
Inspection and selection of representations?

Daniel Raggi1, Aaron Stockdill1, Mateja Jamnik1,
Grecia Garcia Garcia2, Holly E. A. Sutherland2, and Peter C.-H. Cheng2

1 University of Cambridge, UK
{daniel.raggi, aaron.stockdill, mateja.jamnik}@cl.cam.ac.uk

2 University of Sussex, UK
{g.garcia-garcia, h.sutherland, p.c.h.cheng}@sussex.ac.uk

Abstract. We present a novel framework for inspecting representations
and encoding their formal properties. This enables us to assess and com-
pare the informational and cognitive value of different representations
for reasoning. The purpose of our framework is to automate the process
of representation selection, taking into account the candidate representa-
tion’s match to the problem at hand and to the user’s specific cognitive
profile. This requires a language for talking about representations, and
methods for analysing their relative advantages. This foundational work
is first to devise a computational end-to-end framework where problems,
representations, and user’s profiles can be described and analysed. As AI
systems become ubiquitous, it is important for them to be more compat-
ible with human reasoning, and our framework enables just that.

Keywords: Representation in reasoning · heterogeneous reasoning · rep-
resentation selection · representational system.

1 Introduction

The aim of this work is to contribute to the development of AI systems which,
similarly to human experts, can pick effective representations for the task at
hand.

The effectiveness of a representation depends on its purpose. One kind of
representation may be more useful for problem solving, while another may facil-
itate learning, and some may be more suitable for school children, while another
may be useful for the working professional. Thus, for a system to select repre-
sentations intelligently, it needs to take into account both the formal (structure
and information) and cognitive (user and task) aspects of representations.

This is interdisciplinary foundational work bringing together artificial in-
telligence, computer science and cognitive science to devise a framework (the
language and methods) for analysing and encoding the properties of represen-
tations. In this paper, we focus on the formal properties of representations, and
the analysis involved in finding a matching representation for the given problem
amongst a variety of candidate representational systems. This analysis is done in

? This work was supported by the EPSRC Grants EP/R030650/1 and EP/R030642/1.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/231904366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 D. Raggi et al.

a purely structural and informational manner (i.e., without taking into account
the user and task). As we will argue, the formal properties are a foundational
layer upon which the cognitive properties of representations depend. The details
of the analysis and encoding of cognitive properties, which bring the user profile
into the picture, are work in progress.

Furthermore, we present a proof-of-concept application of our framework,
where multiple representational systems are automatically evaluated relative to
a problem, by a measure that estimates how likely each representational system
is to contain all the ingredients for finding a solution.

Automating the process of analysing and evaluating representations would
lead to a new generation of interactive computer systems which adapt intelli-
gently to the user. The automatic selection of effective representations could
have applications ranging from intelligent tutoring systems, to systems that aid
the working scientist, to fully automated problem-solvers.

2 The role of representation in reasoning

The advantages of particular representations over others have been extensively
discussed [25, 6, 5]. Furthermore, there are evident cognitive benefits of multiple
representations over single representations [1].

Various formalisations of specific reasoning systems using a single kind of
representation have been implemented, including first order [16, 15], higher or-
der [11, 21], diagrammatic [27, 13, 28], among many others. A few heterogeneous
reasoning systems that integrate multiple representations have also been built
[2, 26], as well as some tools for re-representing problems and knowledge across
and within systems [19, 12, 23]. Many systems designed for numerical, algebraic,
and geometric computing include tools for representing data in various ways
(graphs, plots, figures, diagrams, etc.) [18, 22, 24, 14].

Moreover, in the rapidly-advancing areas of AI (i.e., machine learning), the
role that representation plays has been recognised as crucial to the effective
processing of data, and representation learning has become a rich area of re-
search [3]. However, the gap between the actual computations and the user’s
understanding seems to be increasing as the tools perform more effectively under
more autonomous (and obscure) conditions. To reduce this gap, it is necessary
to understand what makes representations better or worse for humans.

Some work has been done to understand the qualities of representations [4,
7]. However, to our knowledge, there is no integration of this knowledge into
a framework where representational systems can be analysed, evaluated, and
selected computationally, where the task and user can be taken into account. In
this work we set some foundations to approach the automation of representation
analysis and selection.

2.1 An example

To illustrate the variety and efficacy of representations for reasoning, we first
present a problem in probability with three example solutions.

