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Linking confined electron spins through coherent light-
matter interaction.

Robert H. J. Stockill

Electron spins confined to self-assembled quantum dots are considered as nodes

for a coherent optical network capable of supporting distributed quantum states.

Through a series of experiments, the work contributing to this dissertation examines

some of the key criteria for constructing such a network.

First, the ability to optically extract a coherent spin state from the quantum dot

without perturbing the nuclear environment is explored: nuclear feedback is an issue

that has frustrated previous studies into electron spin coherence in these systems.

With the novel techniques we develop, we identify and characterise the previously

undetermined intrinsic mechanisms that govern the coherence of the central spin.

We show how the coherence of the electron spin is intimately related to the growth of

these strained nanostructures. Second, a model network is constructed in which two

spins confined to separate quantum dots are projected into a highly entangled state.

This is the first time electron spins in distant quantum dots have been entangled,

and in doing so we demonstrate controllable entanglement generation at the highest

rates recorded for optically accessible qubit definitions.

We investigate the realisation of a hybrid quantum network by demonstrating the

first interconnect between wholly different single quantum systems: a semiconductor

quantum dot and a trapped ytterbium ion. In forming an optical link between

these two complementary qubit definitions, we show that we can circumvent their

intrinsic optical differences through coherent photon generation at the quantum

dot. A network built from these diverse constituents could combine the ultrafast

operations self-assembled quantum dots enable with the long coherence times states

in trapped ions experience. Finally, in a step towards truly scalable entanglement

generation between quantum dot spins, we design minimally invasive structures that

will funnel large proportions of the optical dipole field from the optically dense



material that surrounds the quantum dot.

The techniques developed in this work and the knowledge gained from their op-

eration should enable the demonstration the creation of high-order nonlocal states

between quantum dot spins, single photons and trapped ions, as well as the develop-

ment of new optically active systems that will benefit from enhanced spin coherence.
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CHAPTER

ONE

INTRODUCTION - QUANTUM DOTS FOR QUANTUM

NETWORKS

Realising useful quantum information requires linking together coherent components

(generally two-level qubits) into large-scale entangled states. This entanglement

provides the resource to process and communicate information in entirely new ways

[1–4] as well as effectively simulate previously inaccessible quantum dynamics [5].

Just as importantly, certain entangled states have emerged as the host for a single

distributed qubit that is robust against errors acting on the individual components

[6, 7].

Highly entangled states could be formed entirely through nearest-neighbour in-

teractions, as in the chequerboard surface code proposal for quantum computing

[8, 9]. A particularly attractive alternative merges the fields of quantum commu-

nication and computation in constructing a network of optically linked qubits [10].

Such a network would combine the coherent optical manipulation common to many

quantum systems with the ability of single photons to faithfully transmit quantum

states.

As well as providing flexible architectures for information processing [11, 12] net-

works of interlinked qubits can increase the range of an entangled qubit pair through

1



1. Introduction - Quantum dots for quantum networks

intermediate quantum repeaters [13]. A coherent network of optically active qubits

could also be used to generate entangled optical cluster states as the input for mea-

surement based computing [14, 15].

In finding ingredients for such a network, single atoms held in high vacuum were

the first focus owing to their natural isolation from environmental interactions [16].

A branch of study that has received intense experimental and theoretical scrutiny is

the role of solid-state defects, where a confined carrier experiences energetic isolation

from the surrounding host. Although generally requiring cryogenic temperatures to

function, these systems relax the need for ultra-high vacuum and laser cooling tech-

niques. If we control their formation they enable the possibility of chip-production

scalability [17]. They also allow provide a natural integration for on-chip routing of

optical signals [18–20].

The particular physical system studied here is an electron spin confined to a self-

assembled indium-gallium-arsenide (InGaAs) quantum dot. The creation of confined

excitons provides an ultrafast interface between a confined spin and a well-defined

optical mode [21, 22], and as such these systems are an attractive host for high-

frequency entanglement distribution.

We can only begin to access quantum information in the abstract sense with a full

understanding the specific physics of the host. For quantum dots this means that any

demonstration of a particular protocol is rooted in an understanding of the dynamics

of the confined charge we manipulate and the role of the semiconductor lattice.

Similarly, efforts towards developing highly entangled networks of spins have enabled

new understanding of how these highly unique systems behave. In particular, we can

explore subtle features of coherent light-matter interaction previously inaccessible

with single atoms, such as the generation of squeezed light in resonance fluorescence

[23].

This dissertation contains a selection of experiments which all share the common

goal of networking individual spins in quantum dots. First we look in detail at the

specific properties of a coherent electron spin confined to a self-assembled InGaAs
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1.1. InGaAs quantum dots

quantum dot. We establish the regimes that allow for a protected electron spin state,

and how they emerge from dynamics intrinsic to the quantum dot. Building from

this work, in combination with studies on the optical-frequency coherence of excitons

[22, 24], we then move to demonstrate entanglement between two non-interacting

electron spins.

As research concentrates on truly scalable quantum network implementations,

there is a growing attention in hybrid architectures [25–27]. By liberating ourselves

from a single physical representation of a quantum state, we could combine the

diverse advantages different systems provide. This field, very much in its infancy, is

a focus of one of the chapters in this dissertation, where we demonstrate an optical

link between a quantum dot spin and a single ytterbium ion.

1.1. InGaAs quantum dots

If a wavefunction is confined in three dimensions, its density of states transforms

from a continuum to a discrete set of energies. For excitons in III-V semiconductors,

the length scale for this effect is set by the Bohr-radius which extends over many

lattice sites [28]. In this way, a three-dimensional potential well containing ∼ 105

atoms can provide an atomic-like density of states for confined excitations. What

results is a mesoscopic system embedded in the solid state with intrinsic spectral

features typically found in atomic energy levels, referred to as a quantum dot (QD).

Quantum dots emerge through modulation of the semiconductor heterostructure

on a sufficiently small length scale. This can be achieved multiple ways, for instance

by forming nano-scale clusters in solution [29], or by patterning depletion regions

in a two-dimensional electron gas [30]. The quantum dots we focus on in this work

are formed from the interplay between the band gaps of indium arsenide (InAs) and

gallium arsenide (GaAs). The two materials are qualitatively similar direct band-

gap semiconductors with zincblende crystal structure [31], however their band gaps

differ by 1.07 eV (0.36 eV for InAs and 1.43 eV for GaAs at 300 K) [32]. A small
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1. Introduction - Quantum dots for quantum networks

sample of InAs embedded in GaAs forms three-dimensional potential wells in both

the conduction and valence bands, confining both electrons and holes.

The quantum dots form spontaneously by self-assembly during Molecular Beam

Epitaxy (MBE), through a process known as Stranski-Krastanov growth [33, 34].

With advances in MBE, we have atom layer-level control over the growth of high-

purity InAs and GaAs crystals [35]. When attempting to grow InAs on top of a

GaAs substrate the 6% mismatch in the lattice constants of the two (6.06 Å for

InAs and 5.65 Å for GaAs) induces strain at the interface. To find the lowest energy

arrangement, after ∼ 1.6 monolayers of growth further material nucleates into small

islands about 20 nm wide and 5 nm tall. After capping the layer with GaAs, we are

left with a two-dimensional array of clusters containing ∼ 104 − 105 atoms which

provide our desired three-dimensional band modulation, sat on a thin wetting layer

[36].

Dot nucleation occurs at the transition between two growth regimes, where the

InAs either strains to match the GaAs lattice or adapts over multiple layers to its re-

laxed spacing. The quantum dots that form then feature significant, inhomogeneous

strain [37]. For the samples used in this work, confined excitons feature energies

around 1.3 eV (950 nm). This value is set by the balance of the electron-hole bind-

ing energy, the band gap of the alloyed InGaAs and the confinement energy provided

by the QD. The dot size is uniform to ∼ 10% [38], resulting in confined exciton ener-

gies typically distributed over a 40 meV range. The central energy can be controlled

through the growth parameters or by an additional annealing step [39]. Our samples

contain densities on the order of 1 QD per µm2, which is low enough to preserve

the optical quality of the quantum dots, yet high enough to find a dot with desired

spectral properties within the sample.

The small QD height strongly confines excitons along the growth direction. The

weaker lateral confinement allows for a shell-structure in the exciton wavefunction.

Excitons in the higher-order shells quickly decay non-radiatively to the ground state,

which then optically recombines in less than an nanosecond. In confining charges
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1.2. Confined excitons

and excitations, the quantum dot provides isolation from external interactions that

would decohere their wavefunction. This results in highly coherent optical excitonic

transitions capable of interacting with a well-defined optical mode. Similarly, a

single charge can be trapped in the dot. The spin of this additional carrier can then

be studied as an optically accessible qubit definition.

1.2. Confined excitons

The constituents of an exciton confined to the quantum dot are inherited from the

bulk band structure. Lowest energy electrons in the conduction band are s-shell, and

holes in the valence band p-shell. Due to spin orbit coupling [32] and the presence

of uniaxial strain in the quantum dot, the contributing hole states at lowest energy

are heavy holes with j = 3/2, jz = ±3/2 (with a slight mixing of the light holes

with j = 3/2, jz = ±1/2). We can form four possible exciton combinations from the

s-shell electrons and the heavy holes, |↑⇑〉 , |↓⇓〉 , |↑⇓〉& |↓⇑〉, where ↑, ↓ refers to the

spin of the electron, and ⇑,⇓ the pseudo-spin of the jz = ±3/2 hole. The first two

combinations have an angular momentum of ± 2h̄, which prevents recombination by

a single photon. They are then known as ‘dark’ excitons and are long lived (∼ µs

[40]). The latter two with momentum ± 1h̄ can recombine through a single photon

and are the ‘bright’ excitons with a lifetime ∼ 0.7 ns. We restrict our studies to the

optically-active bright excitons (X0).

Owing to a lack of in-plane symmetry, the exchange interaction between the

electron and the hole mixes the two bright excitons into the linear combinations
1√
2

(|↓⇑〉 ± |↑⇓〉), polarised along the major and minor axes of the ellipse [41]. These

states are split in energy by the fine structure splitting, ∆FS, which is typically 20-28

µeV in our samples. The bright exciton level structure is displayed in figure 1.1a.

For a quantum dot charged with a single electron, the excited state is no longer the

exciton but rather the trion (X1−), which consists of two electrons and a heavy hole.

The electrons form an anti-symmetric singlet ( 1√
2

(|↑↓〉 − |↓↑〉)), which we will denote
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Figure 1.1.: InGaAs quantum dot energy levels Figure displays the neutral exciton
(X0), and the charged trion (X1−) for an external magnetic field parallel to the
growth axis (Faraday geometry, B‖) and perpendicular (Voigt geometry, B⊥)
The dashed lines in Faraday geometry depict the weakly allowed transitions
owing to slight light-hole mixing.

as ↑↓. The angular momentum of the trion is then set by the heavy hole. We will

interact with charged quantum dots under an external magnetic field which splits the

electron spin states by δe, and the hole by δh. There are two key geometries for this

field: Faraday geometry where the optical axis, growth direction and magnetic field

all coincide (figure 1.1b), and Voigt geometry, where the magnetic field is transverse

to the other two (1.1c). In Faraday geometry (B‖), angular momentum permits two

spin-conserving transitions: between |↑〉 ↔ |↑↓⇑〉 and |↓〉 ↔ |↑↓⇓〉, with circular

polarisation (σ+/−), as displayed in figure 1.1b. Non-spin conserving transitions are

slightly allowed to ∼ 2% due to the mixing of the jz = 1/2 light hole [42] (see chapter

5).

A transverse magnetic field (Voigt geometry) mixes the ground and excited states,

which now permits four transitions as sketched in figure 1.1c. This now forms

two equal strength Λ-schemes with rectilinear polarisation (H/V) from the sum or

difference of the Faraday geometry transitions. This field geometry is employed

through a large amount of this dissertation as it now forms a coherent interface

between the ground state spin and the optical transitions, enabling coherent optical

control of the electron spin [21], and spin-photon entanglement [43–45].

In figure 1.2, we display the photolumiscence spectrum of a single quantum dot

at 4.2 K. The photon-generation process is depicted in the figure inset. We excite
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Figure 1.2.: Single quantum dot spectrum Recorded with spectrometer during above-
band gap excitation. The form of the main peaks are labelled. The inset
displays the carrier generation and relaxation process.

the sample at 780 nm, which pumps carriers into the conduction band of the bulk

GaAs. The carriers then relax non-radiatively into the quantum dot and recombine

through a photon emission. We detect the fluorescence from the dot on a spectrom-

eter. The two bright peaks at 967 nm and 971 nm are the recombination of the

neutral exciton (X0) and charged trion (X1−) within the same quantum dot. We

observe them simultaneously due to the optical generation of additional charges in

the dot. The trion peak is red-shifted by four nanometres by the balance of addi-

tional Coulomb attraction between the hole and the extra electron combined with

the confinement energy for the extra charge [46]. The narrow lines are limited by

the 10-GHz resolution of the spectrometer, which prevents us from observing the X0

fine-structure splitting ∆FS.

Photoluminescence spectroscopy allows us to determine the course features of a

single quantum dot, and align our microscope optics to maximise the proportion

of photons we collect from the exciton recombination. For more in-depth studies

and control of exciton and spin dynamics, we interact resonantly with the discrete

exciton energies.
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1. Introduction - Quantum dots for quantum networks

1.3. Coherent light-matter interaction in the solid

state

At its simplest, the important aspects of our optical interaction with neutral or

charged excitons can be understood through a dissipative two level system inter-

acting with a near-resonant classical driving field, provided in our experiments by a

coherent laser pulse. In this case the Hamiltonian for the two level system consisting

of a ground state (|1〉) and an excited state (|2〉) is [47]:

Ĥ =
h̄

2
(Ω |2〉 〈1|+ Ω∗ |1〉 〈2|+ ∆ (|1〉 〈1| − |2〉 〈2|)) . (1.1)

The Hamiltonian is expressed in a frame rotating at the laser frequency, detuned

from the transition by ∆ in the rotating wave approximation. The optical field

couples to the two level system with a Rabi frequency Ω = µ12|E|/h̄, where µ12 is

the transition matrix element linking the ground and excited state and |E| the size

of the driving field. The relevant structure is plotted in figure 1.3a.

For a quantum dot the levels represent either the crystal ground state and a single

exciton, or a single electron and a trion in the case of a charged dot. A key parameter

in determining the coupling frequency is the dimensionless oscillator strength, which

compares the transition dipole moment against a single electron oscillating at the

resonance frequency. This value is typically an order of magnitude larger for InGaAs

quantum dots than in single atoms [48–50].

The coupling of the exciton to the vacuum modes of the optical field results in

spontaneous decay of population in state 2 over a time T1. The state decoheres in a

time T2, which is given by:

1

T2

=
1

2T1

+ γ, (1.2)

where we have included additional pure decoherence at a rate γ. In the absence

of any pure dephasing, T2 = 2T1 and the transition is said to be transform limited
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Figure 1.3.: Coherent 2-level system dynamics a Two level system driven at Rabi
frequency Ω at a detuning ∆. b Evolution of incoherent, coherent and total
scattering rates as a function of Rabi Frequency. c AC-Stark shift of levels
under a detuned coherent drive.

[51].

Combining the unitary Hamiltonian in equation 1.1 with the incoherent relaxation,

we can find the dynamics of the two-level density matrix in the rotating frame [47]:

ρ̇22 = −ρ̇11 =
iΩ

2
(ρ21 − ρ12)− ρ22

T1

, (1.3)

ρ̇12 = (ρ̇21)∗ = −i∆ρ12 +
iΩ

2
(ρ11 − ρ22)− ρ21

T2

. (1.4)

These dynamics form the Optical Bloch equations for a three-dimensional vector

in the two-state Bloch sphere [52].

1.3.1. Population transfer

The intensity of the light scattered by the transition is proportional to the excited

state population, ρ22 [53]. The optical drive coherently transfers population between

the ground and excited state, which is balanced by the incoherent decay processes.

In general we work in the long-time limit where the system has reached a steady
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1. Introduction - Quantum dots for quantum networks

state which we find by setting the time-derivatives in equations 1.3 and 1.4 to 0. In

this case the population we create is given by:

ρ22 =
1

2

|Ω|2

∆2 T2

T1
+ 1

T1T2
+ |Ω|2

. (1.5)

The excited state follows a Lorentzian with a width ∆FWHM = 2/T2

√
1 + T1T2|Ω|2.

For strong driving (|Ω|2 � 1/T1T2 for ∆ = 0), the excited population saturates at a

value of 1/2, as stimulated emission and absorption rates dominate over the spon-

taneous emission. We can normalise the Rabi frequency against the environmental

coupling of the transition to gain a dimensionless parameter that characterises the

response of the system, s = T1T2|Ω|2. This sets a saturation intensity Isat, where

we drive the transition at s = 1. On resonance, this corresponds to a steady-state

excited state population of 1/4. For all excitation intensities, the transition can

only support one excitation at a time, and the scattered intensity is, naturally, an-

tibunched over the system re-excitation time [54].

1.3.2. Emission properties

We can split the light scattered from the two level system into two main components:

the coherent response of the transition dipole to the driving field, and incoherent

decay from coupling to the sum of vacuum modes. While the total intensity is

given by the excited state population, the fraction of the coherently scattered light

is related to the purity of the steady-state density matrix, Fcoh = |ρ12|2/ρ22 [55]. For

the case of exact resonance (∆ = 0) from equations 1.3 and 1.4 we find the intensity

of the coherently scattered light to be:

Icoh ∝ Fcoh × ρ22 =

(
T2/2T1

1 + |Ω|2T1T2

)
× 1

2

(
|Ω|2

1
T1T2

+ |Ω|2

)
(1.6)

This coherently scattered intensity reaches a limit Imax
coh ∝ T2/8T1 for driving at

the saturation intensity (ρ22 = 1/4). This scattering is coherent with the optical

drive field [24], and is only observable due to the lack of significant pure decoher-
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1.3. Coherent light-matter interaction in the solid state

ence for the confined exciton. For a drive with a sub-linewidth spectral width, the

scattered spectrum is similarly narrow [22], and pinned to the laser frequency [56].

At high-powers (I > Isat) incoherent excited state decay with a spectral width set

by the dephasing rate of the transition is the dominant emission process, and the

coherently scattered intensity reduces to zero (|ρ12|2 → 0). The proportions of co-

herent, incoherent and total scattering are plotted against the dimensionless drive

in figure 1.3b for the case of T2 = 2T1.

While this is the classical response of the transition dipole to the driving field,

the two level system restricts further excitation, and the intensity of the light field

is still anti-bunched [22]. In this low power regime, the full scattering is a squeezed

mode, as the limited availability of states restricts the population from following

the coherent drive in phase space [23]. This scattering, which is pinned to the laser

frequency, offers some protection against small spectral wandering of the exact res-

onance frequency, although the phase of the scattering is still sensitive to frequency

shifts (as we discuss in chapter 4).

1.3.3. AC - Stark effect

Finally, we look at the response of the transition energy to the drive field. Re-

diagonalising the Hamiltonian in equation 1.1 under the coherent mixing of the

states, we find new eigenenergies, λ+/− given by:

λ+/− = ± h̄
2

√
|Ω|2 + ∆2. (1.7)

The eigenenergies in the rotating frame are plotted against the normalised Rabi

frequency in figure 1.3c, for a fixed detuning ∆.

On resonance (∆ = 0), this splits the degenerate states by ± (h̄/2) |Ω|, as the

optical field dresses the system. This splitting is observed as either the Autler-

Townes doublet for weak-probe absorption in the presence of a strong drive [57, 58],

or in the forming of a Mollow triplet in emission spectra [59–62].
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Another important limit is large detuning, where ∆� Ω. In this limit no signifi-

cant excited state population is created, according to equation 1.5. Nonetheless the

transition receives an energy shift of ≈ h̄|Ω|2/2∆. We use the transition-selective

phase acquired by this shift to optically rotate the ground state spin projection in a

charged quantum dot, as we will discuss in section 1.8.2.

1.4. Quantum dot device

In addition to the GaAs host, our sample comprises a layered stack of MBE-

compatible dielectric materials. Figure 1.4a shows the geometry of the different

materials that form the device and their core function. The device provides three

main functions: control over charge occupation of the quantum dot, DC stark-shift

tuning of the exciton/trion resonance and improved photon extraction efficiency.

1.4.1. Charge control

Before growing the quantum dots, we first deposit a 40-nm of heavily n-doped GaAs,

with a free-charge density of 2×1018 cm−3. The carriers are provided by electron-

contributing substitutional silicon introduced in the growth process [63]. This forms

a Fermi-reservoir of free electrons, with the energy pinned close to the conduction

band. We then grow a 35 nm tunnel barrier of un-doped GaAs, and the quantum

dot layer on top of that. 10 nm above the quantum dot layer, we grow 50 nm of

Al0.3Ga0.7As. This larger band gap material provides a barrier layer that blocks

current flow through the device. After a final 100 nm of GaAs, we cap with 6-nm of

Titanium. This top metal-semiconductor interface forms a Schottky gate with the

semiconductor, bending the conduction and valence bands as shown in figure 1.4b.

The doped layer and the quantum dot are separated by only a short, triangular po-

tential barrier. Applying a field across the device alters the band bending and shifts

the relative height of the confined states and the pinned Fermi-level in the doped

layer. If the field is high enough to compensate the in-built bias in the device and
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Figure 1.4.: Quantum dot device a Sample layer materials, thickness and function. b
Approximate band energies between the doped layer and the top contact.

pull the bound-electron energy below the pinned Fermi-level one electron will tunnel

into the quantum dot. The Coulomb-interaction between two electrons confined to

the dot provides an energy cost for an extra charge of 25 meV. If cold enough, this

will prevent multiple charge occupation until the interaction is compensated by a

larger field, referred to as a Coulomb blockade [64, 65].

At each bias voltage, a certain charge occupation will be the lowest energy state

of the combined reservoir-dot system, forming bias voltage-dependent plateaus of

long-lived charge occupation (up to ∼ ms). At specific gate values different charge

occupations become degenerate. At this point fast, second order cotunneling pro-

cesses across the tunnel barrier occur between the degenerate charge states, which

thermalises the spin orientation in single-ns [66, 67]. For most experiments we work

far from this region, however this interaction is useful as the controllable spin lifetime

gives us a mechanism to thermalise the nuclear bath via electron-spin dependent hy-

perfine interactions [68], where the broad electron spin energy allows for non-energy

conserving nuclear spin flips. This will be examined in greater detail in chapter 2.

Figure 1.5 shows photoluminescence spectra from a quantum dot sample under

different applied bias voltages. The marked regions of high intensity correspond to
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Figure 1.5.: Photoluminescence spectra 2D map of photoluminescence as a function
of applied bias voltage demonstrating Stark-shift tuning and shifting charge
occupation.

different charge occupations of the same QD. The spectral lines overlap at certain

gate-bias regions here due to optically created charge states.

1.4.2. Stark-shift tuning

In controlling the charge occupation of our quantum dots, we apply large electric

field values across the sample. The exact size of the stability plateau can vary, but

typically, for our ∼35 nm tunnel barriers, it corresponds to a range of 5 kV cm−1.

This field, F, induces a dipole moment between the electron and the hole, set by

the polarisability of the material, β. In addition, a permanent dipole moment, p0,

exists due to the localisation of the hole wavefunction in the indium-rich quantum

dot apex [69]. These in turn couple to the electric field to shift the excitonic energy

from its zero-field value by ∆E [70]:

∆E = −p0 · F− βF 2. (1.8)

The in-built permanent exciton dipole [71], and the plateau widths are such that

we measure a linear response to an applied DC bias, corresponding to ∼28 µeV
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cm kV−1 (∼350 MHz mV−1). This allows us to match the quantum dot optical

transition with an atomic transition (chapter 5) or another quantum dot (chapter

4). The Stark shift tuning is visible in the gradients of the spectral lines in the

photoluminescence map displayed in figure 1.5.

The bandwidth of any electrical operation on the quantum dot is limited by the

RC constant of the device. In our devices we employ a single gate for the whole

centimetre-scale sample, which limits our bandwidth to kHz values. As we will

discuss in chapter 2, this is still fast enough to resolve dynamics of the quantum

dot nuclear spin bath. It is also fast enough to feedback against electrical noise in

the surrounding host [72]. That being said, much higher bandwidths approaching

the GHz regime have been reported in samples that miniaturise the gate features to

limit the capacitance of the device [73].

1.4.3. Photon extraction

The last main function of the device is to extract as much of the dipolar field

pattern scattered by the quantum dot transition out of the top of the sample and

funnel it into a mode compatible with a single-mode fibre. Efficiently extracting

the fluorescence from a two-level system requires conversion of the dipolar emission

pattern to a mode that can be focussed into an optical fibre. To compound this,

at QD wavelengths gallium-arsenide presents a particularly high refractive index, n

= 3.44 [74, 75]. In the absence of any collection strategy, the combination of total

internal reflection at the sample surface and the loss of emission into the lower half-

space limits the possible collectable emission in free space to 2% with a numerical

aperture of unity [76].

A method for countering the large losses due to the refractive index contrast

between GaAs and air is to introduce a solid immersion lens (SIL) at the collection

interface [77]. If the SIL is in close contact to the surface of the Gallium Arsenide

(sub - wavelength) it can reduce losses due to total internal reflection, as well as

funnel the light into our collection optics.
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Figure 1.6.: Solid immersion lenses The path of an incident ray at θsub is traced through
each form of lens, emerging at θout from vertical.

Solid immersion lenses are used in two main geometries, hemispherical (hSIL) and

superhemispherical (SSIL, often referred to as the Weierstrass geometry). These are

shown in figure 1.6, with the paths taken for a light beam incident at the centre of

the SIL contact at angle θsub. The refractive indices of the lenses are chosen at a

value between that of air and the sample (Cubic Zirconia at n = 2.3 is used in this

work), but they are most effective for photon extraction if the indices of the lens

and sample match. Solid immersion lenses also play a role in forming a stable focus

at the emitter in the substrate, as the magnification they provide reduces the effect

of sample motion on the collected intensity [78, 79].

If index-matching (nSIL = nSUB), the hSIL maps the angles of the emission in the

bulk to air (θout = θSIL = θsub), as all rays are normal to the curved surface of the

lens. Total internal reflection is avoided, yet the emission is still spread over a 2π

solid angle. The lack of refraction at the surface of a hSIL forms an image without

chromatic aberration. This is of great use for white light microscopy [80], though

aberration is not a concern to mono-chromatic photon collection.

The SSIL is similar to the hSIL, however the additional focussing due to the

super-hemispherical geometry funnels the available emission into a smaller solid

angle, suitable for a more modest collection numerical aperture. The out-coupling

angle, θout is related to the angle in the substrate, θsub by:

θout = arcsin

[
nsub

n2
SIL

sin θsub

]
, (1.9)
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funnelling the light by a factor of n2
SIL/nsub. Orthogonal emission in the substrate

will therefore be refracted to an angle of arcsin (nsub/n
2
SIL). For an index matched

GaAs SSIL, this corresponds to all the upper half-space emission within an NA of

0.3.

In this work we use super-hemispherical polished Cubic-Zirconia SILs (2-mm di-

ameter), which provide a large active area within which we can find a quantum dot

to suit our requirements. The lens is suction-held to the sample by evaporating water

from underneath and secured with mounting wax. The bottleneck of this technique

is mounting the lens with a sub-wavelength gap to the material beneath, which we

require to avoid reflections at the interface for high incidence angles.

A well-contacted SIL can increase the fraction of emitted photons out of the

sample by an order of magnitude. At the same time, half of the emission is still

below the quantum dot. We introduce a reflective surface to access this portion.

This can be constructed from a stack of dielectrics with alternating refractive index

(see figure 1.4), which forms a distributed Bragg reflector [81]. If the lengths of

the layers are chosen correctly (quarter-wavelength), the Fresnel reflections at each

interface constructively interfere to form a stop band. The wavelength dependence

of the reflectivity at normal incidence for the DBR used in our samples is shown

in figure 1.7, featuring a stop-band from 910 to 1025 nm. This DBR contains 20

repetitions of 73.5 nm of Al0.2Ga0.8As and 82.4 nm of AlAs, which is grown during

the epitaxy process before the quantum dot layer. For comparison, the dashed curve

in figure 1.7 shows the reflectivity of a 10-repetition stack, featuring a broader, yet

less well defined stop band. These curves are calculated from transfer matrices

for the interfaces between the dielectric layers, described in Appendix B. Although

the DBR is highly reflective for normal incidence rays, the interference condition is

lost for larger angles, (> 20◦), losing signifiant proportions of the emission to the

substrate.This loss will be examined in greater detail in chapter 6.
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Figure 1.7.: DBR reflectivity Normal incidence reflectivity for Al0.2Ga0.8As/AlAs DBR
used in this work, for both 10 layer repeats (dashed curve) and 20 layer repeats
(solid curve). Calculated using transfer matrices described in appendix B.

1.5. Resonant confocal microscopy

Figure 1.8 displays the important elements of the microscopy setup we build to

interact with the energy levels of a single quantum dot. The sample is held at 4.2

K in a liquid bath cryostat to prevent thermal occupation of levels (kBT = 0.4 meV

at 4.2 K) and provide a controllable QD charge state. The suppression of available

phonon modes is necessary for coherent interaction between the exciton and a single

optical mode [82].

The cryostat contains a superconducting coil capable of generating magnetic fields

up to 9 Tesla parallel to the main optical axis. In figure 1.8, the quantum dot is

mounted with the field perpendicular to the growth axis (Voigt geometry). This field

defines the quantisation axis for a confined electron spin, and shifts the quantum

dot transition energies through the combination of Zeeman splitting and quadratic

diamagnetic interaction [83].

The sample is mounted on three independent slip-stick piezo stacks (Attocube) to

provide nanometre-resolution position control for aligning on single quantum dots. A

0.5 NA single-piece aspheric lens, sufficient for the super-hemispherical SIL geometry

we use, is held a few mm above the SIL surface to focus the collimated excitation

and collection paths.

Optical access is provided by a fibre-based confocal microscope resting on top of

the cryostat. The microscope has two inputs and one output, sharing an imbalanced
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Figure 1.8.: Confocal microscope Main components of confocal microscope setup, in-
cluding polarisation and spectral filtering of scattered laser photons. The
symbols mark the polarisation at each point in the microscope. The reso-
nant, photons are filtered out by polarisation and the detuned, pulsed laser is
additionally filtered using the single diffraction grating displayed to the right
of the figure.

beam-splitter that directs 10% of the excitation down to the quantum dot, and

passes 90% of the emission up to the collection fibre. The two inputs are assigned to

resonant quasi-continous pulses and the detuned spin control pulses (more details in

section 1.8). Splitting the inputs this way allows for independent polarisation and

position control between the two.

Resonant interaction with the quantum dot energy levels is the least invasive

spectroscopic probe available, and generates single photons with the highest pu-

rity. This technique requires that we distinguish the quantum dot photons from the

frequency-matching excitation laser scatter, which we achieve through polarisation

filtering [84]. Operating successfully requires that the polariser in the collection arm

suppresses laser scatter by factor of 107 to achieve a signal to background rate of

> 100, sufficient for our experiments. Achieving rejection to this level then neces-
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1. Introduction - Quantum dots for quantum networks

sitates careful tracking of birefringence through the cryostat optical elements, as

well as any spatial mode distortion. The best combination of polariser positions is

empirically found after aligning the quantum dot sample using non-resonant Photo-

luminescence. The rejection can be frequency dependent to the single GHz level, so

generally requires fixed excitation conditions.

