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Abstract

Outcomes of continuous proportions arise in many applied areas. Such data are typi-
cally measured as percentages, rates or proportions confined in the unitary interval. In this
paper, the R package simplexreg which provides dispersion model fitting of the simplex
distribution is introduced to model such proportional outcomes. The maximum likeli-
hood method and generalized estimating equations techniques are available for parameter
estimation in cross-sectional and longitudinal studies, respectively. This paper presents
methods and algorithms implemented in the package, including parameter estimation,
model checking as well as density, cumulative distribution, quantile and random number
generating functions of the simplex distribution. The package is applied to real data sets
for illustration.

Keywords: dispersion models, proportional data, random variable generation, R, simplex dis-
tribution.

1. Introduction

The theory of generalized linear models (GLMs, McCullagh and Nelder 1989) attests that
regression analysis requires an appropriate recognition about the type of response variable.
While the normal distribution is popular in practice, Jørgensen (1997) pointed out that
the normal distribution is an exception, rather than the rule, except for data with small
dispersions. Fisher (1953) reminded us of the importance of describing data in their natural
habitat. Analysis of non-normal data should therefore take into account the actual type
of data if such knowledge is available. Nelder and Wedderburn (1972) were the first to
show, by introducing the class of GLMs, that a large variety of non-normal data may be
analyzed by a united technique. The GLMs were originally developed for exponential families
of distributions, but the main ideas were later extended to a wider class of models, the so called
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dispersion models (Jørgensen 1997). The major contribution behind dispersion models is that
the notions of location and scale may be generalized to position and dispersion, respectively,
so that a comprehensive range of non-normal distributions is covered and more data types
such as positive data, positive data with zero, count data, binomial data and directional data
can be dealt with by dispersion models in their natural habitat. An important subclass of
dispersion models are the exponential dispersion models, which are the now familiar class of
generalized linear models. In the meanwhile, the residual sum of squares from the analysis of
variance is generalized to the notion of deviance, making the analysis of deviance available as
a general inference tool in model fitting and model selection.

In applied fields, outcomes of proportions often arise. Few models are suitable for fitting
such data. The beta distribution is often used in Bayesian statistics as the conjugate prior
distribution for binomial proportions. With suitable parameter transformations of the beta
distribution, Ferrari and Cribari-Neto (2004) proposed a beta regression model for rates
or proportions and implemented the related statistical estimation and inference methods
in the R (R Core Team 2016) package betareg (Cribari-Neto and Zeileis 2010). Another
R package gamlss (Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby 2007) provides
semi-parametric regression type models for proportional data. However, with an additional
dispersion parameter, the simplex distribution (Barndorff-Nielsen and Jørgensen 1991) based
GLM is more robust for analysis of continuous proportional data (Zhang and Qiu 2014). The
simplex distribution includes a large class of distributions whose domains are confined in (0,
1). As shown by Jørgensen (1997), such a distribution is actually a dispersion model and
shares many common analytic properties with the exponential dispersion models. Therefore,
the GLM for continuous proportional data can be developed on the lines of the classical
GLMs (Song and Tan 2000). In the literature, the simplex marginal model (Song and Tan
2000; Song, Qiu, and Tan 2004), and the simplex mixed-effects model (Qiu, Song, and Tan
2008) have been extensively studied. In this paper, we will briefly present some properties
of the simplex distribution, which provides a foundation for the inference and computation
in the package simplexreg (Zhang, Qiu, and Shi 2016). The package is implemented in
the R system and available from the Comprehensive R Archive Network (CRAN) at https:

//CRAN.R-project.org/package=simplexreg. There are three major lines of functions:

1. Calculation of the density, cumulative distribution, quantile and random number gen-
erating functions for the simplex distribution.

2. Statistical inference in the simplex generalized linear model (SGLM, Zhang and Qiu
2014) via maximum likelihood (ML) for cross-sectional proportional data set.

3. Analysis of longitudinal proportional data set via an extended version of generalized
estimating equations (GEE) using the simplex distribution.

The paper is organized as follows. Section 2 presents the methods to calculate density,
distribution and quantile functions as well as the function generating random variables of the
simplex distribution. Section 3 illustrates the methodology of modeling proportional data
using simplex generalized regression. The generalized estimating equations for longitudinal
proportional outcomes are given in Section 4. Then we address model diagnostics in Section 5.
Section 6 presents the details of the simplexreg package. Section 7 further conducts analyses
based on the simplex distribution in R with real data sets. Finally, plans for extending the
package are described in Section 8.
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2. The simplex distribution

Simplex distributions are effectively derived from the generalized inverse Gaussian distribution
(Barndorff-Nielsen and Jørgensen 1991). Consider the class of renormalized saddle-point
approximations (when σ2 → 0) defined by

p(y; α1, α2, µ, σ2) = c(α1, α2, µ, σ2)yα1−1
1 (1 − y1)α2−1 exp{− 1

2σ2
dα1,α2(y; µ)}, y ∈ (0, 1),

where dα1,α2(y; µ) is a unit deviance defined by

dα1,α2(y; µ) = µ2α1−1(1 − µ)2α2−1 y(1 − y)

(y − µ)2
,

and c(α1, α2, µ, σ2) is the normalized term. The parameters of the distribution are (α1, α2)⊤ ∈
R2, σ2 > 0 and µ ∈ (0, 1). The distribution is called the general simplex distribution, and
is denoted by Y ∼ S(α1, α2, µ, σ2). If α1, α2 > 0, the limiting case σ2 → ∞ is the beta
distribution with parameters α1 and α2. The special case with (α1, α2) = (−1

2 , −1
2) gives the

standard simplex distribution, which we from now on refer to as the simplex distribution.

