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Recent technological developments facilitate the collection of
location data from fishing vessels at an increasing rate. The
development of low-cost electronic systems allows tracking of
small-scale fishing vessels, a sector of fishing fleets typically
characterized by many, relatively small vessels. The imminent
production of large spatial datasets for this previously data-
poor sector creates a challenge in terms of data analysis.
Several methods have been used to infer the spatial
distribution of fishing activities from positional data. Here, we
compare five approaches using either vessel speed, or speed
and turning angle, to infer fishing activity in the Scottish
inshore fleet. We assess the performance of each approach
using observational records of true vessel activity. Although
results are similar across methods, a trip-based Gaussian
mixture model provides the best overall performance and
highest computational efficiency for our use-case, allowing
accurate estimation of the spatial distribution of active fishing
(97% of true area captured). When vessel movement data can
be validated, we recommend assessing the performance of
different methods. These results illustrate the feasibility of
designing a monitoring system to efficiently generate
information on fishing grounds, fishing intensity, or
monitoring of compliance to regulations at a nationwide scale
in near-real-time.
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1. Introduction

Sustainable management of the marine environment must take account of vulnerable and dependent
species such as marine mammals, commercial resources such as fish, and human communities that
depend on the marine environment for their livelihood and way of life. Management measures may
involve the restriction of fishing effort to specific areas. To predict the impacts of such measures on
people and marine species, it is essential to know how fishing is currently distributed in space and time,
and how intense fishing is at local scales. In large scale fisheries (LSF, vessels greater than 12 m length),
the introduction of vessel monitoring systems (VMS) and automated identification systems (AIS) have
resulted in increased fishing vessel positional data that have allowed great progress in the identification
of fishing grounds [1,2]; estimation of fishing effort [3–5], monitoring of compliance to regulations [6]
and assessment of impact on marine habitats [7,8]. However, small scale fisheries (SSF) may comprise a
large part of national fleets and must then also be monitored for effective fisheries management.

Knowledge of the spatial extent of fishing ground is lacking in many SSF due to the limited positional
information available for this sector. However, recent technological developments of smaller, low-cost
systems that can easily be fitted to smaller fishing vessels have opened up new possibilities for mapping
the distribution of SSF vessels. Spatial data are now being collected in small scale fisheries operating in
developing countries, for example, by using mobile applications that transmit positional data using mobile
networks (https://crmg.st-andrews.ac.uk/current-projects/305-2/). These initiatives are generating timely
information on the location and importance of fishing grounds that can be used for marine spatial
planning in areas where almost no data were previously available to map the location of fishing activities.

In Europe, several trials are currently being conducted to assess the feasibility of using different electronic
reporting systems to map the spatial footprint of SSF [9,10]. For some fleets, the reporting of positional
records is already mandatory, such as the razor clam fishery in Ireland [11] or some sectors of the gillnet
fishery targeting cod in Germany [12]. In the UK, there are initiatives to make the use of monitoring
systems a statutory requirement in the inshore fishing fleet in England [13] and the use of appropriate
vessel tracking systems has been articulated by the Scottish government in the Scottish Inshore Fisheries
Strategy and a national discussion paper on the future of fishers management in Scotland [14,15].

