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SUMMARY 

Name: Arion Pons 

Title: Supermanoeuvrability in a biomimetic morphing-wing aircraft 

In this work we study the supermanoeuvrability of a biomimetic morphing-wing case study 

aircraft system. Analytical and computational models of biomimetic flight dynamics are 

developed, utilising multibody dynamics, computational fluid dynamics, and reduced-order 

aerodynamic models; and validated with respect to experimentally-derived flight dynamics 

of a Pioneer RQ-2 UAV. These models are used to explore the capability of this system for a 

wide range of biological and other supermanoeuvres: multi-axis quasistatic nose-pointing-

and-shooting (NPAS) / direct force capability; multi-axis rapid-nose-pointing-and-shooting 

(RaNPAS) including Pugachev’s cobra; ballistic transition; and anchor turning. Novel 

contributions include the development of transient aerodynamic models for a three-

dimensional flight-simulation context; the development of novel methods for assessing 

transient model validity; the development of improved methods of quaternion variational 

integration; the development of quasi-trim and continuation-based methods for the design, 

exploration, analysis and control of manoeuvres in biomimetic morphing-wing systems; an 

assessment of the complex spiral mode stability effects present in asymmetrically-morphed 

system trim states; and a demonstration of the wide-ranging potential for advanced 

supermanoeuvrability in biomimetic morphing-wing systems. Industrial applications include 

the design of high-precision guided missiles for use in complex, e.g. urban, environments. 
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1.1. INTRODUCTION 

Readers who are familiar with any of the numerous wildlife documentaries filmed over the 

last decade will recognise the extraordinary flight capabilities of biological creatures. These 

films frequently show birds, bats and other flying creatures performing complex aerial 

manoeuvres – for display, combat, or other motivations – which far outpace the capability 

of conventional fixed-wing aircraft. Such manoeuvres include complex perching [1], stall 

turning [2–5], zero-airspeed rolling [6], and parachute braking [7,8]. Many of these 

creatures could indeed be accurately characterised as supermanoeuvrable [9–11]: a 

descriptor originating from the study of highly manoeuvrable aircraft, and denoting their 

capability for controlled flight beyond conventional stall boundaries. 

 

Biologically-inspired approaches to achieving analogous levels of manoeuvrability in aircraft 

thus become apparent. However, the first supermanoeuvrable aircraft owed their capability 

not to biomimicry but to advances in the study of unstable airframes. In the late 1970s, a 

Sukhoi Su-27 carried out the Pugachev Cobra – a high-amplitude post-stall pitching 

manoeuvre [12] – utilising only static structural and aerodynamic design: large wing strake, 

nose chines, and an unstable airframe [12–15]. Within a decade supermanoeuvrable aircraft 

were rapidly acquiring greater capability through the introduction of thrust vectoring / 

vectored propulsion [12]. Supermanoeuvrability has now become synonymous with thrust 

vectoring; and as such is a feature of many recent high-performance jet aircraft, including 

the Sukhoi PAK FA [16], and Mitsubishi X-2 Shinshin [17] and Lockheed Martin F-22 Raptor 

[13].  

 

However, the problem and potential of biologically-inspired supermanoeuvrability remains. 

Much research has gone into designing biomimetic aircraft, e.g. [18–20], with an emphasis 

on wing flapping as a propulsive mechanism. The scope for biomimicry is vast: among 

vertebrate-inspired systems alone, there are mimetic seagulls [18], pigeons [21], bats 

[22,23], pterosaurs [24,25] and hummingbirds [26]. Interestingly, biological research 

indicates that the mechanisms of propulsion and supermanoeuvrability in flying creatures 

are partially distinct – for instance, flying squirrels, not capable of powered-flight, show 

supermanoeuvrability when gliding [27–30]. Evolutionary studies suggest that, in the lineage 
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of birds, flight manoeuvrability evolved before a strong power stroke [31]; and today birds 

and bats can carry out stall turns in under the timescale of a single wingbeat [32,33]. 

 

A pertinent open question, therefore, is whether supermanoeuvrability is attainable in a 

biomimetic UAV / MAV, independent of flapping-wing propulsion. A hybrid aircraft with a 

conventional propulsion system and basic wing morphing might attain a degree of 

biomimetic supermanoeuvrability, while retaining the advantages in airspeed, range, 

endurance and actuator requirements offered by a conventional propulsion system. UAV 

development is a highly competitive environment, with fixed-wing, rotorcraft, fully- 

biomimetic, and other morphing UAV systems to contend against; but potential niches for 

this form of hybrid aircraft can be identified, e.g. in the design of highly-manoeuvrable 

loitering munitions. Target applications are discussed in more detail in Section 1.4.2. 

 

Existing studies into supermanoeuvrable biomimetic systems have focused strongly on 

perching manoeuvres: indeed, it has been demonstrated that, given sufficient elevator 

authority, perching manoeuvres may be successfully performed by fixed-wing glider MAVs 

solely under elevator control [34–37]. Improvements in perching performance can be 

attained using wing morphing [37]: changes in wing dihedral [38,39] or incidence [40,41], 

sometimes combined with tail displacement motion [42,43] have all shown potential, and 

some impressive flight tests have been carried out. However, more complex forms of 

biomimetic supermanoeuvrability are only rarely recognised (e.g. [44]) and not well 

understood. This work will investigate the mechanisms behind a range of forms of biological 

and biomimetic supermanoeuvrability, and will explore the potential for such capability in a 

hybrid aircraft. To start this exploration, a review of existing research into biological 

supermanoeuvrability and morphing-wing systems is required. 

 

 

1.2. BIOLOGICAL SUPERMANOEUVRABILITY: A REVIEW 

1.2.1. Terminology 

For readers unfamiliar with biological and/or engineering studies of morphing-wing flight, 

Figure 1.2.1 gives a brief overview of the terminology describing the forms of wing motion 

that are relevant to our study. In general, biological terms (e.g. pronation) refer to motion, 
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whereas engineering terms (e.g. incidence) refer to a state: for consistency in Figure 1.2.1 

appropriate motion descriptors are used (e.g. increasing incidence). Biologically, not all 

degrees of freedom may be active, and some may be coupled – for example, pigeon 

(Columba livia) wing extension has been noted to also change the forward / aft location of 

the wing centre of area, functioning as a form of sweep variation [45]. 

 

 

Figure 1.2.1: Terminology for avian wing motion commonly used in biological and 
engineering literature. 
 

1.2.2. Avian turning flight 

A wide variety of bird and bat species are known to carry out sharp stall or anchor turns by 

supinating (pitching upwards) the inboard wing, stalling it and generating a large drag force 

and yaw moment [2–4].  In bats turns of 180° in a space of less than half a wingspan and a 

time of two to three wingbeats have been observed [5,33,46]. The mechanism of these 

turns is surprisingly similar to that of the Herbst manoeuvre in supermanoeuvrable aircraft, 

involving an altitude increase to bleed off airspeed, rapid braking using the airframe drag 

and a low-airspeed roll into the new orientation [5,12,33,46,47]. The use of altitude to store 

kinetic energy enables both a tighter turn radius and a more rapid reacceleration after the 

manoeuvre. Figure 1.2.2 shows 180° turning flight paths for two bat species, Myotis 

mystacinus and Cynopterus brachyotis, recorded by Aldridge [33] and Tian et al. [5]; 

compare the schematic of the Herbst manoeuvre carried out by an X-31 aircraft shown in 

Figure 1.2.3.  
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Figure 1.2.2: 180° turning flight paths for two bat species, in dimensionless wingspan (𝑏) 
coordinates: (a) M. mystacinus, from Aldridge [33] with eight data points and taking 0.28 s, 
and (b) C. brachyotis, from Tian et al. [5] and with fine measured data over five wingbeats. 
 

 

Figure 1.2.3: A diagram and description of the Herbst manoeuvre in an X-31 aircraft, 
reproduced from NASA [48], maximum resolution, public domain. 
 

More relaxed banked turns are also widespread. At low speeds these manoeuvres place 

greater reliance on continuous propulsive flapping: short banked turns of radius two to 

three wingspans and about three wingbeats are common in pigeons [6]; cockatoos have 

been observed to perform 90° banked turns in about 1.2 wingspans and three wingbeats 

[49]. The minimum instantaneous radii of such turns are tiny – in bats, banked turns have 

been observed to occur in 0.8 of a wingspan (at a bearing rate of over 400°/s) [50]; and 

Figure 1.2.4 shows traced images of a c. 140° turn performed by a long-eared bat (Plecotus 

auritus) at a radius of c. half a wingspan, observed by Rayer and Aldridge [46]. In the most 

extreme case, instantaneous turning radii of below 0.03 of a wingspan were observed [33] – 
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effectively indicating on-the-spot turning, which may be regarded as a form of direct force 

capability as described by Herbst [10]. Centripetal accelerations of up to nearly 8𝑔 have 

been observed in such high-speed turns [51], and they involve complex wing motion 

[4,6,52]. 

 

 

Figure 1.2.4: Traced images from high-speed film, plan and elevation views, 50 ms apart, of 
a long-eared bat (P. auritus) undergoing a shallow powered turn through c. 140°. Adapted 
from Rayner and Aldridge [46] with permission. 
 

1.2.3. Avian complex manoeuvres 

Other than turning flight, a variety of more complex rotational and direct-force manoeuvres 

have also been observed in avian flyers. In pigeons a remarkable zero-airspeed rolling 

manoeuvre has been observed which allows the bird to right itself after free fall in an 

inverted position [6]: this is achieved through an asymmetric flapping stroke, wherein each 

wing is alternately elevated or depressed (for the appropriate direction of roll) while the 

opposite wing is held closer to the body to avoid generating a counteracting drag moment. 
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Degrees of both post-stall aerodynamic control and inertial manoeuvring, c.f. [53], are likely 

to be involved, though the relative significance of each is uncertain. Figure 1.2.5 shows 

traced images of a pigeon (Columba livia) performing this manoeuvre, which may again be 

regarded as a biological example of direct force capability, as defined by Herbst [10]. 

 

 

Figure 1.2.5: Traced images from high-speed film, 12 ms apart, of a pigeon (C. livia) 
undergoing a near-zero-airspeed rolling manoeuvre. Thin arrows denote wing movement, 
dashed arrows the direction of body roll, and thick arrows are inferred lift (frame 2) and 
drag (frame 5) forces. The pigeon rolls 135° in approximately 50 ms. Reproduced from 
Warrick and Dial [6] with permission. 
 

A similar manoeuvre has been observed by Bergou et al. [54] in Seba’s short-tailed bat 

(Carollia perspicillata). This consists of an abortive upwards landing operation (C. 

perspicillata and other bats perch upside-down) followed by a righting operation to return 

to normal flight. This sequence of operations is induced in captivity by removing a landing 

pad habitually used by the bat; in the wild it might be observed in other abortive landing 

scenarios, e.g. defence or aggression from a perched bat in the landing zone. The 

combination produces a complex rotational manoeuvre involving all three degrees of 
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freedom. Figure 1.2.6 shows images of the full manoeuvre, captured on high-speed film by 

Bergou et al. [54]. As may be seen, the initial high-angle upwards flight leads to an apex 

point of minimal airspeed, coinciding with strong leftwards yaw. Alongside some finer roll 

and pitch control this reorientates the bat into a dive position, leading to a short dive before 

full recovery. The altitude gain and sharp turning motion show parallels with the anchor 

turns of Section 1.2.2, and it is possible this manoeuvre is a simple variant of such turns. 

 

 

Figure 1.2.6: (Top): Images from high-speed film, 75 ms apart, of a Seba’s short-tailed bat (C. 
perspicillata) performing an upwards landing manoeuvre, and upon failing to find a landing 
site, performing a righting manoeuvre. As a scale, the bat wingspan is c. 30 cm. (Bottom): 
Reconstruction of the wing and body kinematics with a discrete element model. 
Reproduced from Bergou et al. [54] under CC BY 4.0. 
 

Notably, an analysis by Bergou et al. [54] of this abortive landing manoeuvre concluded that 

inertial manoeuvring was a dominant factor in the control of the main reorientation 

sequence (from frame 2 in Figure 1.2.6). However this conclusion does not distinguish 

between the use of active inertial control during the reorientation, and passive 

reorientation via the generation of a suitable initial momentum. Indeed, given the relatively 

minimal wing motion observed during reorientation, it seems probable that only fine-level 

inertial and/or aerodynamic control is carried out then, with the manoeuvre being strongly 

dependent on the generation of a suitable torque and angular momentum by aerodynamic 

forces prior to reorientation. This is consistent with the observation that the bat’s wings 

remain tucked relatively close to the body during reorientation (see Figure 1.2.6, Frame 3): 

this would decrease its capability for inertial or aerodynamic control, but increase its 

angular velocity with reference to an initial momentum. However, an additional 
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complication in this manoeuvre is the confined space in which it takes place: this is likely to 

pressure the bat into taking a more compact shape during reorientation, and may eliminate 

some wing operations which might otherwise be more effective or efficient. 

 

Successful upwards landing manoeuvres in bats sometimes also involve complex rotational 

motion. A study by Riskin et al. [55] of several species distinguished two key landing modes, 

with clear inter-species differences. Four-point landings involved pitch motion with minimal 

yaw and roll, followed by landing contact in an inverted position (angle of attack c. 180°) 

with all four limbs. A similarity with pitch-dominant perching and ballistic transition 

manoeuvres in other species may be noted – see Section 1.2.4.  Two-point landings involved 

an initial pitch-up motion, followed concurrently by left or right yaw motion (distinguishing 

left-handed or right-handed two point landings respectively) and a small corresponding roll, 

until the bat’s feet were above its head. This leads to landing contact with two hindlimbs in 

an inverted position, concurrent with a strong pitch-backwards momentum that rotates the 

bat into the nose-down roost position – with the wing plane orientated 90° relative to the 

roost position after a four-point landing. The abortive landing and reorientation manoeuvre 

observed by Bergou et al. [54] represents a two-point landing; thus the affinity between 

two-point landing and the anchor turn manoeuvres of Section 1.2.2 may be noted. It may be 

possible to conceptualise the two-point landing as a form of anchor turn which involves 

landing contact at the turn apex. However insufficient data is available to explore this more 

fully. 

 

Figure 1.2.7 shows a schematic of these two landing modes from Riskin et al. [55], 

representing the mean orientation histories from four-point landings observed in 

Cynopterus brachyotis and right-handed two-point landings in Carollia perspicillata. Figure 

1.2.8 (A-G) shows the orientation histories for three bat species performing one or more of 

these landing manoeuvres. C. brachyotis only performed four-point landings (A), whereas C. 

perspicillata performed both left-hand (B) and right-hand (C) two-point landings, as well as 

variants of these (D and E respectively) with more pitch and less yaw motion, showing some 

affinity with the four-point mode of landing. Glossophaga soricina, the third species, 

performed only conventional left- (F) and right-handed (G) two-point landings. 
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The strong association of particular species with particular landing modes is thought to be 

related to the bone stress associated with each manoeuvre; four-point landings being 

significantly gentler than two-point landings. A distinction may then be considered on the 

grounds of roosting habits (cave-roosting bats landing more gently than foliage-roosting 

bats due to the rigidity of the landing surface) and at least partly the bat mass (heavier bats 

tending to show a preference for four-point landing, though counterexamples are known) 

[55]. Phylogenetic differences in forelimb usage could also be a significant factor. 

 

 

Figure 1.2.7: Schematic of a four-point (A) and right-hand two-point landing (B), 
representing the mean orientation histories from Figure 1.2.7.A-B respectively. Time = 0 is 
the time of peak impact force into the ceiling. Reproduced from Riskin et al. [55] with 
permission. 
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Figure 1.2.8: Statistical orientation histories (pitch: grey, yaw: red, roll: blue) of several bat 
species performing vertical perching manoeuvres. Species: (A) Cynopterus brachyotis, (B–E) 
Carollia perspicillata, (F,G) Glossophaga soricina. Sample sizes are: A 29, B 22, C 13, D 4, E 6, 
F 15 and G 32. Error bars extend one standard deviation above and below the mean. Broken 
lines are at ±180 deg, and time = 0 is the time of peak impact force into the ceiling. Adapted 
from Riskin et al. [55] with permission. 
 

Several other high-performance roll and yaw manoeuvres are seen in other avian and 

pteropine species. Whiffling is a high-airspeed roll manoeuvre in geese and waterfowl that is 

associated with landing operations [56–58], courtship [59], and predator evasion [60]. 

Similar behaviour in steppe eagles (A. nipalensis) is associated with aerial defence using 

talons [4]. Fast dive-rolls, probably for the purpose of insect capture, have been observed in 

the common noctule bat (Nyctalus noctula) by Norberg [61]. Roll rates of c. 2000°/s are 

generated via pronation/supination on opposite wings, combined with mild wing adduction 

leading to a decrease in the bat’s rotational inertia. Deceleration immediately prior reaching 
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an inverted flight state is achieved via extension of the wings to maximum, leading to 

stabilising drag and an increase in the bat’s rotational inertia. The dive component of the 

manoeuvre is achieved via symmetric pronation at the end of the manoeuvre (during 

inverted flight) [61]. While none of these operations necessarily involve post-stall capability, 

the manoeuvre is notable as an example of conventional manoeuvrability enhancements 

achieved via biomimetic wing motion – both in the generation of extreme roll moments via 

wing pronation, and the use of adduction and extension (comparable to a sweep degree of 

freedom) to increase and decrease bat rotational inertia. Overall, the range of different roll 

and yaw reorientation manoeuvres observed in avian and pteropine species suggests that 

there are multiple avenues for biological and biomimetic supermanoeuvrable orientation 

control in these degrees of freedom. 

 

1.2.4. Turning manoeuvres in non-avian gliders 

Demonstrable supermanoeuvrability is not even restricted to creatures with well-articulated 

wings. Flying squirrels and other mammals (Glaucomys spp., Petaurus spp., Petauroides 

volans, etc.) have been observed to undertake sharp 90°-180° turns [27,28], and detailed 

research has indicated that these turns are largely drag-based and occur at wing-membrane 

angles of attack up to 60° [29,30]. Angles of attack above 40° are common in straight glides, 

and though these creatures have a number of adaptions to delay stall, several experimental 

studies suggest that partial or full flow separation is involved [62,63]. Gliding frogs 

(Polypedates dennysi) show similar manoeuvrability, performing drag-based (crabbed) turns 

of over 80° at bearing rates of 400°/s, at angles of attack up to 60°  [64]. Based on several 

basic manoeuvrability metrics, McCay [64] went so far as to conclude that “the 

manoeuvrability of tree frogs was approximately one-third of the manoeuvrability of a 

falcon (Falcon jugger)” – remarkable given the complete lack of significant lifting surfaces on 

the frog airframe, though the comparison does not do justice to the much wider range of 

manoeuvres available in birds. 

 

1.2.5. Perching manoeuvres 

Of all the post-stall manoeuvres observed in biological creatures, perching has seen the 

most study from an industrial aerospace perspective. Perching-type manoeuvres are 

widespread in many species, including non-avian gliders: flying squirrels and other mammals 
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use stall-perching manoeuvres for landing. A large number of species [30] have been 

observed to undergo a ‘ballistic transition’ near to landing, pitching up to a vertical angle-of-

attack and completing the flight manoeuvre in the manner of a parachute [7,8]. Figure 1.2.9 

shows an experimentally-observed ballistic transition trajectory of a northern flying squirrel 

(Glaucomys sabrinus), alongside the estimated aerodynamic forces, from Bahlmann et al. 

[63] undergoing such a manoeuvre. Note the significant increase in drag in the final stages 

of the manoeuvre (f-g), attained via high pitch-up, and required in order to bleed off 

airspeed before the impact landing. The presence of a significant lift force in Figure 1.2.9, 

even in the late stages of the manoeuvre, implies that the squirrel does not reach vertical 

angle-of-attack (for which there is zero or minimal lift) until immediately before or upon 

impact. Other trajectories observed experimentally by Bahlmann et al. [63] almost 

universally show upwards vertical acceleration through the end phase of the manoeuvre, 

supporting this general inference. Frustratingly, no direct orientation imagery is available to 

confirm this. 

 

 
Figure 1.2.9: Schematic of ballistic transition manoeuvre in a northern flying squirrel (G. 
sabrinus). Reproduced from Bahlmann et al. [63] with permission. 
 

In more complex fliers, perching or stall diving may be combined with other conventional or 

post-stall manoeuvres; or may be disassociated with ground landing. Kereru (Hemiphaga 

novaeseelandiae) utilise stall diving in breeding rituals [65]. Bildstein [66] and later surveys 
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[67,68] characterised several different types of pouncing manoeuvres used by harriers in 

hunting. One of these, the hook pounce, involves a perching landing manoeuvre 

immediately preceded by an extremely sharp turn – over 270° in a radius of slightly over one 

wingspan [66]; well equal to the anchor turn performance of other species noted in Section 

1.2.2. The aerodynamic aspects of such manoeuvres are not well understood, though in the 

case of stall dives by steppe eagles (A. nipalensis) wing sweep changes and pulsed stall 

braking are involved [4]. 

 

1.3. ENGINEERING APPLICATIONS OF WING MORPHING 

1.3.1. Overview 

The study of morphing-wing systems (cf. Figure 1.3.1) is a vast topic, extending from 

insectoid flight vehicles smaller than a penny [69], to swept-wing aeroplanes that are among 

the largest aircraft ever built [70]. There are many morphing systems and technologies, in 

varying stages of development; and a large number of existing reviews, of varying 

completeness, are available [71–79].  Several key themes may be identified in the literature. 

 

 
Figure 1.3.1: A NASA Artist’s rendering of a futuristic air vehicle with mission-morphing 
wings; a widespread poster picture for morphing aircraft. NASA Photo ED01-0348-1, public 
domain. 
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1.3.2. Mission morphing 

Mission morphing denotes the use of wing or airframe morphing to specialise a 

multipurpose aircraft to particular discrete manoeuvres, tasks, or missions [75,80,81]. Such 

systems are intended to switch between two or more discrete airframe states, typically 

during flight, avoiding the need for separate aircraft to perform the associated discrete 

missions, and increasing the efficiency with which a sequence of missions can be carried 

out. For example, loiter-dash / loiter-attack systems are intended to switch between a slow, 

high-endurance loiter state (e.g. with dihedral and no sweep) to a fast, high-performance 

dash or attack state (e.g. with backwards sweep and anhedral) [82,83]. 

 
A wide variety of mission morphing operations have been considered. Symmetrical span 

variation has seen frequent study as an avenue to loiter-and-dash capability [84–86], and 

sweep motion has been considered for the same purpose [87] – historical uses of sweep 

motion for the purpose of reducing wave drag in supersonic aircraft are early variants of this 

idea. Recent developments include the study of loiter-dash systems with multiple degrees of 

freedom in sweep [25,88,89], and of camber morphing for adaptive changes in take-off and 

landing performance and cruise efficiency [81]. The NextGen MFX-1 and MFX-2 [90–93] 

represent functional loiter-dash aircraft utilising combined span and sweep variation, and 

are under continued development. 

 

Wing deployment may also be regarded as a form of mission morphing; the two mission 

states typically being an undeployed launch state and a deployed flight state. Key 

applications include sweep-deployable wings for cruise missiles [94] and other rapid-launch 

MAV craft [95]. Complex wing deployment operations have been considered for the ARES 

Mars Mission [96–99], US Navy Flying Radar Target (FLYRT) [100,101], and conceptual MAVs 

[102]. A notable feature of the study of wing deployment, compared to other mission 

morphing, is the relative importance of the transition states and transient aerodynamics, 

associated with the greater speed of lifting surface motion. 

 

1.3.3. Pre-stall control morphing 

Control morphing is a second key theme in engineering literature on wing morphing. The 

term refers to morphing which is carried out dynamically as a flight control mechanism 
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[75,103]. In the trivial case, conventional aircraft control surfaces (aileron, elevator, etc.) 

represent a basic example of control morphing. More recently, in normal pre-stall flight 

regimes, articulated winglets have been shown the ability to perform turning manoeuvres at 

lower speeds than would be possible with conventional ailerons  [104–106]. Asymmetric 

span morphing has been studied as an avenue to high-authority roll control, but results are 

preliminary [84,107–109]. Asymmetric sweep morphing has been considered in connection 

with crosswind rejection [89]. A few micro-scale technologies have also been studied: 

deployable strakes have been studied for side-force and yaw control [110,111], and small 

adaptive bumps could also be used for yaw control [112]. 

 

1.3.4. Post-stall control morphing 

Relatively few studies have been made into morphing for post-stall control, and these focus 

primarily on perching manoeuvres.  In mimicry of the tail motions used by birds [113], it has 

been shown that perching can be successfully performed by fixed-wing glider MAVs using 

only the control of oversized elevators [34–37]. Changes in wing dihedral [38,39] or 

incidence [40,41], sometimes combined with larger tail displacement motion [42,43], have 

all shown to improve perching performance, and some impressive flight tests have been 

carried out. Large-angle incidence control has been shown to allow not only perching, but 

also hover-to-cruise transition [114], and asymmetric post-stall manoeuvres [115]. This is 

entirely consistent with the importance of pronation and supination (incidence control) in 

avian stall turns [2–4]. The possibility of more general supermanoeuvrability in biomimetic 

morphing-wing systems has only rarely been recognized, e.g. by Evers [44], and no detailed 

studies have been carried out. 

 

1.3.5. Stall delay and control 

As an alternative to direct post-stall control, wing morphing may be used to delay stall 

onset, thus increasing the flight envelope over which normal control effectiveness can be 

expected. Morphing-based stall delay systems have been largely studied in the context of 

passive or active aerofoil shape deformation. On the macro scale some control morphing 

technologies, including leading-edge droops [116,117] and compliant ailerons  [118,119], 

have the potential to delay wing stall onset and thus increase the range of aileron authority. 

This capability is particularly relevant to perching manoeuvres [120], and has biological 
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precedent, in the camber morphing operations shown in bats and flying squirrels during 

landing and/or ballistic transition manoeuvres [62,121]. Preliminary research has also gone 

into oscillatory compliant camber and thickness morphing for separation control [122]. On 

the largest scale, positive gull-wing folding, as in a biological gull, has been found to delay 

stall entry, reduce stall intensity and improve recovery [123]. 

 

On the micro scale, deployable or passively-morphing micro shape changes for stall delay 

have seen significant interest. Fields of passively-morphing micro-flaps or micro-tabs [124–

126] have seen much study as a mechanism for stall delay: this is in direct mimicry of bird 

feathers, which serve the same purpose in the natural environment [124,127]. Deployable 

vortex generators can allow a fixed-wing aircraft to both delay stall and avoid a parasitic 

drag penalty in normal flight [128–130]. Interestingly, while many micro-morphing stall 

delay systems are biologically inspired, the extent to which these stall delay mechanisms are 

an enabling factor in biological supermanoeuvrability is an open problem. On the one hand, 

the presence of such adaptions implies an evolutionary advantage is conferred in terms of 

flight performance, and it is clear that stall delay mechanisms will improve the performance 

and controllability of otherwise post-stall manoeuvres. However, on the other, a variety of 

biological supermanoeuvres are observed in demonstrably post-stall conditions, including 

zero-airspeed rolling in pigeons [6] (Figure 1.2.4), and ballistic transition manoeuvres in 

flying squirrels [62,63] (Figure 1.2.8). Capability approaching supermanoeuvrability is also 

observed in gliding frogs (P. dennysi) [64] which have no known stall delay mechanisms – 

and highly ineffective lifting surfaces. 

 

These observations indicate that post-stall control via large-scale wing motion is present in 

some flying creatures, and is capable of enabling at least a degree of supermanoeuvrability 

without micro-scale stall-delay adaptions. However, the details remain unclear, particularly 

regarding system capability in the limit case of maximal micro-morphing stall delay and 

minimal wing motion. These considerations also call into question the close association 

between supermanoeuvrability and post-stall control found in studies of thrust vectoring 

aircraft [9,10]: in both macro- and micro-morphing systems, supermanoeuvrability may 

instead be attainable by transforming a conventionally post-stall state into a pre-stall one; 

either by stall delay or by large-scale lifting surface motion; rendering the specific post-stall 
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control less significant. This work will help to elucidate some of these effects by exploring 

the capability of a biomimetic macro-morphing system for supermanoeuvrability, 

independent of any micro-morphing enhancements. This will allow us to assess the extent 

to which macro-morphing alone enables biomimetic supermanoeuvrability; and to which 

post-stall / pre-stall transformation is a factor within this. 

 

 

1.4. MORPHING-WING SUPERMANOEUVREABILITY 

1.4.1. Case study system 

We approach the many aspects of biomimetic supermanoeuvrability through the lens of a 

hypothetical case-study system: a hybrid biomimetic UAV / MAV, of fixed properties, with 

6DOF wing rotation (independent sweep / incidence / dihedral motion) and a conventional 

propulsion system (propeller / jet / rocket). We will study the capability of this system for a 

wide range of biomimetic manoeuvres. This case-study or feasibility-study approach will 

allow us to provide a broad assessment of the potential applications of biomimetic 

morphing in UAV supermanoeuvrability, and identify promising avenues for further research 

and development. A key limitation of this approach is, however, that only one case-study 

system can be analysed; and so the choice of this system must be justified. 

 

This work focuses on the larger scales, 𝒪(1 m), of biological wing morphing and 

supermanoeuvrability; with particular reference to the greylag goose (Anser anser) and the 

steppe eagle (Aquila nipalensis). This lengthscale overlaps with several existing morphing-

wing aircraft, such as the NextGen MFX-1 [90]. Relative to these similarly-scaled biological 

creatures, the system mass is increased by a factor of c. 2x to account for the inefficiencies 

of non-biological design. 6DOF morphing represents a simple mimicry of a bird, and 

accounts for the key features of biological wing morphing with minimal actuator complexity. 

It should be noted that the use of 6DOF morphing represents a hypothetical state for the 

purposes of analysis: it is part of the scope of this study to determine which of these 

morphing DOFs are effective or necessary for particular manoeuvres. Potential industrial 

applications, particularly in the first instance, would be expected to show a more restricted 

control space, e.g. 2-3DOF morphing. Figure 1.4.1 presents a scale rendering of our case 
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study system with the active morphing degrees of freedom; a complete parameter and 

system description is given in Appendix 1. 

 

 

Figure 1.4.1: Rendering of the case study system, showing the morphing degrees of 
freedom: incidence (left) and sweep and dihedral (right). 
 

The larger scales of this case study system may restrict its capability for post-stall 

manoeuvrability relative to smaller biological creatures (e.g. pigeons, C. livia, 𝒪(0.3 m)), due 

to the increased structural stresses and actuator requirements. However, the possibility of 

attaining or retaining an industrially-relevant flight time – a deficiency of existing biomimetic 

aircraft – is of greater importance. The scope of this study does not extend to a 

consideration of the aircraft structural stresses or projected range and endurance; the 

specification of our case study system will not extend to materials, avionics, approaches to 

MDOF control, or dedicated application feasibility studies. It is instead our purpose to 

determine the capability of our case study system for supermanoeuvrability across a wide 

range of manoeuvres; the methods by which such manoeuvres can be designed and 

performed; and the associated actuator DOF requirements and choices. Producing robust 

results in these areas will also entail methodological developments in biomimetic flight 

dynamics which are a prerequisite for further dedicated studies. 
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1.4.2. Target applications 

The motivation of this study thus far has been general and abstract: an understanding of 

biological or biomimetic supermanoeuvrability, and the potential for the design of 

supermanoeuvrable UAVs based on this understanding. However, more specific motivations 

are also present. Supermanoeuvrability in general is relevant solely to combat aircraft, and 

is motivated by associated improvements in combat-relevant metrics, e.g. dogfight 

performance and short-takeoff capability. This remains the case for supermanoeuvrable 

MAVs / UAVs, though the prospective applications for such aircraft are very different to 

those of full-scale supermanoeuvrable aircraft. In a hypothetical future environment of 

UAV-to-UAV or UAV-to-manned air-to-air combat, UAV supermanoeuvrability could be 

utilised in an immediately analogous way; but such an environment is currently a distant 

prospect. 

 

A more immediate application revolves around complex combat environments – most 

pertinently, cities; but also mountainous and forested terrain. Equipping a biomimetic UAV 

with a warhead could lead to a supermanoeuvrable ‘urban missile’ capable of precision 

operations in confined spaces. This includes both surface-to-surface or surface-to-air 

combat (enabling ground forces to engage surface or aerial targets around corners or from 

behind cover); and air-to-surface combat (enabling aircraft to engage hidden urban targets 

precisely, with minimal collateral damage). In this context, key supermanoeuvres include 

stall turns (to manoeuvre laterally around obstacles) and their longitudinal analogy, ‘stall 

pitching’ (to clear vertical obstacles). 

 

Such a system has additional potential utility in an air-to-air context – apart from the distant 

potential for a highly-manoeuvrable combat UAV, there is the prospect of a ‘persistent 

missile’, capable of multiple reorientations and reengagements in the event of a target 

evasion. Finally, a further motivation to this study concerns existing biomimetic aircraft. 

While our case study system is conceived as a hybrid aircraft with conventional propulsion, 

and on a slightly larger scale, the manoeuvres studied in this work may directly applicable to 

such systems in the glide state; and may be generalisable to, or superimposable on, a state 

of continuous flapping-wing propulsion. With these factors in mind, we move to a detailed 

specification of the system parameters. 
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2.1. INTRODUCTION 

A variety of approaches are available for the parameterisation of the system orientation and 

airframe component configuration – Euler angles, quaternions, rotation matrices, and 

others [1]. Euler angles are a common approach for rotation within a fixed sector: they are 

an unconstrained orientation parameterization – yielding unconstrained integrators for 

rotational motion – and have immediate physical interpretation. Their key disadvantage is 

gimbal lock – the unavoidable presence of singularity at some orientation within the system 

(the pole), typically leading to integration and interpolation failure in the near vicinity [1]. If 

the system rotation is constrained to or unlikely to leave a fixed sector, then the system 

pole can be oriented outside this by the choice of Euler angle definition; but for a fully 

three-dimensional flight simulation this will not always be the case. 

 

Quaternions are a system of hypercomplex numbers that extend the conventional complex 

number system (ℂ) to three imaginary units and a real part. They may be used to 

parameterise orientation and rotation [1]. Unlike Euler angles they are singularity-free and 

thus do not suffer from gimbal lock; but are subject to a normalisation constraint over their 

four scalar components. The absence of singularity makes them particularly suitable for the 

analysis of complex manoeuvres, but their constrainedness will complicate the integration 

of the system equations of motion. They have seen significant previous use in multibody 

dynamics, for general [2,3] and specific systems [4,5], and in the flight simulation of 

satellites [6–8]. In comparison with rotation matrices, which show significant similarity, both 

being singularity-free and endowed with a Lie Algebra [9,10] – quaternions are more 

computationally efficient, requiring the integration of four scalar variables (with one 

normalisation constraint), whereas rotation matrices involve the integration of six scalar 

variables (with three skew-symmetry constraints) [11].  

 

This chapter presents a generalised framework for the analysis of the case study system 

kinematics, formulated in quaternion and Euler angle frameworks. The former will be 

utilised as the optimal choice of orientation parameterisation for the system, and will lead 

to the development of a quaternion variational integrator for the system. The latter will lead 

to an adaptive pole-switching Runge-Kutta 4(5) (RK45) integrator for validation and time-

efficient simulation, and will be utilised to post-processing quaternion orientation results.  
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2.2. ORIENTATION PARAMETERISATION WITH QUATERNIONS 

2.2.1. Properties of quaternions 

In the quaternion algebra (ℍ), three imaginary units (𝑖, 𝑗, 𝑘) are postulated, all of them roots 

of −1, and with the unique multiplicative property [12]: 

𝑖𝑗𝑘 = 𝑖2 = 𝑗2 = 𝑘2 = −1. (2.2.1) 

A quaternion is a linear combination of these units and a real component (∈ ℝ). Formally, 

quaternions constitute a Lie algebra: a vector space with a non-associative operator, in this 

case, quaternion multiplication (Eq. 2.2.4) [10,13]. In notation, they may also be denoted by 

a 4-vector, or a concatenation of a scalar (the real component) and a 3-vector (the 

imaginary components) [12]: 

𝑞 = 𝑞0 + 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 = [

𝑞0

𝑎
𝑏
𝑐

] = [
𝑞0

𝐪𝑣
] , 𝐪𝑣 = [

𝑎
𝑏
𝑐

]. (2.2.2) 

A quaternion with no real part (𝑎 = 0, 𝑞 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘) is a pure or imaginary quaternion. 

Under appropriate conditions quaternions degenerate naturally to the real numbers (𝑞 = 𝑞0 

implies 𝑞 ∈ ℝ) and the complex numbers (𝑞 = 𝑞0 + 𝑎𝑖 implies 𝑞 ∈ ℂ, but not 𝑞 = 𝑞0 + 𝑏𝑗). 

In the context of rotation operations, imaginary quaternions also correspond to vectors in 3-

space in via the 𝑞0-𝐪𝑣 formulation, though notably these vectors are in fact pseudovectors 

[14]. Correspondingly, vectors or pseudovectors in 3-space correspond to imaginary 

quaternions , e.g. 𝐱 = [𝑎 𝑏 𝑐]𝑇 corresponds to quaternion [0 𝑎 𝑏 𝑐] = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘. For 

simplicity of notation, bold face quantities (𝐱, etc.) are taken to be both imaginary 

quaternions (endowed e.g. with quaternion multiplication ⊗) and vectors (endowed e.g. 

with the cross product ×). More formally, this equivalence represents the fact that the set 

of pure quaternions, Im ℍ, are isomorphic to ℝ3 endowed with the cross product: they are 

equivalent Lie algebras [13]. 

 

The operators with which all quaternions are endowed include: 

 Addition and subtraction, ±, which is commutative and associative: 

[
𝑞0

𝐪𝑣
] ± [

𝑝0

𝐩𝑣
] = [

𝑞0 + 𝑝0

𝐪𝑣 + 𝐩𝑣
]. 

𝑞 + 𝑝 = 𝑝 + 𝑞, 

(𝑞 + 𝑝) + 𝑟 = 𝑝 + (𝑞 + 𝑟). 

(2.2.3) 
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 Multiplication, ⊗, which is defined uniquely. It is associative, but notably not 

generally commutative: 

[
𝑞0

𝐪𝑣
] ⊗ [

𝑝0

𝐩𝑣
] = [

𝑞0𝑝0 − 𝐩𝑣
𝑇𝐪𝑣

𝑝0𝐪𝑣 + 𝑞0𝐩𝑣 + 𝐩𝑣 × 𝐪𝑣
]. 

(𝑝 ⊗ 𝑞) ⊗ 𝑟 = 𝑝 ⊗ (𝑞 ⊗ 𝑟), 

𝑞 ⊗ 𝑝 ≠ 𝑝 ⊗ 𝑞. 

(2.2.4) 

 

 Conjugation, (⋅)†, which is analogous to the complex equivalent: 

[
𝑞0

𝐪𝑣
]

†

= [
𝑞0

−𝐪𝑣
]. (2.2.5) 

 

 The norm, ‖⋅‖, defined e.g. in a Euclidean sense as: 

‖𝑞‖ = √𝑞 ⊗ 𝑞† = √𝑞† ⊗ 𝑞, 

‖𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘‖ = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2, 
(2.2.6) 

which takes value 1 for quaternions parameterising rotations. 

 

 Inversion, (⋅)−1, which may be computed via the conjugate and the norm, and 

relates to the identity, scalar 1 (i.e., 1 + 0𝑖 + 0𝑗 + 0𝑘): 

𝑞−1 =
𝑞†

‖𝑞‖
, (𝑞 ⊗ 𝑞−1) = (𝑞−1 ⊗ 𝑞) = 1. (2.2.7) 

Notably, for unit quaternions, ‖𝑞‖ = 1, inversion and conjugation are equivalent. 

 

 Exponentiation, exp(⋅), may be computed via scalar exponential and trigonometric 

functions: 

exp ([
𝑞0

𝐪𝑣
]) = exp(𝑞0) [

cos‖𝐪𝑣‖
𝐪𝑣

‖𝐪𝑣‖
sin‖𝐪𝑣‖]. (2.2.8) 

Though some properties of scalar exponentiation do not generally hold, e.g. 

exp(𝑞 + 𝑝) ≠ exp(𝑞) ⊗ exp(𝑝). (2.2.9) 

 

Finally, one other notable relation is the degeneration of the commutator of the quaternion 

product to the cross product in the case of imaginary quaternions: 
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𝐩𝑣 ⊗ 𝐪𝑣 − 𝐪𝑣 ⊗ 𝐩𝑣 = 2𝐩𝑣 × 𝐪𝑣. (2.2.10) 

These are the relations that will be of relevance to this analysis. Further algebraic properties 

of quaternions are detailed in many reference works and papers; e.g. [15,16].  

 

2.2.2. Parameterisation of reference frames 

Quaternions can be utilised for several forms of orientation parameterisation: the form 

utilised in this study is that of reference frame parameterisation. This involves the use of 

quaternions to parameterisation the rotations between reference frames in a kinematic 

chain. Beginning with a globally-fixed reference frame – the earth frame – the orientation of 

an aircraft reference frame, fixed to the airframe, with respect to the earth frame can be 

represented as a unit quaternion 𝑞 (‖𝑞‖ = 1). This representation is uniquely constrained 

by, and necessarily implies, the definition of the frame transformation of any vector 𝐱 

between the earth and aircraft reference frames [16]: 

𝐱(𝑒) = 𝑞 ⊗ 𝐱(𝑏) ⊗  𝑞†, 

𝐱(𝑏) = 𝑞† ⊗ 𝐱(𝑒) ⊗  𝑞, 
(2.2.11) 

where (𝑒) denotes resolution in earth reference frame, and (𝑏) in the body-fixed aircraft 

reference frame. Note the notational equivalence of 𝐱 as 3-vector and imaginary 

quaternion, as per Section 2.2.1 and note also that the earth frame is Cartesian: the scale of 

manoeuvres studied here, 𝒪(100 m), is sufficiently small that the earth’s curvature is 

negligible. 

 

It follows that that quaternion derivative 𝑞̇ and the angular velocity  (resolved in any 

frame) are proxies for each other, via the relations [16]: 

(𝑒) = 2𝑞̇ ⊗ 𝑞† , 𝑞̇ =
1

2
(𝑒) ⊗ 𝑞, 

(𝑏) = 2𝑞† ⊗ 𝑞̇, 𝑞̇ =
1

2
𝑞 ⊗ (𝑏), 

(2.2.12) 

where the relation between (𝑒) and (𝑏) is consistent with Eq. 2.2.11. However,  is of 

significantly greater utility, as the quaternion derivative 𝑞̇ represents a tangent to the space 

of admissible orientation quaternions, the surface of a hypersphere with ‖𝑞‖ = 1. 

Numerical integration using the quaternion derivative becomes more complex, as a simple 

finite-difference approximation of 𝑞̇ (e.g. 𝑞(𝑡 + ℎ) = 𝑞(𝑡) + ℎ𝑞̇(𝑡)) will produce 
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quaternions outside the admissible space: forms of spherical integration are required. The 

motivates the use of  as a proxy derivative for 𝑞; an aspect which will become relevant in 

Chapter 4. 

 

Finally, in terms of implementation into an analysis framework based on rotation matrices, 

the rotation matrix R𝐸 𝐵⁄  associated with the earth-body frame quaternion 𝑞 (= [𝑞0 𝐪𝑣]) can 

be computed as [16]: 

R𝐸 𝐵⁄ = (𝑞0
2 − 𝐪𝑣

𝑇𝐪𝑣)E3 + 2𝐪𝑣𝐪𝑣
𝑇 + 2𝑞0[𝐪𝑣]×. (2.2.13) 

The operator [⋅]× is the skew-symmetric operator, which maps ℝ3 → ℝ3×3 [17–19]. It has 

several applications in the kinematics of rotation and is defined as  

[𝐱]× = [[

x1

x2

x3

]]

×

= [
0 −x3 x2

x3 0 −x1

−x2 x1 0
]. (2.2.14) 

A corresponding inverse operator may be defined for matrices of the appropriate format. 

Reference frame transformation via R𝐸 𝐵⁄  is easy; for vectors 𝐱 and matrices/tensors M: 

𝐱(𝑒) = R𝐸 𝐵⁄ 𝐱(𝑏), 

𝐱(𝑏) = R𝐸 𝐵⁄
𝑇 𝐱(𝑒), 

M(𝑒) = R𝐸 𝐵⁄ M(𝑏)R𝐸 𝐵⁄
𝑇 , 

M(𝑏) = R𝐸 𝐵⁄
𝑇 M(𝑒)R𝐸 𝐵⁄ . 

(2.3.12) 

 The use of rotation matrices for numerical computation is more efficient that the 

construction of a local numerical quaternion algebra, and synthesises directly with any 

nearby Euler angle orientation parameterisations. However, the efficiencies of the base 

quaternion parameterisation are retained: this too becomes relevant in Chapter 4. 

 

2.2.3. Choices of convention 

The quaternion parameterisation of orientation presented in Sections 2.3.1-2.3.2, known as 

the Hamilton convention, is only one of many such conventions. The set of orientation 

quaternion relations and properties is dependent on the choice of several aspects of the 

quaternion definition: 

 The ordering of the quaternion 𝑞0-𝐪𝑣 form: [𝑞0 𝐪𝑣]𝑇 or [𝐪𝑣 𝑞0]𝑇, a convention which 

affect relations defined using this form, and the numerical implementation of 

quaternion algebra. 
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 The handedness of the quaternion, governed by the fundamental definition of the 

quaternion algebra. While all quaternions obey Eq. 2.3.1, this admits two solutions: 

𝑖𝑗 = −𝑗𝑖 = 𝑘 or 𝑗𝑖 = −𝑖𝑗 = 𝑘, also representing pre- and post- multiplication of the 

quaternion coefficients (𝑏𝑖 vs. 𝑖𝑏). These solutions correspond to right- and left- 

handed quaternions respectively, denoting the handedness of the rotation the 

quaternion represents. 

 The nature of the orientation parameterisation: whether the quaternion represents 

the rotation of the reference frame in which a fixed vector is resolved (passive 

function), or the physical rotation of a vector in one reference frame (active 

function). These conceptual distinctions have an impact on the effect of Eq. 2.2.11 

on the system kinematics. 

 In the case of passive function, whether the 𝑞† ⊗ 𝐱 ⊗  𝑞 represents transformation 

from an global (earth) frame to a local frame, or vice versa. The former convention, 

for example, is represented in Eq. 2.3.11. 

The Hamilton convention, applied in this study, uses [𝑞0 𝐪𝑣]𝑇 ordering and is right-handed, 

passive and global-to-local [16,20]. Alternatives include the Caltech Jet Propulsion Lab (JPL) 

convention, which uses [𝐪𝑣 𝑞0]𝑇 ordering and is left-handed, passive and local-to-global 

[21,22]; as well as the European Space Agency (ESA), International Space Station (ISS), Space 

Transportation System (STS) and other conventions [16].  

 

 

2.3. ORIENTATION PARAMETERISATION WITH EULER ANGLES 

2.3.1. Definition 

In format, an Euler angle parameterisation consists of three angles (e.g. ∈ ℝ3), association 

with three defined axes that are constrained with respect to the earth and/or body-fixed 

reference frames. The orientation represented by these angles is constructed via sequential 

rotations of the parameterisation object (e.g. a reference frame) by each angle around its 

associated axis. These axes are the key defining and generating features of the 

parameterisation, and particular choices lead to angles recognisable to different industrial 

communities: for example, in aerospace, the pitch, yaw and roll angles. Here again, the 
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Euler angle framework is used to parameterise the orientation of the aircraft reference or 

body-fixed frame with respect to the earth frame. 

 

2.3.2. General properties 

The definition of the Euler angle parameterisation as a set of sequential rotations, alongside 

the addition theorem [2], imply directly that any 3-vector of Euler angle rates may be 

transformed into a corresponding angular velocity pseudovector [23] via a matrix of the 

parameterisation’s defining axes. For = 𝜃, 𝜓, 𝜙 𝑇 with associated vectors [𝛂̂, 𝛃̂, 𝛄̂], taking 

note of the order of rotations, this linear transformation is given by: 

(𝑒) = 𝛂̂(𝑒)𝜃̇ + 𝛃̂(𝑒)𝜓̇ + 𝛄̂(𝑒)𝜙̇ = Ω(𝑒) ̇ ,  

Ω(𝑒) = [𝛂̂(𝑒), 𝛃̂(𝑒), 𝛄̂(𝑒)]. 
(2.3.1) 

Note that, given the invariance of ̇  with respect to coordinate system, Ω(𝑒) is transforms 

under rotation matrix premultiplication, as it were a vector, e.g. 

(𝑏) = Ω(𝑏) ̇ = R𝐸 𝐵⁄ Ω(𝑒) ̇ . (2.3.2) 

It is of little utility to transform the Euler angle 3-vector itself via Ω, as this yields only an 

axis-angle product – time-integral of the angular velocity pseudovector – which is only 

physically relevant in the case of uniaxial rotation. However, the rotated reference frame 

unit vectors can be constructed via the solution of a system of vector relations, leading to a 

definition of the rotation matrix associated with a given rotation. This process is complex 

and strongly dependent of the definition of the parameterisation axes, and the location of 

the zero values in the angles; but a full outline for the case study system is offered in Section 

2.5. Here it suffices to define the resulting rotation matrix, a nonlinear and trigonometric 

function, as R( ). 

 

2.3.3. Singularity 

The Euler angle framework, while intuitive, has a key deficiency: a singularity or pole must 

be present in the orientation space, at which point the representation loses a degree of 

freedom. In the vicinity of this pole, numerical integration will fail (a facet of the gimbal lock 

phenomenon), and the Euler angle values will be discontinuous and thus non-interpolable 

[1,24]. The quaternion orientation parameterisation avoids this singularity, but an Euler 

angle parameterisation is also required, for three reasons: to provide a framework for 
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intuitive post-processing and visualisation; for verification of the quaternion variational 

integrator that will be devised via an alternate Euler angle RK45 integrator; and because this 

Euler angle RK45 integrator may prove to be more efficient or effective that the quaternion 

variational integrator in some contexts. 

 

 

2.4. KINEMATIC CHAINS 

2.4.1 Generalised formulation 

The kinematics of any aircraft with airframe components undergoing rigid motions or 

rotations can be modelled under a generalised kinematic chain framework [25,26]. Taking at 

first a system reference point (𝑆) that is fixed with respect to at least one airframe 

component; and assigning a local reference frame to each airframe component, we may 

compute the position (𝐱𝑖) of any airframe component centre of mass with respect to 𝑆 via a 

kinematic chain connecting these points. Such a process may be expressed as: 

𝐱𝑖
(𝑒)

= 𝐱𝑆
(𝑒)

+ ∑ P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

, with 𝑖 ∈ 𝒮, the set of all components, (2.4.1) 

where 𝑙𝑐,𝑖 represents the length of the kinematic chain for each component, and at each 

point on the chain (𝑐), P𝑖,𝑐 represents a local reference frame rotation matrix relative to the 

earth frame, and 𝐋𝑖,𝑐 the local translation vector to the next chain point in this local 

reference frame. Note that the kinematic chains for each component will vary in length, 

from a necessary 𝑙𝑐,𝑖 = 1 for the body on which 𝑆 is fixed up to a maximum value of the 

total number of bodies in the system. The angular velocity pseudovector [23] of each body 

relative to the earth frame may be expressed using the same kinematic chain used to 

compute the body centre of mass positions: 

𝑖
(𝑒)

= ∑ P𝑖,𝑐 𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

, with 𝑖 ∈ 𝒮, (2.4.2) 

where 𝑖,𝑐 represent the angular velocity pseudovectors of the local reference frame (of 

index 𝑐), relative to the previous reference frame (𝑐 − 1) or the earth frame for 𝑐 = 1, and 

resolved in the local reference frame (𝑐). 
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The velocities of the system bodies, whether at their centres of mass or at other points, are 

affected by the both rotational and positional kinematics. Using Eq. 2.4.1 and Eq. 2.4.2 we 

may compute the body centre of mass velocities in the earth frame as [27,28]: 

𝐱̇𝑖
(𝑒)

= 𝐱̇𝑆
(𝑒)

+ 𝑖
(𝑒)

× (𝐱𝑖
(𝑒)

− 𝐱𝑆
(𝑒)

) 

= 𝐱̇𝑆
(𝑒)

+ ( ∑ P𝑖,𝑐 𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

) × ∑ P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

, 𝑖 ∈ 𝒮. 
(2.4.3) 

Via the skew operator [⋅]× this may be reframed as: 

𝐱̇𝑖
(𝑒)

= 𝐱̇𝑆
(𝑒)

+ [∑ P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

∑ P𝑖,𝑐 𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

, 𝑖 ∈ 𝒮. (2.4.4) 

The complete set of centre-of-mass kinematic chains for a system can be represented in a 

tabular format. For example, for the three-body system of Figure 2.4.1, Table 2.4.1 shows 

the kinematic chain parameters from reference point 𝑆 to the centres of mass of each body. 

 

 

Figure 2.4.1: Three-body system with example kinematic chain 
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Table 2.4.1: Tabulated kinematic chain for a three-body example system 

Body Name Index 𝑙𝑐 𝑐 = 1  𝑐 = 2  […] 
   𝐋𝑖,1 P𝑖,1 𝐋𝑖,2 P𝑖,2 

component A 𝑎 1 𝐆A P𝐸 𝐴⁄     

component B 𝑏 2 𝐋 P𝐸 𝐴⁄  𝐆B P𝐸 𝐴⁄ P𝐴 𝐵⁄   

component C 𝑐 2 𝐋 P𝐸 𝐴⁄  𝐆C P𝐸 𝐴⁄ P𝐴 𝐶⁄   

 

2.4.2. Application to case study system 

The reference point for the body-fixed frame, and thus the entire morphing-wing system, is 

a point 𝑆: the rearmost point on the fuselage body and the centre of the empennage. Any 

fixed point may be chosen as a reference; the choice of 𝑆 simplifies the analysis of the 

empennage bodies. It is alternately possible to utilise the instantaneous centre of mass (in 

motion relative to the fuselage) as a reference point; this reduces the level of coupling but 

complicates the kinematics. The fixed-point approach utilised here is more standard in 

multibody dynamics [29], but differences are largely of convenience. The instantaneous 

centre of mass can be computed during post-processing. 

 

From the reference point 𝑆, kinematic chains are constructed to the centre of mass of each 

of the airframe components: the fuselage (on which 𝑆 is fixed); the individual horizontal 

stabilisers and vertical stabiliser (which are fixed with respect to the fuselage); and the two 

wings, which rotate about their root, a point 𝑅 on the fuselage. Table 2.4.2 represents the 

complete set of kinematic chains for the case study system, and for reference, Figure 2.4.3 

defines the geometric parameters used to compute 𝐋𝑖,𝑐. Figure 2.4.2 renders an example 

kinematic chain to the left wing centre of mass. Parameter values are given in Appendix 1. 

 

 

Figure 2.4.3: Geometric parameter definitions for the kinematic chains 
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Table 2.4.2: Tabulated kinematic chain for the case study system 

Component Name Index 𝑙𝑐 𝑐 = 1  𝑐 = 2  […] 
   𝐋𝑖,1 P𝑖,1 𝐋𝑖,2 P𝑖,2 

fuselage 𝑏 1 [𝐺𝑏 0 0]𝑇 P𝐸 𝐵⁄     

right wing 𝑤𝑟 2 [𝐿𝑟 0 0]𝑇 P𝐸 𝐵⁄  [
1

2
𝐿𝑤𝑟 0 0]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝑊𝑅⁄   

left wing 𝑤𝑙 2 [𝐿𝑟 0 0]𝑇 P𝐸 𝐵⁄  [
1

2
𝐿𝑤𝑙 0 0]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝑊𝐿⁄   

right elevator / horz. 
stabiliser 

𝑒𝑟 1 [
1

2
𝐿𝑒 0 0]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝐸𝑅⁄     

left elevator / horz. 
stabiliser 

𝑒𝑙 1 [
1

2
𝐿𝑒 0 0]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝐸𝐿⁄     

fin / vert stabiliser f 1 [
1

2
𝐿f 0 0]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝐹⁄     

point mass pm 1 [𝐿pm 0 0]
𝑇

 P𝐸 𝐵⁄     

 

 

Figure 2.4.2: Example kinematic chain between the origin and the left wing centre of mass 
(GWL) 
 

The matrices P𝑖,𝑐 are given by the orientation parameterisations of the individual bodies. To 

implement this framework, it remains to define the orientation parameterisations of each 

component in the case study airframe. 
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2.5. CASE STUDY SYSTEM PARAMETERISATION 

2.5.1. Quaternion parameterisation of the body-fixed reference frame 

From the reference point 𝑆, the orientation of the aircraft’s body-fixed reference frame is 

parameterised with a unit quaternion, ‖𝑞‖ = 1, with right-handedness and under the 

Hamilton convention (see Section 2.2.3). Fundamentally, this quaternion is constrained with 

reference to 𝒊̂𝑏, the fuselage axis and primary axis of the body-fixed reference frame: 

𝒊̂𝑏
(𝑒)

= 𝑞 ⊗ 𝒊̂𝑏
(𝑏)

⊗  𝑞†, 𝒊̂𝑏
(𝑏)

= [1 0 0]𝑇 = 1𝑖. (2.5.1) 

The values of the orientation quaternion corresponding to several example orientations are 

shown in Figure 2.5.1. Note, for instance, the case 𝑞 = 1; 𝒊̂𝑏
(𝑒)

= 1 ⊗ 1𝑖 ⊗  1 = 1𝑖 = 𝒊̂𝑏
(𝑏)

. 

This parameterisation is simple and easily defined. 

 

 
Figure 2.5.1: Values of the orientation quaternion 𝑞 corresponding to several example 
aircraft orientations. 
 

2.5.2. Euler angle parameterisation of the body-fixed reference frame 

Defining the Euler angle parameterisation of the aircraft’s body-fixed reference frame is 

more complex, and a multiplicity of angle definitions are possible. A pitch-yaw-roll (𝜃, 𝜓, 𝜙) 

definition of the Euler angles is utilised, with axes defined as per Figure 2.5.2. The axes 

arrangement of Figure 2.5.2 corresponds to an intrinsic 3-2-1 (𝑧-𝑦-𝑥) parameterisation, 

denoting the order of axis rotations [1]; or more strictly, a (-3)-(-2)-(-1) parameterisation, 

denoting also the sign of the direction of rotation according to the right hand rule. 
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Concatenating = 𝜃, 𝜓, 𝜙 𝑇, it follows from Section 2.3.2 that the transformation between 

the Euler angle rate vector and its associated angular velocity pseudovector is: 

(𝑒) = −𝐫̂𝑏
(𝑒)

𝜃̇ − 𝐤̂𝑒
(𝑒)

𝜓̇ − 𝒊̂𝑏
(𝑒)

𝜙̇ = Ω0
(𝑒) ̇ ,  

Ω0
(𝑒)

= [−𝐫̂𝑏, −𝐤̂𝑒 , −𝒊̂𝑏]. 
(2.5.2) 

 

 

Figure 2.5.2: diagram of Euler angle ordering 
 

To utilise this definition, the rotated reference frame (including partial rotations such as 𝐫̂𝑏) 

must be constructed: this is derived thoroughly, as there are many possible frame 

definitions, yielding many differing forumulations. The body axis, or first axis of the body-

fixed reference frame, unit vector 𝒊̂𝑏, can be constructed trigonometrically from Figure 

2.5.2. In the earth reference frame, 𝒊̂𝑏 is given as: 

𝒊̂𝑏
(𝑒)

= [
cos 𝜃 cos 𝜓

− cos 𝜃 sin 𝜓
sin 𝜃

]. (2.5.3) 

To construct the rest of the body-fixed reference frame the effect of the body roll (𝜙), 

defined as per Figure 2.5.3, must be included. Two unit disks, 𝒟1 and 𝒟2, are defined, with 

unit normals 𝐤̂𝑒 and 𝒊̂𝑏 respectively. On 𝒟2 three unit vectors are defined: 

 
(1)  𝐫̂𝑏, which is the body-fixed reference axis for 𝜙 

(2)  𝐣̂𝑏, which is the body-fixed 𝑦-axis 

(3)  𝐤̂𝑏, which is the body-fixed 𝑧-axis 
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Figure 2.5.3: Diagram of body-fixed coordinate system. Note that disk 𝒟1 is shown at the 
origin: its spatial location is irrelevant as it serves only to constrain the directions of unit 
vectors. 
 