With mean µ ∈ (0, 1) and dispersion parameter σ2 > 0, the simplex distribution has a density
function taking a similar expression to a normal density,

f(y; µ, σ2) =
[

2πσ2{y(1 − y)}3
]−

1
2 exp

{

− 1

2σ2
d(y; µ)

}

, y ∈ (0, 1), (1)

where the unit deviance function is

d(y; µ) =
y(1 − y)µ2(1 − µ)2

(y − µ)2

with the unit variance function V (µ) = µ3(1 − µ)3.

Then a random variable Y which follows a simplex distribution with mean µ and dispersion
parameter σ2 is denoted by Y ∼ S−(µ, σ2). Jørgensen (1997) gave the variance of Y, τ2, as

τ2 = µ(1 − µ) − 1√
2σ2

exp

{

1

2σ2µ2(1 − µ)2

}

Γ

{

1

2
,

1

2σ2µ2(1 − µ)2

}

, (2)

where Γ(a, b) is the incomplete Γ-function defined by Γ(a, b) =
∫

∞

b ta−1btdt.

Another important property about the density of the simplex distribution worth to men-
tion is that when the dispersion parameter σ2 → 0, the small-dispersion asymptotic theory
(Jørgensen 1997) leads to

Y − µ

σ
√

V (µ)

d→ N(0, 1). (3)

It has been proved that the simplex distribution has a uni-mode if σ ≤ 4/
√

3; otherwise, it
yields multi-modes.

Given values of parameters, µ and σ, the calculation of the simplex density function is straight-
forward (see (1)). As for the distribution and quantile functions, we calculate the normalized
cumulative distribution and quantile functions instead of simplifying the computation if the
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dispersion parameter is small. When the dispersion parameter is large, however, the distri-
bution function is calculated through a numerical integration while the quantile function is
obtained by solving nonlinear equations.

The interest in developing algorithms to generate random variables from the simplex distri-
bution lies in many aspects, one of which is the need in simulation studies. Also, the effective
algorithm to generate random variables from the simplex distribution is the base of Markov
chain Monte Carlo methods in Bayesian inference. Simplex random variable generation can be
developed based on a certain transformation which is motivated by the fact that the simplex
distribution is transformed from the inverse Gaussian mixture distribution (Qiu 2001).

The inverse Gaussian mixture distribution (Jørgensen 1991), denoted by X ∼ M -IG(ξ, ǫ2, p),
is the mixture of the inverse Gaussian distribution (with probability 1 − p) and its comple-
mentary reciprocal (with probability p), with probability density:

f(x; ξ, ǫ2, p) = (2πǫ2x3)−
1
2

(

1 − p +
px

ξ

)

exp

{

− 1

2ǫ2

(x − ξ)2

ξ2x

}

, x > 0.

Suppose X ∼ M -IG(ξ, ǫ2, p), let

y =
x

1 + x
, µ =

ξ

1 + ξ
, and σ2 =

ǫ2

(1 − p)2
= ǫ2(1 − ξ)2.

Then Y = X
1+X ∼ S−(µ, σ2), noting that the Jacobian is (1 − y)−2 in this transformation.

Therefore, to generate random variables from the simplex distribution S−(µ, σ2), we can first
produce random variables from the inverse Gaussian mixture distribution, M -IG(ξ, ǫ2, p).
Jørgensen (1991) presented the method to generate the inverse Gaussian mixture random
variables from the inverse Gaussian distribution, denoted by IG(ξ, ǫ2), and χ2

1 distribution.
To generate inverse Gaussian random variables, we adopt the method proposed by Michael,
Schucany, and Hass (1976), which is based on the property that the kernel of the inverse
Gaussian density has a χ2-distribution. The proposed transformation method for a simplex
random number generation is built only upon the χ2-generator and uniform-generator, with
the process listed as follows:

1. Set p = µ, ξ = µ
1−µ and ǫ2 = σ2(1 − µ)2.

2. Generate random variable X1 ∼ IG(ξ, ǫ2):

• Generate random variable Z ∼ χ2(1), and U from the uniform (0, 1) distribution.

• Set Z1 = ξ + ξ2ǫ2Z
2 − ξǫ2

2

√

4ξZ
ǫ2 + ξ2Z2.

• Choose ξ2

Z1
to be X1 if U > ξ

ξ+Z1
or choose Z1 otherwise.

3. Generate the random variable X ∼ M -IG(ξ, ǫ2, p):

• Generate random variable X2 ∼ ξ2ǫ2χ2(1).

• Let X equals to X1 + X2 with probability p and X1 with probability 1 − p.

