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Abstract 

Toxicity testing of chemicals is currently undergoing its largest ever paradigm shift, moving 

towards faster, cheaper and more human-relevant methods which focus on mechanistic 

understanding. An AOP provides a framework for organising biological knowledge and data. The 

gateway to an AOP is the MIE, and chemistry is key to predicting which chemicals can undergo a 

MIE. In silico predictions of MIEs are a vital tool in a modern, mechanism-focused approach to 

risk assessment of chemicals.  

In this project, new structural alert-based models for receptor binding MIEs have been 

constructed that create accurate, transparent and interpretable predictions. The alerts have been 

constructed with an automated workflow that uses Bayesian statistics to iteratively select 

substructures associated with activity. The models were constructed from balanced data sets 

taken from human in vitro assays in the ChEMBL and ToxCast databases. The new models 

significantly improve on previous models, with performance metrics comparable to random 

forest models. Methods for further improving structural alert models are presented, including a 

method for generalising aromatic atoms in structural alerts to reduce the number of alerts in a 

model, and construction of a consensus model combining structural alerts with a random forest 

model. Structural alert models have been constructed for a wide range of biological targets of 

toxicological interest and the variation in performance across all targets has been explained by 

considering the proportion of activity cliffs in data sets. 

Having significantly improved structural alert models in terms of performance, new methods for 

assessing confidence in both active and inactive predictions have been developed. These involve 

considering similarity to relevant chemicals in the training set. The measure of confidence in 

active predictions allows for applicability of predictions to be evaluated, whilst the measure of 

confidence in inactive predictions is vital in risk assessment of chemicals.   

Moving beyond structural alerts, attempts to describe chemicals in terms of the key interactions 

made with the biological target have been made. This a step towards describing how the receptor 

binding MIEs work and then using this knowledge to make better activity predictions. The 

generalised aromatic structural alerts have been used to predict key receptor binding 

interactions, which are consistent with interactions derived from crystal structures. Using 

structural alerts to group chemicals, pharmacophore models have been developed, allowing for 

activity predictions in terms of general features in three-dimensional space instead of the specific 

combination of atoms and bonds described by structural alerts.  
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Nomenclature 

Abbreviations 

2D  Two-dimensional 

3D Three-dimensional 
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ADME Absorption, distribution, metabolism and excretion 
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DC Dendritic cell 
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GPCR G protein-coupled receptors  
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HBD Hydrogen bond donor 
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Kd Receptor/ligand dissociation constant  
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Ki Receptor/ligand binding affinity  
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MIE Molecular initiating event  

MODI Modelability index  
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MoSS Molecular Substructure miner  

MTP  mitochondrial permeability transition 

NAPQI N-acetyl-p-benzoquinone imine  

NECA 5'-N-Ethylcarboxamidoadenosine  

NET Norepinephrine transporter  

NPV Negative predictive value  

OECD Organisation for Economic Co-operation and Development  

PBPK Physiologically Based Pharmacokinetic  

PPARγ Peroxisome proliferator-activated receptor gamma 
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qAOP Quantitative adverse outcome pathway  
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REACH Registration, Evaluation, Authorization and Restriction of Chemical 

ROS  Reactive oxygen species 

SAR Structure-activity relationship  

SE Sensitivity  

SMARTS Simplified molecular-input line-entry system arbitrary target specification 

SMILES  Simplified molecular-input line-entry system 

SP Specificity  

SR Stepwise regression  

TN True negative 

ToxCast The Toxicity Forecaster 

TP True positive 

V1AR Vasopressin V1a receptor   
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1. Introduction 

1. Introduction 

1.1. Toxicity Testing 

Risk assessment of chemicals is essential in ensuring the safety of every person in daily life. 

Whether it be medicines, food and drink additives, shampoos, skin creams or any other 

consumable, consumers expect there to be no toxic effects, or at most limited toxic effects. 

Toxicity testing is currently undergoing its largest ever paradigm shift and, at its core, chemistry 

has a vital role.1 

Historically, toxicity testing has been centred on animal testing. These methods had limited 

mechanistic understanding, focusing instead on apical endpoints, often elicited by exposing 

organisms to concentrations of chemicals much larger than commercial concentrations for 

humans. In terms of processes such as metabolic pathways and rates, protein binding, body 

temperature, amongst many other things, the biology of animals does not match the biology of 

humans. Hence, results of toxicity tests in animals often are not matched by results in humans.2 

For example, penicillin is toxic to guinea pigs, and coffee, chocolate and avocados are toxic to dogs. 

Previous studies have found differing but low values for the overall concordance of human and 

animal hepatotoxicity (40%3, 55%4 and 77%5). In addition to the unreliability of animal testing, 

the methods are time consuming and expensive. Consequently, there has been a strong impetus 

to move towards faster, cheaper and more human-relevant methods of risk assessment which 

focus on mechanistic understanding. 

Problems with historic risk assessment methods have been compounded by recent regulation 

changes. The European Union’s Registration, Evaluation, Authorization and Restriction of 

Chemical substances (REACH) program6 came into full force in 2018, requiring companies to 

register all chemical substances produced or imported in the EU in quantities of greater than one 

tonne per annum, and identify any toxicological concerns of the chemicals. Combined with the 

lack of characterisation of the toxicity profile of many chemicals already in the environment, these 

changes have led to a large number of chemicals needing to be tested. Whilst the primary drive 

for change in toxicity testing has been due to a desire for better scientific methods, regulation 

changes have increased pressure on risk assessors. 

 

  



2 

1. Introduction 

1.2. Adverse Outcome Pathways and Molecular Initiating Events 

In 2007, the American National Research Council published a vision of a new toxicity testing 

strategy that relies on understanding toxicity pathways – sequences of biological responses that 

can lead to adverse health effects.7 Advances in systems biology8 and in -omics technologies9,10,11 

have allowed for greater understanding of biological processes, paving the way for a more 

mechanistic approach to toxicity testing. 

In 2010, Ankley et al proposed the concept of the adverse outcome pathway (AOP).12 An AOP is a 

sequence of events from the exposure of an individual to a chemical through to an understanding 

of the adverse effect (AE) at the individual or population level.13 It is a flexible framework made 

of two types of components: 

• Key events (KEs) – measurable changes in biological systems. 

• Key event relationships (KERs) – the links between key events. There is much flexibility 

for what can be considered a KER. They can be causal, mechanistic, inferential or 

correlation based, and can be based on in vitro, in vivo, or in silico data.12 

AOPs provide a logical framework for organising data in a mechanistic way, with data ranging in 

biological scale from molecular interactions up to population responses. It can be used to make 

links between key biological events, and to identify gaps in data.  

The AOP framework is outlined in Figure 1.1. Despite often being presented as a linear, 

unidirectional sequence of steps, AOPs may be more complex, non-linear and branched. For 

example, there may be positive or negative feedback loops, counter-regulations or modulatory 

events.14 
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1. Introduction 

The first key event in an AOP is the molecular initiating event (MIE), defined as the initial 

interaction between a molecule and a biomolecule or biosystem that can be causally linked to an 

outcome via a pathway.15 In theory, knowing the MIEs of a single chemical tells us all AEs of the 

chemical (if all AOPs for the MIEs are known). In this way, understanding MIEs could be key to 

understanding the potential toxic effects of a chemical.  

The MIE can be seen as the gateway to the AOP. In a large enough dose, chemicals that undergo 

the MIE cause an AE through an AOP. The AOP is chemically agnostic. That is, the steps from MIE 

to AE should not be specific to any one chemical. Hence, predicting which chemicals undergo a 

MIE is key to predicting which chemicals can cause toxicity, and chemistry is key to predicting 

which chemicals will undergo a MIE.16 Understanding what structures and chemical features are 

required to undergo a MIE allows for informed and accurate predictions to be made regarding 

the MIE.  

There are other considerations in addition to the AOP that are required to fill in the full picture 

starting at chemical exposure and ending in toxicity. The series of steps can be broken down into 

the steps: 

1. Chemical exposure – How much of the chemical is a person exposed to and what part of 

the body is exposed? 

2. Absorption, distribution, metabolism and excretion (ADME) – After exposure to a 

chemical, what free concentration of chemical reaches the target site? 

3. MIE – which chemicals undergo the MIE? 

4. AOP(s) 

5. Adverse effect 

Chemistry has an important role in developing understanding at every step1, as do in silico tools.17 
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1. Introduction 

1.2.1. Absorption, distribution, metabolism and excretion 

Prior to the MIE, an understanding is required of how a chemical can reach the target site, and in 

what concentration. Physiologically Based Pharmacokinetic (PBPK) models are in silico tools 

which attempt to simplify the many complex processes in the ADME of a chemical.18 They consist 

of different compartments, akin to body tissues, connected by a circulating blood flow. By solving 

differential equations between compartments, a sophisticated estimate of free concentration of a 

chemical at a target can be calculated. 

For some toxic drugs, toxicity is not caused by the chemical itself but by a reactive metabolite. 

This is particularly common in drugs causing hepatotoxicity as the liver is the main site of 

metabolism in the body.19 Paracetamol is the most well-known example of such a drug. A small 

proportion of paracetamol is metabolised in the liver to N-acetyl-p-benzoquinone imine (NAPQI), 

which can cause liver injury via a number of MIEs, as shown in Figure 1.2. 

Reliably predicting the toxicity of reactive metabolites of a chemical is difficult. First, one must 

predict the likely sites of metabolism in the initial chemical and which metabolites are likely to 

form, for which numerous in silico tools are available, such as Metaprint2D20 and Lhasa’s Meteor 

21. Kirchmair et al have extensively reviewed in silico tools for identifying sites of metabolism and 

likely metabolite products.22, Having predicted which metabolites may form, one must then 

predict if any are likely to undergo any MIEs. 
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1. Introduction 

1.2.2. AOP networks and quantitative AOPs 

An AOP was originally defined by the Organisation for Economic Co-operation and Development 

(OECD) to link a single MIE to a single AE. In a reality, biology is more complex. A single MIE may 

lead to more than one AE through multiple AOPs. A single chemical may undergo more than one 

MIE which, via different AOPs, lead to the same AE (as seen for NAPQI in Figure 1.2). To convey 

the true complexity of living systems and in vivo models, a network of AOPs is required.23,24  

Having identified a chemical which undergoes a MIE, an AOP provides a qualitative, chemically-

agnostic link to an AE. However, activity at the MIE may not necessarily lead to the AE. For 

example, there may be compensatory or adaptive mechanisms designed to stop KEs in the AOP 

from happening. This results in thresholds that need to be overcome for the AE to be observed. 

The dose of the chemical must be large enough to result in the thresholds being overcome. 

Accounting for these phenomena requires a quantitative understanding of KERs, although the 

quantitative understanding does not necessarily have to be between adjacent KEs.  

Early attempts to build quantitative AOPs (qAOPs) have been made for skin sensitisation25, the 

AOP for which is shown in Figure 1.3. A qAOP has been built linking the MIE of aromatase 

inhibition to declining population trajectory in fathead minnows.26 Even for relatively simple 

AOPs which, in this context, are not complicated by AOP networks, development of qAOPs 

currently requires significant investment of resources. In the future, as the AOP concept becomes 

more established and more mechanistic data and models at KE levels become available, qAOPs 

will become increasingly feasible and important.  

Even without quantitative relationships, the AOP framework provides a robust way to organise 

mechanistic data, which can be used to guide risk assessment in a scientifically-sound, pragmatic 

way. In silico models can cheaply and quickly predict the activity of chemicals at a MIE linked to 

AEs through AOPs. These predictions can guide risk assessors in picking a select group of 

chemicals for further testing, reducing the time and resources required. 
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1. Introduction 

1.3. (Quantitative) Structural Activity Relationships 

Structure-activity relationship (SAR) models attempt to create an association between some form 

of biological activity of chemicals and some chemical descriptors. The purpose of SARs is to 

qualitatively predict chemicals which will be biological active, whilst quantitative structure-

activity relationship (QSAR) models make quantitative predictions of biological activity. 

The chemical descriptors in the (Q)SAR could be physicochemical properties (such as molecular 

weight or lipophilicity), common two-dimensional chemical structures (structural alerts) or 

three-dimensional structures. Generally, SARs try to identify structures which cause biological 

activity. QSARs try to identify a relationship between biological activity and a quantity associated 

with the molecule – this could be physicochemical properties or a numerical representation of 

the structure of the molecule. 

OECD’s guidelines for (Q)SAR construction27 suggest five key principles which should be followed 

to help (Q)SARs gain acceptance in regulatory use: 

1. A defined endpoint 

2. An unambiguous algorithm 

3. A defined domain of applicability 

4. Appropriate measures of goodness-of-fit, robustness and predictivity 

5. A mechanistic interpretation, if possible 

Historic applications of (Q)SAR models have focused on predicting apical organism-level 

endpoints. Biological activity at such endpoints is often due to multiple mechanisms and MIEs, 

complicating model building. An exception to this is skin sensitisation28 – an apical endpoint but 

with a well-defined AOP. Outliers in QSAR models are often chemicals which act through a 

different mechanism to other chemicals.29 By constructing (Q)SARs for MIEs, the models are being 

built for a single mechanism or chemical interaction. Such (Q)SARs are founded in mechanistic 

understanding without the need to extrapolating over many biological steps to predict an apical 

endpoint. Thus, MIE-based (Q)SARs are easier to interpret mechanistically than (Q)SARs built for 

apical end points. 
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1.3.1. Constructing (Q)SARs 

To construct (Q)SARs, a training set of compounds and their biological activity data are collected. 

Available MIE data includes the half maximal effective concentration (EC50), the half maximal 

inhibitory concentration (IC50), the receptor/ligand dissociation constant (Kd), and the 

receptor/ligand binding affinity (Ki). A training set is used to create rules for predicting toxicity. 

A test set of compounds with known biological activity is then used to assess and justify the rules. 

Results from the test sets could be used to design updates and changes to the (Q)SARs, leading to 

a cycle of model improvement, shown in Figure 1.4. The (Q)SARs can be used to make predictions 

for compounds outside of the training sets for which there is no biological activity data.  

 

Figure 1.4: A wet/dry cycle for the generation and development of in silico models. Figure adapted 

from Gutsell and Russell (2013).1 
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1.3.2. Machine learning in SARs 

Machine learning algorithms have been applied to create SAR models, which are generally high-

performing. A wealth of physiochemical properties (such as molecular weight, logP, number of 

rings, number of hydrogen bond donors, etc.) can be generated in silico and complex statistical 

algorithms can identify the importance of the descriptors or combinations of descriptors. From 

this, predictions of biological activity are made.  

Algorithms that have been applied to (Q)SAR modelling include Random Forest,30,31 Support 

Vector Machines,32,33 K Nearest Neighbors,34,35 and Neural Networks.36,37 Neural networks and, 

more specifically, deep learning have had success in SAR modelling. In the recent Tox21 Data 

Challenge, the top performing and prizewinning model used a deep learning algorithm with 

physicochemical properties and fingerprint bit strings as chemicals descriptors.37  

While the models often perform very well, they lack mechanistic transparency. They are often 

viewed as “black box” processes, producing accurate predictions, but in a way that is not easy to 

interpret. Being able to interpret to predictions is particularly important in toxicity testing. As 

well as knowing that a chemical has been predicted to be biologically active, risk assessors will 

want to know why it has been predicted to be active.  

Random Forest models are often viewed as being the most interpretable of these machine 

learning methods. They allow identification of descriptors that were most important in predicting 

classifications can be identified,38 giving some indication of how predictions have been made. 

 

Random Forest models 

Random Forest models consist of many individual decision trees. Each individual tree predicts 

the activity of a chemical and the most popular prediction becomes the model’s overall prediction. 

The premise is that prediction by committee should be more accurate than the prediction by any 

individual tree. 

A key requirement of this approach is that the individual decision trees are uncorrelated. This 

should ensure that the overall committee decision is protected from the error of an individual 

tree. In a Random Forest model, each decision tree is constructed from a random subset of 

features and by taking a random sample of chemicals from the training set (with replacement). 

At each branch in the decision tree, a rule regarding one feature is chosen that splits the most 

active and inactive chemicals within the sample into two different branches, as determined by 

information gain defined by Shannon entropy.39 The branches in the decision tree grow until no 

further information can be gained or until a maximum tree depth is reached. This process is then 
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repeated many times, with a new random sample of chemicals and random subset of features 

each time.  

The interpretability of Random Forest models is a key advantage compared to other classical 

machine learning approaches. The relative importance of features can be identified by computing 

how much each feature contributes to information gain at each branch in a decision tree and 

averaging across all trees in the Random Forest.  

Random Forest models have previously been applied to (Q)SAR modelling and biological activity 

predictions. Of particular relevance to this work, in 2018 Mervin et al. used Random Forest 

algorithms to construct SAR models for 332 protein targets including G protein-coupled receptors 

(GPCRs), ion channels, enzymes, transporters, and nuclear receptors, taking data from the 

Chemistry Connect repository.40,41 Morgan fingerprint were used as inputs for the Random Forest 

models.  
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1.3.3. Structural alerts in SARs 

Structural alerts are 2D chemical structures used as chemical descriptors in SAR models. 

Presence of a structural alert within a chemical generally leads to an active prediction.  

Structural alerts have been widely used in SARs predicting reactivity-driven MIEs such as skin 

sensitisation and DNA mutagenicity. In these MIEs, electrophilic compounds covalently bond to 

skin cell proteins (skin sensitisation) or to DNA (DNA mutagenicity). Structural alerts have been 

constructed to identify chemical structures which are electrophilic, or which are commonly 

metabolised to form electrophilic groups. SARs exist for both these MIEs within Lhasa’s Derek 

software, a knowledge-based expert system.42 Structural alerts within such systems are written 

by humans using knowledge of chemical mechanisms. Alerts have clear explanations, mechanistic 

reasoning, and literature references where possible. 

Structural alerts have also been used in SARs for receptor binding MIEs.43,44 In such MIEs, 

chemicals bind to specific enzyme active sites or receptor binding sites. Interactions are through 

hydrogen bond formation, hydrophobic interactions, and electrostatic interactions in specific 3D 

geometries. There are specific steric requirements to fit in the active sites or binding sites. The 

structural alerts typically define the chemical cores of the binding chemicals, defining a specific 

scaffold which meets the specific steric requirements. However, there are some limitations to 

using structural alerts for receptor binding MIEs. Structural alerts do not define requirements 

outside of the chemical core, meaning they may miss some demands of the chemical required for 

activity. They are 2D requirements of 3D chemicals, so are simplifications that may miss details 

that only become apparent when considering different 3D conformations. The applicability of 

structural alerts for receptor binding is often limited, only applying to chemicals with a specific 

arrangement of atoms in the chemical core. 

The main advantage of structural alerts, both for reactivity-driven and receptor binding MIEs, is 

that they are mechanistically transparent. Predictions made by structural alerts are easy to 

interpret. They are computationally simple, particularly as computationally expensive 3D 

conformation generation is not required for chemicals being tested, allowing for quick processing 

of many chemicals. 

Structural alerts have been combined with MIEs and AOPs to make mechanistically sound 

predictions for other key toxicological end points. Nelms et al have constructed structural alerts 

for mitochondrial toxicity, finding substructures common to toxicants and assigning MIEs to the 

alert.45 Mellor et al have created structural alerts for nuclear receptors,46 and have developed 

AOPs with binding at the receptors being MIEs leading to the AE of liver steatosis.47 
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The OECD QSAR toolbox48 provides numerous in-silico predictive tools which link chemical 

characteristics to a potential toxic mechanism or MIE, such as mutagenicity. The toolbox includes 

structural alerts, for some of which an “alert performance” functionality has recently been 

added.49 This provides information from other chemicals which act through the same MIE by the 

same chemical mechanism to allow for evaluation of the alert-based predictions.  
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1.3.4. Pharmacophore models 

Pharmacophores are a form of (Q)SAR modelling for predicting receptor binding MIEs. They are 

defined by IUPAC50 as “an ensemble of steric and electronic features that is necessary to ensure 

the optimal supramolecular interactions with a specific biological target and to trigger (or block) 

its biological response”. Rather than identification of specific substructures like in structural 

alerts, pharmacophores identify combinations of general features in 3D space. These features 

include hydrogen bond donors or acceptors, ionisable or charged groups, hydrophobic or 

hydrophilic groups, and aromatic rings. There are two types of pharmacophore model generation: 

structure-based and ligand-based.  

Structure-based pharmacophore models are generated by looking at the receptor binding site 

and identifying key interactions. This is usually done by observing a crystal structure with a 

ligand bound to the receptor. The model generated may be specific to the ligand used to generate 

the crystal structure and the X-ray structure may represent a “tensed” conformation of the ligand 

due to the crystal packing forces.51 These factors may lead to structure-based pharmacophores 

not accurately predict activity of other ligands. 

Tskovska et al have using structure-based methods to construct a pharmacophore model of 

PPARγ,51 shown in Figure 1.5. This is one of the receptors for which Mellor et al have developed 

AOPs leading to liver steatosis.47 
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Figure 1.5: Tskovska’s pharmacophore model of PPARγ. The pharmacophore model identifies the 3D 

conformation of required features for binding, in terms of hydrogen bond acceptor (light blue), 

hydrogen donor and acceptor (dark blue), and hydrophobic and aromatic features (orange). Three 

full agonists are shown: rosiglitazone with carbon atoms in magenta, another compound with 

carbon atoms in green, and a third compound with carbon atoms in grey. Image from Tsakovska 

(2014).51 

 

Ligand-based pharmacophore models are generated by superimposing 3D conformations of 

active chemicals and identifying regions where common features overlap. This approach is often 

computationally expensive and complicated, requiring extensive conformation generation, 

overlaying of the possible conformations, and determination of which overlapping features are 

best for the model. Many in silico tools for automating the ligand-based pharmacophore 

generation process have been designed and are commercially available.52 Even with the 

availability of automated tools, the user must first carefully select ligands which elicit activity 

through the same binding mode. There is however no guarantee that the overlapping 

conformations of ligands will match the required conformation of the ligands when binding to the 

receptor in biological systems. 

  



17 

1. Introduction 

1.3.5. Complementary Models in SARs 

The International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH) is a leading international group in establishing guidelines 

for toxicity testing. In 2014, the ICH published the M7 guideline for assessment of potentially 

mutagenetic impurities.53 It is significant as it recognises the potential to accept in silico 

predictions in a field of toxicity instead of in vitro studies. The guidelines states that two different 

(Q)SARs methods that complement each other should be used. One method should be expert rule-

based, such as knowledge-derived structural alerts, and the other should be statistical-based, 

such as machine learning approaches. Inactive predictions from both methods is sufficient 

evidence to accept an impurity as being of no mutagenic concern without further testing. Barber 

et al have further discussed how complimentary in silico predictions can be used together, beyond 

agreeing on negative predictions.54 

This landmark guideline establishes the potential of in silico predictions to replace in vitro studies 

in mutagenicity. As (Q)SAR models for other MIEs are developed and as confidence increases in 

their predictions, other fields of toxicity will accept similar use of in silico predictions. In silico 

predictions also have applications in toxicity screening, chemical prioritisation, and early stage 

drug studies. 

The ICH M7 guideline also highlights the potential of, and need for, complementary models. For 

example, structural alert models could be used in combination with machine learning models. 

Development and improvement of high performing structural alert models for MIEs (beyond 

mutagenicity) is therefore vital. The impact of these models can be greatly increased by applying 

them with complementary approaches. A combination approach will increase confidence of in 

silico predictions, which at the very least can be used to guide further in vitro tests, and at most 

can replace in vitro and in vivo studies.  
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1.4. Biological Data 

1.4.1. Bowes Targets 

Bowes et al identified 44 biological targets in 2012.55 Screening a chemical for activity at these 

targets provides a minimum standard for a broad early assessment of potential toxicity. They 

were identified by four major pharmaceutical companies (AstraZeneca, GlaxoSmithKline, 

Novartis and Pfizer) as targets that are tested in at least three of the four companies. The targets 

cover a wide range of biological functionality, comprising of G protein-coupled receptors (GPCRs), 

ion channels, enzymes, transporters, and nuclear receptors. The targets are shown in Table 1.1. 

The Bowes targets have been identified as being pharmacologically important, often leading to 

the failure of new drug candidates in clinical trials. They are also important in assessing the safety 

of consumer goods as activity may lead to systemic toxicity. 

The Bowes targets are key MIEs in risk assessment. Constructing SARs for these MIEs is vital in 

assessing the potential toxicity of chemicals. As important targets, a large amount of data is 

available for most of the Bowes targets, from which good SARs can be constructed.   

However, the Bowes targets represent only a minimum for assessing toxicity of chemicals. Whilst 

focusing on the Bowes targets is a pragmatic approach for early risk assessment, other biological 

targets are important. Constructing SARs for other biological targets will provide a more 

complete assessment of potential toxicity.    
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Table 1.1: A list of the biological targets identified by Bowes et al (2012) as recommended targets to 

be screened for to provide an early assessment of the potential hazard of a chemical. (GPCR = G 

protein-coupled receptor).   

Bowes Target Gene Symbol Protein type
Acetylcholine receptor subunit α1 or α4 CHRNA4 Ion channel

Acetylcholinesterase ACHE Enzyme

Adenosine A2a receptor ADORA2A GPCR

Alpha-1a adrenergic receptor ADRA1A GPCR

Alpha-2a adrenergic receptor ADRA2A GPCR

Androgen receptor AR Nuclear receptor

Beta-1 adrenergic receptor ADRB1 GPCR

Beta-2 adrenergic receptor ADRB2 GPCR

Cannabinoid CB1 receptor CNR1 GPCR

Cannabinoid CB2 receptor CNR2 GPCR

Cholecystokinin A receptor CCKAR GPCR

Cyclooxygenase-1 PTGS1 Enzyme

Cyclooxygenase-2 PTGS2 Enzyme

Delta opioid receptor OPRD1 GPCR

Dopamine D1 receptor DRD1 GPCR

Dopamine D2 receptor DRD2 GPCR

Dopamine transporter SLC6A3 Transporter

Endothelin receptor ET-A EDNRA GPCR

GABAA receptor α1 (rat cortex) BZD site GABRA1 Ion channel

Glucocorticoid receptor NR3C1 Nuclear receptor

Glutamate (NMDA) receptor subunit zeta 1 GRIN1 Ion channel

Histamine H1 receptor HRH1 GPCR

Histamine H2 receptor HRH2 GPCR

Kappa opioid receptor OPRK1 GPCR

Monoamine oxidase A MAOA Enzyme

Mu opioid receptor OPRM1 GPCR

Muscarinic acetylcholine receptor M1 CHRM1 GPCR

Muscarinic acetylcholine receptor M2 CHRM2 GPCR

Muscarinic acetylcholine receptor M3 CHRM3 GPCR

Norepinephrine transporter SLC6A2 Transporter

Phosphodiesterase 3A PDE3A Ion channel

Phosphodiesterase 4D PDE4D Ion channel

Potassium voltage-gated channel subfamily H member 2 (HERG) KCNH2 Ion channel

Serotonin 1a (5-HT1a) receptor HTR1A GPCR

Serotonin 1b (5-HT1b) receptor HTR1B GPCR

Serotonin 2a (5-HT2a) receptor HTR2A GPCR

Serotonin 2b (5-HT2b) receptor HTR2B GPCR

Serotonin 3a (5-HT3a) receptor HTR3A Ion channel

Serotonin transporter SLC6A4 Transporter

Sodium channel protein type V alpha subunit SCN5A Ion Channel

Tyrosine-protein kinase LCK LCK Ion Channel

Vasopressin V1a receptor AVPR1A GPCR

Voltage-gated calcium channel subunit α Cav1.2 CACNA1C Ion channel

Voltage-gated potassium channel subunit Kv7.1 KCNQ1 Ion channel
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1.4.2. Biological Relevance 

Predictions of the MIEs can be directly linked to AEs via AOPs. The AOP wiki,56 part of the OECD’s 

AOP Knowledge Bases, is the largest online library of AOPs, collected by crowd-sourcing 

knowledge. Users can submit AOPs at various levels of development. There are 39 AOPs either 

completed or under construction on AOP wiki with Bowes targets as MIEs. These are for: 

• Serotonin transporter (2) 

• Acetylcholinesterase (2) 

• Androgen receptor (4) 

• Beta-2 adrenergic receptor (1) 

• Gamma-aminobutyric acid receptor (2) 

• Glucocorticoid receptor (2) 

• Glutamate receptor (1) 

• Histamine H2 receptor (1) 

• Mu-type opioid receptor (2) 

• Ether-a-go-go-related gene potassium channel (1) 

• Cyclooxygenase-1 (7) 

• Sodium channel (5) 

• Serotonin transporter (6) 

• Voltage-dependent L-type calcium channel (3) 

These AOPs provide direct biological relevance for SAR predictions made of the Bowes MIEs, 

helping to interpret why activity at these targets can lead to toxicity. The AOP for the glutamate 

receptor taken from AOPwiki is shown in Figure 1.6. 
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1.5. Computational Methods 

1.5.1. Fingerprints and Similarity 

Molecular similarity is a vital concept in chemical informatics. Johnson and Maggiora’s similarity 

property principle states that similar compounds will have similar properties,57 with biological 

activity being the most frequently studied property. What exactly is meant by similarity between 

compounds is inherently subjective and therefore difficult to define. Despite this, there have been 

many different attempts and methods to quantify the similarity between chemicals.58 

Molecular fingerprints are representations of chemical structures which are often used in 

similarity searching. Morgan fingerprints were first developed in 1965 as a method for identifying 

cases of a isomorphisms between chemical structures – the same structure drawn or numbered 

in a different way.59 Morgan fingerprints and the closely related extended-connectivity 

fingerprints (ECFPs)60 have since been widely accepted and used in chemical informatics in 

substructure searching, clustering and similarity searching. The ECFP algorithm makes subtle 

changes to the Morgan algorithm that make it more computationally efficient, but otherwise the 

methods use the same ideas and steps. Both create bit strings where each bit represents presence 

of circular substructures. The length of the bit string and the maximum size of the circular 

substructures are defined by the user. 

The steps involved in generating Morgan fingerprints or ECFPs are: 

1. Assignment of initial atom identifiers. Various properties of the atom, including atom 

number and connectivity count, are hashed into a single integer atom identifier. This is 

added to an initial fingerprint set.  

 

2. Iterative creation of circular identifiers. Along with the central atom’s identifier, the 

neighbouring atoms’ identifiers are hashed into a new identifier representing a circular 

substructure, which is added to the fingerprint set. This process is iteratively repeated, 

using the circular substructure’s identifier and the neighbouring atoms’ identifiers to 

create a new identifier for a larger circular substructure, which is added to the fingerprint 

set. The iterative process repeats until the circular substructures reach a maximum size 

as defined by the user. In Morgan fingerprints, the size of the circular substructure is 

defined by the radius of the circle, while in ECFP it is defined by the diameter.  
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Figure 1.7: Circular substructures of increasing radius, all centred on the same atom. Image 

taken from ChemAxon’s ECFP Documentation61.  

 

 

Figure 1.8: A diagrammatic overview of the first two steps of the Morgan and ECFP processes. 

On the left is the chemical structure. In the middle are the circular substructures of different sizes 

present in the chemical. Each circular substructure is hashed into an identifier. Note that 

negative identifiers are possible in the ECFP algorithm but not the Morgan algorithm. Image 

taken from ChemAxon’s ECFP Documentation61. 

 

3. Removal of duplicate identifiers. Cases where multiple identifiers in the fingerprint set 

represent the same features are found and all but one identifier are removed.  

 

4. Creation of fingerprint bit string. The identifiers in the fingerprint set are hashed onto a 

bit string of length specified by the user. Any hash function that maps arrays of integers 

randomly and uniformly across the bit string may be used for this step.60 Each bit 

therefore represents presence (or absence) of a circular feature. Bit collisions occur 

where more than one feature is hashed onto the same bit. To create fingerprints that can 

be compared to each other, the same bit string length and hash function must be used. 
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Figure 1.9: Having removed duplicated identifiers, each identifier in the fingerprint set is hashed 

onto a bit string of length specified by the user. A bit collision occurs where two different identifiers 

are hashed onto the same bit. Image taken from ChemAxon’s ECFP Documentation61. 

 

The molecular access system (MACCS) fingerprint62, also known as MACCS keys, is another 

popular fingerprint used in similarity searching. The MACCS fingerprint is a 166 bit structural 

key, with each bit representing presence of a pre-specified substructure. Whereas Morgan 

fingerprints take all circular substructures present in a molecule and hash them onto a fixed-

length bit string, MACCS fingerprints only represent presence of pre-defined substructures.  

Having created bit string representations of chemicals using fingerprints, numerous methods for 

calculating similarity between the bit strings are available. The Tanimoto similarity coefficient63 

has been shown to be one of the best metrics for fingerprint-based similarity calculations.64 

For two fingerprints, fingerprint A and fingerprint B, the Tanimoto similarity coefficient is 

calculated as: 

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
  

Where |𝐴| is the number of bits present in fingerprint A, |𝐵| is the number of bits present in 

fingerprint A, |𝐴 ∩ 𝐵| is the number of bits present in both fingerprint A and fingerprint B, and 

|𝐴 ∪ 𝐵| is the number of bits present in fingerprint A or fingerprint B. 

The Tanimoto similarity coefficients ranges in values from zero for no bits in common to one for 

all bits present in one string being present in the other string. 

Despite being one of the best and most popular metrics, using the Tanimoto coefficient between 

binary fingerprints to assess similarity is not without imperfections or bias.65 This includes a 

tendency to give low similarity values to small compounds resulting in a bias towards small 

molecules when using Tanimoto similarity for diversity selection.66 
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1.5.2 KNIME 

Konstanz Information Miner (KNIME) is a free and open source software for data analytics.67 

Integrated into the KNIME library are a wide range of nodes for chemical informatics purposes. 

Molecular Substructure miner (MoSS) is a node in KNIME used for finding maximal common 

substructures between chemicals.68 MoSS uses an algorithm called Molecular Fragment miner 

(MoFa).69  

MoSS includes an option, known as “ring mining” to treat rings as fixed, indivisible units in the 

algorithm – when one bond in the ring is added to a fragment in the algorithm, the whole ring is 

added. The user can specify the size of the rings to apply this to. Ring mining greatly reduces the 

computational times required to run the program, particularly in structures with many rings such 

as steroids. It also results in aromatic rings being treated as indivisible units, so broken parts of 

aromatic rings will not be included in an outputted substructure. Including only parts of aromatic 

rings would become increasingly problematic when aromatic rings are written as Kekulé 

structures (alternating single and double bonds).  

However, ring mining can lead to inaccurate counts of occurrence of some substructures in the 

training chemicals. Within the MoSS node when ring mining is used, the occurrence counts of 

substructures containing part, but not the whole, of a ring will not include chemicals which 

contain the whole ring. If the substructure were to be used outside of the MoSS node for 

substructure searching, the chemical containing the substructure as part of a ring would be 

included as containing the substructure in the search. An example is shown in Figure 1.10.  

 

Figure 1.10: Left: an example substructure that could be found by the MoSS program. Right: a 

chemical which contains the substructure, but this would not be counted within the MoSS program 

because of ring mining. The substructure contains part of the ring, not the whole ring. Ring mining 

requires rings of a specified size to be treated as a single, indivisible unit.  

 

Overall, the advantages of using ring mining make it a necessity when finding maximum common 

substructures with MoSS. The confusion of including only fragments of aromatic rings is avoided, 

and the increased speed of the algorithm is particularly important in large data sets. However, 
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the user must be aware that the counts of occurrence for a substructure within MoSS may not be 

accurate if the substructure contains fragments of a ring. Accurate counts can be taken outside of 

the MoSS program, or the substructures should be used with the requirement that it must contain 

the entirety of ring. 
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1.6. Model Validation 

To assess and compare performance of different models, a consistent selection of performance 

statistics has been chosen and used throughout this project. These are outlined here.  

Model predictions can be split into four categories, as shown in the confusion matrix: 

 

Predicted Positive Predicted Negative 

Experimental Positive “True Positive” “False Negative” 

Experimental Negative “False Positive” “True Negative” 

 

Sensitivity (SE) is the proportion of experimentally active chemicals correctly predicted as active.  

𝑆𝐸 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Specificity (SP) is the proportion of experimentally inactive chemicals correctly predicted as 

inactive, 

𝑆𝑃 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Accuracy (ACC), is the proportion of all chemicals with predicted activity matching experimental 

activity. 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Matthews Correlation Coefficient (MCC) is a measure of quality of binary classifications. It can 

take values between -1 and +1. A value of +1 would be obtained for a model predicting every value 

correctly, a value of 0 represents a model performing as well as random predictions, and a value 

of -1 would be obtained by predicting every value incorrectly.  

