recovery	 (Rizwan	et	al.,	2011b).	Although	
thymic	 function	was	not	directly	studied	 in	 these	patients,	 the	result	suggested	
that	higher	doses	of	palifermin	might	be	required	to	see	positive	immunological	
effects.		
Therefore,	 we	 designed	 a	 study	 to	 explore	 the	 tolerability	 of	 higher	 doses	 of	
palifermin	(90,	120	and	180	mcg/kg/day,	given	for	three	days	prior	to	and	after	
alemtuzumab	with	further	doses	at	months	1	and	3);	and	then	test	the	efficacy	of	
the	 highest	 tolerated	 dose	 in	 a	 placebo-controlled	 trial	 aimed	 at	 testing	 two	
hypotheses:	 (i)	 that	 palifermin	 increases	 thymic	 T-cell	 reconstitution	 after	
alemtuzumab	 and	 (ii)	 thereby	 reducing	 the	 risk	 of	 alemtuzumab	 induced	
autoimmunity.	Here	we	report	 the	unexpected	results	of	a	pre-planned	 interim	
analysis	 (aimed	 at	 testing	 hypothesis	 one)	 which	 led	 to	 protocol-defined	
termination	of	recruitment.		
	
Methods:	
	
Study	design	and	participants:	
	
CAMTHY	was	a	single-centre,	double-blind,	placebo-controlled	trial	of	palifermin	
in	the	prevention	of	autoimmunity	following	alemtuzumab	treatment	of	multiple	
sclerosis.	 It	was	conducted	 in	accordance	with	 the	 International	Conference	on	
Harmonisation	 Guidelines	 for	 Good	 Clinical	 Practice	 and	 the	 principles	 of	 the	
Declaration	 of	 Helsinki	 and	 was	 approved	 by	 NRES	 Committee	 London	 –	
Hampstead	(Rec:	12/LO/0393).	All	participants	gave	written	informed	consent.		
Participants	 were	 18-50	 years	 with:	 relapsing-remitting	 multiple	
sclerosis(Polman	et	al.,	2011);	disease	duration	of	10	years	or	less;	at	least	two	
relapses	 in	 the	 previous	 2	 years	 with	 at	 least	 one	 in	 the	 previous	 12	months	
(untreated	 or	 on	 beta	 interferon	 or	 glatiramer	 acetate)	 and	 an	 expanded	
disability	 status	 scale	 (EDSS)	 score	 of	 5.0	 or	 less.	 	 Exclusion	 criteria	 included:	
progressive	 forms	 of	 multiple	 sclerosis;	 previous	 thymectomy;	 previous	
treatment	 with	 alemtuzumab,	 natalizumab,	 mitoxantrone,	 cyclophosphamide,	
cladribine,	 rituximab	 or	 any	 other	 immunosuppressant	 or	 cytotoxic	 therapy;	 a	
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history	 of	malignancy,	 or	 a	 history	 of	 clinically	 significant	 autoimmunity	 other	
than	multiple	sclerosis.		
	
A	 “stop-go”	 interim	 analysis,	 testing	 the	 effect	 of	 palifermin	 on	 naïve	 T-cell	
reconstitution	(as	a	read-out	of	thymic	function),	was	planned	when	28	patients	
reached	 month	 6.	 An	 independent	 trial	 steering	 committee	 adjudicated	 the	
results	of	the	interim	analysis.		
	
Randomisation	and	masking	
	
Participants	 were	 randomised	 (1:1)	 to	 receive	 palifermin	 or	 placebo	 using	 an	
online	randomisation	service.	Because	palifermin’s	known	adverse	effects	(skin	
reddening	 and	 tongue	 discolouration)	 may	 compromise	 blinding,	 samples	 for	
immunological	 assays	 were	 recoded	 with	 a	 randomly	 generated	 identifier	 for	
each	 participant-visit	 and	 were	 analysed	 blind	 in	 batches.	 Radiological	
assessments	 of	 thymic	 size	 and	 density	 were	 performed	 by	masked	 assessors	
outside	of	the	core	trial	team.		
	
