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ABSTRACT
We present a new method for deriving functions that model the

relationship between multiple signals in a physical system. The

method, which we call dimensional function synthesis, applies to
data streams where the dimensions of the signals are known. The

method comprises two phases: a compile-time synthesis phase and

a subsequent calibration using sensor data.

We implement dimensional function synthesis and use the im-

plementation to demonstrate efficiently summarizing multi-modal

sensor data for two physical systems using 90 laboratory experi-

ments and 10 000 synthetic idealized measurements. We evaluate

the performance of the compile-time phase of dimensional func-

tion synthesis as well as the calibration phase overhead, inference

latency, and accuracy of the models our method generates.

The results show that our technique can generate models in less

than 300ms on average across all the physical systems we evalu-

ated. When calibrated with sensor data, our models outperform

traditional regression and neural network models in inference accu-

racy in all the cases we evaluated. In addition, our models perform

better in training latency (over 8660× improvement) and required

arithmetic operations in inference (over 34× improvement). These

significant gains are largely the result of exploiting information on

the physics of signals that has hitherto been ignored.

1 INTRODUCTION
Physical systems instrumented with sensors can generate large

volumes of data. These data are useful in understanding previous

behaviors of the systems that generate them (e.g., monitoring prop-

erties of components in aircraft) as well as in predicting future

behaviors of those systems (e.g., predicting failures of components

in machinery).

Unlike data sources such as speech or text however, data from

sensors of physical phenomena must obey the laws of physics. Ex-

isting methods for constructing predictive models from sensor data

however do not fully exploit prior knowledge of the physical inter-

pretation of sensor data. In this work, we use information about

physical dimensions
1
of sensors to synthesize compact predictive
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1
In keeping with the convention in physics, we use the term dimensions to refer to

quantities such as length or time and we use the term units to refer to a value in a

models from sensor data. The state of the art in deriving compact

models from such data streams today is to apply some form of ma-

chine learning [13, 25]. Blindly applying machine learning to data

from physical systems however ignores important prior knowledge

about the physical implications of the signals.

1.1 Contemporary Methods Ignore Physics
Despite its use in programming languages for tasks such as ex-

tending type systems with units of measure [1–3, 5, 8, 9, 12, 14,

15, 17, 18, 23, 30], physical information in the form of dimensions

(e.g., time, temperature, and so on) has seen limited use in building

models of physical systems from data. Physical constraints can be

viewed as a form of Bayesian prior [4]. Kalman filters incorporate

information about the physical constraints of systems but use this

information primarily to guide their state update equations. Today,

no principled techniques exist which learn models from sensor data

while exploiting the requirements of dimensional consistency of

sensors to learn more compact models.

1.2 Dimensional Function Synthesis
Dimensional function synthesis is a newmethod to efficiently derive

functions relating the values from multiple streams of data when

those data are from physical systems and as a result have known

physical dimensions. The insight behind the method is that any

equation relating physical quantities must obey the principle of

dimensional homogeneity from dimensional analysis [6]: The two

sides of an equation, an addition, or a subtraction, must have the

same physical dimensions.

Based on this observation, dimensional function synthesis en-

ables automatic correlation of physical measurements (e.g., mass,

time, acceleration etc.) in a physically-consistent manner. In a first

offline analysis phase, the method groups physical parameters ac-

cording to their dimensions. Then, in a second run-time stage and

using data from sensors of the physical parameters in question,

dimensional function synthesis calibrates the set of dimensionally-

plausible equations to obtain a final set of predictive models.

Figure 1 shows a schematic view of the process. The inputs to

dimensional function synthesis are a list of signals with known

dimensions relevant to the system under study and a set of data

standardized system for quantifying values of a given dimension, such as centimeters

or miles for length and Pascals or mmHg for pressure.
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Figure 1: Dimensional function synthesis uses information
about physical dimensions to generate a family of candidate
equations. It then uses sensormeasurements to calibrate the
set of candidate equations.

values corresponding to instances of those signals. The outcome is

a model relating the signals and predicting the expected physical

system output. We developed the method of dimensional function

synthesis with the objective of creating inference models that can

fit within the memory, computation, and energy constraints of

low-power embedded systems such as those powered by scavenged

energy. The method may however also apply to computing sys-

tems that are not constrained by compute resources or by energy,

but which nonetheless need simple models defined over a large

parameter space.

1.3 Contributions
This article makes three main contributions to the state of the art in

deriving analytic models from sensor data, whether for the purpose

of summarization or for use in prediction:

• A new method, which we call dimensional function
synthesis, for deriving analyticmodels fromsensor data,
based on the principle of dimensional homogeneity in phys-

ical systems (Section 3).

• An implementation of dimensional function synthe-
sis and its performance evaluation (Section 4).

• An evaluation comparingmodels generated by dimen-
sional function synthesis to models generated by regres-

sion and neural networks. The evaluation uses sensor data

from 90 physical experiments augmented with 10 000 syn-

thetic idealized experiments (Section 5).

2 MATHEMATICAL FOUNDATION
Dimensional analysis is often introduced in engineering curricula

as a simple method for checking the validity of computations on

physical quantities. It is frequently used in engineering, fluid me-

chanics, and electrodynamics in cases such as deflection of turbine

blades in turbo machine designs [26]. The approach to dimensional

analysis familiar to most researchers in computing systems and

computer science involves taking some physical quantity (e.g., ac-

celeration) and expressing it in terms of basic dimensions such

as length (L) and time (T ) to obtain its dimensions (LT−2 for ac-
celeration). Dimensional analysis however has a well-developed

mathematical framework that combines a few basic principles from

physics with an analytic formulation based on linear algebra and

group theory [6, 10, 21]. The remainder of Section 2 provides a

brief overview of this mathematical formalization of dimensional

Table 1: Examples of physical systems and their S
symbols

.

Physical System Parameters, S
symbols

Parameters Dimensions
Altimeter in a S

symbols
= {p, h } Pressure, p D (p ) = ML−1T −2

fitness tracker Elevation, h D (h) = L
Pendulum S

symbols
= {t, l, д } Period, t D (t ) = T

Rod length, l D (l ) = L
Gravity, д D (д) = LT −2

analysis. We then use these definitions to derive the method for

generating equations from sensor data (dimensional function syn-

thesis), in Section 3.

2.1 Parameters in Physical Equations and
Dimensionless Products

Let i be an index over a set of symbols in a physical equation and

let Qi be one of those symbols in an equation describing a physical

system. Typically, these symbols will correspond to parameters of

some physical model and we will therefore use the term parameter
and symbol interchangeably. Let D (·) be a function from symbols

to some product of basic dimensions. For any equation describing

a physical system, we introduce the set S
symbols

, where

S
symbols

= {Q1,Q2, . . . ,Qn } . (1)

For the system described by S
symbols

to be physically plausible,

each member Qi of Ssymbols
can be rewritten in terms of a set of

basic dimensions (e.g., mass, length, time) or is otherwise dimen-
sionless. In Section 3, we show how we obtain the set S

symbols
from

specifications of physical systems.