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 



28 

1. Introduction 

MCC is a particularly useful measure when considering data sets with classes (e.g. actives and 

inactives) of different sizes. In these cases, other performance statistics alone can be misleading. 

Positive predictive value (PPV) is the proportion of positive predictions that are experimentally 

positive.  

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Negative predictive value (NPV) is the proportion of negative predictions that are experimentally 

negative. 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
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1.7. Previous work and automated algorithms for identification of 

structural alerts  

Knowledge-based structural alert methods, such as the commercially expert systems Lhasa’s 

Derek Nexus42 and Genetox Expert Alerts from Leadscope,70 have been used for toxicity 

predictions. However, constructing these types systems is very time consuming, requires input 

from experts, and may suffer from human bias. Automated approaches using statistics to identify 

structural alerts do not suffer from these drawbacks. There have been numerous different 

approaches to automated generation of structural alerts, each with their own strengths and 

weaknesses. 

Computer Automated Structure Evaluation (CASE) is a fragment-based approach.71 Chemicals are 

broken down into linear subunits containing between three and twelve interconnected non-

hydrogen atoms. All possible linear fragments between these sizes are derived from each 

chemical and the occurrence of each fragment in active and inactive chemicals is calculated. These 

numbers are analysed statistically. If the distribution of active and inactive chemicals is 

significantly skewed towards active chemicals, the fragment is identified as an activating 

“biophore”. If the distribution is significantly skewed towards inactive chemicals, the fragment is 

identified as non-activating. Significant skew was initially defined as a distribution that would 

have had at most a 5% chance of being observed if the occurrence was random, assuming a 

binomial distribution. Multiple Computer Automated Structure Evaluation (MultiCASE) is similar 

to CASE, using hierarchical statistical analysis.72 Where CASE uses all statistically significant 

fragments, MultiCASE uses the most statistically significant fragment at each iteration, any 

chemicals containing that fragment are removed from the training set, and the process repeated. 

For each fragment identified, other correlated fragments and physicochemical properties are 

used to create a QSAR specific to that biophore. The CASE and MultiCASE approaches are limited 

by the use of only linear subunits, meaning branching substructures are not accounted for.  

Bioalerts is an open source Python library for automatically constructing structural alerts.73 

Substructures are defined by Morgan fingerprints of increasing size. As with CASE, the occurrence 

of each substructure in the active and inactive chemicals is counted and the probability of that 

distribution occurring randomly, assuming a binomial distribution, is calculated. A substructure 

is identified as a structural alert if this probability is below a threshold (for example 5%). The use 

of Morgan fingerprints means substructures are limited to circular environments, which may not 

give optimal results. 

SARpy uses string mining to automatically construct structural alerts.74 Molecules are input as 

SMILES strings and these are fragmented to describe substructures. Substructures are evaluated 
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by likelihood ratio (as used in diagnostic testing), defined as the proportion of active chemicals 

containing the substructure divided by the proportion of inactive chemicals containing the 

substructure. A potential limit of likelihood ratio is that it returns a value of infinity for any 

fragment contained by no inactive chemicals and at least one active chemical. As a result, specific 

substructures, contained by no inactive chemicals and few active chemicals, will have large 

likelihood ratios. These overly specific alerts may not generalise well, giving poor predictions 

outside of the training set. The use of string mining limits substructures to atoms which occur 

next to each in the SMILES string, making branching difficult to account for.   

Each of these algorithms for automatic generation of structural alerts differ in two key ways: 

1. How substructures are derived. 

2. The statistical approach used to accept or reject a substructure as a structural alert. 

The approaches to derivation of substructures are not capable of dealing with branching 

substructures (fragment-based or string mining approaches) or non-circular environments 

(fingerprint-based approach). Whilst these approaches may be effective at identifying small 

substructures, such as those that are electrophilic and capable of causing DNA mutagenicity or 

skin sensitisation, they would struggle to deal with larger substructures, such as rings with 

branching features. Hence, these algorithms may not find the optimal substructures and may not 

be suitable when the optimal substructure is large or branching. 

SAR models have different requirements when used for different purposes. For example, in risk 

assessment, a false negative prediction is the most dangerous type of error and as such, a SAR 

model for risk assessment should have as high sensitivity as possible, often at the expense of 

specificity. However, in drug discovery, confidence in active predictions is most important, so a 

model should have as high specificity as possible, often at the expense of sensitivity. The statistical 

approaches used in the previously discussed methods for automatically constructing structural 

alerts do not allow for this type of flexibility.  

In this work, maximal common substructure searcher has been used to find the largest 

substructures common to chemicals in the training set. This does not limit the size or shape of the 

substructures. A statistical approach to accepting substructures as structural alerts has been used 

that is flexible, allowing the user to adjust a parameter to change the relative importance of 

number of actives and inactives in selection of substructures. 
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Prior work from within the Goodman group 

Prior to this work, Allen et al have constructed structural alerts for the Bowes targets, published 

in 2016.43 For each biological target, data was extracted from ChEMBL75. Substructures common 

to active chemicals were found using a maximal common substructure algorithm. Human 

analysis, aided by literature searches, was used to select which would be used as structural alerts. 

A small number of structural alerts were developed for each target (an average of 2.93 per target), 

but each covered many active chemicals. The ChEMBL database generally contains relatively few 

inactives for each target. For validation of the structural alerts, an assumption is made to provide 

additional inactive chemicals: for each target, chemicals present in data sets of other targets in 

the study are assumed to be inactive at the target of interest if they are not already present in that 

target’s data set. 

Concurrent to this work, Allen et al published updated structural alert-based models for the same 

targets in 2018.44 The same database and methods for extracting data were used as the previous 

study, including the same method for collecting assumed-negatives for validation. The largest 

substructure common to 2% of the training set active chemicals was found, coded as a structural 

alert and chemicals containing the chemical removed from the training set. This is iteratively 

repeated until only one chemical is contained by the largest common substructures. Different 

filters are applied to the list of generated structural alerts to create two models for different 

purposes. A model designed with the highest possible sensitivity (at the cost of specificity) for use 

in screening chemicals is created by using all alerts that are contained by at least two chemicals 

in the training set. A second model, designed to have a higher specificity and overall performance, 

for use in risk assessment is created by using alerts that are contained by at least five chemicals 

in the training set and which are contained by more active chemicals than (assumed) inactive 

chemicals in the test set. The overall process for creating these models is summarised in Figure 

1.11. 

Both the screening and risk assessment models have significantly better performance metrics 

than the previous work in terms of sensitivity (proportion of experimentally active chemicals 

correctly predicted), specificity (proportion of experimentally inactive chemicals correctly 

predicted), accuracy (proportion of all chemicals correctly predicted) and Matthews Correlation 

Coefficient (MCC). Compared to the previous work, the individual structural alerts used in the 

new approach are generally larger in size and cover far fewer active chemicals. However, a 

greater number of structural alerts are used in each target, and the combination of these alerts 

leads to a model with better overall performance. In this thesis, comparisons will be made to 

Allen’s updated models only, as these are the latest and better performing of the published 

models. New models will be compared to the “Screening” and “Risk Assessment” models. 
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1.8. Aims of the project 

The main aim of this project was to make interpretable predictions for MIEs based on chemical 

structures. In this thesis, numerous methods and ideas have been investigated to achieve this aim. 

Firstly, I aim to construct improved structural alert-based SAR models for MIEs. I hypothesise 

that combining maximum common substructure searches with a statistical approach to structural 

alert selection, considering both active and inactive chemical, will improve model performance 

statistics. These statistics will be compared to performance statistics of previous models. This can 

be found in Chapter Two. 

I aim to investigate the combination of structural alert models with a complementary model in a 

consensus approach. Where the model predictions are in agreement, there should be an 

improvement in performance statistics and an increase in confidence in predictions. This aim is 

explored in Chapter Two.  

I aim to use the transparency of structural alert models to evaluate applicability of active 

predictions. Where a new chemical contains a structural alert and is more similar to the training 

set active chemicals containing the same structural alert, the active prediction should be 

considered more applicable. Hence, a greater proportion of active predictions being true positive 

should be seen as this similarity increases. This work is also found in Chapter Two. 

In Chapter Three, I aim to expand the scope of existing models by making predictions for a wider 

range of MIEs of biological relevance to chemical risk assessment. Having constructed these 

models, I aim to explain any variation in model performance. I hypothesise biological targets with 

more data points should generally give better performing models.  

Structural alert models return inactive predictions for chemicals containing no structural alerts. 

I aim to increase confidence in these predictions of inactivity derived from structural alert-based 

SAR models. Methods for increasing confidence in inactive predictions have been applied to 

structural alerts for reactivity-driven MIEs.76 I discuss these further in Chapter Four and predict 

that applying similar methods to structural alerts for receptor binding MIEs will increase 

confidence in inactive predictions, although reactivity-driven MIEs and receptor binding MIEs are 

mechanistically different. The negative predictions identified as confident negative predictions 

should have a higher proportion of true negative chemicals than those which are not considered 

confident.  

In Chapter Five, I aim to create a method for constructing generalised aromatic structural alerts. 

I predict that these generalised alerts will reduce the number of structural alerts in each model. 

Furthermore, the generalised alerts will provide insight into the features required for receptor 
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binding and, hence, provide information regarding the mechanism of binding for each biological 

target. 

Finally, I aim to expand upon the structural alerts by using them to construct 3D pharmacophore 

models. Pharmacophore models will be constructed from chemicals grouped by structural alerts. 

I predict that this will give models that are high performing and more general, allowing for better 

predictions in new areas of chemical space.   
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2. Automated workflow for construction of 

structural alert-based structure-activity 

relationships 

2.1. Creation of New Balanced Data Sets 

ChEMBL is a publicly available, manually curated database of bioactive chemicals.75 It contains 14 

million activity values for more than 1.6 million different compounds from 1.2 million assays.77 

The data is extracted from scientific literature, deposited data sets and from other databases. The 

chemicals are mostly pharmaceuticals or of interest to drug design. For each report of activity, 

ChEMBL includes a wealth of data, including quantitative measurements of activity, what assay 

was used for the measurement, and a “confidence score”. This confidence score relates to how 

certain the assay is measuring the assigned biological target and also reflects the type of target 

assigned. For example, a confidence score of nine relates to a direct single protein target being 

assigned, a confidence score of eight relates to a homologous single protein target being assigned, 

whilst a confidence score of seven relates to assignment of a direct protein complex subunit.  

ChEMBL includes different measurements of biological activity through receptor binding, 

including: 

• The half maximal inhibitory concentration (IC50) – the concentration of inhibitor 

required to half the reaction rate of an enzyme-catalysed reaction. 

• The half maximal effective concentration (EC50) – the concentration of a compound that 

gives half-maximal response. For antagonists, this is the same as the IC50. 

• Inhibition constant (Ki) – the equilibrium constant of the dissociation of inhibitor-enzyme 

complex. 

• Dissociation constant (Kd) – the equilibrium constant of the dissociation of a ligand-

enzyme complex (not limited to inhibitors). 

These measurements therefore relate to different aspects of receptor binding. IC50 and Ki 

measure antagonism, whilst EC50 and Kd measure both agonism and antagonism. Agonists and 

antagonists cause opposite changes in biological activity but often bind at the same receptor 

binding site with binding modes that differ only slightly.78 Ki and Kd are measures of affinity – the 

capability of a ligand to bind to a receptor – whilst IC50 and EC50 are measures of efficacy – the 

change in activity of the receptor. Affinity and efficacy are not equivalent, but both measurements 

provide data regarding receptor binding. In order to create the best possible models, as much 
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data as possible was required. Following precedent,44,79 all data for these different aspects of 

receptor binding was combined in this work. A qualitative activity cut-off of 10 µM was used, as 

used in preceding work.44,79,80 This cut-off represents both highly and marginally active 

compounds. For most biological targets, ChEMBL has much more data on active chemicals than 

inactive chemicals with this cut-off. 

Previously, Allen et al43,44  have constructed models for Bowes targets55 using ChEMBL data. For 

validation of the models, additional inactive chemicals are required. An assumption is made to 

provide additional inactive chemicals: for each target, chemicals present in data sets of other 

targets in the study are assumed to be inactive at the target of interest if they are not already 

present in that target’s data set. Whilst this is a reasonable assumption, it would be preferable to 

use only data points that have been directly tested at the biological target so that no assumptions 

need to be made. 

The Toxicity Forecaster81 (ToxCast) is a program run by the Environmental Protection Agency 

(EPA). It uses high throughput screening methods to rapidly generate data for large numbers of 

chemicals, providing publicly available data for over 9 000 chemicals across 1 000 assays. Many 

of the chemicals run in the early stages of ToxCast were pesticides, insecticides or other known 

toxicants of interest. They were often run across many assays, eliciting activity at a small 

proportion of these. As a result, ToxCast has more data on inactive chemicals than active 

chemicals for most targets. 

Recent work has highlighted a phenomenon affecting ToxCast known as the cytotoxic burst 

phenomenon.82 In high throughput platforms, large numbers of assays for different targets give 

active responses when chemicals approach cytotoxic concentrations, suggesting a cytotoxic 

mechanism affects the entire cell, as opposed to the chemical activating each target individually. 

This leads to false reports of experimental activity at the biological targets, and one should be 

aware of this when analysing ToxCast data. However, the cytotoxic burst has not been directly 

accounted for in this work and instead has been treated as experimental error associated with 

ToxCast data. 

In this section, new data sets have been made by combining data from ChEMBL with data from 

ToxCast. The new data sets have balanced numbers of active and inactive datapoints.  



37 

2. Automated workflow for construction of structural alert-based structure-activity relationships 

2.1.1. Method 

For each target, bioactivity data for Homo sapiens was downloaded from ChEMBL (data extracted 

April 2018). Activity reports were filtered to remove any with a confidence score of less than 

eight, meaning that it comes from assays which assign the single protein target directly or through 

a homologous single protein target. Hence, all data comes from human in vitro assays.  

Only activities reported with “Standard Units” of nM were kept, leaving reports of EC50, IC50, Ki 

and Kd. RDKit83 Salt Stripper was used to remove common salts and counter ions from chemicals 

(e.g. chloride, bromide, sodium, magnesium, and nitrate ions, and many more). It was assumed 

these common salts are not involved in the MIE, and variation in activity when the counter ions 

are changed was due to experimental errors. All chemicals with more than 100 atoms were 

removed. The common substructure algorithm can get stuck when there are several large similar 

molecules, such as large proteins with repeating structures. The 100 atom threshold was found 

to remove the troublesome large chemicals whilst keeping the majority of chemicals.  

The SMILES strings were re-written to be canonical using RDKit, such that the chemical strings 

are written in a consistent way across all entries from both ChEMBL and ToxCast. 

For each chemical, mean activity was taken – values of activity that were reported as “greater 

than” a certain value were removed for these calculations. The mean of the activities was taken 

for each chemical, as to use all the data available. However, if this work is to be used in risk 

assessment in the future, the most active report for each chemical could be used to give a “worst 

case scenario” prediction. Chemicals with a mean activity of 10 000 nM or lower were assigned 

as active; those with over 10 µM were assigned as inactive. This activity cut-off is consistent with 

Allen’s 2016 and 2018 models.43,44 However, other studies have used different activity limits for 

different biological targets.84 In future, applying different activity limits in this work could be 

investigated. 

For each target, human data was downloaded from the ToxCast Dashboard (data extracted 

November 2016). Toxcast’s in-built assignment of binary activity85 was used for data from the 

ToxCast database. This involves using an algorithm to assign the best model to an activity-

concentration series, and from this, a binary activity was assigned. In the future, AC50 values 

could be extracted from ToxCast and a more transparent activity cut-off could be used.  

As with ChEMBL data, common salts and counter ions were stripped using RDKit Salt Stripper, 

chemicals with greater than 100 atoms were removed, and SMILES strings were re-written using 

RDKit. If a chemical has contrasting reports of being both active and inactive in different assays it 

was considered active.  
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Data from ChEMBL and ToxCast were combined into one data set. Where chemicals have 

contrasting activity reports between ChEMBL and ToxCast, the activity from ChEMBL was used, 

as to prioritise ChEMBL’s human run assays over ToxCast’s machine run high throughput assays. 

However, in future risk assessment work, the most active report could be used to once again give 

a “worst case scenario”.  

Initially, the holdout method was used for constructing data sets, with chemicals split randomly 

with roughly 75% forming the training set and 25% forming the test set. Later, four-fold cross-

validation was also used and the results compared to the results obtained by holdout. 
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2.1.2. New data sets for the Bowes targets 

The Bowes targets represent key MIE for toxicology predictions. Of the 44 targets, 24 have data 

from human in-vitro assays in ToxCast. These also have data in the ChEMBL database. New data 

sets have been constructed for the selection of 24 Bowes targets, and are summarised in Table 

2.1. 

Combining the data from both databases gives balanced data sets in terms of number of active 

and inactive chemicals, with ChEMBL providing most of the actives and ToxCast providing most 

of the inactives. However, ChEMBL and ToxCast generally cover different areas of chemical space, 

with ChEMBL mostly containing data for pharmaceutical chemicals and ToxCast containing 

mostly containing data for pesticides and other reactive chemicals which generally are not 

particularly structurally similar to the ChEMBL chemicals. Hence, the combined data sets could 

be viewed as having a different kind of imbalance, with the inactive chemicals largely being 

chemically dissimilar from the active chemicals. Nevertheless, combining the databases provides 

much more useful data sets for model construction than either imbalanced database individually.  

All data points in the data sets come directly from assays testing activity at the biological target. 

Unlike previous methods, no assumptions are needed to find further inactive data points, and so 

no additional uncertainty is introduced into the models constructed from the data sets.  

The new data sets contain only data from Homo sapiens in vitro assays, so models and predictions 

built from the data will be relevant to humans without the need of cross-species extrapolation, 

although in vitro to in vivo extrapolation will be required and has its own challenges.86 
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2.2. An Automated workflow for construction of structural alert-based 

structure-activity relationships 

2.2.1. Bayesian Statistics 

In Bayesian statistics, probability is a description of how certain you are that something is 

true.87,88 If you are very sure of something, new data is unlikely to change your mind. Bayesian 

statistics is a broad subject which has been applied in many different ways for many purposes. 

Madigan et al. have previously reviewed some applications of Bayesian statistics in 

pharmacology.89   

In this chapter, SAR models were constructed by iteratively selecting common substructures 

occurring in training chemicals to be coded as structural alerts. At each iteration, one could 

observe how many active and inactive chemicals contain different substructures. How could this 

be used to systematically pick the best performing structural alert?  

Simply using the ratio of occurrence in actives to occurrence in inactives, as used in SARpy,74 

would result in near-exclusive selection of substructures which occur in no inactives. For 

example, a substructure which occurred in two actives and zero inactives would be picked as a 

structural alert ahead of a substructure which occurred in 200 actives and one inactive.  

As discussed in Section 1.7, previous statistical approaches have used a significance level test with 

a single binomial distribution to identify activating or non-activating substructures. If the 

probability of randomly producing the observed distribution of active and inactive chemicals is 

sufficiently low, the substructure is identified as either activating or non-activating. This 

approach does not allow for any adjustment in relative weighting of active and inactive chemicals.  

An alternative approach is, for a given distribution of active and inactive chemicals contained by 

a substructure, to compare the probabilities of the distribution being given by two models - one 

model being biased towards active chemicals and the other model being random. The greater the 

probability given by the biased model compared to the random model, the more activating a 

substructure is. Changing how biased the biased model is changes the relative weight of active 

and inactive chemicals - the greater the bias, the more active chemicals required per inactive 

chemical. This comparison in probability from competing models can be done by calculating 

Bayes Factor in Bayesian statistics. Using Bayesian statistics for this model comparison allows for 

more flexibility in how the problem is approached. Bayesian statistics do not require the bias of 

the biased model to be fixed but allow it to be treated as unknown parameter to be fit to a 

distribution. However, if the bias model is fixed, the equation derived from Bayes statistics is 

equivalent to the Neyman-Pearson lemma in classical statistics.90 The key difference from the 
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Neyman-Pearson lemma is that the fixed model and the prior likelihood of each model occurring 

have been explicitly stated, and these can be changed later. In this work, only the effect of using 

different fixed biases will be explored. The model comparison will be set up as a Bayesian 

equation so that the bias can easily be fitted to a distribution in future. 

 

2.2.1.1. Bayes Theorem 

Bayes Theorem, when considering the appropriateness of a model, Mi, for given data, D, is written 

as 

𝑝(𝑀𝑖|𝐷) =
𝑝(𝐷|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝐷)
 

Where: 𝑝(𝑀𝑖|𝐷) is probability of model i occurring given data  

𝑝(𝐷|𝑀𝑖) is probability of data occurring for the model i 

𝑝(𝑀𝑖) is probability of the model i occurring 

𝑝(𝐷) is probability of the data occurring 

 

When a second possible model, Mj, is considered, this becomes: 

𝑝(𝑀𝑖|𝐷)

𝑝(𝑀𝑗|𝐷)
=

𝑝(𝐷|𝑀𝑖)

𝑝(𝐷|𝑀𝑗)
 
𝑝(𝑀𝑖)

𝑝(𝑀𝑗)
 

Where Bayes Factor is defined as: 

𝐵𝑎𝑦𝑒𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑝(𝐷|𝑀𝑖)

𝑝(𝐷|𝑀𝑗)
 

𝑝(𝐷|𝑀𝑖) and 𝑝(𝐷|𝑀𝑗) can be calculated, and so Bayes Factor is a value that can be calculated. 

Assuming that 𝑝(𝑀𝑖) =  𝑝(𝑀𝑗), i.e. that before any data has been considered, both models are 

equally likely to occur: 

𝑝(𝑀𝑖|𝐷)

𝑝(𝑀𝑗|𝐷)
= 𝐵𝑎𝑦𝑒𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 

Hence, the likelihood of two models occurring for given data can be compared by calculating 

Bayes Factor. Bayes Factor indicates how many times more likely one model, Mi is compared to 

another model, Mj.   
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2.2.1.2. Using Bayes Factor to pick structural alerts 

For each substructure, the given data (D) is the number of actives containing the substructure 

and number of inactives containing the substructure.  

Bayes factor is calculated, comparing between two Binomial models defined as: 

• Mbias – a model which is bias towards active predictions. Mbias predicts active with a 

probability of θ and inactive with a probability of (1 – θ), where 0.5 < θ < 1.  

• Mrandom – a model which predicts activity randomly. It predicts active with a probability of 

0.5 and inactive with a probability of 0.5  

𝐵𝑎𝑦𝑒𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑝(𝐷|𝑀𝑏𝑖𝑎𝑠)

𝑝(𝐷|𝑀𝑟𝑎𝑛𝑑𝑜𝑚)
 

𝐵𝑎𝑦𝑒𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝜃𝑎𝑐𝑡𝑖𝑣𝑒𝑠(1 − 𝜃)𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠

0.5𝑎𝑐𝑡𝑖𝑣𝑒𝑠0.5𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠
 

Where "𝑎𝑐𝑡𝑖𝑣𝑒𝑠" is the number of actives containing the substructure, and "𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠" is the 

number of inactives containing the substructure. 

The value for theta (θ) must be selected by the user and will result in different priorities when 

selecting from a list of substructures. This is explored further in later sections.  

Taking the logarithm of the previous equation made it easier to handle large values of 𝑎𝑐𝑡𝑖𝑣𝑒𝑠 

and 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠: 

log(𝐵𝑎𝑦𝑒𝑠 𝐹𝑎𝑐𝑡𝑜𝑟) = 𝑎𝑐𝑡𝑖𝑣𝑒𝑠 × log 𝜃 + 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠 × log(1 − 𝜃) − (𝑎𝑐𝑡𝑖𝑣𝑒𝑠 + 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠) log 0.5 

Simply put, Bayes Factor can be viewed as a scoring system for each substructure. The more 

actives containing a substructure, the higher the value of Bayes Factor. The more inactives 

containing a substructure, the lower the value of Bayes Factor. Adjusting the value of θ changes 

the relative scoring of active and inactive – a greater value of θ will result in greater increases in 

Bayes Factor from active chemicals and greater decreases in Bayes Factor from inactive 

chemicals.   

  



44 

2. Automated workflow for construction of structural alert-based structure-activity relationships 

2.2.2. Methods 

A training set of chemicals (in SMILES format) and binary activities was inputted into the 

workflow. The maximum common substructures occurring in at least two of the active chemicals 

were found using the MoSS node68 in KNIME.67 MoSS will only output substructures which occur 

in less than a specified percentage of the inactive chemicals. This value was a parameter which 

can be selected by the user.  

MoSS outputs the common substructures and how many times each occurs in the active and 

inactive chemicals, according to the MoSS algorithm. However, these values are slightly 

inaccurate due to ring mining used in the algorithm. Re-calculating accurate counts for all 

substructures output by MoSS would be too time consuming as often many thousands of 

substructures were output. Instead, Bayes Factor was calculated for each substructure using the 

occurrence in actives and inactives calculated by MoSS, and only the substructures with the 65 

largest values are kept. It was assumed here that the inaccuracies in the counts given by the MoSS 

algorithm were not so large that the actual best performing substructure was not in the top 65 

substructures. Accurate values for occurrence of active and inactive chemicals were calculated 

for the 65 substructures, and Bayes Factor recalculated. Only the substructure with the highest 

value of Bayes Factor was kept. When two substructures had the same Bayes Factor, the 

substructure which occurs in more active chemicals was chosen.  

The user decided the lower bounds for a structural alert in terms of number of actives and inactive 

chemicals, and the lower bounds Bayes Factor was calculated using these values. If the remaining 

substructure had a Bayes Factor larger than the lower bounds and was contained by more actives 

than the minimum required number, it was added to the list of structural alerts. Any active 

chemicals containing the substructure were removed from the training set and the whole process 

was repeated iteratively until no substructures satisfied the lower bounds for an alert.  

This iterative process produced a list of independent structural alerts. Chemicals containing a 

structural alert were predicted to be active, and those containing no alerts were predicted to be 

inactive. 

The resulting model was applied to both the training set and test set, and performance statistics 

were calculated for both.  

The process is summarised in Figure 2.1.  
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2.2.2.1. Adjustable parameters 

There are three adjustable parameters in the workflow: 

1. Theta value in Bayesian statistics. The “model bias towards active predictions” being 

compared to the random model in the Bayes Factor calculation. The bias model predicts 

active with a probability of “theta”, where 0.5 < theta < 1. The user can choose the value 

of theta. 

2. Lower bounds for a structural alert. The user can select minimum requirements, in 

terms of the occurrence in actives and the occurrence in inactives. Bayes Factor is 

calculated using these values. A substructure must have a Bayes Factor greater than or 

equal to this value and must be contained by the minimum number of actives to be 

considered as a structural alert.  

3. Maximum percentage occurrence of a substructure in the inactive chemicals. This 

is a parameter used by the MoSS node. Choosing a larger value results in many more 

common substructures being identified by MoSS, but these additional substructures 

(contained by more inactive chemicals) may not be the statistically best performing 

substructure, so may not which structural alerts are selected. This results in significantly 

longer computational time required to run the workflow, particularly for large data sets, 

but may not significantly change the resultant structural alert models. Therefore, tuning 

of the parameter is required to find a suitable balance between computational efficiency 

and evaluating as many substructures as possible. 

Different models have been created to show the effects of varying each of these parameters 

individually, whilst maintaining the other parameters. 

 

 

2.2.2.2. Example Models 

Two different sets of parameters have been used to showcase how the automated workflow can 

be used to create different models for different purposes. 

• “Screening” model. Parameters: theta = 0.51; 15% maximum occurrence of a 

substructure in the inactive chemicals; lower bounds for a structural alert of two actives 

and one inactive. 

• “Risk assessment” model. Parameters: theta = 0.95; 1% maximum occurrence of a 

substructure in the inactive chemicals; lower bounds for a structural alert of two actives 

and one inactive. 
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2.2.3. Results and discussion 

2.2.3.1. Effect of varying parameters 

Theta in Bayes Factor calculation 

The model bias towards active predictions has a probability of theta of predicting active, where 

0.5 < theta < 1. Changing the value of theta changes what the automated workflow will prioritise 

when choosing which of the substructures will be a structural alert in each iteration.  

As theta is decreased, Bayes Factor becomes largest for the substructure with the largest 

occurrence in the actives and is less affected by the occurrence in the inactives. As the value of 

theta approaches 0.5, the equation for Bayes Factor approaches a value of 1 regardless of number 

of actives or inactives containing the substructure, so substructures are ordered by the secondary 

filter of number of actives.  

As the value of theta is increased, Bayes Factor becomes largest for the substructure with the 

fewest occurrences in the inactives and is less affected by the occurrence in actives. As the value 

of theta approaches 1, the equation for Bayes Factor contains a 0inactives term, so will only return 

non-zero values for substructures contained by no inactive chemicals.  

An example of the effect of changing theta is shown in Table 2.2. 

 

Table 2.2: An example of how different theta values lead to different substructures being picked in 

the automated workflow for construction of structural alert-based models. With a low value of theta, 

substructure “C” would have the highest Bayes Factor, but with a high value of theta, substructure 

“B” – occurring in fewer actives but also fewer inactives – would have the highest Bayes factor. 

 

A value of theta can be chosen by the user to match their purpose. For example, for the purposes 

of screening large numbers of chemicals and not missing any active chemicals, a low value of theta 

would be used. This would result in more true positives (higher sensitivity) at the expense of 

more false positives (lower specificity).   

For the purpose of identifying potential pharmaceutical lead compounds, confidence in actives is 

most important and as such the user would want to ensure there are as few false positives as 

Substructure Actives Inactives With theta of 0.51 With theta of 0.95

"A" 6 1 1.1 4.7

"B" 60 10 2.7 5.3E+06

"C" 120 40 4.8 2.8E-07

Bayes Factor
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possible. In this case, a high value of theta should be used, leading to a model which identifies 

fewer false positives (higher specificity) at the expense of fewer true positives (lower sensitivity).  

The effect of changing theta can be seen in Figure 2.2: as theta increases, sensitivity decreases 

and specificity increases. At a theta value of 0.75, the otherwise smooth trends in performance 

metrics appear to hit a bump. This is because choosing the top performing substructure is a 

discrete process. Whilst changing theta leads to continuous changes in the values of Bayes Factor 

for each substructure, there will not necessarily be a change in which substructure is statistically 

considered best in each iteration. Hence, there will not always be a continuous change in 

performance metrics. 

Figure 2.2: The variation of performance metrics (sensitivity and specificity) as the theta value used 

in the Bayes statistics in model creation is changed. Models are built for the selection of 24 Bowes 

targets and the means of the performance metrics are calculated across all targets. The other 

parameters in model construction are kept constant at 5% maximum occurrence of an alert in the 

inactive chemicals and lower bounds for an alert of two actives and one inactive. 
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Increasing theta results in selection of structural alerts that contain fewer training set false 

positives, but also fewer true positives. The structural alerts will be more specific and tend to be 

larger in size. A larger number of these structural alerts are required to cover the training set true 

positives, so models built with larger theta values will contain more structural alerts, as shown in 

Figure 2.3. As with Figure 2.2, a slight deviation from the smooth trend is seen at a theta value of 

0.75 for the same reasons. 

 

 

Figure 2.3: The number of structural alerts in a model metrics as the theta value used in the Bayes 

statistics in model creation is changed. Models are built for the selection of 24 Bowes targets and the 

means of the performance metrics are calculated across all targets. The other parameters in model 

construction are kept constant at 5% maximum occurrence of an alert in the inactive chemicals and 

lower bounds for an alert of two actives and one inactive. 
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Lower bounds for a structural alert 

The user can choose the lower bounds for a structural alert, in terms of the minimum required 

number of actives and the maximum number of inactives for that minimum number of actives. A 

minimum required Bayes Factor is calculated for these numbers of actives and inactives. A 

structural alert must have a Bayes Factor greater than or equal to the minimum required Bayes 

Factor, and it must be contained by at least the minimum required actives. Less stringent lower 

bounds can be implemented by increasing the minimum required actives or by decreasing the 

maximum number of inactives for the minimum required actives. 

Increasing the maximum number of inactives in the lower bounds means more structural alerts 

will be allowed, increasing the number of true positives covered by the overall model and hence 

increasing sensitivity. The additional alerts will also cover more false positives, so specificity will 

decrease. These trends are shown in Figure 2.4. 

 

 

Figure 2.4: Variation of performance metrics with the number of inactives in the lower bounds for a 

structural alert. The lower bounds require two actives and a varying maximum of inactive chemicals. 

Increasing the maximum number of inactives increases sensitivity but decreases specificity Models 

are built for the selection of 24 Bowes Targets and the means of the performance metrics are 

calculated across all targets. The other parameters in model construction are kept constant with a 

theta value of 0.95 and 5% maximum occurrence of an alert in the inactive chemicals. 
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Increasing the minimum required actives in the lower will have the opposite effect to increasing 

the tolerated inactives in the lower bounds. Fewer structural alerts will be allowed, decreasing 

sensitivity, but fewer false positives will be covered so specificity will increase. These trends are 

shown in Figure 2.5. 

 

 

Figure 2.5: Variation of performance metrics (Matthews correlation coefficient, sensitivity and 

specificity) as the lower bounds for a structural alert are changed. Increasing the minimum number 

of actives contained by a structural alert increases specificity but decreases sensitivity. In each case, 

for the lower bounds for an alert are a varying number of active chemicals and no inactive chemicals. 

Models are built for the selection of 24 Bowes targets and the means of the performance metrics are 

calculated. The other parameters in model construction are kept constant with a theta value of 0.95 

and 5% maximum occurrence of an alert in the inactive chemicals. 
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Maximum percentage occurrence of a structural alert in the inactive chemicals 

The primary purpose of varying the maximum percentage occurrence of a structural alert in the 

inactive chemicals is to change the computational time of the workflow – using a smaller value 

will lead to shorter computational times.  

Varying this parameter also has some effect on the models built. Increasing the maximum 

percentage occurrence of a structural alert in the inactive chemicals means a substructure which 

occurs in a greater number of training inactive chemicals can be selected as a structural alert, 

providing it has a higher Bayes Factor than all other substructures. 

The parameter “maximum percentage occurrence of a structural alert in the inactive chemicals” 

has a larger effect on models built with lower theta values. 

For models built with low theta values, Bayes Factor tends to be greatest for substructures with 

the most occurrence in the active chemicals and is less affected by number of false positives. 

Substructures with higher maximum percentage occurrence in the inactive chemicals can be 

selected as structural alerts if the increase in occurrence in inactive chemicals is matched with an 

increase in occurrence in the active chemicals. These alerts will lead to models which will hit more 

true positives, but also more false positives. This can be seen in Figure 2.6, with sensitivity 

increasing but specificity decreasing as the maximum percentage occurrence in the inactive 

chemicals increases. There is also a slight decrease in MCC.  
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Figure 2.6: The variation of performance metrics (Matthews correlation coefficient, sensitivity and 

specificity) with maximum percentage occurrence in active chemicals for a model with theta of 0.51. 

All models have the same lower bounds for a structural alert (two actives and one inactive). Models 

are built for the selection of 24 Bowes Targets and the means of the performance metrics are 

calculated across all targets. 
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When models are built with high theta values, Bayes Factor tends to be greatest for substructures 

which are contained by few false positives. As such, increasing the maximum percentage 

occurrence of a structural alert in the inactive chemicals has only a small effect on performance 

metrics. Increasing this parameter still leads to an increase in sensitivity and a decrease in 

specificity in most targets. However, these changes are smaller in magnitude than for models with 

low values of theta, as can be seen in Figure 2.7. 

 

 

Figure 2.7: The variation of performance metrics (Matthews correlation coefficient, sensitivity and 

specificity) with maximum percentage occurrence in active chemicals for a model with theta of 0.95. 

All models have the same lower bounds for a structural alert (two actives, one inactive). Models are 

built for the selection of 24 Bowes Targets and the means of the performance metrics are calculated. 
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2.2.3.2. Example Models 

Two different sets of parameters have been used to create two models which give examples of 

how the automated workflow can be used for different purposes.  

Parameters were chosen to create a model for the purposes of screening large numbers of 

chemicals and not missing any active chemicals. A set of parameters was chosen to create a model 

which maximises sensitivity at the expensive of specificity. This is known as the “screening” 

model. The parameters are: theta of 0.51; 15% maximum occurrence of a substructure in the 

inactive chemicals; lower bounds for a structural alert: two actives, one inactive. 

