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Abstract 

Introduction: Investigating on brain local connectivity changes following Carotid 

Endarterectomy (CEA) by connectometry. 

Methods: In this exploratory study, seventeen subjects (15 males and 2 females, mean age 

74.1 years) who underwent CEA, were prospectively recruited. Within one week before the CEA, 

each patient performed, in the same day, a cognitive evaluation with a Mini Mental State 

Examination (MMSE) and a Magnetic Resonance (MR) exam that included a DTI sequence for the 

connectometry analysis. The same cognitive test and MR protocol were performed on follow-up in 

a period between 3-6 months after CEA. The MMSE scores were analyzed using T-Student test. The 

connectometry analysis was performed using a multiple regression model in order to consider the 

effect of CEA, choosing three different T-score threshold values (1, 2 and 3), and results were 

considered statistically valid when p-value adjusted for False Discovery Rate (p-FDR) < 0.05.  

Results: Comparison of pre-CEA and post-CEA MMSE scores showed improvement of 

MMSE scores after CEA (p-value = 0.0001). Connectometry analysis revealed no areas of statistically 

significant increased connectivity related to CEA for T-threshold value = 1 and 2, whereas for T-

threshold value = 3 the analysis revealed statistically significant increased connectivity after CEA (p-

FDR  = 0.0106667) in both cerebellar hemispheres and corpus callosum.  

Conclusion: The results suggest that CEA procedure is associated with both improvements 

of cognitive performances and changes in both interhemispheric local connectivity through corpus 

callosum and in cerebellum. 
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Introduction 

Atherosclerotic disease involving Internal Carotid Artery (ICA) is a well-known risk factor for 

ischemic stroke [1-3], but also the association between ICA disease and cognitive dysfunctions in 

patients without clinically evident cerebrovascular disease is well known [4]. In the past years, 

carotid artery revascularization (following Carotid Endarterectomy (CEA) or Carotid Artery Stenting 

(CAS)) demonstrated to be protective against occurrence of stroke in symptomatic and 

asymptomatic subjects [5,6].  

Further, several studies investigated on variations in cognitive performance using clinical 

neuropsychological tests, demonstrating that CAS [7,8] and CEA [9] are associated with increasing 

in cognitive performances, and these improvements are independent from the treatment type (CEA 

vs CAS) [10]. Resting State Functional Connectivity Magnetic Resonance (rs-fcMR) allows to study 

the spontaneous brain networks’ activity while patient lies inactive in MR scanner, analyzing Blood 

Oxygenation Levels Dependent (BOLD) signal fluctuation generated by local changes of 

deoxyhemoglobin levels of the active brain regions following their activation [11]. DTI allows to 

evaluate anisotropic diffusion of water molecules inside of the white matter bundles, in order to 

estimate axonal organization of the brain [12], and tractography allows to study cerebral white 

matter bundles exploiting DTI principles.  

Some of the studies above mentioned analyzed differences in brain connectivity comparing 

patients with ICA stenosis and normal healthy controls [13-16], others investigated on brain 

connectivity before and after CAS [17,18], and another one compared changes following CAS or 

aggressive medical therapy [19]. Another study by Schaaf et al. [20] evidenced increased BOLD 

signal immediately after CEA probably due to the higher intracranial blood flow. 

In the last decade, a new tool for the in-vivo analysis of white matter, called “MRI 

Connectometry”, has been introduced in  research in order to overcome the limitations of 
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conventional tractography approach and DTI [21,22]. Connectometry allows to explore the local 

connectome, i.e. the degree of connectivity between adjacent voxels of the white matter fascicles 

according to the density of the diffusing spins [23]. The technique is based on the reconstruction of 

the MRI diffusion data into a standard template space, obtaining a map of the local connectome 

matrix from a group of subjects. The use of a fiber tracking algorithm on this matrix, both with the 

comparison of the results with a null distribution of coherent associations using permutation 

statistics, allows to track only the bundles of white matter that shows a significant positive or 

negative correlation with the study variable [21]. The spin distribution function (SDF) is the 

parameter used for the analysis [23].  This method has been already used for example for the study 

of Parkinson disease [24-30], mood disorders [31,32], multiple sclerosis [33] and amyotrophic lateral 

sclerosis [34]. 

The purpose of our study is to identify whether in asymptomatic patients with severe ICA (³ 

70%) stenosis measured according to European Carotid Surgery Trial (ECST) criteria [35] treated with 

CEA, the cognitive improvements registered in the short-term post-surgical period were also 

associated with changes in brain local connectivity using MR connectometry, independently from 

these conditions: a) mono or bilateral severe (³ 70%)  stenosis and b) presence or absence of 

cognitive dysfunction. 

