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Exploring the impact of gastrointestinal parasitic 

helminths on the human microbiome using advanced 

biomolecular and bioinformatics technologies 
 

By Timothy P. Jenkins 

 
SUMMARY 

 

 
Our understanding of the biology of human gastrointestinal (GI) parasitic helminths is greater 

than ever before. However, so far, the research has focused on gene expression profiling, 

immune- and protein-protein interactions in host-parasite systems. The importance of parasite-

microbiota interactions has, so far, been largely overlooked. The microbiome is key to host 

health and it has been demonstrated that the balance between the gut microbiota and the host 

is crucial for health maintenance and that a disturbance of this balance can result in a range of 

diseases. Hence, given that GI nematodes and the gut microbiota share the same ecological 

niche within the human host, it is plausible that GI helminths and the host microbiota interact, 

and that this could significantly impact on the health and homeostasis of the parasite-infected 

hosts. Fortunately, the availability and affordability of next generation sequencing now enables 

us to investigate such host-parasite-microbiota interactions in depth and at high throughput. 

Therefore, the aims of this thesis were to explore the impact of such helminth infections in 

various systems, ranging from natural multi-species infections in a developing country to 

highly controlled and experimental infections involving a single species of parasitic helminth. 

This would allow the identification of microbiome changes that are consistent across different 

settings, as well as help detect alterations that are specific to a certain host-helminth system. 

Thus, the main aims of the thesis were: (i) to investigate the consequences of natural multi- or 

mono-species infections by helminth parasites on the composition of the human gut microbiota 

(Chapters 2 and 3), (ii) to elucidate the longitudinal impact of experimentally controlled mono-

species helminth infections on the human gut microbiota (Chapter 4), (iii) and to examine 

whether an extra-intestinal (EI) helminth infection has an impact on the host microbiome in a 

murine model of human schistosomiasis (Chapter 5).  

Overall, I found that GI and EI helminths have a substantial impact on the host gut 
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microbiota, both on individual taxa and on a community level. Many of the observed changes 

appeared to be specific to the host-helminth system that was being investigated, yet some 

consistencies emerged. Firstly, low level, long term, and single species infections that were not 

accompanied by pathology appeared to increase the gut microbial diversity within their host 

and promote a stable and healthy gut microbial composition (Chapters 3 and 4). Contrarily, 

acute heavy burden infections, associated with pathology, appeared to have the opposite effect, 

i.e. reducing the overall diversity of the host’s gut microbiome and promoting the proliferation 

of opportunistic pathogens (Chapters 2 and 5). This suggests that parasitic helminth infections 

could detrimentally impact the hosts they infect besides the direct pathology they induce, but 

also adds further weight to the idea of a therapeutic use of helminths in the context of helminth 

therapy. Indeed, the beneficial effect helminths can have on the host gut microbiota, together 

with the mounting evidence towards an intrinsic link between autoimmune diseases and the 

microbiome, might present a mechanism through which helminths could exert a therapeutic 

effect on patients suffering from such conditions.  

In, conclusion the present thesis has contributed significantly by providing entirely new 

insights into the impact of natural and experimental parasitic helminth infections on the human 

gut microbiome (Chapter 6). The findings provide a sound basis for future fundamental 

investigations of, for example, the relationship of helminth species, abundance, and host to 

microbiome changes in the context of infection. However, the results also act as a stepping 

stone for studies exploring the translational potential of helminth-microbiota interactions, such 

as the role that helminth induced microbiome modulations play in infection pathology, or 

whether such changes play a key role in the therapeutic potential of helminth therapy.
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GLOSSARY 
 

 

Term Definition 

Alpha diversity 

In microbial ecology, the mean species diversity at the local, within-

site, or within-habitat scale. It is dependent on both the number of 

species making up a population (richness) and the relative 

abundance of each species in a population (evenness). 

Bacterial 16S 

rRNA gene 

A highly conserved gene across bacteria and archaea, commonly 

used for taxonomic identification. 

Beta diversity 
The ratio between within-study group and between-study group 

microbial species diversity. 

Core microbiome 

The group of microbes consistently found within a host 

microbiome, which demonstrate a persistent association and provide 

a critical function within the habitat in which they are detected. 

Dysbiosis Microbial imbalance or maladaptation on or inside the body. 

Endosymbiont 

Any organism that lives within the body or cells of another 

organism in a symbiotic relationship with the host body or cell, 

often but not always to mutual benefit. 

Microbial evenness 
Microbial species similarity in abundance within an environment or 

population. 

Microbial richness The number of microbial species present in a given sample. 

Microbiome 
The collection of genomes from all the microorganisms found in a 

given environment. 

Microbiome 

editing 
Targeted manipulation of microbiota through the use of technology 
and/or other microbiota. 

Microbiota 
The collection of microorganisms detected within a given 

environment. 
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CHAPTER 1 
 

Literature review 

 
1.1. Introduction 

Globally, over two billion people are estimated to be infected by gastrointestinal (GI) 

soil-transmitted helminths (STHs), with a further 230 million people suffering from 

schistosomiasis (reviewed by 1,2). Amongst the most medically and economically important 

parasitic helminths are the nematodes Ascaris lumbricoides, Trichuris trichiura, Necator 

americanus, Ancylostoma duodenale, and Strongyloides stercoralis, which together are 

responsible for the global burden of soil-transmitted helminthiases (reviewed by 1); the 

pathology these helminths cause originates from direct damage related to their attachment, 

migration, burrowing and feeding activities or secondary damage resulting from the host's 

immune response to the parasite (reviewed by 3,4). Concurrently, the blood flukes (trematode 

worms) Schistosoma mansoni and S. haematobium are the main inducers of 

intestinal/urogenital schistosomiasis, respectively, and can cause local and systemic 

pathological effects through eggs becoming trapped in tissues and inducing a granulomatous 

response (reviewed by 2). Together, soil-transmitted helminthiases and schistosomiasis are 

estimated to cause a total of over six million disability-adjusted life years (DALYs) globally, 

mainly affecting areas in developing countries characterised by suboptimal standards of 

sanitation and hygiene (reviewed by 1,2).  

In spite of global efforts to control infections by these parasites via mass drug 

administration (MDA), repeated exposures to larvae and eggs, caused by persisting 

environmental contamination with infective stages of the parasites, as well as high re-infection 

rates in at-risk populations, make interruption of the life cycles of these parasitic helminths and 

their elimination difficult to achieve 6,7. These challenges, together with the existing threat of 

emerging drug resistance in humans (already a significant issue in veterinary species; reviewed 

by 8-10) and the limited number of effective anthelmintic compounds available drive the 

continual search for new, integrated strategies to control these diseases. Such novel approaches, 

however, require a thorough understanding of the fundamental biology and epidemiology of 

these pathogens and their interactions with the vertebrate hosts 11. 
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Irrespective of our increasing knowledge of aspects of immunity, gene expression 

profiling and protein-protein interactions in host-parasite systems 12, major gaps still exist in 

our current understanding of the systems biology of parasites following invasion of, and 

establishment in, the vertebrate host gut. This includes the understudied area of parasite-

microbiota interactions. The human gut is inhabited by a complex network of commensal 

microorganisms that exert a number of specialised functions beneficial to the host, such as 

nutrient metabolism, synthesis of essential organic compounds, protection against pathogens 

and development of adaptive immunity 13-16. Studies have shown that the balance between the 

gut microbiota and the host body is crucial for a functional gut metabolism and overall health 

maintenance and that a disturbance of this balance can result in a myriad of diseases such as 

diabetes and obesity (reviewed by 17). Furthermore, several studies have shown that the gut 

microbiota and their metabolites play a major role in protecting its host from colonisation by 

pathogenic organisms 19. Indeed, they can stimulate a range of cell populations associated with 

maintaining the intestinal mucosal barrier and thus help provide a physical obstacle to pathogen 

invasion (reviewed by 17). Therefore, given that STHs and the gut microbial flora share the 

same niche within the human host, it is plausible that such parasite-microbiota interactions 

impact substantially on the health and gut homeostasis of helminth-infected hosts 18. Notably, 

the same stands true for schistosomes, since although the adults reside in the host blood, their 

eggs traverse the host gut epithelial layer, resulting in a direct interaction with the gut 

microbiota. Nevertheless, the effects that parasitic helminth infections exert on the commensal 

flora of the vertebrate hosts have long been neglected. The purpose of this chapter was to 

review relevant information of aspects of the biology of parasitic helminths of socio-economic 

importance (i.e. selected species of STHs, including the roundworms A. lumbricoides and S. 

stercoralis, the hookworms A. duodenale and N. americanus, as well as the blood fluke S. 

mansoni), the role of the mammalian microbiome and metabolome, and research approaches 

towards the investigation of host-helminth-microbiota-metabolite interactions. Based on the 

conclusions of the literature review, the aims of the thesis were formulated. 

 

1.2. Epidemiology, life cycles and pathogenesis 

1.2.1. Ascaris lumbricoides (Clade II, Ascaridida) 

A. lumbricoides is a large (10-15 cm) roundworm, or nematode, that parasitises the 

human intestine and causes disease, i.e. ascariasis. Globally, ascariasis is among the most 

common helminthic human infections and affects approximately 804 million people, resulting 

in approximately one million DALYs (Fig. 1A; reviewed by 1). A. lumbricoides follows a direct 
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life cycle and involves eggs being passed via the host’s faeces (Fig. 1B; reviewed by 19). Under 

favourable conditions these embryonated eggs can remain viable for up to five years (reviewed 

by 19). Only upon the exposure to certain environmental cues (i.e., moist, warm, and shaded 

soil) the first stage larva (L1) develops within the egg and over the following two to six weeks 

moults to the second stage (L2), and, subsequently, to the infective third stage (L3) larva 

(reviewed by 19). These infective eggs are then ingested by the host and hatch in the small 

intestine, where they invade the intestinal mucosa, penetrate the intestinal walls, enter the portal 

venous system and lymphatic channels, in which they migrate hematogenously and via 

lymphatics to the liver and then the lungs (reviewed by 19). Further development occurs in the 

lungs over the next 10-14 days, after which the larvae penetrate the alveolar walls, ascend the 

bronchial tree to the throat, and are swallowed (reviewed by 19). In the small intestine the larvae 

mature into adult worms and can lay up to up to 200.000 eggs per female per day (21-29 days; 

reviewed by 19). Full maturity of the worms, which have a lifespan of 1-2 years, occurs 50-55 

days after initial ingestions of the infective eggs and oviposition can be detected in the host 

faeces after 60-62 days (reviewed by 19).  
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Many infections remain asymptomatic, however, heavy infections can result in severe 

pulmonary disease (Löeffler’s syndrome) and/or partial/total obstruction of intestinal tracts, 

due to the propensity of the worms to interlace and form large masses (reviewed by 20). 

Consequently, the classic symptoms include abdominal pain, constipation, and vomiting 

(reviewed by 20). Moreover, the worms can penetrate biliary and pancreatic ducts, causing 

biliary colic, as well as hepatic and pancreatic dysfunction (reviewed by 20). The diagnosis of 

Fig. 1 Prevalence of the gastrointestinal parasitic helminth Ascaris lumbricoides (A) 
and its transmission strategies (B). Adapted from 1. 



 5 

intestinal ascariasis is confirmed via stool microscopy for ova or via detection and examination 

of adult worms. The presence of significant numbers of adult worms in the small intestine of 

the host can also lead to malnutrition and, consequently, developmental impairment (reviewed 

by 20). 

 

1.2.2. Strongyloides stercoralis (Clade IV, Rhabditida) 

S. stercoralis is a soil-transmitted intestinal nematode estimated to infect ~370 million 

people worldwide, with higher prevalence (ranging from 10-60%) recorded across tropical and 

subtropical regions (Fig. 2A) 21-24. The life cycle of S. stercoralis is highly complex and 

provides the parasite with multiple routes towards survival and proliferation (Fig. 2B) 21,25. 

There exist both parthenogenetic parasitic and free-living female worms. Infective filariform 

larvae are able to infect a putative human host both percutaneously and orally, with skin 

penetration on feet being the most common 1. From there the larvae migrate to the pulmonary 

capillaries, penetrate alveoli, pass to the larynx, and enter the small intestine, where they 

develop into adults 1. Oral infection proceeds identically following penetration of the intestinal 

mucosa 21,25. Mature female worms will penetrate the epithelial layer and lodge in the duodenal 

and jejunal lamina propria, where they lay up to 50 eggs per day 1. Hatching occurs within the 

gut mucosa and non-infective rhabditiform larvae travel to the lumen from where they are 

excreted within the host faeces 21,25. At the same time some larvae might penetrate the colonic 

wall or perianal skin to commence a new cycle. This process is known as “autoinfection” and 

enables chronic long lasting (up to decades) strongyloidiasis, without repeated exposure to 

exogenous infective larvae 25. Larvae or unhatched eggs that are passed in the stool are able to 

persist in moist soil for several weeks and can develop into infective larvae 21,25. 
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Infection with S. stercoralis is typically difficult to diagnose, due to patients presenting 

only mild or no symptoms, and stool microscopy having low sensitivity for detecting this 

parasite (around 50%), due to intermittent larval excretion and low infectious burden (reviewed 

by 26). There are, however, reliable Real-Time PCR (rtPCR) approaches that have proven 

significantly more successful (up to 100%) 27. Although most infected people remain 

Fig. 2 Prevalence of the gastrointestinal parasitic helminth Strongyloides stercoralis 
(A) and its transmission strategies (B). Adapted from 1. 
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asymptomatic, they can experience respiratory symptoms, while the larvae migrate through the 

lungs; in some cases, patients present Löeffler’s-like syndrome, characterised by fever, 

dyspnoea, and wheeze (reviewed by 26). The most severe pathology caused by S. stercoralis 

infection is known as the hyperinfection syndrome. This occurs when patients chronically 

infected with this parasite become immunosuppressed and leads to over-proliferation of larvae 

with, often lethal, dissemination to end organs (e.g. lungs, liver, and brain; reviewed by 26). 

 

1.2.3. Hookworms (Clade V, Strongylida) 

The hookworms N. americanus and A. duodenale are estimated to infect 477 million 

people world-wide and in over 58 countries, most of which lie in the tropics and sub-tropics 

(Fig. 3A; reviewed by 1). The life cycle of hookworms is direct, with female worms shedding 

eggs through the host faeces (Fig. 3B; reviewed by 19). Provided the right environmental 

conditions arise the rhabditiform L1s hatch from the eggs on the soil (reviewed by 19). These 

larvae feed on soil bacteria and moult to L2s (two days), and subsequently to infective L3s 

(four to five days). These filariform larvae retain the L2 cuticle (i.e. sheath) and infect their 

host via skin penetration, following cuticular shedding (reviewed by 19). Thereafter, the larvae 

travel through the blood vessels to the heart and then to the lungs, where they penetrate the 

pulmonary alveoli. Here they ascend the bronchial tree to the pharynx, and are swallowed and 

transported to the small intestine, where they reach sexual maturity within the next one to two 

months (reviewed by 19). As adults, hookworms attach via their buccal capsule to the intestinal 

mucosa, rupture capillaries and feed on their host’s blood (reviewed by 19). Notably, although 

skin penetration constitutes the main route of infection, ingestion of L3s can also result in 

hookworm infection; in the latter case, the larvae will exsheath in the gut and develop directly 

to adulthood without a migration to the lungs (reviewed by 1,19). Ancylostoma spp. can also 

undergo hypobiosis (i.e. developmental arrest) in the somatic tissue of their host and, following 

activation during pregnancy, undergo trans-mammary transmission to the offspring.  
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 Hookworm infections can cause a type-1 hypersensitivity reaction during pulmonary 

migration (Löeffler’s syndrome), yet the main pathology stems from the blood loss the adult 

worms cause through direct tissue damage and consumption of red blood cells (reviewed by 1). 

These focal lesions are characterised by local haemorrhage, tissue cytolysis and neutrophilic 

immune response (reviewed by 1). This can clinically manifest itself in form of iron-deficiency 

Fig. 3 Prevalence of the hookworms Necator americanus and Ancylostoma 
duodenale (A) and their transmission strategies (B). Adapted from 1. 
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anaemia, which if prolonged, can result in both physical and mental impairment, as well as 

death in children; additionally, it can cause maternal mortality, impaired lactation, premature 

births, and low birth rates (reviewed by 1,28). 

 

1.2.4. Schistosoma mansoni (Diplostomida) 

Schistosomiasis is a neglected tropical disease that affects over 230 million people 

worldwide and is considered the most problematic of the human helminthiases in terms of 

morbidity and mortality (Fig. 4A) 29. The causative agents are not GI nematodes, like the 

previous helminths, but rather extra-intestinal (EI) blood flukes (trematodes) of the genus 

Schistosoma including S. mansoni, S. japonicum and S. haematobium amongst others. These 

digenetic organisms undergo four life cycle stages, two of which are completed within the 

human host (Fig. 4B). S. mansoni is one of the major schistosomiasis agents in Africa and 

South America. Human infections occur during the cercarial stage of the life cycle, where the 

freshwater-dwelling cercariae penetrate the host’s skin 30,31. Upon successful invasion, the 

cercariae shed their tails, develop into schistosomula, and migrate to the lungs and eventually 

the hepatic portal system via the bloodstream. The schistosomula mature into adults and pair, 

after which they migrate to the mesenteric plexus and start laying hundreds of eggs per day 
30,31. The eggs are shed into the water, hatch and infect fresh water snails as intermediate hosts, 

before repeating the life cycle 30,31.  
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The main pathogenesis is caused by eggs that become trapped in host tissues and 

consequently trigger an immune response, while also eliciting a host granulomatous response 
32. While this granuloma formation is key in preventing more sever pathology early on, 

accumulation of such granulomas can result in fibroses, i.e. the primary cause of mortality 

associated with schistosomiasis 32.  

 

Fig. 4 Prevalence of schistosomiasis (A) and Schistosoma mansoni transmission 
strategies (B). 
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1.3. Aspects of immunology 

To date, a wealth of knowledge on the impact of parasitic helminths on the host immune 

system has been acquired in order to understand key biological questions concerning the 

establishment, proliferation, and potential prevention of infection. The primary incentive for 

parasitic helminth to actively interact with its host immune system is to avoid elimination and 

to instead persist and proliferate, sometimes for many years. In turn the host immune responses 

are faced with a compromise between immunity against the parasite and immunopathology 

caused by prolonged inflammatory responses. Notably, the host immune system often merely 

minimises helminth infection, rather than completely eradicating it, to limit immune-mediated 

damages (reviewed by 33). Specifically, the host immune system typically mounts a T helper 

(Th) 2-type response that is generally effective in limiting infections by parasitic helminths 

(reviewed by 33). However, this response may not be sufficient to entirely eliminate the 

infection. This can lead to the host skewing the immune response towards a regulatory 

phenotype to avoid potential pathogenic effects of a sustained Th2 response (reviewed by 33). 

In parallel, parasitic helminths themselves have been shown to secrete immunomodulatory 

molecules that induce the polarization of the response towards a regulatory phenotype, thus 

avoiding Th2 responses that eventually may clear them out of the host (reviewed by 33). Indeed, 

a murine model of S. mansoni infection demonstrated that wild-type mice survive and become 

chronically infected 56 days post-infection, whereas IL-4 (a cytokine that induces 

differentiation of naive helper T cells to Th2 cells) deficient mice die due to severe 

inflammation 34. Indeed, the balance between regulatory T cells and a Th2 immune response is 

key to host health, with dysregulation often resulting in severe pathology and death, e.g. hepatic 

fibrosis in schistosomiasis or hyperinfections with S. stercoralis 35,36. 

The complex interplay between helminth immune modulation and host immune 

response is seen across a range of phylogenetically distinct parasites, such as cestodes, 

trematodes, and nematodes. It is believed that the close co-evolution of these parasitic worms 

and their hosts has significantly shaped human immune development, as well as selecting for 

parasites with sufficient immune-modulatory capacity 36,37. This is reflected in the significant 

overlap in the type of immune responses they cause in their human hosts; this most commonly 

involves a strong induction of a Th2 response alongside an overall immune dampening 5. In 

turn, such Th2 responses are linked to the cytokines interleukin (IL)-3, IL-4, IL-5, IL-9, and 

IL-13, but also eosinophilia, goblet cell and mast cell hyperplasia, and alternative activation of 

macrophages 33. Conversely, immunosuppression is predominantly mediated by regulatory T 

cells secreting IL-10 and transforming growth factor (TGF)-β. An immune impact on the host 



 12 

requires live parasites, since parasitic helminths achieve immunomodulation through means, 

such as the secretion of soluble mediators that can interact with host immune cells (Fig. 5) 38. 

Indeed, in murine studies it has been demonstrated that secretory proteins from 

adult Nippostrongylus brasiliensis induce strong Th2 immune responses 39, while a cysteine 

protease (SmCB1) from S. mansoni stimulates IgE production in the host 40. Notably, the 

immune responses elicited by many parasitic helminths can vary across different 

developmental stages (i.e. eggs, larvae, and adults) across the parasites’ life cycle 41-43. For 

instance, people infected with N. americanus have been shown to have a differential pattern of 

proliferative immune responses to stage-specific antigens 43, while S. mansoni adults are 

understood to induce a Th1 type response, with the onset of egg deposition leading to a switch 

to Th2 immunity 41. Notably, parasitic worms can also have an immunomodulatory impact via 

direct interactions between helminth surface molecules and host cell surface receptors 44. The 

best understood system involves helminth glycans (e.g. Lacto-N-fucopentaose III and LewisX) 

that drive an activation of antigen-presenting cells that possess an anti-inflammatory phenotype 
44. Additionally, studies have shown that parasitic helminths are capable of molecular mimicry 

to modulate host immune responses. For instance, filarial nematodes have been shown to 

produce close homologues of anti-inflammatory molecules such as macrophage migration 

inhibitory factors 45, transforming growth factor beta 46, and suppressor of cytokine signalling 

1 47. Lastly, there is mounting evidence that the intricate interplay between the 

immunomodulation by parasitic and the host immune response may be mediated, at least 

partially, and in-/directly via changes to the host gut microbiome 48-53. 
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Understanding the fundamental interactions between parasitic helminths and the host 

is key towards the development of novel therapies to prevent/mitigate their establishment and 

pathology in humans. Moreover, an improved appreciation of this complex interplay might 

shed light on helminth therapy, i.e. the targeted controlled infection of humans to treat immune 

disorders, such as asthma, allergy, inflammatory bowel disease and type 1 diabetes (reviewed 

by 54,55). The idea originated from the observation that higher prevalence of parasitic infections 

in a population is associated with lower incidence of immune-related diseases 56. Furthermore, 

the fact that these immune conditions are characterised by a boost of Th1 immunity and many 

parasitic helminths induce strong Th2 responses in their host added weight to the argument. 

Fig. 5 Immunomodulatory strategies employed by parasitic helminths. The figure was adapted from 5. 
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Subsequently, two murine studies were able to demonstrate that helminth infection could 

prevent the onset of type 1 diabetes in non-obese diabetic mice 57,58. Furthermore, a range of 

human studies have investigated the therapeutic properties of parasitic nematodes in a range of 

immune diseases and have reported positive results in the treatment of inflammatory bowel 

disease, coeliac disease, as well as multiple sclerosis 59. Yet, despite the initial success, the 

specific underlying mechanisms leading to these curative effects are still poorly understood 

and require further investigations, so that we can exploit the full therapeutic potential of 

parasitic helminths. 

 

1.4. Current treatment strategies 

Vaccines against parasitic GI helminths have been at the centre of research efforts 

within the field of parasitology for decades, with a plethora of work conducted in various host-

helminth systems. This stems from the excellent prevention of helminth infection that can be 

achieved through this modus operandi, as well as the possibility of inducing natural immunity 

against these parasites, while circumventing potential concerns of resistance and adverse 

effects that chemotherapeutics may have on the host and its environment (reviewed by 60). 

However, the strategies to achieve this goal vary and can broadly classified into three 

categories, (a) through the use of irradiated larvae, (b) extracted and purified native antigens, 

or (c) recombinant antigens 61. Although all approaches have shown promise, recombinant 

antigen based vaccines are the most commercially viable, due to their comparatively higher 

stability and availability 61. Nonetheless, the development of such anti-helminth vaccines is 

highly complex and, consequently, very costly 62. In particular, it appears to be exceptionally 

difficult to achieve immune responses with recombinant vaccines, probably due to the 

complexity of interaction between helminth and host immune systems 62. This has resulted in 

only three vaccines currently being on the market, despite the significant time and funding 

spent on this task. Furthermore, all of the currently available vaccines are against veterinary 

parasitic helminths, i.e. a native gut antigen-based vaccine for the control of Haemonchus 

contortus in Australia, an irradiated larvae-based vaccine against bovine lungworm 

Dictyocaulus viviparus, and a recombinant vaccine to control the cestode Echinococcus 

granulosus in livestock 62. Therefore, the interventions and treatments of parasitic helminth 

infections, especially in humans, have been and still are reliant on the use of effective broad-

spectrum anthelmintics 63,64.  

Anthelmintics are a group of drugs that are designed to biochemically neutralise and 

remove parasitic helminths from the host. There currently are five categories of such drugs 
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available, i.e. benzimidazole (1-BZ), levamisole (2-LV), macrocyclic lactones (3-ML), amino-

acetonitrile derivatives (4-AD) and spiroindoles (5-SI) 65. As a result of the higher economic 

incentive all of the major anthelmintics currently in use were developed for the use in veterinary 

species, but have also shown success and proven essential for the treatment of helminth 

infections in humans (reviewed by 63,64). In fact, the two most used drugs against GI helminths, 

such as A. lumbricoides, T. trichiura and hookworms, in humans are the benzimidazoles, 

mebendazole and albendazole 64 and both were originally developed for treating veterinary 

parasites (reviewed by 66). Still, both drugs have been proven to be successful at significantly 

decreasing worm burdens in humans, as measured through egg-reduction rate (ERR; 64). 

Collective data from 31 trials indicated that albendazole/mebendazole can achieve ERRs of 

99.9/97.6%, 64.4/69.3%, and 92.4/76.5% for A.  lumbricoides, T. trichiura, and hookworms, 

respectively (reviewed by 64). Ivermectin is another successful anthelmintic and is considered 

the first choice of treatment against S. stercoralis infections 67. The ease of administration of 

anthelmintic drugs, alongside their cost-effectiveness against a wide variety of GI nematodes, 

has led to their widespread use in humans and livestock 62-64,68. Indeed, constant re-infections 

both in humans and livestock necessitate constant MDA or targeted strategic deworming 

programmes. However, this complete reliance on anthelmintics for the control of these 

parasites bears extensive risks, as indicated by the global threat of emerging anthelmintic 

resistance. 

  Anthelmintic resistance has already been observed in several GI nematodes of 

veterinary importance (reviewed by 8,9). Resistant helminths have rapidly grown into a global 

issue and are proving to be especially problematic in South Africa, Australia, South America, 

and New Zealand; in these regions the extent of resistance has severely threatened the 

sustainability of the sheep farming 69. Due to the significant spread and economic impact, 

anthelmintic resistance is expected to develop into one of the greatest challenges to the 

livestock industry 70. Although anthelmintic use in humans has not matched that in veterinary 

species, MDA programmes in the developing world have significantly increased the frequency  

of administration, as well as global coverage, over the past 15 years; this drive was most 

recently further driven by the World Health Organization (WHO), 2012 Goals 71. 

Consequently, there are growing concerns regarding the emergence of anthelmintic resistance 

in human STHs 72-74. Indeed, the evidence of reduced efficacy of ivermectin in the treatment 

of Onchocerca volvulus in humans 75, and the results of efficacy evaluations linked to detection 

of resistance mutations in human STHs drive the demand for novel, integrated strategies to 

control helminth infections. However, these require a comprehensive understanding of the 
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fundamental biology and epidemiology of these parasites and their interactions with the 

mammalian host.  

