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Cerebral small vessel disease (SVD) is the primary cause of 
vascular cognitive impairment1 and vascular dementia.2 

Clinically, patients with SVD present with lacunar strokes and 
are characterized by a decline in executive function (EF) and 
information processing speed (IPS), whereas memory func-
tions appear to be relatively stable.3 Developing accurate bio-
markers to track disease severity and identify individuals most 
at risk of converting to dementia is important to administer 
effective treatments and interventions.

Markers derived from magnetic resonance imaging (MRI) 
have been associated with cognitive decline in SVD. These 

include presence of white matter hyperintensities (WMH),4 
gray matter (GM) atrophy,5,6 lacunar infarcts,7 cerebral micro-
bleeds,8,9 and white matter (WM) microstructural damage 
detected using diffusion tensor imaging (DTI).10–12 WMH vol-
ume–derived and DTI-derived measures have also been shown 
to predict risk of receiving a dementia diagnosis in SVD.13–16

Markers of structural damage measured by MRI often 
co-occur in patients with SVD, and there is potential to 
combine multiple MRI markers into a unitary burden score. 
Such combined burden scores may provide a more accurate 
method for monitoring disease progress and establishing 
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prognosis, with better predictions of cognitive decline than 
any single magnetic resonance marker.17,18 Additionally, an 
SVD burden score reduces the multiple comparisons re-
quired in statistical testing with multiple MRI methods. 
Unitary SVD burden scores have been generated by rating 
patients according to how many different MRI based mark-
ers they exhibit.17,18 For example, Huijts et al17 generated a 
scale of 0 to 4 based on the presence or absence of 4 SVD 
markers (WMH, lacunar infarcts, cerebral microbleeds, 
and perivascular spaces, assessed using 4 MRI acquisition 
protocols). They reported significant relationships between 
SVD burden score and EF, IPS, episodic memory (EM), and 
global cognition (GC). Associations between SVD burden 
scores and cognition have been replicated in more recent 
studies19,20; however, others have not found such relation-
ships.21 Composite burden scores rely on considering con-
tinuous MRI data as binary (present/not present) constructs 
and may lose some statistical power and sensitivity in doing 
so. They also rely on data from multiple MRI acquisitions 
that often require manual segmentation and evaluation  
by experts.

This study assesses the application of an alternative SVD 
burden score derived from a fully automatic diffusion tensor 
image segmentation technique (DSEG).22 Although DTI is 
typically used to measure WM microstructure, it can be used 
to inform on the microstructure of all brain tissue, including 
GM and pathologically affected tissue.22,23 We have shown 
previously that it is possible to summarize information from 
DSEG into a single score (DSEG-θ) that describes the mi-
crostructure of the whole cerebrum.24 Furthermore, we found 
that change in DSEG-θ was related to change in conventional 
imaging markers of SVD, including WMH load, GM atrophy, 
lacunar infarcts, and cerebral microbleeds, in addition to DTI 
histogram parameters describing WM microstructure.24 As 
such, DSEG-θ is an automated technique that may provide a 
suitable biomarker of SVD severity based on a single imaging 
parameter (DTI), rather than relying on information from sev-
eral different imaging modalities that often require manual 
segmentation.

Here, we test the hypothesis that baseline DSEG-θ scores 
and 3-year change in DSEG-θ obtained from a cohort of 
patients with SVD will be significantly related to decline in 
EF and IPS over a 5-year period. We also assess the hypo-
thesis that differences in baseline DSEG-θ parameters are 
associated with an elevated risk of developing dementia over 
time. Lastly, we test the accuracy of DSEG-θ parameters in 
discriminating between individuals with SVD who go on to 
develop dementia and those who do not.