Experimental runs require intermittent checks of the background level to identify

any drifts in the excitation beam position or polarisation which necessitates a slightly

altered combination of polariser positions. A quarter wave plate sits in the optical

path, common to both the excitation and detection arms. This element provides

the interconversion between linear and circular polarisation which we require to

meet the selection rules for our optical spin control (as will be discussed in section

1.8.2). In addition, the wave-plate provides an extra degree of freedom for fine-tuning

excitation-laser rejection through the system.

The high-power, detuned control pulses we use to rotate the spin state are poorly

suppressed by the polariser pair, due to their spectral separation and broad band-

width. They are then rejected by a holographic diffraction grating after the mi-

croscope (1600 lines per mm) filtering over a 25-GHz bandwidth and featuring a

90% first-order efficiency. The single photon stream from the quantum dot is then

counted with either an avalanche-photodiode or a fibre-coupled superconducting

nanowire detector.

The whole system is very stable if supplied with enough liquid helium and peri-

odically re-aligned. This allows for the continual study of a single quantum dot for

an extended period of time (current PhD record: 474 days).

1.6. Quantum dot spectroscopy

There are a host of techniques to characterise the absorption and emission proper-

ties of a resonantly driven quantum dot transition in both the time and frequency

domain, some of which are exhibited in figure 1.9 and outlined below. The data
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Figure 1.9.: A coherent two-level system Characterisation measurements of a quantum
dot optical transition including. a Resonant absorption scan. b Course emis-
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power fine emission spectrum. f High power fine emission spectrum.
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in this section are taken from the quantum dot we couple to an ytterbium ion in

chapter 5.

1.6.1. Absorption scan

The response to resonant driving can be observed by monitoring the fluorescence rate

from the quantum dot as its transition frequency, ωQD is electrically tuned across

a fixed frequency laser at ωL. The recorded count rates against detuning (∆ =

ωQD − ωL) are displayed in figure 1.9a. The fluorescence follows the excited state

population ρ22, which, for an ideal two-level system follows a Lorentzian function of

detuning, ∆ as in equation 1.5.

The resonance frequency of the transition is sensitive to the presence of local

charge traps in the surrounding material. The discrete charge occupation of nearby

defects introduce a random telegraph signal to the resonance frequency [85–87].

For the data in figure 1.9a, the quantum dot is subject to an external noise source

in the lattice featuring fluctuations faster than our scan rate. This is reflected in the

emission rate function: a Lorentzian describing the two level system convolved with

a Gaussian for the spectral wandering. We extract a total transition width of 755 ±

15 MHz, containing a Lorentzian width of 345 ± 35 MHz. We drive the quantum dot

at I = 0.1Isat, which according to equation 1.5 predicts a lifetime-limited width of

1.05/(2πT1) = 260 MHz. Another broadening effect is the dragging of the resonance

condition via the non-collinear hyperfine interaction with the nuclear bath in the

quantum dot. This effect will be discussed in more detail in section 1.7.2. We take

the scan at a high stepping rate (12.5 MHz ms−1) to limit this effect.

1.6.2. Course emission properties

Rather than simply count the total photon rate, with a spectrometer we can resolve

the course features of the quantum dot emission. The spectrum for the resonantly

driven quantum dot is displayed in figure 1.9b, offset by the probe frequency.
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1.6. Quantum dot spectroscopy

The spectrum features a sharp peak at the quantum dot resonance, providing

87% of the area, and a broad low background containing the other 13%. The broad

background is a result of phonon assisted decay in the quantum dot, sitting pre-

dominantly to the red side of the transition. This imbalance is due to the lack of

occupied phonon modes at 4.2 K, as the blue sideband requires the absorption of a

phonon as part of the decay process [88]. This 13% of emission does not generate

a photon within a well-defined mode, and cannot be used for tasks like entangle-

ment distribution and state transfer. On the other hand, if filtered and collected,

as in reference [72], the phonon-assisted emission rate provides a reference for the

resonance condition. The signal can be used to form a feedback loop to compensate

low-frequency environmental noise. It is worth noting the phonon-assisted propor-

tion of emission is significantly smaller than the 97% reported for Nitrogen Vacancy

Centres at similar temperatures [89], a key factor contributing to the high-frequency

entanglement distribution we report in chapter 4.

1.6.3. Time resolved dynamics

By passing single photon detection events to a time-to-digital converter (quTAU) we

generate time stamps with a resolution accurate to the 100 ps level. We can exploit

this timing accuracy to observe the dynamics of the quantum dot population as we

excite the optical transitions, either through correlations between multiple events or

with the clock for a set optical sequence.

Figure 1.9c displays the normalised autocorrelation of scattered photons for a time

delay τ , g(2)(τ) as we continuously drive the quantum dot transition resonantly at

low power. We split the fluorescence into two detectors to measure multiple events

within the dead-time of each. The pronounced dip in correlation events around

τ = 0 is the hallmark of a single photon emitter [90], confirming we are interacting

with a single two-level system. The black curve is the two-time correlator of the

excited state population, convolved with the detector response, revealing a value of

g(2)(0) = 0.14, well below the limit of 0.5 required for a single emitter. Deconvolving
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1. Introduction - Quantum dots for quantum networks

from the detector response (grey curve) reveals a zero-time autocorrelation value of

g(2)(0) = 0.02. We drive the quantum dot at low intensity for this measurement,

as a high Rabi frequency will modulate the coincidence rate and obscure the dip at

τ = 0 [54].

An alternative time-domain measurement is presented in figure 1.9d. We excite

the quantum dot with short (few-nanosecond) optical pulses created with a high-

bandwidth electro-optic modulator and correlate the emission events with the short

pulses. To correct for the non-square profile of the excitation pulse we then record the

same pattern with the quantum dot off-resonance but an equivalent photon detection

rate from the excitation laser. Figure 1.9d contains the normalised difference of these

two measurements at the end of the excitation pulse. After the excitation pulse any

remaining excited state population will relax over the emission lifetime, which we

can directly measure. The curve is an exponential fit, revealing an excited state

lifetime of T1 = 650 ± 3 ps.

1.6.4. Spectral coherence

Finally, in figure 1.9e&f we present two fine spectral measurements of the quantum

dot emission. In each we drive the quantum dot at a fixed, continuous intensity and

record the count rate through a free-space Fabry-Pérot cavity scanned across the

resonance frequency. The cavity has a linewidth of 20 MHz and reveals the structure

in the response of the quantum dot transition that is unavailable in absorption scans.

More details of the technique can be found in reference [91]

For a low driving intensity (I = 0.26 Isat), the emission is narrow and limited

by the width of the cavity transmission. This peak is the coherent response of the

transition dipole to the near-monochromatic driving field, as introduced in section

1.3.2 [22]. From the Wiener-Khintchine theorem, we can relate this sharp spectrum

to the coherence of the quantum dot dipole in this limit, which exhibits minimal

pure decoherence. We can estimate T2 =1.96T1 here. The curve is the theoretically

expected emission spectra for the transition driven at resonance, following [22].
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1.6. Quantum dot spectroscopy

In figure 1.9f, we display the emission spectra from driving the quantum dot at

I = 2.6 Isat. This significantly higher intensity generates an average excited state

population of 0.36. The broad feature is a consequence of the incoherent decay of

this excited state population. The sharp peak is the remaining coherent scattering

at this power, contributing 23% of the total photon rate. Supplementing these data

with further measurements at higher excitation intensity, we could approximate the

pure decoherence rate of the transition, γ, as γ = 2π × (I/Isat) × 9.3MHz, such

that T2 = 1.67 T1 here. If we drive the quantum dot at higher powers, such that

the optical Rabi frequency significantly exceeds the incoherent decay rate we would

resolve the Mollow sidebands of the dressed system [84].

With these minimal measurements, we have already determined the key popula-

tion dynamics for the exciton, and established the coherence of the state, confirming

the applicability of the coherent, driven two-level system picture in section 1.3.

25



1. Introduction - Quantum dots for quantum networks

1.7. Spin

The exciton decays in ∼700 ps. For a quantum memory, we require long-lived,

controllable levels that can encode and store state amplitudes [92]. This is provided

by the Zeeman-split spin-1/2 states of a single electron confined to the dot.

A particular focus of this work will be the identification of intrinsic processes that

govern the evolution of the spin state. Under a reasonably-large external magnetic

field (Bext > 100 mT), and outside a cotunneling bias region, the population of the

electron spin is long lived (as discussed in section 1.4.1). For vanishing cotunneling

with the Fermi reservoir, the spin lifetime is limited by phonon interactions, which

are enabled by the spin-orbit coupling present in crystal structures lacking an in-

version symmetry [93, 94]. In the absence of thermally populated phonon states at

the Zeeman energy the phonon-assisted spin flip transition rate follows a B5
ext de-

pendence, due to the product of the available phonon density of states (∝ B2
ext), the

squared matrix element for the phonon-induced spin flip (∝ B4
ext), and the electric

field strength of the piezoelectric phonon (∝ B−1
ext) [95]. The inclusion of thermally

populated phonon states modifies the dependence to B4
ext. This behaviour has been

confirmed in both self-assembled QDs [96] and larger electrostatically defined dots

[97]. For the QDs studied in this work, relaxation times approaching ms have been

observed [98]. In the field ranges we use and our particular sample design cotun-

neling is likely to limit the lifetime first to the few-hundred µs value. Theoretical

investigations have shown the phonon interaction to purely induce population re-

laxation, and have no additional effects on the coherence of the state [99]. These

timescales are all long enough that from this point we can neglect the relaxation of

the spin, and focus on other mechanisms that disturb its coherence.

1.7.1. The hyperfine interaction

The critical interaction for understanding the storage of a quantum state in the

electron spin is the Fermi-contact hyperfine interaction with the host nuclear spins
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1.7. Spin

that form the quantum dot. In addition to its relevance to quantum information

storage, the interaction between a single spin and a mesoscopic host, referred to as

the central spin problem, is a particularly rich source for emergent dynamics [100]

unique to the scale of the quantum dots we examine. Here we present the elements

that underpin the processes we observe.

Compared to solid-state qubit representations in silicon or diamond that ex-

perience a dipolar interaction due to nearby isotropic impurities [101, 102], self-

assembled InGaAs quantum dots are made from purely III-V materials, such that

every atomic site contains a nuclear spin. The Fermi-contact hyperfine interaction

between an electron and nuclear spin occurs when the electronic orbital has a non-

zero wavefunction at the site of the nucleus [103]. This condition is satisfied for

every nuclear spin within the wavefunction envelope of the s-shell electron spin we

consider. The contact hyperfine interaction between the electron spin Ŝe and the

nuclear spins Î i can then be expressed as the following:

Ĥfc =
ν0

8

∑
i

Ai|ψ(ri)|2
(
Î izŜ

e
z +

1

2

[
Î i+Ŝ

e
− + Î i−Ŝ

e
+

])
(1.10)

Here, the sum is over every nuclear site, where |ψ(ri)|2 is the normalised electron

wave function at site i, Ai ∼ 45µeV is the contact hyperfine strength set by the

particular isotope and ν0 is the 8-atom unit cell volume. In equation 1.10, the

isotropic interaction has been re-expressed, where Î i+/− = 1/
√

2
(
Î ix ± Î iy

)
(Ŝe

+/− =

1/
√

2
(
Ŝe
x ± Ŝe

y

)
), where Î i+/− (Ŝe

+/−) are the nuclear spin (electron spin) raising and

lowering operators. This divides the interaction into terms that alter the precession

frequencies along one axis (Î izŜe
z) and terms that enable flip-flop interactions around

the other two (Î i±Ŝe
∓). Under an external field along some direction, z, the large

mismatch between the electron and nuclear splittings frustrates the latter type of

interaction.

It is useful to re-express the interaction semi-classically as an effective field acting

upon the electron spin, the Overhauser field BOH [104], where we normalise the

average hyperfine energy against the electron Zeeman coupling geµB:
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BOH =
ν0

8geµB

∑
i

Ai|ψ(ri)|2
〈
Î i
〉

(1.11)

The variance of the Overhauser field magnitude, σ2
OH, is a direct consequence of

the mesoscopic scale of the spin confinement: for a large wavefunction envelope the

contribution at each site becomes minimal (|ψ(ri)|2 → 0), and for a wavefunction

approaching a single nuclear site the interaction can be expressed as a coherent

exchange between the electron and a nuclear spin. Treating the electron wave func-

tion as a uniform distribution over N lattice sites, the standard deviation follows a

1/
√
N dependence. For the quantum dots in this work, the relatively small number

of nuclear spins (∼30,000) sets this value at σOH ∼ 30 mT [105, 106]. In comparison

larger, electrostatically defined dots containing 106 atoms feature a standard devia-

tion at the single mT level [107]. A symmetric field is experienced by each nuclear

spin due to the portion of the electron wave function at that site, referred to as the

Knight field.

The first consequence of the large Overhauser field variance is the requirement

that the external magnetic field must dominate in order to provide a well-defined

basis for the electron spin [108], corresponding to a suppression of the flip-flop terms

in equation 1.10. For much larger external fields, the Overhauser field acts as a

perturbation to the spin splitting: the predominant source of dephasing between

the electron spin states. We depict this process in figure 1.10a, where the spin (Se)

precesses in the vector sum of the external and Overhauser fields. Further details

of the way in which different field components couple to the electron precession are

provided in chapter 3, where we find that each component plays a unique role in

determining the retrieval of central spin coherence.
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Figure 1.10.: High Frequency Electron and Nuclear Processes The arrows display
the electron spin (Se) and nuclear spin (Ii) vectors. The timeline displays
the typical values for electon and nuclear processes in a few-Tesla external
magnetic field.

1.7.2. Nuclear dynamics

In the same way that accounting for the hyperfine interaction is necessary to under-

stand the electron spin dynamics in the quantum dot, the quadrupolar interaction

of the nuclear spins needs to be taken into account to understand the dynamics of

the nuclear bath. All the constituent isotopes in the quantum dot (In115, Ga69, Ga71

and As75) posses a nuclear spin greater than 1/2 (9/2 for indium, 3/2 for the rest).

The higher order components of these spins correspond to non-spherical nuclear

charge distributions which can couple to electric field gradients [104]. This coupling

is particularly important for InGaAs quantum dots because the strain-driven self-

assembly process leads to signifiant, inhomogeneous local field gradients throughout

the QD [37]. The random alloying of indium and gallium throughout is another

key source for these gradients. The quadrupolar interaction has a strength of ∼ 1-5

MHz, comparable to the four nuclear Zeeman splittings: gNµN = 9.33, 10.22, 12,98

and 7.22 MHz T−1 for In115, Ga69, Ga71 and As75.

For magnetic fields in the few Tesla range, the quadrupolar coupling tips the

nuclear quantisation axis away from the external field direction [109]. This is de-

picted in figure 1.10b where the quadrupolar interaction is represented as an effective
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magnetic field BQ. As we will discuss in chapter 3, this tilted quantisation axis gen-

erates large, high frequency terms along the external field direction, which dominate

electron spin dynamics for fields up to ∼4 T.

Another consequence of this tilting is the ability to induce a nuclear spin flip

without flipping an electron spin, which emerges from a basis change in the hyperfine

interaction described in equation 1.10 owing to the fact that Î iz is no longer a good

quantum number [109].

Perhaps the most striking result of this interaction is the dragging (pushing) of

optical resonances with a detuned probe when driving the high (low) frequency Zee-

man transition under magnetic field [110]. Depending on the detuning of the probe

optical excitation enables nuclear spin flips to higher or lower energy, inducing a

non-zero mean Overhauser field value that either brings the transition to resonance

for the high frequency Zeeman branch, or increases the detuning for the low fre-

quency transition. This interaction, while slow [110], is ever-present for experiments

with InGaAs quantum dots under magnetic field, and must be taken into account

when we design control sequences. For the high frequency transition, the effect can

feedback to reduce electrical noise down to the sub-ms level (at the cost of an altered

electron splitting). For the low frequency transition, the exact resonance is an un-

stable condition, and small detunings will cause a run-off of the frequency (referred

to as anti-dragging).

Two resonance scans of the high-frequency neutral exciton (blue Zeeman branch)

under an external 4-T field are displayed in figure 1.11. In the top scan, the transition

is swept quickly (12.5 MHz ms−1) across a low power (I = 0.1Isat) probe. In the

bottom scan, the same transition is probed at higher power (I = Isat) at a lower

rate (0.125 MHz ms−1). In the fast scan we recover a broadened Lorentzian (as

discussed in section 1.6.1), while in the slow scan we find a flat top extending for 10

GHz around the central transition frequency, as the nuclear bath compensates for

the detuned probe. The Lorentzian curves depict the underlying scanning transition

centre.
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Figure 1.11.: Nuclear spin dragging Fast (top) and slow (bottom) resonant scans of
the high-frequency neutral exciton under a 4-T external magnetic field. For
the slow scan nuclear spin-flips compensate for the detuned resonant probe,
generating a top-hat response.

Through the quadrupolar interaction, the strain fields in the quantum dot produce

local shifts in the transition energies of the nuclei. This suppresses resonant spin-

spin interactions, such that the bath remains coherent for longer than unstrained

systems [111–113], and can retain a polarisation for many hours in the absence of

an electron [68].

Bringing these high-frequency electronic and nuclear processes together, the log-

arithmic frequency axis at the base of figure 1.10 contains the rates of the different

processes for a few-Tesla magnetic field. Included is the frequency of our coherent

electron control, which exceeds every other process by at least an order of magnitude.

1.8. Optical spin interactions

Optical interaction with the ground-state spin can be grouped into two main tech-

niques: quasi-continuous excitation for spin initialisation and readout and detuned,

pulsed interaction for coherent spin control. In the first case we create excitonic pop-

ulation to link the ground state spin to the optical reservoir, pumping the spin and

simultaneously providing optical readout. For most of our experiments we consider

this interaction to be incoherent, however in chapter 4 we will discuss how it can be
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Figure 1.12.: Electron spin pumping Correlated counts from optical pumping for a range
of resonant powers. The inset displays the exponential decay time for each
power.

used to generate an entangled spin state. In the second case we pulse the transition

far red detuned from the resonance. This detuning ensures that we prevent the

build up of excited state population, so that ideally we preserve the coherence of the

ground state and rotate the orientation of the spin via the AC-Stark shift.

1.8.1. State preparation & readout

At 4.2 Kelvin, for all reasonable magnetic fields, the electron spin is sat in a thermal

mixture [114], and the first task of any of any experiment involving coherent spin-

state manipulation is to prepare a well-defined ground state population. If we drive

a single transition, say from the spin up ground state, the electron is exponentially

shelved into the spin down state. The time required is set by the excited state pop-

ulation (ρee) and the branching ratio. In chapter 5 we will discuss spin preparation

in Faraday geometry [42]. In Voigt geometry, the equal-weighted lambda system

permits spin preparation in a few excited state lifetimes [115].

Figure 1.12 contains time-correlated emission events for spin pumping in Voigt

geometry for different laser powers (7-150 nW), resonant with the highest-frequency
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1.8. Optical spin interactions

Zeeman-split transition. At zero time, we start with a spin-up state. The exponential

decay of the fluorescence follows the emptying spin-up population. The inset of the

figure 1.12 displays the fitted exponential decay times for the different power drives.

The solid curve is a fit to the decay time calculated from the excited state population

for zero detuning in equation 1.5, neglecting the modulated population of the excited

state [116]. The dashed horizontal line at 2.8 ns marks the limit of above-saturation

pumping, at four times the lifetime (ρee = 1/2).

The high preparation rate means we can prepare the spin to a reasonable fidelity

within the 13-ns repetition time of our pulsed rotation laser. In general, we find a

preparation fidelity of ≥ 95% is achievable.

The photon generation during spin preparation forms a natural optical readout

of the spin population, although this is limited to an average of two photons for

a bright spin in the Voigt geometry, which then prohibits single shot readout for

any realistic collection efficiency [117]. There are proposed schemes to optically

switch the basis, through the AC-Stark shift [118], or alternatively, readout through

electrically induced spin-to-charge conversion is possible in diode structures [119].

1.8.2. Optical spin rotations

After state preparation and readout, we now discuss how we can control the ground-

state spin orientation. In the majority of solid-state qubit definitions, spin states

are manipulated by electron-spin-resonance (ESR) with a driving microwave pulse

that extends far beyond the precession time of the spin [120, 121]. We work in

the opposite limit, where we use the strong coupling of the optical transitions to a

coherent optical pulse to reorient the spin in a fraction of its Larmor period [21].

We can coherently rotate the spin projection with a single, circularly polarised

pulse, detuned from the optical resonance. To understand the operating principle,

we consider the relationship between the spin states and the optical selection rules

in both the direction of the applied field and the optical axis. The left of figure

1.13 shows the level structure of the charged quantum dot in a transverse field. The
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Figure 1.13.: Growth-axis and field-axis level structure a Spin states and allowed
transitions in Voigt geometry. b Spin projections along optical axis.

ground and excited states are split by δe and δh respectively. A laser, detuned from

the excited state by ∆L couples to the four transitions by its linear polarisation

components, ΩH and ΩV.

The right of figure 1.13 shows the same level structure but along the optical axis.

The degenerate ground and excited states are coherent superpositions of the Zeeman

eigenstates, and are mixed at the splitting frequency. In this geometry the pulse only

couples to the two circularly polarised allowed transitions by the projections, Ω+ &

Ω−. In the limit ∆L � Ω the pulse does not produce excited state population, but

alters the transition frequency through the AC Stark shift, as described in section

1.3.3. The pulse then splits the degenerate ground states by h̄(Ω2
− − Ω2

+)/2∆L [47].

Afterwards an integrated phase θ will have been accumulated between the states,

which maps into a population rotation in the basis of the external field:

|↓〉 =
1

2
(|↑〉+ |↓〉)− 1

2
(|↑〉 − |↓〉) Stark−−−→

shift

1

2
eiθ (|↑〉+ |↓〉)− 1

2
(|↑〉 − |↓〉) (1.12)

=
1

2
|↑〉
(
eiθ − 1

)
+

1

2
|↓〉
(
eiθ + 1

)
(1.13)

In this way our spin rotations emerge from the AC Stark shift, requiring a circu-

larly polarised pulse to induce a significant phase difference. The full Hamiltonian

can be treated analytically, by adiabatically eliminating the excited state population
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1.8. Optical spin interactions

[122] to recover the effective two-dimensional Hamiltonian:

Ĥ2D =
h̄

2
(Ωeff |↑〉 〈↓|+ Ωeff |↓〉 〈↑|+ δe (|↑〉 〈↑| − |↓〉 〈↓|)) (1.14)

where Ωeff is given by:

Ωeff =
Ω2
− − Ω2

+

2

(
1

2∆L

+
1

2 (∆L − δh)

)
≈

Ω2
− − Ω2

+

2∆L

(1.15)

In addition a small phase-shift is induced between the spin states due to the non-

zero excited state splitting which accumulates at a negligible rate ∼ Ω+Ω−δh/∆
2
L

[21]. The Hamiltonian of equation 1.14 is for a two-level system subject to a DC

transverse field. Rather than working in a frame that rotates at a frequency close to

the spin splitting, we work directly in the laboratory frame. Inverting the electron

spin this way then requires that our rotation pulses are much shorter than the spin

precession time. The optical rotation pulses we use in this work are provided by a

modelocked laser (Coherent MIRA 900), which results in very large instantaneous

optical Rabi frequencies in few-picosecond bursts. The effect of the non-zero spin

precession during our rotation pulses will be assessed in section 1.8.4.

To measure the effect of our optical spin rotations we combine continuous, resonant

spin readout and preparation with the ps-long rotation pulses. The pulse scheme,

which repeats at 76 MHz, is shown in the left of figure 1.14. The control pulses

are red-detuned by ∼ 1 THz from the excitonic resonance. In principle, the scheme

would work equally well for a blue-detuned pulse, however phonon assisted processes

would populate the excited state [123].

The right of the figure shows the recorded count rate when we vary the power of

the rotation pulses. The time-averaged power at the cryostat forms the horizontal

axis of the figure. The readout pulse, resonant with the |↑〉 ↔ |↑↓⇑〉 transition

prepares the spin in |↓〉. Every 13.1 nanoseconds the rotation pulse reorientates

the spin vector. We then recover high-visibility effective spin-Rabi oscillations as a

function of the average rotation power. The Bloch sphere on the left displays an
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Figure 1.14.: Coherent spin-state rotation Pulse sequence, approximate Bloch sphere
trajectory and average readout count-rate for single-pulse spin control.

approximation of the trajectory the spin takes, where the resonant readout produces

an amount of fluorescence proportional to the height of the state vector in the sphere

after rotation.

The return to a minimal count rate is evidence of the coherence of our spin ro-

tations. Decoherence between the spin states leads to shrinking of the state vector

away from the Bloch sphere preventing the count rate from returning to zero [21].

The lead source of decoherence for this process is excitonic dephasing due to coupling

to acoustic phonons [124, 125], which contributes to < 5% decay for a 2π-rotation

here. For a full calibration of errors, we would need to perform benchmarking over

the Bloch sphere [126, 127]. At the same time, the return to a minimal count rate,

and the limited number of pulses we require is such that for the rest of the work we

will consider these rotations effectively coherent, and focus on the geometry of the

state trajectory on the surface of the Bloch sphere.

In figure 1.14, we only show one full oscillation of the spin state. Our ability to

probe the spin for rotation angles far beyond 2π is limited by a large shift of the

resonance condition in the sample owing to local charge build-up induced by the

high-power optical rotation pulses. This ‘heating’ of the sample shifts the resonant

bias voltage in the quantum dot by ∼4 mV for a π rotation, and decays on a 10

millisecond timescale [91]. Accordingly, for the experiments in this work, the re-

quired bias voltage is found for the particular set of rotation pulses used. Figure
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Figure 1.15.: Spin-Rabi oscillation bias voltage dependence Gate voltage offset rel-
ative to resonant value without the rotation laser.

1.15 demonstrates this sample heating effect: each panel is a spin-Rabi oscillation

recorded at a different bias. For small offsets from the unperturbed bias (-2 to -3

mV) we only see the small angle rotations before the optically-induced shift pre-

vents state readout and preparation. Alternatively for large offsets (-4 to -5 mV) we

only observe the oscillations at > π rotation. It is worth noting here that by using

the high frequency transition in the quantum dot, DNSP works to counteract this

power-dependent shift and provide a stable resonance over a wider range of rotation

powers.

1.8.3. Full control

To move beyond the single-axis control presented in figure 1.14, we need to introduce

another rotation axis. This is provided by the coupling to the external magnetic field.

By chaining together control pulses with wait periods, we can achieve arbitrary

rotations around the Bloch sphere [128].

We then require multiple optical rotations with a well-defined delay. We realise

this by passing the pulsed control laser through an unstabilised Michelson interfer-

ometer, which is sketched in two forms in figure 1.16. At the output of the laser

we split the pulse train into two with a 50:50 beam splitter, transmitting through
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Figure 1.16.: Control-pulse Michelson interferometer Two forms are shown, either
for producing pairs of pulses with a controlled delay (I) or pulse-picking each
arm individually (II).

to the ‘stationary arm’ and reflecting to the ‘moving arm’. In the most basic form

(figure 1.16I), we recombine these arms on the same beam-splitter with two retrore-

flectors. The reflector in the moving arm is mounted on a piezo-controlled delay

stage (Nanomotion FB150), which provides a controllable delay, τ , to an accuracy

� ps. The two outputs, at a quarter of the initial power, contain pairs of rotations

with a delay up to 1.2 ns. We send one to the quantum dot we control, with the

second available for a second quantum dot (as in chapter 4). In the second form,

(figure 1.16II) we pick off the reflected beams to recombine at a point later in the

setup. This way we can pulse pick each arm independently, required for operating

the more complex control sequences in chapter 3. For both forms of the setup, we

characterise the delay between the arms by scanning the delay stage and observing

the unstabilised interference between the pulses when τ is smaller than the ps-pulse

duration.

By applying two π/2 rotations to the QD, we form a Ramsey interference sequence

and can observe the spin precession in the external magnetic field. The final spin

population depends on the angle the spin state forms with the rotation axis as

it precesses in the equator. To demonstrate this we sweep the delay between the

two constant-power pulses. Figure 1.17 contains a sketch of the pulse sequence, an

illustration of the three-part trajectory around the Bloch sphere and the recorded

count rate. The count rate oscillates sinusoidally with high visibility (97±1%) at the
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Figure 1.17.: Full control Pulse sequence, approximate Bloch-sphere trajectory and
recorded count rates as a function of delay, τ . The curve is a sinusoidal
fit, revealing a visibility of 97±1%.

25.1 GHz spin precession frequency in the 4-T external field. The fidelity of these

rotations is limited by the dephasing of the electron. Our measurements presented

in chapter 2 show that for one spin precession this value is given by e−(0.04/1.93)2 =

0.9996. As we increase the delay between the rotations beyond a single precession,

the function of the double-rotation sequence moves from controlling the spin to

measuring the uncertainty in its splitting in the time-averaged visibility.

1.8.4. Realistic spin rotations

During the control pulse the spin is oscillating in both the effective field generated by

the AC Stark shift and the orthogonal external field, Bext. Ideal rotations perpen-

dicular to the quantisation axis are then only available for vanishingly short pulses,

requiring very high pulse energies to effect a spin rotation. For this work, the few-

picosecond pulses we use to rotate the spin take up a non-negligible fraction of the

spin precession time (40 ps for a Bext = 4 T field). In this section, we characterise

the effect of the finite duration optical pulses and track the geometry of our rotations

on the Bloch sphere.

We determine the direction of our rotation axis by referencing it against the elec-

tron spin quantisation axis. We do this by performing a variant on the Ramsey

interference sequence, where we sweep the height of the two rotations together as
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Figure 1.18.: Small-delay Ramsey interference power dependence a Recorded count
rates for varying delay and rotation angle for two-pulse sequence. b Modelled
signal from the Hamiltonian in equation 1.14 with a square, 4.5-ps rotation
pulse. Inset shows the same modelling for a 0.5-ps pulse.

well as their delay. The count rates we record are displayed in the intensity plot in

figure 1.18a. We recover large contrast oscillations for a pair of π/2 rotations and a

reduced, but non-zero amplitude oscillation for two π rotations. The noise around

0-ps delay is a consequence of the unstabilised interference between the overlapping

rotations.

Figure 1.18b contains the calculated signal for the same pulse sequence developed

from the Hamiltonian in equation 1.14. We evolve the spin with a square 4.5-ps long

rotation pulse, approximating a 4-ps wide sech2 intensity profile. The Hamiltonian

reproduces the features of we observe, including the non-zero amplitude oscillations

for a pair of π pulses and the phase-shift of the oscillation fringes for rotations >

π/2. The pulse length used in this model is longer than the 2-ps envelope we record

in field autocorrelation measurements, most likely due to dispersion between the

spectral components of the pulse. For comparison, the sub-panel in figure 1.18b

contains the same calculation but for 0.5-ps pulse lengths, showing no phase shift,

and a complete suppression of the count-rate for π rotations.