Inspection and selection of representations 3

Problem (Birds). One quarter of all animals are birds. Two thirds of all birds
can fly. Half of all flying animals are birds. Birds have feathers. If X is an animal,
what is the probability that it’s not a bird and it cannot fly?

Solution (Bayesian): Let the sample space be the set of animals. Let b represent
birds, f flying animals, and Pr the probability function. Then, the problem can
be reformulated, in the language of conditional probability, as follows:

Assume: Pr(b) = 1
4 , Pr(f |b) = 2

3 , Pr(b|f) = 1
2 .

Calculate: Pr(b̄ ∩ f̄)

To solve this, we start by noting the following facts:

Pr(b̄) = Pr(b̄ ∩ f̄) + Pr(b̄ ∩ f) (1)

Pr(f) = Pr(b ∩ f) + Pr(b̄ ∩ f) (2)

Pr(b̄ ∩ f) = Pr(b̄|f) Pr(f) = 1
2 Pr(f). (3)

From (2) and (3) we can show that Pr(b̄ ∩ f) = 1
2 Pr(b ∩ f) + 1

2 Pr(b̄ ∩ f), from
which we obtain

Pr(b̄ ∩ f) = Pr(b ∩ f). (4)

Thus, we have the following:

Pr(b̄ ∩ f̄) = Pr(b̄)− Pr(b̄ ∩ f) from (1)

= Pr(b̄)− Pr(b ∩ f) from (4)

= (1− Pr(b))− Pr(f |b) Pr(b) from probability axioms

= 3
4 −

(
2
3

) (
1
4

)
= 7

12 . from assumptions

Solution (Geometric): In the figure below, the unit square represents the set of
animals. The regions representing birds and flying animals are drawn according
to the assumptions.

1/4
3/4

1/3

2/3

1/4
1/4

1

Birds

F
ly
in
g
b
ir
d
s

Flying animals

A
n
im

a
ls

It is clear that the shaded region (non-flying, non-bird animals) has an area
of 3

4 −
(
2
3

) (
1
4

)
= 7

12 .

4 D. Raggi et al.

Solution (Contingency): We start by building a table from the two relevant
classes (birds and flying animals) and fill in the values that we are given. Next,
the table is filled in gradually, according to simple tabular constraints.

birds non-birds total
flying (2/3)(1/4) (2/3)(1/4)
non-flying 3/4− (2/3)(1/4)
total 1/4 3/4 1

The rules used to fill the rest of the table are either transferred from the
problem’s statement (e.g., half of all flying animals are birds means that top
cells must have the same values), or from probability theorems (e.g., the total
probability is the sum of the parts means that the total of each column/row must
be the sum of the cells in the corresponding column/row). It’s worth noting that
to the experienced user of contingency tables, the constraints corresponding
to probability theorems do not need to be explicitly invoked from probability
theory, but simply recalled as tabular/arithmetic manipulations. Thus, we reach
the solution when we fill in the shaded cell.

Note that there may be many solutions using the same representational sys-
tem (e.g., many Bayesian solutions, many Geometric solutions, etc.). In the next
section we present the framework for analysing these representations.

3 Representing representations

Representational systems are diverse, and their designs and specifications are
heterogeneous. To do a comparative analysis, we need a common framework
that captures the properties that make up each representation.

Our framework is based around three concepts: representational system (RS),
problem (Q), and correspondence. In the following subsections we suggest a con-
crete method for inspecting and encoding their properties. The result is a set of
machine-readable tables suitable for further analysis.

Table construction currently needs to be done by a human analyst, but the
purpose of such tables is that they can be processed automatically to yield a
representation recommendation.

3.1 Representational system

We view representational systems as consisting of two layers implemented over
a medium: a grammatical layer, and an inferential layer. Broadly speaking, the
grammatical layer distinguishes the sensible from the nonsensical, and the infer-
ential layer distinguishes the valid from the invalid.

The table of an RS is a structured description of the RS. It is a collection
of the most relevant properties of the RS. We encode these properties as pairs

Inspection and selection of representations 5

(k, v), where k is the property kind and v is the value. For example, if an RS
table has the entry (rigorous,TRUE) this means that the RS has the property
of being rigorous; and if it has (token,+) this means that the token ‘+’ is part
of the symbols used in the RS (for examples of RS tables, see Tables 1 and 2).

