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Abstract 21 

1) The six papers in this Special Issue of Insect Conservation and Biodiversity are presented as a 22 

gedenkschrift honouring ground-breaking contributions made by the late Graham Elmes towards 23 

understanding the biology of Myrmica ants and their social parasites.  24 

2) A common theme is that each research paper contributes new knowledge applicable to the future 25 

survival of Maculinea (= Phengaris) species of butterflies, which have become flagships for insect 26 

conservation across Europe. All Maculinea species are highly specialised, with larvae that feed briefly 27 

on a specific foodplant before living underground for 11-23 months as social parasites of Myrmica 28 

colonies.  29 

3) This introductory overview provides a brief history of the research that has led to the current 30 

collection, with emphasis on Graham Elmes’ life and work. It is followed by three research papers 31 

that illustrate the diversity, socio-biology and ecology of Myrmica ants. A fourth describes an 32 

extreme adaptation that increases the efficiency with which some populations of Maculinea larvae 33 

exploit the resources within Myrmica nests. A fifth, more theoretical, paper models the constraints 34 

that typically lead to host specificity among social parasites, and explores why host switches are rare 35 

and quick.   36 



For over a century until the 1980s, nearly all attempts to conserve declining insects in protected 37 

areas, or as targeted species, were ultimately disappointing, at least within the secondary or semi-38 

natural ecosystems that provide most species-rich habitats in the developed and developing world 39 

(New et al., 1995; Thomas, 1984a; Webb & Pullin, 1996). Indeed, extinction rates of rare butterflies 40 

were often greater on UK Protected Areas than in neighbouring woodland or farmland (Thomas, 41 

1984a, 1991). Success was achieved only when fresh approaches were applied, based on detailed 42 

ecological knowledge of a threatened community, guild or species (New et al., 1995; Thomas et al., 43 

2011). One key discovery was that many declining insects possess unexpectedly sedentary adult 44 

phenotypes, ill-suited to persistence in modern fragmented landscapes (Hanski, 1999). Another was 45 

that even apparent generalists may have specialised requirements at some (usually immature) stage 46 

in their lives, involving close-knit interactions with other organisms and necessitating a narrow 47 

definable niche to exist in sufficient abundance for their populations to experience optimum (or 48 

positive) intrinsic growth rates (Thomas, 2016; Thomas et al., 2001; Thomas et al., 2011). 49 

Compounding both constraints, different sets of genotypes may have co-evolved at local scales 50 

and/or adapted to their local abiotic environment (Nash et al., 2008; Schönrogge et al., 2006; 51 

Thompson, 2005), amplifying the challenge of conserving locally adapted subsets in a rapidly 52 

changing world.    53 

The endangered genus of Maculinea (= Phengaris) butterflies illustrates the above complexities in 54 

extreme form. From mutualistic ancestors (Als et al., 2004; Fiedler, 1998), their larvae evolved as 55 

specialist social parasites that employ chemical and acoustical mimicry to infiltrate Myrmica ant 56 

colonies, where the butterfly larvae prey upon ant brood or are fed directly by nurse ants (Akino et 57 

al., 1999; Barbero et al., 2009; Elmes et al., 1991; Thomas et al., 2005). A cost of this life-style is a 58 

high level of host specificity in most regional populations of each Maculinea species, albeit with 59 

occasional host switches across their wider ranges and the existence of certain populations where 60 

more than one host may be exploited (Tartally et al., 2019a). Moreover, before exploiting ant 61 

societies, the larva of each Maculinea species feeds briefly on one or two specific foodplants, which 62 



must coexist in a suitable growth-form (Thomas & Elmes, 2001) within the 1-2 m foraging range of a 63 

suitable Myrmica colony for the latter to be successfully parasitized (Als et al., 2001; Elmes et al., 64 

1991; Kempe et al., 2016; Patricelli et al., 2015). Further complexity exists in certain populations, 65 

where the Maculinea larvae themselves are hosts to equally specialised (and rarer) host-specific 66 

ichneumonid parasitoids, each adapted to the larval demography and life-style of its particular host 67 