For a more quantitative comparison, figure 1.19 contains the oscillation amplitudes

due to the variable power Ramsey sequence (red points), and the results from the
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Figure 1.19.: Rabi and Ramsey amplitudes Ramsey interference amplitudes fitted from
figure 1.18, with Rabi oscillation count rates for comparison. The curves
are modelled for the two sequences assuming for a 4-ps sech2 pulse with an
electron precession frequency of 25 GHz

model Hamiltonian (red curve). In addition, the figure contains the recorded and

calculated count rates for a single-pulse Rabi sequence (corrected for the few-percent

decoherence at θ = 2π). These results are consistent with a constant deviation in the

rotation axis of 12.5◦ away from the equator. The oscillation amplitude for a pair of

π rotations is a particularly sensitive measurement of this angle, as the normalised

height corresponds to 1/2 (1− cos 4α), where α is the rotation axis deviation from

the equator.

An interesting feature of the data in figure 1.19 is the difference in the maximum

heights of the double and single-pulse measurements. We can gain a more full

inversion through using a composite pair of π/2 rotations rather than a single pulse

[129]. The extreme example of this would be if the rotation axis were deviated by

45◦, and an inversion would require a pair of Hadamard gates (π rotations) spaced

by half a precession. The use of composite pairs to correct for imperfect rotation

angles will be revisited in chapter 4 to perform tomography on the electron spin. In

particular, long rotation pulses are advantageous, as the smaller splitting limits the

phonon-induced excitonic dephasing rate.
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1.9. Conclusion (of the Introduction)

This introductory chapter has presented a high speed tour through the methods

by which we access the spin of a self-assembled quantum dot through its coherent

optical transitions, and some key electronic and nuclear dynamics.

Self-assembled InGaAs quantum dots and their variants have been the subject of

intense experimental and theoretical study for over 20 years. This has produced a

large body of knowledge, multiple textbooks ([46, 130] for examples), a number of

review articles [104, 124, 131–136], a biennial international conference and numerous

national meetings. It is important to understand the state of this busy field and the

context of this work within the many advances so far.

First: spin control and coherence. Controllable charge occupation was demon-

strated in 2000 [137] and single spin storage in 2004 [96]. State preparation and

all-optical control were demonstrated by 2008 [21, 42], and Hahn echo used to ex-

tend the coherence to 3 µs in 2010 [138]. At the same time, the irreversible decoher-

ence processes for the electron spin have been largely undetermined to this point,

specifically the extent to which we can protect a spin state from the large hyperfine

interaction through dynamical decoupling.

As for the optical networking of single spins, interference between separate quan-

tum dots was demonstrated by 2010 [139, 140], spin-photon entanglement was

demonstrated in 2012-2013 by three independent groups [43–45], and photon to

spin teleportation in 2013 [141]. As a complement to the work presented in chapter

4, nonlocal state creation was demonstrated between hole spins in 2016 [142].

This dissertation can be roughly divided into two halves. In the first half (chapters

2 and 3), we examine in detail the how we can determine the coherence of the

electron spin: a surprisingly non-trivial task owing to phase-sensitive feedback with

the nuclear environment. By either dissipating or preventing unwanted nuclear

polarisation we access the full timescale of spin coherence and determine the intrinsic

processes that irreversibly govern the spin coherence.

In the second half we move from single spin studies to direct demonstrations of
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optical networking between single quantum systems. In chapter 4 we demonstrate

the realisation of an entangled state between two distant electron spins. This experi-

ment uses the coherent spin-photon interface the provided by the QD to distribute a

nonlocal state between noninteracting ground state spins through the measurement

of a single photon. The technique we demonstrate enables the generation of entan-

gled states at the highest rate reported so far for optically active qubit definitions,

with a controllable phase set by the interference of their indistinguishable emission.

In looking to the possible construction of hybrid quantum networks, in chapter

5 we demonstrate the direct coupling of a quantum dot and a single ion. This is

the first demonstration of a link between single, wholly different quantum systems.

We explore how the different optical properties limit the efficiency of the hybrid

interface, and investigate routes to circumvent this based on the coherence of the

excitonic transition in the quantum dot.

Finally, in chapter 6 we briefly assess how we to extract larger proportions of the

quantum dot dipole field out of the optically dense gallium arsenide host. The de-

velopments we investigate will be crucial to demonstrating higher-order nonlocatlity

between multiple quantum dots, as they should improve the outcoupling by an order

of magnitude, while still preserving the clean electrostatic environment we require.
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CHAPTER

TWO

NUCLEAR DYNAMICS DURING COHERENT

ELECTRON CONTROL

We can use the coherent optical transitions provided by a self-assembled quantum

dot to generate and manipulate arbitrary superpositions of the ground-state electron

spin. In order to use the spin for information processing and communication, the

state coherences need to be preserved for a sufficiently long time before dephasing

through environmental interactions. While the hyperfine interaction with the nu-

clear bath is known to provide the significant source of dephasing, these interactions

are correlated in time and can be effectively suppressed through dynamical decou-

pling [143] as observed in electrostatically defined GaAs quantum dots [144]. A key

motivation for our development of coherent electron spin control is to establish the

extent to which we can use decoupling schemes to protect the electron spin state.

The first step is to observe the free evolution of a coherent electron spin, which

we achieve through Ramsey interference of the spin-basis states. We discussed how

we construct the interference sequence in section 1.8.3 of the previous chapter. For

longer delays between the two π/2 rotations environmental interactions lead to un-

certainty in the energy difference between the spin states which then maps to a loss

of visibility in the time-averaged signal.
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2. Nuclear dynamics during coherent electron control

As this chapter covers, extraction of spin coherence through resonance fluorescence

is not a trivial process: phase-sensitive readout forms a feedback loop with the

nuclear spins in the quantum dot. This process induces delay-sensitive polarisation

of the bath, which in turn prevents the measurement of the spin state.

We show how we can study the electron free from this polarisation. We achieve

this first by dissipating the nuclear polarisation through electron cotunneling with

the back reservoir and then by altering our control sequence to frustrate the phase-

dependent feedback loop. With these techniques we gain access to the unper-

turbed dynamics of the electron-nuclear system under resonant optical excitation

and achieve reliable extraction of the spin-state coherence. In the next chapter

we will extend these methods to incorporate dynamic decoupling and explore how

nuclear bath dynamics are imprinted on the evolution of the electron spin.

A side-note: the data presented in this chapter were taken from three quantum

dots from the same sample at a variety of field values between 1.5 and 4 T. The

dynamics were found to be consistent between the QDs studied, and qualitative

features independent of external field for these values. Indeed, they match dynamics

recovered for quantum dots studied in multiple research groups [145, 146].

The data presented in this chapter were taken with Claire Le Gall, except for

the final free-induction decay measurement in figure 2.11 which was performed with

Lukas Huthmacher.

2.1. Ramsey interferometry

2.1.1. Method

To operate coherent control sequences much longer than a single Larmor precession

we must suppress the spin readout and preparation laser: with the repump on the

spin lifetime is reduced to 2.8 ns. We use an electro-optic modulator (EOM) formed

from a LiNbO3 waveguide Mach-Zehnder interferometer which provides rise times ∼

200 ps, suitable for modulating the readout within the 13-nanosecond rotation pulse
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Figure 2.1.: Ramsey interference Count rates for delay τ between two π/2 rotations in
a 4-T external magnetic field.

repetition time. The interferometric suppression of the laser is sensitive to thermal

drifts in the waveguide, so we monitor the time-averaged output and feedback to a

DC compensation offset to ensure that modulation is between maximally destructive

and constructive interference. This way we can achieve suppression ratios between

300 and 600, with the exact ratio depending on the pulse sequence duty cycle.

The resonant laser modulation must be synchronised with the rotation pulses,

which can be achieved a number of ways. Details are provided in appendix A which

covers the construction of the various pulse sequences used in this work. Suffice to

say, for the first measurements the laser is extinguished for 2.5 ns around the spin

rotations. The remaining 11 ns provides enough time to prepare the electron spin

to a reasonable fidelity, so the Ramsey measurement can be performed at 76 MHz

without any pulse-picking of the rotation laser.

2.1.2. Results

When we apply the correct modulation to the spin readout and sweep the delay

between the π/2 rotations, τ , we record the quantum dot fluorescence rates shown

in figure 2.1. For short delays, τ ≤ 200 ps, the signal is very much as expected. The

electron spin precesses in the external 4-T field at 24.8 GHz, and we record high

visibility fringes. After this point the signal collapses to zero. This is in contrast

to the behaviour we would expect for spin relaxation or time-averaged dephasing

which would cause the fringes to continuously decay to their mean value.
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Figure 2.2.: Ramsey interference transition dependence Count rates as a function of
delay for different scan directions and probed transition. The level structures
adjacent to each axis display the used transition.

If we include both increasing and decreasing delay scans, and additionally use

all four of the available optical transitions for readout and preparation, we record

the count rates in figure 2.2. When probing either of the high-frequency transitions

emerging from the spin-up ground state (i&ii), we observe this collapsing signal.

Alternatively, when we probe the lower frequency transitions (iii&iv), a qualitatively

different behaviour emerges: a direction-dependent sawtooth pattern [145]. The

behaviour of the Ramsey interference for all transitions points to a phase acquisition

by the electron spin which is non-linear as a function of τ , emerging from optically-

induced dynamic polarisation of the nuclear bath (DNSP).

A net polarisation of the nuclear bath affects our measurement in two ways. First,

a shift of the Overhauser field will introduce a detuning between our probe laser and

the excitonic resonance. This reduces the photon rate we record and the fidelity

with which we initialise the electron spin between rotations. Second, a polarisation

alters the electron spin precession frequency. This will change the population at the

end of the Ramsey sequence, and the amount by which we have to repump the spin.

The signal we generate from the quantum dot, C (ω0, ωOH, τ), is set by the follow-

ing [145]:
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Figure 2.3.: Overhauser shift-Ramsey signal relation The transition is modelled as
a Lorentzian with a 700-ps excited state lifetime. The transition is driven
at twice the saturation intensity with a spin readout/preparation time of 13
ns, and the Larmor frequency is set at 10 GHz. For non zero Overhauser
shifts, ωOH 6= 0, the signal decreases as the laser becomes non-resonant, but
for longer delays, the effect of changing the electron precession is also observed.
The dashed lines for τ 6= 0 mark the optical transition.

C (ω0, ωOH, τ) ∝
(
1− e−β(ωOH)TP

)
(1 + cos [(ω0 + ωOH) τ ])

1 + cos [(ω0 + ωOH) τ ] e−β(ωOH)TP
. (2.1)

This form can be found by solving the spin-pumping differential equation and

the Ramsey interference transformation self-consistently. Here, β(ωOH) is the spin

pumping rate, set by the excited state population (as discussed in section 1.8.1),

TP is the spin pumping time, ω0 is the Zeeman splitting of the electron spin, ωOH

the mean Overhauser shift and τ the delay between the π/2 rotations. Figure 2.3

displays the predicted readout signal as a function of Overhauser shift for a Zeeman

splitting of 10 GHz at delays of τ = 0, 0.5 and 1 ns. We have sampled over the

finite width of the Overhauser field determined from the ensemble dephasing time of

the electron spin [106]. For τ = 0, the readout follows the natural transition width.

As we increase the delay the signal modulates owing to the phase acquisition of the

electron spin. The readout signal then becomes sensitive to a small, sub-linewidth

nuclear polarisation. This additional element now forms a feedback loop between

the electron spin and the nuclear bath polarisation. This increased sensitivity at

longer delays explains why the nuclear feedback has increasingly strong effects in

the Ramsey data as τ is increased.

In references [145] and [147], the authors captured the dynamics that result from
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2. Nuclear dynamics during coherent electron control

probing the lower frequency Zeeman branches (|↓〉 population). They considered

how the short excitonic lifetime enables flip-flop transitions with the nuclear bath.

This in turn allows for an unbiased random walk of nuclear spin flips. This diffusive

process will on average favour spin flips that increase the probability of exciting the

quantum dot, forming a positive feedback loop. This loop then results in the sharp

signal pick-up that we observe when probing the low-energy transitions in panels

iii&iv of figure 2.2, as the nuclear bath polarises to ensure constructive Ramsey

interference. A similar random-walk mechanism was attributed to nuclear focussing

effects studied in references [148] & [149]. This mechanism leads to a polarisation

of the Overhauser field of the form:

∂ωOH

∂t
= −κωOH + α

∂C

∂ωOH

(2.2)

Here, κ is the dissipation rate of a finite nuclear polarisation, and α is the polar-

isation rate. A positive feedback loop emerges when α > 0. We will see in section

2.2.1 that dynamics of this form are consistent with our observations, however the

transition dependence we observe is not reproduced by this random walk. For the

high frequency transitions, the polarisation serves to minimise the creation of ex-

cited state population, forming a negative feedback loop (equivalent to α < 0). An

interesting feature of these data is the opposite spin dependence to the DNSP intro-

duced in section 1.7.2 where probing spin-up population would lock the resonance

condition.

This nuclear feedback is a fascinating manifestation of particular mechanisms

unique to an electron and nuclear spins in a self-assembled dot. At the same time

for our purposes, it is an effect we want to avoid. The delay dependence prevents

us from obtaining time-averaged measurements of the electron dynamics without

inducing a pulse-scheme dependent feedback loop with the nuclear environment.

The rest of this chapter covers the ways we avoid this effect and the dynamics we

can then resolve.
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Figure 2.4.: Gate modulation Ramsey interference Signal for different modulation
amplitudes from the resonance condition, offset for clarity. A plot of the trans-
pose of these data forms the cover image for this dissertation.

2.2. Bias modulation

When we probe the high-frequency transitions, the steady state nuclear polarisation

suppresses the signal from the spin readout. This loss of signal provides a straightfor-

ward signature of the polarisation process, which we can use to study the dynamics

of the system as we perform the interferometry sequence.

In the first experiment, we run the Ramsey sequence at 76 MHz, and simultane-

ously apply a low frequency square-wave modulation at 700 Hz to the bias across the

quantum dot sample. The modulation brings the optical transition off resonance, so

we record half the average photon rate. The Ramsey interference signal we recover

for varying the modulation step between -50 and +70 mV are displayed as offset

curves in figure 2.4. Strikingly, when we apply modulation of ≈ −30 or +45 mV the

beating persists for much longer, extending up to delays of a nanosecond.

By comparing the applied modulation with maps of quantum dot charge occu-
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Figure 2.5.: Nuclear spin recovery in Ramsey interferometry a Correlated counts
from the pulse sequence. The full sequence lasts for 1 s. The text labels mark
the amount of time spent in a region of fast electron cotunneling. b Extracted
peak heights, normalised to the polarised counts. The curve is an exponential
fit to the data.

pation, we see that we are extending the Ramsey signal by modulating into bias

regions of fast electron cotunneling with the back contact. The short spin lifetime

allows for fast decay of nuclear polarisation through the hyperfine interaction [68].

In this way 1.4 ms in the cotunneling region partially reinitialises the system when

we return to resonance. We observe the interference signal from the portion of time

when the bath hasn’t been polarised yet, becoming smaller for larger values of τ .

2.2.1. Time-resolved dynamics

The evolution of fluorescence as the bias voltage is switched allows us to observe in

detail how the nuclear polarisation is created and lost. We keep the delay between the

π/2 pulses fixed to 0.6 ns, where without nuclear polarisation Ramsey interference

should give a maximal signal. We then pulse the bias voltage into the cotunneling

region for a variable time, from 1 to 800 ms. A selection of the resulting time traces
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2.2. Bias modulation

are shown in figure 2.5a. The fast decay within the first 100 ms corresponds to the

build-up of nuclear polarisation, which suppresses the signal to the constant, low

value we find in time-averaged measurements. As we spend longer at the cotunneling

bias the height of the initial peak increases as the system recovers [150]. We take this

height normalised to the steady-state fluorescence rate as a measure of the recovery

from DNSP. The extracted values are plotted in figure 2.5b. The curve is a single

exponential fit to the signal height with a 25.6-ms recovery time constant. A full

model would reproduce the exact response of the signal to a dissipating nuclear

polarisation, although this captures the short-time return very well.

The nuclear spin polarisation is being effectively dissipated through the short

electron spin lifetime. The energetically forbidden flip-flop terms in the fermi-contact

hyperfine interaction we introduced in section 1.7.1 (Î i±Ŝe
∓) are re-enabled when the

spin decorrelation rate approaches the electron Zeeman splitting [104, 151]. We

record cotunneling limited spin lifetimes down to single ns, however this would induce

a loss of nuclear polarisation through this mechanism at a sub Hertz rate, orders of

magnitude slower than we observe.

An alternative loss of polarisation is enabled by the large quadrupolar coupling,

which tilts the nuclear quantisation axis resulting in an interaction of the form [109]:

Ĥnc
hf =

∑
i

Anc
i Î

i
xŜ

e
z . (2.3)

Here, Anc
i is set by the tilting of the nuclear quantisation axis, which we expect

to be significant for the size and geometry of the magnetic field we apply (∼ 0.2Ai).

This interaction, which conserves the electron spin, only requires that the electron

lifetime is short enough to compensate for a nuclear spin flip. For a few-ns correlation

time, this then enables the millisecond timescale relaxation we observe [68].

Similarly, if we allow sufficient time in the cotunneling region for the nuclear bath

to recover, we can study the loss of signal due to DNSP. We operate an asymmetric

pulse sequence of 22.5 ms in the cotunneling region and 2.5 ms on resonance. When

we step the delay between the π/2 pulses, we record the time resolved fluorescence
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Figure 2.6.: Time-resolved nuclear polarisation a Full map of fluorescence when puls-
ing the bias into the cotunelling region for 22.5 ms, and back to resonance
for 2.5 ms. The first 22 ms are not plotted as they produce no fluorescence.
b Samples of the signal trace at τ = 0.230, 0.615 & 1.080 ns. The coloured
curves are exponential fits to the signal from the Ramsey sequence.

map displayed in figure 2.6a. The gate is switched back to resonance at 22.5 ms yet

we observe signal from 22.65 ms onwards due to the low electrical bandwidth of the

device. For the first few periods of electron spin precession (τ ≤ 0.3 ns), we recover a

constant signal without polarisation-induced loss, consistent with the time-averaged

measurements in figure 2.1. For longer delays the modulated signal starts to decay

at an increasing rate.

Figure 2.6b displays the count rates after the gate returns to resonance for delays

of τ = 0.230, 0.615 and 1.080 ns. The coloured curves are exponential fits to the

decreasing count rate. Although we don’t expect the decay to be truly exponential,

again the function captures the rate at which we lose signal. In this approximation,

the count rate is described by C = C0exp (−κRt), where C0 is our unperturbed

signal, κR a constant decay rate, and t the time we spend on resonance. The fitted

rates κR are then plotted as a function of rotation delay in figure 2.7. We find a

quadratic dependence of the decay rate on the delay τ , with additional modulation

at the electron precession frequency, with a maximum rate at delays that provide
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Figure 2.7.: Ramsey signal decay rates Points: extracted decay rates from figure 2.6.
Solid (dashed) curve: estimated decay rates from equation 2.5 for T ∗2 = 1.74
ns (T ∗2 = 10 ns).

minimum count rate (destructive interference). The figure features curves following

the functional form we outline below.

Motivated by reference [145], we take the polarisation rate to follow, ∂ωOH/∂t =

α∂C/∂ωOH, as in equation 2.2, with the negative feedback condition, α < 0. We

neglect the additional relaxation rate, κ during the short timescales we study. This

then allows us to extract an approximate decay rate of the Ramsey signal from the

relationship between the count rate and an induced Overhauser polarisation:

κR = − 1

C

dC

dt
= − 1

C

∂C

∂ωOH

∂ωOH

∂t
= −α 1

C

(
∂C

∂ωOH

)2

. (2.4)

We determine the form of this expression from the count-rate dependence in equa-

tion 2.1. We assume that our spin preparation is independent of Overhauser shift,

appropriate for small deviations from the optical resonance condition. We then find

the following, where the average is taken over the unperturbed configurations of the

Overhauser field:

κR ∝
〈
τ 2 sin2 [(ω + ωOH) τ ]

1 + cos [(ω + ωOH) τ ]

〉
∆ωOH

. (2.5)

We assume the Overhauser field takes the form ωOH = ωC
OH + ∆ωOH, where ∆ωOH

follows a Gaussian probability distribution. We then set the standard deviation of
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Figure 2.8.: 2-T free-induction decay measurement The data is stitched from two
measurements covering 0 to 1.28 ns and 0.914 to 2.264 ns. The count rate
is the average of the first 10 µs after returning to a resonant gate voltage,
determined from 150 s of acquisition at each delay. The error bars are the
standard deviation in the first 10 µs.

the distribution to 2π×129 MHz determined from the free induction decay measure-

ment presented in section 2.2.2. We evaluate for κR at no net nuclear polarisation

(ωC
OH = 0), for which we retrieve the solid curve in figure 2.7. This model quan-

titatively reproduces all the key features in our loss of signal, including both the

quadratic increase in rate and the modulated decay rate at a limited visibility. The

dashed curve in figure 2.7 is the predicted decay rate for an Overhauser standard de-

viation of 2π×23 MHz. The narrower Overhauser distribution increases the visibility

of the oscillations, showing that our loss of signal at all values of τ is a consequence

of sampling over a range of Overhauser configurations.

2.2.2. Free induction decay

In order to measure a DNSP-free signal at larger delays, we need to spend increasing

amounts of time recovering in the cotunneling bias region to ensure a more complete

relaxation of the nuclear polarisation. Figure 2.8 displays the count rate we record

in the first 10 µs after we return to resonance from spending 79.5 ms depolarising

the nuclear bath, before staying on resonance for 0.5 ms. This highly-asymmetric

duty cycle is sufficient to measure delays up to the dephasing time of the electron.

The lack of significant nuclear polarisation is evidenced by the symmetric loss of

contrast in the count rate.

56



2.3. DNSP suppression

The curve in figure 2.8 is a direct fit to the extracted count rate: a modulating

signal at 12.8 GHz with a Gaussian envelope. This fit provides a dephasing time T ∗2 =

1.75±0.08 ns. This is an expected timescale, given the large value of the Overhauser

field variance, and consistent with previous measurements of the effective field width

[119, 138, 146, 152]. More quantitative analysis will be provided in section 2.3.

Importantly, here we have shown that we can recover the unperturbed dynamics of

the electron spin through the dissipation of nuclear polarisation.

2.3. DNSP suppression

By erasing an unknown polarisation in the nuclear bath we can recover the full

dynamics of the electron spin coherence. This method is limited by the rate at which

we can depolarise the bath compared to how quickly the polarisation prevents state

readout. For the full free-induction decay measurement in figure 2.8 >99% of the

sequence time is spent resetting the system rather than producing information on

the electron spin. While the Ramsey interferometry sequence can repeat at 76 MHz,

another solution is required to prevent signal rates from becoming prohibitively low

for longer, more complex rotation sequences. One option is to shepherd the nuclear

bath to a desired polarisation with another optical feedback loop, such as through a

dark-state double resonance [148, 153]. This option has the potential advantage of

preparing the nuclear spins in a state with reduced fluctuations along the external

field direction [100], increasing the ensemble dephasing time, albeit requires careful

tracking of the position of the optical resonances at each step to ensure the bath

polarisation returns to a pre-determined value.

Another option is to actively avoid the state-dependent feedback. When subjected

to a control sequence repeating at 76 MHz, the interaction with the nuclear bath is,

at fastest, on the microsecond timescale. The bath responds to the time-averaged

signal from the electron spin, specifically the sensitive dependence of the state read-

out on the phase acquired during the control sequence. We can remove this feature
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Figure 2.9.: Alternating sequence a Pulse sequence for nuclear-polarisation suppression.
The inversion can be achieved either through a coherent rotation or an inco-
herent repumping step. b Count rates emerging from alternating initial spin
states. The blue (red) points are the Ramsey sequence with (without) an ini-
tial inversion. The grey points are the average of the two sequences. The offset
in heights is a consequence of the tilted optical rotation axis in the Ramsey
sequence, while the inversion is complete.

by alternating the initial state of the electron before every repeat. These two initial

states produce oscillatory signals with a π phase shift, and the average of the two

should contain no phase dependence. Correlating the state readouts from two se-

quences with a time-to-digital converter (or a radio-frequency switch), allows us to

extract the oscillating Ramsey interference signal.

We can invert the spin either through a coherent rotation, or by optical pumping.

The main spin readout and preparation step that occurs every sequence is kept to a

high-frequency transition (probing the population in |↑〉) to ensure a stable resonance

condition under DNSP [110]. The pulse sequence is sketched in figure 2.9a, where the

two different colour pulses are state readouts on the same transition with opposite

initial spin. To operate this sequence, we now pick a subset of the modelocked

rotations with either an EOM or a high-frequency acousto-optic modulator. We

then record the count rates shown in figure 2.9b. The grey points are the mean of

the two repetitions, and exhibit no dependence on the rotation-delay, τ .

Figure 2.10 shows the two spin readout signals when we perform the Ramsey
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Figure 2.10.: Ramsey interference with variable repump The four panels show the
alternating sequence for varying amounts of repump, as labelled. The red
(blue) curves are the pulse sequence with (without) the variable repump.
The subpanels to the right display the mean of the two readouts. As the re-
pump approaches 100%, nuclear polarisation is suppressed and the sinusoidal
behaviour extends up to the maximum delay here.

interference sequence, reading out with a high-frequency transition, and change the

amount by which we repump the spin before every second repetition. The text above

each panel contains an estimate of the amount of spin population returned in this

variable repump step. The small panels to the right display the mean count rate

from the two readouts for τ ≤ 150 ps.

For no repump, the two readouts are equal and the signal vanishes for τ > 300 ps.

As we increase the difference between the initial populations, the mean visibility is

reduced and the traces extend due to suppressed nuclear feedback. For a 95% spin

repump, the Ramsey interference patterns are now equal and opposite, the mean is

flat, and the traces continue to oscillate up to the largest measured delays, showing

that we have successfully prevented the build-up of measurement-disturbing nuclear

polarisation.

In the 95% repump panel for τ > 1 ns a slight non-sinusoidal behaviour is visible
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Figure 2.11.: Alternating sequence free-induction decay The non-inverting half of
the full sequence is displayed. The grey curves are a gaussian envelope with a
decay time T ∗2 = 1.93 ns, which is determined by a scanning Fourier window.
The non-sinusoidal behaviour at long delays is a consequence of slight nuclear
spin polarisation.

in the two readouts, indicating a non-constant phase acquisition owing to a small

polarisation. This is due to the fact that exact resonance with the lower frequency

transition we use for the alternating repump step is an unstable condition due to

DNSP [109].

For a high-fidelity, reliable inversion we combine a coherent π rotation with a

resonant repump step. As discussed in section 1.8.4, precession in the external

field prevents the π pulse from completely inverting the spin state so we use the

incoherent repump to ‘clean up’ remaining spin population. The coherent rotation

reduces the amount by which we drive the low-frequency transition by over an order

of magnitude, reducing instability in the resonance condition.

Figure 2.11 contains the readout from the non-inverting half of the sequence for

delays up to 3.2 ns. As can be seen, we have now sufficiently prevented the build-up

of nuclear polarisation to recover the full free induction decay of the electron spin.

Small shifts in the nuclear polarisation are still visible for τ ≥ 1.5 ns in the non-

sinusoidal behaviour of the fringes, however an extraction of the ensemble dephasing

time is still possible. The probable cause of this polarisation is sub-optical linewidth,

low frequency electrical noise in the sample, compensated by an additional nuclear

polarisation which in turn alters the electron splitting [110].
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Figure 2.12.: Fourier analysis of free-induction decay a Power-spectrum of free-
induction decay signal. b 0.5-ns windows of FID measure starting at τ =
0,1&2 ns. c Power spectra of windows in b. The rectangle marks the region
of interest for extracting the oscillating component. d Filtered power around
26 GHz for swept central window position.

For this measurement, we perform Fourier analysis on the modulating spin popu-

lation to extract the dephasing time of the electron. The results of this are displayed

in figure 2.12. Panel a displays the fast Fourier transform (FFT) of the trace in fig-

ure 2.11 with mean count rate subtracted. The beat note at ∼ 26 GHz corresponds

to the electron spin precession owing to the 4-T external magnetic field.

To fit the decay we find the spectrum of a 0.5-ns window of the data and step

the window offset by 70 ps. Figure 2.12b&c show the counts and FFT spectra for

windows centred around 0.25, 1.25 and 2.25 ns. We extract the amplitude of the

beating by integrating a 6 GHz frequency band around the central tone, highlighted

in the FFT spectra. The amplitudes are displayed in the panel to the right of the

figure. Fitting these amplitudes with the function Ae−(T/T ∗2 )α provides a value of

α = 2.03 ± 0.11, consistent with a Gaussian decay of coherence. The non-zero

size of the scanning window produces a slight overshoot in the decay time, which if

compensated for reveals a T ∗2 of 1.93 ± 0.03 ns. We note that these data were taken

for a different QD than in figure 2.8.

As we will discuss in the next chapter, a Gaussian free-induction decay envelope
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2. Nuclear dynamics during coherent electron control

corresponds to a Gaussian noise source which can be considered static on the scale

of T ∗2 . The dephasing time is set by the noise amplitude, such that a simple relation

can be found: T ∗2 =
√

2/σn, where σn is the standard deviation of the noise source

[154]. This measurement sets σn = 2π×(116 ± 2) MHz. With the electron spin

g-factor measured to be 0.43, this corresponds to an effective magnetic field width

of 19.3 ± 0.3 mT. If we assume the electron spin is only sensitive to noise along

the external field direction, we can recover the total three-dimensional Overhauser

width by σOH =
√

3σn, providing a value of 33.6 ± 0.5 mT, in direct agreement with

other work on similar InGaAs QDs [106, 108, 155]. For an indium concentration

of 0.5 this is the variance emerging from a thermal mixed state of ∼33,000 nuclear

spins

For the continued use of the alternating technique in the next chapter, we will

only use a coherent π-rotation for the inversion step: the reduced average visibility

is sufficient to prevent nuclear polarisation for small amounts of electron-spin phase

acquisition. It is only the free-induction decay measurements that feature such large

phase accumulation that the nuclear bath becomes sensitive to small oscillations

in the time-averaged signal. The advantage of directly preventing state-dependent

polarisation is apparent in the count rates of the two Free-Induction Decay mea-

surements. Compared with running the Ramsey sequence at the original 76 MHz

rate, hardware dead-time means we lose a factor of ∼ 50 in running the alternating

sequence. This technique still provides a spin measurement rate over a factor of

1000 higher than through erasing nuclear bath polarisation.

2.4. Conclusions & outlook

In this chapter we have demonstrated the extraction of spin coherence from a self-

assembled quantum dot in the presence of significant feedback interactions with the

nuclear bath. This has allowed us to retrieve high-accuracy measurements of the

ensemble dephasing of the central spin through resonance fluorescence.
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Recently, other routes to accessing electron spin coherence have been developed,

in spin-to-charge measurements [119], or through measuring the coherence of spin-

flip Raman scattering [146]. These both avoid a phase-dependent optical interaction

rate, and consequentially seem to be free of significant polarisation.

