
THEMIS: Fairness in Federated Stream Processing
under Overload

Evangelia Kalyvianaki
City University London

sbbj913@city.ac.uk

Marco Fiscato
Imperial College London

mfiscato@doc.ic.ac.uk

Theodoros Salonidis
IBM TJ Watson Research Center

tsaloni@us.ibm.com

Peter Pietzuch
Imperial College London

prp@imperial.ac.uk

ABSTRACT
Federated stream processing systems, which utilise nodes from mul-
tiple independent domains, can be found increasingly in multi-pro-
vider cloud deployments, internet-of-things systems, collaborative
sensing applications and large-scale grid systems. To pool resources
from several sites and take advantage of local processing, submitted
queries are split into query fragments, which are executed collabo-
ratively by different sites. When supporting many concurrent users,
however, queries may exhaust available processing resources, thus
requiring constant load shedding. Given that individual sites have
autonomy over how they allocate query fragments on their nodes,
it is an open challenge how to ensure global fairness on processing
quality experienced by queries in a federated scenario.

We describe THEMIS, a federated stream processing system for
resource-starved, multi-site deployments. It executes queries in
a globally fair fashion and provides users with constant feedback
on the experienced processing quality for their queries. THEMIS
associates stream data with its source information content (SIC),
a metric that quantifies the contribution of that data towards the
query result, based on the amount of source data used to gener-
ate it. We provide the BALANCE-SIC distributed load shedding
algorithm that balances the SIC values of result data. Our evalua-
tion shows that the BALANCE-SIC algorithm yields balanced SIC
values across queries, as measured by Jain’s Fairness Index. Our
approach also incurs a low execution time overhead.

1. INTRODUCTION
Federated stream processing systems (FSPSs) [14, 13] contin-

uously process data streams using computation and network re-
sources from several autonomous sites [9]. Submitted queries are
split into query fragments, which can be deployed across multiple
sites. For example, a cloud-based stream processing system may
span more than one cloud provider to benefit from lower costs,
higher resilience or closer proximity to data sources. In collabo-
rative e-science applications, FSPSs such as OGSA-DAI [3] and
Astro-WISE [1] pool resources from multiple organisations to pro-
vide a shared processing service for high stream rates and computa-
tionally expensive queries. Participatory sensing and smart city in-

.

frastructures [5, 31] require deployments of systems that combine
independent domains with distinct data or processing capabilities
for a large user base.

A challenge is that FSPSs are likely to suffer from long-term
overload conditions. As a shared processing platform with many
users, they can experience a “tragedy of the commons” [19] when
users submit more queries than what can be sustained given the
available resources. Instead of adopting a rigid admission policy,
which rejects user queries when available resources are low, it is
more desirable for an FSPS to use load-shedding techniques [33,
27]. Under load-shedding, the FSPS provides a best-effort service
by reducing the resource requirements of queries through dropping
a fraction of tuples from the input data streams.

Appropriate load shedding in an FSPS, however, is complicated
by the fact that individual sites are autonomous and may imple-
ment their own resource allocation policies. For example, a site
may prioritise queries belonging to local users at the expense of
external query fragments. Without coordination of load-shedding
decisions across sites, multi-site queries may experience significant
variations in processing quality, depending on the load distribution
across sites. It is therefore an open challenge how to ensure that
queries spanning multiple autonomous sites in an FSPS experience
globally fair processing quality under overload conditions.

Many stream processing systems support load shedding mecha-
nisms to handle overload conditions. Load shedding mechanisms
that operate at the granularity of individual nodes [33, 10, 35], how-
ever, cannot achieve fair shedding decisions for queries spanning
multiple nodes. Proposals for distributed load shedding [34, 44]
associate a utility function with query output rates and aim to max-
imise the sum of utilities, which is not a representative measure
of fairness. In addition, they assume special structure and a-priori
knowledge of utility functions. Load shedding decisions are con-
trolled by a centralised entity or are based on pre-computed shed-
ding plans—both of which are not practical in an FSPS in which
domains retain control. Operator-specific semantic shedding ap-
proaches for, e.g. joins [21, 26, 17], aggregates [10, 35] or XML
streams [38] cannot be applied in a federated context when users
employ diverse sets of operators or customised, user-defined ones.

We describe a new approach for distributed load shedding in an
FSPS that treats queries in a globally fair fashion. The key idea
is to define a query-independent metric to measure the quality of
processing that query fragments have experienced, and then to use
this information for load shedding:
(1) We associate stream data with a metric called source informa-
tion content (SIC), which represents the contribution of that data to
the result in a query-independent way. The SIC metric quantifies
the amount of source data that was used to generate a given query

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/231904321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

result data item. Intuitively, data that was aggregated over many
stream sources is considered to be more important to the final query
result. The SIC metric thus decouples processing quality from
the semantics of the operators and provides a query-independent
way to capture the quality of query processing with respect to tu-
ple shedding. This is particularly suited to accommodate a diverse
set of user queries that executes operators of various semantics and
even with user-defined operators.
(2) Overloaded nodes in the FSPS invoke a distributed semantic
fair load-shedding algorithm that aims to balance the SIC values of
query results across all queries, referred to as the BALANCE-SIC
fairness policy. This policy balances the SIC values of query re-
sults (i.e. maximises the Jain’s Fairness Index, a normalised scalar
metric that quantifies balance). It effectively utilises the process-
ing capacity of FSPS nodes, given the practical constraints of the
placement of queries on sites and their autonomy.

When queries are assigned across FSPS sites, it becomes chal-
lenging to control per-node tuple shedding and yet provide global
BALANCE-SIC fair processing. This stems from the fact that shed-
ding tuples at a node affects its resource availability and also the
processing quality of other queries. Since queries span across sites
and share resources, such effects are spread across sites, affecting
shedding decisions on the rest of the nodes. It is therefore non-
trivial to control tuple shedding globally in a federated setting.

In our approach, each node takes independent yet informed shed-
ding decisions about the overall processing quality of locally-hosted
queries. Queries provide continuous feedback on their processing
quality through the SIC metric. The shedding of tuples eventually
converges to global fairness as each node continuously adjusts its
shedding behaviour in response to that of other FSPS nodes.

To demonstrate the practicality of our fair load-shedding approach,
we describe THEMIS, an FSPS for overloaded deployments.1 Our
evaluation of THEMIS shows that: (a) the SIC metric captures the
result degradation across a variety of query types; (b) in contrast
to the baseline of random shedding, THEMIS achieves 33% fairer
query processing, according to Jain Fairness Index, even with skewed
workload distributions; and (c) our approach has low overhead and
scales well to the number of nodes and queries.

In summary, the contributions and the paper outline are:
1. a query-independent model and a metric called SIC for quan-

tifying the quality of stream processing based on the amount
of information contributed by data sources (§4) and a practi-
cal approximation for computing it (§6);

2. the definition of the BALANCE-SIC fairness in an overloaded
FSPS based on the processing quality of queries; and a dis-
tributed algorithm for globally BALANCE-SIC-fair semantic
load-shedding in an FSPS, which takes the loss of informa-
tion suffered by queries into account (§5);

3. the design and implementation of THEMIS, an FSPS that im-
plements efficiently the BALANCE-SIC fair load-shedding
policy (§6); and

4. results from an experimental evaluation that demonstrate that
the approach achieves fair query processing under various
workloads in a federated setting (§7).

1According to the Greek mythology, THEMIS is the Titan goddess
of law and order.

Paris

cloud-based
data center

Rome
governmental institute

data center

Mexicoresearch institute
data center

sensors

query
fragment

node

Figure 1: Example of a multi-site FSPS deployment for urban
micro-climate monitoring

2. OVERLOAD IN FEDERATED STREAM
PROCESSING

In this section, we describe the problem of fairness in query pro-
cessing, which arises in an overloaded FSPS. We identify the key
characteristics of an FSPS using an example application for query
data processing over micro-climate sensor-generated data (§2.1).
We then introduce the BALANCE-SIC fairness goal for an over-
loaded FSPS (§2.2) and discuss related work (§2.3).

2.1 Federated Stream Processing
Consider a use case of a globally-distributed FSPS for urban

micro-climate monitoring. Figure 1 shows a deployment of such
a system across three sites (i.e. Rome, Paris and Mexico), with en-
vironmental sensors as data sources. The FSPS collects data from
a range of sensors, such as air temperature, humidity and carbon
monoxide, and processes the data in real-time for analysis. Queries
are issued, e.g. by government agencies for urban planning, trans-
port authorities, citizens with respiratory problems and meteorolog-
ical researchers. A sample high-level data streaming queries may
continuously report: “the 10 highest values of carbon monoxide
concentration measurements on highways in Mexico every minute”
and “the covariance matrix between measurements of (temperature,
airflow) and (carbon dioxide, nitrogen) in Paris every 10 minutes”.