However, monitoring on its own is not enough. UnprocessedVMS andAIS data do not indicatewhether
a vessel is fishing, steaming, or in port, especially for small vessels that can fish very close to land, therefore
different approaches are needed to identify when fishing activities are occurring. During a fishing trip,
vessels’ movement profiles depend on the activity they are engaged with. Steaming to fishing grounds is
usually associated with higher speeds and a relatively straight trajectory, while fishing activities are
generally conducted at lower speeds and with greater sinuosity. Consequently, methods to identify
different activities during a trip generally use either speed, or speed and turning angle (a measure of
sinuosity) to identify fishing. Thus far, the main methods used include: (i) an overall speed threshold,
inferred from a sample of vessel movements and known activities or estimated from expert knowledge
[16–19]; (ii) Gaussian mixture models (GMM) fitted using an expectation-maximization (EM) algorithm
[20], and; (iii) hidden Markov models (HMMs) [21–24]. The EM algorithm implements an iterative
procedure that uses maximum-likelihood estimates to cluster the data assuming that they come from a
mixture of normal distributions [25] but without assuming a temporal structure. By contrast, HMMs are
doubly stochastic models that specifically account for temporal dependence in the data generating
mechanism. In the classic HMM formulation, each observation (e.g. speed and turning angle) is assumed
to be generated by an underlying, unobserved state process (fishing activity, in this case). This process is
Markovian, so that the probability of a given state at the current time step depends on the state at the
previous time step, and observations are assumed to be independent, conditional on the underlying state
[26]. The nature of temporal dependence is inferred through the transition probability matrix, which is
estimated during model fitting and provides estimates of the probability of transitioning between states
from one time step to the next, optionally as a function of time-varying covariates. HMMs have gained
popularity in the animal movement ecology literature as a method for classifying movement behaviour
(e.g. [27,28]). Modelling the movement of fishing vessels and associated fishing activities is very similar.
Characteristic distributions of vessel speed and turning angle are commonly associated with hidden
states, which can be thought of as corresponding to fishing activities (e.g. higher speed and small
turning angle corresponding to steaming), and in our case, validated by records from on-board observers.

Increasingly, tracking devices are being trialled in SSF across the world. In the Republic of Congo, small
scale fishing vessels were equipped with low-cost GPS trackers to give insights into the behavioural
dynamics of the fleets and the location of fishing grounds [29]. For some fleets in Europe, it is now
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mandatory to install a positional tracker to be allowed to fish, for example, in Scotland, the electro-fishery for

razor clam or the dredge bivalve fishery in Denmark [30]. There are also several pilot trials assessing the
feasibility of collecting positional data for SSF [30]. Nevertheless, these experiences are relatively recent and
up-to-date methods for identifying different activities during a trip have been used almost exclusively to
analyse data from LSF, even though SSF constitute the largest proportion of fishing vessels globally. For
example, in almost all European states, SFF represent over 80% of the total fleet [31]. In addition, SSF
require higher reporting frequencies to identify fishing activities, e.g. 60 s in vessels using pots and targeting
lobsters and crabs in Scotland [32], and 5 min reporting interval in the razor clam dredge fishery in Ireland
[9] compared to 30–120 min reporting from VMS units used for LSF (i.e. [33–35]). Compulsory reporting of
positional information in SSF together with the anticipated frequency of reporting [32] will rapidly generate
large amounts of data on a daily basis, some of which may need near real-time analyses for compliance
purposes. It is therefore essential to identify statistical approaches that will facilitate computationally
efficient analyses, while maintaining acceptable levels of accuracy and minimizing potential bias.

In this study, we aim to infer activities of fishing vessels using pots and traps from global navigation
satellite system (GNSS) data collected by on-board observers, while prioritizing computational efficiency.
To do this, we compare five approaches with varying levels of complexity: a single overall GMM applied
to speed values from all vessels; a trip-based GMM capable of assigning a speed threshold value for each
vessel; a trip-based binary clustering GMM using speed and turning angle; a univariate HMM using only
speed; and a multivariate HMM including speed and turning angle. We judge the performance of each
approach by comparing its outputs to observers’ ground-truthed data, and by its computational
efficiency (model run time). The ground-truthed data came from 115 fishing trips, conducted by
vessels using static gear (pots and traps) and targeting lobsters and crabs. We compare the spatial
distribution of the fishery estimated by the best approach with the one estimated from these
observations. We recommend a pragmatic approach when selecting the most appropriate method for
inferring the spatial distribution of fishing activity based on vessel trajectory parameters; one which
balances accuracy with efficiency.
2. Material and methods
2.1. The fishery
This study focuses on small scale fishing vessels (defined in Scotland as 12 m or less, overall vessel length)
using static gear (pots or creels) in the East andWest coast of Scotland and targeting species such as lobsters
(Homarus gammarus), crabs (Cancer pagurus and Necora puber) and prawns (Nephrops norvegicus). In 2016,
these ‘creeler’ vessels represented almost 70% of Scotland’s small-scale fishing fleet (approx. 1183 of
1734 vessels) and generated around £48.6 million for the Scottish economy in 2016 [36]. Creelers’ overall
length ranges from 3.6 to 11.9 m, but more than 80% of the vessel were between 5 and 11 m in length in
2016 (Marine Scotland 2016, unpublished data).

