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I was of course most interested in a paper with the above 
name [1] which uses an idea invented by a late colleague and 
myself, the Double-Hertz Model, [2] and relates closely to 
another of our contributions, An approximate JKR solution 
for an elliptical contact [3]. But that paper, as well as the 
numerical solutions by Wu [4], and the beautiful experi-
mental confirmation of the predictions by Sümer at al [5], 
all agree that when adhesion is added to a Hertzian contact, 
the contact area, while remaining almost elliptical, is not the 
ellipse predicted by Hertz. It is always much less elliptical 
than the Hertzian ellipse, and its shape changes continually 
as the applied tension increases, becoming (modestly) more 
circular at pull-off. As an example, for R1∕R2 = 5 , Hertz 
gives b∕a = 0.346 , but at pull-off b∕a = 0.452 . Can predic-
tions which ignore this behaviour be trusted? But more wor-
ryingly, can consideration only of the ends of the major axis 
be satisfactory?

In fact the authors [1] give an answer themselves. Accord-
ing to their Fig. 9, which gives results for almost the JKR 
region, the error, (using the Hertz geometry) appears to 
be 0.5(1 − e) where e is the ellipticity (b∕a) . So for the 
“roundest” ellipse studied by Johnson & Greenwood, where 
e ≈ 0.4 , we may estimate an error of 30%, while for the 
highly elongated ellipses discussed by Zini et al. [1] in their 
introduction (but not studied by them) it could be of the 
order of 50%.

1 � Why is this Analysis Wrong?

In the “approximate solution”, our aim was to obtain the 
same stress intensity factor all around the periphery of the 
contact. The “approximation” was our failure to achieve this, 
for our method of requiring equal values at the ends of the 
major and minor axes led to lower values everywhere else. 
But the paper by Zini et al has no such ambition, believ-
ing the behaviour at the ends of the major axis to be all 
that matters. There are, of course, examples in the fracture 
mechanics world where this is the case: with a pressurised 
elliptical crack no-one would look anywhere but at the ends 
of the major axis. But here we have a contact problem: the 
periphery is not determined in advance. To find it, we need 
the Barenblatt concept of an equilibrium SIF [6], where a 
crack will propagate for K > Kc , and heal for K < Kc . This 
concept becomes dominant in Schapery’s application to 
visco-elastic solids [7], where the crack-opening velocity 
increases (dramatically) when (K − Kc) increases, while the 
crack-closing (healing) velocity increases when (Kc − K) 
increases. (See also [8]). For elastic solids, the effect is sim-
pler: the crack tip either moves into the solid ( K > Kc ), or 
outwards ( K < Kc ). Thus in a study of contact, if K > Kc , the 
contact edge will move inwards (as the gap between the two 
bodies extends), but if K < Kc , the contact edge will move 
outwards. If these occur at the ends of the major and minor 
axes, respectively, the contact shape becomes less elliptical 
(Fig. 1).

2 � Behaviour at the Ends of the Major Axis

To apply the Double-Hertz approach, Zini et al. necessar-
ily assume that an approximate solution may be obtained 
within the framework of the basic Hertz theory: that the 
contact ellipse has the Hertzian ellipticity. [We shall use 
the ellipticity e = b∕a in preference to the eccentricity 
k =

√

1 − e2 (but k is the argument of the Legendre elliptic 
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integrals). The use of the Double-Hertz approach requires 
detailed analysis using elliptic integrals, and is difficult to 
follow. But a direct JKR solution for their limiting case 
(� large)provides a useful warning of the consequence of 
their procedure of using the Hertzian geometry and exam-
ining only the ends of the major axis, while avoiding the 
detailed analysis.

The Hertz pressure distribution may be written 
p(x, y) =

p0

a

√

a2 − x2 − y2∕e2 with p0∕a directly related to 
the macro-geometry, and so fixed: we shall write p0

√

ab
=

E�

M
 

i.e., p0
a
=

E�

M

√

e . Accordingly the change in p(x, y) due to 
an increase in a (as is done in applying the Double Hertz 
m e t h o d )  w i l l  b e  p

0

a

�

�a

�

√

a2 − x2 − y2∕e2
�

=

p
0

a

1
√

1−x2∕a2−y2∕b2
.

