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Abstract
The development of executive function is linked to maturation of prefrontal cortex (PFC) in childhood. Childhood obesity
has been associated with changes in brain structure, particularly in PFC, as well as deficits in executive functions. We aimed
to determine whether differences in cortical structure mediate the relationship between executive function and childhood
obesity. We analyzed MR-derived measures of cortical thickness for 2700 children between the ages of 9 and 11 years,
recruited as part of the NIH Adolescent Brain and Cognitive Development (ABCD) study. We related our findings to
measures of executive function and body mass index (BMI). In our analysis, increased BMI was associated with significantly
reduced mean cortical thickness, as well as specific bilateral reduced cortical thickness in prefrontal cortical regions. This
relationship remained after accounting for age, sex, race, parental education, household income, birth-weight, and
in-scanner motion. Increased BMI was also associated with lower executive function. Reduced thickness in the rostral
medial and superior frontal cortex, the inferior frontal gyrus, and the lateral orbitofrontal cortex partially accounted for
reductions in executive function. These results suggest that childhood obesity is associated with compromised executive
function. This relationship may be partly explained by BMI-associated reduced cortical thickness in the PFC.
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Introduction
Although the rise in incidence of childhood obesity appears to
have plateaued in some developed nations, the condition is still
estimated to effect 124 million children worldwide (NCD-RisC
2017) or an estimated 1 in 3 children in the US (Ogden et al.
2014). Children who are overweight or obese are more likely
to become obese adults, and have an increased risk of poorer
health outcomes in later life including diabetes, heart disease,
cancer, and overall mortality (Biro and Wien 2010).

Like adult obesity (Graham et al. 2014; Yang et al. 2018),
childhood obesity has been linked to impairments in executive
functioning (Maayan et al. 2011; Reinert et al. 2013; Yau et al.
2014; Ross et al. 2015; Alarcón et al. 2016; Li et al. 2018), although
studies produce conflicting results (Gunstad et al. 2008). Exec-
utive function is an umbrella term for several different cogni-
tive dimensions, including inhibitory control, decision-making,
working memory, and reward sensitivity, broadly referring to a
set of processes that enable planning, problem-solving, flexible
reasoning, and regulation of behaviors and emotions. Children
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who are overweight or obese generally score lower on various
measures of executive function (Liang et al. 2014), including
working memory (Riggs et al. 2012), reward-sensitivity (Verbeken
et al. 2012) and inhibitory control (Guerrieri et al. 2008; Verbeken
et al. 2009).

At a biological level, various hypotheses exist relating execu-
tive functions to body mass index (BMI). One prominent theory
is that the role of executive function in planning and decision-
making, response inhibition, and reward evaluation influences
food intake (Gluck et al. 2017), contributing to increased BMI.
Prospective studies of bariatric patients following surgery sup-
port this association (Spitznagel et al. 2013), as do neuroimag-
ing investigations. For example, functional magnetic resonance
imaging studies have demonstrated that the dorsolateral pre-
frontal cortex (DPFC) is differentially activated in obesity in both
adults (Le et al. 2006) and children (Davids et al. 2010; Reinert et
al. 2013). This region is critical to cognitive control over eating
(Gluck et al. 2017), as well as reward-motivated behavior via
its links to the mesolimbic and mesocortical regions of the
brain. Other regions of the prefrontal cortex (PFC) such as the
orbitofrontal cortex (OFC) have also been linked to obesity. The
OFC is involved in inhibition and reward processing (Gehring
and Willoughby 2002) and has been shown to be differentially
activated in lean and obese people depending on the level of
satiety (Del Parigi 2010), including in children and adolescents
(Holsen et al. 2005; Batterink et al. 2010; Bruce et al. 2010; Stice
et al. 2010). This region is also implicated in the response to
food stimuli (Killgore and Yurgelun-Todd 2005) in both children
(Holsen et al. 2005) and adults (Kringelbach 2005). The ventral
lateral PFC, linked to impulsivity, has also been implicated in
obesity (Batterink et al. 2010). More generally, children with lower
levels of executive abilities are more likely to be sedentary and
have higher rates of snack consumption (Liang et al. 2014), and
are less likely to benefit from weight-loss interventions (Eichen
et al. 2018). While these studies support a link between execu-
tive function and BMI, the direction of causality is unclear. For
example, there is compelling evidence suggesting that the low-
grade inflammatory response that characterizes obesity may
have a causal impact on the brain and impair executive function
(Shields et al. 2017; Yang et al. 2018). Supporting this causal
pathway, studies of postsurgical executive function in bariatric
patients have demonstrated that weight loss is correlated with
an improvement in cognitive abilities (Alosco et al. 2014a).