Each site consists of a data centre with physical nodes running a
local distributed stream processing system, and we assume seam-
less integration across all these systems at the federated sites [12].
Below, we provide a high-level overview of data stream process-
ing in an FSPS. Sources generate tuples for processing by queries.
Queries are subdivided into query fragments and deployed at one
or more sites. A query fragment consists of one or more operators,
and each fragment of the same query is deployed on a different
FSPS node. Query fragments use resources, i.e. CPU, memory,
disk space and network bandwidth, to process incoming tuples and
generate output tuples. Output tuples may be further processed by
fragments of the same query, until result tuples are sent to the user
issuing the query. Nodes share their resources among fragments
belonging to different queries.

Below, we identify three main characteristics regarding user be-
haviour and resource utilisation in such an FSPS:
C1. Skewed query workload distribution. Sites primarily host
queries of local users so the overall load distribution across sites
may be skewed, with some sites being more loaded than others. In
general, query fragments cannot be allocated uniformly across sites
due to local policy constraints or the reliance on local sources. For
example, queries using forecasting algorithms may be restricted to

running at a given site due to licensing constraints, which may limit
the number of authorised users or remote sites using the system.
C2. Permanent resource overload. Due to the shared nature of
an FSPS, we assume that the system is constantly overloaded, i.e.
its resources are lower than required for perfect execution of all
queries. In the above example, queries are issued by a large user
population, leading to high demand. A common strategy for an
FSPS to handle overload is to use tuple shedding [27, 33].
C3. Site autonomy. The collaborative nature of an FSPS means
that a site should accept incoming queries, even under high load.
However, sites belonging to different administrative domains are
managed autonomously. It is therefore infeasible to assume cen-
tralised control over all tuple shedding decisions, enforced across
all sites. Instead, sites elect to cooperate, having only a partial view
of all resource allocation decisions across the whole FSPS.

2.2 Fairness in FSPS
The problem of how to implement fair query processing arises

naturally in an overloaded FSPS. There exist many different ap-
proaches to address overload conditions. For example, admission
control rejects incoming queries under overload [41, 40]. Such
methods are not applicable in a federated context because the col-
laborative nature means that submitted queries must be accepted.
Other approaches redistribute operators for load balancing [43, 40,
42, 11]. However, query placement in an FSPS is typically con-
trolled by users, e.g. to leverage characteristics such as proximity.

We employ distributed load shedding to address overload con-
ditions in an FSPS. By using load shedding, we assume that users
agree to use the FSPS and receive degraded query processing for
their queries. We assume that users submit queries whose results
remain useful, even when their processing is degraded due to load
shedding, such as aggregates [10], including averages, counts as
well as top-k queries. Finally, we use distributed load shedding to
comply with site autonomy (see C3 in §2.1).

There are two challenges to implement distributed load shed-
ding. First, there is a need for a query-independent processing
metric to capture the impact of shedding on the quality of query
processing. Ideally, we require a measure for processing quality
that quantifies the processing degradation under shedding but is
query-independent, i.e. it does not have to be adapted manually to
the semantics of specific queries. With such a measure, it becomes
possible to compare the impact of tuple shedding across queries
and hence guide shedding decisions according to a fairness policy.
In §4, we introduce the SIC query-independent metric that captures
the quality of processing by measuring the contribution of source
tuples actually used for generating query results.

Second, depending on the deployment of query fragments to
sites, some queries may get more penalised due to overload than
others. We therefore want to achieve global fairness across all
queries by enforcing load shedding at all sites so that all queries
are equally penalised by the shedding. We achieve this by aiming
to equalise a fairness measure of all queries after shedding. It is a
challenge how to implement fairness across queries executing on
overloaded, distributed and autonomous sites, regardless of their
deployment. In §5, we present a new distributed load shedding al-
gorithm that maintains BALANCE-SIC fairness of queries.

2.3 Related Work
The research community recognises the need for FSPSs, explor-

ing relevant research challenges. Tatbul [32] argues for the inte-
gration of multiple stream processing engines for a variety of ap-
plications and pinpoints the challenges when dealing with hetero-
geneous query semantics. Botan et al. [12] present MaxStream, an

FSPS for business intelligence applications. Our focus instead is
on fairness in an overloaded FSPS using load shedding.
Centralised load shedding. Early proposals for load shedding fo-
cus on single-node systems [4, 33, 28]. A simple way to address
overload is through random shedding [33] that discards arbitrary
tuples. This baseline approach is easy to implement and has low
overhead, however, it cannot be used to control the shed tuples.

In contrast, semantic shedding discards tuples using a function
that correlates them with their contribution to the quality of the
query output [33]. Tuples are discarded in a way that maximises
result quality. Carney et al. [15] describe generic drop- and value-
based functions to quantify the contribution of tuples on the result.
A drop-based function specifies how the result quality of a query
decreases with the number of discarded tuples. Many systems dis-
card tuples as to maximise the output tuple rate [17, 34]. In some
cases, a value-based function correlates the query output quality
with the values of the output tuples [23]. In contrast, our goal is to
maximise the contribution of the source tuples used for processing.

There exist semantic load shedding approaches for specific oper-
ator types, such as joins [21, 26, 17], aggregates [10, 35] and XML
operators [38]. These approaches require domain knowledge of the
operator semantics, while we treat operators as black-boxes.
Distributed load shedding. The problem of distributed load al-
location has been studied for stream processing systems. Zhao et
al. [44] consider the allocation problem for applications with tasks
modelled as synchronous and asynchronous forks and joins, com-
menting that this approach can be applied to distributed stream pro-
cessing. Their work emphasises a theoretical framework for con-
vergence to an optimal solution and presents simulations over two
queries and three output streams. In contrast, we provide a fair
stream processing system based on the contributions of source tu-
ples and evaluate a prototype implementation.

Tatbul et al. [34] employ distributed shedding to maximise the
total weighted throughput of queries by computing the drop se-
lectivity of random or window drop operators inserted at the in-
put streams of a stream processing system. Shedding decisions
are made sequentially by each node along a query, starting from
the leaves and propagating through metadata up to the input nodes.
They assume identical queries layouts to nodes (e.g. all root com-
ponents are deployed on the same node), which is not applicable in
a federated system. Finally, the scalability of the approach remains
unclear, as the simulation-based evaluation only includes a hand-
ful of applications. In our prototype evaluation, we execute several
hundreds of queries across tens of nodes.

Both approaches [34, 44] perform load shedding to maximise
the sum of utility functions but sum maximisation does not achieve
fairness. In addition, they require utility functions of special struc-
ture (either linear weighted functions [34] or concave functions [44]
of rate), which does not capture query utility in practice. Finally,
they require a-priori knowledge of the utility functions, which is
challenging to estimate offline. In contrast, our approach targets
fairness without assuming specific, a-priori utility functions. The
only assumption is that the “utility” (as captured by the SIC metric)
decreases with shedding and is implicitly modelled during system
operation through the propagation and updating of the SIC metric
in the data tuples.

An important issue for load shedding is the selection of drop lo-
cations in a query plan [33, 10]. The most efficient way is to discard
tuples at upstream operators, close to sources [15, 20, 29]. This,
however, is difficult to do in an FSPS because it requires global
information about query plans that span multiple sites.

Metrics for query processing quality. The building block for a
fairness mechanism is a metric that quantifies the processing degra-
dation under shedding. A typical metric is the rate of query output
tuples [17, 34, 44]. This metric intuitively increases when the rate
of tuple shedding decreases. It remains unclear, however, how to
compare performance degradation across queries with different se-
mantics, which fundamentally may exhibit different output rates.

Our metric associates query performance with the contribution
of source tuples required for perfect processing, which is related to
the network imprecision metric (NI) [24] used in large-scale mon-
itoring systems. The NI metric estimates the percentage of nodes
available when calculating an aggregate value over a set of data
sources. In contrast, our metric operates at the granularity of indi-
vidual tuples and uses a time interval to reason about the impact of
source tuples on the result.
Approximate query execution [22, 28, 15, 10, 7, 6] has the goal to
reduce the resource footprint of queries by producing different, ap-
proximate answers compared to execution with abundant resources.
Existing techniques in this area change operator semantics [28, 26,
17, 16, 30, 39]—instead, we approach queries as black-boxes and
address overload by tuple shedding for fair processing.
Fairness. The notion of fairness in an FSPS remains largely un-
explored. In early work, Babcock et al. [10] study the problem
of load shedding across aggregation queries running over a single-
node streaming engine. Although they do not discuss fairness di-
rectly, the goal of their work is to minimise, and hence equalise, the
relative error caused by shedding for all queries. They employ a
performance metric that is tailored for sliding window aggregation
queries only. In a special case of their work, Zhao et al. [44] im-
plement a weighted proportional fairness scheme on output stream
rates. In contrast, we explore the concept of BALANCE-SIC fair-
ness in the context of an overloaded FSPS.

3. FEDERATED PROCESSING MODEL
In this section, we describe our system model for an FSPS.

Data model. A tuple t is a set of three elements (τ, SIC,V) where
τ is the tuple’s logical timestamp; SIC ∈ R+ is the source informa-
tion content meta-data, which we formally define in §4; and V is
the set of payload values according to the tuple’s schema. We use
the notations tτ , tSIC and tV to refer to the timestamp, meta-data
and payload values, respectively, of a tuple t. A stream of tuples is
an infinite, time-ordered sequence of tuples.
Query graph. A query q is a directed acyclic graph q = (O,M)
where O is the set of operators and M is the set of streams. An
operator takes one or more input streams and produces an output
stream of derived tuples. Derived tuples are denoted by tout. We
assume that, for each operator o ∈ O, there exists a time or count
window that atomically emits tuples for processing by o.

