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Abstract. Drought is a ubiquitous and reoccurring hazard that has wide ranging impacts on society, agriculture and the 10 

environment. Drought indices are vital for characterizing the nature and severity of drought hazards, and there have been 11 

extensive efforts to identify the most suitable drought indices for drought monitoring and risk assessments. However, to date, 12 

little effort has been made to explore which index(s) best represents drought impacts for various sectors in China. This is a 13 

critical knowledge gap, as impacts provide important ‘ground truth’ information. They can be used to demonstrate whether 14 

drought indices (used for monitoring or risk assessment) are relevant for identifying impacts, thus highlighting if an area is 15 

vulnerable to drought of a given severity. The aim of this study is to explore the link between drought indices and drought 16 

impacts, using Liaoning province (northeast China) as a case study due to its history of drought occurrence. To achieve this 17 

we use independent, but complementary, methods (correlation and random forest analysis). Using multiple drought indices – 18 

Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Soil Moisture (SoilM) 19 

and the Normalized Difference Vegetation Index (NDVI) – and drought impact data (on crop yield, livestock, rural people and 20 

the economy) correlation and random forest analysis were used to identify which indices link best to the recorded drought 21 

impacts for cities in Liaoning. The results show that the relationship varies between different categories of drought impacts 22 

and between cities. SPEI with a 6-month accumulation (SPEI6) had a strong correlation with all categories of drought impacts, 23 

while SPI12 had a weak correlation with drought impacts. Of the impact datasets, ‘drought suffering area’ and ‘drought impact 24 

area’ had a slightly strong relationship with all drought indices in Liaoning province, while ‘population and number of livestock 25 

with difficulty in accessing drinking water’ had weak correlations with the indices. Based on the linkage, drought vulnerability 26 

was analyzed using various vulnerability factors. Crop cultivated area was positively correlated to the drought vulnerability 27 

for five out of the eight categories of drought impacts, while the total population had a strong negative relationship with drought 28 

vulnerability for half the drought impact categories. This study can support drought planning efforts in the region, and 29 

provides a methodology for application for other regions of China (and other countries) in the future, as well as providing 30 

context for the indices used in drought monitoring applications, so enabling improved preparedness for drought impacts.  31 
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1 Introduction 32 

Drought is one of the most pervasive natural hazards with some of the greatest societal impacts (Belal et al., 2014), but is 33 

challenging to understand, quantify and manage. These challenges arise from the typically wide spatial extent of droughts, 34 

their frequent occurrence and the non-structural, diffuse and delayed nature of drought impacts (Biswas et al., 2013;Mishra 35 

and Singh, 2010). China has experienced numerous droughts, which have caused great economic losses since the 1950s, 36 

especially in Liaoning province in the dry northeast of the country (Zhang, 2004). From spring 2000 to autumn 2001, Liaoning 37 

province experienced a severe drought, which captured a large amount of attention from stakeholders and caused serious 38 

impacts on many sectors because of the successive years of drought (Chen et al., 2016). 39 

The costly nature of droughts means it is essential to plan and prepare for droughts proactively. Drought risk assessment is an 40 

essential prerequisite of this proactive approach (Wilhite and Buchanan-Smith, 2005;Wilhite et al., 2000), providing methods 41 

to predict the potential drought risk to society and the environment. There are numerous approaches to drought risk assessment, 42 

and these can be grouped into two broad classes: one based on the definition of drought risk, which combines the frequency 43 

of drought and the possible drought impacts. The other is an assessment method for establishing indices to measure the hazard, 44 

vulnerability and exposure of drought (Jin et al., 2016). The majority of risk assessment efforts focus primarily on 45 

meteorological indices of drought, e.g. assessing the risk of a given severity of meteorological drought using historical 46 

precipitation data. However, to adequately define risk it is also necessary to characterize the consequences of drought 47 

occurrence, i.e. the impacts of drought on society, the economy and the environment.  48 

A wealth of drought indices have been used in the literature (Lloyd-Hughes, 2014), although predominantly for drought 49 

monitoring and early warning (e.g. the review of Bachmair et al. 2016b) rather than risk assessment. The range of drought 50 

indices reflects the different types of drought which can be monitored, e.g., meteorological, hydrological and agricultural; the 51 

selected index should reflect the type of drought one wishes to monitor and manage. Many indices, such as the Standardized 52 

Precipitation Index (SPI), can be calculated over different time scales. This enables deficits to be assessed over different periods, 53 

and can help monitor different types of drought. For example, shorter time scales, such as the SPI for three or six months are 54 

used for agricultural drought monitoring while SPI values for 12 or 24 months are normally applied to hydrological drought 55 

monitoring (Hong et al., 2001;Seiler et al., 2002). The relationship between drought indices and drought impacts, established 56 

by a correlation or some other similar analysis (e.g. Bachmair et al. 2016a), can thus be used for drought risk assessment and 57 

appraisal of vulnerability. Vulnerability is by its nature difficult to define and measure, but in effect, drought impacts provide 58 

a proxy for vulnerability by demonstrating adverse consequences of a given drought severity (Stahl et al., 2016).  59 

There are many different types of drought impact affecting many aspects of society and the environment, but drought impacts 60 

are rarely systematically recorded (Bachmair et al., 2016b). Some countries and regions have established drought impact 61 

recording systems to analyze historical drought impacts. A leading example of this is the US Drought Impacts Reporter 62 
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(Svoboda and Hayes, 2011) which was launched as a web-based system in July 2005. More recently, the European Drought 63 

Impact report Inventory (EDII) has been established (Stahl et al., 2016). Such databases are an important step forward, but the 64 

information in them is necessarily partial and biased, being effectively crowd-sourced text-based information based on 65 

‘reported’ impacts a range of sources (the media, grey literature, etc.). In contrast to many other countries, China has a relatively 66 

complete and systematically assembled, quantitative drought impact information collection system. Data are collected and 67 

checked at the county level by the Drought Resistance Department via a formalized network of reporters, who collect drought 68 

impacts statistics in every village. These data then are fed up to the national government and held by the State Flood Control 69 

and Drought Relief Headquarters (SFDH). This consistent collection of impact reporting provides a rich resource for drought 70 

risk assessment. However, impacts by themselves are not fully informative; to help inform risk assessment there is a need to 71 

understand their relationship with quantitative drought indices.  72 

Understanding the relationship between drought indices and drought impacts, and drought vulnerability, is a vital step to 73 

improve drought risk management (Hong and Wilhite, 2004). However, whilst there have been many studies developing, 74 

applying and validating drought indices, relatively few studies have assessed the link between indices and observed impacts. 75 