The reference vector 𝐫̂𝑏 is additionally constrained to lie in 𝒟1. This defines its magnitude 

and axis of direction completely. However, the direction itself is still not defined completely, 

as there will two solutions in opposite directions to each other. As a final constraint, the 

continuous solution is selected in which 𝐫̂𝑏 degenerates into 𝐣̂𝑒 when the angles (𝜃,𝜓,𝜙) are 

zero. This ensures that the coordinate system is right-hand. The equations governing 𝐫̂𝑏 are 

thus: 

 𝒊̂𝑏 ⋅ 𝐫̂𝑏 = 0 

 𝐤̂𝑒 ⋅ 𝐫̂𝑏 = 0 

 𝐫̂𝑏|𝜙=0, 𝜓=0, 𝜃=0 = 𝐣̂𝑒  

 ‖𝐫̂𝑏‖2 = 1 

(lies in 𝒟2), 

(lies in 𝒟1), 

(direction), 

(unit), 

(2.5.4) 

with solution: 

𝐫̂𝑏
(𝑒)

= [
sin 𝜓
cos 𝜓

0

]. (2.5.5) 

The unit vector 𝐣̂𝑏 is then defined: this lies in 𝒟2 at an angle of 𝜙 clockwise from 𝐫̂𝑏. To 

constrain the rotation angle (irrespective of direction) the dot product angle formula is 

used, and to ensure clockwise rotation an additional constraint is defined: 

𝐣̂𝑏 × 𝐫̂𝑏 = {
|𝑘(𝜙)|𝒊̂𝑏 0 ≤ 𝜙 ≤ 𝜋

−|𝑘(𝜙)|𝒊̂𝑏 𝜋 ≤ 𝜙 ≤ 2𝜋,
 (2.5.6) 
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for some nonnegative constant |𝑘(𝜙)| that may vary with 𝜙. The sine function sin 𝜙 will 

perform the function of this constant, and hence this constraint becomes: 

𝐣̂𝑏 × 𝐫̂𝑏 = 𝒊̂𝑏 sin 𝜙. (2.5.7) 

 

The equality in Eq. 2.5.7 (in the absence of any arbitrary scaling constants) arises from the 

definition of the cross product that 𝐚 × 𝐛 = ‖𝐚‖‖𝐛‖ sin 𝜙 𝐧̂ (see [30]), with right-hand unit 

normal vector 𝐧̂. . Note, however, that the Eq. 2.5.7 is not by definition satisfied by all 

vectors satisfying the other constraints: these may satisfy 𝐣̂𝑏 × 𝐫̂𝑏 = −𝒊̂𝑏 sin 𝜙, or may 

oscillate in sign. The full set of constraints for 𝐣̂𝑏 is: 

𝒊̂𝑏 ⋅ 𝐣̂𝑏 = 0 

𝐫̂𝑏 ⋅ 𝐣̂𝑏 = cos 𝜙  

𝐣̂𝑏 × 𝐫̂𝑏 = 𝒊̂𝑏 sin 𝜙 

‖𝐣̂𝑏‖2 = 1 

(lies in 𝒟2), 

(lies at 𝜙 from 𝑟̂𝑏), 

(clockwise), 

(unit), 

(2.5.8) 

with solution: 

𝐣̂𝑏
(𝑒)

= [

sin 𝜓 cos 𝜙 + sin 𝜃 cos 𝜓 sin 𝜙
cos 𝜓 cos 𝜙 + sin 𝜃 sin 𝜓 sin 𝜙

− cos 𝜃 sin 𝜙
]. (2.5.9) 

Finally, 𝐤̂𝑏 is the unit vector that is right-hand orthogonal to 𝒊̂𝑏 and 𝐣̂𝑏, given simply as: 

𝐤̂𝑏
(𝑒)

= 𝒊̂𝑏
(𝑒)

× 𝐣̂𝑏
(𝑒)

= [

sin 𝜓 sin 𝜙 − sin 𝜃 cos 𝜓 cos 𝜙
cos 𝜓 sin 𝜙 + sin 𝜃 sin 𝜓 cos 𝜙

cos 𝜃 cos 𝜙
]. (2.5.10) 

This completes the body-fixed reference frame. The transformation between the body-fixed 

and earth reference frames can be expressed as a concatenation of the body-fixed unit 

vectors:  

P𝐸 𝐵⁄ = [𝒊̂𝑏
(𝑒)

,  𝐣̂𝑏
(𝑒)

,  𝐤̂𝑏
(𝑒)

]. (2.5.11) 

P𝐸 𝐵⁄  is orthogonal and so the inverse transform is given by the matrix transpose. The 

derivatives of the rotation matrix P𝐸 𝐵⁄  can be related to (𝑒) via [31]: 

Ṗ𝐸 𝐵⁄ = [ (𝑒)]
×

 P𝐸 𝐵⁄ , (2.5.12) 
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2.5.3. Euler angle parameterisation of the wing reference frames 

Each wing has three degrees of freedom relative to the body-fixed reference system; 

representing full three-dimensional rotation control. A number of assumptions are made 

about the nature of this rotation: that it occurs about a single root, located on the axis 𝒊̂𝑏, 

and that actuator freeplay and wing deformation are negligible. These assumptions are 

embedded in the kinematic chains of Section 2.4.2. The wing orientations will be 

parameterised via Euler angles, rather than quaternions, for both of the body-fixed frame 

parameterisations. This parameterisation is more useful for describing the wing orientation, 

as the Euler angle parameters are more intuitive from a control perspective; corresponding 

to actual hypothetical actuator degrees of freedom, and allowing these degrees of freedom 

to be restricted easily. Given the controlled nature of the wing motion, gimbal lock will 

never be unexpected, and the angle definitions can be chosen to orientate their poles 

conveniently. Poles at the ±90° dihedral state are chosen; a state which is aerodynamically 

ineffectual and thus unlikely to be of relevance to the analysis.  

 

Two reference systems for each wing are defined: one of which is incidence-invariant (e.g. 

𝒊̂𝑤𝑙, 𝐫̂𝑤𝑙, 𝐪̂𝑤𝑙) and the other of which is incidence-variant (e.g. 𝒊̂𝑤𝑙, 𝐣̂𝑤𝑙, 𝐤̂𝑤𝑙). These will be 

useful in the aerodynamic analysis of the wings. Figure 2.5.1 shows an overview of all four 

wing reference systems (incidence-invariant and variant systems for the two different 

wings), with the definitions of all the wing orientation angles. 𝐪̂𝑤𝑖, which is perpendicular to 

𝐫̂𝑤𝑖 and 𝒊̂𝑤𝑖 in the upwards orientation, has been omitted for clarity. The Euler angles are 

defined as dihedral (𝜃), sweep (𝜓) and incidence (𝜙), in a 3-2-1 ordering with some sign 

changes between the wings. Note that the incidence angles 𝜙𝑤 are always defined nose-up 

and hence are of opposite hands for the two wings. The sweep angles, 𝜓𝑤, on the other 

hand, are defined in the same direction and so the natural state of the aircraft is 𝜓𝑤𝑙 =

−𝜓𝑤𝑟. The wing sweep and dihedral angles are also restricted to certain ranges: 

 
−𝜋 ≤ 𝜓𝑤𝑙 ≤ 0, 

−
1

2
𝜋 ≤ 𝜃𝑤𝑙 ≤

1

2
𝜋, 

0 ≤ 𝜓𝑤𝑟 ≤ 𝜋, 

−
1

2
𝜋 ≤ 𝜃𝑤𝑟 ≤

1

2
𝜋, 

 (2.5.13) 

but the incidence angles 𝜙𝑤 are unconstrained in ℝ. In the case of symmetric sweep there is 

the parameterisation via the more traditional sweep angle Λ, cf. [32]: 

𝜓𝑤𝑙 = −
𝜋

2
− Λ, 𝜓𝑤𝑟 =

𝜋

2
+ Λ, (2.5.14) 
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representing the backwards angle from the natural aircraft state (𝜓𝑤𝑙 = −𝜓𝑤𝑟 = 𝜋 2⁄ , 

Λ = 0). 0 < Λ < 𝜋 2⁄  thus represents backwards sweep and − 𝜋 2⁄ < Λ < 0 forwards 

sweep. 

 

Figure 2.5.4: Diagram of the wing-fixed coordinate systems. 
 
The unit vectors referenced in Figure 2.5.4 must now be defined. The wing span unit vectors 

𝒊̂𝑤 are identical for the invariant and variant systems. They are defined identically to 𝒊̂𝑏, 

mutatis mutandis, as the definitions of the pitch (dihedral), yaw (sweep) and roll (incidence) 

angles, relative to the base unit vectors, have not changed between the earth and body-

fixed coordinate systems. Hence: 

𝒊̂𝑤𝑙
(𝑏)

= [

cos 𝜃𝑤𝑙 cos 𝜓𝑤𝑙

− cos 𝜃𝑤𝑙 cos 𝜓𝑤𝑙

sin 𝜃𝑤𝑙

], 𝒊̂𝑤𝑟
(𝑏)

= [

cos 𝜃𝑤𝑟 cos 𝜓𝑤𝑟

− cos 𝜃𝑤𝑟 cos 𝜓𝑤𝑟

sin 𝜃𝑤𝑟

]. (2.5.15) 

These are written with reference to the body-fixed reference frame. As unit normal vectors 

𝒊̂𝑤𝑙  and 𝒊̂𝑤𝑟 define two unit disks, 𝒟𝐿 and 𝒟𝑅, on which other unit vectors are defined in 

order to complete the wing reference frames. As have noted earlier, two orthogonal 

reference frames are defined on each disk: one of which is invariant with respect to changes 

in local wing incidence (𝜙𝑤𝑙  or 𝜙𝑤𝑟) and the other of which is variant (the true wing-fixed 

reference frame).  



 Chapter 2: Quaternion and Euler angle kinematics 

51 

As a basis for the incidence-invariant frames, vectors 𝐫̂𝑤𝑙 and 𝐪̂𝑤𝑙 for the left wing and 𝐫̂𝑤𝑟 

and 𝐪̂𝑤𝑟 for the right wing are defined. The 𝐫̂𝑤𝑖 are defined in a manner analogous to 𝐫̂𝑏: 

that is, 𝐫̂𝑤𝑙 lies in 𝒟𝐿 and 𝒟3, and 𝐫̂𝑤𝑟 in 𝒟𝑅 and 𝒟3. However, the handedness of these 

vectors relative to 𝐤̂𝑒 and their respective 𝒊̂𝑤 is different, because the wing coordinate 

systems are intended to be symmetric. 𝐫̂𝑤𝑙 is defined to degenerate to −𝐣̂𝑏 when all the left-

wing angles are zero. The complete set of constraints for this vector is thus: 

 𝒊̂𝑤𝑙 ⋅ 𝐫̂𝑤𝑙 = 0 

 𝐤̂𝑏 ⋅ 𝐫̂𝑤𝑙 = 0 

 𝐫̂𝑤𝑙|𝜙𝑤𝑙=0, 𝜓𝑤𝑙=0, 𝜃𝑤𝑙=0 = −𝐣̂𝑏 

 ‖𝐫̂𝑤𝑙‖2 = 1 

(lies in 𝒟𝐿), 

(lies in 𝒟3), 

(left-hand), 

(unit), 

(2.5.16) 

with solution: 

𝐫̂𝑤𝑙
(𝑏)

= [
− sin 𝜓𝑤𝑙

− cos 𝜓𝑤𝑙

0

]. (2.5.17) 

However, 𝐫̂𝑤𝑟 is defined to degenerate to 𝐣̂𝑏 when the right-wing angles are zero. 𝐫̂𝑤𝑟 thus 

has constraints: 

 𝒊̂𝑤𝑟 ⋅ 𝐫̂𝑤𝑟 = 0 

 𝐤̂𝑏 ⋅ 𝐫̂𝑤𝑟 = 0 

 𝐫̂𝑤𝑟|𝜙𝑤𝑟=0, 𝜓𝑤𝑟=0, 𝜃𝑤𝑟=0 = 𝐣̂𝑏 

 ‖𝐫̂𝑤𝑟‖2 = 1 

(lies in 𝒟𝑅), 

(lies in 𝒟3), 

(right-hand), 

(unit), 

(2.5.18) 

with solution: 

𝐫̂𝑤𝑟
(𝑏)

= [
sin 𝜓𝑤𝑟

cos 𝜓𝑤𝑟

0

]. (2.5.19) 

In both cases of 𝐫̂𝑤, the change in sign of the angle relative to 𝐣̂𝑏 ensures that 𝐫̂𝑏 always 

points forwards when both wings are in their natural positions (−𝜋 < 𝜓𝑤𝑙 < 0 and 

0 < 𝜓𝑤𝑟 < 𝜋). 

 

The two 𝐪̂𝑤 vectors then complete the orthonormal basis involving 𝒊̂𝑤𝑟 and 𝐫̂𝑤𝑟. The left-

wing system is left-handed and the right-wing system is right-handed: as with 𝐫̂𝑤, this 

ensures that 𝐪̂𝑤 points in the body-fixed upwards direction when the wings are in their 

natural positions. Hence: 
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𝐪̂𝑤𝑙
(𝑏)

= −𝒊̂𝑤𝑙
(𝑏)

× 𝐣̂𝑤𝑙
(𝑏)

= [

sin 𝜓𝑤𝑙 sin 𝜙𝑤𝑙 − sin 𝜃𝑤𝑙 cos 𝜓𝑤𝑙 cos 𝜙𝑤𝑙

cos 𝜓𝑤𝑙 sin 𝜙𝑤𝑙  + sin 𝜃𝑤𝑙 sin 𝜓𝑤𝑙 cos 𝜙𝑤𝑙

cos 𝜃𝑤𝑙 cos 𝜙𝑤𝑙

], (2.5.20) 

and 

𝐪̂𝑤𝑟
(𝑏)

= 𝒊̂𝑤𝑟
(𝑏)

× 𝐣̂𝑤𝑟
(𝑏)

= [

sin 𝜓𝑤𝑟 sin 𝜙𝑤𝑟 − sin 𝜃𝑤𝑟 cos 𝜓𝑤𝑟 cos 𝜙𝑤𝑟

cos 𝜓𝑤𝑟 sin 𝜙𝑤𝑟 + sin 𝜃𝑤𝑟 sin 𝜓𝑤𝑟 cos 𝜙𝑤𝑟

cos 𝜃𝑤𝑟 cos 𝜙𝑤𝑟

]. (2.5.21) 

where × denotes the right-handed cross produce in all cases. This completes the definition 

of the two incidence-invariant bases. Again, the orthogonal transformation matrices are: 

P𝐵 𝑊𝐿𝐷⁄ = [𝒊̂𝑤𝑙
(𝑏)

,  𝐫̂𝑤𝑙
(𝑏)

,  𝐪̂𝑤𝑙
(𝑏)

] = P𝑊𝐿𝐷 𝐵⁄
𝑇 , (2.5.22) 

and 

P𝐵 𝑊𝑅𝐷⁄ = [𝒊̂𝑤𝑟
(𝑏)

,  𝐫̂𝑤𝑟
(𝑏)

,  𝐪̂𝑤𝑟
(𝑏)

] = P𝑊𝑅𝐷 𝐵⁄
𝑇 . (2.5.23) 

where 𝑊𝐿𝐷 and 𝑊𝑅𝐷 denote the left/right wing datum (i.e. incidence-invariant) 

coordinate systems. 

 

The incidence-variant or true wing coordinate systems must then be defined. As with 𝐣̂𝑏, the 

true wing 𝑦-axes 𝐣̂𝑤 are defined with reference to the corresponding reference vectors, 𝐫̂𝑤. 

The constraints on 𝐣̂𝑤 are identical to those of Eq. 2.5.8, mutatis mutandis, except for the 

direction of rotation (clockwise or anticlockwise); i.e. the sign of the cross product 𝐣̂𝑤 × 𝐫̂𝑤 

relative to 𝒊̂𝑤. In the case of 𝐣̂𝑤𝑙 the sign is positive (𝐣̂𝑤𝑙 × 𝐫̂𝑤𝑙 = 𝒊̂𝑤𝑙 sin 𝜙𝑤𝑙) and the 

following constraints are obtained: 

𝒊̂𝑤𝑙 ⋅ 𝐣̂𝑤𝑙 = 0 

𝐫̂𝑤𝑙 ⋅ 𝐣̂𝑤𝑙 = cos 𝜙𝑤𝑙  

𝐣̂𝑤𝑙 × 𝐫̂𝑤𝑙 = 𝒊̂𝑤𝑙 sin 𝜙𝑤𝑙 

‖𝐣̂𝑤𝑙‖2 = 1 

(lies in 𝒟𝐿), 

(lies at 𝜙 from 𝑟̂𝑤𝑙), 

(clockwise), 

(unit); 

(2.5.24) 

and in the case of 𝐣̂𝑤𝑟 the sign is negative (𝐣̂𝑤𝑟 × 𝐫̂𝑤𝑟 = −𝒊̂𝑤𝑟 sin 𝜙𝑤𝑟) and the set of 

constraints is: 

𝒊̂𝑤𝑟 ⋅ 𝐣̂𝑤𝑟 = 0 

𝐫̂𝑤𝑟 ⋅ 𝐣̂𝑤𝑟 = cos 𝜙𝑤𝑟   

𝐣̂𝑤𝑟 × 𝐫̂𝑤𝑟 = −𝒊̂𝑤𝑟 sin 𝜙𝑤𝑟  

‖𝐣̂𝑤𝑟‖2 = 1 

(lies in 𝒟𝑅), 

(lies at 𝜙 from 𝑟̂𝑤𝑙), 

(clockwise), 

(unit). 

(2.5.25) 

The solutions to these two sets of constraints are: 
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𝐣̂𝑤𝑙
(𝑏)

= [

− sin 𝜓𝑤𝑙 cos 𝜙𝑤𝑙 − sin 𝜃𝑤𝑙 cos 𝜓𝑤𝑙 sin 𝜙𝑤𝑙

− cos 𝜓𝑤𝑙 cos 𝜙𝑤𝑙 + sin 𝜃𝑤𝑙 sin 𝜓𝑤𝑙 sin 𝜙𝑤𝑙

cos 𝜃𝑤𝑙 sin 𝜙𝑤𝑙

], (2.5.26) 

and 

𝐣̂𝑤𝑟
(𝑏)

= [

sin 𝜓𝑤𝑟 cos 𝜙𝑤𝑟 − sin 𝜃𝑤𝑟 cos 𝜓𝑤𝑟 sin 𝜙𝑤𝑟

cos 𝜓𝑤𝑟 cos 𝜙𝑤𝑟 + sin 𝜃𝑤𝑟 sin 𝜓𝑤𝑟 sin 𝜙𝑤𝑟

cos 𝜃𝑤𝑟 sin 𝜙𝑤𝑟

]. (2.5.27) 

 

Finally, 𝐤̂𝑤 are the unit vectors that are orthogonal to 𝒊̂𝑤 and 𝐣̂𝑤 – left-hand orthogonal for 

the left wing system, and right-hand orthogonal for the right wing system. Hence: 

𝐤̂𝑤𝑙
(𝑏)

= −𝒊̂𝑤𝑙
(𝑏)

× 𝐣̂𝑤𝑙
(𝑏)

= [

sin 𝜓𝑤𝑙 sin 𝜙𝑤𝑙 − sin 𝜃𝑤𝑙 cos 𝜓𝑤𝑙 cos 𝜙𝑤𝑙

cos 𝜓𝑤𝑙 sin 𝜙𝑤𝑙 + sin 𝜃𝑤𝑙 sin 𝜓𝑤𝑙 cos 𝜙𝑤𝑙

cos 𝜃𝑤𝑙 cos 𝜙𝑤𝑙

], (2.5.28) 

and 

𝐤̂𝑤𝑟
(𝑏)

= 𝒊̂𝑤𝑟
(𝑏)

× 𝐣̂𝑤𝑟
(𝑏)

= [

− sin 𝜓𝑤𝑟 sin 𝜙𝑤𝑟 − sin 𝜃𝑤𝑟 cos 𝜓𝑤𝑟 cos 𝜙𝑤𝑟

− cos 𝜓𝑤𝑟 sin 𝜙𝑤𝑟 + sin 𝜃𝑤𝑟 sin 𝜓𝑤𝑟 cos 𝜙𝑤𝑟

cos 𝜃𝑤𝑟 cos 𝜙𝑤𝑟

]. (2.5.29) 

This completes the definition of the wing-fixed reference frames. Their transformation 

matrices to the body-fixed reference system are: 

P𝐵 𝑊𝐿⁄ = [𝒊̂𝑤𝑙
(𝑏)

,  𝐣̂𝑤𝑙
(𝑏)

,  𝐤̂𝑤𝑙
(𝑏)

] = P𝑊𝐿 𝐵⁄
𝑇 , 

P𝐵 𝑊𝑅⁄ = [𝒊̂𝑤𝑟
(𝑏)

,  𝐣̂𝑤𝑟
(𝑏)

,  𝐤̂𝑤𝑟
(𝑏)

] = P𝑊𝑅 𝐵⁄
𝑇 . 

(2.5.30) 

 

The transformation of ̇
𝑤𝑖 to the angular velocity associated with wing rotation relative to 

the body frame, 𝑖,2, is given as: 

𝑤𝑙,2
(𝑏)

= 𝐫̂𝑤𝑙
(𝑏)

𝜃̇𝑤𝑙 − 𝐤̂𝑏
(𝑏)

𝜓̇𝑤𝑙 − 𝒊̂𝑤𝑙
(𝑏)

𝜙̇𝑤𝑙 = Ω𝑤𝑙
(𝑏) ̇

𝑤𝑙,   

𝑤𝑟,2
(𝑏)

= −𝐫̂𝑤𝑟
(𝑏)

𝜃̇𝑤𝑟 − 𝐤̂𝑏
(𝑏)

𝜓̇𝑤𝑟 + 𝒊̂𝑤𝑟
(𝑏)

𝜙̇𝑤𝑟 = Ω𝑤𝑟
(𝑏) ̇

𝑤𝑟, 

Ω𝑤𝑙
(𝑏)

= [𝐫̂𝑤𝑙
(𝑏)

, −𝐤̂𝑏
(𝑏)

, −𝒊̂𝑤𝑙
(𝑏)

], 

Ω𝑤𝑟
(𝑏)

= [−𝐫̂𝑤𝑟
(𝑏)

, −𝐤̂𝑏
(𝑏)

, 𝒊̂𝑤𝑟
(𝑏)

]. 

(2.5.31) 

which may be utilised in the kinematic chains (Section 2.4). Given the uniformity of the 

angular velocity pseudovector throughout all of the 𝑐 = 1 chain points in the case study 

system, the total angular velocity pseudovector of each wing can be constructed simply as: 

𝑖
(𝑒)

= (𝑒) + P𝑖,2 𝑖,2, 𝑖 ∈ [𝑊𝐿, 𝑊𝑅], (2.5.32) 
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2.5.4. The orthogonal stabiliser reference frames 

The horizontal and vertical stabilisers (tailplanes, containing the elevators, and tailfin, 

containing the rudder) will be modelled as separate bodies in the multibody analysis: this 

both simplifies the aerodynamic analysis (see Chapter 3) and allows the model to be easily 

generalised to study tail surface motion in future studies: defining a consistent set of 

aerofoil-fixed unit vectors for each aerofoil will enable us to perform one aerodynamic 

analysis in this aerofoil-fixed reference frame, which will then generalise to each specific 

lifting surface. It is thus helpful to define independent reference frames for each stabiliser. 

Figure 2.5.5 shows these reference frames. All of these are 90° rotations and/or hand 

changes of the body-fixed reference frame, and thus can be sufficiently defined by their 

rotation matrices with respect to this frame, in lieu of any more detailed orientation 

parameterisation. 

 

Figure 2.5.5: Diagram of the stabiliser coordinate systems. 
 
For the left tailplane / elevator: 

𝒊̂𝑒𝑙 = 𝐣̂𝑏 = [0, 1, 0](𝑏),𝑇 , 

𝐣̂𝑒𝑙 = 𝒊̂𝑏 = [1, 0, 0](𝑏),𝑇 , 

𝐤̂𝑒𝑙 = 𝐤̂𝑏 = [0, 0, 1](𝑏),𝑇 , 

(2.5.33) 

and hence: 

P𝐵 𝐸𝐿⁄ = [𝒊̂𝑒𝑙,  𝐣̂𝑒𝑙,  𝐤̂𝑒𝑙] = [
0 1 0
1 0 0
0 0 1

]. (2.5.34) 

This coordinate system is left-handed. For the right tailplane / elevator: 
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𝒊̂𝑒𝑟 = −𝐣̂𝑏 = [0, −1, 0](𝑏),𝑇 , 

𝐣̂𝑒𝑟 = 𝒊̂𝑏 = [1, 0, 0](𝑏),𝑇 , 

𝐤̂𝑒𝑟 = 𝐤̂𝑏 = [0, 0, 1](𝑏),𝑇 , 

(2.5.35) 

and hence: 

P𝐵 𝐸𝑅⁄ = [𝒊̂𝑒𝑟 ,  𝐣̂𝑒𝑟 ,  𝐤̂𝑒𝑟] = [
0 1 0

−1 0 0
0 0 1

]. (2.5.36) 

This coordinate system is right-handed. And for the fin / rudder: 

𝒊̂𝑓 = 𝐤̂𝑏 = [0, 0, 1](𝑏),𝑇 , 

𝐣̂𝑓 = 𝒊̂𝑏 = [1, 0, 0](𝑏),𝑇 , 

𝐤̂𝑓 = 𝐣̂𝑏 = [0, 1, 0](𝑏),𝑇 , 

(2.5.37) 

and hence: 

P𝐵 𝐹⁄ = [𝒊̂𝑓 ,  𝐣̂𝑓 ,  𝐤̂𝑓] = [
0 1 0
0 0 1
1 0 0

]. (2.5.38) 

 

 

2.6. VERIFICATION AND VISUALISATION 

2.6.1. Kinematic verification 

To verify that the kinematic expressions for linear and angular velocity are correct, these 

expressions are compared to finite-difference estimates that are dependent only on the 

kinematics of position. These estimates are computed via incrementing the aircraft 

orientation, position, and wing control parameters proportional to their input derivatives, 

and computing appropriate forward differences: 

𝐬(𝑡0 + Δ𝑡) = 𝐬(𝑡0) + 𝐬̇(𝑡0)Δ𝑡, 

𝑞(𝑡0 + Δ𝑡) = 𝑞(𝑡0) ⊗ exp (
1

2
Δ𝑡 (𝑏)(𝑡0)), 

𝐱̇𝑖,est(𝑡0) =
1

Δ𝑡
(𝐱𝑖(𝐬(𝑡0 + Δ𝑡)) − 𝐱𝑖(𝐬(𝑡0))), 

(2.6.1) 

where 𝐬 denotes the 12-DOF aircraft state: in Euler angles 𝐬 = [ , 𝑤𝑙, 𝑤𝑟 , 𝐱𝑆]; in 

quaternions 𝐬 = [𝑞, 𝑤𝑙, 𝑤𝑟 , 𝐱𝑆], with the particular norm-preserving increment on the 

quaternion as noted [16]. Sets of states (𝐬) and state derivatives (𝐬̇) are generated randomly, 

and numerical estimates of all the body centre of mass velocities (linear and angular) are 
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compared to the kinematic relations. The finite-different time increment is Δ𝑡 = 10−10, and 

over 104 trials for both orientation parameterisations (quaternion and Euler angle), no error 

for any velocity or angular velocity at any location exceeded 10−6. This verifies the 

kinematic velocity relationships. 

 

2.6.2. Visualisation 

The preceding verification is dependent on the accuracy of the positional kinematics: the 

very definition of the aircraft. To ensure this definition is correct, a system visualization 

routine is developed in MATLAB that will animate a model of the aircraft given all of the 

aircraft geometric, control and orientation parameter values. This animated model may 

then be checked visually to ensure that all of these parameter values are having an 

appropriate effect, validating the positional kinematic model. Among examples of this are 

Figures 2.4.3, 2.4.4 and 1.4.1, already presented, which demonstrate variation in the 

orientation quaternion and individual wing degrees of freedom. As an additional example, 

Figure 2.6.1 shows an example specified motion and morphing path, actuating multiple 

system degrees of freedom simultaneously. The accuracy of the specified motion path may 

be confirmed. This animated model has additional value as a method of visualising the flight 

simulation results that will proceed from this analysis. 

 

 

Figure 2.6.1: Visualisation in MATLAB of the case study system, under example specified 
motion and morphing path. 
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3.1. STRUCTURAL DYNAMICS: LITERATURE REVIEW 

3.1.1. Structural dynamic modelling 

To analyse the flight dynamics of the case study system, and thereby explore its capability 

for supermanoeuvrability, models of the structural behaviour of the system and the 

aerodynamic effects it induces are required. In this section the structural (rigid-body) 

modelling of the system is considered. Several existing structural modelling strategies for 

morphing-wing aircraft are attested in the literature. 

 

At the simplest level, Newtonian rigid-body dynamics (RBD) can be used to derived a simple 

6-DOF model with a time-varying inertia – computed with respect to a centre of mass which 

is fixed relative to the fuselage – representing the effects of wing morphing [1]. This 

approach neglects centre-of-mass motion and momentum changes arising from wing 

morphing, and as such is accurate when the wing mass is small and the wing motion is slow 

and low-amplitude.  As such it has seen common use in the study of control morphing [2,3] 

– see Grant et al. [4] for a short review. In some cases, e.g. incidence control morphing, the 

time-varying inertial effects are neglected altogether, so that the structural model is entirely 

time-invariant [5]. This latter approximation is common in the study of biomimetic flapping-

wing systems, cf. the review by Orlowski and Girard [6], with a wing-body mass ratio of less 

than 6% usually taken as its zone of validity. Nevertheless several studies have indicated 

that, even with such low wing mass, the effects of wing inertia may have a significant 

influence on the system flight dynamics [7,8].  

 

The time-varying inertia approach is also appropriate when the effect of transition morphing 

states are of little significance to the analysis, e.g. if any complex effects arising from 

transition are assumed to be constrained via appropriate avionics control further down the 

analysis change. This suits it also to the analysis of mission morphing, cf. [9–11]. Its key 

advantages over higher-fidelity models are a low computational cost for time-domain 

simulation and amenability to piecewise state-state representation, allowing conventional 

linear time-invariant control and flight stability analyses to be carried out, cf. [10–12]. It is 

possible to extend this approach to account for the effect of centre-of-mass motion by 

computing the time-varying inertia relative to the instantaneous exact centre of mass, 

which is not fixed relative to the fuselage. This would improve its modelling fidelity for 
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systems with large wing masses and (slow) large-amplitude wing motion – an improvement 

which is particularly relevant to mission morphing systems. However no studies utilising 

solely this extension are attested. The ‘extended rigid-body dynamics’ (ERBD) of Obradovic 

and Subbarao [1,17] goes a step further. Their approach postulates a time-varying inertia, 

and then adds to it virtual forces corresponding to the dynamic effects of wing morphing, 

including morphing-induced centre-of-mass motion. If all virtual forces are included this 

yields an exact model of the system’s rigid body dynamics. 

 

However, a more widespread method of modelling morphing-wing dynamic effects exactly 

is through multibody dynamics: this is the dominant approach in high-fidelity biomimetic 

flight simulation, seeing application on a variety of scales [13–15]. The multibody approach 

is a default for flexible or compliant morphing-wing systems, as these cannot easily be 

treated by any of the previous Newtonian approaches: non-biomimetic applications include 

flexible high-altitude long-endurance (HALE) aircraft [16–18], and smart projectiles [19]. For 

rigid multibody morphing-wing systems, the key advantages of multibody dynamics over 

ERBD are generality (being simpler to apply to systems with many morphing degrees of 

freedom) and availability in a variational formulation (allowing the use of variational 

integration, a recently developed approach showing excellent momentum and energy 

conservation properties [20–22]). Applications in this area have included sweep morphing 

[23], folding-wing [24,25], morphing tandem-wing [26], and avian flapping-wing aircraft 

[27]. 

 

3.1.2. Actuator modelling 

One further aspect of the system dynamic model is its actuator model – the choice of which 

is largely independent with respect to the structural dynamic model used. Several 

approaches have been used in the study of morphing-wing systems. Full actuator models 

may be utilised, which specify the output parameters as a function of the actuator 

properties, control parameters, and input signal [28,29]. These can represent the 

mechatronic behaviour of the system accurately, though they do require a high degree of 

specificity regarding the actuator arrangement. Alternatively servoconstraints – constraints 

enforced via penalty methods – provide a simpler method of modelling a degree of actuator 
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lag [10,30,31]. Finally, a direct specification of the controlled parameters corresponds to the 

assumption of an perfect actuator [31]. 

 

3.1.3. Application to the case study system 

Given the significance of wing inertial effects in biomimetic supermanoeuvrability –  

something which is at least the case in several manoeuvres [32], and at most may often be a 

dominant effect [33,34] (cf. Chapter 1, Section 1.2.3) – the study of biomimetic 

supermanoeuvrability through the case study system will thus require accurate structural 

dynamic modelling. The importance of inertia effects even in systems with low wing mass 

has been noted [7,8]. For this reason a multibody dynamic approach is utilised in this study, 

formulated variationally to allow for variational integration. The broad scope of this work 

largely precludes the use of a precise actuator model, or a detailed actuator specification, at 

this early stage. Morphing degrees of freedom may be sometimes disabled in the case study 

model, representing a variety of hypothetical actuator arrangements. Moreover, detailed 

specifications for these actuator arrangements – such as the required control ranges, 

velocities and forces – are dependent on the results of the flight dynamic study. Hence 

simple passive constraints are utilised to model the case study system actuators. 

 

This chapter is concerned with the multibody dynamics of the case study aircraft, and the 

development of simple aerodynamic model for flight simulation. It covers the formulation of 

the system kinetic energy and generalised forces preliminary to a variational analysis, and 

the derivation of variational and adaptive integrators, in Chapter 4.  

 

 

3.2. AIRCRAFT STRUCTURAL DYNAMICS 

3.2.1. Objective 

To analyse the system via the principle of least action [35], expressions for the system 

Lagrangian and the generalise forces corresponding to the system coordinates (𝑞 or  and 

𝐱𝑆) are requires. The Lagrangian is given by the difference of the system total kinetic energy 

and any potential energies that may be assigned to it: in this study the gravitational 

potential is the only candidate for the latter. However as a framework of generalised forces 

will be required regardless – to account for the dissipative aerodynamic forces – it is more 
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convenient to treat the gravitational effects as such a force. The system Lagrangian is thus 

given identically by its total kinetic energy. In this section we formulate this kinetic energy 

and the associated generalised forces. 

 

3.2.2. Total kinetic energy 

The kinetic energy, 𝑇𝑖, of any body in our system may be defined generally as: 

2𝑇𝑖 = 𝐱̇𝑖
𝑇𝑚𝑖𝐱̇𝑖 + 𝑖

𝑇I𝑖 𝑖 , 𝑖 ∈ 𝒮, (3.2.1) 

which via the body’s kinematic chain becomes, in the earth frame: 

2𝑇𝑖 = 𝐱̇𝑆
(𝑒),𝑇

𝑚𝑖𝐱̇𝑆
(𝑒)
+ 2𝐱̇𝑆

(𝑒),𝑇
𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(𝑒) + 2𝐱̇𝑆
(𝑒),𝑇

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝑖,2 𝑖,2)

+ (𝑒),𝑇 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(𝑒)

+ 2(P𝑖,2 𝑖,2)
𝑇
[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(𝑒)

+ (P𝑖,2 𝑖,2)
𝑇
[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝑖,2 𝑖,2)

+ (𝑒),𝑇I𝑖
(𝑒) (𝑒) +  2(P𝑖,2 𝑖,2)

𝑇
I𝑖
(𝑒) (𝑒) + (P𝑖,2 𝑖,2)

𝑇
I𝑖
(𝑒)(P𝑖,2 𝑖,2). 

(3.2.2) 

The total system kinetic energy may then be expressed as: 

𝑇 =∑𝑇𝑖
𝑖∈𝒮

= 𝐱̇𝑆
(𝑒),𝑇a𝑥𝑥𝐱̇𝑆

(𝑒) + 𝐱̇𝑆
(𝑒),𝑇A𝑥

(𝑒) (𝑒) + (𝑒),𝑇A
(𝑒) (𝑒) + 𝐱̇𝑆

(𝑒),𝑇𝐚𝑥
(𝑒)

+ (𝑒),𝑇𝐚
(𝑒) + a0, 

(3.2.3) 

with coefficients: 

a𝑥𝑥 =
1

2
∑𝑚𝑖

𝑖∈𝒮

, 

A𝑥
(𝑒) =

1

2
∑2𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

𝑖∈𝒮

, 

A
(𝑒) =

1

2
∑[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

+ I𝑖
(𝑒)

𝑖∈𝒮

, 

(3.2.4) 
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𝐚
(𝑒) =

1

2
∑2[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

P𝑖,2 𝑖,2 + 2I𝑖
(𝑒) P𝑖,2 𝑖,2

𝑖∈𝒮

, 

𝐚𝑥
(𝑒) =

1

2
2𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝑖,2 𝑖,2), 

a0 =
1

2
∑(P𝑖,2 𝑖,2)

𝑇
I𝑖
(𝑒)(P𝑖,2 𝑖,2) + (P𝑖,2 𝑖,2)

𝑇
[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝑖,2 𝑖,2)

𝑖∈𝒮

. 

 

This completes the definition of the aircraft total kinetic energy. Note that the wing angular 

velocities 𝑖,2 may be computed from their Euler angle rates ̇ 𝑖, see Chapter 2, Section 

2.6.3. Note the distinction between the wing Euler angles ( 𝑖, 𝑖 ∈ [𝑤𝑙, 𝑤𝑟]) and the body 

Euler angle ( ). The terms in the expression for the total kinetic energy may be interpreted 

physically as follows: 

𝑇 =
1

2
𝐱̇𝑆
𝑇𝑚𝐱̇𝑆⏟    

kinetic energy of
translational motion

+ 𝐱̇𝑆
𝑇A

 𝑥⏟    
interaction between
translation and body

rotation

 + 𝐱̇𝑆
𝑇𝐚𝑥⏟

translational motion
induced by wing motion

 

+ 𝑇A⏟      
kinetic energy of
rotational motion

+ 𝑇𝐚⏟  
rotational motion
induced by wing

motion

+ a0⏟ .
kinetic energy

of wing motion

 
(3.2.5) 

 

3.2.3. Moment of inertia tensors 

The moment of inertia tensors, 𝐼𝑖, of the bodies in the system have been referenced. In this 

work, without loss of generality, all bodies are modelled as having uniform density. The 

fuselage is taken as cylindrical; the body moment of inertia tensor about its centre of mass 

in the body-fixed frame is thus: 

I𝑏
(𝑏) =

[
 
 
 
 
 
1

2
𝑚𝑏𝑟𝑏

2   

 
1

12
𝑚𝑏(3𝑟𝑏

2 + 𝐿𝑏)  

  
1

12
𝑚𝑏(3𝑟𝑏

2 + 𝐿𝑏)]
 
 
 
 
 

. (3.2.6) 

Solely in the context of inertia computation, all aerodynamic surfaces as having a 

rectangular cross-section at their mean thicknesses: this assumption is expected to be 

negligible with the thin aerofoils utilised in this work. Denoting ℎ𝑖,av the mean thickness of 

the aerofoil (ℎW,av or ℎH,av), the lifting surface moments of inertia, about their centres of 

mass and in their respective local fixed reference frames, are given by: 
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I𝑖
(𝑖) =

[
 
 
 
 
 
1

12
𝑚𝑖(𝑐𝑖

2 + ℎ𝑖,av
2 )   

 
1

12
𝑚𝑖(𝐿𝑖

2 + ℎ𝑖,av
2 )  

  
1

12
𝑚𝑖(𝐿𝑖

2 + 𝑐𝑖
2)]
 
 
 
 
 

, 

 𝑖 ∈ [𝑤𝑙, 𝑤𝑟, 𝑒𝑙, 𝑒𝑟, f]. 

(3.2.7) 

All these tensors are then resolved in the earth reference frame via their local frame 

transformation matrices. Note of course that the point mass (𝑖 = pm) has a zero moment of 

inertia tensor about its centre of mass in any reference frame. 

 

3.2.4. Forces and generalised forces 

The effect of several forces and moments acting on the aircraft must be considered. Gravity 

generates a force and a moment about 𝑆. These may be expressed as: 

𝐅grav
(𝑒) = [0 0 −𝑚𝒮𝑔]

 𝑇 , 

𝛕grav
(𝑒) =∑(𝐱𝑖

(𝑒) − 𝐱𝑆
(𝑒)) × [0 0 −𝑚𝑖𝑔]

 𝑇

𝑖∈𝒮

, 
(3.2.8) 

where 𝑚𝒮 denotes the total system mass. As a conservative force, gravity’s effect could 

alternately be expressed in terms of potential energy. However, mature simulations in this 

work will always be non-conservative due to the dissipative aerodynamic forces. 

 

The system is hypothetically fitted with a propulsion device, about which no further 

assumptions are made at this point. The propulsive force is supposed to act in the direction 

of the body axis (𝒊̂𝑏), passing through an arbitrary point 𝑉, defined in the body-fixed 

reference frame by the relative position vector Δ𝐱𝑉
(𝑏). Unless otherwise noted, 𝐱𝑉

(𝑏) = 𝟎 and 

thus 𝑉 = 𝑆. The forces and moments on 𝑆 exerted by the propulsion device are:  

𝐅prop
(𝑒) = 𝐹prop𝒊̂𝑏

(𝑒),  

𝛕prop
(𝑒) = Δ𝐱𝑉

(𝑒) × 𝐹prop𝒊̂𝑏
(𝑒). 

(3.2.9) 

The details of the aerodynamic forces will be studied in further chapters; here it suffices to 

introduce a total aerodynamic force and total aerodynamic moment about 𝑆, resolved in 

the earth reference frame: 𝐅aero,tot
(𝑒)  and 𝛕aero,tot

(𝑒)  respectively. The total force and moment 

are then: 
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𝐅tot
(𝑒)
= 𝐅grav

(𝑒)
+ 𝐅prop

(𝑒)
+ 𝐅aero,tot

(𝑒)
, 

𝛕tot
(𝑒) = 𝛕grav

(𝑒) + 𝛕prop
(𝑒) + 𝛕aero,tot

(𝑒) . 
(3.2.10) 

For use in a variational analysis – either via the Euler-Lagrange equation or the principle of 

least action (see Chapter 4) – generalised forces corresponding to the generalised 

coordinate of the orientation parameterisation are required. The generalised translational 

force (𝒬𝑥) associated with both orientation parameterisations is identically 𝐅tot
(𝑒); whereas 

the generalised rotational forces are transformations of 𝛕tot
(𝑒). The generalised rotational 

force in the quaternion parameterisation (𝒬𝑞) is given by [20]: 

𝒬𝑞 = 2𝑞 ⊗ 𝛕tot
(𝑏) = 2𝛕tot

(𝑒)⊗𝑞. (3.2.11) 

The generalised rotational force in the 3-2-1 Euler angle parameterisation involves a 

transformation equivalent to that of (𝑒) (see Chapter 2, Section 2.5.2), that is: 

𝒬 = Ω0
−1𝛕tot

(𝑒). (3.2.12) 

Physically, these generalised rotational forces correspond to the force effect of 𝛕tot
(𝑒) when 

resolved in the orientation parameterisations themselves (𝒬  e.g. representing the 

pitch/yaw/roll rate forces, and 𝒬𝑞 the corresponding for abstract effect for an orientation 

quaternion). They will be required in the variational analysis of the system. 

 

3.2.5. Verification of aircraft dynamics 

To validate our aircraft kinetic energy formulation (Eq. 3.2.3-3.2.4), we compare it to the 

classical results for the kinetic energy of a rigid body about its centre of mass. Generating 

random aircraft Euler angles and positions, centre of mass translational and angular 

velocities ( (𝑒) and 𝐱̇c.o.m.
(𝑒) ), and wing morphing angles (with zero wing morphing rates), the 

centre-of-mass kinetic energy is computed as: 

𝑇 =
1

2
(𝑒),𝑇Ic.o.m.

(𝑒) (𝑒) +
1

2
𝐱̇c.o.m.
(𝑒),𝑇 𝑚tot𝐱̇c.o.m.

(𝑒) , (3.2.13) 

with inertia tensor about the centre of mass via the parallel axis theorem [36]: 

Ic.o.m.
(𝑒) =∑I𝑖

(𝑖) +𝑚𝑖 ((𝐫𝑖
(𝑒) ⋅ 𝐫𝑖

(𝑒))E3 − 𝐫𝑖
(𝑒),𝑇⊗kr 𝐫𝑖

(𝑒))

𝑖∈𝒮

, 

𝐫𝑖
(𝑒) = 𝐱c.o.m.

(𝑒) − 𝐱𝑖
(𝑒), 𝐱c.o.m.

(𝑒) =
1

𝑚tot
∑𝑚𝑖𝐱𝑖

(𝑒)

𝑖∈𝒮

. 
(3.2.14) 
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where ⊗kr denotes the Kronecker (Outer) product, not the quaternion product [37]. The 

aircraft orientation, position and morphing parameters are then passed to the multibody 

model. By rigid-body kinematics, (𝑒) remains unchanged, and 𝐱̇𝑆
(𝑒) is given by: 

𝐱̇𝑆
(𝑒) = (𝑒) × (𝐱𝑆

(𝑒) − 𝐱c.o.m.
(𝑒) ) + 𝐱̇c.o.m.

(𝑒) . (3.2.15) 

The results for 103 random trails indicate no discrepancies above the level of machine 

precision (> 3 × 10−13). 

 

 

3.3. AERODYNAMICS: LITERATURE REVIEW 

In the context of the flight dynamic analysis of morphing-wing systems – biomimetic or 

otherwise – a very wide range of model fidelities are observed. At the highest level,  3D 

turbulent computational fluid dynamics (CFD) simulations via direct numerical simulation 

(DNS), large-eddy simulation (LES) or Reynolds-averaging are expensive but are capable of 

capturing complex aerodynamic effects [38,39]. Typical larger-scale application utilise 

Reynolds-averaging with the Spalart-Allmaras turbulence model [5,40–42]; LES approaches 

are feasible only for low Reynolds number applications, e.g. biomimetic insect systems [25].  

 

In situations where computational models are too computationally intensive, some form of 

lower-order dynamic stall and lift hysteresis model is required. Phenomenological models of 

this form include the ONERA [12] and Goman-Khrabrov (GK) [13] models, among others 

[14]. Non-phenomenological model-reduction and machine learning techniques such as 

eigensystem realisation [43], Volterra theory [44] and support vector machines [45] are also 

available – though these still require higher-fidelity (e.g. CFD) data to work on. At a slightly 

simpler level, Theodorsen’s aerodynamic theory provides a method by which the dynamic 

effects of low-amplitude pitching and dihedral motion may be modelled [46,47]; though the 

method does not extend to large amplitudes [48] and is more common in the study of 

aeroelasticity. Similar alternatives to Theodorsen’s theory include the use of Wagner’s 

indicial response function [48] and the finite-state theory of Peters et al. [49]. 

 

These low-order models of specific transient aerodynamic effects have the key advantage of 

accounting for such effects – e.g. those with known relevance to the application – without 
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the computational burden of obtaining a full flow field solution. Their key disadvantage, 

however, is that the uniqueness of their formulation typically excludes a synthesis with 

models of other aerodynamic effects. In particular, this includes extensions beyond their 

current application to two-dimensional section models: implementations e.g. in an 

aerodynamic panel method framework cannot currently be countenanced. Furthermore, 

these models focus largely on the dynamic effects of aerofoil pitching, and to a lesser 

extent, dihedral motion. The effects of dynamic sweep motion, apart from the obvious 

induced flow, are only rarely studied [50] – though results from the study of unsteady 

freestream flows indicate that they may have more significance than previously thought 

[51–53]. However, modelling approaches for such effects have not yet been proposed in the 

literature; and indeed few of all these low-order transient models have been applied to 

morphing-wing systems. 

 

Finally, quasisteady or steady section models or panel methods are available, based on an 

analysis of the local static airframe state, with or without a morphing-induced flow model 

respectively. These approaches still consider to some extent the dynamic effect of wing 

morphing if they include a morphing-induced flow model – that is, a model of the 

instantaneous flow induced by the lifting-surface morphing / relative motion itself. If not; 

then no dynamic effects are being considered at all. The vast majority of morphing-wing 

aerodynamic modules are of this latter type, typically in the form of vortex-lattice [54,55], 

doublet-source [2] or lifting-line methods [56,57]. Second-order extensions to quasisteady 

section models are also available [27]. The panel method formulation of these models have 

the advantage of including some 3D (e.g. finite-span) effects; however they suffer also from 

the significant disadvantage of being unable to be generalised to model dynamic stall or 

other unsteady effects. Most implementations are indeed constrained to linear pre-stall 

aerodynamic models, and a generalization to even static stall behaviour requires additional 

techniques such as nonlinear lifting-line theory [58] or iterative decambering [59,60].  

 

In this work we utilise a discrete framework of local section models, in the manner of strip 

theory or blade element momentum theory [61,62]. This will allow us to apply low-order 

models of transient effects (such as the GK-type models) to the whole airframe. However, in 

the first instance, for validation testing purposes, a quasisteady aerodynamic model 
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formulated in this section model framework is utilised. In this chapter we construct this 

aerodynamic framework and describe the local quasisteady model, leading to a full (if, 

simplistic) flight dynamic model. This model will be used for integrator testing, flight 

dynamics validation, and as a reference point for the more complex models of transient 

aerodynamic effects studied in Chapter 8. This study begins with a quasisteady model for 

three reasons: (1) the novel guidance procedures that we will devise require a quasisteady 

model; (2) with the quasisteady model, flight dynamic validation can to some degree be 

separated from novel aerodynamic model validation; and (3) the novel aerodynamic models 

that we will devise are subject to significant limitations and areas of model breakdown; they 

are not suitable as a broadly-applied base model for this system. Note also that this model is 

both quasisteady (in terms of flow modelling) and quasistatic (in terms of with morphing 

motion); these two characteristics have an impact of differing aspects of model validity and 

contextual use. 

 

 

3.4. QUASISTEADY AERODYNAMIC MODELLING 

3.4.1. Aerodynamic mesh 

To model the aerodynamics of the entire airframe, a mesh of local section models is 

generated, as per strip theory or blade element momentum theory  [61,62]. Each body in 

the multibody system is discretised into 𝑁𝑖 aerodynamic stations (𝑖 ∈ 𝒮) along the body 

reference axes – for the aerofoils, the quarter-chord points, and for the fuselage, the 

centroid. The aerodynamic forces on each section model will then be computed from only 

from the dynamic state and properties of the local station. This approach may be regarded 

as a generalised form of blade-element model [63,64], a form of strip theory [62], has been 

previously used before by Ananda and Selig [65,66], among others. 

 

The location of the stations within each body is described by a variable 𝑥stat, the distance 

along the reference axis from the body origin. An example mesh for the case study system, 

showing the locations of these origins, is given in Figure 3.4.1. The station locations for the 

different aircraft components are thus given by: 
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wings (𝑖 ∈ [𝑊𝐿,𝑊𝑅]): 

𝐱stat
(𝑒) (𝑥stat) = 𝑥statP𝐸 𝐵⁄ 𝑖̂𝑖

(𝑏) + Ṗ𝐸 𝐵⁄ 𝐋𝑖,1 + 𝐱𝑆; 

stabilisers (𝑖 ∈ [𝐸𝐿, 𝐸𝑅]): 

𝐱stat
(𝑒) (𝑥stat) = 𝑥statP𝐸 𝐵⁄ 𝑖̂𝑖

(𝑏) + 𝐱𝑆; 

 

fuselage: (𝑖 = 𝐹): 

𝐱stat
(𝑒) (𝑥stat) = 𝑥stat𝑖̂𝑏

(𝑒) + 𝐱𝑆. 
(3.4.1) 

 

 
Figure 3.4.1: An example aerodynamic mesh. 
 

The local induced flow at each station is related to the time derivative of these quantities, 

but strictly references the aerofoil quarter-chord point. For this reason, the velocity of the 

quarter-chord point is taken: 

quarter-chord location (∀𝑖): 

𝐫stat, 𝑐 4⁄ ,𝑖 = [𝑥stat,
1

4
𝑐𝑖, 0]

𝑇

; 

wings (𝑖 ∈ [𝑊𝐿,𝑊𝑅]): 

𝐱̇stat
(𝑒) (𝑥stat) = (Ṗ𝐸 𝐵⁄ P𝐵 𝑖⁄ + P𝐸 𝐵⁄ Ṗ𝐵 𝑖⁄ )𝐫stat, 𝑐 4⁄ ,𝑖 + Ṗ𝐸 𝐵⁄ 𝐋𝑖,1 + 𝐱̇𝑆; 

stabilisers (𝑖 ∈ [𝐸𝐿, 𝐸𝑅]): 

𝐱̇stat
(𝑒) (𝑥stat) = Ṗ𝐸 𝐵⁄ P𝐵 𝑖⁄ 𝐫stat, 𝑐 4⁄ ,𝑖 + 𝐱𝑆; 

fuselage: (𝑖 = 𝐹): 

𝐱̇stat
(𝑒) (𝑥stat) = 𝑥stat𝑖̂̇𝑏

(𝑒)
+ 𝐱𝑆. 

(3.4.2) 
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The local induced flow velocity at any station is then given by 𝐮stat
(𝑒)
= −𝐱̇stat

(𝑒)
+ 𝐮global

(𝑒)
. This 

analysis neglects the effects of any global flow field, 𝐮global
(𝑒) , including wind fields, the effect 

of flow shadowing from other parts of the airframe, and a propulsion-induced flow field. 

The inclusion of a global wind flow field, if this is relevant to the analysis, is trivial. The 

inclusion of flow shadowing effects is made more difficult than is the case for more 

restrictive flight simulators, as flow shadowing is possible between any two lifting surfaces, 

in any direction and with wakes from translating and rotating airframe components. 

Devising a flow shadowing model for this system would be a significant undertaking as is 

beyond the scope of this work. Including a propulsion-induced flow field is simple, when the 

propulsion system is defined; but here we treat a more general aircraft. 

 

We then resolve the local flow velocity in the local section model-fixed fame (denoted 𝑏𝑖); 

𝐮stat
(𝑏𝑖) = P𝐸 𝑏𝑖⁄

𝑇 𝐮stat
(𝑒) . This velocity can then be decomposed into polar coordinates, 

representing the local effective angle-of-attack and flow magnitude. The spanwise 

component ustat,1
(𝑏𝑖) , is neglected. The polar decomposition may be computed as: 

𝜙eff = − tan2
−1
−ustat,3

(𝑏𝑖)

−ustat,2
(𝑏𝑖)

, 𝑈 = ‖𝐮stat
(𝑏𝑖)‖

2
, (3.4.3) 

where ustat,𝑖
(𝑏𝑖)  denotes the 𝑖-th element of 𝐮stat

(𝑏𝑖). The function tan2
−1 denotes the two-

argument (four-quadrant) arctangent [67]. 

 

3.4.2. Limitations to the aerodynamic mesh 

We will use this aerodynamic mesh framework for all both the quasisteady aerodynamic 

analysis contained in this chapter and the more complex transient models considered in 

Chapter 8, and so here its limitations are noted. Key assumptions contained in this approach 

are the neglect of flow shadowing with the airframe, and the spanwise component of flow 

at each station. The latter leads to a modelling deficiency in the modelling of vortex 

shedding at the lifting surface tips, and the formation of other structures along the lifting 

surface spans; for example at high roll rates. This deficiency is a feature of the section model 

approach in general, which does not account for coupling between any of the aerodynamic 

station parameters. While the aerodynamic mesh framework does not preclude the 
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modelling of inter-station coupling effects via a lifting-line theory, this approach is 

incompatible with the modelling of strong transient effects. 

 

The former will result in a degradation of accuracy in the case of deep stall [68], involving 

flow shadowing between the wings and the horizontal stabilisers – for example, in forward 

flight when the wing incidence is high. Other potentially significant cases of flow shadowing 

include that between the horizontal and vertical stabilisers in manoeuvres at low airspeed 

and fast roll rate, and that between the wings and fuselage when the wings are swept back 

at a high angle. One previous flight simulator, that of Selig [66], considered the effect of 

intra-tailplane flow shadowing in conventional flight regimes, and implemented a simple 

correctors to account for this. However, as more complex and more diverse forms of 

shadowing are likely to be dominant in supermanoeuvres, and to preserve a uniform 

modelling approach across the system, this individual corrector is not implemented. The 

creation of a more general wake-tracking and flow-shadowing in the modelling context of 

this work is certainly within the realms of possibility, particularly as the aerodynamic mesh 

framework provides convenient wake generation points which can then be appropriately 

decayed (or indeed, transported or diffused), and which can be modelled to influence the 

local flow field. This is an area for future research which shows significant potential. 

 

3.4.3. Lifting surface quasisteady aerodynamic model 

In the simplest case, at each section model on the lifting surfaces the local aerodynamic 

forces are computed via a quasisteady aerodynamic model. In such a model, these forces 

are dependent only on 𝜙eff, 𝑈 and the section model state (including e.g.  control surface 

commands). For the aircraft lifting surfaces, aerodynamic coefficient data is taken from Selig 

[66] for wing (ST50W) and stabiliser (ST50H) airfoils; generated via data fusion techniques 

from experimental data, potential flow models and semi-empirical techniques. This data 

covers the full 𝛼 range and includes the effect of wing aileron and stabiliser control surface 

deflection. The section model lift, drag and moment coefficients can then be interpolated 

from 𝜙eff and the relevant control surface deflection 𝛽𝑖. The foil sections are approximately 

equivalent to NACA0015 and NACA007 airfoils, for the ST50W and ST50H respectively. The 

effect of varying Reynolds number is not accounted for: the Reynolds for aerodynamic data 

is unspecified, but for a ShowTime 50 aircraft in flight Re ≈ 3 × 105 is expected (cf. [66]).  



 Chapter 3: Flight dynamic model with quasisteady aerodynamics 

75 

The aerodynamic forces on each section model may then be computed as: 

𝐋𝑖
(𝑒) =

1

2
𝜌𝑈𝑖

2𝑐𝑖𝐶L(𝜙eff,𝑖)𝐋̂𝑖
(𝑒), 

𝐃𝑖
(𝑒) =

1

2
𝜌𝑈𝑖

2𝑐𝑖𝐶D(𝜙eff,𝑖)𝐃̂𝑖
(𝑒), 

𝐌𝑖
(𝑒) =

1

2
𝜌𝑈𝑖

2𝑐𝑖
2𝐶M(𝜙eff,𝑖)𝐌̂𝑖

(𝑒), 

(3.4.4) 

where 𝑐𝑖 is the local chord, 𝜌 the constant air density, and 𝐋̂𝑖
(𝑒) (etc.) the force unit vectors in 

the earth frame. They may be computed by: 

𝐃̂(𝑒) = P𝐸 𝐵⁄ P𝐵 𝑊⁄

𝐮stat
(𝑏𝑖)

𝑈
, 

𝐋̂(𝑒) = 𝐃̂(𝑒) × [1 0 0]𝑇 , 

𝐌̂(𝑒) = sgn𝑏𝑖𝑖̂𝑏𝑖
(𝑒), 

(3.4.5) 

where sgn𝑤 denotes the handedness sign of the local body-fixed coordinate system. 

 

3.4.4. Fuselage quasisteady aerodynamic model 

The same approach, with a few modifications, is applied to the fuselage section models. As 

they are assumed to be cylindrical, 𝜙eff,𝑖 is irrelevant and the drag coefficient is taken to be 

uniformly 𝐶D = 1.0 [69]. Lift and moment forces are neglected. Additionally, a frontal drag 

force is also modelled, based on the airspeed in the fuselage frontal direction and a frontal 

drag coefficient, and assumed to act about along the fuselage axis (𝑖̂𝑏) and about the centre 

of mass. This force is given by: 

𝐃front
(𝑒)

=
1

2
𝜌𝑈front

2 𝐶D,front𝐴front𝑖̂𝑏
(𝑒)
, 

𝑈front = |ustat,1
(𝑏) |, 𝐴front = 𝜋𝑟𝑏

2, 

(3.4.6) 

and corresponds to the effect of spanwise flow over the fuselage. In the absence of further 

detail regarding the fuselage geometry, the case study system is taken to have 𝐶D,front = 0. 

However a nonzero identified value will be used for validation flight simulations. Given the 

general nature of this aircraft, this is taken to be at least sufficiently representative that 

manoeuvre simulations are not qualitatively affected. More complex assymetric forebody 

separation effects will be considered in Chapter 7. 
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3.4.5. Integration of aerodynamic forces 

Finally, lift, drag and moment distributions are integrated over the 𝑁 stations on a single 

airframe component to obtain its contribution to the total lift, drag and moment about 𝑆. 

The total moment consists of both the moment-coefficient moment (𝐌) and the moment 

induced by the lift and drag forces (𝐍). The lift and drag forces act through the approximate 

aerodynamic centre at the quarter-chord location (i.e. a quarter of the chord from the 

leading edge): the aerodynamic coefficients in Selig [66] are defined for an aerodynamic 

centre at this location. For details about the aerodynamic centre see e.g. [70]. The pertinent 

aspect of this is that the induced moment integration must be carried out using the quarter-

chord location as the force position (𝐫stat, 𝑐 4⁄ ; see Eq. 3.4.1-3.4.2). The integration is carried 

out numerically with the trapezium rule: 

𝐋𝑖, tot
(𝑒) = ∫ 𝐋𝑖

(𝑒)𝑑𝑥stat

 

trapezium

, 

𝐃𝑖, tot
(𝑒) = ∫ 𝐃𝑖

(𝑒)𝑑𝑥stat

 

trapezium

, 

𝐌𝑖, tot
(𝑒)

= ∫ 𝐌𝑖
(𝑒)
𝑑𝑥stat

 

trapezium

, 

 

𝐍𝑖, tot
(𝑒) = ∫ (𝐋𝑖

(𝑒) + 𝐃𝑖
(𝑒)) × 𝐫stat, 𝑐 4⁄ 𝑑𝑥stat

 

trapezium

, 

𝐫stat, 𝑐 4⁄ = {

1

4
𝑐𝑖P𝐸 𝐵⁄ ĵ𝑖

(𝑏) + 𝑥statP𝐸 𝐵⁄ 𝑖̂𝑖
(𝑏) 𝑖 ∈ ℱ {𝑏}⁄

1

4
𝑐𝑖P𝐸 𝐵⁄ ĵ𝑖

(𝑏) + 𝑥statP𝐸 𝐵⁄ 𝑖̂𝑖
(𝑏) + 𝐿𝑟𝑖̂𝑏

(𝑒) 𝑖 ∈ 𝒲.

 

(3.4.7) 

This yields the lift, drag and total aerodynamic moment acting about 𝑆 that arises from the 

given lifting surface. This computation is repeated for each of the lifting surfaces. The total 

aerodynamic force on the fuselage is computed identically, with the force positions taken as 

the fuselage centroid (𝑥stat𝑖̂𝑏
(𝑒)); or the system centre of mass (𝐋c.o.g.

(𝑒) ) for the frontal drag 

force. The results from all surfaces are summed into the total aerodynamic force 𝐅aero,tot 

and moment 𝛕aero,tot about 𝑆, in the earth reference frame, acting on the aircraft: 
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𝐅aero,tot
(𝑒) = ∑ 𝐋𝑖, tot

(𝑒) + 𝐃𝑖, tot
(𝑒)

𝑖 ∈ 𝒮

, 

𝛕aero,tot
(𝑒) = ∑𝐌𝑖, tot

(𝑒)

𝑖 ∈ 𝒮

+ 𝐍𝑖, tot
(𝑒) . 

(3.4.8) 

with appropriate transformation in the case of the moments (𝛕aero,tot
(𝑏) = 𝑃𝐸 𝐵⁄

𝑇 𝛕aero,tot
(𝑒) ) these 

terms may be used directly in the variational integrator of Chapter 4. 

 

 

3.5. CONCLUDING REMARKS 

This chapter has presented a full dynamics framework and low-order aerodynamic model 

for the case study system. A dynamical analysis of the system, leading to the system weak 

formulation (in quaternion kinematics) and equations of motion (in Euler angle kinematics) 

is presented in Chapter 4. The aerodynamic model presented in this chapter is intentionally 

simple: to allow an assessment of the numerical properties of our integrators in the 

presence of dissipative forces; to enable validation simulations against other fixed-wing 

flight path data, and to enable initial studies into biomimetic supermanoeuvrability to be 

made. Further aerodynamic extensions are presented in Chapter 8. 
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4.1. INTRODUCTION 

4.1.1. Variational integration 

Variational integrators represent a recent development in the study of computational 

mechanics [1,2]. They have several advantages over non-variational forms of time 

integration; most particularly, favourable energy and momentum conservation properties. 

The application of variational integration to the dynamics of three-dimensional rotation 

commonly leads to the study of Lie group variational integrators (LGVIs) [3,4], referring to 

the fact that pole-free rotation parameterizations such as rotation matrices or quaternions 

are endowed with a Lie algebra. A key aspect of LGVIs is their treatment of the rotation 

matrix or quaternion constraints (special orthogonality, R ∈ SO(3) [5] or normalization, 

‖𝑞‖ = 1 [6]) via appropriate definition of the variational perturbations invoked in the 

integrator derivation. 

