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Abstract 

The discovery of macromolecular targets for bioactive agents is currently a bottleneck 
for the informed design of chemical probes and drug leads. Typically, activity profiling 
against genetically-manipulated cell lines or chemical proteomics is pursued to shed 
light on their biology and deconvolute drug-target networks. By taking advantage of 
the ever-growing wealth of publicly available bioactivity data, learning algorithms now 
provide an attractive means to generate statistically motivated research hypotheses 
and thereby prioritize biochemical screens. Here we highlight recent successes in 
machine intelligence for target identification and discuss challenges and opportunities 
for drug discovery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 

The future of molecular medicine relies on the identification and validation of small 
molecule effectors [1-4] despite the advent of biologics [2,5], such as antibody–drug 
conjugates. Indeed, specific drug-target binding and engagement remains a hallmark 
for modulation and treatment of diseases. Bioactive matter is rarely selective for a 
given target, but rather engages several other related or unrelated macromolecules 
[6,7], through what has been coined as polypharmacology or network pharmacology 
[8,9]. Although in some circumstances, such as cancer, it is desirable to harness the 
potential of therapeutics that modulate a plethora of targets – ideally belonging to 
distinct signalling pathways [10] – generally, polypharmacology is unwanted because 
it is responsible for adverse drug reactions [11,12]. Therefore, factual knowledge of 
on- and off-targets correlated to efficacy and liabilities of chemical matter is of utmost 
importance to maximize benefits and mitigate attrition in development pipelines. 

The identification and unravelling of pharmacology networks for phenotypic screening 
hits – either of synthetic or natural origin – arguably remains a bottleneck of modern 
drug discovery [13-15]. This is a consequence of our current inability to streamline 
state-of-the-art technologies for target identification, e.g. chemical proteomics. 
Nonetheless, advances in machine-intelligence heuristics and hardware, and the 
increasing amount of publicly available chemical-biology data may afford untapped 
opportunities to speed up discovery programs that to date have stalled at the target 
identification phase [15]. In this Review, we discuss recent progress made in machine 
learning (for an overview on basic concepts we refer to Refs. [16] and [17]) as a 
research hypothesis generator and as a vital method in the chemical biology toolbox 
for research into drug-target recognition. In addition, we highlight advantages of 
machine learning based technologies and outline gaps in our knowledge to hopefully 
spur on future investigations and democratize its use among chemical biologists. 

 

A winding road to drug target identification 

Chemical proteomic approaches remain the gold-standard for the identification of 
macromolecular counterparts for small bioactive molecules [18-22]. These methods 
require the chemical modification of the ligand of interest by appending a “tag” moiety 
that will afterwards enable a pull down of the formed ligand–target complexes. 
Downstream identification of the bound proteins can then be made by mass 
spectrometry or bespoke analytical methods [20]. By application of this concept, 
Cravatt and co-workers were able to identify the mitochondrial carnitine–acylcarnitine 
translocase SLC25A20 as a functional target of diterpenoid ester ingerol mebutate (1), 
which is a first-in-class treatment for actinic keratosis (Figure 1a) [23]. Other prominent 
examples include the identification of carbamates as arylacetamide deacetylase-like 
1 regulators [24], and a clinical-stage imidazole as a promiscuous lipid hydrolases’ 
inhibitor [25]. Although these studies clearly suggest that chemical proteomics lends 
itself to scrutinizing drug–target relationships, it becomes apparent that chemical 
manipulation of the native ligand can disrupt the binding affinity towards relevant on- 



and off-targets. Moreover, chemical proteomics rarely enables the identification of 
membrane proteins due to their instability in solution and low copy number [26]. 

As an alternative, screening of the native ligand against a battery of genetically defined 
cell lines, may offer a solution to identify drug targets based on the observed activity 
signatures. Indeed, this method, has enabled the identification of transient receptor 
potential canonical channels 4 and 5 as targets for anti-cancer sesquiterpene (–)-
englerin A (2) by correlating gene expression with phenotypic changes (Figure 1b) 
[26,27]. However, like chemical proteomics, this approach is laborious, time 
consuming and expensive, which has prompted the search for viable alternatives, 
such as machine learning. 

 

 
 

Figure 1. Schematics of two different methods for target identification. a) Identification 
of targets for ingenol mebutate (1) through a chemical proteomics approach. b) 
Identification of targets for (–)-englerin A (2) by means of a phenotypic screen 
approach.  