Bachmair et al. (2016a) noted that this literature tended to be dominated by studies focused on agricultural drought, linking 76 

generally indices like the SPI/SPEI and crop yield. Examples appraising multi-sectoral impacts are much sparser – recent 77 

studies tend to be in Europe, utilizing the EDII. Bachmair et al. (2014) and Bachmair (2016b) used drought impacts from the 78 

EDII, and various time scales of SPI, SPEI and streamflow percentiles. They found that the relationships between indices and 79 

impacts varied significantly by region, season, impact types, etc. Whilst Blauhut et al. (2015) developed a quantitative 80 

relationship between drought impact occurrence and SPEI using logistic regression in four European regions. They assumed 81 

drought impacts were only measured by the drought impact occurrence, meaning that all drought impacts have equal weight 82 

without considering the duration, intensity or spatial extent of the impacts; a similar logistic regression approach was also used 83 

by Stagge (Stagge et al., 2014). Karavitis et al. (2014) described drought impacts transformed into monetary losses to measure 84 

drought impacts in Greece. However, it is challenging to transform all drought impacts into monetary units – especially the 85 

indirect impacts of droughts. 86 

In China, previous studies have also focused on agricultural drought. Zhao et al. (2011) established the relationship between 87 

drought frequency and simulated crop yield data in Henan Plain. Jia et al. (2011) used the water stress coefficient and duration 88 

to establish a drought index. Li et al. (2009) analyzed the links between historical crop yield and meteorological drought and 89 

established a meteorological drought risk index by combining the drought frequency, intensity, yield loss and extent of 90 

irrigation. The drought index was found to explain 60-75% of the major crop yield reduction.  91 

In summary, previous studies have focused on linking impacts to only one characteristic of drought (such as intensity, duration 92 

of occurrence) with most focusing on meteorological drought and agricultural impacts. But with the exception of Blauhut et 93 
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al. (2015), there is little application of the results to drought vulnerability assessments. Here we link drought indices to drought 94 

impacts in 14 cities in Liaoning province, northeast China, showcasing the use of the Chinese drought impact data from the 95 

SFDH. Using the drought impact-index linkage, we evaluate the drought vulnerability in Liaoning province and assess what 96 

factors affect drought vulnerability. A drought vulnerability evaluation method that can be extended to other areas is then 97 

developed. The objectives of this paper are:  98 

1. To identify when and where the most severe droughts occurred between 1990 and 2013 in Liaoning province; 99 

2. To identify which drought indices best link to drought impacts in Liaoning province; 100 

3. To determine which city or area has higher drought vulnerability, based on the correlation analysis from objective 2, 101 

in Liaoning province; and, 102 

4. To ascertain which vulnerability factor or set of vulnerability factors have a higher contribution to drought 103 

vulnerability, as quantified in objective 3. 104 

2 Materials 105 

2.1 Study area 106 

Located in the northeastern of China, Liaoning province, comprised of 14 cities, has a temperate continental monsoon climate 107 

with an annual average precipitation of 686.4mm, which is unevenly distributed both temporally and spatially (Cai et al., 2015). 108 

Figure 1 shows the annual average rainfall across Liaoning, the south-east receiving on average more than 1000mm a year, 109 

whilst the north-west receives less than 500mm per year. 110 

 111 

Figure 1: Map showing the 14 cities, the distribution of meteorological and soil moisture stations and the average annual 112 

precipitation in Liaoning province. 113 

The annual average volume of water resources is 34.179 billion m3, and the annual average per capita water resources is 769 114 
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m3 – about one-third of the per capita water resources for the whole China. Thus, Liaoning is one of the severe water-shortage 115 

provinces in northern China. Liaoning province is also a highly productive area for agriculture. Spring maize is the dominant 116 

crop in agriculture production which makes it an important high-quality maize production area (Liu et al., 2013;Ren and Zhou, 117 

2009). Due to these characteristics, when drought occurs, as has frequently been the case in Liaoning province, it causes a 118 

significant reduction in agricultural production (Yan et al., 2012). According to the SFDH, between 2000 and 2016 the average 119 

annual yield loss due to drought was 1.89 million tons in Liaoning province, with an average annual direct agricultural 120 

economic loss of 1.87 billion yuan. 121 

2.2 Data 122 

1) Meteorological data 123 

Daily precipitation and temperature data for each city in Liaoning province for the period 1990-2013 were obtained from the 124 

China Meteorological Administration (http://data.cma.cn/), including daily precipitation and temperature. Although there are 125 

52 meteorological stations in Liaoning province, due to the quality and length of the records, and location of the stations, one 126 

representative meteorological site in each city was selected to represent the meteorological condition for the whole city in 127 

order to derive drought indices. 128 

2) Soil moisture data 129 

Daily soil moisture data for 96 soil moisture stations in Liaoning province from 1990 to 2006 were obtained from Liaoning 130 

Provincial Department of Water Resources. Daily soil moisture was measured at three different depths: 10cm, 20cm and 30cm 131 

using frequency domain reflection soil moisture sensors, which are based on the principle of electromagnetic pulse. Soil 132 

moisture data were not available between November and February at most stations due to freezing conditions. 133 

3) Normalised Difference Vegetation Index (NDVI) data  134 

Monthly MODIS NDVI data from 2000 to 2013 was collected in Liaoning province from the Geospatial Data Cloud 135 

(http://www.gscloud.cn/); the daily maximum data were used to derive the monthly average NDVI.  136 

4) Impact data 137 

In contrast to many other countries, China has a systematic, centralized drought impact information collection system. Drought 138 

statistics include drought impacts, drought mitigation actions and benefits of action to agriculture, hydrology and civil affairs. 139 

During a drought event, impact statistics are collected from every day to every three weeks, according to the drought warning 140 

level (Wang, 2014). When a drought warning is not triggered, drought impact data are collected after an event has ended which 141 

could be several months afterwards; and no data are collected when there is no drought event. Statistics for eight drought 142 

impact types were collected from the SFDH between 1990 and 2016, and aggregated to annual totals, the impact types used 143 

are listed in Table 1. 144 
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Table 1: The eight drought impacts used in this study collected by the SFDH for Liaoning province. 145 