Example: For the equation

F =m · a,

we have S
symbols

= {F ,m,a}, Q1 = F , Q2 =m, Q3 = a. The dimen-

sions of the members of S
symbols

are given by D (Q1) = MLT−2,

D (Q2) = M , and D (Q3) = LT−2. Table 1 shows additional ex-

amples of parameters and their units for the data from sensors in

several physical systems that can be instrumented with sensors to

monitor their behavior. For example, the altimeter subsystem of a

fitness tracker uses changes in atmospheric pressure to estimate

changes in elevation and hence to estimate the number of flights of

stairs climbed.

The key idea in the mathematical formulation of dimensional

analysis is that for any set S
symbols

such as in the example above,

we can arrange the membersQi of Ssymbols
into groups of products

where the dimensions of the symbols in the product cancel out and

as a result each product is dimensionless [6, 7].

Why finding dimensionless products is useful: Given a set of

parameters S
symbols

for a physical system, each of the dimensionless

products we can form from a subset of S
symbols

directly gives us a

dimensionally-valid equation between those parameters: We can

equate the dimensionless product to any dimensionless quantity

to obtain a dimensionally-correct equation; if we then rearrange

that equation to move one of the parameters to be the only term on

one side of the equation, we have a dimensionally valid equation

of that parameter in terms of the remainder of S
symbols

.

2



Example: For S
symbols

=
⋃
i
{Qi } and the dimensionless product

Qk1
1
Qk2
2
. . .Qkm

m

Qkm+1
m+1 Q

km+2
m+2 . . .Q

kn
n
,

we can equate the dimensionless product to a constant to obtain

Qk1
1
Qk2
2
. . .Qkm

m

Qkm+1
m+1 Q

km+2
m+2 . . .Q

kn
n
= C .

We can then obtain an expression for any of the Qi ∈ Ssymbols
. For

example, for Q1,

Q1 =
k
1

√√√√
CQkm+1

m+1 Q
km+2
m+2 . . .Q

kn
n

Qk2
2
. . .Qkm

m
.

This simple idea generalizes to a method for obtaining a function

relating all the parameters Qi ∈ Ssymbols
relevant to a system, in

terms of one or more dimensionless products that we can form

from S
symbols

.

Definition 1. Let i be an index over the set S
symbols

of symbols
in the description of a physical system, let n be the cardinality of
S
symbols

, and letm be an index such thatm < n. Let ki be a value
drawn from the set of rational numbers Q. A dimensionless product
Π of parameters Qi ∈ Ssymbols

is a monomial of parameters raised
to powers such that D (Π) = 1, that is,

Π =
Qk1
1
Qk2
2
. . .Qkm

m

Qkm+1
m+1 Q

km+2
m+2 . . .Q

kn
n
. (2)

Without loss of generality, we formulate our method in terms of

rational powers ki . This influences how we solve for the powers ki
needed to form a dimensionless product from the parameters in a

set S
symbols

. Rather than using techniques such as singular value

decomposition which are numerically stable and which provide

a unique orthonormal null space [28], because our goal is to ob-

tain monomials that are easily evaluated on resource-constrained

embedded systems, we instead use methods based on finding the

rational null space of a matrix by reduced row-echelon form (RREF).

We revisit this observation in Section 3.2.

For a physical system defined by a set of parameters S
symbols

,

we can define groups of one or more dimensionless products based

on Definition 1. Because of the form of Equation 2, these groups of

dimensionless products are often referred to as Π groups [6, 7].

2.2 Groups of Dimensionless Products and the
Buckingham Π Theorem

The primary insight exploited in many contemporary applications

of dimensional analysis [24, 27] is that for any physical system rep-

resented by a set of physical parameters S
symbols

, it is often possible

to re-parametrize the system in terms of a smaller number of param-

eters. This basic observation is often used in the engineering and

design of mechanical systems to reduce the number of parameters

needed in experimentation. The principle behind the observation

is what is commonly known as the Buckingham Π theorem [6]
2
:

2
Buckingham [6], Carlsson [7], and others provide proofs of the Π theorem.

Theorem 1. Let n be the number of parameters in a description
of a physical system, i.e., n = |S

symbols
|. Let r be the number of

dimensions from some orthogonal dimensional basis that are sufficient
to express the dimensions of the parameters in S

symbols
. Then, n − r

dimensionless products Πi can be formed from the n parameters.

The n − r dimensionless products Πi are the roots of some func-

tion Φ, that is,

Φ(Π1,Π2, . . . ,Πn−r ) = 0. (3)

Let Φ′ be a function over the dimensionless products Πi . It follows

for the i-th product, Πi , that,

Πi = Φ′(Π1,Π2, . . . ,Πi−1,Πi+1, . . . ,Πn−r ). (4)

When n − r = 1, i.e., when there is only one Π product in the Π
groups, then

Φ(Π1) = 0. (5)

It follows that there exists some real-valued constant C such that

Π1 =
Qk1
1
Qk2
2
. . .Qkm

m

Qkm+1
m+1 Q

km+2
m+2 . . .Q

kn
n
= C . (6)

There are multiple possible Π groups: For the same parame-

ter set S
symbols

, of cardinality n, there are multiple possible groups

of dimensionless products (i.e., multiple possible Π groups).

Dimension function synthesis, which we introduce next in Sec-

tion 3, automates the process of finding all the valid Π products
across all possibleΠ groups. Figure 2 shows the steps using the termi-

nology introduced in this section and a physical system comprising

an unpowered flying object (a glider) as a working example.

3 DIMENSIONAL FUNCTION SYNTHESIS
From the set S

symbols
of parameters defining a physical system,

we can construct a matrix representation of the system where the

columns of the matrix are the parameters that are members of

S
symbols

, the rows of the matrix are base dimensions such as length,

mass, or time, returned by the function D (Section 2.1), and the

elements in the matrix are the exponents of the base dimensions.

Dimensional function synthesis consists of a compile time step

which computes the Π groups and a run-time step which calibrates

the functional relationship between the derived Π products. Similar

to other data-driven techniques, it uses sensor measurements as

inputs and produces a model that maps those measurements to an

expected output. Its advantage is the use of dimensional information

to learn a simpler model than would otherwise be possible. Because

of the small size of the produced model and the small amount of

data required to calibrate it, dimensional function synthesis is well-

suited for execution on resource-constrained embedded systems.

3.1 Deriving the Dimensionless Product Groups
Let the set of base dimensions be S

base dimensions
. We assume with-

out loss of generality that S
base dimensions

= {I ,Θ,T ,L,M, J ,N }
corresponding to the base S.I. dimensions for electric current, ther-

modynamic temperature, time, length, mass, luminous intensity,

and amount of matter, respectively.

