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Abstract 

The loss of native function of the DJ-1 protein has been linked to the development of Parkinson’s 

(PD) and other neurodegenerative diseases. Here we show that DJ-1 aggregates into -sheet 

structured soluble and fibrillar aggregates in vitro under physiological conditions and that this 

process is promoted by the oxidation of its catalytic Cys106 residue.  This aggregation resulted 

in the loss of its native biochemical glyoxalase function and in addition oxidized DJ-1 aggregates 

were observed to localize within Lewy bodies, neurofibrillary tangles and amyloid plaques in 

human PD and Alzheimer’s (AD) patients’ post-mortem brain tissue. These findings suggest that 

the aggregation of DJ-1 may be a critical player in the development of the pathology of PD and 

AD and demonstrate that loss of DJ-1 function can happen through DJ-1 aggregation. This could 

then contribute to AD and PD disease onset and progression. 

 

Keywords:   DJ-1 / Parkinson’s / Alzheimer’s / aggregation / amyloid 



 3 

Introduction  

The aggregation of proteins into soluble oligomers with a -sheet structured core and 

amyloid fibrils[1, 2] is a pathological hallmark of many neurodegenerative diseases including 

Alzheimer’s disease (AD)[3-5] and Parkinson’s disease (PD)[6].  This aggregation process and 

the aggregated species generated by it can cause cellular degeneration[1] and are thought to be 

critical players in the pathogenic basis of these disorders.   

DJ-1 is a multifunctional protein with various enzymatic functions involved in regulating 

redox and protein homeostasis[7], and its loss of function has been linked to the onset and 

progression of a wide range of diseases[7] including PD[8, 9], AD[10] and related disorders [10, 

11] as well as stroke[12], type II diabetes[13, 14] and some types of cancer[15].    Specific 

mutations in the DJ-1 encoding gene, PARK7, cause familial autosomal recessive early-onset 

PD[8, 9] and, in some cases, amyotrophic lateral sclerosis[16] through structural destabilization 

of the protein.  Under physiological conditions the active structural state of DJ-1 is a homodimer 

folded into seven beta-strands and nine helices per monomer[17].  Cys106 is an essential residue 

of DJ-1 responsible for its various functions[18] including a range of enzymatic activities such as 

glyoxalase[19], deglycase,[20] and protease[21] function. In addition, DJ-1 has been shown to 

function as a redox activated chaperone with the ability to inhibit -synuclein aggregation[22, 

23].  

Cys106 is a highly reactive residue in DJ-I and can be oxidized from its native thiolate (-S-

), to sulfinate (-SO2-), or sulfonate (-SO3-) state by oxidative stress[24]. The oxidation of DJ-1 at 

Cys106 has been observed in post-mortem brain samples in PD and AD patients[10] and in the 

red blood cells of PD patients[25], suggesting that this is associated with a diseased state[26]. 

DJ-1 has been observed to form aggregates in vitro and in vivo.  Soluble high molecular 

weight aggregates of DJ-1 have been observed in PD patients’ brain[27-29], and higher polymer 
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forms of oxidized DJ-1 have been detected specifically in unmedicated PD patients’ 

erythrocytes[30], suggesting that the presence of such aggregates may have a link to a disease 

state.  DJ-1 has been shown to form aggregates due to high concentrations of inorganic 

phosphate in vitro [31, 32].  Yet, the structural nature of the aggregation of DJ-1 in vitro and in 

the human brain, and its impact on the biochemical and biological functions of protein has not 

been elucidated.  

In this study, we sought to characterize the structural and mechanistic processes underlying 

the aggregation of DJ-1 in vitro and the effects of aggregation on the protein’s biochemical 

functions. Moreover, we examined a potential link between DJ-1 aggregation and the pathology 

of PD and AD in diseased and healthy post-mortem brain tissue.   
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Materials and Methods 

Materials 

DJ-1 was prepared as described below. For the DJ-1 expression experiments, we used 

chloramphenicol, carbenicillin, ampicilin antibiotics and E.coli bacteria purchased from Sigma 

Aldrich, isopropyl β-D-1-thiogalactopyranoside (IPTG) from ThermoFisher Scientific. Yeast 

extract and Tripton are products of Molar Chemicals Ltd. During DJ-1 purification we used 

Prescission Protease enzyme and L-glutathione ordered from Sigma Aldrich. The concentration 

of DJ-1 in experimental samples were determined by Bradford reagent (Sigma-Aldrich).  

Bovine serum albumin (BSA, lyophilized powder, >98 %), ammonium persulfate (APS, 98 %), 

N,N,N’,N’-tetramethylethylendiamine (TEMED, 99 %), acrylamide/ bis-acrylamide 30% w/w 

solution (BioReagent, suitable for electrophoresis), 1,4-dithiothreitol (DTT, 98%), hydrogen-

peroxide 30% w/w solution (H2O2) and Thioflavin T (ThT, 98 %), were purchased from Sigma-

Aldrich. Pentamer formyl thiophene acetic acid (pFTAA) was synthesized by the Molecular 

Imaging Chemistry Laboratory, University of Cambridge and followed the synthetic strategy 

described by Aslund and co-workers[33].  For the buffer solutions the tris-(hydroxylmethyl)-

amino-methane hydrochloride (Tris-HCl, 99.8 %), potassium dihydrogen phosphate (analytical 

reagent (AR) grade level), disodium hydrogen phosphate 12-hydrate (AR grade level), potassium 

chloride (99.5%), sodium chloride (AR grade level) were purchased from Molar Chemicals. 

Disuccinimidyl suberate crosslinker (DSS) was bought from ThermoFisher Scientific. The water 

used for all reactions and solutions was MilliQ grade from a water purification facility (Millipore 

Milli-Q Gradient,  > 18.2 m). The pH values were adjusted by adding 1 M HCl or 1 M NaOH 

(Molar Chemicals).  

