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Abstract
The aim of being able to reason about quantities, time or space has been the main objective of the many efforts on the
integration of propositional planning with extensions to handle different theories. Planning modulo theories (PMTs) are an
approximation inspired by satisfiability modulo theories (SMTs) that generalize the integration of arbitrary theories with
propositional planning. Parallel plans are crucial to reduce plan lengths and hence the time needed to reach a feasible
plan in many approaches. Parallelization of actions relies on the notion of (non-)interference, which is usually determined
syntactically at compile time. In this paper we define a semantic notion of interference between actions in PMT. Apart
from being strictly stronger than any syntactic notion of interference, we show how semantic interference can be easily and
efficiently checked by calling an off-the-shelf SMT solver at compile time, constituting a technique orthogonal to the solving
method.

Keywords: Planning, planning modulo theories, SMT, planning as satisfiability, parallel plans.

1 Introduction

The problem of planning, in its most basic form, consists in finding a sequence of actions that
allows one to reach a goal state from a given initial state. In its classical approach, state variables
are propositional, but in many real world problems we need to reason about concepts such as time,
space, capacities, etc., that are impractical to represent using only propositional variables. Many
planners have been built to be able to deal with such problems. These solvers glue together a
classical planner with a specific theory solver that exclusively handles the non-propositional part.
Planning modulo theories (PMTs) (8) are a modular framework inspired in the architecture of lazy
satisfiability modulo theory (SMT), which is the natural extension of Boolean Satisfiability (SAT)
when propositional formulas need to be combined with other theories.

The possibility of several actions being planned at the same time step, i.e. the notion of parallel
plans, can be considered a key idea to reduce plan lengths and hence the time needed to reach a
feasible plan in many approaches. Parallel plans increase the efficiency not only because they allow
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2 Relaxing Non-interference Requirements in Parallel Plans

to reduce the time horizon, but also because it is unnecessary to consider all total orderings of the
actions that are performed in parallel when seeking for a plan.

A problem that arises when considering parallel plans is that of interference between actions. It
is commonly accepted that it should be possible to serialize every parallel plan while preserving its
semantics. Hence, it is usually required that effects of actions planned at the same time commute and
that there is no interaction between preconditions and effects of different actions. A set of actions
planned at the same time is called a happening (6). Existing works on numeric planning use syntactic
or limited semantic approaches to determine interference between actions, in a fairly restrictive way
(6; 7; 11). In this work we aim at relaxing unnecessarily strong conditions for non-interference. The
main contributions are

• a new relaxed notion of happening execution and
• a semantic notion of interference in the context of PMT.

We also prove their correctness, motivate their usefulness with some examples and show how they
can be easily implemented. This paper is an extension of the work (2) presented at the ICAPS 2016
conference. We extend it with a precise description of how interference detection is implemented
and by adding detailed experiments.

The rest of the paper proceeds as follows. In Section 2 we recall PMT. In Section 3 we introduce
our new semantic notion of interference between actions. In Section 4 we describe how interference
can be checked by using an SMT solver at compile time. In Section 5 we propose some encodings
for parallel plans in a planning as SMT approach. Section 6 is devoted to experimental evaluation.
Section 7 concludes. An appendix is included with a Planning Domain Definition Language (PDDL)
model of an introduced planning domain, detailed experiments and proofs of auxiliary lemmas.

2 Planning modulo theories

We follow the concepts and notation defined in (8) for PMTs. The key to extending classical planning
into PMT is to support first-order sentences modulo theories in the preconditions of actions.

A state is a valuation over a finite set of variables X , i.e. an assignment function, mapping each
variable x ∈ X to a value in its domain, Dx. The expression s[x] denotes the value state s assigns to
variable x, and s[x �→ v] is the state identical to s except that it assigns the value v to variable x. A
state space for a set of variables X is the set of all valuations over X . By var(S) we denote the state
variables of a state space S.

A first-order sentence over a state space S modulo T is a first-order sentence over the variables
of the state space, constant symbols, function symbols and predicate symbols, where T is a theory
defining the domains of the state space variables and interpretations for the constants, functions and
predicates.1

A state space modulo T is a state space ranging over the domains defined in T . A term over S
modulo T is, similarly, an expression constructed using the symbols defined by S and T . A formula
φ is T-satisfiable if φ ∧ T is satisfiable in the first-order sense. By evalsT (φ) we denote the value of
φ under the assignment s, according to the interpretation defined by theory T .

A substitution is a partial mapping from variables to terms. It can be represented explicitly as a
function by a set of bindings of variables to terms. That is if σ = {x1 �→ t1, . . . , xn �→ tn}, then
σ(xi) = ti for all i in 1..n, and σ(x) = x for every other variable.

1In some other contexts, such as mathematical logic, a theory is understood as being just a set of sentences.
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Relaxing Non-interference Requirements in Parallel Plans 3

Substitutions are extended homomorphically to a total mapping from terms to terms. We use the
postfix notation tσ for the image of a term t under a substitution σ . This is defined inductively on
the structure of terms as follows:

tσ =
{

σ(t) if t is a variable

f (t1σ , . . . , tmσ) if t is of the form f (t1, . . . , tm).

In the second case of this definition, m = 0 is allowed: in this case, f is a constant symbol and f σ is
f . Thus tσ is t with all variables replaced by terms as specified by σ . The image of a formula under
a substitution is defined similarly.

The composition of two substitutions σ1 and σ2, denoted by juxtaposition, is defined as the
composition of two functions, i.e. tσ1σ2 = (tσ1)σ2.

DEFINITION 2.1 (Action).
An action a, for a state space S modulo T , is a state transition function, comprising the following:

• A first-order sentence over S modulo T , Prea (the precondition of a).
• A set Effa (the effects of a), of assignments to a subset of the state variables in S, each setting a

distinct variable to a value defined by a term over S modulo T .

An action a, for a state space S modulo T , is applicable (or executable) in a state s ∈ S if T , s |�
Prea (i.e., the theory together with the valuation s satisfies the precondition of a).

We represent actions a as pairs 〈Prea, Effa〉, with the effects Effa often written as a substitution
σa = {x1 �→ exp1, . . . , xn �→ expn}, where expi is an expression that defines the value of variable xi
in the resulting state, for each i in 1..n (e.g. x �→ x + k, for increasing a numeric variable x by k). We
use 	 and ⊥ to denote the Boolean true and false values, respectively. Making abuse of notation, we
will talk of a substitution as an assignment.

Following application of a, the state is updated by the assignments in Effa to the variables that they
affect, leaving all other variables unchanged. We denote the unique state resulting from applying
action a, in a state s in which is applicable, by appa(s). Formally, the resulting state s′ is the mapping
where, for each variable x ∈ var(S), s′(x) = evalsT (xσa), where σa is the substitution representing
the effects of a.

For sequences a1; a2; . . . ; an of actions we define

appa1;a2;...;an(s) = appan(· · · appa2(appa1(s)) · · · ).

DEFINITION 2.2 (Planning modulo theory).
A Planning Modulo T problem, for a theory T , is a tuple π = 〈S, A, I , G〉 where

• S is a state space in which all of the variable domains are defined in T ,
• A is a set of actions for S modulo T ,
• I is a valuation in S (the initial state) and
• G is a first-order sentence over S modulo T (the goal).

A (sequential) plan for π is a sequence of actions a1; . . . ; an such that, for all i in 1..n, ai is
applicable in state si−1 and si is the result of applying ai to si−1, where s0 = I and T , sn |� G.

As it is usual in SMT, we assume T is a first-order theory with equality, which means that the
equality symbol = is a predefined predicate, interpreted as the identity on the underlying domain.
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4 Relaxing Non-interference Requirements in Parallel Plans

Sometimes we say that a sequence of actions is a plan starting from an initial state I , without
specifying the goal. In this case we mean that the plan is executable starting from I .

The ILP-PLAN framework (11), based on integer optimization of linear integer programs, is a
particular case of this, taking linear inequalities as preconditions, and limiting effects to increasing,
decreasing or setting the value of a variable. Numeric planning, as defined in (9) or in (7) is
also a particular case, using a very limited fragment of first-order logic in the preconditions of
actions, and taking T as the theory of rational functions, i.e. fractions between polynomials. The
proposal in (14) raises preconditions to general Boolean formulae but does not consider numeric
variables.