A different set of parameters was chosen to create a model which prioritises minimising false 

positives and maximising specificity whilst creating structural alerts to cover as many of the 

active chemicals as possible. This is known as the “risk assessment” model. The parameters are: 

theta of 0.95; 1% maximum occurrence of a substructure in the inactive chemicals; lower bounds 

for a structural alert: two actives, one inactive. 

As well as showing how the workflow can be used for different purposes, setting up the models 

in this way facilitates comparisons between Allen’s “Screening” and “Risk assessment” models.44 

The performance of the two models on the Bowes targets is shown in Tables 2.3 and 2.4. 
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2. Automated workflow for construction of structural alert-based structure-activity relationships 

Both models give very impressive performance metrics in the test sets. The risk assessment and 

screening models have a mean MCC in the test sets of 0.782 and 0.748 respectively, indicating an 

excellent match between model predictions and experimental activities. The screening model has 

a higher sensitivity than the risk assessment model, but lower specificity. This highlights how 

different sets of parameters for the same automated workflow can create models suited for 

different purposes. In this case, the parameters that are changed are the theta value in the Bayes 

Factor calculation and the maximum percentage of a substructure in the inactive chemicals.  

Both models used lower bounds for a structural alert of two actives and one inactive. This was 

found to be a “sweet spot” in terms of a balance between sensitivity and specificity. A more 

stringent lower bound requirement (i.e. more actives or fewer inactives) would increase 

specificity but has a larger reduction in sensitivity. A less stringent lower bound requirement (i.e. 

more inactives tolerated) would increase sensitivity but has a larger reduction in specificity. 

Hence, an even larger sensitivity can be obtained than that presented in the “screening” 

parameters by using less a less stringent lower bounds, but that the larger decreases in specificity 

lead to decreases in MCC. Less stringent lower bounds could also be considered as over-training 

the model. 

Compared to the screening model, the risk assessment model creates structural alerts which are 

larger in size and more specific, covering fewer chemicals per alert. A greater number of these 

structural alerts are required to cover the active chemicals, but fewer false positives are hit, 

resulting in higher specificity and similar sensitivity.  

The interpretability and transparency of the active predictions is a key advantage to the structural 

alert models. If a new chemical is predicted to be active by one of the models, the user can see 

which structural alert(s) it contains, which training set chemicals contain that structural alert, 

and hence understand why the model has made an active prediction. Furthermore, the structures 

of the chemicals in the training set containing the alert can be seen and can be compared to the 

structure of the new chemical. 
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2.3. Four-fold cross validation 

In all previous results hold-out validation has been used, with data being split randomly between 

a training set (roughly 75% of chemicals) and a test set (roughly 25% of chemicals). Models are 

trained on the training set and then applied to the test set to calculate performance statistics. The 

same training and test set has been used throughout this work. One might worry that the 

performance metrics only occur when using this split of data only. A different validation method 

has been trialled to see if similar performance metrics are obtained. 

Four-fold cross validation involves splitting the data into four groups. Each group in turn acts as 

the test set, with the other three groups being combined to make a training set. This approach 

takes four times as long to train and test models, as four different models must be created, but it 

allows inconsistencies in the data set or in model construction to be spotted. Model performance 

varying significantly across the four groups in four-fold cross validation would suggest an 

inconsistent method and would decrease confidence in the constructed models. 

 

2.3.1. Data and methods 

The same data that was extracted from ChEMBL and ToxCast previously has been used here. 

Active and inactive chemicals were separated and each partitioned randomly into four groups, 

ensuring a similar balance of active and inactive chemicals in each group. Each group in turn was 

assigned as the test set, with the other three groups combined to make a training set.  

For each training set combination, the automated workflow for structural alert-based model 

construction was applied with the “Risk Assessment” parameters used previously: 0.95 theta, 1% 

maximum occurrence of a structural alert in the inactive chemicals, and lower bounds for an alert 

of two actives and one inactive. The models were applied to the relevant test set and performance 

statistics calculated.  
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2.3.2. Results and discussion 

The workflow for construction of structural alert-based models has been applied to the data sets 

using four-fold cross validation. The mean and standard deviation of each performance metric in 

the training and test sets have been calculated and are shown in Table 2.5.  

As with hold-out validation, the performance metrics are very high for almost all biological 

targets. A mean MCC of 0.775 across all targets with four-fold cross validation indicates very high 

performing models and agrees, within one standard deviation, with the value of 0.782 obtained 

when using hold-out validation.  

The magnitude of the standard deviation is very small for all metrics for almost all targets. The 

exception is the human ether-a-go-go-related gene (hERG) for which larger standard deviations 

are seen, particularly in test and training specificity. All other metrics for other targets have very 

low standard deviations.  

It can be concluded that the method for constructing models is consistent across targets. The 

hERG is the only exception, likely because its data is particularly difficult to model, as reflected in 

the low mean performance metrics. This is consistent with literature reports of the tendency of 

hERG to bind a molecules with a wide range of chemical structures.91,92 

The very low standard deviations in performance metrics in four-fold cross validation suggest 

that there is little inconsistency in data across the four groups. For these targets and these models, 

hold-out validation does equally well at calculating performance statistics, but requires only a 

quarter of the time. Thus, only hold-out validation will be used for the rest of the work.
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2.4. Comparison to other models 

2.4.1. Allen’s models 

Allen et al first constructed structural alert-based models for Bowes’ targets in 2016,43 and 

updated the models in 2018.44 The updated models are similar to models developed in this work 

as both use an iterative cycle of creating structural alerts and removing chemicals from the 

training set. A major difference between the method presented here and Allen’s approach is a 

consideration of substructures’ occurrence in the inactive chemicals, not just in the active 

chemicals. The use of Bayesian statistics allows both variables to be considered, so false positives 

in the training set can be minimised whilst trying to build a model which correctly predicts true 

positives.  

Allen has constructed models for the twenty-four biological targets for which models have been 

built in this work. However, the models have been constructed using different data sets so direct 

comparison is difficult. 

Allen’s model is built on ChEMBL data only. This is unbalanced data, with most biological targets 

having significantly more actives than inactives. In construction of Allen’s models, the production 

of structural alerts from the training set does not consider occurrence of substructures in the 

inactive chemicals, so the imbalance in data is unimportant. However, an assumption is made to 

add inactive chemicals to the test set for the purpose of validation. For each target, chemicals 

which have been tested at other Bowes targets, but not the target of interest, are assumed to be 

inactive, giving approximately 11 000 additional negatives for each receptor. Such an assumption 

is likely to be valid for pharmaceutical chemicals because they are likely to have been tested at all 

targets during trials, but only active bioactivity data tends to be report in publications (from 

which ChEMBL collects data). However, the negative assumption will not be valid in all cases and 

there will be uncertainty about all assumed negatives. This uncertainty is not a major problem 

for Allen’s methods, where assumed negatives are used only for validation. The new approach, 

however, uses both training set positives and negatives in selecting the best substructures to be 

structural alerts. Uncertainty in negatives would therefore have a direct effect on model 

construction and could be problematic. Hence, importance of constructing new data sets with no 

assumptions regarding inactive data.  

As Allen’s models and the new models are built and tested on different data sets, direct 

comparison is difficult. Both data sets take the majority of their active chemicals from ChEMBL, 

and the methods are both structural alert-based, so some comparisons should still be made. The 

average performances of the models in their respective test sets are shown in Table 2.6. 
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Table 2.6: Comparison of the performance metrics of Allen’s updated models from 201844 and the 

models developed in this work, labelled “Wedlake” models. “Screening” models are designed to have 

as large a sensitivity (SE) as possible, whilst the “Risk Assessment” models are designed to have the 

best overall performance. Performance metrics are calculated across the twenty-four Bowes targets 

for which both methods have created models. Different data sets are used for the Wedlake and Allen 

models and so direct comparisons of performance are difficult. However, Matthews Correlation 

Coefficient (MCC) is commonly considered the best single measure of overall model performance and 

a clear increase can be seen in both Wedlake models compared to Allen models. Both Wedlake 

models have higher SE than both Allen models. Allen models have higher specificity (SP) and 

accuracy (ACC), but these values are inflated by the use of assumed negative data. Overall, the 

performance statistics suggest the Wedlake models are significant improvements on the Allen model. 

 

Allen’s models are tested using the assumed negatives, hence the large excess of negative data. 

For these unbalanced data sets, MCC provides the fairest indication of overall performance. The 

MCCs of both new models are significantly higher than the Allen model, indicating better overall 

performance of models. 

The specificity of both Allen models is higher, but there is uncertainty with the negative 

predictions due to the inclusion of assumed negatives. The vast number of the assumed negatives 

dominates the accuracy, resulting in higher, potentially misleading accuracy values for the Allen 

models. Sensitivity of the new models is greater than that of the Allen models. 

In the Allen models the Screening model differs from the Risk Assessment model by using less 

stringent minimum requirements for structural alerts, resulting in a greater number of alerts 

being used to achieve a larger sensitivity. In contrast, in the new models the Screening model uses 

fewer structural alerts than the Risk Assessment model to achieve a greater sensitivity. The same 

minimum requirement for structural alerts is used in both models. Instead, other parameters are 

changed, resulting in different substructures being chosen as structural alerts. The Screening 

model contains larger, less specific structural alerts which are contained by a greater number of 

actives. 

Model Alerts TP FP FN TN SE SP ACC MCC

Allen Risk Assessment 53.0 250 153 109 15465 64.4% 98.7% 97.9% 0.646

Allen Screening 86.7 308 572 51 10698 80.9% 94.8% 94.6% 0.585

Wedlake Risk Assessment 86.5 532 38 78 460 86.6% 90.9% 90.2% 0.782

Wedlake Screening 42.5 559 77 51 421 90.6% 82.4% 88.9% 0.748

Mean Test Set Performance Metrics
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Overall, the new models represent a significant improvement on the Allen models in terms of 

performance. The use of Bayesian statistics to pick structural alerts allows the consideration of 

the occurrence of a substructure in both the active chemicals and in the inactive chemicals. The 

new, balanced data sets constructed in this work mean that no assumptions about data need to 

be made.  
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2.4.2. Random Forest models 

The previous methodology presented in this work is a novel way of constructing structural alert-

based models. To compare this new approach to existing, accepted methods, classical machine 

learning approaches were investigated using physicochemical features and structural descriptors 

as inputs. These descriptors describe many different features of a chemical structure. 

Understanding how these many features, individually or as combinations, relate to activity at a 

biological target is very difficult. However, machine learning algorithms are capable of identifying 

such correlations if and where they exist. Random Forest, Neural Network, Support Vector 

Machine and k-Nearest Neighbour were all initially explored, but Random Forest models were 

chosen to be prioritised over these other approaches due to their greater interpretability. 

Interpretability of predictions is particularly important in the context of toxicity and risk 

assessment. This work was done by Maria Folia, working at the Safety and Environmental 

Assurance Centre, Unilever. 

To provide a direct comparison to the models constructed by the automated workflow, the 

Random Forest models were built using the same ChEMBL and ToxCast training set and 

performance statistics calculated using the same test set.  

 

2.4.2.1. Method 

RDKit83 was used to create 200 physiochemical descriptors for each chemical including 

molecular, topological, van der Waals surface area and lipophilicity descriptors. The model was 

built using the RandomForestClassifier from the sklearn93 package using the default settings 

apart from two hyperparameters: the number of trees and the maximum depth of the trees, which 

were tuned using GridSearchCV. 

The Random Forest models have been applied to the test set and performance statistics were 

calculated. 
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2.4.2.2. Results and Discussion 

Models have been constructed for the same set of twenty-four Bowes targets as the structural 

alert-based models. The same training and test sets have been used to allow for direct comparison 

between methods. The performance of the Random Forest models in the test sets is shown in 

Table 2.7. 

 

Table 2.7: Performance of Random Forest models on the test set. The models have been constructed 

from the same training set and tested on the same test set as the structural alert-based models built 

with the automated workflow. 

 

Within the test sets, the performance metrics of the models created by the automated workflow 

are very similar to those of the Random Forest models, with the Random Forest models 

performing slightly better overall according to mean MCC (0.804 compared to 0.782 for the risk 

assessment model) and accuracy (91.3% compared to 90.2% for the risk assessment model).  

Target TP FP FN TN SE SP ACC MCC

Acetylcholinesterase 559 110 51 386 91.6% 77.8% 85.4% 0.707

Adenosine A2a receptor 967 55 19 446 98.1% 89.0% 95.0% 0.888

Alpha-2a adrenergic receptor 175 12 21 233 89.3% 95.1% 92.5% 0.849

Androgen receptor 424 39 224 1776 65.4% 97.9% 89.3% 0.713

Beta-1 adrenergic receptor 278 33 23 243 92.4% 88.0% 90.3% 0.806

Beta-2 adrenergic receptor 368 59 115 454 76.2% 88.5% 82.5% 0.653

Delta opioid receptor 753 74 13 241 98.3% 76.5% 92.0% 0.802

Dopamine D1 receptor 262 39 61 468 81.1% 92.3% 88.0% 0.745

Dopamine D2 receptor 1424 65 10 217 99.3% 77.0% 95.6% 0.834

Dopamine transporter 596 49 45 423 93.0% 89.6% 91.6% 0.827

Endothelin receptor ET-A 314 27 9 266 97.2% 90.8% 94.2% 0.884

Glucocorticoid receptor 549 64 195 1666 73.8% 96.3% 89.5% 0.745

hERG 1188 384 90 441 93.0% 53.5% 77.5% 0.522

Histamine H1 receptor 300 35 13 249 95.8% 87.7% 92.0% 0.841

Mu opioid receptor 911 51 39 534 95.9% 91.3% 94.1% 0.875

Muscarinic acetylcholine receptor M1 508 53 23 252 95.7% 82.6% 90.9% 0.802

Muscarinic acetylcholine receptor M2 386 46 25 481 93.9% 91.3% 92.4% 0.848

Muscarinic acetylcholine receptor M3 330 33 17 242 95.1% 88.0% 92.0% 0.837

Norepinephrine transporter 655 42 34 450 95.1% 91.5% 93.6% 0.867

Serotonin 2a (5-HT2a) receptor 955 47 5 216 99.5% 82.1% 95.7% 0.871

Serotonin 3a (5-HT3a) receptor 94 6 10 271 90.4% 97.8% 95.8% 0.893

Serotonin transporter 973 49 13 234 98.7% 82.7% 95.1% 0.855

Tyrosine-protein kinase LCK 428 23 21 96 95.3% 80.7% 92.3% 0.765

Vasopressin V1a receptor 152 15 11 257 93.3% 94.5% 94.0% 0.873

Average 565 59 45 439 91.6% 86.8% 91.3% 0.804

Test Set
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The different methods generally give similar performance for each receptor. Notably, all methods 

create models which do not perform well on the hERG data, despite the large size of the data set 

(the training set contains 3 617 actives and 2 421 inactives). The poor performance for the human 

hERG being seen in both models supports the idea that it is not due to shortcomings in the 

structural alert method or the Random Forest method, but rather due to some inherent difficulty 

in modelling the data itself.  

 

 

Table 2.8: Direct comparison of the average performance statistics of the models created by the 

automated workflow and the Random Forest models. Averages are taken over the same selection of 

24 Bowes targets. 

 

The similarity in performance between the new structural alert-based method and the Random 

Forest method provides credibility to the new method. The Random Forest models slightly 

outperform the structural alert models, but the difference between performance statistics is 

minimal. With similar performance metrics, the key difference between the approaches is the 

interpretably of predictions. 

Random Forest models can identify which physicochemical features are most important in 

making activity predictions for each target. However, in terms of understanding why an activity 

prediction is made for a chemical, Random Forest models are difficult to interpret, even if they 

are considered more interpretable than other “black boxes” machine learning classifiers.  

The transparency in the structural alert models results in predictions that are easy to interpret. 

The user can see both the activity prediction and why the activity prediction has been made. 

Understanding why activity predictions are made is particularly important in toxicity testing. 

While the Random Forest model may perform slightly better in terms of average performance 

metrics, the major advantage of the structural alert-based methods is the greater interpretability 

of model predictions. 

Model Test SE Test SP Test ACC Test MCC

Risk Assessment 86.6% 90.9% 90.2% 0.782

Screening 90.6% 82.4% 88.9% 0.748

Random Forest 91.6% 86.8% 91.3% 0.804
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Whilst it is good to make comparison between models, it is important to remember that the 

models are not in competition with each other. Rather, they can be used together to make 

predictions of biological activity with greater confidence. 
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2.5. Consensus approach 

The ICH M7 guideline53 for predicting potential mutagenicity of impurities acknowledges the 

potential for in silico predictions to replace in vitro studies. It requires two complementary 

(Q)SAR models to be applied together – an expert rule-based method and a statistical-based 

method. This is a significant landmark for the use of in silico (Q)SARs in risk assessment. It also 

shows the importance of using complementary models together to increase confidence in 

predictions.  

Here, a consensus approach has been developed, using the models created by the automated 

workflow for construction of structural alert-based models together with the Random Forest 

models. Where the structure-based structural alert model and the physiochemical feature-based 

Random Forest model both agree on an activity prediction, one would have more confidence in 

the prediction.  

 

2.5.1. Method 

For the selection of twenty-four Bowes targets, the Random Forest model and a structural alert-

based model created by the automated workflow (parameters: theta 0.95, 5% maximum 

occurrence in inactives, lower bounds of two actives and one inactive) have been combined in a 

consensus model. Predictions where the models agree are kept but where the models disagree, 

the chemicals were removed, and the predictions were labelled “inconclusive”. 

The consensus model has been applied to the test sets of the Bowes targets and performance 

metrics calculated. 
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2.5.2. Results and discussion 

 The results for applying the consensus model to the Bowes targets are shown in Table 2.9. 

Averaging over the targets, there is a 92.4% agreement in predictions between the Random 

Forest and structural alert models, showing high concurrence between the models. Averaged 

across all targets, all performance metrics increase in comparison to both models individually. 

Average MCC increases by 0.056 compared to the Random Forest model alone and by 0.082 

compared to the structural alerts alone.  

In particular, hERG – which both methods created relatively poor models for – shows very large 

changes in MCC, increasing by 0.195 compared to Random Forest and by 0.214 compared to 

structural alerts. Whilst 30% of chemicals returned inconclusive predictions, the 70% for which 

there was consensus in predictions showed vast improvements in performance.  

In this work, two complementary models have been combined to make predictions for receptor 

binding MIEs. One model is based on statistically-derived structural alerts and the other is based 

on statistical links between physicochemical properties. The two models derive predictions from 

different chemical descriptors using different algorithms, and therefore can be considered 

orthogonal approaches.  

Using the two models together improves overall performance and increases confidence in the 

predictions. It also shows how the structural alert-based model may be used in approaches like 

that required by the ICH M7 guideline, increasing the relevance of this work.  
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2. Automated workflow for construction of structural alert-based structure-activity relationships 

2.6. Applicability of active predictions 

One of the five key principles from OECD’s guidelines for (Q)SAR model construction for 

regulatory purposes is a defined domain of applicability.27 Abiding by these principles will help 

the structural alert models gain acceptance for use in risk assessment.  

The applicability of an active prediction of a new chemical containing a structural alert can be 

assessed by looking at the structures of the training chemicals which contain the alert and 

comparing to the structure of the new chemical. The structural alert was built from these training 

chemicals and so the active prediction is derived from these chemicals. From these chemicals, an 

applicability domain can be defined.  

An applicability domain could be defined by using the range of values of a selection of common 

physicochemical features, such as molecular weight and lipophilicity (i.e. log P). But how do these 

features relate to receptor binding mechanisms? They are not easily interpretable quantities in 

this context and hence are not good for assessing applicability of structural alert predictions. 

Rather, a better way of judging applicability is to directly compare the structure of the new 

chemical and the structures of the training chemicals containing the alert. If an expert considers 

the new chemical to be similar to these training chemicals, the prediction is applicable. This is 

difficult to define because similarity is inherently subjective, but Tanimoto similarity based on 

Morgan fingerprints can be used to guide the user.  

In this section, using similarity between a new chemical and training chemicals containing the 

same alert to define applicability domains has been investigated. Similarity has been quantified 

using Tanimoto similarity based on Morgan fingerprints. 
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2.6.1. Method 

The same data sets as outlined previously for the 24 Bowes targets with ChEMBL and ToxCast 

data have been used here. 

Structural alerts have been generated from the training sets using the automated workflow as 

outlined previously. The parameters used were: theta 0.95, 5% maximum occurrence of an alert 

in the inactive chemicals, and lower bounds for an alert of two actives and one inactive. 

The structural alerts have been applied to the test sets, predicting test chemicals to be active if 

they contain an alert. When a test chemical was found to contain a structural alert, Tanimoto 

similarity based on Morgan fingerprints (radius two atoms and string length 4 096 bits) to 

training active chemicals containing the same alert was calculated. How this correlated with 

accuracy of active predictions has been investigated. 

The proposed process for judging applicability of active predictions is shown in Figure 2.8. 
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Figure 2.8: The process for judging applicability of an active prediction. Where a test chemical 

contains a structural alert, the training active chemicals which contain the same alert are found. 

Similarity between the test chemical and these training active chemicals is used to judge confidence 

in the active prediction. In this figure, pink boxes are input chemicals, blue boxes are key steps in the 

process, green boxes represent high confidence predictions and red represents low confidence 

predictions.   
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2.6.2. Results and discussion 

The Tanimoto similarity coefficients (based on Morgan fingerprints) between a test chemical 

containing an alert and the active chemicals containing the same alert were calculated. The largest 

values were kept, and chemicals put in groups according to this value. The proportion of false 

positive predictions in each group was calculated and the mean across all test sets is shown in 

Figure 2.9.  

 

Figure 2.9: The variation of the mean proportion of false positives in active predictions (from 

structural alerts) of test set chemicals across groups defined by the maximum Tanimoto similarity 

(based on Morgan fingerprints) to training active chemicals containing the same alert as the test 

chemical. Structural alerts are created from training sets by the automated workflow with 

parameters: theta 0.95, 5% maximum occurrence of an alert in the inactive chemicals, and lower 

bounds for an alert of two actives and one inactive. The data shown is the mean across the data sets 

of the twenty-four Bowes targets with human data in ToxCast and ChEMBL. No chemicals had a 

maximum similarity of less than 0.1 to a training active containing the same alert - having the same 

structural alert substructure results in a similarity of at least 0.1 in all cases here.  
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Test chemicals with low similarity values are very dissimilar to the active chemicals from which 

the structural alert was derived. Thus, the structural alert may not be applicable to these test 

chemicals. This is reflected in the results, as test chemicals with low similarity values contain a 

large proportion of false positives. As Tanimoto similarity (based on Morgan fingerprints) to the 

training chemicals containing the alert increases, the proportion of false positives decreases. This 

clearly demonstrates that applicability of a structural alert for a test chemical can be well 

characterised by considering similarity to the training chemicals containing the same structural 

alert. Generally, the greater the maximum Tanimoto similarity coefficient to the training active 

chemicals containing the same structural alert, the greater the confidence in the active prediction. 

Ideally, applicability would be determined by an expert directly looking at the similarity of the 

structures of the test chemical and the training chemicals containing the alert. Tanimoto 

similarity coefficients (based from Morgan fingerprints) will help guide the expert in this 

decision. Examples of doing this are shown are in Figures 2.10a–e. In these examples, an alert-

containing test chemical and the training active alert-containing chemical with the largest 

Tanimoto similarity (based on Morgan fingerprints) are compared to each other to assess the 

applicability of the structural alert to the test chemical.   
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Figure 2.10a: Dissimilar chemicals. Left: test chemical; right: the most similar training active to the 

test chemical according to Tanimoto similarity (based on Morgan fingerprints) – the coefficient is 

0.223. The structural alert, highlighted in red, is contained by 1 103 training actives and 44 inactives. 

In this case, the two chemicals contain the same structural alert but otherwise differ greatly. The 

test chemical bears little resemblance to any of the training active chemicals that lead to 

identification of the structural alert, so the active prediction should not be considered applicable to 

this test chemical. The test chemical is found to be inactive. 

 

 

Figure 2.10b: Somewhat similar chemicals. Left: test chemical; right: the most similar training active 

to the test chemical according to Tanimoto similarity (based on Morgan fingerprints) – the 

coefficient is 0.468. The structural alert, highlighted in red, is contained by eight training actives and 

no inactives. The two chemicals contain the same structural alert as a central structure, and the 

same group on the left side of the structure. On the right side of the structure, the test chemical has 

a different side-group from the training active. Both side groups are similar in that they end in an 

aromatic ring, although the ring in the test chemical is held slightly further from the central 

structure by an inflexible alkene. Overall, the chemicals are similar enough that the prediction 

should be considered applicable to the test chemical. It is found to be active.    
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Figure 2.10c: Highly similar chemicals. Left: test chemical; right: the most similar training active to 

the test chemical according to Tanimoto similarity (based on Morgan fingerprints) – the coefficient 

is 0.703. The structural alert, highlighted in red, is contained by 1 103 training actives and 44 

inactives. The two chemicals differ only by the group in the bottom left of the structures, with the 

training chemical containing an amide and the test chemical containing an amine with an 

unreactive trifluoro ethyl- group. The amine in the test chemical and the amide in the training 

chemical will have different effects on the electronics of the aromatic ring. Otherwise, the two 

chemicals are highly similar and so the active prediction should be considered applicable to the test 

chemical. The test chemical is found to be active. 

   

 

Figure 2.10d: Very highly similar chemicals. Left: test chemical; right: the most similar training 

active to the test chemical according to Tanimoto similarity (based on Morgan fingerprints) – the 

coefficient is 0.903. The structural alert, highlighted in red, is contained by 1 103 training actives 

and 44 inactives. The two chemicals are very highly similar, differing only by the length of an alkane 

linker between identical groups. The active prediction can be confidently assigned as applicable. The 

test chemical is found to be active.  
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Figure 2.10e: Very highly similar chemicals, but in this example the test chemical is inactive. Left: 

test chemical; right: the most similar training active to the test chemical according to Tanimoto 

similarity (based on Morgan fingerprints) – the coefficient is 0.971. The structural alert, highlighted 

in red, is contained by 617 training actives and 52 inactives. The two chemicals are very highly 

similar, differing only by the size of a carbon ring. The active prediction can be confidently assigned 

as applicable, but the test chemical is found to be active. This shows that the applicability process is 

not perfect, even with very highly similar chemicals. Activity cliffs (defined as very similar chemicals 

with vastly different activities) such as this are very difficult to predict. The test chemical has a KI of 

15 000 nM so, whilst following outside of the activity cut-off of 10 000 nM, it is still weakly active. 

 

 

To give the structural alert-based models a clearly defined applicability domain, as required by 

OECD guidelines for (Q)SARs, a cut-off can be included for the minimum Tanimoto similarity 

coefficient (based on Morgan fingerprints) between a test chemical containing an alert and the 

active chemicals containing the same alert. Chemicals which contain an alert but fall below the 

cut-off are considered “out of domain” active predictions.  

Different cut-offs have been trialled for the minimum required Tanimoto similarity coefficient 

(based on Morgan fingerprints) between a test chemical containing an alert and the active 

chemicals containing the same alert.  

The results are shown in Figure 2.11. They show a smooth relationship and so it is difficult to pick 

a single cut-off. Also considering the results shown in Figure 2.9, a sensible choice for a cut-off 

seems to be a minimum required Tanimoto similarity coefficient (based on Morgan fingerprints) 

of 0.4 between the test chemical containing an alert and the active chemicals containing the same 

alert. At this cut-off, a mean of 6.2% of active predictions in the test sets are considered “out of 

domain” and 57.8% of them are false positives. 
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Figure 2.11: The effects of changing the minimum required Tanimoto similarity (based on Morgan 

fingerprints (radius two atoms, string length 4 096 bits)) between a test chemical containing a 

structural alert to a training active containing the same alert. The top figure shows proportion of 

active predictions which do not meet the requirement and the percentage of these predictions which 

are false positive is shown in the bottom figure. 
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The effects of applying a minimum required Tanimoto similarity coefficient (based on Morgan 

fingerprints) of 0.4 between the test chemical containing an alert and the active chemicals 

containing the same alert is shown in Table 2.10. A small but significant overall increase in PPV 

is observed for all biological targets when applying this cut-off. The average PPV of the “out of 

domain” predictions is very low, with almost 60% of the predictions being false positives. The 

overall increase in PPV is small as only a small proportion of active predictions in the test set are 

out of domain. Regardless, establishing this measure of confidence is vitally important for 

assessing the applicability of active predictions of chemicals outside of these data sets. It will help 

the methods gain acceptance for use in risk assessment. 

The structural alerts developed here are substructures which have statistically been found to be 

associated with activity, but they are only fragments of chemicals. Tanimoto similarity based on 

Morgan fingerprints provide a measure of how similar the full structure of the test chemical is to 

the training active chemicals which contain the same structural alert. Where test chemicals have 

high similarity to training active chemicals containing the same alert, one can have more 

confidence in the active prediction.  
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2.6.3. Relative similarity in judging applicability 

Previously, applicability domains have been constructed by calculating Tanimoto similarity 

between a new chemical and training active chemicals containing the same structural alert as the 

new chemical. A single cut-off of 0.4 has been applied for all structural alerts from all biological 

targets. This value was found by tuning different cut-off values in the test sets. However, one may 

also want to consider the similarity of the alert-containing training chemicals to one another 

when deciding if an active prediction for a test chemical should be considered applicable. For 

example, if for one structural alert, the alert-containing training actives are highly similar to each 

other, a cut-off of 0.4 may be considered too low.  

Here, a selection of structural alert examples were investigated to see if choosing different cut-

offs for different alerts was sensible. Each structural alert was applied to the training and test sets 

to find chemicals containing the alert. These alert-containing chemicals were split into four 

groups: training actives, training inactives, test actives, and test inactives. For each chemical, the 

largest Tanimoto similarity to the alert-containing training active chemicals was calculated. If the 

chemical was itself an alert-containing training active chemical, maximum similarity to all other 

alert-containing training active chemicals was calculated (i.e. similarity between the chemical and 

itself was not considered). The distribution of similarity values in the training chemicals was 

examined to see if a clear cut-off could be made. Ideally, there would be a clear cut-off which 

separates training active chemicals from training inactive chemicals and this cut-off should be 

applicable to the test set chemicals. 

 

Androgen Receptor - Alert 1 

This structural alert occurred in 461 training active chemicals and 30 training inactive chemicals. 

As it is contained by many chemicals, it is a good case study. The structure of the alert is shown 

in Figure 2.12. The distribution of maximum Tanimoto similarity (between Morgan fingerprints) 

to alert-containing training actives is shown in Figure 2.13.  

 

Figure 2.12: The structure of the structural alert “Androgen Receptor - Alert 1”. 
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Figure 2.13: The distribution of maximum Tanimoto similarity (between Morgan fingerprints) to 

alert-containing training actives for “Alert 1” for the androgen receptor. In the plot, boxes represent 

chemicals within the lower and upper quartiles, and whiskers represent the lowest and highest 

values that are not outliers. Outliers, shown as dots, are defined as any chemicals with a similarity 

1.5 times the interquartile range lower than the lower quartile or greater than the upper quartile. 

The line within the box is the median value and the cross is the mean value. 

 

For this alert, a clear difference between the distribution of the training active chemicals and the 

distribution of the training inactive chemicals can be seen, with the inactive chemicals having a 

distribution centred around a lower similarity. The whiskers of the box-and-whisker plot, defined 

as any chemicals with a similarity 1.5 times the interquartile range lower than the lower quartile 

or greater than the upper quartile, suggest a cut-off of at least 0.5 Tanimoto similarity to an alert-

containing training active chemical for an active prediction to be considered applicable. Above 
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this cut-off, 99.6% of training chemicals are active (450 active and 2 inactive) and below this cut 

off, 28.2% of training chemicals are active (11 active and 28 inactive). Similar results are seen by 

applying the cut off to the test chemicals - 99.3% of test chemicals above the cut-off are active 

(143 active and 1 inactive) and 46.7% of test chemicals below the cut-off are active (8 active and 

7 inactive). With this alert, we see that a clear cut-off can be observed and applied to the 

predictions from the alert to increase PPV.  

 

Beta-2 adrenergic receptor - Alert 1 

This structural alert occurred in 845 training active chemicals and 64 training inactive chemicals. 

The structure of the alert is shown in Figure 2.14. This alert is also contained by many chemicals, 

but the substructure is smaller and more flexible than the previous structural alert. The 

distribution of maximum Tanimoto similarity (between Morgan fingerprints) to alert-containing 

training actives is shown in Figure 2.15. 

 

Figure 2.14: The structure of the structural alert “Beta-2 adrenergic receptor - Alert 1”. 
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Figure 2.13: The distribution of maximum Tanimoto similarity (between Morgan fingerprints) to 

alert-containing training actives for “Alert 1” for the beta-2 adrenergic receptor. In the plot, boxes 

represent chemicals within the lower and upper quartiles, and whiskers represent the lowest and 

highest values that are not outliers. Outliers, shown as dots, are defined as any chemicals with a 

similarity 1.5 times the interquartile range lower than the lower quartile or greater than the upper 

quartile. The line within the box is the median value and the cross is the mean value. 

 

For this alert, there is not a clear difference between the distribution of the training active 

chemicals and the distribution of the training inactive chemicals. The distribution of the training 

active chemicals is skewed towards large similarity values but there are many active chemicals 

lower than the lower whisker. The distribution of the training inactive chemicals covers a large 

spread of values from 0.9 to 1.0. For this alert, no clear cut-off can be applied to separate the active 

chemicals from the inactive. However, using the bottom of the whisker of the training active 
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chemicals would give a cut-off of 0.6. Above this cut-off, 94.8% of training chemicals are active 

(784 active and 43 inactive) and below this cut off, 74.4% of training chemicals are active (61 

active and 21 inactive). Similar results are seen by applying the cut off to the test chemicals - 

92.7% of test chemicals above the cut-off are active (267 active and 21 inactive) and 55.2% of test 

chemicals below the cut-off are active (16 active and 13 inactive). As with the previous alert, 

applying a cut-off improves PPV. However, this cut-off of 0.6 Tanimoto similarity to an alert-

containing training active chemical could be considered a high bar, requiring a large degree of 

structural similarity beyond the structural alert substructure. Furthermore, PPV is only slightly 

increased - using the structural alert with no cut-offs gives a PPV of 93.0% in training chemicals 

and 89.3% in test chemicals. For this alert, it is difficult to assign a single clear cut-off. This may 

be a result of the flexible nature of the structural alert substructure. 

 

hERG - Alert 4 

This structural alert occurred in 93 training active chemicals and 15 training inactive chemicals. 

This alert is contained by fewer training chemicals than the previous two structural alerts. The 

structure of the alert is shown in Figure 2.16. The distribution of maximum Tanimoto similarity 

(between Morgan fingerprints) to alert-containing training actives is shown in Figure 2.17. 

 

Figure 2.16: The structure of the structural alert “hERG - Alert 4”. 
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Figure 2.14: The distribution of maximum Tanimoto similarity (between Morgan fingerprints) to 

alert-containing training actives for “Alert 1” for hERG. In the plot, boxes represent chemicals within 

the lower and upper quartiles, and whiskers represent the lowest and highest values that are not 

outliers. Outliers, shown as dots, are defined as any chemicals with a similarity 1.5 times the 

interquartile range lower than the lower quartile or greater than the upper quartile. The line within 

the box is the median value and the cross is the mean value. 

 

For this alert, there is no clear difference between the distribution of the training active chemicals 

and the distribution of the training inactive chemicals. The similarity values for all but two of the 

inactive chemicals falls between the whiskers of the training active chemicals. Using the bottom 

whisker of the training active chemicals gives a cut-off of 0.55. Above this cut-off, 87.1% of 

training chemicals are active (88 active and 13 inactive) and below this cut off, 71.4% of training 

chemicals are active (5 active and 2 inactive). Here we see the cut-off providing little information 
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in the training chemicals. However, applying the cut-off to the test chemicals gives good results -

88.2% of test chemicals above the cut-off are active (30 active and 4 inactive) and 0% of test 

chemicals below the cut-off are active (0 active and 1 inactive). Unfortunately, these good results 

in the test set are not conclusive as there are too few alert-containing test inactive chemicals. This 

structural alert highlights the difficulty in picking a similarity cut-off for each alert, particularly 

when there is little data.   