 

DJ-1 expression and purification 
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Briefly, Rosetta (DE3) competent E.coli cells containing the full length human DJ-1 coding 

sequence between the NcoI and BamHI restriction sites of the pGEx expression vector 

(Novagen) were grown at 37°C in LB medium. (After cleaving the GST tag from the fused 

protein the remaining DJ-1 differs by an additional five amino acids (GPLGS – Precision 

Protease cleavage site residue and linker) from the native human DJ-1, which are present on the 

N-terminal of the protein.) LB medium was supplemented with chloramphenicol (25 mg/ml) and 

ampicillin (50 mg/ml) at 37°C. After reaching OD 0.8, overnight protein production was induced 

at 18°C by the addition of 0.1 mM IPTG (final concentration). On the next day, cells were 

centrifuged at 5,000 rpm for 10 minutes at 4°C using a Beckman centrifuge. The pellets were 

suspended with 100 mM PBS buffer at pH 7.4 and were then centrifuged again (at 4°C, 

4000 rpm, 30 min). The resulting supernatants were discarded, and the residue suspended in lysis 

buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 0.1 % Igepal, 1 mM DTT at pH 7.4), 

then frozen at -80°C (without liquid nitrogen) until needed for protein purification. 

 

For the purification of DJ-1, cells were thawed and lysed with intense sonication, then the 

collected lysates were centrifuged at 20,000 rpm for 30 minutes at 4°C. The supernatants were 

poured onto a pre-equilibrated GSTrapTM 4B column (GE Healthcare). Before elution the 

column was washed with the binding buffer (PBS, 1 mM DTT at pH 7.4), and then the protein 

was eluted using elution buffer (50 mM Tris-HCl, 20 mM reduced glutathione, 1 mM DTT at 

pH 8). After the elution, protein was dialyzed into 50 mM Tris-HCl, 100 mM NaCl, 1 mM 

EDTA and 0.5 mM DTT (pH 7.4) and Prescission Protease (1 µl enzyme to 5 mg protein) 

overnight at 4°C. Next day, dialysed protein was poured onto the GST column, pre-equilibrated 

with binding buffer, and collected flow through protein solution. The protein content of samples 
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was determined using the Bradford reagent at 595 nm with UV-Vis spectroscopy and purities 

were checked on a 12 % SDS-PAGE. DJ-1 samples stored at -80 °C. 

 

Oxidation and over oxidation of DJ-1 

DJ-1 (30 µM) was incubated with H2O2 in 10 or 100 fold excess to generate DJ-1Cys106(SO2-) and 

DJ-1Cys106(SO3-), respectively, at 4 °C in 20 mM phosphate buffer (pH 7.4) for 3 hours. Excess 

H2O2 was removed by dialysis against 20 mM phosphate and 10 mM NaCl buffer (pH 7.4) 

overnight. The oxidation status of all DJ-1 proteins was determined by LC-MS. 

 

Liquid chromatography - mass spectrometry (LC-MS) of DJ-1 

 

The molecular weights of the DJ-1 redox isoforms were confirmed using a Triple TOF 5600+ 

hybrid Quadrupole-TOF LC/MS/MS system (Sciex, Singapore, Woodlands) equipped with a 

DuoSpray IonSource coupled with a Shimadzu Prominence LC20 UFLC (Shimadzu, Japan) 

system consisting of binary pump and an autosampler. Data acquisition and processing were 

performed using Analyst TF software version 1.7.1 (AB Sciex Instruments, CA, USA). 

Chromatographic separation was achieved by Thermo Beta Basic C8 (50 mm × 2,1mm, 3 µm, 

150 Å) HPLC column. Sample was eluted in gradient elution mode using solvent A (0.1% 

formic acid in water) and solvent B (0.1% formic acid in ACN). The initial condition was 20% B 

for 1 min, followed by a linear gradient to 90% B by 4 min, from 5 to 6 min 90% B was retained; 

and from 6 to 6.5 min back to initial condition with 20 % eluent B and retained from 6.5 to 9.0 

min. Flow rate was set to 0.4 ml/min. The column temperature was 40 °C and the injection 

volume was 5 µl. Nitrogen was used as the nebulizer gas (GS1), heater gas (GS2), and curtain 

gas with the optimum values set at 30, 30 and 35 (arbitrary units), respectively. Data were 
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acquired in positive electrospray mode in the mass range of m/z=300 to 2500, with 1 s 

accumulation time. The source temperature was 350 °C and the spray voltage was set to 5500 V. 

Declustering potential value was set to 80 V. Peak View SoftwareTM V.2.2 (version 2.2, Sciex, 

Redwood City, CA, USA) was used for deconvoluting the raw electrospray data to obtain the 

neutral molecular masses.  In the non-oxidized (“reduced”) DJ-1Cys106(S-) sample the ratio of DJ-1 

C106 thiol (-SH) to sulfinic acid (-SO2H) was calculated to be 85 to 15.  In the DJ-1Cys106(SO2-) 

sample the ratio of DJ-1 C106 sulfinic acid (-SO2H) to sulfonic acid (-SO3H) was calculated to 

be 83 to 17.  In the DJ-1Cys106(SO3-) sample the ratio of DJ-1 C106 in sulfinic acid (-SO2H) to 

sulfonic acid (-SO3H) form was calculated to be 13 to 87.  The resolution of the mass 

spectrometer was above 30000 full width at half maximum over the entire mass range enabling 

the deconvolution of the multiply charged ion series to zero charge state with accuracy of less 

than 1 Da.  The total ion chromatogram, mass spectra and deconvoluted masses are shown in 

Fig. S1. 

 

 

DJ-1 aggregation experiments 

DJ-1Cys106(S-), DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) samples were incubated under quiescent 

conditions without shaking at 30 µM protein concentrations at 37 °C, pH 7.4 in 20 mM 

phosphate, 5 mM NaCl buffer.  Only in the case of the FTIR and DJ-1 glyoxalase experiments 

were the DJ-1 samples incubated at 60 µM. 