 

1.5. Human microbiome and metabolome 

The microbial cells that colonize the human body and make up the human microbiome 

are at least as abundant as our somatic cells, while also encompassing a significantly higher 

genetic complexity than our own genome 76,77. The microbiome consists of viruses, fungi, 

eukaryotes, archaea, and protozoans, amongst others, but bacteria are the most abundant and 

diverse domain found within and on our bodies; in fact, it is estimated that 500–1,000 species 

of bacteria exist in and on us 76. Hence, when referring to the microbiome, the focus typically 

falls predominantly on the bacterial components, which also holds true for this thesis. The 

human microbiome is one of the most dynamically researched areas of interest of the past 

decades, with most work investigating the microbiota’s role in the GI tract, since it harbours 

most of our microbes (reviewed by 78). Humans, like many other animals, have co-evolved 

with their microbiome, creating complex, body-habitat-specific, adaptive ecosystems which 

are finely attuned to relentlessly changing host physiology 76,79. These trillions of microbes 

have tremendous potential to impact host physiology, both in health and in disease 79. Together 

they contribute to metabolic functions, such as nutrient catabolism and synthesis of essential 

organic compounds, but also play key roles in the development of adaptive immunity and 

protection against pathogens (Fig. 6) 13-16. Yet, these core functions are not necessarily fulfilled 

by the same set of microbiota in different people 80. In fact, some of the microbes that constitute 

the functional core can even vary within the same individual over the course of their life 80. 
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Disturbances of this ecosystem and of the composition of the gut microbiota (i.e. 

dysbiosis) have been unequivocally linked to the onset of a range of gut and systemic diseases, 

such as inflammatory bowel disease, multiple sclerosis, diabetes (types 1 and 2), allergies, 

asthma, autism, and cancer 79. The concept of microbial dysbiosis has proved challenging to 

definitively define, yet is commonly considered as a perturbation of the host microbiome that 

deviates from an otherwise balanced and functioning ecosystem 81 to prolong, exacerbate, or 

induce a detrimental health effect 79. Consequently, the majority of research efforts have 

focused on identifying microbiome characteristics that broadly distinguish a healthy from an 

unhealthy state 79. However, this endeavour is complicated by the naturally high level of 

interpersonal diversity even in the absence of disease 82,83, and which thwarts attempts to 

identify simple microbial elements or fluctuations that either cause disease or indicate a 

diseased state 79. Nonetheless, a variety of potential features common to dysbiosis have been 

proposed, including shifts in gut microbial diversity and/or on a taxonomic level, through the 

presence and/or overabundance of opportunistic pathogens or foreign bacteria, as well as the 

absence or reduction of beneficial/commensal microbes 79.   

The gut microbiome consists of a wide range of microbiota, which are selected from a 

Fig. 6 Key functions of the microbiome on human health (human by Tina Hesman Saey). 
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large meta-population of potential colonizers that are together required to ensure the coverage 

of a core set of functions 84,85. This drives microbiota diversity, both in terms of richness (i.e., 

the number of species making up a microbial population) and microbial evenness (i.e., the 

relative abundance of each microbial species in a population), together known as alpha 

diversity 86. This diversity within the gut microbiota provides functional redundancy, since the 

functional potential can be realised with a subset of the available microbiota and, if the need 

arises, minor functional vacancies can be filled by a different set of microbes 79. Therefore, 

high levels of gut microbial diversity are generally indicative of microbiome health 87 and 

temporal stability 88, while the lack thereof is associated with a range of diseases such as 

inflammatory bowel disease 89, types 1 90 and 2 91 diabetes, and obesity 92 amongst others. 

Notably, such shifts in diversity are manifested in changes in the abundance of certain bacteria, 

which can act as a further biomarker of dysbiosis. Although complicated by inter-individual 

microbiota variability, the following bacterial families have been described to be particularly 

important within the human gut: Bacteroidaceae, Clostridiaceae, Prevotellaceae, 

Eubacteriaceae, Rumminococcaceae, Bifidobacteriaceae, Lactobacillaceae, 

Enterobacteriaceae, Saccharomycetaceae, and Methanobacteriaceae (reviewed by 79). 

Significant alterations to the abundances of these and other taxa within a healthy ecosystem 

can have profound effects on the stability and functionality of the host microbiome and lead to 

physiological impairments such as compromised epithelial barrier function, immunity, and 

metabolism 87. 

The gut microbiome is key in maintaining homeostasis of host metabolism through 

contributing to metabolism of food components, vitamin production and xenobiotic 

metabolism (reviewed by 93). The resulting microbial metabolites play a significant role within 

the metabolism of the host, aiding in the regulation of host metabolism at different levels. 

Consequently, significant shifts in the gut microbiome can have a profound impact on the host 

metabolome and have been linked to diseases such as obesity 92 and insulin resistance 94. Due, 

to this strong link between the microbiome and metabolome, parallel investigations of both 

systems provides a more complete picture of the overall state of the host’s GI tract 95. While 

analyses of the microbiome provide information on the presence/absence and abundances of 

microbes, it is challenging to understand their activity within the ecosystem. For example, the 

discovery of an expansion of certain short-chain fatty acid (SCFA) producing bacterial taxa, 

e.g. the mucin degrading Akkermansia muciniphila (produces proprionate), Eubacterium 

rectale, or E. hallii (both produce butyrate), could point towards an inflamed GI tract of the 

host, due to the role SCFAs play in inflammation (reviewed by 96,97). Hence, metabolomics can 
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provide a functional readout of microbial activity, by providing information on the metabolic 

interplay among the host and gut microbiota 98. 

 

1.6. Host-helminth-microbiota interactions 

Thus far, the vast majority of studies that have attempted to unravel host-parasite 

interactions have predominantly focused on two key players, the parasite and the host immune 

system (e.g., 99-102). However, over the past few years a growing body of evidence supports a 

key role of infections by GI helminth parasites in shaping the composition of the vertebrate gut 

microbiota, with significant implications for local and systemic host immunity (reviewed by 
103). It has been demonstrated that GI helminths impact on the composition of the mammalian 

host gut microbiota and relative abundance of individual bacterial taxa (reviewed by 104), with 

downstream effects on host immunity and metabolic potential 103,105,106. These findings have 

led to an improved understanding of parasite systems’ biology and host-pathogen interactions, 

while also carrying the potential to pave the way towards novel microbiome-targeted parasite 

control strategies (reviewed by 104), as well as helminth therapy approaches 49,107. However, 

whilst several studies to date have been conducted in rodent models of human helminth 

infections 52,53,108-120, companion animals 121,122, and veterinary species 123-129, less have 

investigated the impact of GI helminth infection on the human microbiota 49-51,107,130-135. 

Unravelling the impact of such infections on human gut microbiota is further complicated by 

the lack of major consistencies in findings between the existing studies. Particularly, whilst the 

investigation of human-helminth-microbiome interactions in real-world scenarios is key to 

gain insights into the actual impact such infections have in a natural setting, findings from such 

studies have proven challenging to untangle. The extent of inter-subject variability related to 

differences in diet, helminth burden, and re-infection rate, amongst others, results in a 

substantial amount of noise in the dataset and may contribute significantly to inconsistencies 

among findings from different studies (Fig. 7; reviewed by 136).   
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For example, while two studies identified increased levels of gut microbial diversity 

following helminth infection 50,131, the remaining studies reported no changes 130,132,134,135,137 or 

even decreased levels of diversity 51. The convolutedness of the data becomes even more 

apparent when assessing the fluctuations of specific bacterial taxa. Indeed, two separate studies 

conducted in Malaysia 50,133 found that T. trichiura infection reduced the relative abundance of 

the bacterial genus Prevotella in the faeces of infected individuals, whereas other studies did 

not report significant variations in faecal populations of Prevotella in people either solely 

infected by T. trichiura or co-infected with other species of STHs 51,131. Furthermore, whilst it 

was reported that single-species infections with N. americanus, A. lumbricoides or T. trichiura 

Fig. 7 Sources of variation and confounding factors potentially impacting the 

outcome of studies on human-helminth-gut microbiota interactions in helminth-

endemic regions 135. 



 21 

were distinctly characterised in the gut microbial profiles of infected individuals, the specific 

features were inconsistent across two independent cohorts of helminth-infected volunteers 

from Liberia and Indonesia 131. These findings further substantiate the concern that other, yet 

undetermined, environmental factors are likely to affect qualitative and quantitative alterations 

of the gut microbial profiles of infected individuals.  

Nonetheless, some consistencies between the abundance of selected bacterial taxa and 

infections by one or more STHs exist; both Olsenella and Allobaculum were significantly more 

abundant in the gut microbiota of helminth-infected individuals compared to uninfected 

controls 131. The study by Rosa et al. 131 was the first to report a link between infections by 

STHs and the abundance of these bacterial genera in the human gut. Besides the intrinsic 

variability of the human gut microbiota, studies conducted under natural conditions of helminth 

colonisation are likely to be affected by factors linked to the different combinations of infecting 

species and their relative abundance. Indeed, specific gut microbial changes identified in cohort 

of Ecuadorian children co-infected with T. trichiura and A. lumbricoides could not be observed 

in the faecal microbiota of Trichuris only-infected children 51. Analogously, certain shifts in 

the microbiota that were detected in studies conducted in people with mono-specific infections 

with, e.g. A. lumbricoides, could not be identified in the microbiome of human volunteers 

infected with the same parasite, as well as other helminth species, such as T. trichiura and N. 

americanus 131. These findings suggest that a complex interplay exists between the host gut 

and its macro- and microbiota, which might be difficult to replicate in experimental settings 

(reviewed by 136).  

A further common issue with studies investigating the gut microbial impact of natural 

helminth infections is the availability and subsequent inclusion of ‘genuine’ negative controls. 

These would ideally consist of individuals from the same communities of parasite-infected 

subjects, yet who have not been previously exposed to infections by parasitic helminths. 

However, since such studies are typically conducted in helminth endemic areas, the presence 

of such control subjects is highly unlikely, and instead individuals with no evidence of patent 

helminth infections are recruited as control subjects 50,51,131. Hence, interpretation of findings 

from such studies calls for caution, especially given that it has been demonstrated that parasite-

associated alterations in the gut microbiota can persist subsequent to anthelmintic treatment 
51,132.  

It is worth noting that, in instances where deworming-associated changes in human gut 

microbial profiles were observed, these were generally moderate 130,132,133. Accordingly, a 

recent study conducted on faecal samples from a rural community in Indonesia found that the 
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gut microbial composition of volunteers, repeatedly treated for 21 months with either 

albendazole or placebo, was more similar to pre-treatment samples, than to the composition of 

uninfected control subjects 131. A parallel investigation focusing on the same study cohort 

observed reduced populations of Prevotella in albendazole-treated subjects in which complete 

deworming did not occur, compared to placebo-treated individuals with patent helminth 

infections 130. Notably, failure of albendazole treatment was accompanied by a dominance of 

T. trichiura (over other helminth species) in these subjects, while placebo-treated individuals 

maintained infections with multiple species of helminths. Consequently, differences in the 

helminth species present and their relative abundances, between albendazol- and placebo-

treated individuals, could explain variations in the gut microbial composition of these subjects 
130. However, while no significant associations between colonisation by T. trichiura and 

Prevotella abundance were detected in the Indonesian cohort 130,131, two independent studies 

conducted in Malaysia have previously reported a negative association between T. trichiura 

infections and Prevotella abundance 50,133. In particular, Ramanan and co-authors 133 found 

that, subsequent to albendazole treatment, expansion of Prevotella populations in the human 

faecal microbiota was associated with reduced T. trichiura egg counts. Conversely, no 

significant associations between helminth infection and abundance of bacteria belonging to the 

genus Prevotella was reported in a study investigating the impact of parasite colonisation and 

albendazole and ivermectin treatment on the gut microbial profiles of a cohort of Trichuris-

infected children from Ecuador 51. Analogously, no qualitative or quantitative changes to faecal 

microbial composition were detected in two cohorts of schoolchildren from Côte d’Ivoire and 

Zimbabwe infected with S. mansoni and S. haematobium, respectively, following treatment 

with praziquantel 132,137. Yet, successful elimination of the infection was linked to an increased 

abundance of Fusobacterium spp. pre-treatment, and expansion of the same taxa 24 hrs post-

treatment 132. Together, these findings highlight the substantial complexity in analysing and 

interpreting data from host-helminth-microbiota interaction studies and the considerations that 

need to be made in terms of study population, negative controls, and anthelmintic treatment 

(amongst others); however, these initial observations also have elucidated the great potential 

that lies within unravelling this intricate network of interactions.  

Indeed, in an effort to gain a greater understanding of the specific impact that certain 

GI helminths have on the human microbiota under more controlled settings, investigations of 

experimental infections in humans have been carried out. However, while such studies carry 

great potential, they are rare since experimental helminth infections of humans are typically 

solely conducted in the context of helminth therapy. To date, three such studies exist, all 
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assessing the impact of experimental infections with N. americanus on the gut microbiota of 

human volunteers suffering from coeliac disease 49,107,138. The study by Cantacessi and co-

authors 49 indicated a trend towards increased microbial diversity post helminth infection, but 

did not suggest any significant changes in gut microbiota composition; this is likely to be 

associated with the limited sample size of this study (n=8) 49. The other two studies not only 

assessed the effects of N. americanus infections on the gut microbiota of coeliac patients, via 

faecal 107 and duodenal 138 samples respectively, but also investigated the impact of 

administering increasing doses of dietary gluten over time,. Both studies reported significant 

increases in bacterial alpha diversity following hookworm infection and also found differences 

between several time points 107,138. Notably, Giacomin and co-authors 138 reported a significant 

expansion of specific bacterial taxa post-infection, e.g. bacteria belonging to the phylum 

Bacteroidetes. However, this study lacked samples post helminth infection and pre-gluten 

challenge, which makes it difficult to definitively determine if the observed changes were 

associated with helminth infection or if they occurred due to gluten introduction 138. Notably, 

a small subset of samples (n = 8), from the same helminth therapy trial of human volunteers 

with coeliac disease 139 as mentioned above, were subjected to metabolic analyses 140. This 

study presented the first and, to date, only study investigating shifts in GI metabolites following 

GI helminth infection 140. It found that short chain fatty acids (SCFAs) were increased in the 

study subjects experimentally infected with hookworms 140. SCFAs have been characterised as 

anti-inflammatory metabolites and alongside the clinical improvement observed in the patients 
139 suggested that these molecules could be at least one of the causative agents underlying the 

therapeutic potential of GI helminths in autoimmune conditions 140. These results are promising 

and promote further investigations of the metabolic effect of GI helminth infections, yet due to 

the limited sample size the findings can merely be considered as a first step. The limited number 

of comparative studies complicates the detection of consistencies and detection of the 

underlying cause, but investigations of the gut microbial and metabolic impact of experimental 

helminth infections present an exciting opportunity to eliminate a multitude of confounding 

variables affected studies of natural infections. 

Once we have identified certain trends in microbial or metabolic shifts, which appear 

to be consistent and of potential importance, via human studies of natural or experimental 

parasitic helminth infections, we can harness the power of murine models of human helminth 

infections. Indeed, one of the most consistent gut microbial responses that has been reported to 

date is the increase of Lactobacillaceae populations in mice infected with the whipworm T. 

muris 111, the hookworm N. brasiliensis 110, and especially the roundworm Heligmosomoides 
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polygyrus 53,114,115,141. These bacteria belong to the phylum Firmicutes, are gram-positive, and 

play a key role in carbohydrate metabolism 142. However, these bacteria gained most interest, 

due to their immune-modulatory functions in the host gut, primarily by promoting an expansion 

of T regulatory cells; this has also led to the use of these lactic acid bacteria as a probiotic 

supplement for GI inflammatory diseases 143. Notably, it has been demonstrated that mice 

experimentally infected with H. polygyrus experience an expansion of Lactobacillaceae, while 

also suffering from increased worm burdens when Lactobacillus species were artificially 

administered prior to the helminth infection 115. This led Reynolds and co-authors 115 to 

hypothesise that there might be a mutualistic relationship between Lactobacillaceae and certain 

parasitic helminths, whereby each promotes the activation of T regulatory mechanisms and, 

consequently, minimises the impact of the host immune response on the counterpart. As these 

findings demonstrate, the high levels of experimental control, innate to murine models, present 

unique opportunities towards the exploration of specific helminth-microbiota interactions 

observed in humans; yet, they are heavily reliant on the input of human data for translational 

applicability back to human settings.  

Investigations of natural and experimental helminth infections, as well as murine 

models of such infections, all play a pivotal role in identifying common signatures across 

different settings and a pursuit of these diverse research avenues remains key to understanding 

the complexities underlying host-helminth-microbiota-metabolite interactions. However, this 

requires further studies that thoroughly consider inclusion/exclusion criteria for the selection 

of participants, include appropriate controls, and follow standardised experimental and data 

analysis protocols, to disentangle the potential influence of parasite-, drug- and/or population-

dependent variables in natural and experimental settings 136. Only then we will be able to draw 

meaningful and cross-applicable conclusions on global and system-specific gut 

microbial/metabolic shifts that are caused by helminths in the host. 

 

1.7. Research approaches 

Over time scientists have employed a range of different research approaches towards 

the exploration of the impact of parasitic helminths on the host microbiome and metabolome, 

ranging from bacterial culturing techniques to whole metagenome sequencing for the former 

and from inferred metabolomics to mass spectrometry for the latter. Until the 1990s, most 

studies predominantly relied on culture-based techniques for the profiling of gut microbial 

changes and, thus, would apply samples to growth media and record presence/absence of 

selected bacterial taxa 144. However, this approach would only allow clustering and 
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investigation of a limited number of taxa, i.e. aerobic bacteria that would grow on existing 

growth media 145. Consequently, resulting findings merely provided initial insights into this 

dataset and were far from a comprehensive and reliable analysis of the gut microbial 

composition 146. This led to the exploration of other research approaches and resulted in the 

gradual shift from culture-dependent to culture-independent techniques, hence increasing the 

potential for discovery and novel insights 147.  

One such technology is fluorescence in situ hybridization (FISH), a more complex 

technique that can be performed directly on bacteria. FISH makes use of the bacterial 16S 

ribosomal RNA (16S rRNA) gene, which is a component of 30S ribosomal small subunit and 

includes flanking regions that are highly conserved across bacterial taxa, as well as 

hypervariable regions that yield species-specific sequences and enable phylogenetic 

identification 148,149. Fluorescently labelled oligonucleotide probes are hybridised to 

complementary target 16S rRNA sequences, allowing phylogenetic identification of known 

species through flow cytometry. Terminal restriction fragment length polymorphism (T-RFLP) 

and denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis 

(DGGE/TGGE) are further, less targeted approaches that utilise the 16S rRNA gene in bacteria 

to indicate microbial diversity, rather than identify phylogeny 150,151. In T-RFLP, fluorescently 

labelled primers are used to amplify the DNA followed by digestion of the 16S rRNA amplicon 

through restriction enzymes, and separation by gel electrophoresis. In DGGE/ TGGE the 16S 

amplicons are denatured by a temperature gradient or a denaturant within the gel itself, 

allowing for separation of bacterial taxa according to sequence differences in the 16S gene. 

Other techniques that involve both phylogenetic identification of bacterial taxa and a degree of 

quantification also came into use for microbiome investigations, e.g. Sanger sequencing or 

qPCR of cloned 16S amplicons and DNA microarrays 152-154. Whilst cloning and qPCR still 

only target specific microbial groups, microarrays can be used for a more general gut bacteria 

population analysis, and can be applied to isolated DNA without introducing PCR bias. 

However, particularly over the past decade, innovations in next generation sequencing (NGS) 

and ‘omics’ technologies have led to more sophisticated methodologies, which are both 

quantitative and involve a significantly less or non-biased approach, whereby all microbial 

species present are sequenced and quantified. This includes sequencing 16S amplicons with 

either 454 Pyrosequencing® or Illumina® (still subject to minor PCR bias) 155, or the even 

more advanced  shotgun (whole metagenome) sequencing, which prevents PCR bias by 

sequencing the whole genome 156. Both of these approaches have vastly improved scientists’ 

ability to investigate the gut microbiome and gain insights into microbial ecosystem 
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interactions within its host (Fig. 8) 147,157,158. 

Particularly, high-throughput 16S amplicon sequencing has been employed in a vast number 

of studies, due to its cost-efficiency. Here, amplicon PCR primers bind to the conserved 16S 

region to allow the amplification of the taxa-specific gene fragments 159,160. Upon 

Fig. 8 Pros and cons of different microbiota profiling techniques 104. 
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amplification, the complete microbial community is sequenced by one of the existing NGS 

technologies, such as the pyrosequencing method by 454 Life Science or Illumina’s sequencing 

methods, amongst others 158. The resulting raw reads are stored as FASTA files, a text-based 

format for representing either nucleotide sequences. They are then quality filtered, based on a 

Phred-score that estimates probability of a base being wrong, and denoised, to decrease the 

potential impact of low quality reads, sequencing errors, and chimeric sequences on the 

sequencing results 161. Thereafter, the remaining sequences are clustered according to sequence 

similarity through a 97-99% similarity threshold, to determine all operational taxonomic units 

(OTUs) within the dataset 162. These OTUs are then compared to a reference database that 

contains known 16S rRNA sequences for taxonomic assignment, e.g. Greengenes (v13.8; 

http://greengenes.secondgenome.com/) or SILVA (https://www.arb-

silva.de/download/archive/qiime; Silva_132) 161. The speed of read-processing has been 

significantly increased by the emergence of bioinformatics platforms, such as Quantitative 

Insights Into Microbial Ecology (Qiime/Qiime2) 163 and Mothur 164 that facilitate this workflow 

through easy to use pre-built command options. The final output from these read-pipelines are 

OTU tables, which indicate the relative abundance of each identified taxon within every 

analysed sample. This then allows the thorough investigation of the dataset through 

biostatistical means in R or software packages specifically designed towards the analysis of 

microbial sequencing data, such as Calypso 165 (cgenome.net/calypso/). The OTU table can 

also be used to estimate metagenome content through specific software packages, e.g. 

PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) 
166, which allows the user to predict the functional composition of a microbiota using marker 

gene data and a database of reference genomes, consequently enabling the investigation of 

inferred metabolic pathway changes without need for further experiments 166. However, the 

quality of the data is limited by the reference database used for the metabolic inferences 166.  

Besides 16S sequencing other innovative ‘omic’ technologies, such as metagenomics 

and metabolomics can be applied to host-parasite-microbiota interaction investigations 
157,161,167. Whole metagenome analyses involve the sequencing of the whole nucleotide content 

within a sample and thus include not only bacteria, but also viruses, fungi, and eukaryotes 

amongst others and also enable strain level identification of gut microbiota, as well as their 

functional potential 157. This is achieved by fragmenting the DNA of all organisms in a given 

sample for random shotgun sequencing 157,167. Similar to 16S sequencing, the resulting 

sequences are quality filtered and aligned to different locations for genomes present in the 

sample 168. To identify taxa, sequences from any informative genetic region can be used (e.g. 
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16S-bacteria or 18S-fungi), while protein coding regions can provide insights into metabolic 

or other functional capabilities of the analysed microbiome 168. However, all this additional 

information is also manifested at the significantly higher per sample costs, when compared to 

16S sequencing runs. Metabolomic investigations provide a further tool to gain key insights 

into metabolic changes within a study cohort and can be used in conjunction with any of the 

above mentioned methods to correlate microbiome to metabolome changes 169. The main 

technologies typically applied in such studies are either mass spectrometry (MS) based or rely 

on high-resolution nuclear magnetic resonance (NMR) 169. Whilst MS is ideal for the 

investigations of specific metabolite groups, NMR provides an overview over the metabolic 

profile of a sample, as well as externally induced changes, e.g. via helminth infection 157,169. 

Already, many of the above mentioned technologies are being combined to generate 

multi-omic datasets to offer support towards novel biological hypotheses. Notably this drive is 

being significantly aided by various statistical and computational methods that have been 

developed to integrate high-dimensional multi-omic data in the pursuit of descriptive and 

predictive models of gut microbial community function that can be tested in mechanistic 

experiments 157.  

 

1.8. Conclusions of the literature review and research aims 

Our understanding of the biology of human parasitic helminths is greater than ever 

before. However, so far, the research has focused on gene expression profiling, immune- and 

protein-protein interactions in host-parasite systems, while largely neglecting other aspects of 

systems biology of parasites following invasion of, and establishment in, the host gut. This 

includes the understudied area of parasite-microbiota interactions. It has been shown that the 

balance between the gut microbiota and the host is crucial for health maintenance and that a 

disturbance of this balance can result in a range of diseases (reviewed by 79). Hence, given that 

GI nematodes and the gut microbiota share the same ecological niche within the human host, 

it is plausible that GI helminths and the host microbiota interact, and that this could 

significantly impact on the health and homeostasis of the parasite-infected hosts. Indeed, the 

few studies that exist to date have detected significant host microbiome shifts following GI 

helminth infection. However, there are few consistencies in the findings, likely due to the 

highly heterogeneous nature of the study designs, sample processing, data analysis, and host-

parasite systems investigated. Fortunately, the availability and affordability of next generation 

sequencing and reliable bioinformatic/biostatistical tools now enables us to investigate such 

host-parasite-microbiota interactions in depth and at high throughput in a coherent and 
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consistent manner 157. Furthermore, the question remains whether the impact that GI helminths 

have on the host microbiota are, due to their direct interactions or stem from immunological 

shifts upon infection and, consequently, if EI helminth infections can have a similar impact.   

Therefore, the aims of this thesis were to explore the impact of such helminth infections 

in various systems, ranging from natural multi-species infections in a developing country to 

highly controlled and experimental murine models of human helminth infections, involving a 

single species of parasitic helminth. Meanwhile, consistent and cutting-edge protocols for 

sample collection, read processing, and bioinformatic/biostatistical data analysis were applied 

to ensure comparability and reliability of these studies. This enabled the confident 

identification of microbiota changes that are consistent across different settings, as well as 

helping to detect alterations that are specific to a certain host-helminth system. In future, these 

findings might help guide novel therapeutic strategies towards the control of helminth 

infections, as well as providing insights into potential mechanisms underlying the therapeutic 

potential of GI helminths in the treatment of allergic and autoimmune conditions.  

 

The specific aims of this thesis were the following: 

 

(1) Investigate the consequences of natural multi- or mono-species infections by helminth 

parasites on the composition of the human gut microbiota (Chapters 2 and 3). 

 

(2) Elucidate the longitudinal impact of experimentally controlled mono-species helminth 

infections on the human gut microbiota (Chapter 4). 

 

(3) Examine what impact an EI helminth infection has on the host microbiome in a murine 

model of human schistosomiasis (Chapter 5).
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CHAPTER 2 

 
Infections by human gastrointestinal helminths are 

associated with changes in faecal microbiota diversity and 

composition 
 

 

Abstract  

Investigations of the impact that patent infections by soil-transmitted gastrointestinal nematode 

parasites exert on the composition of the host gut commensal flora are attracting growing 

interest by the scientific community. However, information collected to date varies across 

experiments, and further studies are needed to identify consistent relationships between 

parasites and commensal microbial species. Here, I explore the qualitative and quantitative 

differences between the microbial community profiles of cohorts of human volunteers from Sri 

Lanka with patent infection by one or more parasitic nematode species (H+), as well as that of 

uninfected subjects (H-) and of volunteers who had been subjected to regular prophylactic 

anthelmintic treatment (Ht). High-throughput sequencing of the bacterial 16S rRNA gene, 

followed by bioinformatics and biostatistical analyses of sequence data revealed no significant 

differences in alpha diversity (Shannon) and richness between groups (P = 0.65, P = 0.13 

respectively); however, beta diversity was significantly increased in H+ and Ht when 

individually compared to H- (P = 0.04). Among others, bacteria of the families 

Verrucomicrobiaceae and Enterobacteriaceae showed a trend towards increased abundance 

in H+, whereas the Leuconostocaceae and Bacteroidaceae showed a relative increase in H- 

and Ht, respectively. These findings add valuable knowledge to the vast, and yet little explored, 

research field of parasite – microbiota interactions and will provide a basis for the elucidation 

of the role such interactions play in pathogenic and immune-modulatory properties of parasitic 

nematodes in both human and animal hosts. 
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2.1 Introduction 

More than one billion people worldwide are estimated to be infected by gastrointestinal 

(GI) soil-transmitted helminths, including the roundworm Ascaris lumbricoides, the whipworm 

Trichuris trichiura and the hookworms Necator americanus and Ancylostoma duodenale 1. 

