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Abstract

Accounting for time-varying confounding when assessing causal effects of time-

varying exposures on survival time is challenging. Standard survival methods that

incorporate time-varying confounders as covariates generally yield biased effect

estimates. Estimators using weighting by inverse probability of exposure can be

unstable when confounders are highly predictive of exposure or the exposure is

continuous. Structural nested accelerated failure time models require artificial

recensoring, which can cause estimation difficulties. Here, we introduce the struc-

tural nested cumulative survival time model (SNCSTM). This model assumes

that intervening to set exposure at time t to zero has an additive effect on the

subsequent conditional hazard given exposure and confounder histories when all

subsequent exposures have already been set to zero. We show how to fit it using

standard software for generalised linear models and describe two more efficient,

double robust, closed-form estimators. All three estimators avoid the artificial

recensoring of accelerated failure time models and the instability of estimators that

use weighting by the inverse probability of exposure. We examine the performance

of our estimators using a simulation study and illustrate their use on data from the

UK Cystic Fibrosis Registry. The SNCSTM is compared with a recently proposed

structural nested cumulative failure time model, and several advantages of the

former are identified.

Key words: Aalen’s additive model; accelerated failure time model; g-estimation; marginal structural

model; survival data.
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1. Introduction

Observational studies that attempt to assess the effect of a time-varying exposure

on a survival outcome typically suffer from time-varying confounding bias. Such

bias is the result of time-varying factors that both influence exposure and are associ-

ated with survival, thereby distorting the association between the two. For example,

studies of the effect of hospital-acquired pneumonia on time to death (since hospital

admission) in critically ill patients are confounded by disease severity, because

disease severity influences susceptibility to pneumonia infection and is strongly

associated with mortality (Bekaert et al., 2010). Time-varying confounders (e.g.

disease severity) are often affected by earlier exposures (e.g. pneumonia infection).

This induces feedback relationships between exposures and confounders over time

that cannot be untangled via traditional survival analysis regression methods that

adjust for time-varying covariates, such as history of exposure and confounders, at

each timepoint (Robins et al., 2000). The reason for this is two-fold. First, such

adjustment procedures eliminate indirect effects of early exposures on survival that

are mediated through those confounders. For example, it would be undesirable to

eliminate effects of hospital-acquired pneumonia on survival that are mediated

through disease severity, as scientific interest is primarily in the overall effect of

infection. Second, such adjustment procedures are prone to collider-stratification

biases that can render exposure and outcome dependent even in the absence of an

exposure effect. See Daniel et al. (2013) for a review of these difficulties.

Time-varying confounding has received much attention in the causal inference liter-

ature. For survival time outcomes, the two main approaches are based on structural

nested accelerated failure time models (AFTMs) (Robins and Tsiatis, 1991; Robins

and Greenland, 1994) and marginal structural models (MSMs) (Robins et al.,

2000). The latter approach is more popular, because of its greater simplicity and
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flexibility. In particular, accounting for non-informative censoring in MSMs does

not, unlike in structural nested AFTMs, require an ‘artificial recensoring’ procedure

in which originally uncensored subjects may become censored. Avoiding this re-

censoring is advantageous, because recensoring causes information loss, which can

result in poor estimators and difficulties solving the estimating equations (Joffe

et al., 2012). However, fitting MSMs relies on inverse weighting by the probability

of exposure, which has it own drawback: estimators prone to large finite-sample

bias and variance when confounders are highly predictive of the exposure, or when

the exposure is continuous or discrete with many levels.

More recently, Young et al. (2010) and Picciotto et al. (2012) proposed a new class

of discrete-time structural nested cumulative failure time models, which parame-

terize the effect of the exposure at each time t on the outcome at each later time in

terms of the ratio of two (possibly) counterfactual cumulative failure risks at that

later time under exposure regimes that differ only at time t. Their procedure has

the desirable properties of structural nested AFTMs — viz. by avoiding inverse

probability weighting, it handles continuous exposures without estimators being

subject to large bias and variance, and it allows modelling of effect modification

by time-varying covariates — while avoiding the need for artificial recensoring.

Here, we use developments by Martinussen et al. (2011) and Dukes et al. (2019)

(hereafter DMTV). The former showed how to adjust for time-varying confounding

when effects of exposure and confounders are parameterized on the additive hazard

scale. They focused on the simple setting where interest is in estimating the direct

effect of a binary baseline exposure on a survival outcome, i.e. the effect not medi-

ated by a given intermediate variable, and where there are no baseline confounders.

DMTV proposed an additive hazards model for the effect of a baseline exposure

on survival time conditional on baseline confounders and derived the efficient score
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when (as assumed by Martinussen et al.) the confounders act additively on the

hazard; this additivity assumption is not needed for consistency of their estimators.

Here, we propose a novel class of semiparametric structural nested cumulative

survival time models (SNCSTMs), of which the models of Martinussen et al. (2011)

and DMTV are special cases, and propose three estimators of its parameters. Our

model allows baseline and time-varying confounders, binary or continuous expo-

sure, any number of exposure measurement times and the option of constraining ex-

posure effects to be common at different times; it does not parameterise the effects

of confounders on the baseline hazard. It also allows investigation of exposure effect

modification by time-varying factors. The SNCSTM is closely related to Picciotto

et al.’s model, and our estimators share the forementioned desirable properties of

the latter. The SNCSTM generalises Picciotto et al.’s model to continuous time

and parameterises relative survival risks instead of failure risks. Our approach has

several advantages over that of Picciotto et al. One of our estimators (Method

1) can be calculated using GLM software. Our other two estimators (Methods 2

and 3) are more efficient, double robust and available in closed form. All three

estimators automatically handle random censoring. Also, because parameterised

in continuous time, SNCSTMs can handle irregular measurement times and allow

interpretation of parameters in terms of hazards.

We define notation and state fundamental assumptions in Section 2. A simple

version of our SNCSTM is introduced in Section 3. In Section 4, we propose

three methods for estimating its parameters. The general SNCSTM is described

in Section 5. In Section 6, we discuss random censoring. A simulation study is

described in Section 7. Section 8 describes an analysis of data from the UK Cystic

Fibrosis (CF) Registry, looking at the effect of treatment with DNase on survival

in people with CF. We conclude with a discussion in Section 9.
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2. Notation and assumptions

Consider a study in which, for each of n subjects, a time-varying exposure and

vector of possibly time-varying confounders are measured at time zero and at up

to K follow-up visits. Until Section 5 we assume the follow-up times are regular,

i.e. the same for all individuals, and (for notational simplicity) are 1, 2, . . . , K, and

that all individuals are administratively censored at time K+1. Until Section 6 we

assume there is no censoring apart from this administrative censoring. If visits are

regular but not at times 1, . . . , K, or if administrative censoring occurs at a time

different from K + 1 or not at all, this can easily be accommodated by rescaling

the time variable within each interval between consecutive visits.

Let Ti denote individual i’s failure time, and Aki and Lki denote, respectively,

his exposure and vector of confounders measured at time k (k = 0, . . . , K). Let

Ri(t) = I(Ti > t) be the at-risk indicator. If individual i fails before his kth visit,

Aki and Lki are defined as zero. Let Āki = (A0i, . . . , Aki)
⊤, L̄ki = (L0i, . . . , Lki)

⊤

and A−1,i ≡ ∅. The causal ordering of the variables is {L0, A0, T ∧ 1, L1, A1, T ∧

2, . . . , LK , AK , T ∧ (K + 1)}, where x ∧ y means the minimum of x and y.

Define Ti(Āki, 0) as individual i’s (possibly) counterfactual failure time that would

have applied if his exposures up to the kth visit had been as observed and his

exposures from the (k+1)th visit onwards had been set to zero by an intervention.

We make the consistency assumption that Ti = T (Āk,i, 0) with probability one

for individuals with Ak+1,i = . . . = AKi = 0. Note T (Āk−1,i, 0) > k if and only

if T (Āli, 0) > k for all l = k, . . . , K, i.e. intervening on an exposure can only

affect survival after the time of that exposure. It follows that events {Ti > t}

and {Ti(Aki, 0) > t} are equivalent when t ∈ [k, k + 1). We assume (ĀKi, L̄Ki, Ti)

(i = 1, ..., n) are i.i.d and henceforth omit the subscript i unless needed.
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We make the following sequential no unmeasured confounders assumption (NUC):

T (Āk−1, 0) ⊥⊥ Ak | L̄k, Āk−1, T > k (k = 0, . . . , K) (Robins, 1986). That is, among

individuals who are still alive (or event-free) at time k, the assigned exposure Ak at

time k may depend on L̄k and Āk−1, but given these, has no residual dependence

on the remaining lifetime that would apply if all future exposures were set to zero.

3. Structural Nested Cumulative Survival Time Model (SNCSTM)

We first introduce a simple version of the SNCSTM that does not allow for exposure

effect modification. The more general SNCSTM is described in Section 5.

For each k = 0, . . . , K, let Mk be the model defined by the restriction

P{T (Āk, 0) > t | Āk, L̄k, T > k}

P{T (Āk−1, 0) > t | Āk, L̄k, T > k}
= exp{−Akvk(t)

⊤ψk}, (1)

∀t > k, where ψk = (ψk(k), ψk(k+1), . . . , ψk(K))
⊤ is a vector of of K−k+1 unknown

parameters, and vk(t) equals (t − k, 0, . . . , 0)⊤ if t ∈ [k, k + 1), equals (1, t − k −

1, 0, . . . , 0)⊤ if t ∈ [k+1, k+2), and equals (1, 1, t−k−2, 0, . . . , 0)⊤ if t ∈ [k+2, k+3),

etc. So, for any k 6 l 6 t < l + 1, vk(t)
⊤ψk equals ψk(k) + . . . ψk(l−1) + ψk(l)(t− l).

Equation (1) means that among the survivors in the population at the kth visit

time, in the stratum defined by any given (Āk, L̄k) the proportion who survive to

a later time t when exposures from visit k + 1 onwards (i.e. Ak+1, . . . , AK) have

already been set to zero would be multiplied by exp{Akvk(t)
⊤ψk} if exposure Ak

were also set to zero. Hence, vk(t)
⊤ψk is the (controlled) direct effect of Ak on the

probability of survival to time t given survival to visit k, i.e. the effect of Ak not

mediated through the later exposures Ak+1, . . . , Al. E.g., if ψk(k), . . . , ψk(K) are all

positive and Ak > 0, then intervening to set Ak = 0 is beneficial, i.e. exposure is

harmful. Conversely, if ψk(k), . . . , ψk(K) are all negative, exposure is beneficial. This

SNCSTM assumes the direct effect vk(t)
⊤ψk is the same for any history (Āk−1, L̄k).

In Section 5 we extend the SNCSTM to allow the effect to depend on the history.
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By taking logs of each side of equation (1) and differentiating with respect to t, it

can be shown that Model Mk can also be written as

E
{

dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) > t
}

= E
{

dN(Āk ,0)(t) | Āk, L̄k, T (Āk, 0) > t
}

−Akψk(l) dt (2)

for t ∈ [l, l + 1) (with l = k, . . . , K), where N(Āk,0)(t) = I{T (Āk, 0) 6 t} is the

counting process for T (Āk, 0). Equation (2) can be interpreted as follows. In a

stratum defined by (Āk, L̄k) and T > k, the hazard of failure at any time between

visits l and l + 1 (l > k) when Ak+1, . . . , Al have already been set equal to zero

would be reduced by Akψk(l) if Ak were also set to zero.

Note that Model Mk treats E
{

dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) > t
}

— which, by

NUC, equals E
{

dN(Āk−1,0)(t) | Āk−1, L̄k, T (Āk−1, 0) > t
}

— as a totally unspeci-

fied ‘baseline’ hazard, rather than parameterising its dependence on Āk−1 and

L̄k. One advantage of this is that the danger of incompatibility between Models

M0, . . .MK is avoided. To illustrate this danger, suppose it were assumed that

E
{

dN(t) | Ā1, L̄1, T > t
}

= φ10(t)+φ1A0(t)A0+φ1L̄1
(t)⊤L̄1+ψ1(1)A1 for all t > 1.

This, together with NUC, implies M1 holds. However, it also implies a restriction

on the association between A0 and T , a restriction which might conflict with that

of M0. Such conflict would be the result of there being no coherent overall model.

4. Estimation methods

In order to estimate ψk(l), we introduce nuisance Models Ak (k = 0, . . . , K). Model

Ak is a generalised linear model (GLM) for Ak given Āk−1, L̄k and T > k with

g{E(Ak | Āk−1, L̄k, T > k)} = α⊤
k0Hk, where αk0 is an unknown finite-dimensional

parameter and Hk = Hk(Āk−1, L̄k) is a known vector function of (Āk−1, L̄k) whose

first element equals 1, e.g. Hk = (1, Ak−1, L
⊤
k )

⊤. The dispersion parameter φk is

assumed not to depend on Āk−1 or L̄k, and g is the canonical link function. The
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methods described in Sections 4.1–4.3 consistently estimate ψk(l) when Models

Mk and Ak (k = 0, . . . , K) are correctly specified. Method 1 can be applied using

standard GLM software. Methods 2 and 3 improve on Method 1 by using more

efficient estimators that are closely related to that described by DMTV in the

setting of a single baseline exposure. Method 3 gives consistent estimation under

slightly weaker conditions than Method 2, but is more computationally intensive.

4.1 Method 1: fitting the GLM implied by Models Mk and Ak

Model Ak states that Ak given Āk−1, L̄k and T > k obeys a GLM. Bayes’ rule

shows (see Web Appendix A) that Models Ak,Mk, . . . ,MK and NUC together

imply that, for any t > k, Ak given Āk−1, L̄k and T (Āk, 0) > t obeys the same

GLM but with the intercept shifted by a function of t. Specifically, for t > k,

g{E(Ak | Āk−1, L̄k, T (Āk, 0) > t)} = α⊤
k0Hk + α⊤

k vk(t), (3)

where αk = (αk(k), . . . , αk(K))
⊤ and αk(l) = −ψk(l)φk (l = k, . . . , K). Our first esti-

mation method for ψk(l) involves fitting this GLM to estimate αk(l) and calculating

ψk(l) = −αk(l)/φk. We now explain in more detail.

First we estimate ψk(k) (k = 0, . . . , K) as follows. For t ∈ [k, k + 1), events

{T (Āk, 0) > t} and {T > t} are equivalent, and so equation (3) implies g{E(Ak |

Āk−1, L̄k, T > t)} = α⊤
k0Hk +αk(k)(t− k) for any t ∈ [k, k+ 1). Hence, a consistent

estimate α̂k(k) of αk(k) can be obtained as follows. For each of a number (we used 10)

of equally spaced values of t between k and k+1 (including k and k+ 1), identify

the set of individuals with T > t and, for each of these individuals, create a copy

(a ‘pseudo-individual’) with the same value of (ĀK , L̄K) and with new random

variable Q equal to t. Fit the GLM g{E(Ak | Āk−1, L̄k, Q)} = α⊤
k0Hk+αk(k)(Q−k)

to the resulting set of (up to 10n) pseudo-individuals. A consistent estimate of ψk(k)

is then ψ̂M1
k(k) = −α̂k(k)/φk. When φk is unknown, it can be estimated by fitting
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Model Ak to those of the original n individuals with T > k. In the simulation

study of Section 7, we also tried using 50 values of t to construct the set of pseudo-

individuals instead of 10, but found this made very little difference to the estimates.

Next we estimate ψk(k+1) (k = 0, . . . , K−1). When t ∈ [k+1, k+2), equation (3) is

g{E(Ak | Āk−1, L̄k, T (Āk, 0) > t)} = α⊤
k0Hk+αk(k)+αk(k+1)(t−k−1). If Ti(Āki, 0)

were known for all i, ψk(k+1) could be estimated just as ψk(k) was, but it is not.

However, as shown in Web Appendix B, Mk, . . . ,MK imply that for t > k + 1,

P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > k} = E
{

R(t)wk(t) | Āk, L̄k, T > k
}

, (4)

where wk(t) =
∏K

j=k+1 exp
{

Ajvj(t)
⊤ψj

}

. That is, within the population stratum

defined by any given value of (Āk, L̄k) and by T (Āk, 0) > k (or equivalently T > k),

the proportion of individuals with T (Āk, 0) > t is equal to the proportion of indi-

viduals with T > t after weighting each individual by wk(t). Remembering that the

first element ofHk equals one for all individuals, it follows that a consistent estimate

α̂k(k+1) of αk(k+1) can be obtained by fitting the GLM g{E(Ak | Āk−1, L̄k, Q)} =

α⊤
k0Hk +αk(k+1)(Q− k− 1) to a set of pseudo-individuals constructed as described

above but using ten values of t between k+1 and k+2 (rather than k and k+1) and

using weights wk(Q) = exp{Ak+1ψk+1(k+1)(Q−k−1)}. The weights wk(Q) depend

on ψk+1(k+1), which is unknown, and so we replace it by its previously obtained

estimate ψ̂M1
k(k). A consistent estimate of ψk(k+1) is then ψ̂

M1
k(k+1) = −α̂k(k+1)/φk.