In the query graph, the direction of edges indicates the direction
of tuples flowing between operators. Certain operators in the query
graph are connected to a finite set of sources, which are denoted
by S and produce source tuples in time-variant rates. We assume
sources of different rates per query. Every source is connected to a
single operator in the query graph. We use ts to denote that tuple t
comes from source s ∈ S. The domain of source tuples across
sources S over time is given by TS . The timestamp tτ indicates
the time of tuple’s t generation either by a source or by an operator
in the case of a source or a derived tuple, respectively. There exists
one root operator in the query graph to emit the query result stream
containing result tuples for the user. Result tuples are denoted by
tr and the domain of result tuples is given by TR.

Query deployment. An FSPS consists of a set of nodes D with
heterogeneous resources. Each node d ∈ D corresponds to a differ-
ent autonomous site; without loss of generality, we focus on single-
node sites as typically nodes within a site have similar capacities.

Upon deployment, the query graph is partitioned into query frag-
ments that are disjoint sets of at least a single query operator. Each
query fragment is deployed on a different FSPS node, and a query
can span a subset or all of the FSPS nodes. We assume that query
division to fragments and mapping of fragments to FSPS nodes
are performed by the query user and remain the same throughout
a query’s execution. Finally, an FSPS node can host multiple frag-
ments of different queries.

4. SOURCE INFORMATION CONTENT
We introduce the source information content (SIC) metric to quan-

tify the quality of processing by accounting for the contributions of
source tuples towards result tuples.
Query processing. We consider queries as black-boxes. For each
query q, we use an abstract query function fq to describe the collec-
tive processing by all operators in O over source tuples to produce
result tuples, i.e. fq : TS → TR. A query function takes as input a
set of source tuples TS and outputs a set of result tuples T R gen-
erated from operators processing T S , i.e. fq(T S) = T R where
T S ∈ TS and T R ∈ TR. Our goal is to enumerate the tuples of
T S and so to measure any loss of these tuples due to shedding.
Source information content. We now formally introduce the source
information content (SIC) metric to quantify the information con-
tribution from sources to query results.

The SIC value of a source tuple tsSIC measures its contribution
to the result tuples in relation to the rest of tuples ∈ T S . We assign
the SIC value of a source tuple as:

tsSIC =
1

|T S
s ||S|

. (1)

Equation (1) captures our consideration that all source tuples from
a given source s, denoted by T S

s , are equally important for the
result. The more tuples a source generates, the less important each
individual tuple becomes because it can be regarded as an update,
e.g. multiple sensor readings at a higher sampling rate. Thus, the
SIC value of an individual source tuple ts is inversely proportional
to |T Ss | and is also normalised by the number of sources |S| in a
query for a query-independent metric.

For a query q, the SIC value of its result tuples, qSIC, is given by
the sum of the SIC values of all source tuples used for the genera-
tion of the result tuples, i.e. tuples that are not dropped:

qSIC :=
∑
ts∈T̃ S

tsSIC , (2)

where T̃ S ⊆ T S is the set of source tuples actually processed for
the result tuples. A source tuple is not used towards a result because
it (or a tuple derived from it) was discarded due to load shedding.

The SIC value of the query result, qSIC, lies in the range of [0, 1].
When qSIC = 1, the result is perfect, and all source tuples are pro-
cessed, T̃ S = T S . When qSIC ∈ (0, 1), the result is degraded, and
a subset of source tuples are missing. The shed tuples are given by
T S/T̃ S and fq(T̃ S) = T̃ R, where T̃ R ⊆ T R is the set of result
tuples derived from processing T̃ S . Finally, when qSIC = 0, all
source tuples were discarded, i.e. T̃ S = ∅.

However, it is challenging in practice to capture accurately the
sets T̃ S , T S , T̃ R and T R because source tuples are successively
transformed to derived tuples by operators and some are shed: de-

source
tuples

result
tuples

processed
tuple

SIC

STW

operator

derived
tuplesderived tuple

not being
generated due
to downstream

shedding

SIC

a

b c

0.125

0.125

0.25

0.25

0.5

0.5

0.25

0.25

0.125

0.125

0.25

0.25

shed
tuple

SIC

a

b c

0.125

0.125

0.25

0.25

0.5

0.5

0.25

0.25

0.125

0.125

0.25

0.25

without shedding with shedding

Figure 2: Example of SIC tuple values

rived tuples are “lost”, e.g. due to filters and joins, which only se-
lect a subset of their input tuples. In other cases, tuples contribute
to multiple derived tuples, e.g. sliding windows. Next, we intro-
duce a practical way to (i) identify the source and result tuples in
the corresponding sets of T S and T R such that fq(T S) = T R for
perfect processing; and (ii) to measure the contribution of source
tuples in T̃ S for degraded processing.
Source time window. We introduce the concept of a source time
window (STW), i.e. a period of time during which we account for all
generated source tuples to contribute to certain result tuples. More
formally, given a source tuple ts and a result tuple tr , ts ∈ T S
and tr ∈ T R and fq(T S) = T R if and only if there exists a time
index ρ such that ρ ≤ tsτ , t

r
τ ≤ ρ + STW. The duration of a STW

should cover the end-to-end processing latency to allow enough
time for source tuples to be processed by operators and produce
result tuples. We always select a STW with significantly higher
duration than the end-to-end latency, and it includes any network
latencies for multi-fragmented queries.
SIC propagation from source to result tuples. Using the STW, we
can calculate the query SIC value as in Equation (2). Rather than
adding up the contributions of source tuples, we follow a bottom-
up approach in which we propagate the SIC values of source tuples
from T S using derived tuples as they are processed by operators
during the period of a STW. We then add the contributions of result
tuples that contain the contributions of those source tuples actually
processed towards the result tuples.

First, we calculate the SIC contribution of every derived tuple tout:

tout
SIC =

∑
t∈T o

in

tSIC

|T oout|
, (3)

where T oin is the set of all input tuples processed atomically by oper-
ator o, producing a set of output tuples given by T oout during a STW.
Recall that in our model, we always consider a time or count win-
dow that atomically emits input tuples for an operator to process.
In this way, the SIC values of source tuples are gradually passed
from source tuples through derived tuples to result tuples. As de-
rived tuples are discarded, their SIC values are not accounted for
because they are not part of the set of input tuples T oin for operator
processing. Finally, the query SIC value of result tuples is:

qSIC :=
∑

tr∈T̃ R

trSIC, (4)

where we only consider result tuples tr ∈ T̃ R ⊆ T R that are
derived from source tuples ∈ T̃ S . The use of STW captures the
relationship between source and result tuples, i.e. fq(T̃ S) = T̃ R.
SIC example. Figure 2 provides a numerical example of the use of
SIC values on source, derived and result tuples, the use of a STW
and how result SIC values are calculated in the case of perfect pro-
cessing and shedding. It shows a query with three operators, a,
b and c. During a STW, operator b receives 4 source tuples and
outputs 2 derived tuples; operator c receives 2 source tuples and
outputs 2 derived tuples; and operator a receives 4 derived tuples
and outputs 2 result tuples. All SIC values for source tuples are nor-
malised to the 2 sources. Without shedding, qSIC = 1, T S contains
6 tuples in total and

∑
ts∈T S t

s
SIC = 4 ∗ 0.125 + 2 ∗ 0.25 = 1;

and, T R has 2 tuples and
∑
tr∈T R t

r
SIC = 2 ∗ 0.5 = 1. As-

suming that operator b sheds two of its input tuples and opera-
tor a sheds one of its input tuples (non-shed tuples are shown with
bold), then: qSIC =

∑
tr∈T̃ R t

r
SIC = 0.5 and

∑
ts∈T̃ S t

s
SIC =

0.125 + 0.125 + 0.25 = 0.5 because some of the source tuples do
not contribute to the result tuples T̃ R. Although not discarded, one
of the input source tuples of c does not contribute to the result tuple
since a derived output tuple of c is shed.

The SIC metric enables direct comparisons among queries us-
ing only their source tuples and without considering their seman-
tics. Such a query-independent metric is key to compare shedding
amongst queries and to define BALANCE-SIC fairness.

5. BALANCE-SIC FAIRNESS
Given a deployment of streaming queries in an overloaded FSPS,

the problem arises how to perform load shedding in a fair manner.
Shedding the same amount of data from all queries is not desirable
because different queries derive different utilities from the same
amount of data. In practice, such utilities may not be known a-
priori before actual system deployment. In addition, FSPS sites are
distributed and autonomous, and they must achieve global fairness
across queries in a fully decentralised manner.

We address the fairness problem by introducing the BALANCE-
SIC fairness objective. This objective seeks to equalise the queries’
SIC values while fully utilising all node resources. The SIC metric
represents the contribution of processed source tuples of a query to
produce its result. It also represents the degradation of query result
as opposed to the “perfect” result achieved with no load shedding.
Equalising SIC values of different queries leads to utility fairness—
each of the queries will generate degraded results to the same de-
gree with respect to no shedding of its data.