3 A semantic notion of interference

In the following, we consider plans as sequences of sets of actions. A set of actions planned at
the same time is commonly called a happening (6). Two actions can be concurrently planned if,
roughly, they do not interfere. It is commonly accepted that two actions are non-interfering only
if the composition of their effects is commutative, and there is no interaction between effects and
preconditions. In (6; 7) the state resulting from executing a happening is defined as the one obtained
after applying the composition of effects of the actions in the happening.

EXAMPLE 3.1
Let a = 〈	, {x �→ x + y + z}〉 and b = 〈	, {x �→ x + 1, y �→ y + 1, z �→ z − 1}〉. These actions do
not interfere, as their preconditions are true (and hence cannot interact with effects) and their effects
commute: executing first a and then b, as well as executing first b and then a, produces the same
effect, which is that of an action of the form 〈	, {x �→ x+y+z+1, y �→ y+1, z �→ z−1}〉, defining
the state transition function of their simultaneous execution.

EXAMPLE 3.2
Let c = 〈	, {x �→ x + y + z}〉 and d = 〈	, {x �→ x + 1, y �→ y + 2, z �→ z − 1}〉. These actions
interfere, since their effects do not commute. Executing first c and then d is equivalent to executing
〈	, {x �→ x + y + z + 1, y �→ y + 2, z �→ z − 1}, whereas executing first d and then c is equivalent
to executing 〈	, {x �→ x + y + z + 2, y �→ y + 2, z �→ z − 1}. Then they would not be allowed to be
planned in parallel.

Thanks to the commutativity requirement, effects of non-interfering actions can be composed in
any order, allowing parallel plans to be serialized in any order, while preserving their semantics. This
adheres to the ∀-step semantics of (14), but it does not lift to the ∃-step semantics (introduced in the
same work for the Boolean case), where it is only necessary that actions can be executed it at least
one order, making it possible to increase the number of parallel actions.

In the rest of this section we introduce a new semantics of happening execution, define a new
notion of interference and prove that their combination is valid for both ∀-step and ∃-step semantics.

DEFINITION 3.3 (Commuting assignments).
Two assignments {x �→ exp1} and {x �→ exp2} commute, for a variable x and two expressions (terms)
exp1 and exp2 over a state space S modulo T , if T |� (exp2{x �→ exp1} = exp1{x �→ exp2}).
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Relaxing Non-interference Requirements in Parallel Plans 5

EXAMPLE 3.4
If T is the theory of the reals, then {x �→ x+1} and {x �→ x−2} commute, since T |� ((x−2)+1 =
(x+1)−2), whereas {x �→ x+1} and {x �→ x∗2} do not commute, since T �|� ((x+1)∗2 = (x∗2)+1).

DEFINITION 3.5 (Simply commuting actions).
We will refer to a set A = {a1, . . . , an} of actions as simply commuting, for a state space S modulo
T , if for every variable x ∈ var(S) and every pair of assignments {x �→ exp1} and {x �→ exp2} in the
effects of actions in A, {x �→ exp1} and {x �→ exp2} commute.

DEFINITION 3.6 (Happening action).
Let A = {a1, . . . , an} be a set of simply commuting actions. We define the happening action for A as
an action h(A) = 〈Preh(A), σh(A)〉 with

Preh(A) =
∧
a∈A

Prea

and

σh(A) =
⋃

x∈var(S)

{σx,1 ◦ · · · ◦ σx,n},

where σx,i, for i in 1..n, is the mapping of variable x in the effects of action ai, and ◦ denotes the
composition of functions.

Note that the effects on each variable can be composed in any order, because of the commutation
requirement. Therefore, h(A) is well defined.

DEFINITION 3.7 (Happening execution).
Let A = {a1, . . . , an} be a set of simply commuting actions. Then, the state resulting from the
execution of the happening A in state s, denoted appA(s), is defined as apph(A)(s), where h(A) is the
happening action corresponding to A.

Note that if some action in A is not applicable in state s then appA(s) is undefined.

EXAMPLE 3.8
Let a = 〈	, {x �→ x + 1, y �→ y + 1}〉 and b = 〈	, {y �→ y + x}〉. Then app{a,b}(s), for a state s, is
apph({a,b})(s), with h({a, b}) = 〈	, {x �→ x + 1, y �→ (y + x) + 1}〉.

A key difference with the transition functions for happenings defined in (6) and (7) is that,
instead of considering the composition of functions (i.e. the composition of effects of actions, seen
as functions on all variables), we are considering the function of compositions (i.e. the function
defined by the composition of assignments to each single variable across all actions). We consider
the possibility of composing the effects on each variable in any order, as a minimal requirement to
be able to serialize plans in some order (see definitions and proofs below). The proposed definition
of happening execution allows us to increase the number of parallel actions in the context of ∃-step
plans, where parallel semantics and interference notions of existing approaches to numeric planning
are too restrictive. Following this line we define a relaxed semantic notion of interference and prove
that it is compatible with both ∀-step and ∃-step semantics.
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6 Relaxing Non-interference Requirements in Parallel Plans

DEFINITION 3.9 (Affecting action).
Given two actions a = 〈Prea, σa〉 and b = 〈Preb, σb〉, for a state space S modulo T , we consider a to
affect b if

1. Prea ∧ Preb ∧ ¬(Prebσa) is T-satisfiable or
2. either a and b are not simply commuting, or Prea∧Preb∧¬(xσh({a,b}) = xσbσa) is T-satisfiable

for some variable x ∈ var(S), where h({a, b}) denotes the happening action for a and b,

i.e. a can impede the execution of b, or they are not simply commuting, or they are simply commuting
but executing first a and then b has a different effect than that of the happening {a, b}.

Recall that h({a, b}) is defined only for simply commuting actions.

EXAMPLE 3.10
Following Example 3.8, where actions a and b are simply commuting, we have that a affects b since
yσh({a,b}) = (y + x) + 1, while yσbσa = (y + x)σa = (y + 1) + (x + 1), and thus Prea ∧ Preb ∧
¬(yσh({a,b}) = yσbσa) is T-satisfiable. On the contrary, b does not affect a, since the preconditions
of both actions are true, xσh({a,b}) = x + 1 = xσbσa, and yσaσb = (y + 1)σb = (y + x) + 1.
This is to say that the effect of the happening {a, b} is the same as executing first b and then a,
but not first a and then b. In fact, in this example we have app{a,b}(s) = appb;a(s) �= appa;b(s)
for all s.

DEFINITION 3.11 (Interference).
Given two actions a and b, we consider a and b to interfere if a affects b or b affects a.

3.1 ∀-Step plans

Lack of interference guarantees that actions in a happening can be executed sequentially in any total
order and that the final state is independent of the ordering (see Theorem 3.17). The notion of ∀-step
plan, defined in (14), can be generalized to the setting of PMT as follows.

DEFINITION 3.12 (∀-Step plan).
Given a set of actions A and an initial state I , for a state space S modulo T , a ∀-step plan for A and I
is a sequence P = 〈A0, . . . , Al−1〉 of sets of actions for some l ≥ 0, such that there is a sequence of
states s0, . . . , sl (the execution of P) such that

1. s0 = I , and
2. for all i ∈ {0, . . . , l − 1} and every total ordering a1 < · · · < an of Ai, appa1;...;an(si) is defined

and equals si+1.

LEMMA 3.13
Let a and b be two simply commuting actions, for a state space S modulo T , such that a does not
affect b, and let s ∈ S be a state such that a and b are applicable in s. Then app{a,b}(s) = appa;b(s).

LEMMA 3.14
Let A be a set of non-interfering actions, for a state space S modulo T , and let s ∈ S be a state such
that all actions in A are applicable in s. Then appa1;...;an(s) is the same state for every total ordering
a1 < · · · < an of A.

LEMMA 3.15
Let A be a set of simply commuting actions, for a state space S modulo T , such that |A| ≥ 2. Then, for
every action a ∈ A, we have that a and h(A\{a}) are simply commuting, and h({a, h(A\{a})}) = h(A).
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Relaxing Non-interference Requirements in Parallel Plans 7

LEMMA 3.16
Let A be a set of actions, and a an action, for a state space S modulo T , such that the actions in A∪{a}
are simply commuting. If a affects none of the actions in A, then a does not affect the happening
action h(A).

The reader is referred to the Appendix A for the proofs and extra lemmas.

THEOREM 3.17
Let A be a set of non-interfering actions, for a state space S modulo T , and s ∈ S a state such that
appA(s) is defined. Then appA(s) = appa1;...;an(s) for any total ordering a1 < · · · < an of A.