Procedures	
	
Drug	 treatments:	 All	 patients	 received	 12mg/day	 alemtuzumab	 for	 5	
consecutive	 days	 at	 baseline,	 followed	 by	 12mg/day	 for	 3	 consecutive	 days	 at	
month	 12,	with	methylprednisolone	 pre-treatment	 on	 days	 1,	 2	 and	 3	 of	 each	
cycle.	As	is	standard	practice,	all	patients	were	given	200mg	oral	acyclovir	twice	
a	 day	 for	 28	 days	 after	 each	 cycle	 of	 alemtuzumab	 to	 reduce	 the	 risk	 of	 oral	
herpes	simplex.	
For	 the	 open	 label	 dose	 escalation	 tolerability	 sub-study,	 3	 individuals	 were	
treated	 at	 each	 of	 the	 following	 palifermin	 doses:	 90mcg/kg/day,	
120mcg/kg/day	and	180mcg/kg/day	given	as	an	intravenous	bolus	injection	on	
days	-5,	 -4	and	-3	prior	to	each	cycle	of	alemtuzumab	and	on	days	8,	9	and	10.	
Three	 further	 doses	 were	 given	 at	 month	 1	 (+/-	 7	 days)	 and	month	 3	 (+/-	 2	
weeks)	 after	 each	 cycle	 of	 alemtuzumab.	 Each	 dose	 level	 was	 separated	 by	 a	
minimum	of	10	days	(from	the	day	10	dose)	and	escalation	between	doses	only	
occurred	if	no	adverse	events	greater	than	a	grade	2	occurred.	As	all	doses	were	
equally	 tolerated	 (appendix),	 for	 the	 subsequent	 placebo-controlled	 study,	
participants	received	180mcg/Kg/day	of	palifermin,	or	an	equivalent	volume	of	
normal	saline.		
	
Assessments:	 In	 addition	 to	 standard	 alemtuzumab	 safety	monitoring,	 at	 each	
three-monthly	 visit,	 for	 30	 months	 of	 follow-up,	 participants	 were	 assessed	
clinically	 and	 their	 blood	 assayed	 for	 markers	 of	 thymic	 function	 including:	
immune-phenotyping,	 signal	 joint	 T	 cell	 receptor	 excision	 circles	 (SjTRECs)	 in	
whole	blood	(Lorenzi	et	al.,	2008)	and	T	cell	receptor	(TCR)	sequencing	using	the	
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immunoSEQ	 Assay	 (Adaptive	 Biotechnologies),	 from	which	 Shannon’s	 Entropy	
and	clonality	were	derived	(Carlson	et	al.,	2013,	Robins	et	al.,	2009).	Shannon’s	
entropy	 is	 a	measure	of	 sample	 richness	 (i.e.,	 the	number	of	unique	sequences	
present)	and	the	uniformity	their	frequency	distribution.	Clonality	describes	the	
shape	of	clonal	distribution,	and	ranges	from	0	to	1.0.	A	value	of	0	means	that	all	
sequences	 are	 equally	 abundant,	 higher	 numbers	 indicate	 increasing	 clonal	
asymmetry	 in	 which	 a	 few	 clones	 are	 present	 at	 high	 frequencies.	 To	 assess	
thymic	size	and	density,	a	low	dose	unenhanced	thoracic	CT	scan	was	performed	
on	all	participants	at	baseline	and	month	6.		
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Outcomes	and	Statistical	analysis	
	
The	 pre-planned	 efficacy	 threshold	 for	 the	 interim	 analysis,	 was	 a	 statistically	
significant	 increase	 in	 the	 number	 of	 peripheral	 naïve	 (CCR7+CD45RA+)	 CD4+	
cells	 in	 the	palifermin	group,	by	at	 least	50%,	compared	to	placebo	at	month	6	
post-alemtuzumab	 (as	 an	 indicator	 of	 thymopoiesis).	We	 believed	 this	 to	 be	 a	
conservative	 estimate	 as	 palifermin	 increases	 naive	 CD4	 numbers	 threefold	 in	
monkeys	and	 twofold	 in	mice	 (maximal	 at	3-9	months	 in	macaques	and	30-80	
days	in	mice).	Power	calculations	suggested	that	28	patients	had	80%	power	to	
detect	this	increase.		
	