We introduce the BALANCE-SIC fairness distributed algorithm
(Algorithm 1) to enforce this objective. The algorithm performs
load shedding at each FSPS node to comply with site autonomy.
Depending on the deployment of query fragments to nodes, some
queries may be more penalised due to overload compared to oth-
ers. Given a deployment plan of queries to nodes, our goal is to
make all SIC values of query results to converge to the same val-
ues. Note that any converged SIC values would depend on several,
often time-changing, factors such as queries’ arrivals and depar-
tures, tuples rates and operators processing demands and hetero-
geneous nodes’ capacities. To this end, our algorithm strives to
opportunistically converge to equal SIC values while respecting
these constraints. Our algorithm drops tuples from input streams
to achieve BALANCE-SIC fairness and does so by selecting the tu-
ples with the highest SIC values to increase node’s utilisation with
fewer processed tuples.

Algorithm 1: BALANCE-SIC Stream Processing Fairness

1 /* all variables refer to a single node */
2 c := number of tuples a node can process
3 Q := set of running queries
4 T := set of tuples for a STW

5 foreach STW do
6 X = selectTuplesToKeep(c,Q);
7 shedTuples(T /X);

8 Procedure updateSIC(Q)
9 ∀ q ∈ Q update qSIC

10 Procedure selectTuplesToKeep(c,Q)
11 while c > 0 do
12 q′ = argminq∈Q(qSIC)
13 Q′ = Q/q′
14 q′′ = argminq∈Q′(qSIC , q

′′
SIC 6= q′SIC)

15 select set of tuples x from q′ with aggregate SIC value
xSIC :=

∑
t∈x tsic , such that:

16 min
(
(q′′SIC − (q′SIC + xSIC)),max(xSIC)

)
17 subject to (|x| < c)
18 c = c− |x|
19 X = X ∪ x
20 updateSIC(Q);

21 return X

22 Procedure shedTuples(T /X)
23 shed all tuples ∈ T /X

We first describe the algorithm operation on a single FSPS node.
We then describe how it achieves BALANCE-SIC fairness across
multi-fragment queries running on a multi-site FSPS.

5.1 Single node Balance-SIC fairness
Consider a node running a set of single-fragment queries, de-

noted by Q. Assume that the node’s capacity c is known and is
defined by the number of tuples that the node can process before
overloading during a STW (Assumption 1), i.e. a node is overloaded
when the total number of input tuples of all queries combined ex-
ceeds the node’s capacity as defined by the number of tuples to
process. In §6, we describe a cost model that estimates c in an
online fashion. Assume that, for each query q ∈ Q, the set of
its source tuples T S is known at the start of its STW (Assump-
tion 2), which means that the set of all T S from all q ∈ Q can
be defined as T . Note that these assumptions are made primarily
for the description of the Algorithm 1. In §6, we discuss practi-
cal ways to satisfy these assumptions. Extensive evaluation results
in §7 show that the implementation of our algorithm efficiently en-
forces the BALANCE-SIC fairness policy in an overloaded FSPS
despite these assumptions.

The BALANCE-SIC Algorithm 1 is executed each STW (lines 5–
7) and defines the set of tuples to shed so that all running queries
q ∈ Q converge to equal result SIC values for the current STW. For
simplicity, we consider all queries to have the same STW. The algo-
rithm first executes the procedure selectTuplesToKeep() (line 6)
to select the set of source tuples X to retain for processing so that
all qSIC values for all queries q ∈ Q converge to the same value.
Then, the algorithm sheds all remaining tuples i.e. T /X (line 7)
that cannot be processed due to limited capacity.

The procedure selectTuplesToKeep(c,Q) (lines 10–21) iter-
atively selects tuples to process from each query until the total

q1

20 t/s

q2 q3 q4

1/30

10 t/s 10 t/s 20 t/s

tSIC 1/20

30 t/s

1/10 1/20 1/40

iteration

source
rate

0 0 0.1

0 0.1 0.1 0 -, 3, -, -

0 -, -, 1, -

0.1 0.1 0.1 0 2, -, -, -

0.1 0.1 0.1 0.1 -, -, -, 3

0.1 0.133 0.1 0.1 -, 1, -, -

1

2

3

4

5

qSIC

node
q1 q2 q3 q4

accepted tuples

cumu-
lative

0 0 0 0 -, -, -, - +1

+3

+2

+1

+3

1

4

6

9

10

0

per query/iteration

Figure 3: selectTuplesToKeep() on a single node with c = 10

number of tuples to keep reaches the node’s capacity c. In each
iteration, the algorithm selects the two queries with the least qSIC
values, i.e. q′ and q′′ (lines 12–14). Given the lowest result SIC
query q′ (line 12), it selects as many tuples as required from q′ so
that q′SIC reaches the result SIC value of the second lowest query
q′′ (lines 15–16). If there is more that one query with the same
minimum SIC values, the algorithm selects one randomly. In case
the aggregate number of tuples to accept is higher than the node’s
capacity, the algorithm only accepts as many as possible without
exceeding the node’s capacity (line 17).

For each query, the algorithm keeps the tuples with the highest
SIC values, as shown in line 16 by max(xSIC). This maximises
the aggregate SIC value of a query with the least possible number
of tuples and so utilises nodes’ resources efficiently. The accepted
tuples are passed for processing and so q′SIC is updated (line 20 and
lines 8–9). We further explain in §5.2 the use of the Q argument
in updateSIC() (line 20). The loop terminates when the number
of accepted tuples reaches the node’s capacity as measured by c.
The remaining tuples T /X are discarded (line 7) as shown by the
function shedTuples() (lines 22–23).

The algorithm follows a gradient ascent approach to increase
gradually the result SIC values of all queries while minimising the
pairwise SIC differences of the two queries with the lowest SIC
values. Iteratively, the algorithm minimises the pairwise SIC differ-
ences of the lowest two queries—eventually all queries’ SIC values
will converge as long as there are enough tuples from all queries to
select (see Assumption 3).
Example of single node Balance-SIC fairness. Figure 3 shows
an example of a single node with capacity c=10 with 4 single-
fragment queries. Three of the queries have one source and query
q4 has two sources. Source rates and thus the normalised tuple tSIC
values are given. At the beginning, all queries have qSIC = 0.

At iteration 1, the algorithm selects q3 randomly to accept one tu-
ple and so q3SIC = 0.1 At iteration 2, the lowest query is randomly
selected to be q2 and the next highest is q3. The algorithm accepts
3 tuples from q2 so that q2SIC = q3SIC = 0.1. At iteration 3, 2 tu-
ples from q1 are accepted to match q1SIC = q2SIC = q3SIC = 0.1. At
iteration 4, the algorithm accepts 1 tuple from one of the q4 sources
and 2 tuples from the other source, i.e. q4SIC = 1

20
+ 2 ∗ 1

40
= 0.1.

After iteration 4, all queries’ SIC values converge to the same
value as they are all equal to 0.1. However, the node has remaining
capacity (9 < 10) to process one more tuple, and so the algorithm
accepts one more tuple (i.e. randomly from q2) to fully utilise the
node. The algorithm terminates after iteration 5 at which point the
number of accepted tuples reaches 10 and equals the node’s ca-
pacity. Eventually, three of the queries have exactly the same SIC
values i.e. q1SIC = q2SIC = q3SIC = 0.1 and q4SIC = 0.133.

q1

10 t/s

q2 q2 q3

1/10

10 t/s 10 t/s

tSIC 1/10

5 t/s

1/20 1/10

source
rate

0.1 0 0.05

0.1 0.1 0.05 0.1

0

0.1 0.2 0.1 0.1

0.2 0.2 0.1 0.2

0.2 0.3 0.15 0.2

1

2

3

4

5

qSIC per query fragment

accepted
tuples

cumulative

a

+1

1

2

3

4

5

node b, cb=5

+1

node a, ca=5

q1 q2 q3 b

0.1 0 0.05 01

0.1 0.1 0.05 0.12

0.2 0.1 0.05 0.23

0.2 0.2 0.1 0.24

iteration

w
ith

 u
pd
at
eS
IC
(Q
)

+1

+1 +1

+1

+1

w
ith

ou
t u

pd
at
eS
IC
(Q
)

0.3 0.2 0.1 0.35

iteration

0

0.1

0.1

0.2

0.2

0.05

0.15

0.3

0.3

0.45

0.1

0.1

0.1

0.2

0.2

1

2

3

4

5

1

2

3

4

5

0

0.1

0.2

0.2

0.3

0.05

0.15

0.15

0.3

0.3

0.1

0.1

0.2

0.2

0.3

1

2

3

4

5

+1

+1

+1+1

+1

+1

qSIC per query

q1 q3q2q2

+1

+1

+1
+1

+1

+1

+1

Figure 4: selectTuplesToKeep() on two nodes with ca=5 and
cb=5 tuples

This example highlights that, in practice, the algorithm may not
make all queries achieve exactly the same SIC values because of
the involved node capacities and tuple rates, but it opportunistically
tries to converge to equal SIC values.

