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Abstract

In the directed Steiner tree problem, we are given a digraph, non-negative arc weights,

a subset of vertices called terminals, and a special terminal called the root. The goal is to

compute a minimum weight directed tree that connects each terminal to the root. We study

the classical directed cut linear programming (LP) formulation which has a variable for every

arc, and a constraint for every cut that separates a terminal from the root.

For what instances is the directed cut LP integral? In this paper we demonstrate how the

celebrated theorem of Lehman [DIMACS, 1990] on minimally non-ideal clutters provides a

framework for deriving answers to this question. Specifically, we show that this framework

yields short proofs of the optimum arborescences theorem and the integrality result for

series-parallel digraphs. Furthermore, we use this framework to show that the directed cut

LP is integral for digraphs that are acyclic and have at most two non-terminal vertices.

1 Introduction

In the directed Steiner tree problem we are given a directed graph (digraph) D = (V,A) with

non-negative arc weights w ∈ R
A
+, and a non-empty subset of terminals R ⊆ V with a special

vertex r ∈ R called the root. A Steiner tree is an (inclusion-wise) minimal arc subset T ⊆ A such

that for each terminal v ∈ R, T contains a vr-dipath. Vertices in V − R 1 are called Steiner

vertices and need not be in T . The directed Steiner tree problem asks for a minimum weight

Steiner tree. In this paper, we use a celebrated theorem of Lehman [24] to study the integrality

of a natural linear programming (LP) relaxation of the directed Steiner tree problem. Moving

forward, we will assume basic knowledge of polyhedral theory as well as graph theory; see the

books of Conforti, Cornuéjols and Zambelli [5] and Bondy and Murty [1] for reference.

The standard directed cut LP formulation for the problem introduces a variable for each arc

and imposes connectivity constraints for cuts separating a terminal from the root. For U ⊆ V

denote by δ+D(U) the set {(u, v) ∈ A : u ∈ U, v ∈ V − U} of arcs exiting U . (We will omit the

1Given sets A,B, A−B denotes the set {a ∈ A : a /∈ B}.
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subscript D whenever there is no ambiguity.) Let us call an arc subset C ⊆ A a Steiner cut if C

is a minimal set of the form δ+(U) for some U ⊆ V − {r} such that U ∩R 6= ∅. If C denotes the

family of all Steiner cuts, the directed Steiner tree problem can be formulated as the following

integer programming problem:

min w⊤x

s.t.
∑

a∈C xa ≥ 1, ∀C ∈ C

x ∈ {0, 1}A.
(1)

Consider the polyhedron obtained from (1) by replacing the integrality constraints with non-

negativity constraints, i.e. the polyhedron

Q :=

{

x ∈ R
A
+ :

∑

a∈C

xa ≥ 1, ∀C ∈ C

}

. (2)

We will focus on sufficient conditions for Q to be integral (i.e. for each face to contain an integer

point). To state our main theorem we need two definitions. The underlying graph of a digraph D

is the graph obtained by ignoring the directions of the arcs and by replacing each maximal set of

parallel edges by a single edge. A digraph is series-parallel if the underlying graph has no minor

isomorphic to the complete graph K4 on four vertices.2

Theorem 1. Let D = (V,A) be a digraph with terminals R and root r and let C be the family

of Steiner cuts. The polyhedron given in (2) is integral if any of the following conditions holds:

(i) |R| = 2 (Ford and Fulkerson [12]),

(ii) R = V (Edmonds [10], Fulkerson [15]),

(iii) D has no directed cycle and |V −R| ≤ 2,

(iv) D is series-parallel (Prodon et al. [26], Schaffers [28], Goemans [16]).

In this paper, we provide a common framework based on Lehman’s theorem on minimally

non-ideal clutters with which one can unify the well-known results (i) (the shortest st-dipath

problem), (ii) (the optimum arborescence problem) and (iv), and find short proofs for them,

especially for (iv). To show its potential, we leverage Lehman’s theorem and obtain the new

result (iii). In fact, (iii) will appear as a special case of a more general result.

Each of (i)-(iv) in Theorem 1 is in a sense best possible. For instance, consider the digraphs

D1, D2 and D3 depicted in Figure 1. For j ∈ [3] 3 let Qj denote the polyhedron corresponding

to Dj . Let us show that Qj is not integral. Define x ∈ Qj where x1 = x2 = x3 = 1
2 and all other

entries are equal to 1 (the indices for vector x̄ correspond to the arc labels in the figure for Dj).

Define a vector w with the same number of components as x where w1 = w2 = w3 = 1 and all

other entries are equal to 0. Since every Steiner tree of Dj has to contain at least two edges from

2There is another way to define such digraphs that is more fitting with the terminology; see [9].
3[m] denotes the set {1, . . . ,m}
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Figure 1: Round vertices are terminals, squares are Steiner vertices.

the edge set [3], min{w⊤x : x ∈ Qj ;x integer} ≥ 2. Because x ∈ Qj , min{w⊤x : x ∈ Qj} ≤ 3
2 . It

follows that Qj is not integral.