 

Previous aerospace applications of LGVIs in aeronautics have been confined to systems of 

relatively low complexity – spacecraft uncoupled rotational dynamics, with reaction wheels 

or a variety of generalised forces [3,4]. The more specific class of quaternion variational 

integrators (QVIs) have seen even more restricted study [7]. However, in addition to their 

favourable conservation properties, variational integrators present an attractive prospect 

for flight dynamic models based on quaternions, as traditional ordinary-differential 

approaches are complicated by the special nature of the orientation quaternion derivative 

as a result of the quaternion normalisation constraint. Solutions to this either involve an 

additional complexity in the analysis (e.g. via analysis as a differential-algebraic equation 

[8,9]) or a degradation in integrator accuracy through the use of the quaternion pseudo-

derivative [10] (integrating via conventional finite-difference, and periodically normalising 

the result [11]). 

 

This chapter concerns the development of a quaternion variational integrator for the case 

study biomimetic aircraft model. This system is significantly more complex than those 

previously considered for quaternion variational integration, and we identify several key 

deficiencies in existing QVIs that limit their effectiveness when applied to the case study 

system. As a solution, an improved QVI is devised, based on a change of integration 

variables and an increase in integration order. This new approach shows particular 
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advantages over existing QVIs in long-timescale energy and momentum conservation, stable 

step size, and applicability to systems with non-conservative canonical momenta. 

 

4.1.2. Adaptive integration 

For unconstrained orientation parameterizations such as Euler angles, integration via a wide 

range of integrators is available, without any special considerations. Variational integrators 

may be devised for such systems too, after [1,2], but of particular prominence in the 

literature are adaptive Runge-Kutta (RK) integrators. These explicit integrators are well-

established, computationally efficient, and are available at high orders of accuracy (beyond 

4th order). However of particular note is the potential for many of these integrators to be 

used with adaptive time-stepping, either through step doubling [12], or via embedded 

estimates of the integrator local truncation errors [12,13]. The availability of the latter – 

embedded RK methods – at high integration order is perhaps the most significant of their 

advantages. Adaptive time-stepping reduces the requirements for system-specific oversight, 

maintains accuracy and stability, and maximises the integrator computational efficiency. As 

such, despite the difficulties associated with Euler angle orientation parameterisation, 

adaptive RK45 integrators in Euler angles are highly competitive with quaternion variational 

integrators, as will be demonstrated. Hence the additional need for an Euler angle 

integrator. 

 

 

4.2. ADAPTIVE RK45 INTEGRATOR IN EULER ANGLES 

4.2.1. System formulation in Euler angle rates 

To the end of obtaining an integrator for the system Euler angles, the system dynamics are 

expressed in terms of the Euler angle rates. This involves a simple substitution of the 

relation (𝑒) = Ω0
̇  (with ̇  the aircraft Euler angle rates, see Chapter 2, Section 2.5.3) into 

the expression for the system kinetic energy (Eq. 3.2.3-3.2.4), yielding: 

𝑇 = 𝐱̇𝑆
(𝑒),𝑇a𝑥𝑥𝐱̇𝑆

(𝑒)
+ 𝐱̇𝑆

(𝑒),𝑇A𝑥𝜃
(𝑒) ̇ + ̇ 𝑇A𝜃𝜃

(𝑒) ̇ + 𝐱̇𝑆
(𝑒),𝑇𝐚𝑥

(𝑒)
+ ̇ 𝑇𝐚𝜃

(𝑒)
+ a0 , 

A𝑥𝜃
(𝑒)

= Ω0
(𝑒),𝑇A𝑥

(𝑒)
, A𝜃𝜃

(𝑒)
= Ω0

(𝑒),𝑇A
(𝑒)

Ω0
(𝑒)

, 𝐚𝜃
(𝑒)

= Ω0
(𝑒),𝑇𝐚

(𝑒)
. 

(4.2.1) 
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4.2.2. Equations of motion in Euler angles 

To implement an adaptive RK45 integrator, we ultimately require a description of the 

system dynamics in the form of a first-order ordinary differential equation (ODE), typically 

nonlinear. To obtain this, the system equations of motion must be derived in the strong 

form; here, via the Euler-Lagrange equation [14]. Under this approach, the translational 

component of system equations of motion is given by: 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝐱̇𝑆
) −

𝜕𝑇

𝜕𝐱𝑆
= 𝒬𝐱. (4.2.2) 

The reader may confirm that 𝑇 (Eq. 4.2.1) is independent of 𝐱𝑆 and thus 𝜕𝑇 𝜕𝐱𝑆
(𝑒)⁄ = 0. To 

compute 𝜕𝑇 𝜕𝐱̇𝑆
(𝑒)⁄ , note the following results from matrix calculus [15]: 

𝑑

𝑑𝐱
(𝐱𝑇M𝐱) = (M + M𝑇)𝐱, 

𝑑

𝑑𝐱
(𝐱𝑇𝐯) =

𝑑

𝑑𝐱
(𝐯𝑇𝐱) = 𝐯. 

(4.3.3) 

Here we follow denominator layout, a layout convention in which the derivatives with 

respect to a vector are order (in a row or column) in the manner of the denominator of the 

derivative. This is in apposition to numerator layout, in which the layout is derived from the 

numerator. Hence for 𝜕𝑇 𝜕𝐱̇𝑆
(𝑒)⁄ : 

𝜕𝑇

𝜕𝐱̇𝑆
(𝑒)

= 𝑚𝐱̇𝑆
(𝑒)

+ A𝑥𝜃
(𝑒) ̇  + 𝐚𝑥

(𝑒)
. (4.2.4) 

Computing the derivative of this expression by time we obtain: 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝐱̇𝑆
(𝑒)

) = 𝑚𝐱̈𝑆
(𝑒)

+ A
 𝑥𝜃
(𝑒) ̈ + Ȧ

 𝑥𝜃
(𝑒) ̇  + 𝐚̇𝑥

(𝑒)
. (4.2.5) 

Here a choice exists as to how to deal with the time-derivatives of the matrix coefficients. It 

is most convenient to compute the time-derivatives of the coefficients via finite-difference 

methods (either at each point in the iteration using an increment separate from the 

iteration timestep, or by using data from previous timesteps). As an alternative, it is possible 

to differentiate them with respect to  (and also, 𝑖) the chain rule and thus relate them to 

 and ̇
𝑖. However, this alternative is expensive in terms of the other derivatives in  and 𝑖 

that are required, and so the former approach is taken. The computation of these quantities 
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is discussed later in this section. In the meantime, the translational equation of motion is 

thus: 

𝑚𝐱̈𝑆
(𝑒)

+ A𝑥𝜃
(𝑒) ̈ + Ȧ

 𝑥𝜃
(𝑒) ̇  + 𝐚̇𝑥

(𝑒)
= 𝒬𝐱. (4.2.6) 

The rotation component of the Euler-Lagrange equation applied to this system is: 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕 ̇
) −

𝜕𝑇

𝜕
= 𝒬 . (4.2.7) 

In the first instance the total kinetic energy is differentiated by two terms,  and . For 

𝜕𝑇 𝜕 ̇⁄  this yields: 

𝜕𝑇

𝜕 ̇
= A𝑥𝜃

(𝑒),𝑇𝐱̇𝑆
(𝑒)

 + (A
 𝜃𝜃
(𝑒)

+ A
 𝜃𝜃
(𝑒),𝑇) ̇ + 𝐚𝜃

(𝑒)
. (4.2.8) 

Computing 𝜕𝑇 𝜕⁄  is more difficult, as all the matrix coefficients bar a𝑥𝑥 are strongly 

nonlinear function of : 

𝜕𝑇

𝜕
=

𝜕

𝜕
(𝐱̇𝑆

(𝑒),𝑇A𝑥𝜃
(𝑒) ̇ )  +

𝜕

𝜕
(𝐱̇𝑆

(𝑒),𝑇𝐚𝑥
(𝑒)

) + 
𝜕

𝜕
( ̇ 𝑇A𝜃𝜃

(𝑒) ̇ ) +
𝜕

𝜕
( ̇ 𝑇𝐚𝜃

(𝑒)
)

+
𝜕

𝜕
(a0). 

(4.2.9) 

Three of these derivatives can be expressed via simple matrix-operator expressions [15]: 

𝜕

𝜕
(𝐱̇𝑆

(𝑒),𝑇𝐚𝑥
(𝑒)

) =
𝜕𝐚𝑥

(𝑒)

𝜕
𝐱̇𝑆 = B

 𝑥
(𝑒)

𝐱̇𝑆
(𝑒)

, 

𝜕

𝜕
( ̇ 𝑇𝐚𝜃

(𝑒)
) =

𝜕𝐚𝜃
(𝑒)

𝜕
̇ = B𝜃

(𝑒) ̇ , 

𝜕

𝜕
(a0) = ∇𝜃a0 = 𝐛0, 

(4.2.10) 

where the derivatives 𝜕𝐚𝑥
(𝑒)

𝜕⁄  and 𝜕𝐚𝜃
(𝑒)

𝜕⁄  are laid out according to denominator layout 

conventions, that is [15]: 

(
𝜕𝐱

𝜕𝐲
)
𝑖𝑗

=
𝜕𝑥𝑗

𝜕𝑦𝑖
= J𝐱𝐲

𝑇 , (4.2.11) 

where J𝐱𝐲 is the Jacobian matrix of 𝐱 with respect to 𝐲. The two other derivatives are more 

difficult, as they require the derivative of a matrix with respect to a vector; a quantity that is 

in general only expressible as a higher-order tensor. Lacking the framework for expressing 
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the multiplication of higher-order tensors with vectors, these tensor derivative terms are 

defined explicitly as: 

𝐯𝑥𝜃
(𝑒)

=
𝜕

𝜕
(𝐱̇𝑆

(𝑒),𝑇A𝑥𝜃
(𝑒) ̇ ) =

[
 
 
 
 
 
 
 𝐱̇𝑆

𝑇
𝜕A𝑥𝜃

(𝑒)

𝜕𝜃
̇

𝐱̇𝑆
𝑇
𝜕A𝑥𝜃

(𝑒)

𝜕𝜓
̇

𝐱̇𝑆
𝑇
𝜕A𝑥𝜃

(𝑒)

𝜕𝜙
̇
]
 
 
 
 
 
 
 

, 

𝐯𝜃𝜃
(𝑒)

=
𝜕

𝜕
( ̇ 𝑇A𝜃𝜃

(𝑒) ̇ ) =

[
 
 
 
 
 
 
 ̇ 𝑇

𝜕A𝜃𝜃
(𝑒)

𝜕𝜃
̇

̇ 𝑇
𝜕A𝜃𝜃

(𝑒)

𝜕𝜓
̇

̇ 𝑇
𝜕A𝜃𝜃

(𝑒)

𝜕𝜙
̇
]
 
 
 
 
 
 
 

. 

(4.2.12) 

Thus: 

𝜕𝑇

𝜕
= 𝐯𝑥𝜃

(𝑒)
+ B

 𝑥
(𝑒)

𝐱̇𝑆
(𝑒)

+ 𝐯𝜃𝜃
(𝑒)

+ B𝜃
(𝑒) ̇ + 𝐛0. (4.2.13) 

Finally, differentiating 𝜕𝑇 𝜕 ̇⁄  with respect to time, we obtain: 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕 ̇
) = A𝑥𝜃

(𝑒),𝑇𝐱̈𝑆 + Ȧ𝑥𝜃
(𝑒),𝑇𝐱̇𝑆 + (A𝜃𝜃

(𝑒)
+ A𝜃𝜃

(𝑒),𝑇) ̈ + (Ȧ𝜃𝜃
(𝑒)

+ Ȧ𝜃𝜃
(𝑒),𝑇) ̇ + 𝐚̇𝜃

(𝑒)
, (4.2.14) 

and the rotational equation of motion is: 

A𝑥𝜃
(𝑒)

𝐱̈𝑆
(𝑒)

+ (Ȧ𝑥𝜃
(𝑒)

− B𝑥
(𝑒)

)𝐱̇𝑆
(𝑒)

+ (A𝜃𝜃
(𝑒)

+ A𝜃𝜃
(𝑒),𝑇) ̈ + (Ȧ𝜃𝜃

(𝑒)
+ Ȧ𝜃𝜃

(𝑒),𝑇 − B𝜃
(𝑒)

) ̇

− 𝐯𝑥𝜃
(𝑒)

− 𝐯𝜃𝜃
(𝑒)

+ 𝐚̇𝜃
(𝑒)

− 𝐛0 = 𝒬 . 

(4.2.15) 

 

The two equations of motion are defined, but the coefficient time-derivative terms remain 

undefined: Ȧ𝜃𝜃
(𝑒)

, Ȧ𝑥𝜃
(𝑒)

, 𝐚̇𝜃
(𝑒)

 and 𝐚̇𝑥
(𝑒)

. Computing these is not trivial, as contributions arise 

both from the aircraft’s total motion ( ) and the wing motion ( ̇
𝑖), and therefore the use of 

the chain rule introduces many subsidiary derivatives. It is simpler to estimate these 

derivatives directly via a finite-difference in time. For all the relevant coefficients, 

𝐩 ∈ {A𝜃𝜃
(𝑒)

, A𝑥𝜃
(𝑒)

, 𝐚𝜃
(𝑒)

, 𝐚𝑥
(𝑒)

}, and some small time increment, Δ𝑡, 𝐩̇(𝑡) is given as: 
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𝐩̇(𝑡)  =
𝐩(𝑡 + Δ𝑡) − 𝐩(𝑡)

Δ𝑡
, (4.2.16) 

with: 

𝐩(𝑡 + Δ𝑡) = 𝐩( + Δ , 𝑤𝑙 + Δ 𝑤𝑙, 𝑤𝑟 + Δ 𝑤𝑟), (4.2.17) 

and 

Δ = Δ𝑡 ̇ , 

Δ 𝑤𝑙 = Δ𝑡 ̇
𝑤𝑟 +

1

2
Δ𝑡 ̈

𝑤𝑟 , 

Δ 𝑤𝑟 = Δ𝑡 ̇
𝑤𝑙 +

1

2
Δ𝑡 ̈

𝑤𝑙. 

(4.2.18) 

For these relations, the increment Δ𝑡 = 10−10 is taken universally in this work. 

 

The equations of motion for the case study system are thus fully defined. They may be 

represented together as a single second-order nonlinear ODE: 

A𝑞𝑞𝐪̈ + A𝑞𝐪̇ + 𝐤 = 𝐟, (4.2.19) 

with: 

A𝑞𝑞 = [
𝑚E3 A𝑥𝜃

A𝑥𝜃 A𝜃𝜃 + A
 𝜃𝜃
𝑇 ], 

A𝑞 = [
0 Ȧ𝒮, 𝑥𝜃

Ȧ𝑥𝜃 + B𝑥 Ȧ𝒮, 𝜃𝜃 + Ȧ𝒮, 𝜃𝜃
𝑇 + B𝒮, 𝜃

], 

𝐤 = [
𝐚̇𝒮, 𝑥

𝐯𝒮, 𝑥𝜃 + 𝐯𝒮, 𝜃𝜃 + 𝐚̇𝒮, 𝜃 + 𝐛𝒮,0
], 

𝐟 = [
𝒬𝐱

𝒬
] , 𝐪 = [

𝐱𝑆]. 

(4.2.20) 

To enable integration by standard solvers, the system is transformed into a first-order 

nonlinear ODE – a process which is without approximation: 

𝐳̇ = 𝐅z(𝑡, 𝐳) = B1
−1(𝐅 − B0𝐳), (4.2.21) 

with 

B1 = [
A𝑞𝑞 06×6

06×6 E6
], 

  B0 = [
A𝑞 06×6

−E6 06×6
], 

𝐅 = [
𝐟 − 𝐤
06×1

],  

𝐳 = [
𝐪̇
𝐪
], 

(4.2.22) 

This completes the dynamic analysis of the case study system. These equations will now be 

discretised in readiness for simulation. 
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4.2.3. Adaptive Runge-Kutta 4(5) integration 

Eq. 4.2.21 may be integrated directly via standard first-order ODE solvers. We utilise an 

Adaptive Runge-Kutta 4(5) (RK45) method, the Dormand-Prince method [13,16]. This 

integrator is fourth-order accurate, with an embedded fifth-order method providing a first-

order estimation of the local truncation error. By constraining the local truncation error with 

a tolerance, the integrator step size can be adapted to fulfil the local truncation error 

constraint with the maximum possible step size.  

 

A single step of Runge-Kutta-type integration may be expressed in general terms as:  

𝐳𝑖+1 = 𝐳𝑖 + ℎ ∑ 𝑏𝑛𝐤𝑛

𝑁

𝑛=1

 

𝐤1 = 𝐅z(𝑡𝑛, 𝐳𝑛) 

𝐤2 = 𝐅z(𝑡𝑛 + ℎ𝑐2, 𝐳𝑛 + ℎ𝑎2,1𝐤1) 

𝐤3 = 𝐅z (𝑡𝑛 + ℎ𝑐3, 𝐳𝑛 + ℎ(𝑎3,1𝐤1 + 𝑎3,2𝐤2)) 

and in general: 

𝐤𝑛 = 𝐅z (𝑡𝑛 + ℎ𝑐𝑛, 𝐳𝑛 + ℎ ∑ 𝑎𝑛,𝑚𝐤𝑚

𝑛−1

𝑚=1

) 

 

(4.2.23) 

where ℎ is the current integrator step size, 𝑁 the number of internal steps, and with sets of 

coefficients {𝑎𝑖,𝑗}, {𝑏𝑖,𝑗}, {𝑐𝑖}. These coefficients may be presented and understood in the 

form of a Butcher tableau [17]. For the Dormand-Prince method [13]: 

 

𝑐1 0 𝑎1,𝑗: 0       
𝑐2 1/5 𝑎2,𝑗: 1/5 0      

⋮ 3/10 ⋮ 3/40 9/40 0   
(4.2.24) 

 4/5  44/45 −56/15 32/9 0  
 8/9  19372/6561 −25360/2187 64448/6561 −212/729 0   
⋮ 1 ⋮ 9017/3168 −355/33 46732/5247 49/176 −5103/18656 0  
𝑐𝑛 1 𝑎𝑛,𝑗: 35/384 0 500/1113 125/192 −2187/6784 11/84 0 

   𝑎𝑖,1 𝑎𝑖,2 ⋯   ⋯ 𝑎𝑖,𝑛 

(4
th

-order) 𝑏𝑖: 35/384 0 500/1113 125/192 −2187/6784 11/84 0 
(5

th
-order) 𝑏𝑖: 5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40 

   𝑏1 𝑏2 ⋯   ⋯ 𝑏𝑛 

 



  Chapter 4: Variational integration 

93 

The local truncation error (LTE) may then be estimated as the norm of the difference 

between the 4th- and 5th-order estimates of 𝐳𝑖+1: 

𝑒𝑖+1 = ‖𝐳𝑖+1
(4th)

− 𝐳𝑖+1
(5th)

‖. (4.2.25) 

This error can be constrained in a variety of ways; we use the built-in implementation of this 

method in MATLAB, which uses the criterion [16]: 

𝑒𝑖+1 ≤ 𝑟‖𝐳𝑖+1
(4th)

‖ + 𝑎𝑖 (4.2.26) 

where 𝑟 is a relative tolerance and 𝑎𝑖 a set of absolute tolerances. The method of adapting 

step based on the error value and this criterion is relatively complex [12] and is not detailed 

here. 

 

4.2.4. Pole-switching 

The integrator so far presented suffers from gimbal lock at aircraft pitch values of 𝜃 = ±90°, 

as a result of the singularities in the Euler angle representation at these orientations. This 

terminates the simulation. A practical solution to this difficulty may be found in changing 

the location of these singularities when the simulation nears them, by switching to an 

alternate Euler angle representation [18–20]. We choose a representation with singularities 

at the original 𝜓 = ±90°. Rather than defining another kinematic framework and switching 

between the two, the existing framework is utilised, with the direction of gravitational force 

modified from [0,0, −1]𝑇 to [0, −1,0]𝑇 and with a change of the system location in the Euler 

angle space. 

 

Denoting the existing Euler angle representation (poles 𝜃 = ±90°) as 𝐸, and the switched 

basis (poles 𝜓 = ±90°) as 𝐸′, the transformation between these bases may be defined as 

per Eq. 4.2.27-4.2.28. Note that the identification formulae for 𝜓 / 𝜓′ etc. are common to 

both transformation directions – they are simply one of many approaches to identify the 

Euler angles from their unit vectors 𝒊̂𝑏
(𝑒)

 etc. as given in Chapter 2, Sections 2.4-2.5. The 

other component of the basis transformation procedure involves simply transforming all 

variables in 𝐸 to 𝐸′ or vice versa via the transformation matrix 𝑃𝐸′ 𝐸⁄ . 
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𝐸 → 𝐸′ ∶  

𝑃𝐸′ 𝐸⁄ = [
1 0 0
0 0 1
0 −1 0

], 

 

𝐱𝑆

(𝑒′)
= 𝑃𝐸′ 𝐸⁄ 𝐱𝑆

(𝑒)
, 𝐱̇𝑆

(𝑒′)
= 𝑃𝐸′ 𝐸⁄ 𝐱̇𝑆

(𝑒)
, 

𝒊̂𝑏
(𝑒′)

= 𝑃𝐸′ 𝐸⁄ 𝒊̂𝑏
(𝑒)

, 𝐣̂𝑏
(𝑒′)

= 𝑃𝐸′ 𝐸⁄ 𝐣̂𝑏
(𝑒)

, 

(𝑒′) = 𝑃𝐸′ 𝐸⁄
(𝑒), 

 

𝜓′ = − tan2
−1 (𝑖̂𝑏,2

(𝑒′)
, 𝑖̂𝑏,1

(𝑒′)
), 

𝜃′ = tan2
−1 (𝑖̂𝑏,3

(𝑒′)
cos𝜓′ , 𝑖̂𝑏,1

(𝑒′)
), 

𝜙′ = cos−1 (𝐫̂𝑏

(𝑒′)
⋅ 𝐣̂𝑏

(𝑒′)
), 

with 𝐫̂𝑏

(𝑒′)
= [sin𝜓′ , cos 𝜓′ , 0]𝑇 , 

̇ ′ = Ω0

(𝑒′),−1 (𝑒′), 

with Ω0

(𝑒′)
= −[𝐫̂𝑏

(𝑒′)
, 𝐤̂

𝑒′

(𝑒′)
, 𝒊̂𝑏

(𝑒′)
] ; 

(4.2.27) 

and; 

𝐸′ → 𝐸 ∶  

𝐱𝑆
(𝑒)

= 𝑃𝐸′ 𝐸⁄
𝑇 𝐱𝑆

(𝑒′)
, 𝐱̇𝑆

(𝑒)
= 𝑃𝐸′ 𝐸⁄

𝑇 𝐱̇𝑆

(𝑒′)
, 

𝒊̂𝑏
(𝑒)

= 𝑃𝐸′ 𝐸⁄
𝑇 𝒊̂𝑏

(𝑒′)
, 𝐣̂𝑏

(𝑒)
= 𝑃𝐸′ 𝐸⁄

𝑇 𝐣̂𝑏
(𝑒′)

, 

(𝑒) = 𝑃𝐸′ 𝐸⁄
𝑇 (𝑒′), 

 

𝜓 = − tan2
−1(𝑖̂𝑏,2

(𝑒)
, 𝑖̂𝑏,1

(𝑒)
), 

𝜃 = tan2
−1(𝑖̂𝑏,3

(𝑒)
cos𝜓 , 𝑖̂𝑏,1

(𝑒)
), 

𝜙 = cos−1(𝐫̂𝑏
(𝑒)

⋅ 𝐣̂𝑏
(𝑒)

), 

with 𝐫̂𝑏
(𝑒)

= [sin 𝜓 , cos𝜓 , 0]𝑇 , 

̇ = Ω0
(𝑒),−1 (𝑒), 

with Ω0
(𝑒)

= −[𝐫̂𝑏
(𝑒)

, 𝐤̂
𝑒′
(𝑒)

, 𝒊̂𝑏
(𝑒)

]. 

(4.2.28) 
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Within the adaptive RK45 integrator, a basis transformation test occurs at the end of each 

integrator step. Wrapping the pitch angle to the interval [−𝜋, 𝜋], 

𝜃 = 𝜃 − 2𝜋 ⌊
𝜃 + 𝜋

2𝜋
⌋  rad, (4.2.29) 

its proximity to ±𝜋 2⁄  is tested: 

|𝜃 −
𝜋

2
| ≤ 𝜃crit. (4.2.30) 

Note that this applies identically to 𝜃′. 𝜃crit is measures the angular proximity of the system 

to the pole; a standard tolerance of 𝜃crit = 0.4 rad is set. Upon failure of the criterion, the 

system is transformed to the alternate basis (𝐸 → 𝐸′, 𝐸′ → 𝐸) and integration resumes. The 

only possibility of the integrator reaching gimbal lock is if the step starts outside 𝜃crit and 

then progresses to the pole (± 90°) within the space of a single integrator step. With proper 

exception handling, however, this should trigger a failure of the local truncation error 

criterion – leading to a smaller step size, successful step integration, and then a 

transformation of basis before gimbal lock occurs in the following steps.  

 

The location of basis transformation events is stored through the integration process, and in 

post-processing the system orientation results can be transformed to a consistent basis 

(typically 𝐸) via the transformations of Eq. 4.2.27-4.2.28. This leads to an integrator in Euler 

angles, with an output in a consistent frame of reference, which does not suffer from gimbal 

lock. We will use this integrator both to validate the quaternion integrators presented next, 

and, based on its advantages and disadvantages relative to these integrators, for simulation 

of the case study biomimetic aircraft. 

 

 

4.3. LEFT-RECTANGLE QVI FOR UNCOUPLED ROTATION 

4.3.1. Proxy generalised derivatives 

As an initial test system, following Manchester and Peck [7], the free rotation of a rigid body 

in the absence of any translation-rotation coupling is considered. The Lagrangian 𝐿 and 

kinetic energy 𝑇 of such a system are equivalent, and are given by:  

𝐿( (𝑏)) = 𝑇( (𝑏)) =
1

2
(𝑏),𝑇I(𝑏) (𝑏), (4.3.1) 
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where (𝑏) is the system angular velocity and I(𝑏) the system rotational inertia, both in the 

body-fixed reference frame. As in [7], the system dynamics are formulated using the 

principle of least action, asserting that the system action functional is stationary w.r.t to 

first-order perturbations. For a general system this may be expressed: 

𝛿𝑆 + 𝛿𝑊 = ∫ 𝛿𝐿 + 𝐅 ⋅ 𝛿𝐫
𝑡𝑁

𝑡0

𝑑𝑡 = 0, (4.3.2) 

for generalised forces 𝐅 and generalised coordinates r. 

 

To undertake a variational analysis of this system, a set of generalised coordinates and 

associated time-derivative variables are required. In a conventional variational analysis, e.g. 

with translational dynamics, these would be related directly via the time differentiation 

operator [1,2]. However, in the case of a quaternion generalised coordinate 𝑞 (defined 

under the Hamilton convention [6]), direct time differentiation is unsuitable: 𝑞̇ is an 

underconstrained parameterisation of the orientation rate, requiring an additional 

constraint in the integrator inter-step equations derived from ‖𝑞‖ = 1. Moreover the 𝑞-𝑞̇ 

pairing introduces a dependency of the kinetic energy on 𝑞 via (𝑏): 

(𝑏) = 2𝑞† ⊗ 𝑞̇, (4.3.3) 

complicating the variational analysis by introducing further terms in the chain rule 

expansion of 𝛿𝐿. 

 

Manchester and Peck [7] overcame this difficulty by formulating the Lagrangian in a discrete 

proxy derivative variable (or, quasi-velocity [21]) f𝑘, representing the rotation quaternion 

between adjacent discrete timesteps: 

𝑞𝑘+1 = 𝑞𝑘 ⊗ f𝑘 . (4.3.4) 

Under a finite difference approximation for 𝑞̇, f𝑘 may be related to the discrete angular 

velocity 𝑘
(𝑏)

: 

𝑘
(𝑏)

= 2𝑞𝑘
† ⊗ 𝑞̇𝑘 =

2

ℎ
𝑞𝑘

† ⊗ (𝑞𝑘+1 − 𝑞𝑘) =
2

ℎ
(f𝑘 − 1), (4.3.5) 

leading to a Lagrangian of similar form, but accounting for the fact that f𝑘 is full quaternion 

(f𝑘 = 1 + 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘), whereas (𝑏) is imaginary (i.e. a 3-vector): 
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𝐿(f𝑘) =
1

2
f𝑘
𝑇 [

0 0

0 I𝑘
(𝑏)] f𝑘. (4.3.6) 

While this approach solves the immediate problems associated with 𝑞̇, it introduces a few 

others. The fact that f𝑘 is full quaternion means that it also generates an overconstrainted 

inter-step equation, which must be parameterised further with a nonphysical variable 
𝑘

, 

introducing additional complexity into the inter-step equations and the analysis process. 

This parameterization also restricts the maximum step size [7]. 

 

As a novel alternative to the approach of Manchester and Peck [7], we derive an integrator 

using (𝑏) directly as a proxy generalised derivative. While (𝑏) has a slightly more complex 

relation with the 𝑞 (Eq. 4.3.3), the system Lagrangian assumes a convenient form (Eq. 4.3.1) 

and the parameterisation has direct physical relevance. We will show that this leads to leads 

to computational savings and increased integrator stability. 

  

4.3.2. Integrator derivation 

In the discrete mechanics framework of [1,2] Eq. 4.3.6 may be approximated with left-

rectangle integration: 

𝛿𝑆 + 𝛿𝑊 = ℎ ∑ 𝛿𝐿𝑘 + 𝐅𝑘 ⋅ 𝛿𝐫𝑘

𝑁−1

𝑘=1

= 0. (4.3.7) 

The variational derivative of 𝐿𝑘, 𝛿𝐿𝑘, is defined with reference to first-order perturbations 

in the orientation (𝑞𝑘). Following [7], 𝑞𝑘 is subjected to a continuous norm-preserving 

perturbation defined via the quaternion exponential [6]; 

𝑞𝑘
𝜖 = 𝑞𝑘 ⊗ exp(𝜖𝛈𝑘

(𝑏)
) ≅ 𝑞𝑘 + 𝛿𝑞𝑘 + 𝒪(𝜖2) = 𝑞𝑘 + 𝜖𝑞𝑘 ⊗ 𝛈𝑘

(𝑏)
+ 𝒪(𝜖2), (4.3.8) 

where 𝛈𝑘
(𝑏)

 represents a perturbative angular velocity axis in the body-fixed frame; that is, 

the axis around which the system will be perturbed by a small angle. Under a first-order 

(two step) approximation, the discrete analogue of Eq. 4.3.3 and its corresponding 

variational derivative may be expressed: 

𝑘
(𝑏)

=
2

ℎ
𝑞𝑘

† ⊗ (𝑞𝑘+1 − 𝑞𝑘), 

𝛿 𝑘
(𝑏)

= 𝑘
(𝑏)

⊗ 𝛈𝑘+1
(𝑏)

− 𝛈𝑘
(𝑏)

⊗ 𝑘
(𝑏)

+
2

ℎ
(𝛈𝑘+1

(𝑏)
− 𝛈𝑘

(𝑏)
). 

(4.3.9) 
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Using the results for the expansion of the quaternion product into dot and scalar products 

[6], and the mixed product property, 𝛿𝐿𝑘  is obtained: 

𝛿𝐿𝑘 =
𝜕𝐿𝑘

𝜕 𝑘
(𝑏)

⋅ 𝛿 𝑘
(𝑏)

= I𝑘
(𝑏)

⋅ 𝛿 𝑘
(𝑏)

 

= (
2

ℎ
I 𝑘

(𝑏)
− 𝑘

(𝑏)
× I 𝑘

(𝑏)
) ⋅ 𝛈𝑘+1

(𝑏)
− (

2

ℎ
I 𝑘

(𝑏)
+ 𝑘

(𝑏)
× I 𝑘

(𝑏)
) ⋅ 𝛈𝑘

(𝑏)
, 

(4.3.10) 

Utilizing the expression for quaternion generalised force and virtual work in [7]: 

𝐅𝑘 ⋅ 𝛿𝐫𝑘 = 𝓠𝑞,𝑘 ⋅ 𝛿𝑞𝑘 = 𝛕𝑘
(𝑏)

⋅ 𝛈𝑘
(𝑏)

, (4.3.11) 

the inter-step integrator relation is obtained: 

I 𝑘
(𝑏)

+
1

2
ℎ 𝑘

(𝑏)
× I 𝑘

(𝑏)
= I 𝑘−1

(𝑏)
−

1

2
ℎ 𝑘−1

(𝑏)
× I 𝑘−1

(𝑏)
+ ℎ𝛕𝑘

(𝑏)
. (4.3.12) 

 

This inter-step relation can be interpreted as a momentum balance, via the application of 

the two discrete Legendre transforms to 𝐿𝑘, as per Marsden and West [1]: 

𝐩𝑘
+ = 𝐩𝑘

− + ℎ𝛕𝑘
(𝑏)

, 

𝐩𝑘
+ = I 𝑘

(𝑏)
+

1

2
ℎ 𝑘

(𝑏)
× I 𝑘

(𝑏)
, 𝐩𝑘

− = I 𝑘−1
(𝑏)

−
1

2
ℎ 𝑘−1

(𝑏)
× I 𝑘−1

(𝑏)
, 

(4.3.13) 

where 𝐩𝑘
+ and 𝐩𝑘

− represent the momentum at step 𝑘 computed in the bracket [𝑘, 𝑘 + 1] or 

[𝑘 − 1, 𝑘] respectively. It follows that a momentum-conserving estimate of the local angular 

velocity, cons.,𝑘
(𝑏)

, can be obtained from the definition of momentum in continuous time, 

𝐩 = I (𝑏): 

cons.,𝑘
(𝑏)

= I−1𝐩𝑘
+ = I−1𝐩𝑘

−. (4.3.14) 

This estimate is a key factor in the excellent conservation properties of the integrator; note 

however that it is a post-processing result and does not overwrite 𝑘
(𝑏)

. Finally, Eq. 4.3.13 

can be solved at each step via Newton’s method with an analytical Jacobian: 

𝑘,𝑖+1
(𝑏)

= 𝑘,𝑖
(𝑏)

+ J𝑘,𝑖
−1(𝐩𝑘,𝑖

+ − 𝐩𝑘
− − ℎ𝛕𝑘

(𝑏)
), 

𝐩𝑘,𝑖
+ = I 𝑘,𝑖

(𝑏)
+

1

2
ℎ 𝑘,𝑖

(𝑏)
× I 𝑘,𝑖

(𝑏)
, J𝑘,𝑖 = I +

1

2
ℎ ([ 𝑘,𝑖

(𝑏)
]
×
I + [I 𝑘,𝑖

(𝑏)
]
×
), 

(4.3.15) 

This inter-step equation is formulated directly in the angular velocity variable ( 𝑘
(𝑏)

), in 

contrast to previous integrators [7,22] which have used the discrete quaternion rotation 
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f𝑘 = 𝑞𝑘
†𝑞𝑘+1 as the proxy generalised velocity – this generates a constrained integrator 

equation, requiring further parameterization by the nonphysical variable 
𝑘

 [7,22]. The use 

of 𝑘
(𝑏)

 simplifies both the analysis process and the integrator inter-step equation, yielding a 

more computational efficient integrator. The orientation quaternion can be integrated 

directly from 𝑘
(𝑏)

; under the assumption of a constant (𝑏) across the step interval (𝑘, 

𝑘 + 1), 𝑞𝑘+1is given by [6]: 

𝑞𝑘+1 = 𝑞𝑘 ⊗ exp (
1

2
ℎ 𝑘

(𝑏)
). (4.3.16) 

 

4.3.3. Numerical experiments 

Figure 4.3.1 demonstrates this integrator applied to the freely-rotating system considered 

by Manchester and Peck [7] (I = diag[1,2,3], 𝑡=0
(𝑏)

= [𝜋 10⁄ , 𝜋 6⁄ , 𝜋 8⁄ ]𝑇, 𝑞𝑡=0 =

[1,0,0,0]), with ℎ = 0.05 s. The results are compared to the QVI in 
𝑘

 and benchmark 

adaptive RK45 integrator of Manchester and Peck [7]. The latter is formulated quaternions, 

and utilised the quaternion pseudo-derivative with periodic normalisation – it is not 

equivalent to the RK45 integrator presented in Section 4.2. Key aspects of the integrator 

performance are the energy conservation error 𝑒𝐿,𝑘 = max𝑖≤𝑘(|𝐿𝑘 − 𝐿1| 𝐿1⁄ ), 𝐿𝑘 =

cons.,𝑘
(𝑏),𝑇 𝐩𝑘, and the momentum conservation error 𝑒𝑝,𝑘 = max𝑖≤𝑘(‖𝐩𝑘 − 𝐩1‖ ‖𝐩1‖⁄ ). Also 

included are a representative section of (𝑏)(𝑡) (the results from all solvers are visually 

identical), the wall-clock computation times (using identical implementations in code), and 

values of 𝑒𝐿,𝑘 and 𝑒𝑝,𝑘 computed with only the step data (and not 𝐩𝑘 or cons.,𝑘
(𝑏)

): 

𝐩non−cons.,𝑘 = I 𝑘
(𝑏)

, 

𝐿non−cons.,𝑘 = 𝑘
(𝑏),𝑇I 𝑘

(𝑏)
. 

(4.3.17) 

These 𝑒-values simulate the effect of applying these integrators to symmetry-breaking 

systems in which the canonical momenta are not conserved, and Eq. 4.3.12 ceases to 

represent a symmetric momentum balance, due to a dependency of the kinetic energy on 

the generalised coordinates. The case study biomimetic aircraft is one such system; it is 

considered in Sections 4.4-4.5. 
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Several points may be noted. The long-timescale conservation properties of both integrators 

are excellent, significantly outperforming the RK45 integrator; and this has an effect on the 

accuracy of the solution in (𝑏). The QVI in 𝑘
(𝑏)

 is c. 30% more efficient than the form in 

𝑘
 in terms of wall-clock computation time, however, it does show a small oscillatory 

momentum error, here of relative amplitude c. 10−4. This oscillation is stable over very long 

timescales, hence the constant value of 𝑒𝑝,𝑘, and has only a slight effect on the solution in 

(𝑏). This effect of the 𝑘
(𝑏)

 form, while a slight deficiency at small timesteps, is associated 

with significantly improved integrator stability at larger timesteps. Figure 4.3.2 

demonstrates the effect of timestep (ℎ) on the integrator solution. 

 

As can be seen, the QVI in 
𝑘

 becomes unstable at ℎ > 1.2 s, whereas the QVI in 𝑘
(𝑏)

 

remains stable for significantly larger timesteps. However, even before the conservation 

errors for the QVI in 
𝑘

 are observed to diverge, a significant degradation in its 

performance is observed. At ℎ = 1 s, despite the negligible momentum and kinetic energy 

errors this integrator, its solution in (𝑏) matches poorly with the benchmark solution. The 

solution from the QVI in 𝑘
(𝑏)

 is significantly more accurate, despite oscillatory momentum 

conservation error in this integrator: indeed, the effect of this error at large step sizes is to 

increase the frequency of the periodic solution in (𝑏); its amplitude remains constant.  

These results are indicative of the fact that excellent integrator conservation properties do 

not guarantee accurate integration. The key advantages of the QVI in 𝑘
(𝑏)

 are its lower 

computational cost and greater stability, enabling the use of larger timesteps. Both of these 

factors make it particularly well suited to systems in which computational cost of integration 

is a major factor; for example, large multibody systems, discretised models (e.g. discretised 

beam models [23,24]) and long-timescale simulations. 
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Figure 4.3.1: Integration results for the free rotation of a rigid body. 
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Figure 4.3.2: The effect of step size on integration results for the free rotation of a rigid body: results for large step size (ℎ = 1 s), and the 
maximum error metrics as a function of step size. 
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4.4. LEFT-RECTANGLE QVI FOR COUPLED ROTATIONAL DYNAMICS 

4.4.1. Kinetic energy in a rotating frame of reference 

In Chapter 3 the total system kinetic energy was expressed as a function of variables and 

coefficients resolved in the earth frame, in the form: 

𝑇(𝐱̇(𝑒), (𝑒), 𝑡) = 𝐱̇𝑆
(𝑒),𝑇

a𝑥𝑥𝐱̇𝑆
(𝑒)

+ 𝐱̇𝑆
(𝑒),𝑇

A𝑥
(𝑒)

(𝑞, 𝑡) (𝑒) + (𝑒),𝑇A
(𝑒)

(𝑞, 𝑡) (𝑒)

+ 𝐱̇𝑆
(𝑒),𝑇

𝐚𝑥
(𝑒)

(𝑞, 𝑡) + (𝑒),𝑇𝐚
(𝑒)

(𝑞, 𝑡) + a0,  
(4.4.1) 

with coefficients as per Eq. 3.2.4. The resolution of these coefficients in the earth frame 

endows them with a dependence on the orientation (𝑞) which is undesired as it will 

complicate the chain derivatives involved in variational analysis. 

 

To isolate the coefficient dependency on orientation, P𝐸 𝐵⁄  (the only 𝑞-dependent function 

in the system) is factorised out of the kinematic chain. This requires the definition of 

modified kinematic chain matrices P̂𝑖,𝑐 = P𝐸 𝐵⁄
𝑇 P𝑖,𝑐, according to Table 3.1. This yields a 

modification of the system velocity kinematics: 

𝐱̇𝑖
(𝑒)

= 𝐱̇𝑆
(𝑒)

+ ( (𝑒) + P𝐸 𝐵⁄ P𝑖,2 𝑖,2) × ∑P𝐸 𝐵⁄ P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

, 𝑖 ∈ 𝒮, (4.4.2) 

 
 
Table 4.1: Modified kinematic chain parameters for case study system 

Body Name Index 𝑙𝑐 𝑐 = 1  𝑐 = 2  […] 

   𝐋𝑖,1 P̂𝑖,1 𝐋𝑖,2 P̂𝑖,2 

body 𝑏 1 [𝐺𝑏 0 0]𝑇 E3×3    

right wing 𝑤𝑟 2 [𝐿𝑟 0 0]𝑇 E3×3 [𝐺𝑤𝑟  0 0]𝑇 P𝐵 𝑊𝑅⁄   

left wing 𝑤𝑙 2 [𝐿𝑟 0 0]𝑇 E3×3 [𝐺𝑤𝑙  0 0]𝑇 P𝐵 𝑊𝐿⁄   

right horz. stabiliser 𝑒𝑟 1 [𝐺𝑒 0 0]𝑇 P𝐵 𝐸𝑅⁄     

left horz. stabiliser 𝑒𝑙 1 [𝐺𝑒 0 0]𝑇 P𝐵 𝐸𝐿⁄     

fin / vert. stabiliser f 1 [𝐺f 0 0]𝑇 P𝐵 𝐹⁄     

point mass pm 1 [𝐿pm 0 0]
𝑇

 E3×3    
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which, via the skew operator, may be expressed as: 

𝐱̇𝑖
(𝑒)

= 𝐱̇𝑆
(𝑒)

+ P𝐸 𝐵⁄ ((P𝐸 𝐵⁄
𝑇 (𝑒) + P𝑖,2 𝑖,2) × ∑ P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

) 

= 𝐱̇𝑆
(𝑒)

+ P𝐸 𝐵⁄ [∑ P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝐸 𝐵⁄
𝑇 (𝑒) + P𝑖,2 𝑖,2), 𝑖 ∈ 𝒮. 

(4.4.3) 

 

Propagating these modifications of the kinematics chain through the kinetic energy, an 

alternative representation of the individual body kinetic energy is obtained in which the 𝑞-

dependent terms (P𝐸 𝐵⁄ ) consistently premultiply the state variables (𝐱̇𝑆
(𝑒)

 and (𝑒)): 

2𝑇𝑖 = 𝐱̇𝑆
(𝑒),𝑇𝑚𝑖𝐱̇𝑆

(𝑒)
+ 2(P𝐸 𝐵⁄

𝑇 𝐱̇𝑆
(𝑒)

)
𝑇
𝑚𝑖 [∑P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝐸 𝐵⁄
𝑇 (𝑒))

+ 2(P𝐸 𝐵⁄
𝑇 𝐱̇𝑆

(𝑒)
)
𝑇
𝑚𝑖 [∑ P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P̂𝑖,2 𝑖,2)

+ (P𝐸 𝐵⁄
𝑇 (𝑒))

𝑇
([∑P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

+ I𝑖
(𝑏)

)(P𝐸 𝐵⁄
𝑇 (𝑒))

+ (P𝐸 𝐵⁄
𝑇 (𝑒))

𝑇
([∑P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

+ I𝑖
(𝑏)

)(P̂𝑖,2 𝑖,2)

+ (P̂𝑖,2 𝑖,2)
𝑇
([∑P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P̂𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

+ I𝑖
(𝑏)

)(P̂𝑖,2 𝑖,2), 

  𝑖 ∈ 𝒮. 

(4.4.4) 

 

To eliminate the kinetic energy dependency on orientation entirely, 𝐱̇𝑆
(𝑒)

 and (𝑒) are 

resolved in the body-fixed reference frame. However there are two ways to conceptualise 

the resolution of e.g. the body velocity in the body-fixed frame, which is a rotating frame of 

reference: (a) the velocity of the aircraft (𝑆) resolved in the instantaneously motionless 

body-fixed frame; or (b) this velocity relative to the velocity of the origin (𝑂) viewed in the 

body-fixed frame (arising from the rotation of the frame). Mathematically, the former arises 

from a direct application of the rotational transformation matrix: 

𝐱̇𝑆
(𝑏)

= P𝐸 𝐵⁄
𝑇 𝐱̇𝑆

(𝑒)
, (4.4.5) 
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and the latter from chain rule differentiation of the definition of 𝐱𝑆
(𝑏)

, the position of 𝑆 

resolved in the body-fixed frame: 

𝐱̇𝑆
(𝑏)

=
𝑑

𝑑𝑡
(P𝐸 𝐵⁄

𝑇 𝐱𝑆
(𝑒)

)  = P𝐸 𝐵⁄
𝑇 𝐱̇𝑆

(𝑒)
+ Ṗ𝐸 𝐵⁄

𝑇 𝐱𝑆
(𝑒)

. (4.4.6) 

 

A similar distinction arises generally in angular velocity: between a given angular velocity  

( ) resolved in an instantaneously motionless frame (Pframe ), and the same angular 

velocity as viewed in the frame i.e. relative to the angular velocity of the rotating frame 

(Pframe( − frame)). Here, when this given angular velocity is the angular velocity of the 

frame itself ( = frame) the latter choice yields a resolved angular velocity of zero and may 

be discarded. Making an analogous choice with regard to the definition of 𝐱̇𝑆
(𝑏)

 yields a 

resolution based on instantaneously motionless body-fixed frame, i.e. via direct application 

of the rotational transformation matrix. This is also the more mathematically convenient 

choice, and the one which is immediately motivated by the form of Eq. 4.4.4. Hence: 

(𝑏) = P𝐸 𝐵⁄
𝑇 (𝑒), 𝐱̇𝑆

(𝑏)
= P𝐸 𝐵⁄

𝑇 𝐱̇𝑆
(𝑒)

. (4.4.7) 

These transformations yield a total system kinetic energy of the form:  

𝑇(𝐱̇(𝑏), (𝑏), 𝑡) = 𝐱̇(𝑏),𝑇a
 𝑥𝑥𝐱̇

(𝑏) + 𝐱̇(𝑏),𝑇A
 𝑥𝜔(𝑡) (𝑏)  + 𝐱̇(𝑏),𝑇𝐚

 𝑥(𝑡)  

+ (𝑏),𝑇A𝜔𝜔(𝑡) (𝑏) + (𝑏),𝑇𝐚𝜔(𝑡) + a0(𝑡), 
(4.4.8) 

with coefficients: 

a𝑥𝑥(𝑞, 𝑡) =
1

2
∑𝑚𝑖

𝑖∈𝒮

, 

A𝑥
(𝑒)(𝑞, 𝑡) =

1

2
∑2𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

𝑖∈𝒮

, 

A
(𝑒) (𝑞, 𝑡) =

1

2
∑[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

+ I𝑖
(𝑒)

𝑖∈𝒮

, 

𝐚
(𝑒)(𝑞, 𝑡) =

1

2
∑2[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

P𝑖,2 𝑖,2 + 2I𝑖
(𝑒)

 P𝑖,2 𝑖,2

𝑖∈𝒮

, 

(4.4.9) 
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𝐚𝑥
(𝑒)(𝑞, 𝑡) =

1

2
2𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝑖,2 𝑖,2), 

a0 =
1

2
∑(P𝑖,2 𝑖,2)

𝑇
I𝑖
(𝑒)

(P𝑖,2 𝑖,2)

𝑖∈𝒮

+ (P𝑖,2 𝑖,2)
𝑇
[∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑚𝑖 [∑P𝑖,𝑐𝐋𝑖,𝑐

𝑙𝑐,𝑖

𝑐=1

]

×

𝑇

(P𝑖,2 𝑖,2). 

 

For clarity, from henceforth the notation 𝐱(𝑏) = 𝐱𝑆
(𝑏)

, 𝐱̇(𝑏) = 𝐱̇𝑆
(𝑏)

 (etc.) is used. 

 

4.4.2. Variational analysis 

From a variational perspective, this system represents a significant departure from the 

uncoupled analysis, as the indirect dependency of the system kinetic energy on generalised 

coordinates – contained in the proxy derivative relation, Eq. 4.3.3 – means that at least one 

of the system’s canonical momenta will not be conserved, as the associated generalised 

coordinate will not be ignorable [25]. That is, there is no set of generalised coordinates and 

(non-proxy) velocities in which the system kinetic energy is independent of all the 

generalised coordinates and thus all canonical momenta are conserved. 

 

In the case of Eq. 4.3.1, a particle-based axis-angle representation (𝐧-𝛿𝜃, the generalised 

coordinate(s) corresponding to (𝑏)) leads to conservation of angular momentum (I(𝑏) (𝑏)) 

[26]. Notably, the quaternion canonical momentum is not conserved in any case [27]. 

However, in Eq. 4.4.8 a suitable choice of translational coordinate is not available: a 

formulation in 𝐱̇(𝑒)-𝐱(𝑒) leads to a dependency of the kinetic energy coefficients (A𝑖) on 

orientation; and a formulation in 𝑑 𝑑𝑡⁄ (𝐱(𝑏))-𝐱(𝑏) leads to a dependency of these 

coefficients on 𝐱(𝑏). In the 𝐱̇(𝑏)-𝐱(𝑏) formulation the orientation-dependence of the proxy 

derivative-coordinate relation (Eq. 4.4.7) breaks the conservation of the rotational canonical 

momentum. The corresponding discrete rotational momentum (cf. Eq. 4.3.13) will also not 

be conserved; and so, crucially, a momentum-conservative estimate for the 𝑘
(𝑏)

 analogous 

to Eq. 4.3.17 will not be available. The integrator conservation and momentum performance 

will suffer as a result. Note that this is not a result of any changes in the integrator; but a 

property of the system itself. 
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Applying the techniques of Section 4.3 to this system nonetheless, we utilise the left-

rectangle rule discretization (Eq. 4.3.7) and apply a translation perturbation, yielding the 

variational derivative of 𝐱̇𝑘
(𝑏)

: 

𝐱𝑘
(𝑒),𝜖 = 𝐱𝑘

(𝑒)
+ 𝜖𝛿𝐱𝑘

(𝑒)
+ 𝒪(𝜖2), 

𝛿𝐱̇𝑘
(𝑏)

= 2𝐱̇𝑘
(𝑏)

× 𝛈𝑘
(𝑏)

+
1

ℎ
𝑞𝑘

†(𝛿𝐱𝑘+1
(𝑒)

− 𝛿𝐱𝑘
(𝑒)

)𝑞𝑘. 
(4.4.10) 

The variational derivative of kinetic energy may be expressed: 

𝛿𝑇𝑘 = 𝐃1,𝑘 ⋅ 𝛿𝐱̇𝑘
(𝑏)

+ 𝐃2,𝑘 ⋅ 𝛿 𝑘
(𝑏)

, 

𝐃1,𝑘(𝐱̇𝑘
(𝑏)

, 𝑘
(𝑏)

, 𝑡𝑘) = 𝜕𝑇𝑘 𝜕𝐱̇𝑘
(𝑏)⁄ = 2a 𝑥𝑥𝐱̇𝑘

(𝑏)
+ A 𝑥𝜔(𝑡𝑘) 𝑘

(𝑏)
 + 𝐚 𝑥(𝑡𝑘), 

𝐃2,𝑘(𝐱̇𝑘
(𝑏)

, 𝑘
(𝑏)

, 𝑡𝑘) = 𝜕𝑇𝑘 𝜕 𝑘
(𝑏)⁄ = 2A𝜔𝜔(𝑡𝑘) 𝑘

(𝑏)
+ A 𝑥𝜔(𝑡𝑘)

𝑇𝐱̇𝑘
(𝑏)

 + 𝐚𝜔(𝑡𝑘), 

(4.4.11) 

yielding the two coupled inter-step equations; in translation and rotation respectively: 

𝑞𝑘𝐃1,𝑘𝑞𝑘
† = 𝑞𝑘−1𝐃1,𝑘−1𝑞𝑘−1

† + ℎ𝐅tot,𝑘
(𝑒)

, 

𝐃2,𝑘 +
1

2
ℎ 𝑘

(𝑏)
× 𝐃2,𝑘 +  ℎ𝐱̇𝑘

(𝑏)
× 𝐃1,𝑘 = 𝐃2,𝑘−1 −

1

2
ℎ 𝑘−1

(𝑏)
× 𝐃2,𝑘−1 + 𝛕tot,𝑘

(𝑏)
. 

(4.4.12) 

Note that, as anticipated from the continuous analysis, the rotational equation contains a 

symmetry-breaking term, ℎ𝐱̇𝑘
(𝑏)

× 𝐃1,𝑘, in addition to the momentum-balance terms 

analogous to Eq. 4.3.13. The translation equation is symmetric with 𝐩𝑥,𝑘 = 𝑞𝑘𝐃1,𝑘𝑞𝑘
†, and 

although dependence of 𝐃1,𝑘 on 𝑘
(𝑏)

 precludes a direct solution for the conservative 𝐱̇𝑘
(𝑏)

. 

The Newton iteration for the inter-step relation may be expressed in an asymmetric 

momentum-balance form: 

[
𝑘,𝑖+1
(𝑏)

𝐱̇𝑘,𝑖+1
(𝑏)

] = [
𝑘,𝑖
(𝑏)

𝐱̇𝑘,𝑖
(𝑏)

] + J𝑘,𝑖
−1 (𝐩𝑘,𝑖

+ + 𝐚𝑘,𝒊 − 𝐩𝑘
− − ℎ [

𝐅tot,𝑘
(𝑒)

𝛕𝑘
(𝑏)

]),    

𝐩𝑘,𝑖
+ = [

𝑞𝑘𝐃1,𝑘,𝑖𝑞𝑘
†

𝐃2,𝑘,𝑖 +
1

2
ℎ 𝑘

(𝑏)
× 𝐃2,𝑘,𝑖 

] , 𝐚𝑘,𝒊 = [
𝟎

ℎ𝐱̇𝑘,𝑖
(𝑏)

× 𝐃1,𝑘,𝑖
], 

𝐩𝑘
− = [

𝑞𝑘−1𝐃1,𝑘−1𝑞𝑘−1
†

𝐃2,𝑘−1 −
1

2
ℎ 𝑘−1

(𝑏)
× 𝐃2,𝑘−1

]. 

(4.4.13) 
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An analytical expression is available for the Jacobian matrix J𝑘,𝑖. This matrix is of the form: 

J𝑘,𝑖 = [
J𝑘,𝑖,1,1 J𝑘,𝑖,1,2

J𝑘,𝑖,2,1 J𝑘,𝑖,2,2
], (4.4.14) 

with: 

J𝑘,𝑖,1,1 = 2𝑞𝑘E3×3a 𝑥𝑥𝑞𝑘
†, 

J𝑘,𝑖,1,2 = 𝑞𝑘A 𝑥𝜔,𝑘𝑞𝑘
†, 

J𝑘,𝑖,2,1 = (1 +
1

2
ℎ[ 𝑘,𝑖

(𝑏)
]
×
)A 𝑥𝜔,𝑘

𝑇 − ℎ[A 𝑥𝜔 𝑘,𝑖
(𝑏)

+ 𝐚 𝑥]
×
, 

J𝑘,𝑖,2,2 = (2 + ℎ[ 𝑘,𝑖
(𝑏)

]
×
)A𝜔𝜔,𝑘 + ℎ[𝐱̇𝑘,𝑖

(𝑏)
]
×
A 𝑥𝜔

− ℎ [A𝜔𝜔,𝑘 𝑘,𝑖
(𝑏)

+
1

2
A 𝑥𝜔,𝑘

𝑇 𝐱̇𝑘,𝑖
(𝑏)

+
1

2
𝐚𝜔,𝑘]

×
. 

(4.4.15) 

 

4.4.3. Numerical experiments 

Figure 4.4.1 shows the results of this integrator applied to the coupled free rotation and 

translation of the biomimetic case study system, as specified in Chapter 2, Section 2.2. 

Aerodynamic and gravitational forces are excluded, and the aircraft wings remain fixed. In 

the fixed-wing case, all the system kinetic energy coefficients (as per Eq. 4.4.9) are constant: 

a
 𝑥𝑥 = 4 kg, 𝐚

 𝑥 = 𝐚𝜔 = [0 0 0]𝑇 , 

A
 𝑥𝜔
(𝑏)

= [
 0.0400  

−0.0400  6.350
 −6.350  

]  kg m, 

A𝜔𝜔
(𝑏)

= [
0.2342  −6.4761 × 10−5

 3.0539  
−6.4761 × 10−5  3.2699

]  kg m2. 

(4.4.16) 

 

The results from the left-rectangle QVI are compared to those from the adaptive RK45 

integrator in Euler angles with pole-switching, as described in Section 4.2, using a default 

absolute local truncation error (LTE) tolerance of 10−6 and relative tolerance of 10−3. This 

test case is analogous to that of Section 4.3, except that the system translational and 

rotational degrees of freedom are coupled and so the system canonical momenta are not all 

conserved. However, the conventional rigid-body momenta and energy are still conserved. 

These momenta may be computed as: 

𝐩𝑥,𝑘 = 𝑚tot𝐱̇c.o.m.,𝑘
(𝑒)

, 

𝐩 ,𝑘 = 𝑞𝑘Ic.o.m.,𝑘
(𝑏)

𝑘
(𝑏)

𝑞𝑘
†, 

(4.4.17) 
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where 𝑚tot is the total system mass, 𝐱̇c.o.m.
(𝑒)

 the velocity of the system center of mass in the 

earth frame, and Ic.o.m.
(𝑏)

 the total system rotational inertia about the center of mass, resolved 

in the body-fixed frame. The translational and angular momentum conservation errors are 

thus given again by 𝑒𝑝,𝑖,𝑘 = max𝑖≤𝑘(‖𝐩𝑖,𝑘 − 𝐩𝑖,1‖ ‖𝐩𝑖,1‖⁄ ), and the energy error by 

𝑒𝐿,𝑘 = max𝑖≤𝑘(|𝐿𝑘 − 𝐿1| 𝐿1⁄ ). 

 

 

Figure 4.4.1: Integration results for the left-rectangle QVI applied to the free rotation and 
translation of the case study system. 
 

In Figure 4.4.1 it may be seen that the Adaptive RK45 integrator allows significantly larger 

step size, with a mean step size ℎ̅ = 0.0947 s over the simulation, in comparison to the 

specified ℎ = 0.01 s for the QVI.  This QVI step size is such that the system angular 

momentum error reaches c. 100% by the simulation end time, 𝑇 = 1000 s: significantly 

higher step sizes do not destabilise the integrator, but promote a more rapid growth of 

angular momentum error. Despite this, the integrator does show excellent conservation 



Chapter 4: Variational integration 

110 

properties in translational momentum and energy. The system translational momentum is 

conserved almost exactly (to within 10−12). The energy conservation error, while reaching a 

maximum magnitude of c. 10−2, follows an extremely stable oscillation: the energy 

conservation integral error; 

∫ (𝐿(𝜏) − 𝐿(0)) 𝐿(0)⁄
𝑇

𝑡=0

𝑑𝜏 ≅ ∑ (𝐿𝑘 − 𝐿1) (𝑁ℎ𝐿1)⁄
𝑁

𝑘=1
, (4.4.18) 

shows magnitude less than 2 × 10−4 at the simulation end time 𝑇 = 1000 s. 

 

Both these results are significantly superior to those of the RK45 integrator. However, the 

QVI integrator performs poorly in its conservation of angular momentum. As noted, by the 

end of the simulation its angular momentum conservation error is significantly larger than 

that of the RK45 integrator, for a smaller mean step size. However, at the specified current 

step size and RK45 LTE tolerances, the left-rectangle QVI is about 7% faster in real time. 

While the left-rectangle QVI shows a wide domain of stability, larger step sizes lead to more 

rapid angular momentum error growth and greater (stable) kinetic energy oscillations. 

These effects manifest themselves in the solution in (𝑏) as a shift in the period of the 

periodic solution, and a consistent error in the periodic solution. The slight increase in 

period may be observed in Figure 4.4.1. The solution remains strongly periodic over long 

timescales: the effect of integrator error is seen primarily in the nature of this periodic 

solution. This is in contrast to the RK4 integrator, for which integrator error is expressed as a 

breakdown in the solution periodicity.  

 

In overview, the QVI may be interpreted as trading local or short-timescale accuracy for 

long-term stability and energy/momentum conservation. In the context of biomimetic flight 

simulation, this makes it useful for long-timescale simulations and/or those in which the 

dissipation or gain of energy is of significance, including perching and take-off manoeuvres. 

However, to achieve a reasonably precise solution on the short timescale, a smaller step size 

is required – or, an increase in integrator order. 
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4.5. MIDPOINT QVI FOR COUPLED ROTATIONAL DYNAMICS 

4.5.1. Motivation 

The deficiency in the angular momentum conservation of the coupled left-rectangle QVI 

may be connected directly with the non-conservative behaviour of the system’s angular 

canonical momentum. This in turn significantly degrades the accuracy of the left-rectangle 

integration: when the system canonical momenta are conserved (i.e. constant), a left 

rectangle discretization is an exact representation of the system conservation properties. 

When however the system canonical momenta are not conserved and may vary, left 

rectangle integration becomes simply a low-order approximation of the system canonical 

momenta behaviour. A more accurate form of integration is thus one key avenue to re-

attaining good conservation properties in this situation. Here we apply midpoint integration, 

representing only a relatively small increase in integration accuracy – but one not utilised 

before in quaternion variational integration. 