In general, ψk(l) (0 6 k 6 l 6 K) is estimated by ψ̂M1
k(l) = −α̂k(l)/φk, where α̂k(l) is

the estimate of αk(l) obtained by fitting the GLM

g{E(Ak | Āk−1, L̄k, Q)} = α⊤
k0Hk + αk(l)(Q− l) (5)

to a set of pseudo-individuals constructed using ten equally spaced values of t

between l and l + 1 and using weights wk(Q), with ψj(m) replaced by ψ̂M1
j(m). For

later reference, we denote the fitted value of E(Ak | Āk−1, L̄k, Q = t) thus obtained
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as êk(l)(Āk−1, L̄k, t). This is an estimate of E(Ak | Āk−1, L̄k, T (Āk, 0) > t). Note

that ψ̂M1
j(m) (k < j 6 m 6 l) must be calculated before ψ̂M1

k(l). If φk is unknown, it is

estimated by fitting Model Ak to the original individuals with T > k.

Although this estimation procedure involves weights wk(t), these are different from

the inverse probability of exposure weights used to fit MSMs and do not suffer

the same instability that can plague the latter weights. In particular, if ψk(k) =

. . . = ψk(K) = 0, i.e. Ak has no direct effect on survival, then wk(t) = 1. The

variance of the weights can be reduced by using modified (or ‘stabilised’) weights

w∗
k(Q) in place of wk(Q), where w

∗
k(t) = exp

{

∑K
j=k+1∆

∗
j(k)vj(t)

⊤ψj

}

and ∆∗
j(k) =

Aj − E(Aj | Āk−1, L̄k, T > j) (j = k + 1, . . . , K). This may improve efficiency,

especially when Aj is precisely predicted by (Āk−1, L̄k). The ratio w∗
k(Q)/wk(Q)

depends only on Āk−1 and L̄k, and as model (5) is conditional on these, α̂k(l)

remains consistent. Since E(Aj | Āk−1, L̄k, T > j) (j = k + 1, . . . , K) is unknown,

a working model Cj(k) is specified for it and its parameters estimated from the set

of individuals still at risk at time j. Note that Cj(k) does not need to be correctly

specified for ψ̂k(l) to be consistent; indeed Cj(k) need not be compatible with Ak.
4.2 Method 2: g-estimation

The principle underlying the following estimator of ψk(l) is that after removing

the effects of Ak and later exposures from the increment in the counting process

N(t) = I(T > t), NUC implies that the resulting ‘blipped down’ increment at any

time t > k is independent of Ak conditional on Āk−1 and L̄k and being still at risk.

First estimate ψk(k) (k = 0, . . . , K) by solving unbiased estimating equation
n
∑

i=1

∫ k+1

k

Ri(t)∆ki(t)
{

dNi(t)−Aki ψk(k) dt
}

= 0, (6)

where ∆k(t) = Ak − E(Ak | Āk−1, L̄k, T (Āk, 0) > t). The expectation E(Ak |

Āk−1, L̄k, T (Āk, 0) > t) is unknown, so we replace it by êk(k)(Āk−1, L̄k, t), obtained

exactly as in Method 1. The next paragraph provides a rationale for equation (6).
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NUC implies that counting process N(Āk−1,0)(t) = I(T (Āk−1, 0) 6 t) for T (Āk−1, 0)

is conditionally independent of Ak given Āk−1, L̄k and T (Āk−1, 0) > k. We do not

observe N(Āk−1,0)(t), but equation (2) relates N(Āk−1,0)(t) to N(Āk,0)(t), the counting

process for T (Āk, 0), and we do observe N(Āk,0)(t) when t ∈ [k, k+1), because then

it equals N(t) = I(T 6 t), the counting process for the observed failure time T .

In particular, equation (2) implies that, for any t ∈ [k, k + 1) and conditional on

(Āk, L̄k), the expected increment in N(Āk−1,0)(t) during short time interval (t, t+ δ]

given T (Āk−1, 0) > t can be unbiasedly estimated by the corresponding mean of

the observed increments in N(t) minus Akψk(k)δ among the survivors at time t.

Hence, the adjusted observed increment N(t + δ) − N(t) − Akψk(k)δ should be

uncorrelated with Ak given (Āk−1, L̄k−1) and T > t.

DMTV derived the semiparametric efficient estimating equation for ψk(k) under

Model Mk assuming known distribution of Ak given (Āk−1, L̄k) and t > k. This

equation involves inverse weighting by the hazard function; such weighting also fea-

tures in efficient estimating equations of other additive hazards models. In practice,

accurate estimation of the hazard function is difficult and increases the computa-

tional complexity of the procedure, and so this weighting is commonly omitted

by standard fitting procedures for additive hazards models. Results of DMTV

imply (see Web Appendix C) that if this is done with the semiparametric efficient

equation for ψk(k) under Model Mk and if E{dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) >

t} = γ⊤k(k)Hk for all t ∈ [k, k + 1), the result is equation (6).

To make equation (6) invariant to additive transformations of Ak, we replace

Akiψk(k) by ∆ki(k)ψk(k). Since E(Ak | Āk−1, L̄k, T (Āk, 0) > k) is a constant given

(Āk−1, L̄k−1), this does not affect the unbiasedness of the estimating equations. Let

ψ̂M2
k(k) denote the resulting estimator of ψk(k).
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Next estimate ψk(k+1) using estimating equation
∑n

i=1

∫ k+2

k+1
Ri(t) exp{Ak+1,iψk+1(k+1)

(t−k−1)}∆ki(t)
[

dNi(t)−
{

Ak+1,iψk+1(k+1) +∆ki(k + 1) ψk(k+1)

}

dt
]

= 0. The un-

known E(Ak | Āk−1, L̄k, T (Āk, 0) > t) and ψk+1(k+1) are replaced by êk(k+1)(Āk−1, L̄k, t)

and ψ̂M2
k+1(k+1). The next paragraph provides a rationale for this estimating equation.

Again we exploit the conditional independence of N(Āk−1,0)(t) and Ak (NUC) and

the relation between N(Āk−1,0)(t) and N(Āk,0)(t), but now over time interval [k +

1, k+ 2). An added complication is that N(Āk,0)(t) is not observed when t > k+ 1.

However, we know from equation (2) that when t ∈ [k+ 1, k+2) the intensities of

N(Āk,0)(t) and N(t) = N(Āk+1,0)(t) differ by Ak+1ψk+1(k+1) and (as noted in Section

4.1) there are wk(t) = exp{Ak+1 ψk+1(k+1)(t−k−1)} times as many individuals with

T (Āk, 0) > t in the population as there are with T (Āk+1, 0) > t. So, we can unbias-

edly estimate the expected increment in N(Āk−1,0)(t) over small interval [t, t+ δ) as

the weighted mean of the increments in N(t) minus (Ak+1ψk+1(k+1) + Akψk(k+1))δ

with weights exp{Ak+1ψk+1(k+1)(t − k − 1)}. This justifies the above estimating

equation but with Akiψk(k+1) in place of ∆ki(k+1)ψk(k+1). We use ∆ki(k+1)ψk(k+1)

instead for the same reason that we replaced Akiψk(k) by ∆ki(k)ψk(k) in equation (6).

In general, the consistent estimator ψ̂M2
k(l) of ψk(l) (l > k) is obtained by solving

n
∑

i=1

∫ l+1

l

Ri(t)wki(t) ∆ki(t)

×

[

dNi(t)−

{

l
∑

j=k+1

Ajiψj(l) +∆ki(l) ψk(l)

}

dt

]

= 0 (7)

with E(Ak | Āk−1, L̄k, S̄, T (Āk, 0) > t) replaced by êk(l)(Āk−1, L̄k, t) and ψj(l) (j >

k) replaced by ψ̂M2
j(l); this requires that ψj(m) (k < j 6 m 6 l) be estimated before

ψk(l). The estimator ψ̂M2
k(l) is available in closed form (see Web Appendix E for

formulae when g(.) is the identity or logistic link function).

In Web Appendix F we prove ψ̂M2
k(l) is double robust in the following sense. Let
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e∗k(l)(Āk−1, L̄k, t) denote the limit as n → ∞ of êk(l)(Āk−1, L̄k, t), and let Model

Bk(l) (l > k) be defined by the restriction E{dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) >

t} =
{

γ⊤k(l)Hk − e∗k(l)(Āk−1, L̄k, k) ψk(l)

}

dt ∀t ∈ [l, l + 1), where γk(l) are unknown

parameters. ψ̂M2
k(l) is consistent if 1) Mk, . . . ,Ml, 2) either Ak or Bk(l), and 3) for

each j = k + 1, . . . , l, either Aj or all of Bj(j), . . . ,Bj(l) are correctly specified. The

term e∗k(l)(Āk−1, L̄k, k)ψk(l) in Model Bk(l) arises because of the use of ∆k(l)ψk(l),

rather than Akψk(l), in equation (7) (see proof). Note that if ψk(l) = 0 or Ak is

a linear regression, so that e∗k(l)(Ak, L̄k, k) ψk(l) is a linear function of Hk, it can

be omitted. As in Method 1, efficiency may be gained by using stabilised weights

w∗
ki(t) in place of wki(t) in equation (7). Also, to make ψ̂M2

k(l) invariant to additive

transformations of Ak+1, . . . , Al, the term Ajiψj(l) can be replaced by ∆∗
j(k),iψj(l).

4.3 Method 3: improved g-estimation

If we use a different estimator êk(l)(Āk−1, L̄k, t) of E(Ak | Āk−1, L̄k, T (Āk, 0) > t)

for the ∆k(t) and ∆k(l) terms in equation (7), then the estimator solving (7)

remains consistent under a more general version of Model Bk(l). In Methods 1

and 2, êk(l)(Āk−1, L̄k, t) is calculated by fitting a single GLM to a set of pseudo-

individuals, with time since lth visit, Q− l, as a covariate. In Method 3, we instead

fit a separate GLM at each time since the lth visit. That is, for any t > 0, we

calculate êk(l)(Āk−1, L̄k, t) by fitting the GLM g{E(Ak | Āk−1, L̄k)} = αk0(t)
⊤Hk

to the set of individuals with T > t, using weights wk(t). This set changes only

at times t at which an individual leaves the risk set, and so the GLM needs to

be fitted only at these times. This is the approach taken by DMTV, who denoted

the resulting estimator of ψk(k) as “ψ̂TVPS−DR” and, on the basis of results from a

simulation study, recommended it over three alternatives. As in Method 2, we can

use stabilised weights and replace Ajψj(l) by ∆∗
j(k)ψj(l). As shown in Web Appendix
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F, Method 3 has the same double robustness property as Method 2 but with the

parameters γk(l) in Model Bk(l) now allowed to be a function of t− l.

4.4 Constraining exposure effects

In some applications, it may be desirable to impose the constraint that ψk(k+m) =

ψk′(k′+m) for all k, k
′, m, i.e. the effect of exposure measured at one visit k on the

hazard m visits later is the same for all k. This reduces the number of parameters

and, as we see in Section 7, increases the precision of their estimates. In Web

Appendix G we explain how estimation may be performed under this constraint.

See Vansteelandt and Sjolander (2016) for how to impose other constraints.

5. The general SNCSTM

In this section, we extend the SNCSTM to allow visit times to be irregular, i.e.

to vary from one individual to another, and effect modification, i.e. the effect of

exposure on survival to depend on the exposure and confounder histories.

Let Ski denote the time of individual i’s kth follow-up visit (k = 1, . . . , K), and let

S0i = 0 (i = 1, . . . , n) and S̄i = (S1i, . . . , SKi)
⊤. Until now, we have assumed Ski =

k ∀i. We assume visit times S̄ are planned or randomly chosen at baseline using only

baseline confounder information, i.e. L0, and we modify NUC to be T (Āk−1, 0) ⊥⊥

Ak | L̄k, Āk−1, S̄, T > Sk (k = 0, . . . , K). Also, let SK+1,i denote an administrative

censoring time common to all individuals (until now, we assumed SK+1,i = K+1).

If there is no such time, let SK+1,i = ∞. To allow effect modification, we define

Zk(l) = (1, Z int⊤
k(l) )

⊤, where Z int
k(l) is a known (possibly vector) function of (Āk−1, L̄k, S̄)

(‘int’ stands for ‘interactions’), and let Zk = (Z⊤
k(k), . . . , Z

⊤
k(K))

⊤.

For each k = 0, . . . , K, let Mk be the model defined by the restriction

P{T (Āk, 0) > t | Āk, L̄k, S̄, T > Sk}

P{T (Āk−1, 0) > t | Āk, L̄k, S̄, T > Sk}
= exp{−Akvk(t, Zk, S̄)

⊤ψk}, (8)

where vk(t, Zk, S̄) equals
(

(t−Sk)Z
⊤
k(k), 0, . . . , 0

)⊤
if t ∈ [Sk, Sk+1), equals

(

(Sk+1−
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Sk)Z
⊤
k(k), (t−Sk+1)Z

⊤
k(k+1), 0, . . . , 0

)⊤
if t ∈ [Sk+1, Sk+2), and equals

(

(Sk+1−Sk)Z
⊤
k(k),

(Sk+2 − Sk+1)Z
⊤
k(k+1), (t− Sk+2)Z

⊤
k(k+2), 0, . . . , 0

)⊤
if t ∈ [Sk+2, Sk+3), etc. If Sk = k

and Zk(l) = 1, equation (8) reduces to equation (1). Model Mk can also be written

asE
{

dN(Āk−1,0)(t) | Āk, L̄k, S̄, T (Āk−1, 0) > t
}

= E
{

dN(Āk,0)(t) | Āk, L̄k, S̄, T (Āk, 0) > t
}

−Akψ
⊤
k(l)Zk(l) dt for t ∈ [Sl, Sl+1).

The modifications to Methods 1 and 2 needed to fit the general SNCSTM are

simple (see Web Appendix D). Modifying Method 3 is simple when visit times are

regular; it is possible for irregular visit times, but is fiddly. In the simulation study

reported in Section 7 we found little benefit from Method 3 relative to Method 2

when visit times were regular, and so did not implement it for irregular times.

6. Censoring

We now allow for censoring before the administrative censoring time. Let Ci and

T̃i denote individual i’s censoring and failure times, respectively. Redefine Ti and

Ni(t) as Ti = T̃i ∧ Ci and Ni(t) = I(Ti 6 t, Ti < Ci); Ri(t) is unchanged except

that Ti has this new meaning. With these changes, Methods 1–3 remain valid,

provided two further conditions hold (Vansteelandt and Sjolander, 2016). First,

the censoring hazard does not depend on the exact failure time or future exposures

or confounders. That is, the counting process, NC(t) = I(C 6 t), for the censoring

time satisfies E{dNC(t) | C > t, Ā⌊T̃ ⌋, L̄⌊T̃ ⌋, S̄, T̃ > t, T̃} = λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) ∀t,

where Ā⌊t⌋ and L̄⌊t⌋ are the exposure and confounder histories up to time t and

λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) is some function only of (t, Ā⌊t⌋, L̄⌊t⌋, S̄). The second condition,

which can be weakened by using censoring weights (see Web Appendix H), is that

λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) = λ(t, L0, S̄), so censoring depends only on baseline confounders.
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7. Simulation study

We used a simulation study to investigate bias and efficiency of the methods. There

were K + 1 = 4 visits and two time-dependent confounders (i.e. dim(Lk) = 2).

These and the exposure were generated as: L0 ∼ N ((0, 0), Σ), A0 ∼ N(3 +

(0.2, 0.1)⊤L0, 0.92), Lk ∼ N
(

ΩLk−1 + (0.1, 0.05)⊤Ak−1, Σ
)

and Ak ∼ N(3 +

(0.1, 0.05)⊤Lk, 0.72) (k > 1), where Σ =







0.5 0.2

0.2 0.5






and Ω =







0.2 0.2

0.1 0.1






.

The hazard of failure during the interval between the kth and (k + 1)th visits was

0.34 + (0.03, 0.03)⊤Lk − 0.04Ak − 0.0145Ak−1I(k > 1) − 0.0055Ak−2I(k > 2) −

0.00245Ak−3I(k = 3). For this data-generating mechanism, Mk (k = 0, . . .K) is

correctly specified with no effect modification (i.e. Zk(l) = 1) and the true exposure

effects are ψk(k) = −0.04, ψk(k+1) = −0.01, ψk(k+2) = −0.004 and ψk(k+3) = −0.002.

We considered three scenarios: two with regular and one with irregular visit times.

For regular visits, Sik = k. For irregular visits, inter-visit times Sk+1,i−Ski were in-

dependently uniformly distributed on [0.5, 1.5]. There was administrative censoring

at time 4. In one of the regular visit scenarios, there was no random censoring. In

the other, and in the irregular visit scenario, there was an exponentially distributed

random censoring time with mean 5. For the regular visit scenario without random

censoring, the expected percentages of individuals observed to fail between visits 0

and 1, 1 and 2, 2 and 3, and between visit 3 and time 4 were 20%, 14%, 11% and 9%,

respectively. For the regular and irregular visit scenarios with random censoring,

these percentages were 18%, 10%, 6% and 4%, and the corresponding expected

percentages of individuals censored were 16%, 11%, 8% and 5%. For each scenario,

we generated 1000 datasets, each with n = 1000 individuals. Estimation was done

with and without the constraint, which is true here, that ψk(k+m) = ψk′(k′+m).