4. Apply the “simplex” transformation function Y = X
1+X .



Journal of Statistical Software 5

The following properties of the simplex distribution will be used in the inference and compu-
tation of simplex models:

Proposition 1 Let Y ∼ S−(µ; σ2). Then E(Y ) = µ, and

(i) E {d(Y ; µ)} = σ2

(ii) E {(Y − µ)d′(Y ; µ)} = −2σ2.

(iii) E {(Y − µ)d(Y ; µ)} = 0.

(iv) E {d′(Y ; µ)} = 0.

(v) 1
2E {d′′(Y ; µ)} = 3σ2

µ(1−µ) + 1
µ3(1−µ)3 .

(vi) VAR {d(Y ; µ)} = 2
(

σ2
)2

.

(vii) VAR {u(Y ; µ)} = 3σ4

µ(1−µ) + σ2

µ3(1−µ)3 .

The proof can be found in Song and Tan (2000), Qiu (2001), Song et al. (2004) and Zhang
and Qiu (2014).

3. Simplex generalized linear models

Consider cross-sectional proportional responses yi, 0 < yi < 1, i = 1, 2, . . . , m. Let xi be a
p-element vector of covariates for subject i = 1, 2, . . . , m, zi be a subset of xi. The goal is to
model the means of the responses and the dispersion as functions of these covariates.

Assuming yi are realizations of the random variable Yi, Yi|xi ∼ S−(µi, σ2
i ), we write a gener-

alized linear model
ηi = g(µi) = x⊤

i β, (4)

where the function g : (0, 1) → (−∞, ∞) is the link function, and β is the vector of regression
parameters of interest, and the dispersion σ2

i in the simplex heterogeneous model may be
modeled with some covariates:

h(σ2
i ) = z⊤

i γ, (5)

where the function h : (0, ∞) → (−∞, ∞) is the link function, and γ is the vector of regression
coefficients associated with the dispersion σ2

i . The homogeneous simplex model is obtained
by removing the varying dispersion effect in (5).

This is an extension of the generalized linear models mentioned in Jørgensen (1997), noting
that (i) given xi, Yi, i = 1, . . . , m are independently distributed with mean E(Yi|xi) = µi;
(ii) the parameters µi may vary from subject to subject; (iii) the link function can be any
monotonic and differentiable function. However, the simplex density function is not a member
of the exponential family with the general form and the variance of Yi does not vary with the
xi’s through µi alone, which, in fact, depends on the dispersion parameter.

To estimate the parameters β and γ for the SGLM with varying dispersion, we follow the
classical theory of GLMs and use the iteratively re-weighted least squares algorithm for the
maximum likelihood estimation of β and γ. Clearly, the log-likelihood takes the form

ℓ(β, γ) = −1

2

m
∑

i=1

{

d(yi; µi)

σ2
i

− log σ2
i

}

, (6)
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subject to a constant term.

Define the surrogate or “working" vector s = (s1, s2, . . . , sm)⊤ as follows: The ith component
is given by

si = g(µi) +
u(yi, µi)

σ2
i wig′(µi)

, (7)

where u(yi, µi) is the score function defined as

u(y; µ) =
y − µ

µ(1 − µ)

{

d(y; µ) +
1

µ2(1 − µ)2

}

, (8)

and weights are given by

wi =
Ed′′(yi; µi)

2σ2
i {g′(µi)}2 =

1

σ2
i {g′(µi)}2

(

3σ2
i

πi
+

1

π3
i

)

, (9)

where πi = µi(1 − µi) by Proposition 1(v).

The expression in (7) of the surrogate response is a natural extension to dispersion models.
For exponential family models, this surrogate response reduces to si = g(µi) + (yi − µi)g

′(µi),
a common form seen in the classical GLMs. By the deviations of (6), we may estimate β
and γ by the standard iteratively re-weighted least squares method that iteratively solves the
score equations of β and γ through updating

β(k+1) = β(k) +

(

m
∑

i=1

x⊤

i w
(k)
i xi

)−1 m
∑

i=1

x⊤

i w
(k)
i

(

s
(k)
i − η

(k)
i

)

,

γ(k+1) = γ(k) +

(

1

2

m
∑

i=1

z⊤

i zi

)−1 m
∑

i=1

z⊤

i v
(k)
i ,

where v
(k)
i =

d(yi;µ
(k)
i

)

2σ2
i

(k) − 1
2 , with the logarithmic link function h.

In addition, Proposition 1(i) leads to a moment method, an alternative approach we employed
to estimate the constant dispersion parameter σ2 in the simplex homogeneous model. The
moment estimator coincides with its MLE. By bias correction, the estimation of σ2 has the
closed form:

σ̂2 =
1

m − p

m
∑

i=1

d(yi; µi), (10)

in the invariant dispersion simplex GLMs. Details of the discussion on estimation and mod-
eling of dispersion parameters can be found in Zhang and Qiu (2014).

4. Simplex marginal models for longitudinal data analysis

Let yij , j = 1, . . . , ni be the sequence of observed repeated measurements on the ith of
m subjects, and tij , j = 1, . . . , ni, be the sequence of corresponding times on which the
measurements are taken on each subject, and xijk, k = 1, . . . , p, be p explanatory variables
where xij1 may be set to 1 corresponding to an intercept. We assume that yij are realizations of
random variables Yij which follow simplex distributions Yij ∼ S−(µij , σ2

ij), where µij ∈ (0, 1)
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are the mean parameters and σ2
ij > 0 are the dispersion parameters, and both may be specified

as functions of covariates. Let Yi = (Yi1, . . . , Yini
)⊤, xij = (xij1, . . . , xijp)⊤. We assume that

Y1, . . . , Ym are independent.

