
 

 

ABSTRACT        

Rock brittleness is one of the important properties for fracability evaluation and can be 

represented by different physical properties. The mineralogy-based brittleness index (BIM) 

builds a simple relationship between mineralogy and brittleness, but it may be ambiguous for 

rocks with complex micro-structure; while the elastic moduli-based brittleness index (BIE) is 

applicable in the field, but BIE interpretation needs to be constrained by lithofacies information. 

We propose a new workflow for quantitative seismic interpretation of rock brittleness: 

lithofacies are defined by a criterion combining both BIM and BIE for comprehensive brittleness 

evaluation; statistical rock physics methods are applied for quantitative interpretation by using 

inverted elastic parameters; acoustic impedance and elastic impedance are selected as the 

optimized pair of attributes for lithofacies classification. To improve the continuity and 

accuracy of the interpreted results, Markov random field is applied in the Bayesian rule as the 

spatial constraint. A 2D synthetic test demonstrates the feasibility of Bayesian classification 

with Markov random field. This new interpretation framework is also applied to a shale 

reservoir formation from China. Comparison analysis shows that brittle shale sections can be 

efficiently discriminated from ductile shale sections and tight sand sections by using the 

inverted elastic parameters.  
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INTRODUCTION 

Unconventional reservoirs of low porosity and permeability need to be hydraulic-fractured 

to acquire productivity. Rock brittleness is one of the important properties which guides the 

hydraulic-fracturing. Different properties have been used to represent rock brittleness, and they 

are generally divided into three categories: (1) hardness and strength; (2) brittle minerals weight 

fraction; (3) elastic moduli. Hardness and strength analysis provides detailed brittleness 

properties, but they need to be measured in laboratory experiments (Honda and Sanada, 1956; 

Hucka and Das, 1974; Altindag and Guney, 2010; Jin et al., 2014; Zhang et al., 2015). The 

other two categories can be observed by well logging or surface seismic, and thus are more 

applicable in the field.  
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A mineralogy-based brittleness index (BIM) was proposed by Jarvie et al. (2007) and Wang 

and Gale (2009). Accordingly, rock brittleness is related to quartz content and dolomite content, 

whereas ductility is related to the content of clay and other minerals. The mineralogy 

information can be obtained from both core analysis and well-logs. The advantage of a 

mineralogy-based brittleness index lies in the direct link between the brittleness and lithology, 

so the brittleness can be determined by a lithological interpretation when the target formation 

mineralogy is simple. However, besides the mineral content, the presence and distribution of 

voids and pore fluids may have great influence in rock brittleness (Zhang et al. 2015). Thus, 

brittleness index analysis using BIM alone cannot be effective, especially for rocks with 

complex micro-structure.  

Various elastic moduli are used to characterize brittleness. Rickman et al. (2008) proposed 

an average brittleness index equation of normalized Young’s modulus and normalized 

Poisson’s ratio according to the two parameters’ different geomechanical effect when fracturing. 

A high brittleness index corresponds to high Young’s modulus and low Poisson’s ratio. Guo et 

al. (2012) defined brittleness index by the Lamé parameters of incompressibility and rigidity 

and explore the effect of fractures and microstructure on rock brittleness based on rock physics 

modeling. Chen et al. (2014) provided a rock physics modeling framework for brittleness 

evaluation in terms of the ratio of Young’s modulus and Lamé parameters. Furthermore, 

different brittleness index measurements were compared in terms of sensitivity and accuracy. 

Perez et al. (2013) constructed a brittleness template of lamda-rho and mu-rho to interpret 

seismic inversion results. The advantage of the elastic moduli based BIE index is that it can be 

obtained from both well logs and seismic data and thus is more applicable than the mineral-

based brittleness index (Rickman et al., 2008). Besides, BIE represents the integrated effects of 

mineral content, microstructures and pore fluids in rock brittleness. However, it is difficult to 

reveal the lithology change by the BIE, because different formations with different lithology 

may show similar elastic properties.  

We first analyze the relationship between two categories of brittleness indexes (BIM and BIE) 

using well logs and effective medium theories. Then we propose a new quantitative seismic 

interpretation framework of brittleness by integrating BIM and BIE. The lithofacies are defined 

according to various values of BIM and BIE. In order to interpret different lithofacies from elastic 



 

 

parameters of seismic inversion, the statistical rock physics technique in Mukerji et al. (2001) 

and Avseth et al. (2005) is subsequently applied in the workflow. Since Markov random field 

and the Markov chain can model the dependencies of vertical and horizontal settings in 

lithology/fluid prediction (Larsen et al., 2006; Eidsvik et al., 2002) respectively, in this sense, 

we apply Markov random field as the spatial constraint to improve the continuity and accuracy 

of the interpreted results. This new interpretation method is demonstrated by application to both 

synthetic data, and real seismic data of an Upper Triassic shale formation from Sichuan basin, 

southwest China.  