Grammar. The building blocks of an RS are called tokens. These are used to
construct expressions. The grammar of an RS allows us to distinguish between
admissible and inadmissible expressions. Although grammars can be constructed
in various ways (e.g., by production rules [8], or by some underlying type the-
ory [10]), our framework is agnostic to the specific construction, but embraces
type theory as a generic descriptive tool. Thus, every token, and every admissi-
ble expression will be assumed to have a type. However, to keep our framework
flexible, we make no other assumptions about the specific type theory that we
use.

We encode the property of grammatical complexity (g-complexity in Tables 1
and 2) using Chomsky hierarchies, which are linked to well-known classes of
computational complexity and expressiveness [9].

Inference. The medium on which an RS is implemented (e.g., a pen and paper,
or a computer interface) can be manipulated by some agent. Thus, we need a
concept of state. Broadly speaking, a state refers to the conditions of a medium
at some moment in time. Manipulations are changes of state.

The inferential layer of an RS determines how the grammatical expressions
of an RS can be manipulated validly. Borrowing from the field of computer-
assisted theorem proving, we refer to valid manipulations as tactics. Moreover,
tactics are often parametric on knowledge. The knowledge encoded in an RS can
be represented as a collection of facts. These can be formulae (e.g., in Bayesian
system Pr(x) = Pr(x ∧ y) + Pr(x ∧ ¬y)), extrinsically-imposed constraints (e.g.,
in contingency tables the last value of a row must be the sum of the values of the
row), or intrinsic constraints (e.g., the area of a region is the sum of the areas of
its parts). Thus, tactics and facts are the main constituent properties of an RS.

As with grammatical complexity, inferential complexity (i-complexity in Ta-
bles 1 and 2) can be measured according to known standards. The partial order
induced by injective embeddings of theories within one another could be a basis
by which to compare systems, but a radical simplification by flattening into 5
classes turns out to be enough for a rough assessment of complexity. We pro-
pose the following levels (with a known system for reference): 1 (propositional
logic), 2 (decidable fractions of arithmetic/set theory), 3 (Peano arithmetic), 4
(constructive set theory), and 5 (Zermelo-Fraenkel).

Furthermore, we include the property of rigour to describe whether the cal-
culations/proofs are guaranteed to be exact/correct.

We described the most significant properties of RS tables. Our framework
includes more, but it is nevertheless a fixed set of kinds for every RS table.
This provides a template that can aid an analyst to generate tables, ensures

6 D. Raggi et al.

Table 1. A section of the Bayesian RS table.

kind value

types real, event

tokens Ω, ∅, 0, 1, =, +, −, ∗, ÷, ∪, ∩, \, ¯, Pr, |
g-complexity type-2

facts Bayes’ theorem, law of total probability, non-negative probability,
unit-measure, sigma-additivity, . . .

tactics rewrite, arithmetic calculation

i-complexity 3

rigorous TRUE

Table 2. A section of the Geometric RS table.

kind value

types point, segment, region, real, string

tokens $point, $segment (the prefix $ denotes a label for an actually picto-
rial symbol)

g-complexity type-3

facts scale-independence of ratio, non-negative area, area additivity,. . .

tactics draw point, draw segment, delete, join, compare sizes

i-complexity 2

rigorous TRUE

consistency across different RSs, and is sufficient for an in-depth analysis of
representations. See Tables 1 and 2 for some example RS tables.

3.2 Problems

Abstractly, a problem q is a triple (Oq, Gq, Cq) where Oq is an initial condition,
Gq is a goal condition, and Cq is a set of constraints on the paths leading from
the states that satisfy Oq to the states that satisfy Gq [20].

This definition is difficult to square with the fact that problem specifications
rarely look like such a triple. Our contention is that this is because most prob-
lems are about information recovery within a space determined by conventional
information-manipulation rules.

For example, the Birds problem above is neither explicit about the goal con-
dition nor about any path constraints, and we can only assume that the initial
condition is whichever state things are when the problem is presented. However,
a competent problem-solver will find a statement such as what is the probabil-
ity . . . informative about the type of the answer expected (specifically, ratio,
percentage, or real number or any data-type usually used to encode probability
values). In other words, the problem-solver is expected to perform type-inference
to obtain the answer type. Moreover, the rest of the problem statement will
typically provide data which, under conventional interpretations, can be manip-
ulated to recover the answer. Thus, given a problem specification q, the infor-

Inspection and selection of representations 7

mation (Oq, Gq, Cq) is hidden in the specification and meant to be inferred by
the problem solver.