Infections by these nematodes alone are estimated to cause the loss of 4.98 million disability-

adjusted life years (DALYs) globally 2, mainly affecting areas of developing countries 

characterised by suboptimal standards of sanitation and hygiene 3. Despite global efforts to 

control infections by these parasites via mass drug administration (MDA), repeated exposures 

to infective larvae and high re-infection rates in at-risk populations make interruption of the 

life cycles of these nematodes and their elimination difficult to achieve 4,5. These challenges, 

together with the realistic threat of emerging drug resistance 6 drive the continual search for 

new, integrated strategies to control these diseases, based on a thorough understanding of the 

fundamental biology and epidemiology of these pathogens and their interactions with the 

human hosts 7. Recently, studies of the intimate mechanisms that regulate the relationships 

between GI soil-transmitted nematodes and their vertebrate hosts have involved investigations 

of the impact that patent parasite infections exert on the composition of the gut commensal 

flora and relative abundance of individual bacterial groups 8-10. The increased attention towards 

detailed explorations of parasite-microbiota interactions stems from knowledge that the gut 

commensal flora plays several key essential roles in human health, including nutrient 

metabolism, protection against pathogens and regulation of both innate and adaptive immune 

responses 11,12. Therefore, given that GI nematodes and the gut microbial flora share the same 

environment within the human host, it is plausible that parasite-microbiota interactions impact 

substantially on the health and homeostasis of helminth-infected hosts 10. For instance, GI 

nematodes and the microbiota compete for host nutrients while, in parallel, the known immune-

modulatory properties of a range of parasites may translate into dramatic modifications of the 

mucosal and systemic immunity to the resident bacteria 10. The effects that GI nematode 

infections exert on the commensal flora of vertebrate hosts have long been neglected; however, 

recent studies have contributed preliminary information to this little-known field of research, 

mainly driven by the need to better understand the factors that determine the immune-

modulatory properties of selected species of parasitic nematodes 13-17. Our group has recently 

attempted to determine the impact that experimental infections by the human hookworm, N. 

americanus, exert on the composition of the gut microbiota of human volunteers 15,17,18. While 

no shifts in the relative abundance of individual bacterial taxa were observed over the course 

of these studies, increases in microbial species richness and diversity were detected following 
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experimental infections 15,17,18. However, these studies, conducted under controlled 

experimental settings and with a known number of infective larvae, are unlikely to represent 

‘real-world’ infections (caused by the simultaneous presence of multiple parasite species with 

varying infection burdens). Thus far, to the best of our knowledge, only two studies have 

evaluated differences in the composition of the gut microbiota of human subjects naturally 

infected by GI nematodes 8,9, with contrasting results. Indeed, while in the first study, Cooper 

and colleagues 8 detected a reduction in faecal bacterial diversity in Ecuadorean school children 

naturally infected by T. trichiura and A. lumbricoides compared to uninfected children or 

children solely infected by the former, a study by Lee et al. 9, reported a greater richness in the 

faecal microbiota of a cohort of indigenous Malaysian volunteers infected by multiple GI 

nematodes (i.e. hookworms, whipworms and roundworms) when compared with that of a 

group of uninfected subjects from New York. This data highlights the need for additional 

explorations of the impact that natural patent infections exert on the gut microbiota of infected 

human subjects. In addition, in the studies by Cooper et al. 8 and Lee et al. 9, the microbial 

profiling of helminth-infected and uninfected subjects with that of volunteers subjected to 

regular anthelmintic treatment was not examined. Given the widespread use of MDA in 

parasite-endemic areas 5, the possible consequences of regular use of chemotherapeutics on the 

composition of the host gut commensal flora deserves further investigation. Amongst the 

developing countries in which MDA is in use, Sri Lanka provides suitable settings for such a 

study, given a 29% prevalence estimate for soil-transmitted helminths (including GI 

nematodes) in school children 19 and the implementation of mass deworming programmes since 

1994 20. 

 

Therefore, in this chapter, I explore the qualitative and quantitative differences between 

the microbial community profiles of human volunteers (from diverse Sri Lankan communities) 

infected by one or more GI nematode species, and compare the gut microbial profiles of these 

subjects with those from a cohort of volunteers from the same geographical area who had been 

subjected to regular prophylactic anthelmintic treatment.   

 

2.2 Materials and methods 

2.2.1 Ethics statement 

This study was approved and carried out in strict accordance and compliance with the 

guidelines of the Institutional Ethical Review Committee, Faculty of Medicine, University of 
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Peradeniya, Sri Lanka (Research Project No. 2015/EC/58). Written informed consent was 

obtained from all subjects enrolled in the study. 

 

2.2.2 Study area and characteristics of the population 

A total number of 76 subjects from nine villages in four districts of Sri Lanka were screened 

for the presence of patent infections by GI nematodes (Fig. 1). Participants were distributed as 

follows: 

- 45 subjects from the Kandy district, villages of Rangala, Lolgama, Elagolla, Lunugala, 

Hanthana, Akurana; 

- 10 from the Jaffna district, Valalai village; 

- 15 from the Puttalam district, Kandakuliya village; 

- 6 from the Kegalle district, Mawanella village (Fig. 1). 

Subjects were both men and women, of varying ages and social background, did not report 

symptoms of GI disease or any other concomitant diseases, and had not been treated with 

antibiotics over at least 6 months prior to the study (Table 1). Participants from the villages of 

Rangala, Lolgama, Elagolla, Lunugala and Hanthana were workers in tea estates, while those 

from Kandakuliya and Valalai were fishermen (cf. Fig. 1). Subjects from Mawanella and 

Akurana were living in congested urban areas characterised by poor sanitary living conditions. 

All participants were interviewed using a standardised, pre-tested questionnaire aimed to 

identify means of access to water, knowledge of sanitary and hygiene standards, availability of 

and access to health care facilities, awareness of risks of infection by GI helminths, and 

frequency of anthelmintic treatments. A copy of the questionnaire is provided in 

Supplementary Figure S1.  
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Fig. 1 Sampling locations in Sri Lanka. Numbers 1-9 represent the villages Rangala, Lolgama, Elagolla, 

Lunugala, Hanthana, Mawanella, Akurana (in Kandy District), Valalai (in Jaffna District) and 

Kandakuliya (in Puttalam District), respectively. 

 
Table 1 Village, age (years), gender of helminth-positive (H+), helminth-negative (H-) and helminth-

negative but regularly treated (Ht) subjects enrolled in this study. The parasite species infecting H+ 

volunteers and compound administered to Ht volunteers are also indicated (NA = not applicable; NP = 

not provided).  

 

ID Village Age (years) Gender Parasite species / Drug 

H+     

H+ 01 Hanthana 1-18 Male Ascaris 
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H+ 02 Hanthana 1-18 Male Ascaris 

H+ 03 Hanthana 1-18 Female Ascaris 

H+ 04 Hanthana 1-18 Female Ascaris 

H+ 05 Hanthana 1-18 Female Ascaris 

H+ 06 Hanthana 1-18 Male Ascaris 

H+ 07 Kandakuliya 1-18 Female Trichuris 

H+ 08 Mawanella 1-18 Male Hookworm 

H+ 09 Mawanella 51+ Female Hookworm 

H+ 10 Rangala 19-50 Male Hookworm 

H+ 11 Rangala 1-18 Female Hookworm 

H-     

H- 01 Hanthana 1-18 Male NA 

H- 02 Hanthana 1-18 Male NA 

H- 03 Hanthana 1-18 Male NA 

H- 04 Hanthana 1-18 Female NA 

H- 05 Hanthana 1-18 Male NA 

H- 06 Hanthana 1-18 Male NA 

H- 07 Hanthana 1-18 Male NA 

H- 08 Hanthana 1-18 Female NA 

H- 09 Hanthana NP NP NA 

H- 10 Hanthana 1-18 Male NA 

H- 11 Hanthana 1-18 Male NA 

Ht     

Ht 01 Akurana 1-18 Female Pyrantel pamoate 

Ht 02 Akurana 51+ Female Pyrantel pamoate 

Ht 03 Kandakuliya 1-18 Female Pyrantel pamoate 

Ht 04 Kandakuliya 19-50 Male Pyrantel pamoate 

Ht 05 Kandakuliya 1-18 Female Pyrantel pamoate 

Ht 06 Kandakuliya 1-18 Female Pyrantel pamoate 

Ht 07 Mawanella 19-50 Female Pyrantel pamoate 

Ht 08 Mawanella 1-18 Female Pyrantel pamoate 

Ht 09 Mawanella 1-18 Male Pyrantel pamoate 

Ht 10 Valalai 19-50 Female Pyrantel pamoate 
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2.2.3 Sample collection and parasitological analyses 

Each volunteer was asked to provide a fresh stool sample for parasitological analyses. 

The presence of nematode eggs/larvae in each sample was assessed using a modified sucrose 

floatation method described previously 21. Stool samples were refrigerated and transported to 

the laboratory for processing. For each sample, approximately three grams of faeces were 

measured, mixed with distilled water in a capped centrifuge tube to a final volume of 15 ml. 

The mixtures were stirred thoroughly using a wooden applicator and centrifuged at 2045 g for 

20 mins at room temperature (~27oC). Following centrifugation, the supernatants were 

discarded and resulting pellets were re-suspended in distilled water and centrifuged (twice) 

until clear supernatants were obtained. The pellets were then emulsified using saturated sucrose 

solution, mixed thoroughly, and centrifuged for 20 min at 2045 g. Approximately 5 ml of the 

top meniscus of the resulting suspensions were collected in a centrifuge tube and mixed with 

distilled water up to a final volume of 15 ml and centrifuged for 10 min at 1370 g. This 

procedure was repeated and 1 ml of each suspension with the pellet was transferred to 1.5 ml 

eppendorf® tubes using a Pasteur pipette. Distilled water was added to a final volume of 1.5 

ml and tubes were centrifuged at 1150 g for 10 min. The clear supernatants were decanted and 

microscope slides were prepared using the remaining 0.5 ml pellets and examined under a light 

microscope. Helminth eggs were identified using established morphological keys 22.  

 

2.2.4 DNA extraction and bacterial 16S rRNA Illumina sequencing 

Genomic DNA was extracted directly from each sample, as well as from two negative 

(no-DNA template) controls, using the PowerSoil® DNA Isolation Kit (MO BIO Laboratories, 

Carlsbad, CA, USA), according to manufacturers’ instructions, within one month from 

collection. High-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S 

rRNA gene was performed on an Illumina MiSeq platform according to the standard protocols 

with minor adjustments. Briefly, the V3-V4 region was PCR-amplified using universal primers 
23, that contained the Illumina adapter overhang nucleotide sequences, using the NEBNext hot 

start high-fidelity DNA polymerase (New England Biolabs) and the following thermocycling 

protocol, using DNA 2ng/µl: 2 min at 98°C, 20 cycles of 15 s at 98°C – 30 s at 63°C – 30 s at 

72°C, and a final elongation of 5 min at 72°C. Amplicons were purified using AMPure XP 

Ht 11 Valalai 1-18 Male Pyrantel pamoate 
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beads (Beckman Coulter) and the NEBNext hot start high-fidelity DNA polymerase was used 

for the index PCR with Nextera XT index primers (Illumina) according to the following 

thermocycling protocol: 3 min at 95°C, 8 cycles of 30 s at 95°C – 30 s at 55°C – 30 s at 72°C, 

and 5 min at 72°C. The indexed samples were purified using AMPure XP beads, quantified 

using the Qubit dsDNA high sensitivity kit (Life Technologies), and equal quantities from each 

sample were pooled. The resulting pooled library was quantified using the NEBNext library 

quantification kit (New England Biolabs) and sequenced using the v3 chemistry (301 bp 

paired-end reads). Raw sequence data have been deposited in the European Nucleotide Archive 

database under accession number PRJEB21999. 

 

2.2.5 Bioinformatics and statistical analyses  

Raw paired-end Illumina reads were trimmed for 16S rRNA gene primer sequences 

using Cutadapt (https://cutadapt.readthedocs.org/en/stable/). Pre-processed sequence data 

were processed using the Quantitative Insights Into Microbial Ecology (QIIME) software suite 
24. Successfully joined sequences were quality filtered in QIIME using default settings. Then, 

sequences were clustered into OTUs on the basis of similarity to known bacterial sequences 

available in the Greengenes database (v13.8; http://greengenes.secondgenome.com/; 97% 

sequence similarity cut-off) using the UCLUST software; sequences that could not be matched 

to references in the Greengenes database were clustered de novo based on pair-wise sequence 

identity (97% sequence similarity cut-off). The first selected cluster seed was considered as the 

representative sequence of each OTU. Then, representative sequences were assigned to 

taxonomy using the UCLUST software. Singleton OTUs and ‘contaminant’ sequences (from 

no-DNA control samples) were removed prior to downstream analyses. Total sum 

normalisation (TSS) was applied followed by cumulative-sum scaling (CSS) to correct bias 

introduced by TSS, and log2 transformation to account for the non-normal distribution of 

taxonomic counts data. Statistical analyses were executed using the Calypso software 25 

(cgenome.net/calypso/); samples were clustered using supervised Canonical Correspondence 

Analysis (CCA) (including infection status as explanatory variable). Differences in bacterial 

alpha diversity (Shannon diversity) and richness between groups, as well as in the abundance 

of individual taxa, were evaluated using paired t-test. Beta diversity was calculated using 

weighted UniFrac distances and differences in beta diversity were calculated using PERMDISP 

(Permutational Analysis of Multivariate Dispersions) through the betadisper function 26. 

Differences in the composition of the faecal microbiota between groups were assessed using 

the LEfSe (Linear discriminant analysis Effect Size) workflow 27, by assigning 
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infection/treatment ‘groupings’ as comparison class. Metagenome functional contents were 

analysed using the software package PICRUSt (v1.0.0) to predict gene contents and 

metagenomic functional information 28. Sequences were aligned to data available in the 

Greengenes database v.13.5 and OTUs were assigned using a 97% identity cut-off. The 

resulting OTU table was then imported into PICRUSt and used to derive relative Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Pathway abundance 28. Differences in KEGG 

pathway abundance between groups were assessed using ANOVA embedded in the software 

suite STAMP 29. To minimise the risk of other variables confounding the results, binomial 

logistic multiple-regression models were applied to the dataset. The infection status of each 

study participant was used as a dependent variable and other factors including age, gender, 

village, education and occupation, as independent variables, including interaction terms, to 

identify any risk factors associated with helminth infection (cf. Supplementary Table S1). 

 

2.3 Results 

Of 76 human volunteers enrolled in this study, 11 were positive for hookworms and/or 

roundworms and/or whipworms (H+) (Table 1), while 27 were negative despite no prior 

anthelmintic treatment (H-) (Table 1 and Supplementary Table S1). A total of 38 subjects had 

received regular anthelmintic treatment (Ht) with Pyrantel pamoate (Table 1 and 

Supplementary Table S1). Therefore, 11 samples from each of H- and Ht cohorts were selected 

for high-throughput sequencing of bacterial 16S rRNA and subsequent comparative analyses 

with samples from the H+ group (Table 1). Logistic multiple-regression models were applied 

to these samples, but none of the assessed independent variables had a significant association 

with infection status of the study participants. From these 33 samples, a total of 17,576,532 

paired-end reads were generated (not shown) and subjected to further processing. A total of 

3,694,717 high-quality sequences (per sample mean 111,960 ± 40,845) were retained after 

quality control. Rarefaction curves generated following in silico subtraction of low-quality and 

contaminant sequences indicated that the majority of faecal bacterial communities were 

represented in the remaining sequence data, thus allowing me to undertake further analyses. 

These sequences were assigned to 11,371 OTUs and 12 bacterial phyla. 

The phyla Firmicutes (mean of 50.9 %) and Bacteroidetes (mean of 39.2 %) were 

predominant in all samples analysed, followed by the phyla Proteobacteria (mean of 3.6 %) 

and Actinobacteria (mean of 3.0%) (Supplementary Table S1). At the family level, 

Prevotellaceae (mean of 26.4%), Ruminococcaceae (mean of 24.7%), Lachnospiraceae (mean 

of 13.0%) and Bacteroidaceae (mean of 8.1%) were most abundant (Supplementary Fig. S2). 



 53 

Bacteroidaceae were highly abundant in some of the Ht (n = 3) and H+ (n = 2) subjects, but 

only in one H- study participant; the same samples also showed a significant reduction in 

Prevotellaceae (Supplementary Fig. S2). The species Prevotella copri was abundant in the 

microbiota of >75% volunteers in this study, and it made up 7-69% (mean 17.3%) of all 

microbe species in these samples (Supplementary Fig. S3).  

Subject faecal microbial communities were ordinated by CCA, which separated samples by 

infection or treatment status (Fig. 2) and identified as statistically significant (P = 0.05). No 

significant differences in OTU alpha diversity (Shannon) and richness were recorded between 

groups (P = 0.65, P = 0.13) (Supplementary Fig. S4).  

 

 

Fig. 2 Supervised Canonical Correspondence Analysis (CCA) displaying the compositional distribution 

of the faecal microbiota between helminth-positive (H+), helminth-negative (H-) and helminth-negative 

but regularly treated (Ht) subjects. 

 

However, the H+ and Ht microbiota was significantly more variable (i.e. characterised 

by increased beta diversity) compared with H- subjects (P = 0.04) (Fig. 3), which indicated 

differences in overall heterogeneity of species composition between sample groups, rather than 

in overall species composition.  
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Fig. 3 Permutational Analysis of Multivariate Dispersions indicating differences in global microbial 

community composition of the study subjects. (I) helminth-positive (H+) and helminth-negative (H-), 

(II) regularly treated (Ht) and H-, and (III) H+ and Ht subjects. 

 

Analysis by LEfSe, also supported by ANOVA, identified differences in abundance of 

individual taxa at the phylum, class, order, family, genus and species level between the three 

groups (Fig. 4). In particular, Verrucomicrobiae (Class), Verrucomicrobiales (Order), 

Verrucomicrobiaceae and Enterobacteriaceae (Family), Lactococcus, Akkermansia and a 
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genus belonging to the Enterobacteriaceae (Genus) and Akkermansia muciniphila (Species) 

showed a trend towards increased abundance in H+ compared to the other two groups (Fig. 4). 

Compared to H+, Leuconostocaceae and Bacteroidaceae (Family) and Bacteroides (Genus), 

were increased in H- and Ht, respectively (Fig. 4). Compared to H+, Leuconostocaceae and 

Bacteroidaceae (Family) and Bacteroides (Genus) were increased in H- and Ht, respectively 

(Fig. 4). 

 

 
Fig. 4 Differentially abundant faecal bacteria in helminth-positive (H+), helminth-negative (H-) and 

helminth-negative but regularly treated (Ht) subjects, based on LDA Effect Size (LEfSe) analysis. 

Phylum (I), Class (II), Order (III), Family (IV), Genus (V), Species (VI) and OTUs (VII). Taxa 

highlighted in black/white/green indicate an overrepresentation in H+ /H- /Ht, respectively. 
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The same microbial metabolic and functional KEGG pathways were inferred by 

PICRUSt analysis in all three groups (Supplementary Fig. S5). However, ‘lipid metabolism’ 

(P = 0.003), ‘rig-like receptor signalling pathway’ (P = 0.024), and ‘apoptosis’ (P = 0.04), were 

down-regulated in H+ compared with H-/Ht subjects, while the ‘biotin pathway’ was up-

regulated in H+ compared with H-/Ht (P = 0.008) (Fig. 5). 

 

 
Fig. 5 Differences in relative abundance of KEGG pathways encoded in the faecal microbiota of 

helminth-positive (H+), helminth-negative (H-) and helminth-negative but regularly treated (Ht) 

subjects. Biotin metabolism (I), apoptosis (II), RIG-I-like receptor signalling (III) and Ether lipid 

metabolism (IV); significant differences (< 0.05) are indicated with asterisks (*). 

 

2.4 Discussion 
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In this chapter, I analysed the effects of patent infections by parasitic helminths, as well 

as of repeated prophylactic administrations of anthelmintics, on the composition of the gut 

microbiota of human volunteers from endemic areas of Sri Lanka. Bacterial sequence data 

generated showed that the gut microbiota of subjects enrolled in this study was predominantly 

composed by species of the phylum Firmicutes, followed by those of the phyla Bacteroidetes, 

Proteobacteria and Actinobacteria, irrespective of infection and/or treatment status. This 

observation is in agreement with data from previous studies of the effects of natural or 

experimental helminth infections on the composition of the human gut microbiota 8,9,15,17. In 

particular, at the genus level, a significant proportion of most samples analysed were 

represented by Prevotella spp., which reflects the findings from a previous study conducted in 

a cohort of Ecuadorean children infected by roundworms 8. Prevotella spp. are known to play 

a key role in carbohydrate metabolism 30 and thus their expansion is likely due to a high 

carbohydrate/fibre diet, which is common in Sri Lanka 31. An abundance of bacteria of the 

genus Prevotella has been linked to a concomitant decrease of Bacteroides spp., and vice versa, 

likely as a consequence of the metabolic differences between these two genera 30. Indeed, in 

this study, Bacteroides spp. were abundant in the gut microbiota of subjects from the fishing 

villages Valalai and Kandakuliya, whose diet is typically high in fish-derived proteins and fats 
30. Nevertheless, Bacteroides were also abundant in samples from volunteers from Hanthana 

(tea estate). However, since the questionnaire did not include detailed questions on individual 

dietary habits, it was not possible to speculate whether diet-related factors may have caused 

the observed differences in the composition of the gut microbiota of Hanthana villagers. 

In this study, the CCA analysis clustered samples according to infection or treatment 

status. However, analyses of OTU richness (i.e. the number of species within a sample) and 

alpha diversity (i.e. a measure of sample richness and evenness, the latter being defined as the 

relative abundance of individual species within a sample) detected no significant differences 

between H+, H- and Ht individuals. While this observation supports the findings from a 

previous study carried out in a cohort of human volunteers experimentally infected with N. 

americanus 18, an investigation of the impact of naturally acquired helminth infections on the 

composition of the gut microbiota of a cohort of Ecuadorean children 8 resulted in contrasting 

results. Indeed, while sole infections by T. trichiura could not be associated with detectable 

changes in microbial richness and alpha diversity, the gut microbiota of subjects with 

concomitant infections by T. trichiura and A. lumbricoides displayed a notable decrease of the 

latter 8. Nonetheless, a recent study conducted in a cohort of naturally helminth-infected 

indigenous Malaysians 9, as well as other studies in experimentally infected individuals 15,17 
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indicated an increase in alpha diversity associated with parasite infections. It is plausible to 

hypothesise that these varying observations could be linked, for example, to differences in the 

sample size, the ‘baseline’ composition of the gut microbiota of subjects enrolled, the type of 

species causing the infections (hookworms vs. whipworms vs. ascarids), and/or in the infection 

stage at which samples were collected (acute and chronic in case of experimental infections vs. 

‘undefined’ in case of natural infections). Nevertheless, since a range of GI inflammatory 

diseases have been associated with a decrease in microbial diversity 32-34, it has been 

hypothesised that a helminth-mediated increase in microbial alpha diversity may represent a 

potential mechanism by which helminths are able to suppress inflammation 9,15,17,35. This aspect 

deserves further investigation using pre-defined and standardised experimental set-ups. 

Whilst I detected no differences in overall bacterial richness and alpha diversity 

between H+, H- and Ht groups, beta diversity was significantly increased in H+ and Ht 

subjects when each of these groups were individually compared to the uninfected H- cohort. 

Unlike alpha diversity, beta diversity provides a measure of the distance or dissimilarity 

between pairs or groups of samples 26. An increased beta diversity has been previously 

observed in the gut microbiota of veterinary species, such as mice infected with Trichuris muris 
36, rats infected with Hymenolepis diminuta 37, and goats infected with Haemonchus contortus 
38. In humans, the higher beta diversity observed in H+ individuals compared with the 

uninfected controls corroborates the hypothesis that helminth infections are accompanied by 

qualitative and quantitative changes in the composition of the host gut microbiota that are, 

based on data available thus far, inconsistent between individuals 15,17,18. However, these data 

also suggest that anthelmintic treatment alone may be responsible for significant changes in 

the gut microbiota of human hosts. To date and to the best of our knowledge, no studies have 

shown a direct effect of anthelmintics on the composition the vertebrate gut microbiota. 

Nevertheless, pyrantel pamoate, the anthelmintic administered to subjects enrolled in this 

study, has been shown to affect, besides helminths, protozoans such as Giardia 39. The 

microbiota profiling technique used in this chapter did not allow to investigate the effects that 

helminth infections or anthelmintic treatment exert on populations of commensal or pathogenic 

eukaryotes, and thus the hypothesis that repeated doses of pyrantel may have resulted in 

substantial modifications of such populations requires further testing.  

Significant alterations of individual bacterial taxa were detected between H+, H- and 

Ht subjects. Amongst these, Akkermansia muciniphila (class Verrucomicrobiae) was 

significantly increased in H+ individuals when compared to uninfected subjects. A. 

muciniphila is an anaerobic bacterium commonly detected in the human gut microbiota, where 
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it primarily degrades host mucins 40. Both vertebrate and helminth mucins have been shown to 

play key roles in the complex network of interactions occurring at the helminth-host interface 
41. For instance, the surface coat of the infective larval stage of the roundworm Toxocara canis 

has been shown to express high levels of a mucin-like glycoprotein (TES-120) which is shed 

following its binding by host antibodies or immune cells, thus suggesting that these molecules 

play a major role in protecting the parasite from the host immune response 42. On the other 

hand, a dramatically increased production of host mucins was observed in macaques 

experimentally infected with the whipworm T. trichiura 35, likely as a consequence of the onset 

of Th2-type immunity stimulated by the infection 43. Therefore, it may be possible that this 

observation of increased populations of A. muciniphila may be a direct consequence of the 

surge in helminth- and host-derived mucins in infected subjects. Interestingly, previous studies 

have shown that A. muciniphila populations are reduced in individuals with severe appendicitis 

and inflammatory bowel disease (IBD), which led the authors to hypothesise an anti-

inflammatory role for this bacterial species 44-46. Given the known anti-inflammatory properties 

of a range of helminth species 15,17,18,35,47,48, the role of helminth-induced expansions in 

populations of mucin-degrading bacteria should be tested in future studies aimed at dissecting 

the causality of parasite-mediated suppression of inflammation. 

Amongst the Firmicutes, the family Leuconostocaceae (order Lactobacillales) was 

significantly increased in H- subjects. These bacteria belong to the lactic acid bacteria, a major 

group of autochthonous microbes that reside in the gut of humans and animals and that exert 

immune-modulatory functions 49. Lactic acid bacteria are known probiotics 49; yet, recent 

investigations, by our group and others, in humans experimentally or naturally infected by GI 

nematodes did not report significant associations between helminth infections and expanded 

populations of lactic acid bacteria 8,9,15,17,18. Conversely, previous studies of murine models of 

nematode infections have shown a marked increase in populations of lactobacilli (belonging to 

the Lactobacillaceae, a family of lactic acid bacteria distinct from the Leuconostocaceae but 

with similar metabolic properties) in response to parasite establishment 13,48,50. The specific 

groups of lactic acid bacteria shown to be associated with helminth infection are inconsistent 

between this and previous studies, which could be linked to host-specific responses to parasites; 

nevertheless, in the future, studies of parasite-microbiota interactions conducted on larger 

human and/or animal cohorts should particularly focus on this group of probiotics 49,51. 

In order to correlate data on the composition of the human gut microbiota in response to 

helminth infection and anthelmintic treatment to inferred changes in bacterial metabolism, I 

conducted a predictive metagenomics analysis using PICRUSt. Whilst inferred KEGG 
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pathways were consistent across groups, as also shown in a similar investigation of the faecal 

microbiota of a helminth-infected community from Malaysia 9, ‘biotin metabolism’ was 

inferred to be up-regulated in H+ individuals compared to H-. Biotin is a B-vitamin with key 

roles in gene expression, cell signalling and chromatin structure 52; in particular, biotin 

dependent signalling pathways regulate the expression of genes with key biological functions, 

e.g. apoptosis and cell survival 52. Indeed, a significant down-regulation of the KEGG pathway 

‘apoptosis’ was observed in H+ compared to H- volunteers. Overall, these findings emphasise 

that qualitative and quantitative compositional changes in helminth-infected individuals may 

be accompanied by significant alterations of the microbial metabolism which, in turn, may 

greatly impact host nutrition and immunity.  Clearly, this data requires experimental validation 

using comprehensive metabolomics studies of the gut microbiota of helminth-infected hosts 

during acute and chronic infections.  