 

COMPARISON BETWEEN DIFFERENT TYPES OF BRITTLENESS INDEX 

Rock brittleness is one of the most important properties in reservoir fracturing evaluation, 

and can be represented by the weight fraction of brittle minerals (Jarvie et al. 2007; Wang and 

Gale 2009) 

_Jarvie(2007) / ( )M Q Q Ca ClBI f f f f                               (1) 

M_Wang(2009) ( ) / ( )Q Dol Q Dol Ca ClBI f f f f f f TOC                (2) 

where Qf , Caf , Clf , Dolf and TOC  are the weight fractions of quartz, calcite, clay and dolomite, 

and the total organic carbon content, respectively. Considering the TOC  of an in-situ shale 

formation, equation (2) is modified as BIM for brittleness evaluation based on the mineralogy 

of shale in the study area 

M ( ) / ( )Q Carb Q Carb othBI f f f f f TOC                      (3) 

where Carbf and othf  are the total weight fractions of carbonate mineral, and weight fractions 

summation of other minerals expect quartz and carbonates, respectively. The shale mineralogy 

is shown in Figure 3, and would be further discussed in the following section.   

The brittleness index related to pre-failure behavior can also be calculated using the elastic 

modulus, such as Young’s modulus and Poisson’s ratio (Rickman et al. 2008). Jin et al. (2014) 

gave a definition of BIE modified from Rickman et al. (2008): 
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maxE  and minE  are the maximum and minimum value of Young’s modulus in the interval of 

interest. max and min are the maximum and minimum value of Poisson’s ratio in the interval of 

interest. Vp ,Vs  and   are the P-wave velocity, S-wave velocity and density in the interval of 

interest, respectively. 

We first analyze the performance of two brittleness indexes in different single mineralogies. 

Figure 1 shows the brittleness index BIE of 12 common minerals in sedimentary rocks. The 

elastic parameters of minerals except kerogen are from Mavko et al. (2003). The elastic 

parameters of kerogen are reported by Vernik and Landis (1996) and Yan and Han (2017). 

Brittle minerals, such as quartz and dolomite, tend to show higher BIE than clay. Therefore, BIM 

and BIE have similar performance for varied single minerals. Then, we use the real log data to 

show the difference between BIM and BIE. The well logs shown in Figure 2 show the logs of 

mineral content (clay, organic matters and quartz), P-wave velocity, S-wave velocity, density, 

Gamma ray, porosity, water saturation and brittleness indexes. The BIM is calculated using 

equation (3), while the BIE of rock is calculated using the P-and S-wave velocities and density 

based on equation (4). The Voigt-Reuss-Hill average (VRH) model is used to calculate Young’s 

modulus, Poisson’s ratio and then we can calculate BIE of rock matrix using equation (4). Rock 

matrix here includes both mineralogy and organic matters. The formula of the VRH model is 

shown in Appendix A. There is a good agreement between BIM and BIE of rock matrix, and the 

correlation coefficient of them reaches 0.95. However, BIM and BIE of pore-fluid saturated 

rocks vary from each other, especially at depths showing high porosity and low water saturation. 

The correlation coefficient of BIM and BIE of rocks is only 0.66. 

 

QUANTITATIVE SEISMIC INTERPRETATION FOR ROCK BRITTLENESS 

A new framework for quantitative interpretation 

According to the discussion in the previous section, the mineral-based brittleness index and 

elastic modulus-based brittleness index have their own advantages and disadvantages. 



 

 

Therefore, integrating BIM with BIE can provide a comprehensive evaluation of rock brittleness. 

In this sense, we propose a workflow containing the following five steps (Figure 4).  

(1) Seismic lithofacies is a seismic-scale sedimentary unit which is characterized by its 

lithology, bedding configuration, petrography and seismic properties (Avseth et al., 2005). Well 

logs of mineral content, P-wave velocity, S-wave velocity and density are used as training data 

to classify the lithofacies related to brittleness based on the crossplot of BIM and BIE. Shale and 

sand are classified by BIM threshold, while brittle shale and ductile shale (or brittle sand and 

ductile sand) are classified by BIE threshold. As shown in Figure 5, three lithofacies are 

classified as: I - ductile shale (low BIM and low BIE), II - brittle shale (low BIM and high BIE), 

III – tight sand (high BIM and high BIE). According to the mineralogy of shale core samples 

(Figure 3a), the weight fraction of quartz + carbonates is from 42% to 76%, and the average 

value is 55.01%. Existing studies illustrate that tight-sand formations in the target zone are 

highly cemented (Gan et al., 2009; Tang et al., 2008), and thus contain generally higher contents 

of quartz + carbonates than shales. So BIM 55% is set as the threshold for shale-sand 

discrimination. Then BIE average value 0.3 is set as the threshold to classify ductile shale and 

brittle shale. It might be not necessary to classify ‘brittle sand’ and ‘ductile sand’ in the target 

zone of this study area, because the tight-sands tend to have high brittleness. Table 1 shows the 

classification criteria of three lithofacies.  