5.2 FSPS Balance-SIC fairness
In the case of a multi-site FSPS, each node executes the same

Algorithm 1 (lines 5–7). There are two main differences in the
case of multi-fragment queries. First, the SIC value of a multi-
fragment query is affected by the tuple shedding performed on
other nodes. If such a query has the minimum SIC value among
all co-located queries on the same node, the following problem
emerges: all nodes running other fragments of these co-located
queries attempt to maximise the SIC values of the same minimum
SIC query, potentially overshooting and causing oscillations. To
address this problem, the algorithm explicitly updates the result
SIC value of the queries at each iteration so that all nodes eventually
become aware of each other’s shedding decisions (updateSIC(Q)
in line 20).

To better illustrate the use of updateSIC(Q) for global conver-
gence, we use the example in Figure 4 in which two nodes host
three queries in total and query q2 spans both nodes. The source
rates of all queries and the nodes’ capacities are shown in the figure.
The top part of the figure illustrates the execution of the BALANCE-
SIC without the use of the updateSIC(Q) function. In each iter-
ation, a node attempts to converge the SIC values of its running
queries in isolation. In case of ties, the algorithm selects a query
randomly. After iteration 5, the multi-fragment q2 query has the
highest result SIC value of all the single-fragment queries, and they
all have different result SIC values (q2SIC = 0.45 > q1SIC = 0.2 =
q3SIC = 0.2). This is because each node compares only the SIC
values of the fragments of its hosted queries.2

2We consider that fragments of a query graph have the same struc-
ture. The SIC value of a fragment corresponds to the SIC value
of the downstream operator, which outputs the tuples for the next
downstream fragment in the case of multi-fragment queries, or the
end-user in the case of a single-fragment query.

The bottom part of Figure 4 shows how the use of updateSIC(Q)
makes both nodes take informed shedding decisions for global con-
vergence. At the end of each iteration, both nodes are updated with
the result SIC values of their hosted queries and so become aware
of each others’ shedding decisions. In this case, the BALANCE-
SIC algorithm converges and all result SIC values become equal
(q1SIC = q2SIC = q3SIC = 0.3). The dissemination of the query SIC
result values to the FSPS nodes hosting the query fragments for
the use of updateSIC(Q) is performed by the query coordinator
described in §6.

In the description of the algorithm, we assumed no delays when
updating the result SIC value of a query to the nodes hosting its
query fragments: once a tuple is accepted by a query, its contri-
bution to the result SIC value is assumed to be instantaneous (As-
sumption 3). This assumption is for the purposes of the explanation
only—we provide a practical implementation in §6 to address de-
lays, and our evaluation results that show that the algorithm works
well with delayed updates in practice.

The second issue with multi-fragment queries is that an accepted
tuple on a node from a multi-fragment query may be discarded
by another node downstream, thus wasting processing resources
at an upstream node. Rather than using back-pressure [44], our al-
gorithm uses the actual SIC values of tuples to select the highest
available value. Since, in our model, the SIC metric captures the
importance of tuples, i.e. the higher the SIC value, the more impor-
tant is the tuple, the algorithm thus always keeps the most valuable
tuples (max(xSIC) in line 16).

The BALANCE-SIC algorithm aims to converge the SIC values
of all queries by exploiting the overlap of queries fragments across
nodes and by allowing each node to take informed shedding deci-
sions based on the result SIC values of its hosted queries. In this
way, nodes become aware of each others shedding decisions and
converge to global fairness across the set of FSPS queries with-
out centralised coordination. Our work considers FSPS in which
all nodes are implicitly connected through the fragmentation of
queries. This means that any accepted tuple on a node eventually
affects the shedding on any other node transitively.

6. BALANCE-SIC FAIRNESS IMPLEMEN-
TATION

Next we describe the integration of the BALANCE-SIC fairness
approach with our FSPS system called THEMIS. THEMIS imple-
ments the performance model from §4 and associates stream tuples
with meta-data about their SIC value. It uses this information for
shedding decisions according to the BALANCE-SIC fairness. This
section focusses on the practical aspects of the BALANCE-SIC fair-
ness approach. In particular, we explain how to weaken our previ-
ous assumptions and, in §7, we will give experimental evidence on
the convergence of the BALANCE-SIC algorithm. Figure 5 pro-
vides an overview of the architecture of a typical THEMIS node.
STW approximation. §4 introduced the STW concept as an in-
terval, which captures the relationship between source and result
tuples. The duration of the STW should exceed the end-to-end pro-
cessing latency of the system in order to allow source tuples to
be processed by all downstream operators. To model the continu-
ous nature of stream processing and the generation of tuples from
sources, THEMIS uses the concept of a sliding window to imple-
ment a STW, i.e. the STW logically slides continuously over time.
This approximation allows us to handle the continuous generation
of source tuples, relating them to result tuples.

There is a trade-off: the larger the STW size, the more unneces-
sary source tuples are part of it, i.e. ones that do not contribute to a

tuple
shedder

input buffer

threads executing
operators

output
tuples

input
tuples

overload
detector

Figure 5: Architecture of a typical single THEMIS node

given result tuple. We find empirically that a STW that is an order-
of-magnitude larger than the end-to-end processing delay and has
a small slide, leads to an acceptable SIC precision. Furthermore,
a large STW allows more tuples and therefore more queries to be
selected by the BALANCE-SIC algorithm for global convergence.
SIC maintenance. In THEMIS, tuples are associated with SIC val-
ues. Based on a relational streaming model [8], each tuple has fields
of a given schema. When an operator atomically outputs multiple
tuples, they are grouped together into a batch. A batch contains a
sequence of tuples preceded by a single header with the following
fields: (a) the SIC value; (b) a unique identifier of the query that
these tuples belong to; and (c) a timestamp of the tuple creation, in
case of source tuples, or, of their generation, for derived tuples.

The assignment of SIC values to source tuples is performed as
per Equation (1), which requires the number of source tuples per
source per STW T S

s and the number of sources. Although the
number of sources S per query is known a-priori—we consider
queries with fixed sources—calculating the number of tuples in
T S
s poses a challenge when source rates are unknown and time-

varying. THEMIS uses the STW approximation of sliding windows
to update the SIC values of all source tuples per slide online, before
passing these for processing to downstream operators. By using a
large STW and small slides, THEMIS can accurately capture time-
changing source rates, thus providing a practical solution to relax
Assumption 2 (see §5.1).

The assignment of SIC values to derived tuples is performed as
per Equation (3), which requires the sets of input and output tuples.
These groups are identified easily for tumbling windows before an
operator emits tuples atomically for processing. In the case of slid-
ing windows, we also provide a practical way to divide the SIC
value of an input tuple across all its derived tuples per slide.

The dissemination of query result SIC values to nodes that host
query fragments (i.e. updateSIC() in Algorithm 1) is performed
by a logically-centralised query coordinator component. It is in-
stantiated when a new query is deployed, and it is responsible for
the query management during its lifecycle.
Overload detection. Each THEMIS node has an input buffer (IB)
queue (Figure 5) in which all incoming tuples await processing.
When the tuple arrival rate exceeds the node’s capacity, the size of
the IB grows, and the node overloads. To address overload, a node
has an overload detector and a tuple shedder component.

The overload detector periodically checks the size of the IB.
When its size exceeds a threshold c, the overload invokes the tu-
ple shedder to discard excess tuples from the IB. The IB threshold
represents the number of tuples that the node can process during a
shedding interval. Its value changes and is estimated online based
on a cost model. The tuple shedder discards batches until the size
of the remaining tuples in the IB reaches c, as in Algorithm 1.

In case a node is momentarily not overloaded, THEMIS processes
all tuples for all hosted queries. In this case, the BALANCE-SIC
algorithm is independently invoked on all other overloaded nodes
to balance SIC values across all FSPS nodes.
Cost model. The IB threshold depends on the properties of the op-
erators. We adopt a cost model to calculate the average processing

Aggregate workload
AVG: average value of tuples every sec:

Select Avg(t.v) from Src[Range 1 sec]
MAX: maximum value of tuples every sec:
Select Max(t.v) from Src[Range 1 sec]

COUNT: no of tuples with values ≥ 50 every sec.
Select Count(t.v) from Src[Range 1 sec]

Having t.v ≥ 50
Complex workload

AVG-all: average CPU usage of nodes every sec.
Select Avg(t.v) from AllSrc[Range 1 sec], (13 ops)

TOP-5: top 5 nodes with largest available
CPU and free memory ≥ 100 MB every sec.