 

In this section, applicability of an active prediction from a structural alert has been judged by 

considering Tanimoto similarity to training active chemicals containing the same alert. The cut-

off of 0.4 found by tuning cut-off values across the test sets of all targets provides a good 

benchmark value and has been shown to improve PPV. The three examples structural alerts 

considered show the importance of considering a case-by-case cut-off in similarity, but also the 

complexities involved. Where the distributions of similarity values of active and inactive 

chemicals can be clearly distinguished from each other, as with the first alert (androgen receptor 

- alert 1), a clear cut-off can be identified. This may not give the same cut-off value as found by 

considering all alerts together. However, the distributions of active and inactive chemicals may 

not be easily separable, particularly if there is limited data. Whilst a case-by-case consideration 

of applicability of each alert may be time-demanding, it should be valuable as the global cut-off of 

0.4 may not be applicable to all alerts.  
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2.7. Conclusions 

Using human in vitro data from both ChEMBL and ToxCast, new data sets have been created for 

twenty-four Bowes Targets. These targets represent MIEs that are very significant in risk 

assessment. Unlike previous methods, the data sets are balanced in terms of number of active and 

inactive chemicals, and no assumptions have been made regarding inactive data points.  

Using freely available software, an automated workflow has been designed which builds 

structural alert-based models for predicting activity. The workflow uses Bayesian statistics to 

select substructures common to multiple training chemicals to be structural alerts. There are 

adjustable parameters which give the workflow flexibility, allowing it to be used for different 

purposes. 

The workflow has been applied to the new data sets, creating models with very impressive 

performance metrics. Two different sets of parameters have been given as examples to show the 

versatility of the workflow and to compare to previous structural alert-based models for the same 

targets. On average across the 24 targets, both example models correctly predict over 88% of 

chemicals in the test sets. Mean values of MCC in the test sets of 0.782 and 0.748 indicate excellent 

overall performance of the models. The new models are a significant improvement on previous 

structural alert-based models for the same targets.  

Random Forest models have been built for the data sets by Maria Folia (Unilever). These also 

show excellent predictivity in the test sets, with 91% accuracy and a mean MCC of 0.804. The 

performance of the new structural alert-based models is similar to the performance of these 

Random Forest models. The key advantage of the structural alert-based models compared to 

other models, such as the Random Forest ones, is that the predictions are transparent and easily 

interpretable. 

The structural alert-based models have been combined with the Random Forest models in a 

consensus model. The two models can be considered as orthogonal methods, making activity 

predictions using different input data and different algorithms. Where the models agree in 

predictions, one would have more confidence in the prediction. Compared to both models 

individually, the consensus approach greatly increases overall performance. The development of 

the consensus model is potentially very significant. It shows how the models for receptor binding 

MIEs could be used in risk assessment, comparable to how in silico (Q)SARs are already used in 

predicting mutagenicity according to the ICH M7 guideline. 

Generally, when a test chemical contains an alert, we will have more confidence in active 

prediction if the test chemical is similar to the active training chemicals containing the same alert. 

In this work, it has been shown that confidence in positive predictions correlates well with the 
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largest Tanimoto similarity (based on Morgan fingerprints) between the test chemical and the 

training active chemicals containing the same alert. This has been used to define an applicability 

domain for the structural alerts. For an active prediction to be considered “applicable”, a test 

chemical containing an alert must have a Tanimoto similarity coefficient (based on Morgan 

fingerprints) of 0.4 to at least one active training chemical containing the same structural alert. 

With the addition of applicability domains, the structural alert-based models fulfil the five key 

priorities set out by OECD for use of (Q)SARs for regulatory purposes. 
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3. Expanding the scope of the workflow 

3.1. Additional biological targets 

With the aim of expanding the scope of the work beyond the 24 Bowes Targets previously 

modelled, the automated workflow was applied to new biological targets. Targets of interest were 

identified in house at Unilever as providing valuable toxicological information for risk 

assessment, derived from the biological targets list in Sipes et al.’s 2013 paper.94 From this list of 

targets, 66 were not Bowes Targets and had data in both ToxCast and ChEMBL databases. In this 

chapter, models were built for these biological targets. 

Whilst testing chemicals for biological activity at all of these additional targets in in vitro assays 

may not be cost effective in early stages of risk assessment, making in silico predictions through 

SAR models would be quick and easy (once models are constructed). These activity predictions 

for the additional targets will allow for a much broader assessment of potential toxicity. 

 

3.1.1. Data sets 

Data sets have been constructed here using the same procedure outlined for the Bowes Targets 

(Section 2.1.1.). 

For each target, bioactivity data for Homo sapiens was downloaded from ChEMBL (data extracted 

November 2018). Activity reports were filtered to remove any with a confidence score of less 

than eight. Only activities reported with Standard Units of nM were kept, leaving reports of EC50, 

IC50, Ki and Kd, and on rare occasions Kbapp (apparent binding constant) and Kinact (enzyme 

inactivation constant). RDKit83 Salt Stripper was used to remove common salts and counter ions 

from chemicals. All chemicals with more than 100 atoms were removed. The SMILES strings were 

re-written to be canonical using RDKit, such that the format is consistent across all reports. For 

each chemical, mean activity was taken – values of activity reported as “greater than” a certain 

value were removed for these calculations. Chemicals with a mean activity of 10 000 nM or lower 

were assigned as active; those with over 10 000 nM were assigned as inactive. 

For each target, Homo sapiens data was downloaded from the ToxCast Dashboard, using 

ToxCast’s in-built binary activity assignments. As with ChEMBL data, common salts and counter 

ions were stripped using RDKit Salt Stripper, chemicals with greater than 100 atoms were 

removed, and SMILES format was re-written using RDKit. If a chemical has contrasting reports of 

being both active and inactive in different assays it is considered active.  
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Data from ChEMBL and ToxCast were combined into one data set. Where chemicals have 

contrasting activity reports between ChEMBL and ToxCast, the activity from ChEMBL is used.   

The chemicals were randomly split, with roughly 75% forming the training set, and 25% forming 

the test set. 

A summary of the data sets for each target is shown in Table 3.1. 
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As also seen with the Bowes targets previously, for most targets ChEMBL provides far more active 

chemicals than inactive, with only Caspase 1 (CASP1) and Mitogen-Activated Protein Kinase 1 

(MAPK1) having more inactives than actives. In contrast, ToxCast provides far more inactive 

chemicals than active chemicals for all targets. Alone, each database gives imbalanced data that 

would be difficult to model.  

By combining the two databases, data sets have been created that are balanced in terms of similar 

numbers of active and inactive chemicals. All data comes directly from human in vitro assays for 

the biological target and so predictions based on the data will be relevant to humans without the 

need for cross-species extrapolation.  

However, one should be aware that ChEMBL and ToxCast tend to cover different areas of chemical 

space. ChEMBL largely contains pharmaceuticals whilst much of ToxCast is made up of 

insecticides, pesticides and other reactive chemicals which have been tested across many assays. 
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3.1.2. Methods 

3.1.2.1. Structural alerts 

The automated workflow for construction of structural alert-based models has been applied to 

the data sets for the new biological targets. The same procedure was used as previously (Section 

2.2.2). 

A training set of chemicals (in SMILES format) and binary activities was inputted into the 

workflow. The maximum common substructures occurring in at least two of the active chemicals 

were found using the MoSS node68 in KNIME.67 MoSS will only output substructures which occur 

in less than a certain percentage of the inactive chemicals. This value was a parameter which can 

be selected by the user – choosing a larger value will result in the workflow taking longer to run.  

MoSS outputs the common substructures and how many times each occurs in the active and 

inactive chemicals, according to the MoSS algorithm. However, these values are slightly 

inaccurate due to ring mining used in the algorithm. Re-calculating accurate counts for all 

substructures output by MoSS would be too time consuming as often many thousands of 

substructures were output. Instead, Bayes Factor was calculated for each substructure using the 

occurrence in actives and inactives calculated by MoSS, and only the substructures with the 65 

largest values are kept. It was assumed here that the inaccuracies in the counts given by the MoSS 

algorithm were not so large that the actual best performing substructure was not in the top 65 

substructures. Accurate values for occurrence of active and inactive chemicals were calculated 

for the 65 substructures, and Bayes Factor recalculated. Only the substructure with the highest 

value of Bayes Factor was kept. When two substructures had the same Bayes Factor, the 

substructure which occurs in more active chemicals was chosen.  

The user decided the lower bounds for a structural alert in terms of number of actives and inactive 

chemicals, and the lower bounds Bayes Factor was calculated using these values. If the remaining 

substructure had a Bayes Factor larger than the lower bounds and was contained by more actives 

than the minimum required number, it was added to the list of structural alerts. Any active 

chemicals containing the substructure were removed from the training set and the whole process 

was repeated iteratively until no substructures satisfied the lower bounds for an alert.  

This iterative process produced a list of independent structural alerts. Chemicals containing a 

structural alert were predicted to be active, and those containing no alerts were predicted to be 

inactive. 

The resulting model was applied to both the training set and test set, and performance statistics 

were calculated for both.  
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3.1.2.2. Random forest 

Maria Folia (Unilever) has constructed random forest models using the same training sets as the 

structural-alert based models. 

The same procedure has been used to create the random forest models as previously for the 

Bowes targets (section 2.4.2.1).  

RDKit83 was used to create 200 physiochemical descriptors for each chemical including 

molecular, topological, van der Waals surface area (VSA) and lipophilicity descriptors. The model 

was built using the RandomForestClassifier from the sklearn package and kept the default 

settings apart from two hyperparameters, the number of trees (n_estimators) and the maximum 

depth of the trees (max_depth) which were tuned using GridSearchCV. 

The random forest models have been applied to the test set and performance statistics were 

calculated.  
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3.1.3. Results and discussion 

Structural alert models have been created for the new targets using the same two sets of 

parameters as for the Bowes Targets: a “risk assessment” model (theta 0.95, 1% maximum 

occurrence of an alert in the inactive chemicals, lower bounds for an alert of two actives and one 

inactive) and a “screening” model (theta 0.51, 15% maximum occurrence of an alert in the 

inactive chemicals, lower bounds for an alert of two actives and one inactive). The performance 

of these models for each biological target are shown in Tables 3.2 and 3.3. 

Random forest models have been created for the same data sets by Maria Folia. The same 

methodology was used as for the construction of random forest models for the Bowes targets. 

The performance of this model for each biological target is shown in Table 3.4. 
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3. Expanding the scope of the workflow 
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Target Gene Symbol TP FP FN TN SE SP ACC MCC
AGTR1 172 8 33 295 83.9% 97.4% 91.9% 0.834

AKT1 672 49 22 272 96.8% 84.7% 93.0% 0.836

BACE1 1506 130 36 501 97.7% 79.4% 92.4% 0.811

BCHE 313 59 49 473 86.5% 88.9% 87.9% 0.751

CASP1 255 40 104 731 71.0% 94.8% 87.3% 0.698

CASP10 2 0 4 243 33.3% 100.0% 98.4% 0.573

CASP2 3 3 7 251 30.0% 98.8% 96.2% 0.369

CASP3 240 19 56 455 81.1% 96.0% 90.3% 0.794

CASP5 5 1 9 390 35.7% 99.7% 97.5% 0.536

CASP8 75 5 9 278 89.3% 98.2% 96.2% 0.891

CHRM5 153 24 14 251 91.6% 91.3% 91.4% 0.820

CHUK 82 7 7 259 92.1% 97.4% 96.1% 0.895

CSF1R 325 16 11 248 96.7% 93.9% 95.5% 0.909

CSNK1D 163 18 23 233 87.6% 92.8% 90.6% 0.808

EDNRB 198 15 7 290 96.6% 95.1% 95.7% 0.911

ELANE 519 43 21 314 96.1% 88.0% 92.9% 0.851

EPHA2 124 6 17 267 87.9% 97.8% 94.4% 0.876

EPHB2 2 0 7 282 22.2% 100.0% 97.6% 0.466

FGFR1 506 27 21 261 96.0% 90.6% 94.1% 0.871

FKBP1A 96 11 5 256 95.0% 95.9% 95.7% 0.894

FLT1 283 17 16 467 94.6% 96.5% 95.8% 0.911

FLT4 171 12 15 242 91.9% 95.3% 93.9% 0.874

FYN 80 9 19 262 80.8% 96.7% 92.4% 0.803

GSK3B 604 79 13 248 97.9% 75.8% 90.3% 0.784

HDAC3 240 20 16 232 93.8% 92.1% 92.9% 0.858

IGF1R 587 30 20 282 96.7% 90.4% 94.6% 0.878

INSR 218 8 12 256 94.8% 97.0% 96.0% 0.919

KDR 1939 137 46 242 97.7% 63.9% 92.3% 0.690

LTB4R 83 6 10 241 89.2% 97.6% 95.3% 0.880

LYN 100 12 10 244 90.9% 95.3% 94.0% 0.858

MAPK1 622 16 887 2708 41.2% 99.4% 78.7% 0.544

MAPK3 12 0 15 277 44.4% 100.0% 95.1% 0.649

MAPK9 307 27 5 239 98.4% 89.8% 94.5% 0.891

MAPKAPK2 193 24 21 262 90.2% 91.6% 91.0% 0.817

MET 683 51 9 259 98.7% 83.5% 94.0% 0.859

MMP13 547 48 17 254 97.0% 84.1% 92.5% 0.833

MMP2 719 70 34 347 95.5% 83.2% 91.1% 0.804

MMP3 434 43 16 219 96.4% 83.6% 91.7% 0.821

Test set
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Table 3.4: Performance of the random forest models on the data sets of the additional biological 

targets. TP = true positives; FP = false positives; FN = false negatives; TN = true negatives; SE = 

sensitivity, SP = specificity; ACC = accuracy; MCC = Matthews correlation coefficient.  

 

MMP9 556 84 86 381 86.6% 81.9% 84.6% 0.685

NEK2 59 7 15 268 79.7% 97.5% 93.7% 0.806

NR1I3 10 1 126 685 7.4% 99.9% 84.5% 0.233

P2RY1 117 9 6 258 95.1% 96.6% 96.2% 0.912

PAK4 80 5 5 266 94.1% 98.2% 97.2% 0.923

PDE4A 159 13 14 221 91.9% 94.4% 93.4% 0.864

PDE5A 335 31 18 257 94.9% 89.2% 92.4% 0.846

PIK3CA 1174 61 8 478 99.3% 88.7% 96.0% 0.907

PPARG 785 105 300 1672 72.4% 94.1% 85.8% 0.696

PPP1CA 4 2 11 241 26.7% 99.2% 95.0% 0.401

PPP2CA 1 0 3 275 25.0% 100.0% 98.9% 0.497

PTEN 0 4 6 481 0.0% 99.2% 98.0% -0.010

PTPN1 269 73 65 471 80.5% 86.6% 84.3% 0.668

PTPN11 44 14 44 283 50.0% 95.3% 84.9% 0.532

PTPN13 0 0 15 262 0.0% 100.0% 94.6% -

PTPN14 0 0 4 266 0.0% 100.0% 98.5% -

PTPN2 53 19 28 282 65.4% 93.7% 87.7% 0.618

RAF1 333 17 1 252 99.7% 93.7% 97.0% 0.941

RARA 63 5 40 779 61.2% 99.4% 94.9% 0.729

RARB 57 1 14 823 80.3% 99.9% 98.3% 0.880

ROCK1 305 25 10 250 96.8% 90.9% 94.1% 0.882

RPS6KA5 42 7 15 256 73.7% 97.3% 93.1% 0.755

SIRT2 58 10 31 301 65.2% 96.8% 89.8% 0.686

SIRT3 35 6 8 258 81.4% 97.7% 95.4% 0.807

SRC 609 76 16 315 97.4% 80.6% 90.9% 0.810

TACR2 230 13 20 519 92.0% 97.6% 95.8% 0.902

TBXA2R 211 32 21 462 90.9% 93.5% 92.7% 0.835

TEK 187 11 12 260 94.0% 95.9% 95.1% 0.900

Average 288 26 39 384 76.7% 93.2% 93.1% 0.762
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The structural alert models for the additional biological targets perform very well in the test sets, 

with mean accuracy of 92% and 91%, and mean MCC of 0.740 model and 0.708 for the risk 

assessment and screening models respectively. Many of the new targets have fewer data points 

than the Bowes targets, but this is unsurprising as the Bowes targets are much studied and widely 

accepted as targets of interest. Despite this, the majority of the models for the new targets 

perform similarly to the models of the Bowes target. The “risk assessment” and “screening” 

models for the new targets have a mean accuracy of 92% and 91%, and a mean MCC of 0.782 and 

0.748 respectively. 

Maria Folia (Unilever) has constructed random forest models for the additional targets, again 

using the same training and test sets as the structural alert models. A mean accuracy of 93% and 

mean MCC of 0.762 indicate excellent model performance in the test sets of these additional 

targets. The model performance is similar to the Bowes targets models (average MCC of 0.802).  

The performance of the structural alert-based models and the random forest models for the new 

targets is similar, as it was for the Bowes targets. The main advantages of the structural alert 

models over random forest models is greater transparency and easily interpretable predictions, 

as discussed in Section 2.4.2.2. 

Construction of structural alert models for the additional 66 biological targets greatly increases 

the scope of the work, allowing activity predictions to be made for a wider range of targets of 

different biological interest. The high performance of these models shows that the structural alert 

approach is not limited to the well-studied Bowes targets.  
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3.2. Explaining trends in performance 

Why do the models for some targets perform poorly compared to others? In terms of test set MCC, 

targets which have poor performing structural alert-based models tend to also have poor 

performing random forest models. Is the data for these targets inherently harder to model? Is 

there a way of measuring how difficult data may be to model? With the Bowes targets and the 

additional biological targets, there is enough data to spot trends in performance statistics across 

different data sets and models. 

Two methods were used to investigate the trends in performance. The first method quantifies the 

structural similarity of actives to other actives and of actives to inactives, then calculates the 

difference. The second method is inspired by work by Tropsha,95 identifying activity cliffs 

between structurally similar chemicals. Both methods use Morgan fingerprints and Tanimoto 

coefficients to quantify similarity between pairs of chemicals. 
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3.2.1. Variation with data set size 

It was initially hypothesised that variation in performance was due to size of the training set, with 

small data sets being harder to model due to a lack of data making it harder to spot similarities 

and patterns in active chemicals.  

Performance of a model was quantified using the test set MCC. The results of a model with the 

following parameters was used: theta value 0.95, 5% maximum occurrence in inactives and lower 

bounds for a structural alert of two actives and one inactive.  Figure 3.1 shows the variation of 

test set MCC with number of actives in the training set of a target.  

As hypothesised, the smallest data sets give poorest model performance. The results suggest a 

cut-off of around 200 actives in the training set should be imposed. Below this cut-off there is 

simply not enough data for model construction. The cut-off of 200 training set actives has been 

included in Figure 3.1. 

It should be noted that test sets are a third of the size of the training set, and so targets with small 

training sets will have very small test sets. There will be a large variance when performance is 

evaluated on such small test sets. However, models were still built for these targets and their 

performance data included to see how well the algorithms performed when using small data sets 

and to see if any conclusions about data set size could be made.  

Above 200 actives in the training set, there is no correlation between size of data set and model 

performance. For example, hERG (3 617 actives in training set) and MAPK1 (4 700 actives in 

training set) have two of the largest data sets but produce two of the poorest performing models 

(test set MCCs of 0.502 and 0.454 respectively). 
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3.2.2. Distinction metric 

In theory, structural alerts create the best performing models when there are groups of 

structurally similar active chemicals which are distinctly different from the inactive chemicals. It 

was hypothesised that structural alerts will have difficulty modelling data where groups of 

structurally similar active chemicals are not structurally dissimilar from inactive chemicals. An 

attempt to quantify this structural distinction between groups of active chemicals and the inactive 

chemicals has been made here. For each active chemical, the distance in chemical space to the 

nearest active chemicals was calculated, as was the distance to the nearest inactive chemicals. 

The difference between these two values was the distinction between nearest active and inactive 

chemicals. This idea has been visualised in Figure 3.2. 

 

 

Figure 3.2: This figure is a representation of chemical space. The black dot represents an active 

chemical, the green band represents the most structurally similar active chemicals and the red band 

represents the most structurally similar inactive chemicals. The difference between active and 

inactive space, arrow “3”, is calculated by subtracting the distance to the nearest actives, arrow “1”, 

from the distance to the nearest inactives, arrow “2”. To create high performing structural alerts, 

arrow “3” should be large. 

 

  

1 
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3.2.2.1. Method 

Morgan fingerprints were created for all chemicals within the training set, with a bit string length 

of 1 024 and a radius of two atoms. This was done using RDKit nodes within KNIME. For a 

particular active chemical, the Tanimoto similarity coefficient to every other active was 

calculated. The mean of the highest ten values – the ten nearest active neighbours – was calculated 

giving the active:active similarity. For the same active chemical, the Tanimoto coefficient to the 

inactive chemicals was calculated. The mean of the highest ten values – the ten nearest inactive 

neighbours – was calculated giving the active:inactive similarity. The calculations were repeated 

for each active chemical in the training set, and the means taken for both values. The mean 

active:inactive similarity was subtracted from the mean active:active similarity, giving a single 

“distinction metric” for a target’s training set.  

The distinction metric was calculated for the training set of all targets – the selection of 24 Bowes 

Targets and the additional targets of biological interest.  
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3.2.2.2. Results and Discussion 

For each target, distinction metric was calculated from the training set data. Structural alert 

models were applied to the test set and MCC value calculated (structural alert models constructed 

by the automated workflow with parameters: theta value 0.95, 5% maximum occurrence in 

inactives and lower bounds for a structural alert of two actives and one inactive).  These two 

values were plotted against each other and this graph is shown in Figure 3.3.  

The cut-off of 200 training actives suggested previously was then applied to the data sets, 

removing the data from any targets that fall below the cut-off. The graph of test set MCC against 

distinction metric was replotted, shown in Figure 3.4. 
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There is a good correlation between test set MCC and the distinction metric, with an R2 value of 

0.634 when all targets are included. Some targets have negative values for the distinction metric 

– the ten nearest inactive chemicals are on average more similar to an individual than the ten 

nearest active chemicals – and these have test set MCCs which have the largest deviation from the 

line of best fit. Most of these targets have small data sets, falling below the cut-off of 200 actives 

in the training set, and have large variation in MCC as a result.  

Removing targets which fall below the 200 actives cut-off gives a slightly better correlation, with 

an R2 value of 0.636. However, the correlation appears to be weighted on a small number of 

targets with low distinction metric and low MCC. Despite this, the distinction metric does a fair 

job of explaining variation in model performance and gives far more insight than considering size 

of data set alone. 

A potential source of error might arise from comparing to the ten nearest neighbours in all data 

sets. Better correlations may be achieved by comparing to a different number of nearest 

neighbours. This number could be a different fixed value or could scale with data set size. 

Despite this possible source of error, a good correlation is seen between test set MCC and the 

distinction metric, indicating there is some merit in using fingerprints and structural similarity to 

predict model performance. 
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3.2.3. Dataset Modelability 

Activity cliffs are very similar compounds with vastly different activities. They are often difficult 

to predict and cause challenges for SAR modelling.96 Tropsha has previously proposed a 

modelability index (MODI) as an attempt to predict how feasible it is to create high performing 

QSAR models for a data set.95 It applies a concept similar to activity cliffs, finding pairs of nearest 

neighbour chemicals where there is a change in activity. These nearest neighbour pairs could 

indicate activity cliffs or isolated chemicals for which there are no reports of similar within the 

data set. Both will be challenging for SAR models to predict. MODI is the proportion of nearest 

neighbour pairs for which there is no change in activity, calculated for the active and inactive 

chemicals separately and then averaged. Data sets with larger values of MODI should be less 

problematic to model.   

Tropsha defines the nearest neighbour as the compound with “the smallest Euclidean distance 

from a given compound estimated in the entire descriptor space”.95 This definition may be 

appropriate when considering models constructed using many different descriptors, such as 

random forest models, but a structural-based alternative to the use of multi-dimension descriptor 

space would be more appropriate for the structural alert-based models. In this work, Morgan 

fingerprints have been generated for all compounds in a data set and the nearest neighbour to a 

given compound has been identified as the compound with the highest Tanimoto similarity 

coefficient between fingerprints. 

  



117 

3. Expanding the scope of the workflow 

3.2.3.1. Method 

Morgan fingerprints were generated for all chemicals in a target’s training set with the RDKit83 

Fingerprint node in KNIME67 using a bit string length of 1 024 and a radius of two atoms. For each 

training chemical, Tanimoto similarity coefficients between these fingerprints were calculated to 

all other training chemicals. The chemical with the highest Tanimoto similarity was identified as 

the nearest neighbour.  

For binary data sets like the ones used in this work, MODI is calculated as follows: 

𝑀𝑂𝐷𝐼 =  
1

2
(
𝑁𝑎

𝑠𝑎𝑚𝑒

𝑁𝑎
𝑡𝑜𝑡𝑎𝑙

+
𝑁𝑖

𝑠𝑎𝑚𝑒

𝑁𝑖
𝑡𝑜𝑡𝑎𝑙 ) 

Where:  

• 𝑁𝑎
𝑠𝑎𝑚𝑒 is the number of active compounds that have their nearest neighbour also being 

active compound 

• 𝑁𝑎
𝑡𝑜𝑡𝑎𝑙 is the total number of actives compounds 

• 𝑁𝑖
𝑠𝑎𝑚𝑒 is the number of inactive compounds that have their nearest neighbour being an 

inactive compound 

• 𝑁𝑖
𝑡𝑜𝑡𝑎𝑙 is the total number of inactive compounds 

MODI was calculated for the training sets of the selection of 24 Bowes targets and the 66 

additional targets.  
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3.2.3.2. Results and Discussion 

The variation of test set MCC from models built by the automated workflow (parameters: theta 

value 0.95, 5% maximum occurrence in inactives and lower bounds for a structural alert of two 

actives and one inactive) with MODI is shown in Figure 3.5. 

When considering all targets, a strong correlation can be observed between MODI and test set 

MCC, with an R2 value of 0.799. As shown in Figure 3.6, removing targets with less than 200 

actives in the training set improves the correlation. The R2 value increases to 0.884, indicating a 

very strong correlation between MODI and model performance.  

Such a high correlation gives us confidence in explaining why poor model performance is 

observed for some targets. Despite hERG and MAPK1 having large data sets, they have 

comparatively low MODI values (0.769 and 0.708 respectively) indicating a higher proportion of 

pairs of nearest neighbour pair with different activity. These pairs could be activity cliffs or 

indicative of reports of active chemicals with no similar chemicals in the data set, although this is 

unlikely with such large data sets. This data is inherently harder to model, and the poor 

performance of models is not due to problems with the methodology of the automated workflow 

for constructing structural alert-based models. Better predictivity for these targets might be 

possible with different, more complex modelling techniques capable of accounting for activity 

cliffs, such as docking studies or pharmacophore modelling. However, even these may struggle 

with troublesome targets like hERG, which is inhibited by a wide variety of structurally dissimilar 

chemicals.91 This makes constructing SARs for hERG particularly troublesome. Furthermore, the 

binding modes of hERG are considered “an unsolved mystery”,92 making receptor structure-based 

approaches to biological activity prediction (e.g. docking) as difficult as ligand-based approaches.   

Importantly, the MODI calculation involves finding the proportion of activity cliffs in the active 

and inactive chemicals separately and then averaging the two. This allows MODI to account for 

imbalanced data, giving a better prediction of overall model performance. 

There is a tighter correlation between test set MCC and MODI than between test set MCC and the 

distinction metric. As such, MODI will be used for the rest of this study, but distinction metric will 

not. 
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3.2.3.3. Random forest models 

A high correlation between MODI and the performance of the random forest models is seen, as 

shown in Figure 3.7, and with data set with fewer than 200 training set actives removed in Figure 

3.8. When only considering data sets with at least 200 training set actives, an extremely high R2 

value of 0.893 is observed for the correlation. This demonstrates the versatility of the fingerprint-

based MODI, predicting the model performance for both the random forest models and the 

structural alert models. It also shows the similarity in performances of the structural alert-based 

models and the random forest models for individual biological targets. 
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3.2.3.4. Application of MODI 

Having explained trends in performance of the existing models, we can now predict performance 

of future models before constructing them by evaluating the data set from which they will be 

made. Firstly, the data set should have greater than 200 active chemicals. Fingerprint-based MODI 

can then be calculated quickly, and model performance can be predicted from this. This is 

particularly valuable for larger data sets for which model construction is computationally 

expensive.  
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3.3. Bowes targets without ToxCast data 

Models have been created for 24 Bowes targets using data from ChEMBL and ToxCast. There is 

no human data in ToxCast for the remaining Bowes targets, but they are still important MIEs. 

Despite there being fewer data points available for these targets, activity predictions would still 

be useful. 

 

3.3.1. Data Sets 

For each target, Homo sapiens bioactivity data was downloaded from ChEMBL (data extracted 

November 2018). Activity reports were filtered to remove any with a confidence score of less 

than eight. Only activities reported with Standard Units of nM were kept, leaving reports of EC50, 

IC50, Ki and Kd. RDKit83 Salt Stripper was used to remove common salts and counter ions from 

chemicals. All chemicals with more than 100 atoms were removed. The SMILES strings were re-

written to be canonical using RDKit, such that the format was consistent across all reports.  

Where chemicals had exact values of activity, means of the values were taken. Chemicals with a 

mean activity of 10 000 nM or lower were assigned as active; those with over 10 000 nM were 

assigned as inactive. Some values of activity are reported as “greater than” a certain value instead 

of as exact values. In these cases, if the activity for a chemical was reported as greater than 10 000 

nM and the chemical had no other reports of activity, the chemical was assigned as inactive. 

Data points were split randomly, with 75% forming a training set and 25% forming a test set.  

A summary of the data sets is shown in Table 3.5. For three of the targets, no human data with a 

minimum confidence score of eight was found. Of the seventeen targets with data, three have 

fewer training actives than the cut-off of 200 suggested previously. Most of the data sets have 

significant imbalances in data, with many more actives than inactives. 
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3.3.2. Results and Discussion 

Using the data sets extracted from ChEMBL, structural alert-based models have been constructed 

using the automated workflow with “Risk Assessment” parameters (theta 0.95, 1% maximum 

occurrence of an alert in the inactive chemicals, lower bounds for an alert of two actives and one 

inactive) and with “Screening” parameters (theta 0.51, 15% maximum occurrence of an alert in 

the inactive chemicals, lower bounds for an alert of two actives and one inactive). 

The results of the Risk Assessment model are shown in Table 3.6. MODI values have been 

calculated for each training set and, using the best fit line between test set MCC and MODI in the 

other targets, test set MCCs predicted. 

Three of the targets have fewer training actives than the cut-off of 200 so would not be expected 

to form good models. The other data sets are mostly imbalanced, with many more active 

chemicals than inactive chemicals. In data sets with few inactives, falsely predicting the activity 

of the inactive chemicals will lead to very low specificity. As MCC is designed to account for 

imbalances in data, false positive predictions in data sets with few inactive chemicals results in 

large decreases in MCC. Cholecystokinin A receptor is an example of a such a target. Despite 

correctly predicting 95% of the active chemicals in the test set, three of the four inactive chemicals 

are falsely predicted to be active, leading to a very low MCC value of 0.165.  

The results of the Screening model are shown in Table 3.7. This model is designed to increase 

sensitivity at the expense of specificity. In data sets with few inactive chemicals, the decreased 

specificity has a larger effect on MCC values than the increase in sensitivity. Hence, lower MCC 

values are seen in the test set of each of the biological targets and the mean MCC decreases 

compared to the Risk Assessment models.  
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In selecting which substructure should be a structural alert, the calculation of Bayes Factor uses 

absolute values of number of inactive (and active) chemicals containing the substructures, not 

the proportion of total inactives. Hence, a theta value which produces models with high MCC 

values in balanced data sets is unlikely to produce models with high MCC values in data sets with 

few inactive chemicals. A larger theta value could be used to create a model which hits fewer false 

positives in training and would likely have a higher test set MCC, but this would be overfitting the 

model to limited data. The best way to improve the performance of the models in these data sets 

is not to tune the parameters to avoid the small number of inactives and give the highest possible 

MCC, but to increase the number of inactives in the training and test sets. 

Even when ignoring targets with fewer than 200 actives or with particularly large excesses of 

active chemicals compared to inactive chemicals, poor test set MCC values are seen. These values 

are, however, similar to the values predicted by calculating MODI, suggesting that even with 

imbalanced data, MODI does a good job of predicting test set MCC. The relatively low MODI values 

indicate a higher proportion of nearest neighbour pairs with differing activity in these data sets 

compared to the data sets for targets with data from both ChEMBL and ToxCast. It should be noted 

that the MODI calculation involves calculating proportion of nearest neighbour pairs with 

differing activity in both the actives and the inactive separately, then averaging the two values. 

Thus, in imbalanced data sets with large excesses of active chemicals, the small number of inactive 

chemicals can have large contributions to MODI values, as well as to MCC values. With few inactive 

chemicals and many active chemicals, it is more likely that an inactive chemical’s nearest 

neighbour is an active chemical, resulting in low MODI.    

Hence, the best way to improve MCC and MODI values, and to judge the performance of these 

models more fairly, is to use data sets with a good balance of active and inactive data. 

Based on their models, Rosenkranz and Cunningham concluded that SAR models can tolerate 

imbalance in data between 33% actives and 75% actives.97 These cut-offs were derived using a 

fragment-based machine learning method so may be relevant to the models created here, 

although Rosenkranz and Cunningham’s models were applied to mutagenicity predictions. When 

these cut-offs are applied to the models generated here, along with the minimum 200 training 

actives cut-off, only five targets remain: cannabinoid CB1 receptor, cyclooxygenase-2, histamine 

H2 receptor, monoamine oxidase A and phosphodiesterase 3A. The average performance across 

the Risk Assessment models of these five targets is better than average across all targets, with a 

mean accuracy of 77.0% and a mean MCC of 0.544. 

The results for these data sets demonstrate the importance of using balanced data sets (in terms 

of number of active and inactive chemicals) in model construction.  
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3.4. Conclusions 

The automated workflow has been used to build new structural alert-based models for 66 

biological targets which are not Bowes targets. The models generally perform extremely well. In 

the “risk assessment” models, on average 92.2% of predictions are correct and a mean MCC of 

0.740 is seen across the targets. These results are similar to the performance of random forest 

models, which, averaging across all targets, correctly predict 93.1% of chemicals and have a mean 

MCC of 0.762. The main advantage of the structural alert-based models over random forest 

models is that the predictions are considerably easier to interpret, allowing the user to 

understand why the prediction has been made. By constructing models for a larger number of 

biological targets, all identified by Unilever to be important MIEs in risk assessment, the scope of 

the project has been greatly expanded beyond the Bowes Targets. 

The variation in performance of the models for different targets cannot be explained by only 

considering the size of the data sets. Performance has been explained in terms of two metrics: a 

distinction metric which quantifies similarity of active chemicals to other active chemicals and to 

inactive chemicals, and a MODI based on proportion of activity cliffs in the data, inspired by work 

by Tropsha.95 MODI correlates extremely well with test set MCC, giving a linear relationship with 

a R2 value of 0.88. Being able to explain variation in performance in terms of a property of the 

data sets provides additional confidence in the model construction methods. The poor 

performance of both structural alert-based models and random forest models for some targets 

(e.g. hERG and MAPK1) is due to a high proportion of activity cliffs in the data, not due to some 

random error in the models.  

The correlation between MODI and model performance also allows the user to quickly predict 

how good a model will be before beginning the computational expensive process of model 

construction.  

Models have been created for seventeen of the Bowes targets which lack human data in ToxCast, 

but the remaining three Bowes targets contain no data suitable for this study in either ChEMBL 

or ToxCast. Data sets have been curated from ChEMBL data only, but many of these are 

imbalanced, with many more actives than inactives. The automated workflow for construction of 

structural alert-based models has been applied to these data sets, but the resultant models 

perform relatively poorly on the test sets. The poor performance statistics are often a result of a 

lack of inactive data points in the test set. In these cases, falsely predicting the activity of a small 

number of inactives results in large drops in specificity and MCC. This is particularly problematic 

in the “screening” models, which are designed to have large sensitivities at the cost of lower 

specificity, resulting in a very low average MCC of 0.261. The “Risk Assessment” models, designed 
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to have a higher specificity, have a better overall performance with an average MCC of 0.441. An 

even greater MCC could be obtained by changing the parameters of the workflow, but this would 

be overfitting the models. The results obtained for these models highlight the importance of using 

data balanced in terms of numbers of actives and inactives to construct models.  
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4. Confidence in negative predictions 

4.1. Introduction 

In risk assessment, a false negative prediction can be the most dangerous type of erroneous 

prediction as it could potentially lead to hazardous chemicals being exposed to consumers. Hence, 

confidence in the negative predictions of in silico models is of vital importance.  