A heterogeneous marginal simplex model consists of three components. The first component
is a model to describe the population-averaged effects, where the mean parameter µij depends
on the time-varying covariates xij via a generalized linear model of the form

ηij = g(µij) = x⊤

ijβ, (11)

where g is a known link function and β = (β0, . . . , βp−1)⊤ are the regression coefficients
to be estimated. The second component is a model to describe the pattern of dispersion
parameters σ2

ij as a function of covariates zij (maybe a subset of xij , which can be omitted
in the homogeneous dispersion model), given by

h(σ2
ij) = z⊤

ijγ, (12)

where h is a known link function and γ = (γ0, . . . , γr−1)⊤ with γ0 corresponding to the
intercept term. The third component is for modeling the correlation structure. The correla-
tion between Yij and Yik is a function of the location parameters and perhaps of additional
parameters, α = (α1, . . . , αq)⊤, namely,

COR(Yij , Yik) = ρ(µij , µik, α), (13)

where ρ(·) is a known function. Various types of correlation structures may be used for the ρ
function. Amongst others, three commonly used in the analysis of longitudinal data are the
exchangeable, auto-regressive (AR) and m-dependent correlations.

Denote the mean vector of subject i by µi = (µi1, . . . , µini
)⊤. Let the score vector for subject

i be ui = (ui1, . . . , uini
)⊤, with uij evaluated by (8), si = diag{µ3

ij(1−µij)3}ui be the working
vector, and R(α) be an ni × ni working correlation matrix with a q × 1 vector of correlation
parameters α. The working covariance matrix for si is

Vi = diag1/2 {VAR(sij)} R(α)diag1/2 {VAR(sij)} ,

where VAR(uij) in VAR(sij) is calculated by Proposition 1(vii). The GEE1 (Liang and Zeger
1986) for the simplex margin corresponding to the estimating equation for β is given by

Ψ1(β, γ, α) =
m
∑

i=1

D⊤

i AiV
−1
i si = 0, (14)

where Ai = diag
{

σ−2
ij v(µij)VAR(uij)

}

and D⊤
i = ∂µ⊤

i /∂β. The estimating equation for the

dispersion component is given as follows,

Ψ2(β, γ, α) =
m
∑

i=1

(

∂σ⊤
i

∂γ

)

Σ−1
i (di − σi) = 0, (15)

where di = (d(yi1; µi1), . . . , d(yini
; µini

))⊤, Σi is a working covariance matrix, and σi =
E(di) = (σ2

i1, . . . , σ2
ini

)⊤.
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Following Prentice and Zhao (1991), the additional set of estimating equations for the corre-
lation parameters based on the standardized score residuals, is defined by

rij =
uij

√

VAR(uij)
=

uij

σij

√

1
2Ed′′(yij ; µij)

. (16)

It is easy to see that such score residuals satisfy moment properties of E(rij) = 0, VAR(rij) = 1
and E(rijrij′) = COR(uij , uij′) = COR(sij , sij′). The estimating equation for the correlation
parameter α then takes the form

Ψ3(β, γ, α) =
m
∑

i=1

(

∂ξ⊤
i

∂α

)

H−1
i (ri − ξi) = 0, (17)

where ri = (ri1ri2, ri1ri3, . . . , rini−1rini
)⊤, Hi is a working covariance matrix and ξi = E(ri).

Details of the sensitivity and variability matrices for the GEEs are referred in Song and Tan
(2000) and Song et al. (2004). Using the Newton-scoring algorithm, the solution of the joint
Equations 14, 15 and 17 can be obtained numerically by iteratively updating the values of
the parameters.

5. Model diagnostics

Fitting data with a certain model means choosing appropriate forms for the predictor, the
link function and the distribution function. In general, Pearson’s χ2 and the deviance perform
the important roles as general goodness-of-fit statistics.

The Pearson residual takes the form

rP
i =

yi − µ̂i
√

ˆVAR(yi)
=

yi − µ̂i

τ̂i
, (18)

where τ̂i has no analytical form expression as it involves the incomplete gamma function in
(2). For over-dispersed data, the dispersion parameter σ2 is large and thus the variance of
the response approaches to µ(1 − µ). This leads to an approximate Pearson residual:

ra
i =

yi − µ̂i
√

µ̂i(1 − µ̂i)
. (19)

Replacing parameters by their corresponding estimates, the simplex distribution assumption
can be checked by the plot of r̂i

P or r̂i
a against µ̂i, which aims to examine the mean-variance

relation.

An informal check for the link function assumption could be done by McCullagh and Nelder
(1989)’s plot of the adjusted dependent variable ai against the linear predictor η̂i. In our
setting, define

ai = g(µi) +

{

3σ4

µi(1 − µi)
+

σ2

V (µi)

}−1/2

u(yi; µi), (20)

where u(yi; µi) and V (µi) = µ3
i (1−µi)

3 are the score function (8) and variance function of the
simplex model, respectively. It follows from Proposition 1 that E(ai) = g(µi) since E(ui) = 0,
and VAR(ai) = E {ai − g(µi)}2 = 1.
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In longitudinal analysis, the scatter plots of the standardized score residuals defined by (16)
at different lags can informally be used to check the assumption of the working correlation
structure.