Methods

Participants
The data that support the findings of this study are available from 
Professor Markus upon reasonable request (hsm32@medschl.cam.
ac.uk). Patients presenting with symptomatic SVD were recruited as 
part of the SCANS study (St George’s Cognition And Neuroimaging 
in Stroke).12,25 Inclusion criteria comprised of a clinical lacunar stroke 
syndrome26 with radiological evidence of an anatomically corre-
sponding lacunar infarct ≤1.5 cm diameter. Further inclusion criteria 
required confluent regions of WMH as graded ≥2 on the modified 

Fazekas scale27 and fluency in English sufficient to enable cognitive 
testing. Cognitive assessments and MRI data were acquired at least 
3 months after the last stroke to exclude acute effects on cognition. 
Exclusion criteria were contraindications to undergo MRI scanning, 
any cause of stroke other than SVD (eg, large artery stroke and car-
dioembolic stroke), current or history of central nervous system or 
major psychiatric disorder excluding migraine and depression, and 
any cause of WM disease other than SVD.

Patients were followed up annually with repeat MRI for 3 years 
and cognitive testing for 5 years. Patients were examined by a neurol-
ogist, and cardiovascular risk factors were recorded, including hyper-
tension (systolic blood pressure >140 mm Hg or diastolic >90 mm Hg 
or treatment with antihypertensive drugs), hypercholesterolemia 
(serum total cholesterol >5.2 mmol/L or treatment with a statin), di-
abetes mellitus, and smoking status. Wandsworth (London) research 
ethics committee approved the study, and all patients provided writ-
ten informed consent.

Available SVD Data
At baseline, a total of 121 patients were recruited. MRI and neu-
ropsychological data at multiple time points were available for 99 
SVD patients (mean age, 68.42±9.98; range, 43–88; male=65). Of 
the 121 patients recruited, 103 attended >1 cognitive assessment. 
Eighteen patients only attended one assessment due to death (n=7), 
formal study withdrawal (n=6), house move (n=1), lost to fol-
low-up (n=2), and withdrawal from full neuropsychological testing 
(n=2). Multiple MRI follow-up data were available for 99 of the 
remaining 103 participants. No participants were classified as de-
mented at baseline.

Magnetic Resonance Image Acquisition
Diffusion tensor images were acquired using a 1.5 Tesla GE Signa 
HDxt system (General Electric, Milwaukee, WI) with maximum gra-
dient amplitude of 33 mT/m and a proprietary head coil. Acquisition 
matrix=96×96, field of view=240 mm×240 mm, echo time=93.4 ms, 
repetition time=1560  ms, 55 slices without any slice gaps to pro-
vide an isotropic voxel resolution of 2.5 mm x 2.5 mm x 2.5 mm. 
Diffusion-weighted spin-echo planar images were acquired with no 
diffusion weighting for 8 acquisitions (b=0 smm-2) followed by 25 
noncollinear diffusion gradient directions and the negative of those 
diffusion gradient directions (b=1000 smm-2).

DTI Analysis

Diffusion-Weighted Image Preprocessing
DTI preprocessing, including correction for eddy current distor-
tions, and head movement have been described previously.12 Due to 
some participants not having full coverage of the cerebellum, it was 
removed from all scans using an automated technique.24

Diffusion Tensor Image Segmentation Technique
DSEG uses indices of isotropic (p) and anisotropic (q) diffusion.28 
These measures may be visualized in a 2-dimensional Cartesian 
plane,23 the (p,q) space, in which it is possible to identify diffusion 
properties of GM, WM tissue, and cerebrospinal fluid, as well as 
pathologically affected tissue.22–24

DSEG is a fully automated DTI segmentation algorithm that sep-
arates (p,q) space into 16 discrete segments using a k-medians cluster 
analysis based on the magnitudes of the isotropic (p) and anisotropic 
(q) diffusion metrics for each voxel, given in mm2s-1.22 Each segment 
describes a unique diffusion profile representing tissue microstruc-
tural properties of each voxel assigned to that segment. This allows 
differences in the underlying isotropic and anisotropic diffusion char-
acteristics to be determined for each individual across the entire cere-
brum and compared between segments.