 

Materials and Methods 

Patient enrollment and MR examination technique 

The study was designed as a prospective study, and it obtained the approval from the ethical 

committee. According to the exploratory intent, it was planned to recruit in one year at least 12 

patients [36]; from January 2017 up to December 2017 at the University Hospital of Cagliari 17 

consecutive patients (15 males and 2 females; age between 65 and 84; mean age: 76.35; mean age 
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for male group: 75.93; mean age for female group: 79.5) were prospectively enrolled in the study 

(demographic data reported in Table 1). All the patients had to be eligible for monolateral or 

bilateral CEA procedure according to the guidelines of the European Society for Vascular Surgery 

[35]. 

The exclusion criteria were the following: 

1. Anamnestic history of severe systemic inherited or acquired disease (in particular 

severe psychiatric/neurological conditions and major stroke), except cognitive 

dysfunction. 

2. Presence of contraindications to MR examinations (e.g. not compatible metal 

implants). 

3. Presence of functional disability, measured with the modified Rankin’ scale (values ³ 

2) [37]. 

4. Symptomatic patients with history of Transient Ischaemic Attack (TIA), Minor stroke 

or stroke. 

All patients recruited signed the informed consent before their enrollment in the study. All 

patients within the week before the surgical intervention performed the italian version of Mini 

Mental State Examination (MMSE) corrected for age and schooling [38,39] for evaluation of 

cognitive status administered by an expert colleague (DC, 9 years of experience). In the same day a 

non-contrast resting-state head MR scan was performed with a 1.5 Tesla Philips “Achieva dStream” 

scanner (Philips, Best, Netherland) (peak amplitude 33mT/m, slew rate 160 mT/m/ms) using a 32 

channels head coil. The dedicated MR scan protocol included a DTI sequence with the following 

parameters: 64 diffusion sampling directions, Echo Time (TE) = 83.147ms, Repetition Time (TR) = 

3370 ms, b-values = 0 and 800 s/mm2; in-plane resolution = 1.75 mm, slice thickness 2.5 mm.  
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The other sequences included in the MR protocol scan were: a) Diffusion Weighted Imaging 

Single shot (DWI-SSh) sequence, TE = 74 ms, TR = 3546.05 ms, b-values = 0 and 1000 s/mm2, slice 

thickness = 2.5 mm, b) 3D Fluid Attenuated Inversion Recovery (FLAIR), TE = 292.283 ms, TR = 4800 

ms, Inversion Time = 1660 ms, Flip Angle 90°, slice thickness = 1 mm, spacing between slices = 0.57 

mm.; c) 3D T1-weighted Turbo Field Echo (TFE), TE = 3.43 ms, TR= 7.5 ms, Flip Angle = 8°, slice 

thickness = 1 mm, spacing between slices = 1 mm. 

Patients with MRI findings of acute lacunar and/or territorial stroke, as well as those with 

imaging evidence of chronic territorial stroke, were excluded from the study; the other exclusion 

criteria were the presence of incidental findings suggestive for intra-axial or extra-axial neoplastic 

lesions, inflammatory or infective diseases. On the contrary, patients with small hyperintense areas 

on FLAIR sequences suggestive for leukoaraiosis/chronic lacunar strokes were included in the study, 

due to the fact that usually they are common findings in patients with ICA severe (³ 70%) stenosis 

and often clinically asymptomatic [40] and the study was designed as longitudinal. No surgical 

neither post-surgical complications occurred to any patients during hospitalization.  

Follow-up MMSE and MR examination, with the same sequences and parameters used in 

the first MR evaluation, were performed in the same day after a period between 3 and 6 months 

from the surgical intervention (average follow-up time: 4.08 months). 

 

Connectometry analysis 

Regarding the analysis of imaging investigations, a total of 34 diffusion MRI scans (17 pre-

CEA and 17 post-CEA) were included in connectometry database. The analysis of the data was 

conducted using DSI Studio (release 2017_08 - http://dsi-studio.labsolver.org). The diffusion data 

were reconstructed in the Montreal Neurological Institute (MNI) space using q-space diffeomorphic 

reconstruction [23] to obtain the SDF [41], adopting the Human Connectome Project 1021 (HCP-
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1021) template as diffusion MRI atlas [23].  A diffusion sampling length ratio of 1.25 was used, and 

the output resolution was 1 mm. The restricted diffusion was quantified using restricted diffusion 

imaging [42]. The SDF values were used in the connectometry analysis. 