PROOF. By induction on the number of actions n in A. If n = 1 then we are trivially
done. If n ≥ 2, then let A = {a} ∪ A′. Since actions in A are non-interfering, then they
are simply commuting and a affects none of the actions in A′. Then, by Lemma 3.16, we
have that a does not affect the happening action h(A′). Now observe that, since appA(s)
is defined and Preh(A) = ∧

a∈A Prea, both a and h(A′) are applicable in state s. Then,
by Lemma 3.13, we have that app{a,h(A′)}(s) = appa;h(A′)(s). We conclude by showing that
appA(s) = app{a,h(A′)}(s) and appa;h(A′)(s) = appa1;...;an(s) for any total ordering a1 < · · · < an
of A.

Equality appA(s) = app{a,h(A′)}(s) holds by Lemma 3.15. For equality appa;h(A′)(s) =
appa1;...;an(s), observe that appa;h(A′)(s) = appA′(appa(s)). Since actions in A′ are non-interfering
and appA′(appa(s)) is defined, by the induction hypothesis we have that appA′(appa(s)) =
appa1;...;an−1(appa(s)) for any total ordering a1 < · · · < an−1 of A′, i.e. appa;h(A′)(s) =
appa;a1;...;an−1(s) for any total ordering a1 < · · · < an−1 of A′. Finally, since actions in A
are non-interfering and all of them are applicable in state s, by Lemma 3.14 we have that
appa;h(A′)(s) = appa1;...;an(s) for any total ordering a1 < · · · < an of A �

3.2 ∃-Step plans

Here we generalize the notion of ∃-step plan, proposed in (4) and further developed in (14), to the
setting of PMTs. Under the ∃-step semantics, it is not necessary that all actions are non-interfering
as long as they can be executed it at least one order, which makes it possible increase the number of
parallel actions still further.

DEFINITION 3.18 (∃-Step plan).
Given a set of actions A and an initial state I , for a state space S modulo T , a ∃-step plan for A and I
is a sequence P = 〈A0, . . . , Al−1〉 of sets of actions together with a sequence of states s0, . . . , sl (the
execution of P), for some l ≥ 0, such that

1. s0 = I , and
2. for all i ∈ {0, . . . , l − 1} there is a total ordering a1 < · · · < an of Ai, such that appa1;...;an(si)

is defined and equals si+1.

Instead of requiring that each group Ai of actions can be ordered to any total order, as in ∀-step
semantics, in ∃-step semantics it is sufficient that there is one order that maps state si to si+1. Note
that under this semantics the successor si+1 of si is not uniquely determined solely by Ai, as the
successor depends on the implicit ordering of Ai and, hence, the definition has to make the execution
s0, . . . , sl explicit.
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8 Relaxing Non-interference Requirements in Parallel Plans

THEOREM 3.19
Let A be a set of simply commuting actions, for a state space S modulo T , such that, for some total
ordering a1 < · · · < an of A, if ai < aj then ai does not affect aj, and let s ∈ S be a state such that
appA(s) is defined. Then appA(s) = appa1;...;an(s).

PROOF. The proof is analogous to the proof of Theorem 3.17, but without using Lemma 3.14. We
proceed by induction on the number of actions n in A. If n = 1 then we are trivially done. If n ≥ 2,
then let A′ = {a2, . . . , an}. We have that actions in A are simply commuting and a1 affects none of the
actions in A′. Then, by Lemma 3.16, we have that a1 does not affect the happening action h(A′). Now
observe that, since appA(s) is defined and Preh(A) = ∧

a∈A Prea, both a1 and h(A′) are applicable in
state s. Then, by Lemma 3.13, we have that app{a1,h(A′)}(s) = appa1;h(A′)(s). We conclude by showing
that appA(s) = app{a1,h(A′)}(s) and appa1;h(A′)(s) = appa1;...;an(s).

Equality appA(s) = app{a1,h(A′)}(s) holds by Lemma 3.15. For equality appa1;h(A′)(s) =
appa1;...;an(s), observe that appa1;h(A′)(s) = appA′(appa1(s)). Since actions in A′ are simply
commuting and appA′(appa1(s)) is defined, by the induction hypothesis we have appA′(appa1(s)) =
appa2;...;an(appa1(s)) according to the given ordering, and hence appa1;h(A′)(s) = appa1;...;an(s). �

4 Checking interference with SMT

We can exactly check the proposed notion of interference, according to Definitions 3.3, 3.5 and 3.9,
by means of checking the satisfiability of some SMT formulas at compile time. As far as we know,
previous approaches used syntactic or limited semantic approaches (6; 7; 11).

The following example is taken from the Planes domain, described in Section 6. The problem
consists in transporting people between several cities using planes, with a limited number of seats.
The considered actions are board and fly. Boarding is limited by seat availability, and a plane can
only f ly if it is transporting somebody.

If we consider action a as

board_person1_plane1_city1 =
〈seats_plane1 > onboard_plane1 ∧

at_person1_city1 ∧ at_plane1_city1,

{at_person1_city1 �→ ⊥, in_person1_plane1 �→ 	,

onboard_plane1 �→ onboard_plane1 + 1}〉

and action b as

f ly_plane1_city1_city2 =
〈onboard_plane1 > 0 ∧ at_plane1_city1,

{at_plane1_city1 �→ ⊥, at_plane1_city2 �→ 	}〉

then most planners, checking interference syntactically, would determine interference, since a
modifies the onboard_plane1 variable and b uses this variable in its precondition. However,
according to Definition 3.9, it can be seen that a does not affect b, since
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Relaxing Non-interference Requirements in Parallel Plans 9

1. Prea ∧ Preb ∧ ¬(Prebσa) is T-unsatisfiable, because the precondition of b, onboard_plane1 >

0 ∧ at_plane1_city1, cannot be falsified by the effects of a, namely {at_person1_city1 �→
⊥, in_person1_plane1 �→ 	, onboard_plane1 �→ onboard_plane1 + 1},

2. a and b are simply commuting and
3. Prea ∧ Preb ∧ ¬(xσh({a,b}) = xσbσa) is T-unsatisfiable for all variables x.

The first check can be modeled in the SMT-LIB language (1) as follows:

Note that in the negated precondition of fly, we are replacing each variable by the term
which represents its value after the execution of board, i.e. we replace onboard_plane1 by
onboard_plane1 + 1. A negative answer should be obtained from the SMT solver.

The check of simply commutativity would consist in checking for all variables commonly
modified by the two actions, if the effects can be commuted. In the example, there are no
common variables modified by both actions. Hence, suppose we are checking whether two arbitrary
assignments {x �→ exp1} and {x �→ exp2} commute. According to Definition 3.3, this would consist
in checking whether ¬(exp2{x �→ exp1} = exp1{x �→ exp2}) is T-satisfiable. A negative answer
would imply T-unsatisfiability of this negation and, hence, commutativity of the assignments. The
third check can be implemented analogously by means of satisfiability checks.

An important difference with the purely syntactic definition of interference of (13) is that we
include preconditions of the checked actions in our checks. More precisely, the reason for adding the
preconditions in all satisfiability checks is that we require that the two actions for which we check
potential interference can occur in parallel. This way, we are able to avoid many ‘false positive’
interference relationships, which would make the final formula grow unnecessarily. It can also be
seen as a combination of a interference and reachability check, all in one. All in all, we obtain a much
more fine-grained notion of interference, that will help to increase the parallelization of actions. Note
that the interference relationships determined semantically will always be a subset of the interference
relationships determined syntactically. Interestingly, we will be using a SMT solver both at compile
time, as an oracle to predict interference relationships, and at solving time.

4.1 Ungrounded checking

Although the time needed for performing the proposed interference checks by calling a modern SMT
solver is negligible, in big problems the number of calls can grow considerably. Here we propose an
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10 Relaxing Non-interference Requirements in Parallel Plans

improvement to be able to check interference between actions without the need of grounding them
first.

The main idea is to model the interference queries as before, but substituting the action
parameters appearing in the preconditions and effects with variables instead of concrete values.
Then, incorporate to the formula the disequality relationships between variables of different types
and ask the solver for a model. If the first action can affect the second, a query to the SMT solver
would give a concrete set of values that explain why the first action can interfere with the second.
Note however that what we really need is not one but all models of the formula. This is because we
need all the concrete grounded actions to be able to add the necessary mutual exclusion clauses to
the formula.