 

2.5 Conclusions 

Data from this chapter augments current knowledge of the effect that helminth 

infections and continued prophylactic treatment exert on the composition of the gut microbiota 

of the human host. However, inherent limitations may have impaired my ability to detect minor 

changes in populations of bacteria affected by parasites and/or anthelmintic treatment. 

Amongst these limitations, the relatively small sample size, dictated by the prevalence of 

helminth infections in the Sri Lankan community enrolled in this investigation, may have 

affected the statistical power; in addition, dietary variabilities, as well as differences in species 

of infecting helminths and parasite loads, while effectively representing a ‘real world’ scenario, 

may have introduced a range of confounding factors that, under the circumstances of this study, 

I was unable to fully evaluate. Nevertheless, I detected a significantly increased beta diversity 

in the microbiota of H+ compared with the H- counterpart, together with compositional 

changes in the gut microbiota of H+, H- and and Ht subjects, thus indicating a distinct effect 

of both helminth infection as well as of continued prophylactic treatment on the host gut 

microbiota. In addition, I also identified potential microbial metabolic changes associated with 

helminth infections, which further emphasises the need for further investigations of the role/s 

that helminth-induced changes in bacterial metabolism play in the complex network of host-

parasite interactions. Overall, these findings add valuable knowledge to the vast, and yet little 

explored, research field of parasite – microbiota interactions and will provide a basis for the 

elucidation of the role such interactions play in pathogenic and immune-modulatory properties 

of parasitic nematodes in both human and animal hosts. However, to further investigate the 
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impact of natural helminth infections on the human microbiota in a less complex setting, I 

studied the impact of a single-species helminth infection in a developed country which is non-

endemic for these parasites, in the following chapter. 
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CHAPTER 3 

 
A comprehensive analysis of the faecal microbiome and 

metabolome of Strongyloides stercoralis infected volunteers 

from a non-endemic area 
 

 

Abstract  

Data from recent studies support the hypothesis that infections by human gastrointestinal (GI) 

helminths impact, directly and/or indirectly, on the composition of the host gut microbial flora. 

However, to the best of my knowledge, these studies have been conducted in helminth-endemic 

areas with multi-helminth infections and/or in volunteers with underlying gut disorders. 

Therefore, in this chapter, I explored the impact of natural mono-infections by the human 

parasite Strongyloides stercoralis on the faecal gut microbiota and metabolic profiles of a 

cohort of human volunteers from a non-endemic area of northern Italy (S+), pre- and post-

anthelmintic treatment, and compare the findings with data obtained from a cohort of 

uninfected controls from the same geographical area (S-). Analyses of bacterial 16S rRNA 

high-throughput sequencing data revealed increased microbial alpha diversity and decreased 

beta diversity in the faecal microbial profiles of S+ subjects compared to S-. Furthermore, 

significant differences in the abundance of several bacterial taxa were observed between 

samples from S+ and S- subjects, and between S+ samples collected pre- and post-anthelmintic 

treatment. Faecal metabolite analysis detected marked increases in the abundance of selected 

amino acids in S+ subjects, and of short chain fatty acids in S- subjects. Overall, this work adds 

valuable knowledge to current understanding of parasite-microbiota associations and will assist 

future mechanistic studies aimed to unravel the causality of these relationships. 
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3.1 Introduction 

The human gastrointestinal (GI) tract is inhabited by a myriad of bacteria, viruses, 

archaea, fungi, and other unicellular and multicellular microorganisms, that together form the 

gut micro- and macrobiota 1-4. Whilst some members of the microbiota can cause severe disease 
5, most resident bacteria exert a number of specialised functions beneficial to the human host, 

including absorption of nutrients, synthesis of essential organic compounds, development of 

adaptive immunity and protection against pathogens 6-9. Nevertheless, disturbances of the 

composition of the gut microbiota (i.e. dysbiosis) have been unequivocally linked to the onset 

of a range of gut and systemic diseases, such as chronic autoimmune and allergic disorders, 

obesity, diabetes and, more recently, multiple sclerosis (MS) 10-13. On the other hand, with a 

few exceptions, multicellular organisms residing in the GI tract, such as parasitic worms (= 

helminths) are mostly considered detrimental to human health, as they can subtract nutrients, 

damage host tissues and release toxic waste products 14-16. Nonetheless, in the developing 

world, infections by parasitic helminths have been associated with a low incidence of allergic 

and autoimmune diseases, as encompassed by the ‘hygiene hypothesis’ 17,18; this observation 

has led to the ‘curative’ properties of a range of GI helminths being investigated in a range of 

clinical trials aimed to develop novel therapeutics against selected chronic inflammatory 

disorders, such as ulcerative colitis 19,20, Crohn’s disease 21-24, coeliac disease 25,26 and MS 27-

31. Whilst preliminary results from a number of such trials are promising, a thorough 

understanding of the mechanisms that determine the anti-inflammatory properties of these 

helminths is necessary to assist the development of new effective therapeutics against these 

disorders. These properties are predominantly attributed to the ability of parasites and/or their 

excretory/secretory products to modulate host immune responses to facilitate their long-term 

establishment in the human gut 32-43; nevertheless, in recent years, the ability of controlled 

infections by selected GI helminths to ameliorate clinical signs of chronic inflammation has 

been hypothesized to stem, at least in part, from direct and/or immune-mediated interactions 

between parasites and the resident microbial flora (reviewed by 44). This hypothesis is 

supported by observations from several studies 45-50 that have reported significant associations 

between human infections by GI parasites (under experimental and natural settings) and shifts 

in the composition of the human gut microbiota towards a ‘healthy’ phenotype, as well as 

increased levels of metabolites with anti-inflammatory properties 45-50. However, information 

reported to date have been derived from cohorts of human volunteers with underlying chronic 

gut disorders (e.g. coeliac disease 45-48) or conditions of malnutrition and/or multi-specific 

helminth infections and/or exposed to multiple re-infections 50-53, with likely implications on 
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the ‘steady-state’ of the gut flora of these individuals. Whilst complete elimination of these 

confounding factors is difficult to achieve in human studies, investigations of the impact that 

infections by single species of GI helminths exert on the composition of the gut flora of 

individuals with no clinical evidence of concurring co-infections or underlying gut disorders 

may help disentangle the causality of parasite-microbiota relationships; in turn, this knowledge 

may assist the design of mechanistic experiments in available animal models of infection and 

disease (cf. 54-57), aimed to achieve a better understanding of the therapeutic properties of 

parasites.     

Strongyloides stercoralis is a soil transmitted intestinal nematode estimated to infect 

~370 million people worldwide, with higher prevalence (ranging from 10% to 60%) recorded 

across tropical and subtropical regions 58-61. The life cycle of S. stercoralis is complex, in that 

it involves both free-living and parasitic adult stages 58,62. In particular, the small intestine of 

the vertebrate hosts (e.g. humans) harbours adult females only, which reproduce via 

parthenogenesis and lay eggs that hatch immediately, thus releasing first stage rhabditiform 

larvae (L1s) that are excreted with the host faeces (reviewed by 58,62). However, L1s can also 

develop into invasive filariform larvae that are able to re-infect the host without being excreted 

(i.e. ‘autoinfection’) 62. Once in the environment, male L1s develop through four larval stages 

to free-living adults; conversely, female L1s can either develop through to free-living adults 

(similarly to males) or reach a developmental stage infective to a new susceptible host, i.e. the 

infective third-stage larva (L3). Importantly, the new generation of female parasites deriving 

from sexual reproduction of free-living males and females is inevitably parasitic 58,62. These 

infective larvae typically infect humans percutaneously and migrate to the small intestine, 

where the cycle recommences 58,62. Autoinfection of a susceptible host can occur at a low level 

for several years, and is often subclinical or asymptomatic 58,62 although, in immunosuppressed 

individuals, parasites can spread to all organs and tissues causing (potentially fatal) 

‘disseminated strongyloidiasis’. 

Chronic infections by S. stercoralis provide a golden opportunity to evaluate the effect/s of 

long-term colonisation by parasitic nematodes on the composition of the human gut microbiota. 

In this chapter, I explored the impact of natural infections by S. stercoralis on the faecal gut 

microbiota and metabolic profiles of a cohort of elderly volunteers (with no clinical evidence 

of concurrent pathologies of infectious or non-infectious origin) from northern Italy. This area 

is non-endemic for parasitic nematodes, but characterised by the presence of sporadic cases of 

chronic infections by S. stercoralis in elderly individuals in which the parasite has persisted 

through several decades via autoinfection 63. I profiled the gut microbiome pre- and post-
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anthelmintic treatment with ivermectin, and compared the findings with a control cohort of 

uninfected individuals from the same geographical area. 

 

3.2 Materials and methods 

3.2.1 Ethics statement 

This study was conducted according to the Declaration of Helsinki, and the protocol 

was reviewed and approved by the Institutional Ethical Review Committee for clinical 

experimentation for the Province of Verona (Comitato Etico per la Sperimentazione Clinica 

delle Province di Verona e Rovigo, protocol number 34678). Written informed consent was 

obtained from all subjects enrolled in the study.  

 

3.2.2 Study area and characteristics of the population 

Individual faecal samples from 20 volunteers (from four regions in northern Italy) with 

confirmed infections by S. stercoralis (S+) as assessed by Real-Time PCR (rtPCR; cf. 64), 

performed at the Centre for Tropical Diseases of the Sacro Cuore Hospital (Negrar, Italy) 

during routine screening, were examined for microbiota and metabolite profiling as described 

below. Of these volunteers, 15 were from the Veneto region, three from Lombardia, one from 

Piemonte, and one from Emilia-Romagna (Supplementary Fig. S1). Subjects were both men (n 

= 12) and women (n = 8) of an average age of 74 (range 49-86 ± 11.5) (Supplementary Fig. 

S1) with no overt symptoms of GI disease and no recent history of anthelmintic treatment. 

Briefly, immediately following collection of individual faecal samples from each of these 

volunteers, aliquots (~250 mg) were examined for evidence of patent infections by GI 

helminths (S. stercoralis, Strongyloides fuelleborni, N. americanus, Ancylostoma 

duodenale, Trichostrongylus spp., Ternidens deminutus, and Oesophagostomum spp.) using 

the Agar Plate Copro-Culture Method (http://www.tropicalmed.eu), whilst rtPCR analyses 

were conducted to detect possible co-infections with Schistosoma spp. and Hymenolepis nana 
64,65. The remainders of each sample were stored at -80°C for subsequent microbiota and 

metabolite profiling (see below). Patent infections by S. stercoralis were unequivocally 

confirmed by DNA extractions from individual faecal samples (see below) followed by rtPCR 

targeting the 18S rRNA gene 64. Upon confirmation of diagnosis, infected volunteers were 

treated with ivermectin (Stromectol®, Merck Sharp & Dohme BV, The Netherlands). From 13 

(out of 20) S+ subjects (9 men and 4 women; average age of 76, range 60-84 ± 8.4, referred to 

as S+pre-treatment) further individual samples were collected 6-months post-treatment (referred to 
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as S+post-treatment) (Supplementary Fig. S1) and processed as described above. Samples that were 

negative for patent S. stercoralis infection at this time were progressed to microbiota and 

metabolite profiling (see below). In addition, individual faecal samples from 11 uninfected 

volunteers (S-) from the Veneto region (five men and six women; average age of 65, range 53-

86 ± 10.7; Supplementary Fig. S1) were included for comparative analyses. These volunteers 

had no overt symptoms of GI disease or any other concomitant disease and had no recent 

history of antibiotic treatment. 

 

3.2.3 DNA extractions and bacterial 16S rRNA gene Illumina sequencing 

Genomic DNA was extracted directly from 200 mg of each faecal sample using the 

MagnaPure LC.2 instrument (Roche Diagnostic, Monza, Italy), following the manufacturer’s 

instructions, and the DNA isolation kit I (Roche) and stored at -80°C until further processing. 

High-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA 

gene was performed by Eurofins Genomics on an Illumina MiSeq platform according to the 

standard protocols with minor adjustments. Briefly, the V3-V4 region was PCR-amplified 

using universal primers 66, that contained the adapter overhang nucleotide sequences for 

forward (TACGGGAGGCAGCAG) and reverse primers (CCAGGGTATCTAATCC). 

Amplicons were purified using AMPure XP beads (Beckman Coulter) and set up for the index 

PCR with Nextera XT index primers (Illumina). The indexed samples were purified using 

AMPure XP beads (Beckman Coulter) and quantified using the Fragment Analyzer Standard 

Sensitivity NGS Fragment Analysis Kit (Advanced Analytical) and equal quantities from each 

sample were pooled. The resulting pooled library was quantified using the Agilent DNA 7500 

Kit (Agilent), and sequenced using the v3 chemistry (2x300 bp paired-end reads, Illumina).  

 

3.2.4 Bioinformatics and statistical analyses 

Raw paired-end Illumina reads were trimmed for 16S rRNA gene primer sequences 

using Cutadapt (https://cutadapt.readthedocs.org/en/stable/) and sequence data were processed 

using the Quantitative Insights Into Microbial Ecology 2 (QIIME2-2018.4; https://qiime2.org) 

software suite 67. Successfully joined sequences were quality filtered, dereplicated, chimeras 

identified, and paired-end reads merged in QIIME2 using DADA2 68. Sequences were clustered 

into OTUs on the basis of similarity to known bacterial sequences available in the Greengenes 

database (v13.8; http://greengenes.secondgenome.com/; 99% sequence similarity cut-off); 

sequences that could not be matched to references in the Greengenes database were clustered 
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de novo based on pair-wise sequence identity (99% sequence similarity cut-off). The first 

selected cluster seed was considered as the representative sequence of each OTU. The OTU 

table with the assigned taxonomy was exported from QIIME2 alongside a weighted UniFrac 

distance matrix. Singleton OTUs were removed prior to downstream analyses. Cumulative-

sum scaling (CSS) was applied, followed by log2 transformation to account for the non-normal 

distribution of taxonomic counts data. Statistical analyses were executed using the Calypso 

software 69 (cgenome.net/calypso/); samples were investigated using the taxonomic 

visualisation tool KRONA 70 ordinated in explanatory matrices using supervised Canonical 

Correspondence Analysis (CCA) including infection/treatment status as explanatory variables. 

Differences in bacterial alpha diversity (Simpson’s index) between study groups (S+ and S-, as 

well as S+pre-treatment, corresponding S+post-treatment, and S-) were evaluated based on rarefied data 

(read depth of 6063) and using analysis of variance (ANOVA); F-Tests were used to 

statistically assess the equality of assessed means (i.e. effect size). To take into account the 

paired nature of samples from S+pre-treatment and S+post-treatment, differences between these sets 

were assessed using linear mixed effect regression. Differences in beta diversity (weighted 

UniFrac distances) were identified using Analysis of Similarity (ANOSIM) and effect size 

indicated by an R-value (between -1 and +l, with a value of 0 representing the null hypothesis 
71). Differences in the abundance of individual microbial taxa between groups were assessed 

using the LEfSe workflow 72, taking into account the paired nature of S+pre-treatment and S+post-

treatment samples. 

 

3.2.5 Metabolite extraction 

Metabolites were extracted from 200 mg aliquots of each faecal sample using a 

methanol–chloroform–water (2:2:1) procedure. 600 µl of methanol–chloroform mix (2:1 v:v) 

were added, samples were homogenised using stainless steel beads and sonicated for 15 min at 

room temperature. 200 µl each of chloroform and water were added, the samples were 

centrifuged and the separated aqueous and lipid phases were collected. The procedure was 

repeated twice, and the aqueous and lipid fractions from each extraction were pooled. The 

aqueous layer was dried in a vacuum concentrator (Concentrator Plus, Eppendorf), while the 

lipid fraction was left to dry overnight at room temperature.  

 

3.2.6 Nuclear Magnetic Resonance analysis of aqueous extracts  

The dried aqueous fractions were re-dissolved in 600 µl D2O, containing 0.2 mM 

sodium-3-(tri-methylsilyl)-2,2,3,3-tetradeuteriopropionate (TSP) (Cambridge Isotope 
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Laboratories, MA, USA) as an internal standard and phosphate buffer (40mM NaH2PO4/160 

mM Na2HPO4). The samples were analysed using an AVANCE II+ NMR spectrometer 

operating at 500.13 MHz for the 1H frequency and 125.721 MHz for the 13C frequency (Bruker, 

Germany) using a 5 mm TXI probe. The instrument is equipped with TopSpin 3.2. Spectra 

were collected using a solvent suppression pulse sequence based on a one-dimensional nuclear 

Overhauser effect spectroscopy (NOESY) pulse sequence to saturate the residual 1H water 

signal (relaxation delay = 2 s, t1 increment = 3 us, mixing time = 150 ms, solvent pre-saturation 

applied during the relaxation time and the mixing time). One hundred and twenty-eight 

transients were collected into 16 K data points over a spectral width of 12 ppm at 27 ºC. In 

addition, representative samples of each data set were also examined by two-dimensional 

Correlation Spectroscopy (COSY), using a standard pulse sequence (cosygpprqf) and 0.5 s 

water presaturation during relaxation delay, 8 kHz spectral width, 2048 data points, 32 scans 

per increment, 512 increments. Peaks were assigned using the COSY spectra in conjunction 

with reference to previous literature and databases and the Chenomx spectral database 

contained in Chenomx NMR Suite 7.7 (Chenomx, Alberta, Canada). 1D-NMR spectra were 

processed using TopSpin. Free induction decays were Fourier transformed following 

multiplication by a line broadening of 1 Hz, and referenced to TSP at 0.0 ppm. Spectra were 

phased and baseline corrected manually. The integrals of the different metabolites were 

obtained using Chenomx. Metabolites were normalised to total area and differential abundance 

of metabolites between S+ and S- subjects, as well as S+post-treatment and S- subjects identified 

using ANOVA. F-Tests were used to statistically assess the equality of assessed means, while 

differences between S+pre-treatment and S+post-treatment were determined through paired t-test to 

account for the paired nature of these samples. Associations among metabolites in the faecal 

metabolome of each sample group were identified by prediction of correlation networks in 

Calypso 69 (cgenome.net/calypso/). In particular, networks were constructed to identify clusters 

of co-occurring metabolites based on their association with infection status (i.e., samples from 

S+ and S-, as well as S+pre-treatment, S+post-treatment and S- subjects). Metabolites and explanatory 

variables were represented as nodes, relative abundance as node size, and edges represented 

positive associations, while nodes were coloured according to infection status. Metabolite 

abundances were associated with infection status using Pearson’s correlation. Nodes were then 

coloured based on the strength of the association (i.e. Spearman’s rho correlation) with 

infection status. Networks were generated by first computing associations between taxa using 

Spearman’s rho and the resulting pairwise correlations were converted into dissimilarities and 

then used to ordinate nodes in a two-dimensional plot by PCoA. Therefore, correlating nodes 
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were located in close proximity and anti-correlating nodes were placed at distant locations in 

the network. 

 

3.2.7 Gas Chromatography–Mass Spectrometry analysis of organic extracts  

100 µl of D-25 tridecanoic acid (200 µM in chloroform), 650 µl of chloroform/methanol 

(1:1 v/v) and 125 µl BF3/methanol (Sigma-Aldrich) were added to 100 µl organic extract 

dissolved in chloroform/methanol (1:1 v/v) (half of the organic material extracted for each 

sample). The samples were then incubated at 80 ºC for 90 min. 500 µl H2O and 1 ml hexane 

were added and each vial mixed and the two phases separated. The organic layer was 

evaporated to dryness before reconstitution in 200 µl hexane for analysis. Using a Trace GC 

Ultra coupled to a Trace DSQ II mass spectrometer (Thermo Scientific, Hemel Hempstead, 

UK), 2 µl of the derivatised organic metabolites were injected onto a TR-fatty acid methyl ester 

(FAME) stationary phase column (Thermo Electron; 30 m × 0.25 mm ID × 0.25 µm; 70% 

cyanopropyl polysilphenylene-siloxane) with a split ratio of 20. The injector temperature was 

230 °C and the helium carrier gas flow rate was 1.2 ml/min. The column temperature was 60 

°C for 2 min, increased by 15 °C/min to 150 °C, and then increased at a rate of 4 °C/min to 230 

°C (transfer line = 240 °C; ion source = 250°C, EI = 70 eV). The detector was turned on after 

240 s, and full-scan spectra were collected using 3 scans/s over a range of 50–650 m/z. Peaks 

were assigned using Food Industry FAME Mix (Restek 6098). GC–MS chromatograms were 

analysed using Xcalibur, version 2.0 (Thermo Fisher), integrating each peak individually, and 

normalised to total area. The set of metabolic profiles obtained were analysed by univariate 

analysis. Differential abundance of metabolites between analysis groups was identified using 

ANOVA, and F-Tests were used to statistically assess the equality of assessed means. 

Associations among metabolites identified in the faecal metabolome of each sample group 

were identified by prediction of correlation networks in Calypso 69 (cgenome.net/calypso/). 

 

3.3 Results  

Individual faecal samples were collected from 20 elderly [74 ± 11 years (average ± standard 

deviation)] volunteers with confirmed infections by S. stercoralis (S+), as well as from 11 

uninfected volunteers (S-) of comparable age and from the same geographical areas 

(Supplementary Fig. S1). Additional faecal samples were collected from 13 (out of 20) S+ 

subjects six months post-anthelmintic treatment. In comparative analyses of the human faecal 

microbiota pre- and post-treatment, samples from the latter 13 subjects are hereafter referred 

to as S+pre-treatment and S+post-treatment, respectively. A total of 44 faecal samples were subjected 
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to microbial DNA extraction and high-throughput Illumina sequencing of the bacterial 16S 

rRNA gene [i.e. S+ = 20 (including S+pre-treatment = 13), S+post-treatment = 13 and S- = 11] whilst a 

total of 31 samples [i.e. S+ = 14 (including S+pre-treatment = 8), S+post-treatment = 7 and S- = 10] 

were subjected to metabolite profiling via nuclear magnetic resonance (NMR) and gas 

chromatography/mass spectrometry (GC-MS) (cf. Supplementary Table S1).  

High-throughput amplicon sequencing yielded a total of 5,717,403 paired-end reads (not 

shown), of which 1,446,150 high-quality sequences (per sample mean 26,778 ± 13,928) were 

retained after quality control. Rarefaction curves generated following in silico subtraction of 

low-quality sequences indicated that the majority of faecal bacterial diversity was well 

represented by the sequence data (Supplementary Fig. S2). These sequences were assigned to 

2,630 Operational Taxonomic Units (OTUs) and 15 bacterial phyla, respectively (data 

available from Mendeley Data at http://dx.doi.org/10.17632/n86dtjvmbv.1). The phyla 

Firmicutes (64.5% average ± 14.4% standard deviation) and Proteobacteria (18.2% ± 12.8%) 

were most abundant in all samples analysed, followed by the phyla Actinobacteria (7.9% ± 

6.4%), Verrucomicrobia (5.4% ± 7.7%) and Bacteroidetes (1% ± 1.1%) (Fig. 1). At the order 

level, Clostridiales were most abundant in all samples analysed (54.4% ± 15.2%), and included 

the two most abundant microbial families, i.e. the Ruminococcaceae (20.6% ± 11.6%) and the 

Lachnospiraceae (13.4% ± 8.1%) (Fig. 1). Faecal microbial community profiles were 

ordinated by Canonical Correspondence Analysis (CCA) (Fig. 2a), that separated samples by 

infection status (S+ and S-) (effect size (F) = 1.14, P = 0.03). No statistically significant 

differences between the gut microbial composition of S+pre-treatment, S+post-treatment, and S- 

subjects were detected (F = 0.97, P = 0.64; Fig. 2b). Similarly, S+pre-treatment and S+post-treatment 

did not show any statistically significant difference in community composition (P > 0.05, 

CCA). 
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Fig. 1 Relative abundances of bacterial phyla and families detected in faecal samples from 

Strongyloides stercoralis infected and uninfected subjects (S+ and S-, respectively) and of the subset 

of S+ subjects that had received anthelmintic treatment (associated sub-circles), both prior to (S+pre-

treatment) and six months post-ivermectin administration (S+post-treatment). Percentages in individual pie 

chart sections indicate the relative proportion of a given bacterial pylum or family. 

 

 

Fig. 2 Differences between the gut microbial profiles of the faecal microbiota of S. stercoralis infected 

subjects and uninfected subjects (S+ and S-, respectively) (a), and between the microbial profiles of the 

subset of S+ subjects that had received anthelmintic treatment, both prior to (S+pre-treatment) and six 
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months post-ivermectin administration (S+post-treatment), and of S- subjects, ordinated by supervised 

Canonical Correspondence Analysis (CCA; b).  

 

Microbial alpha diversity, measured through Simpson’s index, and evenness were 

significantly increased in the faecal microbiota of S+ volunteers when compared to that of S- 

(F = 5, P = 0.03 and F = 4.2, P = 0.05 respectively) (Fig. 3a). Faecal microbial richness was 

not significantly different between S+ and S- subjects, albeit a trend towards increased richness 

in samples from S+ subjects was observed. Simpson diversity and richness were decreased in 

samples from S+post-treatment compared to S+pre-treatment, although only the latter was significant 

(P < 0.001; mixed effect linear regression) (Fig. 3b). Compared to S-, S+post-treatment samples 

showed a trend towards increased Simpson diversity and evenness, while richness was lower 

in samples post-treatment when compared to samples from uninfected subjects (Fig. 3b). 

Microbial faecal beta diversity was significantly lower in samples from S+ subjects when 

compared to S- subjects (effect size (R) = 0.11, P = 0.04; Fig. 3c), whilst beta diversity in 

S+post-treatment samples was higher than that of S+pre-treatment but lower than that of S-, albeit not 

significantly (Fig. 3d).  
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Fig. 3 (a) Differences in overall microbial Simpson (alpha) diversity, and corresponding richness and 

evenness, between the gut microbial profiles of S. stercoralis-infected and uninfected subjects (S+ and 

S-, respectively), and (b) between the microbial profiles of the subset of S+ subjects that had received 

anthelmintic treatment, both prior to (S+pre-treatment) and six months post-ivermectin administration 

(S+post-treatment), and of S- subjects. (c) Differences in microbial beta diversity between S+ and S- samples, 

as well as (d) between samples from S+pre-treatment, S+post-treatment and S-. The bold and black horizontal 

lines in the boxplots refer to the mean of percentage abundance of metabolite associated with the 

cooresponding group, with top and bottom whiskers representing the standard deviation. Points 
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connected by lines in (b) refer to samples collected from the same study participant pre- and post-

anthelmintic treatment. Significant differences between study groups are marked by an asterisk (*).	
 

Linear discriminant analysis Effect Size (LEfSe) revealed significant differences in the 

abundance of individual microbial taxa (phylum to species level) between S+ and S- subjects 

(Fig. 4a). In particular, the faecal microbiota of S- subjects was significantly enriched for 

populations of bacteria belonging to the order Pseudomonadales (genus Pseudomonas) and an 

unidentified species belonging to the genus Bacteroides (Fig. 4a); conversely, bacteria 

belonging to the families Leuconostocaceae, Ruminococcaceae, Paraprevotellaceae and to the 

genus Peptococcus, amongst others, were significantly higher in the faecal microbiota of S+ 

subjects (Fig. 4a). In addition, in samples from S+post-treatment subjects, a significant decrease of 

bacteria belonging to the order Turicibacterales (genus Turicibacter) and an increase of 

Enterobacteriales (in particular associated to the genus Shigella) were observed compared to 

corresponding samples from S+pre-treatment (Fig. 4b and Supplementary Fig. S3). Additionally, 

differences were observed between the microbial profiles of S+post-treatment samples when 

compared to S-, with the latter displaying increased levels of bacteria belonging to the order 

Pseudomonadales and genus Atopobium, as well as Bacteroides eggerthii, Clostridium celatum 

and Bifidobacterium bifidum, and decreased levels of Lachnobacterium, Roseburia faecis, and 

Eubacterium biforme, respectively (Fig. 4c). 
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Fig. 4 Differentially abundant bacterial taxa in the faecal microbiome of Strongyloides stercoralis (a) 

infected and uninfected subjects (S+ and S-, respectively), (b) infected subjects pre- and post 

anthelmintic treatment with ivermectin (S+pre-treatment and S+post-treatment, respectively), and (c) infected 

subjects post-anthelmintic treatment and uninfected subjects (S+post-treatment and S- respectively), based 

on Linear discriminant analysis Effect Size (LEfSe) analysis. Colours correspond to Linear 

Discriminant Analysis (LDA) scores of 4 or higher (red) and 3.5 to 4 (yellow). 