Let r be the cardinality of S
base dimensions

, let j be an index over

r , and let qj ∈ Sbase dimensions
be one of the base dimensions. As we

3



(                 )

h
dimensions

!(h) = L

Compile-time analysis

➊

h1, v1,

hn, vn 

Dimensional Function Synthesis

Run-time calibration

Multi-modal 
sensor data 

values

Object, mass m

Height at a given time, h

velocity, v

v, v0
dimensions
!(v) = LT -1

m
dimensions
!(m) = M

g
dimensions
!(g) = LT -2

t
dimensions

!(t) = T 

include "NewtonBaseSignals.nt"

       

➋

➌➍

➎➏

tg

v0
,

h

tv0
,

v

v0

tg

v
,

h

tv
,

v

v0

hg

v2
,

h

tv
,

v

v0

hg

v2
0

,
h

tv0
,

v

v0

t2g

h
,

h

tv0
,

h

tv
<latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY="></latexit><latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY="></latexit><latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY="></latexit><latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY="></latexit>

tg

v0
,

h

tv0
,

v

v0

tg

v
,

h

tv
,

v

v0

hg

v2
,

h

tv
,

v

v0

hg

v2
0

,
h

tv0
,

v

v0

t2g

h
,

h

tv0
,

h

tv
<latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY="></latexit><latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY="></latexit><latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY=">AAADLHicpVLLahsxFNVM0iZ2H3HSZTciptBFMRrn6V1INl2mUCcBjztoNBqPiOYR6Y7BiPmhLPItKXSTlm77HdXEE3CShhZ6QXA495wj6UphIYUGQm4cd2n52fOV1Vb7xctXr9c66xsnOi8V40OWy1ydhVRzKTI+BAGSnxWK0zSU/DQ8P6r7p1OutMizzzAr+Dilk0zEglGwVLDuHLVbfhQrygxMKjMNSPXBvyhp1JBJZeAROZ0Lfb/dMovmqpGZRfNDsjHfcye1+4vpV/+XEJAnM2r931Og9tuk5B8zmuMFnS7pkd2dwRbBpLdDvL3BwAJCdve3+tizoK4uauo46Hz1o5yVKc+ASar1yCMFjA1VIJjkVdsvNS8oO6cTPrIwoynXY3P72hV+Z5kIx7myKwN8yy46DE21nqWhVaYUEv2wV5N/6o1KiPfHRmRFCTxj843iUmLIcf11cCQUZyBnFlCmhD0rZgm1cwD7wewM7i6KnwYn/Z5n8aft7sFhM41V9BZtovfIQ3voAH1Ex2iImHPpXDs3znf3yv3m/nB/zqWu03jeoHvl/voNMVgQoA==</latexit><latexit sha1_base64="XPUd6ey9IaYFrqYYDgyAKjplYhY="></latexit>

Φ(h/v0*t ,  h/v*t,  t2*g) = 0

h = v0*t − 0.5(t2*g)
The actual physical law is

Glider: invariant(t: time, h: distance, v0: speed, v: speed, m: mass, g: acceleration) = {
 #    Empty invariant body. Our implementation of dimensional function synthesis  on top  
               #    of Newton infers an expression for the body.

}

Figure 2: A glider of massm launched with initial velocity v0 moves through space with velocity v under gravitational accel-
eration д. Dimensional function synthesis can derive a set of candidate equations relating its height h to time t . Next, using
sensor data, it can calibrate that set of candidate equations to obtain the model for height as a function of time and gravity.

did previously in Section 2.1 and Equation 1, let i be an index over

the set of parameters for a physical system and let Qi be one such

parameter. Let ai j be an exponent of one of the base dimensions of

Qi as returned by the function D from Section 2.1. We can express

the dimensions of any Qi in terms of the base dimensions qj :

Qi = q
ai1
1

qai2
2
· · ·qairr . (7)

We can represent the system of n = |S
symbols

| equations, one for

each of the 1 < i ≤ n instances of Equation 7 with a matrix called

the dimensional matrix [7, 10, 16].

Definition 2. Let n be the number of parameters in S
symbols

and
let r be the number of fundamental dimensions required to express
them. Let i be an index over the set of n parameters for a physical
system and let j be an index over r . Then we define the dimensional
matrix A, as

A = (ai j )(r,n) . (8)

The products Π from Definition 1 and Equation 2 will be dimen-

sionless (i.e., the dimensions in the monomial will cancel out) if

and only if Ak = 0, where the matrix k contains the exponents of

the base dimensions needed to yield a dimensionless group. The

solution of Ak = 0 is the null space N (A).

3.2 Physical Restriction on Solution of N (A)
Because of our objective of finding physically-plausible and efficiently-

computable dimensionless groups, our goal is to restrict the solu-

tions to the null space computation to rational powers of ai j as
opposed to permitting arbitrary real-valued exponents. As a result

of this insight, we compute the rational null space of A which will

by definition give us ai j values that are ratios of small integers. To

compute the rational null space ofA, we first use Gauss-Jordan elim-

ination [22] to reduce the matrices to their reduced row-echelon

form (RREF), where all pivots equal one, with zeros below each

pivot [28]. Once the matrix is in RREF, we find the special solutions

to Ak = 0. If, for a specific A, the only solution is the zero vector,

then we conclude that no non-trivial null space is available and as

a result it is not possible to form a dimensionless group from the

set of parameters in S
symbols

.

The number of linearly-independent columns of the dimensional

matrix A is equal to rank(A). Thus, to find all possible solutions to

Ak = 0 and hence all possible groups of dimensionless products,

we can rearrange the n columns of A in

( n
rank(A)

)
ways to yield

different null space solutions [6][16]. Our final set of dimensionless

product groups is the intersection of all the dimensionless product

groups resulting from computing the null spaces.

Why this differs from traditional linear-algebraic formu-
lations of dimensional analysis: The implementation we de-

scribe in Section 4.2 is the first system to completely automate

identifying all possible dimensionless groups given a physical sys-

tem description. We show in Section 4 that our implementation

takes minimal time, less than 4 s when running single-threaded on

a modern workstation, even for the largest dimensional matrices

we encountered. Because this step is only performed once, at design

time, this overhead is insignificant. Table 2 shows examples of five

physical systems, their parameter sets S
symbols

, the dimensions of

the parameters that are the members of S
symbols

, and examples of

the dimensionless groups of those parameters which we compute

from their dimensional matrix. In the general case the analysis

results in more than one Π group. The remaining steps of the di-

mensional function synthesis must then fit a model to expressions

derived from these Π groups.

3.3 Calibration: Using Sensor Data to
Transform Π Groups to Equational Models

The dimensionless groups obtained offline by analyzing a descrip-

tion of the physical system in the form of the set S
symbols

gives

proportionality relations between the parameters in S
symbols

. Like

any model construction method, dimensional function synthesis

will produce incomplete results if the inputs to the method do not

fully describe the problem being modeled: An incomplete S
symbols

can result in an empty set of derived dimensionless products.