(Anton et al., 2007a; Anton et al., 2007b; Thomas & Elmes, 1993; Thomas et al., 2002). It is little 68 

surprise, therefore, that early attempts to conserve Europe’s dwindling populations of Maculinea 69 

species failed, owing to inadequate knowledge of their specialised interactions and their wider 70 

ecological needs (Thomas, 1980, 1984a).  71 

This special issue of Insect Conservation and Diversity contains three original research papers that 72 

illustrate the diversity, socio-biology and ecology of Myrmica ants. A fourth describes an extreme 73 

adaptation that enables the larvae of Maculinea butterfly species to exploit the rich resources within 74 

Myrmica colonies with increased efficiency after infiltrating their nests as social parasites. A fifth, 75 

more theoretical, paper models the constraints that typically lead to host specificity among social 76 

parasites with similar life-styles, and explores why host switches are rare and quick, while the sixth 77 

paper – this introductory overview – provides a brief history of the research exploring these systems 78 

that has led to the current collection. A common theme is that each research paper contributes new 79 

knowledge applicable to the future survival of these endangered butterflies, which have become 80 

flagships for insect conservation across Europe (Thomas & Settele, 2004). Another – and the 81 

motivation for this volume - is that each paper is presented as a grateful tribute to G. W. Elmes 82 

(1943-2017), an irreplaceable research colleague and mentor for fourteen of the authors and an 83 

inspiration and fount of knowledge to all of them. Although Elmes had previously collaborated 84 

fruitfully with three of us (Thomas, Schönrogge, Wardlaw), his main influence here stems from 85 

contributing unmatched expertise in 2002-2010 on the biology and taxonomy of the genus Myrmica 86 

during two pan-European EU Framework research programmes, MacMan (Settele et al., 2005; 87 

Settele et al., 2002) and CLIMIT (https://www.biodiversa.org/124), both led by Josef Settele (UFZ 88 

https://www.biodiversa.org/124


Helmholtz Institute, Germany). Both collaborations explored these interactions alongside the 89 

application of this knowledge to nature conservation, as well as the putative impacts that climate 90 

change might have on their specialised community modules. Together, these partnerships involved 91 

more than 100 scientists from 18 institutions and 14 nations, including most authors here, and 92 

trained a cohort of postgraduate students who were to become tenured research entomologists, 93 

with expertise in the biology of ants and butterflies, at universities and research institutes across the 94 

continent. In both cases, Elmes was the sole expert on ant biology among a team of theoreticians 95 

and butterfly ecologists, and his legacy has been great immense. 96 

Graham Elmes (Fig 1) himself had a remarkable and somewhat unorthodox career based at the UK 97 

Natural Environment Research Council’s Furzebrook Research Station in Dorset, later relocated to 98 

NERC’s Winfrith lab, both within 10 km of his birthplace, Wareham.  Having left school aged 16 to 99 

help support his family, he joined the then Nature Conservancy (now the Centre for Ecology & 100 

Hydrology) at Furzebrook in 1961 as a junior assistant to M. V. Brian, the world’s leading expert on 101 

Myrmica biology of the time. Two decades later the baton passed to Elmes, who - after part time 102 

study for high-school exams, a university degree and a PhD – was ultimately promoted five levels to 103 

Senior Principal Scientific Officer, equivalent to a senior university chair.   104 

Elmes’ initial research helped to explain how differentiation in the development, behaviour and 105 

physiology of Myrmica ants, combined with their ecological specialisations, social structures and the 106 

dynamics - including queen numbers - of their colonies, encouraged the evolution of many subtly 107 

different genotypes and species, enabling them to radiate as one of the three dominant ant genera 108 

(with Formica and Lasius) of the Holarctic (e.g. Elmes, 1971, 1973, 1974, 1980, 1982, 1983, 1987, 109 

1991; Elmes & Petal, 1990; Elmes & Wardlaw, 1981; Nielsen et al., 1999). A second lifelong passion 110 

was to sample Myrmica colonies across the Palearctic in order to complement his experimental 111 

studies with morphological analyses of numerous meticulously mounted series of the queens, males 112 

and workers (Elmes, 1978; Elmes & Thomas, 1985). This resulted in the description of >40 new 113 



species of Myrmica - and the synonymization of others - many in collaboration with Alex Radchenko, 114 

thereby enlarging by ~40% the number of Red ant species recognised in the Palaearctic. With 115 

Radchenko and in so-called ‘retirement’, Graham wrote the definitive monograph Myrmica Ants 116 