Impact Abbreviation Description Unit 

Drought suffering area DSA The area that was officially declared in drought.  kha 

Drought impacted area DIA The area that suffered crop yield loss by 10% or more kha 

Disaster area DA The area that suffered crop yield loss by 30% or more. kha 

Recessed area RA The area that suffered crop yield loss by 80% or more. kha 

Population with difficulty in 

accessing drinking water 
PHD 

Rural populations that cannot access normally to 

drinking water. 
10k 

Number of livestock with difficulty 

in accessing drinking water 
NLH 

Number of livestock that cannot access normally to 

drinking water. 
10k 

Yield loss due to drought YLD The amount of yield losses due to drought. 10k ton 

Direct economic loss in agriculture DELA 
Direct losses of agricultural economy caused by 

drought. 
0.1b yuan 

 5) Vulnerability factors 146 

Vulnerability factors were collected from the 2017 Liaoning province Statistical Yearbook to explain the drought vulnerability 147 

(Liaoning Province Bureau of Statistical, 2017). The drought impacts described above are mainly focused on agriculture, rural 148 

populations, agricultural productivity and the agricultural economy; therefore, factors relevant to these sectors were selected. 149 

The selected vulnerability factors and data from the 2017 Liaoning Statistical Yearbook are shown in Table 2.  150 

Table 2: Vulnerability factors for Liaoning province collected from the 2017 Liaoning Statistical Yearbook(Liaoning Province 151 

Bureau of Statistical, 2017)  152 
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Shenyang 755.8  733.9  656.0  91.5  1000.4  40.0  27.6  686.6  7090.5  64.5  

Dalian 1143.4  595.6  327.0  73.4  1437.2  22.8  19.0  2523.0  4914.3  70.8  

Anshan 422.9  345.7  247.7  42.3  1031.8  30.1  4.1  91.9  6641.6  36.7  

Fushun 402.7  214.8  116.1  94.7  776.9  37.4  1.8  2575.5  6342.9  10.4  

Benxi 511.1  150.0  58.0  167.9  756.3  29.9  0.4  6078.8  6606.3  9.3  

Dandong 315.8  237.9  190.4  28.0  1049.7  41.7  1.4  16202.8  6056.9  20.2  

Jinzhou 341.8  302.2  457.2  46.6  915.4  41.3  18.7  977.9  6825.7  64.0  

Yingkou 496.7  232.8  109.4  42.4  1564.6  67.7  12.3  269.6  7325.0  13.5  

Fuxin 215.9  188.9  479.4  39.7  881.9  30.1  26.6  545.0  5243.6  49.6  

Liaoyang 373.4  178.6  162.8  42.4  1002.6  44.8  4.0  1418.8  7202.2  11.0  

Panjin 778.3  130.1  143.0  70.2  937.0  68.7  1.0  141.5  8918.3  23.8  

https://doi.org/10.5194/nhess-2019-310
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



7 

 

Tieling 196.5  299.9  548.5  12.2  960.2  32.0  18.1  2174.5  8397.1  46.0  

Chaoyang 210.1  341.1  464.5  15.8  874.7  42.0  17.4  2085.6  6292.0  63.6  

Huludao  230.8  280.5  249.7  18.7  976.8  28.9  14.0  892.7  4852.3  35.4  

2.3 Methods 153 

1) Drought indices 154 

Two meteorological indices were selected, Standardized Precipitation Index (SPI; McKee et al., 1993) and Standardized 155 

Precipitation Evapotranspiration Index (SPEI;Vicente-Serrano et al., 2010). These standardized indices are widely used in 156 

drought monitoring applications, and the World Meteorological Organization recommend the use of the SPI to monitor 157 

meteorological drought (Hayes et al., 2011). This is due to the relatively simple calculation, flexibility of calculation at different 158 

time scales, and the fact it can be compared across time and space.  159 

The SPI, in its default formulation, assumes that precipitation obeys the Gamma (Γ) skewed distribution, which is used to 160 

transform the precipitation time series into a normal distribution. After normalization, classes of drought can be defined with 161 

the cumulative precipitation frequency distribution (Botterill and Hayes, 2012;Hayes et al., 1999). The SPEI is a very similar 162 

concept, using the climatic water balance (that is, precipitation minus potential evapotranspiration, PE). Here, PE is calculated 163 

by the Thornthwaite method (Thornthwaite, 1948), using observed temperature and sunlight hours (estimated from latitude) 164 

as inputs. SPEI are calculated by normalizing the climatic water balance using a log-logistic probability distribution (Yu et al., 165 

2014). 166 

SPI and SPEI are easily calculated and can fit a wide range of time scales (e.g. 1, 3, 12, 24, 72 months) of interest (Edwards, 167 

1997). SPEI has the added advantages of characterizing the effects of temperature and evapotranspiration on drought. In this 168 

study, SPI and SPEI were calculated for five accumulation periods (6, 12, 15, 18 and 24-months) from 1990 to 2013 for 14 169 

meteorological stations (i.e. one in each city). In Liaoning province, precipitation is concentrated between April and September; 170 

this is also when the growth stage of spring maize occurs. Considering the climatology and crop growth period, SPI6 and 171 

SPEI6 ending in September were selected, i.e. calculated using precipitation during April to September. The 12, 15, 18 and 24 172 

months SPI and SPEI in ending December were analyzed with the annual drought impacts.  173 

Using the daily soil moisture of 10 cm, 20 cm and 30 cm depths, the daily average soil moisture for each station was calculated 174 

using Eq. (1) and Eq. (2) (Lin et al., 2016). 175 
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Where 
i  is the soil moisture of the i-th layer (i=1, 2, 3).