 

Machine learning for target identification 

With the advent of high-throughput experimentation, a wealth of chemical and 
biological data has been generated [16,28,29]. Thus, it became impossible for 
researchers to efficiently analyse all available information and became reasonable to 
assume that computer algorithms could be employed to sieve through this data to 
identify latent patterns, which expert human researchers may struggle to identify 
[30,31]. Indeed, machine learning has recently seen a range of applications in biology, 
medicine [32–38], chemistry [39–41], and materials science [42–44], which suggests 
that it can be used to speed up development pipelines and augment human 



perception. For example, deep-learning algorithms have been devised to predict 
retrosynthetic pathways to molecules of interest [45] and design new chemical entities 
that can be scrutinized as hits/drug leads [46–48]. Also, different learning heuristics 
that leverage chemical structure data have been implemented to identify drug–target 
interactions that can be exploited in pre-clinical studies [49,50] and to design 
experiments [51,52].  

The self-organizing maps (SOM)-based prediction of drug equivalence relationships 
(SPiDER) software uses a neural network-inspired algorithm to discretise the input 
feature vector onto a so-called feature map in an unsupervised fashion [6]. In practice, 
this means that drug–target relationships are inferred based on descriptor similarity to 
reference ligands in the same neuron without explicitly considering the target identity 
of those reference ligands for the purpose of training or heuristics’ validation studies. 
The method employs a set of topological pharmacophore descriptors (CATS2 [53]) to 
categorize non-hydrogen atoms. From the autocorrelation of those topological feature 
pairs in a molecule, a SOM is built. A second, independent SOM is built by using 
physicochemical descriptors prior to generating a consensus prediction from both 
SOMs, which is supported by background statistics. Taken together, the prime goals 
are to employ descriptors that represent molecules in a sufficiently fuzzy manner, and 
analyse data from disparate vantage points to allow generalization of the method to 
previously unseen test cases, i.e. molecules of potential biological interest. The 
software tool has been extensively applied to de novo designed entities and, 
especially, natural products of high biological value. Prominent use cases of SPiDER 
include identification of farnesoid X receptor (EC50 = 0.2 µM), peroxisome proliferator-
activated receptor gamma (EC50 = 8 µM), 5-lipoxygenase (EC50 = 11 µM) and 
microsomal prostaglandin E synthase-1 (EC50 = 8 µM) as drug targets for macrolide 
archazolid A (3, Figure 2). Importantly, given the structural difference between 3 and 
the small molecules used as reference structures by SPiDER, target inference was 
successfully achieved by exploiting synthetically motivated fragments of 3 as 
bioactivity blueprints [54]. This appears to be a reasonable approach as an identical 
strategy was followed to identify the prostanoid 3 receptor (EC50 = 6 nM) and the 
voltage-gated Cav1.2 channel (IC50 = 6 µM) as targets for doliculide, 4, and 2, 
respectively [55,56]. Similarly, fragment-like alkaloids graveolinine (5), isomacroin (6), 
and piperlongumine (7) could be de-orphanized with SPiDER as serotonin 2B receptor 
(IC50 = 12 µM), platelet-derived growth factor receptor alpha (IC50 = 25 µM), and 
transient receptor potential channel vanilloid 2 (EC50 = 5 µM) modulators, respectively, 
which opens new avenues for molecular optimization in hit-to-lead programs [49,57]. 
More recently, SPiDER has been applied to prioritize de novo designed chemical 
entities fitting a predefined pharmacological profile for synthesis and experimental 
validation [46,58]. Given that SPiDER is built from two-ddimensional descriptors, one 
may expect a higher rate of false positive predictions for molecules with stereogenic 
centres relative to achiral molecules, as this information is not taken into account. To 
better predict the chiral nature of molecular recognition, the extended three-



dimensional fingerprint was recently developed and applied to synthetic molecules 
[59], but remains to be validated with complex natural products. 

The target inference generator (TIGER) method offers target predictions based on 
SOMs — similar to SPiDER — but differs in the scoring function and the use of a 
restricted number of topological pharmacophore atom types [60,61]. For flat and 
neutral natural products, such as resveratrol (8), and (±)-marinopyrrole A (9), the 
method was able to confidently predict relationships with targets from different 
families, pinpointing the polypharmacology that underlies these structures [61,62]. For 
example, 8 was confirmed as an estrogen receptor ligand (Ki = 0.4–4 µM), whereas 9 
was successfully associated to orexin (KB = 0.3–0.6 µM) and glucocorticoid (KB = 0.7 
µM) receptors, and trypsin (IC50 = 3 µM). 