As an extension of GLMs, the measure of the discrepancy or the goodness-of-fit of the simplex
GLM can be formed by deviance. Noting that for the unit deviance function, d(y; y) =
d(µ; µ) = 0, setting the perfect fit µ̂i = yi gives the log-likelihood of the saturated model.
Hence, by (6), the deviance function is

D =
m
∑

i=1

D(yi; µ̂i) = 2
m
∑

i=1

{ℓi(yi; yi) − ℓi(µ̂i; yi)} =
m
∑

i=1

d(yi; µ̂i)/σ2
i , (21)

which follows a χ2
m−p.

It becomes difficult in determining the degree m − p of the χ2 distribution for the goodness-
of-fit test in the presence of within-subject dependence for longitudinal data. Qiu (2001)
proposed the partial deviance Dp

j =
∑mj

i=1 d(yij ; µ̂ij)/σ2
ij , j ∈ T , where T denotes a collection

of all distinct times on which observations are made. Cross-sectionally, yij ’s are independent
and hence Dp

j follows approximately χ2
mj−p, with mj being the total number of yij ’s observed

cross-sectionally at time tj . A series of the goodness-of-fit χ2 tests can be performed along
these time occasions. Both observed partial deviance Dp

j statistics and the corresponding

critical values determined by χ2
mj−p can be depicted and compared at each time point. The

plot displays a detailed scenario of testing for the goodness-of-fit over the spectrum of time,
and hence is more informative than an overall test based on a single summary statistics.

6. The simplexreg package

The simplexreg package carries out generalized linear model regression as well as generalized
estimation equations based on the simplex distribution and provides related functions of the
simplex distribution. Some routines, including updating parameters for both the homogeneous
and heterogeneous simplex marginal models via the Newton-Raphson method, are written in
C with the GNU Scientific Library (GSL; Galassi et al. 2009) to get support for vector and
matrix operation tasks and facilitate the computation. All the C programs are written in
double precision.

6.1. Functions of the simplex distribution

In the simplexreg package, the function dsimplex gives the density function, psimplex pro-
vides the distribution function, qsimplex calculates the quantile function and rsimplex gives
random numbers generated from the simplex distribution. They thus possess the same forms
as other distribution functions in R:

dsimplex(x, mu, sig)

psimplex(q, mu, sig)

qsimplex(p, mu, sig)

rsimplex(n, mu, sig)

where x and q are vectors of quantiles, p is the vector of probability, n is the user-specified
number of samples, arguments mu and sig are the mean parameter µ and the square root
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Figure 1: Histograms of random numbers of the simplex distributions. µ = (0.1, 0.5, 0.7)
from left plots to right plots; σ2 = (42, 22, 1) from top plots to bottom plots. Solid lines are
corresponding to simplex densities.

of the dispersion parameter σ2 of the simplex distribution, respectively. Numerical integra-
tion is used in calculating distribution and quantile functions. However, to speed up, the
corresponding functions of the normal distributions are computed when the approximation
according to the small dispersion asymptotic theory is close enough, namely, |error| < 10−6.

To illustrate rsimplex and dsimplex, histograms of random numbers obtained from the
simplex random number generator are compared to the densities of the corresponding simplex
distributions (Figure 1).

6.2. Regression analysis of the simplex model

The function simplexreg fits proportional data with simplex regression models. The argu-
ments are similar to packages implementing regression models in R:

simplexreg(formula, data, subset, na.action,

link = c("logit", "probit", "cloglog", "neglog"), corr = "Ind", id = NULL,

control = simplexreg.control(...), model = TRUE, y = TRUE, x = FALSE, ...)

The regression model and data can be specified via formula and data. Methods, such as
for the generic functions print, summary and coef, are available for the returned S3 class
object ‘simplexreg’. The function simplexreg.fit gives an alternative approach to specify
the model:
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simplexreg.fit(y, x, z = NULL, t = NULL, link = "logit", corr = "Ind",

id = NULL, control = simplexreg.control())

The corr argument specifies the correlation structure in the marginal model, providing three
options: independent, exchangeable and auto-regressive of order 1, given by "Ind", "Exc"

and "AR1" respectively. The default value is "Ind", reducing the marginal model to a simplex
GLM. To specify both mean and dispersion equations (see (4) and (5)) in the simplex model,
we employ the form y ~ x1 + x2 | z1 + z2 (Zeileis and Croissant 2010), where y ~ x1

+ x2 specifies the mean model and covariates z1 and z2 are associated with the dispersion
parameter σ2. Without the latter part, a homogeneous dispersion model will be fitted.

To obtain initial values for regression coefficients β, the package fits the data with a linear
model for logit transformed responses. The initial values for γ are from a log-linear model
treating d(yi; µi) as the response which has a Gamma distribution.