Structural alert models predict activity by identifying substructures that are common to active 

chemicals. Chemicals that contain a structural alert are predicted to be active and chemicals 

containing no structural alerts are predicted to be inactive. However, is absence of a structural 

alert enough to predict inactivity with confidence? 

If a new chemical is predicted active by the structural alert-based model, the confidence in the 

active prediction can be assessed by looking at the structural alert(s) contained by the chemical. 

As shown previously in section 2.6, one can look at the structure of the chemicals in the training 

set that contain the structural alert and consider how similar the new chemical is to the relevant 

training chemicals. One would have more confidence if the new chemical is similar to the active 

training chemicals containing the alert and dissimilar to the inactives.  

If a new chemical contains no structural alerts, it is predicted inactive but no further information 

is given with the current models. This new chemical could be an inactive chemical with features 

that the model has seen in the training sets when building alerts, but it could also be an active 

chemical with new features that structural alerts would not recognise. Simply reporting absence 

of structural alert gives us no confidence in distinguishing between these two scenarios. Can more 

information be provided about negative predictions so that the user can have more trust in the 

prediction?  
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4.1.1. Lhasa methods 

Derek Nexus42 is an expert knowledge-based software designed by Lhasa.98 It gives predictions 

for toxicity endpoints including bacteria mutagenicity and skin sensitisation using structural 

alerts created by experts from literature knowledge, public data and proprietary data. Bacteria 

mutagenicity and skin sensitisation have reactivity-driven MIEs for which presence of 

electrophilic groups leads to activity. This is the fundamental difference to the structural alert-

based models constructed in this work, which predict receptor binding MIEs. To be active for a 

receptor binding MIE, a particular combination of features, such as hydrogen bond donors, 

hydrogen bond acceptors, ionisable or charged groups, aromatic rings, hydrophilic and 

hydrophobic groups, are required in a particular three-dimensional geometry. Despite being built 

for different types of MIEs, both models use structural alerts, and so ideas used to improve the 

Lhasa models could be applied to the models in this work. 

Williams et al76  have applied two methods to the Derek Nexus bacteria mutagenicity models to 

improve confidence in negative predictions: exclusion rules and classification of features. 

Each structural alert has its own exclusion rules. These are features which negate the activity 

prediction of the structural alert – if a chemical contains the structural alert but also contains an 

exclusion rule, it is predicted to be inactive. This differs from a standard negative prediction 

which is due to absence of any structural alerts. The negative predictions due to exclusion rules 

have been made by expert knowledge, rather than absence of an alert. Williams et al investigated 

the difference between confidence in the two negative predictions and concluded that the 

exclusion rules should not be used to improved confidence in negative predictions for their 

mutagenicity alerts. They found no improvement in negative predictivity in inactive predictions 

due to exclusion rules than in inactive predictions due to lack of alert alone. 

The features (structural fragments) of a new chemical containing no structural alerts are 

evaluated and compared to features seen in the training chemicals. If the new chemical contains 

features that are often present in known false negative compounds, it is considered to have 

“misclassified” features. If the new chemical contains features that are not present in the library 

of structural features, it is considered to have “unclassified” features. Chemicals with no 

misclassified or unclassified features were found to have the largest negative predictivity (NPV) 

– the proportion of predicted negatives which are true negatives – and hence increased 

confidence in negative predictions. Lhasa has included these categories of negative predictions 

into Derek Nexus. Building on the work by Williams et al, Chilton et al have also applied these 

categories of negative predictions to skin sensitisation,99 which, like mutagenicity, is caused by 

reactivity driven MIEs. 
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In this chapter, methods inspired by those used by Lhasa for reactivity driven MIEs have been 

applied to the structural alerts for the receptor binding MIEs developed in this project. The aim 

of this work is to provide more confidence in negative predictions.  
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4.2. Structural alert exclusion rules 

The structural alerts for mutagenicity in Derek Nexus each have a set of exclusion rules which 

overrule active predictions in certain circumstances. For example, chemicals containing epoxides 

are generally mutagenetic, and so a structural alert exists for them. However, tri- or tetra-

substituted epoxides do not lead to mutagenicity because there is too much steric bulk around 

the epoxide, blocking the approach of any nucleophile. As a result, an exclusion rule for the 

epoxide structural alert is written for tri- and tetra-substituted epoxides. This example is shown 

in Figure 4.1.  

 

Figure 4.1: Left: a structural alert created by Lhasa for mutagenicity. Right: an “exception” to the 

alert. Tri- or tetra-substituted epoxides are too sterically hindered to be reactive and so are generally 

not active in the Ames test.  

 

The idea of exclusion rules has been applied to the structural alerts created by the automated 

workflow for the Bowes targets. Features which appear to negate the activity prediction of a 

structural alert were identified by finding additions to the structural alert that occur in multiple 

inactive chemicals and no active chemicals. These are coded as exclusion rules. An example is 

shown in Figure 4.2.  

 

Figure 4.2. Left: a structural alert for acetylcholinesterase, contained by 151 true positives and 74 

false positives. Right: a proposed “exception” to the alert, contained by six false positives and no true 

positives in the training set. 

 

Alert: epoxide Exception: tri- or tetra-substituted 

Alert Exception 
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In Derek Nexus, exclusion rules are created based on expert knowledge and with clear 

explanations. The exclusion rules are derived from the explanations. In contrast, the exclusion 

rules for the structural alerts for receptor binding MIEs are derived directly from observations of 

the data. Clear explanations are not provided with these exclusion rules. To provide a clear 

explanation of the exclusion rules, knowledge of how the chemicals containing an alert bind to 

the receptor is required.  

Even without a clear explanation of mechanism, the exclusion rules provide a rationale behind 

the negative predictions that is not present when making predictions from lack of structural 

alerts alone.  

In this work, exclusion rules have been constructed for the structural alerts for receptor binding. 

The performance of negative predictions due to the exclusion rules was then compared to the 

performance of negative predictions due to absence of any alerts. 
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4.2.1. Method 

All chemicals in the training set of a biological target containing a particular structural alert were 

found. The MoSS100 node in KNIME67 was applied to these chemicals to find substructures which 

occur in at least two of the alert-containing inactive chemicals and no active chemicals. Only 

substructures directly containing the positive structural alert were kept and were coded as 

“exclusion rules” to the alert. This requirement meant exception rules will be directly related to 

the structural alert itself. This process of building exclusion rules was repeated for all structural 

alerts of the target. 

If a chemical contained the structural alert but also contained an exclusion rule to that alert, it 

was not predicted to be active.  

Seven targets were chosen to be used in this study. These targets were acetylcholinesterase, 

androgen receptor, beta-2 adrenergic receptor, dopamine D2 receptor, glucocorticoid receptor, 

hERG and mu opioid receptor. These targets contained the greatest number of false positives, 

meaning there was more data from which exclusion rules can be constructed.  

Two sets of structural alerts created by the automated workflow with two different sets of 

parameters have been included for each target: 

1. Theta value of 0.95, 5% maximum occurrence of a structural alert in the inactive 

chemicals, and lower bounds for an alert of two actives and one inactive. These 

parameters result in a model with high specificity and structural alerts that are generally 

more specific.  

2. Theta value of 0.51, 5% maximum occurrence of a structural alert in the inactive 

chemicals, and lower bounds for an alert of two actives and one inactive. These 

parameters result in a model with higher sensitivity but lower specificity. 

For each target and for each set of structural alerts, exclusion rules have been constructed.   
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4.2.2. Results and discussion 

The structural alert models with exclusion rules have been applied to the test sets of the relevant 

targets and the performance of the models is shown in Table 4.1. In all models, the number of 

false positives in the test set decreases, and the specificity increases. In most models, the number 

of true positives also decreases, leading to a decrease in sensitivity. Despite being trained from 

only false negatives in the training set, the exclusion rules affect both true negatives and false 

negatives in the test sets of some models. This shows that the exclusion rules are not completely 

accurate. Despite increasing specificity in all models, the concurrent decrease in sensitivity 

results in only small increases to test set MCC, and in some cases, decreases. 

A direct comparison of the effect on only negative predictions is shown in Table 4.2. Only a small 

proportion of negative predictions come from the exclusion rules. Structural alerts have been 

built using Bayesian statistics to cover active chemicals whilst avoiding inactive chemicals. As a 

result, most alerts have few false positives in the training set from which to build exclusion rules. 

Models built using a higher value for the theta parameter will contain structural alerts that are 

generally larger in size, more specific and are contained by fewer false positives. These will be 

harder to build exclusion rules for. Hence, there are generally fewer predictions due to exclusion 

rules for models built for the same target when using a theta value of 0.95 than when using a theta 

value of 0.51.    

For most models, the negative predictive value (NPV) – proportion of negative predictions which 

are true negatives – for negative predictions from exclusion rules is lower than the NPV for 

negative predictions due to lack of alerts alone. It can be concluded that there is no additional 

confidence in the negative predictions due to exclusion rules than in the negative predictions due 

to lack of structural alerts alone. The predictions by exclusions rules are for chemicals which are 

very similar to active chemicals – all of these chemicals contain a substructure which has been 

identified as statistically likely to be contained by active chemicals. Predicting the activity of 

chemicals which lie on the border between activity and inactivity is inherently difficult, and so 

there should not be much confidence in the negative predictions from exclusion rules. The same 

conclusion was reached by Williams et al in their work on exclusion rules for structural alerts for 

mutagenicity.76  
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4.3. Classification of negative predictions by features 

Chemicals that are predicted to be inactive by the structural alert models could be split into two 

groups: chemicals which have features that have been seen in the inactives used in model 

construction, and chemicals with unknown features which are unlike the inactives used in model 

construction. One may have more confidence in the inactivity prediction of chemicals in the 

former group as the model has seen the features and built structural alerts that avoid containing 

them. Hence, we need some idea of when a new chemical is like or unlike training data.  

In this work, “chemical features” have been defined as small groups of connected atoms, i.e. small 

substructures. In Morgan fingerprints, circular atom neighbourhoods are hashed into a bit string. 

The user specifies radius of the circular atom neighbourhood and the length of the bit string. 

Circular atom neighbourhoods will be generated at the radius specified by the user, and at every 

atom radius lower than this down to one atom. Bit collisions occur when multiple circular atom 

neighbourhoods within the same chemical are hashed onto the same bit. Fingerprints with a 

longer bit string will have a lower probability of bit collisions. In absence of bit collisions, each bit 

in a Morgan fingerprint represents the presence of a small substructure. Thus, each bit in a 

Morgan fingerprint represents a chemical feature.  

A Morgan fingerprint can be generated for a chemical which has been predicted to be inactive, 

giving a bit string that represents the features present. This can be compared to the Morgan 

fingerprints of the training chemicals to determine if all features of the new chemical have been 

seen in the inactives involved in model construction. Features which have been seen in inactive 

chemicals in the training set are considered “classified” features, and those which have not been 

seen in the training inactive chemicals are considered “unclassified”.  

Other fingerprints, such as the MACCS fingerprints could be used instead of Morgan fingerprints. 

In their work in assessing confidence in negative predictions from mutagenicity structural alerts, 

Williams et al found a higher NPV for chemicals containing only classified features.76 Similar 

results were found for structural alerts for skin sensitisation by Chilton et al.99 In this section, it 

is investigated whether an increase in NPV is also observed for the structural alerts for receptor 

binding MIEs. The choice of bit string length and radius of circular atom neighbourhoods in the 

Morgan fingerprint were also investigated.  
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4.3.1. Method 

For a particular target, structural alerts (created using the training set) are applied to the test set. 

Only chemicals which are predicted to be inactive are kept and Morgan fingerprints are generated 

for these. Morgan fingerprints are also generated for all inactive training set true negatives (TN) 

chemicals using the same bit string length and the same radius of fingerprint. For each test 

chemical predicted to be inactive, the positions of present bits (“1”) within the fingerprint are 

found. If the bit is present in the any training TN, it is considered a “classified feature”. If the bit is 

absent in all training set chemicals, it is considered an “unclassified feature”. If a test chemical 

contains no structural alerts and has one or more unclassified features, it is categorised as 

“inactive with unclassified features”. Test chemicals containing no structural alerts and no 

unclassified features are categorised as “inactive with classified features”. The classification-by-

features process is represented graphically in Figure 4.3. 

 

 

Figure 4.3: a graphical representation of the classification-by-features process. Each row of numbers 

is a Morgan fingerprint. The top row represents the test set chemical and the other rows represent 

the training set true negative chemicals. Where a test set feature is present in any of the training set 

true negatives, it is considered a “classified feature”. If the test set feature is not present in any of the 

training set true negatives, it is considered an “unclassified feature”. 

 

For each target that the classification-by-features process was applied to, structural alerts built 

by the automated workflow with the “Risk Assessment” parameters were used in each case (theta 

0.95, 1% maximum occurrence in inactives, structural alert lower bounds of two actives and one 

inactive). These parameters were chosen as they give the greatest number of false negatives for 

each target.  

Classified feature Unclassified feature 

Test chemical fingerprint 

Training set true 
negative fingerprints { 
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Initially, the MACCS 166 fingerprints have also been used instead of Morgan fingerprints in the 

classification-by-features process. The RDKit83 implementation of the MACCS 166 Fingerprints 

was used, generated using the Fingerprint node in KNIME.67  

The effect of using different bit string lengths in generating the Morgan fingerprints was 

investigated.  
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4.3.2. Results and discussion 

4.3.2.1. MACCS Fingerprints 

The MACCS 166 fingerprints were initially used for the classification-by-features process for 

three targets: acetylcholinesterase, alpha-2a adrenergic receptor and dopamine D2 receptor. The 

results shown in Table 4.3. The results show that very few chemicals have unclassified features 

when using this fingerprint.  

The MACCS 166 fingerprint indicates the presence or absence of 166 features. Whilst it may be 

suitable for other purposes such as substructure searching, the MACCS 166 fingerprints are not 

suitable for this purpose because they do not allow enough distinction between chemicals. Here, 

each bit present in a test chemical is compared to the same bit position in all true negatives in the 

training set. With at least 700 true negatives in the training sets of each target, it is likely that 

most of the 166 features are present at least once. Hence, most features will be considered 

classified features. The MACCS fingerprint might be suitable in data sets with fewer chemicals, 

but they are not suitable in these data sets.  
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4.3.2.2. Morgan Fingerprints 

Effect of fingerprint string length 

The results of the classification-by-features for four different targets using Morgan fingerprints 

with radius two atoms and varying bit string length are shown in Table 4.4. These targets are 

acetylcholinesterase, the alpha-2a adrenergic receptor, the dopamine D2 receptor, and the 

vasopressin V1a receptor.  

From here on, different features in different chemicals being hashed to the same bit position in 

different fingerprints will be referred to as a “bit clash”. This differs from a “bit collision”, which 

is different features in the same chemical being mapped to the same bit position in the same 

fingerprint. Increasing the length of the Morgan fingerprint strings reduces the probability of both 

bit clashes and bit collisions occurring. The average number of “on” bits of the test chemicals of 

each target has been included in Table 4.4 to give an indication of the sparsity of the fingerprints. 

A bit collision in a test chemical would result in two features sharing the same bit in the test 

fingerprint, which could lead to one of the features wrongly being considered classified if one 

feature is present in the training chemicals but the other is not. A bit clash between a test 

chemical’s feature and a different feature in a training true negative would also result in the test 

feature wrongly being considered classified. In the classification-by-features process, each bit in 

the test chemical is compared to the same bit in all training true negatives, of which there are at 

least 700 in the four targets here. Hence, a bit clash is approximately 700 times more likely to lead 

to erroneous classification of a test set feature than a bit collision, and bit collisions, by 

comparison, are not a significant source of error.  

Thus, there are two main reasons why a feature present in a test set chemical would be labelled 

as classified: 

1. The feature is present in at least one of the training set chemicals under consideration 

2. A different feature is present in one of the training set chemicals and is hashed onto the 

same bit position in a Morgan fingerprint string as the feature of the test chemical (bit 

clash). 

 

To interpret the results and theory of the classification-by-features process, we must first 

investigate the number of bit clashes at different fingerprint string lengths, and the effects bit 

clashes have on performance.  

The probability of a test bit not having any bit clashes with the training chemicals can be 

calculated if we assume a random distribution of bits in a bit string, and we assume that each 
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training chemical’s bit string is independent of the other training chemicals’ bit strings. Whilst 

the former is a valid assumption, the latter is not because many training chemicals will contain 

the same features. Making these assumptions would lead to an underestimate of the probability 

of no bit clashes between a test bit and the training chemicals. 

A more pragmatic approach to assessing the likelihood and effects of bit clashes at different 

fingerprint string lengths is shown below. 
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The effect of bit string length on the proportion of chemicals with unclassified features is shown 

in Figure 4.4. At low bit string lengths, most chemicals are considered classified – with 

fingerprints of 1 024 bits, less than 3% of chemicals are considered unclassified in all four targets. 

When bit string length is increased to 8 000 bits, many more chemicals contain unclassified 

features – between 52% and 74% for the four targets. This increase in unclassified chemicals is 

due to bit clashes. At small bit string lengths, there is a higher probability of bit clashes, so a higher 

probability of features being considered classified and therefore more classified chemicals. 

Increasing the length of the bit string reduces the likelihood of bit clashes, resulting in more 

features being considered unclassified and therefore more unclassified chemicals. 

Increasing the bit string length beyond 8 000 bits should eventually lead to a fingerprint long 

enough that there are no bit clashes. With this fingerprint, any classified features will be 

considered classified because that feature is present in at least one training set chemical rather 

than due to a bit clash. Further increasing the bit string length would have no change on the 

number of classified features. By extrapolating to the point where the curves in Figure 4.4 would 

be flat, the bit string length at which there is an insignificant number of bit clashes could be 

predicted as between 12 000 and 18 000 bits. This is a very rough prediction from only four points 

in each curve, but it gives an idea of the length of fingerprint that would be required to evaluate 

the effect of classifying features without errors due to bit clashes. However, the workflow for 

running the classify-by-features process in the targets’ data sets is very memory intensive and 

time consuming. Using fingerprint strings lengths of greater than 8 000 bits would require greater 

computational power than a desktop computer, or construction of a more efficient program. For 

now, conclusions will be made from fingerprints up to 8 000 bits in length, and if it is deemed to 

be pragmatic to run calculations with larger bit strings, this will be done later.  

Extrapolating the graphs to fingerprints string lengths of between 12 000 and 18 000 bits would 

result in approximately 80% of chemicals being considered unclassified. With only 20% of 

chemicals in these test sets being considered classified, one might question how useful this 

classification is. It could indicate that the Morgan fingerprints are too detailed for this purpose. 

The number of true negatives in the training set must also be considered when discussing bit 

clashes. Data sets with a larger number of chemicals will generally have a larger number of total 

features present in the data set. This will lead to a greater number of bit clashes when the features 

are hashed to a bit string of fixed length. Of the four targets shown in Figure 4.4, 

acetylcholinesterase has the largest number of training true negatives and so has the greatest 

number of bit clashes at all fingerprint lengths.   
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In absence of results from impractically long fingerprints, the efficacy of the classification-by-

features process must be evaluated whilst being aware of errors caused by bit clashes. Bit clashes 

will lead to random error, effecting both true negatives and false negatives with equal probability. 

Hence, a greater number of bit clashes will result in the change in NPV in the classified chemicals 

approaching zero. For each target, as fingerprint length increases, random error from bit clashes 

will decrease and the change in NPV in the classified chemicals will approach the value it would 

take without bit clashes. This trend can be seen most clearly in the results for the alpha-2a 

adrenergic receptor and dopamine D2 receptors, with ΔNPV of 8.8% and 6.8% respectively with 

fingerprints of 8 000 bit length. A general increase in NPV, allowing for error, can also be seen for 

the vasopressin V1a receptor, but a lower ΔNPV 2.2% is seen at 8 000 bit string length. As 

fingerprint string length increases for the acetylcholinesterase data, no clear increase in NPV is 

seen, with ΔNPV staying at around 0%. Acetylcholinesterase has a larger number of training true 

negatives than the other targets, leading to more random error due to bit clashes. However, at a 

bit string length of 8 000, more than half of the test chemicals are unclassified chemicals and so 

are unaffected by bit clashes. It can be concluded that the classification process is not helping to 

identify false negatives in the acetylcholinesterase data, but in the other three targets, 

unclassified chemicals are more likely to be false negatives than chemicals with only classified 

features. 

 

 

Effect of fingerprint radius 

Increasing the radius of the Morgan fingerprints would result in larger circular environments 

being considered features, as well as those already considered at a radius of two atoms. Hence, 

more features will be hashed onto the fingerprint bit string and, keeping bit string length 

constant, there will be more bit clashes. To use a Morgan fingerprint of radius three atoms with 

no bit clashes in the data sets used here, very large string lengths will be required, and these will 

be too computationally expensive. As such, only fingerprints with radius two have been used here. 
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Performance at fixed string lengths 

To explore why the change in NPV varies between different targets, the classification-by-features 

process has been applied to further targets beyond the preliminary study. The targets 

investigated here are:  

• acetylcholinesterase 

• alpha-2a adrenergic receptor  

• beta-1 adrenergic receptor 

• dopamine D2 receptor  

• norepinephrine transporter 

• serotonin 2a receptor 

• serotonin 3a receptor  

• serotonin transporter 

• tyrosine-protein kinase LCK  

• vasopressin V1a receptor  

Morgan fingerprints of radius two atoms and 4 096 bit string length were used for all of these 

targets. A longer string length would have led to fewer bit clashes and less random error but 

would have been computationally more expensive (calculations with fingerprint lengths of 4 096 

bits took between a few hours and a day to run, whilst lengths of 8 000 could take several days).  

The performance of the structural alert-based models used before the classification process are 

shown in Table 4.5, and the results of the classification process are shown in Table 4.6. 

With the exception of acetylcholinesterase, the NPV for chemicals with only classified features is 

greater than the overall NPV in all targets, suggesting that the classification-by-features process 

is helping to distinguish true negatives from false negatives. Particularly large increases in NPV 

are seen in tyrosine-protein kinase LCK (8.5%), the serotonin transporter (8.0%), and the 

serotonin 2a receptor (7.8%). The targets with the most training true negatives tend to have more 

features in these chemicals, and so there are more bit clashes when using the same length bit 

string. As a result, these targets have changes in NPV closer to zero. Conversely, the target with 

the least training true negative has the largest increase in NPV.  

 

  



154 

4. Confidence in negative predictions 

 

T
a

b
le

 4
.5

: 
T

h
e 

p
er

fo
rm

a
n

ce
 o

f 
th

e 
st

ru
ct

u
ra

l 
a

le
rt

-b
a

se
d

 m
o

d
el

s 
u

se
d

 i
n

 t
h

e 
cl

a
ss

if
ic

a
ti

o
n

-b
y-

fe
a

tu
re

s 
p

ro
ce

ss
. 

A
ll

 w
er

e 
g

en
er

a
te

d
 w

it
h

 “
R

is
k 

A
ss

es
sm

en
t”

 p
a

ra
m

et
er

s:
 t

h
et

a
 0

.9
5

, 1
%

 m
a

xi
m

u
m

 o
cc

u
rr

en
ce

 i
n

 t
h

e 
in

a
ct

iv
es

, 
a

n
d

 l
o

w
er

 b
o

u
n

d
s 

fo
r 

a
n

 a
le

rt
 o

f 
tw

o
 a

ct
iv

es
 a

n
d

 o
n

e 
in

a
ct

iv
e.

 T
h

e 

ta
rg

et
s 

a
re

: 
ty

ro
si

n
e-

p
ro

te
in

 k
in

a
se

 L
C

K
 (

L
C

K
),

 s
er

o
to

n
in

 2
a

 r
ec

ep
to

r 
(5

H
T

R
2

A
),

 d
o

p
a

m
in

e 
D

2
 r

ec
ep

to
r 

(D
R

D
2

),
 a

lp
h

a
-2

a
 a

d
re

n
er

g
ic

 r
ec

ep
to

r 

(A
D

R
A

2
A

),
 s

er
o

to
n

in
 t

ra
n

sp
o

rt
er

 (
5

-H
T

T
),

 v
a

so
p

re
ss

in
 V

1
a

 r
ec

ep
to

r 
(V

1
A

R
),

 s
er

o
to

n
in

 3
a

 r
ec

ep
to

r 
(5

H
T

R
3

A
),

 b
et

a
-1

 a
d

re
n

er
g

ic
 r

ec
ep

to
r 

(A
D

R
B

1
),

 

n
o

re
p

in
ep

h
ri

n
e 

tr
a

n
sp

o
rt

er
 (

N
E

T
),

 a
n

d
 a

ce
ty

lc
h

ol
in

es
te

ra
se

 (
A

C
h

E
).

 

T
a

rg
et

A
le

rt
s

T
P

F
P

F
N

T
N

SE
SP

A
C

C
M

C
C

T
P

F
P

F
N

T
N

SE
SP

A
C

C
M

C
C

L
C

K
5

5
1

2
3

9
3

5
4

4
3

7
0

9
6

.6
%

9
1

.4
%

9
5

.3
%

0
.8

7
3

4
1

2
2

1
3

7
9

8
9

1
.8

%
8

2
.4

%
8

9
.8

%
0

.7
0

9

5
H

T
R

2
A

8
1

2
7

3
7

5
9

6
0

7
1

2
9

7
.9

%
9

2
.3

%
9

6
.7

%
0

.9
0

2
9

2
8

3
0

3
2

2
3

3
9

6
.7

%
8

8
.6

%
9

4
.9

%
0

.8
5

0

D
R

D
2

6
8

4
1

9
5

1
3

6
6

7
7

1
9

9
8

.4
%

8
4

.1
%

9
6

.0
%

0
.8

5
4

1
3

8
3

5
9

5
1

2
2

3
9

6
.4

%
7

9
.1

%
9

3
.6

%
0

.7
6

4

A
D

R
A

2
A

6
8

5
9

6
2

5
5

3
7

4
4

9
1

.8
%

9
6

.7
%

9
4

.5
%

0
.8

9
0

1
5

7
1

2
3

9
2

3
3

8
0

.1
%

9
5

.1
%

8
8

.4
%

0
.7

6
9

5
-H

T
T

4
8

3
0

0
4

1
0

5
5

3
7

4
7

9
8

.3
%

8
7

.7
%

9
6

.0
%

0
.8

7
9

9
4

4
3

7
4

2
2

4
6

9
5

.7
%

8
6

.9
%

9
3

.8
%

0
.8

2
2

V
1

A
R

1
5

4
4

6
2

1
1

0
7

6
6

9
7

.8
%

9
7

.3
%

9
7

.5
%

0
.9

4
7

1
5

0
6

1
3

2
6

6
9

2
.0

%
9

7
.8

%
9

5
.6

%
0

.9
0

7

5
H

T
R

3
A

2
8

3
1

6
1

1
3

2
7

6
7

9
0

.8
%

9
8

.6
%

9
6

.2
%

0
.9

1
0

8
7

4
1

7
2

7
3

8
3

.7
%

9
8

.6
%

9
4

.5
%

0
.8

5
9

A
D

R
B

1
4

9
9

1
3

3
6

4
7

7
7

0
9

5
.1

%
9

5
.5

%
9

5
.3

%
0

.9
0

5
2

5
8

2
2

4
3

2
5

4
8

5
.7

%
9

2
.0

%
8

8
.7

%
0

.7
7

7

N
E

T
6

9
2

1
0

1
9

4
1

2
2

1
3

5
5

9
4

.5
%

9
3

.5
%

9
4

.1
%

0
.8

7
7

6
2

5
3

2
6

4
4

6
0

9
0

.7
%

9
3

.5
%

9
1

.9
%

0
.8

3
6

A
C

h
E

1
6

6
1

7
9

2
8

3
2

1
2

1
3

8
4

8
9

.4
%

9
4

.3
%

9
1

.5
%

0
.8

3
0

4
9

9
5

0
1

1
1

4
4

6
8

1
.8

%
8

9
.9

%
8

5
.4

%
0

.7
1

3

T
ra

in
in

g 
se

t
T

es
t 

se
t



155 

4. Confidence in negative predictions 

 

T
a

rg
et

T
ra

in
in

g 
T

N
T

N
F

N
N

P
V

T
N

F
N

N
P

V
N

P
V

 w
it

h
o

u
t 

cl
a

ss
if

ic
a

ti
o

n
Δ

N
P

V
 w

it
h

 c
la

ss
if

ic
a

ti
o

n
%

 u
n

cl
a

ss
if

ie
d

 c
h

e
m

ic
a

ls

L
C

K
3

7
0

3
0

7
8

1
.1

%
6

8
3

0
6

9
.4

%
7

2
.6

%
8

.5
%

7
2

.6
%

5
H

T
R

2
A

7
1

2
1

1
2

5
9

5
.7

%
1

2
1

2
7

8
1

.8
%

8
7

.9
%

7
.8

%
5

5
.8

%

D
R

D
2

7
1

9
9

9
1

6
8

6
.1

%
1

2
4

3
5

7
8

.0
%

8
1

.4
%

4
.7

%
5

8
.0

%

A
D

R
A

2
A

7
4

4
9

4
9

9
1

.3
%

1
3

9
3

0
8

2
.2

%
8

5
.7

%
5

.6
%

6
2

.1
%

5
-H

T
T

7
4

7
1

2
3

8
9

3
.9

%
1

3
2

3
4

7
9

.5
%

8
5

.9
%

8
.0

%
5

5
.9

%

V
1

A
R

7
6

6
1

2
5

3
9

7
.7

%
1

4
1

1
0

9
3

.4
%

9
5

.3
%

2
.3

%
5

4
.1

%

5
H

T
R

3
A

7
6

7
1

2
9

4
9

7
.0

%
1

4
4

1
3

9
1

.7
%

9
4

.1
%

2
.9

%
5

4
.1

%

A
D

R
B

1
7

7
0

1
2

0
1

2
9

0
.9

%
1

3
4

3
1

8
1

.2
%

8
5

.5
%

5
.4

%
5

5
.6

%

N
E

T
1

3
5

5
3

1
9

3
7

8
9

.6
%

1
4

1
2

7
8

3
.9

%
8

7
.8

%
1

.8
%

3
2

.1
%

A
C

h
E

1
3

8
4

2
9

1
7

4
7

9
.7

%
1

5
5

3
7

8
0

.7
%

8
0

.1
%

-0
.3

%
3

4
.5

%

C
la

ss
if

ie
d

 C
h

em
ic

a
ls

U
n

cl
a

ss
if

ie
d

 C
h

em
ic

a
ls

T
a

b
le

 4
.6

: 
T

h
e 

re
su

lt
s 

of
 t

h
e 

cl
a

ss
if

ic
a

ti
o

n
 p

ro
ce

ss
 o

n
 a

 w
id

e 
se

le
ct

io
n

 o
f 

ta
rg

et
s.

 M
o

rg
a

n
 f

in
g

er
p

ri
n

ts
 o

f 
ra

d
iu

s 
tw

o
 a

to
m

s 
a

n
d

 4
 0

9
6

 b
it

 s
tr

in
g

 l
en

g
th

 

w
er

e 
u

se
d

 f
o

r 
a

ll
 r

es
u

lt
s 

sh
o

w
n

 h
er

e.
 T

h
e 

ta
rg

et
s 

a
re

: 
ty

ro
si

n
e-

p
ro

te
in

 k
in

a
se

 L
C

K
 (

L
C

K
),

 s
er

o
to

n
in

 2
a

 r
ec

ep
to

r 
(5

H
T

R
2

A
),

 d
o

p
a

m
in

e 
D

2
 r

ec
ep

to
r 

(D
R

D
2

),
 a

lp
h

a
-2

a
 a

d
re

n
er

g
ic

 r
ec

ep
to

r 
(A

D
R

A
2

A
),

 s
er

o
to

n
in

 t
ra

n
sp

o
rt

er
 (

5
-H

T
T

),
 v

a
so

p
re

ss
in

 V
1

a
 r

ec
ep

to
r 

(V
1

A
R

),
 s

er
o

to
n

in
 3

a
 r

ec
ep

to
r 

(5
H

T
R

3
A

),
 

b
et

a
-1

 a
d

re
n

er
g

ic
 r

ec
ep

to
r 

(A
D

R
B

1
),

 n
o

re
p

in
ep

h
ri

n
e 

tr
a

n
sp

o
rt

er
 (

N
E

T
),

 a
n

d
 a

ce
ty

lc
h

o
li

n
es

te
ra

se
 (

A
C

h
E

).
  



156 

4. Confidence in negative predictions 

Explaining the results of the classification-by-features process 

To use the classification-by-features process to increase confidence in negative predictions, it is 

necessary to explain why some targets give better results than others, and why 

acetylcholinesterase does not give an increase in NPV when all other targets do. 

Consider simply taking the Tanimoto similarity coefficient between each test chemical’s 

fingerprint and the training true negative chemicals’ fingerprints. If a test chemical has a high 

similarity coefficient relative to any single training true negative, most of its features will be 

present in that one training chemical. The test chemical will therefore be less likely to contain any 

unclassified features. Conversely, a test chemical with a low similarity score relative to all training 

true negatives is more likely to contain unclassified features. Therefore, we expect to see a 

correlation between a test chemical’s maximum Tanimoto similarity coefficient to training true 

negatives and the probability of the chemical being considered classified. This trend is not 

expected to be exact because:  

• The feature comparison across all training inactives is more complex than a similarity 

coefficient to just one chemical. 

• Presence of bit clashes leads to some features being considered classified even though the 

feature is not present in any of the training inactives (as discussed previously). 

 

Morgan fingerprints of radius two atoms and string length of 4 096 bits were generated for all 

chemicals. The Tanimoto similarity coefficients between each test set chemical predicted to be 

inactive and the training set true negatives were calculated and the maximum value was found. 

the distribution of the maximum Tanimoto similarity coefficients in both the test set true 

negatives and the test set false negatives was plotted graphically. This value was also plotted 

against the number of unclassified features for each test chemical.  

These graphs are shown for tyrosine-protein kinase LCK (the target with largest increase in NPV) 

and for acetylcholinesterase (the target with no change in NPV) in Figures 4.5a and 4.5b 

respectively. 
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In both targets, chemicals with lower maximum Tanimoto similarity coefficient (based on Morgan 

fingerprints) to training set true negatives generally contain more unclassified features, and, 

hence, are more likely to be unclassified chemicals. This trend is complicated by bit clashes 

leading to random errors, and so is clearer for tyrosine-protein kinase LCK, which has fewer 

training true negatives than acetylcholinesterase and therefore fewer bit clashes.  

In both targets, there is no significant skew in the distribution of Tanimoto coefficients (based on 

Morgan fingerprints) of the test set true negatives. The targets differ in the distribution of the 

false negatives. The false negatives in tyrosine-protein kinase LCK are strongly skewed towards 

low Tanimoto coefficients. As a result, the false negatives are more likely to be identified as having 

unclassified features. The false negatives in acetylcholinesterase are not skewed and have a near-

identical distribution of Tanimoto coefficients as the true negatives. It is not possible to 

distinguish the true negatives from false negatives according to these distributions, and this is 

reflected in the results of the classification-by-features process.  

In acetylcholinesterase there are some training inactive chemicals which are very similar to test 

active chemicals. These are activity cliffs. These similar active and inactive chemicals might come 

from the same chemical series – chemicals with the same structural backbones but with differing 

side groups leading to significant changes in activity.  

The classification-by-features process appears to be identifying chemicals which are most similar 

to training true negatives as “classified chemicals”, regardless of whether they are active or 

inactive.  Whilst, the classification-by-features process has resulted in improvements in NPV for 

most targets, similar improvements in NPV may be possible by a different method that simply 

considers Tanimoto similarity coefficients (based on Morgan fingerprints) to training set true 

negatives. Such a method would be less computational expensive and less affected by bit clashes.  

The classification-by-features method presented here has been inspired by a method developed 

by Lhasa for reactivity-driven MIEs. In these MIEs, presence of a single electrophilic feature can 

lead to activity. Hence, identifying an unclassified feature through the classification-by-feature 

process allows identification of features that could be electrophilic, leading to unexpected activity 

in a chemical predicted to be inactive. In reactivity-drive MIEs, “local” changes in chemical 

structure can lead to changes of activity. 