Digraph D1 has three terminals so (i) is tight, while D2 has one Steiner vertex so (ii) is tight.

For (iii) the condition that the digraph be acyclic cannot be omitted as D1 (resp. D2) has a

directed cycle but |V −R| ≤ 2. Furthermore, subject to the condition that the digraph is acyclic,

(iii) is tight since for D3, |V −R| = 3. Finally, for (iv) each of D1, D2, D3 show that the condition

that the digraph be series-parallel cannot be omitted.

1.1 Related work and outline

Our work is not the first one to use Lehman’s theorem to obtain certain polyhedral descriptions.

Shepherd [33] used this result to provide a polyhedral description for the convex hull of stable sets

of near-bipartite graphs – graphs for which the deletion of any vertex produces a bipartite graph.

As another application, the third author [17] used Lehman’s theorem to provide an excluded

minor characterization of weakly bipartite graphs – graphs for which the convex hull of bipartite

subgraphs is defined by enforcing non-negativity constraints x ≥ 0 and odd cycle inequalities

x(C) ≤ |C| − 1.

Here we apply Lehman’s theorem to the directed Steiner tree problem, a fundamental NP-hard

network design problem that generalizes several classical optimization problems such as the set-

cover and group-Steiner tree problems. The latter cannot be approximated within O(log2−ǫ(n))

for any ǫ > 0 unless NP-complete problems have quasi-polynomial time algorithms [18], and so

neither can the directed Steiner tree problem. The problem has an O(log3(n))-approximation

algorithm that runs in quasi-polynomial time [3]. The formulation we study in this paper is

very natural, and therefore its relaxation has been widely investigated in the network design

community. Zosin and Khuller [35] demonstrated that its integrality gap in general graphs can

be as bad as Ω(
√
k), where k is the number of terminals. Friggstad et al. [13] showed that the

integrality gap can be reduced to O(ℓ · log k) for (so called) ℓ-layered graphs, by applying ℓ rounds

of Sherali-Adams hierarchy [34] or 2ℓ rounds of Lovász-Schrijver hierarchy [25]. Rothvoß [27] has

provided a similar result using Lasserre semidefinite programming hierarchy [20, 21].

In §2 we state Lehman’s theorem and prove some necessary consequences. In §3 we restate
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our main theorem in the language of Lehman’s theorem, and in §4 we prove the restated version.

Finally in §5 we provide some evidence suggesting that a complete characterization of when the

corresponding polyhedron (2) is integral is likely to remain elusive.

2 Lehman’s theorem and consequences

We will use Lehman’s powerful and very general result to prove Theorem 1. Vaguely speaking,

this result finds a nice substructure whenever a generic LP, such as directed cut, allows for

fractional extreme points. Here we state the result and in §3 we restate our main theorem

in terms of fractional Steiner tree instances. This will allow us to use Lehman’s theorem to

prove none of the conditions (i)-(iv) can hold for fractional instances, due to a highly restrictive

substructure.

To state Lehman’s theorem we require a few definitions. Let E be a finite set, called a ground

set, and let C be a family of subsets of E, called members. We say C is a clutter over ground

set E = E(C ) if no member is contained in, or is equal to, another member. A cover is a subset

of E that intersects every member of C .4 For instance, for vertices s and t of a graph, the family

of st-paths is a clutter, an st-cut is a cover for this clutter, and every cover contains an st-cut.

The blocker of C , denoted b(C ), is another clutter over the same ground set whose members are

the (inclusionwise) minimal covers. It can be shown that b(b(C )) = C [11, 19]. With clutter C

we associate the polyhedron

Q(C ) =

{

x ∈ R
E(C )
+ :

∑

e∈C

xe ≥ 1, ∀C ∈ C

}

.

Observe that the integer extreme points of Q(C ) are precisely the characteristic vectors of

minimal covers. A clutter C is ideal if the polyhedron is integral, otherwise it is non-ideal. For

example, the clutter {{1, 2}, {2, 3}, {3, 1}} is non-ideal as its associated polyhedron has
(

1
2 ,

1
2 ,

1
2

)⊤

as an extreme point. It is known that if a clutter is ideal, then so is its blocker [14, 23].

One can define two minor operations on C . The contraction C /e of an element e ∈ E is the

clutter over the ground set E−{e} consisting of the minimal sets in
{

C −{e} : C ∈ C
}

. That is,

for C /e the element e is removed from each member of C . The deletion C \ e is the clutter over

the ground set E − {e} with members
{

C : C ∈ C , e /∈ C
}

. That is, for C \ e those members of

C containing e are removed. It is known that b(C /e) = b(C ) \ e and b(C \ e) = b(C )/e [31]. A

clutter C ′ obtained from a clutter C by deleting elements I ⊆ E and contracting elements J ⊆ E

is a minor of C (and C ′ does not depend on the order of the operations, that is, minor operations

commute). We denote C ′ by C /J \ I. The clutter C ′ is a proper minor of C if I ∪ J 6= ∅. If a
clutter is ideal, then so are all its minors [32]. A clutter is minimally non-ideal (mni) if it is

non-ideal and all of its proper minors are ideal. For an integer k ≥ 2, a clutter is a degenerate

projective plane if, after possibly relabeling its elements, it has ground set {0, 1, . . . , k} and

members
{

{1, . . . , k}, {0, 1}, {0, 2}, . . . , {0, k}
}

. Every degenerate projective plane is mni [23].