Tables 1 and 2 show for the regular visit scenario without and with random
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censoring, respectively, the mean estimates and standard errors (SEs) for Methods

1–3. Results for the irregular visit scenario are in Web Appendix L. We see that

all the estimators are approximately unbiased, though there is some bias for ψ0(2),

ψ0(3) and ψ1(3), parameters for which there is relatively little information in the

data. Comparing SEs, we see that Methods 2 and 3 give very similar results, and

that these methods are more efficient than Method 1. This difference in efficiency

is much greater when there is random censoring (it is even greater when visit

times are irregular — see Web Appendix L). This may be because Method 1,

unlike 2 and 3, does not distinguish between failure and censoring (or occurrence

of next visit). Although Methods 2 and 3 use fitted values from the same GLM

that is used in Method 1, the estimating equations for Methods 2 and 3 involve

increments dN(t), which equal one only when a failure occurs. For Methods 1

and 2, coverage of 95% bootstrap confidence intervals (using 1000 bootstraps) was

close to 95% (see Table 3). Coverage was not evaluated for Method 3, as it is

computationally intensive to bootstrap this method for 1000 simulated datasets.

Imposing the constraint that ψk(k+m) = ψk′(k′+m) reduced SEs, as expected.

In this simulation study, censoring times are independent of exposures and con-

founders, and so censoring weights (Section 6) are not required for consistent

estimation of the ψk(l)’s. However, applying Method 1 with censoring weights

improved its efficiency (see Method 1cw in Tables 1 and 2), probably because

chance associations between exposures and censoring events are reduced in the

weighted sample. Coverage of bootstrap confidence intervals (Table 3) was close to

95% for most parameters, but there was overcoverage for some parameters. Using

censoring weights had no effect on the efficiency of Method 2.

Web Appendix L shows results for n = 250 or for a shorter follow-up time with

times between visits divided by four and administrative censoring at time 1 (and so



17

fewer failures). These are qualitatively similar to the results in Tables 1 and 2, but

with the relative inefficiency of Method 1 being even more marked in the scenarios

with shorter follow-up time. Web Appendix L also describes a simulation study

that demonstrates the double robustness of Methods 2 and 3.

8. Analysis of Cystic Fibrosis registry data

The UK Cystic Fibrosis (CF) Registry records health data on nearly all people with

CF in the UK at designated approximately annual visits (Taylor-Robinson et al.,

2018). To illustrate the use of the SNCSTM, we used data on 2386 individuals

observed during 2008–2016 to investigate the causal effect of the drug DNase

on survival. DNase has been found to have a beneficial effect on lung function,

including using Registry data (Newsome S et al., 2019), but its effect on survival

has not been studied. Baseline visit was defined as an individual’s first visit during

2008–2015, and there were up to K = 8 follow-up visits. The (irregular) visit times

were defined as years after baseline visit; median time between visits was 1.00 years

(interquartile range 0.93 to 1.07). Individuals were defined as ‘treated’ if they had

used DNase since the previous visit and ‘untreated’ otherwise. Individuals treated

at a visit prior to their baseline visit were excluded, as were visits prior to age 18.

Administrative censoring was applied at the end of 2016 and non-administrative

censoring when an individual had a transplant or had not been seen for 18 months.

The percentage of treated patients increased from 14% at the baseline visit to

52% at visit 8, and most patients who began using DNase continued to use it.

There were 137 deaths during follow-up and 653 non-administrative censorings

(including 36 transplants). Of those who died, 74 (63) were treated (untreated) at

time of death. Total follow-up was 12380 person-years (py), and death rates while

treated and untreated were, respectively, 0.019 (74/3930) and 0.0075 (63/8450)

py−1. The ratio of the probabilities of surviving for one year while treated and



18 Biometrics, 000 0000

untreated is thus 0.981/0.9925 = 0.989. However, this may be due to confounding:

sicker patients being more likely to receive treatment.

We estimated the effect on survival of delaying initiation of treatment by one

year. To do this, we (re)defined Ak as Ak = 0 for those treated at visit k, and

Ak = 1 for those untreated. Now exp(−ψk(k)) represents the multiplicative causal

effect of intervening to start treatment at visit k rather than at visit k + 1 on

the probability of surviving for at least one year after visit k, among patients who

survive to, and are untreated at, visit k and conditional on confounder history L̄k.

More generally, exp
(

−
∑k+m−1

l=k ψk(l)

)

is the effect on the probability of surviving

at least m years after visit k if visits are exactly annual. We imposed the constraint

ψk(k+m) = ψk′(k′+m). (Potential) confounders at visit k were baseline variables

sex, age and genotype class (low, high, not assigned), and time-varying variables

FEV1%, body mass index, days of IV antibiotic use, and binary indicators for four

infections (P. aeruginosa, S. aureus, B. cepacia complex, Aspergillus), CF-related

diabetes, smoking, and use of other mucoactive treatments and oxygen therapy.

The same variables (and treatment) were included in models for inverse probability

of censoring weights.

Figure 1a shows estimates of exp
(

−
∑k+m−1

l=k ψk(l)

)

from Method 2. These suggest

that starting treatment now rather than waiting may cause a small decrease in

probability of survival, at least for the first five years: exp
(

−
∑k+m−1

l=k ψk(l)

)

= 0.997,

0.996, 0.997, 0.994 and 0.988 form = 1, . . . , 5, respectively. However, the confidence

intervals (obtained by bootstrapping) include 1, i.e. no treatment effect. This lack

of a significant treatment effect may be because we have focused on a subset of

the population (adults not previously treated with DNase) and/or because there

are unmeasured confounders. As expected, Method 1 was very inefficient in this
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situation of irregular visits and substantial censoring. The confidence intervals were

between 4 and 9 times wider than those from Method 2.

For illustration, we also fitted a SNCSTM with an interaction between treatment

and FEV1%. Figures 1b–d shows the estimated ratios of survival probabilities for

three value of FEV1%: 40, 75 and 100 (the 10th, 50th and 90th centiles of the

distribution at baseline). Figure 1d suggests the ratio may actually be greater

than 1 for FEV1%= 100, i.e. starting treatment now may be better than waiting

for patients with high FEV1%. However, the interaction terms are not significant.

9. Discussion

One advantage of SNCSTMs is that, in contrast to MSMs, they can cope well with

situations where the inverse probabilities of exposure are highly variable. Indeed,

they can even be used when the so-called experimental treatment assignment

assumption is violated, i.e. when some individuals are, on the basis of their time-

varying covariate information, excluded from receiving particular exposure levels.

For these individuals, ∆i(t) = 0, meaning they do not contribute to the estimating

functions of Methods 1–3.

Another advantage of SNCSTMs is that they can be used to investigate time-

varying modification of exposure effects on survival time. Although it is, in princi-

ple, possible to do this using structural nested AFT models, estimation difficulties

caused by artificial recensoring mean that such models are usually kept simple and

interactions are not explored.

The SNCSTM can also be used to estimate the counterfactual exposure-free sur-

vivor function, i.e. P{T (0) > t}, as n−1
∑n

i=1Ri(t)
∏K

j=0 exp{Ajivj(t, Zji, S̄i)
⊤ψj}.

This is because equations (4) and (8) imply P{T (0) > t} = E
[

R(t)
∏K

j=0 exp{Aj
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vj(t, Zj , S̄)
⊤ψj}

]

. If there is censoring before time t, Ri(t) should be inversely

weighted by an estimate of P (Ci > t | Ā⌊t⌋i, L̄⌊t⌋i, S̄i).

A limitation is that, like other additive hazards models, the SNCSTM does not

constrain hazards to be non-negative, and so does not exclude survival probabilities

greater than one. Similarly, Picciotto et al.’s (2012) structural nested cumulative

failure time model does not exclude failure probabilities greater than one.

Method 1 appears to be less efficient than Methods 2 and 3, but has the attraction

that it can be applied using standard GLM software. In our simulation study,

the efficiency loss was fairly small when the only censoring was administrative

and visit times were regular. This method became much less competitive, how-

ever, when there was random censoring, and even more so when visit times were

irregular. By not distinguishing between failure and censoring, Method 1 may

also be more sensitive than Methods 2 and 3 to violation of the assumption that

λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) = λ(t, L0, S̄). Of the three, Method 3 gives consistent estimation

under the weakest assumptions. However, it needs more computation than Methods

1 and 2, especially when visit times are irregular and the exposure is binary. In

our simulation study, Methods 2 and 3 performed similarly, and so the theoretical

advantage of Method 3 may not be worth the extra computation. An R function

for implementing our methods, with examples, is described in Web Appendix I.

DMTV discuss the close connection between their model for a point exposure

(which is equivalent to the SNCSTM with K = 0) and Picciotto et al’s (2012)

cumulative failure time model. Although the latter is a discrete-time model for

the probability of failure, it is easy to finely discretise time so as to approximate

continuous time and (as Picciotto et al. note) to reformulate it as a model for

probability of survival. As DMTV explain, a drawback of Picciotto et al.’s method
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is the difficulty of deriving the efficient estimating equation. This difficulty arises

because their class of estimating functions uses correlated survival indicators. By

instead using independent increments of a counting process, DMTV were able to

derive the efficient estimating function. Methods 2 and 3 are extensions to time-

varying exposures of DMTV’s recommended method, and are therefore expected

also to be more efficient than Picciotto et al.’s method. In Web Appendix J we

elaborate on DMTV’s discussion of Picciotto et al.’s model and reformulate it

as a model for probability of survival. Tables 1 and 2 show mean estimates and

SEs for the resulting Picciotto et al. estimator (described in Web Appendix J and

denoted ‘Method P’ in tables). The SEs are larger than those of Methods 2 and 3,

suggesting Methods 2 and 3 are indeed more efficient. Methods 2 and 3 also have

the advantages of using closed-form estimators, handling random censoring auto-

matically (because estimating functions are framed in terms of increments, which

are observable up to the time of censoring), and being double robust. Picciotto et

al. use an iterative Nelder-Mead algorithm, employ inverse probability of censoring

weighting to handle random censoring, even when this censoring is completely at

random, and their estimator is not double robust.

In Web Appendix K we outline how the SNCSTM can handle competing risks.
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Figure 1: Estimates of the ratio of the survival probabilities when treatment is

initiated immediately compared to initiation being delayed by one year. a: from

the model with no interaction. b, c and d: from the model with interaction between

treatment and FEV1%.
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Supporting Information for ‘Adjusting for Time-

Varying Confounders in Survival Analysis Using

Structural Nested Cumulative Survival Time Mod-

els’ by Seaman, Dukes, Keogh and Vansteelandt.

The proofs, estimators and inverse probability of censoring weights in these web

appendices are for the general SNCSTM described in Section 5 of the article.

Proofs, estimators and weights for the simple SNCSTM with regular visit times

and no effect modification are just special cases of the proofs, estimators and

weights given here. Specifically, for the simple SNCSTM, S̄ = (1, 2, . . . , K) and

Zk(l) = 1.

In these web appendices, we write vk(t)
⊤ψk as Gk(t). Mentions of equations (1)–(8)

refer to equations that appear in the article.

A. Proof of equation (3)

Model Ak implies we can write the probability density of Ak given Āk−1, L̄k, S̄, T >

Sk as

f(Ak | Āk−1, L̄k, S̄, T > Sk) = b(Ak;φk) exp{Akτ − c(τ)}/d(φ)

for some functions b(.), c(.) and d(.) and where τ = α⊤
k0Hk is the linear predictor.

To simplify notation, we shall omit the explicit conditioning on S̄ and instead take

it as implicit.

Using Bayes’ Rule, Models Ak and Mk and the no-unmeasured confounders as-
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sumption, we have,

f(Ak | Āk−1, L̄k, T (Āk, 0) > t)

∝ f(Ak | Āk−1, L̄k, T (Āk, 0) > Sk)× P (T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk)

= f(Ak | Āk−1, L̄k, T > Sk)× P (T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk)

= b(Ak;φk) exp{Akτ − c(τ)}/d(φ)

×P (T (Āk−1, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk) exp{−AkGk(t)}

= b(Ak;φk) exp{Akτ − c(τ)}/d(φ)

×P (T (Āk−1, 0) > t | Āk−1, L̄k, T (Āk−1, 0) > Sk) exp{−AkGk(t)}

∝ b(Ak;φk) exp{Akτ − c(τ)}/d(φ)× exp{−AkGk(t)}

= b(Ak;φk) exp{Akτ
∗ − c(τ)}/d(φ)

∝ b(Ak;φk) exp{Akτ
∗}/d(φ)

∝ b(Ak;φk) exp{Akτ
∗ − c(τ ∗)}/d(φ)

where τ ∗ = τ −Gk(t)d(φ).

B. Proof of equation (4)

First, we prove that

P{T (Āk−1, 0) > t | Āk, L̄k, S̄, T (Āk−1, 0) > Sk}

= E

[

R(t) exp

{

K
∑

j=k

AjGj(t)

}

| Āk, L̄k, S̄, T > Sk

]

(9)

for t > Sk. To simplify notation, we shall omit the explicit conditioning on S̄ and

instead take it as implicit.

For t > Sk,

P{T (Āk−1, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk}

= P{T (Āk, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk} exp{AkGk(t)}
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Hence, for Sk 6 t < Sk+1,

P{T (Āk−1, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk} (10)

= P{T > t | Āk, L̄k, T > Sk} exp{AkGk(t)}

= ET{R(t) | Āk, L̄k, T > Sk} exp{AkGk(t)}

= ET{R(t) exp{AkGk(t)} | Āk, L̄k, T > Sk} (11)

So, equation (9) has been proved for Sk 6 t < Sk+1.

Note that since (10) does not depend on Ak (by NUC), nor can (11). Hence, we

can also write:

P{T (Āk−1, 0) > t | Āk−1, L̄k, T (Āk−1, 0) > Sk} = E
{

R(t) exp{AkGk(t)} | Āk−1, L̄k, T > Sk

}

(12)

Next, for t > Sk+1,

P{T (Āk−1, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk}

= P{T (Āk, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk} exp{AkGk(t)}

= P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk} exp{AkGk(t)}

= P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk+1}

×P{T (Āk, 0) > Sk+1 | Āk, L̄k, T (Āk, 0) > Sk} exp{AkGk(t)}
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Hence, for Sk+1 6 t < Sk+2,

P{T (Āk−1, 0) > t | Āk−1, L̄k, T (Āk−1, 0) > Sk}

= P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk+1}

×P{T (Āk, 0) > Sk+1 | Āk, L̄k, T (Āk, 0) > Sk} exp{AkGk(t)}

= P{T (Āk, 0) > t | Āk, L̄k, T > Sk+1}

×P{T > Sk+1 | Āk, L̄k, T > Sk} exp{AkGk(t)}

= ELk+1
[P{T (Āk, 0) > t | Āk, L̄k+1, T > Sk+1} | Āk, L̄k, T > Sk+1]

×P{T > Sk+1 | Āk, L̄k, T > Sk} exp{AkGk(t)}

= ELk+1
[ET,Ak+1

{R(t) exp{Ak+1Gk+1(t)} | Āk, L̄k+1, T > Sk+1} | Āk, L̄k, T > Sk+1]

×P{T > Sk+1 | Āk, L̄k, T > Sk} exp{AkGk(t)} (using (12))

= ET,Ak+1,Lk+1
{R(t) exp{Ak+1Gk+1(t)} | Āk, L̄k, T > Sk+1}

×P{T > Sk+1 | Āk, L̄k, T > Sk} exp{AkGk(t)}

= ET,Ak+1,Lk+1
{R(t) exp{AkGk(t) + Ak+1Gk+1(t)} | Āk, L̄k, T > Sk+1}

×P{T > Sk+1 | Āk, L̄k, T > Sk}

= ET,Ak+1,Lk+1
{R(t) exp{AkGk(t) + Ak+1Gk+1(t)} | Āk, L̄k, T > Sk}

So, equation (9) has been proved for Sk+1 6 t < Sk+2.

Using induction, the same argument can be used to prove equation (9) for Sk+2 6

t < Sk+3, then for Sk+3 6 t < Sk+4, and so on.
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Now, equation (4) follows from Mk and equation (9), because

P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk}

= P{T (Āk, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk}

= P{T (Āk−1, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk} exp{−AkGk(t)}

= E

[

R(t) exp

{

K
∑

j=k

AjGj(t)

}

| Āk, L̄k, T > Sk

]

exp{−AkGk(t)}

= E

[

R(t) exp

{

K
∑

j=k+1

AjGj(t)

}

| Āk, L̄k, T > Sk

]

= E
{

R(t)wk(t) | Āk, L̄k, T > Sk

}

Note that the no unmeasured confounders assumption means that the left-hand

side of equation (9) cannot depend onAk. Hence, the right-hand side cannot depend

on Ak either.

C. Relation between semiparametric efficient estimating equation for

ψk(k) and equation (6)

In their Section 3.1, DMTV derived the semiparametric efficient estimating equa-

tion for ψk(k) when the conditional distribution of Ak given (Āk−1, L̄k) and T > k is

known. This estimating equation involves inverse weighting by the hazard function.