 

Dynamic light scattering (DLS) measurements 

Measurements were taken at 25 °C using a Malvern Zetasizer Nano ZS instrument equipped with 

a thermostat cell. DJ-1 in 20 mM phosphate, 10 mM NaCl (pH 7.4) buffer at concentrations of 
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30 µM was centrifuged at 10,000 rpm for 45 min at 4 °C. The samples were filtered through a 

0.22 μm filter before the measurements. 100 µl of the supernatants were added to the cuvette, 

and the light scattering intensity was collected 30 times at an angle of 90° using a 10 sec 

acquisition time. The correlation data was exported and analyzed using the nanoDTS software 

(Malvern Instruments). The samples were measured at 60 min and thereafter at in 24 hour 

intervals. In each case three parallel measurements were taken. Data was averaged and plotted as 

a function of time, then fitted to a saturation curve using Origin 8 software.  

 

Determining the concentration of DJ-1 aggregates 

We followed the aggregation rate of DJ-1 protein as a function of time. DJ-1Cys106(S-), DJ-

1Cys106(SO2-) and DJ-1Cys106(SO3-) samples were incubated at 37 °C, for 2 weeks at 30 µM in 20 mM 

phosphate, 5 mM NaCl buffer. The aggregate rich phase and the monomer rich phase in the 

samples were separated with an ultracentrifugation technique (v = 100,000 g for 2 hours), 

thereafter the protein concentration was determined using the Bradford reagent. Soluble DJ-1 

concentrations were plotted as a function of time. 

 

Far UV circular dichroism spectroscopy (CD) 

DJ-1Cys106(S-), DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) samples were incubated at 37 °C in 20 mM 

phosphate, 5 mM NaCl buffer under quiescent conditions at pH 7.4 for 5 days.  CD 

measurements were done on the incubated samples at the start of the incubation and 5 days later 

diluted to 10 µM in 20 mM phosphate, 5 mM NaCl buffer at pH 7.4.  The aggregate rich phase 

was separated from the monomer rich phase with an ultracentrifugation technique (v = 100,000 g 

for 2 hours). CD spectra were recorded using JASCO J-720 spectrometer. The final spectrum 

was taken as a background-corrected average of 5 scans carried out under the following 
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conditions: wavelength range 250–190 nm at 25 °C; bandwidth was 1 nm; acquisition time was 

1 sec and intervals were 0.2 nm. Measurements were performed in a 0.01 cm cell. CD spectra 

were plotted in mean residue molar ellipticity units (deg cm2 dmol-1) calculated by the following 

equation:  [] = obs/(10ncl)  where [] is the mean residue molar ellipticity as a function of 

wavelength, obs is the measured ellipticity as a function of wavelength (nm), n is the number of 

residues in the protein, c is the concentration of the protein (M), and l is the optical path length 

(cm). Secondary structural analysis of DJ-1 using CD spectroscopic data was carried out using 

the BeStSel (Beta Structure Selection) software[35]. 

 

Fourier transform infrared spectroscopy (FTIR) spectroscopy 

FTIR spectra were acquired for DJ-1Cys106(S-), DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) at the start of 

incubation and 5 days later using Varian 2000 FTIR spectrometer, equipped with a sensitive 

liquid N2 cooled MCT detector. The incubations of the DJ-1 and BSA samples were in 20 mM 

phosphate, 10 mM NaCl buffer, at pH 7.4 under quiescent conditions, at 60 µM protein 

concentration. Fourier-transformed background-corrected absorption spectra were taken at 25 °C 

between 1,000 and 4,000 cm−1 as an average of 64 scans, acquired at a resolution of 2 cm−1 and 

an optical aperture of 0.5 cm. All spectra were post-processed using the Thermo Galactic 

GRAMS/AI™ Spectroscopy Software 7.02. An atmospheric correction algorithm was used to 

remove any water vapour bands from the final absorption spectra. Spectra were zeroed between 

1,400 and 1,800 cm−1, and the 2nd derivative spectra calculated. 

 

Transmission electron microscopy (TEM) measurements 

TEM was used to estimate the size and structural morphology of DJ-1Cys106(S-),  DJ-1Cys106(SO2-) 

and DJ-1Cys106(SO3-) incubated for 5 days in 20 mM phosphate, 10 mM NaCl buffer, at pH 7.4 at 
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30 µM protein concentration under quiescent conditions. Protein samples were deposited on the 

Formvar-coated 300 mesh copper grids and negatively stained with 1 % (w/v) aqueous uranyl 

acetate. Grids were then rinsed with water to remove salts and urea. Samples were examined on a 

MORGAGNI 268D transmission electron microscope operated at 100 kV. 

 

Fibril formation, Thioflavin T (ThT) and pFTAA fluorescence assay  

Protein aggregate formation was monitored using ThT and pFTAA assays. The enhanced 

fluorescence of the dye ThT and pFTAA on binding to fibrils or -sheet structured protein 

aggregates was recorded. DJ-1Cys106(S-), DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) and BSA samples 

were incubated at 30 µM concentration in 20 mM phosphate, 10 mM NaCl (pH 7.4) at 37 °C 

under quiescent conditions.  For the ThT and pFTAA assays, aliquots of 10 µl protein solutions 

were removed and diluted to 1000 µl solutions with 5 µM ThT and pFTAA, respectively, in 

20 mM phosphate buffer and 5 mM NaCl (pH 7.4). The fluorescence intensity and protein 

assembly formation was recorded at 490 nm with excitation at 450 nm for ThioT, and 520 nm 

with excitation at 450 nm for pFTAA using a Fluoromax-3 spectrometer. The cuvette was 

incubated at 25 °C. Data were averaged and plotted as a function of time, then fitted to a 

sigmoidal curve using Origin 8 software.  