4Our terminology of the term “cover” closely follows Schrijver [29]; he refers to “covers” as “vertex covers”. In

the literature, covers have also been referred to as “transversals”, “hitting sets” as well as “blocking sets”.
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With clutter C we associate a 0, 1 matrix M(C ) whose columns are indexed by E and

whose rows are the incidence vectors of the members of C . Note that M(C ) is defined up to

permutations of the rows (not the columns, though). A square 0, 1 matrix is r-regular if each

row and each column has r ones. Given a clutter C we denote by C the clutter that consists of

all sets of C of minimum cardinality.

Theorem 2 (Lehman [24], also see Seymour [30]).

Let C be an mni clutter that is not a degenerate projective plane and let T = b(C ). Then

(1) M(C ) and M(T ) are square and non-singular,

(2) for some integers c ≥ 2 and t ≥ 2: M(C ) is c-regular and M(T ) is t-regular,

(3) the rows of M(C ) can be permuted so that

M(C )M(T )⊤ = J + dI 5 (⋆)

where d = ct− |E(C )| ≥ 1.

Lehman also proved that if C is mni, then Q(C ) has a unique fractional extreme point. When C

is not a degenerate projective plane then
(

1
c
, . . . , 1

c

)⊤
is the fractional extreme point of Q(C ).

The matrices in equation (⋆) of Theorem 2 commute, as the following result shows.

Theorem 3 (Bridges and Ryser [2]).

Let A,B be square 0, 1 matrices where AB = J + dI for some d ≥ 1. Then AB = BA.

A transversal of a clutter C is a subset of the ground set that intersects every member of C

in exactly one element.6 Let C be an mni clutter. If C is a degenerate projective plane let

core(C ) = C , otherwise let core(C ) = C . The following proposition lists well-known corollaries

of Lehman’s theorem. We include proofs for completeness.

Proposition 4 (Cornuéjols et al. [6], Guenin [17]).

Let C be an mni clutter and let T = b(C ) and m = |E(C )|. Then core(C ) has m members, say

C1, . . . , Cm and core(T ) has m members, say T1, . . . , Tm. After possibly relabeling C1, . . . , Cm

the following hold:

(F1) for i, j ∈ [m], |Ci| ≥ 2, |Tj | ≥ 2 and

|Ci ∩ Tj |
{

> 1 if i = j

= 1 if i 6= j,

(F2) for distinct a, b ∈ E(C ), there exist i, j ∈ [m] such that a ∈ Ci, b /∈ Ci and a ∈ Tj , b /∈ Tj,

5J denotes the matrix of all ones and I the identity matrix.
6Once again, our terminology closely follows Schrijver [29].
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(F3) for a ∈ E(C ), there exist distinct i, j ∈ [m] such that,

Ci ∩ Cj = Ti ∩ Tj = Ci ∩ Tj = Cj ∩ Ti = {a}.

(F4) there is no transversal of core(C ) (resp. core(T )).

Proof. We assume C is not a degenerate projective plane, for otherwise T = C and we leave

it as an easy exercise to verify that (F1)-(F4) hold. Relabel C1, . . . , Cm so that equation (⋆)

in Theorem 2 holds. (F1) follows from (⋆). (F2) By Theorem 2(1) M(C ) is non-singular, in

particular columns a and b of M(C ) are distinct. By Theorem 2(2) columns a and b of M(C )

both have exactly c entries with a 1. Hence, there is a row Ci with a ∈ Ci, b /∈ Ci. Applying the

same argument to M(T ) we obtain Tj . (F3) Equation (⋆), together with Theorem 3, implies

that J + dI = M(C )M(T )⊤ = M(C )⊤M(T ). This implies that for all e, f ∈ E(C ),

cole
(

M(C )
)

· colf
(

M(T )
)

{

> 1 if e = f

= 1 if e 6= f
(†)

where · denotes the dot product. Choosing e = f = a in (†) implies that there exist i, j ∈ [m]

such that {a} ∈ Ci ∩ Cj ∩ Ti ∩ Tj . Choosing f = a and all e ∈ Ci ∪ Cj − {a} in (†) implies that

Ci∩Cj = {a}. Choosing e = a and all f ∈ Ti∪Tj −{a} in (†) implies that Ti∩Tj = {a}. Finally,
by (F1), Ci ∩ Tj = Cj ∩ Ti = {a}. (F4) Suppose for a contradiction there exists a transversal S

of C and let χS denote the characteristic vector of S. Then M(C )χS = 1. By Theorem 2(2)

M(C ) is c-regular, so M(C )(1
c
, . . . , 1

c
)⊤ = 1. Thus M(C )x = 1 has two distinct solutions, a

contradiction as M(C ) is non-singular, by Theorem 2(1). The proof for T is identical.