The exact mechanism for the feedback loop deserves some more attention, as its

dependence on the ground state spin seems contradictory to polarisation mechanisms

in the literature. In the Voigt geometry the same dragging and anti-dragging de-

pendence is observed for sequences with no phase dependence, albeit with a smaller

width than in Faraday geometry owing to the high rate of electron spin flip induced

nuclear diffusion [109].

Resonance fluorescence provides a minimally invasive, spin-selective interaction

process which we can use to link the ground state spin with other nodes in an optical

network, either through joint measurement [156] or a direct link [157]. For the spin-

spin entanglement experiment in chapter 4, the specific operation sequence does not

feature electron-phase dependent readout, and the polarisation processes explored

in this chapter do not need to be accounted for. At the same time, more complex

sequences will require careful tracking of where polarisation could emerge. This is

not only to ensure the electron precession is well-known through multiple repetitions,

but also that the detuning of the optical drive from the excitonic transition is fixed.

In particular, the creation of highly entangled photon states from a quantum dot

[158] will generally feature repeating sections of spin evolution and excited state

creation, so would be particularly vulnerable to nuclear polarisation of the form

discussed here.
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CHAPTER

THREE

NUCLEAR DYNAMICS-DOMINATED ELECTRON SPIN

COHERENCE

In the previous chapter we investigated methods to extract electron spin coherence

free from a polarised nuclear environment. In this chapter we now use these tech-

niques to examine the evolution of electron spin coherences, and the extent to which

we can actively protect a coherent spin-state from the interaction with the nuclear

bath.

By measuring the unperturbed electron-nuclear system, we recovered a T ∗2 for the

electron spin of 1.93 ± 3 ns. The Gaussian form of the decay informs us that this is

due to large-amplitude, low frequency noise in the nuclear bath. Over this timescale

the state evolves at a fixed but uncertain rate. While we can directly extract a value

for the variance of the Overhauser field, the loss of electron spin coherence here is

not sensitive to the dynamics of the environment.

The coherence time can be extended beyond T ∗2 by using patterns of inversion

pulses to decouple the state from the spin-dependent hyperfine interaction. To

remove uncontrolled phase acquisition, temporally separate periods of spin evolution

need to destructively interfere. The extent to which we can protect a state is now

set by the environmental dynamics and their correlation time. As a consequence
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3. Nuclear dynamics-dominated electron spin coherence

by filtering noise decoupling schemes provide a sensitive spectroscopic probe of the

nuclear bath, accessed through the time-averaged electron coherence [154, 159].

In this chapter we first introduce how electron-spin control sequences form spectral

filters of environment dynamics. We then examine coherence of the spin under Hahn-

echo decoupling [160]. We demonstrate how the behaviour we observe is governed

by the high-frequency dynamics of the nuclear bath, and in this way determine the

intrinsic mechanisms that irreversibly affect electron-spin coherence in self-assembled

quantum dots. Finally, we present multi-pulse decoupling of the electron spin, and

show that in certain cases protection beyond the Hahn-echo coherence time can be

realised.

The mechanisms that could limit electron spin coherence in self-assembled quan-

tum dots are topics that have received significant experimental and theoretical at-

tention. One particular feature of these investigations has been the role of the signif-

icant, growth-induced strain fields. Nuclear magnetic resonance (NMR) studies of

InGaAs quantum dot nuclei have shown the variation of spin splittings through the

quantum dot preserves the coherence of the bath through protection from resonant

spin-spin interactions between nuclei [161, 162]. This has led to speculation on how

exactly the electron spin loses coherence, and why times up to the ms coherence

times of the bath haven’t been observed [138], in line with the times reported for

electrostatically-defined quantum dots [144].

A note on contributions: The modelling of the nuclear spectra we present in this

chapter was performed by Clemens Matthiesen and Clare Le Gall. The data were

taken with Clemens Matthiesen and Lukas Huthmacher.

3.1. Spectrally filtering environment noise

Spin-dependent environmental interactions lead to the accumulation of an unknown

phase difference between the two spin eigenstates. If, after some evolution time the

state amplitudes are swapped, the same interaction will cause the phase-difference
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Figure 3.1.: Hahn-Echo Evolution of spin-state vector under an unknown environment
with Hahn-echo. The state starts on the equator in an even superposition.
After T/2, the orientation has been smeared out by the unknown evolution.
The π rotation inverts the amplitudes. After another T/2 free precession the
different trajectories have caught-up or lagged enough to converge on one point
at the opposite side of the sphere.

to unwind. Erasing this unknown phase leads to a refocussing of the average state

projection when the evolution time before and after the inversion are the same [160],

at which point the electron state can be accessed. This process is sketched out on

the Bloch sphere in figure 3.1. The shaded arrows represent the uncertainty in the

state vector.

For a static environment, a single inverting pulse will completely refocus a de-

phased state. In the presence of a fluctuating environment the spin will only par-

tially recover, in which case closer spaced inversion pulses can better protect the

spin. This now requires that the environment is correlated on the timescale of the

pulse separations, rather than the total sequence time, as in the case of a single echo

pulse [143, 163].

The interplay between noise dynamics and the evolution of coherences can be

viewed in multiple ways, for instance by developing the unknown environment in

the time domain as a power series [164], or through the eigenvalues of a transfer ma-

trix [165, 166] (important for considering a highly interacting nuclear environment).

Here, we present one realisation which focusses on the spectral properties of the

noise, appropriate for the dynamics of the nuclear bath in self-assembled quantum

dots. Control sequences are treated as spectral filters through which the electron

phase acquires noise from the environment [167]. To show how this emerges we fol-

low reference [154], although equivalent derivations can be found in [168–170]. We

derive in full how free-induction decay emerges from a dynamic environment, and
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3. Nuclear dynamics-dominated electron spin coherence

show how it can be extended to any pattern of inversion pulses.

We restrict ourselves to the case of a Gaussian noise source, valid for the Over-

hauser field emerging from a large ensemble of non-interacting nuclear spins. This

limit is of interest as all environmental dynamics can be encapsulated in two-time

correlation functions or equivalently a single spectrum filtered by our pulse sequence.

In general this approximation might not be appropriate, if one considers linear cou-

pling to an interacting bath or nonlinear coupling to a highly correlated environment

[144, 171]. The validity of this approximation for the particular processes in self-

assembled quantum dots will be discussed later.

We consider the spin subject to the Hamiltonian:

Ĥ =
σ̂x
2

(Bext + η̂x) , (3.1)

which contains both the coupling to the external field, Bext and a noise source

along the external quantisation direction, η̂x. We assume here that the variable field

follows a Gaussian distribution with width ∆:

P [η̂x = η′] =
1√

2π∆
e
−η′2

2∆2 (3.2)

The corresponding propagator from time 0 to T for the hamiltonian in equation

(3.1) is given by:

Ûη (T, 0) = exp

(
−i σ̂x

2

(
BextT +

∫ T

0

η′ (t) dt

))
= exp

(
−i σ̂x

2
(BextT +Xη (T ))

)
,

(3.3)

including the linear phase accumulation from the external field , BextT , and the

integral of the stochastic term η, Xη (T ). The resulting density matrix at time T is

then the average over all realisations of the noise operator:
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3.1. Spectrally filtering environment noise

ρ (T ) =
∑
η

pηUη (T, 0) ρ(0)U †η (T, 0) (3.4)

The coherence of the density matrix can be found by measuring the double average

of the operator σ+:

〈〈σ+〉〉 = Tr {σ+ρ (T )}

=
∑
η

pηTr
{
Û †η (T, 0)σ+Ûη (T, 0) ρ(0)

}
= eiBextT

∑
η

pηe
iXη(T )Tr {σ+ρ(0)}

= eiBextT
〈
eiXη(T )

〉
Tr {σ+ρ(0)} .

(3.5)

This double average describes the projection operator acting on the density ma-

trix found by averaging Uη over the noise distribution via pη. By commuting the

propagator through the expression and using the cyclic nature of the trace, we have

linked this value to the expectation of eiXη(T ).

The phase acquired, Xη, is itself a Gaussian variable, being a linear combination

of Gaussian noise, and accordingly the expectation value of eiXη(T ) can be expressed

as:

〈
eiXη(T )

〉
=

∫ ∞
−∞

1√
2πσT

e
−X2

2σ2
T eiXdX

= e
−σ2

T
2 .

(3.6)

The variance of Xη, σT is a time dependent function, which can be related back

to the autocorrelation of η, S (t) by a change in variables:

69



3. Nuclear dynamics-dominated electron spin coherence

σ2
T =

〈
X2 (T )

〉
=

∫ T

0

tdt1

∫ T

0

dt2 〈η′ (t1) η′ (t2)〉

= 2

∫ T

0

dt

∫ T− t
2

t
2

dt′
〈
η′
(
t′ +

t

2

)
η′
(
t′ − t

2

)〉
= 2

∫ T

0

dt (T − t)S (t) .

(3.7)

These steps take into account the time symmetry of ηx and the assumption of its

stationary behaviour, such that 〈η′(t)η′(0)〉 = 〈η′(t+ t′′)η′(t′′)〉.

The Wiener-Khinchin theorem allows us to view the noise in the spectral domain,

by relating the power spectral density (PSD) of the noise, S̃ (ω) to the lag-covariance:

S (t) ≡
∫ ∞
−∞

e−iωtS̃ (ω) dω. (3.8)

With this definition, we can re-express the definite time interval in equation (3.7),

and as such find the variance of Xη, σT from an integral over the spectral density of

noise processes:

σ2
T = 2

∫ T

0

dt

∫ ∞
−∞

e−iωT S̃ (ω) (T − t) dω

= 4

∫ ∞
−∞

S̃ (ω)
sin2

(
ωT
2

)
ω2

dω.

(3.9)

The coherence of the spin-qubit is now encapsulated as:

〈〈σ+〉〉 = exp

{
−
∫ ∞
−∞

S̃ (ω)FFID (T, ω) dω

}
, (3.10)

where:

FFID (T, ω) =
1

2

sin2 (ωT/2)

(ω/2)2 . (3.11)
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3.1. Spectrally filtering environment noise
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Figure 3.2.: Spin Coherence Filter Functions Filter functions for Free-Induction Decay,
Hahn-Echo, two-pulse CPMG and three-pulse Periodic Dynamic Decoupling,
plotted from refs. [169] & [154].

The coherence is determined by the integral of a filter-function, FFID (T, ω), and

the Gaussian noise PSD, S̃ (ω). Inversion pulses can be incorporated by adding

rotations at points in the propagator Û(T, 0), which leads to an additional term,

s(t) = ±1 in the integral Xη(T ). For Hahn-echo this results in the filter function:

FHE (T, ω) =
1

2

sin4 (ωT/4)

(ω/4)2 . (3.12)

This picture allows for intuition on the loss of coherence in limiting cases of noise

dynamics. For white noise (S̃ (ω) → S̃) the power spectral density can be factored

out of the integral. For all decoupling sequences, the filter function integrates to

the state storage time, resulting in an exponential loss of coherence at the same

rate for any order of decoupling. This will be important for assessing the extent to

which different schemes can further protect coherence. At the other limit, for quasi-

stationary noise, FFID(T, 0) → T 2/2 which results in a Gaussian loss of coherence

for free induction decay, the same form we observed for the measurements presented

in chapter 2.

The filter functions F(T, ω) for free-induction decay and Hahn-echo are plot-
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3. Nuclear dynamics-dominated electron spin coherence
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Figure 3.3.: Hahn-Echo Pulse Sequence and Spin Population a Rotation pulses and
spin readout for a T = 91.2 ns Hahn-echo sequence with highlighted spin
readout region of interest. b Modulated spin readout for relative delay of the
central π rotation, τ .

ted in figure 3.2 against the noise frequency-time product. For comparison, three-

pulse periodic dynamic decoupling (PDD) and two-pulse Carr-Purcell-Meiboom-Gill

(CPMG) filter functions are displayed. The smaller the value of F(T, ω), the less

noise will contribute to decoherence at that frequency-time product.

The behaviour at low frequency (ω � 1/T) is the crucial parameter for most

systems, where the qubit decoherence time is shorter than the correlation time of the

environment. As expected, free-induction decay lets through all low frequency noise,

while decoupling filters these terms. The advantage of PDD and CPMG over Hahn-

Echo are clear from the better suppression of noise at higher frequencies. For ω ∼

1/T , the pass-bands of the filter functions allow us to perform spectroscopy on high-

frequency environment dynamics, without the loss of coherence being dominated

by large low-frequency noise terms [159]. An intuitive analogy is provided in this

picture: piecewise decoupling is equivalent to an optical grating, with a central

frequency set by the periodic spacing, and a larger number of periods allowing for a

sharper pass band [172].

72



3.2. Electron spin Hahn-echo

3.2. Electron spin Hahn-echo

To perform Hahn-echo on the single spin we space the two π/2 rotations of our

Ramsey sequence by T > T ∗2 and add a single π pulse at T/2. We split the 78

MHz modelocked pulse train into two, as described in section 1.8.3, and pulse-pick

each half separately. We select the π/2 pulses from the same arm of the split pulse

train, constraining T to a multiple of the 13-ns pulse repetition time. The π ro-

tation is picked from the other arm. The pulse sequence trace and spin readout is

displayed in figure 3.3a for T = 92 ns. We pick the rotation pulses and form the read-

out pulse using high-frequency waveguide electro-optic modulators. The electrical

pattern is generated by two Stanford Research Systems DG645 Pulse Delay Gen-

erators, triggered by the modelocked source. An additional AOM envelope around

the sharp EOM readout/state-preparation pulse improves our resonant probe on-off

suppression ratio from 500 to 6300. These suppression ratios, combined with using

a sub-saturation readout power prevent unwanted spin pumping during the echo

sequence. Additional details and characterisation of the pulse sequence are provided

in appendix A.

Selecting the π rotation from the moving arm of our split pulse (figure 1.16 in

section 1.8.3) allows us to scan the relative delay of the rotations to T/2 ± τ for

τ ≤ 0.7 ns. An additional controllable delay allows us to set the separation of

the two arms to 0 or 6.6 ns, for measuring Hahn-echo at even and odd multiples

of the pulsed laser repetition. When we sweep the central delay, τ , by less than

the electron ensemble dephasing time we record an oscillatory readout signal, as in

figure 3.3b [138]. The two periods of evolution differ by (T/2 + τ)− (T/2− τ) = 2τ ,

and as such the state we recover oscillates at twice the spin splitting, as evident

here for a magnetic field of 3 T with a spin splitting of 19.6 GHz. In the limit of

perfect rotations the visibility of this trace provides a measure of the coherence of

the electron spin, corresponding here to V = 0.476 ± 0.012. The finite duration

of our rotation pulses, as discussed in section 1.8.4, is such that this measurement

corresponds to a slight underestimate of the state coherence.
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Figure 3.4.: Dynamic Nuclear Polarisation under Hahn-Echo The two panels differ
by the addition of an initial spin inversion to prevent nuclear polarisation.
b Spin readout for scanning the central π pulse by delay τ < T ∗2 . c Spin
readout without alternating initial state. The nuclear polarisation results in
the non-oscillatory trace.

As for the Ramsey interference measurements in the previous chapter, we use an

alternating sequence to prevent the buildup of state-dependent nuclear polarisation,

which would disturb the phase-sensitive spin readout. The two panels in figure

3.4 contain the spin readout for a 13.14-nanosecond echo sequence at a 1.5-Tesla

external field with and without alternating initial states. In panel a, the imperfect

inversion a single π rotation results in the lower visibility of the inverted readout

signal. In comparison, however, in panel b where we remove the alternation the non-

sinusoidal behaviour follows the build up of polarisation, preventing the extraction

of state-coherence.

3.3. Hahn-echo visibility

Figure 3.5 displays the recovered visibility through Hahn-echo for storage time T up

to 1.2 µs for four external magnetic field values: 2, 3, 4 & 5 Tesla. This figure contains

a large amount of information, and it is worth discussing it in some detail. The figure

is divided to focus on the short term behaviour for T up to 340 nanoseconds on the

left, and the full behaviour up to 1.2 µs on the right. The data points are the average

of 5 measurements at a particular delay and field value. The curves are calculated
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3. Nuclear dynamics-dominated electron spin coherence

by treating the sequence as a spectral filter on the high frequency nuclear processes

we will discuss in section 3.4.

First we can focus on the global magnetic field dependence presented in the

zoomed-out plots to the right of the figure. For an external field of 2 Tesla the

visibility is strongly suppressed for T > 13 ns. This low field suppression of coher-

ence had tentatively been attributed to occur as a consequence of dynamic nuclear

polarisation [43], which our measurements are now to a large extent free from. In-

creasing the field to 3 Tesla induces a dramatic lift in short-time visibility to ∼

50%, with an exponential tail dropping to the 1/e value at 332 ± 10 ns. Increasing

the field further to 4 Tesla, the visibility rises, and similarly the length of the tail

approaches a microsecond. At 5 Tesla, the short time visibility has saturated. At

this field, our spin rotation axis starts to deviate by a large amount. Accordingly

the extent to which the central π rotation inverts the state amplitudes is reduced,

as well as the estimate of state-coherence from the spin visibility. The exponential

tail, however, is still longer, and the visibility falls to the 1/e value at 1709 ± 24 ns.

The short-time behaviour (T < 300 ns) is particularly rich, and is highlighted in

the left panels of the figure. All data sets feature a modulating visibility at a rate

increasing with magnetic field, which damps within ∼ 150 ns. The depth of the

oscillations decreases with increasing external field. The visibility dependence on

storage time emerges from a spectrally broad, precessing environment. We will dis-

cuss in the next section how all of these experimental features can be understood and

reproduced by considering the filtered spectra of high-frequency nuclear processes

in the quantum dot.

3.4. Nuclear-dominated electron spin coherence

We introduced the basic features of the hyperfine interaction in chapter 1 (sec-

tion 1.7.1), however to understand how the Hahn-echo response emerges from the

electron-nuclear system, we need to consider in more detail how different dynamics
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3.4. Nuclear-dominated electron spin coherence

Figure 3.6.: Overhauser Field Projections

in the Overhauser field couple to the electron spin. In general the electron precesses

around the axis Btot, the vector sum of the external field (Bext) and the Overhauser

field BOH, which we can split into components parallel (B‖OH) and perpendicular

(B⊥OH) to the external field direction:

Btot ≡ |Btot| =
√(

Bext +B
‖
OH

)2

+
(
B⊥OH

)2
. (3.13)

The geometry of the coupling is presented in figure 3.6. These measurements all

take place in the limit Bext � BOH, such that we can make the approximation:

Btot ≈ Bext +B
‖
OH +

(
B⊥OH

)2

2Bext

. (3.14)

In this way, Overhauser field projections couple in distinctly different ways to

the electron spin, depending on the relation to the external field. Terms along the

external field direction are mapped directly onto the electron spin splitting and

contain the full Overhauser field variance. It is low-frequency noise components in

this direction emerging from nuclear spin-spin interactions that dephase the electron

in < 2 ns. These terms are effectively filtered by the Hahn-echo sequence. The

perpendicular components, B⊥OH, provides a much smaller perturbation, by a factor

of B⊥OH/2Bext (∼ 100). The quadratic dependence results in a spectral character set

by the relative frequencies of nuclear processes [144]. To understand the coherence
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3. Nuclear dynamics-dominated electron spin coherence

we recover, we must consider how dynamics in these directions emerge from high

frequency processes within the nuclear bath.

3.4.1. Nuclear spectra

As introduced in section 3.1, we can relate the coherence recovered through Hahn-

echo to the power spectral density of the noise environment, in this case, the Over-

hauser field. The Gaussian distribution of Overhauser field amplitude follows from

considering a large collection of non-interacting nuclear spins, valid for the high

frequencies we consider. Following the definition of the power spectral density in

equation 3.8, we can find the spectrum of the Overhauser field along some axes,

α = x, y, z from the Fourier transform of two-time nuclear spin correlators:

S̃α (ω) ∝
∑
j

A2
j

∫ ∞
−∞

e−iωτ
〈
Îjα (τ) Îjα (0)

〉
dτ, (3.15)

where the sum is over every nuclear site, j. If Îjα commutes with the nuclear

Hamiltonian, then the correlator
〈
Îjα (τ) Îjα (0)

〉
is time-independent and the power

spectral density only contains components at ω = 0. Alternatively, for a direction

where the operator no longer commutes, the spectrum will contain components at

the frequency difference between the states linked by the Hamiltonian. For example,

a magnetic field along x will generate terms such as
〈
Îjz (τ) Îjz (0)

〉
∝ cosωjLτ , where

ωjL is the Larmor precession frequency of the nuclear spin j, while
〈
Îjx (τ) Îjx (0)

〉
would be constant in τ .

In order to determine the weight of these noise components, we note from the

definition in equation 3.8 that the variance of a stationary random process is simply

the zero-delay component of the lag-covariance; the integral of the power spectral

density, S̃α(ω) [173]:

σ2
α = Sα (0) =

1

2π

∫ ∞
−∞

S̃α (ω) dω. (3.16)

For a thermal mixture, the value of σ2
α is set by the hyperfine constant, the nuclear
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3.4. Nuclear-dominated electron spin coherence

spin quantum numbers and the size of the electron wavefunction, and therefore fixed

for our specific quantum dot. The nuclear Hamiltonian then determines how the

variance is distributed over different frequencies. We have accurately determined the

width of the Overhauser field through our ensemble dephasing measurements of T ∗2
to be σα = 33/

√
3 mT in each direction, assuming the Overhauser field amplitudes

are isotropic over sufficiently long times. Equivalently, over the timescales measured

for free-induction decay the filter function is flat up to hundreds of MHz, which

encapsulates the highest frequency nuclear processes we consider.

As a final point, we note that zero-frequency components in the nuclear spectra

are shifted to a finite frequency due to inter-nuclear interactions and coupling out of

the dot. We assume these processes occur faster than our measurement time for free-

induction decay, yet slow enough that they are effectively filtered by our Hahn-echo

decoupling schemes. As such we limit ourselves to high-frequency terms that emerge

from the Zeeman and quadrupolar couplings. In particular, our measurements pre-

dict an upper bound on any of these other effects of 100 kHz, which is consistent

with recent measurements of nuclear bath coherence in a charged quantum dot [174].

With these tools to link the nuclear Hamiltonian to the noise spectrum we can

consider the specific details of the nuclear dynamics our electron spin is subject to.

3.4.2. On-axis components: B‖OH

The quadrupolar interaction to strain induced field gradients is of such a strength

that for a few-Tesla external field the nuclear quantisation axis is tilted by a signif-

icant amount. We introduced how this leads to new electron-nuclear dynamics in

section 1.7.2. A particular consequence for the Overhauser field is the generation

of high-frequency components in B‖OH up to high-external fields. These oscillatory

dynamics couple strongly to the electron spin splitting and influence the evolution

of coherences over short storage times (< 100 ns).

Following section 3.4.1 we model the spectra of the Overhauser field components

for a nuclear spin j from a Hamiltonian containing the Zeeman and quadrupolar
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Figure 3.7.: Overhauser Field Power Spectral Densities Linearly coupled (left panel)
and quadratically coupled (right panel) Overhauser field power spectral den-
sities owing to processes in equation 3.17. Filtering these spectra result in
the curves in figure 3.5. Note the difference in the vertical scale between the
projections.

interactions:

Ĥj
nuc = gjµNBextÎ

j
x +

hνQ

6

(
3Îj2z′ − Î

j2 + η
(
Îj2x′ − Î

j2
y′

))
(3.17)

Here, the external field acts along a direction x, while the quadrupolar interaction,

with strength νQ is in a coordinate frame set by x′, y′, z′. The major axis of the

quadrupolar interaction is along z’, which deviates from the growth axis for isotope k

by θk, with an additional biaxiality parameter ηk set by the asymmetry of the strain

fields. We use values for the strength, direction and symmetry of the interaction

motivated from reference [37], which uses atomistic simulations to determine the

electric field gradients present. The validity of this model has been confirmed in

measurements of quadrupolar-enabled DNSP [109] and NMR studies of the nuclear

bath [175].

The quadrupolar strength and direction are modelled as Gaussian distributions

around their central values to approximate the large inhomogeneity in the strain

throughout the QD. The parameters we use are listed in table 3.1, labelled according

to isotope k, where σνQ
is the width of the quadrupolar interaction strength and

σθk the width of the major quadrupolar axis tilt from the growth direction. This
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3.4. Nuclear-dominated electron spin coherence

115In & 113In 75As 69Ga 71Ga

Ik 9/2 3/2 3/2 3/2
gkµN (MHz T−1) 9.33 10.22 12.98 7.22
νQ (MHz) 3 5 3.3 3.3
σνk (MHz) 0.9 3 1.65 1.65
ηk 0.315 0.5 0.358 0.358
θk,1 15◦ 20◦ 11.3◦ 11.3◦

σθk,1 5◦ 10◦ 5◦ 5◦

θk,2 52.5◦ - - -
σθk,2 12◦ - - -

Table 3.1.: Parameters used to form the Overhauser-field spectra displayed in figure 3.7.

is a simplification of more detailed structure in the geometry of the quadrupolar

interaction [175]. For indium, we include a second axis at angle, θk,2. Owing to their

high quantum number indium spins form a major contribution to the Overhauser

field spectra, and we need to include this additional feature to our approximation to

reproduce the particular Hahn-echo response we observe. The important feature of

interest in the values listed in table 3.1 is their relative strength. Not only is the size

of the quadrupolar interaction appreciable to the Zeeman coupling, but its variance

in magnitude and orientation also take up a significant fraction of the central values.

The left panel of figure 3.7 contains the high-frequency on-axis Overhauser field

spectra, offset for clarity, calculated from
〈
Îjx (τ) Îjx (0)

〉
for the four external field

values studied in our Hahn echo experiment. For these spectra we assume an indium

concentration of 0.5. The nuclear bath is taken as a thermal mixed state, correct for

our 4.2-Kelvin measurement temperature. The components visible here at all fields

are enabled by the quadrupolar interaction. As the field increases, the features move

to higher frequency due to increased Zeeman splitting, and lose amplitude as the

nuclear bath dynamics become dominated by the external field.

We can attribute our short term behaviour to these high-frequency, large ampli-

tude terms. The evolution in the range 10-100 MHz gives rise to the modulation
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3. Nuclear dynamics-dominated electron spin coherence

we see in our Hahn echo visibility between 10 and 100 ns as the pass-band of the

Hahn-echo sequence moves through the nuclear spectra. The large width of these

spectral features, however damps the oscillations within one or two revivals. The

relative size of the width and central frequency of the on-axis nuclear fluctuations

prevent the nuclear bath from re-phasing, responsible for the constant drop in vis-

ibility, especially visible in the 2-T data were the spin never recovers to more than

10% of the original coherence. The suppression of these terms with external field

results in the global lift of visibility we observe between 2 and 3 T as well as the

reduction in the amplitude of the short-time oscillations at higher fields.

3.4.3. Perpendicular components:
(
B⊥OH

)2
/2Bext

After the high-strength on-axis fluctuations, we now examine the perpendicular

components of the Overhauser field. These quadratically-coupled terms are a much

smaller perturbation to the spin splitting.

The crucial parameter for understanding how these terms influence spin coherence

is the width of the quadrupolar interaction. To model the quadratic coupling, we

consider the auto-convolution of the noise processes in the frequency domain. The

resulting spectra are plotted in the right panel of figure 3.7. The large spread of

quadrupolar energies forms a continuous band of frequencies to > 10 MHz, with a

decreasing value at higher fields due to the 1/(2Bext) coupling. In comparison to

the on-axis fluctuations, these terms extend to zero frequency, capable of inducing

a continuous decay of the electron spin coherence to zero. The small strength of

these contributions affect the spin coherence at long times ( > 100 ns), such that

they present a quasi-white noise spectrum. This then results in a field-dependent

exponential loss of coherence for the electron spin, which we observe in the tails of

the visibility in figure 3.5. In this way, we can see that the inhomogeneity of the

quadrupolar interaction is responsible for the irreversible loss of spin coherence on

a microsecond timescale, set by the relative strength of these quadratically coupled

components and the external field.
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3.4. Nuclear-dominated electron spin coherence

It is important to mention that in general we cannot use the filter-function for-

malism to consider Overhauser field components that quadratically couple to the

electron spin splitting [176, 177]. as the derivation in section 3.1 relies on a linear

mapping from the Gaussian noise amplitude to the phase acquired by the spin. For

self-assembled dots, however, the storage time at which these terms affect the central

spin compared with their correlation time ensures the Gaussian-distribution of state

phase is a valid approximation [171].

3.4.4. Total coherence

The total state visibility plotted in figure 3.5 is the product of the parallel and

perpendicular Overhauser field contributions. They are found from the parameters

listed in table 3.1. We require Overhauser field standard deviations of 40 and 28 mT

for the linearly and quadratically coupled components to reproduce our extracted

coherence. Our ensemble dephasing time suggested a standard deviation of 33 mT,

supporting the validity of the model. We require an constant, field dependent scaling

factor to account for our imperfect rotation axis (87%, 85%, 83% & 71% for 2, 3,

4 and 5 T). Importantly, the filtered spectra quantitatively support the features of

our Hahn-echo response, showing that we can evaluate the evolution of electron spin

coherence in its entirety from the nuclear Zeeman and quadrupolar interactions.

To clarify their individual roles, figure 3.8 displays the recovered coherence due

to each term, and their product (dashed line). This shows the drop and modulation

due to the linearly coupled terms, which dominate at low field, and the continuous,

external field dependent decay stemming from the quadratically coupled terms. The

panels display our imperfect visibility estimation due to the tilted optical rotation

axis, plotted as the black dash-dotted curve for each magnetic field.

To what extent can we further protect the electron coherence with a multi-pulse

decoupling sequence? Multi-pulse schemes protect coherence by inverting the spin

state in timescales on the order of the environment correlation. Inversions would

need to be separated by the nuclear correlation time (< 100 ns) to protect spin
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Figure 3.8.: Split Hahn-Echo Response Modelled Hahn echo visibilities for the linearly
and quadratically coupled Overhauser field components at the four magnetic
fields investigated. The dashed line - their product - is the total spin visibility
we extract. The dash-dot line marks the limit of visibility we can extract due
to our tilted optical rotation axis.

coherence from these transverse components. In order to see an appreciable im-

provement over the single microsecond values recorded for Hahn-echo at high field,

a large number of pulses would then be required. The number of rotations possible

would be limited by the irreversible coupling of the excitonic transitions to acoustic

phonon modes in the quantum dot [124, 125], such that for any realistic scheme,

the high-field values we record provide a bound to electron spin coherence in these

strained systems.

Figure 3.9 offers support to our expected magnetic field dependence. The figure

contains the Hahn-echo visibility for a separate quantum dot from the same sample at

an external field of 7 T. At this field value the short time oscillations have reduced to

a negligible value, and the exponential tail has increased to 2.70 ± 0.04 µs, consistent

with a perturbation from quadratically coupled terms which decreases with larger

external field.
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Figure 3.9.: High-field Hahn-echo Echo visibilities retrieved for a separate quantum dot
from the same sample at an external field of 7 T. The curve is an exponential
fit to the data, with a decay time of 2.70 ± 0.04 µs.