On a typical fishing day, after leaving port, fishers steam at relatively high speeds to fishing grounds,
where ‘strings’ or ‘fleets’ (sets of approx. 10–50 creels per string if targeting lobsters or crabs and approx.
30–100 if targeting prawns) (T. Mendo 2018, personal observations) that have been set usually between 1
and 3 days prior (Marine Scotland, 2017) are marked with surface marker buoys. When the skipper
approaches a marker buoy, the speed of the vessel decreases to approximately 1 knot until close enough
to hook the buoy and begin the process of hauling creels. The movement of the vessel is then determined
by a combination of the hauler (usually a rotating drum) used to retrieve each creel at very low speeds,
and the effects of wind and current (tide) acting upon the vessel. The relative influence of these factors
will vary depending upon the type, size and configuration of the vessel. However, the vessel is normally
positioned down wind or current to ensure that the creel or pot line remains clear of the vessel during
hauling. The line of creels or pots usually offers sufficient resistance (drag) to cause the vessel to
orientate relative to the creel being hauled—the vessel effectively pivoting on the hauling device. Once
on board, the creel is opened, and its contents sorted (crabs, lobsters, or prawns above the minimum
legal size retained, and the rest returned to sea). Creels are then quickly re-baited and positioned at the
back of the boat in an ordered manner to allow for creels and lines to be deployed at intermediate or
higher speeds. Directly prior to deployment, the skipper either travels to a new fishing ground or stays
roughly in the same location. The deployment of strings is carried out while the vessel keeps a steady
heading. The first marker buoy is deployed which, when drawn taut, drags the first creel off the stern of
the vessel, the weight of each sinking creel then pulls the next one off the stern of the vessel resulting in a
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roughly straight line of creels. After deployment, the skipper will steam to another fishing location and

repeat this process. This cycle is repeated until the fishing trip is completed and the boat returns to port.

2.2. Data pre-processing
Data were collected from 115 fishing trips that took place May 2017–July 2018, as part of the Scottish
Inshore Fishing Integrated Data System (SIFIDS) project which aims to develop an integrated system
for the collection, collation, analysis and interrogation of data from the Scottish inshore fishing fleet.
A total of 94 fishing vessels operating in 30 different ports were selected from locations around
Scotland. Ports were selected based on the number of annual trips conducted, and then discussions
with fishery officers at Marine Scotland to ensure higher skipper participation rates and coverage of
both the East and the West Coast. For logistical reasons, the north of Scotland (including Orkney and
Shetland Islands) were excluded from the survey design (see electronic supplementary material, S1
and figure S1.1 for map of locations, exact location not shown, due to confidentiality agreements with
fishers). For each trip, GNSS data were collected by an on-board observer using a handheld Garmin
Etrex 20 where GNSS positions were recorded at 1 s intervals. Observers also recorded the registry of
shipping (RSS number), target species, departure time and several vessel activities (time of hauling
events, time of re-deployment of creels and time when the vessel reached port at the end of each trip).