3 A restatement of the main theorem

In Theorem 1 we are looking for sufficient conditions for the clutter C of Steiner cuts of a

digraph to be ideal. If C is non-ideal then it has an mni minor C ′. However, C ′ need not be a

clutter of Steiner cuts. For instance if C is the clutter of Steiner cuts of D1 in Figure 1 then

C ′ = C /{4, 5, 6, 7, 8} =
{

{1, 2}, {2, 3}, {1, 3}
}

which is not the clutter of Steiner cuts of any

digraph. Therefore, we need to extend the definitions of Steiner cuts and Steiner trees, so that

their clutters form a minor closed class.

Let D = (V,A) be a digraph with terminals R and root r. A marked digraph is a pair (D,Γ),

where Γ ⊆ A is a set of active arcs. We refer to arcs in A− Γ as inactive arcs. A Steiner cut of

(D,Γ) is a Steiner cut of D that does not contain an inactive arc. A subset of active arcs T is

a Steiner tree of (D,Γ) if T ∪ (A− Γ) contains a Steiner tree for D, and T is minimal subject

to this condition. If Γ = A then our definitions of Steiner cut and Steiner tree reduce to the

standard ones. Note that the ground set of the clutter of Steiner cuts (resp. Steiner trees) for a

marked digraph is the set Γ of active arcs.

Consider a marked digraph (D,Γ) with an active arc a. The operation that consists of

replacing (D,Γ) by (D,Γ− {a}) is called inactivating a.
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Proposition 5. Let (D,Γ) be a marked digraph with terminals R and root r where D = (V,A).

Let C be the clutter of Steiner cuts of (D,Γ), let T be the clutter of Steiner trees of (D,Γ) and

let a ∈ Γ. Then

(1) C /a is the clutter of Steiner cuts of the marked digraph obtained by deleting a in (D,Γ),

(2) C \a is the clutter of Steiner cuts of the marked digraph obtained by inactivating a in (D,Γ),

(3) T /a is the clutter of Steiner trees of the marked digraph obtained by inactivating a in (D,Γ),

(4) T \ a is the clutter of Steiner trees of the marked digraph obtained by deleting a in (D,Γ),

(5) b(C ) = T .

Proof. Parts (1)-(4) follow from the definition of minors. For (5), let C o (resp. T o) be the

clutter of Steiner cuts (resp. trees) of the digraph D. It is well known that b(C o) = T o [4]. (2)

implies C = C o \ (A− Γ) and (3) implies T = T o/(A− Γ). Hence, b(C ) = b(C o \ (A− Γ)) =

b(C o)/(A− Γ) = T o/(A− Γ) = T .

The following result will be proved in the next section.

Theorem 6. Let (D = (V,A),Γ) be a marked digraph with terminals R and root r, where the

clutter of Steiner cuts C is mni. Then the following hold:

(i’) |R| ≥ 3,

(ii’) V −R 6= ∅,

(iii’) D has a directed cycle or

|V −R| ≥ max{t+ 1, t′},

where t (resp. t′) is the cardinality of the smallest (resp. largest) Steiner tree.

(iv’) D is not series-parallel.

Note that in (iii’), t ≥ 2 because of Theorem 2. Hence in particular |V −R| ≥ 3 when D has no

directed cycle. Assuming Theorem 6 we can now prove Theorem 1.

Proof of Theorem 1. We will prove the contrapositive statement. Let C be the clutter of Steiner

cuts of D = (V,A) and suppose it is non-ideal. Then C has an mni minor C ′. By Proposition 5,

C ′ is the clutter of a marked digraph (D′,Γ) obtained from (D,A) by deleting and inactivating

arcs. By Theorem 6, (i’)-(iv’) hold for (D′,Γ), implying that (i’)-(iv’) hold for (D,A) as well –

this is because D′ and D have the same set of terminals and Steiner vertices, a directed cycle

in D′ corresponds to a directed cycle in D, and the underlying graph of D′ is a deletion minor of

the underlying graph of D. Hence, none of (i)-(iv) of Theorem 1 can hold for D, finishing the

proof.
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4 A proof of the restatement of the main theorem

In this section we will prove Theorem 6 and hence complete the proof of our main result,

Theorem 1. Throughout this section (D = (V,A),Γ) is a marked digraph with terminals R

and root r where the clutter of Steiner cuts C is mni. Let T = b(C ). By Proposition 5, T

is the clutter of Steiner trees. We will assume that core(C ) has m members C1, . . . , Cm, and

that core(T ) has m members T1, . . . , Tm, and these members are labeled so that (F1)-(F4) of

Proposition 4 hold. If C (resp. T ) is not a degenerate projective plane then, for some c, t ≥ 2

and each j ∈ [m], we have |Cj | = c and |Tj | = t. For each j ∈ [m], choose a minimal subset

Uj ⊆ V − {r} for which δ+(Uj) = Cj and Uj ∩R 6= ∅.

4.1 Parts (i′) and (ii′)

Two sets U and W are said to be laminar if either U ∩W = ∅, U ⊆ W or W ⊆ U .

Lemma 7. For i, j ∈ [m], either Ui, Uj are laminar or Ui ∩ Uj ∩R = ∅.