Multivariate	 linear	 regression	 was	 used	 to	 model	 naïve	 CD4	 cell	 count	 at	 6	
months	with	explanatory	variables	of	 treatment	group,	age,	baseline	naïve	CD4	
count	and	 total	dose	of	palifermin	received.	To	aid	 interpretation	of	 the	model	
intercept,	the	continuous	variables	were	median-centred.	An	unpaired	two-tailed	
t-test	and	Mann-Whitney	U	test	were	also	performed	on	naïve	CD4	cell	count	at	6	
months,	 comparing	 palifermin	 versus	 placebo.	 	 For	 exploratory	 end-points,	
summary	statistics	were	calculated	by	treatment	arm,	no	formal	statistical	tests	
were	applied	(exploratory	end-point	p	values	reported	in	the	text	are	given	for	
descriptive	 purposes	 only).	 Continuous	 variables	 were	 summarised	 using	 n	
(non-missing	 sample	 size),	 mean,	 standard	 deviation,	 median,	 maximum	 and	
minimum.	 Categorical	 variables	 were	 reported	 as	 frequency	 and	 percentages	
(based	on	 the	non-missing	 sample	 size)	 of	 observed	 levels.	 For	 any	 laboratory	
tests	 where	 the	 measurement	 made	 was	 considered	 to	 be	 less	 than	 the	
detectable	 limit,	 the	 value	was	 replaced	 in	 the	 analysis	with	 the	 lower	 limit	 of	
detection	divided	by	the	square	root	of	2	(LLD/√2).		
	
If	the	interim	analysis	were	successful,	80	patients	would	have	been	recruited	to	
the	trial	which	would	have	given	a	78%	power	to	detect	a	relative	risk	reduction	
of	 50%	 of	 autoimmunity	 after	 alemtuzumab,	 using	 a	 2-sided	 5%	 significance	
level.		
	
Role	of	the	funding	source	
The	Medical	Research	Council	 and	 the	Moulton	Charitable	 trust	 had	no	 role	 in	
the	study	design,	data	collection,	data	analysis,	data	interpretation,	or	writing	of	
the	report.	All	authors	had	full	access	to	the	data.	The	corresponding	author	had	
final	responsibility	for	the	decision	to	submit	for	publication.	
	
Results:	
Between	 June	 2013	 and	 February	 2015	 and	 28	 patients	 were	 enrolled,	 their	
baseline	characteristics	are	shown	in	Table	1.	The	pre-planned	interim	analysis	
was	conducted	by	independent	statisticians	and	the	unblinded	results	reported	
first	to	the	Trial	Steering	Committee	who	took	the	decision	to	recommend	early	
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termination	of	the	trial,	as	per	protocol;	no	further	patients	were	recruited	and	
no	further	palifermin	was	given.	All	enrolled	patients	completed	the	study,	and	
all	 analyses	were	 completed	with	 blinding	 intact,	 after	which	 one	 investigator	
(AC)	was	unblinded.	
	