 

4.5.2. Variational analysis 

Applying discrete midpoint integration to the continuous formulation of the principle of 

least action, we obtain: 

𝛿𝑆 + 𝛿𝑊 = ℎ ∑ 𝛿𝑇̃𝑘 + 𝐅̃𝑘 ⋅ 𝛿𝐫̃𝑘

𝑁−1

𝑘=1

= 0, (4.5.1) 

where the tilde (𝑥̃) denotes evaluation at the inter-step midpoint. The midpoint location in 

all the non-quaternion system variables (𝑡, 𝐱(𝑒), etc.) can be computed via linear 

interpolation, but to compute the midpoint quaternion (𝑞̃𝑘) a different scheme is 

appropriate, as linear interpolation does not preserve the orientation quaternion 

normalization [28]. Other schemes available include normalised linear interpolation 

(NLERP), spherical linear interpolation (SLERP), spherical spline interpolation (SQUAD) [28] 

and eigenvector quaternion averaging [29]. For any choice of interpolation, the variational 

derivative of 𝑇̃𝑘 is thus: 

𝛿𝑇̃𝑘 = 𝐃̃1,𝑘 ⋅ 𝛿𝐱̃̇𝑘
(𝑏)

+ 𝐃̃2,𝑘 ⋅ 𝛿 ̃𝑘
(𝑏)

, 

𝐃1,𝑘 (𝐱̃̇𝑘
(𝑏)

, ̃𝑘
(𝑏)

, 𝑡̃𝑘) = 𝜕𝑇̃𝑘 𝜕𝐱̃̇𝑘
(𝑏)

⁄ = 2a 𝑥𝑥 𝐱̃̇𝑘
(𝑏)

+ A 𝑥𝜔(𝑡̃𝑘) 𝑘
(𝑏)

 + 𝐚 𝑥(𝑡̃𝑘), 

𝐃2,𝑘 (𝐱̃̇𝑘
(𝑏)

, ̃𝑘
(𝑏)

, 𝑡̃𝑘) = 𝜕𝑇̃𝑘 𝜕̃𝑘
(𝑏)

⁄ = 2A𝜔𝜔(𝑡̃𝑘) 𝑘
(𝑏)

+ A 𝑥𝜔(𝑡̃𝑘)
𝑇 𝐱̃̇𝑘

(𝑏)
 + 𝐚𝜔(𝑡̃𝑘). 

(4.5.2) 
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The variational derivatives of the proxy derivatives at the midpoint, 𝛿𝐱̃̇𝑘
(𝑏)

 and 𝛿̃𝑘
(𝑏)

, must 

then be related to the perturbations at the step points (𝑘 and 𝑘 + 1). The midpoint proxy 

derivatives and their perturbations are defined as:  

̃𝑘
(𝑏)

= 2𝑞̃𝑘
† 𝑞̃̇𝑘, 

𝐱̃̇𝑘
(𝑏)

= 𝑞̃𝑘
†𝐱̃̇(𝑒) 𝑞̃𝑘, 

̃𝑘
(𝑏),𝜖

= 2𝑞̃𝑘
𝜖,† 𝑞̃̇𝑘

𝜖 , 

𝐱̃̇𝑘
(𝑏),𝜖 = 𝑞̃𝑘

𝜖,†𝐱̃̇(𝑒),𝜖 𝑞̃𝑘
𝜖 . 

(4.5.3) 

Here the central difficulty of the midpoint integrator arises, which is the definition of the 

perturbed midpoint, 𝑞̃𝑘
𝜖. The unperturbed midpoint can be computed via any of the 

interpolation methods noted earlier. Notably, the midpoint estimates under SLERP and 

NLERP are given by: 

 

SLERP 𝑞̃𝑘 = (𝑞𝑘+1𝑞𝑘
†)

1 2⁄
𝑞𝑘, 

(4.5.4) 
NLERP 𝑞̃𝑘 =

𝑞𝑘+1 + 𝑞𝑘

‖𝑞𝑘+1 + 𝑞𝑘‖
. 

However the perturbed midpoint cannot be computed similarly, as the limitations on 

quaternion algebra and calculus prohibit a closed-form identification of variational 

derivative 𝛿 ̃𝑘
(𝑏)

 (via ̃𝑘
(𝑏),𝜖

). In particular, the quaternion power and norm terms, 

(𝑞𝑘+1
𝜖 𝑞𝑘

𝜖,†)
1 2⁄

 and 1 ‖𝑞𝑘+1
𝜖 + 𝑞𝑘

𝜖‖⁄ , do not permit first order expansion in 𝜖 under current 

techniques. Note that quaternion power and exponential operators fail to fulfil a range of 

identities associated with their real scalar counterparts. 

 

Instead, diverging from the derivation of Section 4.4, the quaternion perturbations are 

defined with reference to a perturbation direction resolved in the earth frame: 

𝑞𝑘
𝜖 = exp(𝜖𝛈𝑘

(𝑒)
) 𝑞𝑘 ≅ 𝑞𝑘 + 𝜖𝛈𝑘

(𝑒)
𝑞𝑘 + 𝒪(𝜖2). (4.5.5) 

This change simplifies the manipulation, and is not fundamental – it may be verified that the 

equivalence between the earth and body perturbations is exact: 

𝑞𝑘
𝜖 = exp(𝜖𝛈𝑘

(𝑒)
) 𝑞𝑘 = exp(𝜖𝑞𝑘𝛈𝑘

(𝑏)
𝑞𝑘

†) 𝑞𝑘 = 𝑞𝑘 exp(𝜖𝛈𝑘
(𝑏)

). (4.5.6) 

By parameterizing the perturbed midpoint a local perturbative direction 𝛈̃𝑘
(𝑒)

; 



Chapter 4: Variational integration 

113 

𝑞̃𝑘
𝜖 = exp(𝜖𝛈̃𝑘

(𝑒)
) 𝑞̃𝑘 ≅ 𝑞̃𝑘 + 𝜖𝛈̃𝑘

(𝑒)
𝑞̃𝑘 + 𝒪(𝜖2), 

𝑞̃̇𝑘
𝜖 ≅ 𝑞̃̇𝑘 + 𝜖𝛈̃̇𝑘

(𝑒)
𝑞̃𝑘 + 𝛈̃𝑘

(𝑒)
𝑞̃̇𝑘 + 𝒪(𝜖2), 

(4.5.7) 

results are obtained for the generalised derivatives 𝛿̃𝑘
(𝑏)

 and 𝛿𝐱̃̇𝑘
(𝑏)

: 

𝛿 ̃𝑘
(𝑏)

= 2𝑞̃𝑘
†𝛈̃̇𝑘

(𝑒)
𝑞̃𝑘, 

𝛿𝐱̃̇𝑘
(𝑏)

= 2𝐱̃̇𝑘
(𝑏)

× 𝑞̃𝑘
†𝛈̃𝑘

(𝑏)
𝑞̃𝑘 +

1

ℎ
𝑞̃𝑘

†(𝛿𝐱𝑘+1
(𝑒)

− 𝛿𝐱𝑘
(𝑒)

)𝑞̃𝑘. 
(4.5.8) 

This has transformed the problem of computing 𝑞̃𝑘
𝜖  into one of computing 𝛈̃𝑘

(𝑏)
 and 𝛈̃̇𝑘

(𝑒)
, as a 

function of 𝛈𝑘
(𝑒)

 𝛈𝑘+1
(𝑒)

. For the same reasons, this cannot be done exactly, but discrete 

approximations are significantly easier to obtain: 

𝛈̃𝑘
(𝑒)

=
1

2
(𝛈𝑘+1

(𝑒)
+ 𝛈𝑘

(𝑒)
), 

𝛈̃̇𝑘
(𝑒)

=
1

ℎ
(𝛈𝑘+1

(𝑒)
− 𝛈𝑘

(𝑒)
). 

(4.5.9) 

 

Both these estimates are accurate to first order in ℎ. Essentially, this approach has 

approximated the quaternion interpolation problem by an interpolation of the quaternion 

generators (cf. [30]). This leads to results for the variational derivatives of the proxy 

derivatives: 

𝛿 ̃𝑘
(𝑏)

=
2

ℎ
𝑞̃𝑘

†(𝛈𝑘+1
(𝑒)

− 𝛈𝑘
(𝑒)

)𝑞̃𝑘, 

𝛿𝐱̃̇𝑘
(𝑏)

= 𝐱̃̇𝑘
(𝑏)

× 𝑞̃𝑘
†(𝛈𝑘+1

(𝑒)
+ 𝛈𝑘

(𝑒)
)𝑞̃𝑘 +

1

ℎ
𝑞̃𝑘

†(𝛿𝐱𝑘+1
(𝑒)

− 𝛿𝐱𝑘
(𝑒)

)𝑞̃𝑘, 

(4.5.10) 

and thus, with some manipulation, the integrator inter-step equations, in translation and 

rotation respectively: 

𝑞̃𝑘𝐃̃1,𝑘𝑞̃𝑘
† = 𝑞̃𝑘−1𝐃̃1,𝑘−1𝑞̃𝑘−1

† + ℎ𝐅̃tot,𝑘
(𝑒)

, 

𝑞̃𝑘(𝐃̃2,𝑘 +  ℎ𝐱̃̇𝑘
(𝑏)

× 𝐃̃1,𝑘)𝑞̃𝑘
† = 𝑞̃𝑘−1(𝐃̃2,𝑘−1 −  ℎ𝐱̃̇𝑘−1

(𝑏)
× 𝐃̃1,𝑘−1)𝑞̃𝑘−1

† + 𝛕̃tot,𝑘
(𝑏)

. 
(4.5.11) 

Notably, the rotational equation shows a symmetry after the manner of Eq. 4.3.12, though 

with cross products in 𝐱̃̇𝑘
(𝑏)

. The midpoint quaternion 𝑞̃𝑘 contains a dependency on ̃𝑘
(𝑏)

 via 

SLERP interpolation (Eq. 4.5.4) and 𝑞𝑘+1 , integrated under the assumption of a constant 

angular velocity of (𝑏) = ̃𝑘
(𝑏)

 over the step interval (𝑘,𝑘 + 1), corresponding again to 

midpoint integration: 
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𝑞𝑘+1 = 𝑞𝑘 exp (
1

2
̃𝑘

(𝑏)
). (4.5.12) 

These inter-step equations are solved via Newton’s method; though the dependency of 𝑞̃𝑘 

on ̃𝑘
(𝑏)

 precludes the computation of an analytical Jacobian due to the breakdown of the 

chain rule in quaternions. A numerical Jacobian is implemented instead. This completes the 

derivation of the integrator. 

 

4.5.3. Numerical experiments 

Figures 4.5.1-4.5.2 show the results of this midpoint QVI applied to the freely-rotating 

biomimetic case study system. Figure 4.5.1 shows the integrator solution and conservation 

errors compared to results from the adaptive RK45 integrator in Euler angles at an 

equivalent step size: ℎ = ℎ̅𝑅𝐾 = 0.0947 s; 1.4% of the (𝑏) solution period, the mean step 

size for the RK45 integration.  

 

 

Figure 4.5.1: Integration results for the midpoint QVI applied to the free rotation and 
translation of the case study system, ℎ = ℎ𝑅𝐾 = 0.0947 s, compared to the adaptive RK45 
integrator in Euler angles. 
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A qualitative breakdown in solution accuracy occurs at 𝑡 = 130 s: an event reflected in the 

conservation error histories. The breakdown occurs when 3
(𝑏)

 (the 𝑧-component of (𝑏), 

ordinarily oscillating between c. 0.8-1.2) drifts eventually to 3
(𝑏)

< 0. This triggers a sudden 

switch in solution behaviour, eventually settling at a near-constant state of (𝑏) ≅

[−4.2, 0, 0.1]𝑇. The effect is notable in that it affirms that this QVI is still prone to instability 

or qualitative breakdown at high step sizes and long timescales. As per the left-rectangle 

integrator, short-timescale solution inaccuracy also manifests itself as a shift in the period of 

the oscillatory solution in (𝑏), and in associated changes in 𝐱̇(𝑏). The latter grow rapidly, as 

the shift in (𝑏) changes the system orientation and thus the resolution of 𝐱̇(𝑏); 

compounding the divergence between the QVI and RK45 solutions in this variable. Figure 

4.5.2 shows the midpoint QVI integration results at a step size that is more suitable for long-

timescale simulation, ℎ = 1 3⁄ ℎ𝑅𝐾 = 0.0316 s.  

 

 

Figure 4.5.2: Integration results for the midpoint QVI applied to the free rotation and 
translation of the case study system, ℎ = 1 3⁄ ℎ𝑅𝐾 = 0.0316 s, compared to the adaptive 
RK45 integrator in Euler angles. 
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At this step size the QVI remains completely qualitatively accurate over the simulated time 

range, and by the conservation errors is probably more quantitatively accuracy than the 

RK45 integrator. A breakdown like that in Figure 4.5.1 is observed only at 𝑡 = 1700 s. While 

the system conservation errors significantly outperform that of the RK45 integrator, but the 

wall-clock computation time is several factors higher. Figure 4.5.3 shows the midpoint QVI 

results for the case study system, compared to the left-rectangle QVI at a step size which is 

suitable for the latter (ℎ = 0.01 s). The midpoint method generates an accurate local 

solution, with energy and angular momentum conservation errors over two orders of 

magnitude smaller that the left-rectangle method, verifying the performance benefits 

associated with the increase in integration order, and confirming it as a preferable choice 

for systems with translation-rotation coupling. 

 

 

Figure 4.5.3: Integration results for the midpoint QVI applied to the free rotation and 
translation of the case study system, compared to the left-rectangle QVI for ℎ = 0.01 s. 
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Finally, Figures 4.5.4-4.5.5 shows the midpoint QVI results for a flapping-wing simulation 

involving the generation of a pitch-up moment via wing biomimetic flapping motion, similar 

to that presented in Bergou et al. [31], and again using the biomimetic case study system.  

For simplicity, following [31], propulsive and gravitational forces are omitted. Dissipative 

aerodynamic forces are included via the quasisteady strip theory model formulated in 

Chapter 3, Section 3.4. The symmetric wing control inputs are dihedral 𝜃𝑤(𝑡) = sin(𝑡) rad 

and incidence 𝜙𝑤(𝑡) = −0.5 cos(𝑡) rad: Figure 4.5.6 shows a rendering of these control 

inputs. Note that, as a result of wing motion, the system coefficients are now time-varying. 

 

Figure 4.5.4 presents the solutions for three different timesteps, ℎ = 2.0ℎRK, 1.0ℎRK and 

0.5ℎRK, where the mean stepsize of the adaptive RK45 integrator is ℎRK = 0.1923 s (over a 

100 s simulation). The QVI performs excellently – significantly better than in the free 

rotation and translation test case. Accurate solutions are obtained even for step sizes 

greater than ℎRK: the pitch angle solution at 2.0ℎRK shows only 8% error relative to the 

adaptive RK45 solution at the simulation end point (𝑇 = 30 s, c. 5 periods of flapping). 

Figure 4.5.5 presents a rendering of the flapping-wing simulation for the QVI at ℎ = 2.0ℎRK 

and the adaptive RK45 integrator: the 8% pitch error may be noted. The solutions at 1.0ℎRK 

and 0.5ℎRK show only 3% and 1% end-point error respectively – sufficiently low that the 

accuracy of the RK45 integrator itself may have an influence. This demonstrates the 

effectiveness of the QVI for the simulation of some forms of flapping-wing flight. It 

additionally demonstrates the differences between the QVI and the RK45 integrator in 

terms of the suitable step size for a given system. In this flapping-wing flight simulation, the 

QVI is capable of matching and exceeding the adaptive RK45 step size; whereas attempting 

this in the free rotation and translation test case leads to unacceptably large errors and 

qualitative solution breakdown. The mean adaptive RK45 step size is thus not necessary a 

good metric for comparing the QVI performance against. Numerical analysis techniques may 

be able to shed light on these effects, but given the complexity of the integrators system-

specific testing is likely to be a more practical approach for assessing integrator suitability. 
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Figure 4.5.4: Integration results for the midpoint QVI applied to a biomimetic wing-flapping simulation, including aerodynamic forcing. 
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Figure 4.5.5: Flapping-wing simulation rendering for the midpoint QVI (ℎ = 2.0ℎ𝑅𝐾) and the 
adaptive RK45 integrator, at 𝑡 ∈ [0, 7.5, 15, 22.5, 30] s. 
 

 

Figure 4.5.6: Rendering of wing control inputs for the flapping wing simulation. 
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5.1. INTRODUCTION: APPROACHES TO VALIDATION AND VERIFICATION 

Flight simulator validation is a topic in which the literature is somewhat deficient – 

especially as pertaining to simulators of morphing-wing systems and/or those with fully 

three-dimensional aerodynamics. In broad terms, three modes of validation may be 

considered: validation in flight path data directly; validation in derivative flight dynamic 

metrics (e.g. trim states, flight dynamic modes); some form of piece-wise validation in which 

individual model components are validated separately. An independent distinction may be 

made between the sources of the validation dataset: physical experiments; higher-fidelity 

computational models; or alternative flight simulators of similar or lower fidelity. 

 

These distinctions may be elucidated through a number of case studies. For example, the 

NATASHA simulator has seen significant use in low angle-of-attack flight path simulation for 

flexible HALE aircraft [1–3]. Its structural model is validated against existing beam dynamics 

results, and its combined flight dynamic / aeroelastic model is validated against an 

analogous flexible-dynamics simulator, RCAS [4], in basic flight dynamic metrics (trim states 

and wing loadings). In this case of low angle-of-attack flight simulation, a validation in terms 

of these flight dynamic metrics is sufficient. However, such an approach does not validate 

post-stall behaviour, as the authors note [1]. 

 

In contrast, the EBRD flight dynamic models of Obradovic and Subbaro [5–7] have been 

utilised for low angle-of-attack flight path simulation of morphing gull wing systems. 

However, despite further applications of analogous EBRB gull wing models by other authors 

[8] these models have no published validation in any aspect, aerodynamic or structural 

dynamic. Other morphing-wing flight dynamic models in the literature, including those of 

Seigler et al. [8,9], Wickenheiser and Garcia [10–12] and Mir Alikhan Bin [13] show the same 

lack of validation – despite, in some cases, the use of novel GK-type aerodynamic models. 

Two notable exceptions are the morphing-wing simulator of Niksch et al. [14] (subject to 

extensive aerodynamic model validation at quasistatic low angle-of-attack conditions) and 

the flapping-wing flight dynamic model of Orlowski and Girard [15] (subject to qualitative 

aerodynamic validation via comparison with a bespoke semi-empirical aerodynamic model). 

Orlowski and Girard [16] note the lack of validation in many similar studies of flapping-wing 

aircraft. At a component level, higher-fidelity aerodynamic models (e.g. GK or ONERA) have 
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seen extensive validation via experimentation [17,18] or computational fluid dynamics [19]; 

but implementations of these models in a flight dynamics context have seen little further 

validation. 

 

This chapter concerns the validation of the case study morphing-wing flight dynamic model. 

Previous aspects of the analysis have provided a significant degree of verification – in 

confirming the accurate solution of the specified system. They have also provided a degree 

of validation, in that the parallel model derivation (in orientation parameterisation, 

weak/strong formulation and integrator derivation) provides some cross-validation of both 

modelling approaches. Indeed, the case study model has seen already a form of piece-wise 

validation: with the rigid-body dynamics validated w.r.t. alternate modelling approaches, 

and the aerodynamic data with control surface effects obtained directly from the literature. 

 

However, further validation is required. In this chapter the completed case study flight 

dynamic model is validated against an experimentally-derived nonlinear stability derivative 

model of a 0.4-scale RQ-2 Pioneer UAV. Wind-tunnel data for this aircraft, from Bray [8], has 

been implemented by Selig and Scott [20] into the architecture of the open-source flight 

simulator FlightGear  [21], utilising the flight dynamic model JSBSim, which has itself seen 

extensive verification and validation [22–25]. This yields a nonlinear flight dynamic model, 

valid for an angle-of-attack from -7° to 17°, based entirely on experimental aerodynamic 

data. FlightGear is then used to generate a variety of flight paths for different initial 

conditions, which are logged and compared to the results from the case study model. This 

validation has its limitations: it is restricted to pre-stall conditions (angle-of-attack from -7° 

to 17°) and does not account for wing morphing, but it does capture some attached-flow 

transient effects – via the nonlinear stability derivative terms in the validation model. It is 

thus useful for validating the aerodynamic mesh approach, and the complete flight dynamic 

model at least in a general sense. Computational fluid dynamics will be utilised for validating 

post-stall and strongly transient aerodynamic effects in Chapter 8. 
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5.2. RQ-2 PIONEER UAV MODEL 

5.2.1. Parameter identification 

The primary source of model-relevant data for the 0.4-scale RQ-2 Pioneer UAV is the work 

of Bray [26]; the source of the aerodynamic data used in the FlightGear flight dynamic 

model. This provides a variety of geometric and mass parameters: however, not all required 

parameters are specified. Additional data is taken from drawings in an available US 

Department of Defence (DoD) report [27] (reproduced in Figure 5.2.1). In the absence of a 

scale indicator the known wingspan is used to infer system measurements. It should be 

noted that these sources are slightly inconsistent: Bray [26] studies a RQ-2A, an early-model 

variant deployed in the Persian Gulf (1990-1991); whereas the DoD [27] depicts a RQ-2B, a 

systematic modification of several existing RQ-2A airframes made midway through the Gulf 

War (late 1990), and utilised in later operations [28]. A fully consistent dataset is unavailable 

due to the relative sparsity of information on this aircraft – nor is a fully-consistent dataset 

available for any other aircraft suitable for use in validation –but discrepancies between the 

two models are relatively minor. Table 5.2.1 gives the complete set of identified parameters 

for the RQ-2 Pioneer UAV model. 

 

 

Figure 5.2.1: Drawing of a RQ-2 Pioneer UAV, reproduced from the US DoD [27], public 
domain. No scale is provided: measurements are inferred from the known wingspan. 
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Table 5.2.1: Parameters for the RQ-2 Pioneer UAV model 

Property: Value Source 
Airframe geometry:   

Body length – 𝐿𝑏 4.249 m DoD [27] 
Wing root location – 𝐿𝑟,𝑥 2.150 m DoD [27] 
Wing and tailplane shoulder – 𝐿𝑟,𝑧 0.371 m Optimisation 
Wing semispan – 𝐿𝑤 2.57 m Bray [26] 
Wing incidence – 𝛼𝑤 2° Bray [26] 
Wing chord – 𝑐𝑤 0.549 m Bray [26] 
Horizontal stabiliser semispan – 𝐿𝑒 0.925 m Bray [26] 
Horizontal stabiliser chord – 𝑐𝑒 0.305 m Bray [26] 
Vertical stabiliser height – 𝐿f 0.661 m Bray [26] 
Vertical stabiliser chord – 𝑐f 0.305 m Bray [26] 
Fuselage effective radius – 𝑟𝑏 0.194 m DoD [27] (v. approx) 
Point mass location – 𝐿𝑝𝑚,𝑥 2.19 m Optimisation 

Point mass location – 𝐿𝑝𝑚,𝑧 -0.387 m Optimisation 

Centre of mass location – 𝐿c.o.m.,𝑥 2.14 m Flight data match 
Centre of mass location – 𝐿c.o.m.,𝑧 0.60 m Flight data match 
   
Mass properties:   

Total mass – 𝑚𝒮 190.5 kg Bray [26] 
Fuselage mass – 𝑚𝑏 42.1 kg Optimisation 
Single wing mass – 𝑚𝑤 7.06 kg Optimisation 
Single elevator mass – 𝑚𝑒 0.250 kg Optimisation 
Fin mass – 𝑚f 1.23 kg Optimisation 
Point mass – 𝑚𝑝𝑚 131.3 kg Optimisation 

Inertia tensor – 𝐼c.o.m.
(𝑏)

 [
47.23  6.647

 90.96  
6.647  111.5

] kg m2 Bray [26] 

   
Aerofoil properties:   

Aerofoils NACA4415/NACA0012 Bray [26] 
NACA4415 max. thickness – ℎW,max 15% of chord NACA [29] 
NACA4415 mean thickness – ℎW,av 10% of chord NACA [29] 
NACA0012 max. thickness – ℎH,max 12% of chord NACA [29] 
NACA0012 mean thickness – ℎH,av 8.1% of chord NACA [29] 
   
Aerodynamic properties:   

Fuselage frontal drag – 𝐶D,front𝐴front 0.0889 m2 Bray [26] (derived) 
Fuselage cross-section drag – 𝐶D,𝑏 0.465 Bray [26] (derived) 
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The case study multibody formulation requires a detailed description of the airframe mass 

distribution: something which is currently available. However, the total system mass and 

inertia tensor about the centre of mass are known from Bray [26], and this allows the a fully-

constrained system mass distribution to be identified via a least-squares optimisation. Note 

that this optimisation does not entail a weakening of validation: it simply represents a 

translation between differing methods of encoding inertia information. The only remaining 

parameters to constrain this identification are the location of the system centre of mass, in 

𝑥 and 𝑧, for which a reliable source is unavailable – the depicted centre of mass location in 

[27] is of low precision, and of dubious reliability given the non-technical nature of the 

source document. The centre of mass location is instead identified with reference to the 

validation flight data. This process in presented in Section 5.2.2: while it weakens the 

validation somewhat, these two parameters are not enough to generate a false positive 

match on their own, given the twenty-six other parameters identified directly from data. 

 

Aerofoil coordinate data for the system aerofoils (NACA4415 for the wings, and NACA0012 

for the stabilisers) is defined by NACA [29]. Their maximum thicknesses are given in their 4-

digit designations (15% and 12% of chord, respectively); mean thicknesses can be 

computed. Taking the experimental estimate of the total airframe frontal drag at zero angle-

of-attack in Bray [26] and subtracting the contributions from the lifting surfaces, an estimate 

of the fuselage frontal drag coefficient is obtained: 𝐶D,front𝐴front = 0.0889 m2. The fuselage 

cross section is complex, with a tapered rectangular main fuselage, two boons extending to 

the tailplane, and landing gear and camera geometry. For inertial modelling this is taken as a 

cylindrical cross-section with approximate effective fuselage radius 𝑟𝑏 = 0.194 m: as the 

system inertia tensor is matched to the result from Bray [26], the highly approximation 

nature of this model is of no significance. The cross-section drag coefficient is then 

identified from the airframe drag data at angle-of-attack 0.6 rad (c. 78°) [26]. Based on 𝑟𝑏 = 

0.194 m and 𝐶D,front𝐴front = 0.0889 m2, 𝐶D,𝑏 = 0.465. The system kinematic chain then 

needs modifications to account for the new geometry, including the H-tail. Table 5.2.2 

specifies the new kinematic chain for the system. Figure 5.2.2 shows a rendering of the 

model in MATLAB, with the shoulder parameters (𝐿𝑟,𝑥, 𝐿𝑟,𝑧) defined. Alongside the addition 

of an extra vertical stabiliser in the computation of the aerodynamic forces, this completes 

the definition of the RQ-2 Pioneer UAV in the case study modelling framework. 
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Figure 5.2.2: Rendering of the RQ-2 Pioneer UAV model in MATLAB, not to scale, with the H-
tail visible and the shoulder parameters defined. 
 

Table 5.2.2: Kinematic chain parameters for the RQ-2 Pioneer UAV model 

Body Name Index 𝑙𝑐 𝑐 = 1  𝑐 = 2  […] 
   𝐋𝑖,1 P𝑖,1 𝐋𝑖,2 P𝑖,2 

body 𝑏 1 [
1

2
𝐿𝑏 0 0]

𝑇

 P𝐸 𝐵⁄    
 

right wing 𝑤𝑟 2 [𝐿𝑟,𝑥 0 𝐿𝑟,𝑧]
𝑇

 P𝐸 𝐵⁄  [𝐺𝑤𝑟 0 0]𝑇 P𝐸 𝐵⁄ P𝐵 𝑊𝑅⁄   

left wing 𝑤𝑙 2 [𝐿𝑟,𝑥 0 𝐿𝑟,𝑧]
𝑇

 P𝐸 𝐵⁄  [𝐺𝑤𝑙 0 0]𝑇 P𝐸 𝐵⁄ P𝐵 𝑊𝐿⁄   

right elevator 
/ horz. stabiliser 

𝑒𝑟 1 [
1

2
𝐿𝑒 0 𝐿𝑟,𝑧]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝐸𝑅⁄    
 

left elevator 
/ horz. stabiliser 

𝑒𝑙 1 [
1

2
𝐿𝑒 0 𝐿𝑟,𝑧]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝐸𝐿⁄    
 

left fin / vert 
stabiliser 

f𝑙 2 [𝐿𝑒 0 0]𝑇  P𝐸 𝐵⁄ P𝐵 𝐸𝑅⁄  [
1

2
𝐿f 0 0]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝐹𝐿⁄  
 

right fin / vert 
stabiliser 

f𝑙 2 [𝐿𝑒 0 0] P𝐸 𝐵⁄ P𝐵 𝐸𝐿⁄  [
1

2
𝐿f 0 0]

𝑇

 P𝐸 𝐵⁄ P𝐵 𝐹𝐿⁄  
 

point mass pm 1 [𝐿pm,𝑥 0 𝐿pm,𝑧]
𝑇

 P𝐸 𝐵⁄     

 

5.2.2. Identification of inertial properties 

As noted, the RQ-2 UAV moment of inertia tensor about the system centre of mass is 

specified, as per Bray [26]. In the case study body-fixed coordinate system this tensor is: 

𝐼c.o.m., spec
(𝑏)

= [
47.23  6.647

 90.96  
6.647  111.5

] kg m2. (5.2.1) 

In the case study modelling framework it may be computed as: 

𝐼c.o.m.
(𝑏)

= ∑ 𝐼𝑖
(𝑏)

+ 𝑚𝑖(𝐫𝑖
(𝑏)

⋅ 𝐫𝑖
(𝑏)

E3×3 − 𝐫𝑖
(𝑏),𝑇 ⊗ 𝐫𝑖

(𝑏)
)

𝑖∈𝒮

, (5.2.2) 
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where ⊗ denotes the vector Kronecker product, and 𝐫𝑖
(𝑏)

= 𝐱c.o.m.
(𝑏)

− 𝐱𝑖
(𝑏)

. The centre of 

mass location in the body-fixed reference frame, 𝐱c.o.m.
(𝑏)

, may be computed as: 

𝐱c.o.m.
(𝑏)

=
1

𝑚𝒮
∑ 𝑚𝑖𝐱𝑖

(𝑏)

𝑖∈𝒮

= [𝐿c.o.m.,𝑥, 0, 𝐿𝑟,𝑧 − 𝐿c.o.m.,𝑧] = 𝐱c.o.m., spec
(𝑏)

. (5.2.3) 

Note here the definition of 𝐿c.o.m.,𝑥 and 𝐿c.o.m.,𝑧: this formulation allows us to easily 

constrain the centre of mass location to be below the wing shoulder. Specified values of 

𝐼c.o.m.
(𝑏)

 and [𝐿c.o.m.,𝑥, 𝐿c.o.m.,𝑧] are then used to constrain the system mass parameters 

(𝑚𝑤, 𝑚𝑒 , 𝑚f, 𝑚𝑝𝑚, with 𝑚𝑏 = 𝑚𝒮 − 2𝑚𝑤 − 2𝑚𝑒 − 2𝑚f − 𝑚𝑝𝑚, constrained by 𝑚𝒮 = 

190.5 kg) as well as the point mass locations 𝐿pm,𝑥, 𝐿pm,𝑧 and the wing and tailplane 

shoulder 𝐿𝑟,𝑧.  These seven variables are only slightly underconstrained exactly by the six 

inertial variables – four in 𝐼c.o.m., spec
(𝑏)

 and two in 𝐱c.o.m., spec
(𝑏)

. However, the addition of 

physically-derived inequality constraints 𝑚𝑖 > 0 (positive masses), 𝐿𝑟,𝑧 > 0 (upwards 

shoulder), 𝐿c.o.m.,𝑧 > 0 (c.o.m. below shoulder) reduces the solution space. Suitable system 

parameter sets are computed via an interior point optimisation algorithm [30,31] applied to 

the error ‖𝐼c.o.m., spec
(𝑏)

− 𝐼c.o.m.
(𝑏)

‖ subject to the nonlinear constraints 𝐱c.o.m., spec
(𝑏)

= 𝐱c.o.m.
(𝑏)

 and 

the inequality constraints noted. The identified parameters, for [𝐿c.o.m.,𝑥, 𝐿c.o.m.,𝑧] =

[2.14, 0.60] m are shown in Table 5.2.1. These values are predicated on the results of flight 

simulation tests presented in Section 5.5. 

 

 

5.3. RQ-2 UAV INTEGRATOR TESTING 

5.3.1. Overview 

It is pertinent to perform a brief set of integrator tests on the RQ-2 Pioneer UAV system, 

particularly for the purpose of validating the application of these integrators to this system – 

both in terms of validation between integrators, and with relevant comparison to the 

analogous results in Chapter 4, Sections 4.4-4.5. Additionally, these integrator tests provide 

further data for the understanding of integrator behaviour – the differences in mass 

distribution between the systems has the potential to elucidate the effect of translation-

rotation coupling on integrator performance. The kinetic energy coefficients for the RQ-2 

UAV system, resolved in the body-fixed frame, are: 
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a
 𝑥𝑥 = 95.25 kg, 𝐚

 𝑥 = 𝐚𝜔 = [0 0 0]𝑇 

A
 𝑥𝜔
(𝑏)

= [
 −43.6509  

43.6509  407.670
 −407.670  

]  kg m 

A𝜔𝜔
(𝑏)

= [
28.6188  50.0316

 486.6903  
50.0316  491.9502

]  kg m2 

(5.3.1) 

In the absence of morphing-wing motion, these coefficients are time-invariant. They show a 

few notable differences to those of the case study system under similar conditions (cf. Eq. 

4.4.16), which may affect integrator performance. Nondimensionalising A
 𝑥𝜔
(𝑏)

 and A𝜔𝜔
(𝑏)

 for 

each system by a
 𝑥𝑥 (= half the system total mass), and the wingspan 2𝐿𝑤, allows for a basic 

comparison. The case study system values are indicated in parentheses: 

A
 𝑥𝜔
(𝑏)

2𝐿𝑤a
 𝑥𝑥

= [

 −9% (0.5%)  

9% (−0.5%)  83% (87%)

 −83% (−87%)  
], 

A𝜔𝜔
(𝑏)

4𝐿𝑤
2 a

 𝑥𝑥
= [

1% (2%)  2% (0%)

 19% (25%)  
2% (0%)  19% (26%)

]. 

(5.3.2) 

The RQ-2 UAV system is farther from its principal axes (as indicated by the non-diagonal 

term in A𝜔𝜔
(𝑏)

, which is significant with respect to the principal axes terms) and shows a 

greater degree of translation-rotation coupling, especially in the 𝑥-𝑦 axes, which 

additionally show a reversed direction of coupling.  

 

5.3.2. Left-rectangle integration 

Figure 5.3.1 shows the results of the quaternion left-rectangle variational integrator and the 

Euler angle adaptive RK4 integrator applied to the free rotation of the RQ-2 Pioneer UAV 

system (coefficients defined in Eq. 5.3.1); analogous to Chapter 4, Section 4.4.3. Definitions 

of the conventional system momenta, and the momenta and energy conservation errors, 

remain unchanged; and the RK4 integrator again takes a local truncation error (LTE) 

tolerance of 10−6 and relative tolerance of 10−3. The adaptive RK45 integrator again allows 

a significantly larger step size, with a mean step size ℎ̅ = 0.088 s over the simulation, in 

comparison to the specified ℎ = 0.01 s for the QVI. This QVI step size is such that the 

integrator reaches a rotational momentum error equivalent to that of the RK45 integrator 

(c. 30%) by the simulation end time, 𝑇 = 1000 s.  
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Figure 5.3.1: Integration results for the left-rectangle QVI applied to the free rotation of the 
RQ-2 Pioneer UAV system, compared to those of the adaptive RK45 integrator. 
 

Again, the QVI shows excellent conservation properties in translational momentum and 

energy, with near-exact conservation of translational momentum, and a strongly stable 

oscillation in energy error – maximum magnitude c. 10−2, and integral error 3 × 10−4 at 

𝑇 = 1000 s. However, again the conservation of angular momentum is poor: at the 

simulation end time the angular momentum conservation error is equivalent to that of the 

RK45 integrator, for a smaller mean step size and a slightly (5%) larger wall-clock 

computation time. The integrator does not show a hard stability threshold, but step sizes 

greater than ℎ ≅ 0.01 s result in rapid angular momentum error growth (at ℎ = 0.03 s,  

reaching 30% by 𝑇 = 100 s). As in the case study system application, this restriction on step 

size is a significant limitation on integrator application. 
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5.3.3. Midpoint integration 

Figure 5.3.2 shows the midpoint QVI results for the RQ-2 Pioneer UAV system, compared to 

the left-rectangle QVI, at ℎ = 0.01 s. The midpoint method energy and angular momentum 

conservation errors are approximately two orders of magnitude smaller that the left-

rectangle method, again demonstrating the benefit of the increase in integration order, 

consistent with Chapter 4, Section 4.5.3. Figure 5.3.3 shows the results of the midpoint QVI 

applied to the freely-rotating RQ-2 Pioneer UAV, again in comparison to the Euler angle 

adaptive RK45 integrator. The QVI step size is taken as the mean step size for the RK45 

integration (ℎ = ℎ𝑅𝐾 = 0.088 s). As can be seen, the midpoint QVI significantly outperforms 

the RK45 integrator in long-term energy and momentum conservation; but is associated 

with a degree of local solution error, particularly in terms of the timescale of the oscillations 

in (𝑏). These effects are identical to those identified in Chapter 4, Section 4.5.3: local 

accuracy is traded for long-term stability and energy/momentum conservation. However, a 

notable difference for this test case is that the permissible step size for qualitative accuracy 

over the simulated time range is significantly larger relative to the RK45 integrator – the 

mean RK45 step size performs well at ℎ = ℎ𝑅𝐾. Compare Chapter 4, Figure 4.5.1.  

 

Figure 5.3.4 shows the midpoint QVI results for a pitch-up flapping wing simulation 

analogous to that of Chapter 4, Section 4.5.3. The aerodynamic and structural model of the 

RQ-2 UAV system is used (Section 5.2), while propulsive and gravitational forces are 

omitted. The symmetric wing control inputs are identical to those of Chapter 4, Section 

4.5.3:  dihedral 𝜃𝑤(𝑡) = sin(𝑡) rad and incidence 𝜙𝑤(𝑡) = −0.5 cos(𝑡) rad. Note that the 

RQ-2 UAV system is not in reality fitted with morphing-capability: this is only a simulation 

test case. Figure 5.3.4 presents the solutions for three different timesteps, ℎ = ℎRK, 0.5ℎRK 

and 0.25ℎRK, where the mean stepsize of the adaptive RK45 integrator is ℎRK = 0.0940 s. 

The solution at ℎ = ℎRK shows notable inaccuracy, underestimating the aircraft pitch angle 

by c. 20% at the end of the simulation, c. 5 periods of flapping. The solutions at 0.5ℎRK and 

0.25ℎRK are more accurate; to within 10% and 5% respectively. However the QVI 

performance for this test case, relative to the adaptive RK45 integrator, is significantly 

worse than the corresponding test in the case study system – see Chapter 4, Section 4.5.3. 
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Figure 5.3.2: Integration results for the midpoint QVI applied to the free rotation and 
translation of the RQ-2 Pioneer UAV, compared to the left-rectangle QVI. 
 

For further comparison, Figure 5.3.5 shows the simulation result for a different flapping-

wing simulation; this time generating pitch-down motion, with dihedral 𝜃𝑤(𝑡) = sin(𝑡) rad 

and incidence 𝜙𝑤(𝑡) = 0.5 cos(𝑡) rad. Note that the flapping-wing frequency is the same, 

and the adaptive RK45 mean step size is effectively identical (ℎRK = 0.0940 s). The QVI step 

sizes are ℎ = 2.0ℎRK, 1.0ℎRK and 0.5ℎRK, and these show pitch angle errors of 43%, 21%, 

10% at 𝑇 = 30 s. These results are consistent with those of the pitch-up simulation in Figure 

5.3.4, and further demonstrate the poor performance of the QVI when applied to the RQ-2 

UAV system. It is clear that the QVI performance is strongly system-dependent, and in 

particular suffers when applied to systems with canonical momenta that are not conserved. 
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Figure 5.3.3: Integration results for the midpoint QVI applied to the free rotation and translation of the RQ-2 Pioneer UAV system, 
compared to the adaptive RK45 integrator. 
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Figure 5.3.4: Integration results for the midpoint QVI applied to a pitch-up wing-flapping manoeuvre in the RQ-2 Pioneer UAV. 
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Figure 5.3.5: Integration results for the midpoint QVI applied to a pitch-down wing-flapping manoeuvre in the RQ-2 Pioneer UAV. 
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5.4. AERODYNAMIC COEFFICIENT VALIDATION 

It is possible to compare aerodynamic forces and coefficients generated by the case study 

model of the Pioneer RQ-2 UAV to those utilised directly in the stability-derivative model of 

this UAV in FlightGear / JSBSim; which are taken directly from Bray [26]. This provides a first 

line of validation for the case study model. Bray [26] defines the 6DOF aerodynamic forces 

on the system with six coefficients; lift (CL), drag (CD), sideforce (CY), pitching moment (Cm), 

yawing moment (Cn), and rolling moment (Cl), defined in the stability reference frame. This 

reference frame tracks with the body reference frame in yaw, but not in pitch and roll. In 

the case study framework, this is analogous to a set of axes (denoted frame 𝑇) with unit 

vectors: 

𝒊̂𝑡 = 𝐫̂𝑏 × 𝐤̂𝑒, 

𝐣̂𝑡 = 𝐫̂𝑏, 

𝐤̂𝑡 = 𝐤̂𝑒, 

the appropriate frame completion; 

an internal body-fixed frame unit vector; 

the earth frame vertical unit vector; 

(5.4.1) 

and thus with frame transformation matrix: 

P𝐸 𝑇⁄ = [𝐫̂𝑏
(𝑒)

× 𝐤̂𝑒
(𝑒)

, 𝐫̂𝑏
(𝑒)

,  𝐤̂𝑒
(𝑒)

]. (5.4.2) 

Note that the reference frame defined by Bray [26] shows several sign changes with respect 

to the case study analogue; these are easily accounted for when comparing coefficients. The 

data of Bray [26] decomposes these 6DOF stability axes coefficients into a number of key 

dependencies. Several of these concern the dependency of a coefficient on a control surface 

deflection: these dependencies are ignored, as the case study model of the RQ-2 UAV does 

not contain a control surface model due to the lack of information regarding the RQ-2 UAV 

control surface geometry. 

 

The remaining coefficient dependencies are then distinguished as to their linearity: five 

coefficient dependencies are defined in a tabulated format, capturing nonlinear effects; 

whereas the rest (10+) are defined as linear relationships. The five tabular / nonlinear 

dependencies provide the most robust avenue to coefficient validation, as they cover a 

wider spectrum of flight states. These dependencies all relate to aircraft orientation angles 

(angle-of-attack 𝛼 and sideslip angle 𝛽) and are as follows: the lift as a function of angle-of-

attack, CL(𝛼); the drag as a function of angle-of-attack, CD(𝛼); the sideforce as a function of 
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sideslip angle, CY(𝛽); the pitching moment as a function of angle-of-attack, Cm(𝛼); and the 

yawing moment as a function of sideslip angle, Cn(𝛽). Figure 5.4.1 shows a comparison of 

these coefficient dependencies with the coefficient predictions of the case study model; 

which are computed at the aerodynamic reference point: 33% MAC, i.e. 33% of the wing 

chord aft of the wing leading edge, and on the thrust line which lies approximately in the 

wing plane. As can be seen, the coefficients yield a good match. The case study model 

underestimates the aircraft drag somewhat; understandably, as it does not account for the 

complexity of the fuselage drag. The drag spike at low angles of attack is an artefact of 

extrapolation for the wing aerodynamic coefficients and does not affect the flight simulation 

comparison; the FlightGear / JSBSim model cannot simulate to these low angles of attack 

either. 

 

Overall, our coefficients results tend to show a more extreme gradient than the empirical 

coefficients in the pre-stall regime, and a less extreme gradient in the post-stall regime. The 

results of Bray [26] show stronger linear trends bridging pre- and post-stall regimes, and a 

weaker stall transition. This difference could be attributable to differing aerodynamic data, 

and the corresponding strength of the stall transition; differing model properties with 

particular reference to the location of the aerodynamic reference point; and three-

dimensional effects which are likely to decrease the strength of the coefficient gradients. 

 

Comparisons between the linear coefficient dependencies are less easy to contextualise 

than with the nonlinear dependencies; and moreover, the majority concern isolated angle 

rate dependencies, which are defined via heuristic methods and not computed 

experimentally, making them a less robust target for validation. Only one linear dependency 

is important to compare: the rolling moment coefficient as a function of sideslip angle; 

physically, the dihedral effect. Figure 5.4.2 shows a comparison between the linear dihedral 

effect computed by Bray [26] and the predictions of the case study model. 

 

Here a difficulty reference point definition in Bray [26] becomes apparent: in the wind-

tunnel test model, the centre of mass / aerodynamic reference point is defined along the 

thrust line, which in Figure 5.2.1 lies in the wing plane, almost on the upper surface of the 

fuselage. This is a not a reasonable physical location: the mass distributed beneath the wing 
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plane will be many times larger than that that distributed in the thin strip of material above 

it. The fact that the fuselage shows upwards tapering adds further to this assertion. It is thus 

probable that the thrust line for the model used by Bray [26] is located at a lower waterline; 

but no further information is given. The height of the centre of mass / aerodynamic 

reference point has a minor effect on the coefficient profiles in Figure 5.4.1, but has a large 

effect on the dihedral effect. Figure 5.4.2 shows the effect of two reference point locations: 

on the thrust line / wing plane; and 100 mm beneath the wing plane into the fuselage. 

There is good agreement between the predictions in the linear regime at low sideslip angles: 

in particular, the 100 mm reference point shift leads unexpectedly to a near-exact 

agreement. This supports the hypothesis that the centre of mass / reference point should be 

located further in the fuselage. 

 
 
 
 
 
 
 
 
 



  Chapter 5: Flight dynamics validation 

141 

 

 

Figure 5.4.1: Lift, drag and pitching moment coefficients as a function of angle of attack; and sideforce and yaw moment coefficients as a 
function sideslip angle: compared between the case study model and the experimental data from Bray [26]. 
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Figure 5.4.2: Roll coefficient as a function of sideslip angle (the dihedral effect) for the case 
study model (two reference point locations) and the experimental value from Bray [26]. 
 

 

5.5. FLIGHT SIMULATION VALIDATION 

5.5.1. Validation simulations in FlightGear 

The experimental aerodynamic and structural data of Bray [26] is implemented by Selig and 

Scott [20] in a nonlinear stability-derivative model in FlightGear / JSBSim. In addition to the 

traditional stability derivatives, the first-order effects of angular velocity (pitch, roll and yaw 

rate) on the aircraft aerodynamic coefficients are included as nonlinear functions of their 

respective angles. The strongly empirical nature of this model leads us to expect a high 

degree of realism from the simulation results – within the limits of model validity – making it 

a useful benchmark for the validation of the case study flight dynamic model. The use of 

manoeuvre flight simulation allows a broad-spectrum validation which accounts for all the 

complex empirically-derived coefficients of Bray [26] in a holistic manner. The simulation 

engine itself, JSBSim, has itself seen extensive verification and validation [22–25]. JSBSim 

uses traditional 6DOF equations of motion, following Stevens et al. [32] formulated in an 

aircraft body-fixed reference frame, operating within a spherical earth reference frame 

(latitude/longitude/altitude). The aircraft orientation is parameterized with a unit 

quaternion. Aerodynamic forces – the only forces, other than gravity, that are relevant to 

our analysis – are computed via their full-aircraft aerodynamic coefficients; and these are 

built up via the decoupled tabulated or linear contributions as per Section 5.4. 
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We are unable to consider the effects of control surface deflection or morphing-wing 

motion in this validation – the former due to a lack of control surface information and 

aerodynamic data to implement; the latter as a limitation of the aerodynamic data of Bray 

[26] and the functionality of FlightGear / JSBSim. Propulsive effects are also omitted, to the 

end of further model simplicity. As all these effects represent relatively simple additions to 

the overall multibody dynamic / aerodynamic mesh framework, the validation of the flight 

dynamic model in fixed-wing conditions should endow at least some validity to the overall 

model. The strongly transient effects that might arise from rapid wing or aircraft motion, 

and the limits to the validity of the quasisteady aerodynamic model, will be considered in 

more detail in Chapter 8. The purpose of the FlightGear model is to validate the case study 

flight dynamic model under more conventional flight conditions. 

 

Flight simulations are carried out in completely still weather over the Canterbury Plains, 

New Zealand (without loss of generality). Figure 5.5.1 shows an image of the flight 

simulation interface in FlightGear: a generic low-poly glider model is used as a placeholder 

for the aircraft. The aircraft coordinate histories (latitude/longitude) are converted to 

Cartesian distances via a flat-earth model about the initial aircraft location. The aircraft 

orientation and Cartesian position histories are then used to provide initial conditions 

(orientation, angular and translational velocity) for simulations in the case study modelling 

framework. The adaptive RK45 integrator in Euler angles is used; it is confirmed that the 

midpoint QVI generates identical results at sufficiently small step sizes. 

 

 
Figure 5.5.1: Flight simulation of the RQ-2 Pioneer UAV in FlightGear. 
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5.5.2. Validation results 

Figures 5.5.2 and 5.5.3 show the orientation histories and flight paths (respectively) for eight 

validation simulations (A-H), covering a wide range of motion amplitudes, and 

corresponding to three forms of aircraft behaviour – phugoid oscillations (A-B), dives (C-D) 

and spiral dives (E-H), starting at large and small initial perturbations in bank (E 37° and F 

23°, G 5° and H 9°). The centre of mass location is taken as 𝐿c.o.m.,𝑥 = 2.14 m , 𝐿c.o.m.,𝑧 = 

0.60 m, as per Table 5.2.1, and corresponding to an overall good flight simulation match, 

with particular reference to the phugoid flight simulations (A-B). The details of the selection 

of this location, and possible alternatives, are discussed in Section 5.5.4. 

 

The simulation affinities for the phugoid and dive simulations are all excellent: the case 

study model even captures the small roll and yaw drift associated with simulation (A). An 

excitation of the short period mode is observed in the phugoid simulations (A-B). However, 

this is not a significant phenomenological difference, and probably represents a slight 

perturbation away from the locally consistent state for the case study model at the start of 

the manoeuvre. That is, the specified initial translational velocity and orientation (derived 

from FlightGear simulations) are inconsistent with the specified initial angular velocity (also 

so derived) and so a corrective short-period response in angular velocity/orientation occurs.  

 

The areas of greatest discrepancy are the spiral dives (E-H), which are sharper in the 

FlightGear model, and associated with greater altitude loss. The spiral dives with a large 

initial perturbation (E-F) show a reasonably good match, but those with small initial 

perturbations (G-H) show significant deviation. That these deviations show consistent 

characteristics at least supports the overall validation, and indicates simply a difference in 

spiral mode stability between the two models. This can probably be attributed to the 

inconsistency in the aircraft geometric properties due to the mismatch in aircraft model 

number noted earlier. Overall, the validation results are good, indicating that the case study 

model does not suffer any significant deficiencies in modelling conventional flight regimes, 

and supporting the modelling framework which is extended to include post-stall and 

strongly transient behaviour. Further validation of these more complex effects is carried out 

in Chapters 8-9. 
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Figure 5.5.2: Orientation histories for the RQ-2 Pioneer UAV validation simulations. 
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Figure 5.5.3: Flight paths for the RQ-2 Pioneer UAV validation simulations, with the aircraft rendered at 10:1 scale every 2 s. 
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5.5.3. Centre of mass location 

The location of the centre of mass within the RQ-2 Pioneer system, governed by parameters 

[𝐿c.o.m.,𝑥, 𝐿c.o.m.,𝑧], cannot be adequately identified from system structural data, even given 

the approximate imagery in Figure 5.2.1. Instead these parameters are identified via the 

flight simulations in Figures 5.5.2-5.5.3, with particular reference to the phugoid flight 

simulations (A-B). To demonstrate the effect of [𝐿c.o.m.,𝑥, 𝐿c.o.m.,𝑧] on the flight simulation 

results, Figures 5.5.4-5.5.7 show the effect of univariate changes in the centre of mass 

location. Figure 5.5.4-5.5.5 show the effect of the centre of mass location in 𝑧 (𝐿c.o.m.,𝑧) on 

the RQ-2 flight simulation results.  A continuous parameter set corresponding to variation in 

𝐿c.o.m.,𝑧 in given: this parameter set is constrained by 𝑚f = 1.225 kg  (Table 5.2.1), leading to 

a smooth solution curve. Other such curves are possible. As may be seen, 𝐿c.o.m.,𝑧 has 

relatively little effect on the validation accuracy, with its effects visible only in the smallest-

amplitude phugoid flight simulation (A). Figures 5.5.6-5.5.7 show the effect of the centre of 

mass location in 𝑥 (𝐿c.o.m.,𝑥) on the RQ-2 flight simulation results.  The smooth parameter 

curve is this time generated with the constraint 𝑚𝑒 = 0.2504 kg . 𝐿c.o.m.,𝑥 has significant 

effects on the flight simulation results; modifying the amplitude and frequency of the 

phugoid oscillations, and the sharpness of the spiral dive. 

 

It may be inferred from Figure 5.5.7 that a significantly better match for the spiral dive 

validation simulations can be obtained with a change in centre of mass location relative to 

the standard validation parameters (Table 5.2.1); but at the cost of a poorer match in the 

pitch histories across all simulations.  This is unsurprising, as the standard parameters were 

based on matching the aircraft phugoid response. Figure 5.5.8 shows a comparison of the 

full set of validation simulations for the original parameter set (Table 5.2.1, 𝐿c.o.m.,𝑥 = 2.14 

m, 𝐿c.o.m.,𝑧 = 0.60 m) and a spiral-dive roll/yaw-matched parameter set at 𝐿c.o.m.,𝑥 = 2.10 m, 

𝐿c.o.m.,𝑧 = 0.40 m. Specifically, this set is 𝐿𝑝𝑚,𝑥 − 𝐿𝑟,𝑥 = 0.0155 m, 𝐿𝑝𝑚,𝑧 = −0.549 m, 

𝐿𝑟,𝑧 = 0.0156 m, 𝑚𝑝𝑚 = 135 kg, 𝑚𝑤 = 6.96 kg,  𝑚𝑒 = 1.34 kg, 𝑚f = 1.16 kg. This roll/yaw-

matched set shows an excellent agreement in the spiral dive yaw histories, and a good 

agreement in the associated roll histories. However the pitch histories of all simulations 

show a notably poorer match with this parameter set – in particular, the phugoid 

simulations and the pitch component of the spiral dives. 
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Figure 5.5.4: Effect of the system centre of mass location in 𝑧 (𝐿c.o.m.,𝑧) on the pitch-dominant RQ-2 UAV validation simulations. 
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Figure 5.5.5: Effect of the system centre of mass location in 𝑧 (𝐿c.o.m.,𝑧) on the spiral dive RQ-2 UAV validation simulations. 
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Figure 5.5.6: Effect of the system centre of mass location in 𝑥 (𝐿c.o.m.,𝑥) on the pitch-dominant RQ-2 UAV validation simulations. 
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Figure 5.5.7: Effect of the system centre of mass location in 𝑥 (𝐿c.o.m.,𝑥) on the spiral dive RQ-2 UAV validation simulations. 
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Figure 5.5.8: Orientation histories of the RQ-2 Pioneer UAV validation simulations for two parameter sets: pitch- and roll/yaw-matched. 
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The inconsistency between the pitch-matched and roll/yaw-matched parameter sets can be 

attributed to the physical model variation between the FlightGear simulated system (the 

RQ-2A) and the parameter source (the RQ-2B). Overall, the flight simulations results 

represent a good match between the case study model and the empirically-based 

FlightGear model, validating the former. Furthermore, the parametric study results in the 

case study model are consistent with the classical effects of centre of mass location on flight 

dynamic properties. 

 

5.6. FURTHER CONSIDERATIONS FROM COMPUTATIONAL FLUID DYNAMICS 

5.6.1. Motivation 

The RQ-2 UAV flight simulation and aerodynamic coefficient validation presented over 

Sections 5.2-5.5 is valuable in that covers the complete and integrated system (rigid body 

dynamics / numerical integration / aerodynamics). However, correspondingly, this 

validation occurs only over a limited set of flight regimes: low angle of attack, and low 

transience. As noted, a suitable system for complete-system validation at all relevant flight 

regimes does not currently exist in the literature. Instead, a combination of piecewise 

quantitative and qualitative validation using existing studies of more limited scope can be 

used to provide more basis for the modelling processes and assumptions that have been 

utilised; this is the concern of this section. 

 

5.6.2. Quantitative considerations 

Sachs and Moelyadi [33] undertook a computational study into the effects of static dihedral 

angle on pigeon wing aerodynamics.  Given the analogous flight conditions, and the defined 

nature of the wing in absence of the body aerodynamics, this constitutes a useful test case 

against the treatment of dihedral in the case study model. Figure 5.6.1 shows the force 

coefficients computed by Sachs and Moelyadi [33]; and Figure 5.6.2 the equivalent 

coefficients computed by the case study model. This comparison is quantitative in that we 

can directly observe trends in the coefficient; a comparison of exact values is not possible 

because Sachs and Moelyadi [33] define neither the dimensions of the wing, nor the 

reference lengths or point for the aerodynamic coefficients; and the aerofoil is of custom 

design.  Nevertheless, in comparison, the case study model, under a simple uniform chord 

approximation, predicts all the key trends observed in the reported data. 
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Trends of decreased drag coefficient and decreased lift coefficient with increased dihedral, 

according to a scale factor, are unsurprising. The trends in sideforce are more instructive, 

with the approximately parabolic curve being replicated, and with appropriate scaling under 

dihedral changes. Overall, these force comparisons serve to further validate the case study 

model, and indicate that its model of quasistatic high-dihedral states is likely to be accurate. 

Sachs and Moelyadi [33] also provide two sets of moment coefficient data along with 

moment derivatives with respect to sideslip angle; but suspected sign and labelling errors 

have been identified in these datasets (involving inconsistency between the computed 

derivatives and the source dataset), and so they are not a secure source of validation. 

 

 

 

Image of force coefficient data removed for copyright reasons 

Copyright holder is Jilin University 

 

 

 

Figure 5.6.1: Force coefficient data reproduced from Sachs and Moelyadi [33]: drag (𝐶𝐷), lift 
(𝐶𝐿) and sideforce (𝐶𝐹𝑌) coefficients as a function of angle-of-attack (𝛼), for three dihedral 
(𝜈) values and two sideslip (𝛽) values. 
 

 

Figure 5.6.2: Force coefficient predictions from the case study model. 
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5.6.3. Qualitative considerations 

The majority of UAV / morphing aircraft / biomimetic aircraft CFD studies are not sufficiently 

analogous to the case study system, and its modelling framework, to allow a direct 

comparison. However, qualitative observations made in these studies do shed light on more 

fundamental phenomena that may be relevant. For example, experimental studies of the X-

31 [34] found that wing leading edge design strongly influences vortex generation and 

pitching behaviour of the aircraft at high angles of attack, leading to a range of aerodynamic 

force characteristics. Obliquely, this supports the generic modelling of the case study system 

that has been applied here: leading edge design can be tailored to a wide range of desired 

aerodynamic characteristics, and so, in the manner of an inverse problem, a physical system 

is likely to exist that replicates and/or compensates for the aerodynamic modelling used in 

this study (quasistatic and GK dynamic stall; see Chapters 8-9). Note that this does not imply 

that such a design would be optimal; only that the aerodynamic performance and 

characteristics taken for the case study system are at least attainable. 

 

In addition, a RANS study by Soni et al. [35] indicated the presence of several wake 

stabilisation effects in a case study biomimetic morphing-wing aircraft at low to moderate 

Reynolds numbers. In a test model at low Reynolds numbers (c. 1000), an increase in 

wingspan led to decreased total drag via wake stabilisation, up to a critical aspect ratio value 

representing the maximum available stabilisation effect; and an increment or decrement of 

dihedral, even at very small angles (<6°), both led to increases in drag through wake 

destabilisation. Reynolds number changes led to the creation or suppression of stable 

structures in the wake, while increases in angle of attack generally supressed stable 

structures, leading to increases in drag. These effects are phenomenologically complex, but, 

as described, are expressible by empirically-based quasistatic modelling. A key absence of 

knowledge is in the effect of transient morphing or motion on these wake structures. 

 

A 2D Discrete Vortex Method (DVM) and Particle Image Velocimetry (PIV) study by Lego [36] 

on the aerodynamics of morphing aircraft at high angles of attack indicated that: 
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(1) Reduced frequency effects are more significant than Reynolds number effects, 

justifying the use of a representative Reynolds number in this study; and motivating 

the development of a dynamic stall (high reduced-frequency) model in Chapter 8. 

(2) Two-dimensional DVM can be capable of accurately modelling a three-dimensional 

wing undergoing a rapid pitching motion. In Lego [36], a 2D DVM accurately 

predicted all the key flow features seen in experiments, except for 3D instabilities 

arising from wing spanwise flow; and in addition, the DVM showed notably accurate 

results in more inertially-dominant regimes (higher transience). This demonstrates in 

principle that transient aerodynamic effects can be captured effectively by reduced-

order modelling. 

(3) Higher levels of transience led to greater lift peaks in post-stall pitching motions, 

consistent with the phenomenon of dynamic stall [37]: these peaks are likely to 

improve supermanoeuvre performance (e.g. by decreasing altitude loss), indicating 

that the quasistatic case study model is likely to be conservative in estimating 

supermanoeuvre performance. 

 

 

5.7. SCOPE AND LIMITATIONS OF VALIDATION 

The validation studies presented in this section are subject to several limitations. Notably, 

strongly transient manoeuvres cannot be accurately simulated with the FlightGear /JSBSim 

stability-derivatives simulator, due to its relatively limited unsteady aerodynamic modelling, 

and thus the case study model cannot be adequately tested in transient flow regimes. 

Simulations of dive manoeuvres come closest to validating this regime – starting from initial 

static state, the zero-airspeed pitch-down and recovery procedure at least includes strong 

induced-flow effects. The FlightGear /JSBSim model includes the effect of angular velocity 

on the system aerodynamics, and in the dive simulations this model shows excellent 

agreement to the case study model. More local transient effects – e.g. wingtip vortices or 

clap-and-fling mechanisms – remain unmodelled and unvalidated, and their effect on the 

system is uncertain. In Chapter 8 strongly transient and post-stall effects are investigated 

further through computational fluid dynamics. The limitation of the FlightGear model to the 

pre-stall regime is not, however, a key obstacle in itself – the transition to stall in the case 
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study model does not involve any change in modelling formulation, only a change in aerofoil 

coefficients, and thus a validation in pre-stall regimes should extend to post-stall. Strongly 

transient aerodynamic effects – in any flight regime – are the key limitation to validation. 

 

In reference to the RQ-2 UAV system identification: while it may seem unreasonable that 

e.g. the fin and elevator mass are allowed to vary arbitrarily (and are allowed to differ), 

these are merely proxy parameters for a system model with non-elementary body shapes 

and non-uniform mass distribution – both the case for the RQ-2 UAV. The modelling 

framework presented in Chapters 2-4 is capable of modelling such effects directly, through 

the specification of appropriate non-elementary inertia tensors and centre of mass 

locations, but with the sparsity of mass and inertia data for the RQ-2 makes such a direct 

model infeasible. Moreover, in a non-morphing context, the details of the mass distribution 

have no effect; only the total inertia tensor and centre of mass location. Thus, a simple 

extension of the case study system is matched to the known inertia tensors, with a specified 

centre of mass location, as per Section 5.5.3. 