(Hymenoptera: Formicidae) of the Old World (Radchenko & Elmes, 2010), a masterpiece for which 117 

his name will be remembered long after the advances from >100 major peer-reviewed papers have 118 

been absorbed into the anonymity of basic biological knowledge. Elmes’ unique collection of 119 

Myrmica specimens, consisting of several thousand series representing 240 of the c. 280 recognised 120 

species in the genus, with paratypes of 80 species, are also conserved for perpetuity among the 121 

Hope Entomological Collections in the University of Oxford’s Natural History Museum. 122 

Modern research on the interactions between Maculinea butterflies and Myrmica ants began in 123 

1972, although the socially parasitic life-style of three species had been recognised in outline 50 124 

years earlier (Chapman, 1916, 1918, 1919; Frohawk, 1916). In 1972, Jeremy Thomas was appointed 125 

at Furzebrook to identify the factors driving 150 years of near continuous local extinction in national 126 

populations of M. arion, by then reduced to a few individuals on a single UK site (Thomas, 1977, 127 

1980, 1984a; Thomas et al., 2009). Although not formally involved in the first decade of a 128 

programme that focussed on the population dynamics, behaviour, ecological requirements and 129 

evolutionary biology of M. arion, Elmes was an invaluable colleague whose own studies during the 130 

1970s complemented and illuminated the former work. For example, while Thomas (1977) was 131 

discovering that west European populations of M. arion were host specific to Myrmica scabrinodis 132 

var sabuleti, and that this ant occupied a narrow thermophilous niche in grasslands that was seldom 133 

generated under modern agriculture, Elmes was applying morphometrics to establish unequivocally 134 

that Myrmica sabuleti was a true species, and that its larval development required warmer 135 

temperatures than that of the other four commoner species of Myrmica  inhabiting former M. arion 136 

sites (Elmes, 1978, 1982; Elmes & Wardlaw, 1983).  137 



By happy chance, Elmes’ third interest, from the outset, was the evolutionary biology of inquiline 138 

ants that parasitise Myrmica societies. He discovered, described and studied a new and rare species, 139 

Myrmica hirsuta, whose miniature queens evolved from, and parasitise, Myrmica sabuleti  societies 140 

(Elmes, 1978, 1983), and provided key insights into the half-way house of microgyne queens found 141 

in certain nests of Myrmica rubra (Elmes, 1976).  It was thus a smooth transition to team up with his 142 

good friend after JAT extended studies to the ecology and evolutionary biology of the five 143 

recognised species of Maculinea on mainland Europe (Thomas, 1984b), aided at Furzebrook by 144 

Judith Wardlaw, who meticulously maintained our lab experiments, and Ralph Clarke’s modelling 145 

and biometrical skills – a team that was further strengthened in 1999 when Karsten Schönrogge 146 

joined, initially to study the adaptations of extreme dipteran social parasites, Microdon mutabilis 147 

and M. mymicae (Elmes et al., 1999; Schönrogge et al., 2002; Schönrogge et al., 2006; Schönrogge et 148 

al., 2008).  During the 1980s and 1990s, the UK team was able to advance knowledge on several 149 

fronts (reviews: Thomas et al., 1998a; Thomas et al., 2005). We were most pleased to identify: (i) the 150 

divergent host specificity of each Maculinea species, with each exploiting  a different species of 151 

Myrmica with different habitat requirements across the wide area of western Europe that was 152 

initially sampled (Elmes et al., 1998; Thomas et al., 1989); (ii) the existence of occasional host shifts 153 

between different sectors of the continent (Elmes et al., 1994), more recently shown to be yet more 154 

complex after massive pan-European sampling during MacMan (Tartally et al., 2019a); (iii) how 155 

Maculinea larvae employ chemical mimicry to infiltrate and exploit different species of Myrmica 156 