3.5. Dynamical decoupling

In the high-field limit (> 4 T), extension beyond the Hahn-echo measurements is

challenging, as the loss of coherence is caused by noise frequencies that extend far

beyond the inverse state storage time (ωT � 1). At low field (Bext < 3 T), however,

the non-exponential fast reduction in visibility informs us that higher order pulse

sequences could further extend the accessible coherence time. From the nuclear

spectra in figure 3.7, we see that this drop is due to the broad, large amplitude

noise in the range ω/2π = 20-50 MHz. These frequencies then correspond to a

time-frequency product ωT = 0.25-0.6 when combined with our observed loss of

coherence in ∼ 20 ns. This intermediate time-frequency product is the region where

it is possible to outperform Hahn-echo with higher order decoupling (see figure 3.2)

To investigate this we perform periodic dynamic decoupling of the electron spin

at Bext = 1.5 T. The repetition of our optical control pulses are such that we cannot

fit an arbitrary number of rotations within this short time. Rather, we set the π/2

separation at a multiple of 13 ns (the pulse repetition time) and add a π rotations

every 6.5 ns. In this way we can probe the coherence at 26 ns with three π pulses,

39 ns with 5 and so on.

The pulse sequences are depicted in the left of figure 3.10. For a sequence con-
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Figure 3.10.: Electron Spin Dynamical Decoupling Oscillations left Pulse sequences
for measuring electron spin decoupling for 3, 5 & 7 inversion pulses. The
sequence is repeated with an inverted initial state to prevent nuclear polar-
isation. right Extracted counts for decoupling with n = 3,5 & pulses when
sweeping the location of (n+1)/2 inversions by τ .

taining n π-rotations the π/2 rotations and (n− 1)/2 inversions are drawn from the

arm of the split pulsed laser without the scanning stage, while (n+ 1)/2 are picked

from the scanning arm, which features a 6.5-ns offset. This allows us to measure

the coherence remaining after this dense sequence by scanning the relative positions

of (n+ 1)/2 pulses and recording the final population in the same way as for Hahn

echo. By sweeping the location of multiple pulses, the phase offsets accumulate, and

the signal we record oscillates at (n+1) times the spin splitting.

The spin population modulation we recover for n = 3, 5 and 7 (T = 13, 26 and 39

ns) sequences are displayed in the right of figure 3.10, which feature the increasing

oscillation rate with rotation number. As for all the coherent control experiments,

we repeat each sequence with an inversion to prevent nuclear polarisation, resulting

in the lower visibility ’flip’ trace in the figure.

We fit the oscillations and extract visibilities to estimate the electron spin co-

herence, which are displayed in figure 3.11. To the left of the figure the Hahn-echo

visibility extracted for T = 13 and 26 ns are plotted in red. To the right the Periodic

Dynamical Decoupling visibilities up to T = 65 ns (9 π-pulses) are displayed. The

dashed line marks the fitted visibilities and the solid line links the values corrected
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Figure 3.11.: Dynamical Decoupling Visibilities Extracted visibility from Hahn-echo
(red points), and multi-pulse decoupling (blue points). The solid curve links
visibilities corrected for the imperfect inversion. The top axis labels the num-
ber of π-rotations that protect the spin state at a particular value of T .

for the incomplete inversions, a factor of 0.905 for every π pulse. This only corrects

for the mapping of visibility to coherence, rather than the imperfect protection of

the spin.

The first striking feature is the retention of coherence beyond the Hahn-echo limit,

through better filtering of the low-to-mid frequency components of B
‖
OH. A large

proportion of the loss of visibility can be attributed to the accumulated error in

multiple π rotations.

These data show that in certain limits, the spin coherence can be extended through

multi-pulse decoupling. The timescale here, however, is only a small fraction of the

microsecond coherence times measured at higher field, and it would take a large

number of inversions to reach these times. That being said, the increase in coher-

ence we observe through multi-pulse decoupling could make the critical difference

in entangling small collections of spins at low field, increasing the coherence length

from 3.9 m to over 15 m.
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3. Nuclear dynamics-dominated electron spin coherence

3.6. Conclusions & outlook

By suppressing nuclear bath polarisation in our quantum dot, we have been able

to observe the full evolution of the electron-nuclear system, and establish the key

timescales for central spin coherence in these structures. We have found that intrin-

sic high-frequency nuclear processes are sufficient to explain the rich, field-dependent

dynamics we recover. The growth-induced strain variance throughout the dot dis-

perses the nuclear evolution to provide a weak-irreversible loss of electron spin co-

herence. In particular, the high strength of the quadrupolar interaction provides a

lower bound of ∼3 T on external field values for retaining coherence for appreciable

lengths of time.

Our ability to diagnose the nuclear processes affecting spin coherence through

Hahn-echo is closely related to spectroscopic work with bulk electron spin resonance:

electron spin echo envelope modulation (ESEEM) [178, 179]. For these experiments,

it is often the hyperfine interaction that alters the nuclear-spin quantisation axis,

rather than the tilted quadrupolar interaction in our case.

A partner to this work which has not yet been discussed yet is capability of a heavy

hole pseudo-spin as a spin-qubit. A confined heavy hole, which has a predominantly

p-shell atomic orbital, offers an instant reduction in the hyperfine coupling strength

[133]. This reduction has been observed as an order-of-magnitude improvement in

ensemble dephasing times, observed either through optical Λ-scheme coherence [142,

146, 180] or coherent manipulation [181–183]. At the same time, coherence times

exceeding those for decoupled electron spins have not yet been recorded. Unless

another mechanism is responsible, one would expect an immediate improvement in

coherence retention. One of the motivations for studying the electron spin qubit

in detail is the high-optical quality n-doped samples allow. Recent results demon-

strating small linewidth p-doped samples are very promising for marrying hole-spin

coherence with coherent optical transitions [184].

This direct link between the strain-driven assembly and the central spin coher-

ence motivates the investigation of other routes to improved coherence, specifically
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through an engineered quadrupolar interaction. This could be achieved either in

a system without quadrupolar nuclear moments, such as in II-VI quantum dots

[150]. An alternative is to host a spin qubit in a quantum dot formed in a strain-

free growth method [185, 186]. GaAs/AlGaAs quantum dots grown strain-free by

droplet epitaxy have already demonstrated significantly different nuclear dynamics

[187].

It can be interesting to compare our spin-state evolution with electrostatically-

defined GaAs quantum dots. These much larger systems feature significantly less

strain, and an isotopically simpler environment (in particular featuring no I = 9/2

indium). This has allowed for retention of electron spin coherence for times ap-

proaching a ms through dynamic decoupling [144, 177]. Quadrupolar effects still

play a role in the evolution of spin coherence [176], however only for certain geome-

tries and external field values. These systems cannot be viewed in the same spectral

formalism as our self-assembled quantum dots, owing to the long correlation times

and larger interaction strengths between the individual spins of the nuclear bath.

Similar dynamics have been obtained for electron spins confined to InGaAs quan-

tum dots in references [138] and [119], which provide comparisons to the results in

this chapter. Both references feature an increased coherence with external magnetic

field. The coherence in each of these works is normalised, however, which pre-

vents full, quantitative comparison. That aside, both show an increase in electron

coherence at lower magnetic field than we observe. The suppression of quadrupolar-

enabled fluctuations occurs between one and two Tesla in reference [119], and the

exponential tail reaches 2 µs at 4 T in reference [138]. A lower field coherence pick-up

is consistent with a smaller indium fraction in the quantum dot. This is exhibited

in an accompanying reduction in both the strength of the Overhauser field and

quadrupolar interaction [37], consistent with the longer ensemble dephasing time

in reference [119] (we note that quantum dots studied in this work feature optical

resonances at 904 nm, compared with 967 nm in our case).

With this understanding of the processes that dominate electron spin coherence,
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3. Nuclear dynamics-dominated electron spin coherence

in the next chapter we will move on to direct networking demonstrations between

multiple self-assembled quantum dots.
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CHAPTER

FOUR

ENTANGLEMENT OF DISTANT ELECTRON SPINS

The qualifying feature of a quantum network is the ability to distribute and support

entanglement between the constituent nodes [10]. This single capability provides

the resource behind provably secure communication [3, 4] and‘ the teleportation of

quantum states [188], in addition to linking locally interacting clusters in a networked

quantum computing architecture [189, 190].

In general, quantifying the degree of entanglement between systems is a nontrivial

process with many metrics to determine the ‘quantum-ness’ of the shared state,

based on the entropy of the individual and combined systems or the separability of

the state [191, 192]. For pairs of qubits, a simple limit is available: the four Bell

states [193]. These states form a maximally entangled basis of the two qubit system,

and accordingly their generation is of particularly interest for quantum networks.

Up till now in this dissertation, optical spin measurement has been an end point to

unitary control processes, forming an average population measure through multiple

sequence repetitions. Measurement, however is an active process, and if conducted in

the right mode can project a system of multiple qubits into a highly entangled state

[194]. Such a process requires careful tracking of coherences and optical dispersion

between the two qubits up to the measurement apparatus. In addition, evaluating

the effects of a projective measurement necessitates that we move from time-averaged

91



4. Entanglement of distant electron spins

population measurements to multi-photon project and read coincidence events in the

same sequence cycle, the scaling of which places taxing requirements on our detection

efficiency.

This chapter covers how we realise a highly-entangled state between two non-

interacting electron spins resident in separate quantum dots. We first discuss how

a single-photon measurement can project optically-active spins into an entangled

state. Following that, we experimentally asses the capability of electron spins con-

fined to self-assembled quantum dots to meet the requirements of this technique.

We then move on to project two spins into a nonlocal state and demonstrate how

our projection method in particular provides control over the entangled state we

generate.

This demonstration involved large amounts of equipment and time to setup and

complete, and the participants must be credited for their hard work. Megan Stanley,

Lukas Huthmacher, Dr. Claire Le Gall and Dr. Clemens Matthiesen were all integral

to the development, construction and operation of this experiment.

4.1. Entanglement by single photon measurement

Systems can become entangled through direct interaction as a local ‘2-qubit gate’

[195] or by entangling a stationary superposition with a travelling photon and map-

ping from the optical channel at another site [10, 16, 157]. An important alternative

is entanglement distribution via projective measurement of one or two photons [189,

194, 196–198]. These methods all consider measuring single photons from multiple

systems in such a way that the detection events collapse the non-interacting ground

states into a particular entangled state. Rather than by direct mapping, which

requires high levels of cooperativity between the the stationary qubits and single

photons, these techniques take advantage of the high single-photon detection effi-

ciencies available, and automatically provide an electrical herald for state creation.

As a consequence entanglement-by-measurement techniques have attracted great ex-
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Figure 4.1.: Entangling optical Λ-systems. Two Λ-systems emit spin-flip Raman pho-
tons into modes a1/2 which are mixed on a 50:50 beam-splitter into modes b1/2
and passed to detectors D1/2.

perimental attention, and have been used to realise entangled states of trapped ions

[156, 199–201], neutral atoms [202], negatively charged NV centres [89, 203, 204]

and more recently superconducting qubits [205] and single hole spins [142].

The method to entangle distant systems by measurement of a single photon was

first investigated in a seminal paper from Cabrillo et al. [194], and is of particular

interest to us due to the linear scaling of success rate with photon loss, albeit at the

cost of requiring operation at a low generation probability. This is in comparison

to other techniques, which generally require two-photon detection events to project

the state and hence scale quadratically [206].

To understand the basic mechanism behind how a photon detection event can

entangle two systems, we present a derivation that follows reference [207]. The

necessary elements are displayed in figure 4.1. We consider two Λ-schemes, each

consisting of ground states |0〉& |1〉 and an excited state |e〉. The |1〉 ↔ |e〉 transition

in each couple to well-defined optical modes a1/2, which are mixed on a 50:50 beam

splitter. The two output modes b1/2 can be detected by two single photon detectors,
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4. Entanglement of distant electron spins

D1/2.

We begin with both systems prepared in the |0〉 state, and coherently transfer an

amplitude √p to |e〉, after which the state of each, |ψ〉i, can be written as:

|ψ〉i =
√

1− p |0〉i +
√
p |e〉i , (4.1)

and the product state of the two systems, |Ψ〉:

|Ψ〉 = |ψ〉1 ⊗ |ψ〉2 = (1− p) |00〉+
√
p (1− p) (|0e〉+ |e0〉) + p |ee〉 . (4.2)

The detection of a spin-flipping Raman photon is described by the jump operator

Ji(·) = σ−i (·)σ+
i , where σ

−
i = |1〉i 〈e|i. The detectors Di operate on the optical modes

bi. By mixing the paths from the two quantum dots on a 50-50 beam splitter, we

can express the photon creation operators after the beam splitter, b̂†i as coherent

mixtures of operators in the two quantum dot modes, â†i :

b̂†1 =
1√
2

(
iâ†1 + â†2

)
and b̂†2 =

1√
2

(
â†1 + iâ†2

)
. (4.3)

Applying this transformation to the jump operator for detector D1 results in:

J1(·) =
1

2

(
iσ−1 + σ−2

)
(·)
(
−iσ+

1 + σ+
2

)
(4.4)

In this way the jump operator corresponding to a click on D1 acts on the joint

state of the two Λ-schemes leaving the pure conditional state |ΨD1〉:

|ΨD1〉 =
1√
2

(
i
√

(1− p) (|01〉+ i |10〉) +
√
p (|e1〉+ i |1e〉)

)
. (4.5)

We assume that the detectors are not capable of registering the double excitation

events that occur with a probability p2. These parts of the state which still contain

population in |e〉 then decay incoherently to |1〉 and we recover the density matrix

ρD1 :
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4.1. Entanglement by single photon measurement

ρD1 =
1

2
[(1− p) (|01〉+ i |10〉) (〈01| − i 〈10|) + 2p |11〉 〈11|] (4.6)

This density matrix demonstrates that a single photon detection has projected the

two systems into an entangled state, (|01〉+ i |10〉) /
√

2, with a fidelity of (1 − p).

For comparison, a click on the other detector D2 would correspond to the state ρD2 :

ρD2 =
1

2
[(1− p) (i |01〉+ |10〉) (−i 〈01|+ 〈10|) + 2p |11〉 〈11|] , (4.7)

which differs from ρ1 by a π phase shift owing to the difference between the beam

splitter transformations.

This derivation covers the basic mechanism by which the detection of a single

photon can herald the creation of an entangled state between two systems. In its

simplicity, however it contains many implicit relationships that must be met. First,

we have assumed complete mixing of the Raman photon modes a1 and a2 at the

beam-splitter with a constant phase. This requires indistinguishability between the

modes from the two emitters.

Assuming indistinguishable Raman photons, the detection then imprints the phase

of the two modes onto the phase of the joint spin state. In general the state we

recover is given by:

ρφ =
1

2

[
(1− p)

(
|01〉 ± ei∆φ |10〉

) (
〈01| ± e−i∆φ 〈10|

)
+ 2p |11〉 〈11|

]
, (4.8)

where the value of ∆φ is set by the accumulated phase between the two inputs

including both the Λ-scheme excitation and mode propagation to the beam-splitter,

and the sign depends on the detector that registers the Raman photon.

In this way we require phase-coherent excitation and path-length stability between

the systems on the level of an optical cycle. At the same time, in controlling the

optical phase we gain an ability to project the two spins into a controllable entangled

state.

95



4. Entanglement of distant electron spins

25 GHz

5-GHz
Etalon

T

R

Rayleigh

Raman

Figure 4.2.: Λ-Scheme with transition resolving etalon Only transitions with one
excited state are considered. The pulse marks the excitation for our state
projection. An angled Fabry-Pérot etalon transmits the Raman mode and
reflects the Rayleigh scattering.

4.2. Spin-photon interface

In this section we discuss the most basic requirement our experiment needs to fulfil:

the ability to optically project and recover a spin state from the quantum dot. This

process is enabled by the spin-photon interface sketched in figure 4.2. A 4-T mag-

netic field perpendicular to the quantum dot growth axis provides four spectrally-

resolvable transitions. For the following discussion we can restrict ourselves to two

that form a Λ-scheme with the split ground state spin and a single excited state.

The two equal-strength transitions are separated by the 25-GHz ground state spin-

splitting and have orthogonal, linear polarisation. When the quantum dot is excited,

it can decay along either optical path with equal probability, entangling the spin state

with the optical frequency and polarisation of the emitted photon [43–45].

For all of these state-projecting experiments, we consider exciting the quantum

dot with the low-frequency transition, as shown by the pulse in figure 4.2. The lower-

frequency photons (red) from this pulse are the spin-conserving Rayleigh scattering,

and higher-frequency (blue) the spin-flipping Raman scattering.

The equal strength of the Rayleigh and Raman scattering requires that we separate

out the two branches to project the spin state. We detect quantum dot fluorescence

in a single circularly-polarised mode, erasing any polarisation information. Using

a free-space Fabry-Pérot etalon with a 5-GHz transmission window (Manx Optics)

we can spectrally distinguish the two components, as shown in the right of figure

4.2. The higher-frequency Raman photons are transmitted through the etalon to
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4.2. Spin-photon interface

the ‘T’ detector, while the lower-frequency Rayleigh photons (and any remaining

background laser scatter) are reflected to the ‘R’ detector. In this way, after a short

pulse on the low-frequency transition, a click on the T detector should project the

spin into the |↑〉 state.

4.2.1. Control sequence

We test our ability to project and retrieve the state of the electron spin from this

Λ-scheme using a four stage pulse sequence (the bracketed duration labels the length

of the optical input):

I. Preparation (20 ns) We drive the high-frequency transition to prepare the

electron in |↓〉. We can achieve this with a fidelity of ∼97%.

II. Projection (160 ps) We pulse the low-frequency transition. We look for a

Raman photon through the etalon to project the spin to |↑〉.

III. Rotation (2+40+2 ps) We coherently rotate the spin. This allows us to

probe different state populations with the same readout pulse. We use a com-

posite pair of rotation pulses separated by a period of free precession (see

section 4.2.2).

IV. Readout (7 ns) We drive the high-frequency transition again. Fluorescence

on any detector during this pulse corresponds to population in |↑〉. The angle of

rotation before determines whether this measure maps to |↑〉, |↓〉 or a coherent

combination of the two.

This pulse sequence forms the basis for all the measurements presented in this

chapter. The sequence is played by an Arbitrary Waveform Generator (AWG Tek-

tronix 70002A), and converted to optical pulses with high-frequency waveguide

electro-optic modulators. The coherent rotation pulses are picked using a 350-MHz

AA Opto-Electronic acousto-optic modulator (AOM), switched by electrical pulses
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Figure 4.3.: Quantum-dot pulse-sequence fluorescence Time-correlated fluorescence
from a single quantum dot during the project and read sequence. The pre-
pare, project and read pulses all result in fluorescence, while the spin-rotation
pulse generates no excited state population and is not visible here. The grey
rectangles mark the regions of interest for registering fluorescence from the
QD.

from a DG645 Digital Delay Generator, triggered by the AWG. The readout, prepa-

ration and state projection pulses are formed by waveguide electro-optic modulators,

as in previous chapters. As for the coherent spin control experiments, the whole pulse

sequence is locked to the repetition frequency of the modelocked spin rotation laser.

Finally, a clock signal every 364 pulse repetitions (∼210 kHz) provides a reference

for a time-to-digital converter. More details can be found in appendix A.

The quantum dot fluorescence during the control sequence correlated with the

sequence clock is displayed in figure 4.3, with the positions of the four stages marked.

The low amplitude exponential decay at zero-time is the spin preparation which

pumps the population remaining after the previous sequence for the next repetition.

Fluorescence from the 160-ps state-projection pulse at 46 ns is lifetime-limited. The

spin-rotation arrives 1.1 ns after the short pulse. This delay is set such that sensitive

coherences are mapped into robust population before the spin state has dephased.

The decaying exponential signal fourteen nanoseconds later is the spin readout pulse.

We use a power at the saturation intensity to maximise signal while limiting laser

background and off-resonant driving of the other transitions. This produces an

average of 1.6 photons for a spin-up state.

The two detection regions for spin projection and readout are marked as the grey
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Figure 4.4.: Raman-photon spin heralding Two-photon coincidence events distributed
according to the measured spin basis for the quantum dots studied in this
chapter (QD1 & QD2). The error bars show one standard deviation in the
state population due to the poissonian statistics of the coincidence events.

rectangles in figure 4.3. We only consider spin readout from sequence repetitions

that contained a Raman detection event in the 1.2-ns wide state-projection window.

We can then reconstruct the conditional spin state by observing the distribution

of 2-photon project-and-read coincidences over the two spin basis states, which we

cycle through by setting the angle spin-rotation to 0 or π on alternate repetitions

and probing the final spin-up population.

4.2.2. Single spin recovery.

Figure 4.4 shows the distribution of two-photon coincidences recorded with this

sequence for the two quantum dots we aim to entangle (QD1 and QD2). These two

histograms show that, conditioned on a Raman photon, we recover spin up with a

fidelity of 96.1±1.9% for QD1 and 97.3±2.7% for QD2. The errors are drawn from

the statistical uncertainty of 2657 and 1260 two-photon events.

This recorded fidelity is a comprehensive measure of the filtering provided by

the etalon, the fidelity of the spin rotations and the suppression of laser scattering
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during the read pulse, all of which would diminish this figure. At the same time,

it is worth noting that conditioning on a Raman photon in this way provides no

information on the fidelity of the initial state preparation, nor is this measurement

sensitive to unintentional spin pumping between state rotation and readout. The

former is checked in the two quantum dot measurement we present later, while the

latter simply reduces the number of coincidences by a very small fraction (∼1%),

and has no effect on the recovered state.

One novel feature of these measurements is the use of composite spin rotations

[129, 208]. As discussed in section 1.8.4, Larmor precession during the optical rota-

tion pulse tilts the spin rotation axis away from the equator, preventing a complete

state inversion. The rotation errors are sufficiently small for coherent control mea-

surements but too large to perform the high-fidelity tomography required for spin

state reconstruction. On an equivalent measurement to figure 4.4 with single π-

rotation pulses, we record a maximum fidelity of 90-92%. The compound rotations

consist of a pair of pulses separated by a single Larmor precession period (39.5

ps). The pulse amplitudes are set close to π/2 rotations, corresponding to the best

approximation to a π rotation.

The ability to optically project and retrieve a single spin is central to the entan-

glement scheme described above, and the high fidelity of these measurements form a

strong foundation that allows us to focus on the more subtle aspects of distributing

entanglement between two spins.

4.3. Forming a network

With the spin-photon interface confirmed for individual quantum dots, we construct

a model network and attempt to distribute entanglement between their confined

spin-states.

As discussed, projecting a particular entangled state requires the mixing of the

beam splitter input modes with a well-defined phase. A prerequisite for this con-
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Figure 4.5.: Matched quantum dot energetics. a Ramsey interference measurements.
The measurements were taken simultaneously under the exact conditions of
the entanglement sequence, important for guaranteeing the absence of extra
nuclear polarisation that would alter the spin splitting (section 4.6.1). The
signal from QD1 is offset for clarity. b Raman photon lifetime measurements
extracted from the state-projection pulse. The signal from QD1 is again offset
for clarity. The dashed curves are single exponential fits.

dition is indistinguishability between the Raman photon modes from two quantum

dots [209]. To achieve this we choose two quantum dots with overlapping charge-

stability plateaus by scanning the sample positions and taking Photoluminescence

spectra, and electrically shift their transition frequencies to a common resonance at

967.9 nm. With the correct magnetic fields applied to both (4 T to QD1, 3.85 T

to QD2), the quantum dots present a spin splitting around 25.15 GHz. We confirm

this through Ramsey interferometry measurements shown in figure 4.5a. As one

would expect, nuclear-bath polarisation needs to be taken into account (more de-

tails are provided in section 4.6.1). Matching the spin splitting overlaps the central

frequency of the Raman modes such that the optical phase is stationary [210, 211].

It also ensures that we generate a static entangled state.

Lifetime measurements of the Raman scattering from the two dots, as presented

in figure 4.5b confirm complete overlap of the intrinsic spectral properties, with

measured exponential excited-state decay times of 0.727 ± 0.01 ns (0.742 ± 0.01 ns)

for QD1 (QD2). Stringent measures of Raman photon indistinguishability will be
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4. Entanglement of distant electron spins

presented in section 4.3.2.

The full setup containing all the necessary components to project and measure an

entangled state is displayed in figure 4.6. The two identical quantum dots are housed

in separate cryostats in the arms of a large fibre-based Mach-Zehnder interferometer.

This architecture provides the required phase relationship between the Raman modes

at the input of the second beam splitter. The entanglement pulse is common to the

two quantum dots, split at the first beam splitter. In this way the combined phase

of the optical excitations and paths from emitters to beam splitter can be controlled.

To avoid path length drifts, the setup contains an optical phase reference: a detuned,

non-interacting beam at 955 nm that is poorly suppressed by the crossed polarisers

in the two microscopes. The laser scatter is split-off after the interferometer at

two holographic diffraction gratings to provide a phase-dependent feedback signal.

More details of this active phase protection this enables are discussed in section

4.3.1. The gratings also ensure that poorly suppressed spin-rotation pulses and the

phonon sideband from each QD will not contribute to our measured coincidences.

The setup contains the additional optical inputs necessary to prepare, rotate and

read the two spins. The readout and preparation pulses are added to each arm, with

an 8-ns time delay to allow each spin to be read individually. The spin-rotation

pulses are added at each microscope. At the outputs of the interferometer four su-

perconducting nanowire single photon detectors (Quantum Opus Opus-One) cover

the low (R1/2) and high (T1/2) frequency transitions, as well as two Avalanche Pho-

todiodes (Excelitas SPCM-AQRH) for the detuned phase reference (S1/2).

4.3.1. Interferometer delay

Controlling the propagation time delay between the two arms of the interferometer,

∆t is essential for creating a well-defined nonlocal state between the two electron

spins. Trivially, the case of ∆t = 0 will always ensure projection into a well-defined

state, however the state depends on the interferometer delay on the timescale of

a single optical cycle. Setting and controlling the delay of an ≈ 10-m fibre-based
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Figure 4.6.: Entanglement setup Each quantum dot sits in an arm of a large fibre-
based Mach-Zehnder interferometer. Shown are all the required optical inputs
and their pulse sequences for preparing, entangling and measuring the two
spins. The outputs of the interferometer are spectrally separated into six single-
photon detectors. Also shown is the detuned phase reference laser, which is
used to provide a feedback signal to a piezo-mounted retroreflector (∆φslow)
and a phase-EOM (P-EOM, ∆φfast).

interferometer to this level is a continuous, involved process. By counting fringes

we measure an interferometer-delay drift of 0.4 ps (150 fringes) on a timescale of 20

minutes. This is principally due to refractive index change and thermal expansion

from sub-degree temperature cycles in the lab [212].

We monitor path length change with the interference of the stabiliser beam (green

in figure 4.6), blue detuned from the optical resonances by 11 nm and detected by S1

and S2. The signal difference is passed to two PID controllers to control the position

of a retroreflector on a piezo stack for slow, thermal drifts (< 10 Hz, ∆φslow in figure

4.6), and the offset of a fibre-coupled phase-EOM for audio frequency noise (10-1500

Hz, ∆φfast in figure 4.6). Locking the fringes to the midpoint (zero difference between

the outputs) provides a linear error signal and limits the sensitivity to amplitude
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4. Entanglement of distant electron spins

changes in the two arms of the interferometer. This way the phase drift of the

interferometer can be constrained to < π/30 for the duration of an experimental

run.

Short-term change in the delay of the interferometer can be prevented to a very

precise level. At the same time there are larger values within which we need to

determine and set ∆t. In particular, there are four key timescales over which a

non-zero delay affects the operation of the experiment:

700 ps The quantum dot optical lifetime. ∆t needed to be much less than this to

ensure complete overlap of the Raman photons and interference between the

two quantum dots.

40 ps The spin precession time. Delay changes on this timescale control the rela-

tionship between the spin state projection and the relative phase of the two

arms at the excitation resonance frequency.

290 fs Set by the frequency difference of the stabiliser and the quantum dot reso-

nances. The interferometer delay needs to be changed on this timescale to

control the phase of the quantum dot scattering while stabilising at the mid-

point of the phase reference signal

3 fs The optical cycle. This sets the phase of the interference, and therefore the

spin state. Changes on this scale are effectively controlled against by the active

feedback.

During the running of the experiment, ∆t is kept constant to within 60 attoseconds

by the active feedback. The relative phase of the stabiliser and the quantum dot

fluorescence can be adjusted by stepping the offset voltage on the stabilising piezo-

stack to alter the path length by ∼30 µm and the delay by ∼0.2 ps. The large

frequency difference of these two tones ( > 3,000 GHz) ensures that this presents

only a small correction to the delay relative to the larger timescales.
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Figure 4.7.: Interferometer-delay measurement traces Normalised difference signal
between the interference at two frequencies separated by 25 GHz for different
positions of an offset stage. The interferometer delay modulo 40-ps can be
extracted from the amplitude of the difference.

The interferometer delay can be measured by controllably allowing excitation

photons to leak through the system to record a sizeable signal on the single-photon

detectors. Sending through a 160-ps long optical pulse allows us to find and correct

for the relative delay down to the time-jitter of the combined detector-TDC system,

which provides ∼ 200 ps resolution. Controlling ∆t to within this value provides

large overlap between the Raman photons from the two quantum dots and good

interference visibility. Nevertheless we need to establish this value to well within the

40-ps spin precession time, beyond the time resolution of the single-photon detectors.

The full detection setup provides us with methods to accurately determine the

relative delay between the two interferometer arms. The free space etalons we use

to split fluorescence from the two branches of the quantum dot lambda-system allow

us to simultaneously monitor the interference of multiple frequencies. At ∆t = 0 all

frequencies will interfere with the same phase, but as the delay reaches the single-

ps level, tones separated by > 1 GHz will beat with a measurable phase difference.

Figure 4.7 shows the normalised difference between time-traces of interference fringes
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Figure 4.8.: Reconstructed interferometer delay Difference signal peak-to-peak values
plotted against the stage offset for multiple frequency splittings. The curves
are the expected signal-difference. The top axis marks the determined inter-
ferometer delay.

recorded for two beams at the Rayleigh (309703 GHz) and Raman (309728 GHz)

frequencies. The curves are offset according to the position of a additional manual

delay stage in one arm of the interferometer. The piezo stack we use to compensate

for slow drifts is modulated with a triangle wave at 0.2 Hz to ensure that we evenly

sample over the fringes. As the delay-offset is changed through 7 mm the two tones

interfere with equal phase and the difference signal vanishes.

The phase difference between 25-GHz separated tones will only provide a mea-

surement of ∆t modulo 40 ps, and so we sweep the low-frequency signal and repeat

the measurement for frequency pairs separated by 19 & 15 GHz. The extracted

peak-to-peak values of the normalised difference for these three pairs are shown in

figure 4.8. The combined measurements along with the 200-ps scale course estima-

tion provide a unique determination of the interferometer delay with an accuracy

up to the short-term thermal drift. As can be seen, a delay stage position of -4.8

mm provides a zero-delay interferometer.