 

A total of 28 metabolites were identified by NMR across all samples (Fig. 5a); these 

were subjected to Principal Coordinates Analysis (PCoA), which unveiled no marked 

differences in faecal metabolic profiles between samples from S+ and S- subjects, as well as 

from S+pre-treatment, S+post-treatment, and S- subjects (data not shown). However, association 

network analysis of S+ and S- samples indicated clustering of several faecal metabolites 
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according to the infection status of the study subjects. In particular, 13 metabolites (alanine, 

isoleucine, glycine, phenylalanine, formate, valine, tyrosine, leucine, lysine, uracil, 

hypoxanthine and aspartate), were positively correlated with each other and associated with 

the faecal metabolic profiles of S+ subjects (Fig. 5b), whereas 4 (the SCFAs propionate, 

butyrate, and acetate, as well as succinate) were also positively correlated with each other, and 

associated with faecal samples from S- subjects (Fig. 5b). When applied to the faecal metabolic 

profiles of S+pre-treatment, S+post-treatment and S- subjects, network analysis associated the 13 

metabolites described above (previously associated with S+) with both S+pre-treatment and S+post-

treatment, whereas the SCFAs remained associated with the metabolic profiles of S- subjects (Fig. 

5b). Analysis of differentially abundant metabolites between S+pre-treatment, S+post-treatment, and S- 

samples via ANOVA further revealed that 10 (out of 12) metabolites associated with samples 

from S+post-treatment subjects were less abundant than in S+pre-treatment samples, but more abundant 

when compared to S- samples, albeit not significantly (Supplementary Fig. S4). Additionally, 

alanine, formate, lysine, and leucine were significantly more abundant in samples from S+ 

when compared to S- (F = 4.2, P = 0.05; F = 4.5, P = 0.03; F = 4.5, P = 0.05; F = 4.3, P = 0.05 

respectively) whilst formate was significantly more abundant in S+post-treatment compared to S- 

subjects (F = 5.6, P = 0.01); nevertheless, these differences were not significant following p-

value correction for multiple testing (FDR > 0.05) (Fig. 5c). 

Using GC-MS, a total of 13 fatty acids were detected across all analysed faecal samples, 

including lauric acid (C12:0), myristic acid (C14:0), pentadecanoic acid (C15:0, C15:0 iso, and 

C15:0 ante), palmitic acid (C16:0), margaric acid (C17:0, C17:0 iso, C17:0 ante), stearic acid 

(C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidic acid (C20:0) (Supplementary 

Fig. S5). No significant associations between any of the analysis groups were detected using 

PCoA and no significant differences in the relative abundance of individual metabolites were 

observed between samples from S+ and S- subjects, as well as S+pre-treatment, S+post-treatment, and 

S- subjects (data not shown). 
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Fig. 5 (a) Area plot indicating the abundance (expressed as percentage) of metabolites detected by 

nuclear magnetic resonance analysis (NMR) in faecal samples from S. stercoralis-infected and 

uninfected subjects (S+ in red, and S- in purple), as well as from the subset of S+ subjects that had 

received anthelmintic treatment, both prior to (S+pre-treatment, red sample label) and 6 months post-

ivermectin administration (S+post-treatment, in orange). (b) Network analysis displaying associations 

between individual or clusters of metabolites and sample groups (i.e. S+ in red, S- in blue [top network], 

S+pre-treatment in red, S+post-treatment in yellow and S- in blue [bottom network]). For metabolites associated 

with multiple sample groups, the respective circle colours are mixed according to the strength of the 

association. (c) Differentially abundant metabolites detected in faecal samples from S+ and S-, as well 

as S+pre-treatment, S+post-treatment, and S- subjects, determined using ANOVA. The bold and black horizontal 

lines in the boxplots refer to the mean of percentage abundance of metabolite associated with the 

corresponding group, with top and bottom whiskers representing the standard deviation. Significant 

differences between study groups are marked by an asterisk (*). 
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3.4 Discussion  

In this chapter, I aimed to determine the effect/s that chronic, monospecific infections 

by the parasitic nematode S. stercoralis exert on the faecal microbiome and metabolome of 

human volunteers from a non-endemic area of Europe, and establish whether such effects are 

reversed following the administration of anthelmintic treatment. Whilst the overall 

composition of the gut microbiota of Strongyloides-infected and uninfected volunteers enrolled 

in this study largely reflected that of human subjects harbouring GI helminths under natural or 

experimental conditions of infections described in previous investigations, the relatively low 

proportions of Bacteroidetes observed in these samples contrast findings from some previously 

published reports 47,48,50,51,53.  However, this discrepancy may be accounted for by differences 

in mean age of the cohorts enrolled in this (72 years) versus previous studies (i.e. 11- 51 years 

of age; cf. 47,48,50,51,53); indeed, a decline in the relative abundance of Bacteroidetes in the gut 

microbiota of aging subjects has been documented in several studies 73-76, and is thus 

considered ‘physiological’ in the age group enrolled in this experiment.  

In spite of the overall similarities in the composition of the faecal microbiome of S+ and S- 

subjects at phylum level, CCA analysis revealed differences in the gut microbial profiles of 

these two groups, thus indicating that S. stercoralis infection was associated with shifts in the 

relative abundance of individual gut bacterial species. Indeed, microbial alpha diversity was 

significantly higher in the faecal microbiota of S+ when compared to S-. In particular, the level 

of microbial alpha diversity detected in the latter group largely reflected that recorded in a 

cohort of healthy, elderly Italians investigated previously 77. Conversely, microbial beta 

diversity was significantly decreased in the faecal microbiome of S+ subjects when compared 

to S-.  Increased levels of microbial alpha diversity have been repeatedly observed in the gut 

microbiome of human subjects infected by a range of GI helminths (i.e. Necator americanus, 

Trichuris trichiura, and Ascaris sp.) 47,48,50. Since alpha diversity measures are frequently used 

as proxy of microbiome ‘health’ (with high alpha diversity associated with a mature, 

homogenous, stable and healthy gut microbial environment 78,79), it has been proposed that the 

direct or immune-mediated ability of GI helminths to restore gut homeostasis by promoting 

increases in microbial richness and evenness may represent one mechanism by which parasites 

exert their therapeutic properties in individuals with chronic inflammatory disorders 48,49,80.  

The difference in microbial alpha and beta diversity observed between S+ and S- 

subjects were determined by dissimilarities in the relative abundance of selected bacterial taxa 

in the faecal microbial profiles of these study groups. In particular, significantly expanded 

populations of Clostridia and Leuconostocaceae could be detected in the faecal microbiome of 
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S+ when compared to S- subjects. Notably, selected strains of Clostridia strains have been 

identified as leading players in the maintenance of gut homeostasis, due to their roles in 

protecting the gut from pathogen colonisation, mediating host immune system development 

and modulating immunological tolerance 81. On the other hand, members of the 

Leuconostocaceae, a family of anaerobic lactic acid-producing bacteria, have been 

demonstrated to stimulate the release of inflammatory Th1 type cytokines IL-12 and IFN-γ by 

activated antigen-presenting cells in human peripheral blood mononuclear cells, thus 

promoting the activation of antimicrobial immune responses 82. However, a significant 

decrease in the abundance of Leuconostocaceae was recorded in a recent study examining the 

composition of the faecal microbiome of humans infected by hookworms, whipworms and 

ascarids 51, contrasting findings from this chapter and highlighting the need for further 

investigations in this area. In addition, the lactobacilli, another group of lactic acid-producing 

bacteria that has been positively associated with parasite colonisation in rodent models of 

helminth infections in several recently published studies 55,83-91, was not detected amongst the 

bacterial populations that were expanded in samples from S+ subjects. It must be also pointed 

out that, thus far and to the best of my knowledge, investigations conducted in human 

volunteers have not reported significant shifts in the abudance of lactobacilli in the gut 

microbiota of helminth-infected subjects 45,47,48,50-53. Whilst expanded populations of 

lactobacilli following helminth colonisation may represent a rodent-specific response to 

infection, mechanistic studies conducted, for instance, in humanised microbiota mouse models 

of helminth infections may assist clarifying this point.  

The faecal microbiome of S- subjects was enriched with a number of known 

opportunistic and/or potentially pathogenic bacteria, including Bacteroides eggerthii (higher 

abundances of which have been linked to increased risk for and severity of colitis in mice 92) 

and species within the genus Pseudomonas. Expanded populations of opportunistic and 

potentially pathogenic microbes, coupled with an overall increase in bacterial beta diversity, 

have been described in the microbiome of aging humans 93,94 and may therefore underpin my 

observations. 

Notably, whilst administration of ivermectin (a macrocyclic lactone) to a sub-group of 

S+ subjects did not result in significant differences in the levels of microbial alpha- and beta-

diversity post-anthelmintic treatment (likely due to the limited number of volunteers who 

agreed to provide further faecal samples 6-months post-treatment), a tendency towards 

decreased alpha diversity and increased beta diversity, respectively, was observed in S+post-

treatment samples when compared to S+pre-treatment. Nevertheless, an increase in pathogenic 
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bacteria, including Enterobacteriaceae (linked to the genus Shigella) was observed in samples 

from S+post-treatment subjects when compared to S+pre-treatment. This change was also accompanied 

by an increase in the probiotic Lachnospiraceae in S+post-treatment subjects when compared to S- 
95, thus suggesting that anthelmintic treatment may have affected the taxonomic composition 

of the gut microbiota of previously infected subjects. Conversely, a recent study investigating 

the impact of treatment with albendazole (a benzimidazole compound) on a large cohort of 

human volunteers from Indonesia infected by ascarids, whipworms and/or hookworms, 

detected no differences between the faecal microbial composition of these volunteers and that 

of a placebo-treated cohort 96. This discrepancy may be attributable to fundamental differences 

between the two anthelmintics investigated and/or between parasite species assessed, and/or to 

sample size limitations; nevertheless, future experiments carried out in large cohorts of 

volunteers and/or in experimental models of Strongyloides infection (i.e. rodents infected by 

Strongyloides ratti) may provide further clarification. 

In this chapter, besides determining the qualitative and quantitative composition of the 

gut microbiota of Strongyloides-infected human volunteers, I also carried out, for the first time 

in helminth-infected individuals, a comprehensive analysis of the faecal metabolome of the 

same subjects. Indeed, given that perturbations of the gut microbiota homeostasis are known 

to exert downstream effects on intestinal metabolism 97,98, I hypothesized that alterations in gut 

microbial profiles associated to colonisation by S. stercoralis might be accompanied by 

changes in the relative abundance of individual metabolites in faecal samples, with potential 

implications for the overall health of infected individuals. Whilst analysis via NMR and GC-

MS revealed no significant differences in the relative abundance of the vast majority of 

metabolites identified in samples from S+ versus S-, a number of amino acids (i.e. leucine, 

lysine, and alanine) were significantly more abundant in the faecal metabolome of infected 

individuals when compared to the uninfected cohort. Notably, anthelmintic treatment appeared 

to only affect the metabolites associated with helminth infection, i.e. amino acids, and thus may 

suggest that the helminth removal affects both the microbiome and the metabolome. An 

increased abundance of amino acids in the predicted faecal metabolome of helminth infected-

subjects had been previously reported, albeit this information had been indirectly inferred from 

high-throughput metagenomics sequencing data 50,99. Amino acids play key roles in the 

maintenance of the gut microbiome homeostasis and metabolism, since they support the growth 

and survival of bacteria in the GI tract 100. Simultaneously, the gut microbiome exerts important 

functions in the metabolism of alimentary and endogenous proteins that are converted into 

peptides and amino acids 101,102. In particular, the most prevalent species involved in amino 
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acid fermentation within the human intestine are bacteria belonging to the Class Clostridia 103-

105, that were more abundant in the faecal microbiome of S+ subjects. Of the amino acids that 

were significantly more abundant in the faecal metabolome of S+ subjects, lysine and leucine 

participate in biological pathways that are key to the maintenance of the gut homeostasis 106,107. 

In addition, the biological functions of lysine and leucine are closely linked 108, suggesting a 

possible correlation with the positive association of both these amino acids with the faecal 

metabolome of Strongyloides-infected subjects.  

In contrast with the increased quantities of amino acids observed in the faecal 

metabolome of S+ subjects, the SCFAs acetate, propionate, and butyrate were significantly 

less abundant in this group compared to S-. This observation contradicts findings from a 

previous study in which these SCFAs were increased in faecal samples from human volunteers 

with coeliac disease and experimentally infected with the human hookworm, N. americanus 49. 

Given the known anti-inflammatory properties of SCFAs, Zaiss et al. 49 had hypothesized that 

these molecules may play a role in the therapeutic effects of GI helminths in chronic 

inflammatory disorders. The discrepancy observed between this study and that by Zaiss et al. 
49 may be attributable to differences between the cohorts of human volunteers investigated 

(acutely vs. chronically infected; middle aged vs. aged), species of parasite under consideration 

and infection burden (known vs. unknown). In addition, both studies are characterised limited 

sample sizes that may have contributed to these contrasting results. 

 

3.5 Conclusions 

In summary, in this chapter, monospecific, chronic S. stercoralis were associated with 

global shifts in the composition of the human faecal microbiome, as well as subtle changes in 

the faecal metabolic profiles of these individuals when compared with those of uninfected 

control subjects. In addition, anthelmintic treatment resulted in minor alterations of the 

microbiome and metabolome of these volunteers six months post-administration, albeit sample 

size limitations prevent any speculation on the effect/s of worm removal on the gut microbiome 

and metabolome. Future studies with longer monitoring of qualitative and qualitative 

fluctuations in gut microbiota post-treatment may assist shedding light on this point. Whilst 

these findings add valuable knowledge to the emerging area of host-parasite-microbiota 

interactions, mechanistic studies in experimental models of infection and disease or controlled 

clinical trial are necessary to shed light on the likely contribution of parasite-associated 

modifications in gut microbiome and metabolism to the anti-inflammatory properties of 

parasitic helminths. As a first step, I explore the impact of experimental single-species helminth 
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infections on host microbiota in the context of a helminth therapy trial in people suffering from 

relapsing-remitting multiple sclerosis in the next chapter.  
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CHAPTER 4 
 

Longitudinal changes in the gut microbiome of human 

volunteers with remitting-relapsing multiple sclerosis 

following experimental infection with the hookworm, 

Necator americanus 
 

 

Abstract 

Numerous studies in humans and animal models have indicated a therapeutic effect of 

experimental infections by gastrointestinal (GI) nematode parasites on the clinical signs and 

pathology of a range of autoimmune and allergic inflammatory disorders, including 

Inflammatory Bowel and Coeliac Diseases. Whilst the immune-regulatory properties of 

parasite secreted/excreted products are thought to be primarily responsible for such effects, 

several recent studies have hypothesized that immune modulation might stem, partly, from 

qualitative and quantitative changes in the composition of the host gut microbiota that follows 

parasite infection and establishment. In the present MHRA approved study I investigated, for 

the first time, the changes in gut microbial profiles of human volunteers with relapsing-

remitting multiple sclerosis (RRMS) prior to and following experimental infection with 25 

hookworm stage 3 larvae (Necator americanus; N+), and following administration of 

anthelmintic treatment, then compared the findings with data obtained from a cohort of RRMS 

patients subjected to placebo treatment (PBO). Bioinformatics analyses of bacterial 16S rRNA 

high-throughput sequencing data revealed significantly increased microbial alpha diversity in 

the gut microbiota of N+ compared to PBO subjects over the course of infection, which is 

indicative of a healthier gut environment. Furthermore, significant differences in the abundance 

of several bacterial taxa were observed between samples from N+ and PBO subjects. Most 

notably, Tenericutes/Mollicutes, an immune-modulatory bacterial taxon hypothesised to be 

associated with the pathogenesis of autoimmune disorders, was significantly increased in N+ 

subjects compared to PBO. Overall, these data demonstrate a significant impact of N. 

americanus infection on the human gut microbiota and lend support to the hypothesis of a 
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contributory role of parasite-associated changes in gut microbial composition to the therapeutic 

properties of hookworm parasites. 

This work adds valuable knowledge to current understanding of parasite-microbiota 

associations and will assist future mechanistic studies aimed to unravel the causality of these 

relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The clinical findings of this trial are currently being disseminated and remain 

confidential. They will therefore not be discussed in this chapter.  



	 100 

4.1 Introduction 

A number of studies have reported the beneficial effects of experimental 

gastrointestinal (GI) helminth infections on the pathology of a range of human autoimmune 

and allergic inflammatory disorders of the GI tract 1-8. These findings sparked substantial 

interest in the prospect of deliberate infections of humans with live helminth parasites (i.e. 

helminth therapy) and already resulted in over 28 human trials (reviewed by 9,10). To date, the 

most widely investigated helminth therapy approach involves the pig whipworm Trichuris suis, 

which has been demonstrated to be a safe alternative to its close relative T. trichiura (reviewed 

by 11), a highly pathogenic human parasite (reviewed by 12). Despite being a pig parasite, T. 

suis ova (TSO) will develop transiently in the human gut, but will be expelled within six weeks 

of infection; therefore, reinfections are required for long-term treatment 13. Several studies 

observed a TSO treatment-induced therapeutic effect on inflammatory bowel disease (IBD; 

both Crohn’s disease and ulcerative colitis) with improvement rates of over 70% in cohorts of 

30 to 50 patients 6-8. Moreover, TSO treatment has also been successfully trialled in patients 

suffering from relapsing-remitting multiple sclerosis (RRMS), a disease of the central nervous 

system that is characterised by inflammation, demyelination, and subsequent neural damage 

(reviewed by 14). Two studies, involving three to six month TSO treatment of cohorts of four 

to five multiple sclerosis (MS) patients, registered slight shifts in immune and clinical profiles, 

which indicated minor improvements in the infected subjects 1,5. These findings were 

substantiated by a subsequent trial that involved 15 study subjects and demonstrated a 34% 

reduction in brain lesions of the infected cohort following 5 months of TSO treatment 4. 

However, helminth therapy has not solely relied on TSO treatment, but has also explored the 

therapeutic potential of the human hookworm (Necator americanus). Unlike T. suis, N. 

americanus is a human parasite, allowing it to persist within the human host three to five years 

(reviewed by 15). Despite the risk of severe pathogenesis at high exposure, experimental 

hookworm infection has been demonstrated to be safe at low doses and has been shown not to 

provoke symptoms in safety tests 16. Efforts have, so far, predominantly focused on intestinal 

immunopathologies such as a study by Croese et al. 2, which observed quantitative 

improvements in disease indices of nine Crohn’s patients infected with 25-100 N. americanus 

larvae. Furthermore, a 21-week, double-blinded, placebo-controlled study, explored the effects 

of N. americanus infection (5 to 10 larvae) in 20 study subjects, suffering from Coeliac disease, 

and detected subtle therapeutic benefits 3. 

Notwithstanding the indications towards the potential therapeutic benefits of helminth 

therapy, the biological and molecular mechanisms by which parasitic helminths might suppress 
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autoimmune diseases remain unclear and require further investigation. However, it has been 

hypothesised that the immune-regulatory properties of parasite excretory/secretory products, 

such as mammalian homologues of C-type lectins, galectins and cytokines (reviewed by 17), 

are primarily responsible for such effects (reviewed by 18). Indeed, natural and therapeutic 

helminth infections have been associated with marked immune modulation, and inducing a 

shift from a pro-inflammatory Th1- to a Th2-response, which, in the case of autoimmune 

conditions that are characterised by an overexpressed Th1-response (e.g. MS), may be 

beneficial (reviewed by 18). Still, it is likely that other biological and environmental factors are 

involved in these processes. In particular, given the strong link that has recently been 

established between several autoimmune diseases (e.g. MS, IBD, type 1 diabetes and 

rheumatoid arthritis) and the microbiome 19-21, as well as mounting evidence towards the 

microbiome modulating potential of GI helminths 22-37, it has been proposed that one of the 

mechanisms by which such parasites can support intestinal immune homeostasis in 

autoimmune disorders, is via the alteration of the composition of the gut microbiota 34,37-41. In 

fact, significant microbiome changes have previously been observed following the 

administration of hookworms to coeliac patients, who subsequently underwent a gluten 

challenge 30,37. Specifically, the previously mentioned therapeutic benefits observed in the 

infected cohort were accompanied by significant increases in the patients’ gut microbial 

richness and diversity, trends which are typically associated with improved microbiome 

homogeneity, stability and overall health 42,43.  

However, the impact of parasitic GI helminths on the human microbiome have, so far, 

only been investigated in the context of autoimmune disorders located in the GI tract, i.e. 

coeliac disease 30,37. Yet, the intrinsic intestinal inflammation and resulting gut microbial 

dysbiosis associated with such disorders 44,45 might distort observations of helminth induced 

host microbiome changes. Hence, it could be of merit to investigate such changes in the context 

of autoimmune conditions not primarily manifested within the GI tract, such as RRMS. Indeed, 

the establishment of the gut-brain-axis (reviewed by 46), the strong association between RRMS 

and the human microbiome (reviewed by 47), and the promising findings from TSO treatment 

of MS patients 1,4,5, make this disorder an intriguing model for the exploration of host-helminth-

microbiome interactions. Therefore, in this chapter I investigated, for the first time, the 

longitudinal changes in gut microbial profiles of human volunteers with RRMS, prior to and 

following experimental infection with 25 hookworm L3 (Necator americanus; N+), and 

subsequent administration of anthelmintic treatment. I then compared the findings with data 

obtained from a cohort of RRMS patients subjected to placebo treatment (PBO). 
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4.2 Methods 

4.2.1 Ethics statement 

This phase 2, single centre, randomised, blinded, placebo controlled study of live 

hookworm (N. americanus) L3 larvae in patients with MS was conducted at Queen’s Medical 

Centre, University of Nottingham, UK. This study was approved and carried out in strict 

accordance and compliance with the National Research Ethics Service Committee East 

Midlands (reference 11/EM/0140). Patients were identified, approached and recruited from the 

MS clinic at QMC or referred from other centres in the UK. Written informed consent was 

obtained from all subjects enrolled in the study. This study was registered as a clinical trial at 

ClinicalTrials.gov as NCT00630383. 

 

4.2.2 Trial design 

A total of 73 clinically stable patients aged 18-64 (51 female and 22 male) with 

relapsing remitting MS (RRMS), with at least 1 relapse in the last 12 months or two in the last 

24 months and without immunomodulatory treatment, were included in this study (Worms for 

Immune Regulation of Multiple Sclerosis trial; NCT01470521). After screening, patients were 

randomised and assigned to the two treatment arms, i.e. percutaneous infection with 25 N. 

americanus larvae (N+; n = 36), or placebo treatment with pharmacopoeial grade water (PBO; 

n = 37). Stool samples were collected one week prior to infection/placebo-treatment (T-0.25), 

1 (T1), 5 (T5), and 9 (T9) months post-infection/placebo-treatment, and two months post-

anthelminthic treatment and were stored at -20°C (T12; Fig. 1). These time points constituted 

three investigation groups, i.e. pre-infection (T-0.25), post-infection (the combined samples 

from T1, T5, and T9), and post-anthelmintic treatment (T12). Disease progression (i.e. MS 

relapses) in patients was carefully recorded throughout the study. 

 

 

Fig. 1 Overview of the clinical study design. 
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4.2.3 DNA extraction and bacterial 16S rRNA Illumina sequencing 

Genomic DNA was extracted directly from each faecal content sample, using the 

PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA), according to 

manufacturers’ instructions, within 1 month from sample collection. High-throughput 

sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene was performed 

on an Illumina MiSeq platform according to the standard protocols with minor adjustments. 

Briefly, the V3-V4 region was PCR-amplified using universal primers 48, that contained the 

Illumina adapter overhang nucleotide sequences, using the NEBNext hot start high-fidelity 

DNA polymerase (New England Biolabs), 2ng/µl of template DNA and the following 

thermocycling protocol: 2 min at 98°C, 20 cycles of 15 s at 98°C – 30 s at 63°C – 30 s at 72°C, 

and a final elongation step of 5 min at 72°C. Amplicons were purified using AMPure XP beads 

(Beckman Coulter) and the NEBNext hot start high-fidelity DNA polymerase was used for the 

index PCR with Nextera XT index primers (Illumina) according to the following thermocycling 

protocol: 3 min at 95°C, 8 cycles of 30 s at 95°C – 30 s at 55°C – 30 s at 72°C, and 5 min at 

72°C. The indexed samples were purified using AMPure XP beads, quantified using the Qubit 

dsDNA high sensitivity kit (Life Technologies), and equal quantities from each sample were 

pooled. The resulting pooled library was quantified using the NEBNext library quantification 

kit (New England Biolabs) and sequenced using the v3 chemistry (301 bp paired-end reads). 

Raw sequence data will be deposited in the Mendeley database. 

 

4.2.4 Bioinformatics and statistical analyses 

Raw paired-end Illumina reads were trimmed for 16S rRNA gene primer sequences 

using Cutadapt (https://cutadapt.readthedocs.org/en/stable/) and sequence data were processed 

using the Quantitative Insights Into Microbial Ecology 2 (QIIME2-2018.11; 

https://qiime2.org) software suite 49. Successfully joined sequences were quality filtered, 

dereplicated, chimeras identified, and paired-end reads merged in QIIME2 using DADA2 50. 

Sequences were clustered into OTUs on the basis of similarity to known bacterial sequences 

available in the SILVA reference database (https://www.arb-silva.de/download/archive/qiime; 

Silva_132) sequences that could not be matched to references in the Silva database were 

clustered de novo based on pair-wise sequence identity (99% sequence similarity cut-off). The 

first selected cluster seed was considered as the representative sequence of each OTU. The 

OTU table with the assigned taxonomy was exported from QIIME2 alongside a weighted 

UniFrac distance matrix. Singleton OTUs were removed prior to downstream analyses. 
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Cumulative-sum scaling (CSS) was applied, followed by log2 transformation to account for 

the non-normal distribution of taxonomic counts data. Statistical analyses were executed using 

the Calypso software 51 (cgenome.net/calypso/); samples were ordinated in explanatory 

matrices using supervised Canonical Correspondence Analysis (CCA) including infection 

status as explanatory variables. Differences in bacterial alpha diversity (Shannon index) 

between study groups (N+ and PBO) were evaluated based on rarefied data (read depth of 

8712) and using analysis of variance (ANOVA); F-Tests were used to statistically assess the 

equality of assessed means (i.e. effect size). To take into account the paired nature of samples 

from N+ and PBO across time points, differences between these sets were assessed using linear 

mixed effect regression. Differences in beta diversity (weighted UniFrac distances) were 

identified using Analysis of Similarity (ANOSIM) and effect size indicated by an R-value 

(between -1 and +l, with a value of 0 representing the null hypothesis 52). Differences in the 

abundance of individual microbial taxa between groups were assessed using the LEfSe 

workflow 53. 

 

4.3 Results  

Out of the 73 trial subjects participating in this study 50 (36 female and 14 male) 

presented samples for a minimum of four out of five time points. These subjects’ samples were 

included in the study and subsequently resulted in a cohort of 24 participants (17 female and 7 

male), who were successfully infected with N. americanus (N+) and a cohort of 26 participants 

(19 female and 7 male), who received placebo treatment (PBO). Consequently, a total of 226 

stool samples were selected for high-throughput sequencing of bacterial 16S rRNA and 

subsequent comparative analyses. From these, a total of 16,158,693 (per sample mean: 68,180 

± 70,000) paired-end reads were generated and subjected to further processing. A total of 

9,100,255 high-quality sequences (per sample mean 38,397 ± 31,519) were retained after 

quality control. Rarefaction curves generated following in silico subtraction of low-quality 

sequences indicated that the majority of faecal bacterial communities were represented in the 

remaining sequence data, thus permitting me to undertake further analyses. The obtained 

sequences were assigned to a total of 5,611 OTUs and 14 bacterial phyla. 