2.3. Methods used to identify hauling activities
Activities recordedbyon-boardobserverswerematchedwith theGNSS trackingdatausing the time inwhich
each activity occurred. A 60 s polling (sampling) frequency was deemed a good interval to identify fishing
activities in this fleet by Mendo et al. [32]. Our knowledge of the fishery indicates that there are three main
types of behaviours that occur during a fishing trip: (1) steaming to, from and in between fishing grounds;
(2) deploying gear (also called shooting) and; (3) hauling gear. Exploratory data analysis of the distribution
of vessel speeds (in knots) during each behaviour, as recorded by the on-board observers, suggested that
speeds at deployment overlapped speeds during steaming in some vessels (electronic supplementary
material, S1 and figure S1.2), sometimes making them indistinct from each other. However, estimating
hauling appropriately is sufficient to estimate the spatial distribution of the fishery (creels can only be
hauled where they have been deployed in the first instance). For the sake of completeness, we fit models
with three states to all of the data, even if these three states were not distinguishable in all vessels.
However, to make the comparison fairer and allow for the lack of a distinct third state in some vessels, we
evaluate the performance of our methods only by comparing model outputs for hauling or ‘not hauling’,
where ‘not hauling’ includes both deploying and steaming behaviour. All analyses were conducted on a
desktop computer (Intel® Core™ i7–5820 K @3.30 GHz with 32 Gb RAM x64-bit Windows 10 Pro OS). It is
common practice to use step length (distance travelled between locations) instead of speed in hidden
Markov models, so we converted speed in knots to distance travelled in metres for each 60 s interval
(sampling interval for positional data) for those models, which is essentially speed in metres per minute.
We call both measures of distance covered per time unit (knots and m min-1) speed throughout this section.

The five methods used to identify fishing activities are described below.We include the code required to
implement these methods (electronic supplementary material, S2) together with an example dataset [37].

2.3.1. ‘Overall’ speed GMM

Speed data for all tripswere combined, and EMwasused to estimate the parameters of themultimodal speed
distributionwithin a univariate GMM.We implemented thismodel using themixtools package [25] in R [38].
Threeunderlyingunivariatenormaldistributionswereassumed tocorrespond tohauling,deployinggearand
steaming (k = 3). Even though in some vessels, the distribution of vessel speeds overlappedbetween steaming
and deployment, we cannot anticipatewhich vessels will show two (1 = hauling, 2 = combined steaming and
deployment) rather than three distributions (1 = hauling, 2 = deployment and 3 = steaming). Therefore, since
weknow there tobe three trueunderlying states,we chose to use threeunderlying behaviours forall vessels in
order for the model to be applicable to the whole fleet. Starting values for the mean and the standard
deviations for each underlying distribution were estimated visually using a histogram showing the
multimodal distribution of speed (electronic supplementary material, S1 and figure S1.3).

To define the upper limit to the distribution for hauling, we used the estimated mean for hauling and
added two standard deviations to it. All positional records that had a speed greater than this were
labelled as ‘not hauling’.
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2.3.2. Trip-based GMM with speed only

Similar to the approach in 2.3.1., we used EM to estimate the parameters of the GMMs fitted to the speed
frequency distribution from each trip. Means and standard deviations for the component normal
distributions estimated in 2.3.1. (above) were used here as starting values for the model fitted to each
fishing trip. Using a normal distribution for a strictly positive-valued measure, such as speed, might
result in unrealistic, negative speed values predicted for hauling activities. However, the means of the
hauling speed distributions were not close enough to zero to result in negative mean estimates. In
addition, we were not interested in the lower tail of the distribution of hauling, only its intersection with
steaming, which lay in the upper tail of the distribution of hauling speed. Therefore, the upper threshold
for hauling for both 2.3.1. (overall speed) and 2.3.2. (trip-based speed) was calculated as the estimated
mean of the hauling speed distribution plus two times the estimated standard deviation. As in 2.3.1.
(above) all positional records that had a speed greater than this were labelled as ‘not hauling’.