Proof. Consider first the case where C is not a degenerate projective plane. Suppose for a

contradiction that Ui ∩Uj ∩R 6= ∅ and that Ui, Uj are not laminar, i.e. that Ui −Uj , Uj −Ui 6= ∅.
Let U = Ui ∩Uj and let W = Ui ∪Uj . For a set S ⊆ A we denote by χS the characteristic vector

of S. It can be readily checked that,

χδ+(Ui) + χδ+(Uj) ≥ χδ+(U) + χδ+(W ). (⋆⋆)

(In particular, δ+(U), δ+(W ) consist only of active arcs.) Recall that C =
{

δ+(U1), . . . , δ
+(Um)

}

is the set of minimum Steiner cuts. By hypothesis, |δ+(Ui)| = |δ+(Uj)| = c and since δ+(U) and

δ+(W ) are, or contain, Steiner cuts, |δ+(U)|, |δ+(W )| ≥ c. Hence, (⋆⋆) holds with equality and

|δ+(U)| = |δ+(W )| = c. Thus for some k, ℓ ∈ [m] we have δ+(U) = δ+(Uk) and δ+(W ) = δ+(Uℓ).

Since (⋆⋆) holds with equality, it follows that the zero vector is obtained from M(C ) by adding

rows i, j and subtracting rows k, ℓ. As M(C ) is non-singular (see Theorem 2(1)), we must have

{i, j} = {k, ℓ}, say i = k, j = ℓ. It follows that δ+(Ui) = δ+(Uk) = δ+(U) = δ+(Ui ∩ Uj). But

by hypothesis Ui ∩ Uj ⊂ Ui, contradicting the minimality of Ui. Consider now the case where

C is a degenerate projective plane. Then (⋆⋆) still holds. Moreover, it can be readily checked

that in this case, the only possible choice is to have
{

δ+(Ui), δ
+(Uj)

}

=
{

δ+(U), δ+(W )
}

. Then

proceed as in the previous case.

Lemma 8. There exists a pair i, j ∈ [m] such that Ui, Uj are not laminar.

Proof. Choose a subset Uj that is inclusionwise minimal among U1, U2, . . . , Um. By (F1) there

exist distinct arcs a, b ∈ δ+(Uj). Denote by ta and ha the tail and head of a and by tb and hb
the tail and head of b. By (F2) there exist indices k, ℓ ∈ [m] such that a ∈ δ+(Uk) 6∋ b and

b ∈ δ+(Uℓ) 6∋ a. We claim that either Uk, Uj or Uℓ, Uj are not laminar. Suppose otherwise. We

have ta ∈ Uj ∩ Uk 6= ∅. Since Uj , Uk are laminar and since Uj is minimal, Uk ⊇ Uj . Similarly,

tb ∈ Uj ∩ Uℓ and Uℓ ⊇ Uj . Then Uk ∩ Uℓ ⊇ Uj 6= ∅ and ha ∈ Uℓ − Uk, hb ∈ Uk − Uℓ, i.e. Uk, Uℓ

are not laminar. However, Uk ∩ Uℓ ∩R ⊇ Uj ∩R 6= ∅, a contradiction with Lemma 7.
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We are ready to prove Theorem 6 parts (i’) and (ii’), stating that |R| ≥ 3 and V −R 6= ∅.

Proof of Theorem 6, parts (i’) and (ii’). By Lemma 8, there exists a pair i, j ∈ [m] where Ui, Uj

are not laminar. Lemma 7 implies that Ui ∩ Uj ∩R = ∅. Thus Ui − Uj and Uj − Ui must each

contain a terminal. Together with the root we thus have at least 3 terminals proving (i’). Finally,

as Ui ∩ Uj 6= ∅ it must contain a Steiner vertex, thus proving (ii’).

4.2 Part (iii′)

For U ⊆ V , denote by D[U ] the subdigraph of D with arcs having both tail and head in U .

Remark 9. Take j ∈ [m] and u, v ∈ Uj with u ∈ R. Then there exists a uv-dipath in D[Uj ].

Proof. For otherwise let U ′
j contain u as well as all vertices w for which there exists a uw-dipath in

D[Uj ]. Then δ+(U ′
j) ⊆ δ+(Uj), u ∈ U ′

j ∩R 6= ∅ and U ′
j ⊆ Uj − {v}, contradicting the minimality

of δ+(Uj) or Uj .

We are ready to prove Theorem 6 part (iii’), claiming that either D is not acylic or |V −R| ≥
max{t+ 1, t′} where t (resp. t′) is the cardinality of the smallest (resp. largest) Steiner tree.

Proof of Theorem 6, part (iii’). Suppose that D is acyclic.

Claim. The tail of every active arc is a Steiner vertex.

Proof. Suppose for a contradiction that the tail ta of some active arc a is a terminal. Because of

(F3) there exist i, j ∈ [m] such that,

Ci ∩ Cj = Ti ∩ Cj = {a}. (††)

Since ta ∈ Ui ∩ Uj ∩R, Lemma 7 implies that Ui, Uj are laminar. Thus we may assume Ui ⊆ Uj .