The #SMT problem is the problem of counting the number of satisfying assignments of
a given SMT formula. In our case, we do not need to count them, but to enumerate them.
Unfortunately, no efficient implementation of an SMT solver enumerating models has been found.
One alternative could be to successively call the SMT solver by adding a clause forbidding
the model found, until no model exists. But this approximation would need at least as many
queries to the SMT solver as concrete interference cases exist. For this reason we propose
an alternative.

Let us consider the original lifted actions in the PDDL model of the previous example:

Suppose we have three planes in the problem: A320-1, A320-2 and A320-3. If we assign
A320-1 to parameters ?a1 and ?a2, one should find the same interferences than if we assign
A320-2 to parameters ?a1 and ?a2. The same should happen if we assign A320-1 and A320-2
or A320-2 and A320-3 to ?a1 and ?a2, respectively. So, to reason about interference between
actions board and fly, we will need to determine, e.g. if the actions interfere in the case
that ?a1 and ?a2 are the same aircraft. Or in the case that cities ?c1 and ?c2 are the
same, etc. That is interference is determined depending on the equality relationship between
parameters.

Since equality or disequality between parameters of different types has no sense, the first thing
that is needed is to group the parameters of the same type in sets, by its most general declared type.
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Relaxing Non-interference Requirements in Parallel Plans 11

Then, one should need to consider all different possible equality and disequality relationships
between the parameters of the same type, to find out in which cases one action can interfere with
another action. If we consider all the possible partitions of the set, they map directly to all the possible
equalities and disequalities between elements of the set.

EXAMPLE 4.1
Consider the set {A, B, C}. All the partitions of this set are as follows: {{A}, {B}, {C}}, {{A, B}, {C}},
{{A, C}, {B}}, {{A}, {B, C}} and finally {{A, B, C}}. When two elements appear in the same set, we
consider them to be equal, and when they appear on different sets, we consider them to be different.
So, on partition {{A, C}, {B}} we should consider that A = C, A �= B and C �= B.

Once the set partitions have been generated for each set of parameters, we need to compute the
Cartesian product between all the sets in order to obtain the combination of equality and disequality
relations between the parameters of the two actions.

We propose to model interference as shown previously, and do one query for each possible
combination of equality and disequality between parameters of the two actions. Instead of using
variables or concrete values, for convenience when we intend for two parameters to be equal we
substitute them for the same integer, and by different integers when we want them to be different.

This approach results in much fewer queries to the SMT solver. Considering the same example
with a total of 2 planes, 4 persons and 6 cities, a grounded checking would result in 4 × 2 × 6 = 48
grounded fly actions and 2×6×6 = 72 grounded board actions. This would result in 48×72 = 3456
grounded checks.

The total number of partitions of an n-element set is the Bell number Bn. If we now consider
the proposed ungrounded checking method, the sets of parameters will be the following: for planes
Splanes = {a1, a2} and for cities Scities = {c1, c2, c3}. Bell numbers for these sets are B2 = 2 and
B3 = 5, so we will have a total of 2 × 5 = 10 ungrounded checks. As it can be seen, the number of
checks needed using this technique is much lower than using the grounded checking, and thus scales
much better with large problems.

Algorithm 1 Mutex Generation

Require: A : a set of PDDL actions
Ensure: M : a set of actions pairs 〈a, b〉 where a interferes with b

1: Ap ←GeneratePairs(A)
2: M ← ∅
3: for all{a1, a2} ∈ Apdo
4: M ← M ∪ InterferenceChecking(a1,a2)
5: end for
6: return M

Algorithm 1 discovers, for a given set of ungrounded actions, the minimum set of interferences
between them. It starts by generating all the possible pairs of actions. Then, for each generated
pair, it calls Algorithm 2 to discover the minimum set of grounded interferences between the two
actions.
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12 Relaxing Non-interference Requirements in Parallel Plans

Algorithm 2 Interference Checking

Require: a1 : first action, a2 : second action
Ensure: M : the set of ground interferences between a1 and a2

1: [p1, p2, . . . , pn] ← groupByType(parameters(a1) ∪ parameters(a2))
2: L ← setPartitions(p1) × setPartitions(p2)× · · · × setPartitions(pn)
3: forl ∈ Ldo
4: com ←pairWithIntegers(l)
5: if check1(com,a1,a2) ∨ check2(com,a1,a2) then
6: M ← generateInterferences(a1,a2,com)
7: end if
8: end for
9: return M

Algorithm 2 receives two ungrounded actions and returns the minimum set of grounded interfer-
ences between them. It uses the following functions:

parameters given an action, it returns a set with all the parameters of that action.
groupByType receives a set of parameters and returns a list of sets. Each set groups the

original parameters by its most general type.
setPartitions receives a set and efficiently (12) generates all the possible partitions of

the original set.
pairWithIntegers receives an n-tuple of sets of sets of parameters (i.e. one of the possible

partitions above), where each component corresponds to a type, whose
elements (sets) denote parameters with the same value (and different to
the parameters in the other sets). Then, it returns the same n-tuple but with
each parameter paired to an integer. This integer will be equal to integers
on the same set and different to others. For example given the n-tuple
({{A, B}, {C}}, {{D}, {E}}), as A and B belong to the same set, they will
have the same integer associated. The other elements belong to different
sets, so they will have different integers associated. Given this example, a
possible return value would be

{{{〈A, 1〉, 〈B, 1〉}, {〈C, 2〉}}, {{〈D, 3〉}, {〈E, 4〉}}}

check1 This function encodes the first condition of interference explained in
Definition 3.9 to SMT: substitutes each parameter of the action by the
integer paired with it and finally checks and returns the satisfiability of
the resulting formula.

check2 Does the same as the former, but with the second condition in
Definition 3.9.

generateInterferences generates all the ground instances of the pair of actions (a1, a2) that
correspond to the equalities and disequalities induced by com.

For example consider a problem with persons p1 and p2 and cities Barcelona and London. The
two considered actions are a1 = board with parameters (?p - person ?c - city) and
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Relaxing Non-interference Requirements in Parallel Plans 13

action a2 = flywith parameters (?c1 -city ?c2 - city). If we consider the n-tuple com to
be {{〈c, 1〉, 〈c1, 1〉, 〈c2, 1〉}, {〈p, 2〉}} (all city parameters need to be equal), the generated interferences
would be

〈board_p1_barcelona, f ly_barcelona_barcelona〉
〈board_p1_london, f ly_london_london〉
〈board_p2_barcelona, f ly_barcelona_barcelona〉
〈board_p2_london, f ly_london_london〉

5 Encodings

In this section we propose two different encodings for planning as SMT , as a particular case of PMT.
We generalize Rintanen’s (13) encoding for planning as SAT to include non-Boolean variables, with
the idea of using an off-the-shelf SMT solver to solve the problem.

The proposed encodings are valid for any theory T under a quantifier-free first-order logic with
equality. In particular, for numeric planning we could take T as the theory of the integers (or the reals)
and use quantifier free linear integer (or real) arithmetic formulae. In the SMT-LIB standard (1),
QF_LIA stands for the logic of Quantifier-Free Boolean formulas, with Linear Integer Arithmetic
constraints, and similarly QF_LRA for the case of reals. These logics have a good compromise
between expressiveness and performance, and therefore are a natural choice for numeric planning
as SMT .

5.1 SMT encoding

Let π = 〈S, A, I , G〉 be planning problem modulo T , for a theory T under a quantifier-free first-
order logic with equality. For each variable x in var(S) and each time step t, a new variable xt of the
corresponding type is introduced, denoting the value of x at step t. Moreover, for each action a and
each time step t, a Boolean variable at is introduced, denoting whether a is executed at step t.

Given a term s, by st we denote same term s, where all variables x in var(S) have been replaced
by xt, and analogously for formulas. For example (x + y)t = xt + yt, and (p ∧ x > 0)t = pt ∧ xt > 0.
For the case of effects, we define

{x �→ 	}t def= xt+1

{x �→ ⊥}t def= ¬xt+1

{x �→ s}t def= (xt+1 = st),

where s denotes a non-Boolean term belonging to theory T . For example for an assignment {x �→
x + k}, where k is a constant, we have {x �→ x + k}t = (xt+1 = xt + k). For sets of assignments, i.e.
action effects, we define

({x �→ s} ∪ Eff)t def= {x �→ s}t ∧ Efft

∅t def= 	,
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14 Relaxing Non-interference Requirements in Parallel Plans

where s is a term (either Boolean or not) and Eff is a set of assignments.
The constraints are as follows. For each time step t, execution of an action implies that its

precondition is met:

at → Pret
a ∀a = 〈Prea, Effa〉 ∈ A. (1)

If the action is executed, each of its effects will hold at the next time step:

at → Effta ∀a = 〈Prea, Effa〉 ∈ A. (2)

Finally, we need explanatory axioms to express the reason of a change in state variables. For each
variable x in var(S),

xt �= xt+1 →
∨

∀a=〈Prea,Effa〉∈A
such that ∃{x �→s}∈Effa

at

. (3)

That is a change in the value of x implies the execution of at least one action that has an assignment
to x among its effects.