(2) A kernel-based, non-parametric, probability-density estimation is performed to construct 

the 2-D conditional probability density functions (CPDFs) of training data from well logs, that 

is the probability distribution ( | )p r   of elastic parameter-related attribute (r) values given 

lithofacies   (Avseth, 2005). The CPDFs are derived by smoothening facies data points in 

the crossplot space of two different seismic attributes. The Gaussian kernel function is used as 

the filter template, in which the element at location (i, j) is expressed as 
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where   represents the standard deviation, and the size of template is (2 1)*(2 1)k k  . 

In this step, seismic attributes are calculated from depth-time calibrated well logs (including 

P-wave velocity, S-wave velocity and density). Well logs are also up-scaled and expanded. 



 

 

Although Backus average (Backus, 1962) is usually used to calculate the effective elastic 

constants of vertically transverse isotropic (VTI) medium, it is applied in the workflow to up-

scaling the well log data in order to match the seismic data. The effective elastic parameters 

can be calculated as follows: 
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where  ,and represent Lamé’s parameters, and density, of the thin interbed, respectively. 

*
pV , *

sV and * represent P-wave velocity, S-wave velocity and density of the effective media, 

respectively. < > represents the weighted average of the enclosed parameters in the length 

window. The correlated Monte-Carlo (CMC) simulations (Avseth, 2005) are applied to expand

*
pV , *

sV and * for different lithofacies. The up-scaled log of P-wave velocity can be expanded 

as 

* 1( ){ 1,2,3,... }i iVp F x i N 
                         (7) 

where   refers to the  th lithofacies, i  refers to the i th sampling, *( )F Vp  is the 

probability cumulative density function of different lithofacies, ix is uniform random sample 

within [0 1], and N is the sample number to be expanded. The corresponding logs of S-wave 

velocity and density for different lithofacies can then be obtained based on the linear regressions 

of Vp* and Vs* , and Vp* and ρ*, respectively.  

(3) The Bayesian rule is used to classify the training data as predicted lithofacies by using 

different seismic attribute pairs, such as Young’s modulus-Poisson’s ratio and Lamé’s 

parameters. One optimized seismic attribute pair is selected among them for the target 

formation of interest. The Bayesian rule is expressed by  

argmax( ( | ) ( ))p r p   ,                          (8) 

where   is the estimated classification, r  is seismic attributes,   corresponds to the 

lithofacies, ( | )p r   is the CPDFs of different lithofacies, and ( )p   is the prior probability of 

different lithofacies. In this step, ( | )p r   corresponding to different seismic attribute pairs can 

be estimated from the training data (well logs) as shown in step (2); ( )p   of different 



 

 

lithofacies is set as equal to ensure that the estimated classification is completely controlled by 

( | )p r  . 

In order to verify the classification ability of different attribute pairs, the lithofacies 

classification   of different seismic attribute pairs is used to calculate the Bayesian 

classification confusion matrix MC  (Avseth et al, 2005; González, 2006), which is expressed 

as 
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where the element ijP gives the conditional probability of being j th lithofacies given the true 

lithofacies i . The i th row of matrix represents the probability of being each lithofacies given 

the i th lithofacies. Obviously, 
1

1
n

ij
j

P


 . In particular, the diagonal elements correspond to 

the success rates of correctly predicting each group.  

(4) The selected seismic attributes are estimated from prestack seismic data using a 

simultaneous inversion scheme or an impedance inversion scheme.  

(5) In this step, an initial lithofacies classification of the inverted seismic attributes is firstly 

estimated according to the CPDFs of training data from well logs. Then Markov random field 

is applied in the estimation of the prior probability ( )p  , and the most probable lithofacies 

classification can be obtained iteratively according to the Bayesian rule shown in equation 8. 

In each iteration, the prior probability at centre nodes in Markov field is estimated using 

lithofacies probability of neighbouring nodes from the last iteration, so the final interpretation 

results can obtain an improvement in spatial and vertical continuity. Markov random field and 

Markov chain are reviewed in the following subsection. 