 

Finally, Section 5.6 presented a broader and largely qualitative validation based on a variety 

of results from the literature. The qualitative nature of much of this validation is 

unfortunate; but overall, results from the literature support the modelling assumptions 

utilised. Transient effects, such as are the key limitation to the validation of the case study 

model, are observed to improve aircraft performance in our key metrics in several cases. 

These effects are also observed to show a strong dependency on the details of the airframe 

and its lifting surfaces (e.g. leading edge design); and this is a key factor behind the decision 

not to model these details and their possible effects. Only a more broad-spectrum transient 

aerodynamic model will be considered; in Chapter 8. Manoeuvre analyses utilising the case 

study model, as concerns Chapters 6-7, are intended to be firm qualitative demonstrations 

of the capability of this class of system for such manoeuvres. They may indeed approach 

good quantitative accuracy in a physical system that is tailored to match the aerodynamic 

characteristics that are assumed; but this is not the key aspect: rather, methods are 

identified to obtain these results in a variety of systems; and the fact that these manoeuvres 

are identified and demonstrated even with a relatively conservatively-defined system (in 

airframe and in aerodynamic model) indicates their applicability to physical UAVs. 
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6.1. INTRODUCTION 

The flight dynamic model developed over the past five chapters is now at a stage where it 

may be applied to the study of supermanoeuvrability. As noted in Chapter 5, Section 5.4.3, 

the aircraft aerodynamic submodel is expected to break down at some critical level of 

transience. The development of a transient aerodynamic submodel is detailed in further 

chapters; here, we analyse a key subspace of supermanoeuvres which show low levels of 

transience, at least some of which are phenomenologically and quantifiably subcritical in 

terms of aerodynamic model breakdown. This subspace of manoeuvres has been referred to 

as nose-pointing-and-shooting (NPAS) capability [1] or orientation direct force capability [2]; 

and involves aircraft orientation control independent of its flight path. In the case study 

system, such capability is available on arbitrarily long timescales, and thus for some 

subspace of NPAS capability, the quasistatic aerodynamic model will be sufficient. In this 

chapter we analyse this NPAS capability in the case study biomimetic system, and 

demonstrate the use of trim state analysis to design and possibly control NPAS manoeuvres. 

As part of this analysis the aircraft flight dynamic stability across its space of trim states is 

characterised. 

 

 

6.2. TRIMMED FLIGHT 

6.2.1. Context 

The analysis of steady level flight in the biomimetic case study system provides an avenue 

through which forms of NPAS capability can be developed. To obtain steady level flight it is 

necessary to trim the aircraft, conventionally done via the elevators [3]. However, this 

system has a larger set of controlled degrees of freedom than a conventional aircraft, 

yielding a larger set of trimmed flight states. Even under the assumption of fixed wing 

sweep and dihedral, symmetrical control configuration and orientation (no roll or yaw 

relative to the airstream), and specified airspeed, the wing incidence is retained as an 

additional control degree of freedom relative to a conventional aircraft. Varying the wing 

incidence allows us to trim the aircraft at a varying angle-of-attack – including beyond stall – 

for the single specified airspeed. More generally, it is possible to devise trim states at 

asymmetric orientations (nonzero roll or yaw) and/or with asymmetric control 

configurations. 
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In the most general case, the trimmed aircraft must satisfy conditions of zero angular 

acceleration and zero translational acceleration at a given state of zero angular velocity and 

some fixed translational velocity. These accelerations are directly proportional to their 

corresponding moments and forces, and may be physically interpreted as such. In the case 

of symmetric forward flight with fixed wing sweep and dihedral, these conditions reduce to 

three conditions of zero pitching acceleration and zero vertical (𝑧) and forward (𝑥) 

translational acceleration – at given conditions of zero angular velocity, zero vertical and 

lateral translational velocity, and some specified forward velocity (the airspeed). The five 

free trim parameters are the body pitch (angle of attack), wing incidence, elevator 

deflection, airspeed and thrust force. This leaves two trim degrees of freedom 

unconstrained, and thus even if one is specified initially (e.g. the airspeed or angle of 

attack), then in general there will exist a continuous spectrum of trim states. As we have 

alluded to, this leads to the existence of trim states at a continuous range of angle-of-attack 

for a given airspeed. 

 

6.2.2. Trim state solvers 

To compute these continuous trim states a nonlinear solution / optimisation routine is 

devised. Given any initial complete state of the aircraft, with definitions both of the trim 

parameters (defined in some vector 𝐩) and the other local state, structure and 

environmental parameters, the aircraft equations of motion in an Euler angle framework 

may be generated through the results in Chapters 2-4. The quaternion framework is not 

conducive to a trim state analysis, as the system is discretised before the variational analysis 

is carried out, and thus its strong form (à la Eq. 4.2.21) is never formulated, and thus the 

aircraft accelerations are never defined. A quaternion implementation would require the 

computational of finite-difference gradients of velocity as an approximation of local 

acceleration. Moreover, the Euler angle framework allows constraints on flight symmetry 

(e.g. the restriction to the 𝑥-𝑧 plane) to be defined simply. In this framework, the aircraft 

accelerations at a given state may be computed via Eq. 4.2.21: 

𝐳̇ =

[
 
 
 
 𝐱̈𝑆

(𝑒)

̈

𝐱̇𝑆
(𝑒)

̇ ]
 
 
 
 

= 𝐅z(𝑡, 𝐳, 𝐩) = B1(𝐩)−1(𝐅(𝐩) − B0(𝐩)𝐳), 𝐳 =

[
 
 
 
 𝐱̇𝑆

(𝑒)

̇

𝐱𝑆
(𝑒)

]
 
 
 
 

 , (6.2.1) 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

166 

where 𝐩 represents the set of trim-relevant internal parameters. Generally this will 

represent the wing control parameters and other control surface deflections, but other 

parameters may be included (e.g. a payload mass). The variables 𝐱𝑆
(𝑒)

 and  and their 

derivatives are relevant to the trim optimisation in different way.  The spatial location (𝐱𝑆
(𝑒)

) 

is arbitrary and may be taken as zero with loss of generality. The orientation ( ) and 

translational velocity (𝐱̇𝑆
(𝑒)

) comprise the trim state variables; in the most general case all 

their elements are unconstrained. The angular velocity (proxy ) is specified to be zero; and 

the angular and translational acceleration (  and 𝐱̈𝑆
(𝑒)

) comprise the trim optimisation 

objective function in vector form. Trim state variables ( , 𝐱̇𝑆
(𝑒)

) such that the norm of this 

objective function ( , 𝐱̈𝑆
(𝑒)

) is zero are desired. 

 

The aircraft equations of motion under trim conditions may thus be expressed: 

𝐳̇ =

[
 
 
 
 𝐱̈𝑆

(𝑒)

̈

𝐱̇𝑆
(𝑒)

𝟎3×1]
 
 
 
 

= 𝐅z(0, 𝐳),   𝐳 =

[
 
 
 𝐱̇𝑆

(𝑒)

𝟎3×1

𝟎3×1
]
 
 
 
, (6.2.2) 

or, as a relation between the trim state (𝐯) and the trim objective vector 𝛆: 

𝛆 = [
𝐱̈𝑆

(𝑒)

̈
] = 𝐅𝛆(𝐯), 𝐯 = [

𝐱̇𝑆
(𝑒)

𝐩

]. (6.2.3) 

If the 𝛆 and 𝐯 is sufficiently constrained – via direct parameter specification – then trim 

states may be computed with nonlinear equation solvers. For example, a restriction to the 

𝑥-𝑧 plane with symmetrical control inputs and an initially specified airspeed 𝑈 and pitch 

angle 𝜃, yields a 3DOF trim state composed of = 𝜃 0 0 𝑇, 𝐱̇𝑆
(𝑒)

= [𝑈 0 0]𝑇, 𝐩 =

[𝜙𝑤, 𝛽𝑒 , Fprop]
𝑇

 for wing incidence 𝜙𝑤, elevator deflection 𝛽𝑒 and thrust force Fprop. The 

trim objective function is analogously reduced to 3DOF: 𝐱̈𝑆
(𝑒)

= [𝑥̈ 0 𝑧̈]𝑇, = 𝜃 0 0
𝑇

. The 

trim equation 𝛆∗ = 𝐅𝛆
∗(𝐯∗) = 0, with reduced states (⋅)∗ omitting the zero terms, may then 

be solved via Newton’s method: 

𝐯𝑖+1
∗ = 𝐯𝑖

∗  + J𝐯∗
−1(𝐯𝑖

∗)𝐅𝛆
∗(𝐯𝑖

∗) = 𝟎, (6.2.4) 

where J𝐯∗  is the Jacobian of 𝐅𝛆
∗ with respect to 𝐯∗. This Jacobian is computed using simple 

first-order forward differences. 
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In situations for which the trim equation is underconstrained – for instance, when the entire 

space of control surface and morphing deflections are available; many more than the 6DOF 

constraints – optimisation techniques, applied to a scalar trim error 𝜀 = ‖𝛆‖2, are required.  

We use MATLAB’s inbuilt simplex algorithm, an implementation of the method described in 

Lagarias et al. [4]. Lagrange multipliers or other discontinuous penalties may be included in 

the error definition (𝜀 = ‖𝛆‖2 + 𝑘), to account for inequality constraints on the trim state, 

e.g. elevator deflection out of range. The optimisation approach is thus useful for probing 

the existence of trim states in extremis, and locating the boundary of their existence. This is 

augmented by its ability to reliably compute near-trim states – those with small but nonzero 

pitching and translational moment/acceleration. However, latter also degrades its 

performance in conventional circumstances where only true trim states are desired. 

 

6.2.3. Trim states as a function of pitch angle 

Figure 6.2.1 shows several trim states at different pitch angles, and zero yaw or roll angle, 

computed via Newton’s method applied to the symmetric 3DOF 𝑥-𝑧 plane trim equation just 

noted, and confirmed with flight simulations (0.3 s excerpt shown). These demonstrate the 

range of trimmed angles-of-attack available to the aircraft, even at a fixed airspeed (25 

m/s). Simulations indicate that the minimum stable speed on the aircraft is 𝑈 = 16 m/s 

though lower speeds are possible if the lifting surfaces are stalled. A basic but natural 

method of understanding the complex trim behaviour of the aircraft is to define a grid over 

the set of possible trim states. Recall that in the symmetric 3DOF model, the trim state 

parameters are wing incidence (𝜙𝑤), elevator deflection (𝛽𝑒), angle of attack (𝜃), airspeed 

(𝑈) and propulsive force (𝐹prop). As grid parameters 𝜃 and 𝑈 are taken, and at each grid 

point a solution attempt is made: yielding either a trim state, or information regarding the 

nonexistence of the trim state. However, attempting to compute each grid point solution 

independently is both inefficient and prone to generating false negatives due to 

nonconvergence of the iterative trim equation solver. This grid method can be improved 

significantly by introducing numerical continuation. In this modified method, the solver 

starts at a known solution (here, 𝜃 = 0 rad and 𝑈 = 25 m/s, cf. Figure 6.2.1), and increment 

out into the (𝜃, 𝑈) grid. The initial guesses for a Newton iteration at a given grid point (as 

per Eq. 6.2.4) are taken to be the trim solutions from the previous point, thus greatly 

increasing the speed of the solver convergence. 
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Figure 6.2.1: Flight simulations of three aircraft trim states for 𝑈 = 25 m/s, scale in m. 
(A) Angle of attack 0.500 rad, Elevator deflection −0.717 rad, Wing incidence −0.397 rad, 
Thrust 19.2 N forward. 
(B) Angle of attack 0 rad, Elevator deflection 0.139 rad, Wing incidence 0.136 rad, Thrust 
4.15 N forward. 
(C) Angle of attack −0.300 rad, Elevator deflection 0.592 rad, Wing incidence 0.687 rad, 
Thrust 33.5 N forward. 
 

When the solver fails to converge, we can reliably conclude that the the limits of trim 

stability have been reached – at least on the given solution branch. For intelligibility, a 

natural continuation method [5], i.e. over a pre-specified grid, is used, with 𝜃 incremented 

first until solution failure and then a return to the initial state and an increment in 𝑈. For 

each level of 𝑈, both positive (+𝜃) and negative (−𝜃) continuation branches are followed, 

leading to a complete bound on trim existence. A more efficient approach would be to use 
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pseudo-arclength / Riks’ continuation in (𝜃, 𝑈) [6,7], but the resulting trim solution paths 

would be irregularly spaced, and thus difficult to understand visually or interpolate upon. 

 

The Newton solution process precludes any direct specification of the elevator limits (±0.87 

rad), and more generally any other control limits. However, these limits are key determiners 

of the bounds of trim state existence. To include their effect, the limiting values are 

substituted into any attempted evaluation on the elevator outside of them. The 

aerodynamic data of Selig [8] is defined only within these limits, and moreover this effect 

models accurately the response of a real aircraft to an out-of-range control command. It has 

the additional advantage of automatically triggering the termination of the Newton 

iteration, as the Jacobian becomes singular. Note that this may exclude some trim states 

just before the elevator cut-off, for which the iterations oscillate beyond the limits before 

converging. This problem could be circumvented by devising a Newton iteration using the 

pseudoinverse of the Jacobian, as is common in underconstrained problems, e.g. [9]. 

However the (potential) loss of these trim states is not significant, as they show no elevator 

control effectiveness in the direction of the limit and thus are likely to be useless for 

orientation control. 

 

Figures 6.2.2-6.2.4 show the results of this continuation analysis, with the continuation 

starting from 𝜃 = 0 rad and 𝑈 = 25 m/s. Several points may be noted. Greater airspeeds are 

associated with slightly wider ranges of trim state, though this is a process of diminishing 

returns; by 50 m/s the extension is insignificant (<0.01 rad). The point of transition to trim 

state non-existence is, in this case, determined entirely by the elevator limits – prescribed to 

be 0.87 rad, slightly less than the exact elevator limit. In Figure 6.2.4 it is observed that the 

trim continuation terminates at a grid point immediately beyond this limit. The wing itself 

remains within a narrowly varying effective angle of attack for each given airspeed. A sum of 

the approximate linear relation between with incidence and angle of attack, 𝜙𝑤(𝜃, 𝑈) =

−1.067𝜃 + 𝜙𝑤,0(𝑈), with the angle of attack itself (𝜃) yields the effective wing angle of 

attack, 𝜙eff,𝑤(𝜃, 𝑈) = −0.067𝜃 + 𝜙eff,𝑤,0(𝑈), which shows a tiny gradient. 

 

Physically, the process of obtaining a trim state at extreme fuselage angles of attack may be 

interpreted as a process of obtaining lift forces on the wings and horizontal stabiliser that 
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are near-identical to their trimmed values in the zero angle-of attack of attack state – for 

the wing, by maintaining a near-constant effective angle of attack, and for the horizontal 

stabiliser, by using elevator deflection as a corrector. The small nonlinearities in this relation 

are to account for (1) the slight difference in moment arm between the wings and horizontal 

stabiliser, due both to trigonometric effects, and more notably, the vertical (𝑧) position of 

the aircraft centre of mass; and (2) drag effects. 

 

These indicate structural approaches which have the potential to widen the trim state range 

within the given elevator limits.  Moving the aircraft centre of mass vertically downwards 

(−𝑧) with generate a more favourable moment arm for the horizontal tailplane in the pitch-

up state – creating further trim states at higher angles of attack – but will have an adverse 

effect on pitch-down trim states. Alternately, the wing can be mounted on a shoulder, 

above (+𝑧) the centre of mass and tailplane, leading to the same result. The opposite 

combination of effects can be obtaining by upwards (+𝑧) centre-of-mass motion or a 

downwards (−𝑧) shoulder, though both these may have a destabilising effect on the 

aircraft’s flight dynamic modes. Modification of the tailplane is also a possibility: larger 

horizontal stabilisers and / or elevators; leading to greater stabiliser lift and / or greater 

elevator control effectiveness, are an obvious approach, and tailplane incidence morphing is 

an extension of this. However, an intriguing alternative is simply the generation of 

additional tailplane drag (e.g. via tail-mounted airbrakes), which acts as an additional 

stabilising force and thus reduces the burden on the elevator controls. 
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Figure 6.2.2: Trim state thrust as a function of airspeed and angle of attack (body pitch, 𝜃), computed with numerical continuation starting 
from a solution at 𝜃 = 0 rad, 𝑈 = 25 m/s. The limits of the continuation paths in 𝜃 represent the limits of trim state existence in this locality. 
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Figure 6.2.3: Trim state wing incidence as a function of airspeed and angle of attack, computed with numerical continuation starting from a 
solution at 𝜃 = 0 rad, 𝑈 = 25 m/s. The limits of the continuation paths in 𝜃 represent the limits of trim state existence in this locality. 
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Figure 6.2.4: Trim state elevator deflection as a function of airspeed and angle of attack, computed with numerical continuation starting from 
a solution at 𝜃 = 0 rad, 𝑈 = 25 m/s. The limits of the continuation paths in 𝜃 represent the limits of trim state existence in this locality. 
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6.2.4. Trim states as a function of yaw angle 

Figure 6.2.5 shows two trim states at different yaw angles, and zero pitch and roll angles, 

computed via Newton’s method applied to the generalised trim equation (Eq. 6.2.4), and 

confirmed with flight simulations (0.4 s excerpt shown). The wing sweep is fixed, but 

asymmetric variation in the wing dihedral and incidence is permitted. The rudder and 

elevator deflection are additional trim parameters, but in this simulation differential 

elevator deflection (for roll/yaw control [10]) is not permitted. These trim results are highly 

significant in that they demonstrate that the wing morphing control – in the basic degrees of 

freedom studied here – leads to the existence of trim states at high yaw angles.  

 

 

Figure 6.2.5: Flight simulations of two aircraft trim states for 𝑈 = 25 m/s, scale in m, aircraft 
velocity exactly in the upwards direction: 

(A) Yaw angle 0.400 rad, Left incidence 0.268 rad, Right incidence 0.131 rad, Left dihedral -
0.2376 rad, Right dihedral −0.0436 rad, Elevator 0.182 rad, Rudder 0.809 rad, Thrust 14.1 N. 

(B) Yaw angle 0.200 rad, Left incidence 0.135 rad, Right incidence 0.166 rad, Left dihedral 
0.0373 rad, Right dihedral  0.128 rad, Elevator 0.147 rad, Rudder 0.254 rad, Thrust 5.30 N.  
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Figure 6.2.5 indicates that, with only small-amplitude dihedral and incidence motion 

alongside conventional control surfaces, trim states with at least 0.4 rad (c. 22°) yaw  are 

attainable. In a real system, flow shadowing effects between the fuselage and the inboard 

horizontal stabiliser (i.e. the right-hand one, in the direction of the velocity axis) will lead to 

a loss of lift on this stabiliser, and thus a rightwards roll moment in the currently computed 

state. However these effects are not likely to prove a barrier to the existence of these high-

yaw trim states, as any such moment can be corrected by incidence morphing or, if 

required, differential elevator control. 

 

The question of the relation between the active morphing or control surface degrees of 

freedom, and the size and / or existence of the set of yawed trim states is complex. Yawed 

trim states to not exist for systems constrained to conventional control surfaces – consistent 

with the nonexistence of such states in conventional aircraft. Nor do they exist for those 

additionally utilising only incidence morphing, symmetric or asymmetric. While, for both the 

latter, near-trim states (e.g. ‖𝛆‖2 < 0.1 at 𝜓 = 0.1 rad) are available, these also may not be 

entirely reliable as flow shadowing effects may not be correctable within these morphing 

constraints. 

 

In the case of asymmetric incidence and single-wing dihedral control, trim states do exist for 

systems exactly constrained with respect to the six acceleration degrees of freedom, though 

these all show slightly more restricted trim ranges relative to the general case of 

asymmetric dihedral and incidence. This shows a maximum yaw within 0.5 < 𝜓 < 0.6 rad. 

The system with asymmetric incidence and one of either dihedral constrained to zero 

(𝜃𝑤𝑙 = 0 or 𝜃𝑤𝑟 = 0), shows a maximum within 0.4 < 𝜓 < 0.5 rad. Note that the trims 

solution for these two constrains are not symmetrically equivalent to each other. The 

system with asymmetric incidence and symmetric incidence (𝜃𝑤𝑙 = 𝜃𝑤𝑟) shows a maximum 

within 0.3 < 𝜓 < 0.4 rad. However, despite the degradation in trim ranges, the 

constrainedness of these systems permits the use of Newton-based continuation methods 

as in Section 6.2.3. Continuation can be carried out with underconstrained systems via the 

simplex algorithm, but the continuous paths that are generated will generally be non-

smooth, and unreliable for tracing solution branches and their limits. 
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Figures 6.2.6-6.2.9 show an exploration of the trim state space via the continuation method 

as discussed in Section 6.2.3, using Newton’s method applied to the fully-constrained 

system with 𝜃𝑤𝑟 = Γ = 0. This constraint is retained even at 𝜓 < 0, corresponding to a 

switch between the constraining the outboard and inboard wings and thus generating a set 

of trim states that is asymmetric about 𝜓 = 0. The solution e.g. with the inboard wing 

always constrained (𝜓 > 0, 𝜃𝑤𝑟 = 0 and 𝜓 < 0, 𝜃𝑤𝑙 = 0) will self-evidently be symmetric, 

in the absence of any lateral asymmetries in the aircraft. The difference between the 

inboard and outboard constraints can be seen. The outboard constraints show a highly 

consistent limiting yaw angle of 𝜓 = 0.42 rad. The inboard constraint allows this maximum 

yaw angle to be matched or exceeded at all airspeeds considered, reaching up to 𝜓 = 0.48 

rad. However, it requires also much greater (c. 2x) dihedral angles, representing a significant 

increase in the control effort required to reach this maximum state from a trimmed nose-

forward condition. The slight increase (3°) in maximum stable yaw angle is thus unlikely to 

be worthwhile. 

 

Analogous to the pitched trim states, the key limiting factor is the maximum rudder 

deflection – all the solution paths terminate at this limit. Physically, this is because the 

rudder provides the main avenue for counteracting the lateral component of the thrust 

force. Notably, while the asymmetric dihedral and incidence provide a partial proxy for 

rudder deflection, trim states are nevertheless not possible under the initial assumption of 

zero rudder deflection. This underlines the dual importance of conventional control surfaces 

and morphing controls in generating these trim states. 
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Figure 6.2.6: Trim state thrust as a function of airspeed and body yaw, computed with numerical continuation starting from a solution at 𝜓 = 0 
rad, 𝑈 = 25 m/s. The limits of the continuation paths in 𝜃 represent the limits of trim state existence in this locality. 
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Figure 6.2.7: Trim state control surface deflections (elevator and rudder) as a function of airspeed and body yaw, computed with numerical 
continuation starting from a solution at 𝜓 = 0 rad, 𝑈 = 25 m/s. The limits of the continuation paths in 𝜃 represent the limits of trim state 
existence in this locality. 
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Figure 6.2.8: Trim state wing incidences (left and right) as a function of airspeed and body yaw, computed with numerical continuation starting 
from a solution at 𝜓 = 0 rad, 𝑈 = 25 m/s. The limits of the continuation paths in 𝜃 represent the limits of trim state existence in this locality. 
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Figure 6.2.9: Trim state wing dihedrals (left and right) as a function of airspeed and body yaw, computed with numerical continuation starting 
from a solution at 𝜓 = 0 rad, 𝑈 = 25 m/s. The limits of the continuation paths in 𝜃 represent the limits of trim state existence in this locality. 
Note the constraint 𝜃𝑤𝑟 = 0. 
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6.2.5. Trim states as a function of pitch and yaw, via dihedral morphing 

A wide variety of further trim states are also available. As an immediate extension of the 

trim states in independent nonzero pitch and yaw, these orientation angles can be varied 

concurrently, leading to full 3D control of the aircraft fuselage axis orientation. The same 

degrees of freedom that were used to compute the yaw-only trim states in Section 6.2.4 

allow such 3D control, within an appropriate envelope. The size of this envelope and the 

specification of the trim states within it may be computed by the same two-parameter 

continuation methods that were used to compute the 𝜃-𝑈 and 𝜓-𝑈 envelopes, applied to 

the orientation angles (𝜃-𝜓). 

 

Figures 6.2.10-6.2.13 show the results of this analysis. Figure 6.2.10 shows the computed 

trim state points and the interpolated envelope of available states, and Figure 6.2.11 the 

associated control surface deflections. In Figure 6.2.10, four trim states lying on the 

envelope are rendered, and for the internal computed points, the fuselage axis unit vector is 

shown. The right wing zero dihedral constraint from Section 6.2.4 is used; leading to an 

asymmetric envelope in yaw, corresponding to inboard/outboard wing constraints 

(indicated for reference in Figure 6.2.10). As can be seen, trim states exist within the bounds 

-0.49 < 𝜓 < 0.42 rad and 0.41 < 𝜃 < 0.53 rad, and at considerable combined angles – 

never less than an elliptical interpolation between these limits. As noted earlier, the inboard 

constraint allows for trim states at slightly larger yaw angles. 

 

The utility of the dihedral variable in constraining trim states resides in its ability to generate 

additional side force (in 𝑦) and yaw moment (in 𝑧) – through a sideways component of the 

lift force, and a vertical component of the aerofoil moment. This can be used to balance an 

asymmetry in side force and/or yaw moment arising from the yawed fuselage and vertical 

stabiliser. The distinction between inboard and outboard wing constraints leads thus to left 

wing dihedral and anhedral, respectively, as yawed trim states in the case study system 

universally require inboard-directed side force and yaw moment from the dihedral. Figure 

6.2.12 indicates this effect. The wing incidence additionally be utilised to control the 

differential between the lift force (generating a yaw moment and side force) and the 

aerofoil moment (generating only a yaw moment). This allows independent control of the 

yaw moment and side force to correct these two asymmetric forces/moments. However, 
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the choice of inboard / outboard morphing is very significant – not only because the trim 

state dihedrals are not anti-symmetric (cf. Figure 6.2.10), but because the change between 

dihedral and anhedral has significant effects on the stability of the aircraft spiral mode. This 

stability effect is analysed in Section 6.3. 

 

Figure 6.2.11 shows the required control surface deflections over the space of available trim 

states: this demonstrates again that is the elevator and rudder limits (±0.87 rad) that are 

the primary constraints on trim state existence; the elevator in pitch and the rudder in yaw. 

Indeed, the space of trim states is largely rectangular, with only small edge fillet radii and 

small curvature in the control surface deflection contours, indicating that the trimmed pitch 

and yaw degrees of freedom are largely uncoupled, and are limited by their respective 

control surface limits largely independently. This is however a strongly-system specific 

result: a greater control surface effectiveness would both increase the size of the trim state 

envelope and modify its shape (probably to be smoother) as other factors become limiting. 

 

Figures 6.2.10-6.2.11 present results for the case of inboard/outboard constraints at zero 

dihedral; however these constraints may be fixed to nonzero values, or may be varied 

continuously throughout a manoeuvre. In the case of the former, such a change effectively 

creates a new reference state at zero yaw with symmetric dihedral equal to the constraint 

value; trim states at nonzero yaw are then forced to shift in the same direction as the 

constraint change (though this shift is not linear). The end result of this is a relatively small 

shift in the space of trim states – Figure 6.2.13 indicates the effect of a right wing constraint 

of Γ = 0.3 rad (c. 17°) – but with the potential for significantly changing the stability 

properties of the aircraft. Positive dihedral values, such as Γ = 0.3 rad, would 

phenomenologically be expected to improve the aircraft spiral mode stability. 
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Figure 6.2.10: The space of available trim states in pitch and yaw, for the system with asymmetric incidence and dihedral morphing, under a 
right wing zero dihedral constraint. Computed trim state points, their corresponding fuselage orientation vectors, four example aircraft 
renderings, and the interpolated envelope of available states are shown. 
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Figure 6.2.11: Trim state control surface deflections over the pitch-yaw trim state 
envelope, for the system with asymmetric incidence and dihedral morphing, under a right 
wing zero dihedral constraint. 
 
 
 
 
 
 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

185 

 

Figure 6.2.12: Schematic of the inboard-oriented forces from the asymmetric wing dihedral. 
 

 

Figure 6.2.13: Overlaid trim spaces for right wing dihedral constraints  Γ = 0 and Γ = 0.3 
rad. 
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6.2.6. Other trim states 

So far, this study has focused on nose-forward trim states with varying pitch and yaw. This is 

because these states enable a useful form of 3D aircraft orientation control independent of 

flight state – a form of NPAS or direct force capability, as characterised by Gal-Or [1] and 

Herbst [2] respectively. This capability is useful for particularly useful for fuselage-mounted 

equipment with some form of directional action – e.g. weaponry, sensory equipment, or 

lasers for laser-guidance systems. This form of orientation control is distinct from rapid-

nose-pointing-and-shooting (RaNPAS) capability [1], which involves rapid transient changes 

to the aircraft orientation. More optimal biomimetic morphing controls are available for the 

latter, and these are studied in Chapter 7. The advantage of trim state orientation control is 

the capability for precise orientation control over long timescales. In an air-to-air combat 

environment, this would have utility in situations in which a prolonged lock-on is required – 

for example, in allowing multiple rounds of ammunition to be dispensed, or maintaining a 

guidance laser lock. However, the range of orientations in which this form of control is 

available is more limited (cf. Figure 6.2.10). Further study of this form of direct force 

capability in this system is presented in Section 6.4.  

 

Other trim states outside this specification are also available, and they also enable forms of 

orientation control, but these have more limited utility. Nose-backward trim states are 

available, also with nonzero pitch and yaw, providing that the propulsion system permits the 

generation of reverse thrust (e.g. a propeller actuated via an electric motor). These states 

can only be reached from the nose-forward position by transient manoeuvres – not by a 

continuous trim state path – but such manoeuvres could have situational utility – e.g. in 

aerial combat, to orient fuselage-mounted weaponry in a rearward direction. Figure 6.2.14 

shows an example of a nose-backward trim state, with a comparison between two solutions 

with the wing leading edge backwards and with it forwards (incidence > 180°), representing 

the difference between the availability of small-angle and large-angle incidence morphing 

respectively. The leading-edge-forward solution shows a very significant decrease in the 

reverse thrust required. 
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Figure 6.2.14: Flight simulations of two nose-backward, trim states, at 𝑈 = 25 m/s, 𝜓 = 0 
rad, 𝜃 = 𝜋 + 0.1 rad (= 0.1 rad in reverse), and utilising reverse thrust. Scale in m. 
(A) Elevator deflection −0.0890 rad, Wing incidence 0.324 rad (aerofoil leading edge 
backward,) Thrust −38.5 N. 
(B) Elevator deflection −0.117 rad, Wing incidence 𝜋 + 0.0471 rad (aerofoil leading edge 
forward), Thrust −5.26 N. 
 

Trim states at nonzero roll angle are also available: a simple method of obtaining them is 

use asymmetric dihedral to set the wings to a conventional orientation (lift collinear with 

gravity) and then to correct the moment imbalance from the tailplane with asymmetric 

control surface deflection and / or wing incidence and additional dihedral. However, these 

trim states have minimal application, apart from rotating equipment that is vertically-

oriented on the fuselage in a lateral direction – e.g. side-to-side motion of downwards-

facing sensory equipment. However in most conceivable cases, alternative solutions will be 

preferable, such as use of transient / non-trim states to achieve the same rotation 

temporarily, or the use of wide-angle lenses for optical equipment. For this reason these 

trim states are not considered further. 
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Finally, though this study has demonstrated the existence of pitched, yawed and nose-

backward trim states for this aircraft, this analysis has been confined to a relatively 

restrictive set of morphing and control parameters – the control surfaces, asymmetric 

incidence, and a restrictive form of asymmetric dihedral. Other parameter selections may 

have the potential to enlarge the space of available trim states. In particular, the sweep 

degree of freedom (symmetric or asymmetric) has not yet been considered.  Preliminary 

analyses indicate that the sweep degree of freedom does not significantly enlarge the set of 

trim states in pitch, but does generate high imbalanced pitching moments – making it more 

useful as an avenue for a high level of pitch control effectiveness within a trim state, e.g. for 

transitioning between nose-forward and nose-back states, and for performing other 

transient manoeuvres. Asymmetric sweep morphing is primarily useful for generating roll 

moments via the lift deficiency on one swept wing. This can be used to correct the roll 

moments generated by asymmetric incidence, leading to an isolated yaw moment via the 

asymmetric drag force – a proxy for rudder control. 

 

 

Substituting the dihedral degree of freedom in the pitch-yaw continuation analysis (Section 

6.2.5) with the sweep degree of freedom, and analogously constraining the right-wing 

sweep to be zero, a space of trim states in pitch and yaw is again obtained. The results are, 

however, significantly different to those with dihedral morphing active. Figures 6.2.15-

6.2.16 show the results of the continuation analysis for the system with sweep morphing, 

including the required rudder and elevator deflections. The overall space of trim states 

forms an hourglass shape: with a general absence of trim states around the origin, 

particularly at small positive pitch angle. Notably, the non-existence of these states is not a 

result of the limits of elevator and rudder control effectiveness (as in Figure 6.2.11) but is 

due to the presence of an uncorrectable roll moment. This is probably connected with the 

fact that the sweep degree of freedom – whether forwards or backwards – cannot increase 

the lift of the wing beyond the zero sweep case, and thus cannot correct an excess of lift 

from the opposing wing; only a deficiency. This effect is also probably the primary reason 

behind the high degree of lateral asymmetry in the trim state space, e.g. the general 

nonexistence of states in the (−𝜃,−𝜓) quadrant. 
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Figure 6.2.15: The space of available trim states in pitch and yaw, for the system with asymmetric incidence and sweep morphing, under a 
right wing zero sweep constraint. Computed trim state points, their corresponding fuselage orientation vectors, four example aircraft 
renderings, and the interpolated envelope of available states are shown. 
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Figure 6.2.16: Trim state control surface deflections over the pitch-yaw trim state envelope, 
the system with asymmetric incidence and sweep morphing, under a right wing zero sweep 
constraint. 
 
 
 
 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

191 

Approaches for enlarging the trim space could involve activating the opposing wing sweep 

degree of freedom, or at least constraining it to a nonzero value, as well as the use of 

differential elevator control to correct roll moments. However, as the hourglass pitch-yaw 

trim space under asymmetric sweep morphing may be verified to be a pure subset of the 

pitch-yaw trim space under asymmetric dihedral morphing (with a simple right wing zero 

dihedral constraint), a switch to dihedral morphing is likely to be preferable. 

 

6.3. TRIM STATE STABILITY 

6.3.1. Flight dynamic stability 

Trim states may be stable or unstable in their flight dynamic modes. The question of trim 

state stability is of secondary importance as regards NPAS / direct force capability, as many 

unstable modes can be stabilised with active control / fly-by-wire systems. Such stabilisation 

methods are used in a variety of existing aircraft and UAVs which have unstable airframes. 

For this reason, the stability or otherwise of a trim state has only a secondary effect on its 

potential for real-world application in the case study system – particularly as such an 

application is almost certain to require a fly-by-wire system, as the number of morphing 

degrees of freedom are greater than can be feasibly controlled by manual input. However, 

the application of these stabilisation methods to the case study system is beyond the scope 

of this work. For this reason, the direct force capabilities of this aircraft are demonstrated in 

open-loop flight simulations of trim states that are stable in most or all flight dynamic 

modes – the exception being the spiral mode, which is permitted to show a degree of 

instability.  

 

Unstable modes will manifest themselves in flight simulations, and may thereby be 

identified; they may also be computed via stability analysis. Static longitudinal and lateral 

stability are addressed via a static stability analysis, and the stability of other modes via 

parametric flight simulation studies. State-space dynamic stability analysis is a more 

common alternative to the latter, but is not directly applicable to the case study model, 

which is strongly nonlinear in the time domain. Deriving and validating a linearised model 

for state-space analysis would useful but is not otherwise motivated: a nonlinear analysis is 

more appropriate for the impending NPAS analysis, as nonlinear effects in the system’s 

asymmetric trim states can be very pronounced (see Section 6.3.3). 
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6.3.2. Static stability 

The static longitudinal and lateral stability of the case study aircraft may be characterised by 

the two classical stability criteria: 

𝜕𝜃̈

𝜕𝜃
< 0, for longitudinal static stability, 

𝜕𝜓̈

𝜕𝜓𝑆
< 0, for lateral static stability, 

(6.3.1) 

where 𝜃 is the pitch angle, 𝜓 the yaw angle, and 𝜓𝑆 the sideslip angle – the yaw angle 

between the aircraft body-fixed axes, and the aircraft velocity. Note that when 𝐱̇𝑆
(𝑒)

=

[𝑈 0 0]𝑇, 𝜓 = 𝜓𝑆, an assumption used throughout this stability analysis. These criteria are 

traditionally formulated with an inertia term, leading to the derivative of a moment: 

𝜕𝐼𝜃𝜃̈ 𝜕𝜃⁄ = 𝜕𝑀𝜃 𝜕𝜃⁄ , a change which has no effect on the computed stability 

characteristics. The pitch and yaw accelerations, 𝜃̈ and 𝜓̈, may be generated directly from 

the aircraft constitutive equations, 𝐳̇ = 𝐅z(𝑡, 𝐳, 𝐩) (Eq. 6.2.1). Their gradients w.r.t. the 

appropriate orientation angles (𝜃, 𝜓𝑆 or 𝜓)  be approximate by perturbing these angles 

away from a given trim state condition (𝑡 = 0, specified 𝐳, 𝐩), and computing a finite 

difference. Second-order differences are used, e.g. in pitch: 

𝜕𝜃̈

𝜕𝜃
≅

𝜃̈(𝜃trim + Δ𝜃) − 𝜃̈(𝜃trim − Δ𝜃)

2Δ𝜃
. (6.3.2) 

These stability metrics are then computed across the space of computed trim points (e.g. as 

per Figure 6.2.10). Figure 6.3.1 shows these metrics across the space of trim points, for two 

different system configurations with a right wing dihedral constraint; with right wing 

dihedral constraint Γ = 0, and with Γ = 0.3 rad (cf. Section 6.2.5). These systems represent 

changes to the trim state geometry which are expected to have effects on the aircraft spiral 

mode stability. Figure 6.3.1 also indicates the stability boundaries (e.g. 𝜕𝜃̈ 𝜕𝜃⁄ = 0). 

 

Nearly the entire trim spaces for both Γ = 0 and Γ = 0.3 rad are laterally and longitudinally 

stable, except for a tiny area of lateral instability in the Γ = 0.3 rad space at c. 0.1 ≤ 𝜓tgt ≤ 

0.2 rad and 𝜃tgt = 0.5 rad. Around this unstable zone there is a region of borderline stability, 

larger in the pitch dimension than in yaw. Overall, the difference between Γ = 0 and Γ = 0.3 

rad is relatively small: the change to Γ = 0.3 rad leads to a slight increase in longitudinal 
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stability at positive pitch angles, a slight decrease at negative pitch angles, and a slight 

decrease in lateral stability across the trim and constraint direction space. The choice 

between inboard and outboard dihedral constraints has a more significant effect, with the 

inboard constraint increasing longitudinal stability but decreasing lateral stability across the 

trim space at both Γ values. 

 

6.3.3. Nonlinear spiral stability 

In the open-loop framework of this study, the tendency of the aircraft to spiral away from a 

level and forward flight path under perturbation is of interest: this will have an effect on the 

control of the aircraft NPAS / direct force capability, as the controlling trim states are 

computed under level forward flight (by definition). In the context of a conventional flight 

stability analysis, this tendency to spiral roughly equates to the stability of the aircraft spiral 

mode. In precise terms, the spiral mode refers to a static (non-oscillatory) mode in reduced-

order models of conventional aircraft with linear stability derivatives. The extent to which 

spiral-type responses in asymmetric trim states such as those considered in Section 6.2.5 

are representations of a traditional spiral mode is thus open to debate. To avoid the 

potential pitfalls of a conventional spiral-mode stability analysis, and because to perform 

the latter would require significant state-space model reformulation, we utilise parametric 

flight simulations in the case study nonlinear time-domain model to assess the extent of 

spiral-type behaviour in the trim states of the case study system. 

 

This approach has advantages and disadvantages. Disadvantages; in that such simulations 

conflate two effects within the spiral, the modal mass (as excited by the initial perturbation) 

and the spiral mode stability (growth rate), as well as the aircraft transient response to 

perturbation in other modes, e.g. short period or Dutch roll [11]. These effects obscure the 

stability changes in the individual modes. Advantages; in that the distinction between 

conventional modes may not be helpful for strongly asymmetric trim states, and that the 

conflation of modal mass and growth rate via time-domain simulation yields a more 

accurate assessment of the response of the aircraft to perturbation. The latter is self-

evident from the fact that these simulations are direct measurements of the aircraft 

perturbation response – modal arguments serve only to generalise this behaviour to a wider 

space of perturbations than those simulated. 
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Flight simulations are carried out at airspeed 𝑈 = 25 m/s, for a duration of 𝑇 = 15 s, for trim 

states at target yaw (sideslip) angles −0.4 ≤ 𝜓tgt ≤ 0.35 rad and pitch angles 0 ≤ 𝜃tgt ≤ 0.4 

rad, with right dihedral constraints of Γ = 0 and Γ = 0.3 rad. Note again that 𝜓tgt < 0 

represents an inboard-wing constraint, and 𝜓tgt > 0 and outboard-wing constraint, as per 

Figure 6.2.10. The aircraft is subject to initial yaw perturbations of Δ𝜓 = ±0.05 rad relative 

to 𝜓tgt. Yaw rather than roll perturbations are utilised, because the yaw degree of freedom 

is not dependent on the target trim state orientation, whereas the roll angle is – potentially 

further obscuring the spiral stability effects due to differences in spiral mode excitation as a 

function of 𝜓tgt and 𝜃tgt. For example, in the hypothetical extreme case of a trim state at 

𝜓tgt = 90°, a perturbation in fuselage roll angle would not correspond to a spiral mode 

excitation at all, but an effective pitch angle perturbation. 

 

To measure the degree of spiral instability in these flight simulations, dimensionless metrics 

in aircraft lateral (𝑦) position, roll angle and yaw angle are computed (𝑦mt, 𝜙mt and 𝜓mt). 

These metrics are based on the aircraft lateral position, roll angle and yaw angle at the 

simulation endpoint, 𝑡 = 𝑇. 

𝑦mt = 𝑦|𝑡=𝑇 (−𝑇𝑈 sgn Δ𝜓)⁄  

𝜙mt = 𝜙|𝑡=𝑇 Δ𝜓⁄  

𝜓mt = (𝜓|𝑡=𝑇 − 𝜓tgt) Δ𝜓⁄  

(6.3.3) 

The scale factor for the lateral position is the distance travelled by the aircraft under the 

ideal state of no spiral deflection, i.e. 𝑇𝑈 = 375 m . The scale factor for roll and yaw angles 

is the yaw perturbation Δ𝜓. The metrics are signed, such that the expected spiral response 

to a positive yaw perturbation (+Δ𝜓) are positive lateral deflection, positive yaw, and 

negative roll metrics (+𝑦mt, +𝜓mt, −𝜙mt). This is relevant, as some trim states are 

observed to spiral in the opposite direction to the perturbation. While it is possible to use 

more sophisticated metrics base on exponential fitting to isolate the spiral mode growth 

rate, tests with such metrics failed to generate any further fundamental insights due to a 

strong dependency on the fitted model used. Spectral methods are of no use to isolate the 

static spiral mode; and while the Hilbert-Huang transform [12] has been previously used to 

isolate longitudinal modal behaviour from data, a generalisation to lateral behaviour is not 

yet available.  
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To aid understanding, Figures 6.3.2-6.3.4 show example dimensional yaw and lateral 

deflection histories for trim states for −0.3 ≤ 𝜓tgt ≤ 0 rad and 𝜃tgt = 0.1, 0, −0.3 rad. The 

result from 𝜃tgt = 0.1 rad is representative of the results from 0.1 ≤ 𝜃tgt ≤ 0.4 rad. A 

quasilinear zone is observed from 𝜓tgt = 0 to c. 𝜓tgt = −0.2 rad, in which the paths trends 

are linear. In this zone, Γ = 0.3 rad yields a stable spiral mode, and Γ = 0 an unstable spiral 

mode. However, beyond 𝜓tgt = −0.2 rad, the lateral and yaw paths diverge erratically from 

their low-angle equivalents, and in the case of Γ = 0.3, show a change in spiral direction. 

Furthermore, in all simulations the spiral direction for Γ = 0 is opposite to that expected, 

with negative perturbations in yaw generating a positive spiral in 𝜓 and a negative spiral in 

𝑦 (negative lateral metric and negative yaw metric). 

 

These effects are potentially attributable to two factors: the asymmetry of the trim state, 

leading to directional spiral tendencies in the aircraft (an effect beyond the capability of the 

spiral mode to describe), and the ability of the initial aircraft transient response (e.g. in 

Dutch roll, oscillatory roll and yaw  [11]) to provide an excitation of the spiral mode that is 

different to that of the initial perturbation. The existence of the latter effect exists is 

confirmed by the simulation at 𝜓tgt = 0, which spirals in the opposite direction to the 

perturbation. Thus in the first instance, the tendency of the Γ = 0 system, in its quasilinear 

zone, to spiral away from the initial perturbation may be attributed to the transient Dutch 

roll response, which excites the aircraft spiral mode in the opposite direction to the initial 

perturbation. While any variation in the aircraft transient response has the potential to 

introduce uncontrolled variation in the spiral mode results, this response is observed to 

show relatively minimal variation across 𝜓tgt and Γ; as may be seen in Figures 6.3.2-6.3.4. 

On the other hand, while the effect of aircraft asymmetry may be assumed to be 

qualitatively significant, quantifying this is effect more difficult. This will be done further on 

in this section.  

 

Figure 6.3.2 shows the raw flight data for 𝜃tgt = 0, and Figure 6.3.3 that for 𝜃tgt = −0.3 rad. 

These results are representative of the zone −0.3 ≤ 𝜃tgt ≤ 0 rad, in that they demonstrate 

the decreasing stability of the Dutch roll mode (oscillatory roll and yaw) with decreasing 𝜃tgt 

over this zone. For Γ = 0, this mode remains stable over −0.3 ≤ 𝜃tgt ≤ 0 rad despite the 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

196 

decreasing stability; but for Γ = 0.3 rad, the mode destabilises rapidly and is highly unstable 

by 𝜃tgt = −0.3 rad. This destabilisation represents one disadvantage from the otherwise 

positive effects of the dihedral increase, and makes the space 𝜃tgt < 0 with Γ = 0.3 rad 

unusable for open-loop orientation control. The prominence of the Dutch roll mode in these 

subspaces makes the spiral mode difficult to characterise: this is observed when spiral 

stability metrics are computed over the system trim space. 

 

Figures 6.3.5-6.3.7 show the computed lateral position, roll and yaw metrics fields over the 

entire trim spaces of the Γ = 0 and Γ = 0.3 systems under a right wing dihedral constraint 

(i.e. inboard at 𝜓tgt < 0, outboard at 𝜓tgt > 0), with the fields are capped at maximal values 

to for clearer presentation. Two notable features of Figures 6.3.5-6.3.7 are the maximal roll 

and yaw metrics below 𝜃tgt = 0, often switching erratically in sign. This is due to two 

factors: the capture of the unstable Dutch roll mode at positive or negative points on its 

cycle; and nonlinear directional effects, leading to a preferred spiral direction for the 

aircraft. The former can be observed in Figure 6.3.4 (in extremis); and the latter in the same; 

e.g. in the single erratic path with positive lateral metric. These nonlinear directional effects 

will be analysed more fully later. Overall, the combination of instabilities below 𝜃tgt = 0 

leads us to restrict further spiral mode analysis to 0 ≤ 𝜃tgt ≤ 0.4. It is this more usable zone 

that will be analysed in detail. 

 

Figure 6.3.8-6.3.10 shows lateral position, roll and yaw metric plots for the trim space 

0 ≤ 𝜃tgt ≤ 0.4, −0.4 ≤ 𝜓tgt ≤ 0.35 rad, with Γ = 0 and Γ = 0.3 rad under a right wing 

dihedral constraint (inboard 𝜓tgt < 0, outboard 𝜓tgt > 0). This represents the trim subspace 

with stable Dutch roll mode. These plots map the strength of the spiral mode across this 

space; their purpose is to indicate whether the increase in dihedral to Γ = 0.3 rad has 

consistent positive effects for spiral stability, and whether inboard or outboard dihedral 

constraints are more effective for minimising spiral deflection in this stable zone. As regards 

the change in dihedral: the lateral and yaw metrics indicate a modest increase (c. 50%) in 

spiral stability over the quasi-linear zone, −0.2 ≤ 𝜓tgt ≤ 0.2, resulting from the increase in 

dihedral, but significant inconsistency outside this range.  In roll metric, however, the results 

are very clear-cut: the increase in dihedral result in a significant restoring force to 𝜙 = 0 for 
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trim states at nearly all orientations – the primary exceptions being outboard dihedral 

constraints with 𝜓tgt > 0.2 rad. Note that, in the roll results, a residual nonzero metric in 

yaw and lateral is expected even for states with stable spiral modes, as the transient 

response to the initial perturbation will rotate the flight velocity vector away from [𝑈 0 0]𝑇 

to a new default forward flight state at nonzero yaw. This effect cannot be corrected by 

passive flight dynamics, but requires active guidance. 

 

As regards the effect of inboard/outboard dihedral constraints: in the case of Γ = 0, all 

three metrics indicate that the inboard constraint is yields a significant improvement in 

spiral stability. In the linear zone, the spiral metrics show an approximately linear 

dependence on 𝜓tgt, favouring  𝜓tgt < 0 for stability, and even the nonlinear zones show a 

clear improvement in spiral metrics. In the case of Γ = 0.3 rad, the inboard and outboard 

quasilinear zones show equally high degrees of stability, but the nonlinear zone shows an 

erratic trend: the outboard nonlinear zone (𝜓tgt > 0.2 rad) shows divergence in roll, a 

serious effect in an otherwise strongly roll stable system, whereas the inboard nonlinear 

zone (𝜓tgt < −0.2 rad) shows a strong lateral and yaw divergence. Overall, the inboard 

constraint is preferable in terms of spiral stability, though with diminished benefit at higher 

dihedral values. 

 

Finally, to investigate the nonlinear zone instability effects in more detail, the effect of 

positive / negative (inboard / outboard) yaw perturbations on the spiral response of the 

aircraft is analysed. Asymmetries in the spiral response to ± perturbations would be directly 

attributable to nonlinear effects arising from the asymmetry of the trim state – even if the 

transient Dutch roll response is in fact the prime excitation of the spiral mode, this transient 

response would be expected to be symmetric in a linear system. In particular, such 

asymmetries would be indicative of tendencies for the aircraft to spiral in a particular 

direction (inboard or outboard) even against the direction of perturbation, an effect which 

would be phenomenologically consistent with the asymmetry of the trim state. 

 

Figures 6.3.11-6.3.13 shows the system lateral position, roll and yaw metrics for positive and 

negative (outboard and inboard) perturbations to the systems with inboard dihedral 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

198 

constraint (i.e. right wing constraint, 𝜓 < 0), Γ = 0 and Γ = 0.3. In the quasilinear zone, no 

asymmetries are observed between the inboard and outboard perturbations: the trim states 

perform as a conventional aircraft. The strong spiral effects that mark the end of this zone, 

on the other hand, show almost perfect antisymmetry, with the extant small differences are 

attributable to the superposition of linear effects or slight differences in the modal mass of 

the perturbation response. Antisymmetric peaks which are positive in the inboard 

perturbation indicate a tendency to spiral inboard; mutatis mutandis for antisymmetric 

outboard positive peaks. These effects may be corroborated with the dimensional flight 

paths in Figures 6.3.2-6.3.4, which further indicate the unusual nature of these spiral paths, 

which show an initial exponential growth but then stabilise to an alternate quasi-trim state. 

 

A few effects influencing these spiral paths should be noted. The magnitude of the 

asymmetric response peaks need not necessarily represent the relative magnitude of the 

directional effect at the trim state themselves, as the former is also influenced by the state’s 

properties away from the trim state. It is, however, indicative of a directional tendency at 

least large enough to overcome the initial perturbation direction. An argument for 

asymmetry of modal mass (i.e. mode excitation) could also be made to account for 

differences in the magnitude inboard / outboard perturbation response, but would not 

suffice to explain a reverse in perturbation response direction and the strong antisymmetry 

observed.  
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Figure 6.3.1:  
Longitudinal and 
lateral static stability 
metrics across the 
trim space of the 
case study system, 
for zero and positive 
dihedral states. 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

200 
 
 

 

Figure 6.3.2: 
Flight simulation results 
from the spiral mode 
stability analysis, for trim 
states at yaw angle target 
𝜓tgt ∈ [0, −0.3] rad, and 

pitch angle target 𝜽𝐭𝐠𝐭 = 

0.1 rad; for both Γ = 0 
and Γ = 0.3 rad inboard 
wing constraints. The yaw 
perturbation is negative:  
Δ𝜓 = −0.05. 
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Figure 6.3.3: 
Flight simulation results 
from the spiral mode 
stability analysis, for trim 
states at yaw angle target 
𝜓tgt ∈ [0, −0.3] rad, and 

pitch angle target 𝜽𝐭𝐠𝐭 = 0 

rad; for both Γ = 0 and 
Γ = 0.3 rad inboard wing 
constraints. The yaw 
perturbation is negative:  
Δ𝜓 = −0.05. 
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Figure 6.3.4: 
Flight simulation results 
from the spiral mode 
stability analysis, for trim 
states at yaw angle target 
𝜓tgt ∈ [0.02, −0.3] rad, 

and pitch angle target 
𝜽𝐭𝐠𝐭 = −0.3 rad; for both 

Γ = 0 and Γ = 0.3 rad 
inboard wing constraints. 
The yaw perturbation is 
negative:  Δ𝜓 = −0.05. 
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Figure 6.3.5: Lateral deflection factors over the entire Γ = 0 and Γ = 0.3 rad trim spaces. 
 
 
 
 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

204 
 
 

 
 

 

Figure 6.3.6: Roll deflection factors over the entire Γ = 0 and Γ = 0.3 rad trim spaces. 
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Figure 6.3.7: Yaw deflection factors over the entire Γ = 0 and Γ = 0.3 rad trim spaces. 
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Figure 6.3.8:  
Lateral deflection 
factors over the trim 
space of the case 
study system, zero 
and positive dihedral 
states. 
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Figure 6.3.9:  
Roll deflection  
factors over the trim 
space of the case 
study system, zero 
and positive dihedral 
states. 
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Figure 6.3.10:  
Yaw deflection  
factors over the trim 
space of the case 
study system, zero 
and positive dihedral 
states. 
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Figure 6.3.11: Symmetry breaking effects in the lateral deflection factors, between inboard- and outboard-directed perturbations to trim 
states under inboard-wing dihedral constraints (right wing, 𝜓 < 0), for dihedral values Γ = 0 and Γ = 0.3 rad. 
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Figure 6.3.12: Symmetry breaking effects in the roll deflection factors, between inboard- and outboard-directed perturbations to trim states 
under inboard-wing dihedral constraints (right wing, 𝜓 < 0), for dihedral values Γ = 0 and Γ = 0.3 rad. 
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Figure 6.3.13: Symmetry breaking effects in the yaw deflection factors, between inboard- and outboard-directed perturbations to trim states 
under inboard-wing dihedral constraints (right wing, 𝜓 < 0), for dihedral values Γ = 0 and Γ = 0.3 rad. 
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6.4. QUASISTATIC NPAS: DIRECT FORCE CAPABILITY 

6.4.1. Introduction 

The extended set of trim states in the case study biomimetic aircraft leads immediately to a 

basic form of supermanoeuvrability. Herbst [2,13] characterised this as direct force 

capability: the ability to change the orientation of the aircraft independent of the flight 

state. Moving the aircraft geometry through the space of trim states will lead to aircraft 

orientation changes that are largely independent of the flight state, providing the trim 

states are stable (statically, at least), and that the trim state changes are not more rapid 

than the aircraft can respond to. Herbst characterised this capability as a form of 

supermanoeuvrability, even though these manoeuvres need be neither post-stall nor 

strongly transient. This capability intersects the rapid-nose-pointing-and-shooting (RaNPAS) 

manoeuvres characterised by Gal-Or [1]. Trim state motion can be used to for RaNPAS 

capability in a limited window of orientation and angular velocity; but it also enables 

arbitrary forms of nose-pointing-and-shooting (NPAS) within this window, including longer-

timescale point-and-hold manoeuvres. Biomimetic wing morphing is a well-suited 

mechanism for attaining and controlling this quasistatic NPAS capability, which additionally 

becomes achievable at low or zero thrust. No literature on this subject currently exists: 

hence the generalisations from non-morphing flight dynamics that have been made over 

Sections 6.2-6.3. 

 

6.4.2. Response time tests 

The response time of the aircraft to changes in trim state configuration is one factor which 

may cause additional flight path changes alongside intended NPAS orientation changes. In 

the manner of a first-order system, inducing a change in aircraft trim state during flight – 

itself a process that is not instantaneous – will yield a transient change in the aircraft 

orientation towards the target state, if this transition is stable. Again, in the manner of a 

first-order system, this degree of transience can be characterised with a time constant or 

response time. 

 

To obtain a quantitative measure of this response time, NPAS capability tests are carried out 

for basic oscillatory pitch and yaw targets, and the effect of the oscillation period on the 



Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

213 

accuracy of the flight simulations w.r.t. to their target is assessed. For oscillatory orientation 

target paths, a general scroll-shaped oscillatory target formulation is used: 

𝑟 = {
0.5(1 − cos(2𝜋𝑡 𝑇⁄ )) 0 ≤ 𝑡 ≤ 𝑇 2⁄

1 𝑡 ≥ 𝑇 2⁄ ,
 

𝜓tgt(𝑡) = 𝑟(𝜓amp cos(2𝜋𝑡 𝑇⁄ ) + 𝜓0), 

𝜃tgt(𝑡) = 𝑟(𝜃amp sin(2𝜋𝑡 𝑇⁄ ) + 𝜃0), 

(6.4.1) 

with parameters 𝑇 > 0, the period of the oscillation; 𝜓amp and 𝜃amp, the pitch and yaw 

amplitudes; and 𝜓0 and 𝜃0, the pitch and yaw centre points. Figure 6.4.1 presents the target 

time histories for two sets of example parameters. For all parameter sets, the orientation 

targets are continuously differentiable (∈ 𝐶1) and start from an initial state 𝜓tgt = 𝜃tgt = 0 

with zero initial time derivatives for all parameters. This represents a realistic start from a 

conventional trim state. Trim states are computed along these target paths by a natural 

parameter continuation method [5,14], in which the solution of the nonlinear trim 

equations is carried out along a discretisation of the paths, with the solution from the 

previous step providing the initial guess for the next step. The allows arbitrary target paths 

to be computed, even for unfamiliar systems. 

 

To estimate the aircraft response times, flight simulations are carried out for isolated pitch 

and yaw oscillations, with a range of target 𝑇 values. The simulations are carried out with 

the  Γ = 0.3 rad inboard-wing constraint, for simulation duration 𝑇sim = 4𝑇. To obtain true 

inboard / outboard constraints for all yaw angles (positive and negative), a constraint 

switching system is employed in which the inboard wing is constrained based on the aircraft 

yaw angle. That is, for the trim state variable Γopt, fed to the trim state optimisation, and 

dihedral constraint Γ, the left / right wing dihedral values for both constraint chiralities are: 

Inboard constraint: 

[𝜃𝑤𝑙 , 𝜃𝑤𝑟] = {

[Γopt, Γ] 𝜓 < 0

[Γ, Γ] 𝜓 = 0

[Γ, Γopt] 𝜓 > 0,

 

Outboard constraint: 

[𝜃𝑤𝑙 , 𝜃𝑤𝑟] = {

[Γ, Γopt] 𝜓 < 0

[Γ, Γ] 𝜓 = 0

[Γopt, Γ] 𝜓 > 0.

 

(6.4.2) 
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Note that this formulation holds providing the target flight path for the trim state analysis is 

a straight line (axis [1 0 0]𝑇 with loss of generality). In an open-loop context the actual 

simulated flight path not relevant, as the trim state control histories are computed based 

only on the target histories. The use of the absolute yaw angle to govern the inboard / 

outboard switching is thus appropriate. In a closed loop context, the sideslip angle would be 

used to switch instead – a trivial modification. The only context in which the computation of 

the sideslip angle is relevant is in the postprocessing of the yaw response time tests. 

 

 

Figure 6.4.1: Example oscillatory orientation target paths, with  𝑇 = 1 s, 𝜃amp = 𝜓amp = 0.2 

rad; Set 1: 𝜃0 = 𝜓0 = 0.2 rad, Set 2: 𝜃0 = 𝜓0 = 0. 
 

Figure 6.4.2 shows the results from a pitch response time test, with 𝜃amp = 0.25 rad and 

𝜃0 = 0.15 rad, 𝜓amp = 𝜓0 = 0, Γ = 0.3 rad and 𝑇 ∈ [12. 5 25 50 100] s. This oscillation 

approximately spans the space of Dutch roll stability in this system; providing a rough 
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approximation of the largest open-loop manoeuvres that will be studied here. As can be 

seen, oscillatory periods of 𝑇 ≤ 25 s yield a noticeable delay in the system pitch response. 

Without any initial yaw perturbation, there is no spiral mode excitation and the other 

orientations remain at negligible levels. Given that this target path represents the near-

maximum  𝜃amp to maintain longitudinal static stability in the open loop system, 𝑇 = 50 s 

serves as a conservative minimum bound of the oscillatory period required for a highly 

accurate pitch target match. 

 

 

Figure 6.4.2: Pitch histories for the pitch response time tests, with symmetric wing dihedral 
Γ = 0.3 rad and pitch amplitude 𝜃amp = 0.4 rad. 

 

Figures 6.4.3-6.4.5 show the results from a yaw response time test, with 𝜓amp = 0.4 rad, 

𝜓0 = 𝜃0 = 𝜃amp = 0 and 𝑇 ∈ [2.5 5 10 20] s; significantly larger amplitude and faster 

oscillations than tested in the pitch response tests. As these yaw tests excite the aircraft 

spiral mode, leading to a gradual shift in the aircraft yaw angle, an assumption of 

convenience used frequently in Sections 6.2-6.3 becomes invalid: namely, that the yaw and 

sideslip angles are identical. This arises because the flight velocity axis is no longer 

constantly [1 0 0]𝑇. The distinction between the sideslip angle (the aircraft orientation 

relative to its velocity vector, controlled by the trim state orientation targets) and the yaw 

angle (the absolute aircraft orientation) thus arises. This has only a minimal effect on the 
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effectiveness of NPAS control, except to require the measurement of the capability of the 

NPAS control in these relative angles – sideslip and relative pitch. The roll degree of freedom 

is unaffected by this distinction, being already entirely relative. 