We call the set of paths that satisfy (Oq, Gq, Cq) the semantics of the prob-
lem. The relation between a problem specification and its semantics is complex,
because it requires, first, an understanding of how the specification relates to
the triple (deemed problem understanding by [20]), and second, knowledge of
the paths that satisfy the triple (problem solving).

Q tables. Similar to RS tables, Q tables encode the properties of problems (Q
properties) as kind–value pairs.

The presentation of a problem requires an RS. We write q : S to denote
‘a problem q represented under system S’. Then, a problem’s properties can
be encoded similar to representational systems (e.g., which types and tokens ap-
pear). The only difference is that here we qualify the properties by their semantic
contribution. Thus, to build a Q table, an analyst is required to estimate the
semantic contribution of properties. That is, they need to decide the importance
of each property relative to the other properties. This means, in particular, that
knowledge of individual solutions influences the content and quality of the ta-
ble. Naturally, we do not assume full knowledge of the semantics, as this would
require complete knowledge of solutions. We only assume partial understanding
of the goal conditions, and any estimation of the relevance of different properties
can help. Moreover, if the problem is presented in a system S and the analyst
only knows a solution involving a different system S′ where a fact α (native to
S′) is used, the analyst can include α in the table. This will ensure that we do
not miss important knowledge of a problem/solution when building a Q table.1

See Table 3 for a Q table for the Birds problem.
Properties such as error allowed and answer type are at the top of the im-

portance hierarchy (purple/essential) because they inform us directly about the
goal condition. Specifically, answer type refers to the shape of the data (data-
type) expected to appear in any state satisfying the goal conditions, and error
allowed refers to the rigour expected out of the answer (i.e., how permissive is
the goal condition).

Next (blue/instrumental) in the hierarchy are any tokens, types, patterns,
facts, or tactics with pivotal roles in the solution(s). These properties are infor-
mative about how the paths in the state space which lead to solutions look.

One step below (green/relevant) are things which are clearly informative
about the semantics of the problem, but which may also contain noise or just
be informative as heuristics. This now includes tokens which may not appear in
the problem specification but which may be useful along the way.

The lowest classes are either circumstances of the representation (yellow/cir-
cumstantial), or outright noise (red/noise)—that is, tokens that either appear in
the specification or are evoked by it,2 which contain no information about the

1 As a consequence, Q tables may contain elements of multiple RSs. For reasons men-
tioned in Section 5, this is discouraged whenever it is avoidable.

2 Those appearing in this example are taken from a semantic net [29].

8 D. Raggi et al.

Table 3. A Q table for the Birds problem with its natural language statement. The
colour codes for importance relative to information content: essential (purple), instru-
mental (blue), relevant (green), circumstantial (yellow), noise (red).

kind value

error allowed 0

answer type ratio

tokens probability, and, not

types ratio, class

patterns :ratio of :class are :class, probability of :class and :class

facts Bayes’ theorem, law of total probability, unit measure, addi-
tive inverse, commutativity of + . . .

tactics deduce, calculate

tokens one, quarter, all, animals, birds, two, thirds, can, fly, half,
flying, X, animal, probability, cannot

related tokens times, divided by, plus, minus, equals, union, intersection,
probability, zero, . . .

of tokens 67

of distinct tokens 31

tokens feathers

related tokens beast, animate, creature, wing, aviate, flock, fowl, dame, car-
nal, being, fauna, . . .

semantics. Notice, for example, that the Birds problem contains the statement
birds have feathers which is not used by any solution. Thus, the token ‘feath-
ers’ is classified as noise. Any tokens related to the zoological interpretation
of the problem are taken as noise. Encoding these explicitly may be useful to
understand potential missteps or distracting data in the specification.

Every Q table will have a fixed set of property kinds. This provides a template
to generate tables—empirically, these proved sufficient for an effective analysis
of candidate representations in relation to the problem.

3.3 Correspondence

We have presented a framework for encoding the properties of problems and
representational systems. Now we need some method for assessing the relative
value of different RS for representing a given problem. Our approach relies on
the notion of correspondence, which is a way of relating Q properties with RS
properties. It is the fundamental notion that we use for calculating the match
of an RS to a problem.