By (F1) there exists b ∈ (Ci ∩ Ti)−{a}. Denote by tb the tail of b and by hb the head of b. Then

tb ∈ Ui and hb /∈ Ui. By (††) b /∈ Cj , hence hb = Uj −Ui. By Remark 9 there exists a tatb-dipath

P in D[Ui]. Since b ∈ Ti, there exists a dipath from hb to the root r in Ti ∪ (A− Γ). It follows

from (††) that this dipath must contain a. Therefore, there exists an hbta-dipath Q. But then

P ∪Q ∪ {b} contains a directed circuit, a contradiction. ♦

For each Steiner tree T , let W (T ) collect the arc tails of T . It follows from Claim that all vertices

in W (T ) are Steiner vertices. Since T is contained in a tree of D rooted towards r, no two arcs

of T share a tail, so |W (T )| = |T |. Hence, any Steiner tree T implies that we have at least |T |
Steiner vertices, so |V −R| ≥ t′. We may assume that there is no Steiner tree T of cardinality

greater than t (the minimum cardinality of a Steiner tree) for otherwise we are done. Suppose, for

a contradiction, that we have exactly t Steiner vertices. Then for all i, j ∈ [m], W (Ti) = W (Tj).

Pick w ∈ W (T1). Then δ+(w) ∩ Γ is a transversal of T1, . . . , Tm, contradicting (F4).
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4.3 Part (iv′)

Let (D,Γ) be a marked digraph with terminals R and root r. We say that the 4-tuple (D,Γ, R, r)

is a representation of a clutter C if C is the clutter of Steiner cuts of (D,Γ) with terminals R

and root r. It is possible for a clutter of Steiner cuts to have several representations and it will

be important for the proof to select a suitable representation. For j = 1, 2 consider a marked

digraph (Dj ,Γj) with terminals Rj and root rj . We say that (D1,Γ1, R1, r1) is reducible to

(D2,Γ2, R2, r2) if (D1,Γ1, R1, r1) and (D2,Γ2, R2, r2) are representations of the same clutter, and

the underlying graph of D2 is a proper minor of (an isomorphic7 copy of) the underlying graph

of D1. (See Figure 2 for an example.) A representation (D,Γ, R, r) is irreducible if it is not

reducible to any other representation.

(D2,Γ2, R2, r2) (D1,Γ1, R1, r1)

r2

r1

Figure 2: Two representations of
{

{1, 2}, {2, 3}, {3, 1}
}

where (D1,Γ1, R1, r1) reduces to

(D2,Γ2, R2, r2). Round vertices are terminals, solid arcs are active.

Let G be a graph, let U ⊆ V (G) and if U 6= ∅, take u0 ∈ U . Consider the following properties:

(P1) G is a simple graph and V (G) 6= ∅,

(P2) vertices in U have degree two, other vertices have degree at least three,

(P3) U is an independent set,

(P4) the two neighbours of any u ∈ U − {u0} are non-adjacent,

(P5) no two vertices in U − {u0} have the same set of neighbours.

Lemma 10. If a graph G satisfies properties (P1)-(P5) for some U ⊆ V (G), then G has a K4

minor.

Proof. We may assume that G is minor minimal with respect to satisfying (P1)-(P5), i.e. it

satisfies all these properties, but no proper minor of G does. Let U be the set of vertices of degree

two of G. We claim that U = ∅ or {u0} where u0 has adjacent neighbours. For if u ∈ U has

non-adjacent neighbours v1 and v2, we can replace edges v1u and uv2 by an edge v1v2 without

creating parallel edges. We leave it as an exercise to check that (P1)-(P5) hold for the resulting

graph, contradicting the minimality of G.

7we are allowed to first relabel the edges

10



We next claim that G is 2-connected. If G has distinct components, then each component

will satisfy properties (P1)-(P5), contradicting the minimality of G. Hence, G is connected.

Suppose that G has a cut vertex v and let G1 and G2 be the induced subgraphs of G with

V (G1) ∩ V (G2) = {v} and V (G1) ∪ V (G2) = V (G). We may assume that if U 6= ∅, then the

unique vertex u0 ∈ U is in V (G2). We may also assume, by choosing the cut vertex appropriately,

that G1 is 2-connected. But then the only possible vertex of degree two of G1 is v. Thus G1

satisfies (P1)-(P5), contradicting the minimality of G.

Finally we claim that, in fact, U = ∅. Suppose U 6= ∅, so there is a unique vertex u0 ∈ U

and u0 has neighbours v1, v2 where v1v2 ∈ E. If for some i ∈ [2] deg(vi) ≥ 4, then G \ {u0}
satisfies (P1)-(P5). Otherwise for each i ∈ [2] deg(vi) = 3 and by the 2-connectivity of G, u0
is the only common neighbour of v1 and v2, so G \ {u0}/{v1v2} satisfies (P1)-(P5). Either way

there is a contradiction with the minimality of G. Thus U = ∅. But, by a result of Dirac [8],

every 2-connected graph with minimum degree three has a K4 minor, finishing the proof.