The structural alerts developed in this work have been created for biological targets which are 

activated through receptor binding-based mechanisms. For a chemical to undergo a receptor 

binding-based MIE, it must have the right combination of features (hydrogen bond donors, 

hydrogen bond acceptors, ionisable or charged features, aromatic rings, etc) in a specific 

configuration in three-dimensional space. Presence of an unknown feature alone may not be 
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enough to lead to unpredicted activity. The classification-by-features process allows the 

identification of unknown features, but it does not indicate if the unknown feature is in a position 

in the chemical to affect receptor binding. Receptor binding MIEs are less sensitive to “local” 

changes in chemical structure. 
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4.4. Classification of negative predictions by similarity 

In the classification-by-features section, it was concluded that equally good results could be 

achieved by simply considering Tanimoto similarity coefficients (based on Morgan fingerprints) 

between a predicted inactive and the training set true negatives. The key hypothesis of this 

method is that inactive chemicals that are more similar to training set true negatives are more 

likely to be true negatives.  

Acetylcholinesterase was a problematic target for the classification-by-features method. The 

presence of activity cliffs meant some training true negatives were very similar to active 

chemicals, resulting in false negative chemicals being consider “classified”. To identify similar 

cases, similarity between predicted inactive chemicals and training set actives will also be 

considered. Test chemicals with a high Tanimoto similarity (based on Morgan fingerprints) to a 

training active chemical are more likely to be false negative.  
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4.4.1. Method 

Morgan fingerprints with a radius of two atoms and a string length of 4 096 bits were generated 

for all chemicals. Two rules were applied to test chemicals which were predicted to be negative 

by the structural alert-based models: 

1. The test chemical must not exceed a maximum Tanimoto similarity coefficient (between 

fingerprints) to any training active chemical. Chemicals which do not meet this 

requirement are considered too similar to known active chemicals and therefore more 

likely to be a false negative prediction. These chemicals were labelled “no alert but like 

actives”.  

2. The test chemical must have a Tanimoto similarity coefficient (between fingerprints) to 

at least one training true negative that exceeds a minimum value. Chemicals which do not 

meet this requirement are considered too dissimilar to the training inactives and were 

labelled “out of domain”. 

Chemicals which met these two requirements were considered “classified” chemicals.  

Different values for both requirements were trialled to find the effect of varying each, and to find 

the best performing combination.  

The maximum Tanimoto similarity coefficient to any training active was varied without applying 

the second requirement. 

The minimum Tanimoto similarity coefficient to at least one training true negative was varied 

after applying the first requirement with a maximum Tanimoto similarity coefficient of 0.7 to any 

training active chemical. 

Structural alert-based models created by the automated workflow with “Risk Assessment” 

parameters (0.95 theta, 1% maximum occurrence in the inactive chemicals, and lower bounds of 

two active and one inactive) were applied to the test sets of the 24 Bowes targets with ToxCast 

data. The classification-by-similarity process was applied to the chemicals predicted to be 

inactive by the models. 
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4.4.2. Results and discussion 

4.4.2.1. Variation of maximum similarity to a training active 

The classification-by-similarity process was applied with varying maximum Tanimoto similarity 

coefficient based on Morgan fingerprints to any training active. There was no requirement for 

similarity to a known inactive. Hence, negative predictions were put in two groups: “No alert but 

like active” if the chemical exceeded a maximum similarity to any training active, or “classified” if 

it did not. The purpose of this was to find a sensible limit for similarity to training actives. 

The results are shown in Figure 4.6.a and Figure 4.6.b. 

The lowest NPV in the “no alert but like active group”, and, hence, largest proportion of false 

positive predictions, was seen when a value of 0.7 was used as the maximum Tanimoto similarity 

(based from Morgan fingerprints) to any training active chemical. At this limit, an average across 

data sets of 5.5% of negative predictions were considered “no alert but like active”. 
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Figures 4.6.a (top) and 4.6.b (bottom): Structural alerts constructed with the automated workflow 

(“Risk Assessment” parameters) were applied to the test sets of the 24 Bowes targets with ToxCast 

data. The classification-by-similarity process was applied to the test chemicals predicted to be 

inactive, varying the maximum Tanimoto similarity coefficient based from Morgan fingerprints to 

any training active chemical and no minimum similarity to training true negatives. The variation of 

NPV in the “no alert but like active” group is shown in the top figure, and the variation of the 

proportion of negative predictions in this category shown in the lower figure, taking mean values 

across all test sets.  
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4.4.2.2. Variation of minimum similarity to a training true negative 

After applying the first requirement with a maximum Tanimoto similarity coefficient (based on 

Morgan fingerprints) of 0.7 to any training active chemical, the minimum Tanimoto similarity 

coefficient to at least one training true negative was varied. At each different, the NPV for the 

chemicals considered “classified” in each data set is calculated and compared to the NPV when 

using structural alerts only. The mean change in NPV is taken across all data sets, and the 

variation is shown in Figure 4.7a. The variation of mean proportion of chemicals considered 

“classified” is shown in Figure 4.7.b.  
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Figures 4.7.a (top) and 4.7.b (bottom): Structural alerts constructed with the automated workflow 

(“Risk Assessment” parameters) were applied to the test sets of the 24 Bowes targets with ToxCast 

data. The classification-by-similarity process was applied to the test chemicals predicted to be 

inactive, using a maximum Tanimoto similarity coefficient of 0.7 to any training active chemical and 

a varying minimum Tanimoto similarity coefficient to training true negatives. The variation of 

change in NPV is shown in the top figure, and the variation of proportion of chemicals considered 

classified is shown in the lower figure, taking mean values across all test sets.  
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The mean NPV when using only structural alerts was 85.9%. When a maximum Tanimoto 

similarity coefficient (between Morgan fingerprints) of 0.7 to any training active chemical is 

required, the mean NPV increases to 88.2%. At a minimum required Tanimoto similarity 

coefficient (between Morgan fingerprints) of 0.1 to at least one training true negative, there is no 

change in NPV as all chemicals meet this requirement. As the minimum required values increases, 

the mean NPV increases at every step, up to 96.4% at 0.9 (larger minimum required values were 

not used). This suggests that test chemicals that are more similar to training true negative are 

more likely to be true negatives, agreeing with Johnson and Maggiora’s similarity property 

principle.57 

As the minimum required Tanimoto similarity coefficient to at least one training true negative 

increases, the mean proportion of negative-predicted test chemicals considered to be classified 

decreases with an S-shaped curve. 

To evaluate confidence in negative predictions, the user could look at the largest Tanimoto 

similarity coefficient to training true negatives – the larger the value, the more likely the test 

chemical is to be a true negative. However, less than 15% of test chemicals have a value of 0.7 or 

greater. A cut-off of a minimum Tanimoto similarity coefficient to at least one training true 

negative of 0.4 provides a good balance of high NPV and high proportion of chemicals considered 

classified with the test sets. 
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4.4.2.3. Overall process 

The classification-by-similarity process when using this cut-off is graphically shown in Figure 4.8. 

 

Figure 4.8: The three classifications of negative predictions, as defined by Tanimoto similarity 

coefficients between the Morgan fingerprints of a test chemical and the training chemicals. In this 

image, pink boxes are input chemicals, blue boxes are key steps in the process, green boxes represent 

high confidence predictions, yellow represent medium confidence predictions, and red represents 

low confidence predictions.   

 

The performance of the structural alert-based models used before the classification-by-similarity 

process is shown in Table 4.7, and the results of the classification-by-similarity process with the 

suggested cut-offs for each target are shown in Table 4.8. 
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The classification-by-similarity process leads to increases in NPV for all targets. An average 

increase in NPV of 6.3% is seen across all targets, which is a significant increase in the confidence 

of negative predictions. The increase in NPV observed here is greater than that observed for the 

classification-by-features method for nine of the ten targets which have been used in both 

methods, with alpha-2a adrenergic receptor being the one exception – an increase of 5.5% for 

classification-by-similarity compared to an increase of 5.6% for classification-by-features. 

In the classification-by-similarity method, a larger proportion of chemicals were considered 

classified than in the classification-by-features method with a fingerprint string length of 4 096 

bits. Acetylcholinesterase is an exception, with a smaller proportion of classified chemicals in the 

classification-by-features method. This is due to the presence of many bit clashes in 

acetylcholinesterase causing most chemicals (65%) to be classified.  

Compared to classification-by-features, the classification-by-similarity method results in a larger 

proportion of chemical being considered classified negatives, and there is a larger NPV in the 

classified chemicals. Therefore, classification-by-similarity is the superior method. 

The similarity to training active chemicals allows identification of chemicals that are similar to 

known active chemicals despite not containing any structural alerts. These chemicals are more 

likely to be active and so should be in their own category of negative prediction. A risk assessor 

should have low confidence in negative predictions which are in the “no alerts but like actives” 

category. 

The requirement of minimum similarity to true negative chemicals in the training set means only 

chemicals which bare some resemblance to inactive chemicals seen in training of the model are 

considered classified. Chemicals which do not meet this requirement could be considered as too 

different to the training chemicals and therefore “out of domain” compared to the inactives used 

in training the model. Whilst these chemicals contain no structural alerts and are not similar to 

training active chemicals (according to Tanimoto similarity between fingerprints), they might be 

from a different region of chemical space to the training chemicals.  

Chemicals considered to be “Classified Negatives” contain no structural alerts, are not similar to 

training active chemicals and are somewhat similar to at least one training inactive chemical. A 

risk assessor should have high confidence in this category of negative prediction. 

In future work, rather than splitting negative predictions into three discrete categories, one could 

investigate creating a quantitative assessment of confidence in negative predictions by 

considering the largest Tanimoto similarity between fingerprints of the test chemical and the 

training actives, and between the test chemical and the training true negatives.   
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4.5. Conclusions 

Increasing confidence in negative predictions is of vital importance, particularly in risk 

assessment. Williams et al have investigated two methods for increasing confidence in negative 

predictions from structural alert models for mutagenicity,76 related to reactivity-driven MIEs. 

Methods inspired by that work have been applied to the structural alerts for Bowes targets, which 

are receptor binding MIEs. 

Exclusion rules have been created for the structural alerts for Bowes Targets. These are features 

added to a structural alert to give a substructure which occurs only in inactive chemicals in the 

training set. There was found to be no increase in confidence in the negative predictions due to 

exclusion rules than in the negative predictions due to lack of structural alerts alone. Predicting 

the activity of chemicals which lie on the border between activity and inactivity is inherently 

difficult, so there is limited confidence in the negative predictions from exclusion rules. 

Whether features, as defined by fingerprints, in test chemicals were present in the training set 

inactive chemicals was used to assess confidence in negative predictions. Test chemicals 

containing only features that are present in the training true negative chemicals were considered 

“classified” chemicals.  

When MACCS fingerprints were used to define features, too few chemicals were considered 

unclassified for this approach to be useful. MACCS fingerprints code only 166 features and this 

was not enough to distinguish between chemicals. 

Features were coded using bits in a Morgan fingerprint, but bit clashes were found to be a major 

problem when using short fingerprint strings. A greater confidence in negative predictions was 

seen in the classified chemicals in nine out of ten biological targets, but not in 

acetylcholinesterase. However, a large proportion of chemicals were considered unclassified. The 

performance of this method has been explained using the maximum Tanimoto similarity 

coefficient between the fingerprints of each test chemical and the training true negatives. 

Chemicals with a larger maximum Tanimoto similarity between fingerprints are more likely to be 

classified chemicals. The distribution of these values in the false negatives compared to the 

distribution in the true negatives has been used to explain the variation of NPV in the biological 

targets. 

A new method for classifying negative predictions has been designed using Tanimoto similarity 

coefficients between Morgan fingerprints of a test chemical and the training set chemicals.  Bit 

clashes are insignificant with this method as fingerprints are compared in a one-to-one way 

instead of the one-to-many way used in classification-by-features. Chemicals which are predicted 

to be negative by the structural alert models are split into three categories: 
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• “Similar to active” – chemicals which have a Tanimoto similarity coefficient of greater 

than 0.7 to any training active chemical. Whilst these chemicals do not contain any 

structural alerts, they are highly similar to known active chemicals, so are more likely to 

be false negatives. A risk assessor should have low confidence in this category of negative 

prediction. Averaging across the Bowes targets, only 35% of negative predictions in this 

category were true negatives.   

• “Out of domain” – chemicals which do not have a Tanimoto similarity between 

fingerprints of at least 0.4 to any true negative in the training set. These chemicals do not 

contain any structural alerts and are not similar to training active chemicals, but they are 

not similar to any of the inactive chemicals seen in training the model. A risk assessor 

should have a fair amount of confidence in this category of negative prediction but be 

aware that chemicals in this category may be from a different region of chemical space to 

the training chemicals. Averaging across the Bowes targets, 82% of negative predictions 

in this category were true negatives. 

• “Classified negative” – chemicals which have a Tanimoto similarity coefficient of at least 

0.4 to any true negative in the training set and do not have a Tanimoto similarity of 

coefficient of greater than 0.7 to any training active. These chemicals do not contain any 

structural alerts, are not similar to any training active chemicals, and have a good 

similarity to a known inactive chemical. One should have high confidence in this category 

of negative prediction. Averaging across the Bowes targets, 92% of negative predictions 

in this category were true negatives. 

 

In the “classified negatives” category of negative prediction, NPV was increased in the test sets of 

all targets. The increase was greater than that seen in the classification-by-features method, and 

more chemicals were considered classified. Hence, the classification-by-similarity method is the 

superior method for receptor binding MIEs, and it greatly increases the confidence in negative 

predictions. 

Previous studies have used a method similar to the classify-by-features method to increase NPV 

in structural alert based-models for the reactivity driven MIEs related to mutagenicity76 and skin 

sensitisation.99 In these MIEs, presence of a single electrophilic feature can lead to activity. “Local” 

changes in molecular structure can lead to changes in activity. The classify-by-features approach 

identifies presence of unknown features, which represent unknown local changes, to increase 

confidence in negative predictions for reactivity drive MIEs. 

Here, it has been shown that the classify-by-similarity method is more effective than the classify-

by-features method for increasing NPV in structural alert-based models for receptor binding 
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4. Confidence in negative predictions 

MIEs. In these MIEs, chemicals need a specific combination of features in three-dimensional 

space. Activity is the result of several interactions across the molecule as a whole. Hence, the 

classify-by-similarity metric which considers similarities between molecules as a whole (a 

“global” metric) has been more effective in assessing confidence in negative predictions. 

  



175 

5.Generalisation of aromatic structural alerts 

5. Generalisation of aromatic structural alerts 

5.1. Reformatting structural alerts 

The structural alerts generated by the automatic workflow are written in a format created by the 

MoSS node.68 The substructures are written in a SMILES format, which can be read and used by 

all the relevant nodes within KNIME. However, this format could be problematic when used in 

other programs and for other purposes. It would be better to have the alerts written in a SMARTS 

format – a format widely accepted for writing substructures.  

In theory, SMILES strings should be valid SMARTS strings, so no changes should be needed when 

treating a SMILES string as a SMARTS string. However, this is not the case for the structural alerts 

as outputted by the MoSS node, evidenced by a drop in the number of molecules contained by 

some alerts when the alerts are treated as SMARTS strings instead of SMILES strings. Whilst there 

is not a problem when using the structural alerts SMILES strings internally within KNIME (where 

the relevant nodes are capable of treating substructures as SMILES strings), there may be a 

problem if they were to be used externally as SMARTS strings (where programs may only be 

capable of treating substructures as SMARTS strings). 

The issue is due to treatment of atoms at the end of straight chains within the substructure. Take 

for example carbon: MoSS will write “C” at the end of a straight chain to mean any carbon – 

aliphatic or aromatic. In SMARTS format, “C” means only an aliphatic carbon, not an aromatic 

carbon. Instead, “[C,c]” should be written, meaning aromatic or aliphatic carbon. The same issue 

arises for nitrogen atoms. This change needs to be made to the structural alerts as outputted by 

MoSS and the structural alerts should be treated as SMARTS so that they can be universally used 

by all programs. An example is shown in Figure 5.1. 

 

Figure 5.1. An example of a structural alert with three terminal carbons, labelled “1”, “2”, and “3”. 

On the left is the alert when written in SMILES format. On the right is the alert when written in 

SMARTS format.  
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5.Generalisation of aromatic structural alerts 

Treating the MoSS formatted alerts as SMARTS strings without making this change will result in 

the alerts missing molecules that should be predicted positive by these alerts – molecules with 

aromatic structures at the end of the chains of the structural alert. 

At the time, no existing programs directly dealing with this issue could be found. Using KNIME 

and java scripts, a new workflow has been created to make the outlined changes to the structural 

alerts. 

Terminal carbons were identified within the SMILES string as being written as: 

1. “-C)” anywhere in the string 

2. “C-“ at the start of the string 

3. “-C” at the end of the string 

The same rules apply for identifying terminal nitrogen atoms. 

The MoSS formatted structural alert strings were inputted into the workflow. Each character in 

the string was split into an individual cell in an array, apart from “Cl” (chlorine atom) or “Br” 

(bromine atom) for which both characters occupy one cell. The sequence of cells was checked for 

cases where consecutive cells meet any of the three rules for terminal carbons. Where terminal 

carbons are identified, the cell containing “C” was replaced by “[C,c]”. Similarly, terminal nitrogen 

atoms were identified and replaced with “[N,n]”. The entire series of cells was then concatenated 

sequentially to give the new SMARTS string. 

Structural alerts created by the automated workflow for the Bowes Targets were used to check 

this process. The structural alert SMILES strings were changed to corrected SMARTS strings using 

the process outlined above. Unlike the previous strings, the new SMARTS strings no longer miss 

molecules when treated as SMARTS strings. The predictions from structural alerts are consistent 

between the original SMILES strings used as SMILES (within KNIME nodes) and the SMARTS 

strings used as SMARTS strings (within any program). 

Structural alert-based models can be generated using the automated workflow in SMILES format. 

The structural alerts can then be converted to SMARTS format using the workflow outlined here 

to give alerts in a universally accepted format that can be used in for all purposes. 

 

 

  



177 

5.Generalisation of aromatic structural alerts 

5.2. Generalising aromatic structural alerts 

For some targets, active chemicals with closely related aromatic substructures are found in the 

same data set. Researchers may have tried adding or removing heteroatoms in different positions 

within an aromatic system with the goal of investigating how each position affects activity (whilst 

maintaining aromaticity). Changing heteroatoms within an aromatic system has little effect on 

the three-dimensional shape of the system but can have an effect on the electronics of the ring 

and on the ability to form hydrogen bonds. Heteroatoms with lone pairs perpendicular to the 

aromatic ring, such as oxygen and certain nitrogen atoms (where the lone pair is not involved in 

aromatic bonding), can act as hydrogen bond acceptors. By investigating which positions within 

the aromatic system require such heteroatoms, we can attempt to identify where hydrogen bonds 

may be formed with the target binding site. This gives us understanding of how the MIE of 

receptor binding works. This ligand-based understanding can be compared with target-based 

understanding, such as X-ray crystal structures. 

It would seem sensible to have the closely related aromatic substructures, such as those shown 

in Figure 5.2, contained within the same alert.  

In SMARTS strings, the character “a” means any aromatic atom can be found at a particular 

position in the substructure. This feature allows one SMARTS string to contain several closely 

related aromatic substructures.  

The algorithm of the MoSS node uses SMILES strings to build maximum common substructures. 

Hence, the SMARTS features cannot be used in the maximum common substructure search 

directly. We can however take the structural alerts written as SMILES strings (as generated by 

the automated workflow), convert them into SMARTS strings, and then use features of SMARTS 

strings to combine closely related aromatic substructures into one alert.  

 

Figure 5.2. A series of closely related aromatic substructures found in the adenosine A2a receptor 

training set. The far-left substructure is identified as a structural alert, being contained by 375 active 

chemicals and 25 inactive chemicals. The other three substructures are not directly identified as 

structural alerts but are collectively contained by fifteen active chemicals. 
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5.Generalisation of aromatic structural alerts 

A workflow has been designed for the aromatic generalisation process, starting with an existing 

structural alert and generalising aromatic atoms only if there is sufficient evidence within the 

data set to justify doing so. “Sufficient evidence” was defined by using Bayesian statistics, as done 

previously in the automated workflow for construction of structural alert-based models (see 

Section 2.2.1). 
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5.Generalisation of aromatic structural alerts 

5.2.1. Method 

The structural alerts in SMILES formats, as outputted by the automated workflow, were inputted 

into a new workflow. Alerts containing inorganic elements were removed – inorganic elements 

were identified as any that require square brackets to refer to the atom in SMILES notation. 

Structural alerts containing no aromatic features were identified as ones with no lower-case 

letters and were removed (note that non-aromatic substructures including Cl and Br would be 

exceptions to this rule, but this is unimportant as they will be unaffected by the rest of the 

workflow). Each character in the string was split into an individual cell in an array, apart from 

“Cl” (chlorine atom) or “Br” (bromine atom) for which both characters occupy one cell. As 

outlined in the previous section, terminal carbon and nitrogen atoms within the substructure 

were identified and converted to a SMARTS consistent representation ([C,c] and [N,n] 

respectively). 

All aromatic atoms – identified as cells which were entirely lower case (so Cl and Br will not be 

included) – were replaced by the character “a” (meaning a general aromatic atom of any element) 

giving entirely generalised aromatic systems. This substructure was labelled as the “parent alert”.  

At this point, a loop began. Each “a” in the parent alert was individually returned to the original 

atom in that position whilst leaving the other “a”s, giving multiple substructures known as the 

“children alerts”. The number of active and inactive chemicals containing the parent alert and 

each of the children alerts was found, from which Bayes Factor was calculated. If the parent alert 

has a Bayes Factor greater than all of the children alerts, it was output, and the loop was ended. 

If any of the children alerts have a Bayes Factor greater than or equal to the parent alert’s Bayes 

Factor, the child alert with the greatest Bayes Factor becomes the new parent alert and was 

returned to the beginning of the loop. The loop was repeated until a parent alert was output or if 

the best performing child alert contained no “a”s, in which the case the original alert with no 

generalised aromatic atoms was output.  

This process is shown graphically in Figure 5.3. 
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5.Generalisation of aromatic structural alerts 

 

Figure 5.3. An overview of the generalising aromatic alerts workflow. A structural alert is shown to 

give an example of how the workflow works. 
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5.Generalisation of aromatic structural alerts 

5.2.1. Results and Discussion 

The algorithm takes a structural alert and, if there is sufficient evidence, creates a SMARTS alert 

that will also be contained by additional closely related aromatic structures.  

The outlined algorithm could be viewed as a method of steepest ascent, giving an estimation of 

the best performing (in terms of Bayes Factor) possible placement of generalised aromatic atoms 

within the substructure. To be certain that the output generalised structural alert is the best 

possible performing substructure, every possible combination of generalised aromatic atoms 

would have to be checked, which would be much more computationally expensive.  

The user must select a value of theta in the Bayes Factor calculations for this algorithm. The 

considerations discussed previously (Section 2.2.3.1) regarding the choice of theta used in the 

automated workflow for creating structural alert-based also apply here – lower theta values will 

maximise true positives but also give more false positives than higher theta values, which will 

minimise false positives but give fewer true positives.  

An example illustrating the generalisation of a structural alert is show in Figure 5.4. The structural 

alert is the same one as shown in Figure 5.2. All aromatic atoms in a structural alert are replaced 

with generalised aromatic atoms, potentially increasing the number of active and inactive 

chemicals containing the alert. The method of steepest ascent is followed to find which atoms 

should be kept as general aromatic atoms. In the example shown in Figure 5.4, only three 

positions have sufficient evidence to be kept as general aromatic atoms. All three of the closely 

related aromatic substructures shown in Figure 5.2 are contained by the final generalised 

aromatic alert. 

 

Figure 5.4. The left-hand substructure is a structural alert for the adenosine A2a receptor. The 

middle substructure is the fully generalised “parent alert” created from the structural alert. The 

right-hand substructure is the final result of the generalised aromatic structural alert algorithm. In 

this example, the final generalised structural alert is contained by the same number of active 

chemicals as the fully generalised “parent alert” but is contained by fewer inactive chemicals. 
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5.Generalisation of aromatic structural alerts 

The process of generalising the alerts provides us with additional information as to how the 

chemicals may interact with the target’s binding site. For example, take the substructures shown 

in Figure 5.4. In the original structural alert, the aromatic nitrogen atoms at positions labelled 3, 

7 and 9 have lone pairs capable of acting as hydrogen bond acceptors (the lone pair of the nitrogen 

atom at position 5 is involved in the aromatic system and unavailable for forming hydrogen 

bonds). Looking at the non-generalised alert alone, we cannot confidently discern which aromatic 

atoms, if any, are involved in the binding mode. Looking at the generalised aromatic alert and the 

additional chemicals containing the alert, we see active chemicals in which position 9 is occupied 

by carbon, suggesting a hydrogen bond may not be formed from this position. Positions 1, 2, 6 

and 8 are fixed as carbons so are not involved in hydrogen bonding. Position 7 is fixed as a 

nitrogen atom, suggesting it might be acting as a hydrogen bond acceptor. In fact, the one extra 

inactive chemical contained by the fully aromatised “parent alert” is a chemical where position 7 

is a carbon, supporting the idea that a nitrogen is required in this position to act as a hydrogen 

bond acceptor. Position 5 is required to be a nitrogen to keep the structure aromatic. At least one 

of position 3 and 4 must be a nitrogen – there are cases where both positions are nitrogen atoms, 

and cases were one position is a nitrogen atom and the other a carbon atom, but no cases where 

both positions are carbon atoms. This suggests that if a hydrogen bond is formed at this side of 

the substructure, the hydrogen bond donor of the biological target is flexible enough to reach 

either position.  

The nitrogen-based side group off position 1 is not in the aromatic ring and so is not affected by 

the generalisation process. The generalisation process therefore provides us no additional data 

on whether it will be involved in interactions or not – we have no data from active or inactive 

chemicals containing an atom other than nitrogen. The nitrogen lone pair is present in all 

chemicals and could be a hydrogen bond acceptor.  

The predicted interactions are shown graphically in Figure 5.5. 
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5.Generalisation of aromatic structural alerts 

  

Figure 5.5: The predicted interactions of a generalised structural alert for the adenosine A2a 

receptor. The predicted interactions are derived by looking at the position of hydrogen bond 

acceptors in chemicals containing the generalised substructure. Red arrows indicate a hydrogen 

bond formed with good geometry and blue arrows indicate either a flexible or a non-essential 

hydrogen bond.  

 

Figure 5.6: Key binding interactions derived from crystal structures for the adenosine A2a receptor 

bound to 5'-N-ethylcarboxamidoadenosine (NECA) (left) and adenosine (right). Red dashed lines 

represent hydrogen bonds with favourable geometry and blue dashed lines represent hydrogen 

bonds with unfavourable geometry (donor-acceptor distance of greater than 3.6 Å). Blue rays 

represent van der Waals contacts. Red “W” circles are water molecules. Amino acid residues within 

3.9 Å of the chemical are highlighted surrounding it: residues highlighted in red form hydrogen 

bonds, and residues highlighted in blue form van der Waals contacts. Figure is taken from Lebon  

(2011).101 
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5.Generalisation of aromatic structural alerts 

The information regarding the binding mode inferred from the generalised structural alert can 

be compared to crystal structures. Key binding interactions derived from crystal structures for 

the adenosine A2a receptor when bound to 5'-N-Ethylcarboxamidoadenosine (NECA) and 

adenosine were derived by Lebon et al.101 These are shown in Figure 5.6. These chemicals are 

similar to the generalised structural alert previously discussed and shown in Figure 5.5. They key 

difference is the nitrogen group on position 1 in the structural alert includes a carbon which is 

not present in the chemicals. In chemicals containing the alert, that carbon can lead to larger 

groups, creating extra steric demands that are not present in NECA or adenosine, although it may 

be possible that the additional carbon side-group can rotate away from steric clashes. This caveat 

should be remembered when making comparisons between the crystal structures and the 

proposed interactions of the generalised substructure. Despite this, the hydrogen bond predicted 

to be formed from the nitrogen group on position 1 is seen in NECA and adenosine. 

The nitrogen in position 3 is shown to form a hydrogen bond with good geometry (donor-

acceptor distance of less than 3.6 Å) in NECA but with poor geometry (donor-acceptor distance 

of greater than 3.6 Å) in adenosine. The observation in adenosine seems to agree with the 

prediction that the hydrogen bond is either flexible or non-essential. 

The nitrogen in position 7, predicted to form an essential hydrogen bond, is seen to form a 

hydrogen bond with water in NECA and adenosine. This is an isolated water molecule, so may be 

an important structural water. 

Nitrogen in position 9, identified as a non-essential nitrogen in the generalised substructure, is 

seen in NECA and adenosine to form hydrogen bonds to a water molecule in a group of water 

molecules. This water fills an empty space in the receptor pocket, so the interaction may not be 

essential. The carbon side group in the generalised substructures – which is not observed in NECA 

or adenosine – might sit in this pocket, displacing the water to which a hydrogen bond is formed, 

supporting the idea that this is a non-essential interaction.  

Overall, the crystal structures for NECA and adenosine appear to be consistent with the 

interactions predicted by looking at the generalised structural alert for the adenosine A2a 

receptor. This example shows how generalised structural alerts can be used to elucidate key 

interactions for receptor binding. 
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5.Generalisation of aromatic structural alerts 

5.3. Effect of generalising aromatic substructures on model 

performance 

As a generalised alert is contained by more active chemicals and has a higher Bayes Factor than 

the structural alert used for its derivation, one might expect generalising an entire set of 

structural alerts for a target would improve overall model performance. 

 

Method 

The aromatic generalisation process was applied to structural alerts for three targets: adenosine 

A2a receptor, acetylcholinesterase, and dopamine D2 receptor. The new generalised alerts 

replace the original structural alerts. For each target, two sets of structural alerts were used with 

different theta values:  

• theta value 0.95, 5% maximum occurrence in inactive chemicals, lower bounds for an 

alert of two actives and one inactive 

• theta value 0.51, 5% maximum occurrence in inactive chemicals, lower bounds for an 

alert of two actives and one inactive 

The generalisation process was applied to the structural alert models, using the same theta as the 

workflow used to construct the structural alert models. 

 

Results and Discussion 

The performance metrics of the generalised and non-generalised models are shown in Table 5.1. 

In each case, generalising the structural alerts has resulted in many more false positives than true 

positives in both training and test sets. Consequently, accuracy and MCC decrease. 

Acetylcholinesterase with theta of 0.95 is an exception, for which the changes are very small. 
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5.Generalisation of aromatic structural alerts 

The structural alerts were originally created in a way that they were independent of each other, 

but this is not case after they have been generalised. The additional actives covered by the 

generalised alerts may already be covered by different alerts, leading to no increase in true 

positives when all alerts are used together. The generalised substructure may also contain more 

inactives compared to the original alert if there is a concurrent increase in the number of actives 

containing the generalised substructure that results in overall increase in Bayes factor. However, 

if all additional actives contain other structural alerts but the additional inactives do not contain 

other alerts, there will be an overall increase in false positives but no, or little, overall increase in 

true positives.  

Using a lower theta value in generalising alerts should lead to more true positives but also more 

false positives for each alert. This can be seen in the results when comparing models constructed 

with low theta to models constructed with high theta. However, many of the extra true positives 

are not independent from the other alerts, leading to a larger increase in false positives than true 

positives for the overall model. Larger increases in false positives are seen in models with low 

theta compared to those with high theta. 
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5.Generalisation of aromatic structural alerts 

5.3.1. Stepwise Regression 

There is significant overlap in terms of the actives covered by different generalised alerts. The 

generalised alerts are not independent from each other, and some may be completely redundant, 

covering no unique actives when applied in combination with the other alerts. We could attempt 

to identify overlapping structural alerts by looking directly at the substructures. However, 

statistics provides a technique for identifying and removing redundant variables without having 

to examine structures – stepwise regression.  

 

Method 

A table was generated of each chemical in the training set, the binary activity of the chemical, and 

the structural alert each chemical contains. This data was fitted to a binomial generalised linear 

model where the alerts were the independent variables and the activity was the dependent 

variable (assumed to be a function of the alerts). Stepwise regression identified and removed 

structural alerts that were considered to have no significant unique contributions to predicting 

activity. Fitting of the data to a binomial generalised linear model and subsequent stepwise 

regression was done in RStudio.102  

 

Results and Discussion 

The stepwise regression process has been applied to both non-generalised and generalised alerts 

shown in Table 5.1.  

The performance of the original alerts and the generalised alerts, before and after stepwise 

regression, was calculated and is shown in Table 5.2. 
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5.Generalisation of aromatic structural alerts 

When stepwise regression was applied to the non-generalised alerts, little change to the models 

is seen. No more than two alerts are removed and in all cases the performance is unchanged. This 

shows that the iterative structural alert selection method in the automated workflow does an 

excellent job of choosing independent substructures.  

There were larger decreases in the number of alerts when regression was applied to the 

generalised alerts, due to the generalisation process creating alerts which were not independent 

of each other. Large decreases in number of alerts were seen for the adenosine A2a and dopamine 

D2 receptors. This suggests the presence of closely related aromatic structures which can be 

represented by fewer generalised alerts than non-generalised alerts. However, there were only 

small decreases in number of alerts for the acetylcholinesterase models, suggesting there were 

few aromatic structures which could be generalised. 

Despite decreases in the number of structural alerts, stepwise regression only increased model 

performance in the generalised alerts of the dopamine D2 receptor. In the models for the other 

two targets, no change in any performance statistic was seen. The removed alerts were 

redundant, being contained by no unique actives or inactives.  

There are clear benefits to using generalised aromatic alerts, in terms of interpreting how the 

substructure might be involved in the binding mode, and in representing similar structures in 

fewer alerts. However directly applying the generalisation process to the original structural alerts 

did not improve the performance of the overall model as the resulting alerts were no longer 

independent from each other. Stepwise regression allows identification of redundant structural 

alerts, but it did not result in significant increases in performance. 
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5.Generalisation of aromatic structural alerts 

5.4. Integrating generalised aromatic structures into the automated 

workflow for structural alert-based models 

In the automated workflow for structural alert generation, after each structural alert is chosen, 

any active chemicals containing the alert are removed from the training set. This iterative method 

leads to alerts which are independent from each other. To create independent generalised alerts, 

the generalisation process can be included within the iterative steps of the automated workflow.  

 

5.4.1. Method 

The data sets used here are those for the Bowes targets with data from ToxCast and ChEMBL, 

created previously (Section 2.1). 

A training set was input into the workflow and the MoSS node68 was used to generate maximum 

common substructures. For each substructure, Bayes factor was calculated with a user-chosen 

theta value. Only the 65 substructures with the highest Bayes factors were kept as it was too 

computationally expensive to use more (aromatic generalisation can take up to five minutes per 

aromatic substructure and doing this more than 65 times for up to 135 cycles of picking structural 

alerts becomes time consuming). They were converted to SMARTS formats and each substructure 

was run through the aromatic generalisation algorithm, as outlined previously. The result of this 

was the replacement of atoms in aromatic substructures with generalised aromatic atoms where 

an increase in Bayes Factor was observed. For the 65 substructures, some of which may have 

generalised aromatic structures, accurate occurrences in the active and inactive chemicals were 

found, and Bayes Factor was calculated. The substructure with the largest Bayes Factor was coded 

as a structural alert if it meets the user’s lower bounds for an alert (minimum number of active 

chemicals contained by the alert and minimum Bayes Factor). All active chemicals containing the 

structural alert were removed from the training set and the process was repeated until no 

substructures met the lower bounds for an alert. The list of structural alerts was output and 

applied to the test set to give performance statistics. 

A graphical overview of the method is shown in Figure 5.7. 

This workflow has been applied to the data sets for the Bowes Targets using parameters of: theta 

value 0.95, 5% maximum occurrence of a substructure in the inactives, and lower bounds for an 

alert of two actives and one inactive. 
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5.Generalisation of aromatic structural alerts 

  

5.4.2. Results and discussion 

The automated workflow with integrated generalisation of aromatic substructures was applied 

to Bowes Targets. However, this workflow is computationally expensive in terms of memory, and 

so it was not possible to generate data for the largest data set – hERG. The results for the other 

targets are shown in Table 5.3.  

The overall performances of the models were not significantly changed, as shown by the small 

changes in test set MCC. Importantly, the number of alerts for each target’s model decreases. On 

average, the new alerts were contained by more active chemicals, giving the user more confidence 

in active predictions derived from these alerts.  

Particularly large decreases in number of alerts were seen in three targets: adenosine A2a 

receptor, dopamine D2 receptor, and tyrosine-protein kinase LCK. The largest increases in test 

set MCC were also seen for these targets. The active chemicals for these targets likely contain 

closely related aromatic structures which were better modelled by a single generalised structural 

alert than multiple non-generalised alerts. 

