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Abstract

In multivariate extreme value analysis, the nature of the extremal dependence between variables should be
considered when selecting appropriate statistical models. Interest often lies with determining which subsets of
variables can take their largest values simultaneously, while the others are of smaller order. Our approach to
this problem exploits hidden regular variation properties on a collection of non-standard cones and provides
a new set of indices that reveal aspects of the extremal dependence structure not available through existing
measures of dependence. We derive theoretical properties of these indices, demonstrate their value through
a series of examples, and develop methods of inference that also estimate the proportion of extremal mass
associated with each cone. We apply the methods to UK river flows, estimating the probabilities of different
subsets of sites being large simultaneously.

Keywords: asymptotic independence, extremal dependence structure, hidden regular variation, multivari-
ate regular variation.

1 Introduction

When constructing models in multivariate extreme value analysis, we often need to exploit extremal dependence
features. Consider the random vector X = (X1, . . . ,Xd), with Xi ∼ Fi, as well as a subset of these variables
XC = {Xi : i ∈ C}, for some C ∈ 2D \ ∅, i.e., C lies in the power set of D = {1, . . . , d} without the empty set.
For any C with |C| ≥ 2, extremal dependence within XC can be summarized by

χC = lim
u→1

pr {Fi(Xi) > u : i ∈ C} /(1− u) (1)

if the limit exists. In particular, if χC > 0, the variables in XC are asymptotically dependent, i.e., can
take their largest values simultaneously. If χC = 0, the variables in XC cannot all take their largest values
together, although it is possible that for some C ⊂ C, χC > 0, see for example Hua and Joe (2011) or
Wadsworth and Tawn (2013).

Many models for multivariate extremes are only applicable when data exhibit either full asymptotic depen-
dence, entailing χC > 0 for all C ∈ 2D \ ∅ with |C| ≥ 2, or full asymptotic independence, i.e., χi,j = 0 for all
i < j (Heffernan and Tawn, 2004). However, often some χC are positive whilst others are zero, i.e., only certain
subsets of the variables take their largest values simultaneously, while the other variables are of smaller order.
The extremal dependence between variables can thus have a complicated structure, which should be exploited
when modelling. In this paper, we present two methods for determining this structure.

The full extremal dependence structure is not completely captured by the 2d − d− 1 coefficients {χC : C ∈
2D \ ∅, |C| ≥ 2} since we do not learn fully whether small values of some variables occur with large values of
others, or whether individual variables can be extreme in isolation. This is revealed more clearly by decomposing
the vector into radial and angular components, (R,W ), and examining their asymptotic structure. If the Xi

follow a common heavy-tailed marginal distribution, usually achieved via a transformation, these pseudo-polar
coordinates are defined as R = ‖X‖1 and W = X

/

‖X‖2, for arbitrary norms ‖ ·‖1 and ‖ ·‖2. We take both to
be the L1 norm, and assume that X has standard Fréchet margins, so that pr(Xi < x) = exp (−1/x) for x > 0
and i = 1, . . . , d. As such, the radial and angular components are R =

∑d
i=1Xi and W = X/R, respectively,

with R > 0 and W ∈ Sd−1 =
{

(w1, . . . , wd) ∈ [0, 1]d :
∑d

i=1wi = 1
}

, the (d − 1)-dimensional unit simplex. It
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Figure 1: The simplex S2. Coordinates are transformed to the equilateral simplex.

follows that pr(R > r) ∼ ar−1 as r → ∞, for a ≥ 1, so all the information about extreme events is contained
in W , and in particular the distribution of W conditioned on R > r as r → ∞. Under the assumption of
multivariate regular variation (Resnick, 2007, Chapter 6),

lim
t→∞

pr(R > tr,W ∈ B | R > t) = H(B)r−1, r ≥ 1, (2)

for B a measurable subset of Sd−1, where the limiting spectral measure H satisfies

∫

Sd−1

widH(w) = 1/d, i = 1, . . . , d. (3)

As the radial component becomes large, the position of mass on Sd−1 reveals the extremal dependence structure
of X. We note the link between the dependence measure χC in (1), and the spectral measure H: if χC > 0,

then H places mass on at least one region SC
d−1 =

{

(w1, . . . , wd) ∈ [0, 1]d :
∑

i∈C wi = 1
}

, with C ⊆ C ⊆ D.
This underlines that the term asymptotic dependence is not so useful here, since it offers only partial insight
into the structure. In what follows, we thus avoid this term where possible, talking instead about faces of the
simplex on which H places mass.