 

Figure 6.4.3 shows the yaw response time test results, in sideslip, relative pitch, and roll; 

and Figures 6.4.4-6.4.5 in flight path. These results are surprising: for both the inboard and 

outboard constraints, even the highest frequency oscillations (𝑇 = 2.5 s) show an excellent 

match in the steady state yaw response, despite large pitch and roll deflections – in roll, up 

to nearly 250% of the yaw amplitude. That the sideslip NPAS control remains accurate with 

such large deflections in extremely notable. The degree to which the pitch and roll 

deflections are acceptable depends on the application, but in general terms 𝑇 = 10 s 

represents a point beyond which manoeuvre slowdown outweighs the diminishing returns 

of decreased deflection. However, in the case of a combined pitch and yaw target 

oscillation, this is likely to be a constraint that is secondary to the primary limitation of the 

pitch response time of c. 50 s. The only notable difference between the inboard and 

outboard constraints, in this simulation, is the significant improvement in spiral mode 

stability offered by the inboard constraint. 
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Figure 6.4.3: Orientation histories for the yaw response time tests with inboard/outboard dihedral constraint Γ = 0.3 rad and yaw amplitude 
𝜓amp = 0.4 rad. 
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Figure 6.4.4: Flight paths, dimensionless and to scale, for the yaw response time tests with 
inboard dihedral constraint Γ = 0.3 rad and yaw amplitude 𝜓amp = 0.4 rad. 

 

Figure 6.4.5: Flight paths, dimensionless and to scale, for the yaw response time tests with 
outboard dihedral constraint Γ = 0.3 rad and yaw amplitude 𝜓amp = 0.4 rad. 
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6.4.3. Complex quasistatic NPAS capability 

Having established the capability of the system for pitch and yaw quasistatic NPAS 

capability, we attempt more complex quasistatic NPAS manoeuvres – such as those 

involving concurrently varying pitch and yaw. The process of attaining these manoeuvres is 

identical to those of the test cases, with the same continuation solution process along the 

target paths generating the required control histories. As determined in Sections 6.3-6.4, 

the yaw quasistatic NPAS capability of the aircraft (in an open-loop context) is significantly 

less restricted in range and faster in response time than the pitch capability; and 

additionally shows a high degree of resilience to aberrancies in pitch and roll. The pitch 

capability is thus the determining factor in the performance of coupled quasistatic NPAS 

motions. 

 

Simulating a small scroll-shaped target path demonstrates the capacity of this system for 

complex quasistatic NPAS capability. Taking 𝜓amp = 0.2,  𝜃amp = 0.2, 𝜃0 = 0.2, and Γ = 0.3 

rad with an inboard dihedral constraint, the trim state control paths are computed and flight 

simulations are performed for several oscillatory period values. Figure 6.4.6 shows the result 

of these simulations, compared with the target paths. An good agreement between the 

orientation targets and the actual angle-of-attack and sideslip may be observed, and the 

magnitude of the observed discrepancies is only slightly affected by the period of the target 

path oscillation. Some aspects of these discrepancies may be attributed to the spiral 

dynamics of the aircraft, which are coupled to the trim state motion / quasistatic NPAS 

dynamics – not least because the al trim state motion occurs relative to the local flight 

velocity. Spiral mode excitation, i.e. transient flight velocity changes, would be expected to 

induce transient effects in the trim states.  Another key factor is the presence of gyroscopic 

torque effects engendered by the coupled pitch and yaw motion. These effects would be 

expected to generate further yaw and pitch deflections from the trim state target that 

cannot be passively stabilised (as can the spiral mode), as they are simple mass effects that 

are independent of the stability of any of the flight dynamic modes. They can only be 

eliminated through closed-loop control.  

 

Figure 6.4.7 shows the control histories (for reference) and the flight path of these 

simulations. As can be seen, the spiral mode undergoes significant excitation, but this is 
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largely independent of the period – note the nondimensionalisation of the spatial axes. 

Given that in dimensional terms the flight time of the 𝑇 = 25 s manoeuvre is a third of that 

of the 𝑇 = 75 s manoeuvre, then if the spiral mode were under a constant (e.g. initial) 

perturbation then a third of the spiral mode deflection would be expected. As it is, the 

degree of spiral mode excitation increases inversely proportionately to the quasistatic NPAS 

control timescale – shorter timescales suffer from increased excitation. This is clearly a 

result of the roll deflections observed in Figure 6.4.6, engendered by spiral mode coupling 

and / or gyroscopic torque effects. 

 

As an extension of this manoeuvre, a trim state locus of near-maximum open-loop size may 

be simulated: 𝜓amp = 0.4,  𝜃amp = 0.2, 𝜃0 = 0.2 rad (and again inboard Γ = 0.3 rad). Figure 

6.4.8 shows simulation results for this locus for several oscillatory period values, and Figure 

6.4.9 the system fight path and control histories. An excellent agreement is observed, 

particularly at 𝑇 ≥ 50 s. Similar discrepancies are observed, but at different points on the 

trim state locus; and again the spiral mode coupling and gyroscopic torque effects are 

difficult to isolate but are both potentially present. The nondimensional equivalence of the 

spiral mode paths is even stronger in this simulation; probably indicating that mass-based 

effects (such as gyroscopic toques) are dominant. 

 

The scroll-shaped trim state target paths shown in Figures 6.4.6-6.4.9 are continuously 

differentiable. Using nondifferentiable paths is likely to decrease the accuracy of the 

quasistatic NPAS control, due to the finite system response time. Figure 6.4.10-6.4.11 shows 

quasistatic NPAS control results for a rectangular trim state path, with leftwards, rightwards, 

upper and lower bounds 𝑙, 𝑟, 𝑢, 𝑏 and initialisation path from (𝜓tgt, 𝜃tgt) = (0,0) to (0,𝑢). 

Figure 6.4.10 shows the trim state locus and time histories for this path, and the simulation 

results for several oscillatory periods, and 6.4.11 the flight path and control histories. As 

may be observed, the system performance for this nondifferentiable path is significantly 

worse than for the continuously differentiable scroll-shaped paths, with transient 

oscillations at the discontinuities; as expected from the continuous aircraft dynamics. 

Overall, however, the system response for the largest period (𝑇 = 75 s) is reasonably 

accurate. 
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Despite the Dutch roll instability below 𝜃tgt = 0 in the Γ = 0.3 rad system, and the low 

levels of stability in this zone for the Γ = 0 system, it is nevertheless possible to extend the 

case-study system open-loop quasistatic NPAS capability down into this zone. To do this a 

reversed approach is taken: instead of increasing the trim state oscillation period to give the 

aircraft dynamics longer to respond, the oscillation period is decreased, suppressing the 

Dutch roll response by passing the system rapidly through borderline stable states. Such 

circumstances require changes to the dihedral constraint: the inboard Γ = 0.3 rad 

constraints is strongly unstable at low pitch values and is unfeasible for open loop 

quasistatic NPAS control in this area. Two feasible alternatives an outboard Γ = 0.3 rad or 

an inboard Γ = 0 constraint. These both show sufficient Dutch roll stability at low pitch 

values to allow an open-loop trim locus to pass through this area, but at the cost of stronger 

spiral instability. Figures 6.4.12-6.4.14 show the simulation results for a scroll shape target 

path with 𝜓amp = 0.4, 𝜃amp = 0.3, 𝜃0 = 0 rad, 𝑇 ∈ [5,10,15,25,35] s, under both these 

dihedral constraints. 

 

A nonlinear trend in 𝑇 is identified. Simulations at 𝑇 = 5 s, much faster than the pitch 

response time of the aircraft, show an unexpectedly high degree of accuracy: it appears that 

more rapid response time of the yaw degree of freedom has an entraining effect on the 

slower pitch response. This oscillatory period is also sufficiently small that the spiral mode 

excitation causes only a limited deflection in the flight path. As the oscillatory period 

increases, however, and overall decrease in accuracy is observed, with a key exception at 

𝑇 = 25 s under the outboard Γ = 0.3 rad dihedral constraint, a state which shows notably 

low trim state error and spiral mode excitation. The details behind this are unclear, but 

resonance or synchronisation effects between the oscillatory effects present in the system 

are likely to be a factor. Overall, the outboard Γ = 0.3 rad dihedral constraint is preferable 

in both key metrics: spiral mode excitation and quasistatic NPAS capability accuracy. The 

simulations presented in this section give an idea of the range of open-loop quasistatic NPAS 

capability available through biomimetic wing control. They key morphing degrees of 

freedom are the wing dihedral and incidence, and the presence of these two allow full 3D 

orientation control. A variety of dihedral morphing configurations are available, with the 

optimal choice dependent on the quasistatic NPAS control that is desired. Both rapid and 

slow trim state motions are available through a wide space of available orientations. 
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Figure 6.4.6: Flight simulation orientation histories of coupled pitch-yaw quasistatic NPAS capability, utilising an inboard dihedral constraint 
with Γ = 0.3 rad for trim state control.  A range of oscillatory periods (𝑇) are shown, for a scroll shaped trim state path in the upper right 
quadrant (𝜓amp = 0.2, 𝜓0 = 0, 𝜃amp = 0.2, 𝜃0 = 0 rad). 
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Figure 6.4.7: Flight simulation control histories and flight paths of coupled pitch-yaw quasistatic NPAS capability, utilising an inboard dihedral 
constraint with Γ = 0.3 rad for trim state control.  A range of oscillatory periods (𝑇) are shown, for a scroll shaped trim state path in the upper 
right quadrant (𝜓amp = 0.2, 𝜓0 = 0, 𝜃amp = 0.2, 𝜃0 = 0 rad). 
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Figure 6.4.8: Flight simulation orientation histories of coupled pitch-yaw quasistatic NPAS capability, utilising an inboard dihedral constraint 
with Γ = 0.3 rad for trim state control.  A range of oscillatory periods (𝑇) are shown, for a scroll shaped trim state path of near-maximum 
stable amplitude (𝜓amp = 0.4, 𝜓0 = 0, 𝜃amp = 0.2, 𝜃0 = 0.2 rad). 
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Figure 6.4.9: Flight simulation control histories and flight paths of coupled pitch-yaw quasistatic NPAS capability, utilising an inboard dihedral 
constraint with Γ = 0.3 rad for trim state control.  A range of oscillatory periods (𝑇) are shown, for a scroll shaped trim state path of near-
maximum stable amplitude (𝜓amp = 0.4, 𝜓0 = 0, 𝜃amp = 0.2, 𝜃0 = 0.2 rad). 
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Figure 6.4.10: Flight simulation orientation histories of coupled pitch-yaw quasistatic NPAS capability, utilising an inboard dihedral constraint 
with Γ = 0.3 rad for trim state control.  A range of oscillatory periods (𝑇) are shown, for a rectangular trim state path of near-maximum stable 
amplitude (𝑏 = 0, 𝑢 = 0.4, 𝑙 = −0.3, 𝑟 = 0.3 rad). 
 
 



 
 

Chapter 6: Supermanoeuvrability: NPAS and quasistatic manoeuvres 

227 

 

 

Figure 6.4.11: Flight simulation control histories and flight paths of coupled pitch-yaw quasistatic NPAS capability, utilising an inboard dihedral 
constraint with Γ = 0.3 rad for trim state control.  A range of oscillatory periods (𝑇) are shown, for a rectangular trim state path of near-
maximum stable amplitude (𝑏 = 0, 𝑢 = 0.4, 𝑙 = −0.3, 𝑟 = 0.3 rad). 
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Figure 6.4.12: Flight simulation orientation loci for high-amplitude coupled pitch-yaw quasistatic NPAS capability. A range of oscillatory periods 
(𝑇) are shown, for outboard Γ = 0.3 rad and inboard Γ = 0 dihedral constraints. 
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Figure 6.4.13: Flight simulation orientation histories for high-amplitude coupled pitch-yaw quasistatic NPAS capability. A range of oscillatory 
periods (𝑇) are shown, for outboard Γ = 0.3 rad and inboard Γ = 0 dihedral constraints. 
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Figure 6.4.14: Simulation flight paths for high-amplitude coupled pitch-yaw quasistatic NPAS capability. A range of oscillatory periods (𝑇) are 
shown, for outboard Γ = 0.3 rad and inboard Γ = 0 dihedral constraints. 
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6.5. CONCLUDING REMARKS 

6.5.1. Results 

In this chapter the effect of wing morphing on the space of trim states of the case study 

system was studied. A continuous space of trim states through pitch angles c. -25° to 30° 

can be attained thought solely symmetric incidence morphing; and this can be extended to 

yaw angles through c. ±25° with asymmetric incidence and single-wing dihedral control. The 

existence of this continuous trim space allows the quasistatic control of the aircraft 

orientation within this space, corresponding to quasistatic nose-pointing-and-shooting 

(NPAS) capability, as per Gal-Or [1], or direct force capability as per Herbst [2,13]. These are 

recognised forms of supermanoeuvrability which are both quasistatic and pre-stall. 

 

A wide range of actuator configurations are available for NPAS control. Pitch NPAS as easily 

obtainable via symmetric incidence morphing. At minimum actuator complexity, full 

pitch/yaw NPAS is attainable via the dihedral control on single given wing (left/right), 

though this leads to asymmetry in the left/right flight dynamics and stability of the aircraft, 

making guidance and control more complex. A zero dihedral constraint on the non-actuated 

wing yields the largest controllable trim space; while a positive dihedral constraint (e.g. c. 

17°) yields significantly improved spiral stability properties at pitch angles >0°, at the 

expense of Dutch roll instability at pitch angles <0°. Alternately, if asymmetric dihedral 

control is available, then improvements in trim space size and stability can be attained by a 

switching algorithm in which the wing outboard (or inboard) of the aircraft’s yawed 

orientation is controlled, and the inboard (or outboard) wing is constrained. Outboard 

control is preferable in terms of spiral mode stability, and the dihedral constraint has a 

similar effect. If both wings are controlled simultaneously, the trim space is 

underconstrained, and an optimal method of navigating this space has not yet been 

developed. 

 

Using these techniques, simulations of quasistatic NPAS control were carried out. Period 

timescales of c. 25 s yielded reasonably quasistatic profiles; more rapid control was possible, 

but was more strongly influenced by induced-flow effects. These results demonstrate the 

capability of the case study system for quasisteady NPAS capability in pitch and yaw; and 
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the trim state analysis method developed here represents an easily-generalisable approach 

to quasisteady NPAS design and analysis in other systems. 

 

The trim-state method that was used to design these manoeuvres is novel. It represents an 

open-loop guidance method only; it cannot be utilised directly for manoeuvre control and is 

not directly, as the trim states show zero acceleration at the target state by definition, and 

thus cannot be utilised to effect motion directly. Instead, the manoeuvres rely on the 

dynamical attractor located at stable trim states to pull the aircraft in a quasistatic motion. 

Is thus quite distinct from conventional methods of generating such a manoeuvre; for 

instance, by forms of optimal control (LQR, etc.) [15,16], involving the minimisation of 

objective functions such as the aircraft state error w.r.t. a path target, acceleration error 

w.r.t. a derived acceleration target, flight time over a path target constraint, or key 

performance metric specific to the nature of the manoeuvre [17,18]. The process could be 

conceived of as a form of optimal control involving (perversely) the minimisation, to zero, of 

the aircraft acceleration at each point along the target path. As the target state is defined a 

priori, this degenerates into a time-independent optimisation which can be performed a 

priori. In the same way, the trim state method can be seen as entirely distinct from another 

key paradigm in supermanoeuvre control; that of nonlinear dynamic inversion [19,20]: no 

feedback linearisation is involved and the computed trim states are exact w.r.t. the model. 

In Chapter 7 this trim state method will be generalised to more complex time-dependent 

forms of control, involving states of nonzero acceleration, and in doing so further 

relationships with existing control strategies will be identified. 

 

6.5.2. Limitations 

Given the low levels of transience present in the most of the quasistatic NPAS manoeuvres 

studied here, the possibility of quasistatic aerodynamic model breakdown does not affect 

the overall results of this chapter. In some of the more rapid manoeuvres, however, there is 

the potential for transient aerodynamic effects to have an influence on the results. This 

possibility is studied in Chapters 8-9. At high angles-of-attack, the possibility of asymmetric 

forebody flow separation [21] generating nose-slice, coning, and wing rock motion is 

present. Why this is unlikely, as the angles-of-attack over which quasistatic NPAS is available 

are not large (max. 30°), the effects are worth attention. In Chapter 7 it is demonstrated 
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that wing morphing controls are available to counteract the effects of asymmetric forebody 

separation if required. Overall, the flight conditions of the quasistatic NPAS manoeuvres 

studied are not qualitatively different to those of the validation simulations in Chapter 5, 

lending support to the results presented in this chapter.  
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7.1. INTRODUCTION 

In Chapter 6, NPAS manoeuvres at relatively low levels of transience were studied. Despite 

the fact that that the quasistatic aerodynamic submodel will break down at higher levels of 

transience, an initial analysis of high-transience manoeuvres with this model is required. 

Such an analysis leads to several key methods for the design of supermanoeuvres and the 

exploration of supermanoeuvrability, and provides a reference point for the assessment of 

model breakdown. We study a wide variety of manoeuvres, including traditional thrust-

vectoring manoeuvres such as Pugachev’s cobra, and more general rapid-nose-pointing-

and-shooting (RaNPAS) manoeuvres as per Gal-Or [1]; as well as biomimetic manoeuvres 

such as ballistic transitions and anchor turns. In further chapters, aerodynamic models will 

be developed for higher levels of transience; and the utility of the initial quasisteady 

manoeuvre templates devised here will become apparent. 

 

 

7.2. LARGE-PERTURBATION STABILITY ANALYSIS 

Following Chapter 6, a stability analysis of the system provides an avenue to manoeuvre 

design. The static lateral and longitudinal trim stability metrics computed in Chapter 6 were 

linearised metrics, located at the trim point, and only governing the system response to 

sufficiently small perturbations. Computing identical angular moment/acceleration-gradient 

metrics at states away from the trim point yields information about the system response to 

large perturbations, and corresponds to a nonlinear static longitudinal or lateral stability 

analysis, as per Huenecke [2]. This allows an assessment of the system – or, control 

configuration – response to large changes in orientation, such as are relevant to RaNPAS 

and other transient supermanoeuvrability. 

 

Isolating the pitch and yaw degrees of freedom again, the angular acceleration gradients of 

the aircraft, in a given trim state, as a function of an associated angular perturbation of the 

trim state, are computed numerically; the expressions: 

𝜕𝜃̈

𝜕𝜃
|

𝜃tgt+Δ𝜃

(Δ𝜃) (7.2.1) 
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𝜕𝜓̈

𝜕𝜓
|

𝜓tgt+Δ𝜓

(Δ𝜓) 

The results are conventional static stability analysis plots: for example, Figure 7.2.1 shows 

the nonlinear longitudinal and lateral static stability profiles for four different trim states: at 

𝜃tgt = 𝜓tgt = 0 and 𝜃tgt = 𝜓tgt = 0.3 rad with inboard Γ = 0 and Γ = 0.3 rad constraints. 

The ability of the case study model to accurately predict these pitch and yaw accelerations – 

relating directly to moments and the aircraft aerodynamic moment coefficients – may be 

taken from the validation of Chapter 5, which specifically compared these moment 

coefficients with experimental data. The target trim points are represented by the intersects 

𝜃̈ = 0, 𝜓̈ = 0; its linearised static stability by the gradient (e.g. 𝜕𝜃̈ 𝜕𝜃⁄ ) at the point; and the 

zone of static stability around the point by the local contiguous space where the gradients 

are negative (e.g. 𝜕𝜃̈ 𝜕𝜃⁄ < 0), i.e. there is attraction to the trim point [2]. As can be seen, 

all these systems have a reasonably-sized stable zone about their quasi-trim points – the 

targets 𝜃tgt and 𝜓tgt, in this case, known to be true trim points. Low pitch angles show the 

most notable zones of low stability; in particular, the state 𝜃tgt = 𝜓tgt = 0.3 rad and Γ = 0.3 

rad shows marginal longitudinal stability for c. 𝜃 < 0. 

 

Note that, in technical terms, a conventional decoupled stability analysis would analyse the 

effect of sideslip and angle-of-attack perturbations (relative to the flight velocity vector), 

and not absolute pitch and yaw. This distinction is only relevant at trim states at nonzero 

target yaw values, and is of minor significance – coupling effects between the absolute 

angles will only be notable when there are large differences between the system pitch and 

yaw stability, and such states are of minimal interest here. 

 

Now while a corresponding trim state at some orientation does not necessarily exist for 

every possible aircraft control configuration, yet in the case study system many non-trim 

control configurations will have quasi-trim states: points where the acceleration in one or 

more decoupled variable is zero (here, mathematically, 𝜃̈(𝜃) = 0, or 𝜓̈(𝜓) = 0). These are 

not trim states, due to the nonzero acceleration in other angular and translational variables, 

but they serve as instantaneous point attractors in their respective variables. If effect of the 

accelerations in the other variables is relatively small, or can be controlled to be so – e.g. 
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because of a faster timescale in the primary variable, a minimal coupling between variables, 

and/or by further constraining the control configuration space – then the attraction will 

remain approximately constant for a duration. This leads effectively to a temporary trim 

state that will remain until the other accelerations shift the location of the point attraction. 

This temporary trim state / point attractor may then be subject to a nonlinear static stability 

analysis as per the true trim points, which will give an estimate of its basin of attraction. 

 

 

Figure 7.2.1: Pitch and yaw stability plots for four different trim states: 
A) 𝜃tgt = 𝜓tgt = 0, inboard Γ = 0 rad 

B) 𝜃tgt = 𝜓tgt = 0, inboard Γ = 0.3 rad 

C) 𝜃tgt = 𝜓tgt = 0.3, inboard Γ = 0 rad 

D) 𝜃tgt = 𝜓tgt = 0.3, inboard Γ = 0.3 rad. 
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The application of these methods is in the design of open-loop strongly transient 

manoeuvres. Strongly transient manoeuvres can be controlled by placing strong quasi-trim 

attractors along the control configuration histories, each within the basins of attraction of 

its neighbours, and designed to pull the aircraft rapidly between the quasi-trim point 

orientations. The key advantage of these quasi-trim states over true trim states for this 

purpose is that they exist over a far wider orientation field, greatly increasing the range of 

transient motions available. Their key disadvantage is that they are not attractors in all 

variables, and thus they offer a significantly less precise form of orientation control due to 

drift in these other variables. It is only in cases when this drift can be minimised or 

constrained that quasi-trim orientation control truly becomes useful. As with the trim 

spaces introduced in Chapter 6, quasi-trim states are a novel concept not previously 

explored, and arising from the generalisation of trim state analysis to morphing-wing 

systems. 

 

For example, if the intended transient motion is composed of rotation in a two-dimensional 

plane – e.g. in yaw (plane 𝑥-𝑦) or pitch (plane 𝑥-𝑧) – then, with sufficient control 

effectiveness, the out-of-plane angular variables can be constrained to be at quasi-trim 

state. In general this can be done by so constraining the space of control configurations 

used in the manoeuvre, in some cases this constrained set may be a superset of a 

symmetry-constrained set (e.g. in the case study system, for pitch, configurations with 

symmetry about the 𝑥-𝑧 plane.) This leaves the in-planar translational accelerations, and as 

in general these have a relatively minimal effect on the aircraft trim state (particularly at 

higher airspeeds), the aircraft can be made to remain approximately in-plane. 

 

A basic example of this principle is shown in Figure 7.2.2. This shows the 𝜓tgt = 𝜃tgt = Γ = 

0 trim state from Figure 7.2.1, alongside the effect of elevator deflection changes to this 

state. There are no pitch angles at which these alternate elevator deflection states are trim 

states – for this to be the case, they require changes in wing incidence and propulsive force 

as per Chapter 6 – but there are angles at which they are quasi-trim states in pitch. These 

quasi-trim states function as approximate attractors in pitch, and thus illustrate the 

phenomenologically obvious transient effect of elevator changes; to cause pitch-up and 

pitch-down motion. 



Chapter 7: Supermanoeuvrability: RaNPAS and transient manoeuvres 

240 

 

Figure 7.2.2: Effect of elevator deflection on the pitch acceleration profiles of the trim state 
𝜃tgt = 𝜓tgt = Γ = 0. 

 

 

7.3. RaNPAS: PUGACHEV’S COBRA 

7.3.1. Motivation  

The Pugachev cobra is a simple pitch-only supermanoeuvre which involves tilting the aircraft 

backwards from level flight to beyond 𝜃 = 90°, and then forwards to level flight again, while 

maintaining approximately constant altitude [3]. As such it is a form of RaNPAS capability as 

per Gal-Or [1]; and although no such RaNPAS capability is observed in biological flyers, the 

cobra manoeuvre is highly widespread among supermanoeuvrable aircraft. In some cases is 

achievable without the use of thrust-vectoring; requiring only favourable structural and 

aerodynamic design [4]. Figure 7.3.1 shows a schematic of the cobra manoeuvre. 

 

In general, RaNPAS capability has the potential to significantly increase the success chance 

of dogfight engagements [5], but the cobra manoeuvre has the key detrimental effect of 

draining the aircraft kinetic energy rapidly through the large drag forces generated at high 

angle-of-attack. Under energy-manoeuvrability theory, and prevailing USAF tactical 

doctrine, this puts the aircraft at a significant disadvantage should the RaNPAS manoeuver 
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fail to decisively end combat. The cobra manoeuvre has also been considered as a 

mechanism to momentarily break the radar lock of air defence systems: this is thought to 

form part of Russian Aerospace Force (VKS) tactical doctrine, which still places a major 

emphasis on this form of supermanoeuvrability. 

 

 

Figure 7.3.1: Schematic of Pugachev’s cobra performed by a Sukhoi Su-27. Image from 
Wikimedia Commons, User:Henrickson, licenced under CC BY-SA 3.0. 
 

Whatever the school of thought regarding the cobra manoeuvre itself, more general pitch-

axis supermanoeuvrability nevertheless remains an element of USAF tactical doctrine, and 

the cobra manoeuvre represents a useful benchmark for such capability. Recent 

developments have explored a widening spectrum of applications – e.g. for the F-35 

Lightning II, short take-off and vertical landing (STOVL) capability [6]. In the context of 

supermanoeuvrable UAVs, an area of minimal extant literature, there is the potential for 

even more diverse applications of pitch-axis supermanoeuvrability, as restrictions on pilot g-

forces do not apply. Some of these will be studied in this chapter. In the UAV context, the 

cobra manoeuvre itself may show utility, e.g. as an airbrake mechanism for operations in 

confined spaces. 

 

7.3.2. Manoeuvre design 

The large-perturbation static stability analysis in Section 7.2 provides a basic method of 

designing such a manoeuvre in the case study system. Other than an initial trim state, in the 

simplest case at least two control configurations must be identified: a configuration to 

generate the pitch-up moment required to send the aircraft to the partially inverted 

position; and a configuration to pitch it forwards and downwards again. The initial trim state 

is one immediate candidate for the latter – given its wide nonlinear stability profile, cf. 

Figure 7.2.1 – but to explore and assess other candidates in the morphing configuration 
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space, a simplex optimisation technique is used in a similar manner to Chapter 6, Section 

6.2. The central difference here is the definition of the acceleration-based objective function 

with respect to which the control configurations will be optimised. As this manoeuvre is 

constrained to the 𝑥-𝑧 plane, the control space for manoeuvre design is constrained also by 

symmetry about this plane. Potential active degrees of freedom are thus the symmetric 

dihedral Γ (𝜃𝑤𝑙 = 𝜃𝑤𝑟 = Γ), the symmetric sweep Λ (𝜓𝑤𝑙 = − 𝜋 2⁄ − Λ, 𝜓𝑤𝑟 = 𝜋 2⁄ + Λ), 

and the symmetric incidence 𝛼 (𝜙𝑤𝑙 = 𝜙𝑤𝑟 = 𝛼) the elevator deflection 𝛽𝑒, and the 

propulsive force 𝐹prop. 

 

For the pitch-up configuration, a variety of objective functions are available. The aircraft 

point pitch accelerations at low to medium-high angles of attack, 𝜃̈(𝜃𝑖) provide simple and 

physically-relevant metrics to maximise. More complex functions such as the location of the 

aircraft quasi-trim (pitch-trim) state, 𝜃 ∶ 𝜃̈(𝜃) = 0, and the pitch acceleration integral 

(∫ 𝜃̈(𝜃) 𝑑𝜃) are also available. For physical relevance the point pitch acceleration is used, at 

a pitch value of 0.8 rad. Constraints on the elevator deflection (|𝛽𝑒| < 0.87 rad ) and wing 

sweep (0.4 ≤ |𝜓𝑤| ≤ 𝜋 − 0.4 rad i.e. |Λ| < 1.171 rad) are enforced. Figure 7.3.2 shows 

several states generated by pitch-up configuration optimization. Results A-C indicate pitch 

stability plots for optimal states with (A) all degrees of freedom active, (B) sweep and 

incidence active and (C) only incidence active. The associated wing configuration is rendered 

alongside Note that 𝑈 = 30 m/s and 𝐹prop = 10 N in all cases; as it is the aerodynamic 

effects that are of primary interest. In the case of (A), however, significant additional pitch-

up moment can be generated by the offset between the propulsive force axis and the centre 

of mass due to the upwards wing dihedral. 

 

Parameter values for these states are given in Table 7.3.1; values in bold are located on their 

respective constraint limits, and indicate the effect of these constraints on the state 

performance. For example, in all states the elevator is at its control limit, and it is self-

evident that increased elevator control effectiveness will result in greater pitch control 

effectiveness. At very high angles of attack (> 1 rad), however, the elevator ceases to have a 

significant effect on the system pitch dynamics, and morphing controls must take over. In 

the fully-actuated system (A), the sweep degree of freedom is at its control limit, indicating 
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that improvements in sweep control effectiveness (e.g. via larger wing chord) would result 

in greater pitch control effectiveness. However, the Λ-𝛼 system, case (B), is not at any 

control limits, indicating that more complex effects are also at play, for example the balance 

between the lift- and drag-generated pitch-up moment, and the optimisation trade-off that 

increased sweep represents for these two moments. 

 

Table 7.3.1: Parameters for optimal pitch-up states 

Parameter (A) All DOF (B) Λ-𝛼 (C) 𝛼 

Γ (rad) 0.730 0 0 
Λ (rad)  1.171 0.699 0 
𝛼 (rad) 0.247 0.181 0.171 
𝛽𝑒 (rad) −0.870 −0.870 −0.870 

 

 

Figure 7.3.2: Static longitudinal stability profile of several candidate pitch-up configurations. 
 

The wing parameters associated a high pitch-up rate are a positive dihedral, forward wing 

sweep and mild upwards inclination. Upwards inclination increases the wing lift, but too 

much reduces the drag-induced pitch-back moment at high angles of attack. Positive 

dihedral, in combination with forward sweep, induces a pitch-back drag moment even at 
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low angles of attack. The forward sweep is particularly relevant, as this shifts the 

aerodynamic centre further forward and thus increases its pitching moment about the 

centre of mass (which is less strongly affected by the sweep motion). The result is that the 

aircraft’s stable pitch quasi-trim state is shifted to a very to a high angle of attack (in result 

(B), even to the partially-inverted position) thus providing a strong attraction towards that 

flight state. While result (B) has a quasi-trim state at the highest angle of attack, the 

strength of its attraction is significantly weaker than that of result (A), as indicated by the 

pitch acceleration gradient at the quasi-trim state. Result (A) is thus likely to allow the cobra 

manoeuvre to be carried out more rapidly, and without interference from the non-trimmed 

variables. In any case, the transient overshoot to the c. 𝜃 = 1.4 rad trim state will take the 

aircraft to higher angles. Note that the use of forward sweep in does have the disadvantage 

of decreasing the aeroelastic divergence speed of the wings [7], limiting the flight envelope 

of these forward-swept states. 

 

For the pitch-down configuration similar objective functions are available; though the 

relevant pitch angles for pitch acceleration minimization are higher (>1 rad). Figure 7.3.3 

shows configurations to minimise the point pitch acceleration at 1.4 rad pitch, and Table 

7.3.2 shows their parameter values. Results A-C are the optimal configurations for (A) all 

degrees of freedom active, (B) sweep and incidence active and (C) only incidence active. 

Result (D) is an example trim state, at Γ = 0, 𝜓tgt = 0, and 𝜃tgt = 0.08 rad – a non-optimal 

but obvious default candidate, with minimal control deflection. Similar aerodynamic effects 

to those in Figure 7.3.2 are observed. Backward sweep moves the aerodynamic centre 

rearwards, and the presence of anhedral allows the maximum wing surface area to be 

inclined into the flow, for maximum restoring drag moment. In these cases the wing 

incidence is kept flat to make use of this restoring drag moment; however, when only 

incidence motion is available, inclining the lifting surface into the local free-stream to 

reduce its drag is the better option. The tail then provides all the available restoring 

moment. This configuration has the additional benefit of generating significant lift at high 

angles of attack; thus reducing the burden on the propulsion during the manoeuvre. The 

trim state itself, as a result of the airframe stability, generates moderate pitch-up 

acceleration; but this acceleration can be doubled in the presence of wing morphing. 
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Table 7.3.2: Parameters for optimal pitch-down states 

Parameter (A) All DOF (B) Λ-𝛼 (C) 𝛼 (D) Trim 

Γ (rad) −0.255 0 0 0 
Λ (rad) −1.171 −1.171 0 0 
𝛼 (rad) 0.168 0.0493 −1.654 0.014 
𝛽𝑒 (rad) 0.262 0.262 0.262 0.003 

 

 

Figure 7.3.3: Static longitudinal stability profile of several candidate pitch-down 
configurations 
 

7.3.3. Manoeuvre simulation 

A simple cobra manoeuvre can be obtained using only the pitch-up states in Section 7.3.2. 

Transitioning from an initial near-trim state to a pitch-up state and then back again 

generates a strong transient pitch-up moment which is then stabilised by the near trim-state 

(cf. Figure 7.3.3). Pitch angles of >90 ° can be obtained. The use of an initial near-trim state 

rather than a trim state is to generate an upwards flight trajectory and accumulate altitude, 

both of which serve to mitigate the altitude loss (due to airspeed loss) through the 

manoeuvre. The degree of aerodynamic transience present in this manoeuvre, and its 

possible effects, will be assessed in Chapter 9. 
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Figure 7.3.4 shows the flight simulation results for a simple cobra manoeuvre of this form, 

including the aircraft flight path, its control and orientation history, and its acceleration 

history compared with the quasistatic states (Figures 7.3.2-7.3.3). The pitch-up state is the 

optimised 3DOF pitch-up state in Figure 7.3.2, and the initial and final near-trim state is the 

trim state at pitch 0.08 rad and airspeed 30 m/s; with the system initialised at pitch 0.08 rad 

and airspeed 50 m/s. The time-scales of the morphing motion have been adjusted manually, 

with 500 ms in the near-trim state, 100 ms transition, 50 ms in the trim-up state and then an 

immediate return to the near-trim state. This discontinuous control path is then smoothed 

strongly via a Laplacian smoother, leading to the final control commands of Figure 7.3.4. 

 

Several points about Figure 7.3.4 are notable. The cobra manoeuvre is carried out 

successfully at a constant thrust/weight ratio of T/W = 0.25; this is notably low relative to 

the capability of supermanoeuvrable thrust-vectoring aircraft, which approach T/W = 1 (cf. 

[1,4]). Even at this low thrust value, the aircraft reaches a pitch angle of 98°, and stabilises 

to a low pitch angle without altitude loss and with only c. 6 m transient altitude gain 

through the manoeuvre.  Key factors behind this quite optimistic T/W value is the aircraft 

lift and drag in the nose-up position; affecting and effecting the altitude and airspeed loss 

throughout the manoeuvre. Studies of aircraft transient aerodynamics indicate lift peaks at 

high angles of attack larger than those in quasisteady aerodynamic models (as a result of 

dynamic stall) [8–10], which would serve to decrease the required T/W value. On the other 

hand, three-dimensional effects would serve to decrease both the lift and drag coefficient 

post-stall [11], increasing the T/W required to retain altitude, but decreasing the T/W 

required to regain airspeed. Overall, these factors would indicate that the current model is 

unlikely to be overly optimistic, at the very least. 

 

The initial airspeed is also a key parameter for the manoeuvre, as this affects both the 

magnitude of airspeed loss during the manoeuvre and the effect of this airspeed loss on the 

aircraft altitude – particularly, the length of time spent below the aircraft stall speed. This 

effect is linked to that of the aircraft thrust (T/W) which accelerates the aircraft again in the 

aftermath of the manoeuvre. It is also significant that the manoeuvre is carried out with an 

airframe which, in the default morphing state and trim states, is strongly stable (cf. Figures 

7.2.1-7.2.2, Figure 6.3.1). This is in contrast to thrust vectoring aircraft, which typically show 
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unstable airframes. Of course, the use of morphing enables the airframe to be destabilised 

and stabilised at command – cf. Figure 7.3.2, in which the optimised states are typically 

unstable at zero pitch angle – and this is an alternate what of conceptualising how the cobra 

manoeuvre is performed; by sequential airframe destabilisation and stabilisation. 

 

Figures 7.3.5-7.3.6 show the effect of the initial airspeed and thrust/weight ratio (T/W = 

0.25 and T/W = 0.50) on this manoeuvre. Note that the initial and final near-trim states are 

unchanged. Figures 7.3.5-7.3.6 also delineate the zone 2.5 < 𝑡 < 3 s, during which the 

transient pitching motion is largely stabilised. The open-loop flight simulation continues 

through this zone, but in reality some form of closed-loop control / manual guidance would 

be expected from this area onwards. A notable effect seen in Figures 7.3.5-7.3.6 is that the 

initial airspeed has only a small effect on the airspeed loss through the manoeuvre: the 

variation in the airspeed at 𝑡 = 2.5 s is less than 5 m/s, for an initial airspeed range of 25 

m/s. This effect is due to the proportional nature of the drag forces (∝ 𝑈). The primary 

effect of increased airspeed is to reduce the overall altitude loss over the manoeuvre, by 

increasing the altitude gain in the initial and pitch-up stages. Similarly, the effect of T/W in 

accelerating the aircraft after the manoeuvre may be observed – this also leads to reduction 

in altitude loss, through the more direct method of inclining the aircraft trajectory upwards 

in the manoeuvre aftermath. Note, of course, that all these effects need a quantitative and 

qualitative validation with transient aerodynamic modelling; this will be carried out in 

Chapters 8-9. 

 

Despite the minimal link between the initial and final airspeeds of the cobra manoeuvre so 

far studied, performing such a manoeuvre at low initial airspeeds (c. 30 m/s) while retaining 

moderate thrust (c. T/W = 0.5) and altitude loss (< 10 m) is difficult. A key strategy to 

successfully designing such a high-performance manoeuvre is to ensure the completion the 

pitch-up pitch-down phase in as short a time as possible, so as to reduce the manoeuvre 

airspeed loss. This requires the use of the optimal pitch-down states in Figure 7.3.3. While 

the simplest conceivable arrangement is trim → pitch up → pitch down → trim; we find, for 

these configurations, that an additional pitch-up state is required before the final trim, to 

decelerate the extremely strong pitch-down motion of the pitch-down state. Without active 

deceleration the aircraft immediately transitions into a steep dive. 
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Figure 7.3.7 shows a low-airspeed cobra manoeuvre performed in this way, with initial 

airspeed 30 m/s and c. T/W = 0.5. The aircraft flight path, its orientation, control, and 

velocity history, and its acceleration history compared with the quasistatic states (Figures 

7.3.2-7.3.3) are shown. The time-scales of the morphing motion are again set manually, with 

a transition time of 200 ms between pitch up/down states, 100 ms between trim and pitch 

up/down states, and Laplacian smoothing. The cobra manoeuvre is successful, reaching a 

maximum pitch of c. 108°, and carried out in c. 900 ms (between points of pitch 0.08 rad), 

with minimal undershoot and an altitude loss of less than 4 m between 0 ≤ 𝑡 ≤ 2 s (the 

timespan of the rendering in Figure 7.3.7). A continuation of the simulation to 𝑡 = 2.5 s is 

shown in the orientation, control, and velocity histories, and leads to additional altitude loss 

(c. 6 m total). However, as with Figure 7.3.4, the aircraft is at a stable near-zero pitch angle 

and it is expected that closed-loop control / manual guidance from 𝑡 = 2 s will be able to 

return the aircraft to steady level flight or any other specified flight state. But while Figure 

7.3.7 represents a high-performance cobra manoeuvre, its control motions are intentionally 

extreme and entail high actuator efforts and airframe stresses. Indeed, key additional 

factors in the feasibility of these manoeuvres are the aeroelastic properties of the aircraft; 

in particular the aeroelastic divergence speed on the forward swept state [7]. In this study 

structural aspects of the case study system are not modelled; but such modelling is required 

before the system and its manoeuvres can be said to be truly feasible. 

 

Figure 7.3.8 explores the effect of T/W (0.2-1.0) on the low-airspeed cobra manoeuvre. T/W 

has relatively small effect on the dynamics of the manoeuvre: it is only required to 

compensate for the loss of airspeed and return the aircraft to a stable trim state after the 

manoeuvre. The critical level of thrust for manoeuvres success is thus determined by 

aircraft stall speed and / or the acceptability of some altitude loss after the manoeuvre – an 

alternative method of increasing the airspeed above the stall threshold. Returning to gentler 

variants of the cobra manoeuvre; several alternative forms are available using other control 

configurations and sequences. One involves shifting from the initial trim state to a high 

angle-of-attack trim state, then to an optimal pitch-up state as per Table 7.3.1, and then 

down to the high angle-of-attack trim state and the initial trim state again. The purpose of 

interspersing the high angle-of-attack trim state within this sequence is to ease the 
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transition between the pitch-up and trim states by decreasing the distance between the last 

stable trim state and the nose-back state, thereby decreasing the level of transient 

overshoot in both directions. Figure 7.3.9-7.3.10 show an example of a cobra manoeuvre of 

this form, at T/W = 0.5 and using a high angle-of-attack trim state at pitch 0.4 rad. The effect 

of the initial velocity is shown: note that the parametric nature of this manoeuvre (utilising 

computed trim states) means that changes in T/W will necessitate small changes in the 

other control parameters, as shown in Figure 7.3.10. 

 

Even the lowest airspeed, 30 m/s, qualifies as a cobra manoeuvre (maximum pitch c. 100°) 

and shows a notably favourable stabilisation – to a near-level flight state at c. 6 m altitude 

gain. Significantly larger maximum pitch angles are obtainable with higher airspeeds; at 60 

m/s, c. 117°. This occurs at the cost of less favourable stabilisation; for the latter, near-zero 

altitude gain and −10° pitch angle at 𝑡 = 2 s. These results are, however, highly favourable 

relative to those of previous cobra manoeuvres. This is attributable to the use of high angle-

of-attack trim states, which generate pitch-up motion (up to pitch 0.4 rad) with significantly 

reduced drag force. This leads to a significantly reduced airspeed loss through the 

manoeuvre, as can be observed in Figure 7.3.9. This approach appears to be the most 

favourable developed so far, and shows parallels with the direct force capability in Chapter 

6. These cobra results are significant – pending further validation with transient 

aerodynamics – in that they demonstrate the possibility of performing cobra manoeuvres in 

biomimetic systems using only reasonable levels of wing morphing control; and moreover, 

in a realistic small-scale aircraft with a stable airframe and a thrust-to-weight ratio of 0.5 or 

less. 

 



Chapter 7: Supermanoeuvrability: RaNPAS and transient manoeuvres 

250 
 
 

 

 

Figure 7.3.4: Flight simulation results for a simple 3DOF-morphing cobra manoeuvre at  T/W = 0.25: flight path with aircraft rendered every 50 
ms (0 ≤ 𝑡 ≤ 2.5 s), control and orientation history, forward velocity history, and acceleration history compared with the quasistatic 
acceleration profiles are shown. The aircraft state sequence is: near-trim → optimal pitchup → near-trim. 
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Figure 7.3.5: Flight simulation results for a simple 3DOF cobra manoeuvre at T/W = 0.25, under varying initial airspeed. Aircraft flight paths, 
body pitch angle histories and forward velocity histories are shown. The aircraft state sequence is: near-trim → optimal pitchup → near-trim. 
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Figure 7.3.6: Flight simulation results for a simple 3DOF cobra manoeuvre at T/W = 0.50, under varying initial airspeed. Aircraft flight paths, 
body pitch angle histories and forward velocity histories are shown. The aircraft state sequence is: near-trim → optimal pitchup → near-trim. 
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Figure 7.3.7: Flight simulation results for a low-airspeed 3DOF-morphing cobra manoeuvre: flight path with aircraft rendered every 50 ms 
(0 ≤ 𝑡 ≤ 2 s), control and orientation history, forward velocity history, and acceleration history compared with the quasistatic acceleration 
profiles are shown. 
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Figure 7.3.8: Flight simulation results for a low-airspeed 3DOF-morphing cobra manoeuvre, under varying constant thrust (T/W). Aircraft flight 
paths, body pitch angle histories and forward velocity histories are shown. 
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Figure 7.3.9: Flight simulation results for a 2DOF sweep- and incidence-morphing cobra manoeuvre, under varying initial airspeed and 
corresponding trim state properties. Aircraft flight paths, body pitch angle histories and forward velocity histories are shown. The aircraft state 
sequence is: trim(@ 0.08 rad) → trim(@ 0.4 rad) → optimal pitchup → trim(@ 0.4 rad)  → trim(@ 0.08 rad). 
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Figure 7.3.10: Flight simulation results for the sweep- and incidence-morphing cobra manoeuvre under varying initial airspeed (𝑈). Body pitch 
angle and control histories (Λ-𝛼-𝛽𝑒) are shown, including the very small variation in trim state properties across the simulated airspeed range.  
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7.4. RaNPAS: PERTURBATIVE MANOEUVRES IN YAW 

7.4.1. Motivation 

The second orientation in which RaNPAS capability is relevant is the yaw (sideslip) angle. 

Cobra-type manoeuvres in the yaw DOF are attested in thrust vectoring aircraft [1], though 

the published literature is relatively minimal. A similar manoeuvre, referred to as the hook, 

is also attested [12–14]: it is often referred to as a horizontal-plane equivalent of the cobra, 

but in fact refers to a RaNPAS pitching manoeuvre (cobra) performed at 90° roll angle. Gal-

Or [1] refers to the true yawed-cobra, at zero roll, simply as yaw RaNPAS capability. Here we 

suggest the term rattlesnake (see Figure 7.4.3) as an analogy of the cobra manoeuvre. 

 

In thrust-vectoring, delta-wing aircraft, RaNPAS motion in yaw is generally expected to lead 

to less energy dissipation than in pitch, as this is a result of the lower frontal surface area of 

the aircraft in yaw. For this reason yaw RaNPAS has been considered to be more relevant to 

air combat manoeuvring, with Gal-Or [1] suggesting a 90° roll, roll stop, and RaNPAS in yaw 

(rattlesnake), as an energy-efficient method of achieving the same rotation as a cobra 

manoeuvre. However, in the biomimetic case study system – and in physical 

implementation of such a system – a significant difference in energy dissipation is less likely 

to be observed, due to the relative symmetry of the fuselage. The flip side of this is that, in 

the case study system, the cobra manoeuvre itself is likely to be relatively more useful for 

air combat manoeuvring RaNPAS than it is in thrust-vectoring delta-wing aircraft, as the 

pitch RaNPAS drag levels are likely to be similar magnitude to the (small) yaw RaNPAS levels. 

 

7.4.2. Manoeuvre design via constrained quasi-trim state 

In the case of RaNPAS pitching motion, the cobras of Section 7.3, manoeuvre design was 

carried out using quasi-trim states to generate maximal pitch-up and pitch-down moment in 

specified environments. An analogous process in yaw would be able to compute optimal 

yaw-left and yaw-right states and would thus enable RaNPAS yawing motion via the same 

principle. However, in Section 7.3.2 it was easy to constrain the optimal quasi-trim states to 

the appropriate manoeuvre plane (𝑥-𝑧) via enforcing aircraft symmetry about this plane – 

leading to an unconstrained optimisation of the pitching moment. RaNPAS yawing motion, 

on the other hand, is symmetry breaking by necessity. The 𝑥-𝑦 planar constraint – zero 

pitching and 𝑧-translational acceleration – must thus be enforced as a nonlinear constraint 
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on the optimisation. This process generates optimal yaw-left or yaw-right states at specified 

yaw and pitch angles (𝜓𝑠, 𝜃𝑠). Figure 7.4.1 shows several such states with their lateral 

stability / yaw acceleration profiles, under the morphing limits of sweep and dihedral 

|Λ|, |Γ| < 0.8 rad, incidence |𝛼| < 𝜋 2⁄  rad and the elevator and rudder control limits ±50°. 

Results A-C indicate pitch stability plots for optimal yaw-left states at 𝜓𝑠, 𝜃𝑠 = 0, with (A) all 

degrees of freedom active, (B) sweep and incidence active and (C) only incidence active. 

Result D represents the lateral stability profile of the trim state at (𝜓𝑠, 𝜃𝑠). Tables 7.4.1-7.4.2 

shows the control configurations for these states.  

 

Table 7.4.1: Parameters for optimal yaw-left states 𝜓𝑠 = 0 

Parameter (rad) (A) All DOF (B) Λ-𝛼 (C) 𝛼 

𝜓̈ (rad/s) −96.4 −80.0 −79.5 

Γ𝑙  (rad) −0.37 0 0 
Γ𝑟 (rad) 0.80 0 0 
Λ𝑙 (rad) 0.099 0.085 0 
Λ𝑟 (rad) 0.80 0 0 
𝛼𝑙  (rad) 1.41 1.45 1.45 
𝛼𝑟 (rad) -0.40 0.065 0.065 
𝛽𝑒 (rad) 0.019 0.077 0.075 
𝛽𝑟 (rad) −0.52 −0.87 −0.87 

 

Table 7.4.2: Parameters for optimal yaw-left states 𝜓𝑠 = −0.7 rad (40°) 

Parameter (rad) (A) All DOF (B) Λ-𝛼 (C) 𝛼 

𝜓̈ (rad/s) −54.1 −38.8 −10.5 

Γ𝑙  (rad) −0.21 0 0 
Γ𝑟 (rad) 0.80 0 0 
Λ𝑙 (rad) 0.70 0.71 0 
Λ𝑟 (rad) 0.33 0 0 
𝛼𝑙  (rad) 1.34 1.36 1.21 
𝛼𝑟 (rad) −0.60 0.059 0.084 
𝛽𝑒 (rad) 0 0.14 0.074 
𝛽𝑟 (rad) −0.87 −0.87 −0.87 

 

Several points should be noted. The dihedral degree of freedom is largely irrelevant; the 

advantage of using 6DOF morphing over sweep and incidence (4DOF) is minimal. Planar-

constrained quasi-trim states do exist at nonzero 𝜓𝑠 for the system with incidence-only 

morphing: this is notable because true trim states do not exist in this environment, and 

opens the possibility of using incidence-only morphing for RaNPAS even though quasisteady 

NPAS is not available. These incidence-only quasi-trim states are, moreover, competitive 
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with the sweep and incidence morphing leftwards-yaw states, both in terms of the yaw 

acceleration objective function, and the range of yaw angles at which leftwards-yaw 

acceleration is generated. The trim state at 𝜓𝑠, 𝜃𝑠 = 0 itself shows a wide zone of stability 

(Figure 7.2.1); sufficiently so to function as the stabilising state for these RaNPAS 

manoeuvres. There is thus no need to design specific stabilising (rightwards-yaw) states. 

 

7.4.3. Manoeuvre simulation 

In the manner of the simplest cobra manoeuvre in Section 7.3, a simple perturbation of the 

control configuration to one of the leftwards-yaw states in Figure 7.4.1/Tables 7.4.1-7.4.2 is 

sufficient to perform a large-yaw angle RaNPAS manoeuvre. Figures 7.4.2-7.4.3 show two 

such manoeuvres. Figure 7.4.2 utilises a constrained leftwards-yaw state at 𝜓𝑠 = −40° rad, 

based only on incidence morphing. In the case study system, with only incidence morphing, 

it appears impossible to reach a state of 𝜓 < −90°. Figure 7.4.3 utilises state at 𝜓𝑠 = −40° 

rad based on incidence and sweep morphing, and reaches a state of 𝜓 = 99°; analogous to 

a cobra. The yaw responses are oscillatory, but the stability of the trim state is such that the 

aircraft stabilises to near zero, with relatively minimal change in flight path. 

 

7.4.4. Generalised RaNPAS 

Analogous to the pitch-yaw coupled NPAS capability analysed in Chapter 6, Section 6.4.3, 

the possibility of coupled pitch-yaw coupled RaNPAS manoeuvres stems immediately from 

the demonstration of capability in pitch and yaw independently. An easy method for the 

design of such manoeuvres is also thus apparent; via constrained quasi-trim state analysis in 

an arbitrary 3D rotation objective direction and constraint plane. If such states exist, then 

they can be used to design RaNPAS manoeuvres around their associated rotation axes. For 

reasons of space, such manoeuvres are not simulated in this work; and there are several 

interesting questions which are left open – particularly regarding the effect of the available 

active morphing degrees of freedom on the space of available manoeuvres. Analogous to 

the trim state analyses in Chapter 6, Section 6.2, it should be possibility to compute polar 

plots of the constrained-state acceleration rates, and another performance metrics, 

available at different RaNPAS rotation axes, and thereby compare system and morphing 

DOF RaNPAS effectiveness in general. This is a particularly interesting topic for future 

research. 
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Figure 7.4.1: Six constrained leftwards-yaw quasi-trim states, under variable 𝜓𝑠 and active morphing DOF combinations. 
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Figure 7.4.2: Flight simulation results for a 2DOF-morphing (LW/RW incidence) yaw RaNPAS manoeuvre, designed via constrained state 
analysis: flight path with aircraft rendered every 50 ms (0 ≤ 𝑡 ≤ 2.5 s); forward velocity history, orientation history including the yaw angle of 
the aircraft velocity; and the aircraft control history. 
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Figure 7.4.3: Flight simulation results for a 4DOF-morphing (LW/RW sweep/incidence) yaw RaNPAS manoeuvre, designed via constrained state 
analysis: flight path with aircraft rendered every 50 ms (0 ≤ 𝑡 ≤ 2.5 s); forward velocity history, orientation history including the yaw angle of 
the aircraft velocity; and the aircraft control history. 
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7.5. BALLISTIC TRANSITION 

7.5.1. Motivation 

Even leaving aside the associated use of ranged weapons, RaNPAS manoeuvres have no 

direct parallels in biological supermanoeuvrability. This may indeed be connection with the 

close association with such weapons: in their absence, true RaNPAS manoeuvres show 

minimal utility, and such capability has either not evolved or is not commonly observed. 

Nevertheless, some biological manoeuvres do show correspondences with more general 

forms of NPAS capability; though their motivation is not primarily to effect orientation 

changes, but rather the use of the aerodynamic effects of these changes. One such 

manoeuvre is the ballistic transition, observed in a variety of gliding mammals [15–17] (See 

Chapter 1, Section 1.2.5). In the ballistic transition manoeuvre, there is no pitch-down state: 

the objective is to decrease the airspeed of the aircraft in preparation for an impact landing 

on a vertical surface.  

 

This corresponds to a form of point-and-hold NPAS, similar to the capability analysed in 

Chapter 6. However, in this case the objective is not to maintain a constant-airspeed trim 

state, but to maximise aircraft deceleration. Thus, even within the limited angle-of-attack 

range available to the trim states of Chapter 6, Section 6.2, the optimal ballistic transition 

state will be different. However, higher angles of attack would be expected to maximise 

drag forces further. Thus, in fact, the RaNPAS cobra manoeuvre serves as a useful template 

for designing a ballistic transition. 

 

7.5.2. Manoeuvre design and simulation 

In the case study system, a ballistic transition manoeuvre can be performed with a simple 

modification of the cobra controls. Generating a pitch-up moment via a 2DOF (Λ-𝛼) 

morphing pitch-up state (Table 7.3.1/Figure 7.3.2), instead of transitioning subsequently to 

a pitch-down state, the aircraft transitions to a neutral state which maintains a high pitch 

angle at decreasing airspeed until the point of impact. A useful example of a conveniently-

located near-neutral state is the pitch-up state but with zero incidence and elevator 

deflection, and only forward sweep. In a manoeuvre of maximum simplicity, this state may 

be maintained until impact landing. 
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Figure 7.5.1 shows a simulation of a ballistic transition manoeuvre in the case study system, 

utilising this sequence of control configurations. The objective is a low-velocity impact 

landing on a vertical surface 50 m away, starting at forward velocity of 60 m/s. The effect of 

a varying constant thrust value (0.2 < T/W < 1) is shown. The control configurations are 

completely specified, as per above, and only the state timings are free. For all the simulated 

thrust values, the ballistic transition manoeuvre is successful: the aircraft lands in an almost 

exact vertical position, with both the horizontal and vertical velocity < 12 m/s. The use of 

forward sweep, and the corresponding reduction in wing aeroelastic divergence speed, is 

likely to limit the initial airspeed of the manoeuvre: a more versatile manoeuvre sequence is 

to use incidence morphing (and, if available, dihedral) for initial airspeed reduction before a 

sweep morphing phase. Aeroelastic tailoring is also an option to increase the divergence 

speed. 

 

Even in the worst case, T/W = 0.2, the system kinetic energy is reduced by 94% at the point 

of impact, with near-zero altitude change. The primary effect of T/W is to increase the 

altitude gain through the manoeuvre, reducing the system kinetic energy via transfer to 

gravitational potential. Maximal levels of kinetic energy dissipation (up to 98.6%) are thus 

associated with maximal available thrust (at least, up to T/W = 1). However, the effect of 

T/W on the aerodynamic energy dissipation is only secondary, as evidenced by the total 

energy trends: optimal total energy dissipation occurs at T/W = 0.6, but the variation is not 

large. The use of altitude gain for kinetic energy is useful but a) may or may not be 

permissible in the context of the impact landing, and b) may be achievable through finer 

morphing control at lower T/W.  
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Figure 7.5.1: Flight simulation results for a ballistic transition manoeuvre with initial velocity 60 m/s, under varying initial thrust (T/W). Aircraft 
flight paths, body pitch angle histories, horizontal and vertical velocity, and relative total and kinetic energy histories. The aircraft state 
sequence is: trim → pitchup → stabilisation state. 



Chapter 7: Supermanoeuvrability: RaNPAS and transient manoeuvres 

266 

7.6. ANCHOR TURNS 

7.6.1. Motivation 

Stall or anchor turns represent one of the most interesting, and apparently widespread, of 

biological supermanoeuvres. However, as alluded to in Chapter 1, Section 1.2 the details of 

the aerodynamic and morphing-wing dynamic effects associated with this manoeuvre are 

complex and remain obscure. The presence of a single unified method or characteristic 

across different flying species or flight regimes has not been demonstrated. 

 

In pigeons (Columba livia), studies by Warrick and Dial [18,19] characterised the anchor turn 

as involving an inclination of the inboard wing to a high angle of attack during low-airspeed 

flight, causing it to stall and generating a drag-induced turning moment, and lift-induced 

bank angle. In steppe eagles (Aquila nipalensis), high-angle inclination of the hand-wing 

(outer wing section) is observed to yield similar rapid turns [20], and in flying squirrels [21] 

both drag and lift-based turns controlled by lifting surface inclination have been observed. 

The latter suggests the existence of multiple anchor turning mechanisms even in the 

absence of flapping-wing propulsion; and indeed, Warrick and Dial [18] also found evidence 

that supination (negative incidence) on the inboard wing can be used to generate similar 

turning motion solely through the drag-induced moment. There are, of course, further 

mechanisms utilising continual flapping propulsion: the use of asymmetries in wing 

downstroke velocity, or asymmetries in wing flex (adduction/extension); both to generate 

asymmetries in lift, with a corresponding bank angle and rotation in yaw [19]; and the use of 

anterior (forward) sweep and extreme pronation motions [22]. This study, however, 

concentrates on the most widely attested mode of anchor turning; via inboard wing 

inclination. 

 

7.6.2. Heuristic design and simulation 

On the basis of this biological literature, an analogous turn in the case study system can be 

designed through heuristic methods. The manoeuvre designed and studied here consists of 

four components. The aircraft enters the turn during an unpowered climb; the purpose of 

which is to bleed off speed before the turn. The simulation is started part way up this climb, 

with the aircraft at a high pitch and flight path angle (40°) and at a low airspeed (18 m/s). 

Initially, a slight rudder deflection is used to prepare the aircraft for the turn, which is then 
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initiated by inclining up the inboard wing to a very high drag state (75°). Simultaneously, the 

outboard wing is inclined down (to −23°) to reduce its drag, and the rudder takes a hard 

leftward state (−50°). Both operations contribute to a strong coupled pitch-yaw-roll motion 

in the aircraft, rotating it first to a nose-left position and then to a nose-down position, and 

rapidly decreasing its forward airspeed. 

 

As the aircraft turns the throttle is increased (up to T/W = 1) to pre-emptively gain airspeed 

for the turn recovery. Before the nose-down position is reached, the aircraft transitions to a 

corrective state in which the control inputs are reversed: the outboard wing is inclined 

upwards (75°), the inboard returns to level (0°), and the rudder to a moderate rightward 

yaw position (29°). This slows the rotation of the aircraft and causes it to the turn at a c. 90° 

roll angle. The aircraft is restored to level by a corrective state with moderate left wing 

incidence, at which point at which point a near-trim state can be resumed while the aircraft 

loses altitude and regains airspeed in its new orientation (c. 90° to the original). 

 

Figures 7.6.1-7.6.3 shows the results of a flight simulation of this anchor turn manoeuvre. 

The entire set of manoeuvre parameters have been tuned manually to provide appropriate 

levels of rotation and correction, but only left and right wing (LW/RW) incidence morphing 

and the tailplane control surfaces are utilised, and the thrust is limited to T/W = 1. As can 

be seen, the turning manoeuvre is successful, with the aircraft transitioning in 4 s to a flight 

path rotated by 90° at level pitch and yaw, with near-collinear velocity and orientation, and 

undergoing a stable altitude loss / airspeed acceleration. However the turning performance 

is not spectacular: the turn radius is c. 15 m (c. 9 wingspans); significantly larger than has 

been observed in biological flight. However, under a heuristic approach it is difficult to find 

avenues to increase this performance. It is clear a more formal method of manoeuvre 

design is required 

 

7.6.3. Constrained quasi-trim space design and simulation 

A more general method for the design of anchor turns involves the constrained quasi-trim 

state analysis developed in Section 7.4.2. We seek a small set of such states, optimised at a 

particular quasisteady environment under appropriate constraints, which can be 

interpolated through to yield a manoeuvre. Based on the heuristic anchor turn performance 
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in Section 7.6.2, the aircraft enters the turn at a near-trim state during an unpowered climb 

(30°, 20 m/s), and the turn is initiated by a strong leftward yaw rotation (as per Figures 

7.6.1-7.6.3).  