Analogical correspondences. Different RSs are linked to each other through
structure-preserving transformations. For example, an event can be encoded as
a proposition, or as a set, or as a region in the plane. These relations between
types form the basis of more complex analogies. For example, the conjunction

Inspection and selection of representations 9

of two events corresponds to the intersection of two regions, and the probability
of an event corresponds to the area of its corresponding region. Furthermore,
such transformations also induce the correspondence of facts. For example, if
probability corresponds to area, then the law of total probability corresponds to
area additivity. It should be noted that for every property p the reflexive corre-
spondence (with strength 1) is by default considered in our framework. The logic
and mechanisms for reasoning through such transformations has been explored
elsewhere [23]. In this work, rather than the mechanism, we are concerned with
assessing the relative value that such transformations provide.

Q-specific correspondences. The analogical correspondences are induced by
transformations between RSs (i.e., the mapping between tokens/types/facts/tac-
tics). However, other problem-specific information may also be valuable for as-
sessing RSs. For example, the error allowance of a problem informs us whether
we need a rigorous RS or whether an imprecise one is sufficient (if there are
other reasons for it to be valued, e.g., an approximate solution is sufficient
for young children). Thus, correspondences such as between the Q property
error allowed = 0 and the RS property rigorous can be included.

Correspondence tables. Currently, we assume that a catalogue of such trans-
formations/analogies is known. Furthermore, we assume that we have a measure
that estimates the information loss in a correspondence. We call this the cor-
respondence strength.3 For example, the injection of natural numbers into real
numbers is lossless, so the strength of type natural to type real is assumed to be
1. However, any transformation from real to natural is lossy, so its strength must
be less than 1 (the question of how much exactly is up for discussion). Thus,
each correspondence can be encoded as a triple (pq, pr, s) where pq and pr are
Q and RS properties, respectively, and s is the strength.

Each correspondence between a property of q and a property of S can be seen,
roughly, as a reason why q could be represented in S. Simplistically, this could
mean that adding up the values of all correspondences between q and S might
give us a score of S. However, the reasons may not be independent, so adding
them up may count redundant correspondences multiple times. Thus, we intro-
duce a simple calculus for specifying correspondence in the most independent
possible way (e.g., see Table 4; more details are in Section 4.2).

But how can Q, RS, and correspondence tables be used for representation
recommendation? We present a proof-of-concept algorithm next.

4 Using the framework

Our tables give us properties of the problem and of the candidate RSs. Corre-
spondence tables give us explicit links between them. The task now is to exploit

3 In future work, we will investigate how correspondences and their strength can be
identified automatically (e.g., using machine learning).

10 D. Raggi et al.

Table 4. Some example correspondences encoded with operator or.

Q property formula RS property strength

type occurrence or type class type event 1

type ratio or type percentage type real 1

token intersection or token and token ∩ 1

token given or token if token | 1

error allowed = 0 rigorous 1

error allowed = 0 NOT rigorous −1

this information to find correspondences which match properties of both the
problem and the target RS. Not all properties bear equal importance, thus we
modulate the correspondence strength. Combining these assigns a real value
to each potential RS indicating its relevance as a candidate RS. Algorithm 1
implements this process.

Algorithm 1 Uses properties of problems and representational systems to rank
candidate RSs.

LoadTables()
recommendations← []
for each representation do
t← 0 // t is the score
for each correspondence do

propq ← Properties(problem)
propr ← Properties(representation)
(pq, pr, strength)← correspondence
importancecorr ←Max(Importance, pq)
if Match(propq, pq) and Match(propr, pr) then
t← t+ importancecorr × strength

end if
end for
if t > 0 then

Append(recommendations, 〈t, representation〉)
end if

end for
return Sorted(recommendations)

4.1 Matching correspondences

In our running example, we have a Q table for the Birds problem and four
RS tables for the representational systems: Bayesian, Geometric, Contingency,
Natural Language, and also an Euler RS table.4 They are accompanied by a

4 By ‘Euler’ we mean some implementation of Euler diagrams.

Inspection and selection of representations 11

table of correspondences between properties. Algorithm 1 accesses these tables,
and then iterates over the RSs to find correspondences linking the problem to
the RS.