 

Markov random field and Markov chain 

Markov random field is the generalization of the time-domain Markov chain to the spatial 

domain (Eidsvik et al., 2002). The basic assumption of the Markov chain can be described as 

the probability of a lithology-fluid (LF) class to occur at a time t. Given the complete LF 



 

 

sequence below it, LF at time t depends only on the LF class at the time immediately below, 

i.e. t+1 (Larsen et al., 2006). The Markov chain model is defined by an upward transition matrix 

P and the marginal probabilities 1( )p  , with the elements in P being the transition probabilities 

1( | )t tp    for all combinations of LF classes. The transition matrix describes the probability 

characterization of the Markov process and is independent of time. Because the sequence of 

sedimentation processes is opposite to the time of seismic data in reservoir geology, it may be 

natural to define this Markov chain upwards through the geological sequences (Krumbein and 

Dacey, 1969; Larsen et al., 2006). So the prior probability of LF classes at time t+1 can be 

calculated as +1( )= ( )*Pt tp p  . Then ( )p   is combined with the conditional probability 

density function ( | )p r   for classifications estimation. The P  can introduce the vertical 

continuity of LF into the prior probability ( )p   so that the final predicted lithofacies  can 

be more consistent with geological characterization. 

Markov random field is defined as prior distributions for lithofacies under the assumption 

that the probability distribution of a variable at one location depends on the variable at 

neighbouring locations. In this study, a second-order neighbourhood system ( )s of Markov 

random field is defined, as indicated in Figure 6. At the centre node s , the probability of each 

lithofacies is the appearing probability of corresponding lithofacies at the neighbouring nodes, 

i.e. ( | , , ( ))s np s n n s    . Similar as the Markov chain process, this central-node 

probability is introduced as the prior probability as in equation (8) to restrain the classification 

process. 

Markov random field is applied in the Bayesian classification of the Stanford V oilfield 

model (Mao and Journel, 1999) to verify its advantages in improving lateral continuity. The 

original lithofacies types and elastic parameters in the model are substituted for the lithofacies 

I, II, III and their corresponding elastic parameters, while the original spatial correlations of 

lithofacies are retained. The real lithofacies distribution of oilfield model in time slice is shown 

in Figure 8a. The prior probability of each lithofacies in the Bayesian classification is equal to 

1/(Number of lithofacies) (Figure 7a), and the interpretation result of the Bayesian classification 

is shown in Figure 8b. Then the central-node probability of all of lithofacies used at the 1st 



 

 

iteration of Markov-random-field-based Bayesian classification is obtained from the initial 

interpretation result shown in Figure 8b. Figure 7b shows the prior probability of lithofacies I 

at the 1st iteration. The interpretation results of Markov-random-field-based Bayesian 

classification of the 1st, the 2nd and the 3rd iteration are shown in Figure 8(c)-8(e), respectively. 

The central-node probability of each lithofacies used at different iterations are obtained in a 

similar way as that of the 1st iteration. Figure 7c and 7d show the prior probability of lithofacies 

I at the 2nd iteration and the 3rd iteration, respectively. The corresponding Bayesian confusion 

matrix of Bayesian classification without Markov random field and Bayesian classification 

based on Markov random field are compared in Figure 9. An obvious improvement of lateral 

continuity can be found when applying Markov random field. 

REAL DATA APPLICATION 

The study area is in the western Sichuan depression. The target zone is a shale-gas reservoir 

formation in the Xujiahe Group in the Upper Triassic, T3X5, where T3 refers to the Upper 

Group, x refers to the Xujiahe Group, and the superscript indicates the member (Zhang, 2017). 

Figure 2 showed the well logs through the target formations from 2680m to 3070m depth. T3X5 

is placed below the Badaowan Group (J1b), which is an interbedded sandstone-shale facies, and 

is typically found deposited on the T3X4, a tick tight sand formation (Gan et al., 2009; Tang et 

al., 2008). In addition to clay-rich shales, T3X5 contains several layers of silty shales and sand 

intervals of varied thickness. The sand layers show low generally low porosity and permeability, 

and are similar as those in the deeper sections of the Upper Triassic. The real lithofacies 

distribution extracted from well-log is compared with P-wave velocity, S-wave velocity, 

density, synthetic seismic gather and the real seismic gather in the time domain (Figure 10). 

Based on the brittleness index analysis discussed in step (1), well logs within the target zone 

are used to classify three lithofacies: I - ductile shale, II - brittle shale, and III – tight sand. BIM 

55% is set as the threshold for shale-sand discrimination, and average value of BIE 0.3 is set as 

the threshold to classify ductile shale and brittle shale. Most of layers at shallower part can be 

identified from seismic data, while layers within 1570-1620ms are thin (10ms) and thus may 

not be fully recovered from seismic data.  