 

Native PAGE electrophoresis 

DJ-1Cys106(S-), DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) samples were incubated at 30 µM concentration 

in 20 mM phosphate, 10 mM NaCl (pH 7.4) at 37 °C under quiescent conditions.  Samples of 

DJ-1 for Native PAGE electrophoresis were applied without any treatment at the start of the 

incubation and after 24 hours. DJ-1 proteins are prepared in a non-reducing non-denaturing 

sample buffer, which maintains the proteins secondary structure and native charge density. 
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Native PAGE was performed with a Cleaver Scientific Ltd. electrophoresis system. For a Native 

PAGE stacking gel we used a 0.375 M Tris-HCl, pH 8.8, and AAm / BAAm 30 % w/v solution 

with 10 % AAm percentage. The sample buffer contained 62.5 mM Tris-HCl pH 6.8, 25 % 

glycerol and 1 % Bromphenol Blue. The gel was run using 25 mM Tris-HCl with a 192 mM 

glycine running buffer at pH 8.3 for 90 min at 150 V and 20-30 mA. The gel was stained with 

Coomassie Blue R250. We used disuccinimidyl substrate (DSS) crosslinked non-aggregated DJ-

1 as a marker on Native PAGE, because the DSS can stabilize the dimer form of DJ-1. During 

the protocol we prepared 50 mM solutions of DSS by dissolving 10 mg DSS in 540 μL of dry 

DMSO. Using a 20-fold excess approach (20:1 Crosslinker:Protein), we added the crosslinker 

solution to the DJ-1 sample in 25 mM phosphate buffer at pH 7.4. The sample was allowed to 

react at 4 °C for 2 hours, after which any unreacted DSS was quenched with 50 mM Tris-HCl 

buffer at pH 7.4 and allowed to react for 15 minutes at room temperature. 

 

Western Blot 

After Native PAGE separation of DJ-1 samples, they were transferred to a prevetted (in 100% 

methanol) Immobilon-P Transfer Membrane (Millipore) for Western blot analysis. Protein 

transfer was performed with Trans-Blot® TurboTM Blotting System (Bio-Rad). After transfer, 

membranes were blocked with blocking buffer containing 5% milk powder dissolved in Tris-

buffered saline (TBS; pH 7.6) overnight at 4°C. Blocked membranes were incubated with mouse 

anti-oxDJ-1 antibody (mAb) (clone M149, Millipore), mAbanti-oxDJ-1, dissolved in blocking buffer 

at room temperature (RT) for 1 hour. After that membranes were washed 3 times with TBS 

containing 0,1% Tween 20 (TBST), and incubated with HRP-conjugated anti-mouse secondary 

mAb (Jackson Immunoresearch) dissolved in blocking buffer, for 1 hour at RT. After incubation, 
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membranes were washed 3 times with TBST and developed using the enhanced 

chemiluminescence reagent, and blue sensitive Super RX-N Fuji Medical X-RAY films. 

 

Anti-oxidized DJ-1 antibody validation with HAP1 DJ-1 knock-out (KO) cell line 

Confluent SH-SY5Y (ATCC), HAP1 and HAP1 DJ-1 KO (Horizon) cells were lysed in Cell 

Extraction Buffer PTR 5X (Abcam, ab193970) and equal amounts of protein were separated in 

12% SDS-PAGE and transferred to PVDF membrane. The membrane was blocked with 5% 

(w/v) nonfat dry milk in TBS buffer containing 0.1% Tween 20 for an hour. Immunoblot was 

performed with anti-DJ1 antibody (ENZO 1:2000), mAbanti-DJ-1, and anti-oxDJ-1 antibody (clone 

M149, Millipore, 1:1000), mAbanti-oxDJ-1. Tubulin (Sigma 1:10 000) was used as loading control.  

SH-SY5Y, HAP1 and HAP1 DJ-1 KO cells were lysed at the confluent stage and after protein 

content normalization, the samples were boiled in Lemmly puffer and then an immunoblot was 

performed. 

 

DJ-1 Glyoxalase Activity Assay 

Preparation of aggregated DJ-1 for glyoxalase activity assay was done in the following way.  DJ-

1Cys106(S-), samples were incubated at 30 µM concentration in 20 mM phosphate, 10 mM NaCl 

(pH 7.4) at 37 °C for 5 days under quiescent conditions.  Starting protein samples were 

ultracentrifuged at 54,000 rpm for 60 min at 4 °C for glyoxalase assay, while DJ-1Cys106(S-) 

samples incubated for 5 days were applied without ultracentrifugation. The methylglyoxal 

(MGO) depletion assay was optimized for plate based usage in-house and applied as follows:  a 

200 µL DNPH reagent mixture (composed of 10V/V% DMSO 8V/V% 36 m/m% HCl, and 400 

µM DNPH (dinitrophenylhydrazine) in MQ water) was mixed with a 15µL sample with or 

without DJ-1 samples and with 0.85 mM MGO initial concentration, incubated for at least 5 
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minutes at room temperature (rt) than visualized with 20m/m% NaOH solution. Absorbance at 

560 nm was measured within 1-7 min following the sodium-hydroxide addition. Calibration was 

done and fitted with a quadratic function. DJ-1Cys106(S-) samples ((1) initial, (2) incubated for 5 

days (aggregated), and (3) initial reacted with IAA (inhibited)) were prepared in triplicate in 

qPCR plate (ThermoScientific) and the 15µL samples were taken within one hour. Linears were 

fitted to the corresponding time dependent MGO concentrations and the mean and standard 

deviation of the initial velocities-slopes were plotted in the bar charts as the activity data. IAA 

was added to give a final concentration of 0.9 mM in a negligable volume (<1% of total) and 

incubated at rt for 20min before MGO Assay initiation. The DTT concentration was 350 µM in 

all samples incubated.  MGO (as 40m/m% aqueous solution), DNPH, plates (Greiner 96 well 

plates, polystyrene non-sterile) were purchased from Sigma, Hungary while MQ water was 

prepared in-house using the appropriate equipment and sodium-hydroxide was purchased from 

Molar Chemicals Kft, Hungary. 