4



Table 2: Examples of physical system descriptions (S
symbols

) and the dimensionless groups our technique generates for them.
Our implementation generates the LATEX for the equations shown in the last column in colored text as one of its side effects.

Physical Input to Dimensions Example of one Dimensionless Group
System Our Technique Generated by Our Automated Method

Waves [11] S
symbols

= Angular frequency, ω D (ω) = T−1
{
(d2) (ρ) (д)

(τ )
,
(ω2) (d3) (ρ)

(τ )
,
(h)

(d )
,
(k ) (h)

1

}
{ω,k,h,d, ρ,τ ,д} Length, k D (k ) = L−1

Length, h D (h) = L
Length, d D (d ) = L
Density, ρ D (ρ) = ML−3

Surface tension, τ D (τ ) = MT−2

Acceleration, д D (д) = LT−2

Vibrating S
symbols

= String tension, t D (t ) = MLT−2
{
(L2) (µ ) ( f 2)

(t )
,

(t )

(µ ) ( f 2) (ρ2) (θ2)

}
string {t ,L, µ, f , ρ,θ } String length, L D (L) = L

String mass per unit length, µ D (µ ) = ML−1

String vibration frequency, f D ( f ) = T−1

Thermal expansion coefficient, ρ D (ρ) = Θ−1

String temperature, θ D (θ ) = Θ

Unpowered S
symbols

= Object elevation, h D (h) = L

{
(t2) (д)

(h)
,

(h)

(t ) (v0)
,

(h)

(t ) (v )

}
flying {h,v0,v,m,д, t } Object initial velocity, v0 D (v0) = LT−1

object Object velocity, v D (v ) = LT−1

Object mass,m D (m) = M
Acceleration due to gravity, д D (д) = LT−2

Time, t D (t ) = T

Fluid S
symbols

= Pressure gradient, ∇P D (∇P ) = ML−2T−2
{
(v2) (ρ)

(∇P ) (D)
,
(v2) (ρ)

(∇P ) (e )
,
(v3) (ρ)

(∇P ) (ν )

}
flow {∇P ,v,D, e,ν , ρ} Fluid velocity, v D (v ) = LT−1

in pipe Pipe diameter, D D (D) = L
Pipe roughness, e D (e ) = L
Fluid kinematic viscosity, ν D (ν ) = L2T−1

Fluid density, ρ D (ρ) = ML−3

Pendulum S
symbols

= Rod length, l D (l ) = L

{
(д) (t2)

(l )

}
{l ,д,m, t } Acceleration due to gravity, д D (д) = MT−2

Mass,m D (m) = M
Oscillation period, t D (t ) = T

When a dimensionless product group contains a single item,

Equation 6 (Section 2.2) showed that we can equate the dimension-

less product to a constant and hence obtain an equation between

the symbols in the dimensionless group. We however still need to

determine the value of the constant and we can do so given one or

more values of the parameters in the dimensionless group. We call

this step calibration.
When a dimensionless product group contains more than one

dimensionless product, we can still apply this method if we can

determine that all but one of the products in any of the dimension-

less groups are effectively constant for the range of values of the

parameters of interest.

If there is more than one dimensionless product which is not

constant, then, from Equation 4, there is a function Φ′ which relates

the values of one of the Π products to the rest of them; a data-

driven approach can then be used to find the form of Φ′. In this case

the compile time step of dimensional function synthesis plays an

important role of dimensionality reduction of the input data. This

allows simpler models to perform better, allowing smaller models

to be learned with less data for a given prediction performance.

3.4 Example
Figure 3 shows a system comprising a pendulum instrumented

with a sensor that measures movement. By measuring, e.g., angular

movement with a gyroscope or by measuring acceleration with

an accelerometer, we can measure the period of oscillation t by
computing the Fourier transform of time series data from the sensor.

Our goal is to obtain a model relating t , the length of the rod l , and
the component д of the acceleration due to gravity in the plane

5
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Figure 3: A simple pendulum with mass m, rod of length l ,
period of swing t , and with the component of the accelera-
tion due to gravity in its plane of motion being д.

of rotation of the pendulum. The insights from this example are

applicable to many sensor-instrumented mechanical systems such

as ones where the period of oscillation might be affected when

lengths of system parts expand or contract with temperature, or

when the component of gravitational acceleration affecting the

system changes due to the system being tilted at an angle.

Step 1: Dimensional matrix construction. For this system,

the parameter set is S
symbols

= {l ,д,m, t }. The last row of Table 2

shows the dimensions of the members of the parameter set S
symbols

along with the dimensionless group computed by the method de-

scribed above in Section 3.1. Following the formulation in Sec-

tion 3.1, the dimensional matrix A for the pendulum’s parameter

set S
symbols

is

A =

l д m t




T 0 −2 0 1

L 1 1 0 0

M 0 0 1 0

Step 2: Dimensional matrix column permutation and Π
group computation.The total number of parameters isn = |S

symbols
| =

4. The rank of dimensional matrix A is rank(A) = 3 and there are( n
rank(A)

)
=
(
4

3

)
= 4 number of ways to permute the columns of the

dimensional matrix to yield different null space solutions. The four

permuted dimensional matrices are:

A1 =





−2 0 1 0

1 0 0 1

0 1 0 0

A2 =





0 0 1 −2

1 0 0 1

0 1 0 0

A3 =





0 −2 1 0

1 1 0 0

0 0 0 1

A4 =





0 −2 0 1

1 1 0 0

0 0 1 0

We then apply the Gauss-Jordan algorithm to reduce these matrices

to reduced row-echelon form:

RREF(A1) =





1 0 0 1

0 1 0 0

0 0 1 2

RREF(A2) =





1 0 0 1

0 1 0 0

0 0 1 −2

RREF(A3) =





1 0 1/2 0

0 1 −1/2 0

0 0 0 1

RREF(A4) =





1 0 0 1/2

0 1 0 −1/2

0 0 1 0

We then calculate the null space solutions N(Ai ) (i = 1, 2, 3, 4) for
each corresponding RREF dimensional matrix.

N(A1) =





−1 д
0 m
−2 t
1 l

N(A2) =





−1 l
0 m
2 t
1 д

N(A3) =





−1 l
1 д
2 t
0 m

N(A4) =





−1 l
1 д
0 m
2 t

The null space solutions are functionally identical. From Def-

inition 1 (Section 2.2), the pendulum system has n = 4 physical

quantities and r = 3 base dimensions. Consequently, n − r = 1 and

there is a single unique kernel:

Π0 =

д l m t[ ]
1 −1 0 2

From Equation 6 (Section 2.2), it follows that this kernel equals

some constant C:
д ∗ t2

l
= C . (9)

Given sensor measurements for different values of l , д, and t , we
can determine the value of the constant C .