Select Top5(AllSrcCPU.id)
From AllSrcCPU[Range 1 sec],

AllSrcMem[Range 1 sec]
Where AllSrcMem.free >= 100, 000 and
AllSrcCPU.id = AllSrcMem.id, (29 ops)

COV: covariance of CPU usage of two nodes every sec.
Select Cov(SrcCPU1.value, SrcCPU2.value)

SrcCPU1[Range 1 sec], SrcCPU2[Range 1 sec], (5 ops)

Table 1: Queries in CQL-like [8] syntax. Src represents a single
source stream. AllSrc shows the union of multiple streams. For
the complex queries, the number of operators/fragment is shown.

time spent on a tuple (see Assumption 1 in §5.1). This is calculated
based on the number of processed tuples between successive invo-
cations of the overload detector. We use a moving average over past
estimations to calculate the average time required to process a tu-
ple. Based on the time until the next invocation of the shedder, we
estimate c. Our cost model works independently from the node’s
hardware capacity. It estimates online the processing capacity of
any node as the average processing time per tuple. More complex
cost models [37, 26] have been proposed, but they only apply to
specific operator semantics.
Tuple shedder. The tuple shedder executes Algorithm 1 in each
shedding interval. The interval is a fixed configuration parameter
and sets a bound on the maximum waiting time of tuples in the IB.
For low latency processing, it should be set to a short interval, e.g.
a few hundred milliseconds. Setting a very low threshold, however,
incurs a higher overhead. In §7.2, we evaluate the impact of the
shedding interval on BALANCE-SIC fairness.

To reduce the impact of delays when disseminating the result
SIC values by the query coordinator to nodes hosting query frag-
ments, the load shedder estimates the result SIC values of queries
based on its local shedding. The shedder assumes that all batches
in the IB are discarded and then estimates the effect of discarding
them on the result SIC values. It subtracts the sum of the SIC val-
ues of batches from the current updated query result SIC. In this
way, it projects the effect that its shedding will have on the result
SIC value. Furthermore, the periodic invocation of the shedder en-
ables it to make informed decisions across a STW in a step-by-step
fashion. In this way, THEMIS captures the real-time nature of tuple
processing and any further downstream shedding that must con-
sider the query result SIC value. The above heuristics enables us to
address Assumption 3 (see §5.2) on zero delays between shedding
and updating the result SIC values. Evaluation results show that
FSPS queries converge to BALANCE-SIC fairness.

7. EVALUATION
We now evaluate the BALANCE-SIC fair processing under over-

load in an FSPS. The goals of the evaluation are to demonstrate:

Local test-bed
Server
spec.

3 servers with 1.8 Ghz CPU, 4 GB mem,
Linux 2.6.27-17-server, 1 Gbps LAN

THEMIS
deployment

1 source node, 1 query submission node, 1
processing node

source
rate

400 tuples/sec in 5 batches/sec of 80 tu-
ples/batch per source

Emulab test-bed
Server
spec.

25 servers with 3 Ghz CPU, 2 GB mem,
Linux RedHat 9, 1 Gbps LAN

THEMIS
deployment

3 source nodes, 3 query submission nodes,
up to 18 processing nodes

source
rate

150 tuples/sec in 3 batches/sec of 50 tu-
ples/batch per source

Table 2: Set-up of experimental test-beds

1. the correlation of the SIC metric with result correctness
when query processing is degraded due to load shedding (§7.1).
The results show that the SIC metric captures result correctness
across different types of queries and data distributions;

2. the effectiveness of the BALANCE-SIC fairness algorithm in
reducing the spread of SIC values across queries (§7.2). The re-
sults show that our approach is fairer than random shedding: for
a mixture of multi-fragment queries deployed across 18 nodes,
it has a 33% higher Jain’s Fairness Index metric. We also demon-
strate convergence for different shedding intervals;

3. the scalability of the fairness algorithm (§7.3). We show that
the algorithm maintains fair query shedding with an increasing
number of nodes and queries;

4. the impact on burstiness and wide-area networks (§7.4) in
applying BALANCE-SIC fairness is minimal;

5. the comparison against related work (§7.5). We show that
our approach outperforms [34] and works agnostically in terms
of the output utility function as opposed to [44], which leads to
fairer allocations in complex deployments; and

6. the overhead of our fair shedder implementation (§7.6). We
provide evidence that the load shedder increases the execution
time of a base random shedder by only 11%.

Experimental set-up. We use queries from two workloads, an ag-
gregate and a complex workload as described in Table 1. Aggre-
gate queries operate on a single source and perform basic aggregate
functions; the complex workload implements a set of queries for
monitoring the health of data center servers. It consists of monitor-
ing queries over multiple sources, composed of various operators
including average, max, top-k, group-by, filter, join and covariance.

The queries from the complex workload are split into fragments
for multi-site deployment, as follows. Each fragment connects to
sources and contains the same operators, performing equivalent
processing as a single-fragment query in an incremental fashion.
An AVG-all fragment connects to 10 sources; a TOP-5 fragment
connects to 20 sources; and a COV fragment connects to 2 sources.
The number of operators per fragment are shown in Table 1. For ex-
ample, the most complex TOP-5 fragment consists of 29 operators,
i.e. 10 CPU source data receivers, 10 memory receivers, 1 filter,
3 time windows, 2 averages, 1 join, 1 top-k and 1 output operator.

The query graphs, when running, are organised in two different
ways: (1) in the case of the AVG-all query, a root fragment is con-
nected to all other fragments and centrally aggregates partial results
towards the final result forming a tree; and (2) for TOP-5 and COV
queries, fragments form a chain, and the last fragment in the chain
outputs the query result. Such graphs enable us to evaluate the ef-

fect of downstream shedding and the estimation of the result SIC
values by the tuple shedder across two different query graphs.

Queries process either synthetic or real-world datasets. The data
in the synthetic dataset follows either a gaussian, uniform or ex-
ponential distribution, with a mean of 50. We also use a mixed
synthetic dataset, with values randomly chosen from any of the
previous distributions. The real-world dataset are measurements
of CPU and memory-related utilisation from PlanetLab nodes, as
recorded by the CoTop project [36].

Table 2 describes our two local and Emulab [2] test-beds. We use
the local test-bed for the SIC correlation to result correctness. We
use the Emulab test-bed for the fairness and scalability experiments
where all nodes are located within the same 100-Mbps LAN with a
star topology and 5 ms of delay between nodes.

In all experiments, we set the STW duration to 10 secs and the
shedding interval to 250 ms. The size of the STW should be set
to an order of magnitude larger than the end-to-end processing de-
lay across all queries, which emit new result tuples every 1 sec. We
determined empirically that larger STW values do not effect the cor-
rect query SIC calculation. We deploy 10 TOP-5 queries with two
fragments, and we measure their SIC values over STW set to 10 and
100 secs. In these underloaded cases, results show that the aver-
age SIC values across queries correctly measure perfect processing:
0.9700± 0.0064 and 1.0086± 0.0034, respectively. Therefore, we
set the duration of the STW to 10 sec. In the rest of the paper, we
report results over 5 minutes of execution after query deployment.

7.1 SIC Correlation
When using the SIC metric to provide feedback on processing

quality, it is important that its value is correlated with the result
error: a higher SIC value should indicate that the query result is
closer to the perfect result.

We evaluate this correlation for different types of queries and
source data. We use the local test-bed to deploy queries from the
aggregate workload and the TOP-5 and COV queries from the com-
plex workload. For each query type, we increase the number of
queries on a single node to emulate different degrees of overload.
For the aggregate workload and the COV queries, the source rate
is 400 tuples/sec and, for the TOP-5 query, it is 20 tuples/sec. The
node uses a shedder that discards tuples randomly every 250 ms.

Figure 6 shows the correlation between the result correctness and
the SIC values for the aggregate workload. We quantify correctness
by comparing to perfect processing. We report the mean absolute
error, which quantifies the relative distance of the degraded result
values, t̃rV from the perfect values, trV for all result tuples n:(∑

∀tr

∣∣∣ t̃rV − trV
trV

∣∣∣) /n
The results show that, when the SIC values increase, the error

decreases, which indicates that the degraded results approach the
perfect results. Depending on the query type, this correlation is
stronger (e.g. for COUNT) or weaker (e.g. for AVG).

For the AVG query in Figure 6(a), we observe small changes
in the error after shedding because the average value of the un-
derlying data distribution does not significantly change. For the
COUNT query in Figure 6(b), however, the error is substantially
higher because degraded processing discards tuples proportionally
to the overload condition. For the MAX query, there is a small
error for the synthetic dataset, which increases for the mixed and
real-world datasets. As for the AVG query, the maximum value of
the synthetic dataset does not change significantly when some data
is discarded, which is not the case for the real-world dataset.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

m
e
a
n
 a

b
s
o
lu

te
 e

rr
o

r

SIC values

gaussian
uniform
exponential
mixed
planetlab

(a) AVG queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
e
a
n
 a

b
s
o
lu

te
 e

rr
o

r

SIC values

gaussian
uniform
exponential
mixed
planetlab

(b) COUNT queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

m
e
a
n
 a

b
s
o
lu

te
 e

rr
o

r

SIC values

gaussian
uniform
exponential
mixed
planetlab

(c) MAX queries

Figure 6: Correlation of SIC metric with result correctness for the aggregate query workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

K
e

n
d

a
ll'

s
 d

is
ta

n
c
e

SIC values

gaussian
uniform
exponential
mixed
planetlab

(a) TOP-5 queries

0

100

200

300

400

 0 0.2 0.4 0.6 0.8 1

s
td

SIC values

gaussian
uniform
exponential
mixed
planetlab

(b) COV queries

Figure 7: SIC correlation with results for the complex workload

Next, we consider the SIC correlation for the complex workload.
For the TOP-5 query, we calculate the error between perfect and
degraded results using the Kendall’s distance metric [18]. It counts
the differences—i.e. permutations and elements in only one list—of
pairs of distinct elements between two lists. We plot the normalised
Kendall’s distance with a maximum error of 1.