The previous constraints are complemented as follows depending on the type of parallelism we
wish:

Sequential plans We can achieve a sequential plan by imposing an exactly one constraint on the
action variables at each time step.

∀-Step plans According to Definition 3.12, in ∀-step plans we require the possibility of
ordering the set of actions planned at each time step to any total order. Therefore,
for each time step t, we simply add a mutex clause for every pair of interfering
actions ai and aj:

¬(at
i ∧ at

j) if ai affects aj or aj affects ai (4)

∃-Step plans According to Definition 3.18, in ∃-step plans there must only exist a total
ordering of parallel actions resulting in a valid sequential plan. A basic form
of guaranteeing this is to take an arbitrary total ordering < on the actions and
forbid the parallel execution of two actions ai and aj such that ai affects aj only
if ai < aj:

¬(at
i ∧ at

j) if ai affects aj and ai < aj. (5)

It is not difficult to see that the encoding presented up to this point is correct for sequential
plans, but it does not adhere to the parallel plan semantics derived from Definition 3.7 (happening
execution). If two actions planned at the same time modify a same variable, two different situations
can arise. On the one hand, if the assignments are not equivalent, then the SMT formula encoding the
planning problem will become unsatisfiable. Although this is right for the Boolean case, it is more
subtle for other theories, where effects can be cumulative. For example two assignments {x �→ x+1}
and {x �→ x + 2} would result into subformulas xt+1 = xt + 1 and xt+1 = xt + 2 which, together, are
unsatisfiable. This, in practice, would rule out many parallel plans. On the other hand, if assignments
were equivalent, then all but one would become redundant in the SMT formula. Then, the formula
would possibly be satisfiable but, in this case, solutions would not adhere to the semantics of
happening execution, where the effects of actions planned at the same time are composed for each
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Relaxing Non-interference Requirements in Parallel Plans 15

variable. A simple way of overcoming this problem could be to forbid the parallel execution of
actions modifying a same non-Boolean variable, but this would rule out the parallelization of actions
with cumulative effects. For this reason, a finer approach is described in the next section.

5.2 Chained SMT encoding

Here we present an encoding which builds onto the former in order to add support for cumulative
effects in parallel plans.

Let N be the set of non-Boolean variables from var(S). For each action a = 〈Prea, Effa〉 and each
variable n ∈ N , let Effa,n be the assignment {n �→ exp} ∈ Effa, or the empty set if there is no such
assignment. For each n ∈ N , let An = {a | a ∈ A ∧ Effa,n �= ∅}, i.e. the set of actions that modify
variable n.

Constraints (2) are split and rewritten as follows, in order to take into account a possible ‘chain of
assignments’ on each variable n ∈ N . First of all, we remove the effects on variables n ∈ N such that
|An| > 1, i.e. those that are modified by more than one action.

at → (Effa \ ∪n∈N ,|An|>1{Effa,n})t ∀a = 〈Prea, Effa〉 ∈ A (6)

Then, for each variable n ∈ N such that |An| > 1, and for each time step t, the following
constraints are introduced, using additional variables ζ t

n,0, . . . , ζ t
n,|An| of the type of n, and considering

an enumeration a1, . . . , a|An| of the actions in An:

nt = ζ t
n,0 (7)

at
i → Efftai,n{nt+1 �→ ζ t

n,i, nt �→ ζ t
n,i−1}

¬at
i → ζ t

n,i = ζ t
n,i−1 ∀ai ∈ a1, . . . , a|An| (8)

nt+1 = ζ t
n,|An|. (9)

EXAMPLE 5.1
Let A = {a1, a2}, with actions a1 = 〈	, {x �→ x + 1, y �→ 0}〉 and a2 = 〈	, {x �→ x + 2}〉. Then
Ax = {a1, a2} and Ay = {a1}. For time step t, we would add variables ζ t

x,0, ζ t
x,1, ζ t

x,2 and the following
constraints:

at
1 → yt+1 = 0 at

2 → 	(tautology)

xt = ζ t
x,0

at
1 → ζ t

x,1 = ζ t
x,0 + 1 ¬at

1 → ζ t
x,1 = ζ t

x,0

at
2 → ζ t

x,2 = ζ t
x,1 + 2 ¬at

2 → ζ t
x,2 = ζ t

x,1

xt+1 = ζ t
x,2.
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16 Relaxing Non-interference Requirements in Parallel Plans

TABLE 1. Total number of instances of each domain solved by each approach. For each domain,
the approach solving more instances is marked in bold. In case of draw, the faster is marked.

Domain NR1 NR2 SYN SEM SEM+C

Depots 13 13 5 5 5
Petrobras 3 3 5 6 7
Planes 5 8 8 8 8
ZenoTravel 13 14 13 13 15
DriverLog 18 12 14 14 15
Total 52 50 45 46 50

TABLE 2. Sum of the number of time steps of the plans found, restricted to commonly solved
instances. The first column shows, in parenthesis, the number of instances solved by all approaches.
NumReach uses the same parallelism approach when using different background solvers, so only
one column is included. The winning approach is shown in bold.

Domain NR SYN SEM SEM+C

Depots (5) 54 52 52 51
Petrobras (3) 19 12 12 11
Planes (4) 90 82 62 45
Zenotravel (13) 97 69 69 42
DriverLog (12) 104 85 84 63
Total (37) 364 300 279 212

6 Empirical evaluation

In this section we evaluate the impact of the proposed notion of interference on the length of parallel
plans, using ∃-step semantics. Experiments have been performed using both syntactic and semantic
checks of interference at compile time. Three different approaches have been considered:

• In the first approach, noted as SYN, we use the encoding of Section 5.1 with the ∃-step
semantics, i.e. equations (1), (2), (3) and (5). Interference between actions is determined
syntactically by checking concurrent assignment or assignment and inspection to the same
variable.

• In the second approach, noted as SEM, we use the same encoding as in SYN, but inteference
is checked semantically with the method explained in Section 4. However, as explained in
Section 5.1, the proposed basic encoding does not support the concurrent modification of non-
Boolean variables. For this reason, although interference is checked semantically in the first
place, concurrent modification of non-Boolean variables is ruled out by an additional (syntactic)
check afterwards.

• In the third approach, noted as SEM+C, interference is checked semantically as in SEM, but
the chained encoding described in Section 5.2 is used instead, i.e. we use equations (1), (6), (7),
(8), (9), (3) and (5).

Experiments have been implemented in the RanTanPlan system (3) and executed on an 8 GB
Intel

R©
Xeon

R©
E3-1220v2 machine at 3.10 GHz, using Yices (5) v2.3.0 as back-end SMT solver

with the QF_LIA logic (1), and a 2-hour timeout. For the sake of completeness, we compare the
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Relaxing Non-interference Requirements in Parallel Plans 17

TABLE 3. Reduction of interferences thanks to the semantic notion of interference.

Domain SYN SEM+C Difference % Removed

Depots (5) 5.35e6 1.09e6 4.26e6 79%
Petrobras (5) 1.90e7 3.10e5 1.87e7 96%
Planes (8) 8.60e4 7.92e3 7.80e4 98%
Zenotravel (13) 1.17e6 5.26e4 1.12e6 95%
DriverLog (14) 2.95e6 6.34e5 2.26e6 78%

TABLE 4. The two columns show, on average, the sizes of the SEM+C encoding with respect to the
Syntactic one on the commonly solved instances.

Domain Variables Constraints

Depots (5) 399% 55%
Petrobras (5) 461% 86%
Planes (8) 233% 19%
Zenotravel (13) 291% 35%
DriverLog (14) 233% 101%

performance of our implementation with the numeric planner NumReach/SAT (10) using MiniSAT
2.2.0 (column NR1) and NumReach/SMT using Yices v2.3.0 (column NR2).