4 IMPLEMENTATION AND EVALUATION
We implemented the method of Section 3 by extracting the set

S
symbols

from the intermediate representation of descriptions of

physical systems written in Newton [20], a domain-specific lan-

guage for describing physical systems. We use Newton solely as a

convenient way to obtain the set S
symbols

from a human-readable

description. Figure 4 shows the flow of our implementation.

4.1 Dimensional Function Synthesis versus
Function Evaluation

Dimensional function synthesis includes a compile-time step com-

prising Π group generation followed by a run-time calibration step

of function fitting. In the case of a single Π group and under the

constraints covered in Section 5.2, this reduces to finding a con-

stant. When the compile-time step results in multiple Π groups,

the run-time step involves using measurement data to calibrate a

model relating the multiple Π groups (i.e., not simply learning a

proportionality constant). A person using an implementation of di-

mensional function synthesis invokes the method once to generate

a model. An embedded system on which the model is subsequently

deployed may execute the model billions of times (or more).

4.2 Implementation Methodology
Compile-time analysis phase: The input of dimensional func-

tion synthesis is the set S
symbols

. The first step (Step 1) creates the
dimensional matrix from the list of members of S

symbols
and their

dimensions. Next (Step 2), the method permutes the columns of the

dimensional matrix and computes the null space of the permuted

matrices to obtain the dimensionless Π groups. As the example
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Figure 4: Our implementation of the dimensional function
synthesis method of Section 3 extracts the set S

symbols
from

the intermediate representation of descriptions of physical
systems written in Newton [20]. Next, it uses the linear-
algebraic steps described in Section 3.1 to compute all pos-
sible dimensionless groups. Finally, we use sensor data to
calibrate the compile-time-generated functions.

in Section 3.4 showed, there may be redundant Π groups. The

method therefore canonicalizes the representation of the computed

Π groups by transforming the Π groups so that lexicographical

smaller parameter names are always in the numerator of all Π
product monomials. The method next sorts the canonicalized Π
products in each Π group (Step 3). With the Π products in each

group in canonical lexicographic form and sorted, the method re-

moves duplicate Π groups (Step 4). The remaining unique Π groups

constitute the synthesized dimensional proportionality relations.

These proportionality relations can then be calibrated using sensor

data to obtain compact models relating the signals in the original

input set S
symbols

(Step 5).
Run-time phase: The output of the final stage of the compile-time

analysis, in the form of the set of Π groups, is directed to the cali-

bration phase and processed according to which of the conditions

satisfied by Section 3.3 the system falls into. In the case where there

is only a single Π product, the calibration process uses sensor data

to find the constant of proportionality which relates the Π products.

When there is more than oneΠ product, the calibration process uses

sensor data in combination with an approximate function estimator

to find an approximate relationship between the Π products. The

output after this stage is a model which can be used for inference

during the normal operation of the embedded system. Because, in

addition to function evaluation, our objective is to perform the run-

time phase of function synthesis on the target resource-constrained

computing system, we have explored the use of simple regression

models (e.g., linear or quadratic regression) for the approximate

function estimator. Dimensional function synthesis is however a

generally-applicable method, suitable for integration with more

complex function estimators such as neural networks. When paired

with neural networks, a user of dimensional function synthesis can

decide whether the training of the network will be performed on a

powerful computing device or on the target embedded hardware

platform, if it can support it.

To evaluate the performance of dimensional function synthesis,

we consider two metrics: (1) the additional one-time cost of run-

ning the compile-time stage to find the dimensionless groups in

Section 4.3 and (2) the performance of the models trained using this

technique in Section 5.1 (after both compile time Π group synthesis

and run-time calibration/function approximation).

4.3 Implementation Evaluation
We first evaluate the performance of the compile-time dimensional

function synthesis. We then evaluate the calibration overhead, in-

ference latency, and prediction accuracy of the models our method

generates using 90 laboratory experiments which we augment with

10 000 synthetic idealized measurements.

Evaluation setup:We evaluate our implementation of dimen-

sional function synthesis by applying it to the specifications of 16

physical systems. Table 3 lists these benchmark physical systems

along with their descriptions, demonstrating the variety of systems

able to be described by means of their physical parameters. We

provide information about the number of parameters that describe

each system (e.g., mass, time, length, and gravitational acceleration

in the ideal pendulum example), as well as the size of the resulting

dimensional matrix. In most of the systems, there are fewer rows

than columns because there are fewer unique units of measurement

than physical parameters. We evaluate the run time of our imple-

mentation using nanosecond-granularity timestamps provided by

the operating system. We perform the evaluation on an Intel Core

i3 processor operating at 3.6 GHz, equipped with 8GB of DDR4

memory and a solid-state disk drive.

Compile-timemodel synthesis effectiveness and overhead:
Table 4 shows the results from applying the compile-time steps of

dimensional function synthesis to the physical systems of Table 3.

For example, for the physical system describing a selective laser

melting system (second row from the bottom row) there are 1365 Π
groups that result from computing the null space of all the possible

permutations of the columns of the dimensional matrix (Step 2
of the compile-time phase of the method). After canonicalization,

sorting and removing duplicates (Step 3 and 4 of the compile-time

phase of the method), this reduces to 94 Π groups. For this system,

the Π groups have 11 dimensionless products or Πs per group. In
all the physical systems listed in Table 4, the compile-time stage

completes in under 4 s, with most cases taking under 10ms.

Figure 5 shows the breakdown of the time spent in the five

compile-time phases of the dimensional function synthesis method,

averaged over five executions of the benchmarks of Table 4. The

core steps of the method (Step 2: computing the null space for

all permutations; Step 3: canonicalization, and Step 4: duplicate
removal) require less than 3% of the total execution latency. Step
5: corresponds to the export latency of the toolflow.
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Table 3: The specifications of 16 different physical systems, the cardinalities of their symbol sets |S
symbols

|, and the size of their
dimensional matrices A.

Name Description Number of Size of the dimensional
parameters, |S

symbols
| matrix, |A |

Cable hydrodynamic drag force Hydrodynamic drag force for a cable 6 6 columns × 3 rows

Explosion, v1 Explosion model [29] including explosion radius 5 5 columns × 3 rows

Explosion, v2 Explosion model [29] excluding explosion radius 4 4 columns × 3 rows

Hot sphere Heat transfer between a hot sphere and the environment 8 8 columns × 4 rows

Ideal gas Ideal gas model 4 4 columns × 4 rows

Pendulum, static Simple pendulum excluding dynamics and friction 4 4 columns × 3 rows

Pendulum, dynamic Simple pendulum including dynamics and friction 8 8 columns × 3 rows

Fluid in Pipe, v1 Pressure drop of a fluid through a pipe [11] 6 6 columns × 3 rows

Fluid in Pipe, v2 Pressure drop of a fluid through a pipe [11] 6 6 columns × 3 rows

substituting dynamic viscosity with kinematic viscosity

Unpowered flight Unpowered flight (e.g., catapulted drone) 4 4 columns × 3 rows

Vibrating string, v1 Vibrating string 4 4 columns × 3 rows

Vibrating string, v2 Vibrating string with model of thermal expansion 6 6 columns × 4 rows

Fluid wave dispersion Dispersion of waves in a fluid 7 7 columns × 3 rows

Spring and mass system Vertical spring with attached mass 4 4 columns × 3 rows

Selective Laser Melting (SLM), v1 Selective laser melting 3D printer with sensors 15 15 columns × 4 rows

Selective Laser Melting (SLM), v2 Selective laser melting 3D printer with sensors 11 11 columns × 4 rows

Table 4: The static compile-time analysis phase of dimen-
sional function synthesis, applied to 16 problems, imple-
mented based on Section 3.