For the COV query, we discard source data at random, which
produces a series of sample covariance values. Since these values
are random, their expected value should match the real covariance,
obtained through perfect processing. We can estimate the deviation
of the values from the perfect value through the standard deviation.

The results in Figure 7 show that there is a significant correla-
tion. As the result SIC value increases, the distance/error to the per-
fect result decreases. For example, the TOP-5 query shows similar
behaviour across synthetic and real-world datasets. For the COV
query, the error is more prominent in the real-world than the syn-
thetic dataset because discarding values from the synthetic distribu-
tion does not significantly change the covariance of the distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

30 60 90 120
150

180
210

240
270

300
330

 0

 0.2

 0.4

 0.6

 0.8

 1

m
e

a
n

 S
IC

J
a

in
's

 i
n

d
e

x

number of quries

mean
Jain's index

Figure 8: Single-node fairness

7.2 Balance-SIC Fairness
Next we evaluate the effectiveness of the BALANCE-SIC fair-

ness approach to converge the result SIC values of queries. We
start by validating that our approximation of the STW allows the
algorithm to converge to BALANCE-SIC fairness on a single node.
We also explore the behaviour of the algorithm for different shed-
ding intervals. We continue to evaluate our approach in the case of a
multi-node deployment, comparing to the baseline of random shed-
ding. Finally, we study the effect of the ratio of multi-fragmented
queries on the level of achieved fairness.

To measure the effectiveness of the BALANCE-SIC fairness ap-
proach, we use the Jain’s Fairness Index metric [25]:

Jain’s index :=

(∑
∀q∈Q qSIC

)2
|Q| ∗

∑
∀q∈Q(qSIC)

2 ,

whereQ is the set of queries executed by the FSPS. Intuitively, the
metric captures the proportion of queries whose differences in SIC
values are small. The Jain’s index values range from 1/|Q| to 1;
the higher the value, the fairer the system. When its value is 1, all
queries have the same result SIC value.
Source time window approximation. We first explore the con-
vergence of our algorithm to BALANCE-SIC fairness, validating
the use of sliding window STW (see §6). We deploy queries of the
complex workload on a local test-bed node. Over the course of this
experiment, we did not observe any oscillation of SIC values and
the standard deviation of values remained low.

Figure 8 shows that, with more queries, the load on the node in-
creases, and the mean SIC values across queries decreases when
more tuples are discarded. Our approach equalises the SIC val-
ues as shown by the Jain’s index values close to 1. These results
indicate that, even under extreme overload, i.e. when the total in-
coming input rate for all queries is 528,000 tuples/sec, the mean
SIC value drops to values around 0.1 and the majority of the tuples
are dropped, our approach can enforce fairness across queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 100 150 200 250

 0

 0.2

 0.4

 0.6

 0.8

 1
m

e
a

n
 S

IC

J
a

in
's

 i
n

d
e

x

interval in msecs

mean

Jain's index

Figure 9: Shedding interval

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.4 0.6 0.8 1.0
 0

 0.2

 0.4

 0.6

 0.8

 1

m
e

a
n

 S
IC

J
a

in
's

 i
n

d
e

x

ratio of queries with 3 fragments

mean
Jain's index

Figure 11: Fairness for multi-fragmented queries

Shedding interval. We study the effect of different shedding in-
tervals, as shown in Figure 9. The shedding interval corresponds
to the slide of the STW. In each case, we deploy 200 queries from
the complex workload on 6 nodes, and each query has between
1 and 3 fragments. The results show that our algorithm achieves
fair shedding regardless of the shedding interval, as shown by the
close values for the mean and high values Jain’s index metric.
BALANCE-SIC fairness across multiple nodes. Next, we deploy
our fair shedding approach across 18 nodes. As we do not know the
optimal fairness solution, we compare against random shedding as
a practical baseline. We deploy multi-fragment, complex queries.
We report results as we vary the number of fragments per query
from 1 to 6 and when queries have a random number of fragments
between 1 and 6 (mixed case). In all cases, the total number of
fragments is the same, approximately 2,000.

Figure 10 shows that the BALANCE-SIC fair shedder provides a
fairer solution in all cases compared to the random shedder. For
the most realistic mixed workload, BALANCE-SIC is 33% bet-
ter than the random approach, according to the Jain’s index. In
addition, BALANCE-SIC reduces the spread of SIC values across
queries, as shown by the standard deviation (std) in Figure 10(b).
The BALANCE-SIC shedder accepts tuples from the most degraded
queries while it sheds tuples from the least degraded ones. In do-
ing so, it better utilises resources towards processing more valuable
source tuples, as supported by the increased mean SIC values in
Figure 10(c). In contrast, the random shedder blindly sheds tuples
regardless of their upstream processing.
Multi-fragmentation. We rely on query fragmentation to achieve
our fairness. We study the effect that different ratios of multi-
fragmented queries have. We vary the ratio of three-fragment over
single-fragment queries from the complex workload across 10 nodes.
The total number of fragments is about 2,000, and each node has
roughly the same load. Figure 11 shows that, when more queries
are multi-fragmented, the BALANCE-SIC fairness algorithm con-
verges to a fairer system, as more queries span nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

9 12 18 24

 0

 0.2

 0.4

 0.6

 0.8

 1

m
e

a
n

 S
IC

J
a

in
's

 i
n

d
e

x

number of nodes

mean

Jain's index

Figure 12: Fairness for increasing number of nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

180
240

300
360

420
480

540
600

660
720

780
840

900

 0

 0.2

 0.4

 0.6

 0.8

 1

m
e

a
n

 S
IC

J
a

in
's

 i
n

d
e

x

number of queries

mean
Jain's index

Figure 13: Fairness for increasing number of queries

7.3 Scalability
Next we evaluate the scalability of the BALANCE-SIC fairness

algorithm. First we increase the number of nodes while hosting
a constant number of 500 queries. We deploy queries from the
complex workload and vary their fragments randomly from 1 to 6.
Fragments are deployed according to a Zipf distribution.

As shown in Figure 12, BALANCE-SIC manages to utilise the
increasing number of nodes as the mean SIC values increase. In all
cases, our approach sheds tuples fairly, as the Jain’s index metric
approaches to 1. In Figure 13, we increase the number of queries
for a fixed deployment on 18 nodes. The results show that, with
more queries, tuples are discarded fairly. This is even the case
when the large number of queries strain the resources of the sys-
tem, decreasing the mean SIC value.

7.4 Burstiness and wide-area networks
We evaluate BALANCE-SIC fairness with bursty sources over a

wide-area network, referred to as FSPS. We deploy THEMIS over
a network with 4 nodes, and we emulate wide-area latencies be-
tween nodes of 50 ms. To introduce bursty source rates, we modify
sources so that 10% of the time they generate tuples at 10× their
normal rate. We also deploy queries on a LAN without burstiness
as a baseline. We deploy queries from the complex workload with
two query fragments, which are randomly assigned to nodes.

Figure 14 shows the average SIC values of queries after carrying
out BALANCE-SIC shedding. The results show that, regardless of
the deployment set-up, the average SIC values remain similar. This
indicates that THEMIS can achieve BALANCE-SIC fairness in the
presence of bursty sources and variation in nodes’ latency.

7.5 Comparison against related work
We compare against the work on distributed data stream pro-

cessing allocation from [34] and [44]. Both formulate a centralised
optimisation problem: [34] maximises the sum of the outputs of
weighted queries, and [44] maximises the sum of the utilities of
query outputs. Both approaches rely on a-priori knowledge of query

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6 mixed

J
a

in
’s

 i
n

d
e

x

number of fragments

BALANCE-SIC fairness
random

(a) Jain’s index

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6 mixed

s
td

number of fragments

BALANCE-SIC fairness
random

(b) std

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6 mixed

m
e

a
n

 S
IC

 v
a

lu
e

number of fragments

BALANCE-SIC fairness
random

(c) mean

Figure 10: Comparison of BALANCE-SIC fairness against random tuple shedding

 0

 0.2

 0.4

 0.6

 0.8

 1

LAN FSPS LAN
bursty

FSPS
bursty

m
e

a
n

 S
IC

deployment

20 queries
40 queries

Figure 14: Fairness with source burstiness and wide-area latencies

parameter values. To address this limitation, we use the THEMIS
cost model to calculate any unknown values.

We formulate the centralised problem of a fixed query deploy-
ment that closely matches the simple set-up used in the evaluation
of [34]. It consists of two nodes and multiple two-operator queries
in which all operators connecting to sources are collocated on the
same node. We use 60 AVG-all queries of two fragments running
on 2 nodes. As in [34], we use the GLPK tool to solve the optimi-
sation problem. The optimal solution allows 3 out of the 60 queries
to process all of their input tuples: one query discards a fraction of
its input tuples; and all the other queries discard all of their tuples,
which is clearly not a fair solution. This optimisation problem is
not formulated to balance the throughput across queries (although
all queries weights are set to 1).