In summary, while the direction of causal association
between BMI and executive function is not well understood,
neuroimaging studies support the hypothesis that cortical
structure and function are important to characterizing the
relationship between executive function and BMI. Various
investigations have linked adolescent obesity with changes
in grey matter volume, connectivity, and reduced cortical
thickness, commonly in prefrontal regions known to be
associated with executive function (Maayan et al. 2011; Alosco
et al. 2014b; Yau et al. 2014; Gupta et al. 2015; Ross et al. 2015). In
addition, high fat diets have been linked to changes in microRNA
expression related to axonal guidance in the PFC of adolescents
(Labouesse et al. 2018). Thus, there is a demonstrable association
in adolescents between BMI and cortical structure in regions
associated with executive function. Whether such structural
changes mediate the relationship between BMI and executive
abilities is not established. Late childhood and early adolescence
is a critical period for the emergence and consolidation of
executive function, which is strongly linked to maturation of
the PFC (Gray et al. 2003; Frangou et al. 2004; Tamnes et al. 2013).
This maturation is characterized by reduced cortical thickness

(Sowell et al. 2004; Shaw et al. 2006), the consolidation of
regional activity (Durston et al. 2006), and the emergence of more
comprehensive and extensive network connections (Ezekiel et
al. 2013). An important question therefore is whether childhood
obesity is characterized by structural changes in cortical regions
important for executive function at this critical developmental
period and further, whether these structural changes mediate
the link between BMI and differences in executive function
observed in childhood.

We sought to address this question using data from the NIH
Adolescent Brain and Cognitive Development (ABCD) dataset
(Jernigan and Brown 2018) of n = 2700 children between the
ages of 9 and 11 years. Specifically we related measures of
cortical thickness to measures of executive function and BMI,
and further examined whether cortical thickness confounds the
observed relationship between these traits. We chose to focus
on measures of cortical thickness as cortical thinning in child-
hood has been linked to the emergence of executive function
(Kharitonova et al. 2013; Bathelt et al. 2018), cortical thickness
changes have been linked to childhood obesity (Maayan et al.
2011; Reinert et al. 2013; Alosco et al. 2014b; Yau et al. 2014; Ross
et al. 2015; Medic et al. 2016), and previous studies in adulthood
have demonstrated that cortical thickness in the PFC mediates
the relationship between executive function and BMI (Lavagnino
et al. 2016).

Methods and Materials
Subjects

A total of 3923 children aged 9–11 years from the ABCD dataset
were initially included (10.15154/1504466). The ABCD dataset is
a longitudinal study of over 10 000 children recruited from 21
centers throughout the US, with participants largely recruited
through the school system. Sampling plans and recruitment
procedures based on considerations of age, gender, race, socio-
economic status, and urbanicity were designed to reflect the
sociodemographics of the US. Details of recruitment and study
design are described elsewhere (Garavan et al. 2018). Details
of demographic, physical, and mental health assessments are
described elsewhere (Barch et al. 2018).

BMI was based on measures of height and weight, which were
taken as the average of up to 3 separate measures. BMI was
calculated as weight in lbs divided by height in inches squared,
multiplied by 703 (Eq. (1)).

BMI = 703 × weight
(
lbs

)

height
(
in

)2
(1)

BMI z-scores (BMIz) were defined using lookup tables from
the Center of Disease Control 2001 (CDC Growth Charts 2018),
where BMI was adjusted for sex and age. Subjects with a
diagnosis of ADHD (n = 536), autism spectrum disorder (n = 49),
schizophrenia (n = 2), intellectual disability (n = 2), and diabetes
(n = 9) were excluded from analysis.

Additional analyses were carried out using measures of waist
circumference and waist-to-height ratio in place of BMI.