Name # of Πs per Unique Analysis
Π groups Π group Π groups time

Hydrodynamic drag 20 3 3 7.4 ms

Explosion, v1 10 2 6 8.8 ms

Explosion, v2 4 1 1 1.5 ms

Hot sphere 70 4 23 81.5 ms

Ideal gas 4 1 1 1.5 ms

Pendulum, static 4 1 1 1.5 ms

Pendulum, dynamic 56 5 25 104.1 ms

Fluid in pipe, v1 20 3 11 23.7 ms

Fluid in pipe, v2 20 3 8 17.1 ms

Unpowered flight 4 1 1 1.5 ms

Vibrating string, v1 4 1 1 1.4 ms

Vibrating string, v2 15 2 2 4.2 ms

Wave dispersion 35 4 8 25 ms

Spring and mass 4 1 1 1.4 ms

SLM, v1 1365 11 94 834.6 ms

SLM, v2 165 8 106 3428.7 ms

Figure 5: Latency percentage breakdown for the compile-
time steps of the dimensional function synthesis. The core
steps constitute less than 3% of the overall time.

5 MODEL EVALUATION
We demonstrate the advantages of constructing models from sensor

data using our method by using it to derive functions modeling

properties of three physical systems:

➊ A pendulumwith rod length l , component of the acceleration

due to gravity д in the plane of swing of the pendulum, and

period of oscillation t . We run experiments for several values

of l and д to obtain values for the period of oscillation t .
➋ An oscillating mass-loaded spring with period of oscillation

t , spring constant Kspring, and massm attached to the spring.

➌ An unpowered flying vehicle (glider) with initial velocity v0,
massm, acceleration due to gravity д, and height h at time t .

For the pendulum system, we evaluate the ability of our method

to build a model for t as a function of l and д. For the spring, we
evaluate the ability of our method to build a model for Kspring, as a

function ofm and t . And for the glider we examine the ability of

our method to find the relation between trajectory height and the

other variables.

Because our target domain is resource-constrained embedded

systems, we focus our evaluation on the ability of our method

to produce models with minimal training and to produce models

whose computational requirements during inference are small. We

compare our method against regression over the data, as well as

against training several neural network topologies from the FitNet

family of curve-fitting neural network architectures, which are

optimized for equation fitting.

5.1 Model Evaluation Results
We first compare dimensional function synthesis to regression and

neural networks using synthetic idealized data (Section 5.1.1). For

the multiple Π product relationship such as the glider example

(Figure 2), the calibration stage of dimensional function synthesis

also involves a data-driven function approximation (Section 5.1.2).
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Figure 6: Prediction error versus computational requirements for predicting the period of pendulum (subfigures (a) and (c),
810 different network topologies) and Kspring constant of the spring oscillator (subfigures (b) and (d), 265 different network
topologies). The Pareto front is indicated in red. Subfigures (a) and (b) are evaluated on data within the range of the training
set. Subfigures (c) and (d) are evaluated on data outside of the training range (out-of-sample performance). Ourmethod Pareto-
dominates all the neural network variants (“our model” in lower left corner of the plots).

We then present an evaluation using laboratory experiments in

Section 5.1.3.

5.1.1 Evaluation results for synthetic data. Our evaluation method-

ology for synthetic data includes two steps. First, we train the

models against 10 000 input vectors generated based on the ideal

equations for the pendulum and spring systems. For the pendulum,

the data are vectors of {t , l ,д} where t = 2π
√
l/д. For the spring,

the data are vectors of {t ,Kspring,m} where t = 2π/
√
Kspring/m.

We refer to the range of the values we use for {l ,д} for the pendu-
lum training and {t ,m} for the spring oscillator as being inside the
training range and we refer to the performance of the models for

parameters in the training range as the in-sample performance. Next,
we evaluate the trained models against new input vectors, result-

ing from values of the controllable parameters outside the training
range. We refer to the performance of the models for parameters

outside the training range as the out-of-sample performance.
We apply three data-driven modeling techniques on the training

data: linear regression, quadratic regression, and neural networks.

For the neural networks, we evaluate networks with a range of

hidden layers and a range of number of nodes per hidden layer. We

performed 5-fold cross validation of the models.

Neural networks: Figure 6 shows the prediction error versus

the computational requirements of the neural network models for

predicting the period t of the pendulum (Figure 6a and Figure 6c)

and the spring constant Kspring of the oscillating spring (Figure 6b

and Figure 6d).

For each examined neural network, we calculate the total number

of floating-point operations (additions, multiplications) required

per inference instance. We use this information to quantify the

computational requirements of each network, independently of

the target hardware execution platform. We annotate points on

the Pareto frontier with information about the number of nodes

in each of the network’s three hidden layers. Thus, e.g., NN-5-5-5

indicates a network of three hidden layers and five nodes per layer,

while NN-5-0-0 indicates a network with only one hidden layer

comprising 5 nodes.

Figures 6a and 6b show the in-sample performance Pareto front

of the design exploration for the two examined physical systems.

In both systems, because our method is able to generate simple

functions that exactly match the equations of the physical equation

used to generate the training data, our method achieves lower

computational cost and lower prediction error than all points on

the Pareto frontier of the neural network model results.

The neural network models achieve significantly different in-

sample and out-of-sample performance (top row versus bottom row

in Figure 6). For the pendulum (Figure 6c), although the prediction

errors span a large range, there are configurations that achieve

prediction error below 5%. For the spring-mass system (Figure 6d),

the prediction error is greater than 50% in more than half of the

evaluated models. The smallest prediction error (under 10%) in the

spring-mass system is achieved by the network labeled NN-5-5-5.

Its smaller prediction error comes at the cost of greater computation
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(280 floating-point operations) compared to NN-5-0-0 (80 floating-

point operations) and compared to our method (4 floating-point

operations). Overall, the neural network models require between

1 s and 30 s training per model, with an average of 13 s. The total

training latency was approximately 170 minutes for the pendulum

model, and 60 minutes for the spring model, on an Intel Core i7-

7820X CPU running at 3.60 GHz, equipped with 32GB RAM. This is

8660× slower than our approach which requires 1.5ms on average

for the two examined physical systems (Table 4) running on the

same workstation. The neural network models require between

60 and 280 floating-point operations per inference, with average

inference cost of 34× worse than our method.