 

Generating this yaw moment can be achieved by exactly the same constrained quasi-trim 

states that were computed in Section 7.4.2. The aircraft configuration (all morphing and 

control DOFs) is optimised to generate maximal leftward yaw acceleration / moment at 

specified airspeed 𝑈𝑠 and yaw angle 𝜓𝑠, subject to the constraints of zero pitching and 𝑧-

translational acceleration, and specified control limits (sweep and dihedral |Λ|, |Γ| < 0.8 

rad, incidence |𝛼| < 𝜋 2⁄  rad, elevator and rudder ±50°). The effects of the choice of 𝑈𝑠 and 

𝜓𝑠 on the optimal state may then be noted. 𝑈𝑠 has a  relatively minimal effect, with the 

caveat that it must be above a critical value (the local stall speed, dependent on 𝜓𝑠) for the 

pitch and 𝑧-translational acceleration constraints to be satisfied. As in this manoeuvre the 

initial velocity is below this value, the optimisation airspeed is increased (to 30 m/s) to 

ensure these constraints are properly taken into account. 

 

The effect of 𝜓𝑠, on the other hand, is both significant and discontinuous. Figures 7.6.4-7.6.5 

show the effect of 𝜓𝑠 on a system with all-DOF morphing, and one with only sweep and 

incidence (Λ-𝛼) morphing. In the Λ-𝛼 system, quasi-trim states only exist up to c. |𝜓𝑠| = 1 

rad, and these are indeed largely based on wing incidence, consistent with the biological 

literature. The left wing is inclined to high angle, swept forward (Λ𝑙 ≈ −𝜓𝑠), and at near-

zero dihedral; the right wing incidence takes a small corrective value, with sweep and 

dihedral near-zero; and the elevator and rudder deflection take appropriate extreme values. 

However, beyond c. |𝜓𝑠| = 1 rad these type of states are unable to satisfy the planar quasi-

trim constraints; and moreover, generate instantaneous stabilising yaw moments. 

 

An extension to all-DOF morphing enables constrained quasi-trim states to exist at all yaw 

angles. At small yaw angles, the optimal constrained yaw-left states show a qualitative 

similarity to the Λ-𝛼 case, with high left wing incidence, but also with stronger forward 

sweep and asymmetric wing dihedral. However, beyond c. |𝜓𝑠| = 0.6 rad – a value which 

may be associated with the limit of yawed trim state existence under dihedral morphing, cf. 

Chapter 6, Section 6.2.4 – the optimal state changes to be radically different, with a step 
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change in right wing sweep and incidence, and a continual reduction in left wing incidence. 

Further step changes in the optimal elevator deflection are observed, and the results are 

complex, but leftwards yaw states can be generated for all 𝜓𝑠. The most problematic area is 

the dead zone at c. |𝜓𝑠| = 1.7 rad, in which only minimal leftwards-yaw moments can be 

generated: the aircraft must rely on momentum to pass though this zone. 

 

These optimal states allow the aircraft to be rotated to nose-backward positions. At the 

most complex, a model-based control procedure could be devised in which optimal 

constrained states are computed as the manoeuvre progresses, potentially taking into 

account other current aircraft state information (e.g. angular velocities). However, a simpler 

alternative method is to take two states at discrete points, and transition between the two 

when required. In this manoeuvre, states are taken at 𝜓𝑠 = −0.6 rad, 𝑈𝑠 = 23 m/s under Λ-

𝛼 morphing (to minimise the initial forward sweep); and at 𝜓𝑠 = −1.6 rad, 𝑈𝑠 = 33 m/s 

under all-DOF morphing (as the Λ-𝛼 morphing is insufficient at these angles). The transition 

between must be tuned, manually or automatically, to ensure that the aircraft transitions to 

the sweep/dihedral regime state before stabilising yaw accelerations are generated. 

 

Flight simulations up to and beyond these two states are shown in Figures 7.6.6-7.6.8: there, 

State 1 represents the initial near-trim state, and States 2 and 3 the optimised leftwards-

yaw states in the two respective regimes. After transitioning through these three states, the 

aircraft is in a free-fall environment, with low horizontal airspeed; at a high negative yaw 

angle (below −90°), rapidly decreasing; and at a negative pitch angle, also rapidly 

decreasing. The latter is the highest priority for control action: strong pitch-up acceleration 

is required to minimise altitude loss; by increasing the aircraft free-fall drag, eliminating the 

downward vertical thrust component of aircraft thrust, and accelerating the aircraft in its 

new yaw direction through the horizontal thrust component. Anticipating the motion of the 

aircraft, a loose description of the optimisation environment is taken: airspeed vector 

𝐮𝑠 = [−10, 0, −10]𝑇 m/s, representing reversed and falling flight; pitch 𝜃𝑠 = −0.6 rad; and 

roll 𝜙𝑠 = 0.4 rad. In this environment the aircraft configuration (all DOFs) is optimised to 

generate maximal upwards pitch yaw acceleration / moment, subject to the constraints of 

zero yaw acceleration and horizontal (𝑥,𝑦) translational acceleration and the same control 

limits. The resulting optimal state is designated as State 4 in Figures 7.6.6-7.6.8. It shows 
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simple dependencies on the environment variables, with the wings at maximum sweep, and 

anti-symmetric dihedral such that the wings are horizontal in the earth frame of reference 

(|Γ| = 𝜙𝑠). 

 

This combination of optimised states, timed appropriately, reorients the aircraft to a stable 

dive at a new yaw angle of −135°. The final control action required is a transition to near-

trim state to pull the aircraft up from a dive. A state of maximal sweep is taken, with small 

symmetric incidence and elevator deflection. This is not an optimal state, but the 

requirement for lateral symmetry restricts the morphing space significantly, and so a 

heuristic approach is feasible. Finally, an increase in propulsion from zero initially (to 

maximise the loss of airspeed) to T/W = 1 when the aircraft is reorientates (to maximise the 

regain of airspeed) is overlaid on the manoeuvre. 

 

This completes an anchor turn manoeuvre through 135°: Figures 7.6.6-7.6.8 show the full 

finalised turn. The transitions between states require tuning, but the key working states (2-

4) are generated via constrained optimisation, with a relatively small set of free parameters 

(e.g. 𝜓𝑠 for 2-3). The turn performance is good, with a turn radius (in the 𝑥-𝑦 plane) of c. 4 

m or c. 2.5 wingspans – approaching biological capability. The quasisteady acceleration 

predictions from optimisation (Figure 7.6.5 and other data) match reasonably well with the 

observed dynamic accelerations of the aircraft. The key difficulty in performing the 

manoeuvre is the large altitude cost: c. 35 m loss from the apex to a point of zero pitch, with 

the flight path still not yet stabilised. Even with further optimisation, it is unlikely that the 

case study system will be able to approach the minimal levels of altitude loss observed 

biologically (cf. Chapter 1, Section 1.2.2), as biomimetic propulsion systems allow a degree 

of hovering capability via thrust / wing force vectoring that cannot be replicated. Such 

hovering-based turning manoeuvres probably cannot be categorised as anchor turns in the 

way that this term has been characterised here. The manoeuvres studied here bear 

significantly more affinity to the Herbst manoeuvre in thrust-vectoring aircraft, which is also 

associated with large altitude losses (Chapter 1, Section 1.2.2). 
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7.6.4. Concluding remarks 

This section considered only two specific anchor turn manoeuvres (90°, incidence-only and 

135°, all DOFs). While this forms only a basic study, the flexibility in aircraft states and state 

timings indicates that a wider spectrum of turns are available. In particular, there is no 

immediate reason to believe that incidence-only anchor turns are restricted to rotations of 

90° of less. However, it is also the case that turns at the extreme end of the spectrum (135°-

180°) are probably outperformed by an equivalent flight manoeuvre involving direction 

reversal via pitch, with a roll transition out of the resulting inverted flight state, and a slight 

further turn if required; an extension of the cobra and ballistic transition manoeuvres in 

Sections 7.3 and 7.5. Such a manoeuvre has not been studied in this work, but the system 

capability demonstrated thus far renders it highly likely to be feasible; and as the control 

configuration will be symmetric, manoeuvre control and design will be significantly easier. 

The primary application for anchor turns appears to be turning angles between c. 45° and 

135°. 

 

A few further points should be noted. The reliance of forward sweep in the 135° manoeuvre 

will significantly decrease the aeroelastic divergence speed of the wings [7]. For this reason, 

a low-sweep state is chosen to initiate the turn. However, during most of the manoeuvre, 

the aircraft velocity is very low and so this is unlikely to be a major problem; but divergence 

may make the use of the forward swept state during the final dive and pull-up phase 

unfeasible. For this reason, and for the reduction of aircraft morphing complexity, the 

design of high-performance incidence-only anchor turns is an area of particular interest and 

relevance. A key possibility that was omitted in this analysis, but which shows potential for 

this purpose, is the use of reverse thrust – in propulsion systems that can conveniently 

generate it – to decrease the manoeuvre altitude loss, and increase its turning performance. 
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Figure 7.6.1: Flight simulation results for a 90° 2DOF-morphing (LW/RW incidence) anchor turn designed heuristically: flight path with aircraft 
rendered every 50 ms (0 ≤ 𝑡 ≤ 4 s) and distinct morphing states indicated; orientation history including the yaw angle of the aircraft velocity; 
and the aircraft control history. 
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Figure 7.6.2: Flight simulation results for a 90° 2DOF-morphing (LW/RW incidence) anchor turn: orthographic views of the aircraft flight path 
with aircraft rendered every 50 ms (0 ≤ 𝑡 ≤ 4 s) and distinct morphing states indicated. 
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Figure 7.6.3: Flight simulation results for a 90° 2DOF-morphing (LW/RW incidence) anchor turn: close-up of flight path in the vicinity of 
maximum angular acceleration, with aircraft rendered every 50 ms and distinct morphing states indicated. 



 
 

Chapter 7: Supermanoeuvrability: RaNPAS and transient manoeuvres 

275 

 
 

 

Figure 7.6.4: Visualisation of the constrained leftwards-yaw quasi-trim states, as a function of 𝜓𝑠, for Λ-𝛼 and all-DOF morphing. The former 
only exists for c. |𝜓𝑠| < 1; the latter exists for all 𝜓. 
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Figure 7.6.5: Control and yaw acceleration profiles for constrained leftwards-yaw quasi-trim states, as a function of 𝜓𝑠, for Λ-𝛼 and all-DOF 
morphing. Note the termination of the Λ-𝛼 states at c. |𝜓𝑠| = 1, and the discontinuities in the all-DOF control and acceleration profiles. 
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Figure 7.6.6: Flight simulation results for a 135° 6DOF-morphing anchor turn designed via constrained state analysis: flight path with aircraft 
rendered every 50 ms (0 ≤ 𝑡 ≤ 4.5 s) and distinct morphing states indicated; orientation history including the yaw angle of the aircraft 
velocity; and the aircraft control history. 
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Figure 7.6.7: Flight simulation results for a 135° 6DOF-morphing anchor turn: orthographic views of the aircraft flight path with aircraft 
rendered every 50 ms (0 ≤ 𝑡 ≤ 4.5 s) and distinct morphing states indicated. 
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Figure 7.6.8: Flight simulation results for a 135° 6DOF-morphing anchor turn: close-up of flight path in the vicinity of maximum angular 
acceleration, with aircraft rendered every 50 ms and distinct morphing states indicated; close-up of the optimised morphing states; and 
angular acceleration histories of the aircraft compared to the quasistatic predictions for the optimised states. 



Chapter 7: Supermanoeuvrability: RaNPAS and transient manoeuvres 

280 

7.7. SYNTHESISED CONTROL SURFACE ACTIONS 

7.7.1. Motivation 

In Chapter 6 the possibility of high angle-of-attack asymmetric forebody separation was 

identified as a possible source of simulation error and/or manoeuvre failure for the 

quasistatic NPAS manoeuvres. This asymmetric separation – one manifestation of which is 

lateral vortex shedding off the fuselage – may lead to three distinct effects in the aircraft 

flight dynamics [23]: 

 Nose-slicing; in which the aerodynamic yaw moments exceed the rudder control 

authority, leading to departure from controlled flight via (inertial-frame) yaw. 

 Wing rock; an oscillatory instability in roll. 

 Coning; a rolling rotation around the aircraft velocity vector axis, when distinct from 

the reference roll axis. This may be visualised as a rotation of the nose around the 

velocity vector axis. 

The suppression of these effects via passive control surfaces, such as nose strakes, is an area 

of post-stall aerodynamics research [23,24]; as is the more ambitious goal of controlling 

them via active control methods [25]. The biomimetic case study system provides an 

immediate additional mechanism for the latter via the existing biomimetic wing control. 

 

7.7.2. Qualitative arguments for synthesised control 

Geometrical arguments indicate that asymmetric yaw and roll moments can be generated 

independently at high angles of attack by biomimetic morphing. Moment control of this 

form would correspond to synthesised (morphing-engendered) analogues of the rudder and 

aileron control surfaces. Asymmetric incidence control can be used to generate coupled 

inertial-frame yaw and roll moments via asymmetric lift and drag forces. These forces can 

be decoupled via anti-symmetric morphing from a wing angle-of-attack of zero (leading to 

drag symmetry); or near-anti-symmetric morphing from a wing angle-of-attack of c. 40° (a 

lift maxima, leading to lift symmetry). The effects of aerodynamic moment and the location 

of the aerofoil quarter-chord points are secondary factors. Asymmetric sweep and dihedral 

control can be used to generate similar yaw-roll coupling via lift/drag deficiency, with the 

restriction that the direction of motion has little effect; a deficiency will always be 
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generated. Note that the inertial-frame angles refer to the angular directions of their 

associated earth-frame angles ( ), with the fuselage as a reference point, as if the aircraft 

was located at the state = 𝟎. This avoids the difficulties with terminology engendered by 

gimbal lock in the nose-up position.  

 

The presence of these effects will, at least conceptually, allow the generation of uncoupled 

yaw/roll moments, or moments of the appropriate direction for asymmetric separation 

control. Practically, however, the effects of the morphing changes on the other system 

accelerations (e.g. pitching and translational) may not be correctable, and whether the 

available range of moment directions and magnitudes is actually sufficiently large has not 

been established. To understand these factors a quantitative test analysis is carried out. 

 

7.7.3. Cobra manoeuvre test case 

As a representative context for asymmetric forebody separation, and the associated 

possibility for control via synthesised control surface action, the cobra manoeuvre studied in 

Section 7.3 is taken. It is conceptually clear that a degree of synthesised control surface 

action is possible; and that this could be used to control against the effects of asymmetric 

forebody separation control: it is a question of whether the magnitudes of the synthesised 

surface effects are sufficient. The question of whether the actuator response is fast enough 

requires a more detailed system specification; beyond the scope of this current study.  

 

Analysing the point of maximum pitch angle in the simple cobra simulation (Figure 7.3.4, 𝑡 = 

0.77 s), the inertial-frame pitch, yaw, and roll accelerations are computed over the space of 

left- and right-wing incidence control. The results are surprising. Figure 7.7.1 shows the 

state of interest in its manoeuvre context, and the inertial-frame pitch, yaw, and roll 

acceleration fields as a function of the wing incidences. Changes in wing incidence do not 

significantly alter the pitching dynamics of the aircraft (acceleration changes are <30%), and 

almost always improve the system pitch-down acceleration – in this regard the original state 

is of near-minimal optimality. Incidence-based asymmetric separation control is thus 

unlikely to alter the overall behaviour of the cobra manoeuvre. Incidence control does, 

however, yield a wide spectrum of yaw and roll accelerations. Tracking the contours of zero 

yaw acceleration within the field of roll acceleration (and vice versa) yields pathways 
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through the 2D incidence space which represent decoupled yaw and roll control. These 

decoupled paths represent synthesised (morphing-engendered) analogues to the aileron 

and rudder; but at much greater control effectiveness. 

 

Figure 7.7.1 shows these decoupled paths/synthesised control surface actions expressed as 

effective inertial-frame aerodynamic yaw (𝜓) and roll (𝜙) coefficients, given as: 

𝐶𝜓 =
𝐼𝜓𝜓̈

1
2
𝜌𝑈2𝐴ref𝐿ref

, 𝐶𝜙 =
𝐼𝜙𝜙̈

1
2
𝜌𝑈2𝐴ref𝐿ref

, (7.7.1) 

where 𝐼𝑖 are the appropriate moments of inertia around the c.o.m, 𝑈 is the state airspeed 

(33.7 m/s), and 𝜌 is the air density (1.2 kg/m3). 𝐴ref and 𝐿ref are reference lengths and 

areas; the wing planform area and the wingspan, respectively. These effective coefficient 

control paths are compared with estimates of the expected maximum yaw and roll 

coefficients generated by asymmetric forebody separation, as per the literature. These are, 

in yaw, a maximum of 𝐶𝜓 = c. 0.1 for the Rockwell-MBB X-31 and a generic swept-wing 

aircraft [23,24]; and in roll, a maximum of 𝐶𝜙 = c. 0.1 for a generic delta wing aircraft [26]. 

Note that these maximum values occur at states different to the one considered in this 

analysis – in yaw, at angle-of-attack c. 60°; and in roll, at angle-of-attack c. 60° and roll angle 

c. 40°. In the latter case, this large roll angle makes this assessment highly conservative; this 

comparison serves only to demonstrate that the forces exerted by asymmetric separation 

are likely to be within the capability of incidence-morphing to control. This does not address 

the potential for yaw-roll coupled moments induced by asymmetric separation; a decoupled 

preserves the phenomenological distinction between wing rock (roll), nose-slicing (yaw) and 

coning (coupled) effects. Not all of these are likely to be a problem simultaneously; and 

some may be amenable to passive suppression. 

 

There are a wide range of topics for future research in this area, particularly with regard to 

control design (model-based and non-model-based), transient turbulent effects such as 

vortex shedding, and the nature and significance of all asymmetric separation effects in a 

non-delta-wing supermanoeuvrable aircraft. This section demonstrated, in a basic way, that 

asymmetric incidence morphing offers a range of yaw/roll moment control at high angles-

of-attack – including fully-decoupled moments of a magnitude sufficient to control 
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asymmetric separation effects. The ramifications of this extend beyond asymmetric 

separation control, to the capability for more general yaw/roll control at high angles-of-

attack. This opens up the possibility of the design of more complex variants of the cobra 

manoeuvre, involving yaw and roll motions; and possibly provides a genesis point for a 

different form supermanoeuvre control – one based on synthesised control surfaces of high 

effectiveness, and not on a priori manoeuvre design.  
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Figure 7.7.1: Inertial-frame pitch, yaw and roll accelerations as a function of left (LW) and right (RW) wing incidence at the point of maximum 
pitch (𝑡 = 0.77 s) in the simple cobra (Figure 7.3.4). The associated control paths/contours for decoupled orientation control (roll at zero yaw, 
yaw at zero roll) are also shown. 
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Figure 7.7.2: Control paths/contours for decoupled orientation control (roll at zero yaw, yaw at zero roll) expressed as effective full-system 
inertial-frame aerodynamic coefficients (𝐶𝜓, 𝐶𝜙). Estimated maximum levels of 𝐶𝜓, 𝐶𝜙 under asymmetric forebody separation are given: for 

the X-31 and generic swept wing aircraft, 𝐶𝜓 =  0.1 [23,24]; and for a generic delta wing aircraft, 𝐶𝜙 = 0.1 [26]. Symmetry about the 𝑥-𝑦 plane 

is observed. 
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7.8. CONCLUDING REMARKS 

7.8.1. Results 

In this chapter a wide range of transient supermanoeuvres were studied, motivated both by 

biological analogy and by manoeuvres in thrust-vectoring aircraft. The capability of the case 

study system is significant: rapid nose-pointing-and-shooting (RaNPAS) in both pitch and 

yaw, including Pugachev’s cobra, through a variety of mechanisms; ballistic transition 

manoeuvres for impact landing on a vertical surface; and anchor turns up to 135° were all 

demonstrably possible at actuator complexities lower than maximum (<6DOF). Based on 

this performance, extensions to flight reversal manoeuvres, perching manoeuvres, and 

more complex cobra-type manoeuvres are thought possible. 

 

Immediate applications of this hybrid aircraft are likely to show minimal actuator 

complexities: in this study, asymmetric incidence morphing was found to be a highly 

effective 2DOF morphing strategy, allowing quasistatic pitch NPAS between −25° and 30° 

and an undetermined range of pitch RaNPAS; yaw RaNPAS up to 90°; anchor turning up to 

at least 90°; and a degree of asymmetric forebody separation control. If symmetric sweep 

control is additionally available, then pitch RaNPAS is possible to beyond 90° (Pugachev’s 

cobra), as is ballistic transition capability. Or instead, if single-wing dihedral control is 

available, then quasistatic yaw NPAS is available up to ±25°, and performance 

improvements in yaw RaNPAS, anchor turning, and asymmetric forebody separation control 

are expected. These three morphing configurations represent the most promising 

industrially-relevant configurations that were found in this study. 

 

7.8.2. Methodology 

Finally, the constrained quasi-trim space methodology used in this study represents an 

efficient and flexible approach to manoeuvre design and exploration in the presence of 

multiple morphing degrees of freedom. It represents an extension of the trim space method 

developed in Chapter 6 to the case of states of nonzero acceleration; and is a key 

methodological development which allows the space of morphing configurations to be 

explored efficiently in a way that is not possible with purely heuristic or purely numerical 

methods. The concept of a quasi-trim space – in the sense of pseudo-trim space; a space of 

states nearby to trim states – is itself a useful and novel concept, allowing morphing aircraft 
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control configurations to be characterised not by their control state, but by their effect on 

the aircraft acceleration profile to a reference wind. This allows a conceptual understanding 

of complex supermanoeuvres (e.g. anchor turns) to be built up.   

 

The development of quasi-trim manoeuvre design methods represents a formalisation of 

this principle, only partially attained in this thesis: the capability was demonstrated for the 

simple system yaw NPAS (rattlesnake) manoeuvre (Section 7.4), with a simple perturbative 

control; and for the complex anchor turn manoeuvre (Section 7.6) in combination with 

heuristic methods. Given these results, there is reason to believe that further formalisation, 

such as a refinement of the mesh of pointer states in alongside an implementation in an 

optimal control context, would yield finer (if less flexible) manoeuvre design capability. 

Furthermore, quasi-trim states could be used to provide perturbation control, through the 

defined acceleration of quasi-trim states, in addition to manoeuvre guidance. The analysis of 

synthesised control surface actions (Section 7.7) represents the zenith of this train of 

thought in this work: there, a quasi-trim analysis, in its broadest conception, is used to 

demonstrate how morphing actions can be used to generate uniaxial control moments 

(analogous to the low-angle of attack effect of aileron and rudder), or indeed, polyaxial 

ones; suitable for use in a control loop. 

 

As with the trim space analysis (Chapter 6), the quasi-trim space analysis remains distinct 

from traditional methods of optimal control and nonlinear dynamic inversion. In reference 

to optimal control [27,28]; it represents a possible approach to formulating the objective 

function; that being, the aircraft acceleration or acceleration components along a target 

path. In this context, quasi-trim analysis can be done in-loop, w.r.t. a candidate or current 

path, or out-of-loop (a priori), w.r.t. the target path; a distinction represented by the 

methodology for the rattlesnake manoeuvre (Section 7.4) and the anchor turn (Section 7.6) 

respectively. In reference to nonlinear dynamic inversion, the quasi-trim space analysis 

involves a numerical inversion process – computing the control configurations associated 

with a specified acceleration state – but this inversion is not used to define a linearising 

control law. Rather, in a feedback control context, the quasi-trim space analysis provides a 

method for obtaining control configurations that can be used by multiple controllers (e.g. 

even simple PID), enabling a wide range of different forms of biomimetic supermanoeuvre 
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control. Further development and extension of this methodology is closely allied with 

further exploration of supermanoeuvrability in biomimetic morphing-wing aircraft. 

 

7.8.3. Limitations 

The analysis and conclusions presented here are subject to several limitations. A key 

limitation is that transient aerodynamic effects, including dynamic stall, are not included in 

the quasistatic aerodynamic submodel used for flight simulation in this chapter. It is not 

expected that the quasistatic model has remained fully accurate for the manoeuvres studied 

here. This may appear to obviate all the results of this chapter; but Chapters 8-9 will 

demonstrate that many of the manoeuvres studied here can be recovered under a transient 

aerodynamic model through changes in the control histories. Ultimately, this will allow 

quasistatic methods of manoeuvre design to be used to study supermanoeuvrability under 

transient aerodynamics. The effects of asymmetric forebody flow separation [23] were also 

not included in the analysis, and the possibility of controlling these effects via wing 

morphing were only demonstrated in basic way. A more detailed assessment of these 

effects would be useful. 

 

The actuator or aerostructural feasibility of these manoeuvres has not been studied. In the 

case e.g. of asymmetric incidence morphing, neither of these effects are likely to be greatly 

significant, as the required actuator efforts are small, and the structural stresses involved 

are no larger than those present in non-morphing flight within an 360° angle-of-attack 

envelope. Actuator effort is likely to be a limiting factor in rapid dihedral morphing, and 

when the number of morphing controls is larger (up to 6DOF). Structural integrity is likely to 

be a limiting factor on the use forward sweep, as aeroelastic divergence effects will become 

significant. This is a subjective assessment, and much depends on the required actuator 

effort and aircraft payload/application. A quantitative assessment of these effects would 

form a useful avenue for further research; as would a more dedicated assessment of a 

detailed biomimetic concept design (e.g. including actuator specifications). Finally, in this 

assessment of supermanoeuvrability in this chapter has focused on a priori manoeuvre 

design: a focus which allows us to demonstrate the case-study system capability for a wide 

range of manoeuvres, but not address problems with their guidance and control. 
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8.1. INTRODUCTION 

A transient aerodynamic submodel for the case study system is required in order to 

accurately assess the system’s capability for highly transient manoeuvres. A wide range of 

transient model fidelities are available.  At the highest level,  2D or 3D turbulent 

computational fluid dynamics (CFD) simulations via large-eddy simulation (LES) or Reynolds-

averaging are extremely expensive to apply to a morphing aircraft – whether in a full-system 

context, or only a single lifting surface – but are still sometimes utilised [1,2]. The one-

parameter Spalart-Allmaras turbulence model is commonly utilised for reasons of 

computational efficiency [3–6]; higher-fidelity approaches such as LES are feasible only for 

insect-scale simulations [25].  CFD approaches are in general too computationally costly to 

be coupled directly to flight simulation systems: in the case study system, doing so would 

significantly limit the manoeuvre timescale and the possibility for exploration of the 

manoeuvre / control configuration space. A more efficient approach is to use a data-driven 

or phenomenological lower-order model. Data-driven model-reduction techniques – e.g. 

eigensystem realisation [7], Volterra theory [8] and support vector machines [9] – are 

capable of reducing a large CFD or experimental dataset to a lower-order model.  

 

Alternatively, a phenomenological model of particular transient flow effects can be utilised: 

of particular relevance are dynamic stall and lift hysteresis models, including the ONERA [10] 

and Goman-Khrabrov (GK) [11] models, among others [12]. These models focus largely on 

the dynamic effects of pitching (and to some extent, dihedral motion) of the aerofoil, with 

particular reference to delay flow attachment/separation. The effect of dynamic sweep 

motion, apart from the obvious induced flow, is very rarely studied [13], though results from 

the study of unsteady freestream flows indicate that it may have more significance than 

previously thought [14–16].  Phenomenological models are less general in the range of 

effects that they model; but they do not require a large source dataset, and by their nature 

allow a better phenomenological characterisation of the model limitations. Even simpler 

model-reduction and phenomenological models are available: Theodorsen’s aerodynamic 

theory  [17,18] provides a method by which the dynamic effects of low-amplitude pitching 

and dihedral motion may be modelled [17,18]. Wagner’s indicial response function [19] and 

the finite-state theory of Peters et al. [20] provide similar modelling capability. However, the 
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limitations of these models to low amplitude, pre-stall behaviour [19] makes them poorly 

suited to modelling transient supermanoeuvrability. 

 

In this chapter, a Goman-Khrabrov (GK) aerodynamic model for the case study system is 

developed and identified. Quasistatic model data is identified from existing quasistatic data 

for the ST50W/H aerofoils; transient model parameters are identified from CFD simulations. 

This yields an aerodynamic model that accounts for the dynamic effects of aerofoil angle-of-

attack changes, and yields accurate aerodynamic force predictions over a much wider range 

of flow transience level. 

 

 

8.2. GOMAN-KHRABROV AERODYNAMIC MODELLING 

8.2.1. Formulation 

To include dynamic stall effects into the case study model, a modified GK model is 

implemented in the surface-element framework; extending upon the work of Goman and 

Khrabrov [11], Reich et al. [21] and Wickenheiser and Garcia [22]. Under the modified GK 

model, for each lifting surface station 𝑖 across the system, the aerodynamic coefficients for 

force 𝐹 as a function of effective angle-of-attack, 𝐶𝑖,𝐹(𝛼𝑖), are given by: 

𝐶𝑖,𝐹(𝛼𝑖) = 𝑝𝑖𝐶𝑖,𝐹,att(𝛼𝑖) + (1 − 𝑝𝑖)𝐶𝑖,𝐹,sep(𝛼𝑖), (8.2.1) 

where 𝐶𝑖,𝐹,att(𝛼𝑖) and 𝐶𝑖,𝐹,sep(𝛼𝑖) are the aerodynamic coefficient functions for the 

hypothetical cases of local attached and separated flow respectively. 𝑝𝑖 are local dynamic 

mixing parameters [22], loosely connected to the location of the separation point along the 

airfoil chord [11,23], and governed by the first-order differential equation: 

𝜏1,𝑖𝑝̇𝑖(𝛼𝑖) = 𝑝0,𝑖(𝛼𝑖 − 𝜏2,𝑖𝛼̇𝑖) − 𝑝𝑖(𝛼𝑖), (8.2.2) 

where 𝛼𝑖 and 𝛼̇𝑖 are the local angle of attack and corresponding rate, 𝜏1,𝑖 and 𝜏2,𝑖 are 

situation- and station-specific delay parameters and 𝑝0,𝑖(𝛼) are mixings function 

representing the transition between attached and unattached flow. It is the identification of 

the functions 𝐶𝑖,𝐹,att(𝛼𝑖), 𝐶𝑖,𝐹,sep(𝛼𝑖) and 𝑝0,𝑖(𝛼𝑖); and the delays 𝜏1,𝑖 and 𝜏2,𝑖 which are 

crucial in determining the accuracy of the model. Notably, the former three functions are 

identifiable based only on static aerodynamic coefficient data, when 𝑝𝑖 = 𝑝0,𝑖. A traditional 
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procedure [21,22] has been to assume simple linear attached flow and flat plate separated 

flow behaviour, leading to the widely-used relations: 

𝐶𝑖,𝐿, att(𝛼) = 𝐶𝑖,𝐿𝛼𝛼𝑖 

𝐶𝑖,𝐷, att(𝛼) = 𝐶𝑖,𝐷𝛼𝛼𝑖 

𝐶𝑖,𝐿, sep(𝛼) = 1.1 sin 2𝛼𝑖 . 

𝐶𝑖,𝐷, sep(𝛼) = 0.95(1 − cos 2𝛼𝑖), 

(8.2.3) 

For airfoil-specific 𝐶𝑖,𝐿𝛼 and 𝐶𝑖,𝐷𝛼. Note that aerofoil moment coefficients have not 

previously been considered. Wickenheiser and Garcia [22] and Reich et al. [21] provide a 

trigonometric expression for 𝑝0,𝑖 based on the arctangent sigmoid curve, approximately 

equivalent to: 

𝑝0,𝑖(𝛼𝑖) = {

1 |𝛼𝑖| < 4°

−0.0058 tan−1(|𝛼𝑖| + 16) 4° ≤ |𝛼𝑖| ≤ 32°

0 |𝛼𝑖| > 32°.

 (8.2.4) 

Note that the expression in [21,22] confuses radians and degrees; here the input, 𝛼𝑖 ranges 

and and  tan−1 output are all in degrees. In addition, the 𝛼𝑖 ranges are modified slightly to 

remove an area of nonphysical 𝑝0 < 0 present in the original function. Together with the 

aerodynamic models, this provides a complete set of functions for the GK model. 

 

8.2.2. Static parameter identification: ST50W 

Unfortunately, the simple relations in Eq. 8.2.3-8.2.4 are not a good approximation to the 

case study system aerofoils. A more recent and more versatile application of the GK model, 

following from [23–25], involves the identification of the separated and attached models 

from the aerodynamic coefficient data from CFD or experiment. There are several lifting 

surfaces to model in this way: the wing surfaces and the horizontal and vertical stabilisers; 

the latter additionally modified by the elevator and rudder deflections. The two aerofoils in 

the system, the ST50W and ST50H, are modelled using the wing and stabiliser datasets from 

Selig [26] (cf. Chapter 3). Starting with the wing data; curve fitting indicates that it is 

approximated well (see Figure 8.2.2) by the relations: 

𝐶𝑖,𝐿, sep(𝛼𝑖) = 𝑎𝑖,𝐿 sgn 𝛼𝑖 sin(𝑏𝑖,𝐿|𝛼𝑖 + 𝑐𝑖,𝐿| + 𝑑𝑖,𝐿) + 𝑒𝑖,𝐿 , 

𝐶𝑖,𝐷, sep(𝛼𝑖) = 𝑎𝑖,𝐷sin(𝑏𝑖,𝐷|𝛼𝑖| + 𝑐𝑖,𝐷) + 𝑑𝑖,𝐷 , 

𝐶𝑖,𝑀, sep(𝛼𝑖) = 𝑎𝑖,𝑀 sgn 𝛼𝑖 sin(𝑏𝑖,𝑀|𝛼𝑖 + 𝑐𝑖,𝑀| + 𝑑𝑖,𝑀) + 𝑒𝑖,𝑀, 

(8.2.5) 
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for all 𝛼𝑖, with model parameters 𝑎𝑖,𝑗, 𝑏𝑖,𝑗, 𝑐𝑖,𝑗, 𝑑𝑖,𝑗 and 𝑒𝑖,𝑗; and for the leading and trailing 

edge considered separately: 

𝐶𝑖,𝐿, att(𝛼𝑙,𝑖) = 𝐶𝑖,𝐿𝛼,𝑙𝛼𝑙,𝑖, 

𝐶𝑖,𝑀, att(𝛼𝑙,𝑖) = 0, 

𝐶𝑖,𝐷, att(𝛼𝑙,𝑖) = 0, 

𝐶𝑖,𝐿, att(𝛼𝑡,𝑖) = 𝐶𝑖,𝐿𝛼,𝑡𝛼𝑡,𝑖, 

𝐶𝑖,𝑀, att(𝛼𝑡,𝑖) = 𝐶𝑖,𝑀𝛼,𝑡𝛼𝑡,𝑖, 

𝐶𝑖,𝐷, att(𝛼𝑡,𝑖) = 0, 

(8.2.6) 

where sgn 𝛼𝑖 is the sign function, and 𝛼𝑙,𝑖 and 𝛼𝑡,𝑖 are the leading and trailing edge angles of 

attack (representing a partition of the full domain, |𝛼𝑖| < 180°, into |𝛼𝑖| ≤ 90° and 

||𝛼𝑖| − 180°| ≤ 90°, the latter of which is mapped back to |𝛼𝑖| ≤ 90° again.) Three of the 

attached flow models (𝐶𝑖,𝑀, att(𝛼𝑙,𝑖) and both 𝐶𝑖,𝐷, att(𝛼𝑖,𝑖)) are observably zero. Note that 

the separated flow function are still symmetric (odd or even) about 𝛼𝑖 = 0, as is expected 

for the symmetric aerofoil. The effect of aileron deflection is not considered, as this control 

function can be achieved by incidence morphing. 

 

The parameters for these expressions model are identified via nonlinear least-squares 

regression applied to selections of obviously attached and separated flow. 𝑝0,𝑖 can then also 

be estimated by solving 𝑝𝑖 = 𝑝0,𝑖 in Eq. 8.2.1 using the empirical source data. Figure 8.2.1 

shows the results of this process, compared to the arctangent 𝑝0,𝑖 expression (Eq. 8.2.4). For 

the trailing edge this is modified to account for the earlier and faster separation: 

𝑝0,𝑖(𝛼𝑡,𝑖) = {

1 |𝛼𝑡,𝑖| < 4°

−0.0058 tan−1(1.6|𝛼𝑡,𝑖| + 16) 4° ≤ |𝛼𝑡,𝑖| ≤ 21°

0 |𝛼𝑡,𝑖| > 21°.

 (8.2.7) 

The results indicate that the arctangent 𝑝0,𝑖 is a reasonably accurate approximation for the 

ST50W. The quasistatic source coefficient data for the ST50W wing may then be 

reconstructed for comparison. Figure 8.2.2 shows this data alongside the GK reconstruction 

using the arctangent 𝑝0 (Eq. 8.2.4 and 8.2.7). The result is overall very good: the separated 

and attached flow regimes are modelled well. The most notable discrepancies are around 

the trailing edge transition in the drag and moment coefficients – as can be seen also in 

Figure 8.2.1, the trailing edge drag and moment data appear to be requiring different 𝑝0,𝑖 

functions. Such an approach however would destroy much of the remaining physical realism 

of the GK model – already only loosely connected to Goman and Khrabrov’s separation-

point formulation [11,23] – and the potential increase in modelling accuracy is not great.  
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Figure 8.2.1: Filtered approximations to 𝑝0,𝑖 derived from ST50W leading and trailing edge 
experimental data, compared to the approximate trigonometric function. 
 

8.2.3. Static parameter identification: ST50H 

The stabiliser data presents the additional difficulty of the dependence of all aerodynamic 

coefficients on the stabiliser aerofoil shape, and thus on the stabiliser control surface 

deflection. To begin, quasistatic behaviour for the control-surface motion is assumed (that 

the control-surface motion itself induces no flow). Although the dataset from Selig [26] 

contains aerodynamic coefficient data at seven different elevator deflections (−50°, −30°, 

−15°, 0°, 15°, 30°, 50°); only four of these are unique (e.g. 𝛽𝑒 ∈ [−50, 0]° or 𝛽𝑒 ∈ [0, 50]°). 

This is due to the symmetric aerofoil profile: downwards aerofoil motion at downwards 

control surface deflection is equivalent to upwards motion at upwards deflection. 

 

Selecting the unique set 𝛽𝑒 ∈ [−50, 0]°; for each control surface deflection data entry 

therein the attached and separated flow relations are identified according to a slightly 

modified model definition: 

𝐶𝑖,𝐿, sep(𝛼𝑖) = 𝑎𝑖,𝐿 sgn(𝛼𝑖 + 𝑐𝑖,𝐿) sin(𝑏𝑖,𝐿|𝛼𝑖 + 𝑐𝑖,𝐿| + 𝑑𝑖,𝐿) + 𝑒𝑖,𝐿 , 

𝐶𝑖,𝐷, sep(𝛼𝑖) = {
𝑎𝑖,𝐷cos(𝑏𝑖,𝐷|𝛼𝑖 + 𝑐𝑖,𝐷| + 𝑒𝑖,𝐷) + 𝑒𝑖,𝐷 , 𝛽𝑒 = 0

𝑎𝑖,𝐷sin(𝑏𝑖,𝐷𝛼𝑖 + 𝑐𝑖,𝐷) + 𝑑𝑖,𝐷 o.w.,
 

𝐶𝑖,𝑀, sep(𝛼𝑖) = 𝑎𝑖,𝑀 sgn(𝛼𝑖 + 𝑐𝑖,𝑀) sin(𝑏𝑖,𝑀|𝛼𝑖 + 𝑐𝑖,𝑀| + 𝑑𝑖,𝑀) + 𝑒𝑖,𝑀. 

(8.2.8) 
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Figure 8.2.2: Aerodynamic coefficient data reconstructed from the GK model data, compared to the original data. 
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with attached models exactly as per Eq. 8.2.6. The key difference is the sinusoid drag model 

at nonzero 𝛽𝑒: the simpler model allows for an increased robustness in identification; the 

complexity of the coefficient data does not permit an easy identification of the more 

complex models of Eq. 8.2.5. 

 

The identification is automatic except for a manual indication of where to find the attached 

and separated flow area. The separated flow models are then smoothed with a Laplacian 

smoother to ease the interpolation across 𝛽𝑒. Figures 8.2.3-8.2.5 show the four unique 

identified models in each aerodynamic coefficient. To reconstruct a quasistatic aerodynamic 

profile, and utilise these models in a GK framework, an estimate of 𝑝0,𝑖 is required. Figure 

8.2.6 shows the estimates obtained, as per Section 8.2.2, by solving Eq. 8.2.1 for 𝑝 = 𝑝0 in 

the vicinity of the transition region. Figure 8.2.6 shows the raw unfiltered results for 𝑝0, 

given by 𝐶𝐿 and 𝐶𝑀 where possible, at the leading and trailing edge, and with respect to the 

reference angles-of-attack, 𝛼𝑙,𝑖,ref / 𝛼𝑡,𝑖,ref. These values are the centre-points of the 

attached flow regions, specified manually, and nonzero for nonzero 𝛽𝑒. 

 

A particularly notable feature of these results is their asymmetry, with long tails at negative 

𝛼 (for 𝛽𝑒 < 0). The assertion that this is a physical effect, and not a result of inaccuracy in 

the attached/separated flow models, may be supported by the empirical lift coefficient 

histories. At positive 𝛼 values (for 𝛽𝑒 < 0), large stall peaks are observed; whereas at 

negative 𝛼 there is a flat plateau.  Phenomenologically, this is thought to arise from flow 

reattachment effects when both the control surface and the aerofoil are inclined e.g. 

upwards (𝛽𝑒 < 0, 𝛼 > 0), leading to a state in which the control surface itself is effectively at 

low angle-of-attack. Conversely, for 𝛽𝑒 < 0, 𝛼 < 0, more rapid flow separation is expected. 

The arctangent sigmoid of Reich [21] is not capable of capturing these asymmetric effects, 

and suffers from the further difficulty that the model parameters are not easily 

interpretable. To model both symmetric and asymmetric effects better, we propose a new 

GK sigmoid function, based on the logistic function. Its symmetric form, for the leading 

edge, is: 

𝑝0,𝑙,𝑖,sym(𝛼𝑙,𝑖) = 𝑆 (
1

𝑚𝑙,𝑖
(|𝛼𝑙,𝑖 − 𝛼𝑙,𝑖,ref| − 𝜓𝑙,𝑖)) , 𝑆(𝑥) =

1

1 + exp(𝑥)
, (8.2.9) 
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where 𝑆(𝑥) is the logistic function, 𝛼𝑙,𝑖,ref  is the centre point of the attached flow region 

(specified manually, and nonzero for nonzero 𝛽𝑒), and (𝑚𝑙,𝑖, 𝜓𝑙,𝑖) are model parameters. The 

shift parameter 𝜓𝑙,𝑖 is the 𝛼-value (w.r.t 𝛼𝑙,𝑖,ref) of the inflection or 50% point; that is  

𝑝0,𝑙,𝑖,sym(𝜓𝑙,𝑖 + 𝛼𝑙,𝑖,ref) = 0.5. The width parameter 𝑚𝑙,𝑖 governs the gradient at this point. 

The interpretable nature of these parameters is an aid to identification. 

 

To account for the asymmetric nature of the empirical profiles, a one-sided Gaussian 

function is added to the symmetric sigmoid, to yield the completed 𝑝0,𝑙,𝑖:   

𝑝0,𝑙,𝑖(𝛼𝑙,𝑖) = (1 − 𝑝0,𝑖,sym(𝛼𝑙,𝑖)) 𝐺(𝛼𝑙,𝑖) + 𝑝0,𝑖,sym(𝛼𝑙,𝑖), 

𝐺(𝛼𝑙,𝑖) = 𝑀𝑙,𝑖 exp (− (
𝛼𝑙,𝑖 − 𝛼𝑙,𝑖,ref + 𝜓𝑙,𝑖

𝑤𝑙,𝑖
)

2

) [𝛼𝑙,𝑖 − 𝛼𝑙,𝑖,ref < 0]
IV

, 
(8.2.10) 

where 𝑤𝑙,𝑖 and 𝑀𝑙,𝑖 are model parameters, 𝜓𝑙,𝑖 is the parameter identified in Eq. 8.2.9, and 

[⋅]IV is the Iverson bracket [27], such that [𝑠]IV = 1 if 𝑠 is true, and [𝑠]IV = 0 if 𝑠 is false. The 

nature of this addition ensures that the resulting profile is smooth (𝐶∞) over the halfspaces 

𝛼𝑙,𝑖 > 𝛼𝑙,𝑖,ref and 𝛼𝑙,𝑖 < 𝛼𝑙,𝑖,ref. The parameter 𝑤𝑙,𝑖 governs the width of the Gaussian 

function, and the parameter 𝑀𝑙,𝑖  its height. 

 

In the case of the trailing edge, the discrepancy between the empirical 𝑝0 estimates 

computed from 𝐶𝐿 and 𝐶𝑀 makes an asymmetric 𝑝0,𝑡,𝑖 too difficult to identify. For this 

reason, the simple symmetric form is used: 

𝑝0,𝑡,𝑖,sym(𝛼𝑡,𝑖) = 𝑆 (
1

𝑚𝑡,𝑖
(|𝛼𝑡,𝑖 − 𝛼𝑡,𝑖,ref| − 𝜓𝑡,𝑖)) , 𝑆(𝑥) =

1

1 + exp(𝑥)
, (8.2.11) 

with model parameters (𝑚𝑡,𝑖, 𝜓𝑡,𝑖) distinct from (𝑚𝑙,𝑖, 𝜓𝑙,𝑖). Four the four dataset points 

considered, leading- and trailing-edge 𝑝0 parameters are estimated for 𝛽𝑒 = −50° and 𝛽𝑒 = 

0°; and then models at the internal surface-deflection points are generated by linearly 

interpolating model parameters. Table 8.2.1 shows the identified model parameters, 

including the associated interpolation index (𝑘 ∈ [0, 1] for 𝛽𝑒 ∈ [−50, 0]°), and Figure 8.2.6 

the identified 𝑝0 functions. The parameter interpolation is two-point (𝑘 ∈ {0, 1}), with the 

exception of 𝑀𝑙,𝑖, which shows a rising trend with 𝑘 but must necessarily be zero at 𝑘 = 1 to 
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preserve symmetry. For this reason, a non-monotonic piecewise-linear profile with the 

additional data-point 𝑀𝑙,𝑖(𝑘 = 0.75) = 0.6 is used. These parameter variations are modelled 

at minimal complexity to maintain a reasonable level of model robustness and simplicity, 

consistent with the phenomenological nature of the model. 

 

The resulting identified models can be extended extended to 𝛽𝑒 > 0 by symmetry – pitch-up 

motion at positive deflection corresponding to pitch-down motion at negative deflection. 

The estimated quasistatic coefficient profiles can then be reconstructed using the relevant 

sigmoid 𝑝0,𝑖 expressions and the separated- and attached-flow models.  Figure 8.2.7 shows 

the GK reconstruction of the ST50H quasistatic aerodynamic coefficients as a function of 

elevator deflection and 𝛼𝑖, compared with the original results of Selig [26]. Figure 8.2.7 

shows this comparison a function of elevator deflection and 𝛼𝑖, in contour format; at 

intermediate control surface deflections, the model functions (not their generative 

parameters) are interpolated. As can be seen, a generally good agreement is observed, 

despite the some variation in the laminar-turbulent transition zones. The primary limitations 

of the identification are the discrepancy in identified separation point between the lift and 

moment coefficient data. 

 

Table 8.2.1: Model parameters for the logistic 𝑝0 functions 

Parameter 𝜷𝒆 =  −50° 𝜷𝒆 =  −30° 𝜷𝒆 =  −15° 𝜷𝒆 = 0° 

𝑘 0 0.4 0.7 1 
𝛼𝑙,𝑖,ref 30.5° 19° 8° 0° 
𝛼𝑡,𝑖,ref −148° −162° −172° −180° 

𝑚𝑙,𝑖 0.8 lin. interp. 3 
𝜓𝑙,𝑖  4.4 lin. interp. 20 
𝑀𝑙,𝑖 0.4 lin. interp. via 0.6@0.75𝑘 0 
𝑤𝑙,𝑖 18 lin. interp. 14 

𝑚𝑡,𝑖 1.5 constant 1.5 
𝜓𝑡,𝑖 11 lin. interp. 9 



 
 

Chapter 8: Transient aerodynamic modelling 

303 

 

Figure 8.2.3: Empirical quasistatic lift coefficient results (CL,exp) compared with the identified GK attached-flow (CL,att), separated-flow (CL,sep) 

and reconstructed (CL,com) quasistatic lift coefficient functions, under elevator deflections (𝛽𝑒) of −50°, −30°, −15° and 0°. 
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Figure 8.2.4: Empirical quasistatic drag coefficient results (Cexp) compared with the identified GK attached-flow (Catt), separated-flow (Csep) and 

reconstructed (Ccom) quasistatic drag coefficient functions, under elevator deflections (𝛽𝑒) of −50°, −30°, −15° and 0°. 
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Figure 8.2.5: Empirical quasistatic moment coefficient results (Cexp) compared with the identified GK attached-flow (Catt), separated-flow (Csep) 

and reconstructed (Ccom) quasistatic coefficient functions, under elevator deflections (𝛽𝑒) of −50°, −30°, −15° and 0°. 
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Figure 8.2.6: Empirical estimates of the leading edge (LE) and trailing edge (TE) 𝑝0 functions, centred with respect to the reference angles-of-
attack 𝛼𝑙,𝑖,ref / 𝛼𝑡,𝑖,ref, compared with the identified approximations based on the logistic sigmoid function. 



 
 

Chapter 8: Transient aerodynamic modelling 

307 

 

Figure 8.2.7: Aerodynamic coefficient data reconstructed from the GK separated and attached flow data, combined using 𝑝0,𝑖 and compared to 
the original results. 
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8.2.4. Dynamic parameter identification 

This nearly completes the GK model formulation for all lifting surfaces. However, two key 

parameter sets are yet to be identified; the delays 𝜏1,𝑖 and 𝜏2,𝑖. Transient aerodynamic data 

is required for their identification. In the current literature, experimental data is available 

for a variety of oscillating airfoils – particularly with regard to wind turbines [12,14,28], 

which can show significant dynamic stall effects – but not for the proprietary case study 

aerofoils (ST50W/H). The choice of these aerofoils was motivated both by their use in 

existing highly-manoeuvrable aircraft, and, more importantly, by the availability of 

aerodynamic data for all angles of attack and with control surface deflections. No aerofoils 

were found for which an existing complete dataset of transient and quasistatic aerodynamic 

data was available. Existing GK model identifications are also available for a few aerofoils, 

but the variation in identified delay parameters across similar or even identical aerofoils 

indicates that the GK-delays are strongly dependent on the GK-decomposed quasistatic 

model. Table 8.2.2 presents a range of delay parameters identified in the literature for three 

different aerofoils. 

 

Table 8.2.2: GK delay parameters reported in the literature 

Aerofoil 𝝉𝟏 (𝒄 𝑼⁄ ) 𝝉𝟐 (𝒄 𝑼⁄ ) Source Reynolds No. 

NACA0009 2.5 
2.28 
2.6 
3.6 

 

2.0 
3.41 
2.8 
4.3 

An et al. [29] 
Reich et al. [21] 
Williams et al. [23] 
Williams et al. [24] 
 

4.9 × 104 
not stated 

5 × 104 

5.7 × 104 
 

NACA0015 0.52 
2.14 

 

4.5 
13.56 

 

Goman [11] 
Fan [30] 
 

c. 2 × 105 
not stated 
 

NACA0018 0.25 
1.57 
1.73 

3.6 
1.52 
4.83 

Williams et al. [23] 
Greenblatt et al. [31] 
Niel [32] 

2.5 × 105 

3 × 105 

1.9 × 105 

 

The variation across the reported values – with minimal change in Reynolds number – is 

large: for the NACA0009 factor of 2 variation (in 𝜏2) is observed across the reported values; 

for the NACA0012 a factor of 4 (in 𝜏1); and for the NACA0018 a factor of 7 (in 𝜏1). These 

results indicate that the identification of the delay parameters is highly sensitive to the 

dataset – potential factors include wind-tunnel/wall effects, surface roughness, and CFD 
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modelling inaccuracies. This is consistent with the observation that the identification of the 

delay parameters is dependent on the aerofoil behaviour in the laminar-turbulent 

transition, and the projection to the hypothetical attached flow model at angles-of-attack 

below quasistatic stall – both of are strongly dependent on modelling / dataset specifics. It is 

thus not possible to obtain delay parameter values from the literature in a manner that is 

robust and justifiable. 

 

A similar difficulty is observed when attempting to use transient aerodynamic data from 

other similar aerofoils to compute delay parameters for the ST50W/H: this was attempted, 

but even minor inconsistencies between the quasistatic and transient data sources prevent 

the delay parameters from being accurately identified. For this reason, CFD is used to 

generate situationally-specific transient aerodynamic data, which is used to identify the GK 

delay parameters for the ST50W/H aerofoils, consistent with their CFD quasistatic data. This 

adds robustness and situational appropriateness to the GK model, and provides some 

justification for the modelling parameters taken. 

 

  

8.3. TRANSIENT COMPUTATIONAL FLUID DYNAMICS 

8.3.1. Model formulation 

To gather higher-fidelity data on the effect of the system parameters on the GK dynamic 

stall delays, this study turns to computational fluid dynamics (CFD). A two-dimensional 

transient flow simulation of the aerofoil is created in OpenFOAM, equipped with a moving-

mesh solver to allow arbitrary specified in-plane wing motion. Figure 8.3.1 shows the 

simulation geometry, along with the standard simulation mesh shown (see Section 8.3.2) 

and the boundary conditions noted below. A moving-mesh approach (with a grid fixed to 

surfaces, but flexible in the flow) is chosen over an immersed boundary method (with the 

moving aerofoil immersed in a rigid grid) or a chimera approach (with overlapping rigid 

grids) as the former allows better resolution of boundary layer separation at low model 

complexity. This comes at the cost of a somewhat restricted mesh displacement (e.g. in the 

case study system, rotation angles <40°). 
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Turbulence in the flow domain is modelled using the Menter shear-stress-transport (SST) 

turbulence model [33], and wall functions are used to resolve boundary layer effects.  The 

domain geometry and boundary conditions are specified in Figure 8.3.1. The freestream 

condition on the turbulent kinetic energy (𝑘) and specific rate of dissipation (𝜔) boundary 

conditions is a switching condition which imposes a fixed freestream value on cells with flow 

into the domain, and zero gradient on cells with outward flow. The flow initial conditions 

are supplied via a steady state solution to system at the initial aerofoil orientation, obtained 

via the SIMPLE algorithm [34]. The transient flow equations are solved using the PIMPLE 

algorithm, an OpenFOAM -specific combination of the SIMPLE and PISO algorithms [35,36]. 

The aerofoil profile is extracted from the ST50W aerofoil with the permission of Horizon 

Hobby LTD, utilising the data provided by Selig [26]. The aerofoil is smoothed at the trailing 

edge to enable continuous meshing. The smoothed aerofoil chord is normalised; the length 

different is <5% of the extracted profile. 

 

 

Figure 8.3.1: Schematic of CFD model geometry, mesh and boundary conditions at static 
angle-of-attack 30°. 
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8.3.2. Meshing and mesh independence 

The flow domain mesh is generated from an initial uniform hex mesh, which is refined in a 

circular area around the aerofoil profile. Boundary-layer cells are extruded from the aerofoil 

surface. The result is a mesh composed primarily of hex elements, with a minority of 

polyhedral elements. Figure 8.3.1 shows an example mesh for the domain. The key 

parameters controlling the mesh generation are the initial hex mesh size, the degrees of 

refinement, and the number of boundary cell layers. A mesh independence study is carried 

out to determine the appropriate mesh resolution. The benchmark test is the aerofoil lift at 

Reynolds number 3.08 × 105, a dynamically-equivalent state to forward flight at airspeed 30 

m/s in the biomimetic case study system, and at a static angle-of-attack of 30°. This point is 

directly within the laminar-turbulent transition of the aerofoil. The lift, drag and moment 

coefficients, along with the aerofoil surface pressure distributions at specified times, are 

compared for logarithmically spaced mesh sizes. Note that the initialisation of the 

simulation at a constant airspeed at all flow points generates spurious lift peaks at 𝑡 < 0.1 s: 

timesteps below this value are not used in the calculation of the results in Tables 8.3.1-8.3.2. 

This effect can be avoided by simulating dynamic aerofoil motion from attached flow-states; 

which is what is used for the delay parameter identification simulations. 

  

Table 8.3.1 shows the statistics for the studied meshes; Table 8.3.2 the quantified results of 

the mesh independence study; Figures 8.3.2-8.3.4 the mesh independence study time- and 

mesh size-dependent results. The primary metrics of mesh independence are the 

aerodynamic coefficient profiles (Figures 8.3.2), with the aerofoil pressure distributions at 

specified time values (Figures 8.3.3) as corroborating evidence. The latter are not good 

primary metrics as they are sensitive to time and hydrodynamic instability – that is, small 

shifts in e.g. the vortex shed time lead to significant pressure distribution changes; a fact 

reflected in the high coefficient derivatives observed in Figure 8.3.2. The mean cell size ℎ is 

calculated from the number of cells 𝑁, domain area 𝐴, and aerofoil chord 𝑐, as ℎ =

√𝐴 𝑁⁄ 𝑐⁄  (in %), and represents the mean lengthscale of the cells relative to aerofoil chord. 

The lift, drag, moment and pressure errors are computed relative to the reference mesh 

(no. 6). This reference mesh is consistent with the benchmark results of [37], which attain 

mesh independence within the aerofoil laminar-turbulent transition, at 𝑅𝑒 > 106,  with c. 
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700 nodes on the aerofoil surface. These benchmark results, however, also indicate the 

presence of a systematic overestimation of lift coefficient by RANS results for two-

dimensional aerofoil flow; attributable either to the importance of three-dimensional 

effects in the generation of this lift coefficient; or to some systematic flaw common to a 

range of turbulence models (SST [33], Spalart-Allmaras [38], DRSM [39], WJ-BSL-EARSM [40], 

and others) [37]. The ramifications for this are that the aerodynamic coefficients computed 

by our CFD model will be approximate; and will require a dedicated GK quasistatic 

parameter identification in the likely event of any discrepancy between the experimental 

and computational results. However, one saving grace in this context is that the only output 

for the model is the time delay parameters (𝜏𝑖), which will be applied to the experimental 

GK quasistatic aerodynamic profiles, without any reference to the CFD profiles. In this way, 

providing that the timescale of the lift hysteresis effects are modelled accurately, the delay 

parameters will be identified accurately. Or put another way; the identification of delay 

parameters occurs in an internally-consistent system that is analogous to the empirical 

quasistatic system (i.e. the CFD system), and even if the lift coefficient is overestimated, 

there is more reason to believe that the lift hysteresis timescale will remain analogous. Of 

course, effects behind the lift coefficient overestimation may also affect the lift hysteresis 

timescale: to what extent this is the case is an open question. In the case of three-

dimensional effects, there may be physical reason to suppose an analogous timescale. If so, 

then the identified time delay parameters may be less inaccurate that the lift coefficient 

results themselves. 

 

As can be seen, an approximately mesh-independent solution is reached by mesh nos. 4-5: 

the aerodynamic coefficient profiles up to 𝑡 = 2.5 s (= 0.56 𝑐 𝑈⁄ ) are converging observably 

to a mesh-independent state with errors of c. 10% or less relative to the reference mesh.  

The pressure distributions show similar good convergence, with an anomaly in the minimum 

pressure at 𝑡 = 2 s for mesh no. 5, attributable to time- and instability-sensitivity, and a 

coincidently accurate value at the coarsest mesh for the maximum pressure also at 𝑡 = 2 s. 

Mesh no. 5 is utilised for further simulations: Figures 8.3.5-8.3.6 show snapshots of the flow 

properties (flow velocity magnitude and total pressure) at times 𝑡 = 1.5 s and 𝑡 = 2 s. for 

interpretation.  One further point may be made: the only difference between meshes no. 3 

and 3b is the number of aerofoil boundary layer; the purpose of this univariate change is to 
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demonstrate the negligible difference in solution between simulations at maximum 𝑦+ of ≅ 

10 and ≅ 1 (see Figures 8.3.2-8.3.3). This indicates the that the 𝑘-𝜔 wall-functions are 

appropriately accurate at the larger 𝑦+ values, and that there is no need to attempt to 

resolve the viscous sublayer. 

  

Table 8.3.1: Mesh specifications for mesh independence study 

Mesh 
no. 

Total no. 
nodes 

Mean cell 
size 

Refinement Layers 
Aerofoil 
nodes. 

Max. 𝒚+ 

1 9183 12.0% 𝑐 6L / 4C 13 279 0.82 
2 14129 9.7% 𝑐 6L / 4C 13 410 0.60 
3 18411 8.5% 𝑐 6L / 4C 6 573 6.93 

3b 21276 7.9% 𝑐 6L / 4C 11 573 1.03 
4 29413 6.7% 𝑐 6L / 4C 4 818 8.81 
5 47159 5.2% 𝑐 5L / 2C 6 577 7.31 
6 89933 3.8% 𝑐 5L / 2C 5 818 7.16 

 

Table 8.3.2: Mesh independence study results 

Mesh 
no. 

Mean cell 
size 

Lift 
error 

Drag 
error 

Moment 
error 

1 12.0% 𝑐 54.6% 50.4% 101.2% 
2 9.7% 𝑐 34.8% 34.1% 61.9% 
3 8.5% 𝑐 21.8% 20.2% 36.3% 

3b 7.9% 𝑐 21.0% 19.4% 34.4% 
4 6.7% 𝑐 7.1% 6.7% 10.7% 
5 5.2% 𝑐 6.0% 5.3% 9.2% 
6 Reference    
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Figure 8.3.2: Aerodynamic coefficient histories for the mesh independence study meshes. 
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Figure 8.3.3: Aerofoil pressure distributions at 𝑡 = 1.5 s and 𝑡 = 2 s for the mesh 
independence study meshes. 
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Figure 8.3.4: Aerodynamic coefficient and pressure distribution errors for the mesh 
independence study. 
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Flow velocity magnitude at 𝒕 = 1.5 s (zoomed) 

 

Flow velocity magnitude at 𝒕 = 2 s (zoomed) 

Figure 8.3.5: Rendering of the flow velocity magnitude at 𝑡 = 1.5 s and 𝑡 = 2 s for the 
converged mesh. 
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Flow total pressure distribution at 𝒕 = 1.5 s (zoomed) 

 

Flow total pressure distribution at 𝒕 = 2 s (zoomed) 

Figure 8.3.6: Rendering of the flow total pressure distribution at 𝑡 = 1.5 s and 𝑡 = 2 s for the 
converged mesh. 
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8.3.3. Quasistatic coefficient functions 

To enable an identification of the dynamic GK parameters from the CFD data, a re-

identification of the static properties of the CFD model is first required – the appropriate 

quasistatic GK functions may differ from those of the empirical data. This data is generated 

via steady-state and transient simulations at fixed angles-of-attack – steady-state for 

solutions without vortex shedding; and transient for those with vortex shedding. These 

simulations are carried out at a dynamically-equivalent state to forward flight at airspeed 30 

m/s in the biomimetic case study system – representative of the transient manoeuvres 

studied in Chapters 6-7. For the wings and stabilisers this corresponds to Reynolds number 

3.08 × 105 (airspeed 4.5 m/s for reference chord 1 m). Mesh no. 5 from the mesh 

independence study, which was established as showing acceptably mesh-independent 

behaviour, is utilised. As per the mesh independence study, Figure 8.3.7 shows the mesh 

properties and format. Figure 8.3.7 shows the mesh no. 5, generated for an ST50W aerofoil 

at zero angle-of-attack. 