Imaging Protocols

Imaging protocols for the ABCD dataset are described elsewhere
(Casey et al. 2018), and were harmonized for three 3T scanner
platforms (Siemens Prisma, General Electric 750 and Philips)
used across the 21 data acquisition sites.
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Cortical Reconstruction and Brain Structural Measures

Cortical reconstructions were carried out using FreeSurfer v5.3.0
(Dale et al. 1999; Fischl et al. 1999a, 1999b), as part of the initial
baseline processing of the ABCD dataset. Reconstructions were
visually inspected for quality control purposes. Only those
reconstructions deemed of sufficient quality were included
in this study. Based on these surface reconstructions, cortical
thickness (Fischl and Dale 2000) values were processed for
the Deskian-Killiany atlas (Desikan et al. 2006), with data
unavailable for 3/36 regions per hemisphere (omitted regions
included “unknown”, “corpus callosum”, and “insula”). Derived
results per individual per region were provided as part of the
ABCD curated annual release 1.0 (DOI 10.15154/1412097).

Executive Function

Participants involved in the ABCD study participated in a battery
of tests designed to test their executive function. An overview
of the baseline neurocognition battery is described elsewhere
(Luciana et al. 2018). Tests were based on the National Institute of
Health (NIH) Toolbox (https://nihtoolbox.desk.com). A compos-
ite score of executive function was generated based on results of
several tests, namely the Flanker inhibitory control and atten-
tion test, the dimensional change card sort test, the picture
sequence memory test, the list sorting working memory test,
and the pattern comparison processing speed test (Akshoomoff
et al. 2013, 2014, 2018). The age-corrected standard scores for
each test were based on a normative sample of 2917 children
and adolescents (Casaletto et al. 2015). The composite score
was derived by averaging the standard scores of each of the
measures and then deriving standard scores based on this new
distribution. These age-corrected composite scores were used
in subsequent analysis. Full data were available for n = 2352
subjects (n = 1802, 352 and 702 for lean, overweight and obese,
respectively).

Statistical Analysis

We conducted a mediation analysis to determine whether corti-
cal thickness mediated the relationship between BMI and exec-
utive function. As part of this analysis, we determined the fol-
lowing relationships using multivariate methods: regression of
executive function on BMI, regression of regional cortical thick-
ness on BMI, and regression of executive function on cortical
thickness. Subsequently, we determined whether regional corti-
cal thickness (mediator) was a significant predictor of executive
function (the dependent variable) in a model that also included
BMI (the independent variable) (Baron and Kenny 1986). We
used Mahalanobis distance to identify and remove outliers in all
regression models, and false discovery rate (FDR) methods (Ben-
jamini and Hochberg 1995) were used to correct cortical results
for multiple comparisons. Standardized regression coefficients
were reported.

Mediation was conducted using the “mediation” package in
R (Tingley et al. 2014). We assessed the significance of our medi-
ation models using bootstrapping methods to increase power
(Hayes 2009), with 1000 bootstrap samples used to generate 95%
confidence intervals for the indirect effect. All analyses were
conducted in R (v.3.3.3).

Covariates
Puberty is known to influence brain development, and pubertal
hormones such as dehydroepiandrosterone (DHEA) have been

linked to changes in cortical thickness between the ages of 4
and 13 years (Nguyen et al. 2013). To account for the possible
confounding effects of the age of onset of puberty, we included
salivary DHEA levels (Uban et al. 2018) as a covariate in our
analysis. Birth weight was also included as a nuisance variable,
as studies have indicated that this may play a role in intelligence
scores at 11 years (Korpela et al. 2018) and has been demon-
strated to be significantly predictive of childhood obesity (Biro
and Wien 2010; Glavin et al. 2014). We also included estimates of
head movement during scanning. Such micromotions have been
demonstrated to be genetically correlated with BMI (Hodgson et
al. 2017) and associated with biases in MR-derived parameters
of cortical structure (Alexander-Bloch et al. 2016). For these
reasons, frame-wise displacement (FWD) derived from resting-
state data was adopted as an estimate of average head motion
and included as a covariate. We also included brain volume and
a self-reported measure of physical activity, which was recorded
as the number of days in the week prior to interview where the
subject had been moderately physically active for more than
60 min. Finally, we included covariates of household income,
race, and parental education in our analysis as these have been
demonstrated to be associated with BMI (Strauss and Knight
1999).

Results
Our results support statistically significant associations between
BMI and executive function, between BMI and cortical thick-
ness, and between cortical thickness and executive function.
Individuals with higher BMI tend to have lower scores on
executive function tests and thinner cerebral cortices, while
individuals with thinner cerebral cortex tend to have lower
scores on executive function tests. The association between
BMI and executive function may be mediated by their shared
relationship with the thickness of a subset of regions in PFC.