Linear and quadratic regression: We next compare the over-

head and prediction error of the model our method generates for the

pendulum period against models generated by linear and quadratic

regression. Both linear and quadratic regression models show in-

sample prediction error of less than 10% but exhibit out-of-sample

prediction errors of 18.9% and 23.5% respectively and require 4 and

6 floating-point operations, respectively, per inference. In contrast,

our method learns the original equation used to generate the data

exactly and requires only 4 floating-point operations per prediction.

5.1.2 Evaluation results for multiple Pi-groups. The previous ex-
amples outlined the ability of dimensional function synthesis to

derive the exact form of the equation of a physical system when

the dimensional matrix results in a single dimensionless product.

However, the parameters used to describe the physical systems

under analysis may result in multiple Π groups which each include

multiple Π products. The glider example of Section 2.1 is one such

example. In this case, the form of the function Φ′ for combining the

Π products into an equational model is unknown and a data-driven

approach must be used to find its form. Dimensional function syn-

thesis provides two options for the calibration phase: (1) perform

calibration on the target embedded system; (2) perform calibration

offline on a computing system that is not constrained by resources.

In both cases the calibrated models target the embedded platform,

so final model complexity is still a key restriction.

In contrast to Φ and Φ′ which are functions of dimensionless

products, let Ψ be a function directly relating the parameters of

a system. For the glider example, we compare our approach to a

data-driven approach for fitting the feature vector ⟨v0,m,д, t⟩ to a

predicted height h through the function Ψ:

h = Ψ(v0,m,д, t ). (10)

The ideal trajectory equation of a glider ish = v0·t−0.5·(t
2·д). Using

the ideal trajectory equation, we synthesize a dataset by uniformly

sampling the initial velocity of the glider (v0) in the range of 1m/s
to 10m/s with a step size of 0.5m/s . We considered acceleration

due to gravity (д) from 6.0m/s2 to 9.5m/s2, with 0.5m/s2 step size,

and a time window for gliding (t ) ranging from of 0.1 s to 100 s ,
with a step of 0.1 s .

Using dimensional function synthesis, the chosen description

of the system leads to three Π groups, each with two Π products,

i.e., Π group 0 = {Π1 = t · д/v0,Π2 = h/t · v0}, Π group 1 = {Π1 =

h · д/v2
0
,Π2 = h/t · v0}, Π group 2 = {Π1 = t2 · д/h,Π2 = h/t · v0}.
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Figure 7: Prediction error versus computational require-
ments for predicting the trajectory of a glider. Our model
uses linear regression for fitting function Φ′ of Equation 11
(denoted as “our model” in the lower left corner). It Pareto-
dominates all the neural network variants (891 different net-
work topologies), which are used for fitting function Ψ of
Equation 10.

In Π group 0, h is included in only one Π, thus according to Equa-

tion 4 we can express h as function Φ′ of the other Π:

h

t · v0
= Φ′(

t · д

v0
). (11)

In contrast to traditional methods that must learn a function

over a four-dimensional space ⟨v0,m,д, t⟩, dimensional function

synthesis only needs to use data to learn the function of the single-

variable functionΦ′ of Equation 11. This simpler form is particularly

valuable when our goal is to perform final calibration on a resource-

constrained embedded system. Figure 7 shows the comparative

performance of using a linear regression to find the dimensionally

reduced Φ′, against linear, quadratic, and neural network based

regression to find Ψ. Linear regression on Φ′ outperforms the same

technique on Ψ by more than 12%, while having similar computa-

tional requirements. Neural networks are capable of minimizing

the prediction error, at the expense of over 80× greater required

computation.

Figure 8 shows model approximation performed by neural net-

works trained against 20 data points, with (Figure 8b) and without

(Figure 8a) dimensionally reducing the number of input parameters

by making use of dimensional function synthesis. The prediction

error of the model produced from dimensional function synthesis

is 0.17% and it is at the same time much simpler. The most accurate

neural network for fitting the functionΦ′ over the four-dimensional

space ⟨v0,m,д, t⟩ is composed of two layers with 2 and 5 neurons,

while the most accurate for fitting function Ψ is composed of two

layers of 6 neurons each. This highlights dimensional function syn-

thesis as a tool for training models in situations were there are

insufficient data to train more complex models.

The simpler models and higher prediction accuracy of dimen-

sional function synthesis is the result of being able to use the phys-

ical information available. This enables simpler models which train

better with less data. Most importantly, these reductions are not

based on ad-hoc assumptions or approximations, but are dictated

by physical laws. This results in models from dimensional func-

tion synthesis which can be executed more efficiently on resource-

constrained embedded systems as they require less computation

during inference and less data to train.
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Figure 8: Prediction error versus computational require-
ments for predicting the trajectory of a glider. Sub-figure
(a) corresponds to the straightforward application of neural
networks for fitting function Ψ of Equation 10. Sub-figure
(b) corresponds to our approach using a neural network ap-
proximation function for fitting function Φ′ of Equation 11.
All models are trained against a set of 20 input data points.
Ourmethod achieves prediction error of 0.17% via an approx-
imately 2.5× less computationally demanding model.

5.1.3 Evaluation results for physical pendulum experiments: We

evaluate our method in the presence of non-synthetic data where

the underlying relationship is more complex than a simple closed-

form equation.We perform a series of experiments in our laboratory

and we vary the component of д and l using an apparatus known

as a variable-g pendulum (Figure 9a). This apparatus uses a mass

on a stiff rod swinging about a pivot which is at an angle that is

not perpendicular to the horizon. We instrument this apparatus

with a wireless sensor containing a 3-axis accelerometer at the

“bob” end of the pendulum to provide a data stream from which we

automate measuring the period of oscillation, t . We run 90 physical

experiments on this apparatus for different values of the pendulum

rod length l in the range of 3 cm to 33 cm in steps of 3 cm and

for a range of effective gravitational acceleration д resulting from

pendulum pivot angles of 0° to 80°, in 10° increments.

Figure 9b shows an example of the sensor data over 1 minute

of pendulum operation. We recorded a time series of pendulum

swing data such as that in Figure 9b for each of the 90 experiments

we performed. We then used this time series data to calculate the

oscillation period via its Discrete Fourier Transform (DFT). Fig-

ure 9c shows the resulting DFT output for one experiment, for four

different processing windows. Figure 9d shows the oscillation pe-

riod over the duration of one 1-minute experiment, calculated from

the DFT. Figure 9d shows how the period of oscillation diminishes

slightly over the course of a 1-minute experiment.