As	we	have	previously	reported	(Jones	et	al.,	2013)	thymic	function	(assessed	by	
measuring	 naïve	 T-cells,	 recent	 thymic	 emigrants	 (RTE)	 and	 TRECs/mL)	 was	
significantly	 reduced	 following	 treatment	 with	 alemtuzumab.	 However	
unexpectedly,	this	was	made	worse	by	palifermin.	The	interim	analysis	endpoint,	
mean	 naïve	 (CCR7+	CD45RA+)	 CD4	 cell	 count	 at	month	 6,	was	 reduced	 in	 the	
palifermin	 group:	 2.23	 x107/L	 (SD	 2.0)	 versus	 7.73	 x107/L	 (SD	 5.74)	 in	 those	
receiving	placebo,	p=0.007	(Figure	1,	appendix).	This	difference	was	also	evident	
at	months	1	and	3	post	treatment:	0.036	x107/L	(SD	0.025)	versus	0.341	x107/L	
(SD	 0.25),	 and	 0.387	 x107/L	 (SD	 0.68)	 versus	 1.326	 x107/L	 (SD	 1.29)	
respectively	(appendix).		The	difference	in	naïve	T-cell	numbers	was	greatest	at	
month	1	suggesting	that	palifermin’s	negative	effect	on	thymic	function	occurred	
early.	This	was	not	due	to	globally	reduced	T-cell	numbers	but	due	to	a	specific	
reduction	in	naïve	T-cells.	Palifermin	also	reduced	the	mean	proportion	of	recent	
thymic	 emigrants	 (RTEs)	 in	 the	 CD4	 pool	 (month	 1:	 2.94%	 (SD	 2.77)	 versus	
7.93%	 (SD	 8.71);	month	 3:	 4.83%	 (SD	 7.88)	 versus	 13.29%	 (11.75);	month	 6:	
16.05%	(13.21)	versus	33.95%	(18.68),	(Figure	1,	appendix).	Mean	TRECs/mL	in	
the	palifermin	group	was	reduced	at	months	3	and	6:	64.6	(SD	27.9)	and	1100.1	
(SD	1721.6)	 versus	846.1	 (SD	1980.6)	 and	3395.5	 (SD	3038.8)	 respectively.	 In	
keeping	with	reduced	thymopoiesis,	there	was	a	trend	towards	more	restricted	
CD4	and	CD8	TCR	repertoires	after	palifermin;	 for	 instance,	Shannon’s	Entropy	
was	12.7	versus	13.3	in	the	placebo	group	and	the	mean	CD4	clonality	score	was	
0.102	versus	0.067.	Palifermin	 reduced	 the	number	of	unique	 clones	per	ug	of	
DNA	 (75,111	 versus	 84,017;	 appendix).	 As	 per	 our	 previous	 reports,	 the	 CD8	
TCR	 repertoire	 was	 more	 restricted	 than	 the	 CD4	 repertoire	 at	 baseline,	
becoming	 increasingly	 restricted	 after	 treatment,	 particularly	 in	 the	palifermin	
treated	group	(appendix).		
	
Following	 alemtuzumab,	 mean	 proportions	 of	 T	 effector	 RA	 (TEMRA)	 and	 in	
particular	 effector	 memory	 (EM)	 cells	 were	 increased	 in	 the	 CD4	 pool,	
particularly	 in	 the	palifermin	arm.	Similar	changes	were	seen	 in	 the	CD8	T-cell	
pool	(appendix).	Palifermin	had	no	effect	on	the	usual	rise	in	the	relative	number	
of	 CD4	 T	 regulatory	 cells	 (CD4+CD25hiCD127lo)	 cells	 after	 alemtuzumab	
(appendix).	No	difference	was	 seen	 in	 thymic	 size	 or	 density	 between	 the	 two	
arms	of	the	study.			
	
In	 view	 of	 the	 unexpected	 negative	 effects	 of	 palifermin	 on	 thymopoiesis,	 we	
retrospectively	 assessed	 thymic	 function	 in	 patients	 treated	 on	 the	 dose-
escalation	sub-study.	Naïve	CD4	T-cells	and	TRECs/mL	at	6	months	were	lower	
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in	 the	 90mcg/Kg	 arm	 of	 the	 dose-escalation	 (n=3)	 compared	 to	 placebo,	 and	
lower	 still	 in	 the	 three	 patients	 on	 120mcg/Kg	 or	 180mcg/Kg	 of	 palifermin.	
Given	 the	 significant	 variation	 in	 TRECs/mL	 between	 individuals	 prior	 to	
treatment,	 we	 normalised	 TRECs/mL	 at	 6	months	 to	 baseline	 levels;	 this	 was	
lowest	 -	 at	 9.64%	 of	 baseline-	 in	 the	 180mcg/Kg	 group	 versus	 13.57%	 after	
120mcg/Kg	and	28.89%	following	90mcg/Kg	palifermin.		
	
Adverse	 events	were	 common	 in	 both	 arms	 of	 the	 study	 (Table	 2).	 In	 keeping	
with	 the	 chemotherapy	 experience,	 palifermin	 caused	 an	 infusion	 syndrome	
consisting	 of:	 an	 erythematous	 rash,	 oedema	 of	 the	 hands	 and	 face,	 oral	
symptoms	 (sensory	 and/or	 altered	 taste)	 and	 discolouration	 of	 the	 tongue.	
Unexpectedly	 10/14	 patients	 treated	with	 palifermin	 developed	 transient	 hair	
thinning	 (lasting	weeks	 to	months)	 after	 treatment,	 in	 one	 individual	 this	was	
marked.	 Palifermin	 administration	 before	 alemtuzumab	 did	 not	 alter	 its	 well	
reported	 infusion-associated	 symptoms,	 except	 that	 chest	 tightness	 was	
reported	 less	 commonly.	At	 the	 interim	analysis	 cut	 off	 (M6)	no	 SAEs/SUSARs	
were	reported.		
	