Demographic Variables, BMI, and Executive Function

As expected from prior literature, many demographic and bio-
logical variables were related to BMI and executive function,
supporting their inclusion as covariates in our statistical model.

There was no association between BMIZ and age; however,
males were significantly heavier than females (β = 0.1, t = 2.4,
P = 0.02) (see Table 1). Birth weight was significantly associated
with BMIZ (β =0.1, t = 5.9, P < 0.001), as was household income
(F(2, 2387) = 52, P < 0.001), race (F(3, 3286) = 49, P < 0.001), and level
of parental education (F(2, 2387) = 21, P < 0.001) (see Table 1). In
line with previous analysis, in-scanner motion was positively
associated with BMIZ (β = 0.16, t = 7.6, P < 0.001), while self-
reported levels of physical activity were negatively associated
with increasing BMIz (β = −0.07, t = 3, P = 0.001). There was no
association between BMIZ and total brain volume; however, BMIZ

was positively associated with salivary DHEA levels (β =0.17, t = 6,
P < 0.001), suggesting that increased BMI was associated with
more advanced pubertal stages.

Executive abilities were significantly associated with age
(β = 0.09, t = 4.5, P < 0.001) and slightly higher in females (β = 0.1,
t = 2.4, P = 0.02). Birth weight was not associated with executive
abilities; however, total brain volume (β = 0.07, t = 3.3, P < 0.001),
in-scanner motion (β = 0.2, t = 7.5, P < 0.001), physical activity
(β = 0.05, t = 2.2, P = 0.03), parental education (F(2, 2387) = 37,
P < 0.001), household income (F(2, 2387) = 46, P < 0.001), and race
(F(2, 2386) = 27, P < 0.001) were associated. Overall, there was also
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Table 1 Demographics and variables by BMI class

Underweight (<5th) Lean (5th—85th) Overweight (85th—95th) Obese (>95th)

N 127 2197 472 501
Age (months) 122 120 120 120
Sex (F/M) 77/50 1113/1084 225/247 231/270
Birth weight (lbs) 6 (na = 3) 6.5 (na = 68) 6.7 (na = 18) 6.7 (na = 23)
Income
(lower/middle/higher)

6/49/64 (na = 8) 250/748/1045 (na = 154) 98/167/162 (na = 45) 123/209/133 (na = 36)

Race (white/black/Hispan-
ic/other)

92/7/14/14 1501/199/334/163 236/74/135/27 218/113/141/29

FWD 0.19 (na = 4) 0.24 (na = 164) 0.28 (na = 54) 0.31 (na = 51)
Parental education (high
school/college/postgrad.)

10/75/42 215/1289/693 87/283/102 102/311/88

DHEA (pg/mL) 64 (na = 57) 61 (na = 1044) 65 (na = 216) 84 (na = 231)
Physical activity (no. days) 3.7 3.8 (na = 1) 3.5 3.5 (na = 2)
Executive function
(age-corrected)

99.6 (na = 12) 99.7 (236) 95.8 (na = 52) 93.9 (na = 57)

Brain volume (cm3) 1180 (na = 30) 1224 (na = 550) 1216 (na = 131) 1207 (na = 112)

BMI was classified using percentile growth charts stratified according to age based on CDC 2001 look up tables (CDC Growth Charts 2018, https://www.cdc.gov/
growthcharts/html_charts/bmiagerev.htm). For statistical assessment, household income levels were categorized as less than $35 000, less than $100 000, and greater
than $100 000. Race was categorized as white, black, Hispanic and other. Parental education was categorized as up to and included General education diploma (GED),
up to and including college or associated degrees, and postgraduate. Mean FWD was used as a measure of head motion during scanning. Physical activity was a
self-reported record of number of days in past week where the subject was physically active for more than 60 min/day.

Figure 1. Relationship between BMI and executive function after adjustment
for age, sex, race, birth weight, in-scanner motion, parental education, and

household income.

a positive association between levels of DHEA and executive
abilities (β = 0.09, t = 2.9, P = 0.005).