Diffusion MRI connectometry [21] was used to study the effect of CEA. CEA variable was 

associated with this local connectome matrix in order to identify those local connectomes that 

expressed significant associations with it.  

Three different T-score threshold values (1, 2 and 3) were assigned in three consecutive 

analyses in order to select local connectomes, and the local connectomes were tracked along the 

core pathway of a fiber bundle using a deterministic fiber tracking algorithm and compared with a 

null distribution of coherent associations using permutation statistics [21,43,44]. Track trimming 

was conducted with 1 iteration. All tracks generated from bootstrap resampling were included. A 

length threshold of 35 mm was used to select tracks. The seeding density was 40 seeds per mm3 

and a total of 6000 randomized permutations were applied to the group label to obtain the null 

distribution of the track length. These parameters were chosen in order to improve specificity of 

the analysis and trying to overcome the limits due to the low number of available cases (even if the 

research was designed as exploratory). 

 

Statistical analysis 

Statistical analysis was performed with the SPSS 24.0 statistical package (SPSS Inc, Chicago, 

IL). The normality of each continuous variable group was tested using the Kolmogorov-Smirnov 

normality test. The pre-CEA and post-CEA MMSE scores then were compared using T-Student for 

paired values test, and a p-value < 0.05 was regarded to indicate statistically significant association. 

All p-values were calculated using two-tailed significance level.  
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The connectometry analysis used a multiple regression model to evaluate CEA variable using 

three different T-score threshold values (1, 2 and 3). Permutation test allowed to estimate and 

correct the false discovery rate (FDR) of Type-I error inflation due to multiple comparisons [21]. p-

value corrected for FDR (p-FDR) < 0.05 was regarded to indicate statistically significant association. 

 

Results 

None of the subject suffered surgical or medical complications after the procedure. The 

analysis of follow-up structural MR sequences after CEA did not reveal any new incidental findings, 

included territorial or lacunar strokes.  

The analysis of MMSE examinations revealed that after CEA procedure all the patients 

improved their cognitive performance (p-value = 0.0001), with Pre-CEA mean average score of 19.03 

and Post-CEA mean average score of 23.82 (Figure 1 and 2). 

The connectometry analyses performed using T-score threshold = 1 and 2 did not reveal 

statistically significant results. The same analysis performed adopting T-score threshold value = 3 

showed greater local connectivity after CEA procedure in both the cerebellar hemispheres and 

corpus callosum  (p-FDR = 0.0106667) and no tracts with decreased local connectivity (Figure 3 and 

4). The mean SDF value of each subject for corpus callosum and cerebellar hemispheres were also 

reported (Table 2). 

 

Discussion 

The correlation between carotid artery stenosis, cognitive function and brain connectivity 

impairments was described in previous researches. For example, it is known that both CAS and CEA 

are associated with long-term improvements in cognitive performances [45]. 
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Different MR studies tried to identify brain structural, functional and biochemical differences 

among patients with asymptomatic ICA stenosis and HCs; in particular  Lin CJ et al. [13] compared a 

cohort of 30 cognitively intact subject with asymptomatic, severe (³ 70%) unilateral ICA stenosis 

and a second cohort of healthy controls (HCs) using DTI, resting state fcMR, and a comprehensive 

battery of neuropsychiatric tests: on DTI that the whole brain Fractional Anisotropy (FA), an index 

supposed to be directly correlated to the degree of myelination of white matter fibers [46], was 

reduced in patients with asymptomatic unilateral ICA stenosis than HCs; on resting state fcMR the 

cohort of asymptomatic patients showed reduced connectivity of the Default Mode Network 

(DMN), Dorsal Attention Network (DAN), fronto-parietal network and sensorimotor network. A 

similar approach was adopted by Chang TY et al. [14], comparing patients with unilateral ICA 

stenosis (³ 60%) and HCs using a battery of neuropsychological tests, resting state fcMR and 

perfusion MR. Network analysis revealed that in the patients’ group the hemispheres ipsilateral to 

the ICA stenosis was impaired in “degree” and “global efficiency”. Avirame K et al. [15] suggested 

that cerebral vascular autoregulation, in terms of vasomotor reactivity measured by transcranial 

Doppler, can be one of the mechanisms involved in structural and functional connectivity 

impairment of cerebral networks in asymptomatic patients with either ICA occlusion or high-grade 

ICA stenosis. A research by Wang T et al. [16] compared patients with asymptomatic ICA stenosis 

and HCs using cognitive tests and an integrated MR approach that consisted of pulsed Arterial Spin 