(Akino et al., 1999); (iv) major differences between the predatory-feeding strategies of M. arion, M. 157 

teleius, and M. nausithous and the more efficient cuckoo-feeding of M. alcon and M. rebeli  (Elmes et 158 

al., 1991; Thomas & Elmes, 1998; Thomas & Wardlaw, 1992), each with repercussions for host 159 

specificity, population dynamics and resilience, and conservation (Thomas et al., 1998a; Thomas et 160 

al., 2005); (v) the existence of an apparently fixed polymorphism of 1- and 2-year developing larvae 161 

in certain populations of (especially) cuckoo species of Maculinea (Schönrogge et al., 2000; Thomas 162 

et al., 1998b); and (vi) the remarkable specialisations of two genera of rare host-specific 163 



ichneumonid parasitoids which parasitise a few populations of Maculinea larvae, by employing -  in 164 

at least two species - agonistic semio-chemicals to storm the specific Myrmica nests that contain 165 

caterpillars of their specific Maculinea hosts (Thomas & Elmes, 1993; Thomas et al., 2002). During 166 

the same period, JAT’s other team applied and tested several key results in the field through 167 

managing >50 UK sites to generate the deduced optimum habitat for M. arion, before re-introducing 168 

it to the UK in 1983-1992 (Thomas et al., 2009): 35 generations later the species had spread to ~40 169 

UK Protected Areas, which today support the largest known populations of this globally Endangered 170 

Species in Europe. Elmes and Thomas made similar recommendations based on the hosts and niches 171 

we had identified of M. nausithous and M. teleius (Thomas, 1984b, 1991; Thomas & Elmes, 2001), 172 

collaborating with Jan van der Made at Wageningen, who soon recruited Irma Wynhoff (1998) to 173 

join his group. She ably extended these studies and, in 1990, successfully re-established these 174 

nationally extinct butterflies to the Netherlands.     175 

By the late 1990s, interest in the biology of the five recognised community modules of Myrmica-176 

Maculinea-foodplant-parasitoid had spread in Europe, amplified by a workshop organised by Irma 177 

Wynhoff at Wageningen, which included a Special Issue of the papers in the Journal of Insect 178 

Conservation (1998, volume 2).  Soon, important advances to knowledge were being made at other 179 

centres, notably in Copenhagen (e.g. Als et al., 2001, 2002; Als et al., 2004; Nash et al., 2008) and 180 

Leipzig-Halle (e.g. Geissler-Strobel et al., 2000; Pfeifer et al., 2000), providing the foundation for the 181 

multi-centre collaborations of MacMan and CLIMIT that generated 66 original publications on these 182 

systems in 2002-2005 (http://www.macman.pensoft.net/), and many since, as well as 90 short peer-183 

reviewed papers by 114 co-authors in the closing MacMan book (Settele et al., 2005). It is beyond 184 

the scope of this gedenkschrift to Graham Elmes to review the numerous papers published post-185 

MacMan. Sufficient to note that research on the Maculinea complex continues in at least thirteen 186 

universities and institutes across Europe, including the seven represented here by the authors.      187 

http://www.macman.pensoft.net/


All five papers in this volume build on Elmes’ legacy and confirm that the future of this field is in 188 

good hands. The first, by Ebsen, Boomsma and Nash (2019), uses molecular techniques to reveal at 189 

least one new cryptic species within the Myrmica scabrinodis group. This had been predicted when 190 

Elmes et al. (1994) studied host specificity by Maculinea alcon in France and Spain, and noticed 191 

clear-cut ecological and behavioural differences between two ‘types’ of M. scabrinodis, one 192 

occupying dry niches and the other wet ones, which we labelled scabrinodis A and B but could not 193 

separate on morphological criteria. Twenty-five years later, in an elegant study started during 194 

MacMan, Ebsen and colleagues established that these forms were unquestionably two cryptic 195 

species (they also show that various types of M. sabuleti are just that – types not species). These 196 

results have an obvious application to conservation, since the large majority of Europe’s Maculinea 197 

populations are specific to a single host ant (Tartally et al., 2019a), and each Myrmica species 198 

occupies a different niche, requiring different management, within grasslands (Elmes et al., 1998). 199 

The second paper - The influence of colony traits on the collective behaviour of Myrmica scabrinodis 200 

ants (Maák et al., 2019) – extends Elmes’ approach of investigating how social structure and factors 201 

such as food supply collectively determine the physiological state of a Myrmica colony, which in turn 202 

influences its tolerance (or intolerance) of intruders to the nest, including social parasites such as 203 

Maculinea larvae, however close their chemical mimicry may be (Casacci et al., 2019).  This fine 204 

team, led originally by Emilio Balletto at the University of Turin, has made remarkable advances in 205 

understanding Maculinea systems post-MacMan, several in collaboration with our UK group and 206 

many, as here, with Magda Witek and her outstanding group at the Polish Academy of Sciences. 207 