When this inverse weighting is omitted, the semiparametric efficient estimating

equation becomes

n
∑

i=1

∫ k+1

k

Ri(t)∆ki(t)
{

dNi(t)− dΩki(t, Āki, L̄ki)− Akiψk(k) dt
}

= 0, (13)

where dΩk(t, Āk, L̄k) = E{dN(t)− Akψk(k) dt | Āk, L̄k, T > t} = E{dN(Āk−1,0)(t) |

Āk, L̄k, T (Āk−1, 0) > t} for t ∈ [k, k + 1). In their Section 4.1, DMTV showed

that if dΩk(t, Āk, L̄k) = γk(k)(t − k)⊤Hk for all t ∈ [k, k + 1) for some (possibly)

time-varying parameter γk(k)(t − k) and if the term E(Ak | Āk−1, L̄k, T > t) in

∆k(t) = Ak − E(Ak | Āk−1, L̄k, T > t) is estimated by fitting a separate GLM at
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each time t (as we do in Method 3 — see our Section 4.3), then

n
∑

i=1

∫ k+1

k

Ri(t)∆ki(t) dΩki(t, Āki, L̄ki) = 0, (14)

and so equation (13) reduces to equation (6). This result is also shown in our Web

Appendix F. In Web Appendix F, we further show that if E(Ak | Āk−1, L̄k, T >

t) is instead estimated by fitting a single GLM (as we do in Method 2), then

equation (14) still holds, provided that γk(k)(t− k) = γk(k) does not depend on t.

D. Estimation for the general SNCSTM

The following estimation methods, which are suitable for the general SNCSTM of

Section 5, generalise those described in Section 4. They reduce to those described

in Section 4 when visits times are regular with Sk = k and there is no effect

modification (i.e. Zk(l) = 1).

For the general SNCSTM of Section 5, which allows for irregular visit times, ∆k(t),

êk(l) and e
∗
k(l) depend, in general, on the visit times S̄, and Model Ak is the GLM

g{E(Ak | Āk−1, L̄k, S̄, T > Sk)} = α⊤
k0Hk.

D.1 Method 1

In Method 1, ψk(l) is estimated by ψ̂M1
k(l) = −α̂k(l)/φk, where α̂k(l) is the estimate of

αk(l) given by fitting GLM

g{E(Ak | Āk−1, L̄k, S̄, Q)} = α⊤
k0Hk +

l−1
∑

j=k

α⊤
k(j)Zk(j)(Sj+1−Sj) +α⊤

k(l)Zk(l)(Q−Sl))

(15)

to a set of pseudo-individuals, using weights wk(Q), where wk(t) =
∏K

j=k+1 exp{Aj

vj(t, Zk, S̄)
⊤ψj}. When visit times are regular, this set is the same as in Section 3.

Otherwise the rule for constructing the set is a little more complicated and is
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given in Section D.4. Let êk(l)(Āk−1, L̄k, S̄, t) denote the fitted value of E(Ak |

Āk−1, L̄k, S̄, Q = t).

D.2 Method 2

In Method 2, ψk(l) (l > k) is estimated as the solution, ψ̂M2
k(l), to estimating equations

n
∑

i=1

Zk(l),i

∫ Sl+1,i

Sli

Ri(t)wki(t) ∆ki(t)

×

[

dNi(t)−

{

l
∑

j=k+1

Ajiψ
⊤
j(l)Zj(l),i +∆ki(Sli) ψ

⊤
k(l)Zk(l),i

}

dt

]

= 0, (16)

where ∆k(t) is replaced by Ak − êk(l)(Āk−1, L̄k, S̄, t). Let Model Bk(l) (l > k) be de-

fined by E{dN(Āk−1,0)(t) | Āk, L̄k, S̄, T (Āk−1, 0) > t}=
{

γ⊤k(l)Hk−e
∗
k(l)(Āk−1, L̄k, S̄, k)

ψ⊤
k(l)Zk(l)

}

dt for all t ∈ [Sl, Sl+1).

As proved in Web Appendix F, estimator ψ̂M2
k(l) is consistent under the conditions 1–

3 stated in Section 4.2 plus the extra condition that, unless all of Aj (j = k, . . . , l)

are correctly specified or Zk(l) = 1, additional covariates Z int
k(l) ∗Hk are included in

each of the GLMs of equation (15). Here, X ∗ Y denotes all pairwise interactions

between X and Y .

When Ak is correctly specified, the true parameter values for these additional

covariates Z int
k(l) ∗ Hk are zero and they can be omitted. In the analysis of the

Cystic Fibrosis registry data that allowed for an interaction between treatment

and FEV1%, described in Section 8, Z int
k(l) ∗ Hk was omitted because its inclusion

caused instability in the estimates of ψ̂M2
k(l).

When there is no effect modification or modification depends only on L0 (i.e.

Zk(l)’s depend at most on L0), stabilised weights can be used and Ajiψ
⊤
j(l)Zj(l),i

in equation (16) can be replaced by ∆∗
j(k),iψ

⊤
j(l)Zj(l),i, where ∆∗

j(k) = Aj − E(Aj |

Āk−1, L̄k, S̄, Ti > Sj).
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D.3 Method 3

Modifying Method 3 is simple when visit times are regular: the GLM of Section 4.3

is just replaced by g{E(Ak | Āk−1, L̄k)} = αk0(t)
⊤Hk+

∑l
j=k αk(j)(t)

⊤Z int
k(j). As with

Method 2, double robustness requires Z int
k(l) ∗Hk be added as covariates.

D.4 General rule for construction of the set of pseudo-individuals

To estimate ψk(l), Methods 1 and 2 involve fitting a GLM for Ak given Āk−1, L̄k−1,

S̄ and Q to a set of pseudo-individuals. The rule for constructing this set when

the follow-up visit times are regular and equal to 1, 2, . . . , K was described in

Section 4.1 of the article. Here we describe the more general rule (of which that is

a special case), which can be used even when visit times are irregular.

For any t > 0, let Ik(l)(t) denote the set of individuals with T > Sk + t and

Sl 6 Sk + t < Sl+1, i.e. those who t units after their kth visit are still at risk and

have had their lth visit but not yet their (l + 1)th visit. Let qmin
k(l) and q

max
k(l) denote,

respectively, the minimum and maximum values of t such that the set Ik(l)(t) is not

empty. For each of some number (we used 10) of equally spaced values of t between

qmin
k(l) and qmax

k(l) (viz. qmin
k(l) , q

min
k(l) + (qmax

k(l) − qmin
k(l))/9, q

min
k(l) + 2(qmax

k(l) − qmin
k(l))/9, . . . , q

max
k(l) ),

take the set Ik(l)(t) and for each individual i in this set, create a pseudo-individual

with Q = Ski+t and the same value of (ĀK , L̄K , S̄) as individual i. Let Pk(l) denote

the resulting set of (up to 10n) pseudo-individuals.

Note that in the special case of regular visit times, qmin
k(l) = Sl − Sk and qmax

k(l) =

Sl+1−Sk (assuming there are still individuals at risk at time Sl+1). Therefore, each

pseudo-individual has a value of Q equal to one of Sl, Sl + (Sl+1 −Sl)/9, . . ., Sl+1.
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E. Closed form of estimator for Methods 2 and 3

E.1 Method 2

The estimator corresponding to equation (16) is

ψ̂k(l) =

[

n
∑

i=1

Zk(l),iZ
⊤
k(l),i∆ki(Sli)

∫ Sl+1,i

Sli

Ri(t)wki(t) ∆ki(t) dt

]−1

×

[

n
∑

i=1

Zk(l),i

∫ Sl+1,i

Sli

Ri(t)wki(t) ∆ki(t)

×

{

dNi(t)−
l
∑

j=k+1

Aji ψ
⊤
j(l)Zj(l),i dt

}]

(17)

Now,

∫ Sl+1

Sl

R(t)wk(t) ∆k(t)

{

dN(t)−
l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l)dt

}

= R(T )I(Sl 6 T < Sl+1)wk(T )∆k(T )dN(T )

−
l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l)R(Sl)wk(Sl)

×

∫ (T∧Sl+1)−Sl

0

exp{I(l > k) Alψ
⊤
k(l)Zk(l) t}

×
{

Ak − g−1
(

g[E{Ak | Āk−1, L̄k, S̄, T (Āk, 0) > Sl}] + α⊤
k(l)Zk(l)t

)}

dt

(18)

Note that the term Ak − g−1
(

g[E{Ak | Āk−1, L̄k, S̄, T (Āk, 0) > Sl}] + α⊤
k(l)Zk(l)t

)

in equation (18) is just ∆k(t). This is because it follows from equation (3) of the

article that

∆k(t) = Ak − E{Ak | Āk−1, L̄k, S̄, T (Āk, 0) > t}

= Ak − g−1
(

g[E{Ak | Āk−1, L̄k, S̄, T (Āk, 0) > t}]
)

= Ak − g−1
{

α⊤
k0Hk + α⊤

k vk(t)
}

= Ak − g−1
{

α⊤
k0Hk + α⊤

k vk(Sl) + α⊤
k(l)Zk(l)t

}

= Ak − g−1
{

g[E{Ak | Āk−1, L̄k, S̄, T (Āk, 0) > Sl}] + α⊤
k(l)Zk(l)t

}

.
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So, it is evident from equation (18) that we need to calculate integrals of the form

∫ y

0

exp(Bt)
{

Ak − g−1(E +Dt)
}

dt (19)

where, more specifically,

y = (T ∧ Sl+1)− Sl

B =











Alψ
⊤
k(l)Zk(l) if l > k

0 if l = k

E = g{E(Ak | Āk−1, L̄k, S̄, T (Āk, 0) > Sl)}

D = α⊤
k(l)Zk(l)

When g is the identify link function, expression (19) becomes

∫ y

0

exp(Bt)(Ak − E −Dt) dt

=

∫ y

0

exp(Bt){∆k(Sl)−Dt} dt

=











B−1 exp(By){∆k(Sl)−Dy} − B−1∆k(Sl) +B−2D{exp(By)− 1} if B 6= 0

∆k(Sl)y −Dy2/2 if B = 0

When g is the logit link function, expression (19) becomes

∫ y

0

exp(Bt)

{

Ak −
exp(E +Dt)

1 + exp(E +Dt)

}

dt

=











AkB
−1{exp(By)− 1} −

∫ y

0
exp{E+Ft}

1+exp(E+Dt)
dt if B 6= 0

Aky −
∫ y

0
exp{E+Ft}

1+exp(E+Ft)
dt if B = 0

where F = B +D.

In the special case where B = 0 (and so F = D) and D 6= 0,

∫ y

0

exp(E + Ft)

1 + exp(E +Dt)
dt

=

∫ y

0

exp(E +Dt)

1 + exp(E +Dt)
dt

= D−1 [log{1 + exp(E +Dy)} − log{1 + exp(E)}]
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When F = 0 and D 6= 0,

∫ y

0

exp(E + Ft)

1 + exp(E +Dt)
dt

= exp(E)

∫ y

0

1−
exp(E +Dt)

1 + exp(E +Dt)
dt

= y exp(E)− exp(E)D−1 [log{1 + exp(E +Dy)} − log{1 + exp(E)}]

When D = 0 and F 6= 0,
∫ y

0

exp(E + Ft)

1 + exp(E +Dt)
dt =

exp(E)

F{1 + exp(E)}
{exp(Fy)− 1}

When F = D = 0,
∫ y

0

exp(E + Ft)

1 + exp(E +Dt)
dt =

exp(E)

1 + exp(E)
y

When F 6= 0 and D 6= 0, numerical integration can be used.

E.2 Method 3

Rewrite the estimator of expression (17) as

ψ̂k(l) =

[

n
∑

i=1

Zk(l),iZ
⊤
k(l),i∆ki(Sli)

×

∫ Sl+1,i−Sli

0

Ri(Sli + t)wki(Sli + t) ∆ki(Sli + t) dt

]−1

×

[

n
∑

i=1

Zk(l),i

∫ Sl+1,i−Sli

0

Ri(Sli + t)wki(Sli + t) ∆ki(Sli + t)

×

{

dNi(Sli + t)−
l
∑

j=k+1

Aji ψ
⊤
j(l)Zj(l),i dt

}]

(20)

and rewrite wk(Sl + t) for l > k and t ∈ [0, Sl+1 − Sl) as

wk(Sl + t) = exp

{

l−1
∑

j=k+1

Aj

l−1
∑

m=j

ψ⊤
j(m)Zj(m)(Sm+1 − Sm) + t

l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l)

}

,

with wk(Sk + t) = 1 and t ∈ [0, Sk+1 − Sk).

In Method 3, we fit a separate model for E(Aki | Āk−1,i, L̄ki, S̄i, T (Āki, 0) > Ski+ t)

for each value t at which the set Ik(t) (defined in Web Appendix D.4) changes.

Henceforth we assume that visit times are regular. Then the set Ik(t) changes

when one of the individuals fails, is censored or has their (l+1)th exposure at time
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Sk + t, i.e. when T ∧ Sl+1 = Sk + t. Let e0 = 0 and let {e1, . . . , eQkl
} denote the

set of distinct values of (Ti ∧ Sl+1)− Sl that are greater than or equal to zero. So,

the fitted value of E(Aki | Āk−1,i, L̄ki, S̄i, T (Āki, 0) > Sl + t) used for ∆ki(Sl + t)

in equation (20) is constant over each interval t ∈ [eq, eq+1) (q = 0, . . . , Qkl − 1).

Consequently, we can write, for l = k,

∫ Sl+1−Sl

0

R(Sl + t)wk(Sl + t) ∆k(Sl + t) dt

=

Qkl−1
∑

q=0

R(Sl + eq) ∆k(Sl + eq)(eq+1 − eq)

and for k > l,

∫ Sl+1−Sl

0

R(Sl + t)wk(Sl + t) ∆k(Sl + t) dt

=

Qkl−1
∑

q=0

R(Sl + eq) ∆k(Sl + eq)

∫ eq+1

eq

wk(Sl + t)dt

=

Qkl−1
∑

q=0

R(Sl + eq) ∆k(Sl + eq)

× exp

{

l−1
∑

j=k+1

Aj

l−1
∑

m=j

ψ⊤
j(m)Zj(m)(Sm+1 − Sm)

}

×

∫ eq+1

eq

exp

{

s

l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l)

}

ds (21)

If
∑l

j=k+1Ajψ
⊤
j(l)Zj(l) 6= 0, then expression (21) equals

exp

{

l−1
∑

j=k+1

Aj

l−1
∑

m=j

ψ⊤
j(m)Zj(m)(Sm+1 − Sm)

}{

l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l)

}−1

×

Qkl−1
∑

q=0

R(Sl + eq) ∆k(Sl + eq)

×

[

exp

{

eq+1

l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l)

}

− exp

{

eq

l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l)

}]
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On the other hand, if
∑l

j=k+1Ajψ
⊤
j(l)Zj(l) = 0, then expression (21) equals

exp

{

l−1
∑

j=k+1

Aj

l−1
∑

m=j

ψ⊤
j(m)Zj(m)(Sm+1 − Sm)

}

×

Qkl−1
∑

q=0

R(Sl + eq) ∆k(Sl + eq)(eq+1 − eq)

F. Proof of double robustness of Methods 2 and 3

The basic results that justify Methods 2 and 3 are equation (9) and

E{dN(Āk−1,0)(t) | Āk, L̄k, S̄, T (Āk−1, 0) > t}

=
E
[

R(t)wk(t)
{

dN(t)−
∑l

j=kAjψ
⊤
j(l)Zj(l)dt

}

| Āk, L̄k, S̄, T > Sk

]

E
{

R(t)wk(t) | Āk, L̄k, S̄, T > Sk

} (22)

for l > k and t ∈ [Sl, Sl+1). We show below that equation (22) is implied by

equation (9) and Models Mk, . . . ,Ml. Equation (22) means that within a stratum

of the population defined by (Āk, L̄k, S̄) and by T (Āk−1, 0) > Sk (or equivalently,

T > Sk) the counterfactual hazard when Ak, . . . , AK are set to zero is equal to the

actual hazard minus
∑l

j=kAjψ
⊤
j(l)Zj(l) after weighting individuals by wk(t). Note

that, since the left-hand side of equation (22) does not depend on Ak (because of

the no unmeasured confounders assumption), neither can the right-hand side.