Here, we perform DSEG simultaneously for all participants 
from the GENIE (St George’s Neuropsychology and Imaging in the 
Elderly study; healthy aging sample of 52 participants aged 53–91 
years, 34 male)29 and SCANS (SVD)7,10,12 studies using p and q maps 
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as described by Jones et al.22 DSEG performs a k-medians cluster-
ing of the probability density function (ie, 2-dimensional histogram, 
shown in Figure 1A) of p and q. A k-medians algorithm was used 
(as opposed to k-means) as the 2-dimensional histogram of p and 
q values were non-Gaussian thus cluster centroids were defined by 
the median. Full details of the technique have been described previ-
ously.22,24 The resulting segmentation of (p,q) space is represented in 
the Voronoi plot (Figure 1B).

DSEG Whole Brain Spectra
DSEG maps were generated for each individual; an example is shown 
in Figure  1C. To calculate DSEG spectra for each participant, the 
number of cerebrum voxels within each DSEG segment was deter-
mined, and the percentage contribution of each segment to the total 
cerebrum volume was calculated.24 This provides a subject-specific 
diffusion profile referred to as a DSEG spectrum (Figure 2A). This 
spectral information provides a signature diffusion profile contain-
ing information pertaining to GM and WM tissue, cerebrospinal fluid 
and includes regions with diffusion profiles that deviate from those 
of healthy tissue.

DSEG Summary Metric
The angle, θ, between 2 vectors A=(a
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) may be given by the scalar product as shown in Equation 1 and 
provides a summary metric for the difference between 2 DSEG 
spectra that are represented by vectors A and B, as shown in Figure 3.

To ensure the metrics may be compared across participants, vec-
tor A was chosen to represent the DSEG spectrum representing the 
least damaged brain. This reference brain was identified using an it-
erative algorithm described previously.24 The reference brain selected 
by the algorithm corresponded to the DSEG spectrum of the youngest 
participant in the GENIE sample (aged 56 years). Vector B was then 
used to represent the DSEG spectra for each individual at each time 
point to calculate DSEG-θ for all individuals at each time point. The 
reference brain was selected in this way because on its own, the scalar 
product is nondirectional. By selecting a healthy brain free of SVD, 
we can impose direction on the angle θ, as a smaller angle reflects 
more similar total brain microstructural composition, whereas a 
larger θ will represent a greater divergence from healthy brain com-
position. It should be noted that the reference brain is used only as an 
anchor to generate DSEG-θ values. All statistical comparisons pre-
sented are based on within-subject change in DSEG-θ over time or 
group comparisons in DSEG-θ between participants who developed 
dementia and those who did not.

Cognitive Assessment
A battery of standardized neuropsychological tasks was performed 
annually. Details of the full assessment have been published previ-
ously.25 EF was measured by the Trail Making Test, part B, a measure 
of phonemic fluency, and a modified Wisconsin Card-sorting Test. 
IPS was measured by the Digit Symbol Substitution Test, the BMIPB 

Figure 1.   The diffusion tensor image segmentation technique (DSEG). A, The 2-dimensional histogram of p and q data from all voxels in the dataset. This 
represents the data that is used by DSEG to produce a whole-cerebrum segmentation using the diffusion tensor imaging (DTI) indices (p and q) to describe 
microstructural properties at each voxel. B, The resulting segmentation of the (p,q) plane represented in a Voronoi plot. Sixteen unique segments are gener-
ated around the segment centroids, which represent the median p and q values, shown as black squares. C, Illustrates how the segmentation in (p,q) space 
can be applied in any individual’s DTI native space. The patient shown is a 69-year-old who converted to dementia during the SCANS study (St George’s 
Cognition And Neuroimaging in Stroke). D, The diffusion profile key shows how each segment can be used to describe progressive levels of diffusion anisot-
ropy and isotropy and intermediate levels of both.
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(The Brain Injury Rehabilitation Trust Memory and Information 
Processing Battery) Speed of Information Processing Speed Test, and 
the Grooved Pegboard Test. Working memory (WkM) was measured 
by the Wechsler Memory Scale-III digit forward and backward pro-
cedures. EM was measured by immediate and delayed recall from 
the Wechsler Memory Scale-III Logical Memory test and Visual 
Reproduction test. Individual measures were age-scaled using pub-
lished normative data, converted to Z scores, and a mean composite 
score was calculated within each domain by averaging the Z scores 
in each domain (EF, IPS, WkM, EM, and GC comprising all meas-
ures). Premorbid intelligence was assessed using the National Adult 
Reading Test–restandardized, and the Mini-Mental State Exam was 
used as a dementia-screening tool.