Striking examples include describing how the larvae and pupae of Maculinea broadcast acoustical 208 

signals that closely mimic the distinctive stridulations of (adult) Myrmica queens, thereby elevating 209 

their status within host societies after penetration through chemical mimicry (Barbero et al., 2009); 210 

and how ovipositing female Maculinea arion select Origanum plants growing in close proximity to a 211 

Myrmica nest through detecting an agonistic monoterpenoid volatile, carvacrol, that is released 212 

when their foodplant’s roots are disturbed (Patricelli et al., 2015).  The putative influence of 213 



Wolbachia on relationships was also explored by Patricelli et al. (2013) and, most recently, di Salvo 214 

et al. (2019) suggested that the bipartite Myrmica – Maculinea interaction might in fact be a 215 

tripartite one, with direct or indirect involvement of the Maculinea microbiome. 216 

The third paper represents the continuing collaboration post-MacMan between excellent teams at 217 

the Universities of Debrecen and Copenhagen.  In this example, Tartally et al. (2019b) studied the 218 

impacts of changes to traditional farming practices on Myrmica densities in former hay meadows in 219 

the mountains of north-east Hungary, that support the xerophylous Alcon blue. Although these 220 

meadows contain some unusual M. alcon X (sensu Tartally et al., 2019a) populations in which 221 

species-level host specificity has not been demonstrated, the effects of 10 year’s abandonment were 222 

found to be detrimental to the status of all Myrmica populations sampled. The study highlights the 223 

need to maintain low‐intensity pastoral farming by mowing or grazing to avoid the decline of 224 

biodiversity, reversing a trend that has become widespread in Transylvania and other mountainous 225 

regions of eastern Europe, which remain a stronghold for Maculinea populations alongside many 226 

other threatened insect species.  227 

The fourth paper completes an unfinished draft begun by Graham Elmes fifteen years ago but set 228 

aside when writing his monograph on Myrmica (Radchenko & Elmes, 2010). It represents the fifth 229 

paper in a sequence studying the polymorphism in growth in certain populations of (especially) 230 

cuckoo species of Maculinea, whereby some larvae take 1 year and others 2 years to develop within 231 

the same ant nests. The first three papers (Schönrogge et al., 2000; Thomas et al., 1998b; Witek et 232 

al., 2006) described the phenomenon, and include data that suggested that the polymorphism might 233 

be fixed rather than plastic. If confirmed, this would be exceedingly unusual in the animal kingdom, 234 

having previously been described only in salmonid fish. Putative benefits of such a strategy were 235 

explored in a theoretical model by Hovestadt et al. (2007), who concluded that the phenomenon 236 

could evolve owing to the ergonomic benefits that ensued if certain assumptions prevailed, such as a 237 

need for individual females to lay a mixture of eggs that were genetically pre-determined as fast- or 238 



slow-developing individuals, and that the ratio of slow-developers could not exceed 50%. The 239 

current paper describes a series of lab experiments made by Elmes and Thomas that confirm both 240 

the existence of a fixed polymorphism and Hovestadt’s theoretical predictions of the attributes 241 

required for this to evolve.           242 

The final paper of this special issue describes the results from another Hovestadt et al. (2019) model. 243 

It extends an approach very satisfying to Elmes (and us), of collaborating with talented theoreticians 244 

who constructed models to explore questions which were impractical to test experimentally given 245 

existing techniques or resources. Typically, we supplied fragments of empirically-derived knowledge 246 

to ground the models in realism, and generally the simulations rejected some of our pet speculations 247 

while generating new testable ideas: previous examples include Hochberg et al. (1994), Clarke et al. 248 

(1997), and Hovestadt et al. (2007; 2012). Here, Hovestadt presents a population-genetic model that 249 

explores the putative link between multi-host use and host switching in host-parasite interactions, 250 

such as those of Maculinea. He concludes: (i) that host-shifting may proceed so rapidly that multiple 251 

host-use is unlikely to be observed, (ii) back and forth transition in host-use can exhibit a hysteresis-252 

loop, (iii) the parasites’ host-use may not be proportional to local host frequencies but under certain 253 

conditions may be restricted to the rarer host, and (iv) that a substantial decline in parasite 254 

abundance may typically precede a shift in host-use. 255 

The above papers, written in memory of Graham Elmes, represent just five aspects of a burgeoning 256 

body of research into Maculinea-Myrmica community modules from across Europe. Results to date 257 

have revealed not only the remarkable adaptive complexities that can evolve within specialised 258 

networks of interacting species, but are also providing essential knowledge on which to base 259 

conservation regimes across Europe (e.g. Andersen et al., 2013; Johst et al., 2006; Kajzer-Bonk et al., 260 