We now prove equation (22). Again, we omit the explicit conditioning on S̄. By

taking logs of both sides of equation (9) and differentiating with respect to t and

multiplying both sides by minus one, we obtain

E{dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) > Sk}

= E

(

R(t) exp

{

K
∑

j=k

AjGj(t)

}[

dN(t)−
d

dt

{

K
∑

j=k

AjGj(t)

}

dt

]

| Āk, L̄k, T > Sk

)
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It follows from this and equation (9) that

E{dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) > t}

=
E{dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) > Sk}

P{T (Āk−1, 0) > t | Āk, L̄k, T (Āk−1, 0) > Sk}

=
E
(

R(t) exp
{

∑K
j=k AjGj(t)

}[

dN(t)− d
dt

{

∑K
j=k AjGj(t)

}

dt
]

| Āk, L̄k, T > Sk

)

E
{

R(t) exp
{

∑K
j=kAjGj(t)

}

| Āk, L̄k, T > Sk

}

=
E
(

R(t) exp
{

∑K
j=k+1AjGj(t)

}[

dN(t)− d
dt

{

∑K
j=k AjGj(t)

}

dt
]

| Āk, L̄k, T > Sk

)

E
{

R(t) exp
{

∑K
j=k+1AjGj(t)

}

| Āk, L̄k, T > Sk

}

=
E
(

R(t)wk(t)
[

dN(t)− d
dt

{

∑K
j=kAjGj(t)

}

dt
]

| Āk, L̄k, T > Sk

)

E
{

R(t)wk(t) | Āk, L̄k, T > Sk

}

For t ∈ [Sl, Sl+1),
d
dt

{

∑K
j=k AjGj(t)

}

=
∑l

j=k Ajψ
⊤
j(l)Zj(l). Hence, equation (22)

holds.

We now use this result to prove consistency of estimation for Method 2. Suppose

that ψj(m) (k < j 6 m 6 l) have already been consistently estimated by Method

2 and we are now estimating ψk(l). Assume that Models Mk, . . . ,Ml are correctly

specified.

First, consider the following expression and suppose that Ak is correctly specified.

∫ Sl+1

Sl

R(t)wk(t) ∆k(t)

{

dN(t)−
l
∑

j=k

Ajψ
⊤
j(l)Zj(l)

}

dt (23)

This is the same as the estimating function we use — i.e. the ith element of the left-

hand side of equation (7) — (apart from the Zk(l) term) but with ∆k(Sl) replaced

by Ak.

Now, for any t ∈ [Sl, Sl+1), and using equation (22), we have

E

[

R(t)wk(t) ∆k(t)

{

dN(t)−
l
∑

j=k

Ajψ
⊤
j(l)Zj(l)

}

| Āk, L̄k, T > Sk

]

= ∆k(t)E{dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) > t} ×E{R(t)wk(t) | Āk, L̄k, T > Sk}

= ∆k(t)E{dN(Āk−1,0)(t) | Āk−1, L̄k, T (Āk−1, 0) > t} × E{R(t)wk(t) | Āk, L̄k, T > Sk}
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Now take the expectation over Ak given Āk−1, L̄k, T > Sk. This yields

E

[

R(t)wk(t) ∆k(t)

{

dN(t)−
l
∑

j=k

Ajψ
⊤
j(l)Zj(l)

}

| Āk−1, L̄k, T > Sk

]

= E{dN(Āk−1,0)(t) | Āk−1, L̄k, T (Āk−1, 0) > t} (24)

×E[∆k(t)E{R(t)wk(t) | Āk, L̄k, T > Sk} | Āk−1, L̄k, T > Sk]

= E{dN(Āk−1,0)(t) | Āk−1, L̄k, T (Āk−1, 0) > t}

×E[∆k(t)P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk} | Āk−1, L̄k, T > Sk]

(25)

Line (25) follows from equation (4).

If Ak is correctly specified,

E
[

∆k(t)P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk} | Āk−1, L̄k, T > Sk

]

≡ E[{Ak − E(Ak | Āk−1, L̄k, T (Āk, 0) > t)}

×P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk} | Āk−1, L̄k, T > Sk]

= P{T (Āk, 0) > t | Āk−1, L̄k, T (Āk, 0) > Sk}

×{E(Ak | Āk−1, L̄k, T (Āk, 0) > t)− E(Ak | Āk−1, L̄k, T (Āk, 0) > t)}(26)

= 0 (27)

Equation (26) follows because, for a general random variable X and a general event

A, E{X P (A | X)} = P (A)E(X | A). In conclusion, we have shown that equa-

tion (23) has expectation zero. Now, if we replace Ak in equation (23) by ∆i(Sl),

then we are simply adding a function of (Āk−1, L̄k) multiplied by R(t)wk(t)∆k(t).

It is straightforward to show that this extra term has expectation zero when Ak is
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correctly specified. This is because

E{R(t)wk(t)∆k(t) | Āk, L̄k, T (Āk, 0) > Sk}

= ∆k(t) E{R(t)wk(t) | Āk, L̄k, T (Āk, 0) > Sk}

= ∆k(t) P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk}

using equation (4). Now, taking the conditional expectation of this over Ak given

(Ak−1, L̄k) and T (Āk, 0) > Sk, we obtain

E{R(t)wk(t)∆k(t) | Āk−1, L̄k, T (Āk, 0) > Sk}

= E
[

∆k(t)P{T (Āk, 0) > t | Āk, L̄k, T (Āk, 0) > Sk} | Āk−1, L̄k, T > Sk

]

,

which we know, from equation (27), equals zero.

Likewise, when the Zk(l)’s are functions only of L0, changing Aj to ∆†
j(k) = Aj −

E†(Aj | Āk−1, L̄k, S̄, T > Sk) (j = k + 1, . . . , l) in the estimating function (23),

where E†(Aj | Āk−1, L̄k, S̄, T > Sk) denotes the limiting fitted value from Model

Cj(k), simply adds a function of (Āk−1, L̄k) multiplied by R(t)wk(t)∆k(t), and so

the same is true. Finally, if the Zk(l)’s are functions only of L0 and we replace wk(t)

by w∗
k(t), we are simply multiplying the estimating function (23) by a function of

(Āk−1, L̄k), and so it still has conditional expectation zero given (Āk−1, L̄k) and

T (Āk, 0) > Sk.

Now suppose that Ak may not be correctly specified but Bk(l) is correctly specified.

Consider the following estimating equations for ψk(l):

n
∑

i=1

Zk(l),i

∫ Sl+1,i

Sli

Ri(t)wki(t) ∆ki(t)

×

[

dNi(t)−

{

γ⊤k(l) hk(Āk−1,i, L̄ki, S̄i) +

l
∑

j=k+1

Ajiψ
⊤
j(l)Zj(l),i +∆ki(Sli)ψ

⊤
k(l)Zk(l),i

}

dt

]

= 0 (28)

for any given value of γk(l), and with ∆k(t) replaced by its estimate obtained
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as described in Section 4.2 of the article. These are the same as the estimating

equations we use (i.e. equation (16)) except that they include the extra term

γ⊤k(l)Hk.

For any t ∈ [Sl, Sl+1), we have, using equation (22)

E
(

R(t)wk(t) ∆k(t)
[

dN(t)−
{

γ⊤k(l) hk(Āk−1, L̄k, S̄)

+
l
∑

j=k+1

Ajψ
⊤
j(l)Zj(l) +∆k(Sl)ψ

⊤
k(l)Zk(l)

}

dt

]

| Āk, L̄k, T (Āk−1, 0) > Sk

)

=
[

E{dN(Āk−1,0)(t) | Āk, L̄k, T (Āk−1, 0) > t} − γ⊤k(l) hk(Āk−1, L̄k, S̄)

+E{Ak | Āk−1, L̄k, T (Āk−1, 0) > Sk}ψ
⊤
k(l)Zk(l)

]

×E{R(t)wk(t) | Āk, L̄k, T (Āk−1, 0) > Sk} ×∆k(t)

which equals zero when Model Bk(l) holds. Hence, equations (28) are unbiased

estimating equations for ψk(l) when Bk(l) is correctly specified and γk(l) equals its

true value.

Finally, we shall show that, when either Zk(l) = 1 or Z int
k(l) ∗ Hk is included in

GLM (15), then, because of the way that E(Aki | Āk−1,i, L̄ki, Ti(Āk, 0) > t) in

∆ki(t) is estimated, we have

n
∑

i=1

Zk(l),i

∫ Sl+1,i

Sli

Ri(t)wki(t) ∆ki(t)× γ⊤k(l)Hk dt = 0 (29)

for any value of γk(l), regardless of whether Model Ak or Model Bk(l) is correctly

specified. This means that equations (28) reduce to equations (16), and thus our

estimating equations (16) have expectation zero when either Model Ak or Model

Bk(l) is correctly specified.

The reason why equation (29) holds is as follows. Let X denote any element of the
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vector (H⊤
k , Z

int
k(l) ∗H

⊤
k )

⊤. Then

n
∑

i=1

∫ Sl+1,i

Sli

Ri(t)wki(t) ∆ki(t) Xi dt

=
n
∑

i=1

∫ Sl+1,i−Ski

Sli−Ski

Ri(Ski + t)wki(Ski + t) ∆ki(Ski + t) Xi dt

=

n
∑

i=1

∫ ∞

0

I(Sli 6 Ski + t < Sk+1,i)Ri(Ski + t)wki(Ski + t) ∆ki(Ski + t) Xi dt

= lim
δ→∞

∑

t∈
{

qmin
k(l)

, qmin
k(l)

+(qmax
k(l)

−qmin
k(l)

)/δ, qmin
k(l)

+2(qmax
k(l)

−qmin
k(l)

)/δ,..., qmax
k(l)

}

n
∑

i=1

I(Sli 6 Ski + t < Sk+1,i)

×Ri(Ski + t)wki(Ski + t) ∆ki(Ski + t) Xi ×
qmax
k(l) − qmin

k(l)

δ

≈
∑

t∈
{

qmin
k(l)

, qmin
k(l)

+(qmax
k(l)

−qmin
k(l)

)/9, qmin
k(l)

+2(qmax
k(l)

−qmin
k(l)

)/9,..., qmax
k(l)

}

n
∑

i=1

I(Sli 6 Ski + t < Sk+1,i)

×Ri(Ski + t)wki(Ski + t) ∆ki(Ski + t) Xi ×
qmax
k(l) − qmin

k(l)

9
. (30)

Expression (30) equals zero because it is one element of the score function vector

(multiplied by (qmax
k(l) − qmin

k(l) )/9) for the GLM of equation (15) fitted to the set Pk(l)

with weights wk(Q). (The set Pk(l) was defined in Web Appendix D.4.)

The proof of double robustness of Method 3 is similar. The difference lies in the way

that fitted values of E(Aki | Āk−1,i, L̄ki, S̄i, Ti(Āki, 0) > t) are estimated. Suppose

for simplicity that Zk(l) = 1 and visit times are regular. For Method 3, the score

equations corresponding to GLM g{E(Ak | Āk−1, L̄k} = αk0(t)
⊤Hk fitted to Ik(t)

using weights wk(Sk + t) are

n
∑

i=1

Ri(Ski + t)I(Sl 6 Sk + t < Sl+1)wki(Sk + t)∆ki(Sk + t)Hki = 0 (31)

(The set Ik(t) was defined in Web Appendix D.4.) Hence, equation (31) holds for
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any t > 0. Consequently, when Method 3 is used,

n
∑

i=1

∫ Sl+1

Sl

Ri(t)wki(t) ∆ki(t) γk(l)(t− Sli)
⊤Hki dt

=
n
∑

i=1

∫ ∞

0

Ri(Ski + t)I(Sl 6 Sk + t < Sl+1)wki(Sk + t) ∆ki(Sk + t)

×γk(l)(t+ Sk − Sl)
⊤Hki dt

= γk(l)(t + Sk − Sl)
⊤

∫ ∞

0

n
∑

i=1

Ri(Ski + t)I(Sl 6 Sk + t < Sl+1)

×wki(Sk + t) ∆ki(Sk + t)Hki dt

= 0.

G. Constraining exposure effects

In this web appendix we explain how estimation of parameters can be performed

under the constraint that ψk(k+m) = ψk′(k′+m) for all k, k
′, m.

For Method 1, a simple way to estimate ψk(k+m) under this constraint is to calculate

ψ̂M1
k(k+m) (k = 0, . . . , K −m) separately as before and then, for each element of the

vector ψ̂M1
k(k+m), calculate a weighted average of these K−m+1 estimates. Suitable

weights are the reciprocals of the corresponding K − m + 1 variances estimated

using a sandwich variance estimator that accounts for duplication of individuals

as pseudo-individuals. It can be calculated using standard software and is a valid

estimator of the variance of ψ̂M1
k(k), but not of ψ̂M1

k(k+m) when m > 0, because it

ignores the uncertainty in wk(t) arising from estimating the ψ’s. Nonetheless, it

suffices for the purpose of averaging the K − m + 1 estimates of ψk(k+m). For

Methods 2 and 3, we simply sum the K − m + 1 estimating equations (7) for

ψk(k+m) (k = 0, . . . , K −m) and solve the resulting single equation.

In Section 3, we assumed the regular visit times are 0, 1, . . . , K, rescaling the time

variable if necessary. Such rescaling may make it more reasonable to constrain
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ψk(k+m) to be a known multiple of ψk′(k′+m). For example, if visits 1 and 2 are one

and 13 months, respectively, after baseline, then ψ0(0) and ψ1(1) are measured in

units of per-month and per-year, respectively. Since ψ0(0) and ψ1(1)/12 are measured

in the same units (per-month), one might constrain ψ0(0) = ψ1(1)/12. This requires

only minor modification of the above procedures. However, using the more general

SNCSTM described in Section 5 avoids the need to rescale time.

We have only considered one form of constraint on the exposure effects; Vanstee-

landt and Sjolander (2016) show how to impose other forms.

H. Inverse probability of censoring weighting

Assume that the first condition in Section 6 holds, namely, that

E{dNC(t) | C > t, Ā⌊T̃ ⌋, L̄⌊T̃ ⌋, S̄, T̃ > t, T̃} = λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄). (32)

Let wC
k (t) = exp

{

∫ t

Sk
λ(s, Ā⌊s⌋, L̄⌊s⌋, S̄) ds

}

. This is the inverse probability of re-

maining uncensored at time t. A parametric model for λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) is specified

and its parameters (and hence wC
k (t)) are estimated from the data. Now Methods

1–3 can be used with the weights wk(t) replaced by wk(t)×w
C
k (t). If the assumptions

sufficient for consistency in the absence of censoring (see Section 4) are satisfied,

and equation (32) holds, and the model for λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) is correctly specified,

then the resulting estimates of ψk(l) are consistent.

More stable weights can be obtained by specifying, for each k = 0, . . . , K, an addi-

tional parametric model for λk(s, Āk−1, L̄k, S̄) = E{dNC(t) | C > t, Āk−1, L̄k, S̄, T̃ >

t} (t > Sk). This differs from the previous model in that it is conditional only

on (Āk−1, L̄k). After estimating the parameters of this model, wC
k (t) is replaced

by wCS
k (t) = exp

{

∫ t

Sk
λ(s, Ā⌊s⌋, L̄⌊s⌋, S̄) ds −

∫ t

Sk
λk(s, Āk−1, L̄k, S̄) ds

}

. Note that

misspecification of this additional model does not affect consistency of the estima-
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tor of ψk(l), and that if λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) = λ(t, Āk−1, L̄k, S̄) for all t ∈ [Sk, Sl+1),

then wCS
k (t) = 1 for t ∈ [Sk, Sl+1), i.e. no censoring weights are needed when

estimating ψk(l).

The formulae given in Web Appendix E for Method 2 are easily extended to handle

inverse probability of censoring weighting, provided that the parametric models for

censoring are proportional hazards models with a constant baseline hazard between

visits. We now explain how this is done.

Above, we referred to two parametric models, one for λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) and an

additional one for λk(t, Āk−1, L̄k, S̄), and said that the stabilised inverse probability

of censoring weights are estimates of

wCS(t) = exp

{
∫ t

Ski

λ(s, Ā⌊s⌋,i, L̄⌊s⌋,i, S̄i) ds−

∫ t

Ski

λk(s, Āk−1,i, L̄ki, S̄i) ds

}

.

(If unstabilised weights are used, λk(s, Āk−1, L̄k, S̄) is simply replaced by zero.)

For the first parametric model, we assume

λ(t, Ā⌊t⌋, L̄⌊t⌋, S̄) = exp{β⊤
k bk(Āk, L̄k, S̄)}

for t ∈ [Sk, Sk+1), where bk(Āk, L̄k, S̄) is a known vector function of (Āk, L̄k, S̄)

whose first element equals one (this is an intercept term), and βk is an unknown

vector parameter. For the second parametric model, we assume

λk(t, Āk−1, L̄k, S̄) = exp{β⊤
k(l) bk(l)(Āk−1, L̄k, S̄)}

for t ∈ [Sl, Sl+1), where bk(l)(Āk−1, L̄k, S̄) is a known vector function of (Āk−1, L̄k, S̄)

whose first element equals one, and βk(l) is an unknown vector parameter. Abbre-

viate bk(Āk, L̄k, S̄) as bk and bk(l)(Āk−1, L̄k, S̄) as bk(l). The inverse probability of

censoring weight at time t ∈ [Sl, Sl+1) when estimating ψk(l) is now

wCS
k(l)(t) =

l−1
∏

j=k

exp
{(

β⊤
j bj − β⊤

k(j)bk(j)
)

× (Sj+1 − Sj)
}

× exp
{(

β⊤
l bl − β⊤

k(l)bk(j)
)

× (t− Sl)
}
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In particular,

wCS
k(l)(Sl) =

l−1
∏

j=k

exp
{(

β⊤
j bj − β⊤

k(j)bk(j)
)

× (Sj+1 − Sj)
}

.