Figure 10 shows the ability of our method to generate a model

that accurately predicts the period of oscillation of the variable-

д pendulum. The calibration step of our method takes as input

the periods measured from the actual experiment. Our method

requires minimal calibration data. For pendulum lengths greater

than 20 cm, the prediction error is always less than 15% even though

each prediction requires only 4 floating-point operations. This error

is within the range achieved by the neural networks (Figure 6c)

but which require two orders of magnitude more floating-point

operations.

For pendulum lengths less than 20 cm, the error in the model

increases as non-idealities such as friction are not captured by the

form of the proportionality relation generated by the compile-time

step of our technique. The accuracy of the synthesized dimensional

function is limited by the number of utilized parameters which

describe the physical system. A richer choice in the set of parame-

ters, e.g., including the friction of the pivot and mass of the rod is a

possible solution to derive more accurate dimensional functions.

We also applied the black-box data driven techniques on the

assembled data of the pendulum experiment. Of this dataset, 75%

was randomly sampled to act as training data, while the rest were

used as testing samples. We used a 5-fold cross validation policy

to build the models. Figure 11 summarizes the prediction error of

the period of pendulum oscillation averaged for all models in the

case of the testing dataset. Regression models have prediction error

comparable to our method but our method outperforms regression

models in the zoomed area of Figure 10b. Neural networks exhibit

a wide distribution of prediction error, but simple networks are

able to achieve very high accuracy within the same range as our

proposed model. Because the black-box models are trained against

data points derived from the entire range of the pendulum experi-

ments, they can effectively capture the non-ideal characteristics of

the oscillation, thus achieving high accuracy.

5.2 Scope, Limitations and Extensions
Dimensional function synthesis uses information on the physical

dimensions and units of measure of the signals relevant to a physical

system, to derive a set of candidate equations relating those signals.

Like many existing approaches for constructing models based

on human-chosen parameters, dimensional function synthesis de-

pends on a valid set of parameters in the set S
symbols

(introduced

in Section 2.1) for describing the system to be modeled. When pro-

vided with a set of parameters insufficient to generate a model

that captures a system’s behavior, the method will unsurprisingly

generate a model that is, at best, only an approximation to the true

behavior. Exciting areas of further development include automating

the process of identifying parameters in S
symbols

rather than ex-

tracting them from a human-written description and incorporating

integrals and derivatives in formulations for Φ.
For physical parameters that cannot be directly measured, di-

mensional function synthesis faces the same challenges faced by

traditional modeling approaches. In practice, for parameters that

cannot be measured, designers measure surrogates which correlate

to the missing parameters, e.g., measuring acceleration and elapsed

time instead of velocity. In this case, dimensional function synthesis

has the net effect of exploiting information on the physical units of

the parameters in question, while traditional modeling techniques

have no option but to attempt to fit data with ever more complex

non-linear models. Dimensional function synthesis enables the

combination of both approaches in the case of multiple Π groups

as examined in Section 5.1.2.
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Figure 9: (a) Our experimental setup for the variable-д pendulum. (b) Data collected from the 3-axis accelerometer over time by
the wireless sensor on the pendulum. The largest component of oscillation is due to the motion of the pendulum. (c) Discrete
Fourier Transform (DFT) of 10 s windows of the sampled acceleration data. Despite the variation of signal properties over time,
the dominating frequency remains around 2Hz. (d) The time period of the pendulum, calculated according to the dominating
frequency in each time window of DFT, exhibits a small variation of about 20ms over a 1-minute interval.

(a) All experimental data. (b) Zoom for l > 20 cm.

Figure 10: Percentage error of the predicted period, t for a
given length l and gravitational acceleration component in
the plane of pendulum, д. Sub-figure (a) includes all exper-
imental instances in a subset of which the ideal pendulum
model assumptions are violated leading to high deviations.
Sub-figure (b) zooms in the region of interest, where the er-
ror of synthesized dimensional functions is minimized.

6 RELATED RESEARCH
The majority of existing research on applying dimensional analysis

to computing systems has focused on extending the type systems
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Figure 11: Percentage error of the predicted period, t for
a given length l and gravitational acceleration component
in the plane of pendulum, д. Prediction is performed using
Neural Networks and regression models.

of programming languages with support for units of measure [1–

3, 5, 8, 9, 12, 14, 15, 17, 18, 23, 30]. This line of work, exemplified

by the work of Kennedy [17, 18] can be thought of as tackling the

problem of verification of dimensional homogeneity: how to validate

that an equation containing a set of parameters is dimensionally

homogenous. In contrast, in this work, we address the dual problem

of synthesis: how to generate an equation that is dimensionally

homogenous from a list of parameters.
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In parallel to research on dimensions and units of measure in

computing systems, there have been several efforts to learn physi-

cal laws or invariants from experimental measurements or sensor

data. This line of research, exemplified by the work of Schmidt and

Lipson [25] and extended by Hills [13], uses information about the

general form of physical laws, such as the principle of stationary

action, to infer functions relating physical signals from measure-

ments of those signals. In contrast, the method we present in this

work takes the unconventional approach of bootstrapping a func-

tion model purely from the constraints imposed by the principle

of dimensional homogeneity. Unlike the work of early efforts to

derive models based solely on dimensional analysis, such work by

Buckingham [6], Jonsson [16], and Taylor [29], the approach we

present is the first system to fully automate the computation of all

possible dimensionally-consistent equations that could be formed

from a set of dimensioned parameters.

Our comparison of our method against data-driven methods

such as linear and polynomial model fitting and neural networks

sheds new light on how prior heuristic approaches for inferring

physical laws from measurement data (e.g., BACON [19] and DIS-

COVER [31]) are at the same time potentially computationally more

expensive as well as potentially less accurate.

7 CONCLUSIONS
Existing methods for constructing retrospective or predictive mod-

els for data from physical systems do not fully exploit information

about the physics of the systems in question. In this work, we

present an automated method for generating the family of func-

tions from which to learn a model, based on information about

the physical dimensions of the signals in the system. The method,

which we call dimensional function synthesis, applies to data streams

where the dimensions of the signals are known.

We implement dimensional function synthesis and apply our im-

plementation to 16 physical system descriptions. The results show

that we can analyze even the largest of the 16 systems in under 4 s

of execution time, with most of the analyses taking under 10ms. For

two of these 16 systems, we demonstrate efficiently summarizing

multi-modal sensor data using 10 000 synthetic idealized measure-

ments augmented with 90 laboratory experiments. We evaluate

the model evaluation cost and accuracy of the models our method

generates and compare it to models generated by linear regression,

quadratic regression, and neural networks.

The results show that our technique can generate models in less

than 300ms on average across all the physical systems we evalu-

ated. When calibrated with sensor data, our models outperform

traditional regression and neural network models in inference accu-

racy in all the cases we evaluated. In addition, our models perform

better in training latency (over 8660× improvement) and required

arithmetic operations in inference (over 34× improvement). These

significant gains are largely the result of exploiting information on

the physics of signals that has hitherto been ignored.
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