 

 

The well-log data corresponding to the three lithofacies are depth-time calibrated to construct 

CPDFs. Figure 11 shows the results of the Backus average and Figure 12 shows the results of 

correlated Monte-Carlo simulations. The logs of P-and S-wave velocities and density are up-

scaled to that of the inverted seismic results with empirical value λ/8 (λ represents the 

wavelength of seismic data). The number of data points belonging to each facies is expanded 

to 2000 by using correlated Monte-Carlo simulations. The relationship among elastic 

parameters needs to be preserved during the data expansion process, if there is strong 

correlation among them. Linear regressions are found between Vp and Vs of different facies, 

while the correlation between Vp and density for given facies can be weak (Figure 12). In this 

sense, data samples of density need to be simulated and expanded individually according to 

González (2006). Figure 13 shows the histogram of P-wave velocity, S-wave velocity and 

density for lithofacies I. It is clear that CMC data and the up-scaled well-log data of lithofacies 

I have a very similar distribution. For lithofacies I, the data points of elastic impedance EI(30o) 

and acoustic impedance AI calculated by processed well-log data are compared with their 

corresponding CPDFs in Figure 14. 

Four pairs of attributes including EI(30o)-AI, Young’s modulus ( E )-Poisson’s ratio ( v ), 

lamda ( )-mu ( ) (Gray, 2002) and lamdarho ( )-murho ( ) (Goodway et al., 1997) are 

compared in their ability to distinguish between lithofacies. The input data number of every 

kind of lithofacies is set as equal (2000 points) to balance the database. Figure 15 shows the 

conditional probability density functions of the four attribute pairs. We calculate the Bayesian 

classification confusion matrix of these attributes and the probability of correct prediction for 

each lithofacies is shown in Table 2 and Figure 16. EI-AI shows higher values of probability in 

the interpretation of three lithofacies than other three pairs of attributes. The Bayesian confusion 

matrix corresponding to EI-AI is shown in Table 3 and Figure 17. Each bar in Figure 17 

corresponds to a row of the confusion matrix. All of classifications have   success rates larger 

than 75%. So EI-AI is selected as the optimized pair of attributes for the following steps. 

Impedance inversion is performed for real seismic data, and it includes the following steps: 

(1) Transformation of the prestack seismic gathers from the offset domain to the angle domain 

(Figure 18a and 18b); (2) Seismic data within certain angle intervals are stacked to construct 

the constant-angle sections (Figure 18c and 18d); (3) Estimation of angle-dependent wavelets 



 

 

constrained by the investigated well (Figure 18e); (4) Building initial models using the 

smoothed logs (calibrated in the time domain) and picked horizons; (5) Model-based inversion 

for both acoustic impedance (AI) and elastic impedance (EI). Steps (3) to (5) are performed by 

using the Hampson-Russell software. The final inversion results of seismic attributes EI(30o) 

and AI are shown in Figure 19. Although impedance can be more easily regularized than 

simultaneous AVO inversion, there might be uncertainties associated with wavelets estimation, 

initial models or prior information of K (Vp/Vs). Low-pass filtered (0-10Hz) well logs are used 

to build initial models to guarantee sufficient low frequency components. K is calculated as 

0.516 by using original well logs within the target zone. Comparison between synthetic data 

and real seismic data demonstrates both the inversion results and wavelet estimates (Figure 18c 

and 18d). However, the small-angle seismic section is noisier than the large-angle seismic 

section, leading to more patchy AI result. This would also influence the interpretation results. 

Besides, although most of layers at shallow part can be identified from seismic data, thin layers 

(e.g tight sand within 1570-1620ms) may not be fully recovered because they have thickness 

beyond the vertical resolution of seismic data. 

Finally, lithofacies are predicted based on Bayes rule by using the probability density 

functions corresponding to different lithofacies and seismic attributes. Figure 20(a) shows the 

prediction results from inverted attributes by using Bayesian classification. Markov random 

field is then performed to improve the accuracy of lithofacies prediction. The final classification 

is shown in Figure 20(b). The prediction results at well location are compared with the true 

lithofacies extracted from well logs (Figure 21). Conventional Bayesian classification seems to 

be patchy due to the influence of seismic noise. Sudden change from tight sand to brittle shale 

can be seen in many places. Besides, the results at well location (CDP 1396) have little 

influence in their neighbourhood due to lack of lateral coupling. In contrary, the lithofacies 

prediction constrained by Markov random field is better reproduced at well location. We 

evaluate the results from different methods by comparing both with real lithofacies distribution 

extracted from well-log. There are 290 samples (1396-1685ms) to be classified at the well 

location. Conventional Bayesian method successfully classifies 170 samples, while the 

Markov-random-field-based method improves the number from 170 to 193. The result also has 

much higher horizontal dependence than that of conventional Bayesian classification, and thus 



 

 

more geologically realistic. Even though, several thin layers are not identified from the 

prediction because their thickness is beyond the vertical resolution of seismic data. 