Conversion to Dementia
Information on conversion to dementia was available for all patients. 
Dementia was diagnosed using the Diagnostic and Statistical Manual 
of Mental Disorders V30 definition of “major neurocognitive disorder” 
and was present if individuals met one of the following criteria:

1.	 A diagnosis of dementia made in a memory clinic or equivalent 
clinical service.

2.	 After review of medical records and cognitive assessments by a 
neurologist and clinical neuropsychologist who were both blind 
to all MRI and risk factor information and who both agreed that 

Diagnostic and Statistical Manual of Mental Disorders V cri-
teria were met.

3.	 A Mini-Mental State Exam score consistently <24, indicative 
of cognitive impairment31 and reduced capabilities in daily liv-
ing as measured by a score ≤ 7 on the instrumental activities of 
daily living.32

Figure 2.   Diffusion tensor image segmentation technique (DSEG) spectra. A, DSEG spectra are generated by calculating the percentage of total cerebrum 
volume represented by each DSEG segment. Segments have been arranged in the colored boxes along the x axis to represent different tissue types: dark 
gray=gray matter (GM), pale gray=white matter (WM), dashed black=cerebrospinal fluid (CSF), orange=borderline tissue GM/CSF, and red=WM hyperinten-
sity–related tissue damage. Here the reference brain DSEG spectrum is shown as the dashed gray line. The blue line represents the mean spectrum for all 
stable cerebral small vessel disease (SVD) patients, and the red line represents the mean spectrum for the dementia cohort. B, Axial DSEG image of the refer-
ence brain for calculating DSEG-θ (56-y-old). C, An axial DSEG image of a stable SVD patient who did not progress to dementia (66-y-old). D, An axial DSEG 
image of an SVD patient who did develop dementia during this study (69-y-old).

Figure 3.   A schematic representation of the difference between vectors 
A and B. The equation shows how the dot product of 2 vectors is used 
to calculate θ. θ is similar to a correlation coefficient, and there is a lower 
angle when there is a higher positive correlation between vectors.
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Date of dementia onset was defined as the date of diagnosis in a 
clinical setting or the midpoint between testing sessions at which the 
diagnosis was established and the previous visit.

Statistical Analysis
Linear mixed-effects models were applied using MLwiN33 to assess 
the effect of time on change in DSEG-θ over a 3-year period and 
cognition over a 5-year period. The intercept and slope of each par-
ticipant’s linear trajectory were allowed to vary with both fixed and 
random effects. Fixed effect variation was accounted for by time, and 
random effect variation allowed for remaining interindividual differ-
ences. The average fixed effects slopes of time represent the average 
annualized change rate for a given measure. The Wald test was used 
to assess the goodness of fit for each model of change. Due to the 
discrepancy in testing periods for magnetic resonance data and cogni-
tive data, the relationship between change in DSEG-θ and cognition 
were not explored using linear mixed-effects. Instead, the modeled 
gradients of change for each individual (in DSEG-θ and only the sig-
nificantly declining cognitive domains) were analyzed using linear 
regression analysis in SPSS (V20.0). Models were adjusted for mean-
centered baseline age, premorbid intelligence quotient, and sex.

Predicting Dementia
Student t tests and χ2 tests were used to assess differences in demo-
graphic characteristics, vascular risk factors, baseline DSEG-θ, and 
baseline cognition between stable patients and those that developed 
dementia.

Cox regression was applied to identify variables related to 
increased risk of conversion to dementia. Continuous variables were 
Z score transformed for ease of comparison. All variables that were 
significant in multivariable Cox regression were entered into a linear 
discriminant analysis.