Although	 the	 protocol-defined	 early	 termination	 of	 the	 trial	 meant	 it	 was	
underpowered	 to	 detect	 an	 effect	 of	 palifermin	 on	 the	 development	 of	
autoimmunity,	 patients	 were	 categorised	 at	 month	 30	 into	 those	 who	 had	
developed	 a	 clinical	 autoimmune	 disease	 during	 the	 trial,	 those	 who	 had	
developed	 novel	 asymptomatic	 autoantibodies	 (measured	 on	 at	 least	 two	
occasions	 six	 months	 apart)	 and	 those	 with	 no	 expression	 of	 autoimmunity.	
There	 were	 no	 differences	 between	 the	 groups.	 4/14	 palifermin	 patients	
developed	 a	 clinical	 autoimmune	 disease,	 compared	 to	 5/13	 on	 placebo	 (one	
patient	was	lost	to	follow-up	in	the	placebo	group;	Fisher’s	exact	test,	two-sided,	
p=0.69).	5/14	patients	on	palifermin	developed	either	clinical	autoimmunity	or	
de	novo	autoantibodies,	compared	to	8/13	on	placebo	(p=0.2).	
	
Discussion	
	
Here	 we	 report	 the	 unexpected	 finding	 that	 palifermin	 (keratinocyte	 growth	
factor)	 exacerbates	 alemtuzumab’s	 negative	 impact	 on	 thymopoiesis.	We	 have	
demonstrated	 this	 by	 three	 independent	 techniques:	 naïve	 CD4	 count	 (the	
primary	 interim	 outcome	 measure),	 circulating	 numbers	 of	 recent	 thymic	
emigrants	and	T-cell	receptor	excision	circles	(TRECs)/mL.	Since	the	overall	aim	
of	 the	 trial	 was	 predicated	 on	 palifermin’s	 ability	 to	 boost	 thymopoiesis	 to	
reduce	autoimmunity	after	alemtuzumab,	 in	accordance	with	the	trial	protocol,	
recruitment	to	the	study	was	halted	and	further	dosing	of	palifermin	suspended.		
Our	 results	 contradict	 palifermin’s	 ability	 to	 enhance	 thymopoiesis	 in	 murine	
and	non-human	primate	models	(Min	et	al.,	2002,	Rossi	et	al.,	2002,	Seggewiss	et	
al.,	 2007).	 Although	 a	 species	 difference	 is	 possible,	 the	 fact	 that	 the	 KGF	
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receptor	(FGFR2IIIb)	is	expressed	on	human	epithelial	cells	makes	this	unlikely.	
We	also	do	not	believe	that	this	is	a	dose	effect.	Our	decision	to	test	the	efficacy	
of	 the	 highest	 tolerated	 dose	 of	 palifermin	was	 based	 on	 our	 interpretation	 of	
results	from	a	trial	of	palifermin	in	preventing	GvHD	following	allogeneic	HSCT.	
In	this	study,	three	60mcg/Kg	daily	doses	of	palifermin	before	conditioning	and	
up	to	9	doses	after	transplant	did	not	accelerate	total	lymphocyte	recovery,	nor	
reduce	 the	 incidence	 of	 acute	 GVHD.	 Whilst	 the	 absence	 of	 detailed	 immune	
phenotyping	data	and	lack	of	information	on	TRECs	and	TCR	repertoire	makes	it	
difficult	 to	 distinguish	 palifermin’s	 effect	 on	 the	 thymus	 versus	 lymphopenia	
induced	proliferation,	the	result	suggested	to	us	that	60mcg/Kg	was	unlikely	to	
have	 a	 positive	 effect	 on	 thymopoiesis.	 Our	 suspicion	 was	 confirmed	 by	 the	
results	of	another	trial	of	palifermin,	published	during	the	course	of	 this	study,	
which	 demonstrated	 that	 up	 to	 3	 doses	 of	 60mcg/kg	 of	 palifermin	 did	 not	
increase	CD4	counts,	nor	improve	thymic	function	(assessed	by	measuring	naïve	
CD4	 cells,	 RTEs	 and	 thymic	 size	 on	 CT	 scan)	 in	 HIV-infected	 patients	 with	
persistent	 CD4	 lymphopenia	 despite	 virologically	 effective	 anti-retroviral	
treatment	(Jacobson	et	al.,	2014);	suboptimal	dosing	was	postulated	as	a	cause	
for	their	negative	result.	Importantly,	no	previous	study	has	reported	a	reduction	
in	thymic	function	with	palifermin.	In	our	own	study,	none	of	the	doses	tested	in	
the	tolerability	sub-study	had	a	positive	effect	on	thymopoiesis.	With	the	caveat	
that	 only	 3	 individuals	 were	 treated	 at	 each	 dose	 level,	 all	 doses	 (from	 90	 to	
180mcg/Kg/day)	impaired	thymic	function	after	alemtuzumab,	with	an	apparent	
dose	effect.			
	