 

Clinical Samples 

Human post mortem brain tissue included formalin-fixed paraffin embedded sections of 

amygdala (10 m thickness) from 5 PD cases and 4 age-matched controls without known 

neurological disease. PD cases had a mean (SD) age of 81.9 (7.7) years at death and controls 

were 79 (7.6) years old. PD disease duration was 6.6 - 23.9 years.  In addition, frozen sections 

(~25m thickness) of human post mortem brain tissue from the frontal cortex (BA9) of 2 AD 

cases and 2 controls were investigated.  The AD cases were 83 and 78 years old at death, 

modified Braak tau stage 5 and 4, and disease duration 10 and 5 years, respectively.   The 

controls were aged 74 and 69 at death.    
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Triple-labeling immunofluorescence 

 Post-mortem brain slices were placed in xylene overnight and rehydrated with decreasing level 

of ethanol, before being left in sodium citrate buffer (0.05% Tween20, pH 6.0) for 20min at 

60°C. After blocking with 0.3% Triton X-100 and 5% serum for 1hr, slides were incubated 

overnight with various primary antibodies including Anti-(Cys106) oxDJ-1 (Millipore 

MABN1773, 1:250), mAbanti-oxDJ-1, phosphorylated (Ser129) α-synuclein (Abcam ab51253, 

1:500), mAbp-syn, phospho-(Thr205) Tau (Covance SIG-39448, 1:500), mAbp-Tau, amyloid-Beta 

(Abcam, ab2539, 1:500), mAb and the pentameric formyl thiophene acetic acid pFTAA 

(3µM). Slides were then stained with secondary antibodies (Alexa 405 and Alexa 647, Molecular 

Probes, 1:1000), differentiated for 3min in escalating levels of ethanol, and blocked with 0.2% 

Sudan black B (Sigma) in 70% ethanol for 30sec, before visualization using a TCS SP2 confocal 

microscope (Leica). Quantification of signal intensity and colocalization were performed using 

Leica LAS 2.6.0. Statistical analysis was performed using multivariate ANOVA with post-hoc 

Bonferroni correction to adjust for multiple comparison, using SPSS release 25.0.0. 

 

Data availability 

The datasets generated during the current study are available from the corresponding author on 

request.  
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Results 

DJ-1 aggregates into -sheet structured soluble aggregate and fibrillar aggregates in vitro 

under physiological conditions. We examined the propensity of DJ-1, in various oxidation 

states of Cys106, to aggregate into low molecular weight aggregate. This was done using 

dynamic light scattering (DLS) under physiologically relevant conditions using phosphate and 

Tris buffers.  Previously we have determined that the hydrodynamic diameter (Dh) of the DJ-1 

homodimer in both its native and various oxidized Cys106 states is almost identical under 

physiological conditions [34].  In our new experiments, DJ-1 formed DLS detectable aggregate 

in both buffers within hours when homodimeric DJ-1 was incubated in quiescent conditions at 30 

M, 37oC and pH 7.4 (Fig 1.) in both phosphate and Tris buffers.  DJ-1 when oxidized at residue 

Cys106 (sulfinate, DJ-1Cys106(SO2-), and sulfonate, DJ-1Cys106(SO3-)) formed aggregate significantly 

faster with larger Dh compared to DJ-1 in the Cys106 thiolate state (DJ-1Cys106(S-)), while BSA 

did not lead to the formation of detectable aggregate (Fig. 1a-c, Table S1.).  In the case of DJ-

1Cys106(S-), aggregate appeared after 5 and 8 hours in phosphate and Tris buffer, respectively, 

while the oxidized DJ-1 samples formed aggregate as early as 1 hour irrespective of their buffer 

solutions.  This aggregation of DJ-1 was then further investigated by measuring the 

concentration of homodimeric DJ-1 during the aggregation experiments, performed in quiescent 

conditions at 30 M, 37oC and pH 7.4, in phosphate buffer, by separating homodimeric and 

aggregated DJ-1 using ultracentrifugation. After ultracentrifugation of incubated DJ-1 samples, 

the protein in the supernatant was observed to be in a homodimeric state based on its observed 

Dh size (5.66 nm ± 0.83), similar that seen in the starting sample, while the pellet contained 

aggregated DJ-1 (Fig. S2.).   In the samples of DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) the extent of 

concentration decrease of homodimeric DJ-1 was higher in the supernatant and hence aggregate 

formation was faster compared to DJ-1Cys106(S-). Overall, the aggregation process of all DJ-1 
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samples tested saturated after about 12 days in the assay with 30 to 50 % of the protein samples 

being in an aggregated state at this time point.  

Next, the aggregation of DJ-1 was monitored using the fluorescence intensity of Thioflavin T 

(ThT) and of pentameric formyl thiophene acetic acid pFTAA (Fig. 1 d and e), dyes whose 

fluorescence increases when they bind to polypeptides with extended β-sheet structures (such as 

amyloid).  The fluorescence intensity of ThT and pFTAA significantly increased during the 

incubation of the DJ-1 samples demonstrating the formation of β-sheet structures during the 

aggregation of DJ-1. 

We then sought to investigate whether the DJ-1 aggregates had an intrinsic fluorescence 

signature characteristic of cross-β sheeted scaffold polypeptides[36] such as amyloid.  While no 

well-defined fluorescence peak was observed, the fluorescence intensity of DJ-1 between 445-

485 nm during its aggregation (in quiescent conditions at 30 M, 37°C and pH 7.4 for 5 days in 

phosphate buffer) also resembled a macroscopic aggregation curve with a short lag phase (Fig. 

1f), which had a similar evolution for all three of the DJ-1 Cys106 states we investigated, 

although samples of DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) generated higher fluorescence intensities 

compared to DJ-1Cys106(S-).  

 We next investigated the morphology of solid DJ-1 aggregates (Fig. 1 g-i) formed, when 

incubating homodimeric DJ-1 under quiescent conditions for 5 using transmission electron 

microscopy (TEM). We found that the morphology of aggregates was dependent on the 

oxidation state of the DJ-1 Cys106 residue.  DJ-1Cys106(S-) formed a mixture of amorphous 

aggregates with some filamentous assemblies, while DJ-1Cys106(SO2-) and DJ-1Cys106(SO3-) formed 

more fibril-like aggregates.  