Five domains have been considered: the numeric versions of ZenoTravel, DriverLog and
Depots, the real-life challenging Petrobras domain and a crafted domain called Planes. ZenoTravel
and DriverLog are some of the domains in the literature with a higher numeric interaction
between actions. Domains like Rovers or Settlers have been excluded because they are too big
to show meaningful results with the encoding at hand and the chosen timeout. The Petrobras
domain models a real-life problem of resource-efficient transportation of goods from ports to
petroleum platforms. It was proposed as a challenge problem at the International Competition on
Knowledge Engineering for Planning and Scheduling (ICKEPS 2012). Instances were modeled
from (15).

Due to the limited numeric interactions between actions in the domains found in the literature, we
additionally propose a new domain called Planes which is created from ZenoTravel, by adding some
plausible numeric constraints, in order to help us demonstrate the benefits of checking interference
between actions semantically. The full model can be found in Appendix A. Moreover, although in
this section we just highlight the most relevant aspects of the experiments, details of each particular
execution per instance and solver can also be found in Appendix A.

Table 1 shows the number of instances solved by each approach. Checking interference seman-
tically and using the chained SMT encoding is best in Petrobras, ZenoTravel and Planes, while
NumReach/SAT is best in Depots and DriverLog. The big gap in the number of solved instances in
Depots is twofold: lack of intrinsic parallelism in the domain and being the perfect scenario for the
reachability approach of NumReach.

Table 2 shows the sum of the number of time steps of the plans found, for commonly solved
instances. Note that the domains where our implementation solves more instances are also the ones
which exhibit more gains in parallelism. Note also the significant reduction in time steps from
the syntactic approach to the semantic approach with the chained SMT encoding, especially in the
Planes domain.
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18 Relaxing Non-interference Requirements in Parallel Plans

The importance of the semantic notion of interference and its checking through the SMT solver,
is that it generates the minimum set of a-priori interferences between actions. Table 3 compares the
SYN and SEM+C approaches on the commonly solved instances. For each family, it shows the sum
of interferences, the difference between the two approaches, and the percentage of interferences that
could be avoided thanks to the semantic notion of interference.

Table 4 compares the sizes of the first satisfiable formulas resulting from the SEM+C encoding
and the SYN encoding. Generally the number of variables in the problems gets multiplied by a
factor of three or four. Although this might seem a lot, in terms of the SYN encoding the number
of variables ranges between one and fifty thousand. On the other hand, the number of constraints
gets reduced. This reduction is significant, as the number of constraints in the SYN encoding can
reach tens of milions in the biggest instances. Note that these size comparisons are dependant on the
number of steps needed to solve the instance.

7 Conclusion

The main contribution of this paper is the formalization of an elegant and easy to implement solution
to the problem of determining interference between actions in parallel plans. We have introduced a
relaxed notion of interference in the context of PMTs, which can be checked by calling an SMT
solver at compile time. The technique is therefore orthogonal to any solving method.

We have argued why the presented proposal is better than syntactic based ones and provided
empirical evidence of its usefulness by showing a significant improvement in parallelism in some
domains. We leave as further work a deeper study on the relation between the proposed semantics of
happening execution and the one defined in (6) and (7).
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Appendix A

A.1 Planes domain PDDL model

A.2 Detailed experiments
In the following tables, Syntactic, Semantic and Sem+chain columns denote the three approxima-
tions explained in Section 6, while the NR/SAT and NT/SMT columns show the results for the
NumReach solver (10) with the SAT and SMT approximations, respectively.

Tables A5, A7, A9, A11 and A13 show the detailed results for the solved instances of each
domain. The sec. columns contain the total time for each problem instance in seconds, with TO
denoting a time out, and MO a memory out; ts columns contain the number of time steps of the plan;
aff. columns contain the number of computed affecting relations between the problem actions.

Tables A6, A8, A10, A12 and A14 break down the total time into generation and solving time.
Gen. time columns contain the time needed to ingest the problem files and generate the SMT
formula. This includes essentially the time needed for the syntactic or semantic interference checks,
being the rest of the tasks trivial as they always take less than 0.1 second. Sol. time columns contain
the time needed from the point of having the first SMT formula, to having a valid plan. Total time
columns contain the total time for each problem instance in seconds.

A.3 Missing proofs and extra lemmas
LEMMA A.1
Let a and b be two simply commuting actions, for a state space S modulo T , such that a does not
affect b, and let s ∈ S be a state such that a and b are applicable in s. Then app{a,b}(s) = appa;b(s).
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20 Relaxing Non-interference Requirements in Parallel Plans

TABLE A5. Detailed results for the Depots domain.

n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 0.0 6 1.4 6 3.9 6 5e4 1.7 6 2e4 1.7 6 1e4
2 0.4 9 8.3 9 32.4 9 3e5 13.2 9 1e5 14.9 8 7e4
3 5.5 13 42.9 13 165.3 13 1e6 82.1 13 3e5 307.0 13 2e5
4 9.7 15 134.3 15 484.8 14 1e6 288.7 14 8e5 4292.0 14 5e5
5 TO - 5187.9 21 TO - - TO - - TO - -
7 2.4 11 37.4 11 241.3 10 117.9 10 6e5 1142.8 10 3e5
8 15.2 15 403.0 15 MO - - TO - - TO - -
10 4.4 11 101.5 11 TO - - MO - - TO - -
11 43.3 18 TO - TO - - TO - - MO - -
13 2.6 10 84.3 10 TO - - TO - - TO - -
14 12.4 13 1314.0 13 TO - - TO - - TO - -
16 2.0 9 142.4 9 TO - - TO - - TO - -
17 6.8 8 395.6 8 TO - - TO - - TO - -
19 17.5 11 853.6 11 TO - - TO - - TO - -

TABLE A6. Detailed generation and solving times in seconds for each solved instance in the Depots
domain.

n Syntactic Sem+chain

Gen. time Sol. time Total time Gen. time Sol. time Total time

1 0.1 1.6 1.7 1.6 0.1 1.7
2 1.0 12.2 13.2 11.5 3.4 14.9
3 1.8 80.3 82.1 54.4 252.6 307.0
4 3.4 285.3 288.7 180.7 4111.3 4292.0
7 3.5 114.4 117.9 50.0 1092.8 1142.8

TABLE A7. Detailed results for the Petrobras domain.

n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 9.0 6 329.7 6 153.7 3 3e6 151.2 3 3e6 1209.2 3 4e4
2 17.5 6 357.7 6 197.9 4 4e6 193.4 4 3e6 1590.5 4 5e4
3 98.6 7 958.9 7 282.5 5 4e6 260.5 5 3e6 1335.5 4 6e4
4 TO - TO - 467.6 6 4e6 391.4 6 3e6 1911.9 4 7e4
5 TO - TO - 1435.6 7 4e6 1398.7 7 3e6 2667.8 4 8e4
6 TO - TO - TO - 3373.0 8 3e6 1939.7 4 9e4
7 TO - TO - TO - TO - 2666.7 4 1e5
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TABLE A8. Detailed generation and solving times in seconds for each solved instance in the
Petrobras domain.

n Syntactic Sem+chain

Gen. time Sol. time Total time Gen. time Sol. time Total time

1 58.2 95.5 153.7 88.5 1120.7 1209.2
2 69.2 128.7 197.9 122.5 1468.0 1590.5
3 83.9 198.6 282.5 165.3 1170.2 1335.5
4 41.9 425.7 467.6 173.0 1738.9 1911.9
5 32.5 1403.1 1435.6 130.9 2536.9 2667.8
6 TO TO TO 124.4 1815.3 1939.7
7 TO TO TO 107.0 2559.7 2666.7

TABLE A9. Detailed results for the Planes domain.

n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 TO - 36.4 15 0.9 13 4e3 0.2 10 6e2 1.9 9 4e2
2 3.3 18 37.7 18 6.5 16 4e3 1.1 12 6e2 3.9 10 4e2
3 TO - 228.0 20 42.2 18 1e4 6.3 13 1e3 78.7 10 1e3
4 4.4 23 633.2 23 401.3 21 1e4 78.8 15 1e3 307.9 11 1e3
5 TO - 763.9 22 179.9 20 1e4 47.5 15 2e3 46.5 11 1e3
6 5.3 25 1153.0 25 1971.5 23 1e4 585.6 18 2e3 331.8 13 1e3
7 TO - 1238.4 23 374.5 21 1e4 54.4 16 2e3 41.8 11 1e3
8 5.0 24 1247.7 24 1508.6 22 1e4 119.4 17 2e3 66.5 11 1e3
12 15.5 21 TO - TO - - TO - - TO - -