We	 have	 recently	 learnt	 that	 murine	 TECs	 express	 CD52	 (the	 target	 of	
alemtuzumab)	 at	 least	 at	 the	mRNA	 level	 (personal	 communication	 from	 Prof	
George	Hollander,	Oxford).	Although	we	are	 yet	 to	 confirm	whether	 this	 is	 the	
case	 in	 humans,	 it	 raises	 the	 possibility	 that	 alemtuzumab	 impairs	 thymic	
function	by	damaging	CD52	expressing	TECs.	In	this	study,	palifermin’s	negative	
effect	 on	 thymic	 function	 was	most	marked	 at	 the	 earliest	 time	 points,	 at	 the	
point	 of	 co-administration	 with	 alemtuzumab.	 For	 example,	 the	 biggest	
difference	in	the	number	of	naïve	CD4	cells	between	the	two	arms	of	the	study	
was	 at	month	 1,	where	 there	was	 a	 9.5	 fold	 difference	 compared	 to	 a	 3.4	 fold	
difference	at	month	3,	and	a	2.6	fold	difference	at	month	6.	A	similar	effect	was	
seen	in	the	TREC/mL	data	where	the	biggest	difference	between	the	two	arms	of	
the	study	was	at	month	3	(the	earliest	point	measured;	a	13	fold	difference	vs.	a	
3	fold	difference	at	month	6).	These	data	suggest	that	whilst	the	initial	doses	of	
palifermin	exaggerate	alemtuzumab-induced	thymic	damage,	later	doses	may	be	
protective.	 Our	 working	 hypothesis	 is	 that	 palifermin	 worsens	 alemtuzumab’s	
impact	 on	 thymic	 function	 by	 causing	TECs	 to	 upregulate	 CD52	 expression,	 so	
making	them	more	susceptible	to	damage.	
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Although	 palifermin	 significantly	 reduced	 thymopoiesis	 in	 our	 patients,	 there	
was	 no	 evidence	 that	 it	 increased	 the	 risk	 of	 developing	 autoimmunity	 at	 30	
months	of	 follow	up.	However	 autoimmunity	 can	occur	 for	up	 to	5	 years	 after	
alemtuzumab	 so	 we	 will	 continue	 to	 monitor	 these	 patients	 clinically	 and	
immunologically.	
	
In	 conclusion	 we	 have	 shown	 that	 palifermin	 (180mcg/kg/day	 given	 over	 12	
days)	worsens	thymic	function	following	alemtuzumab	treatment	of	RRMS.	Our	
study	acts	as	a	reminder	to	be	cautious	in	extrapolating	efficacy	data	and	dosing	
regimens	 from	 animal	 studies,	 and	 when	 co-administering	 drugs	 that	 may	
interact.	 It	 remains	 to	 be	 seen	 if	 alemtuzumab	 induced	 autoimmunity	 can	 be	
reduced	by	preserving	thymic	function.				
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9.3 A CASE REPORT OF ANAPHYLAXIS TO ALEMTUZUMAB 
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Abstract	

	

A	22-year-old	female	with	relapsing-remitting	multiple	sclerosis	developed	

anaphylaxis	to	the	first	dose	of	the	second	cycle	of	alemtuzumab.	This	is	the	first	

reported	case	of	confirmed	anaphylaxis	to	the	drug.	