4.3.2. Raman photon statistics

In section 4.2.2 we confirmed our ability to project a spin state at each quantum

dot through detection of a spin-flipping Raman photon. In this section we use the

statistics of Raman scattering events to determine the properties that will enable
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Figure 4.9.: Raman photon intensity autocorrelation The text marks the pulse se-
quence repetitions that contribute to the autocorrelation, where n is a free
parameter. Each measurement lasts for three minutes.

entanglement distribution between the two systems.

The intensity autocorrelation, or g(2) function of the Raman scattering from each

QD can be reconstructed by blocking an interferometer arm and running the pulse

sequence described in section 4.2.1. The function is found from two-photon coin-

cidences between Raman scattering events during the projection pulse. Figure 4.9

shows the distribution of these coincidences for the two identical quantum dots. The

text in each panel marks the pulse sequence repetitions that the two photon event

occurred in, where n is a free parameter. For both quantum dots, no two-photon

events were recorded in the same sequence repetition, save for one count in the QD2

measurement.

From our background count rate of ∼ 10 Hz in the detection window, we expect

to find one background coincidence for every 150 Raman photon coincidences, con-

sistent with the single event at zero-delay in these two measurements. The absence

of other coincidences in the central peak demonstrates how Raman scattering pro-

vides a mechanism for an ultra-high purity stream of single photons: the process is
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Figure 4.10.: Hong-Ou-Mandel interference of Raman photons As for figure 4.9 the
inset text marks the sequence repetitions. The curves are Gaussian fits to
the average satellite-peak. The central curve is half-amplitude, as expected
for distinguishable photons.

self-limiting on the timescale of the ground state relaxation (up to milliseconds [96]),

rather than the optical lifetime (sub-nanosecond) - the case for a two level system

[213].

Having confirmed the single-photon nature of Raman scattering, the next issue to

address is the extent to which photons from the two quantum dots share a common

mode. This is required for the erasure discussed in section 4.1, and therefore crucial

for distributing a quantum state. Quantum statistics provide a stringent method to

access this quantity, as if two indistinguishable photons interfere, the symmetry of

the possible output states causes them to bunch at one output [214]. This results

in a dip in the rate of coincidences between opposite output ports within the co-

herence time of the two photons [215], an effect known as Hong-Ou-Mandel (HOM)

interference. The amount of bunching is then directly related to the mode-overlap

between the two inputs.

Figure 4.10 shows two-photon coincidences between the Raman-mode output ports

T1 & T2 within the state-projection region of interest when the pulse sequence is run

for both QDs simultaneously. As for the g(2) measurements, a pronounced loss of

coincidences occur with the same sequence repetition. For distinguishable photons,
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one would expect the central peak to contain half the area of the satellite peaks [139]:

the satellite peaks can contain coincidences from the two dots in the combinations

1&2, 2&1, 1&1 and 2&2 while the single photon nature of the Raman scattering only

allows coincidences of the form 1&2 and 2&1 within the same sequence repetition.

The suppression of this rate from half-height is due to photons bunching at the

beam splitter. The indistinguishability of the photons is measured by the visibility

of this reduction, extracted from the coincidence event distribution via:

V = 1− 2Σg
(2)
n=m

Σg
(2)
n 6=m

, (4.9)

where Σg
(2)
n=m are the number of counts in the central region, and Σg

(2)
n6=m the

average number of coincidences in the satellite peaks. We recover a value of V =

93.31 ± 1% over our 1.1-nanosecond state projection window.

This figure requires some context. In recording photon indistinguishability from a

quantum dot, usually with the neutral exciton, a series of pulses are delayed and the

fluorescence pattern is interfered with a time-lagged copy of itself via an asymmet-

rical Mach-Zehnder interferometer [216–219]. The optical delays here, realistically

restricted to the sub µs regime are such that noise correlated on a longer timescale is

not represented in the recorded visibility. Values as high as 99% have been recorded,

however they neglect slow, environmental noise [82, 87], which would limit this fig-

ure. By interfering two independent sources, the figure recorded encapsulates these

slow noise processes [139, 220] and yet a high degree of indistinguishability is still

present.

An unavoidable limit to the indistinguishability of Raman scattering is the the

ground-state coherence, T ∗2 [140, 221, 222]. For confined electrons, the excited state

lifetime takes up a non-negligible fraction of this value (0.7 ns compared to 1.9 ns).

In any case the dephasing spin state requires that we only consider a window with

a significantly smaller width than the dephasing time, filtering these processes. The

window is set such that ∼60% of the emission is accepted. For comparison, if we
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Figure 4.11.: Entanglement pulse-sequence fluorescence The sequence is identical for
the two QDs, except for delayed readout for the QD2. The rectangles mark
the regions of interest for finding three-photon coincidences.

increase our window to 1.5 ns, we record a visibility of 91%. The high visibility we

have presented here is a critically important result, as it bounds the available fidelity

with which we can generate an entangled spin state.

4.4. State reconstruction

The measurements we have presented so far demonstrate that Raman scattering from

the two quantum dots provides spin-state projection within a well-defined optical

mode, suggesting its capability to distribute entanglement between the ground state

spins. In this section, we discuss the projection and reconstruction of the joint spin

state establishing the non-classicality of the state via spin-spin correlations.

4.4.1. Joint spin-state population

The first step towards full state reconstruction is to find the joint spin population

conditioned on a single Raman photon detection. The pulse sequence for the two-

spin system is identical to the scheme presented in section 4.2.2 with a delay in

the QD2 read and preparation pulses to distinguish the two spin readouts in time.

Fluorescence emerging from the sequences for the two QDs are superimposed in

figure 4.11. The spin state is reconstructed from three photon events in the three

regions of interest marked in the figure (grey rectangles): the entanglement pulse
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Figure 4.12.: Joint spin-state population 603 three-photon coincidences sorted accord-
ing to basis state. Error bars show the uncertainty in the height of each bar,
according to the number of contributing events.

common to both QDs, and the two spin readouts. The measurement cycles through

the four basis states with independent spin rotations to cover {|↓↓〉, |↓↑〉, |↑↓〉, |↑↑〉}

in 367 ns before repeating.

To avoid events where both electrons change their spin state, which limits the

available fidelity of the Bell-state, the spin flip probability is kept small for the two

dots, at 5.0% (7.1%) for QD1 (QD2). The probabilities differ to compensate for

different collection efficiencies in the two samples and match the Raman photon

rates at the detectors. This results in an state projection rate of ≈ 7.3 kHz when

attempting at 10.9 MHz, corresponding to a 0.07% success probability. The full

three-photon project-and-read coincidence rate is then ∼ 100 mHz, taking into ac-

count the fact that two of the measurement bases should ideally produce very few

three-fold coincidences.

Figure 4.12 contains the distribution of three-photon coincidences over the four

two-spin basis states. The proportions of events show that, conditioned on a Raman

111



4. Entanglement of distant electron spins

photon detection, we recover an antisymmetric spin population (|↓↑〉 or |↑↓〉) with

a high probability. Taking into account the errors that emerge when reconstructing

the state from 603 three photon coincidences, we find an overlap with a purely

antisymmetric population of 85.8 ± 3.8%. The even heights of the central bars are a

consequence of the equal likelihood of detecting a Raman photon from each quantum

dot.

Deviations from a perfect anti-symmetric state are present as the 14% of coinci-

dences that occur in the |↓↓〉 and |↑↑〉 combinations. The origins of these events

are well understood. Events in the |↓↓〉 measurement correspond to the imperfect

spin heralding that was measured for each quantum dot individually in section 4.2.2.

From equation 4.6 we expect the |↑↑〉 coincidence rate to follow the spin flip prob-

ability. This is indeed what we recover, with a slight correction owing to imperfect

spin initialisation into |↓↓〉.

These measurements confirm that the Raman photon projection results in the

desired anti-symmetric spin population: an effective test of our spin preparation

and measurement setup. At the same time, measurements in other bases are needed

to characterise the two-spin density matrix and confirm the presence of entanglement

between the two spins.

4.4.2. Transverse spin measurements

Full reconstruction of the two-spin state would require 16 different measurements to

determine the most-likely 4x4 density matrix [223]. At the same time, full tomog-

raphy is not necessary to establish the presence of entanglement between the two

spins, and as we will cover, deduce the Bell-state fidelity. The critical fact we need

to determine is whether the population anticorrelations in figure 4.12 correspond

to a statistical mixture or if indeed they reflect the populations of a well-defined

entangled state. To achieve this we measure the transverse basis of the two-spin

state, found through correlations between the spin projections on the equator of

their respective Bloch spheres.
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If we consider the pure, maximally entangled state |ψ〉 = 1/
√

2
(
|↑↓〉+ ei∆φ |↓↑〉

)
,

its density matrix representation can be written in the {|↓↓〉 , |↓↑〉 , |↑↓〉 , |↑↑〉} basis

as:

|ψ〉 〈ψ| = 1

2


0 0 0 0

0 1 ei∆φ 0

0 e−i∆φ 1 0

0 0 0 0

 (4.10)

To move to the transverse basis, we perform a π/2 rotation about the X axis on

each spin, which corresponds to the transformation:

X̂π/2 |ψ〉 〈ψ| X̂†π/2 =
1

8


1 −i −i −1

−i 1 −1 −i

−i −1 1 −i

−1 −i −i 1




0 0 0 0

0 1 ei∆φ 0

0 e−i∆φ 1 0

0 0 0 0




1 i i −1

i 1 −1 i

i −1 1 i

−1 i i 1



=
1

4


1 + cos ∆φ − sin ∆φ sin ∆φ 1 + cos ∆φ

− sin ∆φ 1− cos ∆φ cos ∆φ− 1 − sin ∆φ

sin ∆φ cos ∆φ− 1 1− cos ∆φ sin ∆φ

1 + cos ∆φ − sin ∆φ sin ∆φ 1 + cos ∆φ

 .

(4.11)

The populations of the transformed state (highlighted in red) now follow the phase

∆φ of the state, resulting in either correlated or anti-correlated spin populations if

∆φ = 0 or π.

Alternatively, if the spins are in a statistical mixture (ρmix), only the diagonal

terms of the density matrix are non-zero (equivalent to a scrambling of the phase

∆φ) and after rotation all four populations exhibit an equal value of 1/4:
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Figure 4.13.: Single spin heralding in transverse basis Measurement sequence identi-
cal to figure 4.4 with the rotation mapping (0,π) → (π/2, 3π/2).

X̂π/2ρmixX̂
†
π/2 =

1

8


1 −i −i −1

−i 1 −1 −i

−i −1 1 −i

−1 −i −i 1




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




1 i i −1

i 1 −1 i

i −1 1 i

−1 i i 1



=
1

4


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1


(4.12)

The additional π/2 rotation is provided by mapping the state basis rotations (0,

π) to (π/2, 3π/2). With this additional rotation the states (|↑〉 − i |↓〉 = |→〉,

|↑〉+ i |↓〉 = |←〉) are projected to (|↑〉, |↓〉). Figure 4.13 displays the distribution of

coincidences for the same single quantum dot project and read sequence as in section

4.2.2 with the additional π/2 rotation. The matching coincidence rates show that

this rotation effectively removes the spin-population information from our readout,

and we measure the projection of the state |↑〉 on the equator of the Bloch sphere.
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Figure 4.14.: Stabilised Rayleigh photon interference Extracted from time-averaged
fluorescence within the state-projection window for 200-ms integration time.
Interferometer stabilised at 75 s.

For these transverse measurements it is now essential that the phase of the in-

terferometer is kept constant. The lower-frequency Rayleigh scattering during the

projection pulse provides a measure of the interference at the quantum dot resonance.

Figure 4.14 shows the interference of Rayleigh photons from the two quantum dots.

For the first 75 s of the measurement the phase of the interferometer is left free-

running, and the two outputs beat against one another as the interferometer path

lengths drift. The incomplete visibility is due to high-frequency noise, incoherent

scattering from the transitions, unequal Rayleigh photon rates from the two dots

and the presence of background in the reflected channels from the projection pulse

and spin rotation pulses. At 75 s the interferometer is stabilised and the scattering

is predominantly directed towards output 1 (R1), corresponding here to zero net

phase accumulation in the interferometer. The stabiliser frequency is locked to a

π/2 phase, with the difference provided by a sub-picosecond delay between the two

arms.

Figure 4.15 shows the three-photon coincidences measured in the rotated basis.

They are now sorted into two sets, depending on the output the state-projecting

detection occurred in. These data are recorded for the interferometer phase set at

either 0 or π, such that the Rayleigh scattering from the two dots is predominantly
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Figure 4.15.: Transverse spin measurements Three-photon coincidences for an inter-
ferometer phase of 0 or π, with a Raman detection event registered on the
constructive (destructive) interference port in a (b). Dashed bars mark ex-
pected coincidences for classically correlated spins.

directed towards R1 or R2 respectively. The coincidence events are then sorted into

whether the state-projecting Raman detection event occurred on the output that

features constructive (4.15a) or destructive (4.15b) Rayleigh interference.

The two distributions reveal equal and opposite correlations in the spin popula-

tions. In the case of the constructive interference port the spins are now correlated

with one-another, while the anti-correlation is preserved in the opposite port. As a

guide to the eye, the figure includes the expected distribution if the two spins were

only classically correlated (dashed lines). The recorded distribution in both cases

show a clear deviation from this behaviour, establishing the non-classicality of the

joint spin state. These measurements reveal a transverse visibility of 39.5±3.8%

(-35.1±3.8%) for the two-spin state in figure 4.15a (4.15b).

The fidelity of a general two-spin density matrix with the Bell state |ψ±〉 is

〈ψ±| ρ |ψ+〉 = 1/2(ρ22 + ρ33 ± 2<(ρ23)). The two diagonal terms we can obtain

from our initial measurement of the joint spin population, Fz. For an arbitrary
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4.4. State reconstruction

density matrix, the visibility of the rotated population is VY = 2<(ρ23) + 2<(ρ14).

The density matrix, however is an average measure of the state we access and we

can supplement our recovered values with knowledge of how the state evolves be-

tween projection and rotation. Specifically, the component ρ14 = |↓↓〉 〈↑↑| evolves at

twice our spin splitting, i.e. at ∼ 50 GHz. The time-accuracy of our state retrieval

is set by the difference between the single photon detection and the optical state

rotation. The latter is stable to < 1 ps, however the former is limited by the jitter

of our single-photon detection, which is constrained by the time-to-digital converter

at ∼ 120 ps. This ensures that <(ρ14) is, on average, zero, and the visibility in our

transverse basis measurement is directly set by the size of ρ23, which evolves at the

difference frequency between the two spins, controlled to be < 100 MHz.

Combining these two transverse basis measurements with the population mea-

surement, we recover an average Bell-state state fidelity of 61.6 ± 2.3%. This is 5.04

standard deviations above the 50% classical limit, clearly evidencing the entangle-

ment in the two-spin state.

When we combine all the ways in which the state fidelity can be limited, we can

understand the values we record. Double spin flips limit this state to 93% fidelity.

Raman photon distinguishability measured in section 4.3.2 provides an additional

factor of 1/2 (1 + V ) = 0.95. The joint state dephases at in a time of T ∗2 /
√

2, where

T ∗2 is the dephasing time for a single spin. Integrating this Gaussian loss of coherence

over our 1.1-ns collection window provides another factor of 0.87. We can also include

our imperfect spin preparation and readout, each reducing our fidelity by a factor

of 0.03 and 0.06 respectively. This predicts a fidelity of 70%. As we will describe in

section 4.6.1, exactly predicting the spin splitting of the two dots is nontrivial due to

nuclear polarisation, which will change to compensate electrical noise in the samples

[110]. The entangled state will precess at the difference between the spin splittings.

For a 150 MHz difference, a reasonable value that could be determined between each

experimental run, an additional factor of 0.95 must be taken into account.

The optical path length is stable enough that we can neglect its contribution
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4. Entanglement of distant electron spins

to our imperfect fidelity. The phase response of the quantum dot transitions can

drift due to sub-linewidth electrical noise in the two samples, however, which are

mapped to the phase of the entangled spin-state. From the imperfect visibility of

the Rayleigh scattering in figure 4.14, which, at 65% is 10% lower than the 75%

limit owing to incoherent scattering, we estimate another factor of 0.95 in the state

fidelity. This phase shift will be discussed further in section 4.6.2, where we cover

how we select against large deviations in this value. Finally we note that many of

the values we reference are figures taken in short calibration measurements. Finding

enough three-photon coincidences requires integrating for multiple hours, over which

time drifts can occur in the setup, limiting the interferometer visibility, background-

free readout and the exact balance between the quantum dot rates. When one takes

all of these factors into account, the relatively modest fidelity we record is easily

understood.

4.5. Controllable entangled state generation

In using the a single photon to project an nonlocal spin state [194] we have direct

access to the phase of the entangled state we generate via the interference of the

Raman modes.

We demonstrate this capability in figure 4.16. This figure shows the extracted

visibilities from transverse basis measurements for five different set-points of the

entangled-state, which we find by examining the interference of Rayleigh scatter-

ing during the entanglement pulse. The visibilities are drawn from the relative

coincidence rates displayed beneath. While the phase of the state follows the in-

terferometer, the axis about which we perform tomography is fixed. In this way

the different phases map into a coherently-changing visibility in the transverse mea-

surement. We partition the coincidence events into the interferometer output that

registered a Raman photon. For a zero-phase path-length difference, a detection on

T1 (T2) projects the spins to |ψ+〉 (|ψ−〉), resulting in correlated (anti-correlated)
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Figure 4.16.: Controllable entangled state generation Transverse basis visibilities for
five interferometer set-points, drawn from the histograms at the base of the
figure. Negative visibility corresponds to anticorrelated spins in the transverse
basis. Curves are sinusoidal guides to the eye.
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4. Entanglement of distant electron spins

population in the transverse measurement. As we move to π/2 phase the condi-

tional states are 1√
2

(|ψ+〉 ± |ψ−〉) (∆φ = π/2). Consequently these state exhibit no

visibility, which our measurements confirm. At π-phase the role of the detectors is

swapped, T1 (T2) projects |ψ−〉 (|ψ+〉) and the visibility along our measurement axis

returns. The schematics above figure 4.16 sketch how the different spin states map

onto the fixed angle we use to perform tomography. As the points project equally

onto the measurement axis (δφ = π/2), they show no visibility.

While any Bell state can be mapped to any other through a local X̂π or Ẑπ rotation

at one of the qubits, this demonstrates control over the entangled state at the point

of generation. This is the core process of the experiment, in that through quantum

erasure we map an optical phase onto the phase of a nonlocal spin state.

4.6. Experimental details

In projecting and recovering a well-defined entangled state between the two quantum

dot spins, some particular features of both self-assembled quantum dots in general

and the two QDs used in particular need to be taken into account. They are detailed

here.

4.6.1. Dynamic nuclear spin polarisation

As with any experiment involving resonant optical interactions with a quantum

dot under magnetic field, dynamic nuclear spin polarisation needs to be considered.

Both quantum dots are resonant with the state-projection pulse over a small range

of bias voltages, although through this range the spin splitting can change by over

half a gigahertz as the nuclear bath becomes polarised to compensate the detuned

readout and preparation pulse. If the splittings of the quantum dots differ the

projected entangled state is non-stationary and evolves at the difference frequency.

To control against this, we perform Ramsey interferometry on the two spins between

each 20-minute measurement, and compensate for any difference with sub-millivolt
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4.6. Experimental details

bias corrections. QD2 in particular features an electrical environment that evolves

on a millihertz timescale, large enough to bring the projection pulse off resonance,

requiring a new gate voltage and spin-splitting measurement each time the resonance

is lost.

4.6.2. Data filtering

Finding three-photon coincidences that correspond to successful spin state measure-

ment from many hours of data-acquisition is a nontrivial task, and deserves to be

discussed. The experiment produces single photon rates of 200 kHz, along with the

200 kHz clock. Each of these points are time-tagged with a 64 bit number, such

that we generate an average data rate of 190 MB min−1, from which we have to

extract the 18 bits of data that represent which detector projected the state and the

basis the ≈6 three-photon coincidences correspond to. First, the raw timestamps are

correlated with the experiment clock, and a decision is made whether they sit in the

regions of interest. The timing of the filtered events can then be compared to find

the rare three-photon coincidences that occur within a single repetition. The work

was the principle responsibility of Lukas Huthmacher, and the successful, efficient

filtering of these significant data quantities is down to his expertise and persistence

in optimising the operation of the code to compress and sort through the data.

In addition to the rare coincidences, the single-photon streams from the measure-

ment continuously provide information on the condition of the two QDs. This then

permits some low-level data filtering on the collected coincidences. The very low fre-

quency noise QD2 experiences causes it to fall off resonance on around a half-hour

timescale. This can be seen as a drop in the average state projection rates from

the two cryostats. Controlling against such an effect requires that we restart the

experiment every 20 minutes with a reset gate voltage, but we additionally set a

lower-threshold for the state-projection rate of 7 kHz to reject times when QD2 had

lost resonance. Similarly, for the transverse-basis measurement, we place a limit

on the phase of the Rayleigh photons we record from the count rates on R1 and

121



4. Entanglement of distant electron spins

-2000 -1000 0 1000
Detuning (MHz)

0 2 4 6
Time (s)

0

1

2

R
ay

le
ig

h 
co

un
t r

at
e 

(n
or

m
.) Rayleigh Scattering

R1
R2

0

1

2

3

4

R
am

an
 c

ou
nt

 r
at

e 
(k

H
z)

Raman Scattering
T1
T2

Figure 4.17.: Detuned-quantum dot interference Rayleigh and Raman scattering rates
within the state-projection window for a controlled detuning introduced to
QD1 (top axis).

R2 during entanglement pulse. Fluctuations in this phase are principally due to

smaller-amplitude noise in the QD2 environment. A generous bound of ± 20◦ avoids

smaller resonance shifts which are resolvable in the phase rather than the ampli-

tude of the count rates. We note that this filtering is only sensitive to fluctuations

slower than the 1-second integration time we require to accurately determine the

Rayleigh-scattering rates in the two outputs. This still leaves the state vulnerable

to high-frequency phase shifts.

In figure 4.17 we show the effect of drive detuning on interference between the two

quantum dots. We run the entanglement sequence and count the average photon

rate in the state-projection region of interest on both the high and low frequency

outputs. Simultaneously, we slowly (105 mHz) ramp the bias on QD1 to introduce

a detuning, which forms the top axis of the figure. The upper panel displays the

Raman count rates from the two emitters, and the lower panel contains the Rayleigh

scattering. As QD1 is tuned past resonance (corresponding to the maximum rate of

Raman scattering), the Rayleigh interference from the two quantum dots changes

122



4.7. Conclusions & outlook

10-4 10-3 10-2 10-1 100 101 102 103 104 105

Entanglement generation rate (Hz)

0.5

0.6

0.7

0.8

0.9
B

el
l-s

ta
te

 fi
de

lit
y

8
2

5

1

6

3

4

7

10 9

  This Work

a

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Entanglement generation probability

0.5

0.6

0.7

0.8

0.9

B
el

l-s
ta

te
 fi

de
lit

y

8
2

5

1

6

3

4

7

109

  This Work

b

Figure 4.18.: Entanglement comparison Bell state fidelity against generation rate (a)
and success probability (b). The numbered points are references: 1: [156], 2:
[199], 3: [202], 4: [200], 5: [89], 6: [203], 7: [201], 8: [204], 9: [142], 10: [205].
We include our recovered fidelity and include a value that corrects for our
imperfect spin readout detailed in figure 4.4. The dashed lines correspond to
a projected fidelity for our demonstration with different operation rates.

phase. This corresponds to a changing phase in the coherent response of the QD2

to the detuned driving field.

4.7. Conclusions & outlook

Distant entanglement has been reported in a variety of different physical systems,

and it is important to contextualise the results presented in this chapter in order

to understand the niche that entangled quantum-dot spins occupy. In figure 4.18a

reported state fidelities are plotted against the entanglement generation rate for

a number of physical systems: atomic qubits (points 1,2,3,4 & 6) [156, 199–202],

NV centres (5,6, & 8) [89, 203, 204], confined hole spins in quantum dots (9) [142]

and superconducting qubits (10) [205]. We plot our extracted fidelity and a figure

corrected for our ∼3% readout error. The curves correspond to projected state
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4. Entanglement of distant electron spins

fidelities where we to alter our scattering probability. A lower rate suppresses double

spin-flip events, increasing the Bell-state fidelity. As the scattering probability is

decreased to the detector dark count rate (∼ 1Hz), the fidelity decreases due to

false heralds. The 7.3-kHz entanglement generation rate used in this chapter is the

highest frequency entanglement generation reported for optically active qubits.

The exact generation rate has many instrumental conditions, including the need

to intermittently cool atomic systems, and the oscillator strengths of the optical

transitions. Both the continuous operation of confined spins and the strength of the

excitonic transitions contribute to the high value we report here.

In figure 4.18b we control for the experimental protocol used by normalising

against the attempt rate in each report to find the success probability of the scheme.

This compresses the range of reported values by an order of magnitude. At 6.7×10−4,

the modest value we find here is again a highly competitive value. The only higher

value reported is for two superconducting flux qubits which share a chip and oper-

ate in the microwave-frequency domain. The high success probability is principally

due to two factors. First, the single photon heralding offers a clear advantage in

the achievable rate, given the condition that the acceptable spin-flip probability

is higher than the collection efficiency. Second, in comparison with other solid-

state emitters, the high coherence of quantum dot transitions is such that ∼90% of

emission processes can distribute a quantum state. These results along with those

presented for holes [142] establish spins confined to self-assembled quantum dots as

a high-frequency source of distant entanglement.

There are a number of clear steps forward from this demonstration. First, the fast

dephasing of spins confined to self assembled dot is such that we are forced to measure

the state before the state-projecting detection event. This perverse order is still an

important test, as the state can be protected through local decoupling schemes at

each site [224] as in chapter 3. This would allow us to extend the coherence of the

two spins beyond the ∼100 ns time it takes for the scattering to reach our detectors,

such that the state would be heralded. This is a relatively technical addition, and
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the important component is the nonlocality demonstrated here.

Performance with respect to both axes of figure 4.18 could be improved by increas-

ing the photon extraction efficiency from our samples. The single photon scheme we

use ties the generation rate and fidelity together, such that an improved efficiency

would provide higher fidelity at our 7.3-kHz rate, or a higher generation rate with

the same fidelity.

Importantly, a demonstration of this style marks a point where the spin and opti-

cal properties of quantum dots can no longer be examined in isolation. Now the two

are intimately linked, and both need to perform to a high standard. A clear next step

beyond this work would be a demonstration of this style using devices that permit

near-unity photon extraction, or on-chip routing [136]. To this end, the observation

of entangled optical states from quantum dots in nanowires [225], indistinguishable

photons from quantum dots in microcavities [217, 218] and spin-induced single pho-

ton nonlinearity in a waveguide [19] are encouraging results towards truly scalable

creation of states distributed over a network of interconnected spin qubits.
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CHAPTER

FIVE

DIRECT COUPLING OF A QUANTUM DOT TO A

SINGLE ION

It is natural that large scale quantum networks were first envisaged as realisable

through coupling together identical quantum systems [10]. As scalability require-

ments were considered and the particular strengths of individual systems assessed

an exciting alternative has emerged in coupling different systems with unique and

complementary attributes together.

The term ‘hybrid quantum system’ encompasses a wide range of proposals and

experiments all of which share the same basic motivation: different quantum systems

are particularly capable of different tasks, and if linked efficiently enough, their

combination could outperform each individual constituent [25–27]. In the context

of information processing one could think of the composite system straddling the

DiVincenzo criteria without each part ever satisfying more than a subset [92].

The combinations are numerous and varied. To select a few there are hybrid

systems built of different atomic isotopes [226], or different optical wavelengths,

compatible with coherent stationary systems and low attenuation optical fibres [44,

227, 228]. The latter can be extending to interconversion between the microwave

and optical regimes for interfacing distant superconducting circuits [229, 230]. Al-
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5. Direct coupling of a quantum dot to a single ion

ternatively, ‘hybrid’ could refer to the encoding of the quantum state, as in protocols

featuring information in both continuous phase quadratures and a discrete photon-

number representation [231, 232]. Beyond this, hybrid materials mixing spin degrees

of freedom and superconductivity are a promising route towards computing with

topologically-protected quantum states [233, 234].

The interpretations we focus on are coupled quantum systems that provide com-

plementary qubit definitions. Experiments have demonstrated the coupling between

spin ensembles and a superconducting flux qubit that share a common resonator

[235, 236], and optical interactions between a molecule or quantum dot and neu-

tral atomic vapours [237–239]. These demonstrations have relied on ensembles to

achieve interaction between the systems. The work contributing to this chapter is

focussed on a goal which had so far remained elusive, the coupling of two different,

single quantum systems, which we achieve with an InGaAs quantum dot and a single

ytterbium ion in a high-finesse Fabry-Perot cavity. These systems are of particular

interest owing to the ultrafast operations possible and on-chip integration available

with a single quantum dot, compared to the long coherence times states encoded in

trapped ions experience, together with their shared interaction with near-infrared

optical fields [240].

The challenge of any hybrid system is in the link: how to form a common mode

between two systems presenting such desirable differences. In this chapter we first

discuss the extent to which the atom and quantum dot share a common optical

mode and the limitations provided by their differing bandwidths. We demonstrate a

direct link between the systems by controllably changing the internal state of the ion

with emission from the quantum dot and explore routes that circumvent the optical

mismatch. We then present classical correlations between the quantum dot spin and

the internal state of the ion, and discuss how this might be extended to achieve the

significant goal of a hybrid entangled state shared between the two systems.

The work presented in this chapter is a collaborative effort between Prof. Atatüre’s

and Prof. Köhl’s research groups, which includes Claire Le Gall on the quantum dot

128



5.1. A single 174Yb+ ion

side and Matthias Steiner and Hendrik Meyer on the atomic side.

5.1. A single 174Yb+ ion

The atomic node of our hybrid system is formed of a single 174Yb+ ion confined to a

needle Paul trap. The ion is trapped by applying a high voltage (100 V amplitude)

signal at 22 MHz to two very fine tungsten needles separated by 100 µm, creating

a psuedo-potential minimum with a width of 2π×(1-3) MHz. Figure 5.1a shows

the single fluorescing ion between the tungsten needles of the trap, surrounded by

a fibre cavity. An important feature of this minimal trap geometry is the high

numerical-aperture optical access to the ytterbium atom it allows.

The relevant atomic level structure for understanding our hybrid coupling ex-

periment is displayed in figure 5.1b. The ion is Doppler-cooled with the 369 nm

transition between the 2S1/2 ground state and the 2P1/2 excited state. The excited

state decays into the metastable 2D3/2 state with a branching ratio of 0.5% [241],

which in turn decays back to the ground state in ∼ 50 ms [242]. The 2D3/2 state

is of particular interest to us, as it can be excited to 3D[3/2]1/2 with light at 935

nm, within the typical range of InGaAs quantum dot transition frequencies. With a

high probability interaction at 935 nm transfers population back down to the ground

state, set by the free-space branching ratio of 98:2, which allows us to use ground

state population as a probe for interaction between the ion and a resonant photon

from the quantum dot.