In the d-dimensional case, Sd−1 can be partitioned into 2d − 1 faces, each of which could contain mass.
Mass on each of these faces corresponds to a different subset of the variables (X1, . . . ,Xd) being the only ones
taking their largest values concurrently. This is demonstrated in Fig. 1 for d = 3. For high, or even moderate,
dimensions, there are many faces to consider, and the task of determining which faces truly contain mass, and
therefore the extremal dependence structure of the variables, is not straightforward, as for a finite sample with
continuous margins, points cannot lie exactly on the boundary of the simplex: no Wi equal zero when R < ∞.

The multivariate regular variation assumption (2) can also be phrased in terms of measures on the cone
E = [0,∞]d \ {0}, see Section 2.1. Each face of Sd−1 can be identified with a sub-cone of E for which one or
more components are identically zero. Intuition and visualization are often simpler with H, but in the sequel
we work with E and the sub-cones corresponding to faces of Sd−1. Variants of our methods that directly use
the radial-angular framework are presented in the 2019 Lancaster University PhD thesis of E. S. Simpson.

The problem of determining the extremal dependence structure of variables has been recently studied else-
where in the literature. Under the assumption that the data are from an elliptical copula, Klüppelberg et al.
(2015) use factor analysis on extreme correlations linked to the tail dependence function. Chautru (2015) in-
troduces a non-parametric approach based on statistical learning, combining a principal component analysis
algorithm with clustering techniques. A Bayesian clustering method is proposed by Vettori et al. (2018), based
on the hierarchical dependence structure of the nested logistic distribution of Tawn (1990). Goix et al. (2016,
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2017) propose a non-parametric simplex partitioning approach in which they condition on the radial variable
being above some high threshold. They assume that there is mass on a particular face if the number of points
in the corresponding region of the simplex is sufficiently large, leading to a sparse representation of the de-
pendence structure. Chiapino and Sabourin (2017) propose an algorithm to group together nearby faces with
extremal mass into feature clusters, by exploiting their graphical structure and a measure of extremal depen-
dence. Finally, Chiapino et al. (2019) extend this approach by instead using the coefficient of tail dependence
of Ledford and Tawn (1996).

In this paper we exploit additional, but commonly satisfied, hidden regular variation assumptions on non-
standard sub-cones of E, by introducing a new set of parameters that describes the dominant extremal depen-
dence structure. We study properties of these parameters, their link to existing coefficients, and explore their
values for a range of examples. Estimation of the parameters provides us with an asymptotically-motivated
framework for determining the extremal dependence structure, as well as allowing us to estimate the proportion
of mass associated with each set of variables. We propose two such inferential methods, both with computa-
tional complexity O(dn log n) if d < n, for d representing the number of variables and n the number of data
points. This is the same complexity as the method of Goix et al. (2017).

2 Theoretical motivation

2.1 Multivariate regular variation

A function λ : (0,∞] → (0,∞] is said to be regularly varying at infinity, with index α ∈ R, if λ(tx)/λ(t) → xα,
as t → ∞, for all x > 0. For such functions, we write λ ∈ RVα. We can always express λ(x) = L(x)xα, with
L ∈ RV0 termed a slowly varying function. A cone G ⊂ R

d is a set such that for any x ∈ G, tx ∈ G for all
t > 0. The assumption of multivariate regular variation on the cone G means that there exists a scaling function
a(t) → ∞, and a positive measure µ, such that

t pr (X/a(t) ∈ ·) → µ(·), t → ∞, (4)

with vague convergence in the space of non-negative Radon measures on G (Resnick 2007, Chapter 3). If we
assume that the margins of X are standard Fréchet or Pareto, we may take a(t) = t, and the limit measure µ is
homogeneous of order −1. For the remainder of this section, we assume that X has standard Fréchet marginal
distributions.

2.2 Hidden regular variation

The concept of hidden regular variation was introduced by Resnick (2002), who formalized and extended
the ideas of Ledford and Tawn (1996, 1997). Further work has been done by Maulik and Resnick (2004) and
Mitra and Resnick (2011), for example, whilst Resnick (2007) provides a textbook treatment. Here, multivariate
regular variation is assumed on some cone in R

d. If there is also regular variation, but with a scaling function
of smaller order, on some sub-cone, we have hidden regular variation on that sub-cone.