The aggregates of DJ-1 generated during the aggregation experiments were found to contain 

substantially higher amounts of -sheet structures compared to the native homodimeric protein.  
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After 5 days of incubation of DJ-1 (using all three Cys106 states) under quiescent conditions the 

homodimeric and aggregated forms of DJ-1 were separated by ultracentrifugation and the pellet 

containing aggregated DJ-1 was diluted in phosphate buffer.  From this, the secondary structure 

content of DJ-1 in the supernatant and pellet was determined by circular dichroism (CD). For all 

the pellet samples of DJ-1 the intensity of the minima at 208 nm decreased and the minima at 

222 nm shifted toward 225 - 226 nm (Fig. 2 a-c), while for the supernatant no significant 

changes were observed compared to the initial homodimeric structural state of DJ-1. BSA was 

used as a control (Fig. 2g), and this showed no secondary structural changes compared to the 

starting sample.  The proportion of the structural elements from all the supernatant samples was 

calculated using BeStSel[35] and found to be: 50.9-67.0-% α-helix and 24.7 – 40.9 % -sheet. 

This matches well with the structural composition of starting DJ-1 samples indicating that 

homodimeric DJ-1 is the main component of this fraction, while the samples originating from the 

pellet had a decrease in α-helical structures to 6.8-8.9 % with a corresponding increase in -sheet 

structure to be 70. 5 – 79.3 % (Table 1).  Analogous results were found for native and oxidized 

states of DJ-1.  

These observations were further supported by the second derivative spectra from Fourier 

transform infrared spectroscopy (FTIR) studies, in which starting samples of native and oxidized 

DJ-1 in the Amide I band region had a minimum at around 1650 cm-1 (indicating α-helical 

content) and another at around 1630 cm-1 (indicating β-sheet content).  After incubation of DJ-1 

for 5 days under quiescent conditions, the intensity of the second derivative bands around 

1650 cm-1 decreased, while the ones around 1630 cm-1 substantially increased with a shift to 

lower wavenumbers suggesting the formation of intermolecular hydrogen bonds between -

sheets. All this suggests that the -sheet content of the protein significantly increased at the 

expense of -helical content.  BSA was used as control (Fig. 2h) and showed no secondary 



 19 

structural changes even after 5 days of incubation.  Overall, we found that our starting samples 

containing native homodimeric DJ-1 transitioned into soluble aggregates that had a high parallel 

and antiparallel -sheet structural content.  Similar transitions from a native to high content -

sheet structure has previously been observed using CD and FTIR with pathological amyloid 

forming proteins, such as -synuclein[37]. 

 

The aggregation of DJ-1 results in loss of its glyoxalase function. The effect of aggregation of 

DJ-1 on its glyoxalase activity[19] was investigated next.  In an MGO depletion assay (Fig. 3a) 

the glyoxalase activity of DJ-1Cys106(S-), incubated for 5 days under quiescent conditions, 

decreased to approximately half of the activity observed for native dimeric DJ-1Cys106(S-). In 

addition, this activity was almost completely lost for DJ-1Cys106(S-) when it was inactivated by 

iodoacetamide (IAA), a strong alkylating agent of thiols.  The extent of this loss of glyoxalase 

activity for aggregated DJ-1Cys106(S-) was proportional to the degree of aggregation observed for 

DJ-1 (Fig. 1c), suggesting that structural changes in DJ-1 due to the aggregation of the protein 

led to the impairment of its glyoxalase function. 

 

The aggregation of DJ-1 may happen through the loss of its homodimeric structure. The 

aggregation of DJ-1 was also monitored using Native PAGE, which showed that native and 

oxidized states of DJ-1 were composed of a stronger band, representing DJ-1 homodimers, and a 

weaker band, representing monomeric DJ-1 (Fig 3b).  As a marker for homodimeric DJ-1Cys106(S-) 

disuccinimidyl suberate (DSS) was used to covalently link homodimeric DJ-1 and stabilize its 

dimeric structure.  The cross-linked DJ-1 ran on the Native PAGE in exactly the same pattern as 

that seen for the native homodimeric DJ-1 samples.  While aggregated DJ-1, sampled after 72 

hours of incubation of homodimeric DJ-1, consisted of bands representing high molecular weight 
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complexes of DJ-1 and monomeric DJ-1, a band representing homodimeric DJ-1 was not 

detected. We then went on to perform Native PAGE western blots using an oxidized DJ-1 

specific antibody, mAbanti-oxDJ-1, and observed that it recognizes DJ-1Cys106(SO2-) and DJ-

1Cys106(SO3-) specifically as well as both homodimeric and high molecular weight complexes of 

DJ-1 (Fig. 3c).   

 

Oxidized DJ-1 aggregates can co-localize with Lewy bodies, neurofibrillary tangles and 

amyloid plaques in human PD and AD patients’ post-mortem brain tissue. DJ-1 aggregation 

was also investigated in healthy and diseased human post-mortem brain tissues. Triple-labeling 

immunofluorescence studies (TIF) were performed, which showed that the mAbanti-oxDJ-1 strongly 

immunolabeled post-mortem PD (n=5) and AD (n=4) patient tissue from the amygdala and 

frontal cortex, respectively, suggesting that significant amounts of DJ-1Cys106(SO2-) and DJ-

1Cys106(SO3-) (oxidized-DJ-1) exist in the diseased brain, while clearly less labelling was observed 

in healthy brain samples.  The DJ-1 specificity of the mAbanti-oxDJ-1 was further validated by 

showing that mAbanti-oxDJ-1 detected DJ-1 under oxidative stress conditions in HAP1 cells by 

western blot, while it did not detect DJ-1 in HAP1 DJ-1 knock-out cells (Fig. S4.).  These results 

suggest that oxidized DJ-1 levels are increased in PD and AD brain tissue compared to healthy 

control. Moreover, in the PD brain, mAbanti-oxDJ-1 labeling co-localized with pFTAA fluorescence 