Suppose the first candidate representation for the Birds problem is Bayesian.
Thus, we consider the Bayesian RS table and the Birds problem Q table. Next,
we examine each correspondence: a triple (pq, pr, s) where pq and pr are prop-
erties of the problem and representation, respectively, and s ∈ [−1, 1] is the
correspondence strength. We examine if both Q table properties and RS table
properties match the conditions of this correspondence. For example, the corre-
spondence:

(error allowed = 0, rigorous, 1)

from Table 4 matches properties in the Q table in Table 3 and those in the
RS table from Table 1. If there is no match, we disregard this correspondence.
When they do match—as in this example—we take the strength s and modulate
it by the importance of the matched Q property. Each importance colour band
is assigned a value in the [0, 1] interval, which we multiply by the strength of
the correspondence s. Our example correspondence involves the property error
allowed, which is an essential (purple) property, so is modulated by the ‘essential’
value 1. Altogether, this correspondence contributes 1 × 1 = 1 to the Bayesian
RS ranking score.

4.2 Property formulae

The pq and pr from the correspondence triple can be property formulae expressed
in a simple calculus using binary connectives and and or, and the unary con-
nective not.5 The property calculus allows for greater expressivity and better
captures the nature of correspondences between Q and RS properties. We see
this in the correspondence:

(type occurrence or type class, type event, 1)

where we require one (or both) of the properties specified in the pq of the cor-
respondence triple to occur in the Q table. In this situation, we do observe
type class occurring as an instrumental (blue) property. The correspondence is
matched despite the absence of type occurrence; notice that it was necessary to
observe type event in the Bayesian RS table. The matched correspondence for-
mula involved both type class and type occurrence, with the match being satisfied
by an instrumental (blue) property. Thus, the correspondence strength of 1 is
modulated by the ‘instrumental’ value6 0.6, increasing the Bayesian RS score to
1× 0.6 = 0.6.
5 and requires that both properties appear in the property table. or requires that at

least one of the properties appears in the property table. If both properties appear in
the table, the strength is only counted once. not requires that a specified property
does not occur in the property table.

6 The value 0.6 for ‘instrumental’ properties is chosen arbitrarily; the only condition
is that the value-importance relation is monotonic. In future work, these parameters
should be tuned with experimental data.

12 D. Raggi et al.

4.3 Making a recommendation

Once all correspondences for a particular Q and RS are identified and modulated
by importance, we combine them to a single score. This can be done in many
ways: we take a simple sum. For the example of the Bayesian representation and
the Birds problem, the correspondence analysis gives an overall score of 9.3.

Repeating the scoring process above for each candidate RS yields the follow-
ing recommendation ranking:

Bayesian 9.3
Geometric 7.2
Natural Language 6.9
Contingency 5.4
Euler 1.5

We hence recommend that the Birds problem, initially posed in a Natural Lan-
guage RS, might be better attempted in the Bayesian RS. This seems a sensible
recommendation.

5 Discussion and future work

We showed that representation selection can be encoded in a sufficiently formal
way to computationally analyse the underlying informationally-relevant struc-
tural matches across domains. This is novel and exciting. We now evaluate the
quality of performance of our framework, and discuss its significance for appli-
cations and future work.

5.1 The influence of known solutions

In this paper we presented an example of an RS recommendation where the
input was a Q table (for the Birds problem), five candidate RS tables, and the
associated correspondence tables. The Q table encoded the problem expressed
in natural language, but it contained as facts some theorems from other RS,
like Bayes’ theorem in the formal Bayesian solution. We allow the Q table to
be heterogeneous (e.g., consisting of properties of more than one RS), and thus
include in the Q table the Bayesian facts. Clearly, such properties will boost the
score of the Bayesian RS.

More generally, every property in Q table that is native to an RS will boost
the score of such an RS. This implies that the RS in which the problem is stated
(natural language in our example) will score points just for the fact that the
problem is expressed in that RS. However, it might still not get the highest
score, because it may contain foreign properties, or properties that clash with
the properties of the problem (e.g., the rigour property of the RS may clash
with the error allowed condition of the problem).

Thus, known solutions, regardless of their representation, can influence the
recommendation if the analyst introduces their properties in the Q table. There-
fore, the analyst must consider:

Inspection and selection of representations 13

1. Heterogeneous tables need to be built carefully to avoid redundancy. For
example, the Law of Total Probability is a Bayesian fact that corresponds to
the Geometric fact Additivity of Areas. Thus, if both are added to a single Q
table, they may result in unjustified boosting of the score. For this reason,
the Q tables should be as homogeneous as possible.