2016; Klein et al., 2013; Korosi et al., 2012; Nowicki et al., 2015; Nowicki et al., 2014; Sielezniew et 261 

al., 2012; Skorka et al., 2013; Soares et al., 2012; Vanden Broeck et al., 2017; Vilbas et al., 2015; 262 

Vrabec et al., 2017). The validity of this approach is already exemplified by the long-term restoration 263 



and spread of Maculinea arion in the UK (Thomas et al., 2009; Thomas et al., 2011) and of M. 264 

nausithous and M. teleius in the Netherlands (Wynhoff et al., 2017; Wynhoff et al., 2011).  This ‘large 265 

blue management’, in turn, has benefited other declining species in two ways (Elmes & Thomas, 266 

1992): (i) through the restoration of continuity of disappearing seral stages within grasslands and 267 

across landscapes, and (ii) through the direct impacts of keystone Myrmica populations, for 268 

example, through the dispersal of plants with elaiosome-bearing seeds (some of which are 269 

specifically attractive to Myrmica) and their deposition in enemy-free patches of loose soil around 270 

the ant nests (Randle et al., 2005).     271 

In summary, studies of Maculinea–Myrmica systems in the western Palaearctic have made 272 

fundamental contributions to evolutionary-, behavioural-, population- and community ecology, 273 

while providing the knowledge base for successful evidence-led conservation. Historical drivers, such 274 

as the land use changes that precipitated the extinction of M. arion in the UK, are an increasing 275 

challenge, now amplified by changing climates (Thomas, 2016). In closely coupled systems, different 276 

tolerances by species to abiotic factors, such as temperature, can lead to desynchronization, 277 

population declines, and detrimental trophic cascades, as exemplified by the winter moth 278 

Operophtera brumata and its oak host around the millennium (van Asch & Visser, 2007; Visser & 279 

Holleman, 2001), although in this case strong selection caused the moth’s phenology to adapt, 280 

compensating for the mismatch within a few generations (van Asch et al., 2012). With regard to 281 

Maculinea, we have much to learn about their adaptive potential to their abiotic environment and 282 

their biological interactions under multiple selection pressures (e.g. Casacci et al., 2019; Hovestadt et 283 

al., 2019; Nash et al., 2008; Tartally et al., 2019a). Thus, important areas of research remain: 284 

population genetics, regional adaptions, phylogeny, and the status of putative cryptic species; the 285 

precise mechanisms by which larvae manipulate host societies by ever closer post-adoption 286 

chemical mimicry and, perhaps, by sophisticated acoustical communication; whether the few 287 

populations recorded as exploiting more than one Myrmica species are generalist social parasites or 288 

co-existing populations of cryptic species, sub-species or hybrids, or simply pseudo-sinks or artefacts 289 



from nest-switches during the Maculinea pupal stage (Tartally et al., 2019a); on dispersal, meta-290 

population structure and population dynamics within sites; the roles of Wolbachia and microbiomes 291 

in Maculinea interactions and dynamics; and the biology and conservation of their endangered 292 

ichneumonid parasitoids. Land management for conservation should be based on such knowledge, 293 

and future measures might involve assisted migration, as in the UK and Netherlands, or the 294 

introduction of relevant trait response norms through targeted breeding, as recently proposed for 295 

species of tree (Cannon & Petit, 2019). Finally, having sampled Myrmica populations across the 296 

Palearctic, it would please Graham Elmes much to learn of similar studies on these systems now 297 

occurring beyond Europe, for example in Japan (Ueda et al., 2016) and in China (Gao et al., 2016).  298 
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Figure legends 577 
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 579 

Fig 1.   Graham Wakely Elmes (1943-2017). Expert on the biology and diversity of Myrmica ants, and 580 

on the social parasites that infiltrate their societies.    581 
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