Thus, the limit of the Double Hertz analysis is the 
standard jkr procedure of superposing a Boussinesq 
stamp pressure distribution on the non-adhesive pressure 
distribution.

Accordingly, we apply a Boussineq distribution 
p1

√

1−x2∕a2−y2∕b2
whose magnitude gives the desired stress inten-

sity factor at x = ± a : this requiresp1 =
√

2E�Δ�∕� a so the 
load will be F = (2�∕3)p

0
ab − 2� p

1
ab = (2�∕3)

E�

M
e3∕2a3

−
√

8� Δ� e a
3∕2.

Writing this as a quadratic ina3∕2 it is readily found that 
the minimum is T = −Fmin = 3e1∕2MΔ� . Hence the non-
dimensional load T∗ ≡ T

2�
√

R1R2 Δ�
will be T∗ =

3

2�
e1∕2

M
√

R1R2

.

What is M ? From Johnson Contact Mechanics (§ 4.26a,b) 
we have

1

2R1

=
p0

E�

b

a2
D(k);

1

2R2

=
p0

E�

1

b
B(k) where k =

√

1 − e2.

[We have simplified Johnson’s equations by the use of 
E m d e’s  E l l i p t i c  I n t e g ra l s  B(k), D(k)  w h e re 
B(k) = ∫ �∕2

0

cos2� d�
√

1−k2sin2�
 ; D(k) = ∫ �∕2

0

sin2� d�
√

1−k2sin2�
 (see Jahnke 

& Emde Tables of Functions) …and what a disservice to the 
engineering world the compilers of the NBS Tables have 
done by ignoring these!]

M u l t i p l y i n g ,  1

4R1R2

=
[

p0

E�

]2
b

a2
1

b
D(k) ⋅ B(k)  a n d 

E�

√

R1R2

⋅

1

2
√

D(k)⋅B(k)
=

p0

a
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M

√
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√

R
1
R
2

⋅ =

2

√

e D(k) ⋅ B(k).
[For a circular contact (e = 1, k = 0) we have 

B(0) = D(0) = �∕4 and M∕R = �∕2 , recovering the stand-
ard p0

a
=

2

�

E�

R
].

Table 1 shows the results, and the corresponding answers 
from Johnson & Greenwood’s “approximate elliptical JKR 
theory”. For comparison, I have calculated the values using 
the Elliptical Double-Hertz theory, again considering only 
the ends of the major axis (see Supplementary Material). Zini 
et al study e = 0.99 and e = 0.8, but it is not clear what their 
answers are.

3 � Discussion

Predicting the pull-off force by considering only the behaviour 
at the ends of the major axis gives the wrong answer. But does 
this analysis predict the pull-off force? Indeed, does it predict 
anything? I believe that it does, and that the combination of 
the non-adhesive Hertz solution with the Boussinesq uniform 
(unloading) displacement is a true initial pressure distribu-
tion, and so correctly predicts the force at which the local SIF 
at the ends of the major axes exceedsKC

1
 . This need not lead 

to failure: it could well indicate the initiation of the continu-
ous geometry change found by Johnson & Greenwood [3] in 
their “approximate jkr solution”, and found experimentally by 
Sümer et al. [5]. And indeed, two recent papers [9, 10] find 
that in numerical solutions of contacts of variously shaped 
flat punches, including an elliptical one [10], they do obtain 
continuous peeling, leading to a more circular contact area as 
the load increases to the much larger value at which pull-off 
occurs. Does the same occur with a paraboloidal indenter?

4 � Conclusion

It is impossible to find the pull-off force of an elliptical con-
tact by analysing only the behaviour at the ends of the major 
axis: presumably because at pull-off the SIF must be uniform 
all round the periphery.

Fig. 1   Crack-opening and crack-closing at the boundary makes the 
contact less elliptical

Table 1   Comparison of this analysis with approximate jkr theory

R
1
∕R

2
1.0152 1.398 2.843 11.827

e = b∕a (Hertzian) 0.99 0.8 0.5 0.2
Present analysis T*(e) 0.7462 0.6677 0.5074 0.2609
Elliptical double-hertz (µ = 10) 0.7473 0.6691 0.5097 0.2751
J & G T*(R1/R2) 0.75 0.7474 0.7254 0.6326
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There exists the possibility that such an analysis might 
correctly predict the much lower load at which local peel-
ing begins.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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