The mu opioid receptor is the only target for which there was an increase in the number of alerts. 

In this target, the alert chosen in the first iteration was the same alert as the one chosen in the 

original automated workflow, but part of the substructure was aromatically generalised. The 

partially generalised alert was contained by more active chemicals than the original. These 

additional active chemicals were removed from the training set and as a result, a different series 

of subsequent structural alerts was chosen in the next iterations. At each iteration, the 

substructure with the largest Bayes factor in the generalised alert workflow was chosen, but 

unusually, this resulted in more alerts to cover a smaller number of remaining active chemicals 

(although it hits less false positive chemicals in doing so). Whilst this is unlikely, it is not 

impossible. The increase in structural alerts in the mu opioid receptor therefore represents an 

unlikely exception to the general decrease in structural alerts seen in all other receptors. 

Overfitting is the use of more terms in a model than is necessary.103 Hence, a model using fewer 

structural alerts to cover the same number of active chemicals is less overfitted. By reducing the 

number of alerts in the structural alert models without changing performance, the models 

become less overfitted. In this way, the generalised structural alert-based models are 

improvements on the non-generalised structural alert models.  

 



194 

5.Generalisation of aromatic structural alerts 

 

T
a

rg
e

t
A

le
rt

s
T

P
F

P
F

N
T

N
S

E
S

P
A

C
C

M
C

C
T

P
F

P
F

N
T

N
S

E
S

P
A

C
C

M
C

C
Δ

A
le

rt
s

Δ
T

e
st

 M
C

C

A
ce

ty
lc

h
o

li
n

es
te

ra
se

1
3

5
1

8
3

9
1

5
0

1
6

5
1

3
1

7
9

1
.8

%
8

9
.8

%
9

0
.9

%
0

.8
1

4
5

1
8

6
2

9
2

4
3

4
8

4
.9

%
8

7
.5

%
8

6
.1

%
0

.7
2

1
-3

0
.0

0
0

A
d

en
o

si
n

e 
A

2
a 

re
ce

p
to

r
4

2
2

8
9

0
1

2
6

6
7

1
4

5
6

9
7

.7
%

9
2

.0
%

9
5

.7
%

0
.9

0
6

9
5

4
5

1
3

2
4

5
0

9
6

.8
%

8
9

.8
%

9
4

.4
%

0
.8

7
4

-1
5

0
.0

1
6

A
lp

h
a-

2
a 

ad
re

n
er

gi
c 

re
ce

p
to

r
6

3
5

9
5

2
6

5
4

7
4

3
9

1
.7

%
9

6
.6

%
9

4
.4

%
0

.8
8

7
1

5
8

1
1

3
8

2
3

4
8

0
.6

%
9

5
.5

%
8

8
.9

%
0

.7
7

8
-4

0
.0

1
4

A
n

d
ro

ge
n

 r
ec

ep
to

r
1

0
7

1
4

9
9

8
9

4
9

0
5

3
8

0
7

5
.4

%
9

8
.4

%
9

2
.2

%
0

.7
9

7
4

3
5

4
2

2
1

3
1

7
7

3
6

7
.1

%
9

7
.7

%
8

9
.6

%
0

.7
2

2
-8

-0
.0

0
1

B
et

a-
1

 a
d

re
n

er
gi

c 
re

ce
p

to
r

2
0

9
3

4
8

5
2

6
7

2
1

9
7

.3
%

8
9

.5
%

9
3

.7
%

0
.8

7
5

2
7

7
3

8
2

4
2

3
8

9
2

.0
%

8
6

.2
%

8
9

.3
%

0
.7

8
5

-6
-0

.0
2

0

B
et

a-
2

 a
d

re
n

er
gi

c 
re

ce
p

to
r

1
3

1
1

2
5

5
8

9
2

0
7

1
4

1
2

8
5

.8
%

9
4

.1
%

9
0

.0
%

0
.8

0
3

3
5

8
7

2
1

2
5

4
4

1
7

4
.1

%
8

6
.0

%
8

0
.2

%
0

.6
0

6
-4

-0
.0

0
4

D
el

ta
 o

p
io

id
 r

ec
ep

to
r

4
8

2
1

8
6

1
1

8
5

4
7

8
6

9
7

.6
%

8
6

.9
%

9
4

.5
%

0
.8

6
5

7
3

2
5

3
3

4
2

6
2

9
5

.6
%

8
3

.2
%

9
2

.0
%

0
.8

0
2

-3
-0

.0
0

2

D
o

p
am

in
e 

D
1

 r
ec

ep
to

r
6

8
8

8
1

5
5

1
4

8
1

4
2

9
8

5
.6

%
9

6
.3

%
9

1
.9

%
0

.8
3

3
2

4
8

2
6

7
5

4
8

1
7

6
.8

%
9

4
.9

%
8

7
.8

%
0

.7
4

3
-4

0
.0

0
3

D
o

p
am

in
e 

D
2

 r
ec

ep
to

r
4

4
4

2
0

8
1

5
8

5
4

6
9

7
9

8
.7

%
8

1
.5

%
9

5
.9

%
0

.8
4

6
1

4
0

2
6

1
3

2
2

2
1

9
7

.8
%

7
8

.4
%

9
4

.6
%

0
.7

9
6

-2
5

0
.0

3
4

D
o

p
am

in
e 

tr
an

sp
o

rt
er

6
4

1
7

4
9

1
1

9
1

2
1

1
3

2
6

9
3

.5
%

9
1

.8
%

9
2

.8
%

0
.8

5
3

5
6

5
4

6
7

6
4

2
6

8
8

.1
%

9
0

.3
%

8
9

.0
%

0
.7

7
9

-1
0

.0
0

2

E
n

d
o

th
el

in
 r

ec
ep

to
r 

E
T

-A
1

4
9

4
1

6
0

2
1

7
9

9
9

7
.8

%
9

3
.0

%
9

5
.6

%
0

.9
1

1
3

0
4

2
4

1
9

2
6

9
9

4
.1

%
9

1
.8

%
9

3
.0

%
0

.8
6

0
-1

0
.0

0
0

G
lu

co
co

rt
ic

o
id

 r
ec

ep
to

r
1

1
2

1
8

2
8

1
0

4
4

4
6

5
1

3
9

8
0

.4
%

9
8

.0
%

9
2

.7
%

0
.8

2
4

5
5

5
6

0
1

8
9

1
6

7
0

7
4

.6
%

9
6

.5
%

8
9

.9
%

0
.7

5
5

-1
2

0
.0

1
6

h
E

R
G

H
is

ta
m

in
e 

H
1

 r
ec

ep
to

r
3

6
9

1
5

6
7

4
8

7
5

5
9

5
.0

%
9

1
.8

%
9

3
.6

%
0

.8
7

0
2

8
3

2
9

3
0

2
5

5
9

0
.4

%
8

9
.8

%
9

0
.1

%
0

.8
0

2
-2

-0
.0

1
7

M
u

 o
p

io
id

 r
ec

ep
to

r
6

0
2

5
7

6
1

0
2

8
5

1
6

2
1

9
6

.8
%

9
4

.1
%

9
5

.7
%

0
.9

1
0

8
8

3
3

6
6

7
5

4
9

9
2

.9
%

9
3

.8
%

9
3

.3
%

0
.8

6
0

4
0

.0
0

1

M
u

sc
ar

in
ic

 a
ce

ty
lc

h
o

li
n

e 
re

ce
p

to
r 

M
1

5
3

1
4

1
8

9
9

6
6

8
3

8
9

5
.6

%
8

9
.4

%
9

3
.2

%
0

.8
5

6
4

9
0

4
4

4
1

2
6

1
9

2
.3

%
8

5
.6

%
8

9
.8

%
0

.7
8

0
-5

0
.0

1
3

M
u

sc
ar

in
ic

 a
ce

ty
lc

h
o

li
n

e 
re

ce
p

to
r 

M
2

4
9

1
1

5
6

8
2

6
9

1
4

2
4

9
4

.4
%

9
4

.6
%

9
4

.5
%

0
.8

8
8

3
7

6
3

1
3

5
4

9
6

9
1

.5
%

9
4

.1
%

9
3

.0
%

0
.8

5
7

-2
0

.0
0

0

M
u

sc
ar

in
ic

 a
ce

ty
lc

h
o

li
n

e 
re

ce
p

to
r 

M
3

4
7

1
1

3
2

7
2

5
8

7
6

7
9

5
.1

%
9

1
.4

%
9

3
.6

%
0

.8
6

8
3

1
8

2
5

2
9

2
5

0
9

1
.6

%
9

0
.9

%
9

1
.3

%
0

.8
2

4
-2

-0
.0

0
4

N
o

re
p

in
ep

h
ri

n
e 

tr
an

sp
o

rt
er

5
7

2
1

0
6

1
2

1
1

1
7

1
3

2
8

9
4

.7
%

9
1

.6
%

9
3

.5
%

0
.8

6
4

6
3

0
4

5
5

9
4

4
7

9
1

.4
%

9
0

.9
%

9
1

.2
%

0
.8

2
0

-7
-0

.0
0

3

Se
ro

to
n

in
 2

a 
(5

-H
T

2
a)

 r
ec

ep
to

r
4

9
2

7
5

6
8

8
4

1
6

8
3

9
8

.5
%

8
8

.6
%

9
6

.4
%

0
.8

9
2

9
3

2
3

2
2

8
2

3
1

9
7

.1
%

8
7

.8
%

9
5

.1
%

0
.8

5
4

-3
0

.0
0

5

Se
ro

to
n

in
 3

a 
(5

-H
T

3
a)

 r
ec

ep
to

r
2

7
3

1
7

1
0

3
1

7
6

8
9

1
.1

%
9

8
.7

%
9

6
.4

%
0

.9
1

4
8

8
5

1
6

2
7

2
8

4
.6

%
9

8
.2

%
9

4
.5

%
0

.8
5

9
0

0
.0

1
2

Se
ro

to
n

in
 t

ra
n

sp
o

rt
er

5
3

3
0

0
3

9
5

5
4

7
5

7
9

8
.2

%
8

8
.8

%
9

6
.2

%
0

.8
8

7
9

4
5

3
3

4
1

2
5

0
9

5
.8

%
8

8
.3

%
9

4
.2

%
0

.8
3

4
-9

-0
.0

0
2

T
y

ro
si

n
e-

p
ro

te
in

 k
in

as
e 

L
C

K
2

7
1

2
4

7
8

2
3

6
3

2
3

9
7

.2
%

7
9

.8
%

9
3

.0
%

0
.8

0
3

4
2

7
2

5
2

2
9

4
9

5
.1

%
7

9
.0

%
9

1
.7

%
0

.7
4

8
-2

3
0

.0
2

3

V
as

o
p

re
ss

in
 V

1
a 

re
ce

p
to

r
1

5
4

4
6

2
1

1
0

7
6

6
9

7
.8

%
9

7
.3

%
9

7
.5

%
0

.9
4

7
1

5
0

6
1

3
2

6
6

9
2

.0
%

9
7

.8
%

9
5

.6
%

0
.9

0
7

0
0

.0
0

0

A
v

e
ra

g
e

5
7

1
6

4
7

8
8

1
0

7
1

3
5

8
9

3
.4

%
9

1
.9

%
9

4
.1

%
0

.8
6

6
5

2
3

3
7

5
8

4
4

7
8

8
.6

%
9

0
.2

%
9

1
.1

%
0

.7
9

9
-6

0
.0

0
4

T
ra

in
in

g
T

e
st

T
a

b
le

 5
.3

: 
P

er
fo

rm
a

n
ce

 m
et

ri
cs

 f
o

r 
th

e 
m

o
d

el
s 

b
u

il
t 

b
y 

in
te

g
ra

ti
n

g
 g

en
er

a
li

sa
ti

o
n

 o
f 

a
ro

m
a

ti
c 

su
b

st
ru

ct
u

re
s 

in
to

 t
h

e 
a

u
to

m
a

te
d

 w
o

rk
fl

o
w

 f
o

r 

co
n

st
ru

ct
io

n
 o

f 
in

d
ep

en
d

en
t 

st
ru

ct
u

ra
l a

le
rt

s.
 T

h
e 

m
o

d
el

 h
a

s 
b

ee
n

 a
p

p
li

ed
 t

o
 2

3
 B

o
w

es
 t

a
rg

et
s 

w
it

h
 T

o
xC

a
st

 a
n

d
 C

h
E

M
B

L
 d

a
ta

 a
va

il
a

b
le

. A
 m

o
d

el
 w

a
s 

n
o

t 
co

n
st

ru
ct

ed
 f

o
r 

h
E

R
G

 a
s 

a
p

p
ly

in
g

 t
h

e 
w

o
rk

fl
ow

 t
o

 t
h

is
 p

a
rt

ic
u

la
rl

y 
la

rg
e 

d
a

ta
 s

et
 i

s 
to

o
 m

em
o

ry
 e

xh
a

u
st

iv
e.

 T
h

e 
n

u
m

b
er

 o
f 

st
ru

ct
u

ra
l 

a
le

rt
s 

a
n

d
 

te
st

 s
et

 M
C

C
 v

a
lu

es
 h

a
ve

 b
ee

n
 c

o
m

p
a

re
d

 t
o

 t
h

e 
sa

m
e 

va
lu

es
 f

o
r 

m
o

d
el

s 
co

n
st

ru
ct

ed
 w

it
h

o
u

t 
g

en
er

a
li

sa
ti

o
n

 o
f 

a
ro

m
a

ti
c 

su
b

st
ru

ct
u

re
s,

 u
si

n
g

 t
h

e 
sa

m
e 

p
a

ra
m

et
er

s 
(t

h
et

a
 0

.9
5

, 5
%

 m
a

xi
m

u
m

 o
cc

u
rr

en
ce

 in
 t

h
e 

in
a

ct
iv

e 
ch

em
ic

a
ls

, a
n

d
 lo

w
er

 b
o

u
n

d
s 

fo
r 

a
n

 a
le

rt
 o

f 
tw

o
 a

ct
iv

es
 a

n
d

 o
n

e 
in

a
ct

iv
e)

. 



195 

5.Generalisation of aromatic structural alerts 

5.5. Conclusions 

A workflow has been designed to convert the format of the structural alerts, as outputted by the 

MoSS node in KNIME, to a widely accepted SMARTS. This allows the structural alerts to be used 

for external purposes, increasing the impact of the models.  

A process for generalising aromatic structural alerts has been outlined.  Specific aromatic atoms 

within a structural alert are replaced with generalised aromatic atoms where there is sufficient 

data to support doing so, guided by use of Bayesian statistics. 

Examining the generalised structural alerts gives more information on the mechanisms involved 

in the chemicals binding to the target. Predictions of key receptor binding interactions have been 

made by examining a generalised structural alert for the adenosine A2a receptor. These 

predictions were found to be consistent with binding interactions derived from crystal structures 

for similar chemicals. This process helps to understand how a receptor-binding MIE may occur, 

and this understanding helps to make better models and predictions for the MIE.   

Generalising aromatic structural alerts allows more chemicals with similar structures to be 

represented by the same alert, in theory reducing the number of alerts required to model the data 

and reducing overfitting. However, directly applying the aromatic generalisation process to the 

original structural alert models did not improve performance as the resulting alerts were no 

longer independent of each other. Stepwise regression was used to remove alerts which became 

redundant after the generalising process, but this was still not an optimal way to produce high 

performing, independent, generalised alerts.  

The aromatic generalisation process has been incorporated into the automated workflow for 

generating structural alerts, generalising aromatic substructures before selecting the best 

substructure to become a structural alert in each iteration. This results in construction of models 

containing independent, aromatically generalised structural alerts.  

Applying this new workflow to the Bowes targets data sets created models with performance 

statistics comparable to the non-generalised structural alert models, but with significantly fewer 

structural alerts for each model. The use of fewer structural alerts is indicative of a less overfitted 

model. In this way, the generalised structural alert-based models represent important 

improvements over the non-generalised structural alert-based models. 
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6. Pharmacophore models from structural 

alerts 

6.1. Introduction 

Receptor binding MIEs can be caused by non-covalent interactions between chemicals and 

biological targets, such as binding sites on proteins or active sites on enzymes. These interactions 

include ionic attractions, hydrogen bonds, van der Waals forces, pi stacking of aromatic rings, and 

hydrophilic and hydrophobic interactions. Within the receptor binding site or active site, there 

are often specific steric requirements, and so a specific three-dimensional conformation of 

interaction features is required to undergo the receptor binding MIE. Pharmacophore models 

attempt to describe the required features and their required position in three-dimensional space. 

Predictions of biological activity of chemicals are made by seeing how well the chemical can fit to 

the conformation of features described by the pharmacophore.  

It is often possible to bind at the same receptor through different sets of interactions, known as 

binding modes. When creating a pharmacophore model from ligands, chemicals should be chosen 

that act through the same binding mode, and these should be as diverse as possible so that the 

most important common features can be discerned from other features.   

The structural alerts for receptor binding MIEs created in this project are two-dimensional 

substructures which have statistically been found to be associated with binding activity. The 

structural alerts often describe a central structural scaffold of a series of chemicals. Whilst a 

structural alert does not define any features outside of the substructure, it often defines the 

specific conformation of these features. The chemical groups which make up the features outside 

of the alert, and the groups that link the features to the alert, vary between the active chemicals. 

However, the features and their relative three-dimensional positions should not change 

significantly if they are involved in important interactions in the same binding mode. In the 

Chapter “generalising aromatic substructures” (Chapter 5), a protocol is described which helps 

to identify the features within the structural alert that are required for activity, where data is 

available. 

There is clear synergy between the concepts in structural alerts and pharmacophore modelling. 

Pharmacophores expand upon the structural alerts for receptor binding MIEs, moving from 

statistically identified, two-dimensional substructures to three-dimensional arrangements of 

features involved in receptor binding interactions. Pharmacophores attempt to directly describe 

the mechanism of a receptor binding mode. Pharmacophore modelling is computationally 
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expensive as three-dimensional conformations need to be generated and overlaid in a way that 

leads to overlap of features. It also requires careful selection of chemicals which act through the 

same binding mode. Structural alerts often define a scaffold common to many chemicals, holding 

other features in a specific conformation. Overlaying active chemicals by a common structural 

alert provides a good starting point for identification of common features. Furthermore, 

chemicals containing the same structural alert are likely to act through the same binding mode. 

Therefore, chemicals containing the same structural alert provide an excellent starting point for 

pharmacophore generation. 

The disadvantage of using chemicals that share a structural alert is a lack of diversity in the 

chemicals. If the structural alert contains many features within the substructure itself, it will not 

be possible to identify which of the features are involved in receptor binding interactions and all 

are equally likely to be included in the pharmacophore model. The generalising aromatic 

structural alert process (Chapter 5) helps to remove this issue for aromatic atoms where possible, 

identifying which atoms are present in all chemicals and hence likely to be required for activity. 

Using generalised structural alerts is therefore important in pharmacophore generation. 

Even with the generalised structural alerts, one might have concerns about a pharmacophore 

built from chemicals containing one structural alert being too specific to that alert. Having built 

the pharmacophore on a first structural alert, the model can be applied to chemicals containing 

other alerts. If multiple chemicals containing a different alert fit the pharmacophore model well, 

it is likely this new alert and the first alert describe the same binding mode. Chemicals containing 

these alerts can be combined into a more diverse set of chemicals and used to build an updated 

pharmacophore model.  

In this chapter, pharmacophore modelling of chemicals with the same structural alerts has been 

explored.  
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6.2. Method 

An overview of the methodology involved in pharmacophore construction is shown in Figure 6.1. 

Many automated algorithms for ligand-based pharmacophore model construction are 

commercially available,52 and it would be pragmatic to use one here. In this work, the HipHop104 

algorithm for pharmacophore generation has been used via the “Common Feature 

Pharmacophore Generation From a Set of Ligands” feature in Biovia’s Discovery Studio (19.1 

Client).105  
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Figure 6.1: A graphical overview of the proposed pharmacophore construction process.  
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In this work, the adenosine A2a receptor was chosen as the biological target to be focused on 

because many of the structural alerts could be generalised by the aromatic generalisation process, 

and it is a target with available crystal structures to which pharmacophore models can be 

compared. The same ChEMBL/ToxCast training set and test set created previously (Section 2.1) 

were used here.  

The structural alerts created by the automated workflow (Section 2.2) with the “Risk Assessment” 

parameters (theta 0.95, 1% maximum occurrence of an alert in the inactive chemicals, and lower 

bounds for an alert of two actives and one inactive) were used. Compared to alerts created by the 

workflow with different parameters, these were the most specific structural alerts, containing the 

fewest false positives. The aromatic generalisation process (chapter 5), with a theta value of 0.95, 

was applied to these alerts to create generalised structural alerts. 

A structural alert (generalised or not) was chosen to be the basis of pharmacophore construction. 

The structural alert (or alerts) was applied to the training set to find all active chemicals 

containing the alert. A diverse subset of ten chemicals was chosen from these chemicals with the 

RDKit Fingerprint Diversity node within KNIME,83 which picked diverse chemicals using 

Tanimoto distances between fingerprints. The picking was done using the MaxMin algorithm.104 

Ten chemicals were chosen, which gives a sample size large enough to provide diversity between 

alert-containing chemicals but not so large that the pharmacophore construction algorithm was 

too computationally expensive. 

The following steps were completed within the “Common Feature Pharmacophore Generation 

from a Set of Ligands” feature in Biovia’s Discovery Studio (19.1 client). A maximum of 500 

conformations were generated for each chemical within an energy threshold of 30 kcal/mol using 

the “BEST” algorithm. In each chemical, atoms which can act as pharmacophore features were 

identified. The features used here were hydrogen bond donors (HBDs), hydrogen bond acceptors 

(HBAs), aromatic rings, positive and negative ionisable groups, and hydrophobic groups. Using 

the HipHop algorithm,104 the generated conformations were overlaid to find regions where 

features overlap across different conformations, from which pharmacophore models were built. 

Features must be at least 0.2 Å apart. Pharmacophore models were generated for all possible 

combinations of overlapping features from different conformations. Each model was ranked 

based on how well the molecules map onto the proposed pharmacophore, and the highest-

ranking models were output.  

There are additional options to define which features are required in any output pharmacophores 

and how many molecules must completely or partially map to the pharmacophore, giving the user 
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more control over which pharmacophores are outputted. In this work the requirements of the 

pharmacophore model were:  

• pharmacophore models must have at least four features 

• each feature in the pharmacophore can miss a maximum of one training chemical 

• at least nine of the ten active molecules must map to all features 

• no chemicals can miss all features entirely. 

The pharmacophore model is tested by seeing how well chemicals fit to it. For each 

pharmacophore, four groups of chemicals are used for testing: 

1) The ten training active chemicals from which the model was built 

2) 50 test active chemicals containing the alert(s) from which the model was built. If less 

than 50 are in this category, all chemicals are used.  

3) 50 test active chemicals which do not contain the alert(s) from which the model was built 

4) 50 test inactive chemicals, with the additional requirement that each must contain at least 

one HBA, HBD, and aromatic ring – inactive chemicals containing none of these will not 

be capable of fitting to the model and so would not be a fair comparison. 

The 50 chemicals selected in from each category are picked with the RDKit Fingerprint Diversity 

node.  

Chemicals are fitted to the pharmacophore model using the “Ligand Pharmacophore Mapping” 

function in Biovia’s Discovery Studio (19.1 client). Within this function, conformations are 

generated for each chemical using the same setting as used previously in pharmacophore 

generation and the conformations are fitted to the pharmacophore model using Kabsch’s fitting 

algorithm.106 “Flexible fitting” is used, allowing conformations to be slightly manipulated (within 

an energy limit) to better fit the pharmacophore’s features. Each conformation is given a score 

for how well it fits the model, and the best scoring conformation for each chemical is outputted. 

After constructing each pharmacophore model, a cut-off was applied to the fit values. Chemicals 

that have a fit value higher than the cut-off are predicted to be active and chemicals with a lower 

fit value are predicted to be inactive. The cut-off was the lowest fit value that was not an outlier 

in the training active chemicals from which the pharmacophore was generated. Outliers were 

defined as any chemicals with a fit value 1.5 times the interquartile range lower than the lower 

quartile or greater than the upper quartile. 
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6.3. Results and Discussion 

A selection of pharmacophore models which demonstrate the success and limitations of this 

approach are shown in this section.  

Each model is built from ten training active chemicals containing a structural alert. The models 

are tested on the four groups outlined above. A good model should result in high fit values for the 

training active chemicals with the alerts and the test active chemicals with the alert, whilst fit 

values in the inactive chemicals should be low. If the pharmacophore model describes the key 

features required for a particular binding mode and it is not too specific to the structural alert 

from which it is built, some active chemicals which do not contain the alert but act through the 

same binding mode should also have high fit scores.  
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6.3.1. Pharmacophores from non-generalised structural alerts  

6.3.1.1. Alert054 

Alert054 is shown in Figure 6.2. The structural alert has a large central core and specifies the 

position of three side groups, creating a defined scaffold for other features outside of the alert. 

Hence it should form a good template for a pharmacophore model. The two nitrogen atoms with 

available lone pairs (the two top right nitrogen atoms in Figure 6.2) which can act as HBDs are in 

all training chemicals and therefore are likely to be in the pharmacophore model.  

 

Figure 6.2: “Alert054” – A structural alert for the adenosine A2a receptor, created by the automated 

workflow for construction of structural alert-based models (“Risk Assessment” parameters). In the 

training set, this alert is contained by 33 active chemicals and two inactive chemicals. 

 

The ten training active chemicals containing Alert054 from which the pharmacophore model was 

built are shown in Figure 6.7. 
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Figure 6.3: The ten training active chemicals from which the pharmacophore model was built. These 

chemicals are chosen from all training active chemicals containing Alert054 by RDKit’s Fingerprint 

Diversity node in KNIME. 

 

A pharmacophore model, shown in Figure 6.4, has been built from ten diverse active chemicals 

containing Alert054. The two oxygen atoms in the alert form two HBAs in the pharmacophore 

model. These provide two fixed points common to all chemicals containing Alert054, ensuring 

that all training chemicals are in the same alignment when fitted to the model. Looking at the best 

fitting conformations of the training chemicals to the pharmacophore model, we can see that all 

chemicals are aligned with each other. With this, we have more confidence that the 

pharmacophore algorithm has accurately overlaid all training chemicals and built a model which 

accurately represents the data. However, neither of the two nitrogen atoms present in the 

structural alert which can act as HBAs are identified as HBAs in the pharmacophore model. This 

is likely due to the maximum limit of ten features in a single model, but it shows that the HipHop 

algorithm may miss some common features. Looking at the chemicals in Figure 6.4, it seems that 

the pharmacophore model would have a better fit to most chemicals if the top-left hydrophobic 

group was lower in position, although the best-fitting chemical may not fit that new model as well. 

It seems like the pharmacophore model outputted is too strongly based on to this best-fitting 

chemical.  
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Figure 6.4: Pharmacophore model for chemicals containing Alert054 with four training set 

chemicals (carbon atoms in grey, nitrogen in blue, oxygen in red, and hydrogen in white). The 

number of the chemical indicates its rank in terms of best fit to model of the ten training chemicals 

– 1) is the best-fitting chemical and 10) is the worst-fitting. In the pharmacophore model, green 

zones represent position of hydrogen bond acceptors, orange zones represent aromatic ring, and 

light blue represents hydrophobic regions. 

 

 

  

1) 2) 

3) 10) 
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Figure 6.5 shows the fit values of chemicals to the pharmacophore model. The training active 

chemicals (all containing Alert054) from which the model is built fit the model well, with high fit 

values. A similar distribution of fit values is seen in the thirty test chemicals containing the alert, 

suggesting the pharmacophore model is not only applicable to the chemicals on which it was 

trained. However, high fit values for these chemicals are expected as most of the pharmacophore 

features are defined within the structural alert. 

The distribution of fit values is significantly lower in the test active chemicals which do not 

contain Alert054. Many of these chemicals might act through a different binding mode and so 

would not fit well to this pharmacophore. However, some of these chemicals have higher fit values 

and these may act through the same binding mode as the chemicals containing Alert054. The 

higher fit values of such chemicals provide support to the pharmacophore model, suggesting that 

it is not too overfitted to only chemicals containing the structural alert. 

The inactive test chemicals have a similar distribution to the active chemicals that do not contain 

Alert054, but with a slightly lower mean and median. The inactive chemical with the largest fit 

value has an experimental Ki of 13 500 nM and so, whilst inactive according to the activity cut-off 

of 10 000 nM used in defining the data sets, it is only just below the cut-off and shows weak 

activity. This result does not necessarily indicate a problem with the model but shows the 

difficulty of applying a binary cut-off to a quantitative measure like activity.  

The high fit values for chemicals containing Alert054 and the clear distinction from the 

distribution of the inactive chemicals show that this pharmacophore model describes chemicals 

containing the structural alert well. The high fit values of some active chemicals without the alert 

point towards the model not being too overfitted to the structural alert.  

In order to make activity predictions from the pharmacophore model, a cut-off in fit scores has 

been applied to the data shown in Figure 6.5. The cut-off is the lowest non-outlier fit value in the 

training active chemicals containing the alert. Chemicals with a fit score of 0.666 or greater are 

predicted to be active, chemicals with a fit score lower than 0.666 are predicted to be inactive. 

With this cut-off, 100% of active chemicals with the alert are correctly predicted active. 18% of 

active chemicals without the alert are predicted active. Most of the active chemicals without the 

alert are hypothesised to act through different binding modes and so are not expected to have 

high fit scores. 16% of inactive chemicals are incorrectly predicted to be active, which is a fairly 

high proportion of the inactive sample. Whilst this pharmacophore appears to be performing well, 

a more selective pharmacophore which incorrectly predicts a lower proportion of inactive 

chemicals would be obtained if the model were to include the two missing HBA features identified 

in the structural alert. 
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Figure 6.5: The range of “fit values” for chemicals in different groups to the pharmacophore 

developed from Alert054. Fit values range from 1.0 for a perfect fit of a chemical to a 

pharmacophore, to 0.0 for no features fit. The groups of chemicals, from left to right in the figure, 

are: the 10 training active chemicals from which the pharmacophore model was built, 25 test 

chemicals which contain Alert054, 50 test active chemicals which do not contain the alert, and 50 

inactive test chemicals which contain at least one HBA, HBD, and aromatic ring. In the plot, boxes 

represent chemicals within the lower and upper quartiles, and whiskers represent the lowest and 

highest values that are not outliers. Outliers, shown as dots, are defined as any chemicals with a fit 

value 1.5 times the interquartile range lower than the lower quartile or greater than the upper 

quartile. The line within the box is the median value and the cross is the mean value. 
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6.3.1.2. Alert021 

Alert021 is shown in Figure 6.6. The alert has not been generalised. It defines two aromatic rings 

(a furan-based structure and a pyridine-based structure) but does not define where side groups 

branch from the structure. Hence, the chemicals containing Alert021 are less defined by the 

structural alert than Alert054. 

 

Figure 6.6: “Alert021” - a structural alert for the adenosine A2a receptor, created by the automated 

workflow for construction of structural alert-based models (“Risk Assessment” parameters). In the 

training set, this alert is contained by 22 active chemicals and no inactive chemicals. 

 

The ten training active chemicals containing Alert021 from which the pharmacophore model was 

built are shown in Figure 6.7. 
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Figure 6.7: The ten training active chemicals from which the pharmacophore model was built. These 

chemicals are chosen from all training active chemicals containing Alert021 by RDKit’s Fingerprint 

Diversity node in KNIME. 

 

The pharmacophore model is shown with four chemicals in their best-fitting conformations in 

Figure 6.8. When chemicals are fitted to the model, nine of the ten training chemicals align in the 

pharmacophore in the same way – with the pyridine as central aromatic ring and furan as an 

aromatic ring on the left. The one molecule that does not align with the others, shown in Figure 

6.8(10), has a different orientation with a different aromatic ring as the left-hand aromatic 

feature. From this mismatching orientation, the chemical could be rotated 180° (around a North-

Western axis as drawn in the figure) to give an orientation that aligns with the other chemicals 

and has the same fit value to the pharmacophore model. The two orientations have the same fit 

values and the computer algorithm, when picking between the orientations, does not consider 

the orientations of the other chemicals and hence has no reason to prefer the orientation which 

aligns with the other chemicals.  
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Figure 6.8: Pharmacophore model for chemicals containing Alert021 with four training set 

chemicals (carbon atoms in grey, nitrogen in blue, oxygen in red, hydrogen in white, and chlorine in 

green). The number of the chemical indicates its rank in terms of best fit to model of the ten training 

chemicals; 1) is the best-fitting chemical and 10) is the worst-fitting. In the pharmacophore model, 

green zones represent position of hydrogen bond acceptors, purple zones represent hydrogen bond 

donors, orange zones represent aromatic ring, and light blue represents hydrophobic regions. 

 

1) 2) 

3) 10) 
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Figure 6.9 shows the fit values of chemicals to the pharmacophore model. The training active 

chemicals (all containing Alert054) from which the model is built fit the model well, with high fit 

values in a narrow range. One chemical, shown in Figure 6.8(1), has a fit value of essentially 1, 

while all other training actives have fit values between 0.66 and 0.82, suggesting that the 

pharmacophore algorithm is built from one chemical and is too strongly based on that one 

chemical. The twenty test chemicals containing Alert021 have a narrow distribution of fit values, 

all falling between 0.66 and 0.82. No chemicals in the sample of inactive chemicals have fit values 

that lie within this range, suggesting that the pharmacophore is selective for active chemicals. 

Disregarding the single chemical with the near perfect fit, the pharmacophore model appears to 

be capable of identifying active chemicals containing Alert021 in a narrow range of fit values (0.66 

to 0.82) and distinguishing them from the inactive chemicals. It is therefore a good 

pharmacophore model. The pharmacophore model (two aromatic rings, two hydrophobic 

regions, a HBA and a HBD) provides more information regarding shared features of the chemicals 

containing Alert021 than the alert alone (a pyridine and furan ring). This demonstrates how the 

pharmacophore model can be a significant improvement on the structural alerts. 

In order to make activity predictions from the pharmacophore model, a cut-off in fit scores has 

been applied to the data shown in Figure 6.9. Chemicals with a fit score of 0.65 or greater are 

predicted to be active, chemicals with a fit score lower than 0.65 are predicted to be inactive. With 

this cut-off, 100% of active chemicals with the alert are correctly predicted active. 28% of active 

chemicals without the alert are predicted active and only 8% of inactive chemicals are incorrectly 

predicted to be active. This pharmacophore is making active predictions for all active chemicals 

with the alert, a large proportion of active chemicals which do not contain the alert, and only a 

small proportion of the inactive sample. From this, we can conclude that this pharmacophore 

model is performing well. 
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Figure 6.9: The range of “fit values” for chemicals in different groups to the pharmacophore 

developed from Alert021. Fit values range from 1 for a perfect fit of a chemical to a pharmacophore, 

to 0 for no features fit. The groups of chemicals, from left to right in the figure, are: the 10 training 

active chemicals from which the pharmacophore model was built, 20 test chemicals which contain 

Alert021, 50 test active chemicals which do not contain the alert, and 50 inactive test chemicals 

which contain at least one HBA, HBD, and aromatic ring. In the plot, boxes represent chemicals 

within the lower and upper quartiles, and whiskers represent the lowest and highest values that are 

not outliers. Outliers, shown as dots, are defined as any chemicals with a fit value 1.5 times the 

interquartile range lower than the lower quartile or greater than the upper quartile. The line within 

the box is the median value and the cross is the mean value. 
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Applying the Alert021 pharmacophore to other structural alerts 

More than a quarter of the sample of active chemicals which do not contain Alert021 have fit 

values greater than the cut-off suggested previously. These chemicals may cause activity through 

the same binding mode. If many chemicals containing the same structural alert have high fit 

values to the pharmacophore built from Alert021, the structural alert and Alert021 will describe 

chemicals acting through the same binding mode.  

To investigate such chemicals further, the pharmacophore built from Alert021 has been applied 

to ten chemicals contained by each structural alert. Only structural alerts containing at least ten 

active chemicals in the training set are used here so that there is a significant sample size for the 

alerts used. Each set of ten chemicals is selected by the RDKit Fingerprint Diversity node from the 

training active chemicals containing each alert. The distribution of fit values is shown in Figure 

6.10.  
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For most structural alerts, the distribution of fit values is lower than that of Alert021. The 

chemicals containing these alerts likely do not act through the same binding mode.  