	

Introduction	

	

Alemtuzumab	(Lemtrada)	is	a	humanised	monoclonal	antibody	targeting	CD52	

found	on	lymphocytes	and	monocytes,	and	is	a	highly	effective	treatment	of	

relapsing-remitting	multiple	sclerosis	[1–3].	It	is	given	as	five	consecutive	daily	

doses	of	12mg	IV	at	baseline,	with	no	further	treatment	until	12	months	later,	

when	patients	receive	three	consecutive	doses	of	12mg	IV.	

	

Over	90%	of	patients	receiving	alemtuzumab	experience	infusion	associated	

reactions.	Work	in	the	1990s	showed	that	these	could	be	reduced	or	ameliorated	

by	pretreatment	with	corticosteroids	[4]	and	that	the	underlying	mechanism	was	

a	programmed	release	of	cytokines	from	natural	killer	cells,	triggered	by	Fc	

cross-linking	[5].	When	severe,	these	reactions	may	include	a	rash,	fever,	

hypotension	and	bronchospasm	and	so	mimic	anaphylaxis;	they	are	therefore	

termed	“anaphylactoid”.	This	phenomenon	has	led	to	confusion	in	the	current	

literature	as	to	whether	patients	may	develop	genuine	anaphylaxis	to	

alemtuzumab.	

	

	 	



 294	

Case	report	

	

A	22-year	old	female,	with	relapsing	remitting	multiple	sclerosis,	and	no	history	

of	atopy,	had	previously	received	her	first	cycle	of	alemtuzumab	without	

complication.	This	had	occurred	in	the	context	of	a	clinical	trial	where,	one	week	

before	alemtuzumab,	she	had	received	either	placebo	or	palifermin	to	promote	

thymic	reconstitution	(CAMTHY;	EudraCT	Number:	2011-005606-30).	No	

further	investigational	drug	was	given	to	the	patient.	As	is	common,	she	had	

developed	Grave’s	disease	6	months	later	and	was	being	treated	with	

carbimazole	(40mg	OD)	and	thyroxine	(75ug	OD).		

	

One	year	later,	she	received	the	first	dose	of	the	second	cycle	of	alemtuzumab.	

Beforehand,	as	usual,	she	had	received	1g	of	methylprednisolone	and	anti-

histamines.	40	minutes	into	the	infusion	(1/6th	of	the	dose)	she	had	generalized	

urticaria,	facial	swelling,	tongue	swelling,	stridor,	hypotension	and	wheeze.	The	

infusion	was	stopped	and	her	symptoms	quickly	resolved,	without	further	

medications.	

	

Her	serum	IgE	was	elevated	at	314,	rising	to	374	the	following	day	(upper	limit	

of	normal	170ku/l)	and	her	serum	tryptase,	taken	during	her	symptoms,	was	

elevated	at	22	(upper	limit	of	normal	14).	Her	baseline	tryptase,	recorded	10	

days	after	the	event	and	one	year	later	was	3	ruling	out	mastocytosis	and	helps	

to	confirm	this	is	true	anaphylaxis.		Eighteen	months	later,	she	had	allergy	

testing.	A	skin	prick	test	of	alemtuzumab	10mg/ml	was	positive	at	4mm	and	an	
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intradermal	test	(1:100)	of	alemtuzumab	was	positive	with	a	12mm	wheal	and	a	

flare	greater	than	30mm	(see	Figure	1).	

	

	

	

Fig. 1 Result of the skin prick testing showing the positive reaction to 
alemtuzumab and negative control 

	

The	patient	switched	to	fingolimod	and	has	done	well.	