To compare with [44], we first solve the problem for the same
simple set-up of [34] as above, using the formulation of [44] and
logarithmic output utility functions. For this simple set-up, [44]
yields a fair solution as our approach. We further compare using a
complex deployment of 20 AVG-all queries (3 fragments each), 20
COV and 20 TOP-5 queries (2 fragments each), and randomly de-
ploying their fragments on 4 nodes. The solution of [44] is obtained
using Matlab and the Jain’s fairness index for the resulting utilities’
distribution (normalised log-output rates) equals 0.87. This solu-
tion is less fair than our BALANCE-SIC solution where the Jain’s
fairness index for the resulting SIC values equals to 0.97, which is
close to perfect fairness. Note that the solutions based on [34] are
only applicable to concave utility functions.

Both approaches [34, 44] aim to solve the distributed shedding
problem for specific deployments, and they rely on a-priori knowl-
edge of values. Although [44] gives a fair allocation in simple
deployments, with complex deployments and varying workloads,
BALANCE-SIC provides a fairer allocation.

7.6 Overhead
We finally consider the overhead of BALANCE-SIC in terms of

additional meta-data bytes and shedder execution time. In our pro-

totype implementation, we use 10 bytes to store the SIC value per
batch, which is a small amount compared to actual stream data.

In addition, our fair load shedder increases execution time only
insignificantly compared to a random shedder. The average exe-
cution time per batch spent by the fair and the random shedders
for the mixed workload (see Figure 10) are 0.088±0.26 msec and
0.079±0.32 ms, respectively. In summary, the BALANCE-SIC shed-
der incurs a 11% overhead.

Finally, each query coordinator submits the result SIC values to
a query fragment as needed by updateSIC() in Algorithm 1. This
creates a message of 30 bytes, which is sent at regular intervals to
all query fragments. In the evaluation, we used intervals of 250 ms
to match the shedding interval for update shedding. The additional
data sent between nodes because of this operation is negligible
when compared to high tuple rates in data stream processing.

8. CONCLUSIONS
It will be increasingly important to handle long-lasting overload

in federated stream processing systems (FSPSs). This requires new
decentralised designs to provide fairness in queries processing.

We describe a new fairness model for FSPSs under overload. We
associate tuples with their source information content (SIC), i.e. the
amount of information from data sources that they contain. This
approach quantifies the perceived contribution of a tuple, without
being dependent on processing semantics. We provide evidence
that the contribution of source tuples is correlated with the quality
of query results. We provide a new definition of BALANCE-SIC
processing fairness in the context of FSPSs according to SIC values
and describe a distributed algorithm that enables individual sites in
an FSPS to perform BALANCE-SIC fair tuple shedding, reducing
the skew in experienced processing quality.
Acknowledgments. This research work was partially supported by
the EPSRC DISSP grant (EP/F035217/1), and the U.S. Army Re-
search Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-06-3-0001.

9. REFERENCES
[1] Astronomical Wide-field Imaging System for Europe.

http://www.astro-wise.org/.
[2] Network Emulation Testbed. http://www.emulab.net.
[3] OGSA-DAI: Open Grid Services Architecture.

http://ogsadai.org.uk/.
[4] D. J. Abadi, D. Carney, et al. Aurora: A New Model and

Architecture for Data Stream Management. VLDB, 12(2),
2003.

[5] K. Aberer, M. Hauswirth, and A. Salehi. A Middleware for
Fast and Flexible Sensor Network Deployment. In VLDB,
2006.

[6] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan,
S. Madden, B. Mozafari, and I. Stoica. Knowing when
You’Re Wrong: Building Fast and Reliable Approximate
Query Processing Systems. In SIGMOD, 2014.

[7] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In EuroSys,
2013.

[8] A. Arasu, S. Babu, and J. Widom. The CQL Continuous
Query Language: Semantic Foundations and Query
Execution. VLDB, 15(2), 2006.

[9] A. Avetisyan, R. Campbell, et al. Open Cirrus: A Global
Cloud Computing Testbed. Computer, 43(4), 2010.

[10] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. In ICDE, 2004.

[11] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-based Load Management in Federated Distributed
Systems. In NSDI, 2004.

[12] I. Botan, Y. Cho, R. Derakhshan, N. Dindar, L. Haas,
K. Kim, and N. Tatbul. Federated Stream Processing Support
for Real-Time Business Intelligence Applications. In
Enabling Real-Time Business Intelligence, volume 41. 2010.

[13] I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J. Miller,
and N. Tatbul. SECRET: A Model for Analysis of the
Execution Semantics of Stream Processing Systems.
PVLDB, 3(1-2), 2010.

[14] I. Botan and Y. C. et al. Design and Implementation of the
MaxStream Federated Stream Processing Architecture.
Technical Report 632, ETH, 2009.

[15] D. Carney, U. Çetintemel, et al. Monitoring Streams: A New
Class of Data Management Applications. In VLDB, 2002.

[16] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.
Approximate Query Processing using Wavelets. VLDB,
10(2), 2001.

[17] A. Das, J. Gehrke, and M. Riedewald. Approximate Join
Processing over Data Streams. In SIGMOD, 2003.

[18] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. In SODA, 2003.

[19] H. Garrett. The Tragedy of the Commons. Science,
162(3859), 1968.

[20] B. Gedik, K.-L. Wu, and P. Yu. Efficient Construction of
Compact Shedding Filters for Data Stream Processing. In
ICDE, 2008.

[21] B. Gedik, K.-L. Wu, P. Yu, and L. Liu. GrubJoin: An
Adaptive, Multi-Way, Windowed Stream Join with Time
Correlation-Aware CPU Load Shedding. TKDE, 19(10),
2007.

[22] L. Golab and M. T. Özsu. Issues in Data Stream
Management. SIGMOD Rec., 32(2), 2003.

[23] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive Stream
Resource Management using Kalman Filters. In SIGMOD,
2004.

[24] N. Jain, P. Mahajan, et al. Network Imprecision: A New
Consistency Metric for Scalable Monitoring. In OSDI, 2008.

[25] R. Jain, D. Chiu, and W.Hawe. A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in
Shared Computer System. Technical Report 301, DEC, 1984.

[26] J. K. Jeffrey, J. F. Naughton, and S. D. Viglas. Evaluating
Window Joins over Unbounded Streams. In ICDE, 2003.

[27] B. B. Mayur, B. Babcock, M. Datar, and R. Motwani. Load
Shedding Techniques for Data Stream Systems. In MPDS,
2003.

[28] R. Motwani, J. Widom, et al. Query Processing, Resource
Management, and Approximation in a Data Stream
Management System. In CIDR, 2003.

[29] C. Olston, J. Jiang, and J. Widom. Adaptive Filters for
Continuous Queries over Distributed Data Streams. In
SIGMOD, 2003.

[30] F. Reiss and J. M. Hellerstein. Data Triage: An Adaptive
Architecture for Load Shedding in TelegraphCQ. In ICDE,
2005.

[31] I. Schweizer, C. Meurisch, et al. Noisemap - Multi-tier
Incentive Mechanisms for Participative Urban Sensing. In
PhoneSense, 2012.

[32] N. Tatbul. Streaming Data Integration: Challenges and
Opportunities. In ICDEW, 2010.

[33] N. Tatbul, U. Çetintemel, et al. Load Shedding in a Data
Stream Manager. In VLDB, 2003.

[34] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying FIT:
Efficient Load Shedding Techniques for Distributed Stream
Processing. In VLDB, 2007.

[35] N. Tatbul and S. Zdonik. Window-Aware Load Shedding for
Aggregation Queries over Data Streams. In VLDB, 2006.

[36] The PlanetLab Consortium. PlanetLab.
http://www.planetlab.org, 2004.

[37] S. Wang and E. Rundensteiner. Scalable Stream Join
Processing with Expensive Predicates: Workload
Distribution and Adaptation by Time-slicing. In EDBT, 2009.

[38] M. Wei, E. A. Rundensteiner, and M. Mani. Utility-Driven
Load Shedding for XML Stream Processing. In WWW, 2008.

[39] M. Wei, E. A. Rundensteiner, and M. Mani. Achieving High
Output Quality Under Limited Resources Through
Structure-based Spilling in XML Streams. PVLDB, 3(1-2),
2010.

[40] J. Wolf, N. Bansal, et al. SODA: An Optimizing Scheduler
for Large-Scale Stream-Based Distributed Computer
Systems. In Middleware, 2008.

[41] C. H. Xia, D. Towsley, and C. Zhang. Distributed Resource
Management and Admission Control of Stream Processing
Systems with Max Utility. In ICDCS, 2007.

[42] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. Zdonik.
Providing Resiliency to Load Variations in Distributed
Stream Processing. In VLDB, 2006.

[43] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic Load
Distribution in the Borealis Stream Processor. In ICDE,
2005.

[44] H. C. Zhao, C. H. Xia, Z. Liu, and D. Towsley. A Unified
Modeling Framework for Distributed Resource Allocation of
General Fork and Join Processing Networks. In
SIGMETRICS, 2010.