To our knowledge, the marginal case of this hidden regular variation framework is the only one previously
exploited from a statistical perspective; from a theoretical viewpoint, Das et al. (2013) consider hidden regular
variation on a series of non-standard cones, although these are mostly different from the ones we will consider.
For XC = {Xi : i ∈ C}, xC = {xi : i ∈ C}, Ledford and Tawn (1997) considered multivariate regular variation
on the cone E = [0,∞]d \ {0} and hidden regular variation on

E
∗
C =

{

x ∈ E : xC ∈ (0,∞]|C|, xD\C ∈ [0,∞]|D\C|
}

, (5)

with limit measures on E
∗
C homogeneous of order −1/ηC , and the so-called coefficient of tail dependence ηC

taking values in (0, 1]. If µ(E∗
C) > 0, variables XC can take their largest values simultaneously. If we instead

consider sub-cones of E of the form

EC =
{

x ∈ E : xC ∈ (0,∞]|C|, xD\C = {0}|D\C|
}

, (6)
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where {0}m denotes an m-vector of zeros, then having µ(EC) > 0 indicates that variables in XC can take their
largest values simultaneously while variables in XD\C are of smaller order. Our task is to determine the cones
EC on which µ places mass, equivalent to the problem of detecting where H places mass on Sd−1, thus revealing
the extremal dependence structure of X. For simplicity, we assume that if µ places mass on EC , then for any
measurable BC ⊂ EC , µ(BC) > 0. More generally, it need only be true that there exists BC ⊂ EC such that
µ(BC) > 0, however if the mass lies only in very restricted parts of EC , then the task of detecting which cones
contain mass is naturally more difficult.

For a finite sample, mass will not occur on cones EC with |C| < d; this is equivalent to all mass for W
being placed on the interior of the simplex in Fig. 1. One option is to truncate the variables to zero below some
marginal threshold, to ensure mass on at least some of these cones at a finite level. Let us define

X∗ =

{

0, X ≤ −1/ log p,

X, X > −1/ log p,
(7)

such that p is the quantile at which we truncate. The variable X∗ has the same tail behaviour as X, but in
general pr(X∗/t ∈ BC) > 0 for BC ⊂ EC , and in this way we could define a hidden regular variation assumption
on EC . Writing BC = {x ∈ E : xC ∈ B ⊂ (0,∞]|C|, xD\C ∈ {0}|D\C|}, then pr(X∗/t ∈ BC) = pr(XC/t ∈
B,XD\C ∈ [0,−1/ log p]|D\C|), such that we consider the behaviour when the variables XC are growing at a
common rate, but variables XD\C have a fixed upper bound. However, the latter condition does not capture
all possible behaviour that leads to variables XD\C being of smaller order than XC , and in general a more
elaborate assumption is needed. We consider how we can allow XD\C to be bounded above by a function that
is growing, but at a potentially slower rate than t.

Define the set (y,∞]C × [0, z]D\C = {x ∈ E : xi > y, i ∈ C;xj ≤ z, j ∈ D \ C}. Then under the regular
variation assumption (4),

tpr
{

X/t ∈ (y,∞]C × [0, z]D\C
}

→ µ
(

(y,∞]C × [0, z]D\C
)

≥ µ
(

(y,∞]C × {0}D\C
)

. (8)

Therefore, if µ
(

(y,∞]C × {0}D\C
)

> 0, and hence µ (EC) > 0, this indicates that in (8) we may be able to
consider z = zt → 0 at a suitable rate in t and still observe

lim
t→∞

tpr
{

X/t ∈ (y,∞]C × [0, zt]
D\C

}

> 0. (9)

A consequence of a positive limit in (9) is that pr{X/t ∈ (y,∞]C × [0, zt]
D\C} ∈ RV−1. When the limit in (9) is

zero, then either zt → 0 too quickly — consider for example the case zt ≡ 0 — or µ places no mass on EC . In
these cases we focus on the rate of convergence to zero in (9). Taking zt = ztδ−1 for δ ∈ [0, 1], and rephrasing
in terms of min and max projections, our main assumption is as follows.

Assumption 1. Suppose we have regular variation on the cone E = [0,∞]d \ {0}, so that equation (4) is

satisfied with µ homogeneous of order −1. For all C ⊆ D, let XC
∧ = mini∈C Xi and X

D\C
∨ = maxi∈D\C Xi. We

assume that for all δ ∈ [0, 1],

pr
{(

XC
∧ /t,X

D\C
∨ /tδ

)

∈ (y,∞]× [0, z]
}

∈ RV−1/τC(δ), t → ∞, 0 < y, z < ∞, (10)

and that there exists δ∗ < 1 such that τC(δ
∗) = 1 for all C such that µ(EC) > 0, and τC(δ

∗) < 1 for all C such
that µ(EC) = 0.