The phyla Bacteroidetes (N+ = 43.8% average ± 0.4% standard deviation, and PBO = 

52.2% ± 1.6%, respectively) and Firmicutes (N+ = 51% ± 0.3%, and PBO = 43.7% ± 0.3%, 

respectively) were predominant in all samples analysed, followed by the phyla Proteobacteria 

(N+ = 2.4% ± 1.4%, and PBO = 2.2% ± 2%, respectively), Actinobacteria (N+ = 2.3% ± 1.3%, 
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and PBO = 1.8% ± 1.2%, respectively), and Tenerictures (N+ = 0.5% ± 3%, and PBO = 

0.1% ± 3.1%, respectively; Fig. 2A). Faecal microbial community profiles were ordinated by 

Canonical Correspondence Analysis (CCA) (Fig. 2B) and indicated significant separation of 

faecal microbial profiles by infection status over the course of infection (P = 0.001). No 

statistically significant differences in community composition were detected pre-infection and 

post-anthelmintic treatment between the two study cohorts (P = 0.885, P = 0.283 respectively), 

or between female and male study subjects pre/post-infection and post-anthelmintic treatment 

(data not shown).  

 

 

Microbial alpha diversity, measured through the Shannon index was not significantly 

different between the faecal microbiota of N+ and PBO patients pre-infection (effect size (F) 

Fig. 2 Gut microbial profiles of subjects infected with Necator americanus (N+) or placebo treated 

(PBO). (A) Relative abundances of bacterial phyla detected in faecal samples from study subjects. 

Percentages in individual pie chart sections indicate the relative proportion of the corresponding 

phylum. (B) Differences between the faecal microbial profiles of N+ and PBO subjects one week 

prior to infection (left), one, five, and nine months post-infection (centre), and two month post-

anthelmintic treatment (right) ordinated by supervised Canonical Correspondence Analysis (CCA). 
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= 0.19, P = 0.67; Fig. 3A). Post-infection, Shannon diversity was significantly increased in N+ 

compared to PBO subjects (F = 5.2, P = 0.025), although this significance was lost upon 

anthelmintic treatment (F = 2.3, P = 0.14; Fig. 3A). Faecal microbial richness was not 

significantly different between N+ and PBO patients, yet fluctuated significantly across all 

time points within each study group (P = 0.001 and P = 0.001 respectively; Fig. 3B; 

Supplementary Fig. S1). In the faecal microbiota of N+ subjects, richness significantly 

increased from T-0.25 to T1 and then progressively decreased until T12, where it increased to 

the highest level observed in this study. In PBO subjects, richness decreased at T1 compared 

to T-0.25, yet constantly increased from each following time point to the next, although never 

to the same level as observed at T-0.25. Gut microbial evenness was significantly increased in 

the N+ compared to the PBO cohort post-infection (Supplementary Fig. S1). No significant 

differences in microbial faecal beta diversity between N+ and PBO patients were observed in 

this study, although there appeared to be a decreased level of beta diversity in infected 

compared to PBO subjects post-infection (Supplementary Fig. S2). Beta diversity fluctuated 

over time in each study group, albeit not significantly (Supplementary Fig. S2). 
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Linear discriminant analysis Effect Size (LEfSe) revealed significant differences in the 

abundance of individual microbial taxa (phylum to species level) between N+ and PBO 

patients at each time point (Fig. 4; Supplementary Fig. S3). The majority of differentially 

abundant taxa between the two study groups were detected in the later stages of the infection 

(i.e., T5 and T9; Supplementary Fig. S3) and post-anthelmintic treatment (T12; Fig. 4). In 

particular, the bacterial class Mollicutes (T5, T9, and T12; Supplementary Fig. S3), as well as 

the families Ruminococcaceae (UCG010; T1, T5, T9, and T12; Supplementary Fig. S3) and 

VaddinBB60 (order Clostridiales; T1, T9, and T12; Supplementary Fig. S3), were consistently 

more abundant in N+ than PBO subjects and remained significantly increased post-

anthelmintic treatment (Fig. 4). Additionally, the genus Haemophilus (family Pasteurellaceae; 

T1) and the family Flavobacteriaceae (T12) were significantly more abundant in hookworm 

infected subjects (Fig. 4; Supplementary Fig. S3). Compared to faecal microbial samples from 

N+ subjects, samples from PBO subjects suggested significantly increased levels of the 

bacterial families Peptostreptococacceae (T5 and T9), Streptococacceae (T9), and 

Eubacteriaceae (i.e., Eubacterium halli; T9 and T12), as well as of several genera of the family 

Fig. 3 Microbial alpha diversity of subjects infected with Necator americanus (N+) or placebo 

treated (PBO). (A) Differences in gut microbial Shannon diversity of N+ and PBO subjects one 

week prior to infection/placebo treatment (T-0.25; left), one, five, and nine months post-

infection (T1, T5, and T9 combined; centre), and two months post-anthelmintic treatment (T12; 

right). (B) Differences in microbial richness of N+ (left) and PBO (right) subjects across all time 
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Lachnospiraceae, i.e. Roseburia (T5), Dorea (T9), Tyzerella (T9), and Agathobacter (T9; Fig. 

4; Supplementary Fig. S3). 

 

 

 

Fig. 4 Differentially abundant bacterial taxa in the faecal microbiota of subjects infected with Necator 

americanus (N+) or placebo treated (PBO) subjects one week prior to infection/placebo treatment (T-0.25), 

one (T1), five (T5), and nine (T9) months post-infection, and 2 months post-anthelmintic treatment (T12) 

based on Linear discriminant analysis Effect Size (LEfSe) analysis. Colours correspond to Linear 

Discriminant Analysis (LDA) scores of 4 or higher (N+ = red; PBO = dark blue), 3.5 to 4 (N+ = orange; PBO 

= light blue), and 3 to 3.5 (N+ = yellow; PBO = grey). 
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4.4 Discussion 

RRMS is a severe pro-inflammatory demyelinating disease of the central nervous 

system that affects over 1.84 million people worldwide (reviewed by 14). To date, no effective 

treatment exists and the search for an effective therapy without significant side-effects is 

ongoing (reviewed by 14). One proposed course of action involves the use of 

immunomodulatory parasitic GI helminths to mediate pathology and disease progression, via 

induction of a Th2 response and a subsequent immune-rebalancing of the host. The recent 

establishment of the importance of the native microbiome in RRMS (reviewed by 47), alongside 

the microbiome-modulatory properties of GI helminths 31,33,34,37,54-57, further substantiate the 

potential of helminth therapy in the treatment of RRMS. In the present MHRA approved study 

I investigated, for the first time, the changes in gut microbial profiles of human volunteers with 

RRMS prior to and following experimental infection with 25 hookworm L3, and following 

administration of anthelmintic treatment, then compared the findings with data obtained from 

a cohort of RRMS patients subjected to placebo treatment.  

Taxonomic profiling of microbial communities using CCA revealed no substantial 

differences in gut microbiota composition between N+ and PBO patients prior to infection, yet 

indicated significant shifts post-infection; yet, the significance was lost post-anthelminthic 

treatment. This suggests that albeit the hookworms are modulating the host microbiota over 

the course of infection their gut microbial effects don’t appear to persist upon the worms’ 

removal. In particular, I identified significantly elevated alpha diversity in the N+ cohort 

compared to PBO patients as the likely causative agent underlying those gut microbial shifts. 

While alpha diversity remained stable in N+ patients post infection, diversity decreased 

significantly in PBO subjects over the next nine months following placebo administration. 

Notably, the increased levels of alpha diversity appeared to be mainly driven through increased 

microbial evenness, i.e. the amount of microbial species is not significantly affected (richness), 

but the overall distribution of all taxa is more even and balanced (evenness) 58. Furthermore, 

removal of the helminths via anthelmintic treatment did not alter alpha diversity significantly 

in both the PBO and N+ cohorts, yet diversity levels shifted sufficiently for the significant 

difference between the two study cohorts to be lost. The observation of increased diversity in 

the N+ patients was of particular interest, since elevated levels of alpha diversity are typically 

associated with a healthier gut microbiome and overall host health (reviewed by 59). Notably, 

decreases in alpha diversity have previously been reported in MS patients during relapses, 

which could explain the diversity drop I observed in the PBO cohort 60. However, if indeed 

relapses were responsible for the decreased levels of microbiota diversity in PBO patients, it is 
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remarkable that N+ subjects appeared to be unaffected and able to maintain stable levels of 

alpha diversity. Furthermore, this finding is substantiated by similar observations of increased 

gut microbial alpha diversity in helminth treated patients with an autoimmune condition have 

been described in two previous studies that assessed the effects of N. americanus infections on 

the gut microbiota of coeliac patients; The authors hypothesised that this might be at least 

partially responsible for the therapeutic effect observed in these studies 30,37. Therefore, it is 

possible that in this study the hookworms are preventing the RRMS-induced decreases in host 

microbiome diversity, observed in PBO patients, in the N+ study cohort.  

Besides the changes in diversity that were observed in the study cohorts, I also detected 

shifts in specific bacterial taxa. The majority of which appeared to occur post-infection, with 

the number of differences between PBO and N+ patients increasing with time of infection, and 

reaching their peak nine months into the trial. Notably, it appears that in PBO patients bacterial 

taxa proliferated, which have been previously associated with relapsing MS patients 60; in 

particular, a family of anaerobic bacteria (Lachnospiraceae), including the genera Roseburia, 

Dorea, and Tyzzerella (amongst others), were significantly increased in PBO compared to N+ 

patients post-infection. Lachnospiraceae constitutes one of the key taxa of the human gut 

microbiome that degrades complex polysaccharides to short-chain fatty acids (SCFAs), i.e. 

acetate, butyrate, and propionate; these SCFAs can then be used for energy by the host and can 

also act as anti-inflammatory agents 61. This is of note, since Lachnospiraceae have been 

reported to be substantially increased in pathological conditions, such as inflammatory bowel 

diseases 62. In particular, elevated populations of Dorea have been observed in irritable bowel 

syndrome patients 63, as well during intestinal inflammation 64. Whilst Dorea are known to 

produce the SCFA butyrate, they also metabolise sialic acids, which are commonly found at 

terminal ends of mucins; release of these acids is implicated in mucin degradation, likely 

increasing gut permeability and compromising gut homeostasis 65. Likely, this expansion of 

Lachnospiraceae and its respective genera in the PBO cohort is associated with MS disease 

progression and an immune shift towards a pro-inflammatory state during relapses 66. 

Remarkably, although the N+ patients also suffer from MS, no expansion of Lachnospiraceae 

could be detected. 

 The most substantially and consistently increased bacterial taxon in N+ patients post-

infection was the phylum Tenericutes. The phylum Tenericutes consists of the sole 

class Mollicutes and its taxa are known for being Gram-stain-negative, very small, and wall-

less bacteria fulfilling a diverse array of roles within the mammalian microbiome (reviewed by 
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67,68). This was of note, since the relative abundance of these bacteria has been reported to differ 

between healthy individuals and people suffering from a wide range of autoimmune conditions, 

such as IBD 69,70, Diabetes Type 1 71-73, MS 74, and experimental autoimmune 

encephalomyelitis (EAE; a commonly used murine model of MS)75. Although the trends are 

not always the same 72,73, the majority of these studies reported decreased levels of 

Tenericutes/Mollicutes in the diseased cohort, when compared to healthy controls 69-71,74,75. 

Notably, although the study by Tremlett and co-authors 74 reported higher Tenericutes 

abundance in healthy controls, than in paediatric MS patients, it also reported that the opposite 

was no longer the case when the patients had been exposed to immunomodulatory drugs 74. 

Indeed, these bacteria have been suggested to be easily affected by different host immune states 

and to particularly proliferate in Th2 environments, due to reports of increased Tenericutes 

populations following promoted Th2 response post helminth infection 76,77. This hypothesis of 

a Tenericutes-Th2 bias was further supported through an increased relative abundance of 

bacteria belonging to Tenericutes/Mollicutes being reported in human cohorts naturally 

infected with roundworms (i.e. Trichuris and/or Ascaris and/or hookworm) 31, rats infected 

with Hymenolepis diminuta 77, and macaques with idiopathic chronic diarrhoea and which 

received experimental helminth treatment of T. trichiura 76; all of which are Th2 promoting 

environments. Although the ability of parasitic helminths to modulate a taxon that has been 

associated with such a wide range of autoimmune conditions proves intriguing, the functional 

impact remains to be determined. Nevertheless, the observation of increased levels of 

Tenericutes in RRMS patients treated with hookworms, alongside the evidence from previous 

studies in different parasite/disease settings, suggests that this bacterial taxon might merit 

further mechanistic investigations via murine or other animal models, to help untangle its 

potential role and importance in the context of disease progression. 

  

4.5 Conclusion 

To conclude, this chapter identified significant differences between gut microbial profiles of 

RRMS patients treated with Necator americanus and patients who received a placebo 

treatment. The significant decrease of alpha diversity and the proliferation of taxa, such as 

Lachnospiraceae, observed in the PBO cohort was typical of trends previously reported for 

MS relapses. Conversely, the significantly higher levels of diversity in the N+ patients suggest 

improved gut microbial and homeostasis. This was further substantiated by the elevated 

relative abundance of Tenericutes, which have previously been associated with healthy, rather 

than immunocompromised subjects. Overall, these data lend support to the hypothesis of a 
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contributory role of parasite-associated changes in host gut microbiota composition to the 

potentially therapeutic potential of parasitic hookworm. This work adds valuable knowledge 

to current understanding of parasite-microbiota associations and will assist future mechanistic 

studies aimed to unravel the causality of these relationships. In the following chapter I 

investigated the impact of a murine model of human helminth infection, however the parasite 

in question was not GI, but rather extra intestinal. This would allow me to answer whether 

parasitic helminth infections can cause host microbiota shifts, without a direct interaction 

between the parasite and host microbiome.  
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CHAPTER 5 

 
Schistosoma mansoni infection is associated with 

quantitative and qualitative modifications of the 

mammalian intestinal microbiota 
 

 

Abstract  

In spite of the extensive contribution of intestinal pathology to the pathophysiology of 

schistosomiasis, little is known of the impact of schistosome infection on the composition of 

the gut commensal microbiota of its mammalian host. Here, I characterised the fluctuations in 

the composition of the gut microbial flora of the small and large intestine, as well as the changes 

in abundance of individual microbial species, of mice experimentally infected with 

Schistosoma mansoni with the goal of identifying microbial taxa with potential roles in the 

pathophysiology of infection and disease. Bioinformatic analyses of bacterial 16SrRNA gene 

data revealed an overall reduction in gut microbial alpha diversity, alongside a significant 

increase in microbial beta diversity characterised by expanded populations of Akkermansia 

muciniphila (phylum Verrucomicrobia) and lactobacilli, in the gut microbiota of S. mansoni-

infected mice when compared to uninfected control animals. These data support a role of the 

mammalian gut microbiota in the pathogenesis of hepato-intestinal schistosomiasis and serves 

as a foundation for the design of mechanistic studies to unravel the complex relationships 

amongst parasitic helminths, gut commensal microbiota, pathophysiology of infection and host 

immunity. 
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5.1 Introduction 

Schistosomiasis, a major neglected tropical disease, is considered the most problematic 

of the human helminthiases in terms of morbidity and mortality 1. The causative agents are the 

blood flukes, trematodes of the genus Schistosoma including S. mansoni, S. japonicum and S. 

haematobium. Schistosomiasis in its several forms has been estimated to cause ³3.5 million 

Disease Adjusted Life Years (DALYs) 2,3. In Sub-Saharan Africa, 393 million people are 

estimated to be exposed to the parasite and, of these, 54 million suffer from overt 

schistosomiasis 4. Humans are the definitive hosts of S. mansoni, and harbour the adult males 

and females, that live in the portal system and mesenteric veins 5,6. The females shed eggs that 

traverse the lining of the mesenteric veins, proceed through the wall of the intestines, 

preferentially via the lymphoid tissue of the Peyer’s patches 7-9 to the intestinal lumen and exit 

with the faecal stream. The eggs reach the freshwater environment and hatch a ciliated 

miracidium that seeks out and infects a suitable species of gastropod snail, including species 

of the genus Biomphalaria. Within the snail, the parasites multiply via asexual reproduction, 

after which the cercarial developmental stage exits the snail. The fork-tailed cercaria is the 

infective stage for humans, who contract the infection in water contaminated with cercariae. 

During the skin penetration the cercariae shed the tail and the schistosomulum stage of the 

blood fluke enters the circulation and is transported via the heart to the lungs and liver where 

it matures over several weeks. After about four weeks, the adult worms, which exhibit sexual 

dimorphism, migrate into the mesenteries of the intestines (S. japonicum and S. mansoni) or 

the blood vessels of the urinary bladder and other pelvic organs (S. haematobium), where they 

commence sexual reproduction releasing hundreds to thousands of eggs per day, depending on 

the species. These parasites can live for decades 3,6.  

The pathobiology of schistosomiasis is mostly associated with tissue lesions caused by 

migrating parasite eggs 10. A large proportion of schistosome eggs fail to reach the intestinal 

lumen, instead becoming trapped in hepatic sinusoids and the intestinal wall, where they 

provoke formation of collagen-rich granulomas accompanied by periportal fibrosis and portal 

hypertension. Granuloma formation is mediated by host immunity to egg antigens; in 

particular, while a strongly polarised Th2-mediated immune response is responsible for the 

development of large granulomas during the initial phases of parasite establishment, chronic 

infections are accompanied by the onset of regulatory responses that lead to the formation of 

smaller granulomas around newly deposited eggs 7. In the mouse model of infection with S. 

mansoni, the immuno-regulatory environment confers protection against hepatotoxicity 
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(reviewed by 7). Nevertheless, the immune-molecular mechanisms underlying these regulatory 

responses have yet to be fully defined. In particular, whereas Schistosoma egg antigens interact 

directly with splenic B cells in the mouse, leading to production of IL-10 and expansion of 

regulatory T cell (Treg) populations 11, the contribution of environmental stimuli to the 

initiation of these immune-regulatory mechanisms is not well understood. Notably, in a mouse 

model of infection by the hookworm-like nematode Nippostrongylus brasiliensis, parasite-

induced Th2 type immune responses are accompanied by profound alterations in the 

composition of the commensal gut microbiota, including marked contraction of populations of 

segmented filamentous bacteria (SFB, Gram-positive members of the family Clostridiaceae) 

and down-regulation of pro-inflammatory IL-17 12. In turn, infection of SFB-deficient mice 

results in unaltered IL-17 gene expression 12, thereby supporting a key role for selected taxa of 

commensal bacteria in helminth-driven modulation of immunity. Based on these observations, 

it seems plausible to hypothesize that the shift between Th2-type and regulatory responses that 

accompany egg production and characterises chronic schistosomiasis may be triggered, at least 

in part and directly or indirectly, by parasite-associated modifications in the composition of the 

intestinal commensal microbiota.  

In spite of the burgeoning interest in understanding the complex interactions occurring 

at the host-parasite-microbiota interface 12-25, studies investigating the impact of acute or 

chronic S. mansoni infection on the intestinal microbiota of its mammalian host are, thus far, 

scant. In a single study, Holzscheiter et al. 26 demonstrated that administration of broad 

spectrum antibiotics and antimycotics to S. mansoni-infected C57BL/6 mice resulted in a 

substantial reduction of intestinal inflammation and intestinal granuloma development, thus 

providing support to a direct role of the host commensal microbes in the pathogenesis of 

schistosomiasis. Here, I have directly addressed this issue by defining qualitative and 

quantitative fluctuations in intestinal microbial community profiles during infection with S. 

mansoni, and identified groups of bacteria with known roles in immune-modulation (e.g. 

lactobacilli), maintenance of epithelial barrier function integrity (i.e. Akkermansia 

muciniphila), and intestinal inflammation (e.g. Dorea and Bacteroides acidifaciens) that may 

play significant roles in the pathophysiology of acute and chronic schistosomiasis. 

 

5.2 Materials and methods 

5.2.1 Ethics statement 

Swiss-Webster female mice were obtained from the NIAID Schistosomiasis Resource 

Center, Rockville, MD, via distribution through BEI Resources, and housed at the Animal 
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Research Facility of the George Washington University. The latter is accredited by the 

American Association for Accreditation of Laboratory Animal Care (AAALAC no. 000347) 

and holds an Animal Welfare Assurance by the National Institutes of Health, Office of 

Laboratory Animal Welfare (OLAW: A3205-01). Procedures described here were performed 

in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the 

Institutional Animal Care and Use Committee of the George Washington University, protocol 

number A137. 

 

5.2.2 Infection of mice, sample collection and parasitological analyses 

Ten Swiss-Webster female mice (S+) were percutaneously infected with 200 S. 

mansoni (NMRI strain) cercariae by tail exposure, as described 27, while 10 age- and gender-

matched mice remained uninfected and were included as controls (S-). For each S+ and S-, five 

mice were euthanised 28 days after infection (D28 p.i., before the start of egg laying by sexually 

mature S. mansoni females) by an overdose of Euthasol (sodium pentobarbital and sodium 

phenytoin, ~40 mg per mouse) (Virbac Corporation, Fort Worth, TX) delivered by 

intraperitoneal injection. The remaining mice (n = 5 for S+ and S-) were euthanised, as above, 

at day 50 p.i. (D50 p.i., corresponding with ongoing egg laying and extensive granuloma 

formation). Adult S. mansoni were recovered from each mouse in S+ by portal perfusion, and 

livers were removed for egg isolation and counting as described previously 28. Luminal content 

samples were collected from sections of the small (SI) and large intestines (LI) of individual 

S+ and S- mice at each D28 and D50 p.i. under sterile conditions. Briefly, after opening the 

abdominal cavities, the intestines were incised longitudinally with a sterile razor blade and SI 

and LI luminal contents were transferred directly into sterile tubes. These were snap frozen on 

dry ice and stored at -80°C until further use. The experiment was repeated twice for data 

validation, resulting in a total of 20 S+ and 20 S- mice included in the study. 

 

5.2.3 DNA extraction and bacterial 16S rRNA gene sequencing 

Genomic DNA was extracted directly from each luminal content sample, as well as two 

no-template negative control samples, using the PowerSoil DNA Isolation Kit (MO BIO 

Laboratories, Carlsbad, CA, USA), according to manufacturers’ instructions, within one month 

from sample collection. High-throughput sequencing of the V4 hypervariable region of the 

prokaryotic 16S rRNA gene was performed on an Illumina MiSeq platform. The V4 region 

was PCR-amplified using universal primers 29, that contained the Illumina adapter overhang 

nucleotide sequences, using the NEBNext hot start high-fidelity DNA polymerase (New 



 124 

England Biolabs), 2 ng/µl of template DNA and the following thermocycling protocol: 2 min 

at 98°C, 20 cycles of 15 s at 98°C – 30 s at 63°C – 30 s at 72°C, and a final elongation step of 

5 min at 72°C. Amplicons were purified using AMPure XP beads (Beckman Coulter) and the 

NEBNext hot start high-fidelity DNA polymerase was used for the index PCR with Nextera 

XT index primers (Illumina), with thermocycling as follows: 3 min at 95°C, 8 cycles of 30 s at 

95°C – 30 s at 55°C – 30 s at 72°C, and 5 min at 72°C. The indexed samples were purified 

using AMPure XP beads, quantified using the Qubit dsDNA high sensitivity kit (Life 

Technologies), and equal quantities from each sample pooled. The pooled library was 

quantified using the NEBNext library quantification kit (New England Biolabs) and sequenced 

using the v3 chemistry (301 bp paired-end reads). The raw sequences are available at 

Mendeley: doi:10.17632/y8c7vpc8zp.1. 

 

5.2.4 Bioinformatics and statistical analyses  

Paired-end Illumina reads were trimmed for 16S rRNA gene primer sequences using 

Cutadapt (https://cutadapt.readthedocs.org/en/stable/) and sequence data were processed using 

the Quantitative Insights Into Microbial Ecology (QIIME-1.9.1) software suite 30. Successfully 

merged reads were quality filtered in QIIME using default settings. Thereafter, sequences were 

clustered into Operational Taxonomic Units (OTUs) on the basis of similarity to annotated 

bacterial sequences available in the Greengenes database (v13.8; 

http://greengenes.secondgenome.com/; 97% sequence similarity cut-off) using the UCLUST 

software within QIIME. Sequences that could not be matched to references in the Greengenes 

database were clustered de novo based on pair-wise sequence identity (97% sequence similarity 

cut-off). The first selected cluster seed was considered as the representative sequence of each 

OTU. Taxonomy assignment of representative sequences was accomplished with the UCLUST 

software. Singleton OTUs were removed prior to downstream analyses. Cumulative-sum 

scaling (CSS) was applied, followed by log2 transformation to account for the non-normal 

distribution of taxonomic counts data. Statistical analyses were executed using the Calypso 

software 31 (cgenome.net/calypso/). Samples were ordinated using Principle Coordinates 

Analysses (PCoA) based on weighted UniFrac distances.  CCA was then performed, including 

infection status and time point as explanatory variables. In addition, Permutational Multivariate 

Analyses of Variance Using Distance Matrices (Adonis) 32 was used to calculate the portion of 

variability in the data explained by the explanatory variables, and a biplot was generated in R 
33. Following rarefaction of raw data, differences in microbial alpha diversity (Shannon 
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diversity) and richness between S+ and S- groups, as well as in the abundance of individual 

taxa, were evaluated using ANOVA. Beta diversity was calculated using weighted UniFrac 

distances and differences in beta diversity were calculated using Analysis of Similarity 

(ANOSIM) 34. Differences in the composition of the microbiota between groups were assessed 

using the Linear discriminant analysis Effect Size (LEfSe) workflow 35. Following the 

completion of bioinformatics analyses using QIIME (QIIME-1.9.1), QIIME2 was released 

(QIIME2-2018.4; https://qiime2.org). Therefore, in order to ensure that no substantial 

differences in findings could be detected when performing data analysis and annotation using 

this updated software, I undertook separate bioinformatic analyses and compared the resulting 

findings with those originally obtained using QIIME-1.9.1. In addition, reproducibility of 

findings was also ensured by replacing the Greengenes database with the SILVA reference 

database (https://www.arb-silva.de/download/archive/qiime; Silva_132) for sequence data 

annotation. Briefly, no major differences were detected between findings generated with 

QIIME-1.9.1 or QIIME2-2018.4 and using the Greengenes or SILVA repository as reference 

databases. Thus, the results from these additional analyses are not shown in the main article. 

Nevertheless, individual data files displaying findings from these analyses (e.g. differences in 

microbial alpha and beta diversity between mouse groups and infection time points, as well as 

differences in the relative abundances of individual OTUs) are available in the Mendeley 

database at doi:10.17632/y8c7vpc8zp.1. 

 

5.3 Results 

Ten Swiss-Webster female mice (S+) were infected with 200 S. mansoni cercariae, 

while 10 age- and gender-matched mice remained uninfected and were included as controls (S-

). For each S+ and S- group, five mice were euthanized 28 days after infection (D28 p.i., i.e. 

before egg laying by sexually mature S. mansoni females had commenced). The remaining 

mice (n = 5 for each S+ and S-) were euthanized at day 50 p.i. (D50 p.i., corresponding with 

ongoing egg laying by sexually mature S. mansoni females). An average of 40 mixed-sex adult 

parasites were recovered from individual S+ mice at D28, with comparable numbers being 

collected at D50. Luminal content samples were collected from sections of the small (SI) and 

large intestines (LI) of individual S+ and S- mice at each D28 and D50. From all samples 

analysed in this study (n = 80), a total of 1,305,817 paired-end reads were generated and 

subjected to further processing (Mendeley DOI: doi:10.17632/y8c7vpc8zp.1). No 

amplification was obtained from two no-template negative control samples (see Materials and 

Methods). Following filtering of singleton Operational Taxonomic Units (OTUs), duplicate 
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sequences and chimeric sequences, a total of 974,491 high-quality reads (per sample mean: 

12,181 ± 3,589) were retained. Rarefaction curves generated indicated that the majority of the 

bacterial communities were represented in the remaining sequence data (cf. Supplementary 

Fig. S1), which facilitated further analysis of these data. These sequences were assigned to 

8,734 OTUs and seven bacterial phyla (Mendeley DOI: doi:10.17632/y8c7vpc8zp.1). Overall, 

the phyla Firmicutes and Bacteroidetes were predominant in all samples analysed (54.2% 

average ± 23.9% standard deviation, and 34.9% ± 19.4%, respectively), followed by the 

phylum Verrucomicrobia (8% ± 13.4%) (Fig. 1). However, differences were observed in the 

relative abundance of Firmicutes and Bacteroidetes between samples from the SI and LI; in 

particular, while Firmicutes were significantly more abundant than Bacteroidetes in the SI 

throughout the course of the infection (73.1% ± 18.7% vs 19.5% ± 11.6 for Firmicutes and 

Bacteroidetes, respectively), similar proportions of the two phyla were detected in LI 

(Firmicutes: 40.9% ± 16.6%; Bacteroidetes: 47.1% ± 15.5%) (Fig. 1). Verrucomicrobia were 

marginally less abundant in the microbiota from SI (5.1% ± 14.4%) than in that from LI 

samples (8.7% ± 12%) (Fig. 1). 
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Fig. 1 Relative abundances of bacterial phyla detected in luminal content samples from the small and 

large intestine of mice infected by Schistosoma mansoni (S+) at 28 and 50 days post-infection (D28 

and D50, respectively), as well as of uninfected controls (S-). Percentages in individual pie chart 

sections indicate the relative proportion of the corresponding phylum. 
 