Linear discriminant analysis was used as a classification tech-
nique to assess the sensitivity and specificity of markers in identify-
ing individuals who converted to dementia. All linear discriminant 
analysis results reported represent output from leave-one-out cross-
validation to reflect the stability of each model. The performance 
of each classification model was then assessed using sensitivity and 
specificity, the balanced classification rate (BCR),34 accuracy, and the 
area under the receiver operating characteristic curve (AUC), which 
is also known as the C statistic, and represents an overall indicator 
of model performance. In cases when there is a large difference in 
numbers between groups, the BCR may be considered a more useful 
definition of the overall classification performance.

Results
Cognitive Decline
Linear mixed-effects model results of change over time in 
DSEG-θ and cognitive scores are shown in Table 1. DSEG-θ 

increased significantly (P<0.001) over 3 years, indicating 
a progression of SVD burden. EF, IPS, and GC all decline 
significantly (P<0.001) over a 5-year period. There was no 
significant change in WkM (P<0.609) and EM (P<0.082). 
Baseline DSEG-θ and change in DSEG-θ were both related 
to decline in EF and GC (P<0.001) as shown in Table 2. There 
was no association with decline in IPS. As WkM and EM did 
not show significant change over time, their relationships with 
change in DSEG-θ were not investigated further.

Predicting Dementia
Eighteen (18.2%) patients were identified as having converted 
to dementia. The mean time to dementia conversion was 3.31 
years (1.40 SE).

Table I in the online-only Data Supplement shows the dif-
ferences in SVD risk factors, cognitive scores, and DSEG-θ 
at baseline between individuals who went on to develop de-
mentia and those who did not. There were no significant differ-
ences in demographic or vascular risk factors, including age, 
sex, and premorbid intelligence. However, there were signifi-
cant differences in baseline DSEG-θ, EF, IPS, WkM, EM, and 
GC, as well as the Mini-Mental State Exam (P<0.001), with 
patients who developed dementia showing a higher level of 
overall brain damage and poorer cognitive functions at base-
line. Although Mini-Mental State Exam scores were lower in 
the dementia group, they were still above the cutoff of 24 at 
baseline.

Univariate Cox regression of variables predicting risk 
of developing dementia revealed no significantly elevated 
risks associated with any demographic or vascular risk fac-
tors (Table II in the online-only Data Supplement). However, 
both DSEG-θ at baseline (hazard ratio, 3.331; 95% CI, 2.076–
5.343) and change in DSEG-θ (hazard ratio, 3.905; 95% CI, 
6.650) were associated with significant increases in risk of 
dementia (P<0.001). Mean DSEG spectra for demented and 
nondemented patients are shown in Figure 2A with example 
DSEG slices.

Table 3 shows the results of linear discriminant analysis 
for several classification models. All classification models, 
using either baseline DSEG-θ (BCR, 75.9 %; AUC, 0.839) or 
change in DSEG-θ (BCR, 81.50%; AUC, 0.881), were signif-
icant and identified individuals who went on to develop de-
mentia and stable SVD patients. However, the most accurate 
model with a BCR, 79.65 and AUC, 0.903 is the model that 
includes DSEG-θ measures at baseline and follow-up in addi-
tion to age, sex, and premorbid intelligence.

Discussion
This study has shown that DSEG-θ is sensitive to clinically im-
portant markers of SVD that can be used to accurately classify 
SVD patients. Results show that DSEG-θ predicts both decline 
in cognitive abilities and identifies those who are stable versus 
those who go on to develop dementia. Patients with greater 
SVD disease burden as measured by baseline DSEG-θ score 
and who had faster rates of disease progression as measured 
by change in DSEG-θ had faster rates of decline in EF and 
GC. These results show that DSEG-θ is useful as a preclin-
ical marker for identifying individuals at risk of developing 

Table 1.   LME Models of Change in DSEG-θ (Over 3 Years) and Cognitive 
Domains (Over 5 Years)

Beta SE Wald Statistic P Value

DSEG-θ 1.168 0.085 190.149 <0.001*

EF −0.048 0.015 10.175 <0.001*

IPS −0.052 0.014 14.320 <0.001*

WkM 0.007 0.013 0.261 0.609

EM 0.022 0.113 3.015 0.082

GC −0.029 0.009 11.067 <0.001*

DSEG indicates diffusion tensor image segmentation technique; EF, executive 
function; EM, episodic memory; GC, general cognition; IPS, information 
processing speed; LME, linear mixed-effects; and WkM, working memory.