Relationship Between BMI and Executive Function

There was a significant negative relationship between BMIZ

and age-corrected executive function (β = −0.05, t = 2.4, P = 0.02,
n = 2389) accounting for other variables except cortical thickness
and levels of pubertal hormones (see Fig. 1). When levels of
DHEA were taken into account, the relationship between BMI
and executive function was reduced to trend-level (β = −0.05,
t = 1.6, P = 0.1). Because there were far fewer subjects with levels
of DHEA (n = 1227), and the effect size is identical, this likely
reflects reduced power in the smaller dataset rather than DHEA
mediating the relationship between BMI and executive function.
Both waist circumference and waist-to-height ratio were also
negatively associated with executive function (see Supplemen-
tary Materials).

Relationship Between BMI and Cortical Thickness

Across individuals with complete data (n = 2668), there was a
significant, negative association between BMIZ and mean global
cortical thickness (β = −0.5, t = 2.6, P = 0.01) accounting for demo-
graphic and other covariates excepting DHEA.

After FDR correction for multiple comparisons, regions of sig-
nificant cortical thickness reductions bilaterally included lateral
OFC, inferior frontal gyrus (parsorbitalis and pars triangularis),
and rostral middle frontal and superior frontal cortex. In the
left hemisphere, additional significant differences were found
in entorhinal cortex, while in the right hemisphere additional
changes were found in medial OFC and temporal pole (see
Fig. 2, Table 1, Supplementary Material). In all cases, changes
took the form of a decrease in cortical thickness associated with
BMIZ.

When we repeated our analysis using waist circumference
and waist-to-height ratio in place of BMI, we found that the
relationship to cortical thickness was broadly similar to the
pattern seen with BMI (see Supplementary Table 1 and Supple-
mentary Materials).

In a separate analysis, there was a negative association
between DHEA level and average global cortical thickness
(β = −0.06, t = 2.2, P = 0.03) in line with the hypothesis that
increases in pubertal hormonal levels are associated with
maturation-related cortical thinning in this age range. In a
regional analysis of the association between cortical thickness
and BMI taking DHEA levels into account, only cortical
thickness in rostral middle frontal cortex was associated
with BMI (β = −0.13, t = 3.8, P = 0.01). Given that the effect
size was not decreased compared with the analysis in the
larger dataset, this suggests that DHEA was not a signifi-
cant confound of the relationship between BMI and cortical
thickness, and that differences in results were instead more
likely due to a comparative lack of power in the smaller
dataset (see Supplementary Table 2 and Supplementary
Material).
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Figure 2. Map of reduced cortical thickness (beta regression coefficients) associated with BMI, adjusted for demographic and other confounder variables.

Relationship Between Cortical Thickness
and Executive Function

Across individuals with complete data (n = 2389), there was a
significant negative relationship between mean global cortical
thickness and executive abilities (β = −0.07, t = 3.1, P = 0.002),
without adjusting for BMIZ. At a local level and after FDR-
correction, mean cortical thickness in several regions was
predictive of executive function (see Fig. 3), including cuneus,
fusiform, lateral occipital, rostral anterior cingulate, rostral
middle frontal gyrus, superior and inferior parietal cortex,
middle and superior temporal gyrus, pars opercularis, pars
triangularis, postcentral, and supramarginal cortices bilaterally,
and additionally the caudal anterior cingulate, superior tem-
poral sulcus, caudal middle frontal gyrus, lateral orbitofrontal
cortex, pars orbitalis, precuneus, precentral sulcus, posterior
cingulate and the superior frontal cortex in the left hemisphere,
and lingual region, the precuneus, and the transverse temporal
sulcus in the right hemisphere (see Supplementary Table 1 and
Supplementary Material). In all regions, this association took
the form of a negative relationship between cortical thickness
and executive function. This is in line with previous results for
this age-range (Shaw et al. 2006).

Taking DHEA levels into account in the subset of the sample,
the negative relationship between global mean cortical thick-
ness and executive abilities remained (β = −0.08, t = 2.6, P = 0.02).
At a regional level, executive function was again associated
with reduced cortical thickness in several regions including
cuneus and superior parietal cortex in the left hemisphere and
pars triangularis and transverse temporal cortex in the right
hemisphere. Again, the effect size was not reduced compared to
the larger dataset suggesting that DHEA was not a significant
confound of the relationship between cortical thickness and
executive function (see Supplementary Table 2 and Supplemen-
tary Material).

Mediation

Having established a relationship between (1) BMI and cortical
thickness, (2) cortical thickness and executive function, and (3)
BMI and executive function, we next examined whether cortical

thickness was a significant mediator of the relationship between
BMIZ and executive function.