2.3.3. Trip-based GMM with speed and turning angle

The EM binary clustering (EMbC) algorithm was used to carry out maximum-likelihood estimation of
the parameters of a bivariate GMM [39]. This unsupervised classification approach uses speed and
angle, and clusters the observations into high/low speed and high/low angles using likelihood
expectation maximization producing four possible combinations: high speed/large turning angle, high
speed/small turning angle, low speed/large turning angle and low speed/small turning angle [25,38].

2.3.4. Trip-based HMM with speed only

The R package moveHMM [28] was used to classify the step length of each vessel during a fishing trip
into three underlying states (steaming, hauling and deploying). In moveHMM models are fitted via
numerical optimization of the likelihood, which requires setting initial values for the model
parameters (e.g. mean and standard deviation for each distribution, [28]). Due to the great variability
in vessel overall length and engine power in the fleet, starting values for the mean and standard
deviation of each underlying state distribution for step length were estimated using a GMM as in
2.3.2. (above) after converting knots to metres per 60 s interval. The numerical maximization routine
to identify the global maximum failed to converge for all trips using the same set of starting values;
therefore, different sets of initial values of the speed distribution were explored. Out of a wide range
of starting values, the only configuration that yielded a fit for all vessels was to provide a small
standard deviation for hauling, and a big standard deviation for steaming. This was informed by the
spread evident in the observer records for each distribution. In contrast to the GMM approach used in
2.3.1. and 2.3.2., the positive-valued gamma distribution was used here to model speeds.

2.3.5. Trip-based HMM with speed and turning angle

This approach is the same as in 2.3.4. except for the inclusion of turning angle as a second state variable,
which we modelled using the wrapped Cauchy distribution. Starting values for the mean and standard
deviation of each underlying state distribution for speed were estimated as explained in 2.3.4. We
estimated the concentration of the turning angle distributions as well as the mean, and provided
starting values to reflect straight, directed movement during steaming and undirected, more sinuous
movement during hauling.

2.4. Performance assessment
To assess the performance of each method, we compared the accuracy of its output to observers’ ground-
truthed data on hauling activities and measured its computation time. We estimated accuracy, defined as
the number of correctly classified instances (for both hauling and not hauling) with respect to their total
number of locations. The error rate per trip was calculated by dividing the total number of incorrectly
assigned positional records by the total number of positional records in each trip. This was then
multiplied by 100. The true-positive rate measures the percentage of actual hauling events that were
correctly identified as such. The false-positive rate measures the percentage of the non-hauling events
wrongly identified as hauling out of the total number of actual non-hauling events. The time elapsed
for each analysis was estimated using the base R function system.time() [38].
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2.5. Reasons for misclassification under the ‘best’ method

We considered the ‘best’ method to be the one that correctly identified hauling activities most often and
had the shortest computation time. To explore the reasons for misclassification in the selected method we
plotted correctly identified positional records, false positives (those which are categorized as hauling but
are non-hauling) and false negatives (those classified as non-hauling when in reality they are hauling) in
space during a fishing trip. We used observer records to identify the main reasons for misclassifications.
From visual inspection, it was clear that most errors occurred just before or after a hauling event. We used
binomial generalized linear models to relate the proportion of positional records correctly identified to
5–10 min time bins before, during and after a hauling event, respectively. Post hoc multiple comparisons
were evaluated using a Tukey test with a Holms correction from the multcomp R package [40].

The effect of vessel size class and species targeted (crabs, lobsters or prawns) on the per-trip error
rates was evaluated using linear multiple regression with an interaction term between vessel length
and target species. Normality and homogeneity of variances were assessed using a Shapiro–Wilks and
Bartlett test, respectively.

2.6. Comparing the spatial distribution of hauling activities: known versus modelled
Once we selected our approach, the resulting spatial distribution was compared to the spatial distribution
of hauling activities known from observations. Each haul was defined by the retrieval of the start and end
buoy of a set of creels, and as times were recorded by on-board observers for each of these, they could be
combined with the GNSS tracking data to identify hauling events in space. Consecutive records
identified as hauling were considered a unique hauling event.