 

Mouse gut microbial communities were clustered by Principal Coordinates Analysis 

(PCoA), which clearly separated samples from S+ mice at D50 from all other samples (Fig. 2). 

Although differences between SI and LI microbial community profiles of S+ and S- mice at 

each time-point were statistically significant when analysed through Canonical 

Correspondence analyses (CCA) (SI = P = 0.001; LI = P = 0.001), the largest difference was 

detected between the gut microbial compositions of SI and LI of S+ mice at D50 and the 

remaining sampling groups (Fig. 2). The portion of variability explained by explanatory 

variables in the CCA was 0.187 and 0.218 for the SI and LI respectively (Supplementary Fig. 

S2). Analyses of Variance (ANOVA) of shannon diversity values obtained from the SI and LI 
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of S+ and S- mice at D28 and D50 revealed a significant decrease in microbial alpha diversity 

at D50 in both intestinal sites in S+ mice (SI = P = 0.006; LI = P = 0.02; Fig. 3). Beta diversity 

was decreased in the microbiota of S+ (both intestinal sites) at D28 when compared to S-, 

although these changes were not statistically significant (Fig. 4). Nevertheless, at D50, 

microbial beta diversity in S+ mice (both intestinal sites) was significantly higher than that of 

S- mice at this time point (SI: P = 0.004, LI: P = 0.008; Fig. 4). 

 

 
 

Fig. 2 The gut microbial profiles of luminal content samples from the small and large intestine of mice 

infected bySchistosoma mansoni (S+) at 28 and 50 days post-infection (D28 and D50, respectively), as 

well as of uninfected controls (S-), ordinated by Principal Coordinates Analysis (PCoA) (a: small 
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intestine; b: large intestine) and Canonical Correspondence Analysis (CCA) (c: small intestine; d: large 

intestine) 

 

 
Fig. 3 Differences between microbial Shannon diversity detected in the gut microbiota of mice infected 

with Schistosoma mansoni (S+) at day 28 and 50 post-infection (D28 and D50, respectively) and that 

of uninfected control mice (S-), in the small (a; SI) and large intestine (b; LI). Asterisks denote 

significant differences (P < 0.05) between individual groups. 

 

 
Fig. 4 Differences between microbial beta diversity detected in the gut microbiota of mice infected with 

Schistosoma mansoni (S+) at day 28 and 50 post-infection (D28 and D50, respectively) compared with 

control mice (S-), in the small (a; SI) and large intestine (b; LI). Asterisks denote significant differences 

(P < 0.05) between individual groups. 
 

Differences in the abundance of individual microbial taxa were detected between 

datasets from S+ and S- mice, at the different intestinal sites and time-points (Table 1). In 

particular, a significant expansion in populations of bacteria of the Family 

Verrucomicrobiaceae (species Akkermansia muciniphila) was detected in both intestinal sites 

and time-points in S+ mice in comparison to S- (Table 1). Bacteria belonging to the 

Lactobacillaceae were also expanded in the LI of S+ mice at D28, while those belonging the 

Orders Bacteroidales, Coriobacteriales and Clostridiales were expanded in either the SI i.e. 
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Bacteroides acidifaciens, Lachnospiraceae and/or LI of S+ mice at D50, i.e. Bacteroides 

acidifaciens, Parabacteroides, Adlercreutzia, Lachnospiraceae, Oscillospira (Table 1). 

Conversely, a marked contraction of bacteria of Class Erysipelotrichia was evident in both SI 

and LI of S+ mice at D50 compared to the uninfected counterparts (Table 1). 

 

Table 1 Bacterial taxa displaying significant differences in abundance between microbial profiles 

obtained from luminal content samples from mice experimentally infected with Schistosoma mansoni 

(S+) and uninfected controls (S-) based on linear discriminant analysis effect Size (LEfSe). For S+, 

datasets are separated for site (small and large intestine) and time point (28 and 50 days post-infection) 

and compared to the corresponding S- datasets. Colours correspond to Linear Discriminant Analysis 

(LDA) scores of 4.5 or higher (red), 4 to 4.5 (orange), and 3.5 to 4 (yellow) 
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5.4 Discussion 

Increasing evidence links the immune-modulatory properties of helminth parasites to 

variations in the composition of the gut microbial communities of their mammalian hosts 12-15. 

Attention has frequently focused on intestinal nematodes, likely because these helminths reside 

in contact with the microbiota of the alimentary tract 36,37. While the adult stage of the 

schistosome does not reside within the lumen of the GI tract, infection with S. mansoni induces 

profound effects on gut immunity and homeostasis 26,38,39; nevertheless, whether these effects 

are partly responsible for, or caused by, alterations in populations of commensal microbes 

remains unanswered. In this chapter, I sought to characterise the fluctuations in the composition 

of the microbiome of the small and large intestine of a rodent model of schistosomiasis, before 

and after the occurrence of intestinal damage caused by transmission of the parasite eggs, in an 

effort to identify populations of bacteria with active roles in the complex host-parasite 

interplay. Taxonomic profiling of microbial communities using PCoA and CCA revealed 

strong associations between gut microbiota composition and stage of infection, thus providing 

further evidence of a (direct or immune-mediated) microbiota-modulatory role of parasitic 

helminths 12-20,22-25,40-49. In particular, a significant decrease in microbial alpha diversity, which 

represents mean species diversity within a population of microbes 50, was observed in both the 

SI and LI of S+ mice at D50. Accordingly, a recent study conducted in the Ivory Coast reported 

a lower level of alpha diversity in the faecal microbiota of S. mansoni infected children when 

compared to uninfected controls, albeit this difference did not reach statistical significance 51. 

Decreases in gut microbial alpha diversity have been reported in association with GI helminth 

infections in several experimental systems, and to reflect a status of gut microbial dysbiosis 

following the onset of intestinal inflammation caused by infection 14,17,23,24. In accordance with 

this hypothesis, the observation of a marked reduction in the gut microbial alpha diversity of 

S+ mice at D50 suggested a direct effect of inflammatory reactions resulting from migrating 

schistosome eggs. In contrast, microbial beta diversity was significantly increased in samples 

from S+ mice at D50 compared with S- mice, indicating that the gut microbiota of individual 

infected mice responded differently to the disruption of intestinal homeostasis caused by the 

helminth infection. A significant increase in gut microbial beta diversity had also been detected 

in the gut microbiota of laboratory rodents experimentally infected with the whipworm, 

Trichuris suis and the tapeworm Hymenolepis diminuta 17,44, as well as in human volunteers 

from a Sri Lankan community infected with roundworms (i.e. hookworms, ascarids and/or 

whipworms) 41. These reports, coupled with the findings from this chapter, suggest increased 

beta diversity could represent a common feature characterising the gut microbiota of mammals 
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parasitized by helminths, irrespective of the phylogenetic relationships among the helminths 

and location in the GI tract. However, the status of infection, i.e. acute or chronic, as well as 

the overall parasite burden are likely to also affect helminth-induced changes in gut microbial 

diversity.  

Significant differences in the relative abundance of a number of gut microbial taxa associated 

with helminth infection and intestinal inflammation were observed between S+ and S- mice, at 

both D28 and D50. In particular, at D28, bacterial populations from the Family 

Lactobacillaceae were significantly increased in the LI of S+ mice. The existence of direct and 

indirect relationships between lactobacilli and helminth parasites has been revealed based on 

data from experiments carried out in murine models of nematode infections 12,13,15-17,43,44. In 

particular, in a key study, Reynolds et al. (2014) reported a marked increase in populations of 

Lactobacillaceae following infection of C57BL/6 mice with the intestinal nematode 

Heligmosomoides polygyrus. In turn, administration of Lactobacillus species to mice before 

helminth infection resulted in significantly increased worm burdens, which led the authors to 

hypothesize the occurrence of an immune-mediated, mutualistic relationship between selected 

commensal bacteria and helminths 13. Thus, higher levels of Lactobacillaceae at D28 in S+ 

mice compared to S- mice, could represent a microbiota-modulatory effect of S. mansoni 

which, in turn, may facilitate the establishment of chronic infection. Future studies in 

antibiotic-treated mice recolonized with a lactobacilli-deficient gut microbiota and subjected 

to infection with S. mansoni may assist research in this area. However, it is worth noting that 

no significant differences in the relative proportion of populations of Lactobacillaceae were 

detected in the gut microbiota of humans naturally or experimentally infected by GI nematodes 

when compared to uninfected subjects or others treated with anthelmintics 20,22,24,25,40,41, and 

hence this mechanism might represent a rodent-specific effect of helminth infection on the host 

gut microbiota. Notably, the relative expansion of populations of Lactobacillaceae observed 

in the LI of S+ mice at D28 was no longer apparent at D50, likely suggesting that lactobacilli 

are negatively affected by the onset of inflammatory responses caused by the transiting 

schistosome eggs.  

Besides lactobacilli, populations of A. muciniphila were significantly expanded in the 

microbiota from both the SI and LI of S+, and at both D28 and D50, when compared with the 

corresponding S- counterparts, with the largest difference recorded at the latter time point. A. 

muciniphila is a mucosal-dwelling anaerobic bacterium that degrades host mucins 52; 

significantly expanded populations of A. muciniphila were also observed in the faecal 

microbiota of humans with mixed helminth infections 41. The proliferation of A. muciniphila 
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in the GI of infected mice may be directly linked to an increased production of mucins in 

response to schistosome infection; this hypothesis is supported by knowledge that transcription 

of Muc5ac, encoding for a gel-forming mucin, is up-regulated in tissues of schistosome-

infected mice 53. Indeed, mammalian mucins play a key role in the complex network of 

interactions occurring at the helminth-host interface 54-57. For instance, mice infected with 

Echinostoma trivolvis displayed a dramatically increased production of host mucins, which 

was crucial to the expulsion of the parasites 58. In addition to an association with increased host 

mucin production, A. muciniphila adheres to the intestinal epithelium and strengthens 

enterocyte monolayer integrity in vitro 59. Thus, it is plausible that increased levels of A. 

muciniphila play a potential protective role against the disruption of gut epithelial barrier 

function caused by granuloma formation. 

At D50, in concomitance with schistosome egg migration and granuloma formation, 

bacterial taxa that have been previously associated with intestinal inflammation, e.g. of the 

Family Lachnospiraceae (i.e. Dorea) and genus Bacteroides (i.e. Bacteroides acidifaciens) 

were significantly more abundant in the gut microbiota of S+ compared to S- mice. Expanded 

populations of Dorea have been reported in irritable bowel syndrome patients 60, as well during 

intestinal inflammation 61, whilst Bacteroides acidifaciens was enriched in a mouse model of 

colitis 62. Together with the increased levels of beta- and decreased levels of alpha diversity 

detected in S+ mice at D50, these findings lend credit to the hypothesis that a significant 

disruption of gut microbial homeostasis occurred at this time-point, and that this disruption 

contributed to the intestinal pathogenesis during S. mansoni infection. This hypothesis is 

supported by findings from Holzscheiter and colleagues 26, who reported a significant reduction 

of intestinal inflammation and intestinal granuloma development in S. mansoni infected mice 

after antibiotic treatment. 

In contrast to the above-mentioned bacteria, those belonging to the Class 

Erysipelotrichia (Orders Turicibacterales and Erysipelotrichales) were significantly reduced in 

S+ mice at D50 when compared with uninfected mice. To my knowledge, information is not 

available on the relationships between this group of commensal bacteria and infections by GI 

helminths or schistosomes; however, in immune-deficient mice, a clear link between 

Turicibacterales and host immune dysfunction has been described 63,64. For example, species 

of Turicibacterales are abundant in the gut microbiota of wild type mice, but completely absent 

from the gut of mice with defective immune responses (CD45-/- knockout) and mice lacking 

an adaptive immune system (RAG-/-knockout) 64. Accordingly, I suggest that the lower 

abundance of Turicibacterales observed in S+ compared to S- mice could be due to 



 135 

disturbances of mucosal immune functions during S. mansoni infection. However, it remains 

unclear whether and/or how a contraction in populations of Erysipelotrichia might impact the 

outcome of S. mansoni infection. 

 

5.5 Conclusions 

In conclusion, this chapter shows that infection of mice with S. mansoni infection is 

associated with profound comprehensive shifts in the global composition of the host gut 

microbiota, and that the changes are indicative of dysbiosis accompanying egg migration 

across the intestinal wall and granuloma formation. Many of the specific infection-related 

alterations to the microbiota involved bacterial taxa which are linked to host immune-

regulation or inflammation, suggesting that the balance between immune-regulatory and pro-

inflammatory bacterial taxa during schistosomiasis play a key role in determining the effective 

establishment of the infection, and/or severity of the disease resulting from host immune 

responses to infection.  

 

 

 

.
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CHAPTER 6 

 
General discussion 

 

 

Understanding the impact that parasitic helminths exert on the host gut microbiota is central to 

a better grasp of host-parasite interactions and the fundamental molecular mechanisms that 

govern essential biological processes and, ultimately, could assist in identifying novel 

treatment approaches against parasitic helminths, as well as helminth-borne 

 treatments of allergic and autoimmune conditions. 

 The present thesis (i) investigated the consequences of natural multi- or mono-species 

infections by helminth parasites on the composition of the human gut microbiota (Chapters 2 

and 3), (ii) elucidated the longitudinal impact of experimentally controlled mono-species 

helminth infections on the human gut microbiota (Chapter 4), and, finally, (iii) examined what 

impact an extra-intestinal (EI) helminth infection has on the host microbiome in a murine 

model of human schistosomiasis (Chapter 5). The objectives of the present chapter were (a) to 

summarise the fundamental research achievements, (b) to discuss the findings and implications 

that can be drawn from this research in relation to host-parasite interactions, and (c) to provide 

an outlook on opportunities and prospects for future investigations. 

Overall, this thesis has described the results from bioinformatic analyses of ~43,305, 

300 paired-end reads generated via 16S rRNA sequencing of human faeces (Chapters 2-5). The 

majority of the raw reads (Chapters 2, 3, and 5) have been deposited and made publicly 

available on public databases (i.e., Mendeley data and the European Nucleotide Archive) and 

present a substantial resource for future investigations within the field of parasitology, but also 

for broader investigations of the gut microbiota. 

 Knowledge of helminths’ impact on host microbiota is pivotal to untangle the complex 

network of host-parasite interactions. However, until recently, such investigations had to rely 

on culture-based techniques for the profiling of gut microbial changes 1. This only allowed 

highly limited and biased investigations into such microbiota shifts. However, recent 

innovations in next generation sequencing and ‘omics’ technologies have made quantitative 

and less or non-biased approaches, such as 16S rRNA sequencing, affordable and thus widely 
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accessible 2. These technological advancements have vastly improved our ability to investigate 

gut microbiota changes and gain insights into microbial ecosystem interactions within the host 

gut 3-5. At the commencement of this thesis, little data existed on the impact of parasitic 

helminth infections on the host microbiome. Indeed, only four studies had been published on 

the impact of parasitic helminths infections on the human gut microbiota at that time 6-9 and, 

while they established that such infections could significantly alter the host microbiota, few 

clear trends could be identified consistently across these studies. This lack of consistency could 

largely be traced back to the variability in study designs, helminth species, and data analyses 

techniques, amongst others, between those studies 10. Although a complete elimination of 

confounding factors is improbable in investigations of human helminth infections, it is possible 

to minimise and carefully account for such influences 10. Hence, in this thesis consistent DNA 

extraction, sequencing library preparation, and data analysis techniques have been applied to a 

range of human-helminth infection scenarios, as well as a murine model of human helminth 

infection. The aim was to apply technical consistency to draw more confident inferences from 

the data, while also allowing the detection of helminth induced host microbiota changes, which 

are consistent across different studies. Indeed, though many of the microbiota changes 

observed across the studies presented in this thesis appeared to be specific to the host-helminth 

system that was being investigated, some intriguing consistencies emerged. Firstly, low level, 

long term, and single species subclinical infections were associated with increased gut 

microbial diversity within the host and seemed to promote a stable and healthy gut microbial 

composition (Chapters 3 and 4). Notably, these findings are supported by data from other 

studies that examined the effects of experimental single species (Necator americanus) 

infections in coeliac patients and reported increased gut microbial diversity following helminth 

administration 7,11. Contrarily, acute heavy burden infections, associated with pathology, 

appeared to have the opposite effect, i.e. reducing the overall diversity of the host’s gut 

microbiota and associated with the presence and proliferation of potentially pro-inflammatory 

bacteria and/or opportunistic pathogens (Chapter 5). Indeed, heavy parasite burden infections 

are common practice in most studies investigating rodent models of helminth infections and 

have been frequently reported to lead to significant decreases in gut microbiota diversity 12-14. 

Meanwhile, I was unable to detect a significant difference in alpha diversity in subjects 

naturally infected with different species of STHs (Chapter 1). Other studies of natural and/or 

mixed infections have been lacking a consistency in trends of host gut microbial diversity, with 

some reporting increased 8,15 and decreased 9 levels of diversity, or no change at all 16,17. This 

is likely linked to the significant differences in the study cohorts and their geographic locations, 
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as well as the varied types of infections and species of parasite involved (reviewed by 10). 

Notably, I also found that murine infections with parasitic (EI) helminths can have a significant 

impact on the host microbiota, even before eggs traverse through the host gut epithelial layer 

(Chapter 5). Though the gut microbiota perturbations significantly increased upon egg laying 

and consequent disruption of the gut epithelial layer, these data demonstrated that host 

microbiome changes can be indirectly induced by EI helminths, likely due to the parasites’ 

strong immunomodulatory properties (reviewed by 18,19).  

Together, these data suggest that both GI and EI parasitic helminth infections have the potential 

to detrimentally impact the hosts they infect, besides the direct pathology they induce, but also 

adds further weight to the idea of a therapeutic and controlled use of helminths in the context 

of helminth therapy. Indeed, considering the beneficial effects parasitic helminths may have 

on the host gut microbiota, together with the mounting evidence towards an intrinsic link 

between autoimmune diseases and the gut microbiome, infection-associated changes on the 

microbial composition of the host gut might represent an additional route via which helminths 

could exert a therapeutic effect on patients suffering from such conditions 6,7,11, in addition to 

the release of ESPs with immunomodulatory properties (reviewed by 20). 

 Besides the trends in gut microbial diversity, further patterns emerged when assessing 

the changes in specific bacterial taxa during helminth infections. In this thesis, I found that 

study cohorts characterised by increased levels of gut microbial diversity and which appeared 

to have an overall healthier microbiome than the cohort they were compared to, presented an 

increased relative abundance of the bacterial family Leuconostocaceae (uninfected cohort 

Chapter 2 and infected cohort Chapter 3) and the genus Turicibacter (uninfected cohort 

Chapter 5 and infected cohort Chapter 3), with the phylum/class Tenericutes/Mollicutes 

(infected Chapter 4) also proving interesting, due to the plethora of evidence from other studies 

indicating they could present a key taxon involved in disease progression of autoimmune 

conditions 21-25. On the other hand, a decrease in gut microbial alpha diversity appeared to be 

associated with an increased relative abundance of the bacterial family Enterobacteriaceae 

(uninfected cohort Chapter 3 and infected cohort Chapter 2), the genus Akkermansia (infected 

cohort Chapter 2 and infected cohort Chapter 5), and the family Lachnospiraceae, particularly 

the bacterial genus Dorea (uninfected cohort Chapter 4, infected cohort Chapter 5). 

Regrettably, within this document the relevance of these bacteria could merely be inferred from 

evidence present in the literature and the investigation of the functional importance of these 

taxa fell outside the scope of this thesis. However, the bacteria identified here present excellent 

targets for future investigations aiming at untangling the gut microbial nuances underlying 
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host-helminth interactions. Furthermore, these bacteria are likely not just important in the 

context of parasitic helminth infections, but also fall within the broader scope of human 

microbiome health 26 and, thus, could be of interest to studies focusing on specific bacteria 

involved in gut microbiome stability and gut epithelial health, as well as investigating gut 

inflammation.  

 However, despite our increasing understanding of host-parasite-microbiota 

interactions, we have only begun to unravel the intricate processes involved. In fact, besides 

the need for targeted mechanistic investigations of the trends in microbiome shifts that have 

emerged throughout this thesis, the question arises as to what role not only the host, but also 

the helminth microbiomes play in this complex system. Indeed, although in a few select 

helminth species the presence of a native microbiome has been established (reviewed by 27), 

little is known about the occurrence, structure and function of microbial populations residing 

within parasite organs and tissues.  

Similar to their vertebrate hosts, parasitic nematodes have complete, tubular digestive 

systems responsible for nutrient uptake, processing and absorption; yet, for most species of 

socio-economically important parasites, and GI nematodes in particular, little is known about 

the occurrence, structure and function of populations of resident gut microbes 28. Nevertheless, 

critical evidence of the existence of essential symbiotic relationships between parasites and 

bacteria is provided by filarial nematodes, e.g., Onchocerca volvulus (causing river blindness) 

and Wuchereria bancrofti and Brugia malayi (causing lymphatic filariasis) (reviewed by 29), 

whose propagation and survival are dependent on a genus of bacteria, i.e. Wolbachia, which 

has become the target of intense investigations aimed to develop novel filaricidal compounds 
30-34. This evidence supports the hypothesis, strongly corroborated by recent experimental 

findings 35,36, that the digestive system as well as other organs and tissues of GI nematodes may 

also harbour resident microbes with essential roles in parasite physiology and survival. Fully 

characterizing and understanding the structure and function of helminth microbiomes, and 

determining the role/s they play in key aspects of parasite biology and host-parasite 

interactions, could not only have broad implications for future studies of the origin of 

parasitism itself, but might also lead to the discovery of radically new interventions against 

these worms.  

Investigations of the interactions between parasites and their resident bacteria rely on a 

thorough understanding of the dynamics of microbiome acquisition. Whilst for GI nematodes 

knowledge in this area is relatively limited, several investigations have documented the fine 
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strategy via which bacteria of the genus Wolbachia are propagated through successive 

generations of filarial parasites (reviewed by 27) (cf. Fig. 1). In the filarial nematode B. malayi, 

these bacteria inhabit the lateral chords of both adult male and female worms, and the 

reproductive system of the latter sex, where they colonise the ovaries, oocytes and early 

embryos within the uteri 37. Upon egg fertilisation, populations of Wolbachia segregate 

asymmetrically in the developing embryo, which results in an uneven distribution of these 

bacteria in the tissues of the resultant microfilariae 37. In particular, the numbers of vertically 

transmitted Wolbachia remain stable (~70 per embryo 33) throughout development of the new 

generation of filarial parasites into infective third-stage larvae (L3s) in the mosquito vector 

(reviewed by 27). Upon L3-invasion of a new, susceptible vertebrate host, the number of 

Wolbachia bacteria rapidly increases in the hypodermal cord of developing worms, with a 

further expansion occurring in the reproductive tissues of sexually mature females (reviewed 

by 27). Crucially, embryonic development is entirely dependent on Wolbachia, as treatment 

with tetracycline antibiotics results in a marked reduction of viable microfilariae (reviewed by 
37). To date, the obligate relationship between filarial nematodes and Wolbachia represents the 

only known example of a mutualistic association between parasitic nematodes and bacteria.  
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Fig. 1 Proposed Helminth Microbiome Acquisition Strategies for Brugia malayi, Trichuris 

muris, and Haemonchus contortus. (A) B. malayi microfilariae acquire Wolbachiamicroorganisms via 

the female germ line, and populations of resident microbes expand throughout larval development 

through to infective third-stage larvae in the mosquito intermediate host. In adult male and female B. 

malayi, the bacteria localise to the lateral chords of both sexes and the female reproductive system, 

where they colonise the ovaries, oocytes, and early embryos within the uteri. (B) Unembryonated T. 

muris eggs are passed through murine faeces, and embryos develop inside the eggs. Upon ingestion by 

a susceptible host, the eggs hatch in the small intestine and release larvae that acquire selected 

populations of bacteria from the gut of their rodent hosts. Thereafter, the larvae mature and establish 

themselves as adult males and females in the colon. (C) Female H. contortus transfer selected 

populations of bacteria to the offspring via the germline. Eggs shed in the environment with the faeces 

of the ruminant host hatch and release first-stage larvae. Upon ingestion of the latter by a new ruminant 

host, the developing worms acquire further populations of bacteria from the rumen of the latter. Red 

arrows indicate helminth microbiome acquisition events. Empty blue circles indicate current lack of 

clear evidence of microbiome transfer 38. 

 

Members of another group of helminth parasites, the digenean trematodes, are known 

to harbour populations of Neorickettsia endosymbionts which share numerous genetic 

similarities with Wolbachia (reviewed by 39). Neorickettsia inhabit a range of environments 

suitable for the development of the infective stages of digenean parasites and their intermediate 

hosts (e.g., aquatic molluscs), thus lending credit to the hypothesis that a proportion of these 

bacteria are horizontally transmitted (reviewed by 39,40). Nevertheless, in Plagiorchis elegans, 

a common GI helminth of a range of fishes, birds and mammals (including humans) 41, 

Neorickettsia is predominantly transmitted vertically across generations of parasites 42. 

However, unlike Wolbachia in filarial nematodes, transmission of Neorickettsia in P. elegans 

occurs also through the asexual stages of this parasite 43. Furthermore, since transmission rates 

of Neorickettsia from adult P. elegans to the offspring vary from 11% to 91% 43, it has been 

suggested that the life cycle of this flatworm is not dependent on their neorickettsial 

endosymbionts, but rather that Neorickettsia utilises P. elegans as a vehicle for transmission to 

vertebrate hosts 44.  

For GI nematodes, experimental evidence of microbiome acquisition strategies is 

available for two species, namely Haemonchus contortus, an abomasal roundworm of small 
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ruminants 35 and Trichuris muris, a large intestinal whipworm of rodents 36 (cf. Fig. 1). For the 

former, a recent study 35 localised selected genera of bacteria (i.e. Weissella and Leuconostoc) 

to the gut of adult worms and to the uterus of sexually mature females by fluorescence in situ 

hybridization (FISH) and transmission electron microscopy; using DNA fingerprinting, the 

same genera could be identified in eggs laid by these females and, following larval culture, 

their L3 offspring 35. Notably, these microorganisms could not be identified in the faecal matter 

on which larval culture was performed, thus providing evidence of maternal transmission of 

these bacteria 35. Other bacterial genera (i.e. Lactococcus and Streptococcus) could be 

identified in the distal uterus of sexually mature females of H. contortus 35. Nevertheless, these 

bacteria were not detected in newly deposited eggs and developed L3s. Since these bacteria 

occur in the rumen of the host 45, the authors hypothesized that female worms acquired them 

by ingesting ruminal fluid 35. Whilst the roles that species of Lactococcus and Streptococcus 

might play in the fundamental biology of H. contortus is presently unknown, these data suggest 

that this parasite might employ a ‘hybrid’ microbiome acquisition strategy, with some ‘core’ 

endosymbionts (i.e. Weissella and Leuconostoc), which may play essential roles in parasite 

fitness and survival, being vertically transmitted, and others (i.e. Lactococcus and 

Streptococcus) being acquired from the host to underpin a certain level of microbiome 

plasticity and capacity for environmental adaptation.  