So, in equation (18), we should replace wk(T ) by wk(T )×wCS
k(l)(T ), replace wk(Sl)

by wk(Sl)× wCS
k(l)(Sl), and replace exp{I(l > k) Alψ

⊤
k(l)Zk(l) t} by

exp
[{

I(l > k) Alψ
⊤
k(l)Zk(l) + (β⊤

l bl − β⊤
k(l)bk(l))

}

t
]

.

Similar modifications can be made to Method 3.

I. Software

Our R function sncstm can be used to apply Methods 1–3. Note that Method 3

is only implemented for regular visits and without inverse probability of censoring

weights.

Two examples of the use of sncstm are provided in the files ‘example1.r’ and

‘example2.r’.

The compulsory arguments of sncstm are as follows:

data : A data frame containing the following elements (here n is the number of

individuals, K +1 is the number of visits, and p is the number of variables that

are confounders in at least one of Models A0, . . . ,AK):

• tim — n-vector containing the failure or censoring time for each individual

• fail — n-vector containing the failure/censoring indicator for each individual

(equals TRUE if fails and FALSE if censored)

• tau — n× (K + 1) matrix whose (i, k+ 1)th entry is Ski, the kth visit time

for individual i (note that all the entries in the first column should equal

zero, because S0i = 0)
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• A — n × (K + 1) matrix whose ith row equals (A0i, A1i, . . . , AKi), the

treatments for individual i

• L — n× p matrix whose ith row contains the values for individual i of the

p variables that are confounders in at least one of Models A0, . . . ,AK

• Z (optional) — if the optional argument useZ (see below) is not specified,

then Z should not be specified either, but if useZ is specified, then Z should

be a matrix; see Example 2 for details of how to specify Z when useZ is

specified

useA : (K+1)×(K+1) matrix whose (k+1)th row indicates which of A0, A1, . . . , Ak−1

to include as covariates in Model Ak. If the (k+1, j+1)th element of useA equals

TRUE, Aj is included in Ak. If this element of useA equals FALSE, Aj is not

included.

useL : (K+1)×p matrix whose (k+1)th row indicates which of the p confounders

to include as covariates in Model Ak. If the (k + 1, j + 1)th element of useL

equals TRUE, the jth of the p confounders is included in Ak. If this element of

useL equals FALSE, the jth confounder is not included.

EXPOSETYPE : ‘gaussian’ if Model Ak is a linear regression; ‘binomial’ if Ak is a

logistic regression.

The optional arguments of the sncstm function are as follows (‘by default’ means

if the argument is not specified):

METHOD : Indicates which of the three estimation methods described in our article

should be used to estimate the ψk(l) parameters. By default, this equals 2,

meaning that Method 2 is used. To use one of the other methods, set METHOD

equal to 1 or 3.
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CONSTRAIN : By default, this equals FALSE. If it equals TRUE, the constraint

that ψk(k+m) = ψk′(k′+m) for all k, k
′, m is imposed.

NQUAD : When visit times are regular, this is the number of equally spaced values

of t between Sk and Sk+1 at which a pseudo-individual is created from each

individual still at risk. When visit times are irregular, it is the number of equally

spaced values of t between qmin
k(l) and qmax

k(l) (see Web Appendix D.4). By default,

this equals 10, which is the number used for the main simulation study reported

in our article. If the probability of failure between consecutive visits is large (e.g.

> 10% of individuals still at risk at visit k fail before visit k + 1) or if visit

times are highly irregular (so that qmax
k(l) − qmin

k(l) is very large), it may be desirable

to increase NQUAD. The aim should be to choose NQUAD to be large enough

such that any further increase in NQUAD has little impact on the estimates of

ψk(l). The NQUAD argument is ignored if METHOD=3.

STABILISE : By default, this equals FALSE, meaning that unstabilised weights

wk(t) are used. When useZ (see below) is not specified (so that the SNCSTM

assumes there is no effect modification), STABILISE can be set equal to TRUE,

meaning that stabilised weights w∗
k(t) are used instead of wk(t).

IPCW : By default, this equals FALSE, meaning there is no inverse probability of

censoring weighting. Specify IPCW=TRUE to use inverse probability of censor-

ing weighting.

useAcensor : If IPCW=TRUE, useAcensor is a (K + 1) × (K + 1) matrix, whose

(k+1, j+1)th entry equals TRUE if Aj is included in the model for the hazard of

censoring during time interval [Sk, Sk+1), and equals FALSE if it is not included.

Ignored if IPCW=FALSE.

useLcensor : If IPCW=TRUE, useLcensor is a (K + 1) × p matrix, whose (k +

1, j + 1)th entry equals TRUE if the jth variable in the L component of the
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data frame called ‘data’ (see above) is included in the model for the hazard of

censoring during time interval [Sk, Sk+1), and equals FALSE if this variable is

not included. Ignored if IPCW=FALSE.

admincens : The censoring model (i.e. the model used to calculate the inverse

probability of censoring weights) considers censoring as the ‘event’ of interest

and considers failure as a ‘censoring’. By default, the censoring model treats

all censorings as ‘events’. However, one might not want inverse probability of

censoring weights to adjust for administrative censorings. If so, adminstrative

censorings need to be treated as ‘censorings’ rather than ‘events’ in the censoring

model. To treat some censorings as ‘censorings’ rather than ‘events’ in the

censoring model, specify admincens as a vector of length n whose ith entry

equals TRUE if the censoring of individual i is to be treated by the censoring

model as a ‘censoring’ and equals FALSE if it is to be treated as an ‘event’. This

argument is ignored if IPCW is not specified or if IPCW is specified to equal

FALSE.

useZ : By default, there is assumed to be no effect modification, i.e. it assumes that

the causal effect of Ak does not depend on the treatment or confounder histories

(Āk−1, L̄k). This assumption corresponds to Zk(l) = 1 in the SNCSTM. useZ can

be used to indicate that the SNCSTM should instead allow the causal effect of

Ak to depend on (Āk−1, L̄k). In that case, useZ should be a (K +1)× (K +1)×

(Nmod + 1) array, where Nmod is the number of effect modifiers of Ak. Note that

if useZ is specified, its (k, l, 1)th entry should equal 1 for all k and l (so that a

main effect of Ak is included in the SNCSTM) and the Z component of the data

frame called ‘data’ (see above) should also be specified. See Example 2 for an

example of how to specify useZ and Z.

RETURNBOOT : By default, this equals FALSE. To use the sncstm function
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with the boot function, in order to calculate bootstrap confidence intervals, set

RETURNBOOT equal to TRUE. See Examples 1 and 2 for how to use the boot

function.

EXPONCUM : By default, this equals FALSE. If it equals TRUE, the sncstm

function returns not only the estimates of ψk(l) (0 6 k 6 l 6 K) but also the

corresponding estimates of
∑l

j=k ψk(j) and exp
{

∑l
j=k ψk(j)

}

. These quantities

are relevant to the calculation of relative probabilities of survival (see the analysis

of the Cystic Fibrosis data in Section 8 of our article).

VERBOSE : By default, this equals FALSE. If it equals TRUE, the sncstm function

will print some extra information.

J. Comparison with Picciotto et al.’s (2012) method

J.1 The case of K = 0

For simplicity, suppose that K = 0, that Z0(0) = 1 (i.e. no effect modification),

that there is no random censoring, and that all individuals still at risk at time 10

are administratively censored at that time.

To compare the SNCSTM with Picciotto et al.’s (2012) method, first reformulate

Picciotto et al.’s original structural nested cumulative failure time model as a

model for survival, rather than failure. Then treat the data as being the result of

ten visits, at times t = 0, . . . , 9, at each of which the exposure of an individual

is the same (i.e. A0), with the exposure effect being ψ0(0). Then Picciotto et al.’s

estimating function (see their first equation after their equation (11)) is

9
∑

s=0

R(s){A0 − Ê(A0 | Ā
s
0, L0, T > s)}

×
10
∑

t=s+1

J(Ās
0, L0, t)

{

exp

(

t−1
∑

j=s

ψ0(0)A0

)

R(t)−B(Ās
0, L0, t)

}

(33)
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where Ās
0 = A0 if s > 0 and is null otherwise, and where J(Ās

0, L0, t) andB(Ās
0, L0, t)

are any given functions of Ās
0, L0 and t. Picciotto et al. use J(Ās

0, L0, t) = 1 and

B(Ās
0, L0, t) = 0. Obviously, Ê(A0 | Ās

0, L0, T > s) = A0 when s > 0. So, with

B(Ās
0, L0, t) = 0, expression (33) reduces to

{A0 − Ê(A0 | L0)}
10
∑

t=1

J(L0, t) exp(ψ0(0)A0t)R(t) (34)

As Dukes and Vansteelandt (2018) explain, a drawback of Picciotto et al.’s method

relative to Methods 2 and 3 is the difficulty of deriving the efficient choice of

J(L0, t). This difficulty arises because of the correlation between the survival indica-

tors R(1), . . . , R(10). Methods 2 and 3 are instead based on independent martingale

increments, which makes it easier to derive efficient estimating equations.

J.2 The case of K = 1

Now consider the more complicated scenario where K = 1. Suppose that we still

have Z0(0) = Z0(1) = Z1(1) = 1 (i.e. no effect modification) and still there is no

random censoring. Suppose that S1 = 10, i.e. A1 is measured at time 10 and that

all individuals still at risk at time 20 are administratively censored at that time

(S2 = 20).

Picciotto et al.’s estimating function for (ψ0(0), ψ1(1), ψ0(1)) is (using their notation
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Hst = Hst(ψ0(0), ψ1(1), ψ0(1)) defined on page 890)

19
∑

s=0

R(s)
[

{A0 − Ê(A0 | Ā
s
0, L0, T > s)}I(s 6 9)

+ {A1 − Ê(A1 | Ā
s
1, L̄1, T > s)}I(s > 10)

]

×
20
∑

t=s+1

{

J(As
0, L0, t)I(s 6 9) + J(Ās

1, L̄1, t)I(s > 10)
}

×Hst

= {A0 − Ê(A0 | L0)}
20
∑

t=1

J(L0, t)H0t

+R(10){A1 − Ê(A1 | A0, L̄1, T > 10)}
20
∑

t=11

J(A0, L̄1, t)H10,t

where Ās
1 = A0 for s 6 10 and Ās

1 = Ā1 for s > 11. If we take J(L0, t) = J0(0) for

t 6 10, J(L0, t) = J0(1) for t > 11 and J(A0, L̄1, t) = J1(1), then this becomes

{A0 − Ê(A0 | L0)}J0(0)

10
∑

t=1

H0t + {A0 − Ê(A0 | L0)}J0(1)

20
∑

t=11

H0t

+R(10){A1 − Ê(A1 | A0, L̄1, T > 10)}J1(1)

20
∑

t=11

H10,t

= {A0 − Ê(A0 | L0)}J0(0)

10
∑

t=1

exp(ψ0(0)A0t)R(t)

+{A0 − Ê(A0 | L0)}J0(1) exp{ψ0(0)A0 × 10}
20
∑

t=11

exp{(ψ0(1)A0 + ψ1(1)A1)(t− 10)}R(t)

+{A1 − Ê(A1 | A0, L̄1, T > 10)}J1(1)

20
∑

t=11

exp{ψ1(1)A1(t− 10)}R(t)

If we choose J0(0) = (1, 0, 0)⊤, J1(1) = (0, 1, 0)⊤ and J0(1) = (0, 0, 1)⊤, then this

estimating function becomes a vector with the following three elements:

{A0 − Ê(A0 | L0)}
10
∑

t=1

exp(A0ψ0(0)t)R(t)

{A0 − Ê(A0 | L0)} exp{A0ψ0(0) × 10}
20
∑

t=11

exp{(A0ψ0(1) + A1ψ1(1))(t− 10)}R(t)

{A1 − Ê(A1 | A0, L̄1, T > 10)}
20
∑

t=11

exp{A1ψ1(1)(t− 10)}R(t)

To impose the constraint that ψ0(0) = ψ1(1), one may instead choose J0(0) = J1(1) =

(1, 0)⊤ and J0(1) = (0, 1)⊤.
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J.3 The general case of K > 0

More generally, for K > 0, the estimating function is a vector with elements of the

form

{Ak − Ê(Ak | Āk−1, L̄k, T > 10k)} exp

{

l−1
∑

j=k

Aj

l−1
∑

m=j

ψj(m) × 10

}

×
10l+10
∑

t=10l+1

exp

{

l
∑

j=k

Ajψj(l)(t− 10l)

}

R(t) (0 6 k 6 l 6 K)

when the constraint ψk(k+m) = ψk′(k′+m) ∀k, k
′, m is not imposed, and analogously

when the constraint is imposed.

J.4 Structural nested cumulative failure time model with censoring

When there is random (i.e. non-administrative) censoring, Picciotto et al. (2012)

use inverse probability of censoring weights for their structural nested cumulative

failure time model. These weights involve the conditional probability that an

individual is censored by time t + 1 given that he or she has survived and not

been censored by time t and his or her treatment and confounder histories at time

t. Note that this probability will, in general, depend on the treatment history at

time t, even if censoring is completely at random, because individuals cease to be

at risk of censoring when they fail. For example, suppose that K = 0, that there

are no baseline confounders L0 and that treatment A0 increases the hazard of

failure between times 0 and 1. Then the expected time that an individual is at risk

of being censored is less for a treated individual than for an untreated individual.

Suppose censoring is completely at random. Then the probability of being censored

by time 1 is lower for treated individuals than for untreated individuals, because

of the former group’s smaller expected time at risk of censoring. For readers who

are interested, we now provide a more specific example.

Let A0 be binary with P (A0 = 1) = 0.5 and let T (a0) ∼ exp(0.5+0.5a0) (a0 = 0, 1)
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independently of A0. The true value of ψ0(0) is given by

ψ0(0) = log

[

P{T < 1 | A0 = 1}

P{T (0) < 1 | A0 = 1}

]

= log

[

P{T (1) < 1}

P{T (0) < 1}

]

= log

[

1− exp(−1)

1− exp(−0.5)

]

= 0.474.

Picciotto et al.’s estimating function (see their first equation after their equation

(11)) is

{A0 − E(A0)} exp(−ψ0(0)A0)I(T 6 1) (35)

when there is no censoring. Expression (35) can be shown to have expectation zero

when ψ0(0) = 0.474.

Now suppose there is censoring, with C denoting an individual’s censoring time.

Picciotto et al. replace the term I(T 6 1) in expression (35) by I(T 6 1, C > T )

(see their Section 6) and their estimating function becomes

{A0 − E(A0)} exp(−ψ0(0)A0)I(T 6 1, C > T ) (36)

This equals −0.5×I{T (0) 6 1, C > T (0)} if A0 = 0 and 0.5 exp(−ψ0(0))×I{T (1) 6

1, C > T (1)} if A0 = 1.

Suppose that C ∼ exp(5) independently of A0, T (0) and T (1). Then

E[I{T (0) 6 1, C > T (0)}] = P{T (0) 6 1, C > T (0)}

=

∫ 1

0

exp{−(0.5 + 5)t} × 0.5 dt

=
1− exp(−5.5)

11

and, similarly,

E[I{T (1) 6 1, C > T (1)}] =
1− exp(−6)

6
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So, the expectation with respect to A0, T and C of expression (36) is

1

2

[

−
1− exp(−5.5)

11
×

1

2
+

{1− exp(−6)} exp(−ψ0(0))

6
×

1

2

]

(37)

This equals zero when

ψ0(0) = − log

{

6

11
×

1− exp(−5.5)

1− exp(−6)

}

= 0.608

So, the estimator of ψ0(0) will converge asymptotically to 0.608, rather than to the

true value, 0.474.

This (asymptotic) bias can be corrected by using inverse probability of censoring

weighting. The weight for an individual with A0 = a0 is 1/P{C > T (a0)} =

exp{5 T (a0)}. So, the weighted estimating function is

{A0 − E(A0)} exp(−ψ0(0)A0)I(T 6 1, C > T )× exp(5T ) (38)

To calculate the expectation of expression (38) at various values of ψ0(0), we

simulated data on A0, T and C for 107 individuals, calculated expression (38) for

each individual, and averaged over the individuals. Figure 2 shows the result. Also

shown in Figure 2 is the expectation of the unweighted estimating function. (This

latter expectation is given by expression (37), but we also verified that the same

result was obtained by calculating expression (36) for each of the 107 simulated

individuals and averaging.) We see from Figure 2 that, unlike the unweighted

estimating function, the weighted estimating function has expectation zero at

ψ0(0) = 0.476. This is very close to the true value of ψ0(0), viz. 0.474. The very

small difference is likely to be due to the Monte Carlo error inherent in calculating

the expectation by simulation.

J.5 Censoring for the structural nested model for survival

Now consider our situation, where Picciotto et al.’s structural nested cumulative

failure time model has been reformulated as a model for survival, rather than
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for failure. In this reformulated model, no inverse probability of weighting is re-

quired when censoring is completely at random. We now explain why this is.