However, many chemicals have fit values over the cut-off of 0.65 suggested previously. Numerous 

structural alerts have most chemicals fitting the model well, with the distributions of fit values 

having high median and means. Alert023, Alert033, Alert039, and Alert045 have the highest mean 

and median fit values after Alert021. The structures of each of these alerts and the best-fitting 

chemical containing each alert are shown in Figure 6.11.  
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Figure 6.11: Four structural alerts for the adenosine A2a receptor, the chemical with the highest fit 

value to the pharmacophore model built from Alert021, and the best-fitting conformation of that 

chemical to the pharmacophore model.
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Looking at the structural alert alone, the structural alerts do not appear to show much similarity 

to Alert021 or each other. However, looking at the best-fitting chemicals and comparing to the 

Alert021 training chemicals in Figure 6.7, some similarities can be seen. Compared to chemicals 

containing Alert021, the chemicals containing Alert023 and Alert033 have an additional nitrogen 

atom in the central aromatic ring. These chemicals would all be contained by Generalised 

Alert021. The similarity of the chemicals containing Alert039 and Alert045 to the Alet021 

chemicals are especially clear when three dimensional conformations are generated and aligned 

to the pharmacophore model.  

These alerts likely define chemicals which elicit activity through the same binding mode. The 

chemicals contained by these alerts, combined with the chemicals containing Alert021, provide a 

larger, more diverse pool of chemicals acting through the same binding mode. They can be used 

to update and refine the pharmacophore for the binding mode. For example, the best-fitting 

chemicals from Alert033, Alert039 or Alert045 do not hit the HBA feature in the pharmacophore 

model suggesting that the feature might not be necessary for receptor binding. This feature could 

be adjusted or removed in updated pharmacophore models.  

The results for this pharmacophore model demonstrate how pharmacophore models expand 

upon structural alerts. The structural alerts represent two-dimensional fragments which are 

statistically associated with activity, whereas pharmacophores consider the whole chemical. In 

the example shown here, considering the whole, three-dimensional molecule has allowed 

similarities to be identified between chemicals that were not identified by the structural alerts 

alone. Consideration of the whole, three-dimensional molecule is required to understand the 

mechanism of the receptor binding modes. Pharmacophore models are step towards this. 
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6.3.2. Effect of using generalised aromatic alerts 

6.3.2.1. Non-Generalised Alert016 

Alert016 is shown in Figure 6.12. The structural alert has a large, flat aromatic core and specifies 

the position of two side groups, creating a defined, rigid scaffold for other features outside of the 

alert.  

 

Figure 6.12: “Alert016” – A structural alert for the adenosine A2a receptor, created by the 

automated workflow for construction of structural alert-based models (“Risk Assessment” 

parameters). In the training set, this alert is contained by 18 active chemicals and two inactive 

chemicals. 

 

Figure 6.13: The ten active training chemicals containing Alert016 from which a pharmacophore 

was built. These chemicals are chosen from all training active chemicals containing Alert016 by 

RDKit’s Fingerprint Diversity node in KNIME. 
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Of the active chemicals containing Alert016 in the training set, ten are chosen using RDKit’s 

Fingerprint Diversity node and these are shown in Figure 6.13. A pharmacophore model was built 

from these chemicals. Figure 6.14 shows the pharmacophore model with four of the training 

chemicals fitted – these are the three best fitting chemicals and the single worst fitting chemical. 

Nine of the ten chemicals are aligned in the same orientation when fitted to pharmacophore 

model. The model has identified three features within the structural alert (aromatic ring, 

hydrophobic region, and HBA). In the nine aligning chemicals, the three features within the 

structural alert fit to these same features in the pharmacophore model, ensuring the chemicals 

take the same orientation. The one chemical that has a different orientation is shown in Figure 

6.14(10) and has a lower fit value than the other training chemicals. This chemical is the only 

training chemical to lack an aromatic ring branching from the bottom right of Alert016 (see 

bottom left chemical in Figure 6.13) and takes a different orientation to fit both aromatic features 

in the pharmacophore model. It might be the case that this chemical has a different orientation in 

the receptor binding site, but it is more likely that the chemical has the same orientation as others 

containing Alert016 and the aromatic ring is not an important feature. 

Despite occurring in all training chemicals and having a lone pair, the nitrogen within the six-

membered ring of Alert016 is not identified as a HBA by the pharmacophore algorithm. This 

suggests that pharmacophore generation algorithm may not be picking out all important features. 

The pharmacophore model shown is the highest-ranking model according to the algorithm, but 

other models are generated and the expected HBA feature may be present in these.   
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Figure 6.14: Pharmacophore model for chemicals containing Alert016 with four training set 

chemicals (carbon atoms in grey, nitrogen in blue, oxygen in red, and hydrogen in white). The 

number of the chemical indicates its rank in terms of best fit to model of the ten training chemicals 

– 1) is the best-fitting chemical and 10) is the worst-fitting. In the pharmacophore model, green 

zones represent position of hydrogen bond acceptors, purple zones represent hydrogen bond donors, 

orange zones represent aromatic ring, and light blue represents hydrophobic regions. 

 

 

1) 2) 

3) 10) 
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Figure 6.15 shows the fit values of chemicals to the pharmacophore model. The training active 

chemicals (all containing Alert016), from which the model is built, fit the model well, with high fit 

values in a narrow range. A similar distribution of fit values is seen in the twenty test chemicals 

containing the alert, suggesting the pharmacophore model is not only applicable to the chemicals 

on which it was trained. As with the previous models, one training active has a fit value of 

essentially 1.0, which is greater than all other active chemicals (training and test), suggesting the 

model is too strongly based on this one chemical.  

The distribution of fit values is significantly lower in the test active chemicals which do not 

contain Alert016. Many of these chemicals likely act through a different binding mode and so 

would not fit well to this pharmacophore. However, some of these chemicals have higher fit values 

and these may act through the same binding mode as the chemicals containing Alert016. The 

higher fit values of such chemicals provide support to the pharmacophore model, suggesting that 

it is not significantly overfitted to only chemicals containing the structural alert. The inactive test 

chemicals have a similar distribution to the active chemicals that do not contain Alert016, but 

with a slightly lower mean and median.  

The high fit values for chemicals containing Alert016 and the clear distinction from the 

distribution of the inactive chemicals show that this pharmacophore model describes chemicals 

containing Alert016 well. The high fit values of some active chemicals which do not contain the 

alert suggest that the model is not too overfitted to the structural alert, but there are few of these, 

so the model is likely to be fairly specific to Alert016. Overall, this appears to be a good model. 

A cut-off for activity of a fit value of 0.71 was applied to the data. This results in 90% of training 

active chemicals with the structural alert being correctly predicted as active – the one chemical 

incorrectly predicted is the one that takes a different alignment to the other nine chemicals when 

fitted to the model. This could either be an outlier, or indicative of the model identifying some 

incorrect features. All test active chemicals with the alert are correctly predicted as actives. 12% 

of test active chemicals without the alert are predicted to be active. Only 2% of inactive chemicals 

are predicted to be active, indicating that the model is very selective. With such a selective model, 

we can be confident that the 12% of test active chemicals with the alert predicted to be active are 

likely to be acting through a similar binding mode to chemicals containing Alert021. Whilst the 

one outlying training active chemical with the alert could indicate flaws, the model is still selective 

for active chemicals and performing well. 
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Figure 6.15: The range of “fit values” for chemicals in different groups to the pharmacophore 

developed from Alert016. Fit values range from 1.0 for a perfect fit of a chemical to a 

pharmacophore, to 0.0 for no features fit. The groups of chemicals, from left to right in the figure, 

are: the 10 training active chemicals from which the pharmacophore model was built, 20 test 

chemicals which contain Alert016, 50 test active chemicals which do not contain the alert, and 50 

inactive test chemicals which contain at least one HBA, HBD, and aromatic ring. In the plot, boxes 

represent chemicals within the lower and upper quartiles, and whiskers represent the lowest and 

highest values that are not outliers. Outliers, shown as dots, are defined as any chemicals with a fit 

value 1.5 times the interquartile range lower than the lower quartile or greater than the upper 

quartile. The line within the box is the median value and the cross is the mean value. 
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6.3.2.2. Generalised Alert016 

The generalisation of aromatic substructures process has been applied to Alert016, giving the 

generalised alert shown in Figure 6.16. Generalisation of the alert significantly increases the 

number of training set chemicals containing the alert, up to 86 actives and three inactives from 

18 actives and two inactives. The two aromatic nitrogen atoms with available lone pairs in 

Alert016 are present in the generalised alert, suggesting they may be involved as HBAs in 

important interactions in the binding mode. Five positions, formerly carbon atoms, have been 

replaced with general aromatic atoms. Active training chemicals are observed where these 

positions are nitrogen atoms. These nitrogen atoms, although some are able to act as HBAs, are 

not observed in all chemicals containing the structure and are therefore unlikely to be involved 

in important interactions. These are additional features for the pharmacophore generation 

algorithm to sort through, but they should ultimately be ignored in the best pharmacophore 

model.  

 

Figure 6.16: “Generalised Alert016” – A structural alert for the adenosine A2a receptor, created by 

the automated workflow for construction of structural alert-based models (“Risk Assessment” 

parameters) and then generalised with the “generalisation of aromatic substructures” method 

(theta 0.95). In the substructure, “a” represents any aromatic atom. In the training set, this alert is 

contained by 86 active chemicals and three inactive chemicals. 

 

As previously, ten training active chemicals containing the structural alert are chosen with 

RDKit’s Fingerprint Diversity node. These are shown in Figure 6.17. The generalised alert is 

contained by more active training chemicals than the non-generalised alert, giving a larger pool 

of chemicals from which to pick a more diverse subset.  The generalisation of the structural alert 

also allows for more diverse substructures within the alert itself. In the ten chemicals, nitrogen 

atoms are observed in each of the generalised atom positions at least once. 
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Figure 6.17: The ten active training chemicals containing Generalised Alert016 from which a 

pharmacophore is built. These chemicals are chosen from all training active chemicals containing 

Alert016 by RDKit’s Fingerprint Diversity node in KNIME. 

 

The pharmacophore model built from the subset of diverse chemicals containing Generalised 

Alert016 is shown in Figure 6.18 with the six best-fitting chemicals from that subset. The 

chemicals are shown in the conformation output by the pharmacophore generation algorithm, 

which is the conformation that best fits the model features. 
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Figure 6.18: Pharmacophore model for chemicals containing generalised Alert016 with six training 

set chemicals (carbon atoms in grey, nitrogen in blue, oxygen in red, hydrogen in white, and chlorine 

in green). The number of the chemical indicates its rank in terms of best fit to model of the ten 

training chemicals – 1) is the best-fitting chemical, 2) is the second-best fitting chemical, etc.  In the 

pharmacophore model, green zones represent position of hydrogen bond acceptors, orange zones 

represent aromatic ring, and light blue represents hydrophobic regions. 

  

1) 2) 

3) 4) 

5) 6) 
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In the best-fitting chemical, the pharmacophore model identifies only one feature within the 

structural alert: a hydrophobic region. This is not a feature that is selective to the structural alert; 

many other groups can act as a hydrophobic region. There is no combination of features in the 

new pharmacophore model that are filled by the structural alert substructure in all chemicals, 

and hence there is no reason for the chemicals to adopt aligning orientations when fitted to the 

model. Only one training chemical aligns with the best fitting chemical, with remaining chemicals 

all adopting different orientations, some of which are shown in Figure 6.18. With so many 

different orientations, the pharmacophore model is not picking up the important features which 

are shared across the training chemicals. The generalised structural alert is a central scaffold 

shared across all chemicals, but it is not identified by the pharmacophore model, which instead 

fits the chemicals to an outer hydrophobic region on one side, and a hydrophobic and aromatic 

feature on the other outer side. These outer, non-specific features are contained by all training 

chemicals, giving them all high fit values to the model even if they do not contain the two HBAs 

which make up the rest of the pharmacophore model. As a result, the pharmacophore generation 

algorithm considers this model to be a good representation of the training chemicals even though 

it has not truly described the features in the central structural alert substructure. This 

pharmacophore model, whilst fitting the training molecules (when in differing orientations) is 

not defining the specific common binding mode. 

As with previous pharmacophore models, the model based on Generalised Alert016 has been 

tested on the diverse subset of training active chemicals with the alert, test active chemicals with 

the alert, test actives without the alert, and test inactives. The distribution of fit values is shown 

in Figure 6.19.  

Unlike the previous pharmacophore models, there is no clear distinction between the distribution 

of fit values in chemicals containing the structural alert and the active chemicals without the alert 

or the inactive chemicals. The active chemicals containing Generalised Alert016 have high fit 

values to the model, but so do most of the active chemicals which do not contain the alert, and a 

large proportion of the inactive chemicals. The pharmacophore model is not specific to the 

binding mode of the chemicals containing the structural alert and does not distinguish active 

molecules from inactive.  

The minimum fit value of the training active chemicals with the alert is 0.578. Using this as an 

activity cut-off, active predictions are made for: 100% of training active chemicals with the alert, 

94% of test active chemicals with the alert, 80% of active chemicals without the alert, and 64% 

of inactive chemicals. This is a poor pharmacophore model which is not selective for active 

chemicals. 
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Figure 6.19: The range of “fit values” for chemicals in different groups to the pharmacophore 

developed from Generalised Alert016. Fit values range from 1.0 for a perfect fit of a chemical to a 

pharmacophore, to 0.0 for no features fit. The groups of chemicals, from left to right in the figure, 

are: the 10 training active chemicals from which the pharmacophore model was built, 50 test 

chemicals which contain Generalised Alert016, 50 test active chemicals which do not contain the 

alert, and 50 inactive test chemicals which contain at least one HBA, HBD, and aromatic ring. In the 

plot, boxes represent chemicals within the lower and upper quartiles, and whiskers represent the 

lowest and highest values that are not outliers. Outliers, shown as dots, are defined as any chemicals 

with a fit value 1.5 times the interquartile range lower than the lower quartile or greater than the 

upper quartile. The line within the box is the median value and the cross is the mean value.  
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It was hoped that using generalised alerts would provide additional information to help the 

pharmacophore generation algorithm identify which of the features within the structural alert 

are required in the model, but instead it has resulted in construction of poor pharmacophore 

models. Instead of aiding model construction, the additional information provided by generalised 

alerts may have been problematic for the pharmacophore generation algorithm.  

In the case of Alert016, additional groups capable of acting as HBAs are introduced in different 

positions within the structural alert which should have been ignored in the final model, giving a 

model similar to the one developed from non-generalised Alert016. The pharmacophore for non-

generalised Alert016 has been applied to the same groups of chemicals used in testing 

Generalised Alert016, and the distribution of fit values is shown in Figure 6.20. The distribution 

of fit values in the active chemicals containing Generalised Alert016 to the pharmacophore model 

is clearly distinct from the distribution of fit values in the inactive chemicals and in the active 

chemicals without the generalised alert.  

There is one clear outlier in the training active chemicals containing Generalised Alert016, with a 

low fit value of 0.42. This is the one chemical with no hydrogen on the amine outside of the 

aromatic system. In the pharmacophore model, this amine has been identified as a HBD but it 

could be identified as a HBA to give a model which gives a better fit of this outlying chemical 

without affecting the fit values of the other chemicals (where the nitrogen is in an amide, the 

carbonyl could act as a HBA). This example demonstrates how additional information gained from 

the larger pool of chemicals containing a generalised structural alert could have been used to 

develop a better pharmacophore model.  

Applying the cut-off of 0.71 previously derived from non-generalised Alert016 to this data results 

in active predictions for: 60% of training active chemicals containing generalised Alert016, 65% 

of test active chemicals containing generalised Alert016, 2% of test active which do not contain 

generalised Alert016, and 6% of inactive chemicals.  

However, using some pragmatic flexibility with the cut-off gives improved results. A slightly 

lower of cut-off of 0.70 results in active predictions for 90% of training active chemicals 

containing generalised Alert016, active predictions for 90% of test active chemicals containing 

generalised Alert016, active predictions for 4% of test active which do not contain generalised 

Alert016, and active predictions for 8% of inactive chemicals.  
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Figure 6.20: The range of “fit values” for chemicals to the pharmacophore developed from Alert016 

before aromatic generalisation. The groups of chemicals are the same used in testing the 

pharmacophore constructed from Generalised Alert016. Fit values range from 1.0 for a perfect fit of 

a chemical to a pharmacophore, to 0.0 for no features fit. The groups of chemicals, from left to right 

in the figure, are: the ten training active chemicals from which the pharmacophore model for 

Generalised Alert016 was built, 50 test chemicals which contain Generalised Alert016, 50 test active 

chemicals which do not contain the alert, and 50 inactive test chemicals which contain at least one 

HBA, HBD, and aromatic ring. In the plot, boxes represent chemicals within the lower and upper 

quartiles, and whiskers represent the lowest and highest values that are not outliers. Outliers, shown 

as dots, are defined as any chemicals with a fit value 1.5 times the interquartile range lower than 

the lower quartile or greater than the upper quartile. The line within the box is the median value 

and the cross is the mean value.  
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These results show a much better performance of the pharmacophore derived from non-

generalised Alert016 than the pharmacophore derived from the generalised alert. Compared to 

the results obtained for the data sets used in testing non-generalised Alert016, a much lower 

proportion of test actives not containing the alert are seen here – 4% compared to 14%. This 

indicates that a large proportion of the chemicals classed as “test actives not containing Alert016” 

contained generalised Alert016, supporting the hypothesis that non-alert-containing actives with 

high fit values likely act through the same binding mode as the alert-containing actives from 

which the pharmacophores were built. 

The high fit values of chemicals containing Generalised Alert016 to the pharmacophore model 

constructed from non-generalised Alert016, and the clear distinction between fit values of the 

chemicals with the generalised alert and the inactive chemicals, suggest that this pharmacophore 

model is a good model for all the chemicals containing the generalised alert. This is a stark 

contrast to the poor results of the pharmacophore model developed from chemicals containing 

Generalised Alert016.  

Chemicals containing the non-generalised alerts have the exact same distribution of features 

within the substructure defined by the structural alert, and there is a high probability that at least 

some of these features are picked out by the pharmacophore generation algorithm. This would 

result in the substructure aligning to these features in the models in the same way across all 

chemicals, leading to the chemicals adopting a similar orientation to the model. When generalised 

alerts are used, some features are defined within the alert and will be consistent across all 

chemicals, but where generalised aromatic atoms are present, some chemicals will have 

additional features which should not be included in the final pharmacophore model. However, 

the pharmacophore generation algorithm is not able to work this out. Instead, it creates a model 

where general, outer features are defined but specific, central features are not. Hence, the 

substructure common to all chemicals not being aligned across chemicals fit to the model. These 

models are too general and do not distinguish chemicals containing the generalised alert from 

other chemicals. The models do not define the specific combination and conformation of features 

that is required for eliciting activity through the specific binding mode. Therefore, using 

generalised structural alerts to identify chemicals to be used in the pharmacophore generation 

algorithm results in poorer models than using non-generalised structural alerts.  
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6.3.3. Improving pharmacophore generation 

It appears that the best pharmacophore models are created when the structural alignment of the 

pharmacophore generation includes or focuses on the atoms covered by the structural alert. As a 

result, all chemicals align to the pharmacophore model in the same way. Poor pharmacophore 

models have been generated from structural alerts when the structural alert substructure is not 

aligned across chemicals fitted to the model. Whilst the HipHop algorithm cannot be easily 

changed, other changes in the pharmacophore generation process can be made to ensure the 

structural alert is aligned across all chemicals. Some changes are suggested here. 

• The HipHop algorithm creates many different pharmacophore models from different 

combinations and conformations of features, ranking each internally. With default 

settings in Discovery Studio, only the top ten ranking models are output, and these are 

often the same combination of features in slightly different conformations. With different 

settings, more models could be output. The user could then search through these different 

models to find pharmacophores where the features within the structural alert are defined, 

resulting in the substructure being aligned in the training chemicals. These 

pharmacophores may not be the best-fitting according to the internal ranking of HipHop 

within the training chemicals, but the model will be better at differentiating chemicals 

with the structural alert from inactive chemicals or active chemicals which act through 

different binding modes.   

• The user can define a minimum number of each type of feature required to be present in 

outputted pharmacophore models, although no minimum was required in this work. The 

number of each type of feature present within the structural alert can be counted and set 

as the minimum required in the pharmacophore model. This helps to filter the 

pharmacophore models constructed by the HipHop algorithm to find ones where the 

features within the alert are defined.  

• The structural alert can be added as a “custom feature” in Discovery Studio and then set 

as a required feature in the HipHop algorithm. In theory, all chemicals would be required 

to have the structural alert in the same orientation and the HipHop algorithm would 

identify features outside of the alert and their positions relative to the alert. The custom 

feature could then be removed and features that are present within the structural alert 

could be manually added to the pharmacophore model. This has been attempted for a 

number of structural alerts but in each case no pharmacophore models were generated 

by the HipHop algorithm.  

• In creating pharmacophore models here, only active chemicals have been input into the 

HipHop algorithm. Inactive chemicals could also be included, and the algorithm will try to 
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avoid models to which the inactive chemicals have high fit values. This should help the 

algorithm identify the features that are unique to the active chemicals compared to the 

inactive chemicals, reducing the likelihood of the non-specific pharmacophore models 

being highly ranked within the HipHop algorithm.  

 

Even in cases where most training chemicals are aligned by non-generalised structural alerts in 

the pharmacophore model, the pharmacophores were not perfect. The three models based on 

non-generalised alerts presented here were strongly influenced by one training chemical in each 

case, and some features present and overlaid in all training chemicals were not identified as 

features within the model. These problems might be solved by using some of the above suggested 

changes. However, these problems, combined with the problems with generalised structural 

alerts, might be indicative of short comings with the HipHop algorithm. In future work, other 

available automatic pharmacophore algorithms could be used, or a new process designed which 

involves overlaying or tethering common substructures between chemicals. 

In this work, binary activity data has been used, so all chemicals are viewed as equally active and 

are equally weighted in the pharmacophore generation algorithm. In the work presented here, 

each model was strongly based on a single chemical, but in each case, that chemical is not the 

most potent. This information was not used in pharmacophore generation and the inclusion of 

this data might result in improved models. In future work, the experimental potency values could 

be used instead of binary activity, providing information as to which chemicals and features 

should be weighted highest.  
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6.3.4. Use of Pharmacophores in Risk Assessment 

In this chapter, examples have been given to show how pharmacophore models can be 

constructed from structural alerts. These show the potential for pharmacophores to expand upon 

structural alerts: structural alerts can identify similarities in fragments of chemicals, but these 

fragments describe only specific combinations of atoms and bonds, whilst pharmacophores are 

less specific and can identify similarities in features across an entire chemical structure.  

Despite issues with the automated algorithm for generating the pharmacophores, each model 

showed good selectivity, almost always making active predictions for all active chemicals 

containing the alert the model was built from, a small proportion of active chemicals which did 

not contain that alert, and few inactive chemicals.  

In the future, a combination of many pharmacophore models being used to make activity 

predictions for a particular biological target is envisioned, much like a combination of structural 

alerts has been successful applied in this work previously. Cut-offs in fit values would be defined 

for each pharmacophore to predict active chemicals. 

As a starting point, a pharmacophore model could be constructed from each structural alert. As 

seen with Alert021, different structural alerts may contain chemicals which can be modelled by 

the same pharmacophore. Identifying these cases and combining these chemicals will greatly 

reduce the number of pharmacophores needed to model the entirety of the data.   

Being able to construct pharmacophores from generalised structural alerts is key to this vision. 

Generalised alerts contain more diverse structures which act through the same binding mode. 

The independent, generalised structural alert models constructed in section 5.4 would provide a 

good basis for pharmacophore construction. However, it was found to not be possible to construct 

good pharmacophore models from generalised alerts with the HipHop algorithm. Before further 

progress can be made in building a combination of pharmacophores for use in risk assessment, 

this problem must be overcome.  
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6.3.5. Conclusions 

For a chemical to be active at a receptor binding MIE, it needs to have a specific combination of 

features in a specific conformation in three-dimensional space. The structural alerts for receptor 

binding MIEs often describe a specific scaffold holding features within and outside of the alert in 

a specific conformation. These structural alerts have a synergy with pharmacophore models, 

which attempt to predict activity by modelling the required specific combination and 

conformation of features.  

Pharmacophore models have been constructed for the adenosine A2a receptor from chemicals 

containing the same structural alert. Three good pharmacophore models have been constructed 

from three different structural alerts which have not been aromatically generalised. For each of 

these models, active chemicals containing the relevant alert had a distribution of high fit values 

which was clearly distinct from the distribution of lower fit values in the inactive chemicals. The 

distribution of fit values in the active chemicals that did not contain the relevant alert was also 

generally low, although a small proportion had fit values similar to the active chemicals 

containing the alert. Such chemicals may act through the same binding mode, suggesting that the 

pharmacophore models are not too overfitted to the structural alerts from which they are based. 

In particular, the pharmacophore for “Alert021” shows how pharmacophores can expand upon 

the knowledge derived by structural alerts. Structural alerts define a common substructure 

within a larger chemical, but pharmacophore models can identify the common features shared 

across the whole chemical. 

Despite seeming to perform well, there were still some issues with these models. All three models 

had one training chemical with a near perfect fit to the model, significantly larger than the other 

training chemicals’ fit values, suggesting the model is strongly based on a single chemical in each 

case. Looking at experimental results, this chemical was not the most potent binder. Even though 

the structural alert substructures aligned in the training chemicals when fitted to the 

pharmacophores, the models did not pick out all features present in the structural alert. This 

could be due to the upper limit on features present in a pharmacophore model, in which case the 

algorithm must arbitrarily pick a selection of features present in the structural alert. This 

selection of features may not represent the true nature of the receptor binding mode. 

The generalisation of aromatic substructure process (Chapter 5) provides more information 

regarding which aromatic heteroatoms in a structural alert are required for activity. This helps 

identify which features within the alert are involved in the binding mode. Aromatic generalisation 

also increases the number of active chemicals containing the alert. A more diverse subset can be 

selected from the larger pool of active chemicals containing the alert, which should lead to 
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generation of a better pharmacophore. However, when a pharmacophore model was built from 

the generalised alert, it was a poor model. There was no longer a clear distinction between the 

distribution of fit values in active chemicals with the generalised alerts and the other chemicals 

(active or inactive). Rather than improving the pharmacophore models, the additional 

information provided by using generalised alerts has made the models worse. Instead of only 

picking the features within the generalised structural alert that are shared across all chemicals, 

the pharmacophore model picks no features from the structural alert at all. There is no alignment 

in orientations of training chemicals to the resultant pharmacophore and the model does not 

define the features specific to the binding mode. Consequently, the pharmacophore model cannot 

clearly distinguish active chemicals containing the alert from other active chemicals or inactive 

chemicals and is therefore a poor model.  

The excellent pharmacophore models developed from structural alerts without generalisation 

shows the potential of combining structural alerts and pharmacophores. Generalisation of 

aromatic structural alerts should further expand this potential. However, using generalised alerts 

has led to problems with the HipHop algorithm. Some ideas for producing better pharmacophore 

models with the HipHop algorithm from the generalised alerts have been suggested for future 

exploration, although the best solution may be to use a different algorithm entirely.  
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7. Conclusions 

Toxicity testing of chemicals is currently undergoing its largest ever paradigm shift, moving 

towards faster, cheaper and more human-relevant methods which focus on mechanistic 

understanding. An AOP provides a framework for organising biological knowledge and data. The 

gateway to an AOP is the MIE, and chemistry is key to predicting which chemicals can undergo a 

MIE. In silico predictions of MIEs are a vital tool in a modern, mechanism-focused approach to 

risk assessment of chemicals. 

 

Improvements to Structural Alert Models 

Structural alert-based SAR models have been constructed for Bowes targets55 that significantly 

improve upon previous models.44 An automated workflow has been designed for constructing 

these models, using Bayesian statistics to select substructures common to active chemicals but 

not inactive chemicals. Models have been constructed from data sets with balanced numbers of 

active and inactive chemicals, with all data coming from human in vitro assays. The new structural 

alert models have very impressive performance metrics, similar to random forest models applied 

to the same data sets. The key advantage of the structural alert-based models is that the 

predictions are transparent and easily interpretable. This is particularly important in toxicity 

testing, where risk assessors want to know not just whether a chemical is predicted to be active, 

but also why the prediction has been made.  

Importantly, the new structural alert models and the random forest models should not be viewed 

as “in competition”, but as two independent, complementary SAR models to be used together to 

aid risk assessors in assessing potential toxicity. The two models have been combined in a 

consensus approach, which increases confidence in predictions and overall performance. The 

development of the consensus model is significant as it shows how the models for receptor 

binding MIEs could be used in risk assessment, comparable to how in silico (Q)SARs are already 

used in predicting mutagenicity according to the ICH M7 guideline. 

The automated workflow has been used to build new structural alert-based models for 66 

additional biological targets that are not Bowes targets, allowing for a broader assessment of a 

chemical’s potential toxicity and expanding the scope of this project. 

The variation in performance of the models on different target’s data sets has been explained by 

using an approach inspired by Tropsha’s “modelability index”.95  Being able to explain variation 
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in performance in terms of a property of the data sets provides additional confidence in the model 

construction methods. 

A process for generalising aromatic substructures has been outlined.  Specific aromatic atoms 

within a structural alert are replaced with generalised aromatic atoms where there is sufficient 

data to support doing so, guided by use of Bayesian statistics.  

Generalising aromatic structural alerts allows more chemicals with similar structures to be 

represented by the same alert. The process for generalising aromatic substructure has been 

incorporated into the automated workflow for construction of structural alert-based models. This 

constructs models which have a slight increase in average MCC in the test sets of the Bowes 

targets and a significant decrease in the number of structural alerts in the models compared to 

the non-generalised structural alert models. The use of fewer structural alerts is indicative of a 

less overfitted model. In this way, the generalised structural alert-based models represent 

important improvements over the non-generalised structural alert-based models. 

These methods result in structural alert models that are a significant improvement on previous 

structure-based predictive tools for receptor binding MIE. 

 

Confidence in Predictions 

Having constructed improved structural alert models, new methods have been introduced that 

effectively measure confidence in all predictions from the models.  

Confidence in an active prediction has been shown to correlate with the largest Tanimoto 

similarity (based on Morgan fingerprints) between the test chemical and the training active 

chemicals containing the same alert. The more similar an alert-containing chemical is to the 

training active chemicals containing the same alert, the more confidence in the active prediction. 

This provides a continuous measure for evaluating confidence in active predictions, allowing 

applicability to be assessed. A cut-off has been applied to the continuous measure of confidence 

to define an applicability domain for the structural alerts. Applying these applicability domains 

to the test sets of the Bowes targets significantly increased PPV. With the addition of applicability 

domains, the structural alert-based models satisfy the five key priorities set out by OECD for use 

of (Q)SARs for regulatory purposes. 

Confidence in negative predictions is particularly important in risk assessment, where an 

erroneous negative prediction can potentially lead to consumers being exposed to hazardous 

chemicals. A new method for classifying negative predictions has been designed using Tanimoto 

similarity coefficients between Morgan fingerprints of a test chemical and the training set 
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chemicals. Negative predictions have been split into three categories based on these similarities: 

“Similar to active” inactives, “out of domain” inactives, and “classified” inactives. Within the 

classified inactives category, NPV was increased in the test sets of all targets. 

These new methods greatly increase the relevance and applicability of the structural alert models, 

particularly when they are applied to new data sets. With these methods, it is now possible to 

identify when the structural alert models are extrapolating from the training chemicals to 

different areas of chemical space, and an appropriate measure of confidence is returned with the 

resulting predictions. This is particularly important when applying the models to new chemicals 

in risk assessment.  

Together, the methods in this project give a new, high-performing structure-based predictive 

model with improved applicability to risk assessment. A new scheme for using structural alert 

models to make activity predictions for receptor binding MIEs is shown in Figure 7.1.  
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Figure 7.1: The new scheme for making activity predictions of chemicals with structural alert-based 

models for receptor binding MIEs. The generalisation of aromatic substructure process has been 

integrated into the automated workflow for construction of structural alert-based models. 

Confidence in active and inactive predictions are then assessed using different methods. In this 

image, pink boxes are input chemicals, blue boxes are key steps in the process, green boxes represent 

high confidence predictions, yellow represent medium confidence predictions, and red represents 

low confidence predictions.   
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Receptor Binding MIEs and Reactivity Driven MIEs 

In this project, structural alerts have been used to create high-performing SAR models for 

receptor binding MIEs. However, structural alerts only identify fragments of chemicals. The 

methods used for assessing confidence in predictions highlight the importance of combining 

structural alerts with considerations of “global” similarity – considerations of similarity between 

entire structures of chemicals.  

In assessing confidence in active predictions, considering global similarity indicates whether the 

rest of the chemical beyond the structural alert substructure shares features with the active 

chemicals that gave rise to the structural alert. 

In assessing confidence in inactive predictions for receptor binding MIEs, consideration of global 

similarity to training chemicals was found to be more effective than methods for identifying local 

changes in chemicals, like those used by Williams et al in reactivity driven MIEs related to 

mutagenicity.76 

Despite structural alerts being used to make predictions for both receptor binding MIEs and 

reactivity driven MIEs, this project highlights the key differences between the mechanisms of the 

MIEs. To be active at a receptor binding MIE, a chemical needs a specific combination of features 

in a specific arrangement in three-dimensional space, whereas to be active at a reactivity driven 

MIE a chemical requires a single electrophilic feature. Thus, methods that apply to one type of 

MIE may not be applicable to the other MIE. Structural alerts for reactivity driven MIEs identify 

electrophilic groups and require less context in terms of how the alert relates to the rest of a 

chemical’s structure. Structural alerts for receptor binding MIEs identify common scaffolds or 

fragments associated with activity and judging the applicability of these alert requires a 

consideration of the rest of a chemical’s structure. 

 

Beyond Structural Alerts 

Whilst correlating well with biological activity, structural alerts define only specific combinations 

of atoms and bonds, which can be limiting when making activity predictions for chemicals from 

different regions of chemical space. The generalisation of aromatic structural alerts process is an 

important way of reducing this limitation. Further methods have been explored to identify the 

key features shared by chemicals containing the same structural alert, and the key interactions 

these features make with the biological targets. This would allow an understanding of how a 

receptor binding MIE may occur, and this understanding helps to make better models for the MIE, 

from which better, more general predictions can be made.   
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7. Conclusions 

Examining the generalised aromatic structural alerts gives more information on the mechanisms 

involved in the chemicals binding to the target. By looking at all chemicals covered by the same 

generalised alerts, one can identify which common features within the alert are necessary for 

activity. An example of this was shown for a generalised structural alert for the adenosine A2a 

receptor. Predictions of key receptor binding interactions where made by examining the 

generalised alert and were found to be consistent with binding interactions derived from crystal 

structures for similar chemicals.  

Ligand-based pharmacophore models identify a common three-dimensional arrangement of 

shared features of biologically active chemicals in an attempt to identify the specific arrangement 

of features required to activate a receptor binding MIE. Structural alerts have been used as a basis 

for grouping chemicals from which pharmacophores were constructed using the HipHop 

algorithm.104 Three good pharmacophore models have been constructed from three different 

non-generalised structural alerts.  

Despite these models seeming to perform well, there were still some issues with construction of 

pharmacophores. The models overfit to a single chemical in each case and they did not pick out 

all overlapping features. Contrary to expectations, poor models were constructed when using 

generalised structural alerts to group chemicals. Instead of producing better, more general 

models, the increase in diversity of chemicals became problematic for the HipHop algorithm. 

Ideas for correcting these issues have been suggested and will be explored in future work. 

Even with some issues, the success of the models from non-generalised structural alerts shows 

the potential of building pharmacophores from structural alerts. Pharmacophores expand upon 

the two-dimensional substructures described by structural alerts, instead describing three-

dimensional similarities across the whole chemical structure – a global consideration of 

similarity, albeit a more complex one than Tanimoto similarity between Morgan fingerprints (as 

used previously in this project). They are a step towards describing chemicals in terms of the key 

interactions made with the biological target. Thus, further development of this pharmacophore 

approach could result in better models founded in the mechanism of the MIE. 
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7. Conclusions 

Final Remarks 

Overall, the work presented within this project fulfils the main aim of making interpretable 

predictions for MIEs based on chemical structures. High performing structural alert-based SAR 

models have been constructed that make accurate, transparent, and easily interpretable 

predictions for receptor binding MIEs. The addition of new methods for assessing confidence and 

applicability of both active and inactive predictions are vital in applying the models to new 

chemicals. This project makes significant contributions and advancements to the topic of 

structure-based predictions for MIEs, which will be particularly important for use in assessing 

toxicity of chemicals. 
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