Results of analysis revealed that while global mean cortical
thickness was not a significant mediator between BMI and exec-
utive function, cortical thickness in 11 regions partially mediates
the relationship (see Fig. 4, Supplementary Table 3 and Supple-
mentary Material). These regions included the parsorbitalis, pars
triangularis, rostral middle frontal and superior frontal cortex
bilaterally, and additionally lateral OFC in the left hemisphere,
and fusiform and medial OFC in the right hemisphere (see
Supplementary Table 3 and Supplementary Material).

Discussion
In this study, we investigated the association between BMI,
cortical thickness, and executive function in 2700 9–11 year
olds recruited as part of the ABCD NIH study. We observed a
negative association between executive function and cortical
thickness across the cortical surface. Increased BMI was asso-
ciated with lower scores on a composite measure of executive
function. We also found significant BMI-related differences in
cortical thickness in line with similar studies (Maayan et al. 2011;
Yau et al. 2014; Ross et al. 2015). In particular, reduced cortical
thickness was pronounced in orbitofrontal cortex, ventromedial
PFC, and DPFC, regions involved in executive functions includ-
ing decision-making, response inhibition, working memory, and
cognitive flexibility.

The changes that such reduced cortical thickness reflects
are unknown. For example, previous studies have suggested
that MR-based measures of changes in cortical thickness during
childhood may reflect, in part, increases in cortical myelination,
particularly in frontal association areas (Croteau-Chonka et al.
2016). Interpreting the results of the current study along these
lines, reduced cortical thickness associated with childhood
obesity may be a function of an increase in cortical myelination.
Future studies may consider more direct measures of myeli-
nation with a view to increasing power to detect the extent
of structural mediation between BMI and executive function.
Moreover, other brain parameters may also be important.
For example, relative change in degree of connectivity or
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Figure 3. Map of reduced cortical thickness (beta regression coefficients) associated with executive function adjusted for demographic and other confounder variables.

Figure 4. Estimate of mediation effect of regional cortical thickness on the relationship between BMI and executive function.

consolidation of activity may more closely index the develop-
ment of executive function and thus may be more sensitive to
BMI-related differences (Durston et al. 2006; Ezekiel et al. 2013).

Previous studies have reported a degree of regional-
specificity to changes in cortical structure in relation to
childhood obesity. The current study, capitalizing on a uniquely
large dataset, demonstrates that increased BMI is associated
with pervasive reductions in cortical thickness across much of
the PFC. While our study does not allow a clear mechanistic
interpretation of this predominance of effect in PFC, one
possibility is that, since this region is associated with top-
down control and inhibitory processes, then BMI-related
changes could in turn lead to further difficulties in resisting
external drives to consumption and attenuated learning from
experience. This could entail a positive feedback in which early
detrimental changes to PFC structure and function lead to
ensuing behavioral changes that exacerbate weight gain.

More generally, PFC is involved in top-down regulation and
inhibitory control as well as emotion and motivation regulation,

and changes in this area are convincingly related to risk-taking
behavior and substance abuse (Goldstein and Volkow 2011). In
addition, the relatively extended maturational trajectory of PFC
is thought to subserve experience-dependent learning (Romine
and Reynolds 2005). As such, differences in PFC structure during
early adolescence may possibly increase the vulnerability of this
region to external stressors. Thus, BMI-associated brain changes
in PFC may be regarded as a risk factor to the developing brain.

In a complementary analysis, we found that reduced cortical
thickness in the PFC partially mediated the relationship between
BMI and executive function. This observation is compatible with
the idea that elevated BMI causes cortical thinning in turn
leading to a reduction in executive function score. The direction
of this causality model is supported by some observational
studies. For example, in adult populations, a significant number
of studies have suggested that obesity may play a causal role
in the onset of brain structural changes and cognitive decline
(Bruce-Keller et al. 2009; Arnoldussen et al. 2014). It is hypoth-
esized that factors related to increased body mass such as an
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elevated inflammatory response or neuroendocrine dysfunction
might impact on brain structure and cognitive function in a
manner akin to neurodegenerative processes observed with
aging. Indeed, many studies have associated increased BMI in
midlife with increased rates of neurodegeneration and a sig-
nificant elevated risk of dementia and Alzheimer’s disease in
old age (Singh-Manoux et al. 2017). In children, a large-scale
longitudinal analysis of early childhood development reported
that obesity in very early childhood is a risk factor for reduced
cognitive function years later (Li et al. 2018). Important corollar-
ies to these studies are reports of significant improvement of
memory and executive function following weight-loss (Gunstad
et al. 2011; Veronese et al. 2016), as well as the general neuropro-
tective effects of severe caloric restriction (Colman et al. 2009).