Labeling (pASL), proton spectroscopy (MRS) and resting state fcMR: this research revealed that the 

condition of ICA stenosis was associated with lower scores at the neurocognitive tests and 

decreased cerebral blood flow (CBF) in left frontal gyrus, decreased N-Acetyl-Aspartate (NAA) / 

Creatine (Cr) ratio in the left hippocampus and reduced connectivity in PCC and anterior part of the 

DMN. 
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Few longitudinal studies investigated on the effects of ICA revascularization. In 2010 Schaaf 

M. et al. [20] studied the early effects of CEA on functional MR, evidencing that immediately after 

CEA BOLD signal changes as reflection of ameliorated cerebrovascular reactivity, but in this paper 

the only mean signal-intensity change was assessed. Cheng HL et al. [17] compared HCs with 

patients with ³ 70% asymptomatic stenosis of unilateral internal carotid artery using a 

comprehensive neuropsychological battery and a multimodality neuroimaging approach, that 

included DTI and fcMR; patients with carotid artery stenosis showed poorer performances in 

cognitive tests and marked reduction of inter-hemispheric and intra-hemispheric connectivity 

ipsilateral to carotid stenosis at the level of the fronto-parietal DMN; after successful CAS, small but 

measurable increments of the mean FA and functional connectivity in the DMN regions were noted. 

Recently Wang T et al. [18] demonstrated on fcMR that cognitive improvements observed after CAS 

in asymptomatic patients can be partly correlated with increased connectivity to the posterior 

cingulate cortex (PCC) in the right SupraFrontal Gyrus (rSFG) on resting state functional connectivity 

Magnetic Resonance (fcMR) and increased perfusion in the left frontal gyrus (lFG) pulsed Arterial 

Spin Labeling (pASL) that underwent CAS procedure. To our knowledge, there are not similar studies 

that investigated brain networks activity changes on fcMR after ECA in patients with severe ICA 

stenosis. Another study by Lin CJ et al. [19] analyzed longitudinally two different groups of 

asymptomatic patients with severe unilateral ICA stenosis (³ 70%) by using neuropsychological 

tests, structural MR imaging, DTI and resting state fcMR: one group was treated with aggressive 

medical therapy alone and the other one with aggressive medical therapy in combination with CAS. 

Patients were evaluated at the baseline and three months after treatment: they found that group 

treated with aggressive medical therapy and CAS showed a small increase in FA at the splenium of 

the corpus callosum, an increase functional connectivity of the DAN at the level of insular cortex 

and of the DMN at the level of MPFC.  
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In this analysis, we investigated if there were short-term brain local connectivity changes 

after CEA, and if they were accompanied or not by changes in cognitive performances measured by 

MMSE.  The group connectometry analysis revealed that patients who underwent CEA showed 

statistically significant (p-FDR = 0.0106667) short term local connectivity changes in corpus callosum 

and cerebellum. a statistically significant greater connectivity when compared to the baseline; no 

areas of reduced local connectivity were found. The Pre-CEA and Post-CEA MMSE scores analysis 

showed a statistically significant improvement of MMSE scores after CEA (p-value = 0.0001), with 

Pre-CEA mean average score of 19.03 and Post-CEA mean average score of 23.82. 

To the best of our knowledge, this is the first longitudinal study that used the connectometry 

technique in order investigate on the mid-term local connectivity changes after ICA treatment. 

Differently from fcMR that analyzes the spontaneous brain networks’ activity of local brain areas (in 

particular at the level of grey matter) exploiting the BOLD signal differences, the connectometry 

technique allows to analyze the local connectome, i.e. to track the local connectivity patterns along 

the WM fibers pathways associated with a determine study variable, in this case CEA procedure.  

As indicated above, previously published studies has investigated connectometry differences 

in other neurological diseases [24-34], adopting SDF as biomarker of investigation. SDF is a density-

based measurement of diffusion at different orientations and it measures the density of diffusing 

water, differently from other diffusivity measurements such as Fractional Anisotropy (FA), Apparent 

Diffusion Coefficient (ADC) and Radial Diffusivity. The reproducibility and uniqueness of SDF is 

higher than other diffusivity-based measurements: a paper by Yeh F-C et al. [47] in fact showed that 

SDF provides a unique structural characterization that can reliably identify single subjects (local 

connectome fingerprint). Since SDF reveals high individuality, it can be considered a good parameter 

of inter-subject variance and connectometry can be considered suitable for longitudinal study. We 

adopted this analysis technique also because differently from other track-based or region-based 
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diffusion analysis that compare diffusion data within a given region, connectometry technique is 

able to track the differences in the whole brain. 