10 , 
20 and 

30  are the measured value at different depths 178 

(10cm, 20cm and 30cm).   is the average soil moisture. 
ih is the thickness of the i-th layer of soil, and H  is the total 179 
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thickness of the measured soil. 180 

Some of the daily soil moisture data were missing, however, this was limited to 17% of total soil moisture data. In some cases 181 

there were missing data for one depth of soil moisture measurement. In these cases, the average soil moisture of the other two 182 

layers was calculated, and where there was only one layer of soil moisture available it was used to represent the average soil 183 

moisture. The annual average soil moisture was calculated based on the available daily soil moisture (March to October) and 184 

was analyzed with the annual drought impact data. As each city has more than one station, the annual soil moisture of each 185 

station was calculated and then averaged into one value for each city.  186 

The area-averaged NDVI at city unit was calculated based on the monthly NDVI. The critical stages of the spring maize growth 187 

in Liaoning is in July, so the area-averaged NDVI in July was selected for the analysis with the annual drought impacts. 188 

2) Correlation analysis 189 

The Pearson correlation method was used to characterize the correlation between indices and various drought impacts (Özger 190 

et al., 2009). Due to the limited availability of soil moisture data, correlation analysis of soil moisture and drought impact data 191 

was only carried out in 9 cities. The linkage between drought indices and impacts was used to assess the drought vulnerability 192 

in Liaoning province. It can be inferred that the greater impact caused by the same severity of drought (as measured by the 193 

relevant index e.g. SPI/SPEI), the higher drought vulnerability of the city.  194 

3) Random forest modeling 195 

Random forest (RF) is an algorithm that consists of a series of independent decision trees. RFs can be used for classification 196 

and regression (Sethi et al., 2012). Classification RFs aggregate votes from individual trees to estimate the outcome class. In 197 

this analysis random forests were built for regression. The results of the leaf nodes at different trees are aggregated for 198 

regression (Liaw and Wiener, 2002). The advantages of RF include: its fast training speed, good accuracy and relative 199 

efficiency (Mutanga et al., 2012). Additionally, once RF models are established, the values of the predictor that correspond to 200 

the first split in the decision tree can be extracted as thresholds corresponding to impact occurrence (Bachmair et al., 2016a). 201 

The R package ‘randomForest’ was employed to identify the relationship of drought indices to drought impacts in this research 202 

(Kursa, 2017;Liaw and Wiener, 2002). There are 5000 decision trees for each RF model. The variance explained was used to 203 

determine the goodness of fit of random forest model (Fukuda et al., 2013). The mean squared error (MSE), Eq. (1), was used 204 

to evaluate the importance of each index: 205 

2

1

1
ˆ( )

i n

i i

i

MSE y y
n





                                                                              (3) 206 

Where iy and ˆ
iy are the each drought impacts and estimated drought impacts of each city, i, respectively. n is the length of 207 

time series.  208 
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The percent change of MSE (MSE%) is based on how much the accuracy decreases when the effect of the variable is excluded, 209 

as the values are randomly shuffled, the higher the value, the higher the index importance (Carolin et al., 2009). The first 210 

splitting values of each decision tree was also extracted. Soil moisture and NDVI were not analyzed using random forest due 211 

to missing data and short time series.  212 

4) Standardization of drought impacts and vulnerability factors 213 

To ensure comparability and to facilitate the visualization of the drought impacts and vulnerability factors, they were 214 

standardized to a value from 0 to 1 using Eq. (3) and Eq. (4) (Below et al., 2007). 215 

min

max min

i
i

DI DI
SDI

DI DI





                                                                          (4)   216 

min

max min

j

j

VF VF
SVF

VF VF





                                                                         (5) 217 

Where SDIi and DIi are the Standardized Drought Impacts and drought impacts of year i in Liaoning province, respectively. 218 

max DI and min DI is the maximum and minimum values of drought impacts in all year for the given impact type. SVFj and 219 

VFj is the Standard Vulnerability Factors and vulnerability factors of city j in Liaoning province, and max VF and min VF are 220 

the maximum and minimum values of each category of vulnerability factors in all cities. 221 

3. Results  222 

3.1 Drought monitoring and drought impacts 223 

Figure 2 shows high consistency between the drought monitoring indices (in this case the SPI) and the drought impact data.  224 

 225 
Figure 2: Standardized Precipitation Index (SPI) for 6-, 12-, 15-, 18- and 24-month accumulation periods and the sum of the 226 

Standardised Drought Impacts (SDI) for each impact type listed in Table 1 for Liaoning province from 1990 to 2013. 227 

The most severe droughts occurred in 2000, 2001, and 2009, whilst in 1994, 1995, 2012 and 2013 there was above normal 228 
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precipitation. The largest impacts are generally associated with the lowest index values. This suggests that there is a 229 

relationship between the drought indices and drought impacts, and this will be explored quantitatively in the next sections.  230 

Figure 3 shows the spatial distribution of the annual average of each drought impact type collected between 1990 and 2016. It 231 

shows that for all categories of drought impacts, more drought impacts were recorded in the drier northwestern part of Liaoning 232 

province than in eastern parts of the province. The NLH was highest in Dalian, whilst Shenyang had the biggest PHD. 233 

 234 

Figure 3: Distribution of average drought impacts (for each impact type, identified by the codes in Table 1) for the period 1990-2013 235 

in Liaoning province. 236 

3.3 Correlation of indices with impacts 237 

The Pearson correlation coefficient (r) for each city and drought impacts is shown in Figure 4. In most cases the drought index 238 

is negatively correlated with the drought impacts, suggesting that the lower the drought index, the greater drought impact. 239 

However, correlation strength, and direction, varied between the cities and impact types, ranging between -0.890 to 0.621. In 240 
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most cities of Liaoning province, NDVI and SoilM have a weak correlation with most of types of drought impacts. In Dalian, 241 

Chaoyang and Fuxin, all drought indices had a strong correlation with DA, whilst there was a significant correlation for drought 242 

impacts area in Jinzhou, Fuxin and Dalian, where most of the correlations were significant (p < 0.01). The strongest correlation 243 

was found between indices and PHD in Dalian, while it was weakest in Dandong. There is a positive correlation between PHD 244 

and NDVI in Fushun, whist NLH has a positive correlation with NDVI in Anshan. Generally, SPEI6 had the strongest 245 

correlation with all types of drought impacts, whilst SPI12 had the weakest correlation. SPEI typically exhibited stronger 246 

correlations with drought impacts than SPI with the same accumulation period. 247 

 248 
Figure 4: Correlation coefficient (r) between drought indices (SPI, SPEI, NDVI and SoilM) and drought impacts for different impact 249 

types (identified by the codes in Table 1) in Liaoning province. The significance level of the correlation is indicated using asterisks.  250 