Once hauling events had been identified, the area covered during each event was estimated by joining
all positional records from that haul and adding a buffer radius of 50 m around these positions as a proxy
of effective area fished for each haul. This radius was used to include all locations from which individual
target species could have travelled to the creels, prior to capture. This radius was informed by different
estimates of the effective fishing area of creels (e.g. 43–57 m [41] and 21–34 m [42] for Cancer pagurus, and
2–12 m [43] and 28.8 m [44] for Homarus americanus. No studies could be found for H. gammarus or
Nephrops norvegicus).

The area for each hauling event was calculated, summed and compared to the total effective area fished
(estimated with the observer’s data). The difference between the area resulting from our approach and the
real area fished (false positives, overestimating area) and the difference between the real area fished and the
estimated area (false negatives, underestimation of area fished) were calculated using the gIntersection
function, from the rgeos R package [45].
3. Results
In total, 2 886 110 GNSS records were downloaded from GNSS devices during the study period of
15 months. These records were used to define specific trips (e.g. figure 1) by assigning each Trip ID, a
trip starting time and end time as recorded by observers (2 783 779 records remaining). Duplicate records
(3040 records) were deleted. No erroneous positions on land were identified. Spatial buffer zones of
200 m were set around landing ports to avoid incorporating locations with low speeds as a result of
transiting harbour areas (2 777 489 records remaining). This conservative threshold was based on
observations of vessels deploying gear at distances less than 300 m from port (T. Mendo 2018, personal
observation). These positional records were subsequently subsampled to a 60 s polling interval, see [32].
The final number of GNSS records used in the analysis was 46 277.

3.1. Classification of positional records
All five approaches performed well in identifying fishing activities. The best overall accuracy (proportion
of correctly classified instances) was similar across approaches (table 1) but was highest for the trip-based
GMM and lowest for the GMM using an overall speed threshold. The maximum error rate per trip was
obtained for the trip-based HMM with step length and turning angle, followed by the trip-based GMM
with speed and turning angle, and lowest for the HMM with speed only and the trip-based GMM with
speed only. True-positive rates ranged from 94.2% with the overall speed threshold to 97.5% with the
trip-based HMM with speed only. The lowest false-positive rate was obtained with the trip-based
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Figure 1. Examples of segments of individual fishing trips (a,b) showing positional records (black = hauling, dark grey = deploying,
light grey = steaming) every 60 s. Coastline and coordinates not shown to maintain vessel anonymity.

Table 1. Accuracy, per trip error rate (%), false-positive rate, false-negative rate and time elapsed for computation of 115 trips
using five different approaches.

overall speed trip-based

GMM speed GMM speed
GMM speed
and angle HMM speed

HMM speed
and angle

accuracy (%) 91.14 92.3 91.37 91.97 91.68

per trip error rate (% range) (2.16–33.33) (2.05–28.95) (1.57–33.7) (1.81–25.92) (1.80–35.94)