(Fig. 4a) demonstrating that oxidized DJ-1 was mostly observed in areas where proteins with -

sheet rich structures, such as amyloid fibrils are found. In contrast, in healthy brain tissue 

minimal pFTAA fluorescence was detected. It was also observed that mAbanti-oxDJ-1 staining co-

localized with anti-phospho (at Ser129) -synuclein mAb (mAbp-syn) labeling (Fig. 4b), all of 

which suggests that oxidized DJ-1 is a component of Lewy bodies.  Next, we showed that 

mAbanti-oxDJ-1 staining co-localized with anti-phospho (at Ser205) Tau mAb (mAbp-Tau) labeling 
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and pFTAA fluorescence (Fig. 4c), again implying that oxidized DJ-1 can be associated with Tau 

neurofibrillary tangles (NFTs) in the PD brain.  Similarly, TIF showed that mAbanti-oxDJ-1 

labelling distinctly associated with anti-A1-42 amyloid mAb (mAb) (Fig. 4d), and anti-Tau 

mAbThr205 staining (Fig. 4e) and pFTAA fluorescence in the post-mortem AD brain tissue. 

Again, there was minimal mAbanti-oxDJ-1 staining seen in healthy brain tissue, suggesting that 

oxidized DJ-1 is once more associated with amyloid plaques and neurofibrillary tangles (NFTs) 

in the AD brain. A semiquantitative fluorescence signal intensity analysis confirmed that the 

levels of both mAbanti-oxDJ-1 staining and pFTAA levels are both significantly higher in PD and 

AD post-mortem brains, as compared to healthy subjects (Fig. 4f). mAbanti-oxDJ-1 staining 

colocalizing with pFTAA fluorescence was also significantly increased in PD and AD post-

mortem brains (Fig. 4g), showing the upregulation of oxidized DJ-1 aggregation in PD and AD 

patients. 

 

Discussion 

Our results demonstrate, for the first time, that DJ-1 aggregates into -sheet structured 

soluble aggregates in vitro under physiological conditions and that this process may be enhanced 

by the oxidation of its catalytic Cys106 residue.   The aggregation of DJ-1 was observed in vitro 

under physiologically relevant conditions using either phosphate or Tris buffers, suggesting that 

the aggregation of the protein can happen without the presence of inorganic phosphate. 

The pathological evidence for this was confirmed by showing that aggregated oxidized DJ-1 

exists in the post mortem brains of patients with PD or AD.  Previous reports have shown that 

DJ-1 co-localizes with -synuclein fibrils in Lewy bodies[39, 40], or with NFTs[41] and that the 

DJ-1 protein is present in amyloid plaques from AD patients[42]. Moreover, two other studies 

have shown that DJ-1 levels in the detergent-insoluble fractions of post-mortem brain tissue from 
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the cingulate cortex of patients with idiopathic PD with Dementia with Lewy bodies[43] or the 

cerebellar white matter in patients with multiple system atrophy (MSA)[39] were dramatically 

increased compared to aged matched healthy controls. These previous reports provide strong 

evidence for the existence of insoluble DJ-1 and soluble DJ-1 aggregates in brain tissue of 

patients with PD and Dementia with Lewy bodies as well as AD and MSA, which suggests that 

DJ-1 may be self-aggregating and/or aggregating with other proteins, such as -synuclein, tau 

and A42, to form -sheet structured aggregate and amyloid aggregates in the brain in these 

diseases.  

We have also now shown for the first time that the aggregation of DJ-1 leads to the loss of 

one of its key enzymatic functions, its glyoxalase activity, through a complete loss of its active 

homodimeric state. It is likely that DJ-1 aggregation would also result in the loss of its other 

enzymatic functions and in its ability to regulate redox and protein homeostasis [7].   These 

findings suggest that DJ-1 aggregation results in the loss of DJ-1 function, which could 

contribute to disease onset and progression. 

We have observed that mAbanti-oxDJ-1 strongly immunolabeled post-mortem PD and AD brain 

tissue while less labelling was observed in control healthy brain samples.  These results are in 

line with two previous studies, which report that oxidized DJ-1 levels are increased in PD[40] 

and AD[10] brain tissue compared to healthy ones. 

The loss of wild type DJ-1 function due to the loss of native structure of the protein and its 

aggregation parallels the effects of some specific mutations (L166P, L10P, and ΔP158) in the 

DJ-1 encoding gene, PARK7, that cause familial autosomal recessive early-onset PD.  These 

mutations in DJ-1 cause structural instability in its native tertiary homodimeric structure which 

means that the protein loses its ability to homodimerize and this in turn may lead to the 

aggregation of these mutant DJ-1 proteins[44].  For instance, the L166P DJ-1 mutant was 
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observed mostly in soluble high molecular weight complexes and not as a homodimer in cell 

lysates[45], while the ΔP158 and L10P DJ-1 mutants were observed in cells to form inclusions 

[46].  

 

Conclusion 

Our results demonstrate that DJ-1 can form -sheet structured soluble DJ-1 aggregate and 

fibrillar aggregates and that specific oxidation of the protein at Cys106 promotes this process. 

These aggregated forms of DJ-1 were found to exist pathologically in the post-mortem brains of 

patients who had died with PD or AD.  Moreover, it was observed that the loss of function of DJ-

1, such as its glyoxalase activity, and conceivably its ability to regulate redox and protein 

homeostasis[7], due to its aggregation could contribute to the onset and progression of these 

diseases.  All of this implies that DJ-1 may be a critical central player in the development of 

proteinopathies in different neurodegenerative disorders, and thus any drug discovery approach 

that aims to stabilize the native functional homodimeric structure of DJ-1 to reduce its 

aggregation could have wide ranging therapeutic implications.  
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Figure titles and legends 

 

Fig. 1. Homodimeric DJ-1 formed ThioT positive fibril-like aggregates when incubated in 

vitro.  The hydrodynamic diameter of DJ-1 as a function of time in (a) phosphate and (b) Tris-

buffers observed by DLS.   In each figure, DJ-1Cys106(S-) (black squares), DJ-1Cys106(SO2-) (red 

circles) and DJ-1Cys106(SO3-) (blue triangles) and BSA (turquoise blue used as a control protein), 

are shown. (c) Quantification of loss of homodimeric DJ-1 due to DJ-1 aggregate formation as a 

function of time in phosphate buffer by ultracentrifugation. Fluoresence intensity of 

(d) Thioflavin T after 7 days of incubation in phosphate buffer. Fluoresence intensity of 

(e) pFTAA and (f) intrinsic fluorescence of DJ-1 as a function of time in phosphate buffer.  TEM 

images of (g) DJ-1Cys106(S-), (h) DJ-1Cys106(SO2-), and (i) DJ-1Cys106(SO3-) samples after 5 days of 

incubation in phosphate buffer.  All figures, correspond to experiments in which protein samples 

were incubated in quiescent conditions at 30 M, 37°C and pH = 7.4 for 5 days in phosphate 

buffer solution except for (b) where Tris-buffer was used.  