*Significant at P<0.05, Holm-Bonferroni corrected.
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dementia in SVD and as a prognostic tool to measure the rate 
of disease progress and its impact on cognition.

Previous reports have shown that DTI techniques offer 
measures that are more sensitive to microstructural changes in 
WM in SVD than other common MRI metrics that are asso-
ciated with cognitive decline and dementia.11,13 Here, we have 
shown that DSEG can be used as a marker of SVD that is re-
lated to decline in EF and GC. These associations are similar to 
those found between cognition and the SVD burden score,17–20 
with the advantage that DSEG-θ is produced from a single DTI 
scan. Our results support the notion that DTI information can 
be organized to produce a single, whole-cerebrum marker of 
SVD severity related to cognitive decline even in patients who 
do not present with dementia. However, we did not find an as-
sociation between DSEG-θ and IPS, this may be due to DSEG-
θ, including information from the whole cerebrum and not just 
WM tracts. Information extracted specifically from the WM 
has been shown to be highly related to IPS.10

Furthermore, DSEG-θ also successfully predicts which 
individuals will go on to develop dementia. The performance 
of DSEG-θ in discriminant analysis is comparable to results 
presented by Barnes et al,35 who report an accuracy of 88% 
and an AUC of 0.810 for predicting dementia in older adults. 
Barnes et al35 used a late-life dementia risk index which in-
cluded age, cognitive performance, body mass index, apoE 
ε4 alleles, WM disease (visual rating scale), ventricular en-
largement, internal carotid artery thickening on ultrasound, 
history of bypass surgery, physical performance, and alcohol 
consumption. As such, the late-life dementia risk index is 
comprised of many different predictor variables based on 
multiple clinical assessments and MRI scan types. Although 
many of the measures used by Barnes et al35 are routinely col-
lected, others require additional investigations and also ad-
ditional scans. The approximate equal level of predictability 

using the single DTI scan that is required by DSEG compared 
with Barnes et al’s35 more complex model supports the clin-
ical utility of the current technique.

Information from conventional MRI and DTI has been 
previously shown to predict dementia in the SCANS data-
set.16,36 Using MD normalized peak height, WMH volume 
and premorbid intelligence predicted dementia with a BCR 
of 75.9% after leave-one-out cross-validation and an AUC of 
0.85.16 Using baseline GM volumetric data conversion to de-
mentia was predicted with a BCR of 74.4% and an AUC of 
0.79.36 Our present findings suggest that application of DSEG 
can improve the BCR and AUC in classification models based 
on DTI information alone.

The finding that baseline DSEG-θ values predict dementia 
almost as well as change in DSEG-θ indicates that DSEG is 
sensitive to preclinical levels of SVD burden related to de-
mentia. This is particularly important in the treatment of de-
mentia for which any therapies are likely to be effective if 
applied before extensive damage has occurred.37 The accuracy 
of the discriminant analysis was improved when both baseline 
DSEG-θ and change in DSEG-θ were used. Therefore, DSEG 
may be used effectively in a clinical setting with a 2-tiered 
approach where initial assessment identifies individuals who 
should be monitored and change in DSEG-θ provides prog-
nosis of disease progression.