 

 

Figure 8.3.7: Dynamic stall simulation mesh in the vicinity of the aerofoil. 
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Figure 8.3.8 shows these quasistatic results for the ST50W aerofoil, and the results of GK 

static parameter identification in the lift coefficient, computed as per the ST50W 

identification in Section 8.2.2, and using the arctangent 𝑝0 function modified from Reich et 

al. [21] (Eq. 8.2.4) with 𝑤 = 1.45. Additional to the fixed-angle simulations; the aerofoil is 

subjected to a low-frequency sinusoidal oscillating motions of the form: 

𝛼 =
1

2
𝛼̂(1 − cos(Ω𝑡)), (8.3.1) 

with amplitude 𝛼̂ and frequency Ω determined by the reduced frequency 𝜅 = 𝑏Ω 𝑈⁄ . 

Simulations of this format will form the basis of the dynamic stall analysis in this work, but 

at low frequencies the results tend towards their quasistatic counterparts. At 𝜅 = 0.05 (𝛼̂ = 

20°), taken by several authors as a threshold value for quasistatic/transient behaviour 

[41,42], the error between the peak lift values is c. 30%. 

 

Some discrepancy is observed between the CFD results and the original data. The details 

behind this are unclear: in addition to the expected inaccuracy in CFD results, as per [37], lift 

hysteresis, dynamic or static, may also have an effect – the slower continuous pitch-up 

results show significant affinity with the original results of Selig [26]. This possibility is given 

further weight by the identification in Section 8.2.2 that the lift and moment separation 

points for this dataset were inconsistent – as per Figure 8.3.8, hysteresis delay effects are 

much more visible in lift coefficient than they are in moment coefficient. A further factor in 

the CFD/original dataset discrepancy is the presence of tunnel-like flow conditions in the 

CFD simulation, which may accentuate the aerofoil lift under separated flow [43], among 

other possible effects. The domain, being a width of 9𝑐 and length of 14𝑐 with open 

boundary conditions, may not be completely large enough to eliminate wall effects from the 

local aerofoil flow. However, these effects are consistently replicated in the dynamic stall 

data; and, at low magnitude, they are not expected to significantly alter the identified flow 

time delays. The effect of wall conditions on the GK time delays would be a useful topic for 

further research and validation; as it might enable CFD simulations for GK identification to 

be carried out in small domain sizes, reducing the computational effort required. 

 

A further notable aspect of these results is the failure of the GK model to predict the 

transient drag and moment behaviour of the aircraft. Drag and moment peaks are observed 
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in the aerofoil pitch-up phase, associated with shed vortices, and directly contradicting the 

GK predictions of a longer attached-flow (low drag/moment) region. This is the primary 

transient effect associated with drag and moment coefficients – corroborating evidence for 

this, across of a range of reduced frequencies, is presented in Section 8.3.4 – but it is not 

capturable by the GK model. For this reason, drag and moment coefficients are omitted in 

further GK modelling, with the original quasistatic data being used instead. 
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Figure 8.3.8: Quasistatic aerodynamic coefficients for the ST50W aerofoil computed via CFD, and the associated GK static parameter 
identification results. 𝛼̂ is denoted 𝛼amp due to notation limitations. 
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8.3.4. Delay parameter identification 

Dynamic stall simulations are carried out as per Section 8.3.3, with 𝜅 ∈ [0.05 1] and 𝛼̂ ∈ [20 

30]°. Figures 8.3.9-8.3.10 show the angle-of-attack-domain and time-domain lift coefficient 

data for the simulated scenarios. Figure 8.3.11 shows the field of identification errors for 

those datasets identified qualitatively to be within the range of GK model validity; these are 

computed as: 

𝐸 =
1

𝑇
∫ |𝐶𝐿,GK − 𝐶𝐿,CFD|𝑑𝑡

𝑡=𝑇

𝑡=0

. (8.3.2) 

Figure 8.3.12 shows the mean identification error across these datasets; Figure 8.3.13 the 

GK identification errors as a function of 𝜅 and the maximum reduced pitch rate max(𝑟). The 

reduced pitch rate analogously to 𝜅 as 𝑟(𝑡) = 𝛼̇(𝑡)𝑏 𝑈⁄ , with 𝛼̇(𝑡) in rad/s; for oscillations 

according to Eq. 8.3.1, max(𝑟) = 𝛼̂Ω𝑏 2𝑈⁄ = 𝛼̂𝜅 2⁄  for 𝛼̂ in rad. Figure 8.3.12 shows the 

CFD drag and moment coefficient results. 

 

Figures 8.3.9-8.3.10 show several significant flow effects. Delayed-separation and delayed-

attachment are observed, particularly for 𝜅 ≤ 0.25, and are consistent with the expected 

nature of dynamic stall. Vortex shedding effects are significant: at 𝜅 = 0.05 these are 

generated freely in the separated-flow region; but for 𝜅 ≥ 0.25, these vortex effects are also 

observably entrained by the aerofoil oscillation. This leads to consistent vortex shedding 

peaks at the maximum angle of attack, and consistent shedding profiles in the delayed-

separation region (𝛼̇ < 0). At 𝜅 = 0.4 there is what may be a resonance effect; with 

entrained vortices in the delayed-separation region leading to an otherwise inexplicably 

narrow profile. 

 

Added mass effects begin to become significant for 𝜅 ≥ 0.5; these are manifested in the 

form of ellipsoid curvature in the lift coefficient profiles, and increasing lift values across the 

initial attached flow region even before the peak angle-of-attack. This phenomena may be 

compounded by other unsteadiness in the circulatory lift; and indeed these effects may be 

amendable to modelling as a linear function of 𝛼̇(𝑡), as per Theodorsen’s theory [44]. 

However, they are uncapturable by the GK model, which can only ever operate in the space 

between 𝐶𝐿,att(𝛼) and 𝐶𝐿,sep(𝛼). The increasing dominance of added-mass effects must 

thus be regarded as the limiting factor on the accuracy of the GK model at high 𝜅. In this 
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system, a qualitative assessment yields 𝜅 = 0.5 as the threshold for GK model breakdown 

due to added mass effects. 

 

In Figures 8.3.11, note the variation in the local optimal 𝜏1,𝜏2 over 𝜅, with a trend of 

𝜏1 ∝ 1 𝜅⁄ . The mean error profile indicates an identification error minimum at 𝜏1 = c. 4𝑐 𝑈⁄ , 

𝜏2 = c. 2.5𝑐 𝑈⁄ ; but several qualitative considerations are also present.  Increasing 𝜏2 serves 

to increase the length of the initial delayed-separation region, while maintaining a sharp 

cut-off in separation at the peak (the original 𝑝0 scale), as is observed in the CFD data. 

However, values of 𝜏2 that are too large (>3𝑐 𝑈⁄ ) will lead to separation at very low angles-

of-attack via the negative (𝛼 < 0) branch of 𝑝0. This effect may be observed in the second- 

and third-period branches of the identified model at 𝜅 = 0.5 and 1. Increasing 𝜏1 also 

increases the length of the delayed-separation region, but leads to more gradual separation, 

as the effect of 𝑝0 is scaled proportional to 𝜏1. This is not observed in the CFD data. 

Moreover, values of 𝜏1 that are too large (>2.5𝑐 𝑈⁄ ) lead to delay effects that are active 

across aerofoil oscillation periods at high 𝜅 – an effect which can be observed for 𝜅 ≥ 0.25 

in the identified model. In the CFD data, however, cross-period delay effects only manifest 

themselves at 𝜅 ≥ 0.5. 

 

The balance of these considerations leads to an identified result at 𝜏1 = 𝜏2 = 2.3𝑐 𝑈⁄ : while 

the identification errors can be improved by an increase in 𝜏1, this leads to an increasing 

degree of phenomenological inaccuracy. Figures 8.3.9-8.3.10 show the resulting identified 

model.  Figure 8.3.13 presents a characterisation of the identified GK model accuracy: in 

terms of the absolute 𝐶𝐿 error; and the improvement of the GK model over the quasistatic 

model.  Within the bounds of validity, the GK model yields a reduction in the quasistatic 

error by a consistent factor of 0.5. This is a significant improvement, and the qualitative 

improvement in modelling fidelity may be observed clearly in Figures 8.3.9-8.3.10. 

 

The same improvement in modelling fidelity is not possible in the drag and moment 

coefficients: Figure 8.3.14 presents further evidence to the conclusion of Section 8.3.3; that 

the GK model is not capable of capturing the transient effects associated with these 

coefficients. For this reason these coefficients are modelled via a quasistatic approach. 
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Further research into transient drag and moment reduced-order modelling is important if 

model-based control of biomimetic supermanoeuvrability is to be countenanced. 

 

The upper bound of model validity is taken as 𝜅 = 0.5 and 𝑟 = 0.13. Characterising the 

lower bound is more difficult. At 𝜅 = 0.05, taken by some authors [41,42] as the threshold 

of quasistatic behaviour, dynamic stall effects are still observed, with the quasistatic model 

showing an error in error in peak lift of c. 25%. Results from the literature are consistent the 

conclusion that dynamic stall effects are non-negligible at this reduced frequency [45–47]. 

Other authors locate the quasistatic/transient threshold at 𝜅 = 0.03 [48], 𝜅 = 𝒪(0.01) [49], 

and other values. CFD simulations of the ST0W at lower 𝜅 were not carried out due to the 

computational expensive involved in simulating long-period oscillations; but on the basis of 

further evidence from the literature, only the 𝜅 = 0.01 can be taken as a reliable threshold 

for quasistatic model validity. From the literature; at 𝜅 = 0.025; 

 results by Ahaus [45] for the VR-12 aerofoil at oscillatory amplitudes (= ranges, as 

per Eq. 8.3.1) up to 20° indicate dynamic stall effects gradually becoming less 

significant (error in peak lift c. 10%, maximum hysteresis loop width c. 45% of peak 

lift); 

 results by Coder [46] for the VR-7 aerofoil at oscillatory amplitudes up to 20° indicate 

slightly more significant effects (error in peak lift c. 25%, maximum hysteresis loop 

width c. 45% of peak lift); 

 and results by Gerontakos [47] for the NACA0012 aerofoil at amplitudes up to 30° 

indicate highly significant dynamic stall effects (error in peak lift c. 67%, maximum 

hysteresis loop width c. 130% of peak lift). 

Reynolds number and aerofoil profile differences are likely to be a factor in this discrepancy; 

but also, the neglect of the oscillatory amplitude – directly affecting the reduced pitch rate  

(𝑟) –  is also a significant oversight. At 𝜅 = 0.01; results by both Ramasamy et al. [50] and 

Guntur et al. [28] affirm the relatively minimal (though not vanishing) significance of 

dynamic stall effects. We take  𝜅 = 0.01 as the critical value for quasistatic model validity. 

For reference, as a lower bound for 𝑟, we take the maximum value for oscillations of 

amplitude 20° at 𝜅 = 0.01; 𝑟 = 0.0017. 
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Figure 8.3.9: Dynamic stall results: CFD lift coefficient results in the angle-of-attack domain, with the identified GK model (𝜏1 = 𝜏2 = 2.3𝑐 𝑈⁄ ). 
𝛼̂ is denoted 𝛼amp due to notation limitations. 
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Figure 8.3.10: Dynamic stall results: CFD lift coefficient results in the time domain, with the identified GK model (𝜏1 = 𝜏2 = 2.3𝑐 𝑈⁄ ). 𝛼̂ is 
denoted 𝛼amp due to notation limitations. 
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Figure 8.3.11: GK identification error (1-period 𝐶𝐿 error integral, normalised by 𝑇) over the space of 𝜏1,𝜏2, for reduced frequencies identified to 
be within the range of GK model validity. 𝛼̂ is denoted 𝛼amp due to notation limitations. 
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Figure 8.3.12: Mean GK identification error (mean 1-period 𝐶𝐿 error integral, normalised by 𝑇) over the space of 𝜏1,𝜏2, for reduced frequencies 
identified to be within the range of GK model validity. The selected point (𝜏1 = 𝜏2 = 2.3𝑐 𝑈⁄ ) is shown – note that considerations other than 
this error profile are present. 
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Figure 8.3.13: GK identification error (mean 1-period 𝐶𝐿 error integral, normalised by 𝑇), and GK model improvement over the quasistatic (QS) 
model (GK error as a % of QS model error). 



 
 

Chapter 8: Transient aerodynamic modelling 

331 

 

Figure 8.3.14: Dynamic stall results: CFD drag and moment coefficient results in the angle-of-attack domain, with the quasistatic data from 
Section 8.3.3. 𝛼̂ is denoted 𝛼amp due to notation limitations. 
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8.3.5. Approaches to model validity 

In Section 8.3.4, the model validity boundaries were expressed in terms of both the reduced 

frequency 𝜅 and reduced pitch rate 𝑟.  The choice between the two, as a general metric of 

model validity in flight simulation, is an open question. In the absence of any conclusive 

studies in this regard, we utilise a dual criterion of both 𝜅 and 𝑟. As a lower bound, below 

which the quasistatic model is valid; 𝜅 = 0.01, 𝑟 = 0.0017; and as an upper bound; 𝜅 = 0.5; 

𝑟 = 0.13. 

 

Computing 𝑟(𝑡) for a general flight simulation is easy, but 𝜅 is a frequency-domain 

parameter, and an open question is immediately raised as to how to best generalise the 𝜅-

criteria to manoeuvres with complex angle-of-attack histories. One possible solution may be 

found in spectral analysis. For a manoeuvre with arbitrary 𝛼(𝑡), the angle-of-attack 

frequency spectrum, 𝛼̂(Ω), may be computed. The frequency space of this spectrum is 

analogous to Ω in 𝜅 = 𝑏Ω 𝑈⁄ . This space may then be transformed into the 𝜅-domain via 

𝜅 = 𝑏Ω 𝑈⁄ , with a caveat:  like 𝛼(𝑡), 𝑈(𝑡) is time-varying. An exact transformation to the 𝜅-

domain may be possible via the spectrum 𝑈(Ω); but in the case of manoeuvres with 

|min 𝑈| ≫ 0, a simple approximation is to compute maximum 𝜅 (𝑏Ω min 𝑈⁄ ) and minimum 

𝜅 (𝑏Ω max 𝑈⁄ ) profiles based on the manoeuvre minimum and maximum airspeed. These 

profiles must bound the exact spectrum. When min 𝑈 → 0, this approach breaks down; 

though in this case broader questions regarding the validity of using 𝜅 as a metric must be 

raised. 

 

Providing it may be computed, the spectrum 𝛼̂(𝜅) or power spectrum 𝛼̂(𝜅)2 may then be 

assessed with respect to the validity threshold reduced frequencies. Purely objective 

methods of doing so have not yet been developed. In the ideal case, validity is assured if the 

spectrum is contained within the model’s window of validity. If spectral content outside this 

window is observed, then the ratio of maximum amplitude or power of such content w.r.t to 

that at the frequency peak frequency will give the ratio of significance associated with such 

content. If the point of maximum spectral power is located at the critical 𝜅, this is indicative 

of the decreasing significance of supercritical effects; if the point of maximum power is 

located elsewhere, then there may be a phenomenological effect (significant or 

insignificant) that is not captured by the model. This approach represents a convenient 
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generalisation of the 𝜅-criteria, but further work is needed to validate it with respect to 

empirical data. While the tools used in the CFD analysis presented here are sufficient to 

model arbitrary aerofoil motions, allowing the spectral analysis predictions to be tested; this 

analysis beyond the scope of this work, and is left to future research. 

 

8.3.6. Delay parameter functional dependencies 

An open question in GK modelling, and one which has not been adequately acknowledged, 

is the dependency of the GK delay parameters on the airspeed 𝑈. This dependency is 

particularly acute in applications of GK modelling to flight simulation, in which the local 

section model airspeeds may take a wide range of values. Existing flight simulator 

implementations do not appear to countenance anything other than constant dimensional 

delays (𝜏1, 𝜏2), despite the established effect of the convection timescale (𝑡conv = 𝑐 𝑈⁄ ), 

with respect to which these delays are traditionally nondimensionalised. 

 

An immediate improvement is naturally suggested by the traditional dimensional analysis: 

to take the nondimensional values 𝑇𝑖 ∶ 𝜏𝑖 = 𝑇𝑖𝑐 𝑈⁄  as constants, leading to an inverse 

proportionality in 𝑈. As with 𝜅, this has the practical problem of a singularity at 𝑈 = 0; a 

minimum value of 𝑈 must be specified. Phenomenologically, this dependency is partly 

justified: in a timescale study, Dunne et al. [51] found that the leading-edge vortex 

development and shedding that leads to dynamic stall are dominated by the effect of 𝑐 𝑈⁄ . 

However, the fact remains that the (inverse) linear relation 𝜏𝑖 = 𝑇𝑖𝑐 𝑈⁄  is the most basic 

form of approximation to these effects. For example, the inclusion of zeroth-order or higher 

polynomial terms in 𝑐 𝑈⁄  is an immediate avenue for model generalisation. 

Phenomenological inspiration for such procedures may come from more detailed analyses 

of the flow timescales around pitching aerofoils – these indicate the presence of at least 

three timescales, of which 𝑐 𝑈⁄  is only one [51]. The use of CFD for delay parameter 

identification provides an easy avenue though which generalised models of these forms may 

be explored. However, such exploration is beyond the scope of this work, for reasons of 

time and space. 
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8.3.7. Stabiliser surfaces 

So far this study has focused on the identification of GK delay parameters for the wing 

aerofoil (the ST50W). It would be trivial, but computationally intensive, to repeat this 

process for the horizontal and vertical stabiliser aerofoil (the ST50H). However, without 

modelling the control surface deflection, the results would only be valid for the case of zero 

control deflection. The control surfaces for the ST50H are relatively large, and the effects of 

control deflection on the GK delays are a significant unknown factor. However, in terms of 

overall modelling fidelity, these effects may hold less significance: the control range and 

effectiveness of wing incidence-morphing is large, and such morphing provides an avenue 

through which a wide range of changes in stabiliser forces and moments can be corrected. 

The effect of inaccuracies in the stabiliser GK delays on the space (or, flight envelope) of 

feasible supermanoeuvres for the case study system would thus be expected to be small; 

but this requires quantification. GK modelling for systems with control surfaces is not a topic 

that has seen any previous research, but is an area of importance for future developments 

in biomimetic post-stall control. 

 

In the case study model, the same GK delay values (and airspeed dependency) are taken for 

the ST50H as for the ST50W, that is 𝜏1 = 𝜏2 = 2.3𝑐 𝑈⁄ .  An alternative would be to take 

delay coefficient values from the literature (as per Table 8.2.2), but the variation in reported 

GK delays across the literature is not well understood, and again the selection of a particular 

value would not be well justified. In taking the ST50W values, at least a consistent modelling 

approach is guaranteed. 

 

 

8.4. CONCLUDING REMARKS 

This chapter has presented the development and identification of a reduced-order transient 

aerodynamic model, based on the approach pioneered by Goman and Khrabrov [11] and 

extended by other authors [21,23]. This model offers demonstrably significant 

improvements over a quasistatic model in the fidelity of aerodynamic modelling in the case-

study system. This model – and by association, the aerodynamic modelling of the case-study 

system – has been validated via CFD simulation. CFD data is used to identify key model 

parameters, establish the limits of model validity and the factors affecting model accuracy 



Chapter 8: Transient aerodynamic modelling 

335 

and breakdown, and explore phenomenological effects associated with dynamic stall. To 

devise this reduced-order model, significant novel methodological contributions have been 

made, in the form of extensions to the GK modelling framework: to a 3D blade element 

context; a 360° angle of attack range (via leading-edge/trailing-edge models); a generalised 

transition-region sigmoid function; and in a limited manner, to aerofoils with control 

surfaces. GK modelling has never previously been used in 3D flight simulation. 

 

Associated with this development, several important open questions have been raised: 

 regarding the nature and cause of the wide variation of GK delay parameters 

reported in literature for the same aerofoils; 

 regarding the dependency of the GK delay parameters on the system airspeed 

(and/or chord); a topic not addressed in existing GK-based 2D flight simulators; 

 regarding the modelling of the GK delays in systems with control surfaces and how 

this can be accurately and cost-effectively carried out. 

 regarding appropriate methods for the characterisation of GK and quasistatic model 

validity (reduced frequency, angle-of-attack rate, or other metrics); a topic which 

existing literature treats inconsistently. 

For some of these questions, novel working solutions are offered: a basic form of airspeed 

dependency, based on dimensional analysis; a dual-metric approach to model validity, 

based on both reduced frequency and angle-of-attack rate. For others, further research 

would both elucidate the mechanisms at work in transient aerofoil motion; and would 

improvement the fidelity at which biomimetic supermanoeuvrability, and other 

applications, can be modelled.   
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9.1. INTRODUCTION 

In Chapter 8 an aerodynamic submodel was developed that captured transient delayed 

separation/attachment effects in the system aerofoils. The model retained validity up to a 

reduced frequency 𝑘 ≈ 0.5 and reduced pitch rate 𝑟 ≈ 0.13, at which point added mass 

effects began to show significance. The objective of this chapter is to utilise this transient 

model to simulate some of the manoeuvres in Chapters 6-7, and in doing so, to explore the 

significance of transient effects to these manoeuvres, the capability of the GK model to 

model them, and the relevance of quasistatic manoeuvre design procedures to transient 

flight dynamics. 

 

 

9.2. QUASISATIC NPAS CAPABILITY 

Heuristic arguments would lead us to expect that the quasistatic NPAS capability 

demonstrated in Chapter 6, Section 6.4 would be relatively unaffected by transient 

aerodynamic effects. As per Chapter 8, Section 8.3.5, the approximate critical reduced 

frequency for quasistatic model breakdown (𝜅∗) is 0.01, and the critical reduced pitch rate 

(𝑟∗) 0.0017. In the quasistatic NPAS manoeuvres of the case study system, carried out at 

reference velocity 𝑈 = 25 m/s, this leads to a critical timescale 𝑡∗ = 1.9 s, computed as 

𝑡∗ = 2𝜋 Ω∗⁄ , Ω∗ = 𝜅∗𝑈 𝑏⁄ . The minimum NPAS oscillation period studied in Chapter 6 was 

𝑇 = 5 s.  

 

For these manoeuvres, reference angle-of-attack histories are computed at the outer tips of 

each lifting surface – the tip points may be confirmed to have the greatest angle-of-attack 

variation within their respective surfaces. The horizontal stabilisers show identical tip 

histories, which are also identical to the aircraft yaw history; and the vertical stabiliser 

shows a tip history which if effectively equivalent to the aircraft pitch history. Four 

reference points are thus sufficient to characterise the level of lifting-surface transience: the 

left-wing (LW) tip, right-wing (RW) tip, a horizontal stabiliser (HS) tip, and the vertical 

stabiliser (VS) tip. An analysis of these angle-of-attack histories indicates that the wings 

remained in pre-stall conditions for all of the manoeuvres studied – though the stabiliser 

surfaces did reach post-stall conditions. As oscillatory overshoot effects were observed in 

some manoeuvres, and these may be exacerbated by transient aerodynamic effects, it 
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would be prudent to quantify the degree of unsteadiness involved. For this purpose we use 

the spectral analysis of Chapter 8, Section 8.3.5. 

 

Figure 9.2.1 shows the angle-of-attack and reduced-pitch-rate time histories, and angle-of-

attack power spectra, for the 𝑇 = 25 s NPAS oscillation with 𝜓amp = 0.2,  𝜃amp = 0.2, 𝜃0 = 

0.2 rad, and an inboard dihedral constraint of Γ = 0.3 rad. The critical reduced frequency for 

quasistatic model breakdown (𝜅∗ = 0.05) is indicated, as well as the reduced frequency 

associated with the NPAS forcing / target oscillation path, which is computed from 𝑇 as 

𝜅T = 2𝜋𝑏 𝑇𝑈ref⁄ . Unless strong higher-frequency effects are at work, 𝜅T will correspond to 

the peak spectral power – as is the case in Figure 9.2.1. The angle-of-attack time histories 

are relatively smooth and simple, and no strong high-frequency effects are observed:  the 

reduction in spectral power between 𝜅T and 𝜅∗ is a factor of 4000, corresponding to an 

amplitude reduction of factor c. 60. Transient effects are not likely to be significant in this 

manoeuvre. 

 

Figures 9.2.2-9.2.4 show the angle-of-attack and reduced-pitch-rate time histories, and 

angle-of-attack power spectra, for a set of wider-amplitude NPAS manoeuvres; those with 

𝜓amp = 0.4,  𝜃amp = 0.3, 𝜃0 = 0 rad, at 𝑇 ∈ [5,10] s, and for outboard Γ = 0.3 rad or an 

inboard Γ = 0 constraints (as per Chapter 6, Section 6.4). The stabiliser angle-of-attack time 

histories are smooth in the manner of Figure 9.2.1 and are not shown. These manoeuvres 

are the most rapid quasistatic NPAS manoeuvres studied, and angle-of-attack oscillations 

are observed on the timescale of 𝑡∗. The amplitude of these oscillations are small: in 

reduced frequency, Figure 9.2.3, the 𝜅T-𝜅∗ spectral power reduction factor takes a 

maximum value of c. 40 (𝑇 = 5 s, outboard Γ = 0.3 rad constraint); an amplitude reduction 

of factor c. 6; with non-negligible spectral peaks beyond 𝜅∗. In reduced pitch rate, the 

maximal 𝑟 is approximately equal to 𝑟∗. Both these metrics indicate that GK dynamic stall 

effects could have minor significance. This is notable and anticipated, as these manoeuvres 

(at 𝑇 = 5 s) are well faster than the pitch/yaw response times of the aircraft, i.e. the 

timescales at which induced-flow effects become significant. 
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Figure 9.2.5 shows a GK model simulation of the quasistatic NPAS oscillation with 𝑇 = 5 s 

and for an outboard Γ = 0.3 rad constraint; under  𝜓amp = 0.4,  𝜃amp = 0.3, and 𝜃0 = 0 rad, 

as per Figure 6.4.12-6.4.14. Dynamic stall events are observed to be insignificant; 

demonstrating the conservative nature of the threshold values chosen, and indicating that, 

even in the presence of induced-flow effects, the quasistatic aerodynamic model is 

sufficient for modelling these manoeuvres.  However, this assessment is exacerbated by the 

fact that the estimated validity thresholds are based on CFD data, and not the behaviour of 

the model: the model delay parameters were identified based on data with mid-range 

angle-of-attack rates; and so for quasistatic threshold-level angle-of-attack rates, it is 

expected that the identified GK model will underestimate dynamic stall effects. In reality, 

transient effects may be more observable than in Figure 9.2.5; and may be a further 

motivation for the development of closed-loop NPAS control. 
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Figure 9.2.1: Angle-of-attack time histories and power spectra for the circle-profile quasistatic NPAS oscillation with 𝑇 = 25 s, 𝜓amp = 0.2,  

𝜃amp = 0.2, 𝜃0 = 0.2 rad, and an inboard dihedral constraint of Γ = 0.3 rad. Reference points are the left-wing (LW), right-wing (RW), a 

horizontal stabiliser (HS), and the vertical stabiliser (VS) tips. 
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Figure 9.2.2: Left-wing (LW) and right-wing (RW) angle-of-attack time histories for the circle-profile quasistatic NPAS oscillation with 𝑇 ∈ [5,10] 
s, 𝜓amp = 0.4,  𝜃amp = 0.3, 𝜃0 = 0 rad, and under two different dihedral constraints. 
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Figure 9.2.3: Left-wing (LW) and right-wing (RW) reduced frequency spectra for the circle-profile quasistatic NPAS oscillation with 𝑇 ∈ [5,10] s, 
𝜓amp = 0.4,  𝜃amp = 0.3, 𝜃0 = 0 rad, and under two different dihedral constraints. 
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Figure 9.2.4: Left-wing (LW) and right-wing (RW) reduced pitch rate time histories for the circle-profile quasistatic NPAS oscillation with 𝑇 ∈ 
[5,10] s, 𝜓amp = 0.4,  𝜃amp = 0.3, 𝜃0 = 0 rad, and under two different dihedral constraints. 
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Figure 9.2.5: The effects of GK dynamic stall on the circle-profile quasistatic NPAS oscillation with 𝑇 = 5 s, and for an outboard Γ = 0.3 rad 
constraint; under  𝜓amp = 0.4,  𝜃amp = 0.3, and 𝜃0 = 0 rad. 
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9.3. PUGACHEV’S COBRA 

Figure 9.3.1 show the effects of dynamic stall on the simple cobra manoeuvre studied in 

Chapter 7, Section 7.3.3. This manoeuvre is representative of the pitch-axis RaNPAS 

capability studied in Chapter 7, Section 7.3. Figure 9.3.1 shows flight simulation results 

(pitch angle and flight path) for the control paths of Chapter 7, Section 7.3.3, under the 

original quasistatic, GK-reconstructed quasistatic, and transient GK models. Also shown are 

the wing- and stabiliser-tip lift coefficient histories for the three simulations. Figure 9.3.1 

shows an assessment of the GK simulation in terms of reduced frequency and reduced pitch 

rate. The thresholds for GK and quasistatic model validity are noted. 

 

Unexpectedly, the transient effects modelled in the GK model are remarkably insignificant, 

despite the manoeuvre lying well within the range of GK model effects. Dynamic stall lift 

coefficient peaks are observed but do not significantly alter the aircraft behaviour – and 

thus, do not destabilise the manoeuvre. Furthermore, a part of the small discrepancy 

observed is attributable to the difference between the GK-reconstructed quasistatic model; 

and would be present even in the absence of the delay effects. Several explanations for this 

behaviour are available. The GK model does not model pre-stall transient effects (e.g. 

Wagner / Theodorsen effects) and in this situation these may be a more significant factor 

than dynamic stall effects; which require a stall transition.  The cobra manoeuvre may show 

intrinsic high levels of stability in simulation, arising from the planar nature of the 

manoeuvre – eliminating the possibility of roll drift. This may explain why the large but 

short-timescale lift peaks arising from delayed separation do not significantly perturb the 

manoeuvre. In addition, the symmetric nature of the hysteresis loop (with delayed stall and 

delayed reattachment) may serve to self-cancel in a sufficiently stable system. The planar 

assumption obviously neglects more complex transient effects arising from asymmetric 

forebody separation (as per Chapter 7, Section 7.7); if uncontrolled, these could initiate a 

GK-based destabilisation. Furthermore, the cobra manoeuvre is generated partially by 

strong drag effects – which remain unaffected by dynamic stall, according to the GK model, 

if not in reality! (see Chapter 8, Section 8.3.4). The uncertain nature of these effects implies 

that, in a real system, they may be more significant, and may require a control response. 

However, in the current system, the quasistatic cobra simulations in Chapter 7, Section 7.3, 

may be regarded as validated with respect to the dynamic stall lift hysteresis effects. 
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Figure 9.3.1: Effects of dynamic stall on a simple Cobra manoeuvre: flight path, pitch angle history, and wing/stabiliser tip lift coefficients. 
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Figure 9.3.2: Assessment of GK model validity in reduced frequency and reduced pitch rate, for the simple cobra manoeuvre. 
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9.4. ANCHOR TURNS 

9.4.1. Effects of the quasistatic reconstructed model 

In conclusion, the complex 6-DOF morphing anchor turn manoeuvre of Chapter 7, Section 

7.6.3 is studied. A confounding factor in the study of this manoeuvre is the difference 

between the quasistatic GK-reconstructed model and the original reference quasistatic 

model: this has a significant effect on the manoeuvre, which is strongly sensitive to changes 

in the aircraft flight dynamics or controls. The error induced by this change in aerodynamic 

submodel is shown as part of Figure 9.4.1. 

 

To separate the effect of dynamic stall on the anchor turn manoeuvre from the effects of 

quasistatic model change, the aircraft morphing and surface controls are optimised to 

generate the reference anchor turn manoeuvre under GK-reconstructed quasistatic 

aerodynamics.  The optimisation objective function is formulated as the error in 

translational and rotational acceleration ([𝐱̈𝑆;  𝛉̈𝑆]) between the reference simulation (on its 

reference flight path), and the prediction of the GK-reconstructed quasistatic model when 

evaluated over the reference flight path. If the of the acceleration predictions and the 

reference acceleration converge, then the assumed reference flight path will be recovered. 

 

This objective function can be optimised pointwise over time; a property which significantly 

decreases the computational cost of optimisation relative to an objective function based on 

direct flight simulation. As optimisation variables there are the morphing state of the 

aircraft and the control surface deflections, including differential elevator. However, at this 

point a further difficulty arises: attempting to optimise this problem point-wise over time 

with the full (underconstrained) complement of variables leads to a strongly discontinuous 

solution which is not suitable for flight simulation. However, simple reducing the variable 

space down to a more strongly constrained set (e.g. 2-3 DOF) leads to suboptimal solutions 

which do not recover the reference flight path. 

 

A novel solution to this difficulty can be found in an iterative univariate optimisation. The 

acceleration objective function is optimised, point-wise across the full manoeuvre time, with 

respect to a single control DOF. This leads to a low-optimality solution with an improvement 

in continuity. This univariate optimisation is then repeated in sequence for different (and/or 
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the same) variables, gradually resulting in a high-optimality solution. The resulting control 

paths still have some continuity issues, but the results are sufficient to recover the reference 

flight path. Figure 9.4.2 shows the optimised control histories and the improvement in the 

acceleration objective function metric for a successful optimisation of this form, operating 

on the aircraft L/R wing incidence, L/R sweep and L/R elevator deflection. Figure 9.4.1 

shows the anchor turn manoeuvre recovered from this control history, compared with the 

reference and pre-optimisation results. The optimised manoeuvre even represents an 

improvement in anchor turn performance over the reference manoeuvre; stabilising at a 

more acute angle of c. 160°. 

 

9.4.2. GK model validity 

This optimised manoeuvre can then be subjected to a GK model analysis. To do this in an 

intelligible way, the lifting surface tip angle of attack histories are computed, and subjected 

to a local GK analysis – coupled with their local control surface deflections. Figures 9.4.3-

9.4.4 show these results for all the lifting surfaces; Figure 9.4.5 the reduced pitch rates 

associated with these motions; and Figure 9.4.6 a detailed analysis of the vertical stabiliser 

motion, as a case study. Note that the rudder control was not optimised in Section 9.4.1 

(Figure 9.4.2), and so the vertical stabiliser is not affected by any control discontinuities 

introduced by optimisation. 

 

The results are problematic. In the case of the wing, the simulations show expected GK 

behaviour, and the wing reduced pitch rates approach but do not exceed the critical 

threshold for GK model validity. However, the stabiliser surfaces show extreme model 

breakdown, with peaks (not shown) reaching 𝑟 > 12; two orders of magnitude greater than 

the GK model breakdown threshold. This breakdown arises from two integral aspects of 

anchor turning: simultaneous rapid high-amplitude rotation, and low airspeed, at the apex 

of the turn. 

 

The high-amplitude rotation generates large delays associated with 𝜏2, via 𝑝0(𝛼 − 𝜏2𝛼̇). 

This leads to some lifting surfaces, e.g. the vertical stabiliser in Figure 9.4.6, passing through 

multiple attachment/separation cycles in a short time period. The prospect of GK delays 

being carried across attachment/separation cycles – e.g. from the leading edge to the 
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trailing edge; a non-physical notion. The effect of the low airspeed exacerbates this: as per 

Chapter 8, Section 8.3.6, these delays are dependent on the local airspeed via the factor 

𝑐 𝑈⁄ ; and thus a decrease to near-zero airspeed leads to a large increase in the delay times, 

exacerbating the cross-cycle effects. Additionally, this leads to a breakdown in the spectral 

reduced frequency method for assessing GK model validity, rendering it invalid for this 

manoeuvre. The problems generated by the near-zero airspeed can be supressed, if not 

solved, by capping the minimum airspeed used in GK delay calculations. In Figure 9.4.6 this 

cap is taken as 5 m/s: yet even this value, well above the minimum, still yields reduced pitch 

rates that greatly exceed the model validity boundary. 

 

While the large errors in modelling the apex of the manoeuvre are offset somewhat by the 

low airspeed – generating lower aerodynamic forces overall – these errors still have a 

significant effect on the manoeuvre performance, and obscure real physical effects which 

are of unknown magnitude. It is probable that the turn apex would be modelled best with a 

low-airspeed unidirectional-rotation model; but it is at least clear that a comprehensive GK 

model, as devised, is not appropriate. For this reason we cannot validly simulate this anchor 

turn manoeuvre with the GK model flight simulator – nor, incidentally, does attempting to 

do so yield a functional anchor turn, but only a destabilising manoeuvre. The modelling of 

anchor turn manoeuvres is a fundamental limitation of the GK model; and further research 

is required in order to accurately capture the transient effects associated with the anchor 

turn apex. 
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Figure 9.4.1: Flight simulation results (orientation and flight path) for the optimised control histories under the quasistatic GK-reconstructed 
model, compared with the pre-optimisation results. 
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Figure 9.4.2: Control paths under the quasistatic GK-reconstructed model, optimised via a cyclic approach to match an anchor turn manoeuvre 
under the reference quasistatic model. The improvement in acceleration error (combined rotational/translational) is shown. 



Chapter 9: Biomimetic supermanoeuvrability under transient aerodynamics  

358 
 
 

 

Figure 9.4.3: GK lift coefficient results for assumed lifting-surface-tip angle-of-attack histories given by the optimised anchor turn manoeuvre 
under the quasistatic GK-reconstructed model: left and right wings (LW/RW) and vertical stabiliser (VS). 
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Figure 9.4.4: GK lift coefficient results for assumed lifting-surface-tip angle-of-attack histories given by the optimised anchor turn manoeuvre 
under the quasistatic GK-reconstructed model: left and right horizontal stabiliser (LHS/RHS). 
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Figure 9.4.5: Reduced pitch rate histories for the GK simulations of the aircraft lifting-surface tips under the optimised anchor turn manoeuvre. 
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Figure 9.4.6: Case study of the vertical stabiliser tip, GK model, assuming the optimised anchor turn manoeuvre motion: GK attachment 

parameters (𝑝0(𝛼(𝑡)), 𝑝0(𝛼(𝑡) − 𝜏2𝛼̇(𝑡)), 𝑝(𝑡)); reduced pitch rate; local airspeed; delay parameter values; and the delayed angle 

𝛼(𝑡) − 𝜏2𝛼̇(𝑡). The effect of restricting the local airspeed to a minimum of 5 m/s is shown. 
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9.5. CONCLUSIONS 

In this chapter we have studied the influence of GK dynamic stall effects on a three 

supermanoeuvres in the case study system: a fast quasistatic NPAS manoeuvre; Pugachev’s 

cobra; and an anchor turn manoeuvre. In the case of the quasistatic NPAS manoeuvre and 

Pugachev’s cobra, dynamic stall effects had relatively little influence on the manoeuvre 

performance – either because of a sufficiently slow timescale (quasistatic NPAS) or because 

such effects as were present did not fundamentally alter the manoeuvre behaviour (the 

cobra). Model validity tests found that the fast quasistatic NPAS manoeuvre lay just within 

the range of quasistatic model validity; and that the cobra manoeuvre lay within the range 

of GK model validity. In both cases, the relative insignificance of dynamic stall effects 

demonstrated the capability of the quasistatic manoeuvre design tools devised in Chapters 

6-7 to provide useful templates for manoeuvres under transient aerodynamic models. 

 

The anchor turn manoeuvre, on the other hand, retained GK model validity over the lifting 

surfaces, but suffered from severe model breakdown on the stabiliser surfaces at the apex 

of the turn. This breakdown was caused by simultaneous high angle-of-attack rate and low 

airspeed, generating rapid attachment/reattachment cycles and peaks in the delay times. 

Ultimately, a full-system GK model is not appropriate for modelling the anchor turn 

manoeuvre, and more tailored modelling approaches are required. To compare the GK 

model with its quasistatic counterpart (the GK-reconstructed model), however, a novel 

cyclic-univariate optimisation technique was devised for matching manoeuvre acceleration 

profiles. This technique was able to successfully match the GK-reconstructed model 

manoeuvre with the manoeuvre under the reference quasistatic model, and may be seen as 

an alternative to the quasi-trim state manoeuvre design method used in Chapter 7. Overall, 

the results and methods obtained and devised in this Chapter provide a starting ground for 

future studies in the transient modelling of biomimetic supermanoeuvrability; in particular, 

the use of low-order modelling and manoeuvre design techniques for the exploration of the 

space of supermanoeuvres. 
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10.1. NOVEL CONTRIBUTIONS 

10.1.1. Biomimetic supermanoeuvrability 

In this work we undertook a broad-spectrum study into the supermanoeuvrability capability 

of a case-study biomimetic morphing-wing aircraft. This case study system was designed to 

replicate theorized biological mechanisms for supermanoeuvrability without necessitating 

flapping-wing propulsion capability: pronation/supination/incidence control, sweep and 

dihedral control were utilised, alongside an unspecified conventional propulsion system. 

The system scaling, geometry and mass were fixed for the case study; but were derived 

from representative biological flying creatures and small UAV aircraft. A validated flight 

dynamic model based on quasisteady aerodynamics was developed for the case-study 

system, and through computational fluid dynamics a model capturing some transient 

aerodynamic effects was also developed and validated. 

 

Existing capability in both biological flight manoeuvrability and thrust-vectoring 

supermanoeuvrability provided avenues for the exploration. Of the latter, nose-pointing-

and-shooting (NPAS) manoeuvres formed the basis of a study into analogous quasistatic 

orientation control, independent of flight path, in biomimetic systems. Such control is 

widely available in the case study system, constrained only by (1) the available morphing 

and stabiliser and range, affecting the available orientation control range; and (2) the flight 

dynamic stability and orientation response time constant of the aircraft in its quasistatic 

morphing conditions, generating areas of instability under open-loop control and affecting 

the fidelity of the response to the control input. 

 

Symmetric incidence morphing was sufficient to control pitch angles within c. −25° to 30°; 

asymmetric incidence and single-wing dihedral control were sufficient to control pitch and 

yaw angles up to c. ±25°. In these cases, the control effectiveness of the stabiliser control 

surfaces (elevator and rudder) was found to be the primary limiting factor of the available 

orientation control range, indicating that immediate improvements in this metric could be 

achieved with stabiliser augmentation. Symmetric incidence and single-wing sweep control 

also enabled pitch and yaw control in an irregular zone, with morphing-based limits on the 

available orientation control range. An easy method of generating open-loop morphing 

control paths corresponding to arbitrary specified orientation paths was devised. Higher 
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degree-of-freedom morphing increased the available orientation control range at the cost of 

underconstrainedness at lower angles, leading to discontinuity in the computed control 

paths. The effect of the target NPAS timescale on the manoeuvre performance is complex: 

apart from the expected trend of higher fidelity with slower timescale, there is some 

evidence that performing manoeuvres faster than any anticipated instability timescales 

yields fidelity improvements. Overall, the biomimetic morphing present in the case study 

system allows a high level of quasistatic NPAS capability. Dynamic stall effects, as per the GK 

model, had no impact on this capability. 

 

This capability leads immediately to the possibility of rapid nose-pointing-and-shooting 

(RaNPAS) manoeuvres – in this work, Pugachev’s cobra, and an analogous manoeuvre in 

yaw were studied. In the design of these manoeuvres, continuous control paths are 

replaced by indicative pointer states, leading to a guidance process that is much more 

heuristic: thus, more flexible but coarser. This allows the exploration of several formats of 

successful cobra manoeuvre: utilising a simple morphing perturbation, or a high-angle trim 

state prior to a perturbation, or a pitch-up→pitch-down→pitch-up sequence; and in varying 

morphing degrees of freedom. Symmetric sweep morphing is of key importance in these 

manoeuvres as it is able to generate large pitching moments by shifting the aircraft 

aerodynamic centre fore and aft. Dynamic stall effects, as per the Goman-Khrabrov (GK) 

model, were found to have a relatively minimal effect on the cobra manoeuvre dynamics, 

validating the use of the quasistatic model and the quasistatic pointer state design method. 

Asymmetric forebody separation effects were not modelled directly, but a preliminary study 

indicates that such effects, even at expected maximal levels, are within the space of 

acceleration vectors that are controllable by asymmetric incidence morphing. This implies 

that such effects should be fully correctable with sufficiently rapid actuation. The design of 

yaw RaNPAS manoeuvres is more complex, as the control design can no longer rely on 

symmetry to enforce planar motion. This requires a more advanced pointer state method, in 

which these states are constrained to in-plane accelerations. This approach yields successful 

RaNPAS manoeuvres to yaw angles of beyond 80° with only asymmetric incidence 

morphing, and beyond 90° with all-DOF morphing. 
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From existing studies into biological manoeuvrability, two directions for study were 

selected: ballistic transition manoeuvres and anchor turns. These function as connecting 

points between biological and mechanical supermanoeuvrability. In the case study system, a 

ballistic transition manoeuvre can be performed with a simple modification of the RaNPAS 

cobra controls. Utilising the same pitch-up state sequences as in Chapter 7, Section 7.3, 

instead of transitioning subsequently to a pitch-down state, the aircraft transitions to a 

neutral state which maintains a high pitch angle at decreasing airspeed until the point of 

impact. This leads to successful impact landing with large reductions in kinetic energy 

(>98%). The validation of the cobra manoeuvre with respect to the transient Goman-

Khrabrov aerodynamic model is taken to extend to the studied ballistic transition 

manoeuvre, as the aircraft and morphing control rotation rates are not significantly 

different.  

 

In a similar manner, anchor turn manoeuvres can be generated by destabilising the yaw 

RaNPAS manoeuvres at low airspeed to yield a permanent orientation shift, followed by a 

recovery of airspeed in the shifted direction. This is possible, for turns up to at least 90°, 

with only asymmetric incidence morphing, or up to at least 160° with additional asymmetric 

sweep morphing. These manoeuvres were validated with respect to changes in the 

quasistatic model, indicating that this capability is not confined to this specific planform or 

aerodynamic model. They were not, however, validated with respect to the transient 

Goman-Khrabrov aerodynamic model, as this model breaks down under the high rotation 

rates present in this system. A higher-fidelity model is likely to be required to accurately 

assess the effectiveness of the quasistatic design process used to generate the manoeuvre. 

Unmodelled transient effects are not expected to significantly alter the aerodynamic 

mechanisms utilised in the manoeuvre; but may significantly impede real-time manoeuvre 

control. 

 

This work demonstrates, in broad and general terms, that biomimetic morphing-wing 

systems are capable of an advanced level of supermanoeuvrability, rivalling that of thrust-

vectored aircraft, and analogous to that found in biological flying creatures. This capability 

has not previously been recognised. The analysis of this study suggests a UAV/MAV 

equipped with asymmetric incidence morphing as the best option for further more detailed 
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research and experimental validation. According to our modelling, such a craft is capable of 

quasistatic NPAS manoeuvres in pitch, RaNPAS manoeuvres in yaw, and anchor turning. The 

addition of single-wing dihedral control leads to simultaneous pitch-yaw quasistatic NPAS; 

or the addition of symmetric sweep morphing to RaNPAS manoeuvres in pitch (and possibly 

simultaneous pitch-yaw) and ballistic transition manoeuvres. The possible actualisation of 

an operational aircraft of this form has ramifications for several areas of combat aircraft and 

missile weapons design. 

 

10.1.2. Methodological contributions 

The process of exploring biomimetic supermanoeuvrability, as per Section 10.1.1, led to the 

development of novel analysis methods and methodologies in several areas of flight 

dynamics and simulation. The flight simulator presented in this work represents an 

improvement in modelling fidelity over most existing flight simulators based on reduced-

order models; with a multibody dynamic analysis of all lifting surfaces, quasistatic and 

transient (GK) aerodynamic models, and under quaternion variational integration or pole-

switching Euler angle RK45 integration. 

 

The requirement for singularity-free integration over all possible orientations led to the 

development of a novel quaternion variational integrator (QVI) for complex systems, with 

improvements in stability over existing QVIs. Notably, however, pole-switching Euler angle 

RK45 integration, representing a relatively simple extension to existing simulators based on 

single-format Euler angle integration, was found to be more computationally efficient. The 

implementation of the GK dynamic stall model in a three-dimensional context led to several 

key model developments: split leading/trailing edge models; the parametric effects of 

aircraft control surfaces; the development of improved separated model fits and an 

improved GK sigmoid function; and the assessment of model validity via time-domain and 

spectral methods. These developments led to an array of open questions, discussed in 

Section 10.1.3. 

 

The existence of a continuous space of trim states in the case study system led to a wide-

ranging manoeuvre design methodology based on the computation of trim or quasi-trim 

states. The analysis of quasistatic NPAS capability was enabled by a parametric trim state 
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manoeuvre design method, which tracked an orientation target function though the 

system’s space of trim states. This method generalised to quasi-trim state approach, 

involving the computation or optimisation of quasi-trim states with specified acceleration 

vectors, enabling the design of pointer states for RaNPAS or more complex manoeuvres (e.g. 

Pugachev’s cobra, anchor turns). This manoeuvre design methodology is necessarily 

restricted to the quasistatic aerodynamic model: but studies with transient models indicate 

that its predictions remain accurate for the manoeuvres studied, with the exception of the 

anchor turn, which shows transient aerodynamic model breakdown. The supermanoeuvres 

considered here would be significantly more difficult to design and study without this 

manoeuvre design methodology. 

 

The introduction and study of trim and quasi-trim spaces, and the development of trim and 

quasi-trim state-based design methods (rigorous and heuristic) are two key contributions of 

this thesis.  The study of trim and quasi-trim spaces in biomimetic and / or morphing aircraft 

has the potential to open up a wide range of manoeuvre capability in these aircraft. As 

demonstrated, trim space analysis offers a rigorous and immediate avenue into NPAS 

capability (even if, at a minimum, only quasistatically).  Quasi-trim space analysis is a tool for 

the generation of more complex NPAS manoeuvres; it shows particular value in constraining 

motion to a plane, via the use of planar acceleration constraints. This allows relatively 

complex supermanoeuvres (e.g. the NPAS manoeuvre in yaw; the rattlesnake) to be 

achieved in open-loop with a simple definition of the control input. 

 

Quasi-trim states / control inputs are remarkably versatile: they can be used as an open-

loop platform for manoeuvres, on which closed-loop control is superimposed (as in many of 

the studies in this work); but they can also be used to generate states to use in closed-loop 

control. The latter capability was reference in the analysis of synthesised control actions 

(Chapter 7, Section 7.7), which demonstrated that rudder and aileron-type control could be 

synthesised at high angles of attack by morphing actions, via a quasi-trim analysis. More 

generally, defining a desired aircraft moment or acceleration output (e.g. an enhanced 

rudder moment, manoeuvre trajectory acceleration, or any instantaneous closed-loop 

control moment), a quasi-trim analysis, with the desired acceleration as the quasi-trim 

objective, will yield control configurations, or perturbations to the existing control 
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configurations, that will generate that desired moment / acceleration. This is a powerful tool 

for the exploration, analysis and control of morphing-wing supermanoeuvrability. The 

approach is not restricted to NPAS capability: Chapter 7, Section 7.6 presented approaches 

to the generation of anchor turn manoeuvres through quasi-trim analysis of this form. 

 

10.1.3. Open questions raised 

A range of open questions were raised in the process of this work’s analysis, particularly 

with regard to the GK aerodynamic model. The GK model is formulated in a wind tunnel-

type context with single flow-direction, no control surfaces, and at constant airspeed. 

Extending this to a three-dimensional flight dynamic model with multiple aerofoils raises 

several open questions, as in Chapter 8, Section 8.4: 

 regarding the nature and cause of the wide variation of GK delay parameters 

reported in literature for the same aerofoils; 

 regarding the dependency of the GK delay parameters on the system airspeed 

(and/or chord); a topic not addressed in existing GK-based 2D flight simulators; 

 regarding the modelling of the GK delays in systems with control surfaces and how 

this can be accurately and cost-effectively carried out. 

 regarding appropriate methods for the characterisation of GK and quasistatic model 

validity (reduced frequency, angle-of-attack rate, or other metrics); a topic which 

existing literature treats inconsistently. 

GK model breakdown due to added mass / unsteady circulatory lift effects was observed for 

sufficiently rapid manoeuvres, and there is also the open question of how to model these 

effects in combination with the GK model. Further computational and experimental study is 

required to resolve these questions; leading potentially to improvements in the accuracy 

and flexibility of the model. Such study was not carried out in this work for reasons of time 

and space: the primary intent was to design and explore biomimetic supermanoeuvres 

holistically; rather than derive new transient aerodynamic models. 
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10.2. LIMITATIONS 

10.2.1. Model limitations 

In this study we attempted the development and implementation of reduced-order 

aerodynamic and flight dynamic models of maximum available fidelity. However, this was 

not sufficient to model all the aerodynamic and structural effects that are relevant to the 

system. Among the aerodynamic phenomena not modelled are flow shadowing, spanwise 

lifting surface flow, vortex shedding, aerodynamic added mass at high rotation rates, 

propulsion-induced flower, and the effect of transient airspeed changes. Dynamic stall is 

modelled at moderate fidelity via the GK model, and asymmetric forebody separation is 

studied in magnitude, for a basic assessment of controllability, but not in its time-dependent 

dynamics. 

 

Structurally, the system is modelled via multibody dynamics; an exact formulation for a 

rigid-body system. Structural deformation is not modelled: the aircraft is conceived as a 

rigid, not flexible, aircraft, for which any significant deformation would represent an 

unacceptable risk of structural failure. In this context, an analysis of deformation may be 

replaced with analysis of stresses, with reference to a structural failure criterion. This is 

entirely possible in the case study model, but is not implemented: the purpose of this work 

has been to design and define manoeuvres and explore their aerodynamic and flight 

dynamic feasibility; a necessary prerequisite to an analysis of structural feasibility.  To 

characterise the system’s aerostructural stresses and stability adequately, a system 

specification more detailed than the current case study (with material and actuator 

specifications) is required. The restriction to a simplistic actuator was not a limitation on this 

study’s conclusions per se: within the manoeuvre design framework in which this study 

operated, all actuators are identical, as all control inputs are specified a priori. However, 

complex actuator models are required for further studies into the feasibility of open- and 

closed-loop manoeuvre control. 

 

The system was validated with respect to an experimentally-derived nonlinear stability 

derivatives model. This validation does not directly cover strongly transient flight regimes; 

and while the local transient aerodynamic models are validated with respect to 

computational fluid dynamics, their synthesis is not validated with respect to experimental 
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flight data at high levels of transience. This is an important, though difficult, area for future 

research; as this form of validation data is largely non-existent in the literature. Flight or 

wind tunnel tests focusing on specific supermanoeuvres would lead to an increased 

understanding of the limits of validity of our flight dynamic model, and may indicate 

avenues for further improvements in model fidelity. 

 

10.2.2. Case study limitations 

The nature of this work, as a case study, leads to results that are broad in terms of the 

manoeuvres studied, but limited in terms of the effect of system changes on these 

manoeuvres. Parametric studies are carried out with respect to manoeuvre parameters, but 

not the case study system parameters. For this reason, the results of this study shed light 

only on a limited space of system capability, and avoid its limit zones. This avoidance is 

intentional: the limited fidelity of the aircraft flight dynamic model, as per Section 10.2.1, 

significantly restricts the accuracy with which the location of these zones can be predicted. 

In the limit zones, where the control effort required is some critical metric, complex flow 

effects are likely to degrade system performance, whereas in areas well within system 

capability there is at least a wider spectrum of available control effort. A significantly more 

detailed study, with a significantly more detailed model, is required to fully assess the limits 

of system capability, even for a given system performing a given manoeuvre. 

 

 

10.3. FUTURE DIRECTIONS 

The limitations discussed in Sections 10.2.1-10.2.2 lead on to several directions for further 

research and development. More specialised study is a key theme: that of a specified 

morphing configuration performing a single manoeuvre, and of areas such as the 

manoeuvre flight envelope under aerostructural, actuator, aerodynamic and other 

constraints; closed-loop control; feasibility for target applications; and the impact of 

complex aerodynamic effects (asymmetric forebody separation/flow shadowing/etc.). Such 

studies require model expansion, and experimental validation, in all these areas. We 

recommend initial research into a system with asymmetric incidence morphing: such a 

system shows low actuator complexity, is amenable to simple flight dynamic models due to 

the small lifting motion, and has the capability for a range of supermanoeuvres as discussed 
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in Section 10.1.1. In addition, at a methodological level, the techniques of quasi-trim 

analysis show the potential for significant further application to the analysis and control of 

supermanoeuvrability. In particular, the use of quasi-trim analysis to generate states for use 

in closed-loop control is an immediate application of significant impact. Prior to this work, 

the study of biomimetic supermanoeuvrability was restricted to simple perching 

manoeuvres. With the results now gathered here, there is motivation to broaden this study 

to a range of biomimetic supermanoeuvres that is many times greater, opening up 

opportunities for the design of new forms of high-performance unmanned aircraft. 

 

END OF BODY 
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A1.1. PARAMETER SPECIFICATION 

We select case study system parameters to match the scale of a number of source aircraft 

and biological creatures – including the NextGen MFX-1 morphing-wing aircraft [1], the 

remote-control ShowTime 50 [2,3], greylag geese (Anser anser) [4–8], and steppe eagles 

(Aquila nipalensis, previously A. rapax) [9,10]. Relative to these biological creatures, we 

accentuate the case study system mass to account for operational payloads – though, at 8 

kg, our default mass is not as large as could be desired for some applications. We perform 

parametric studies in mass further on in this thesis. Relative to all sources, we decrease the 

wing and stabiliser chords; to allow a wider range of morphing before collision between the 

wings and stabilisers; to minimise the actuator effort required for morphing; and to 

represent an aerodynamically suboptimal system – so that the conclusions we draw from 

the case study need not be restricted only to highly optimised systems. 

 

Figure A1.1.1 shows the definition of some key geometric parameters, and Table A1.1.1 the 

complete set of parameters for the system with relevant comparisons. Several disparate 

points should be noted regarding the specification of these parameters: 

 The case study system aerofoils chosen are taken from the ShowTime 50, an existing 

highly manoeuvrable remote control aircraft. The ShowTime 50 wing aerofoil 

(ST50W) is a symmetric aerofoil similar to a NACA0015, and is used for the case 

study system wings. The ShowTime 50 horizontal stabiliser aerofoil (ST50H) is a 

symmetric aerofoil similar to a NACA0009 and is used for the horizontal and vertical 

stabilisers. 

 Alongside the masses of the lifting surfaces and cylindrical fuselage, a point mass is 

included in the model to allow a finer specification of the aircraft centre of mass 

location. We will demonstrate after the kinematic and dynamic analysis has been 

carried out that this system has appropriate stability properties and trim properties. 

Stability and trim analysis will be carried out in Chapter 6. 

 The aircraft propulsion system is not specified in detail: only a thrust force is utilised 

in the model description, and no further propulsion dynamics are modelled. 

Depending on application and manoeuvrability requirements several options are 
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available, including propeller, jet and rocket systems. Approximate maximum 

propulsive forces for such systems implemented in an aircraft of this scale are 60N 

for a propeller, based on a thrust-weight ratio of 2:1 for the ShowTime 50 [2]; and 

100 N for a jet, based on the NextGen MFX-1 [1] at 50% capacity. Rocket propulsion 

is likely to be relevant only in applications involved in the delivery of ordinance, and 

is given no detailed consideration in this study. Biomimetic propulsion via wing 

flapping is relevant in the application of our findings on manoeuvrability to aircraft 

utilising such modes of propulsion; but the scope of this study is concerned solely 

with biomimetic manoeuvrability independent of biomimetic propulsion.  

The specific aircraft geometry of our case study system is of minor relevance overall: key 

questions we are interested in are whether in general a biomimetic aircraft of this type is 

capable of supermanoeuvrability, and the extent to which its wing morphing is useful in 

post-stall manoeuvring.  

 

 
Figure A1.1.1: Aircraft with geometric parameters 
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Table A1.1.1: Case study system properties with relevant comparisons: n/a, n/av and n/spec denote data not applicable, not available, and not specified in this 
study; mean and sample denote mean and single-individual values; circa (c.) denotes approximate values, including approximate means from small sample sizes. 

 This study NextGen MFX-1 
[1] 

ShowTime 50 
[2,3] 

Greylag Goose 
(A. Anser)  [4–8] 

Steppe Eagle 
(A. nipalensis) [9,10] 

Properties: Values:     
Fuselage length – 𝐿𝑏 1.20 m  2.1 m 1.51 m mean c. 0.82 m mean c. 0.71 m 
Wing root length – 𝐿𝑟 0.80 m  c. 1.17 m c. 0.94 m n/a n/a 
Wing semispan – 𝐿𝑤 0.80 m  1.4 m 0.73 m mean c. 0.81 m mean c. 0.95 m 
Wing chord – 𝑐𝑤 0.15 m  mean c. 0.23 mean 0.32 m mean c. 0.26 m sample c. 0.3 m 
Elevator semispan – 𝐿𝑒 0.40 m  n/a c. 0.31 m n/a n/a 
Elevator chord – 𝑐𝑒 0.15 m  n/a mean c. 0.22 m n/a n/a 
Fin height – 𝐿f 0.40 m  n/a c. 0.17 m n/a n/a 
Fin chord – 𝑐f 0.15 m  n/a c. 0.09 m n/a n/a 
Body radius – 𝑟𝑏 0.10 m mean c. 0.15 m mean c. 0.088 m n/a n/a 
Aerofoils ST50 W/H n/av ST50 W/H/V complex complex 
Total mass – 𝑚𝑡𝑜𝑡 8 kg 45 kg 2.9 kg mean c. 3.3 kg mean c. 3.5 kg 
Single wing mass – 𝑚𝑤 1 kg n/av n/av n/av n/av 
Single elevator mass – 𝑚𝑒 0.15 kg n/av n/av n/a n/a 
Fin mass – 𝑚f 0.20 kg n/av n/av n/a n/a 
Max propulsive force n/spec c. 200 N c. 60N n/av n/av 
Propulsive mechanism n/spec jet propeller flapping-wing flapping-wing 
      
Non-comparable properties:      
Point mass length – 𝐿𝑝𝑚 1.1 m 

n/a 

ST50W max. thickness – ℎW,max 0.0216 m 
ST50W mean thickness – ℎW,av 0.0148 m 
ST50H max. thickness – ℎH,max 0.0216 m 
ST50H mean thickness – ℎH,av 0.0148 m 
Fuselage mass – 𝑚𝑏 3.0 kg 
Point mass – 𝑚𝑝𝑚 2.5 kg 
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