DISCUSSIONS 

Integrating the mineralogy-based brittleness index and elastic moduli-based brittleness index 

can provide a comprehensive evaluation of rock brittleness. A large number of investigations 

show that there is difference between static and dynamic elastic properties, and the static-

dynamic relation can be varied with rock microstructures, inelastic deformation, experiment 

equipment and method, loading stage, confining pressure et al. (Simmons and Brace, 1965; 

Chen and Johnston, 1981; Mavko; 2009; Meléndez-Martínez and Schmitt, 2016;). So 

brittleness characterization using static elastic moduli estimated from dynamic elastic moduli 

needs to be investigated in further study. In fact, the difference between dynamic and static 

elastic moduli decreases with the increase confining pressure (Asef and Najibi, 2013; 

Meléndez-Martínez and Schmitt, 2016). Meléndez-Martínez and Schmitt (2016) also 

demonstrated that static elastic moduli in horizontal direction is insensitive to stress and has 

much higher similarity as dynamic elastic moduli than that in vertical direction. Therefore, 

considering anisotropy and depth trend (pressure) can also improve the accuracy of static 

brittleness prediction. 

In the interpretation workflow, Backus averaging is an essential procedure for log-data up-

scaling. Note that it is only applied to up-scaling the vertical P- and S-wave velocities, and bulk 

density. In this study, the effect of intrinsic anisotropy of shale is not included in the brittleness 

evaluation. This could be appropriate because only logs of a vertical well and seismic inversion 

results from limited angle are used for interpretation. In fact, published investigation shows that 

this clay- and organic-rich shale formation shows strongly VTI properties (Zhang, 2017), and 

elastic parameters related to brittleness index (e.g. Young’s modulus and Poison’s ratio) can be 

largely influenced by anisotropy (Sone and Zoback, 2013; Wang et al., 2015; Gong et al., 2017). 

So brittleness characterization using Young’s modulus and Poison’s ratio of different directions 

can be helpful in the development of shale-gas reservoir, and need to be further investigated in 

future study. Besides, including anisotropy into EI inversion may improve both inversion and 

interpretation. 



 

 

The smectite-illite transition is common in shales and is important in brittle characterization. 

Due to its temperature dependency, there should be depth trend for smectite-illite transition, 

and also for brittle shale – ductile shale transformation. But in this study, the effect of smectite-

illite transition is not involved into the workflow because of the following two reasons: (1) logs 

of volumetric/weight fractions of constituent clay minerals are not available; (2) mineralogy of 

shale core samples show that weight fractions of constituent clay mineral are nearly identical 

(Figure 3b) within the depth interval of target zone. We agree that the smectite-illite transition 

could be used in the Markov Chain process and worth to be further developed in future study. 

CONCLUSIONS 

A new seismic interpretation workflow based on statistical rock physics is proposed to enable 

the quantitative prediction of brittle reservoir formation. The mineralogy brittleness index and 

elastic brittleness index are combined to provide a comprehensive evaluation of rock brittleness. 

EI-AI is selected as the optimized pair of attributes to classify three lithofacies (ductile shale, 

brittle shale and tight sand). Markov random field is applied to maintain the spatial continuity 

of the lithofacies classification. Both synthetic test and real data application demonstrate the 

feasibility of this method. This new workflow can be used for characterization of 

unconventional reservoirs requiring hydraulic fracturing. 

APPENDIX A. VOIGT AND REUSS BOUNDS 

The Voigt upper bound of the effective elastic modulus, VM , of a mixture of N  phases 

is 
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where the volume fraction of the i th constituent if  and the elastic modulus of the i th 

constituent iM .The Reuss lower bound of the effective elastic modulus, RM , is 
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The Voigt-Reuss-Hill average is expressed as  
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Mathematically, the M in the Voigt and Reuss formulas makes most sense by computing only 

the shear modulus   and the bulk modulus K , and then Young’s modulus E  and Poisson’s 

ratio  can be calculated using the rules of isotropic linear elasticity. 
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Figure captions 

Figure 1. Brittleness index (BIE) of different minerals. 

Figure 2. Well logs of clay (black), quartz (grey) weight fraction and TOC (yellow), P-wave 

velocity, S-wave velocity, density, Gamma ray, porosity, water saturation and brittleness 

indexes, from left to right. 

Figure 3. (a) The mineralogy of 17 shale core samples. (b) The clay composition of shale core 

samples. 

Figure 4. Brittleness interpretation workflow.  