However, care must be taken when interpreting our results,
and we note that the causal model of BMI impacting cortical
thickness which then further impacts executive function is just
one of a possible six models and it is not possible to distinguish
these statistically. For example, our data may also fit a model
whereby BMI impacts executive function, which in turn impacts
cortical thickness. Alternatively, our data would be equally com-
patible with a hypothesis that executive function influences
BMI, which in turn may influence cortical structure. Indeed,
various studies support such a hypothesis. For example, lon-
gitudinal studies suggest that the early cognitive environment
may be a risk factor for developing obesity in later childhood,
with children in lower cognitive stimulation environments at
a 2-fold greater risk of developing obesity (Strauss and Knight
1999). Meanwhile, in bariatric patients, executive function has
been shown to predict postsurgical weight-loss (Spitznagel et al.
2013).

We also acknowledge the possibility that there is no causal
relationship between BMI and executive function. This would
be compatible with a model in which cortical structural features
drive altered BMI and executive functioning independently. This
is feasible given that the genes associated with obesity-risk
are predominantly and significantly expressed in the central
nervous system and linked to basic functions such as glutamate
signaling and synaptic function (Locke et al. 2015) and that BMI,
brain structure, and various aspects of cognitive function share
common genetic influences (Curran et al. 2013; Hagenaars et al.
2016; Marioni et al. 2016). The finding that BMI shares common
genetic influences with various aspects of brain structure and
cognition highlights the difficulty in isolating causal associa-
tions in noninterventional studies and underscores the impor-
tance of more direct studies in nonhumans. In this regard, it may
be that BMI and executive function are not causally related, and
structural changes associated with each may simply be regarded
as an important confound of the relationship (MacKinnon et
al. 2000). Indeed, we note that it is not possible to statistically
distinguish between a confound and a mediator. In this regard,
the results of this study suggest that BMI, cortical thickness or
executive function should be included as a potential confound
in any future analysis that seeks to investigate the relationship
between the other 2 variables.

There were a number of significant limitations in this study.
Primarily, due to the cross-sectional nature of our data, we
were not able to distinguish between different possible mod-
els to determine the causal relationship between BMI, execu-
tive function, and cortical thickness. This may be addressed
by future studies based on longitudinal data. In addition, our
analysis was based on measures of BMI. While BMI is the most
commonly used index of adiposity, it is less directly related to

cardio-metabolic risks than other metrics such as waist circum-
ference and waist-to-height ratio (Sharma et al. 2015). When
we repeated our analysis for waist circumference and waist-
to-height ratio, we found that both measures were associated
with lower levels of executive function, as well as regional
reductions in cortical thickness in a manner similar to what
we observed using BMI. However, both measures additionally
identified regions where increased waist circumference and
waist-to-height ratio were associated with increases in cortical
thickness. These results illustrate that BMI may not capture
the total variation of cortical structure with increased adiposity.
Finally, although we have confined this extensive analysis to the
cortical sheet, we acknowledge that subcortical structures have
also been implicated in obesity. Therefore, it will be important
for future work to extend such analyses to subcortical regions
and, critically, to examine covariance relationships between key
cortical and subcortical structures in order to more fully char-
acterize the relationship between childhood obesity and brain
structure.

Conclusions
In a large, population-based cohort, reduction in PFC cortical
thickness was associated with childhood obesity. Higher BMI
was also associated with reduced scores on a composite cogni-
tive measure reflecting executive processes, and a complemen-
tary mediation analysis was consistent with cortical thickness
change mediating the relationship between BMI and executive
functioning. The data are consistent with a mechanism whereby
PFC changes in childhood obesity may lead to altered regula-
tion of inhibitory control and risk-taking behavior and further
difficulties in weight control. However, due to the limitations
of our data, care must be taken in interpreting our results and
follow-up studies will be critical to establishing causal pathways
between BMI, brain structure, and executive function, as well as
determining if longitudinal changes in BMI have a measurable
impact on these traits.
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