TABLE A10. Detailed generation and solving times in seconds for each solved instance in the
Planes domain.

n Syntactic Sem+chain

Gen. time Sol. time Total time Gen. time Sol. time Total time

1 0.0 0.9 0.9 0.3 1.6 1.9
2 0.0 6.5 6.5 0.8 3.1 3.9
3 0.1 42.1 42.2 7.5 71.2 78.7
4 0.2 401.1 401.3 7.6 300.3 307.9
5 0.5 179.4 179.9 4.5 42.0 46.5
6 0.1 1971.4 1971.5 0.5 331.3 331.8
7 1.9 372.6 374.5 6.0 35.8 41.8
8 4.5 1504.1 1508.6 5.5 61.0 66.5

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzz026/5539804 by St Andrew

s U
niversity Library user on 15 O

ctober 2019



22 Relaxing Non-interference Requirements in Parallel Plans

TABLE A11. Detailed results for the Zenotravel domain.

n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec. ts sec. ts sec. ts aff. sec. ts aff. sec. ts aff.

1 0.0 2 0.1 2 0.0 1 5e2 0.0 1 1e2 0.0 1 1e2
2 0.0 7 1.5 7 0.0 3 8e2 0.0 3 2e2 0.0 3 1e2
3 0.0 6 3.6 6 0.1 3 3e3 0.1 3 1e3 0.1 3 6e2
4 0.0 6 2.3 6 0.2 4 4e3 0.1 4 1e3 0.1 3 7e2
5 0.0 7 6.8 7 0.4 4 7e3 0.2 4 3e3 0.1 3 1e3
6 0.0 7 4.1 7 0.8 6 9e3 0.4 6 3e3 0.2 3 1e3
7 0.0 8 9.0 8 0.7 5 1e4 0.4 5 4e3 0.2 3 2e3
8 0.3 7 7.7 7 2.5 5 4e4 1.6 5 2e4 0.5 3 5e3
9 0.3 9 18.1 9 24.8 8 5e4 20.9 8 2e4 1.3 4 6e3
10 0.6 9 24.4 9 70.0 8 5e4 42.1 8 2e4 1.8 4 6e3
11 3.3 8 18.4 8 8.1 6 8e4 5.7 6 3e4 3.2 4 8e3
12 3.6 10 99.0 10 73.6 7 9e4 76.8 7 3e4 4.4 4 1e4
13 22.0 11 565.3 11 1324.9 9 1e4 1270.2 9 4e4 3.3 4 1e4
14 TO - 540.1 9 TO - - TO - - 779.7 4 8e4
15 TO - TO - TO - - TO - - 2850.6 4 2e5

TABLE A12. Detailed generation and solving times in seconds for each solved instance in the
Zenotravel domain.

n Syntactic Sem+chain

Gen. time Sol. time Total time Gen. time Sol. time Total time

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.1 0.1 0.1 0.0 0.1
4 0.0 0.2 0.2 0.1 0.0 0.1
5 0.0 0.4 0.4 0.1 0.0 0.1
6 0.0 0.8 0.8 0.2 0.0 0.2
7 0.0 0.7 0.7 0.2 0.0 0.2
8 0.1 2.4 2.5 0.5 0.0 0.5
9 1.0 23.8 24.8 1.2 0.1 1.3
10 2.8 67.2 70.0 1.6 0.2 1.8
11 0.6 7.5 8.1 2.9 0.3 3.2
12 5.1 68.5 73.6 3.8 0.6 4.4
13 100.1 1224.8 1324.9 2.7 0.6 3.3
14 TO TO TO 159.7 620.0 779.7
15 TO TO TO 321.4 2529.2 2850.6
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TABLE A13. Detailed results for the Driverlog domain.

n NR/SAT NR/SMT Syntactic Semantic Sem+chain

sec ts sec ts sec ts aff. sec ts aff. sec ts aff.

1 0.0 7 0.4 7 0.4 5 5e3 0.3 5 2e3 0.2 5 1e3
2 0.0 10 5.5 10 1.1 8 9e3 0.6 8 3e3 0.6 7 2e3
3 0.0 8 3.1 8 0.8 6 8e3 0.4 6 3e3 0.4 4 2e3
4 0.0 8 4.0 8 1.3 6 1e4 0.7 6 4e3 0.5 4 3e3
5 0.0 9 5.5 9 1.5 7 1e4 0.7 6 5e3 0.4 4 4e3
6 0.0 6 2.4 6 1.2 4 2e4 0.6 4 7e3 0.6 4 6e3
7 0.0 7 3.6 7 2.0 5 3e4 1.0 5 1e4 0.8 4 8e3
8 0.0 8 5.1 8 3.4 7 3e4 2.0 7 1e4 1.1 5 9e3
9 0.0 11 10.3 11 12.1 10 8e4 5.4 10 2e4 5.1 8 2e4
10 0.0 8 6.4 8 18.0 7 2e5 7.6 7 5e4 4.4 4 4e4
11 0.0 10 12.0 10 36.6 9 2e5 18.9 9 7e4 6.6 6 5e4
12 TO - TO - 620.8 16 6e5 495.7 16 2e5 296.0 12 1e5
13 TO - TO - 159.6 11 1e6 87.6 11 3e5 47.9 7 2e5
14 0.0 12 208.9 12 271.9 11 8e5 453.5 11 2e5 167.8 8 1e5
15 0.2 12 TO - MO - - TO - - 5459.2 8 6e5
16 0.8 12 TO - TO - - MO - - TO - -
17 1.1 12 TO - MO - - TO - - TO - -
18 2.4 13 TO - TO - - TO - - TO - -
19 2.5 12 TO - TO - - TO - - TO - -
20 4.6 10 TO - TO - - TO - - TO - -

TABLE A14. Detailed generation and solving times in seconds for each solved instance in the
Driverlog domain.

n Syntactic Sem+chain

Gen. time Sol. time Total time Gen. time Sol. time Total time

1 0.0 0.4 0.4 0.2 0.0 0.2
2 0.0 1.1 1.1 0.5 0.1 0.6
3 0.0 0.8 0.8 0.4 0.0 0.4
4 0.1 1.2 1.3 0.4 0.1 0.5
5 0.1 1.4 1.5 0.4 0.0 0.4
6 0.0 1.2 1.2 0.6 0.0 0.6
7 0.1 1.9 2.0 0.7 0.1 0.8
8 0.2 3.2 3.4 0.9 0.2 1.1
9 0.7 11.4 12.1 3.0 2.1 5.1
10 1.7 16.3 18.0 3.6 0.8 4.4
11 3.0 33.6 36.6 4.6 2.0 6.6
12 28.8 592.0 620.8 251.3 44.7 296.0
13 7.9 151.7 159.6 40.2 7.7 47.9
14 13.9 258.0 271.9 140.3 27.5 167.8
15 TO TO TO 4510.1 949.1 5459.2
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24 Relaxing Non-interference Requirements in Parallel Plans

FIGURE A1. PDDL model of the Planes domain

PROOF. Let a = 〈Prea, σa〉 and b = 〈Preb, σb〉. Since a and b are applicable in s, we have that
app{a,b}(s) is defined. Moreover, since a does not affect b, by Lemma A.5 we have that appa;b(s) is
defined.

We conclude by showing that app{a,b}(s)[x] = appa;b(s)[x] for every variable x. Recall
that app{a,b}(s) = apph({a,b})(s), where h({a, b}) denotes the happening action for a and b.
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Now, by definition of application, we have apph({a,b})(s)[x] = evalsT (xσh({a,b})) and appa;b(s)[x] =
evalsT (xσbσa), for every variable x. On the other hand, since a does not affect b, Prea ∧ Preb ∧
¬(xσh({a,b}) = xσbσa) is T-unsatisfiable. And, since a and b are both applicable in state s, we have
T , s |� Prea and T , s |� Preb. Therefore T , s |� Prea ∧ Preb ∧ (xσh({a,b}) = xσbσa), and thus
evalsT (xσh({a,b})) = evalsT (xσbσa), which lets us conclude. �

LEMMA A.2
Let A be a set of non-interfering actions, for a state space S modulo T , and let s ∈ S be a state such
that all actions in A are applicable in s. Then appa1;...;an(s) is the same state for every total ordering
a1 < · · · < an of A.