For longitudinal proportional data, the marginal simplex models consist of three components,
the population-average effects, the pattern of dispersion and the correlation structure. A
formula of homogeneous dispersion takes the form y ~ x1 + x2 | 1 | t and a formula

in the form y ~ x1 + x2 | z1 + z2 | t is used for heterogeneous simplex marginal mod-
els (corr = "Exc" or "AR1"). The parameter t in the formula as well as in the function
simplexreg.fit corresponds to the time covariate. A factor identifying clusters of the ob-
servations should also be specified by the argument id. And variables y, x, z, t are required
to be sorted in accordance with the clusters.

The function provides four options for the link function of the mean, i.e., the function g
in (4) and (11): link = "logit", "probit", "cloglog", "neglog", corresponding to the
logit, probit, complementary log-log and negative-log functions, respectively. However, when
it comes to the link of dispersion, only the logarithmic function is supported. And function
simplexreg.control controls the fitting process of simplex models.

For the returned object of class ‘simplexreg’, the summary method lists a standard output,
including Wald statistics as well as the p values for the regression coefficients. And based on
the fitted values, a χ2 test is performed for the simplex GLM model and the result is also
reported. Argument type in the summary function specifies the type of residuals included in
the output. The coef and vcov functions extract coefficients and their covariance matrix,
respectively. Akaike’s information criterion (AIC) defined as AIC = 2ℓ(β, γ)−2p and Bayesian
information criterion (BIC) BIC = 2ℓ(β, γ)−p log n where p is the number of parameters, are
calculated via the AIC and BIC methods. For simplex marginal models, these functions are
not supported are not supported since the model is non-likelihood-based. Function predict

provides predicted values of the mean or the dispersion for the responses or new observations.
The plot method draws graphs for visually examining the correlation structure and the model
assumption. Its arguments include:

plot(x, type = c("residuals", "corr", "GOF"), res = "adjvar", lag = 1, ...)

where x is the S3 class object returned from simplexreg fitting, type specifies the types
of graphs. Residuals analysis is given by type = "residuals" with one of the four types
chosen for res: stdPerr the exact standard Pearson residual rP

i given in (18), appstdPerr

the approximated Pearson residual ra
i given in (19), stdscor the standardized score residuals

rij detailed in (16), and the adjvar adjusted dependent variable ai in (20). The first three can
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be plotted against the mean µ to examine the mean-variance relation as well as detect model
assumption violation. The plot of adjusted dependent variable against the linear predictor η
(see (4) and (11)) can be used to check the link function. All these residuals could be obtained
the residuals method. Model diagnosis and residual analysis using this function is further
demonstrated with examples in Section 7.

When type = "corr", a graph is drawn to explore the correlation structure. Standardized
score residuals are used to examine the auto-correlation at lag. Partial deviances against
the time covariates are plotted when type = "GOF" (leveraging the plotrix package, Lemon
2006).

7. Data examples

Two examples are used to illustrate the capacities of simplexreg. The first models the recovery
rate of CD34+ cells after peripheral blood stem cell (PBSC) transplants and the second is
the longitudinal study of decay of intraocular gas (C3F8) presented in Song and Tan (2000),
Song et al. (2004) and Qiu et al. (2008). These two proportional data sets are modeled via the
simplex GLM technique and the GEE method, respectively. These analyses are done using R

version 2.15.3.

7.1. PBSC study

Autologous peripheral blood stem cell (PBSC) transplants have been widely used for rapid
hematologic recovery following myeloablative therapy for various malignant hematological
disorders. Hematopoietic reconstitution largely depends on the reinfusion of sufficient num-
bers of stem cells to engraft in the bone marrow micro-environment, as indicated in Allan
et al. (2002). The dose of viable CD34+ cells is considered an important marker of adequacy
of PBSC harvest, as well as a predictor of hematopoietic engraftment. Studies have shown
that the process of freezing, cryopreservation and thawing prior to reinfusion could inevitably
damage PBSCs and remarkably decrease the number of viable CD34+ cells, as demonstrated
by Yang, Acker, Cabuhat, Letcher, Larratt, and McGann (2005). The loss of viable CD34+
cells is usually assessed by post-cryopreservation recovery rates of the number of post-thaw
viable CD34+ cells and that of pre-freeze viable CD34+ cells. It is of scientific interest to
investigate the mechanism by which the post-cryopreservation recovery rates are infected.

A study enrolled 242 patients who consented to autologous PBSC transplant after myeloabla-
tive doses of chemotherapy between the years 2003 and 2008 at the Edmonton Hematopoietic
Stem Cell Lab in the Cross Cancer Institute – Alberta Health Services. Age, gender and clin-
ical characteristics, such as cancer type and chemotherapy type, were recorded. The patients
are 18 to 71 years old and most of them are male (170), diagnosed with multiple myeloma,
non-Hodgkin’s lymphoma, acute leukaemia, solid tumors, amyloidosis or others. Patients
received primary chemotherapy, with 1 day protocol, 3 day protocol, G-CSF only or other
types, for mobilizing CD34+ cells. The PBSC collection was initiated when the circulating
CD34+ count in the peripheral blood reached or exceeded 15 cells/µL. PBSC products were
cryopreserved and stored in a liquid nitrogen vapor until reinfusion. PBSC samples were as-
sessed on the day of collection (pre-freeze) and post cryopreservation (post-thaw) for absolute
viable CD34+ cells. Post-cryopreservation viability was calculated as the percentage of the
absolute number of viable cells or colonies over the number of pre-freeze cells.
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The data set object sdac is included in the simplexreg package with the first five rows of the
data frame shown as follows,