Figure 5. Lithofacies definition based on the BIM-BIE crossplot. 

Figure 6. Second-order neighbourhood system with centre node (black) and neighbouring 

nodes (grey). 

Figure 7. Prior probability of lithofacies I used in (a) Bayesian classificaiton without Markov 

random fields, (b) Markov-random-field-based Bayesian classification at the 1st iteration, (c) 

Markov random field-based Bayesian classification the 2nd iteration, (d) Markov random field-

based Bayesian classification at the 3rd iteration. 

Figure 8. (a) Real lithofacies distribution of oilfield model in time slice. (b) Interpretation resu 

of Bayesian classification without Markov random field. Interpretation results of Markov-

random-field-based Bayesian classification of (c) the 1st iteration, (d) the 2nd iteration, and (e) 

the 3rd iteration. 

Figure 9. Bayesian confusion matrix of (a) Bayesian classification without Markov random 

fields and (b) Markov random field-based Bayesian classification. 

Figure 10. (a) Lithofacies distribution extracted from up-scaled well logs: ductile shale (light 

grey), brittle shale (dark grey), and tight sand (black). Up-scaled well logs of (b) P-wave 

velocity, (c) S-wave velocity, and (d) density. (e) Stacked seismic trace at well location - CDP 

1396 (multiple for display). 

Figure 11. Backus average results (red line) and original well logs (black line). 

Figure 12. Comparison between CMC results (grey points) and original well-log data (black 

points): (a) Vp-Vs of facies I, (b) Vp-Density of facies I, (c) Vp-Vs of facies II, (d) Vp-Density 

of facies II, (e) Vp-Vs of facies III, and (f) Vp-Density of facies III. 



 

 

Figure 13. Histogram of the real well logs (black) and the CMC results (grey) for facies I: (a) 

P-wave velocity, (b) S-wave velocity and (c) density. 

Figure 14. EI-AI plot for lithofacies I. light-grey points are training data, dark-grey contour 

represents the corresponding conditional probability density function. 

Figure 15. Probability density functions of lithofacises corresponding to different pairs of 

attributes:  (a) EI AI , (b) E   (c) -  and (d) -  . 

Figure 16. Bar-graph display of the conditional probability values in Table 2. 

Figure 17. Bayesian confusion matrix in vertical bars for EI(30 o)-AI. 

Figure 18. (a) The common-image-point gather at offset domain (CDP 1396). (b) The 

common-image-point gather at angle domain (CDP 1396). (c) Constant-angle section of 0 o. (d) 

Constant-angle section of 30 o. (e) Estimated wavelets for constant-angle sections 0 o and 30o. 

Figure 19. Inversion results of (a) AI (km/s*g/cm3) and (b) EI (km/s*g/cm3). (c) Comparison 

between the inverted AI (red) with initial model (black) and well log (blue), synthetic trace (10o) 

and seismic trace (10o), from left to right. (d) Comparison between the inverted EI(30o) (red) 

with initial model (black) and well log (blue), synthetic trace (30o) and seismic trace (30o), from 

left to right. 

Figure 20. (a) Interpretation result obtained from Bayesian classification without Markov 

random field and (b) interpretation result obtained from Bayesian classification based on 

Markov random field. 

Figure 21. (a) Real lithofacies distribution extracted from well-log, (b) Bayesian classification 

without Markov random field predicted from inversion result at well location and (c) Markov 

random field-based Bayesian classification predicted from inversion result at the well location.  

  



 

 

 

Lithofacies 
Criteria 

BIM                             BIE 

I <0.55 <0.3 

II <0.55 >0.3 

III >0.55  

Table 1. Classification criteria of three lithofacies based on brittleness index. 

 

 I II III 

EI(30o)-AI 0.944 0.750 0.760 

E   0.919 0.674 0.653 

-   0.927 0.689 0.638 

-   0.924 0.637 0.677 

Table 2. The conditional probability of the real lithofacies given the correct prediction of 

lithofacies (diagonal elements of the Bayesian confusion matrix) for the three pairs of attributes. 
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s  I II III 

I 0.944 0.056 0 

II 0.038 0.750 0.212 

III 0.002 0.238 0.760 

Table 3. Bayesian confusion matrix values corresponding to EI(30o)-AI. 

 

 

  



 

 

 

Figure 1. Brittleness index (BIE) of different minerals. 
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Figure 2. Well logs of clay (black), quartz (grey) weight fraction and TOC (yellow), P-wave 

velocity, S-wave velocity, density, Gamma ray, porosity, water saturation and brittleness 

indexes, from left to right. 