Lemma 11. Let (D,Γ, R, r) be an irreducible representation of an mni clutter C and let G be

the underlying graph of D = (V,A). Then G satisfies (P1)-(P5) for some U ⊆ V (G).

Proof. In a digraph, a pair of arcs uv and vu is said to form a digon. Two arcs are parallel if

they have the same tail and the same head. For v ∈ V (G) we denote by degG(v) the degree of

v in G. As we replace each parallel class by a single edge when we go from D to G, degG(v)

may be smaller than |δ+(v)|+ |δ−(v)|. Observe that since (D,Γ, R, r) is irreducible, we cannot

contract or delete an inactive arc without changing the clutter of Steiner cuts (or equivalently

the clutter of Steiner trees).

Claim 1. There are no parallel arcs in D.

Proof. Let a, b be parallel arcs. If a is inactive then b does not appear in any Steiner cut, so b is

inactive and it can be deleted, without changing the clutter of Steiner cuts, a contradiction. If

both a and b are active, we contradict (F2) as every Steiner cut containing a also contains b. ♦

Claim 2. r is not incident to an inactive arc of (D,Γ)

Proof. This follows from the fact that deleting the arcs in δ+(r) and contracting the arcs in

δ−(r) ∩ (A− Γ) does not change the clutter of Steiner trees (choose r to remain the root after

contraction). ♦

Claim 3. G has minimum degree at least two.

Proof. Suppose degG(v) = 1. If v = r then by Claim 1, δ−(v) = {f} and by Claim 2, f ∈ Γ,

so every Steiner tree uses f , contradicting (F2). Hence v ∈ V − {r}. Since (D,Γ, R, r) is an

irreducible representation, every Steiner vertex must appear in a Steiner tree as a non-leaf vertex

(otherwise delete the vertex and reduce the representation), so v ∈ R−{r}. By Claim 1 there is a

unique arc e ∈ δ+(v), and every Steiner tree uses e. By (F2) e is inactive, but then contracting e

reduces the representation, a contradiction. ♦

Claim 4. If two arcs of (D,Γ) form a digon then one of the arcs is active.
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Proof. Otherwise we can contract the digon without changing the clutter of Steiner cuts. ♦

Claim 5. If degG(v) = 2 then v is a terminal.

Proof. Assume for a contradiction that v is a Steiner vertex and let z1, z2 denote the neighbours

of v in G. Since v is a Steiner vertex, δ−(v) 6= ∅.

Suppose we have a = z1v that is active. Every Steiner tree using a must use an arc in δ+(v),

so b′ = vz2 exists. Because of Claim 1 every Steiner tree using a also uses b′. By (F2) b′ must be

inactive.

We claim there is an arc a′ = vz1. This is clear if there z2v is an arc. Otherwise, since

contracting b′ changes the clutter of Steiner trees and since z2v is not an arc, contracting b′ must

introduce new Steiner trees, and for this to happen, a′ = vz1 has to exist.

Since a′ cannot be deleted, there exists a Steiner tree T that uses a′. Since v is a Steiner vertex,

T must use some arc b = z2v. Since b′ is inactive, b must be active because of Claim 4. Every

Steiner tree using b must use a′. It follows by (F2) that a′ is inactive. Hence, a = z1v, b = z2v are

active and a′ = vz1, b
′ = vz2 are inactive. Then replace a, b, a′, b′ by arcs a = z1z2 and b = z2z1

and remove v. The resulting representation (D′,Γ, R, r) has the same clutter of Steiner cuts as

(D,Γ, R, r). Moreover, the underlying graph of D′ is a proper minor of the underlying graph of

D. Hence, (D,Γ, R, r) is not irreducible, which is not the case.

We therefore have a′ = z1v that is inactive. Contracting a′ must change the clutter of Steiner

trees. Hence, there exists an arc b′ = z2v. We may assume b′ is inactive otherwise we are in

the previous case. Since b′ cannot be deleted, there exists a Steiner tree T that uses b′. Also,

T has to use some arc a = vz1. Because of Claim 4 a is active. Similarly, by interchanging the

roles of a′ and b′, there exists an active arc b = vz2. Hence, a = vz1, b = vz2 are active and

a′ = z1v, b
′ = z2v are inactive. Then replace a, b, a′, b′ by arcs a = z2z1 and b = z1z2 and remove

v. As previously, this shows that (D,Γ, R, r) is not irreducible, a contradiction. ♦

Claim 6. If v is a terminal other than the root r and v has exactly two neighbours in G, say

z1, z2, then δ+(v) = {a, b} where a = vz1, b = vz2 are inactive.

Proof. Note first that δ+(v) 6= ∅ as v 6= r is used in every Steiner tree.