The results of our connectometry analysis reveal that following CEA procedure, corpus 

callosum and both the cerebellar hemispheres show incremented local connectivity. 

The study by Cheng TL et al. [17], reported above, evidenced that asymptomatic ICA stenosis 

is associated with reduced interhemispheric connectivity, and it is known that corpus callosum is 

implied in interhemispheric communication [48,49]. We can speculate that the augmented local 

connectivity reflects incremented interactions between cerebral hemispheres.  

Regarding the cerebellar findings, it is noteworthy the fact that the proofs on the role of 

cerebellum in cognitive functions are growing up [50,51]. From an evolutionistic point of view, the 

expansion of the prefrontal region of the brain is associated with volume expansion of cerebellar 

regions Crus I and II [52]; further it is known that cerebellar regions Crus I and II are directly 

interconnected with prefrontal regions and participate to cognitive processes [53] and it is also 

known that cerebellar changes are not only largely disease-specific, but they are also associated 

with cortical and subcortical changes in neurodegenerative conditions [54]. Also in this case, the 

incremented local connectivity of the cerebellar hemispheres following CEA could be implied in the 

improvement of neurocognitive performances.  

The low number of longitudinal studies on the effects of ICA revascularization, the absence 

of a complete knowledge of the mechanisms underlying neurocognition in normal healthy subjects, 

and the relatively recent introduction of the connectometry technique for the study of neurological 

diseases limit the interpretation of the results, and further similar investigations on healthy and 

diseased subjects need to be done.  

Anyway, to our knowledge, this research both with other similar researches that analyze the 

effects of carotid revascularization on cognitive performances and cerebral networks re-
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arrangements, could represent starting points to re-think the idea of carotid revascularization not 

only for prevention of stroke, but also for therapeutic intents in selected patients with cognitive 

impairment. 

In this study there are some limitations. The first one is the small number of patients: our 

main focus was to explore the potential role of connectometry technique in the study of brain 

variation after CEA in patient with severe carotid artery stenosis; also with the small cohort 

considered, our analysis gave statistically significant values (p-FDR = 0.0106667) that allows us to 

confirm the validity and the strength of this model and results. However further studies with bigger 

cohort are necessary to further expand the model by including more variables such as the 

mono/bilateral severe stenosis and or presence/absence of cognitive dysfunction. 

Another limit is the use of MMSE as the only test used for the evaluation of the cognitive 

functions of the patients: cognitive improvements seen after CEA were already demonstrated in 

previous researches that patients who underwent CEA showed improvements in cognition, mood 

and quality of life tests [8,45]. Even if MMSE is not the most appropriate test for cognitive analysis 

in patients with ICA stenosis, it was used as surrogate test in order to give general indications on 

the trend of neurocognitive performances before and after the surgical procedure due the 

exploratory intent of the study.  

MR technique adopted could represent another limit; the majority of connectometry study 

have been performed using 3.0 Tesla MR scanners and b-values higher than 800 mm/s2; our intent 

was to investigate on the potential role of the connectometry technique also in everyday clinical 

practice, using relative fast sequences easy to be included in a standard MR scan protocol, and this 

is also the reason why we did not perform a fcMR study on the same patients.  

 

Conclusions 
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This exploratory research investigated on the short-term effects of CEA on neurocognitive 

performances and brain using connectometry in asymptomatic patients eligible for CEA. The results 

obtained suggest that the cognitive improvement observed can be related to increased local 

interhemispheric connectivity cerebellar local connectivity, independently from the cognitive status 

and the condition of mono or bilateral ICA stenosis.  
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Table Legend 

Table 1: Demographic data. 

Table 2: individual mean sdf values of corpus callosum, right and left cerebellum. 
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Figures Legends 

Figure 1: Graphs and resume table of the Kolmogorov-Smirnov test that confirmed the normal 

distribution of both Pre-CEA and Post-CEA MMSE scores. df = degrees of freedom; Sig. = significance. 

Figure 2: Graphs and resume table of the T-Student for paired values test, showing improvement of 

MMSE scores after CEA (p-value = 0.0001), with a Pre-CEA mean average score of 19.03 and Post-

CEA mean average score of 23.82. N = number of samples; Std deviation = Standard deviation; Std 

Error mean = Standard error of the mean; t = t-value; df = degrees of freedom. 

Figure 3: Brain regions that showed increased local connectivity after CEA procedure. The color of 

the tract depends on the direction of the fibers (red for right-left, blue for foot-head, green for 

anterior-posterior). 

Figure 4: p-FDR trend (vertical axis) in relation to fiber length (horizontal axis) for T-Score threshold 

= 3. 