DSA and DIA had a strong correlation with all drought indices in Liaoning province, while PHD and NLH had a weak 251 

correlation. The average correlation coefficient across all drought indices and DSA in Liaoning was -0.43, while the average 252 

correlation coefficient with PHD and NLH was -0.22 and -0.27, respectively. Drought indices showed a moderate correlation 253 

with RA and YLD with average correlation coefficients of -0.32 and -0.37, respectively.  254 

The performance of soil moisture varied significantly between cities and impact types (Figure 4); it had a strong correlation 255 
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with the impacts in Chaoyang, and a weak correlation in Huludao. In Chaoyang, the correlation between soil moisture and 256 

drought impacts was significant (α=0.01), whilst other cities were not significantly correlated.  257 

3.4 Index importance in random forest models 258 

Each drought impact type was selected as the response variable in the random forest. On average the random forests explained 259 

41% of the variance observed within the drought impacts. The MSE% for each city and impact type is shown in Figure 5. The 260 

MSE% can be seen to vary between different impact types. DIA and YLD have higher MSE% than other impact types, with 261 

average MSE% is 3.02 and 3.01, respectively. The PHD and NLH had lower MSE%, with average of MSE% of 1.58 and 1.39, 262 

respectively. DSA and RA had a moderate relationship with drought indices. SPEI performed better than SPI with same 263 

durations; SPEI6 had the highest importance with drought impacts. SPI12 was the least important index to drought impacts. 264 

Indices had a higher importance with impacts in Anshan and Dalian and lower importance in Yingkou and Dandong.  265 

 266 

Figure 5: The MSE% of drought indices (SPI and SPEI) with drought impacts (identified by the codes in Table 1) in Liaoning 267 

province using random forest. 268 
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The variables identified MSE% from the random forest analysis generally match those with strong negative correlations. This 269 

supports the statement that indices are negatively related to impacts. The threshold of impact occurrence based on the indices 270 

were also identified in the RF analysis using the first splitting value. Figure 6 shows the distribution of first splitting values of 271 

each decision tree within the RF. The average first splitting values for SPI18 and SPI24 were higher than those of SPI6, SPI12 272 

and SPI15 (i.e. a more negative index value and more severe meteorological drought state) for all categories of drought impacts. 273 

For SPEI, the results were similar (i.e.long-term deficits must be more severe to result in equivalent impacts compared to short-274 

term deficits) but there was more variability between accumulations. When viewed in terms of impact types, DSA had a low 275 

threshold, indicating that DSA impacts occur more readily than DA or RA, as may be expected. The impact occurrence of 276 

index values increase for DSA, DIS, DA and RA; and YLD and DELA tended to occur for more severe water deficits, with 277 

the highest severity threshold being for NLH, indicating that only very severe drought conditions triggered impacts on livestock.  278 

279 

Figure 6: Box plots showing the splitting value (i.e. the thresholds of impacts) in random forest construction across all impact types 280 

for each index (left), and across all indices for each impact type (right) in Liaoning province.  281 

3.5 Drought vulnerability evaluation 282 

The results of correlation analysis and random forest show that in most parts of Liaoning province, SPEI at 6-month 283 

accumulation period had the strongest correlation with drought impacts. SPEI6 was therefore selected to assess the drought 284 

vulnerability of the 14 cities. Regression analysis was performed on the SPEI6 for each category of drought impact, and an 285 

example is given in Figure 7 which shows the linear regression of DSA with SPEI6 in the 14 cities. It can be surmised, for 286 

practical purposes, that the worse the drought impacts associated with a given drought severity (defined by SPEI6), the higher 287 

drought vulnerability of the city to the given impact. Fuxin, Tieling, Chaoyang, Jinzhou and Shenyang have a higher 288 

vulnerability to DSA compared to the other cities.  289 

Similar analyses were conducted for all impact types, and Figure 8 summarises which drought impacts each city was the 290 

most vulnerable to. It can be seen from Figure 8 that there is little difference between cities in terms of sensitivity to various 291 

categories of drought impacts. Considering the various impacts, Chaoyang, Jinzhou, Tieling, Fuxin and Shenyang had the 292 
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highest drought vulnerability, which are all located in the northwest part of Liaoning province. Dalian was most vulnerable to 293 

NLH. 294 

 295 

Figure 7: Linear regression results of DSA with SPEI6 in each of the 14 cities in Liaoning Province. 296 
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 297 

Figure 8: Map showing which drought impacts each city in Liaoning province is most vulnerable to based on the results of the linear 298 

regression. 299 

3.6 Vulnerability analysis 300 

A further stepwise regression model was built to explain the variation in each type of Standardised Drought Impact where 301 

SPEI6 is equal to -1.5, using vulnerability factors (listed in Table 2) as predictors. Table 3 shows the results of stepwise 302 

regression model, demonstrating the contribution of vulnerability factors to each category of drought impact. The results varied 303 

for each impact type. 304 

Table 3: The vulnerability factors selected for the stepwise regression model and the R2 of the resulting model for each impact type 305 

(identified by the codes in Table 1).  306 

Drought impact Predictors (vulnerability factors) R2 

DSA Crop cultivated area/Population/Livestock production  0.894 

DIA Crop cultivated area/Population 0.743 

DA Livestock production /Per capita gross domestic product 0.731 

RA Number of electromechanical wells/Per capita gross domestic product 0.541 

PHD Crop cultivated area/Reservoir total storage/Per unit area of Fertilizer application 0.805 

NLH Population 0.474 

YLD Crop cultivated area 0.606 

DELA Crop cultivated area/Population/Livestock production  0.786 

Crop cultivated area had a significant relationship with drought vulnerability for DSA, DIA, PHD, YLD and DELA impact 307 

types; and population had a significant relationship with DSA, DIA, NLH and DELA. Population was the only significant 308 
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predictor identified for DELA, with an R2 of 0.474. Crop cultivated area increases drought vulnerability significantly for 5 out 309 

of 8 drought impacts types, while population reduces the drought vulnerability significantly for four drought impact types. 310 