Linking the ion to other single quantum systems requires operating at the single

photon level. To access this regime, a high-finesse Fabry-Pérot cavity surrounding

the trapped ion enhances the interaction between the weak 2D3/2-3D[3/2]1/2 transi-

tion and the cavity mode. The interaction between a single excitation in the cavity

mode and the ion can be encapsulated in the cavity cooperativity, C = g2/(2κγ)

[243]. In this expression, g is the coherent (reversible) coupling rate between the

optical mode and the atom, γ the atomic dipole decay rate and κ the decay rate of
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Figure 5.1.: Single 174Yb+ ion in a fibre-based cavity a Image of single ion confined
in needle trap. Visible are the tungsten trap needles (top and bottom) and
the sleeves of the fibre-tip cavity (left and right). b Level structure of single
174Yb+ ion. The highlighted transitions are the main cooling transition from
the ground state at 369 nm, and the cavity coupled near-infrared transition at
935 nm. c Schematic showing the three processes that characterise the ion-
cavity coupling, the coherent coupling strength, g, the dipole decay rate γ and
the cavity-field decay rate κ.

the cavity field, as displayed in figure 5.1c. The coherent coupling rate, g ∝ 1/
√
V ,

where V is the cavity mode volume, thus minimising the size of the cavity mode is

a clear route to enhancing the cooperativity with the atomic transition.

Achieving small mode volumes around trapped ions presents a challenge, as large

dielectric surfaces near to the trap disturb the electrostatic environment of the ion

[244]. The key development here is to form the cavity from facets of single-mode

fibres [245]. Curved faces are laser-machined into the fibre ends with radii of curva-

ture of 250 ± 30 and 300 ± 20 µm, and coated to achieve transmissions of 10 and 100

parts-per-million [246]. The mode is then 170 ± 10 µm long with a waist of 6.1 ±

0.2 µm [247]. For this cavity the parameters (g;κ;γ) are found to be 2π×(1.6;25;2.1)

MHz, with a cooperativity of 2.4 ± 0.5%. These values exist in the range referred

to as the intermediate coupling regime, where the coherent coupling rate is compa-
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Figure 5.2.: QD resonance magnetic field dependence Resonance frequencies of the
X0 transition as a function of external magnetic field. The points correspond
to the central frequencies of the Zeeman-split transitions. The curves are
quadratic fits to the frequencies. The grey shading follows the width by which
we can electrically tune the transitions. The dashed line at the ion frequency
can be matched by the blue branch between 3 and 4.5 T external field.

rable to the dipole decay rate of the transition, rather than strong coupling where

the coherent rate, g, exceeds all other processes. An advantage of this technique

is the natural coupling to fibre-modes which provides an easy compatibility with

fibre-based networking.

The successful realisation of this demanding atom-photon interface was the doc-

toral work of Dr Hendrik Meyer and Dr. Matthias Steiner. More details on the

cavity coupling can be found in references [245, 247]. The high-coupling strengths

and stable operation are manifestations of their hard work over multiple years of

development.

5.2. A common resonance

The full optical characterisation of the quantum dot used for the hybrid coupling

experiment is presented in section 1.6. Here, the simplest requirement is covered:

the need for a common resonance between the systems. The ion presents a strict
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Figure 5.3.: Resonant transitions Absorption scans of the quantum dot (a) and trapped
ion (b) transitions at 320572.2 GHz. The curve in a is a voigt fit revealing a
width of 744 ± 42 MHz, the curve in (b) is a Lorentzian function with a width
of 8 ± 0.44 MHz.

resonance frequency at 320572.2 GHz (935.18 nm), and it is the responsibility of

the spectrally flexible quantum dot to match it. First, we find an emitter with the

possibility of being resonant with the ion transition. We achieve this by performing

above band-gap photoluminescence and manually raster-scanning the sample until

we find a peak corresponding to an X0 transition within 100 GHz of the ion reso-

nance. Electrical tuning with the sample gate provides a range of ∼ 50 GHz for the

quantum dot optical resonance, with additional range provided by coupling to an

external magnetic field. The response of the quantum dot spectrum to the external

fields, offset by the atomic resonance, is mapped out in figure 5.2. The curves are

quadratic fits to the data and the grey shaded areas represent the estimated electric

tuning range at each magnetic field. The magnetic field which couples to the excited

states splits the transitions linearly through the Zeeman effect (split by 18.2 GHz

T−1) [248] and raises their frequency quadratically via the diamagnetic shift (2.6

GHz T−2) [249]. With a field value between 3 and 4.5 Tesla the quantum dot can

be electrically tuned to match the atomic transition. We work at an external field

of 4.2 T, as the gate voltage selection is limited by electrical noise from a nearby

voltage dependent charge trap in the sample.

Figure 5.3 contains normalised absorption measurements of the quantum dot and
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Figure 5.4.: Pulse-sequence fluorescence trace Average time-trace displaying the fluo-
rescence at 369 nm from the ion during the sequence for coupling to photons
from the quantum dot. The transients highlighted in the insets are the flu-
orescence from probing the ground state population due to (I) quantum dot
photons, (II) no repumping and (III) full repumping.

ion around their common resonance (note the different x-scale in each panel). The

quantum dot is fitted with a Voigt profile (more details in section 1.6), and the

ion transition with a Lorentzian function. Lifetime measurements of the ion and

quantum dot correspond to Fourier-limited linewidths of 2π×4 MHz and 2π×250

MHz respectively: a 60-fold discrepancy. In the two absorption scans, we recover

widths of 2π×8 ± 0.44 MHz for the ion, and 2π×744 ± 42 MHz for the quantum

dot. The broader linewidths are due to power broadening and spectral wandering

of the transitions, such that we record a factor of 93 bandwidth mismatch. This

large mismatch highlights the difficulty of forming a network containing both sys-

tems: defining a common mode that interacts efficiently with both. The bandwidth

difference results in a loss of efficiency in direct coupling experiments, or a need

to spectrally filter photons from the quantum dot (or temporally filter the atomic

emission) to achieve indistinguishability in joint measurements.
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5. Direct coupling of a quantum dot to a single ion

5.3. A photonic link

The first experiment we perform is to establish an optical link between the quantum

dot and the ion. Physically this is provided by two 50-m single-mode fibres, allowing

us to pass fluorescence from the quantum dot cryostat to the ion-trapping lab, and

use spectrally narrow, cavity locked lasers suitable for atomic transitions to excite

the quantum dot. We then test the optical interface by observing a single photon

stream from the quantum dot controllably change the internal state of the ion. The

measurement sequence that allows us to measure this interaction is as follows:

A. We cool the ion. A repump at 935 nm ensures that the state of the ion is not

shelved and the cooling continues as the state is recycled.

B. We remove the σ+-polarised component of the 935 repump. This shelves the

ion into the mJ = −3/2 level of the 2D3/2 manifold.

C. We drive the quantum dot transition resonantly for some time T and pass the

resulting fluorescence to the ion. We excite the quantum dot at half saturation

intensity (I/Isat = 0.5), such that the average excitonic population is 1/6.

D. We probe the atomic ground state population. An interaction with a quantum

dot photon will have most probably transferred the ion to the 2S1/2 ground

state, according to the cavity modified branching ratio of 92:8. The ground-

state population then provides a conservative estimate of the ion-photon in-

teraction.

In this way we use the ion population to probe interaction with quantum dot

photons. The average 369 nm fluorescence from the ion accompanying the sequence

is shown in figure 5.4. The high fluorescence regions are the ion cooling and the

modulated decay follows the state preparation intomJ = −3/2. The low fluorescence

regions the interaction time and the subsequent sharp decays, highlighted in the

insets, the ground state population readout. As shown in the figure, we repeat
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Figure 5.5.: Atomic state transfer by quantum dot photons State change probability
dependence on quantum dot-ion interaction time, T . The curve is an exponen-
tial fit revealing a transfer time of 1.08 ± 0.04 ms. The top axis displays the
number of quantum dot photons reaching the ion cavity during the interaction.

the whole sequence three times, with the single photon stream (I), no quantum dot

photons (II) and with deterministic repumping to the ground state (III). This allows

us to normalise the atomic fluorescence and gain a differential measure of the state

transfer.

Figure 5.5 displays the state transfer probabilities we recover when we perform

this sequence and sweep the interaction time T. The probability of changing the

ion state saturates with the pulse length. Fitting the measured populations with

a single exponential (curve in figure 5.5) we find a characteristic transfer time of

τ = 1.08 ± 0.04 ms. During the experiment, we monitor the rate of quantum dot

photons impinging on the ion cavity, which forms the top axis of the figure. This

allows us to extract a per-photon state transfer probability, pabs = 1.0 ± 0.2%.

With this initial experiment, we have been able to measure an optical link between

the quantum dot and the ion, expressed via controllably changing the internal state

of the ion. This satisfies the most basic aim of the experiment: a link between

two different, single quantum systems. We can now extend this to explore and

characterise the interaction between the two systems via the quantity pabs.
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Figure 5.6.: Ion state transfer dependence on QD driving intensity Points are per-
photon state change probabilites for two decades of variation in resonant quan-
tum dot drive power. The solid curve is the normalised spectral overlap be-
tween the two systems, with the dashed curve containing the contribution from
background laser light. The insets show the emission spectra of the quantum
dot, S(ω), the ion transition, L(ω) and their overlap (shaded regions).

5.4. Interaction properties

Having successfully linked the two systems together, we want to understand to a

greater extent the interaction between quantum dot photons and the atomic reso-

nance, in particular the effect the optical mismatch presented in figure 5.3 has on

efficiently linking the two systems.

In order to understand how the contrasting optical properties affect the efficiency

of the interface, we measure the dependence of the ion-state per-photon transfer

probability pabs on the normalised QD excitation intensity (I/Isat, defined in section

1.3). The measured values are displayed in figure 5.6. We observe a pronounced

change between low and high power driving of the quantum dot, corresponding to a

ratio of 5.0 ± 0.8 between the measured per-photon efficiencies. When we correct for

the presence of stray photons from the drive laser, which contribute at the highest

excitation intensities (I � Isat), we recover a ratio of 8.6 ± 0.8.

We fully understand this dependence from the overlap between the quantum dot

emission spectra, S(ω), and the 20-MHz wide cavity-broadened ion transition L(ω).
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We can calculate the quantum dot emission spectra directly from the density matrix

describing the two-level exciton system, including dephasing due to phonon-induced

decay between optically dressed states [22]. The solid curve in figure 5.6 is the

expected state-transfer efficiency, pabs, found from the normalised overlap between

the two transitions:

pabs ∝
∫
S(ω)L(ω)dω∫
S(ω)dω

. (5.1)

Including the effect of the stray drive laser photons results in the dashed curve,

reproducing our observed state transfer efficiencies. The overall scaling of the curve

is set by the coupling of the ion to the optical cavity.

The two spectra and their overlap are shown for two different powers as insets

in figure 5.6, both centred on the ion absorption frequency ω0. At the saturation

intensity (I = Isat), we predict that 46% of the emission from the quantum dot is

coherent with the laser and follows the sub-linewidth spectrum of the optical drive

[22], This emission has a high degree of overlap with the narrow ion transition. At

higher powers, where the optical Rabi frequency exceeds the excitonic decay rate

of the quantum dot (I = 10Isat in the figure), we build up significant excited state

population. In this limit the emission spectrum becomes dominated by spontaneous

decay processes with coherence limited by the optical lifetime, as well as sidebands

at the Rabi frequency due to modulation of the excitonic population. At these

intensities, the mismatch now plays a significant role since all of these processes lead

to a diminished overlap with the sharp atomic transition, resulting in the decreased

state-transfer efficiency we observe.

In the low excitation limit we record per-photon state-transfer probabilities of 1.2

± 0.2%. When we correct for the 13% of quantum dot emission which is phonon-

assisted (see section 1.6) and does not interact with the ion we find an efficiency of 1.4

± 0.2%. This is comparable to the highest recorded laser state-transfer probabilities

for this cavity of 1.8 ± 0.2% [247]. In this way we show that coherent photon

generation offers a route to circumvent the inherent mismatch between the optical
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Figure 5.7.: Spectral dependence of the per-photon ion state change probability
Measured at high excitation intensity for varying detuning ∆L. The filled curve
is the convolution between the quantum dot emission spectra and the 20-MHz
wide cavity-coupled ion absorption. The inset contains a schematic of the joint
spectral measurement process.

properties of the two systems.

Further insight into the bandwidth mismatch is provided by the joint spectrum

of the two systems, presented in figure 5.7. We drive the quantum dot at a high

intensity (I = 11Isat), centred on frequency ωL and find the per-photon ion state-

transfer probability as we scan the emission across the atomic resonance at ω0.

The state-transfer probability arises from the convolution between the quantum

dot emission spectra S(ω) and the cavity-coupled atomic resonance L(ω). The

inset of figure 5.7 shows a schematic of the two spectra and their relative detuning

∆L = ω0 − ωL.

As we would expect from equation 5.1, the state-transfer efficiency follows the

Mollow triplet emission spectra of the quantum dot. Around ∆L = 0 we find a sharp

resonance feature with a width set by the cavity-coupled ion absorption spectra. At

larger values of ∆L we recover broad, low probability features. These are due to the

incoherent decay processes in the quantum dot, reflecting the limited efficiency with

which they can couple to the internal states of the ion.

The curve in figure 5.7 is the convolution between the modelled quantum dot

emission at this high excitation intensity and the atomic linewidth, with the addition

138
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of residual laser due to imperfect background suppression (this contributes 30% of

the central peak height). The asymmetry in the emission spectrum we record is

a consequence of nuclear spin polarisation in the quantum dot, which holds the

excitation at a slight detuning from the exact excitonic resonance [109], and high-

frequency dephasing at high driving intensity (as discussed in section 1.6.4) which

result in asymmetric sideband areas under this condition [125].

5.5. Electron spin-ion state correlations

The optical link demonstrated in this chapter is the principal mechanism that would

enable us to transfer a quantum state between the quantum dot and the ion. As

an initial step towards this important end-goal we demonstrate classical correlations

between the quantum dot spin and the internal state projection of the ion.

We find a quantum dot with a negatively charged trion (X1−) resonant with the

ion. We then define the ground state spin projection with an external magnetic field

along the growth axis (Faraday geometry), which enables two, circularly polarised

(σ+/−), spin-conserving transitions split by 28.6 GHz T−1, as in the level diagram

of figure 5.8a. Diagonal spin-flipping Raman transitions are only weakly allowed

(∼ 1-2%) in this geometry by heavy-light hole mixing [250, 251]. The resonance

fluorescence map of this quantum dot under a 0.7 T external field is shown in figure

5.8b, taken by sweeping the laser frequency and an applied bias voltage across the

quantum dot to record the charging plateau. The map shows two transitions, mostly

suppressed by spin pumping over the weakly allowed diagonal transitions [42]. The

four bright regions at 0.4 and 0.57 V occur due to fast electron cotunneling with

the nearby electron reservoir, which quickly recycles the spin state and restores

the average fluorescence signal (as discussed in section 1.4.1). The horizontal line

marks the atomic resonance at 320572.2 GHz, which is met by the high-frequency

σ+ transition at an applied gate voltage of 0.46 V.

Figure 5.8c displays the fluorescence when we hold a laser at the atomic resonance
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Figure 5.8.: Quantum dot spin in Faraday geometry a Level scheme for a charged
quantum dot in Faraday geometry. The two vertical transitions are circularly
polarised and the grey decays represent the weakly allowed diagonal transi-
tions. b Single frequency map of quantum dot charging plateau, showing the
suppressed fluorescence due to spin pumping and the restored fluorescence due
to electron cotunneling. c Two frequency map of the quantum dot plateau.
One probe is held at the ion resonance while the other laser is scanned through
the quantum dot plateau.

and scan the frequency of a second probe. The bright stripe at 0.56 V corresponds to

the fixed frequency laser driving the quantum dot in the cotunneling region, similarly

for the scanning beam at 320560 GHz and 0.4 V. The central bright feature at 0.47

V and 320551 GHz is the double resonance of the quantum dot whereby the two

beams, resonant with the σ+/− transitions, continuously repump the spin. The

dimmer feature at 320568 GHz and 0.48 V is due to the scanning beam driving the

weakly allowed diagonal transition.

We set the two lasers resonant with the σ+/− transitions, pulse these two fre-

quencies with a pair of acousto-optic modulators and time resolve the fluorescence,

resulting in the histogram shown in figure 5.9a. During the first pulse we drive

the low-frequency σ− transition for 3 µs at I/Isat = 2 and in the second the high-
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Figure 5.9.: Spin pumping in Faraday geometry a Fluorescence histogram from al-
ternatively driving the two allowed transitions for 3 and 6.5 µs. b Histogram
displaying variable spin preparation by changing length of the low frequency
repump pulse from 0-700ns. The high-frequency pulse is held at a constant
length of 600 ns. c Extracted spin up population p↑ from changing repump
power.

frequency σ+ transition for 6.5 µs at I/Isat = 0.5. As the quantum dot spin is shelved

the fluorescence decays with timescales of 351 ± 1 and 613 ± 14 ns, respectively,

set by the average excited state population, the transition lifetime and the small

branching ratio. From this we determine preparation fidelities of 92.2 ± 0.2% (92.8

± 0.2%) for the state |↑〉 (|↓〉). Compared to the transverse field used in previous

chapters the near cycling transitions in this geometry can permit single-shot readout

of the spin state if the detection efficiency is sufficiently high [117], at the expense of

requiring many optical lifetimes to prepare a well-defined ground state population.

By repeating this alternating pulse sequence and varying the length of the low-

frequency pulse we can create a well-defined time averaged spin mixture. The high-

frequency fluorescence resulting from a constant-length pulse resonant with the σ+-
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Figure 5.10.: Ion state-transfer correlated to quantum dot spin Normalised ion
state-transfer probability in 0.7 ms plotted against prepared quantum dot
spin mixture. The spin up projection is found from the analysing the time-
resolved quantum dot fluorescence. The dashed (solid) curve represents the
ideal (measured) correlation between the two systems.

polarised transition provides a linear measure of the ground state population directly

beforehand. Figure 5.9b contains the correlated fluorescence histograms for holding

the high-frequency pulse length constant at 550 ns, and sweeping the length of

the low-frequency pulse from 0 to 700 ns. By fitting the fluorescence areas and the

contrast of the exponential decays we can extract the population of the spin mixture

p↑ |↑〉 〈↑| + (1− p↑) |↓〉 〈↓|. The values of p↑ are plotted in figure 5.9c, showing that

for this sequence we can produce values between 6.3% and 80.6%, limited by state

preparation fidelities and the maximum length of our low-frequency repump pulse.

Combining this spin preparation and readout scheme with the QD-ion photonic

link allows for the realisation of classical correlations between the system ground

states. We link the two systems as in figure 5.5 with a stream of quantum dot

photons 0.7 ms long, however during that sequence we run the spin-preparation and

measurement sequence at 670 kHz (469 repeats per interaction time). The resulting

ion state transfer probability, normalised against the maximum state transfer rate

of 318 Hz, is plotted against the prepared QD spin population in figure 5.10. The
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constant length of the resonant pulse and the spectral detuning of the repump pulse

ensures that any change in the state-transfer of the ion is a result of a different spin

mixture in the quantum dot. These results show that to within an uncertainty of

3.8% we can faithfully reproduce the quantum dot spin population in the form of
2S1/2 internal state projection in the atomic node. The dashed curve in figure 5.10

represents the ideal correlation between the systems, while the solid curve follows our

measured dependency, which slightly deviates due to the presence of laser photons

leaking through the system.

5.6. Conclusions & outlook

In this chapter we have presented the realisation of a direct photonic link between a

semiconductor quantum dot and a single Ytterbium ion, constituting the first link

between wholly different single quantum systems. At the same time, coherently

scattered photons from the quantum dot allow us to couple the systems with per-

photon efficiencies that circumvent the inherent optical mismatch. In correlating the

ion state with the quantum dot spin, we present the first communication between

the internal ground states of the systems, albeit in the form of a classical mixture.

The next milestone is the transfer of a quantum state. This could be achieved

either by mapping information in the QD spin to a photon and passing it to the ion,

or by entangling the two systems and teleporting the information. Achieving either

of these two would require changes to both the quantum dot and the ion. First,

the magnetic field would need to be transverse to the QD growth direction, forming

the spin-photon interface we use in chapter 4 to entangle two quantum dot spins.

Second, the ion would need to be changed from the 174Yb+ isotope to 171Yb+. The

non-zero nuclear spin of this isotope results in hyperfine levels, allowing us to em-

ploy the ‘Rubidium toolkit’ in exchanging a state between atomic levels and optical

degrees of freedom [241, 252]. Quantum dot spin-photon entanglement could then

be converted to hybrid entanglement with the ion, as in figure 5.11, following the
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scheme demonstrated in neutral atoms in reference [157], with the potential addi-

tion of a few GHz frequency shift or frequency-to-polarisation conversion between

the systems. A similar proposal has been examined in reference [240], whereby

the two systems are entangled through measurement of indistinguishable photons

which elastically scatter from an ion and dispersively interact with a cavity-coupled

quantum dot.

Among the many challenges involved in realising hybrid distant entanglement, a

direct mapping scheme would require coupling both spin-conserving Rayleigh and

spin-flipping Raman scattering from the quantum dot to the ion. When adapting

the work here, the ground state coherence of the quantum dot spin needs to be

considered, as this sets a limit for the coherence of Raman photons [140, 146, 222].

The measured electron spin T ∗2 of 1.74 ns we presented in chapter 2 corresponds

to a linewidth of 91 MHz, limiting efficient interaction between Raman photons

and an atomic transition. While the intrinsic limits to hole spin coherence are not

fully understood, the immediate reduction of inhomogeneous dephasing rate by at

least an order of magnitude due to the suppressed hyperfine interaction will allow

for greater coupling of Raman scattering to the ion [180]. This spin qubit could

also perform at smaller splittings, requiring less frequency conversion to match the

atomic transitions, as quadrupolar broadening will play less of an effect than that

observed in chapter 3.

A key requirement for hybrid state transfer and entanglement would be an in-

creased node-to-node photon transfer efficiency. The scheme could operate with a

herald for successful ion state change [253], however the success probability would

still need to be sufficiently high to dominate false heralds and achieve high fidelity

mapping.

In this chapter, the efficiencies presented were normalised to the photon rate

impinging on the ion cavity, recording values ∼ 1-2%. This normalisation allows us

to highlight the physics of interest in the hybrid coupling, and make the comparison

with attenuated laser light. The total efficiency of the link, however is 5×10−6. This
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Figure 5.11.: Hybrid entanglement from a direct interface Spin-photon entanglement

is realised at the quantum dot, as demonstrated in [43–45]. With the addition
of some intermediate frequency conversion, polarisation modes can be mapped
into internal hyperfine state projection at the ion with an additional pump
field.

can be partitioned into three stages:

I. Quantum dot sample out-coupling - 3.5%

II. Transmission from the quantum dot sample to the ion cavity - 1.4%

III. Ion state transfer due to one intra-cavity photon - 1.0%

The low sample outcoupling effiency is chiefly a consequence of the high refractive

index of gallium arsenide, and we discuss options to circumvent this in detail in the

chapter 6. That being said, collection efficiencies consistent with a 20-fold improve-

ment over this rate have been reported [217, 218, 254]. The 1.4% transmission from

quantum dot sample to cavity is partially due to the need to monitor rates in situ to

make measurements of per-photon ion coupling effiencies, as well as the modularity

of the combined setup. Removing these elements would allow for a 10-fold improve-

ment in the efficiency. A higher finesse cavity with a greater cooperativity would

permit higher state transfer rates [255]. Combined, these improvements could offer

3-orders of magnitude improvement in our node-to-node coupling.

145



5. Direct coupling of a quantum dot to a single ion

146



CHAPTER

SIX

COLLECTION EFFICIENCY STRATEGIES

As demonstrated in chapter 4, optical spin measurement is a key process for dis-

tributing entanglement within quantum networks. It is the process that enables

two-qubit gates between non-interacting nodes [189, 199, 256], and forms the individ-

ual steps in cluster-state computing [14]. Although entanglement-by-measurement

schemes provide an automatic herald, allowing for repeat-until-success strategies,

achieving high probability state generation is a necessary step to forming scalable

networks. For networked computing in particular, the entanglement generation rate

must be at least comparable to the qubit decoherence time to ensure low-overhead

fault-tolerance [12].

The single photon-heralding scheme we use in chapter 4 allows us to record a high

success probability of ∼ 10−3, however this scheme is limited by the requirement that

we must keep the photon generation probability low (< 10%). For comparison, the

highest reported generation rate with a two-photon scheme is currently ∼ 10−5 [201].

We find that 1% of decay processes contribute to our entanglement distribution, a

factor that accumulates for each step in a higher-order process. This efficiency is

the product of every loss channel between the excited-state decay and the registered

detection event.

Advances in superconducting nanowire detectors (SNSPDs) have enabled detec-
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tion efficiencies >80% through the near-infrared spectral range [257], a proportion

inaccessible with conventional Silicon or InGaAs single photon detectors [258, 259].

Additionally, our polarisation filtering, which currently blocks 50% of the state-

projection photons could be matched to the transition axes with the requirement of

sharper spectral rejection of our circularly-polarised spin-control pulses. It is worth

noting that the lack of significant phonon-assisted decay processes (< 15%, see sec-

tion 1.6.2) ensures that the majority of emission events occur within a well-defined

spectral window. With these considerations, the major loss in the system is the cou-

pling of the dipole emission from the quantum dot to the collection fibre, limited by

the extraction from the high-refractive index sample (as discussed in section 1.4.3).

Currently, we estimate that we are accessing ∼5-10% of the dipolar emission field

at the first lens of the collection optics.

In this chapter we are concerned with methods to extract larger amounts of emis-

sion from our sample structures. We first discuss some of the routes currently avail-

able for buried solid-state emitters. We then consider a method to efficiently model

the far-field of an oscillating dipole embedded in a semi-infinite one-dimensional

stack of dielectric layers. The method is sympathetic to MBE growth, which can

generate atomically-precise layers of varying refractive-index materials. We then use

this semi-analytic method to study a quantum dot embedded above an under-etched

air-gap in combination with a DBR reflector, a structure that should allow us to

access large proportions of the dipole field. Finally, we consider the remaining limits

to achieving such large efficiencies, and possible routes to circumvent them.

6.1. Dipole collection strategies

As discussed in section 1.4.3, with no collection strategy we lose 50% of the emission

into the lower half space, and another 48% to total internal reflection at the GaAs-

air interface (figure 6.1a). The remaining 2% is distributed over the 2π solid angle

above the emitter [262].
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c d

ba

Figure 6.1.: Collection efficiency strategies Some of the strategies employed to extract
photons from buried quantum dots. a Initial planar situation with a very small
proportion of the emission escaping the dielectric. b Micropillar containing a
solid state cavity formed by two DBR layers. c Photonic nanowire grown
above a metallic reflecting surface. d Planar structure with a Solid Immersion
Lens and a reflecting layers below the point source. b and c reproduced from
references [260] & [261] respectively.

Attempts to access the full emission of a single dipole emitter can be roughly

grouped into two main strategies. In the first, the local density of states is actively

modified to ensure that emission into a single mode dominates over all other pro-

cesses. For atomic systems, this is provided by free-space Fabry-Perot cavities [157]

(as demonstrated in chapter 5) or by near field coupling to tapered optical fibres

[263]. For quantum dots, this has been successfully realised by forming DBR cavi-

ties around the quantum dot layer, where the high oscillator strength enhances the

cooperativity with the cavity mode [264]. A micropillar cavity is displayed in figure

6.1b, with the DBR stacks visible above and below the central layer containing the

emitters.

A second option is to passively convert the near-isotropic dipolar field distribution

into one suitable for single mode fibres. This is achieved in atomic systems through

parabolic reflecting surfaces [265], or with high-aperture objectives [266, 267]. In
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the solid state, the equivalent is the construction of a dielectric antenna, which

passively funnels the 4-π emission into a small solid angle through the combination

of a reflective surface and a solid immersion lens [268]. These antennas can permit

near-unity collection efficiencies into limited numerical apertures [269, 270]. At the

same time the designs generally require coupling from the emitter which is held in a

moderately low refractive index material to a SIL which features a higher refractive

index; a challenge for quantum dots in GaAs.

The most successful solutions to raise collection efficiency for InGaAs quantum

dots have involved etching to form sub wavelength diameter GaAs photonic nanowires

(figure 6.1c), which provide a broadband interface between the quantum dot emis-

sion and a single Gaussian mode [271, 272]. This way very high collection efficiencies

have been recorded, at 72% of the quantum dot emission [273]. In order to have this

strong effect on the mode distribution of the light, the sub-wavelength structures

have large surface areas very close to the dot, which affect the quantum dot states

due to trapped surface charges [274, 275]. Further perturbation occurs due to the

mechanical motion of the structures as strain-induced spectral wandering [276].

As discussed, we require maximal amounts of the emission field to be funnelled

into our collection optics. At the same time, our experiments demand a low noise

electrical environment for the emitter, as well as sample gating. We want to find a

collection strategy that is compatible with both these requirements.

6.2. A dipole in a 1D heterostructure

This section covers the basic steps by which we can find the far field of a Hertzian

dipole embedded in a one-dimensional stack of dielectric layers. The form of the

structure is presented in figure 6.2. The stack varies in the z-direction, parallel to

which vertical dipoles are oriented. In general, the dipole is assumed to lie in the

x-z plane at an angle of θd, with θd = 90◦ for a horizontal dipole.

The key to the method is that the field of an electric dipole at an arbitrary
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Figure 6.2.: Dipole in 1-D dielectric stack Dipole oscillating at angle θd in the x-z plane
in source region with refractive index ns, surrounded by layers of thickness ∆i

with refractive index ni.

orientation can be expressed as the sum of the fields due to vertical electric and

magnetic dipoles. The highly symmetric emission of these dipoles contain only

transverse-magnetic and transverse-electric polarised components respectively. In

this way the two orthogonal polarisations with different boundary conditions are

decoupled and the radiation patterns out of the stack can be found for each and

then recombined.

This decoupling is made possible by using electric and magnetic Hertz vectors [277,

278] (sometimes referred to as polarisation potentials) to express the electromagnetic

field. This representation considers an arbitrary field as due to a distribution of

point-dipole sources, and so has a particularly simple form for the case of a single

electric dipole. Electric dipoles are sources of an electric Hertz vector field (Πe),

and magnetic dipoles give rise to a magnetic Hertz vector field (Πm). The electric

Hertz vector at displacement r from a single electric dipole oscillating at frequency

ω at angle θd:

Πe(r) = p0
einik0r

4πr
(sin θdêx + cos θdêz) , (6.1)
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where p0 is the dipole moment of the source, k0 = ω/c = ki/ni is the wavevector

of the oscillation in vacuum, ni =
√
εi the refractive index of the medium, εi the

relative permittivity and êx/z unit vectors in the x and z directions.

The electric and magnetic fields, (E & H) in medium i due to this dipole can be

then found as:

E =
1

ε0εi

[
∇ (∇ ·Πe) + k2

iΠ
e
]

+ iω∇×Πm (6.2)

H = −iω∇×Πe +
1

µ0µi

[
∇ (∇ ·Πm) + k2

iΠ
m
]

(6.3)

The dipole can then be split into the vertical electric and magnetic dipoles (VED

& VMD) by comparing the electric and magnetic fields from the three different

sources. More details are provided in appendix B.