true-positive rate 94.23 95.69 97.37 97.58 97.19

false-positive rate 11.28 10.34 13.23 12.37 11.95

time elapsed (seconds) 1.56 3.06 15.48 197.09 352.20
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speed-only GMM. There was a vast difference (up to 100 times) between the time elapsed to run any of
the GMMs (less than 20 s) for 115 trips and the time elapsed to run HMMs (200-350 s) (table 1). Based on
these performance statistics, and the longer time required to run HMMs, the trip-based speed-only GMM
was considered to achieve most satisfactory results in terms of an overall lower accuracy rate, lower
maximum error rate per trip, lower false-positive rate and computing time.
3.2. Reasons for misclassification using the trip-based GMM with speed only
Visualization of trips showed that the false positives and false negatives related to hauling were mainly
located just before a hauling event (figure 2, left panel: before hauling). The proportion of positional
records correctly identified was lowest in the 10 min before hauling, gradually increasing with time
since the hauling event (figure 3). The proportion of positional records correctly identified was lowest
after 25 min of hauling activities. After a hauling event, there was no clear trend in the proportion of
positional records correctly identified. False positives in classifying hauling activities occurred when
fishers would repair ropes or creels, or band lobsters just after a hauling event, when they were fishing
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for bait (usually mackerel caught using hand lines) or when they would stop activities for tea or lunch
(electronic supplementary material, S1 and figure S1.4). The relationship between vessel length and
error rate varied depending on the main species targeted (F = 4.596, d.f. = 5,103, p < 0.001). In the case of
crabs and lobsters, there was a decline in error rate as vessel length increased, while for Nephrops, the
error rate did not increase with vessel size (electronic supplementary material, S1 and figure S1.5).

3.3. Spatial footprint of hauling activities: observed versus estimated
The fishing area covered during 115 fishing trips was 63.21 km2. The trip-based speed-only GMM
resulted in an estimate of 68.12 km2 for the total fishing area. The estimated spatial extent correctly
captured 97% of the true spatial extent of active fishing (3.04% underestimation of the true area
fished, i.e. figure 4, false negatives). An additional 10% of the true spatial extent was falsely identified
as part of the fishing area; however, these areas were mostly located near real fished areas (i.e.
figure 4, false positives).
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4. Discussion
Collection of spatial information from SSF fleets at nationwide levels will pose new challenges associated
with the large amounts of data that will be collected. This study investigates the performance of existing
approaches used to predict fishing activities (GMMs and HMMs), while taking into consideration
misclassification of non-hauling activities as hauling. The five different approaches examined in this



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191161
10
study performed similarly in identifying fishing activities in space albeit with significant computation time

differences. In the case of the Scottish SSF fleet, we found that a GMMusing speed only, and applied to each
vessel trip separately, achieved the best compromise of accuracy, an overall lower maximum error rate per
trip, a lower false-positive rate and computational speed. These results are well placed to inform the data
analysis protocols that will need to be developed for long-term monitoring of fishing areas by SSF fleets.

The trip-based speed-only GMM performed well in predicting fishing (hauling) activities without the
computational burden of HMMs. Furthermore, it yields a similar degree of accuracy to trip-based HMMs
without the need for multiple restarts or initial re-parametrization. Initial values provided to the EM
algorithm (mean and standard deviation for each state) for estimating the parameters of the GMM were
easily estimated by visual inspection of the multimodal distribution of speeds. In comparison, HMMs
required many attempts (testing different standard deviations for the step length distribution for each
state) to overcome convergence issues that can arise when starting values are poorly chosen [28]. In reality,
the convergence problems for HMMs in this application likely arise from forcing all trips to have three
functional states, based on our knowledge of the case study; meanwhile, in some trips, there were only
two movement states. From a practical point of view, not having to pay close attention to starting values
would again favour the use of the trip-based GMM for speed using an EM algorithm for estimation.

HMMs are powerful models for time series and provide additional inferences about the evolution of a
process through time, compared to GMMs. When these quantities are of interest the additional
computation time is justified. However, at this stage in the development of using positional data from
SSFs the main interest is in the rapid classification of fishing behaviour, which, based on our results, is
better addressed using an approach which does not explicitly account for the serial dependence in the
data. HMMs will become relevant to the analysis of SSF data in the future if interest shifts to the
switching behaviour between behaviours, or the duration of behaviours, which might suggest
something about the distribution and abundance of target prey.