	

Discussion	

	

This	is	the	first	case	of	true	anaphylaxis	to	alemtuzumab,	confirmed	by	skin	

prick,	intradermal	testing	and	the	confirmed	rise	in	serum	tryptase.	Another	case	

in	the	literature	is	likely	to	represent	anaphylaxis	(Caon	et	al.	2015)	[6],		but	did	

not	have	formal	allergy	testing.	However,	other	reported	cases	of	anaphylaxis	

more	likely	represent	severe	anaphylactoid	cytokine-induced	infusion	reactions.	
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A	typical	example	of	the	confusion	is	the	case	of	“	anaphylaxis”	with	the	first	

administration	of	alemtuzumab,	as	a	treatment	for	B-cell	CLL	[7]	clearly,	this	is	

very	unlikely	to	be	true	anaphylaxis.	Features	of	anaphylaxis	that	would	not	be	

expected	in	a	cytokine-release	syndrome	are	stridor	and	facial	and	tongue	

swelling,	as	seen	in	this	case.	This	report	also	shows	the	benefit	of	formal	allergy	

testing	to	confirm	true	IgE	mediated	anaphylaxis	versus	the	unavoidable	adverse	

effects	due	to	the	physiological	action	of	the	drug.		

	

In	this	case,	her	symptoms	resolved	on	stopping	the	infusion	of	alemtuzumab.	

Presumably,	the	premedication	with	corticosteroids	prevented	worse	

manifestations	of	her	allergy.	Nonetheless,	further	exposure	to	normal	

concentrations	of	the	drug	would	be	dangerous,	so	we	elected	to	switch	her	to	an	

alternative	treatment.	Another	strategy	might	have	been	to	induce	

desensitisation	to	alemtuzumab.	

	

	

	

	

References	

	

1.		 Cohen	JA,	Coles	AJ,	Arnold	DL,	Confavreux	C,	Fox	EJ,	Hartung	H-P,	et	al.	

Alemtuzumab	versus	interferon	beta	1a	as	first-line	treatment	for	patients	with	

relapsing-remitting	multiple	sclerosis:	a	randomised	controlled	phase	3	trial.	The	

Lancet.	2012	Nov	24;380(9856):1819–28.		



 297	

2.		 Coles	AJ,	CAMMS223	Trial	Investigators,	Compston	DAS,	Selmaj	KW,	Lake	SL,	

Moran	S,	et	al.	Alemtuzumab	vs.	interferon	beta-1a	in	early	multiple	sclerosis.	N	Engl	

J	Med.	2008	Oct	23;359(17):1786–801.		

3.		 Coles	AJ,	Twyman	CL,	Arnold	DL,	Cohen	JA,	Confavreux	C,	Fox	EJ,	et	al.	

Alemtuzumab	for	patients	with	relapsing	multiple	sclerosis	after	disease-modifying	

therapy:	a	randomised	controlled	phase	3	trial.	The	Lancet.	2012	Nov	

24;380(9856):1829–39.		

4.		 Coles	AJ,	Wing	MG,	Molyneux	P,	Paolillo	A,	Davie	CM,	Hale	G,	et	al.	

Monoclonal	antibody	treatment	exposes	three	mechanisms	underlying	the	clinical	

course	of	multiple	sclerosis.	Ann	Neurol.	1999	Sep	1;46(3):296–304.		

5.		 Wing	MG,	Moreau	T,	Greenwood	J,	Smith	RM,	Hale	G,	Isaacs	J,	et	al.	

Mechanism	of	first-dose	cytokine-release	syndrome	by	CAMPATH	1-H:	involvement	

of	CD16	(FcgammaRIII)	and	CD11a/CD18	(LFA-1)	on	NK	cells.	J	Clin	Invest.	1996	Dec	

15;98(12):2819–26.		

6.		 Caon	C,	Namey	M,	Meyer	C,	Mayer	L,	Oyuela	P,	Margolin	DH,	et	al.	

Prevention	and	Management	of	Infusion-Associated	Reactions	in	the	Comparison	of	

Alemtuzumab	and	Rebif®	Efficacy	in	Multiple	Sclerosis	(CARE-MS)	Program.	Int	J	MS	

Care.	2015;17(4):191–8.		

7.		 Moreton	P,	Kennedy	B,	Lucas	G,	Leach	M,	Rassam	SMB,	Haynes	A,	et	al.	

Eradication	of	Minimal	Residual	Disease	in	B-Cell	Chronic	Lymphocytic	Leukemia	

After	Alemtuzumab	Therapy	Is	Associated	With	Prolonged	Survival.	J	Clin	Oncol.	

2005	May;23(13):2971–9.		

	

 