R> library("simplexreg")

R> data("sdac", package = "simplexreg")

R> head(sdac, n = 5)

age gender rcd ageadj chemo

62 M 0.75 22 0

39 M 0.83 0 1

43 M 0.94 3 1

58 M 0.86 18 0

43 M 0.54 3 0

where rcd denotes the recovery rate of CD34+ cells. We factorize the treatment with a
dummy variable chemo indicating if a patient receives a chemotherapy on a one-day protocol
(0) or on a 3-day protocol (1). For simplicity, two chemo categories, G-CSF and other, are
combined into either 1 day protocol or 3 day protocol, by number of days they took. To
reflect the age structure in the patient population, we adjusted the age by setting age< 40
as the baseline age and subtracting other ages by 40, ending up in a new covariate ageadj.
The range of CD34+ cells recovery rates is 40%–100%. The two extreme values, 100%, are
replaced by 99% in the regression analysis to avoid the boundary issue for proportional data.

The data are fitted with simplex regression models using both the homogeneous and hetero-
geneous structures of dispersion. The mean response model is given by

logit(µi) = β0 + β1ageadj + β2chemo.

The dispersion parameter in the heterogeneous simplex model is regressed on age, with

log(σ2
i ) = γ0 + γ1age.

The summary output of both models is given below:

R> sim.glm1 <- simplexreg(rcd ~ ageadj + chemo, data = sdac)

R> sim.glm2 <- simplexreg(rcd ~ ageadj + chemo | age, data = sdac)

R> summary(sim.glm1)

Call:

simplexreg(formula = rcd ~ ageadj + chemo, data = sdac)

standard Pearson residuals:

Min 1Q Median 3Q Max

-2.8257 -0.5853 -0.0083 0.4974 1.3964

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.100226 0.140683 7.821 5.26e-15 ***

ageadj 0.013575 0.006519 2.082 0.0373 *
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chemo 0.266092 0.124991 2.129 0.0333 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-likelihood: 105.3, p-value: 0.4877576

Deviance: 236

Number of Fisher Scoring iterations: 6

R> summary(sim.glm2)

Call:

simplexreg(formula = rcd ~ ageadj + chemo | age, data = sdac)

standard Pearson residuals:

Min 1Q Median 3Q Max

-3.0821 -0.5386 -0.0032 0.4956 1.4484

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.115550 0.141396 7.890 3.03e-15 ***

ageadj 0.013013 0.006452 2.017 0.0437 *

chemo 0.251921 0.121807 2.068 0.0386 *

Coefficients (dispersion model with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.60750 0.36687 7.107 1.18e-12 ***

age -0.01500 0.00688 -2.181 0.0292 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-likelihood: 99.51, p-value: 0.4332267

Deviance: 239

Number of Fisher Scoring iterations: 6

The p values of the χ2 tests for both models are 0.488 and 0.433, respectively, implying no
lack-of-fit. The chemotherapy type, adjusted by ageadj, is shown to be significant in the
model. In addition, the result also indicates that the dispersions in the post-cryopreservation
recovery rates are associated with patients’ ages. Comparing the mean coefficients of the two
models, it is clear that the dispersion assumption does not have a significant impact on the
coefficients in the mean model.

For the purpose of model selection, information criteria are returned by the function AIC.

R> AIC(sim.glm1, sim.glm2)

df AIC

sim.glm1 4 -202.5467

sim.glm2 5 -189.0300
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Figure 2: Checking the distribution by exact Pearson residuals, PBSC study. Homogeneous
and heterogeneous models from left plot to right plot.

The AIC values show that the heterogeneous model has a better fit than the homogeneous
one. Apart from the AIC criterion, the significance of the age coefficient in the dispersion
model also indicates that the homogeneous dispersion assumption may be violated.

The model assumption can be checked based on values of defined residuals. For example,
plots of the exact Pearson residuals against the estimated mean µ̂i’s for the homogeneous and
heterogeneous models are shown in Figure 2.

R> plot(sim.glm1, type = "residuals", res = "stdPerr", ylim = c(-3, 3))

R> plot(sim.glm2, type = "residuals", res = "stdPerr", ylim = c(-3, 3))

We could see that there is no clear pattern in the Pearson residuals plot and about 97% points
lie in the horizontal band between −1.96 and 1.96.

7.2. Eye surgery study

Song et al. (2004) re-analyze the ophthalmological data C3F8 on the use of intraocular gas
in retinal repair surgeries reported in Meyers, Ambler, Tan, Werner, and Huang (1992). The
corresponding data frame, retinal, is included in the package. The outcome variable was
the percent of gas (Gas) left in the eye. The gas, with three different concentration levels,
15%, 20% and 25% (Level), was injected into the eye before surgery for 31 patients. They
were then followed three to eight (average of 5) times over a three-month period, and the
volume of gas in the eye at the follow-up times were recorded as a percentage of the initial
gas volume. The primary interest was to investigate whether concentration levels of the gas
injected in patients’ eyes affect the decay rate of the gas.