The trip-based speed-only GMM took approximately 3 s to classify positional records from 115 trips
(46 277 records) into hauling and not hauling activities (approx. 0.026 s per trip). Assuming these 115
trips are representative of the fleet and that all vessels would carry a device to record positional data at a
60 s polling interval, classifying fishing activities in the circa 1540 SSF vessels operating in Scotland
would take approximately 40 s on a day in which all vessels would be engaged in fishing activities. If we
take into consideration the total number of fishing trips conducted annually in Scotland (111 909 trips in
2016, Marine Scotland, 2016, unpublished data), the classification of all annual trips would result in
48 min of computing time. These results highlight the feasibility of designing a monitoring system that
could efficiently generate information on main fishing grounds, fishing effort, or monitoring of
compliance to regulations for the Scottish SSF fleet. This information opens up the potential to explore
different fisheries management regimes to improve compliance, efficiency and sustainability. Rights-
based and co-management systems, which are an increasing feature in SFF, must be underpinned by
data of known provenance, quality and coverage. Fishers, those that regulate their activities and other
key stakeholders, must have common access to these data in ways that allow the fishery to be monitored
and managed effectively without compromising commercial or operational sensitivities. An important
feature of securing both compliance and effective fisheries management is to engage fishers in data
collection. Combining robust and secure spatio-temporal data collection with catch and bycatch
recording using other mobile technologies can form the basis of a participatory fisheries management
regime. In summary, our ability to collect data cost-effectively from SSF globally has profound
implications for fisheries management. To realize this potential, we will need to develop new systems
and processes for analysing and interpreting the rapidly increasing volumes of data that will be
produced. Thework presented here can be regarded as a proof-of-concept for one such analytical approach.

Initiatives to make positional data recording a statutory requirement for the whole SSF fleet (e.g. [13]
in England) should consider extending this analysis to other gears, in order to identify the most suitable
approach applicable to each fishery. While for vessels using pots and traps in Scotland all five approaches
performed similarly (except in computational time), other fisheries might benefit from using HMMs over
mixture models, especially by adding turning angle information. In this study, the distribution of turning
angles was very similar in all three behaviours (steaming, deploying and hauling). Indeed, during
hauling, vessels would haul strings (sets of creels) in a fairly straight course (e.g. in figure 1).
Therefore, the turning angle distribution during hauling was not distinct from the distributions during
steaming or deploying. This suggests that fitting an HMM where we expect the state-dependent
distribution of turning angles in the slower, less directed state to be less concentrated, constitutes a
model misspecification in this case, where the slower behaviour is in fact also directed. Additionally,
the Markov property, whereby the future state depends on the present state, might be slowing down
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the switch between hauling and not hauling. In this fishery, vessels switch rapidly between hauling and

not hauling and vice versa. In other fisheries, marked differences in movement patters during fishing
activities might favour the use of HMMs to increase the performance of the identification of fishing
activities (e.g. hidden semi-Markov models performed best in the purse seine Peruvian anchovy
fishery [23]). This analysis would have to be extended or revisited before it could be used with data
gathered in LSF (from VMS or AIS) as dissimilarities in reporting frequencies might result in different
computational times and accuracy in detecting fishing activities.
ing.org/journal/rsos
R.Soc.open

sci.6:191161
5. Conclusion
Our assessment of five statistical approaches for classifying positional records from SSF vessels points
towards the need for a case-by-case treatment. We have shown that all five approaches performed
well in identifying fishing behaviour; however, the best-suited method among the ones we present
will vary depending on the use case. In the case of the Scottish inshore SSF, a trip-based GMM was
able to accurately and efficiently identify fishing activities based on the separation of the speed
distributions of fishing behaviour. With the positional records accurately classified, we show that the
estimated spatial extent of fishing activities was approximately 92% of the true area fished (as
reported by on-board observers). These results highlight the feasibility of designing a monitoring
system that could efficiently generate information on core fishing grounds, fishing intensity, or
monitoring compliance to regulations, for a nationwide SSF fleet. These explicitly spatial results
produced from anonymized vessel behaviour, facilitate their direct inclusion in marine spatial
planning activities without disclosing sensitive information. Finally, inferring the spatial location and
extent of active fishing will inform which areas may need conservation management in the future,
depending on the impact that SSF fishing activities might have on the seabed.
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