A clear strategy of microbiome acquisition from the mammalian host has been recently 

demonstrated for T. muris 36 (cf. Fig. 1). The essential role that the host microbiome plays in 

the development and propagation of this parasite had already been demonstrated in a seminal 

study 46, which showed that parasite egg hatching in the large intestine of the mouse was 

dependent on the microbial flora within the host gut. Recently, a study by the same research 

group 36 demonstrated that, following egg hatching, T. muris acquires populations of bacteria 

that, together, form a ‘core’ nematode microbiome, which is markedly distinct from the 

microbiome inhabiting the environment in which the worms reside 36. Although the Trichuris 

microbiome described predominantly comprised Firmicutes and Bacteroidetes, similar to the 

host microbiome, it was also rich in Proteobacteria. Proteobacteria constituted 9% of the entire 

T. muris microbiome – a 31-fold and 13-fold increase in relative proportions of this bacterial 

group compared with the microbiome of uninfected mice and T. muris-infected mice, 

respectively 36. This process of selective microbiome acquisition was demonstrated to be 

independent from the initial host microbiome composition, and the administration of broad-

spectrum antibiotics to adult T. muris ex vivo resulted in a marked decrease in parasite fitness 
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and survival rates, thus providing cogent evidence for an essential role of the host-acquired 

microbiome for the successful completion of the whipworm life cycle. Whether T. muris 

acquires its own microbiome passively, or actively selects populations of bacteria with 

functional properties which are able to facilitate its survival in the vertebrate host, remains to 

be established (cf. 36). Nevertheless, the observation that mono-colonisation of germ-free mice 

with a single species of bacterium, i.e. Bacteroides thetaiotaomicron, resulted in successful 

egg hatching and establishment of chronic T. muris infection 36 provides a unique opportunity 

to design targeted experiments that can shed light on the precise mechanisms of acquisition of 

the T. muris microbiome. In turn, this knowledge will form the necessary basis to answer 

fundamental questions regarding helminth microbiome structure and function. 

Studies of the structure and function of helminth microbiomes are in their infancy. 

Nevertheless, over the past decades, evidence has emerged about the functional association 

between the free-living nematode Caenorhabditis elegans and the bacteria inhabiting it 47,48. 

Indeed, C. elegans is known to host a species-rich bacterial community, dominated by 

Proteobacteria, such as Enterobacteriaceae and members of the genera Pseudomonas, 

Stenotrophomonas, Ochrobactrum, and Sphingomonas 47,48. Crucially, the relative proportions 

of bacterial populations forming the C. elegans microbiome vary according to the 

developmental stage of this nematode 48, thus suggesting that worm development relies on a 

range of bacterial functions that differ over time. In support of this hypothesis, worms 

experimentally colonised with a subset of bacterial isolates representing the C. elegans ‘core’ 

microbiome displayed increased fitness and survival rates, and were maintained under stressful 

conditions of temperature and osmolarity, compared with worms colonised solely by 

Escherichia coli 48. In addition, compared with E. coli-colonised C. elegans, worms fed with 

the soil bacterium Comamonas displayed accelerated development, which was attributed to the 

ability of this bacterial group to up-regulate the expression of genes associated with the 

nematode’s moulting program 49. The C. elegans microbiome has also been demonstrated to 

play important roles in worm defence against pathogens; indeed, Pseudomonas isolates 

detected amongst the worm resident populations of bacteria produce anti-mycotic compounds 

that prevent colonisation by fungal agents 48.  

Evidence from investigations of C. elegans, employed as a model for nematode-

microbiome interactions, points to a likely functional role of the microbiomes of parasitic 

helminths for worm physiology, development and survival. However, the parasite microbiome 

itself may benefit from the protected and nutrient-rich environment that the worm host offers 
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50,51. For instance, the Gammaproteobacteria Photorhabdus and Xenorhabdus, that inhabit the 

gut of the entomopathogenic nematodes Heterorhabditis and Steinernema, are released upon 

infection of the insect host by the infective juveniles; following their release, these bacteria 

actively replicate and kill the insect host, while converting the insect carcass into a source of 

nutrients to support nematode growth and development 52,53. 

For parasitic nematodes of medical and veterinary importance, the mutualistic 

association between filarial nematodes and Wolbachia offers a key example of the fundamental 

functions that the helminth microbiome exerts in the biology of its worm host, and vice versa. 

Indeed, besides its known role in the development and survival of filarial embryos (reviewed 

by 27), Wolbachia is essential for worm nutrition and metabolism. The bacterium synthesizes 

haem, riboflavin (vitamin B2), and flavin adenine dinucleotide, which the parasite host is 

unable to synthesize and that have been inferred to play an important role in filarial 

reproduction and development, as well as nucleotides, which are required during oogenesis and 

embryogenesis 34,54,55. In addition, members of the genus Wolbachia participate in pathways 

aimed at preventing apoptosis of filarial reproductive, embryonic and somatic cells 33,56, likely 

by the direct targeting of the apoptotic signalling cascade 57-59. Finally, in the filarial parasite 

of cattle Onchocerca ochengi, Wolbachia has been demonstrated to play a key role in host 

immune evasion, specifically by attracting host neutrophils and, thus, averting a potentially 

lethal effector response by degranulating eosinophils 60.  

Over the years, the fundamental roles that Wolbachia play in pathways linked to 

reproduction, metabolism and immune defence of filarial nematodes have been the subject of 

intense scrutiny, focusing on developing novel chemotherapeutics to disrupt this mutualistic 

relationship; some have been successful 27,31,33,61. For instance, the administration of 4-week 

courses of doxycycline (belonging to the tetracycline family of antibiotics) and rifampicin have 

been deemed effective in reducing the transmission of O. volvulus microfilariae to mosquito 

intermediate hosts and filarial embryogenesis, respectively (reviewed by 29). Nevertheless, the 

length of drug administration required to achieve significant effects, along with the severe 

adverse reactions that tetracyclines can cause in children and pregnant women (e.g. permanent 

dental staining, teratogenic effects and potentially fatal hepatotoxicity 62), limit the use of these 

antibiotics in mass drug administration (MDA) programs in areas where filariases are endemic. 

Nevertheless, these findings raise the question as to whether a deep exploration of the 

microbiomes of other helminth parasites of major socio-economic significance could hold 
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promise for the identification of novel targets for the development of antibiotic-independent 

control strategies against the diseases caused by these worms.  

Globally, more than two billion people are at risk of infection by GI nematodes, mainly 

the hookworms Ancylostoma duodenale and Necator americanus, the whipworm T. trichiura, 

the roundworm Ascaris lumbricoides, and the threadworm, Strongyloides stercoralis. 

Collectively, these nematodes are responsible for more than 5.5 million disability-adjusted life 

years (DALYs) (reviewed by 63). Moreover, GI nematodes inflict significant production losses 

in livestock due to the extensive morbidity and mortality associated with a range of diseases 

that they cause (reviewed by 64). Complete reliance on anthelmintics for the control of these 

parasites (via MDA or targeted strategic worming programmes in humans and livestock) bears 

substantial risks, linked to the global threat of emerging anthelmintic resistance, as already 

observed in several GI nematodes of veterinary importance (reviewed by 65,66). Yet, the 

discovery of alternative strategies for parasite control should be built on a thorough 

understanding of the fundamental biology of these pathogens, and of key mechanisms of 

interactions with their vertebrate hosts. A deeper knowledge of the structure and function of 

the microbiomes of parasitic helminths, and of mechanisms of microbiome acquisition and 

transmission, could lead to unprecedented discoveries in parasite physiology, pathology and 

reproduction, and thus, to the development of completely novel control tools. Nevertheless, for 

such discoveries to be harnessed, fundamental information needs to be acquired. I propose that, 

in the first instance, the microbiomes of representative species of GI nematodes of considerable 

medical and veterinary significance (Fig. 2) could be qualitatively characterized using high-

throughput sequencing of the bacterial 16S rRNA gene. The selection of specimens of a range 

of parasite species from different hosts and geographical locations would assist the 

determination of species-specific ‘core’ parasite microbiomes. Following the establishment of 

reference 16S rRNA databases for each key parasite species, shotgun metagenomic sequencing 

of their microbiomes would provide important information on the relative abundance of each 

‘core’ microbial species, and clues about their functional potential. The latter, coupled to 

investigations of the proteomes and metabolomes of the microbial communities inhabiting 

these parasites, could lead to a better understanding of the possible role/s that the microbiomes 

of parasitic helminths play in the biology and physiology of individual worms.   
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Fig. 2 Key Helminth Taxa to Be Investigated as Representatives of Their Taxonomic Clades. Asterisks 

(*) indicate taxa for which published data on parasite microbiome structure and/or function(s) are 

available 38. 
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Key information on the modes of transmission of helminth microbiomes could be acquired via 

experimental infections of vertebrate hosts with selected GI nematodes, followed by qualitative 

and quantitative comparative analyses of the host microbiomes and key parasite developmental 

stages. Furthermore, for selected GI nematodes (e.g. Nippostrongylus brasiliensis), 

experimental infections of germ-free or antibiotic-treated mice re-colonised with fluorescently 

labelled bacteria might provide clues on host-parasite microbiome transfer using in vivo 

imaging (cf. 67).  Similar techniques could be used to localise species or groups of bacteria in 

parasite organs and tissues, thus providing additional clues on the functions of such 

microorganisms in worm biology. Together, this information would form a basis for 

experimentation, aimed at interfering with such functions that may potentially lead to the 

discovery of entirely novel, antibiotic-independent strategies for parasite control (Fig. 3), for 

example, via cutting-edge microbiome editing techniques including CRISPR/Cas9, engineered 

probiotics, and/or bactericidal bacteriophages (reviewed by 68).  

 

Fig. 3 Plan of Action for Efficient Investigations and Consequent Exploitation of Helminth 

Microbiomes 38. (A) Bacterial 16S rRNA gene sequencing of helminth microbiomes to establish core 

resident microbial species. (B) Shotgun metagenomic sequencing (i), proteomic (ii), and metabolomic 
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(iii) analyses to establish microbial functions. (C) Experiments in wild-type and germ-free mice to 

determine mechanisms of acquisition and transmission of helminth microbiomes. (D) Localization of 

core microbial populations through fluorescent light microscopy and electron microscopy. (E) 

Identification and targeting of key microbial species to decrease parasite fitness (based on the previously 

assessed parameters) via microbiome-editing techniques 38. 

 

Major advances have been made in describing and understanding host-parasite-

microbiota interactions. Yet, as our knowledge is expanding, an ever increasing number of new 

questions arise, with a key one concerning the role of the parasite’s own microbiome in such 

interactions. In spite of substantial evidence that points towards crucial role(s) of microbial 

species inhabiting parasitic helminths in the fundamental biology of these pathogens and host-

parasite interactions, e.g. in filarial nematodes and, more recently, whipworms, current 

knowledge of the microbiomes of key parasitic helminths of major socio-economic 

significance is scarce and fragmented. Nonetheless, the relentless progress in microbiome 

investigation and editing technologies, and novel high-throughput bioinformatics pipelines, 

provides us with unprecedented opportunities to thoroughly characterize the structures and 

functions of such microbial populations. At the core lie questions surrounding modes of 

helminth microbiome acquisition and propagation to successive generations of parasites, the 

localisation of endosymbiont microorganisms in the organs and tissues of parasites, the 

functions that helminth microbiomes (including bacteria, viruses and fungi) play in parasite 

biology and physiology, and the effects that disrupting parasite-microbiome interactions may 

exert on parasite propagation and survival (see Outstanding Questions). In turn, the new 

knowledge can be expected to provide us with a plethora of opportunities to exploit parasite-

microbiome associations to our advantage, for example, by applying cutting-edge microbiome-

editing techniques as novel intervention strategies against parasitic nematodes and the diseases 

that they cause. Understanding both the impact of parasitic helminths on the host gut 

microbiota, as well as the role of the worms own microbiome will likely be pivotal for the 

future of host-parasite investigations and prove invaluable in the pursuit of alleviating the great 

burden that these helminths exert on a global scale.  
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Chapter 2 

Supplementary Table S1 Metadata associated with helminth-positive (H+), helminth-negative (H-) 

and helminth-negative but regularly treated (Ht) subjects enrolled in the study. 

ID Village Gender Age (years) Education Occupation Infected Parasite 

H+ 01 Hanthana Male 1 to 18 NP NP Yes Ascaris sp. 

H+ 02 Hanthana Male 1 to 18 NP NP Yes Ascaris sp. 

H+ 03 Hanthana Female 1 to 18 NP NP Yes Ascaris sp. 

H+ 04 Hanthana Female 1 to 18 NP NP Yes Ascaris sp. 

H+ 05 Hanthana Female 1 to 18 NP NP Yes Ascaris sp. 

H+ 06 Hanthana Male 1 to 18 NP NP Yes Ascaris sp. 

H+ 07 Kandakuliya Female 1 to 18 Grade 1 -5 NP Yes Trichuris sp. 

H+ 08 Mawanella Male 1 to 18 Grade 1 -5 NP Yes Nematode larvae 

H+ 09 Mawanella Female 51 and above Grade 10 NP Yes Nematode larvae 

H+ 10 Rangala Male 19 to 50 Grade 1 -5 Skilled 

worker 

Yes Hookworms 

H+ 11 Rangala Female 1 to 18 Grade 1 -5 NP Yes Hookworms 

H- 01 Hanthana Male 1 to 18 NP NP No NA 

H- 02 Hanthana Male 1 to 18 NP NP No NA 

H- 03 Hanthana Male 1 to 18 NP NP No NA 

H- 04 Hanthana Female 1 to 18 NP NP No NA 

H- 05 Hanthana Male 1 to 18 NP NP No NA 

H- 06 Hanthana Male 1 to 18 NP NP No NA 

H- 07 Hanthana Male 1 to 18 NP NP No NA 

H- 08 Hanthana Female 1 to 18 NP NP No NA 

H- 09 Hanthana NP NP NP NP No NA 

H- 10 Hanthana Male 1 to 18 NP NP No NA 

H- 11 Hanthana Male 1 to 18 NP NP No NA 

H- 12 Hanthana Male 1 to 18 NP NP No NA 

H- 13 Hanthana Female 1 to 18 NP NP No NA 

H- 14 Hanthana Male 1 to 18 NP NP No NA 

H- 15 Hanthana Male 1 to 18 NP NP No NA 

H- 16 Hanthana Male 1 to 18 NP NP No NA 

H- 17 Hanthana Male 1 to 18 NP NP No NA 

H- 18 Hanthana Female 1 to 18 NP NP No NA 

H- 19 Hanthana Female 1 to 18 NP NP No NA 

H- 20 Hanthana Female 1 to 18 NP NP No NA 

H- 21 Hanthana Male 1 to 18 NP NP No NA 
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H- 22 Hanthana Male 1 to 18 NP NP No NA 

H- 23 Hanthana Female 1 to 18 NP NP No NA 

H- 24 Hanthana Male 1 to 18 NP NP No NA 

H- 25 Hanthana Male 1 to 18 NP NP No NA 

H- 26 Hanthana NP NP NP NP No NA 

H- 27 Hanthana NP NP NP NP No NA 

Ht 01 Akurana Female 1 to 18 NP NP No NA 

Ht 02 Akurana Female 51 and above NP NP No NA 

Ht 03 Kandakuliya Female 1 to 18 Grade 1 -5 NP No NA 

Ht 04 Kandakuliya Male 19 to 50 Grade 1 -5 Elementary 

occupation 

No NA 

Ht 05 Kandakuliya Female 1 to 18 Grade 1 -5 NP No NA 

Ht 06 Kandakuliya Female 1 to 18 Grade 1 -5 NP No NA 

Ht 07 Mawanella Female 19 to 50 Grade 12 NP No NA 

Ht 08 Mawanella Female 1 to 18 Grade 1 -5 NP No NA 

Ht 09 Mawanella Male 1 to 18 Grade 1 -5 NP No NA 

Ht 10 Valalai Female 19 to 50 Grade 1 -5 Housewife/u

nemployed 

No NA 

Ht 11 Valalai Male 1 to 18 NP NP No NA 

Ht 12 Valalai Male 19 to 50 Grade 1 -5 Elementary 

occupation 

No NA 

Ht 13 Valalai Female 1 to 18 Grade 1 -5 NP No NA 

Ht 14 Valalai Male 51 and above Grade 1 -5 Elementary 

occupation 

No NA 

Ht 15 Valalai Female 51 and above Grade 1 -5 Housewife/u

nemployed 

No NA 

Ht 16 Valalai Female 51 and above Grade 1 -5 Housewife/u

nemployed 

No NA 

Ht 17 Valalai Male 51 and above Grade 1 -5 Housewife/u

nemployed 

No NA 

Ht 18 Valalai Male 51 and above Grade 1 -5 Elementary 

occupation 

No NA 

Ht 19 Valalai Female 19 to 50 Grade 1 -5 Housewife/u

nemployed 

No NA 

Ht 20 Kandakuliya Female 51 and above Grade 1 -5 Housewife/u

nemployed 

No NA 

Ht 21 Kandakuliya Male 51 and above Grade 1 -5 Elementary 

occupation 

No NA 
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Ht 22 Kandakuliya Female 19 to 50 Grade 1 -5 Elementary 

occupation 

No NA 

Ht 23 Kandakuliya Female 19 to 50 Grade 1 -5 Housewife/u

nemployed 

No NA 

Ht 24 Kandakuliya Male 1 to 18 NP NP No NA 

Ht 25 Kandakuliya Male 1 to 18 NP NP No NA 

Ht 26 Kandakuliya Male 1 to 18 Grade 1 -5 NP No NA 

Ht 27 Kandakuliya Male 19 to 50 Grade 1 -5 Elementary 

occupation 

No NA 

Ht 28 Kandakuliya Female 1 to 18 Grade 1 -5 NP No NA 

Ht 29 Kandakuliya Male 1 to 18 NP NP No NA 

Ht 30 Mawanella Male 19 to 50 Grade 10 NP No NA 

Ht 31 Akurana Male 51 and above NP NP No NA 

Ht 32 Akurana Male 1 to 18 NP NP No NA 

Ht 33 Akurana Female 1 to 18 NP NP No NA 

Ht 34 Akurana Male 51 and above NP NP No NA 

Ht 35 Akurana Female 19 to 50 NP NP No NA 

Ht 36 Akurana Male 19 to 50 NP NP No NA 

Ht 37 Akurana Female 1 to 18 NP NP No NA 

Ht 38 Akurana Male 51 and above NP NP No NA 
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Supplementary Fig. S1 Questionnaire used for the collection of metadata from 100 human volunteers 

screened for the presence of patent infections by gastrointestinal nematodes. 
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Supplementary Fig. S2 Composition of the faecal microbiota of helminth-positive (H+), helminth-

negative (H-) and helminth-negative but regularly treated (Ht) subjects at the Phylum (I) and Family 

(II) level. 
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Supplementary Fig. S3 Prevotella copri abundance in helminth-positive (H+), helminth-negative (H-) 

and helminth-negative but regularly treated (Ht) subjects. 

 

 
Supplementary Fig. S4 Differences in overall taxonomic species richness (I) and diversity (II) 

between the faecal microbiota of helminth-positive (H+), helminth-negative (H-) and helminth-

negative but regularly treated (Ht) subjects. 
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Supplementary Fig. S5 Relative abundances of KEGG pathways encoded in the gut microbiota of 

helminth-positive (H+), helminth-negative (H-) and helminth-negative but regularly treated (Ht) 

subjects, determined by inferred metagenomic analyses with PICRUSt. 

 

Chapter 3 

Supplementary Table S1 Available metadata associated with faecal samples from Strongyloides 

stercoralis-infected and uninfected subjects (S+ and S-, respectively), as well as from the subset of S+ 

subjects that had received anthelmintic treatment, both prior to (S+pre-treatment; in red) and 6 months 

post-ivermectin administration (S+post-treatment). 

 

Subject Infection status Treatment status City Region Age Sex 

S+pre-treatment01* Positive Untreated Brescia Lombardia 82 Male 

S+pre-treatment02* Positive Untreated Verona Veneto 81 Male 

S+pre-treatment03* Positive Untreated Novara Piemonte 67 Male 

S+pre-treatment04 Positive Untreated Verona Veneto 83 Male 

S+pre-treatment05* Positive Untreated Bologna Emilia 60 Female 

S+pre-treatment06* Positive Untreated Brescia Lombardia 84 Female 

S+pre-treatment07 Positive Untreated Verona Veneto 75 Male 

S+pre-treatment08 Positive Untreated Verona Veneto 81 Male 

S+pre-treatment09 Positive Untreated Verona Veneto 69 Male 

S+pre-treatment10 Positive Untreated Verona Veneto 84 Male 

S+pre-treatment11* Positive Untreated Verona Veneto 80 Male 

S+pre-treatment12* Positive Untreated Brescia Lombardia 80 Female 

S+pre-treatment13* Positive Untreated Padova Veneto 60 Female 

S+14* Positive Untreated Verona Veneto 86 Male 

S+15* Positive Untreated Verona Veneto 69 Male 

S+16* Positive Untreated Verona Veneto 81 Male 

S+17* Positive Untreated Verona Veneto 59 Female 

S+18* Positive Untreated Verona Veneto 49 Female 

S+19 Positive Untreated Verona Veneto 86 Female 

S+20* Positive Untreated Verona Veneto 63 Female 

S-01* Negative Untreated Verona Veneto 78 Male 

S-02* Negative Untreated Verona Veneto 53 Female 

S-03* Negative Untreated Verona Veneto 58 Female 

S-04* Negative Untreated Verona Veneto 86 Female 

S-05* Negative Untreated Verona Veneto 58 Female 

S-06* Negative Untreated Verona Veneto 68 Male 

S-07 Negative Untreated Verona Veneto 74 Male 

S-08* Negative Untreated Verona Veneto 53 Female 

S-09* Negative Untreated Verona Veneto 58 Female 
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Age Mean Minimum Maximum Standard deviation 

S+ 74.0 49 86 10.8 
S+pre-
treatment 75.8 60 84 8.5 
S+post-
treatment 75.9 60 84 8.4 
S- 65.2 53 86 10.6 
Overall 72.3 49 86 10.9 

 

Samples subjected to high-throughput bacterial 16S rRNA sequencing   

Sex S+ S+pre-treatment S+post-treatment S- All 

Male 12 9 9 5 26 
Female 8 4 4 6 18 
Overall 20 13 13 11 44 

S-10* Negative Untreated Verona Veneto 73 Male 

S-11* Negative Untreated Verona Veneto 58 Male 
S+post-
treatment01* Negative Treated Brescia Lombardia 82 Male 

S+post-treatment02 Negative Treated Verona Veneto 81 Male 
S+post-
treatment03* Negative Treated Novara Piemonte 68 Male 

S+post-treatment04 Negative Treated Verona Veneto 83 Male 
S+post-
treatment05* Negative Treated Bologna Emilia 60 Female 
S+post-
treatment06* Negative Treated Brescia Lombardia 84 Female 

S+post-treatment07 Negative Treated Verona Veneto 75 Male 

S+post-treatment08 Negative Treated Verona Veneto 81 Male 

S+post-treatment09 Negative Treated Verona Veneto 69 Male 

S+post-treatment10 Negative Treated Verona Veneto 84 Male 
S+post-
treatment11* Negative Treated Verona Veneto 80 Male 
S+post-
treatment12* Negative Treated Brescia Lombardia 80 Female 
S+post-
treatment13* Negative Treated Verona Veneto 60 Female 

S+ Samples from individuals infected with Strongyloides stercoralis 

S+pre-treatment 
Samples from individuals infected with Strongyloides stercoralis for which samples 
post-anthelmitic treatment were also made available (i.e. S+pre-treatment) 

S+post-treatment 
Samples from individuals infected with Strongyloides stercoralis 6 months post-
anthelmintic treatment 

S- 
Samples from uninfected individuals within the same geographical region and age 
group 

* 
Samples included in metabolomic analyses via nuclear magnetic resonance and gas 
chromatography-mass spectrometry 
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Region Veneto Lombardia Piemonte Emilia All 

S+ 15 3 1 1 20 
S+pre-treatment 8 3 1 1 13 
S+post-treatment 8 3 1 1 13 
S- 11 0 0 0 11 
Overall 34 6 2 2 44 

 

Samples subjected to metabolomic analyses     

Sex S+ 
S+pre-
treatment 

S+post-
treatment S- All 

Male 7 4 3 4 14 
Female 7 4 4 6 17 
Overall 14 8 7 10 31 

        

Region Veneto Lombardia Piemonte Emilia All 

S+ 9 3 1 1 14 
S+pre-
treatment 3 3 1 1 8 
S+post-
treatment 2 3 1 1 7 
S- 10 0 0 0 10 
Overall 21 6 2 2 31 
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Supplementary Fig. S1 Faecal samples were collected from Strongyloides stercoralis infected and 

uninfected subjects (S+ and S-, respectively) and of the subset of S+ subjects that had received 

anthelmintic treatment and were re-sampled 6-months post-ivermectin administration (S+post-treatment).  



 172 

 

Supplementary Fig. S2 Rarefaction curves for microbial communities in faecal samples from 

Strongyloides stercoralis-infected and uninfected subjects (S+ and S-, respectively; a), as well as from 

the subset of S+ subjects that had received anthelmintic treatment, both prior to (S+pre-treatment) and 6 

months post-ivermectin administration (S+post-treatment ;b). 

 

 

 

Supplementary Fig. S3 KRONA plot indicating taxonomic distribution of taxa associated with 

samples from subjects infected with Strongyloides stercoralis prior to (S+pre-treatment) and 6 months 

post-ivermectin administration (S+post-treatment). The pathogenic bacterial genus Shigella is highlighted 

by a red box.  
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Supplementary Fig. S4 Boxplot representation of differentially abundant metabolites detected in 

faecal samples from subjects infected with Strongyloides stercoralis prior to (S+pre-treatment) and 6 

months post-ivermectin administration (S+post-treatment), as well as uninfected controls. The bold and 

black horizontal lines in the boxplots refer to the mean of percentage abundance of metabolite 

associated with the corresponding group, with top and bottom whiskers representing the standard 

deviation. 
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Supplementary Fig. S5 Area plot indicating the abundance (expressed as percentage) of metabolites 

detected by nuclear magnetic resonance analysis (NMR) in faecal samples from S. stercoralis-

infected and uninfected subjects (S+ in red, and S- in purple), as well as from the subset of S+ 

subjects that had received anthelmintic treatment, both prior to (S+pre-treatment, sample label in red) and 

6 months post-ivermectin administration (S+post-treatment, in orange). Colours within the area plot refer 

to the respective metabolites, defined in the legend.  
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Supplementary Fig. S1 Microbial beta diversity of subjects infected with Necator americanus (N+) or 

placebo treated (PBO). (A) Differences in gut microbial beta diversity of N+ and  

PBO subjects one week prior to infection/placebo treatment (T-0.25; left), one, five, and nine months 

post-infection (T1, T5, and T9 combined; centre), and 2 months post-anthelmintic treatment (T12; 

right). (B) Differences in microbial beta diversity of N+ (left) and PBO (right) subjects across all time 

points. 

 

 
Supplementary Fig. S2 Differentially abundant bacterial taxa in the faecal microbiota of subjects 

infected with Necator americanus (N+) or placebo treated (PBO) subjects one (T1), five (T5), and 

nine (T9) months post-infection, based on Linear discriminant analysis Effect Size (LEfSe) analysis. 

Colours correspond to Linear Discriminant Analysis (LDA) scores of 4 or higher (N+ = red; PBO = 

dark blue), 3.5 to 4 (N+ = orange; PBO = light blue), and 3 to 3.5 (N+ = yellow; PBO = grey). 
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Chapter 5 

 

 
Supplementary Fig. S1 Rarefaction curves for gut microbial communities from luminal contents of 

mice infected with Schistosoma mansoni (S+) and that of uninfected control mice (S-).  
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Supplementary Fig. S2 Canonical Correspondence Analyses (CCA) Biplot, demonstrating the portion 

of variability in the data attributable to the explanatory variables. The gut microbial profiles of 

luminal content samples from the small and large intestine of mice infected by Schistosoma 

mansoni (S+) at 28 and 50 days post-infection (D28 and D50, respectively), as well as of uninfected 

controls (S-) ordinated by Canonical Correspondence Analysis (CCA) (a: small intestine; b: large 

intestine). 

 