  

0 50 1002920

2940

2960

2980

3000

3020

3040

3060

Mineral wt(%)

D
ep

th
 (

m
)

 

 

Clay TOC Quartz+Carbonate

2 4 6
Vp (km/s)

1 2 3 4
Vs (km/s)

2 2.5 3
Density (g/cm3)

50 100 150
GR (API)

0 102030
Porosity (%)

0 50 100
SW (%)

0 0.5 1
Brittleness index

 

 

BI
M

BI
E

 (matrix) BI
E

 (rock)



 

 

 

(a) 

 

(b) 

Figure 3. (a) The mineralogy of 17 shale core samples. (b) The clay composition of shale core 

samples. 
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Figure 4. Brittleness interpretation workflow.  
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Attributes optimization
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Step4
Seismic inversion
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Step5
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Figure 5. Lithofacies definition based on the BIM-BIE crossplot. 
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Figure 6. Second-order neighbourhood system with centre node (black) and neighbouring 

nodes (grey). 
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Figure 7. Prior probability of lithofacies I used in (a) Bayesian classificaiton without Markov 

random fields, (b) Markov-random-field-based Bayesian classification at the 1st iteration, (c) 

Markov random field-based Bayesian classification the 2nd iteration, (d) Markov random field-

based Bayesian classification at the 3rd iteration. 
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(a)                                   (b) 

 

(c)                                   (d) 

 

(e) 

Figure 8. (a) Real lithofacies distribution of oilfield model in time slice. (b) Interpretation resu 

of Bayesian classification without Markov random field. Interpretation results of Markov-

random-field-based Bayesian classification of (c) the 1st iteration, (d) the 2nd iteration, and (e) 

the 3rd iteration. 
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(a)                                 (b) 

Figure 9. Bayesian confusion matrix of (a) Bayesian classification without Markov random 

fields and (b) Markov random field-based Bayesian classification. 
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(a)          (b)          (c)          (d)           (e) 

Figure 10. (a) Lithofacies distribution extracted from up-scaled well logs: ductile shale (light 

grey), brittle shale (dark grey), and tight sand (black). Up-scaled well logs of (b) P-wave 

velocity, (c) S-wave velocity, and (d) density. (e) Stacked seismic trace at well location - CDP 

1396 (multiple for display). 
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Figure 11. Backus average results (red line) and original well logs (black line). 
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(a)                                    (b)     

 

(c)                                    (d)     

 

(e)                                    (f)     

Figure 12. Comparison between CMC results (grey points) and original well-log data (black 

points): (a) Vp-Vs of facies I, (b) Vp-Density of facies I, (c) Vp-Vs of facies II, (d) Vp-Density 

of facies II, (e) Vp-Vs of facies III, and (f) Vp-Density of facies III. 

  



 

 

 

  

(a)                                   (b) 

  

(c) 

Figure 13. Histogram of the real well logs (black) and the CMC results (grey) for facies I: (a) 

P-wave velocity, (b) S-wave velocity and (c) density. 
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Figure 14. EI-AI plot for lithofacies I. light-grey points are training data, dark-grey contour 

represents the corresponding conditional probability density function. 

  



 

 

 

(a)                               (b) 

 

(c)                               (d) 

Figure 15. Probability density functions of lithofacises corresponding to different pairs of 

attributes:  (a) EI AI , (b) E   (c) -  and (d) -  . 
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Figure 16. Bar-graph display of the conditional probability values in Table 2. 
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Figure 17. Bayesian confusion matrix in vertical bars for EI(30 o)-AI. 
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(a)                                        (b) 
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(e) 

Figure 18. (a) The common-image-point gather at offset domain (CDP 1396). (b) The 

common-image-point gather at angle domain (CDP 1396). (c) Constant-angle section of 0 o. (d) 

Constant-angle section of 30 o. (e) Estimated wavelets for constant-angle sections 0 o and 30o. 
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 (d)  

Figure 19. Inversion results of (a) AI (km/s*g/cm3) and (b) EI (km/s*g/cm3). (c) Comparison 

between the inverted AI (red) with initial model (black) and well log (blue), synthetic trace (10o) 

and seismic trace (10o), from left to right. (d) Comparison between the inverted EI(30o) (red) 

with initial model (black) and well log (blue), synthetic trace (30o) and seismic trace (30o), from 

left to right. 
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(a) 

 

(b) 

Figure 20. (a) Interpretation result obtained from Bayesian classification without Markov 

random field and (b) interpretation result obtained from Bayesian classification based on 

Markov random field. 
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              (a)                    (b)                   (c)                    

Figure 21. (a) Real lithofacies distribution extracted from well-log, (b) Bayesian classification 

without Markov random field predicted from inversion result at well location and (c) Markov 

random field-based Bayesian classification predicted from inversion result at the well location.  
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