PROOF. Since actions in A are non-interfering and applicable in state s, by Lemma A.5 we have that
appa1;...;an(s) is defined for any total ordering a1 < · · · < an of A. We conclude by showing that
any two consecutive actions in the sequence a1; . . . ; an can be permuted, preserving the final state.
Consider any two consecutive actions ai and ai+1 in the sequence a1; . . . ; an. Since appa1;...;an(s)
is defined, so is appa1;...;ai(s), and ai is applicable in state appa1;...;ai−1(s) (in case that i = 1, let
appa1;...;ai−1(s) denote the state s). Now, since actions in A are non-interfering, by Lemma A.5 we
have that appa1;...;ai−1;ai+1(s) is also defined, so ai+1 is also applicable in state appa1;...;ai−1(s). Finally,
by Lemma A.6, we have appai;ai+1(appa1;...;ai−1(s)) = appai+1;ai(appa1;...;ai−1(s)) which, by definition
of application, is equivalent to appa1;...;ai−1;ai;ai+1;...;an(s) = appa1;...;ai−1;ai+1;ai;...;an(s). �

LEMMA A.3
Let A be a set of simply commuting actions, for a state space S modulo T , such that |A| ≥ 2. Then, for
every action a ∈ A, we have that a and h(A\{a}) are simply commuting, and h({a, h(A\{a})}) = h(A).

PROOF. Let A = {a1, a2, . . . , an}, a = a1 and A′ = A\{a} = {a2, . . . , an}. According to the definition
of happening action, σh(A′) = ∪x∈var(S){σx,2 ◦ · · · ◦ σx,n}, where σx,i, for i in 2..n, is the mapping of
variable x in the effects of action ai. Now, since composition of functions is associative, we have
that σx,1 ◦ (σx,2 ◦ · · · ◦ σx,n) = σx,1 ◦ σx,2 ◦ · · · ◦ σx,n for every variable x, being σx,1 the mapping
of variable x in the effects of action a1. And, since actions in A are simply commuting, we have that
σx,1 ◦ σx,2 ◦ · · · ◦ σx,n = (σx,2 ◦ · · · ◦ σx,n) ◦ σx1 , which lets us conclude that a and h(A′) are simply
commuting.

Now, provided that a and h(A′) are simply commuting, in order to prove that the happening actions
h({a, h(A′)}) and h(A) are equivalent, we need to show that they have equivalent preconditions and
effects. For preconditions, we have Preh({a,h(A′)}) = Prea ∧ Preh(A′) = ∧a∈APrea = Preh(A). For
effects, we have σh({a,h(A′)}) = ∪x∈var(S){σx,1 ◦ (σx,2 ◦ · · · ◦ σx,n)} which, as seen before, is equivalent
to ∪x∈var(S){σx,1 ◦ σx,2 ◦ · · · ◦ σx,n}. �

LEMMA A.4
Let A be a set of actions and a an action, for a state space S modulo T , such that the actions in A∪{a}
are simply commuting. If a affects none of the actions in A, then a does not affect the happening
action h(A).

PROOF. Let A = {a1, . . . , an}. We proceed by induction on the number of actions n in A. If
n = 1 then we are trivially done, since h(A) = a1 and, by assumption, a does not affect a1.
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26 Relaxing Non-interference Requirements in Parallel Plans

If n ≥ 2, let A′ = A \ {a1}. Then a neither affects a1 nor the happening action h(A′) (by the
induction hypothesis). Moreover, since actions in A ∪ {a} are simply commuting, so are a, a′ and
h(A′). Then, by Lemma A.7, we have that a does not affect h({a′, h(A′)}) and, by Lemma A.3,
h({a′, h(A′)}) = h(A). �
LEMMA A.5
Let A be a set of actions, for a state space S modulo T , and let s ∈ S be a state such that all actions in
A are applicable in s. Then appa1;...;an(s) is defined for every ordering a1 < · · · < an of A such that
if ai < aj then ai does not affect aj.

PROOF. By induction on the number of actions n in A. If n = 1 we are trivially done. If n ≥
2, consider any ordering a1 < · · · < an of A such that if ai < aj then ai does not affect aj.
Let a1 = 〈Prea1 , σa1〉. First of all we show, by contradiction, that appai(appa1(s)) is defined for
every ai = 〈Preai , σai〉 such that a1 < ai. Suppose that T , appa1(s) �|� Preai , i.e. that ai is not
applicable after applying a1 in state s. This is equivalent to say that T , s �|� Preaiσa1 and, since s
is an assignment, to evalsT (Preaiσa1) = ⊥. Now, by assumption, we have T , s |� Prea1 and T , s |�
Preai , since all actions are applicable in state s. Therefore, T , s |� Prea1 ∧ Preai ∧ ¬(Preaiσa1),
i.e. Prea1 ∧ Preai ∧ ¬(Preaiσa1) is T-satisfiable, contradicting that a1 does not affect ai. Finally,
since all actions ai such that a1 < ai are applicable in state appa1(s), by the induction hypothesis
we have that appa2;...;an(appa1(s)) is defined for any ordering a2 < · · · < an of A \ {a1} such
that if ai < aj then ai does not affect aj, and hence so is appa1;a2;...;an(s) for the ordering we have
considered. �
LEMMA A.6
Let a and b be two non-interfering actions, for a state space S modulo T , and let s ∈ S be a state such
that a and b are applicable in s. Then appa;b(s) = appb;a(s).

PROOF. Since a and b are non-interfering, then they are simply commuting, and neither a affects b
nor b affects a. Then, by Lemma A.1, we have app{a,b}(s) = appa;b(s), and app{a,b}(s) = appb;a(s).�
LEMMA A.7
Let a, b and c be three simply commuting actions, for a state space S modulo T . If a affects neither
b nor c, then a does not affect the happening action h({b, c}).
PROOF. Let a = 〈Prea, σa〉, b = 〈Preb, σb〉 and c = 〈Prec, σc〉. We need to prove that

1. Prea ∧ Preh({b,c}) ∧ ¬(Preh({b,c})σa) is T-unsatisfiable,
2. a and h({b, c}) are simply commuting and
3. Prea ∧ Preh({b,c}) ∧ ¬(xσh({a,h({b,c})}) = xσh({b,c})σa) is T-unsatisfiable for every variable x ∈

var(S).

For condition 1, since Preh({b,c}) = Preb ∧ Prec, we have it follows that Prea ∧ Preh({b,c}) ∧
¬(Preh({b,c})σa) = Prea ∧ Preb ∧ Prec ∧¬((Preb ∧ Prec)σa) = (Prea ∧ Preb ∧ Prec ∧¬(Prebσa))∨
(Prea ∧ Preb ∧ Prec ∧¬(Precσa)). Now assume that Prea ∧ Preb ∧ Prec ∧¬(Prebσa) is T-satisfiable
(the other case is analogous). Then Prea∧Preb∧¬(Prebσa) would also be T-satisfiable, contradicting
that a does not affect b.

Condition 2 follows directly from Lemma A.3.
For condition 3, we proceed by contradiction. Let us assume that Prea ∧ Preh({b,c}) ∧

¬(xσh({a,h({b,c})}) = xσh({b,c})σa) is T-satisfiable for some variable x ∈ var(S). Then, by definition
of happening action, we have Prea ∧ Preb ∧ Prec ∧ ¬(x(σx,b ◦ σx,c ◦ σx,a) = x(σx,b ◦ σx,c)σa) is T-
satisfiable, where σx,a, σx,b and σx,c are the mappings of variable x in the effects of actions a, b and c,
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Relaxing Non-interference Requirements in Parallel Plans 27

respectively. So there exists some assignment s such that T , s |� Prea, T , s |� Preb, T , s |� Prec and
evalsT (xσx,bσx,cσx,a) �= evalsT (xσx,bσx,cσa). This implies the existence of some variable y different
from x such that σa[y] �= y. Moreover, since σx,b and σx,c are substitutions replacing only variable
x, y must be a variable in xσx,b or in xσx,c and, necessarily, evalsT (xσx,bσx,a) �= evalsT (xσx,bσa) or
evalsT (xσx,cσx,a) �= evalsT (xσx,cσa). But this, together with T , s |� Prea, T , s |� Preb and T , s |� Prec,
contradicts a affecting neither b nor c. �
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