With the exception of PHD and NLH, crop cultivated area is directly related to the other drought impact types. Crop cultivated 311 

area was the only significant predictor for YLD.  312 

4 Discussion 313 

The methodology in this research has the following characteristics. Firstly, it combines multiple sources of data such as remote 314 

sensing data (NDVI data), soil moisture and meteorological data, and takes many drought impacts, across a range of sectors, 315 

into consideration. Secondly, the extensive drought impact data was systematically collected from the county level, which is a 316 

consistent and reliable data source enabling regional comparisons. The drought impact data used here included impact variables 317 

that are rarely available in other studies such as PHD, NLH, YLD and DELA. Thirdly, we not only considered the occurrence 318 

of drought events, but also the severity of drought and its spatial extent. Finally, the drought indices-impacts linkage was 319 

applied to assess drought vulnerability in Liaoning province. 320 

The biggest challenge of this study was the spatial and temporal matching between the drought impacts and indices. The 321 

regularity with which impact data are collected is determined by the drought warning level and as such they are not evenly 322 

spaced in time; as a result of this, the data were aggregated to annual totals. It was important to match the accumulation period 323 

and timing of the selected drought indices to the timescales critical for the drought impacts; SPEI6 in September covers the 324 

critical maize growth period and when the majority of precipitation falls. Soil moisture data are collected at a daily resolution, 325 

in order to match up soil moisture and impact data, the March to October average was used in the correlation analysis. However, 326 

short term soil moisture deficits can have serious impacts on crops which are sometimes unrecoverable. The average soil 327 

moisture may not have captured these short-term deficits, particularly if soil moisture was, in general, sufficient the rest of the 328 

year. For this reason, soil moisture data can be used for real-time drought monitoring applications, but may not appropriate to 329 

present drought impacts on an annual scale for risk assessment, as applied here. In some cities, the lack of soil moisture data 330 

means that the annual average soil moisture does not reflect the occurrence of typical agricultural drought during the year.  331 

NDVI data for the critical growth period of spring maize was used in the analysis with annual drought impacts, but again this 332 

does not take all drought events during crop growth period into account. The correlation coefficients characterizing the 333 

relationship between NDVI and drought impacts are both positive and negative. This is likely due to the complexity of NDVI 334 

drivers (e.g. diversity of land cover).  335 

The results from the correlation analysis were consistent with the results from the RF analysis. DSA and DIA had strong 336 

correlations with all drought indices in Liaoning province, while PHD and NLH have a weak correlation with indices. This 337 

was because DSA and DIA are direct impacts of agricultural drought, whilst PHD and NLH are related to many factors, such 338 
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as drinking water source location and the amount of water resources available.  339 

The random forest algorithms presented in this paper explained an average of 41% of the variance observed within the drought 340 

impact data. This is relatively modest, because of the limitation of the impacts data. Collinearity of the drought indices (e.g. 341 

SPI6 is correlated with SPEI6) is a also a potential cause of the low MSE%. The correlation coefficients calculated for drought 342 

indices and NLH in Yingkou, and PHD in Fushun were positive. This result is unexpected given the interpretation of these 343 

indices as estimations of the drought severity, and the majority of reported correlation coefficients being negative. Therefore, 344 

it seems likely this result is not representative of the true relationships between these indices and impacts, and instead an 345 

artifact of imperfect data. To explore this the correlation coefficients were estimated with the largest impact years removed. 346 

This resulted in a negative correlation coefficient, providing further evidence for the positive correlation coefficients not being 347 

representative of the true relationships. The availability of more data would enable a better approximation of the true 348 

relationships between indices and impacts.  349 

For all the drought impacts, Dalian and Fuxin had the highest correlation coefficient for all drought impact types and indices. 350 

The most vulnerable cities were Fuxin, Tieling, Chaoyang, Jinzhou and Shenyang, which are all located in the northwestern 351 

part of Liaoning province indicating there is a high drought vulnerability and drought risk in northwestern Liaoning. This is 352 

consistent with existing research by (Yan et al., 2012;Zhang et al., 2012), which established a drought risk assessment index 353 

system to assess drought risk in northwestern Liaoning. The number of electromechanical wells is associated with low drought 354 

vulnerability – this is the critical water source for irrigation and human drinking. 355 

The first splitting value tended to decrease as the accumulation periods increase, suggesting that higher water deficits are 356 

required for the same amount of impact at longer accumulation periods. There is a more severe water deficits of RA occurrence 357 

since it caused yield loss by 80% or more, compared to 10% and 30% for DIA and DA, respectively. Livestock drinking water 358 

requires lower water quality compare to human and lot of water source available for livestock. For this reason, NLH showed 359 

least sensitivity to water deficits.  360 

The relationships analysed in this research support the development of a drought impacts predictor. The drought vulnerability 361 

map can be used to support drought risk planning, helping decision makers to inform drought mitigation activities (e.g. sinking 362 

more wells to enhance resilience to drought). The impact thresholds identified can also support improved drought warning and 363 

planning. The methods used here can be applied in other areas to better understand drought impacts and drought vulnerability. 364 

While systematic, statistical archives of drought impact are comparatively rare, globally, there are numerous other potential 365 

sources of impact data that could be used (e.g. see Bachmair et al. 2016).  366 

5 Conclusion 367 

This study used correlation analysis and random forest methods to explore the linkage between drought indices and drought 368 
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impacts. It assessed drought risk in Liaoning province, and proposes a drought vulnerability assessment method which is 369 

applied to study the contribution of various socioeconomic factors to drought vulnerability. Here, we return to the original 370 

objectives of the study to summarise the key findings. 371 

1: When and where the most severity drought and impact occurred in study area? 372 

Based on the drought monitoring results of SPI, severe drought occurred in 2000, 2001, and 2009. In 2000-2001, drought 373 

resulted in many impacts in Liaoning province, particularly in the northwestern part of Liaoning province. The drought 374 

monitoring data showed good consistency with the recorded drought impacts.  375 

2：Whether there is an obvious link between drought impact data and drought indices. Which index or set of indices 376 

performance best in study area? 377 

The results showed that the indices varied in their capacity to identify the different type of drought and impacts. The strongest 378 

correlation was found for SPEI at 6 months, whilst SPI12 had a weak correlation with drought impacts. SPEI was found to 379 

better link to drought impacts than SPI of the same accumulation period. NDVI and soil moisture showed some links with 380 

impacts in some cities, but the results were generally weaker and less consistent than for either SPI/SPEI – primarily reflecting 381 

the limitations in the soil moisture and NDVI datasets 382 

3. Which city or areas have a high drought vulnerability in Liaoning province? 383 

Chaoyang, Jinzhou, Fuxin, Shenyang and Tieling had higher drought vulnerability, all of which are located in the northwestern 384 

part of Liaoning province, indicating that drought vulnerability is higher in these regions than in other parts, which is consistent 385 

with previous research. However, in contrast with past work, the present research provides a much more comprehensive 386 

assessment based on the occurrence of observed impacts data. 387 

4: Which vulnerability factor or set of vulnerability factors contribute most to drought vulnerability? 388 