 

 
Figure 2. Application of self-organizing maps (SOM) for target deconvolution of 
phenotypic screen hits. SPiDER and TIGER use the SOM technology to tessellate 
chemical space and infer targets for bioactive molecules. SPiDER was used to identify 
targets for archazolid A, doliculide, graveolinine, isomacroin and piperlongumine, 
whereas TIGER was used for resveratrol and (±)-marinopyrrole A. 

 

The heuristics learn the data structure in an unsupervised way to aggregate molecules 
with similar feature patterns, yet without knowing if the resulting association is correct 
in respect to drug target associations. This is frequently assessed through cross-
validation studies, hold out test data [63] and adversarial control models [64], as a 



means of ascertaining the relevance of the obtained models and soundness of the 
exploited descriptors. Regression-based methods can circumvent some of the 
limitations of unsupervised and classification methods, by affording a predicted affinity 
value. This however comes at the expense of needing a larger volume of training data, 
which is often not in hand or is expensive to collect. The molecular ant algorithm 
(MAntA) [65-67] is a small molecule generator workflow that implements Gaussian 
process regression to predict affinity values for query ligands and model binding 
uncertainties towards a range of ChEMBL targets. Thus, the method is well suited to 
not only prioritize de novo designed entities [66], but also repurpose molecules [68] or 
de-risk pre-clinical development [69]. The application of other conceptually distinct 
regression algorithms is viable [50,51] and one can also expect the growing utility of 
deep-learning architectures in the target prediction space in the near future [70–72]. 

The DEcRyPT method has been recently reported [73,74] for the prediction of network 
pharmacology, either as a standalone tool or in combination with SPiDER, by 
employing random forest technology and CATS2 descriptors. In short, this method 
harnesses a user-defined number of predictors (decision trees) that independently 
analyse different portions of the training data, prior to aggregation of the resulting 
predicted outputs. When applied to beta-lapachone (10), the workflow confidently 
predicted 5-lipoxygenase as a target. Follow-up studies revealed that 10 was a 
reversible, allosteric modulator of 5-lipoxygenase (IC50 = 240 nM) and also a selective 
relative to other lipoxygenases and metalloenzymes. Activity of 10 could only be 
observed in cell-free and cell-based assays in the presence of a reducing agent. The 
observation suggests that beta-lapachone is reduced in situ to its hydroquinone form 
prior to modulation of 5-lipoxygenase. Importantly, modulation of 5-lipoxygenase by 
10 was crucial for the anti-proliferative activity of 10 in an acute myeloid leukemia cell 
line [73]. More recently, a second use case unveiled modulation of cannabinoid 
receptors by celastrol (11), which are also implicated in cancer progression [74]. 

 

 



 

Figure 3. Schematics of target identification for beta-lapachone (10), and celastrol 
(11) by using the random forest technology implemented in DEcRyPT. 

 

Outlook 

Machine intelligence has recently seen an upsurge of applications in chemical 
sciences, in particular referring to the design of new chemical entities. The 
deconvolution of targets for phenotypic screen hits has been a necessary but laborious 
task [13], which enables the rational design and optimization of chemical matter 
towards drug leads. Over the years, the large volume of data collected [75] now allows 
scientists working at the interface of chemistry and biology, and equipped with 
machine learning tools to identify latent patterns worthy of further research. Here, we 
have shown recent successes in the identification of targets, leveraged by statistical 
learning algorithms. Naturally, each technique has its own strengths and limitations, 
and domain of applicability, all of which require careful consideration. For example, 
none of the discussed methods can identify unreported proteins as targets, as these 
methods are based on the principle that similar ligands (irrespective of the employed 
descriptor) exert similar biological effects. Similarly, the identification of DNA/RNA 
binders, modulators of protein–lipid interactions, among others ought to be possible 
provided that sufficient data is available; this is however not easily accessible, 
contributing to a preferential exploration of protein targets. One must also bear in mind 
that no new biology can be uncovered through machine learning, unlike wet laboratory 
experiments that are able to provide the ground truth. Even for known proteins, there 
is shortage of ligand data in some cases, which can limit the scope of a new method. 
Erroneous predictions are also common, especially for poorly studied targets or 
targets with noisy data available. However, negative, yet validated results offer 
opportunities to build better-informed machine intelligence, and thus should still be 
reported and not discarded. Alongside healthy scepticism, machine learning for target 
identification entails an important set of tools to aid decision-making. By filling a gap 
within the chemical biologists toolbox, we expect machine intelligence to speed up 
some tasks in drug discovery towards the development of life-changing therapeutics. 
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