 

Fig. 2. Homodimeric DJ-1 misfolds and forms soluble aggregate with a high parallel -

sheet structural content when incubated in vitro.  CD spectra of (a) DJ-1Cys106(S-), (b) DJ-

1Cys106(SO2-), (c) DJ-1Cys106(SO3-), (g) BSA samples observed at the start of incubation before 

ultracentrifugation (blue squares), following incubation of the supernatants after 

ultracentrifugation (red line), and of the pellets after ultracentrifugation (blue line). Second 

derivative of the FT-IR spectra for (d) DJ-1Cys106(S-), (e) DJ-1Cys106(SO2-), and (f) DJ-1Cys106(SO3-) 

and (h) BSA samples at the start of (red line) and after incubation (blue line). The CD and FT-IR 

spectra of BSA protein did not change significantly after incubation. All figures correspond to 
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experiments in which protein samples were incubated in quiescent conditions at 30 M for 

5 days at 37°C and pH = 7.4 in phosphate buffer solution. 

 

Fig. 3. The aggregation of DJ-1 results in a loss of its glyoxalase function.  (a) Glyoxalase 

activity of DJ-1Cys106(S-) in its homodimeric state (DJ-1 control) and after incubation for 5 days at 

37oC in quiescent conditions (aggregated DJ-1), and for inactivated DJ-1Cys106(S-) treated with 

iodoacetamide (DJ-1 + IAA), as a positive control, in an MGO depletion assay in phosphate 

buffer at 22oC and pH = 7.4.  Separation of DJ-1 multimeric states after incubation of DJ-1 

homodimers for 24 hours in phosphate buffer, at 37oC and pH = 7.4  by NATIVE PAGE with 

(b) Coomassie Blue staining and (c) Western Blotting using mAbanti-oxDJ-1.  In each case, samples 

were DJ-1Cys106(S-) from the start of the incubation (lane 1), DJ-1Cys106(SO2-) from the start of the 

incubation (lane 2), DJ-1Cys106(SO3-)  from the start of the incubation (lane 3), DJ-1Cys106(S-) after 

incubation (lane 4), DJ-1Cys106(SO2-) after incubation (lane 5), DJ-1Cys106(SO3-) after incubation 

(lane 6) and DSS cross-linked DJ-1Cys106(SO2-) from the start of the incubation, as a marker for a 

homodimer state,  (lane 7). (d) Schematic representation of hypothized aggregation mechanism 

of DJ-1 protein. 

 

Fig. 4. Oxidized DJ-1 co-localizes with phospho--synuclein and -Tau in the human post- 

mortem PD brain, and with amyloid plaques and phospho-Tau in post-mortem AD brain.  

Triple-labeling immunofluorescence (TIF) of PD and aged-matched control tissue from the 

amygdala with (a) pFTAA, mAbanti-oxDJ-1, and Hoechst, (b) mAbp-syn, mAbanti-oxDJ-1, and 

Hoechst, (c) mAbp-Tau, mAbanti-oxDJ-1, and Hoechst. TIF of AD and aged-matched control post-

mortem brain tissue taken from the frontal cortex with (d) pFTAA, mAbanti-oxDJ-1, and 
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mAbA42and (e) pFTAA, mAbanti-oxDJ-1, mAbp-Tau. (f, g) The intensity of oxDJ-1 and pFTAA 

expression was quantified in 10 randomly sampled field of view and averaged per patient. Bars 

represent 10 m. 

 

Table 1. Estimated secondary structure content, in percentage (%), of DJ-1 samples at the start 

of incubation and after 5 days of incubation as determined by CD measurements. Secondary 

structure content analyzes of the CD spectroscopic data was carried out by BeStSel.  
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Fig. 2 
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Fig. 3. 
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Fig. 4 
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Table 1. Estimated secondary structure content, in percentage (%), of DJ-1 samples at the start 
of incubation and after 5 days of incubation as determined by CD measurements. Secondary 
structure content analyzes of the CD spectroscopic data was carried out by BeStSel.  

 Incubation 

(in days) -helix 
-sheet/ 
parallel 

-sheet/ 
antiparallel 

Turn 

DJ-1Cys106(S-)      

DJ-1 dimer* 0 45.1 40.1 4 10.8 

DJ-1 in supernatant** 5 67 24.7 0 8.3 

Aggregated DJ-1*** 5 6.8 52.8 26.5 13.9 

      

DJ-1Cys106(SO2-)      

DJ-1 dimer* 0 41.1 30.3 17.8 10.8 

DJ-1 in supernatant** 5 50.9 22.3 18.6 8.2 

Aggregated DJ-1*** 5 8.4 40.6 30.9 20.1 

      

DJ-1Cys106(SO3-)      

DJ-1 dimer* 0 43.7 27.6 17.1 11.6 

DJ-1 in supernatant** 5 54.6 26.7 9 9.7 

Aggregated DJ-1*** 5 8.7 26.2 51.1 14 

*     native DJ-1 dimer before start of aggregation, non-aggregated DJ-1 dimer  
**   DJ-1 dimer in supernatant after aggregation and ultracentrifugation (v = 54,000 rpm) 
*** DJ-1 in aggregated rich phase after ultracentrifugation (v = 54,000 rpm) 
 

 