Population had a strong negative relationship with drought vulnerability, whilst crop cultivated area was positively correlated 389 

with drought vulnerability.  390 

The results shown here give a clearer understanding about drought conditions in Liaoning province. The linkage developed 391 

can be used to assess drought risk and to map vulnerability. It can also be used to help develop early warning systems and 392 

predict drought impacts, which are vital tools for drought management. The results of the vulnerability analysis can guide 393 

management measures to mitigate drought impacts – an important step to shift from post-disaster recovery to proactive pre-394 

disaster prevention. 395 

Author Contributions 396 

Yaxu Wang, Juan Lv, Jamie Hannaford, Yicheng Wang and Lucy Barker discussed and developed the aims of the paper. Yaxu 397 

Wang was responsible for the data analysis, visualization and prepared the original manuscript, with contributions from 398 

https://doi.org/10.5194/nhess-2019-310
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



19 

 

Hongquan Sun, Lucy Barker, Jamie Hannaford, Miaomiao Ma, Zhicheng Su and Michael Eastman. 399 

Competing interests 400 

The authors declare they have no conflict of interest. 401 

Acknowledgements 402 

The authors gratefully acknowledge funding support for these researches provided by the National Key Research and 403 

Development Project (No. 2017YFC1502404), and Fund of China Institute of Water Resources and Hydropower Research 404 

(JZ0145B592016) and China Scholarship Council. Jamie Hannaford, Lucy Barker and Michael Eastman were supported by 405 

the NERC National Capability Official Development Assistance project SUNRISE (“Sustainable Use of Natural Resources to 406 

Improve Human Health and Support Economic Development”) [NE/R000131/1].  407 

References 408 

Bachmair, S., Kohn, I., and Stahl, K.: Exploring the link between drought indices and impacts, Natural Hazards & Earth System 409 

Science, 15, 1381-1397, 2014. 410 

Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K. H., Wall, N., and Fuchs, 411 

B.: Drought indices revisited: the need for a wider consideration of environment and society, Wiley Interdisciplinary Reviews: 412 

Water, 3, 516-536, 2016a. 413 

Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought 414 

indices and model drought impacts, Hydrology and Earth System Sciences,20,7(2016-07-04), 12, 9437-9488, 2016b. 415 

Belal, A. A., El-Ramady, H. R., Mohamed, E. S., and Saleh, A. M.: Drought risk assessment using remote sensing and GIS 416 

techniques, Arabian Journal of Geosciences, 7, 35-53, 2014. 417 

Below, R., Grover-Kopec, E., and Dilley, M.: Documenting drought-related disasters: A global reassessment, The Journal of 418 

Environment & Development, 16, 328-344, 2007. 419 

Biswas, S., Roy, S. S., and Sarkar, S.: Drought Risk Assessment Using GIS and Remote Sensing, 2013. 420 

Blauhut, V., Gudmundsson, L., and Stahl, K.: Towards pan-European drought risk maps: quantifying the link between drought 421 

indices and reported drought impacts, Environmental Research Letters, 10, 014008, 2015. 422 

Botterill, L. C., and Hayes, M. J.: Drought triggers and declarations: science and policy considerations for drought risk 423 

management, Natural hazards, 64, 139-151, 2012. 424 

Cai, F., Zhang, S. J., Ji, R. P., Mi, N., Wu, J. W., and Zhang, Y. S.: [Spatiotemporal dynamics of maize water suitability and 425 

assessment of agricultural drought in Liaoning Province, China from 1981 to 2010], Chinese Journal of Applied Ecology, 26, 426 

233, 2015. 427 

Carolin, S., James, M., and Gerhard, T.: An introduction to recursive partitioning: rationale, application, and characteristics of 428 

classification and regression trees, bagging, and random forests, Psychological Methods, 14, 323-348, 2009. 429 

Chen, T., Xia, G., Liu, T., Chen, W., and Chi, D.: Assessment of drought impact on main cereal crops using a standardized 430 

precipitation evapotranspiration index in Liaoning Province, China, Sustainability, 8, 1069, 2016. 431 

Edwards, D. C.: Characteristics of 20th century drought in the United States at multiple time scales, AIR FORCE INST OF 432 

TECH WRIGHT-PATTERSON AFB OH, 1997. 433 

Fukuda, S., Spreer, W., Yasunaga, E., Yuge, K., Sardsud, V., and Müller, J.: Random Forests modelling for the estimation of 434 

mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes, Agricultural Water Management, 435 

https://doi.org/10.5194/nhess-2019-310
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



20 

 

116, 142-150, 2013. 436 

Hayes, M., Svoboda, M., Wall, N., and Widhalm, M.: The Lincoln declaration on drought indices: universal meteorological 437 

drought index recommended, Bulletin of the American Meteorological Society, 92, 485-488, 2011. 438 

Hayes, M. J., Svoboda, M. D., Wiihite, D. A., and Vanyarkho, O. V.: Monitoring the 1996 drought using the standardized 439 

precipitation index, Bulletin of the American meteorological society, 80, 429-438, 1999. 440 

Hong, W., Hayes, M. J., Weiss, A., and Qi, H.: An Evaluation the Standardized Precipitation Index, the China-Z Index and the 441 

Statistical Z-Score, International Journal of Climatology, 21, 745-758, 2001. 442 

Hong, W., and Wilhite, D. A.: An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA, Natural 443 

Hazards, 33, 1-21, 2004. 444 

Jia, H., Wang, J., Pan, D., and Cao, C.: Maize Drought Disaster Risk Assessment Based on EPIC Model: A Case Study of 445 