2. Some aspects of known solutions do not affect the formal score of an RS.
For example, the length of the solution is not considered because, although
a shorter solution may be desirable, it is not informationally relevant. But
it may be relevant from the cognitive point of view (e.g., in the processing
cost), and thus forms part of the cognitive properties. Incorporating cognitive
properties into our analysis and recommendation framework is part of our
ongoing work.

5.2 Analysing the trace

Perhaps more interesting than the resulting scores is the data that the trace of
the algorithm execution provides. For example, it enables an analysis about how
individual correspondences contribute to the total score. The high importance
(essential) Q property answer type ratio corresponds to properties type real in the
Bayesian, Geometric, and Contingency systems. However, in the Euler system it
has no corresponding property.7 Similarly, the token probability corresponds to
the token Pr in Bayesian, and the tactics compare sizes and compare cell values in
Geometric and Contingency, respectively, but it has no correspondence in Euler.
Thus, due to the high values for the importance of the essential and instrumental
properties, the gap between Euler and the other RSs widens. This is expected
and desirable.8

We observe that tokens in some systems (e.g., probability) can correspond to
tactics (e.g., compare sizes) without corresponding to any specific tokens. This
is interesting from the cognitive perspective, because these tokens and tactics
are very different operationally. A cognitively focused analysis may be able to
assess the impact of differences of this sort.

The trace analysis has many potential applications. We envision tutoring
systems that can make specific recommendations (e.g., “maybe you can draw a
region in space to represent the class of animals”), or explainable AI systems
that can justify their decisions in a humanly-understandable manner.

Zero-weight properties. Some Q and RS properties make no contribution in
terms of correspondence scores, for example, all the circumstantial and noise
properties. Nevertheless, we chose to encode them in our framework because

7 In Euler diagrams the cardinality of sets is abstracted away; the size of zones is
meaningless.

8 Note that the strength of the correspondences from probability to Pr and compare
sizes was set to 1 (because in principle any probability function is representable in
the Bayesian or Geometric systems), but it was set to 0.5 for Contingency because
not every probability function is representable in Contingency tables.

14 D. Raggi et al.

they have potentially important effects on cognitive processes. For example, the
total number of (circumstantial) tokens may be used to estimate the cognitive
cost of registering a problem specification. Moreover, the inference power of an
RS may make it more applicable from a formal point of view, but the cost of
using it may be higher from a cognitive point of view.

An analysis of the correspondence between noise properties of Q and RS may
be used for predicting human error or bias. For example, a novice user might
be tempted to represent zoological facts given in the Birds problem, but they
contribute to unnecessary cognitive costs.

5.3 Evaluating the framework and algorithm

To our knowledge, no work has been done on computationally modelling repre-
sentation selection, so we have no benchmarks by which to judge our framework
or algorithm. The execution of the algorithm presented here is a proof-of-concept
application, but it shows that given our encoding of a problem Q and various rep-
resentations RSs, we can compute interesting measures. Moreover, the approach
that we take for encoding the description of problems, RSs and correspondences
makes minimal assumptions about them. This makes it general. So far, we have
encoded 9 different RSs and various problems.

One of the main limitations of our framework is the need for an analyst to en-
code the Q and RS properties, the correspondence strengths, and the importance
that each Q property has relative to potential solutions. This clearly requires the
analyst to understand the complexity of a problem, and to have at least some
understanding of how a solution would look (e.g., identifying potentially instru-
mental facts). This poses a problem for automation. One way of tackling this is
with the help of machine learning methods similar to the work of [17] for lemma
selection.

5.4 Future work

Our framework opens up many avenues for future research. Automating the
generation of Q and RS tables and their importance is a clear goal to be achieved.
We are currently including methods for analysing the cognitive properties of
representations, and want to extend the framework to include user profiles next.
We are curious to find out if representation selection based on our framework
can promote problem solving or learning in humans, and want to incorporate it
into a personalised multi-representation tutoring system.

6 Conclusion

We have presented a novel framework for computationally selecting suitable
representations. We introduced the language, data structures, and methods for
encoding and analysing the properties of problems, of representational systems,
and the correspondences between them.

Inspection and selection of representations 15

Our proof-of-concept algorithm ranks representational systems according to
a measure of suitability given a problem. The algorithm analyses the problem’s
properties in terms of their informational contribution and estimates the likeli-
hood that the problem’s semantics can be recovered in each candidate RS. We
see this work as an exciting foundation upon which we can build the machinery
to analyse cognitive properties, so the user profile may be included to calculate
a recommendation.