Suppose that there exists an active arc a ∈ δ+(v), say a = vz1. By Claim 1 there is no arc

parallel to a. By (F2) not every Steiner tree uses a, so there exists b = vz2. By (F4) {a, b} is not

a transversal of the (minimum) Steiner trees, so b must be inactive. By (F3) there exist distinct

i, j ∈ [m] such that,

Ci ∩ Cj = Ti ∩ Cj = {a}. (‡)

Since v ∈ Ui ∩ Uj ∩ R, Lemma 7 implies that Ui, Uj are laminar, say Ui ⊆ Uj . By (F1) there

exists e ∈ (Ci ∩ Ti)− {a} with head w. By (‡) e /∈ Cj , so w ∈ Uj − Ui. Since e ∈ Ti, there is a

dipath connecting w to the root r in Ti ∪ (A− Γ). It follows by (‡) that this dipath must contain

a wv-dipath in D[Uj ]. So there is an arc b′ in D[Uj ] with head v. Since degG(v) = 2, {b, b′} is a

digon. It follows by Claim 4 that b′ is active. But then every Steiner tree using b′ also uses a,

contradicting (F2).
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Thus all arcs in δ+(v) are inactive. Furthermore, if there is just one such arc then we can

reduce the representation by contracting the arc. The result now follows by Claim 1. ♦

(P1) holds trivially. Let U be the set of vertices of degree 2 of G, and if r ∈ U then let u0 = r,

otherwise when U 6= ∅, choose arbitrarily a u0 ∈ U . (P2) follows by Claim 3. (P3) Suppose

otherwise, i.e. there are neighbouring vertices u, v of degree two in G. By Claim 5 u, v are both

terminals, and by Claims 6 and 2, none of u, v is the root. But then, Claim 6 implies that there

are inactive arcs uv and vu, contradicting Claim 4. (P4) Suppose otherwise, i.e. there exists

v ∈ V −{r} that has exactly two neighbours z1, z2 in G and there is an arc c = z1z2. By Claim 5

v is a terminal and by Claim 6 we have inactive arcs a = vz1, b = vz2. If c is active, then replace

c by c := z1v, and if c is inactive, then contract a = vz1 (the vertex corresponding to vz1 becomes

a terminal). If an arc d = z2z1 also exists, then modify the representation similarly. The resulting

representation (D′,Γ, R′, r) has the same clutter of Steiner cuts as (D,Γ, R, r). Moreover by

Claim 1 the underlying graph of D′ is a proper minor of D. Hence, (D,Γ, R, r) is reducible, a

contradiction. (P5) Suppose otherwise, i.e. there exist v1, v2 ∈ V − {r} and both have exactly

two neighbours that are the same, say z1, z2. By Claim 5 v1, v2 are terminals and by Claim 6 we

have inactive arcs v1z1, v1z2, v2z1, v2z2. By Claims 1 and 4 and (P4), all other arcs with both tail

and head in {v1, v2, z1, z2} are active arcs zivj for some i, j ∈ [2]. Note further that for i ∈ [2], we

cannot simultaneously have active arcs ziv1 and ziv2, due to (F2). Let D′ be obtained from D

by identifying v1, v2 followed by deleting {v2z1, v2z2}. The resulting representation (D′,Γ, R′, r)

has the same clutter of Steiner cuts as (D,Γ, R, r). Moreover, the underlying graph of D′ is a

proper minor of the underlying graph of D. Hence, (D,Γ, R, r) is reducible, a contradiction.

We are now ready to prove Theorem 6, part (iv’), stating that D is not series-parallel.

Proof of Theorem 6, part (iv’). Let (D,Γ, R, r) be an arbitrary representation of C . Then

(D,Γ, R, r) is reducible to an irreducible representation (D′,Γ′, R′, r′). Let G (resp. G′) be

the underlying graph of D (resp. D′). By Lemma 11, G′ satisfies (P1)-(P5). It follows from

Lemma 10 that G′ has a K4 minor. By definition of reducibility, G′ is a minor of G, hence G

has a K4 minor. Thus G, and therefore D, is not series-parallel.

5 Concluding remarks

We conclude by providing evidence that a characterization of the idealness of the clutter of

Steiner cuts is likely to remain elusive. We observed in §3 that C =
{

{1, 2}, {1, 3}, {2, 3}
}

is not

the clutter of Steiner cuts of any digraph. However, C is the clutter of Steiner cuts of a marked

digraph. In fact,

Proposition 12. Every clutter is the clutter of Steiner cuts of a marked digraph.

Proof. Consider an arbitrary clutter C . Construct a marked digraph (D,Γ) with terminals R

and root r as follows: for each e ∈ E(C ) we have a Steiner vertex ve and an active arc ver; for
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each C ∈ C we have a terminal uC ; and for all C ∈ C and e ∈ C we have an inactive arc uCve.

(See Figure 3 for an example.) It can be readily checked that C is the clutter of Steiner cuts of

the representation (D,Γ, R, r).

r

v1 v2 v3

u{1,2} u{2,3}u{3,1}

Figure 3: Construction of
{

{1, 2}, {2, 3}, {3, 1}
}

as the clutter of Steiner cuts of a marked digraph.

Round vertices are terminals, solid arcs are active.

Characterizing when an arbitrary clutter is ideal has shown to be very difficult [7]. In light of

the previous proposition, so is characterizing the idealness of clutters of Steiner cuts of marked

digraphs. Therefore, a more promising line of investigation is to find sufficient conditions for

such a clutter to be ideal as is done in Theorem 1.
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[5] Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming. Springer (2014)
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