Maize Region in Northern China, Acta Geographica Sinica, 66, 643-652, 2011. 446 

Jin, J., Song, Z., Cui, Y., Zhou, Y., Jiang, S., and Jun, H. E.: Research progress on the key technologies of drought risk 447 

assessment and control, Journal of Hydraulic Engineering, 47, 398-412, 2016. 448 

Karavitis, C. A., Tsesmelis, D. E., Skondras, N. A., Stamatakos, D., Alexandris, S., Fassouli, V., Vasilakou, C. G., Oikonomou, 449 

P. D., Gregorič, G., and Grigg, N. S.: Linking drought characteristics to impacts on a spatial and temporal scale, Water Policy, 450 

16, 1172-1197, 2014. 451 

Kursa, M. B.: Efficient All Relevant Feature Selection with Random Ferns, 2017. 452 

Li, Y. P., Wei, Y., Meng, W., and Yan, X. D.: Climate change and drought: a risk assessment of crop-yield impacts, Climate 453 

Research, 39, 31-46, 2009. 454 

Liaoning Province Bureau of Statistical: Liaoning Statistical Yearbook 2016, China Statistics Press, 2017. 455 

Liaw, A., and Wiener, M.: Classification and regression by randomForest, R news, 2, 18-22, 2002. 456 

Lin, P., Youhua, M. A., Jiang, Z., Wang, Q., Wang, J., Huang, H., and Jiang, H.: Research Progress of Evaluation Index of Soil 457 

Moisture, Agricultural Science & Technology, 2016. 458 

Liu, X., Zhang, J., Ma, D., Bao, Y., Tong, Z., and Liu, X.: Dynamic risk assessment of drought disaster for maize based on 459 

integrating multi-sources data in the region of the northwest of Liaoning Province, China, Natural Hazards, 65, 1393-1409, 460 

2013. 461 

Lloyd-Hughes, B.: The impracticality of a universal drought definition, Theoretical and Applied Climatology, 117, 607-611, 462 

2014. 463 

McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, Proceedings 464 

of the 8th Conference on Applied Climatology, 1993, 179-183,  465 

Mishra, A. K., and Singh, V. P.: A review of drought concepts, Journal of Hydrology, 391, 202-216, 2010. 466 

Mutanga, Onisimo, ADAM, Elhadi, Cho, A., and Moses: High density biomass estimation for wetland vegetation using 467 

WorldView-2 imagery and random forest regression algorithm, International Journal of Applied Earth Observations & 468 

Geoinformation, 18, 399-406, 2012. 469 

Özger, M., Mishra, A. K., and Singh, V. P.: Low frequency drought variability associated with climate indices, Journal of 470 

Hydrology, 364, 152-162, 2009. 471 

Ren, Y. D., and Zhou, J.: Research on the Status  of Corn Industry Development in Liaoning Province, Agricultural Economy, 472 

37-38, 2009. 473 

Seiler, R. A., Hayes, M., and Bressan, L.: Using the standardized precipitation index for flood risk monitoring, International 474 

Journal of Climatology, 22, 1365-1376, 2002. 475 

Sethi, S. A., Dalton, M., and Hilborn, R.: Quantitative risk measures applied to Alaskan commercial fisheries, Canadian Journal 476 

of Fisheries and Aquatic Sciences, 69, 487-498, 2012. 477 

Stagge, J. H., Kohn, I., Tallaksen, L. M., and Stahl, K.: Modeling drought impact occurrence based on climatological drought 478 

indices for four European countries, Egu General Assembly Conference, 2014. 479 

Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acacio, V., Dias, S., Bifulco, C., Stagge, J. H., and Tallaksen, L. 480 

M.: Impacts of European drought events: insights from an international database of text-based reports, Natural Hazards and 481 

Earth System Sciences,16,3(2016-03-21), 3, 5453-5492, 2016. 482 

https://doi.org/10.5194/nhess-2019-310
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



21 

 

Svoboda, M. D., and Hayes, M. J.: Enhancing Drought Risk Management: Tools and Services for Decision Support, 2011. 483 

Thornthwaite, C. W.: An approach toward a rational classification of climate, 1, LWW, 1948. 484 

Vicente-Serrano, S. M., Beguería, S., and Lópezmoreno, J. I.: A multiscalar drought index sensitive to global warming: the 485 

standardized precipitation evapotranspiration index, Journal of Climate, 23, 1696-1718, 2010. 486 

Wang, S. H.: Analysis of Logical Relationship in the Report of National Drought Relief Statistics Management System, Henan 487 

Water Resources & South-to-North Water Diversion, 46-47, 2014. 488 

Wilhite, D. A., Hayes, M. J., Knutson, C., and Smith, K. H.: Planning for Drought: Moving From Crisis to Risk Management 489 

1, JAWRA Journal of the American Water Resources Association, 36, 697-710, 2000. 490 

Wilhite, D. A., and Buchanan-Smith, M.: Drought as hazard: understanding the natural and social context, Drought and water 491 

crises: science, technology, and management issues, 3-29, 2005. 492 

Yan, L., Zhang, J., Wang, C., Yan, D., Liu, X., and Tong, Z.: Vulnerability evaluation and regionalization of drought disaster 493 

risk of maize in Northwestern Liaoning Province, Chinese Journal of Eco-Agriculture, 20, 788-794, 2012. 494 

Yu, C., Li, C., Xin, Q., Han, C., Jie, Z., Feng, Z., Li, X., Clinton, N., Xiao, H., and Yue, Y.: Dynamic assessment of the impact 495 

of drought on agricultural yield and scale-dependent return periods over large geographic regions ☆ , Environmental 496 

Modelling & Software, 62, 454-464, 2014. 497 

Zhang, J.: Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China, Agriculture Ecosystems 498 

& Environment, 102, 133-153, 2004. 499 

Zhang, J. Q., Yan, D. H., Wang, C. Y., Liu, X. P., and Tong, Z. J.: A Study on Risk Assessment and Risk Regionalization of 500 

Agricultural Drought Disaster in Northwestern Regions of Liaoning Province, Journal of Disaster Prevention & Mitigation 501 

Engineering, 2012. 502 

Zhao, H., Gao, G., Yan, X., Zhang, Q., Hou, M., Zhu, Y., and Tian, Z.: Risk assessment of agricultural drought using the 503 

CERES-Wheat model: A case study of Henan Plain, China, Climate Research, 50, 247-256, 2011. 504 

 505 

https://doi.org/10.5194/nhess-2019-310
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.