Consider the estimating function of expression (34). The quantity {A0 − Ê(A0 |

L0)}J(L0, t) exp(ψ0(0)A0t)R(t) is unknown if R(t), the survival status at time t, is

unknown. If we exclude individuals whose R(t) is unknown, we should compensate

for this exclusion by weighting each individual whose R(t) is known by the inverse

of the probability that his or her R(t) is known. R(t) is known if T < C or C > t.

So, if censoring is completely at random, with cumulative hazard H(t), then the

probability that R(t) is known is exp{−H(t ∧ T )}. In fact, this probability needs

to be evaluated only for those individuals whose R(t) is known and equals 1. This

is because {A0 − Ê(A0 | L0)}J(L0, t) exp(ψ0(0)A0t)R(t) = 0 when R(t) = 0. For

an individual whose R(t) is known to equal 1, T must be greater than t, meaning

that exp{−H(t∧T )} = exp{−H(t)}. Since exp{−H(t)} is a constant (apart from

depending on t), there is no need to weight by its inverse.

J.6 Applying Picciotto et al.’s estimation method in simulation study

We compared the performance of Picciotto et al.’s estimation method to our

Methods 1–3 in the two regular visit scenarios of the simulation study of Section 7

of our article. In this simulation study, S1 = 1, S2 = 2, etc., rather than S1 = 10,

S = 20, etc. as was assumed above. So, the estimating equations become

{A0 − Ê(A0 | L0)}
10
∑

t=1

exp(A0ψ0(0)t/10)R(t/10) = 0

{A0 − Ê(A0 | L0)} exp{A0ψ0(0)}
20
∑

t=11

exp{(A0ψ0(1) + A1ψ1(1))(t− 10)/10}R(t/10) = 0

{A1 − Ê(A1 | A0, L̄1, T > 1)}
20
∑

t=11

exp{A1ψ1(1)(t− 10)/10}R(t/10) = 0
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etc., when the constraint ψk(k+m) = ψk′(k′+m) ∀k, k
′, m is not imposed, and analo-

gously when the constraint is imposed. Inverse probability of censoring weighting

was used in the scenario with random censoring, as described in Web Appendix J.4.

As Picciotto et al. (2012) note, these estimating equations cannot be solved using

the Newton-Raphson algorithm. They used the Newson-Mead algorithm; we used

a simple grid search with a fine grid.

Results are reported in Section 7 and Tables 1 and 2 of our article.

K. Competing risks

Suppose there are two competing causes of failure. Let T (Āk, 0) be the counter-

factual failure time as previously defined, that is, it is the time from the start of

the study until failure, regardless of the cause of failure. Let N
(j)

(Āk ,0)
(t) denote the

counterfactual counting process indicator for a failure due to cause j (j = 1, 2).

We consider the following semi-parametric additive cause-specific hazard model

E
{

dN
(j)

(Āk−1,0)
(t) | Āk, L̄k, T (Āk−1, 0) > t

}

= E
{

dN
(j)

(Āk,0)
(t) | Āk, L̄k, T (Āk, 0) > t

}

− Akψ
(j)
k(l)dt,

for t ∈ [l, l + 1) and j = 1, 2. Building on similar results in Martinussen and

Vansteelandt (2018), the procedure proposed in our article is readily adjusted to

the estimation of ψ
(j)
k(l) (j = 1, 2) by redefining wk(t) as

wk(t) =
K
∏

j=k+1

exp
{

Akψ
(1)
k(l) + Akψ

(2)
k(l)

}

.

This change accounts for the fact that the conditional mean of the at-risk indicator

R(t) = I(T > t) is influenced by the cause-specific hazards of both failure types.

For instance, equation (7) becomes

n
∑

i=1

∫ l+1

l

Ri(t)wki(t)∆ki(t)

[

dN
(j)
i (t)−

{

l
∑

s=k+1

Asiψ
(j)
s(l) +∆ki(l)ψ

(j)
k(l)

}

dt

]

= 0,



34 Biometrics, 000 0000

which must be solved jointly for j = 1 and j = 2.

Formulae very similar to those given by Martinussen and Vansteelandt (2018) can

be used to convert these estimates of the parameters ψ
(j)
k(l), which describe the causal

effect of exposure on cause-specific hazards, into estimates of the causal effect of

exposure on cumulative incidence.

L. Additional simulation studies

In Section 7 we showed results for n = 1000 in the two regular visit scenarios, one

with no censoring and one with random censoring. Web Tables 4 and 5 show the

results for the irregular visit scenario.

Web Tables 6–11 show the corresponding results for the three scenarios when n =

250.

Web Tables 12–17 show the corresponding results for n = 1000 with a shorter

follow-up time. In this case, the visit times are divided by four and administrative

censoring occurs at time 1. This means that the visit times are Sk = k/4 (k =

0, . . . , 4) in the regular visit scenarios and the inter-visit times are Sk − Sk−1 ∼

Uniform[0.5/4, 1.5/4] in the irregular visit scenario.

We also carried out a simple simulation study to illustrate the double robustness

properties of Methods 2 and 3. We shall use B∗
k(l) to denote the modified version

of Model Bk(l) allowed by Method 3. The original model, Model Bk(l), allowed by

Method 2 assumes that the intercept and coefficients for Āk−1 and L̄k are constant

over time. The modified model, Model B∗
k(l), is more general, allowing as it does

the intercept and coefficients for Āk−1 and L̄k to vary over time. If Model Bk(l) is

correctly specified, then so is Model B∗
k(l).

In this simulation study, we assumed K = 1, S0 = 0, S1 = 1, a single time-
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dependent, continuous confounder, and a continuous treatment. The hazard of

T (a0, 0) given A0 and L0 during time interval t ∈ [0, 1) was assumed to be

E{dN(a0,0)(t) | A0, L0, T (a0, 0) > t} = ω0 + γ00L0 + δ00a0 t ∈ [0, 1)

where ω0 = 2.7, γ00 = 0.75 and δ00 = −0.3. This implies that Model M0 is

correctly specified during the time interval t ∈ [0, 1) and ψ0(0) = δ00 = −0.3. It also

implies that Model B0(0) is correctly specified, since E{dN(0)(t) | A0, L0, T (0) >

t} = ω0 + γ00L0 is linear in L0 and the intercept ω0 and coefficient γ00 of L0 are

constant in t.

Intervening on A0 may change the value of L1. So, let L1(a0) denote the value of

L1 when A0 is set by intervention to equal a0. We shall assume that

L1(a0) | A0 = a0, L0, T (a0, 0) > 1 ∼ N(1.6− 0.5a0, 0.5)

The hazard of T (a0, a1) given Ā1, L0 and L1(a0) during time interval t ∈ [1, 2) was

assumed to be

E{dN(a0,a1)(t) | Ā1 = (a0, a1), L0, L(a0), T (a0, a1) > t}

= ω1 + γ10L0 + γ11L1(a0) + δ10a0 + δ11a1 + (t− 1)c t ∈ [1, 2)

where ω1 = 2.7, γ10 = 0, γ11 = 0.75, δ10 = 0.275, δ11 = −0.3 and c is a constant.

We shall consider two values of c: 0 and 9/32. This form of the hazard implies

that Model M1 is correctly specified and ψ1(1) = δ11 = −0.3. Also, Model B0(0)

is correctly specified if c = 0, but not if c = 9/32 (because the intercept term

2.7 + (t − 1)c is then a function of t). However, Model B∗
0(0) is correctly specified

regardless of whether c = 0 or c = 9/32 (because the intercept in that model is

allowed to be a function of t).

We shall now show that: i) Model M0 is correctly specified during time interval
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t ∈ [1, 2), with ψ0(1) = −0.1; ii) Model B0(1) is correctly specified if c = 9/32 but

not if c = 0; and iii) Model B∗
0(1) is correctly specified whatever the value of c.

For t ∈ [1, 2),

P{T (a0, 0) > t | A0, L0}

= P{T (a0, 0) > 1 | A0, L0}

×EL1(a0)

[

P{T (a0, 0) > t | Ā1, L1(a0), T (a0, 0) > 1} | A0, L0, T (a0, 0) > 1
]

= exp {−(ω0 + γ00L0 + δ00a0)}

×EL1(a0)

(

exp

[

−{ω1 + (t− 1)c/2 + γ10L0 + γ11L1(a0) + δ10a0} (t− 1)

]

| A0, L0, T (a0, 0) > 1)

= exp
[

− {ω0 + γ00L0 + δ00a0} − {ω1 + (t− 1)c/2 + γ10L0 + δ10a0} (t− 1)
]

×EL1(a0) [exp{−γ11L1(a0) (t− 1)} | A0, L0, T (a0, 0) > 1] (39)

Moreover, because L1(a0) is normally distributed given A0, L0 and T (a0, 0) > 1,

and using the form of the moment generating function of a normal distribution,

we have

EL1(a0) [exp{−γ11L1(a0) (t− 1)} | A0, L0, T (a0, 0) > 1]

= exp [−E {γ11L1(a0)(t− 1) | A0, L0, T (a0, 0) > 1}

+
1

2
Var {γ11L1(a0)(t− 1) | A0, L0, T (a0, 0) > 1}

]

= exp [−(t− 1)γ11E {L1(a0) | A0, L0, T (a0, 0) > 1}

+
1

2
(t− 1)2γ211Var {L1(a0) | A0, L0, T (a0, 0) > 1}

]

(40)

It follows from equations (39) and (40) that the conditional hazard of T (a0, 0)

given A0 and L0 during time interval t ∈ [1, 2) equals

ω1 + (t− 1)c+ γ10L0 + δ10a0 + γ11E {L1(a0) | A0, L0, T (a0, 0) > 1}

−(t− 1)γ211Var {L1(a0) | A0, L0, T (a0, 0) > 1} (41)
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We see from the hazard (41) that Model M0 is correctly specified in the time

interval t ∈ [1, 2), with

ψ0(1) = δ10 + γ11 ×
E {L1(a0) | A0, L0} − E {L1(0) | A0, L0}

a0

= 0.275 + 0.75× (−0.5)

= −0.1

Moreover, if c = γ211Var {L1(a0) | A0, L0, T (a0, 0) > 1} = 0.752 × 0.5 = 9/32, the

hazard (41) reduces to

ω1 + γ10L0 + δ10a0 + γ11E {L1(a0) | A0, L0, T (a0, 0) > 1}

= 2.7 + 0× L0 + 0.275a0 + 0.75(1.6− 0.5a0)

= 3.9− 0.1a0

which shows that Model B0(1) is correctly specified if c = 9/32 but not if c = 0. The

more general model, Model B∗
0(1), is correctly specified whether c = 0 or c = 9/32.

We generated observed data from this model as follows. First, we need to specify

how to generate L0, A0 and A1.

For L0, we assumed that L0 ∼ N(0, 0.5).

The data-generating distribution of A0 given L0 was either A0 | L0 ∼ N(3 −

L0, 0.9
2) or A0 | L0 ∼ N(3.5 − 2I(L0 > 0.75), 0.92), where I(.) is the indicator

function. We call these two data-generating modelsA
gen(1)
0 and A

gen(2)
0 , respectively.

The Model A0 that will be assumed when fitting the SNCSTM to these simulated

data is a linear regression of A0 on L0. So, if the data-generating model is A
gen(1)
0

then the assumed Model A0 is correctly specified, but if it is A
gen(2)
0 then Model

A0 is misspecified.

The hazard for the observed failure time T is 2.7+0.75L0− 0.3A0 during the time

interval t ∈ [0, 1).
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To generate L1 given A0, L1 and T > 1, we assumed

L1 | A0, L0, T > 1 ∼ N(1.6− 0.5A0, 0.5)

The true data-generating distribution of A1 given A0, L̄1 and T > 1 was either

A1 | A0, L̄1, T > 1 ∼ N(3−L1, 0.9
2) (called model A

gen(1)
1 ) or A1 | A0, L̄1, T > 1 ∼

N(3.5 − 2I(L1 > 0.75), 0.92) (called model A
gen(2)
1 ). The Model A1 that will be

assumed when fitting the SNCSTM to these simulated data is a linear regression

of A1 on A0 and L̄1. So, if the data-generating model is A
gen(1)
1 then Model A1 is

correctly specified, but if it is A
gen(2)
1 then Model A1 is misspecified.

The hazard for the observed failure time T is 2.7+0.75L1+0.275A0−0.3A1+(t−1)c

during the time interval t ∈ [1, 2).

We considered the following four scenarios:

(1) The data-generating models for A0 and A1 are A
gen(1)
0 and A

gen(1)
1 . This means

that Models A0 and A1 are correctly specified, and so all of Methods 1–3

should yield consistent estimates of ψ0(0), ψ0(1) and ψ1(1). Here we used c = 0.

(2) The data-generating models for A0 and A1 are A
gen(1)
0 and A

gen(2)
1 . This means

that A0 is correctly specified, but A1 is misspecified. Here, Method 1 should

yield a consistent estimate of ψ0(0) but the estimates of ψ0(1) and ψ1(1) may

be inconsistent. We used c = 0, which means Model B1(1) is also correctly

specified. The double robustness properties of Methods 2 and 3 should mean

that these methods yield consistent estimates not only of ψ0(0) but also of ψ0(1)

and ψ1(1).

(3) The data-generating models for A0 and A1 are A
gen(2)
0 and A

gen(1)
1 . This means

that A0 is misspecified, but A1 is correctly specified. Here, Method 1 should

yield a consistent estimate of ψ1(1) but the estimates of ψ0(0) and ψ0(1) may be

inconsistent. We used c = 9/32, which means Model B0(1) is correctly specified.
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Since Model B0(0) is also correctly specified, the double robustness properties

of Methods 2 and 3 should mean that these methods yield consistent estimates

of ψ0(0), ψ0(1) and ψ1(1).

(4) The data-generating models for A0 and A1 are A
gen(2)
0 and A

gen(2)
1 . This means

that Models A0 and A1 are both misspecified. Here, Method 1 may yield

inconsistent estimates of all three parameters. We used c = 0, which means that

Models B1(1) and B0(0) are correctly specified. Method 2 should therefore yield

consistent estimates of ψ0(0) and ψ1(1). However, Model B0(1) is misspecified,

meaning that the estimate of ψ0(1) from Method 2 may be inconsistent. Method

3 should yield consistent estimates of all three parameters, because Model B∗
0(1)

is correctly specified.

For each of these four scenarios, we considered the case of no random censoring and

the case of censoring completely at random with constant censoring hazard 0.5.

Thus, there were a total of eight scenarios. In all eight scenarios, all individuals

who had not failed or been censored prior to time t = 2 were administratively

censored at that time. For each scenario, we generated 5000 simulated datasets,

each of n = 5000 individuals.

Table 18 shows the mean of the parameter estimates over the 5000 simulated

datasts when there is no censoring. Results for the random censoring scenarios were

very similar. Monte Carlo standard errors for these means are shown in brackets.

The results are as expected. That is, where we have predicted an estimator to be

consistent, it is approximately unbiased, and where it has been predicted to be

possibly inconsistent, it is generally biased. One exception is that the bias (if any)

in the estimator of ψ0(1) from Method 2 is very small even in the fourth scenario,

where we predicted this estimator was likely to be inconsistent. This is probably
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because the misspecification of Model B0(1) is only minor, i.e. only the intercept

term depends on t and this dependence is not large.
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Figure 2. Expectations of unweighted (solid line) and weighted estimating
function (broken line) as functions of ψ0(0). The true value of ψ0(0) is shown by
the vertical dotted line.



Table 1

Means (×10) and SEs (×10) of parameter estimates when n = 1000, visits are regular and the only
censoring is administrative. ‘Mtd’ is method (‘P’ is Picciotto et al.’s method — see Section 9) and

‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.

Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

Means

1 no 0.393 0.098 0.031 0.025 0.391 0.096 0.034 0.403 0.098 0.383
2 no 0.396 0.100 0.032 0.024 0.394 0.097 0.033 0.408 0.100 0.392
3 no 0.395 0.100 0.031 0.023 0.392 0.096 0.033 0.406 0.099 0.388
P no 0.394 0.107 0.030 0.021 0.394 0.094 0.049 0.408 0.102 0.387
1 yes 0.386 0.096 0.032 0.024 0.386 0.096 0.032 0.386 0.096 0.386
2 yes 0.397 0.099 0.032 0.023 0.397 0.099 0.032 0.397 0.099 0.397
3 yes 0.395 0.098 0.032 0.023 0.395 0.098 0.032 0.395 0.098 0.395
P yes 0.394 0.104 0.030 0.029 0.394 0.104 0.030 0.394 0.104 0.394

SEs

1 no 0.177 0.187 0.199 0.218 0.243 0.254 0.260 0.251 0.273 0.272
2 no 0.169 0.180 0.191 0.204 0.237 0.246 0.253 0.240 0.262 0.267
3 no 0.169 0.179 0.190 0.204 0.236 0.245 0.252 0.239 0.260 0.265
P no 0.196 0.290 0.349 0.397 0.265 0.376 0.452 0.270 0.384 0.300
1 yes 0.113 0.131 0.158 0.217 0.113 0.131 0.158 0.113 0.131 0.113
2 yes 0.109 0.129 0.151 0.203 0.109 0.129 0.151 0.109 0.129 0.109
3 yes 0.109 0.128 0.150 0.203 0.109 0.128 0.150 0.109 0.128 0.109
P yes 0.126 0.206 0.306 0.494 0.126 0.206 0.306 0.126 0.206 0.126



Table 2

Means (×10) and SEs (×10) of parameter estimates when n = 1000, visits are regular and censoring is
random. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring weights; ‘P’ is Picciotto et al.’s method —

see Section 9) and ‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.

Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

Means

1 no 0.394 0.108 0.021 0.054 0.396 0.105 0.055 0.403 0.111 0.383
1cw no 0.396 0.102 0.020 0.054 0.393 0.096 0.054 0.408 0.097 0.383
2 no 0.396 0.104 0.036 0.033 0.399 0.096 0.038 0.411 0.098 0.393
3 no 0.396 0.103 0.036 0.033 0.396 0.095 0.038 0.407 0.096 0.385
P no 0.397 0.117 0.024 0.050 0.399 0.095 0.078 0.405 0.117 0.390
1 yes 0.391 0.106 0.031 0.053 0.391 0.106 0.031 0.391 0.106 0.391
1cw yes 0.392 0.099 0.031 0.054 0.392 0.099 0.031 0.392 0.099 0.392
2 yes 0.398 0.099 0.037 0.032 0.398 0.099 0.037 0.398 0.099 0.398
3 yes 0.396 0.099 0.037 0.032 0.396 0.099 0.037 0.396 0.099 0.396
P yes 0.395 0.108 0.035 0.051 0.395 0.108 0.035 0.395 0.108 0.395

SEs

1 no 0.265 0.313 0.372 0.467 0.400 0.483 0.569 0.462 0.563 0.577
1cw no 0.201 0.234 0.373 0.469 0.298 0.346 0.572 0.348 0.424 0.406
2 no 0.180 0.211 0.252 0.304 0.276 0.313 0.380 0.317 0.385 0.373
3 no 0.180 0.211 0.251 0.303 0.275 0.310 0.375 0.314 0.380 0.367
P no 0.219 0.389 0.571 0.728 0.334 0.557 0.855 0.385 0.652 0.457
1 yes 0.186 0.241 0.311 0.463 0.186 0.241 0.311 0.186 0.241 0.186
1cw yes 0.140 0.179 0.313 0.465 0.140 0.179 0.313 0.140 0.179 0.140
2 yes 0.130 0.162 0.211 0.303 0.130 0.162 0.211 0.130 0.162 0.130
3 yes 0.130 0.161 0.210 0.301 0.130 0.161 0.210 0.130 0.161 0.130
P yes 0.157 0.282 0.475 0.802 0.157 0.282 0.475 0.157 0.282 0.157



Table 3

Coverage (%) of 95% bootstrap confidence intervals for Methods 1, 2 and 1cw (i.e. Method 1 with
censoring weights) when n=1000, visits are regular, either there is only administrative censoring or

there is random censoring, and the constraint ψk(k+m) = ψk′(k′+m) is not imposed.

Mtd ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

No censoring

1 96.0 96.0 95.5 94.7 94.4 95.5 96.6 95.4 95.7 94.5
2 96.5 96.4 95.4 95.7 94.9 95.6 96.5 96.0 95.8 94.7

Random censoring

1 95.0 95.6 96.4 94.8 95.3 95.5 95.9 95.6 96.0 95.4
1cw 96.5 96.8 96.6 95.2 95.9 97.9 95.9 97.1 97.8 97.7
2 95.7 95.7 95.9 96.1 94.9 95.9 96.7 95.9 96.6 96.1



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

1 no 0.394 0.112 0.009 0.024 0.399 0.118 0.034 0.382 0.133 0.354
1cw no 0.390 0.110 0.009 0.025 0.418 0.106 0.036 0.397 0.136 0.351
2 no 0.398 0.110 0.034 0.026 0.401 0.096 0.020 0.413 0.114 0.408
1 yes 0.392 0.116 0.026 0.024 0.392 0.116 0.026 0.392 0.116 0.392
1cw yes 0.395 0.112 0.027 0.025 0.395 0.112 0.027 0.395 0.112 0.395
2 yes 0.401 0.107 0.029 0.027 0.401 0.107 0.029 0.401 0.107 0.401

Table 4

Means (×10) of parameter estimates when n=1000 and visits are irregular and there is random
censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

1 no 0.486 0.645 0.828 0.555 0.722 1.044 1.013 0.875 1.144 1.057
1cw no 0.453 0.617 0.831 0.556 0.656 1.001 1.015 0.797 1.098 0.997
2 no 0.180 0.214 0.245 0.277 0.265 0.315 0.378 0.305 0.374 0.355
1 yes 0.355 0.490 0.646 0.543 0.355 0.490 0.646 0.355 0.490 0.355
1cw yes 0.325 0.465 0.646 0.545 0.325 0.465 0.646 0.325 0.465 0.325
2 yes 0.125 0.161 0.204 0.273 0.125 0.161 0.204 0.125 0.161 0.125

Table 5

SEs (×10) of parameter estimates when n=1000 and visits are irregular and there is random censoring.
‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

1 no 0.396 0.098 0.034 0.037 0.397 0.118 0.005 0.393 0.100 0.375
2 no 0.405 0.100 0.042 0.037 0.423 0.128 0.013 0.423 0.106 0.408
3 no 0.403 0.099 0.042 0.037 0.417 0.125 0.014 0.412 0.103 0.393
1 yes 0.362 0.099 0.028 0.037 0.362 0.099 0.028 0.362 0.099 0.362
2 yes 0.410 0.109 0.037 0.036 0.410 0.109 0.037 0.410 0.109 0.410
3 yes 0.403 0.107 0.037 0.036 0.403 0.107 0.037 0.403 0.107 0.403

Table 6

Means (×10) of parameter estimates when n=250 and visits are regular and there is no random
censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

1 no 0.377 0.372 0.416 0.448 0.473 0.492 0.543 0.514 0.571 0.549
2 no 0.363 0.359 0.407 0.439 0.474 0.491 0.540 0.521 0.584 0.574
3 no 0.361 0.356 0.404 0.433 0.467 0.482 0.528 0.508 0.568 0.554
1 yes 0.227 0.249 0.304 0.443 0.227 0.249 0.304 0.227 0.249 0.227
2 yes 0.235 0.255 0.310 0.434 0.235 0.255 0.310 0.235 0.255 0.235
3 yes 0.232 0.251 0.306 0.429 0.232 0.251 0.306 0.232 0.251 0.232

Table 7

SEs (×10) of parameter estimates when n=250 and visits are regular and there is no random censoring.
‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

1 no 0.409 0.115 0.015 -0.003 0.388 0.076 -0.034 0.397 0.153 0.354
1cw no 0.399 0.107 0.021 -0.005 0.373 0.105 -0.037 0.408 0.121 0.354
2 no 0.404 0.107 0.050 0.051 0.419 0.115 0.020 0.439 0.101 0.403
3 no 0.401 0.106 0.050 0.049 0.411 0.114 0.024 0.422 0.094 0.376
1 yes 0.382 0.108 0.005 -0.002 0.382 0.108 0.005 0.382 0.108 0.382
1cw yes 0.373 0.105 0.010 -0.005 0.373 0.105 0.010 0.373 0.105 0.373
2 yes 0.409 0.108 0.049 0.046 0.409 0.108 0.049 0.409 0.108 0.409
3 yes 0.401 0.106 0.049 0.044 0.401 0.106 0.049 0.401 0.106 0.401

Table 8

Means (×10) of parameter estimates when n=250 and visits are regular and there is random censoring.
‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

1 no 0.544 0.638 0.765 0.948 0.840 0.949 1.197 0.967 1.161 1.203
1cw no 0.431 0.482 0.778 0.974 0.633 0.711 1.230 0.741 0.926 0.911
2 no 0.387 0.422 0.524 0.671 0.585 0.659 0.866 0.707 0.885 0.898
3 no 0.385 0.418 0.516 0.655 0.575 0.641 0.832 0.683 0.830 0.840
1 yes 0.383 0.474 0.616 0.902 0.383 0.474 0.616 0.383 0.474 0.383
1cw yes 0.294 0.355 0.632 0.938 0.294 0.355 0.632 0.294 0.355 0.294
2 yes 0.280 0.325 0.432 0.644 0.280 0.325 0.432 0.280 0.325 0.280
3 yes 0.276 0.317 0.424 0.630 0.276 0.317 0.424 0.276 0.317 0.276

Table 9

SEs (×10) of parameter estimates when n=250 and visits are regular and there is random censoring.
‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

1 no 0.448 0.074 0.043 -0.045 0.387 0.161 0.028 0.294 0.126 0.374
1cw no 0.440 0.089 0.044 -0.049 0.381 0.146 0.025 0.289 0.124 0.400
2 no 0.423 0.090 0.043 -0.022 0.439 0.124 0.054 0.422 0.113 0.442
1 yes 0.403 0.117 0.030 -0.029 0.403 0.117 0.030 0.403 0.117 0.403
1cw yes 0.401 0.120 0.030 -0.031 0.401 0.120 0.030 0.401 0.120 0.401
2 yes 0.425 0.099 0.045 -0.021 0.425 0.099 0.045 0.425 0.099 0.425

Table 10

Means (×10) of parameter estimates when n=250 and visits are irregular and there is random
censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

1 no 0.956 1.356 1.661 1.253 1.422 2.148 1.941 1.746 2.309 2.001
1cw no 0.885 1.315 1.670 1.266 1.344 2.059 1.972 1.639 2.238 1.895
2 no 0.381 0.433 0.533 0.715 0.558 0.715 0.898 0.732 0.943 0.892
1 yes 0.695 1.039 1.234 1.135 0.695 1.039 1.234 0.695 1.039 0.695
1cw yes 0.646 1.000 1.256 1.161 0.646 1.000 1.256 0.646 1.000 0.646
2 yes 0.262 0.337 0.450 0.687 0.262 0.337 0.450 0.262 0.337 0.262

Table 11

SEs (×10) of parameter estimates when n=250 and visits are irregular and there is random censoring.
‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting) and ‘Con’ is whether constraint

ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

1 no 0.393 0.099 0.028 0.005 0.391 0.070 0.036 0.396 0.111 0.386
2 no 0.396 0.103 0.026 0.009 0.395 0.071 0.035 0.406 0.109 0.393
3 no 0.396 0.103 0.026 0.009 0.394 0.071 0.035 0.404 0.109 0.390
1 yes 0.369 0.089 0.030 0.004 0.369 0.089 0.030 0.369 0.089 0.369
2 yes 0.397 0.096 0.029 0.008 0.397 0.096 0.029 0.397 0.096 0.397
3 yes 0.396 0.096 0.029 0.008 0.396 0.096 0.029 0.396 0.096 0.396

Table 12

Means (×10) of parameter estimates when n=1000, times between visits are divided by four and visits
are regular and there is no random censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring

weighting) and ‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

1 no 0.355 0.339 0.318 0.326 0.433 0.428 0.428 0.431 0.427 0.422
2 no 0.342 0.323 0.310 0.312 0.417 0.407 0.415 0.409 0.407 0.411
3 no 0.341 0.322 0.310 0.312 0.416 0.405 0.413 0.407 0.405 0.409
1 yes 0.201 0.218 0.245 0.325 0.201 0.218 0.245 0.201 0.218 0.201
2 yes 0.200 0.216 0.243 0.311 0.200 0.216 0.243 0.200 0.216 0.200
3 yes 0.200 0.215 0.242 0.311 0.200 0.215 0.242 0.200 0.215 0.200

Table 13

SEs (×10) of parameter estimates when n=1000, times between visits are divided by four and visits are
regular and there is no random censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting)

and ‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

1 no 0.391 0.093 0.027 0.021 0.394 0.068 0.028 0.399 0.088 0.396
1cw no 0.396 0.100 0.027 0.020 0.398 0.063 0.028 0.408 0.099 0.400
2 no 0.394 0.104 0.028 0.009 0.398 0.073 0.044 0.404 0.104 0.401
3 no 0.394 0.104 0.027 0.009 0.396 0.073 0.044 0.402 0.104 0.398
1 yes 0.381 0.082 0.026 0.020 0.381 0.082 0.026 0.381 0.082 0.381
1cw yes 0.387 0.087 0.027 0.019 0.387 0.087 0.027 0.387 0.087 0.387
2 yes 0.398 0.096 0.034 0.008 0.398 0.096 0.034 0.398 0.096 0.398
3 yes 0.396 0.096 0.034 0.008 0.396 0.096 0.034 0.396 0.096 0.396

Table 14

Means (×10) of parameter estimates when n=1000, times between visits are divided by four and visits
are regular and there is random censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring

weighting) and ‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

1 no 0.502 0.507 0.502 0.532 0.635 0.672 0.693 0.669 0.677 0.680
1cw no 0.380 0.378 0.503 0.534 0.471 0.487 0.694 0.481 0.508 0.485
2 no 0.346 0.332 0.330 0.339 0.429 0.433 0.449 0.430 0.452 0.444
3 no 0.346 0.332 0.329 0.338 0.427 0.431 0.447 0.428 0.450 0.440
1 yes 0.302 0.339 0.402 0.530 0.302 0.339 0.402 0.302 0.339 0.302
1cw yes 0.224 0.251 0.404 0.533 0.224 0.251 0.404 0.224 0.251 0.224
2 yes 0.206 0.226 0.260 0.336 0.206 0.226 0.260 0.206 0.226 0.206
3 yes 0.206 0.226 0.259 0.336 0.206 0.226 0.259 0.206 0.226 0.206

Table 15

SEs (×10) of parameter estimates when n=1000, times between visits are divided by four and visits are
regular and there is random censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting)

and ‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

True 0.400 0.100 0.040 0.020 0.400 0.100 0.040 0.400 0.100 0.400

1 no 0.339 0.097 0.004 0.020 0.514 0.056 0.032 0.396 0.048 0.400
1cw no 0.338 0.101 0.004 0.020 0.515 0.054 0.033 0.391 0.063 0.397
2 no 0.391 0.095 0.031 0.006 0.396 0.092 0.030 0.416 0.112 0.405
1 yes 0.402 0.075 0.019 0.020 0.402 0.075 0.019 0.402 0.075 0.402
1cw yes 0.400 0.081 0.018 0.020 0.400 0.081 0.018 0.400 0.081 0.400
2 yes 0.399 0.099 0.030 0.007 0.399 0.099 0.030 0.399 0.099 0.399

Table 16

Means (×10) of parameter estimates when n=1000, times between visits are divided by four and visits
are irregular and there is random censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring

weighting) and ‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.



Mtd Con ψ0(0) ψ0(1) ψ0(2) ψ0(3) ψ1(1) ψ1(2) ψ1(3) ψ2(2) ψ2(3) ψ3(3)

1 no 1.589 1.923 2.026 0.753 1.967 2.670 2.217 2.197 2.695 2.458
1cw no 1.559 1.894 2.031 0.755 1.920 2.629 2.220 2.162 2.642 2.413
2 no 0.342 0.347 0.324 0.356 0.420 0.441 0.461 0.453 0.429 0.444
1 yes 1.021 1.312 1.512 0.729 1.021 1.312 1.512 1.021 1.312 1.021
1cw yes 0.999 1.298 1.515 0.733 0.999 1.298 1.515 0.999 1.298 0.999
2 yes 0.201 0.233 0.266 0.354 0.201 0.233 0.266 0.201 0.233 0.201

Table 17

SEs (×10) of parameter estimates when n=1000, times between visits are divided by four and visits are
irregular and there is random censoring. ‘Mtd’ is method (‘1cw’ is Method 1 with censoring weighting)

and ‘Con’ is whether constraint ψk(k+m) = ψk′(k′+m) is imposed.



A0 A1 Mtd ψ0(0) ψ0(1) ψ1(1)

True 0.300 0.100 0.300

correct correct 1 0.293 (0.000) 0.101 (0.002) 0.298 (0.001)
2 0.295 (0.000) 0.101 (0.001) 0.301 (0.001)
3 0.295 (0.000) 0.101 (0.001) 0.300 (0.001)

correct misspec 1 0.292 (0.000) 0.104 (0.001) 0.262 (0.001)
2 0.294 (0.000) 0.100 (0.001) 0.301 (0.001)
3 0.294 (0.000) 0.100 (0.001) 0.302 (0.001)

misspec correct 1 0.262 (0.000) 0.087 (0.001) 0.298 (0.001)
2 0.298 (0.000) 0.104 (0.001) 0.302 (0.001)
3 0.300 (0.000) 0.104 (0.001) 0.301 (0.001)

misspec misspec 1 0.262 (0.000) 0.088 (0.001) 0.262 (0.001)
2 0.298 (0.000) 0.102 (0.001) 0.300 (0.001)
3 0.300 (0.000) 0.101 (0.001) 0.301 (0.001)

Table 18

Results from simulation study to investigate double robustness of Methods 2 and 3. Mean estimates
(×− 1) over 5000 simulated datasets are shown, along with Monte Carlo standard errors of these means

(in brackets). ‘Mtd’ means method. Numbers in red indicate estimators expected to be inconsistent.