6.2.1. Boundary conditions

Having decoupled the dipole into orthogonal polarisations, the next step is to prop-

agate the dipole field through the layers of the dielectric stack. We do this by

taking the two-dimensional Fourier transform of the spherical dipole wave, which

re-expresses it as an infinite sum of plane-waves. For a cylindrically symmetric

system this transformation is equivalent to the Sommerfeld identity:

eik0r

r
=

∫ ∞
0

dkρ

{
kρ
kz
J0 (kρρ) eikz |z|

}
(6.4)

This identity expresses the spherical wave as a product of plane waves in the

z-direction with wavevector kz wighted by cylindrical transverse waves (encapsu-

lated in the zeroth-order Bessel function J0 (kρρ)) with wavevector kρ =
√
k2
x + k2

y

(ρ =
√
x2 + y2). The wavevectors are linked by ki =

√
k2
ρ + (kiz)

2, including both

travelling (kρ < ki) and evanescent (kρ > ki) contributions.

Plane wave boundary conditions can be applied to each contribution to the inte-
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Figure 6.3.: Dipole far-field comparison Points are calculated from the semi-analytic
model. Curve found through FDTD simulation (Lumerical). Intensity owing
to structure discussed in section 6.3.1

gral, ensuring the conservation of the transverse wavevector across the boundaries.

The total boundary conditions for the heterostructure can then be found using 2x2

plane wave matrix methods, in a method similar to chapter 5 in reference [81].

Again, full details can be found in appendix B.

6.2.2. Far-field approximations

Plane wave boundary conditions provide us with integral expressions for the dipole

potentials at each point in the structure, however they are not directly soluble.

While the dielectric structures may contain features in the near-field of the optical

dipole, we are only concerned with the field at far distances where rki � 1. In this

limit the integral can then be approximated to first order through the method of

stationary phase [279]. The fast oscillation of the integrand phase ensures that only

plane waves with wavevectors parallel to the direction of observation contribute to

the far-field [280]. The fields and Poynting vectors due to the buried dipoles can then

be found from the far-field potentials and the orthogonal polarisations recombined

to obtain the full dipole field.

The two-stage decomposition of the dipole field and the analytic far-field approx-
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imations form a light-weight method to model a stack of arbitrary dielectrics, where

the only computationally difficult step is the calculation of the boundary condi-

tions for a many-layered structure at each observation angle. The full-force method

of finite-difference time-domain (FDTD) simulation is always available, although is

generally a much more computationally intensive procedure. To check the imple-

mentation of the method, figure 6.3 displays a comparison of the Poynting Vector

distribution with FDTD simulation for the quantum dot sample structure we will

discuss in section 6.3.1. The semi-analytical model shows good agreement with the

full simulation, while taking ∼1/300 of the time to perform.

We implement this technique to determine structures that could maximise the

outcoupling of quantum dot samples, however it applies to any buried two-level

system, such as molecules or NV-centres [269, 270], and can predict effects such as

radiative emission enhancement or suppression owing to the modified local density

of states [281–284] (up to the strong coupling regime, where a full QED treatment

is required).

6.3. Quantum dot device structure

In section 1.4.3 we introduced the methods we have in place to try and access a

significant proportion of the quantum dot emission distribution. With a Zirconia

SIL and a DBR stack, we still estimate from recorded count rates that at the first

collection lens we are only accessing 5-10% of the full field.

To understand how we can maximise the amount of collected radiation from the

quantum dot, we can examine the DBR reflectivity in more detail. Figure 6.4a

shows the plane wave reflectivity for our DBR stack as a function of incident angle

for both TE and TM radiation at 950 nm. For small angles the interference condition

provides near-unity reflectivity, however above 20◦, the larger effective length of the

alternating layers prevents constructive interference, and the reflectivity drops to a

low value. Above 65◦ total internal reflection between the layers causes the stack to
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Figure 6.4.: Sub-quantum dot reflections a DBR Stack for TE & TM waves at 950 nm.
b 3λ/4 air-gap. c Both layers, separated by 110 nm.

become reflective again.

As a comparison, if we consider an air-gap in the sample with a 3λ/4 thickness, we

recover the reflectivity plotted in figure 6.4b. The air-gap is only partially reflective

at small angles, however above 17◦, total internal reflection ensures a complete return

of the incident field.

Figure 6.4c displays the combined reflectivity of the DBR and air-gap, set at a

110-nm distance to ensure constructive interference in the reflected fields. Now the

complementary behaviours of the two layers act together to realise a near unity

reflectivity for all incident angles.

6.3.1. Structure design

We can find the far-field dipole intensity distributions due to the air-gap DBR combi-

nation by the method outlined in section 6.2. We model the quantum dot excitation

as a horizontal dipole with a 950-nm wavelength, and take the refractive index of

gallium arsenide at 3.44, taken from cryogenic measurements [74, 75]. The doped

layer is neglected as its effect on the refractive index of the material is expected to
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Figure 6.5.: Integrated dipole intensities Upper half-space intensities integrated up to
angle θ for changing distance from QD to air-gap. Intensities normalised to
dipole in bulk GaAs.

be small [285].

We consider a structure where the dipole sits at a certain distance from a 3λ/4

air-gap (710 nm), which is in turn 110 nm from a 20-layer AlAs/Al0.3Ga0.7As DBR

stack above a GaAs substrate. We then find the radiation into an upper half-space

of GaAs. This is motivated by the use of a GaAs SIL, which, in matching the sample

index, provides the highest collection efficiencies.

Figure 6.5 shows the integrated dipole intensity up to angle θ for varying distance

between the quantum dot and the reflective air-gap. This allows us to determine the

distance that will ensure constructive interference between the source and reflective

fields and a maximum photon rate from the sample. This is provided by a distance of

166 nm, marked in the figure (we require a minimum QD-air-gap distance of 75 nm

to host the tunnel barrier and doped layer). This distance generates the Poynting

vector distribution in figure 6.3, averaged over the azimuthal angle.

The total intensities are normalised to the 4π emission into bulk GaAs. For

the correct geometry, values slightly exceeding unity (1.1 for θ = 90◦ at 166nm)
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Figure 6.6.: Free-space collection efficiencies Dipole fields within collection angle out-
side super-hemispherical GaAs SIL assuming a, all reflected fields lost at sur-
face of SIL, b no surface losses at SIL.

are expected. This is enhancement of the radiative rate due to the constructive

interference of the emitted fields [281], occuring at interface distances consistent

with studies on self-assembled QD emission rates near air-interfaces reported in

reference [286].

By propagating the intensity through a super-hemispherical SIL, set by the geom-

etry in section 1.4.3, we can find the free-space collection efficiency of the structure.

Two estimates are displayed in figure 6.6. We plot the collection efficiency as a

function of collection angle or numerical aperture (NA) for the air-gap-DBR combi-

nation, a DBR only structure and a featureless substrate. The super-hemispherical

SIL funnels the dipole field to within an NA of 0.3. The two panels in the figure

correspond to two limits of the SIL operation. In panel a, we assume full interface

losses at the surface of the lens (set by the Fresnel coefficients in figure 6.4b). In

panel 6.6b, we assume that all of the light is transmitted through the lens surface.

For all the structures, we find a factor of ∼ 2 difference between the extremes. With

anti-reflection coating, we would recover in some intermediate case between these

two situations [287].
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20 7m

Figure 6.7.: Partially under-etched sample Holes spaced by 15µm. Lighter areas cor-
respond to under-etching.

6.3.2. Device construction

To define the air-gap we grow a sacrificial layer of Al0.8Ga0.2As between the DBR

and the n-doped layer. In the sample processing stage, we etch down to this layer at

an array of points separated by 15 µm with a dilute mixture of sulphuric acid and

hydrogen peroxide, and then use a selective etch of dilute hydrogen fluoride to remove

the aluminium rich regions of the sample structure. With the correct exposure time

to the etchant we are left with a thin membrane containing the Schottky diode

structure supported at various points between the etch-holes. Figure 6.7 displays an

image of the partially under-etched taken through a Zironia solid-immersion lens,

showing the holes around which the sample has been etched and the remaining

support areas.

In figure 6.8 we show some preliminary characterisation of these samples. Both

panels contain photoluminescence spectra of X1− peaks with those in panel a from

six dots on non-etched regions, and in panel b from six in under-etched areas. All

studied dots show a similar pickup of extracted fluorescence. We record an average

three-fold increase between the two sets of dots. In moving to resonance fluores-

cence, the sample of dots studied here were found to suffer from significant spectral

wandering, featuring noise on the scale of the transition linewidth in the tens of
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Figure 6.8.: Under-etched Photoluminescence PL spectra for dots within the same
sample on a non-underetched regions and b underetched regions.

µs timescale. These fluctuations are probably caused to some extent by the under-

etched surface. A newer generation of samples featuring thicker doped layers should

help to ameliorate this issue.

6.4. Conclusions & outlook

With the air-gap-DBR combination we now have access to the total emission of the

quantum dot in the upper half of the sample, which, with the addition of a SIL can

in principle be funnelled into a reasonable numerical aperture.

In the absence of any reflecting surface, figure 6.6 shows that we should be able

to extract a large amount (25-50%) of the dipole field into a far-sub unity numerical

aperture. These efficiencies require that the SIL is in close contact with the sample

surface to counter total-internal reflection at all angles of incidence. Deviations

from this ideal-immersion condition emerge on the sub-wavelength level owing to

the long optical path high-angle beams experience [288]. To understand this effect,

in figure 6.9 we estimate the proportion of the emission inside the immersion lens

for increasing sample-SIL mounting-gap distance. To avoid any cavity effects that

may emerge we consider the mounting gap as a pure source of loss and neglect

the reflected fields. Owing to the loss of high-angle fields the proportion decreases

rapidly as a gap is introduced between the sample and the lens. The loss of collection
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Figure 6.9.: SIL mounting-gap collection efficiency Proportion of dipole emission
transmitted into GaAs SIL for varying mounting gap distance.

over the 10-100 nm range is critical, particularly in comparing these length scales

with typical tolerances of polished spherical lenses.

A powerful new alternative is the creation of deterministically placed microlenses

around individual quantum dots in a hybrid spectroscopy and lithography process

[219]. These lenses are formed directly from the GaAs substrate without the contact-

ing issue of macroscopic lenses [289], and work is ongoing to combine this technique

with our Schottky devices. One particular challenge of this approach will be the

small feature size of the microlense with respect to our excitation laser focal spot.

This introduces mode distortion to the scattered beam: a potential challenge to our

highly mode dependent polarisation-based laser rejection technique.

A clear extension to the techniques in this chapter would be to express the dipole

emitted field in terms of the Gaussian mode that couples well into our collection

fibre. For instance, the field in the focal spot of our microscope could be expressed

in a multipole expansion [290], or alternatively, the overlap found between the field

distribution after the focussing lens and the gaussian fibre mode. This should provide

sample designs specifically suited to single-mode fibre coupling.
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CONCLUSIONS & FURTHER WORK

The work contributing to this thesis has achieved three main goals: a full under-

standing of the evolution of electron spin coherence in self-assembled quantum dots,

the high-frequency entanglement of two distant electron spins and the demonstration

of an optical link between two distinctly different quantum systems: a self-assembled

quantum dot and a single ytterbium ion.

In chapter 3 we linked the evolution of electron spin coherence to the distinct

material properties of InGaAs quantum dots. In showing that the nuclear spin in-

teraction with inhomogeneous strain fields is the critical parameter in determining

the storage of a quantum state in the electron spin, we hope to motivate the investi-

gation of spin coherence in other quantum dot varieties that feature tailored strain

properties.

The entanglement of distant electron spins presented in chapter 4 is to some extent

a culmination of our work on both coherent light-matter interaction and spin control.

Its demonstration, however opens the door to using entangled electron spins in these

structures as a resource. One limiting factor for higher-order entanglement demon-

strations in these systems is the lack of single-shot ground state readout through

optical pumping. Proposals to change the basis of the spin [118] or the use of spin

to charge conversion are available [119, 291], which will allow us to characterise the

entangled state at rates approaching its distribution.

The entanglement scheme we demonstrated in chapter 4 is inherently probabilistic,

and if we want to connect larger numbers of qubits, we must be able to protect
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the state during our repeated attempts at forming the next link. This has been

demonstrated in NV centres, where the entangled state is mapped onto local nuclear

spins in a way that is protected against decoherence due to the optically driven

NV [292]. A local memory could be provided if we move from single quantum

dots to coupled quantum dot molecules. Here, the two spins can either form a

singlet-triplet qubit [293], or the second spin can act as a memory for the first

[294]. In another proposal the optically active QD is capacitively coupled to an

electrostatically-defined quantum dot [295], which takes advantage of the longer

decoherence times for electron spins in the latter [144].

A particular task that spins in self-assembled quantum dots could excel at is the

generation of entangled optical states [296]. In these schemes, determining the spin

population is the final step necessary to decouple the resident spin from the gener-

ated photon string [158]. In this way the high-oscillator strength and single-mode

coupling of quantum dot transitions provide an advantage against similar optically

active systems, even in the absence of single-shot population readout. Furthermore,

entanglement between distant electron spins could then be mapped to entangled

photon generation [297].

The use of a single spin confined to a self-assembled dot as an entangler for a chain

of scattered photons is a very promising application as described in reference [158].

In this case, spin-photon entanglement is extended to produce a chain of entangled

photons by alternating between periods of free precession and excitation. For the

scheme outlined in this reference the successful generation of long strings of photons

requires a strict hierarchy between the excited state decay rate Γexc, the ground

state precession rate ∆e and the dephasing time T2: 1/T2 � ∆e � Γexc. To ensure

at least a stable electron spin population, the 30-mT width of the Overhauser field

demands a minimum spin splitting of ∼ 600 MHz, which approaches the exciton

decay rate. One route could be to controllably alter the spin precession through

application of high Rabi frequency detuned optical pulses. Alternatively, the weaker

hole-spin hyperfine coupling could allow for a stable spin state at sufficiently small
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splittings. Additionally, cavity coupling would increase the decay rate of the exciton

[298], separating its timescale from the spin precession. As discussed in chapter 2,

we expect nuclear polarisation to play an important role in these schemes. Here,

this polarisation could be advantageous, extending the dephasing time by reducing

fluctuations in the nuclear bath [148]. An alternative route to realising this scheme

has been demonstrated with the dark exciton as a qubit [299].

The development of a hybrid quantum network is an important long-term goal,

which the work in chapter 5 provides some first steps towards. A promising cur-

rent route is the work on strain-free quantum dots at 780 nm, matched to the D2

transitions in rubidium [300]. The recent reports on coherent optical transitions in

these systems enables the same bandwidth matching with the atomic transition as

demonstrated here [186].

Sample out-coupling plays a key role in all of these demonstrations, particularly

the generation of high-number entangled photonic states. At the current state of

the art, research groups can now combine gated samples with DBR cavities [217,

218], enabling the resonant generation of indistinguishable photons. These strongly-

coupled systems are particularly interesting as they permit new types of interaction

with the optical field based on dispersive coupling to the transition [301, 302]. This

ability to switch the polarisation of an incident photon provides another route to

overcome the bandwidth mismatch with single atoms [240].

As research into InGaAs quantum dots reaches maturity a target of the experi-

mental work contributing to this thesis has been the continual development of atomic

physics-style experiments in the solid state. This has resulted in a flexible experimen-

tal setup capable of manipulating and characterising electron spin states in multiple

quantum dots as well as interfering their scattering with a controlled phase. On a

technical level, the knowledge developed in how the timescales of external hardware

and intrinsic processes intersect provides the technological groundwork for further

networking demonstrations using these optically manipulated spins.
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APPENDIX

A

PULSE SEQUENCE CONSTRUCTION

For the coherent spin control and entanglement experiments, synchronising the spin

readout and preparation with the repetition of the modelocked laser is essential

for constructing meaningful control sequences. The modelocked laser itself is not

clocked to any external reference, so we convert a pick-off of the optical signal to an

electrical pulse via high frequency photodiodes. This 76 MHz signal provides a clock

and start trigger for driving the optical modulators for continuous-wave sources, as

well as picking rotation pulses.

For basic schemes, such as single pulse spin-Rabi oscillations and free-induction

decay measurements, the integrated readout signal provides the time-averaged spin

state information. However for more complex schemes such the alternating Ramsey

interference, Hahn-echo and spin-spin entanglement, the modelocked clock is also

passed to a time-to-digital converter (TDC). This trigger provides a reference for

finding readout regions of interest within the sequence.

For all the single spin measurements, the modelocked laser (MIRA-900) is split at

the output into two distinct arms: ’moving’ and ’stationary’, which are recombined

before reaching the microscope. The moving arm contains a Nanomotion stepper

stage to scan the delay between the arms. In addition, four passes of a metre-long

optical rail provide a controllable delay between the pulses from 0 to 6.5 ns. The
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readout pulses are formed with electro-optic modulators (EOM), which suppress

the laser with a waveguide Mach-Zehnder interferometer. The interferometer phase

requires active stabilisation against thermal drifts, which we provide an optical pick-

off after the modulator and a stabilisation board (Photline MBC-DG board).

A historical note: as the complexity of the experiments increased, so did the

equipment available. Accordingly, the earlier setups used were set by the limited

pulse sources and modulators available, and the later schemes could take advantage

of greater flexibility in the modulation of our different optical sources. In general, the

later setups are capable of providing the functionality of earlier iterations, especially

when we include an arbitrary waveform generator, which was introduced for the

demanding distant entanglement experiment.

A.1. Version 1 - Basic readout suppression

In the simplest case, sketched in figure A.1, we ensure that the readout laser is

suppressed during the rotation-sequence to prevent unwanted spin pumping. To

do this we monitor the modelocked laser with a 150-MHz bandwidth photodiode

(Thorlabs PDA10A). This generates 3-ns broad bandwidth-limited pulses following

the pulse train. We then amplify this signal with a MiniCircuits ZFL-1000H+ amp

and pass the resulting envelope to the readout laser EOM.

The timing of the modulation is controlled through the length of coaxial cable

between the amplifier and the modulator, and the 18 cm ns−1 propagation speed of

the signal in the coaxial dielectric. The three curves in the left panel of figure A.2

show the overlap between the readout modulation and two control pulses, separated

by 0.5 ns, for different coaxial lengths. The right panel displays the final, 127 cm

length used that centres the readout modulation on the Ramsey sequence. The

traces here are recorded with a Picoscope 9200 sampling oscilloscope.
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Figure A.1.: Basic pulse sequence for modulating readout. The amplifier gain is set
to match the photodiode voltage to the maximum-extinction voltage of the
electro-optic amplitude modulator.
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Figure A.2.: Delay tuning of the Version 1 pulse sequence Two modelocked pulses
seperated by 0.5 ns and the modulated readout laser are shown. By altering
the length of coaxial between the photodiode and the modulator, the suppres-
sion window is centred on the rotations.

A.2. Version 2 - Modulation > 76 MHz

An extension to the minimal sequence is possible with an Anritsu MP1763C Pulse

Pattern Generator (PPG), which provides arbitrary square-wave modulation at fre-

quencies up to 12.5 GHz. The PPG constructs the sequence out of bins with the

same repetition frequency as a square or sinusoidal clock input. In order to pulse

the readout laser between the modelocked repetition cycle, the 76 MHz signal from

the high frequency photodiode has to be upconverted. This can be achieved in more

than one way, either by filtering out and amplifying a high harmonic of a high fre-

quency photodiode output, or through directly converting the signal. We choose

the latter, using a home-made phase-locked loop (PLL) to convert a band-passed

signal from the photodiode at 76 MHz up to 2.43 GHz. This then provides a clock
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Figure A.3.: PLL-triggered PPG.Pulse sequence for providing sub-13 ns pulsing by up-
converting the modelocked laser photodiode signal to provide a high-frequency
clock for the PPG.
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Figure A.4.: PPG pulse sequence and fluorescence. a Readout pulse and rotations for
a 13.1 ns Hahn-echo sequence.b Corresponding fluorescence from the quantum
dot. Traces are recorded from single photon detection events correlated with
the sequence clock with a time-to-digital converter.
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A.3. Version 3 - High suppression

for the PPG with 32 bins per pulsed-laser repetition. The PPG can play an arbi-

trary square wave sequence containing up to 8,388,608 steps and can output both

the original and inverse sequences. The scheme is displayed in figure A.3, which

includes the amplifier and band-pass filter required to provide a sinusoidal input to

the PLL. Finally, a 1/64 clock output from the PPG allows us to synchronise the

spin-readout to the control sequence.

With a single EOM in the path of the combined arms of the modelocked laser,

this setup can also perform initial Hahn-echo measurements. We achieve this by

passing the main output of the PPG to the readout-laser modulator (on for 24 of

64 bins) and the inverted signal to the rotation-pulse picker (on for 40 of 64 bins).

An example of the pulse sequence from this setup is shown in figure A.4. Panel

a displays the readout pulses and the Hahn-echo rotations. Panel b displays the

readout signal from the quantum dot. The inputs are suppressed with polarisation

and only the signal from the spin readout every 26 ns remains. Allowing us to

operate at the repetition rate of the pulsed laser is particularly important when

measuring the de-polarisation of nuclear spins, as the long waiting times needed to

depolarise the bath limit the amount of useful signal we can extract.

A.3. Version 3 - High suppression
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Figure A.5.: Hahn-echo hardware. Two SRS DG645 delay generators with outputs com-
bined through radio-frequency splitters.

For the Hahn-echo measurements in chapter 3, we have independent pulse picking

of both the moving and stationary arms of the split-modelocked laser. Additionally,
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Figure A.6.: Long time readout suppression. Correlated laser scatter with variety of
modulation: AOM, EOM or both. The table displays the extracted suppres-
sion ratio between the marked regions in the figure.

operating at the highest repetition rate is not crucial as the alternating sequence

does not require that the nuclear bath relax. For these experiments, we use two

Stanford Research Systems DG645 Digital Delay Generators, as displayed in figure

A.5. The delay generators require a dead-time of ∼ 100ns per loop, yet by combin-

ing the pulses together with radio frequency splitters used in reverse (⊕ symbols),

we can pick multiple rotation pulses and drive the readout EOM. Additional di-

viders on individual channels (marked in the figure) allow us to perform alternating

measurements with an additional π-rotation every second repeat to prevent nuclear

polarisation.

These experiments require long off-times of the readout laser (> 1µs). In order to

combat against residual spin-pumping we add an Acousto-optic modulator (AOM)

to the readout laser path, which provides additional suppression during non-read

times. Figure A.6 shows correlated background counts from this sequence for a

variety of modulator combinations. By adding an AOM to the path we increase the

suppression ratio from ∼ 500:1 to ∼ 6000:1. Combining this enhanced suppression

with a sub-saturation readout power prevents optical pumping during the long spin
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A.4. Version 4 - Spin-spin entanglement

storage times.

A.4. Version 4 - Spin-spin entanglement

Entangling distant electron spins presents the most demanding requirements of any

pulse sequence, as both quantum dots require independent rotation, readout and

preparation, cycling through 4 permutations of spin readout per repetition of the

experiment. At the same time, the need to find rare three-photon coincident events

requires that the scheme was run at the highest repetition rate possible.

Figure A.7 contains a schematic of the electrical setup we use. The central compo-

nent to the experiment is a Tektronix 70002A arbitrary waveform generator (AWG)

that produces square voltage pulses for entanglement (160 ps) and readout (5 + 15

ns). These are amplified to the voltages we require for maximum EOM extinction.

The sequence runs on a loop, triggered from a DG645 which subdivides the signal

from the modelocked laser. A filtered signal from the modelocked source at 76 MHz

provides a clock to synchronise the AWG.

Pulse picking is performed by a pair of DG645 pulse delay generators, triggered

by the AWG. The configuration shown is used for the X basis measurement, where

alternating π/2 and 3π/2-rotations are sent to the quantum dots 0.9 nanoseconds

after the entanglement pulse. Four π/2 pulses are formed from the combinatorial

output at the back of each delay generator, two of which are boosted up to 3π/2-

rotations by the front panel outputs. Unlike the Hahn-echo experiments, the rotation

pulses are now picked by 350 MHz AOMs, which provide a bandwidth sufficient to

distinguish 13.15 ns-separated optical pulses. This sequence allows us to run one

prepare-entangle-read cycle in 6 repetitions of the modelocked laser (78.8 ns) with

a 52.56 ns pause every four measurements for the dead-time of the DG645 delay

generators. A clock pulse every 56 cycles provided a reference for the TDC.
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laser for coherent spin rotations.
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APPENDIX

B

BURIED DIPOLE BOUNDARY CONDITIONS

This appendix shows in slightly more depth how the effect of a one-dimensional

heterostructure of planar dielectrics upon the far field of a buried dipole’s emission

pattern can be calculated.

B.1. Polarisation decoupling

The method of decoupling an arbitrary dipole into symmetric vertical electric and

magnetic dipoles was introduced by Lukosz [303, 304] and explored in depth by

Brueck [305]. With the general dipole Hertz vector given by (6.1), the two decoupled

electric and magnetic vectors are taken as:

ΠE = (0, 0, φ) ΠH = (0, 0, ψ) , (B.1)

which only contain z-components due to the orientation of the decoupled dipoles.

In equation 6.4, we introduced the Sommerfeld identity, which expresses the spher-

ical vector field owing to a vertical electric dipole as an integral of weighted plane

waves (kρ < k) and evanescent contributions (kρ > k). The identity is the two-

dimensional Fourier transform of a spherical wave, which is more generally for a

function Φ:
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B. Buried dipole boundary conditions

Φ =

∫∫ ∞
−∞

Φ̃ (kx, ky) e
i(kxx+kyy+kzz)dkxdky. (B.2)

We perform this operation with our symmetric vertical-dipole Hertz vectors:

φ =

∫∫ ∞
−∞

φ̃ei(kxx+kyy+kzz)dkxdky, (B.3)

ψ =

∫∫ ∞
−∞

ψ̃ei(kxx+kyy+kzz)dkxdky. (B.4)

By comparing the fields of the vertical dipoles with the electric dipole at angle θd

in the x-z plane (see figure 6.2), the values of φ̃ and ψ̃ can be found [280]:

φ̃± =
ip0

8π2

(
cos θd
kz
∓ kx
k2
x + k2

y

sin θd

)
, (B.5)

ψ̃ =
−iµ0p0ωky

8π2kz
(
k2
x + k2

y

) sin θd. (B.6)

Note the ∓ sign in the expression for φ̃. This sign depends on whether the field

is evaluated above (φ̃+) or below (φ̃−) the emitter, owing to the phase change in

transforming from an oscillating electric dipole with some horizontal component

(θd 6= 0) to a vertical dipole.

B.2. Trial solutions

Having decoupled the polarisations of the dipole emission, we form trial solutions

for the potentials in the source and outer layers (S, T & B):

φT =

∫∫ ∞
−∞

φ̃Te
i(kxx+kyy+kzz)dkxdky, (B.7)
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B.3. Matrix methods

φS = φ± +

∫∫ ∞
−∞

φ̃S+e
i(kxx+kyy+kzz)dkxdky +

∫∫ ∞
−∞

φ̃S−e
i(kxx+kyy−kzz)dkxdky, (B.8)

φB =

∫∫ ∞
−∞

φ̃Be
i(kxx+kyy−kzz)dkxdky. (B.9)

The top region contains waves travelling in the positive z direction and the bottom

region waves in the negative direction. The source region contains both the terms

directly due to the dipole (φ±) and the reflected positive- and negative-travelling

waves (φ̃S+ & φ̃S−). The next step is to link these solutions with boundary conditions

at each layer to find their value for each kx & ky.

B.3. Matrix methods

With the dipole potential now fully disassembled into orthogonal components we can

now introduce the dielectric structure to determine the form of the trial solutions in

equations B.7, B.8 & B.9. At a dielectric interface in the heterostructure between

layer i and layer i+ 1 the z-components of electric and magnetic Hertz vectors must

satisfy the following boundary conditions (assuming a non-magnetic material):

φi = φi+1;
1

εi

∂φi
∂z

=
1

εi+1

∂φi+1

∂z
; ψi = ψi+1;

∂ψi
∂z

=
∂ψi+1

∂z
(B.10)

As each layer (except for the top and bottom regions) contains both outgoing and

incoming plane waves in the z-direction, the derivatives in the boundary conditions

can be simplified such that the conditions in (B.10) can be cast in matrix form:
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B. Buried dipole boundary conditions

DTM
i

 φ̃OUTi

φ̃INi

 = DTM
i+1

 φ̃OUTi+1

φ̃INi+1

 , (B.11)

 1 1

kiz
εi
−kiz

εi

 φ̃OUTi

φ̃INi

 =

 1 1

ki+1
z

εi+1
−ki+1

z

εi+1

 φ̃OUTi+1

φ̃INi+1

 , (B.12)

DTE
i

 ψ̃OUTi

ψ̃INi

 = DTE
i+1

 ψ̃OUTi+1

ψ̃INi+1

 , (B.13)

 1 1

kiz −kiz

 ψ̃OUTi

ψ̃INi

 =

 1 1

ki+1
z −ki+1

z

 ψ̃OUTi+1

ψ̃INi+1

 , (B.14)

where φOUTi and φINi are the incoming and outgoing parts of the Hertz Vector.

We also include matrices for the phase accumulated by propagation of the potential

through each layer:

 φ̃OUTi

φ̃INi

 = PTM
i

 φ̃OUTi

φ̃IN
′

i

 =

 e−ik
i
z∆i 0

0 eik
i
z∆i

 φ̃OUTi

φ̃INi

 , (B.15)

where ∆i is the thickness of each layer. Combining these two forms of matrix

together way we can find a single transformation that describes the structure above

our below the emitter:

 φOUTS

φINS

 = DTM
TOT

 φOUTT

φINT

 ,

=
(
DTM

S

)−1∏
i

{
DTM

i PTM
i

(
DTM

i

)−1}
DTM

T

 φOUTT

φINT

 , (B.16)
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B.3. Matrix methods

where the product is over all the layers between the source region and the structure

exterior. Of key interest is the field in the top region outside the structure. We solve

for the boundary conditions with the condition that the top and bottom layers only

contain out-going waves. As a result the value of φ̃T (and ψ̃T) can be expressed in

terms of the transfer-matrix elements and the source field φ±:

φ̃T,+ =

1
D11
U

(
φ̃+ + φ̃−

D21
L

D11
L

)
1− D21

L

D11
L

D21
U

D11
U

. (B.17)

The subscripts U&L correspond to total matrices for the layers above and below

the dipole, respectively. This has a simple physical interpretation, as the ratio D21

D11

is linked to the reflectivity of a collection of layers, and the value of 1
D11 related to

the transmission through those layers. Importantly, equation B.17 includes positive

(φ̃+) and negative travelling (φ̃−) source terms as the correct phase relationship in

equation B.5 needs to be taken into account. The same relationship can be found

for the magnetic dipole, ψT,+.

Having found these values the integral can be approximated according to methods

in references [280] and [305], the far field expressions for φ and ψ can be found and

the Poynting vectors determined for the original dipole.
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