A strength of the DSEG technique is that all analysis is 
performed in native DTI space and does not require additional 
preprocessing steps, such as coregistration, which is required 
when combining multiple imaging modalities, for tissue seg-
mentation or voxel-wise statistical analysis of imaging data.38 
Preprocessing steps required for combining different MRI 
methods inherently require interpolation of data and introduce 
error. Our study shows that DTI data can be used to generate 
a whole-cerebrum–based marker of SVD severity without the 

Table 3.  Discriminant Function Analysis Results for Predictive Models of Conversion to Dementia

Variables in Model
Wilks’  

Lambda χ2 (P Value) Sensitivity % Specificity % BCR % Accuracy % AUC

DSEG-θ baseline 0.761 26.332 (<0.001)* 77.8 74.1 75.95 74.7 0.839

DSEG-θ change 0.745 28.349 (<0.001)* 88.9 74.1 81.5 76.8 0.881

DSEG-θ baseline and change 0.694 35.063 (<0.001)* 72.2 79.0 75.6 77.8 0.888

DSEG-θ baseline, sex, age, premorbid IQ 0.716 31.780 (<0.001)* 66.7 81.5 74.1 78.8 0.859

DSEG-θ change, sex, age, premorbid IQ 0.718 31.455 (<0.001)* 77.8 79.0 78.4 78.8 0.884

DSEG-θ baseline and change, sex, age, premorbid IQ 0.651 40.629 (<0.001)* 77.8 81.5 79.65 80.8 0.903

AUC indicates area under the receiver operating characteristic curve; BCR, balanced classification rate; DSEG, diffusion tensor image segmentation technique; and 
IQ, intelligence quotient.

*Significant at P<0.05, Holm-Bonferroni corrected.

Table 2.   Linear Regression Showing the Relationships Between Baseline and Change in DSEG-θ With Decline in EF, IPS, and GC

EF IPS GC

 Beta, SE P Value Beta, SE P Value Beta, S.E. P Value

Baseline DSEG-θ −0.002, 0.00063 0.002* −0.00055, 0.00091 0.55 −0.0016, 5×10-4 0.0018*

Change in DSEG-θ −0.06, 0.015 0.00018* −0.031, 0.022 0.15 −0.05, 0.012 4.3×10-5*

Models controlled for mean centered baseline age and IQ and sex. DSEG indicates diffusion tensor image segmentation technique; EF, executive function; GC, general 
cognition; IPS, information processing speed; and IQ, intelligence quotient.

*Significant at P<0.05, Holm-Bonferroni corrected.

D
ow

nloaded from
 http://ahajournals.org by on Septem

ber 12, 2019



Williams et al    DTI Segmentation Predicts Dementia    7

use of any other imaging modality or spatial averaging across 
individuals. Consequently, DSEG provides a fast and reli-
able alternative to conventional makers of SVD severity that 
may be used in a clinical setting without the use of advanced 
preprocessing.

A limitation of the technique is that the DSEG-θ metric 
is calculated by comparing each patient’s scan to that of a 
single healthy control. As such, the model of healthy aging in 
this study is a narrow representation of a healthy aging brain. 
However, with increasing availability of large biometric data-
sets (eg, the UK Biobank39), it will soon be possible to define 
normalized references of healthy aging brains and compare 
diseased individuals to an appropriate model of healthy aging. 
The MRI arm of the Biobank study aims to collect multimodal 
MRI (including DTI) for 100 000 participants (aged 40–69 
years) by the year 2020. This would allow for representative 
samples of healthy aging individuals to be stratified by year or 
decade, defining a reference DSEG spectra potentially more 
relevant to each individual patient’s demographics. In addi-
tion, future studies will be required on larger data sets that in-
clude patients with evidence of SVD who do not have clinical 
lacunar stroke syndrome. This would allow for the assessment 
of the utility of DSEG in predicting cognitive decline and de-
mentia in a larger clinical population compared with the strin-
gent criteria used in the present study.

In conclusion, DSEG offers a highly accurate and sensi-
tive marker of SVD severity in a single measure that can be 
used to distinguish between individuals who will and will not 
go on the develop dementia in a 5-year period. Furthermore, 
DSEG was highly related to SVD related cognitive decline, 
even in individuals who did not convert to dementia. Taken 
together, these findings suggest that DSEG may be used as a 
clinical tool to monitor SVD progression in patients and pre-
dict risk of developing dementia.
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