Before setting up the model, we first explore the correlation structure via plot under the
naive assumption (independent observations). Let argument lag = k, the function plots rij

against rik for all i and j < k, |tij − tik| = k.

R> data("retinal", package = "simplexreg")

R> sim.glm3 <- simplexreg(Gas ~ LogT + LogT2 + Level | LogT + Level | Time,
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Figure 3: Examine auto-correlation at four different lags, Eye Surgery study. lag = 1, 2,

3, 4 from left to right and from top to bottom.

+ data = retinal, id = ID)

R> plot(sim.glm3, type = "corr", xlim = c(-2.5, 2.5), ylim = c(-2.5, 2.5),

+ pch = 16)

R> plot(sim.glm3, type = "corr", lag = 2, xlim = c(-2.5, 2.5),

+ ylim = c(-2.5, 2.5), pch = 16)

R> plot(sim.glm3, type = "corr", lag = 3, xlim = c(-2.5, 2.5),

+ ylim = c(-2.5, 2.5), pch = 16)

R> plot(sim.glm3, type = "corr", lag = 4, xlim = c(-2.5, 2.5),

+ ylim = c(-2.5, 2.5), pch = 16)

From Figure 3 we can tell that the auto-correlation at lag 1 seems to be strongest while it de-
creases at lag 2 and 3, and finally becomes insignificant at lag 4. Consequently, it is clear that
the AR(1) structure may fit the data. We fit a simplex marginal model with heterogeneous
dispersion and AR(1) correlation structure for the data, following Song et al. (2004),

R> sim.gee2 <- simplexreg(Gas ~ LogT + LogT2 + Level | LogT + Level | Time,

+ corr = "AR1", id = ID, data = retinal)
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R> summary(sim.gee2)

Call:

simplexreg(formula = Gas ~ LogT + LogT2 + Level | LogT + Level | Time,

data = retinal, corr = "AR1", id = ID)

standard Pearson residuals:

Min 1Q Median 3Q Max

-4.5801 -0.3452 0.0591 0.3910 4.6374

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.72142 0.20272 13.425 < 2e-16 ***

LogT 0.03394 0.31195 0.109 0.913359

LogT2 -0.32946 0.08515 -3.869 0.000109 ***

Level 0.40924 0.21689 1.887 0.059180 .

Coefficients (dispersion model with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.1532 0.3514 17.511 < 2e-16 ***

LogT -0.4574 0.1694 -2.699 0.00695 **

Level -0.4919 0.3563 -1.381 0.16735

Coefficients (correlation):

Estimate Std. Error z value Pr(>|z|)

alpha -0.3491 0.1865 -1.872 0.0612 .

rho 0.7054 0.1315 5.363 8.17e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Overall Deviance: 181

Number of Fisher Scoring iterations: 25

Apart from the regression coefficients in the mean and dispersion equations, information about
the auto-correlation coefficient, alpha and rho, is also involved. The lag-1 auto-correlation, ρ,
shown significant in the model, indicates that correlation for observations of the same patients
is strong.

The graph of the adjusted dependent variable âij against the linear predictor η̂ij is shown
in the left panel of Figure 4. Overall 97% points fall into the 95% confidence band and
those points show an increasing linear trend. This implies that the logit link function is a
reasonable choice for the data.

R> plot(sim.gee2, type = "residuals", ylim = c(-6, 6), pch = 16)

R> plot(sim.gee2, type = "GOF", xlab = "Days after Gas Injection",

+ ylim = c(0, 40))

Consider those time points at which the cross-sectional clusters size mj > p = 4 in order to
compute the needed critical values. For the unequally spaced time points, we found mj =
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Figure 4: Link function checking (left) and goodness-of-fit test (right), Eye Surgery study.

29, 13, 13, 13, 6, 6, 5, 5 corresponding to day j = 1, 2, 3, 4, 8, 9, 13, 15. The partial deviances are
depicted in the right panel of Figure 4, indicating an overall good fitting. Among the 8 time
points, only the partial deviance on the 8th day gives the evidence of lack of fit, with a small
margin.

8. Conclusion

In this paper, we describe the capabilities of the simplexreg package for conducting the
simplex regression analysis in R. Statistical inferences and residual analyses of the simplex
regression models via maximum likelihood and generalized estimation equations methods in
R were presented, together with properties of the simplex distributions.

The density, cumulative distribution, quantile and the random generating functions for the
simplex distribution were implemented in the package. The simplex random number genera-
tor is shown efficient and accurate, providing a powerful tool for a simulation based inference
approach, such as the Markov chain Monte Carlo method, to fit hierarchical simplex gener-
alized linear models for multilevel proportional data using a Bayesia approach.

The multi-dimensional simplex model is an important extension to the simplex GLM dis-
cussed in this paper. Jørgensen and Lauritzen (2000) proposed a class of multivariate dis-
persion models for multivariate non-normal responses. When over-dispersion appears in the
compositional data, the multivariate simplex distribution (Jørgensen and Lauritzen 2000) can
be considered as the underlying distribution for multivariate regression modeling. Developing
regression analysis of the multivariate simplex distribution will be our future work through
further investigation on this study.
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