Acknowledgements

We thank the 3 anonymous reviewers for their comments, which helped to im-
prove the presentation of this paper.

References

1. Shaaron Ainsworth. The functions of multiple representations. Computers & edu-
cation, 33(2-3):131–152, 1999.

2. Dave Barker-Plummer, John Etchemendy, Albert Liu, Michael Murray, and Nik
Swoboda. Openproof-a flexible framework for heterogeneous reasoning. In In-
ternational Conference on Theory and Application of Diagrams, pages 347–349.
Springer, 2008.

3. Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

4. Alan Blackwell and Thomas Green. Notational systems–the cognitive dimensions
of notations framework. HCI models, theories, and frameworks: toward an inter-
disciplinary science. Morgan Kaufmann, 2003.

5. Peter C-H Cheng. Unlocking conceptual learning in mathematics and science with
effective representational systems. Computers & Education, 33(2-3):109–130, 1999.

6. Peter C-H Cheng. Probably good diagrams for learning: representational epistemic
recodification of probability theory. Topics in Cognitive Science, 3(3):475–498,
2011.

7. Peter C-H Cheng. What constitutes an effective representation? In International
Conference on Theory and Application of Diagrams, pages 17–31. Springer, 2016.

8. Noam Chomsky. Three models for the description of language. IRE Transactions
on information theory, 2(3):113–124, 1956.

9. Noam Chomsky. On certain formal properties of grammars. Information and
control, 2(2):137–167, 1959.

10. Thierry Coquand. Type theory. Stanford Encyclopedia of Philosophy, 2006.
11. John Harrison. HOL light: An overview. In International Conference on Theorem

Proving in Higher Order Logics, pages 60–66. Springer, 2009.
12. Brian Huffman and Ondřej Kunčar. Lifting and transfer: A modular design for

quotients in isabelle/hol. In International Conference on Certified Programs and
Proofs, pages 131–146. Springer, 2013.

13. Mateja Jamnik, Alan Bundy, and Ian Green. On automating diagrammatic proofs
of arithmetic arguments. Journal of logic, language and information, 8(3):297–321,
1999.

16 D. Raggi et al.

14. Jupyter. jupyter.org.
15. Matt Kaufmann and J Strother Moore. Acl2: An industrial strength version of

nqthm. In Proceedings of 11th Annual Conference on Computer Assurance. COM-
PASS’96, pages 23–34. IEEE, 1996.

16. Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In
International Conference on Computer Aided Verification, pages 1–35. Springer,
2013.

17. Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Ur-
ban. Mash: machine learning for sledgehammer. In International Conference on
Interactive Theorem Proving, pages 35–50. Springer, 2013.

18. Matlab. mathworks.com.
19. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous tool

set, hets. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 519–522. Springer, 2007.

20. Allen Newell. Human Problem Solving. Prentice-Hall, Inc., 1972.
21. Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof

assistant for higher-order logic, volume 2283. Springer Science & Business Media,
2002.

22. GNU Octave. octave.org.
23. Daniel Raggi, Alan Bundy, Gudmund Grov, and Alison Pease. Automating change

of representation for proofs in discrete mathematics (extended version). Mathe-
matics in Computer Science, 10(4):429–457, 2016.

24. SageMath. sagemath.org.
25. Gem Stapleton, Mateja Jamnik, and Atsushi Shimojima. What makes an effec-

tive representation of information: a formal account of observational advantages.
Journal of Logic, Language and Information, 26(2):143–177, 2017.

26. Matej Urbas and Mateja Jamnik. A framework for heterogeneous reasoning in
formal and informal domains. In T. Dwyer, H.C. Purchase, and A. Delaney, editors,
Diagrams, volume 8578 of Lecture Notes in Computer Science, pages 277–292.
Springer, 2014.

27. Matej Urbas, Mateja Jamnik, Gem Stapleton, and Jean Flower. Speedith: a dia-
grammatic reasoner for spider diagrams. In International Conference on Theory
and Application of Diagrams, pages 163–177. Springer, 2012.

28. Daniel Winterstein, Alan Bundy, and Corin Gurr. Dr. doodle: A diagrammatic
theorem prover. In International Joint Conference on Automated Reasoning, pages
331–335. Springer, 2004.

29. WordNet. wordnet.princeton.edu, 2010.