We note that the probability in (10), and hence τC(δ), is non-decreasing in δ. The case δ = 0 and z = −1/ log p
is identical to a regular variation assumption on the truncated variables X∗; allowing δ > 0 produces a more
diverse range of possibilities.

Through the final line of Assumption 1, the indices τC(δ) contain information on the limiting extremal
dependence structure; the challenge is to find a suitable δ∗, noting that if δ is too small we could have τC(δ) < 1
even when µ(EC) > 0, but if δ is too large, some τC(δ) could be close to one even when µ(EC) = 0, making
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the detection problem difficult in light of statistical uncertainty. These issues are discussed further below and
in Section 3.

Overall, examining the regular variation properties in Assumption 1 leads to understanding of the sub-
asymptotic behaviour of µ in relation to which cones EC are charged with mass. This is analogous to determining
the support of H in (2). In the remainder of this section, we illustrate the utility and validity of our hidden
regular variation assumption via examples, and discuss properties of τC(δ). Theorems 1 and 2 clarify some links
between τC(δ) and ηC .

Theorem 1. Assume regular variation, or hidden regular variation, on E
∗
C defined in (5), such that pr

(

XC
∧ > t

)

∈
RV−1/ηC . Suppose further that for all C ⊆ D such that C ⊇ C, Assumption 1 is satisfied, so that for δ = 1,

pr
(

XC
∧ > t,X

D\C
∨ ≤ t

)

∈ RV−1/τC(1). Then ηC = maxC:C⊆C τC(1).

Proof. We have

pr
(

XC
∧ > t

)

= pr
(

X/t ∈ (1,∞]C × [0,∞]D\C
)

;

pr
(

XC
∧ > t,X

D\C
∨ ≤ t

)

= pr
(

X/t ∈ (1,∞]C × [0, 1]D\C
)

.

By the partition (1,∞]C × [0,∞]D\C =
⋃

C:C⊆C(1,∞]C × [0, 1]D\C , we deduce that

pr
(

X/t ∈ (1,∞]C × [0,∞]D\C
)

=
∑

C:C⊆C

pr
(

X/t ∈ (1,∞]C × [0, 1]D\C
)

,

from which the result follows.

We note τD(δ) does not depend on δ; we therefore denote it by τD.

Theorem 2. For all C ∈ 2D \ ∅ with |C| ≥ 2, assume regular variation or hidden regular variation on E
∗
C with

coefficient of tail dependence ηC , and suppose Assumption 1 holds. For any set C with |C| ≥ 2, assume that for

any C ⊇ C, η
C

′ < ηC for all C
′ ⊃ C. Then τC(1) = ηC , and τC(δ) ≤ ηC for all δ ∈ [0, 1].

Proof. Since ED = E
∗
D, we have ηD = τD, and by Theorem 1, for any set Cd−1 ⊂ D with |Cd−1| = d− 1,

ηCd−1
= max

{

τCd−1
(1), τD

}

= max
{

τCd−1
(1), ηD

}

.

Since, by assumption, ηCd−1
> ηD, we have ηCd−1

= τCd−1
(1). Similarly, for any set Cd−2 ⊂ Cd−1 with

|Cd−2| = d− 2,
ηCd−2

= max
{

τCd−2
(1), τCd−1

(1), τD
}

= max
{

τCd−2
(1), ηCd−1

, ηD
}

.

Again, since ηCd−2
> ηCd−1

> ηD for all Cd−2 ⊂ Cd−1, then ηCd−2
= τCd−2

(1). The result τC(1) = ηC follows by
iteration for any set C with |C| ≥ 2. Since τC(δ) is non-decreasing in δ, τC(1) = maxδ∈[0,1] τC(δ), so τC(δ) ≤ ηC
for all δ ∈ [0, 1].

In the Appendix and Supplementary Material, respectively, we calculate the value of τC(δ), with C ∈ 2D \∅,
for a range of bivariate and multivariate copulas. For the bivariate case, we restrict our investigation to a
subclass of bivariate extreme value distributions (Tawn, 1988) that covers all possible combinations of cones
EC charged with mass, focusing on the case where the spectral density is regularly varying at 0 and 1. For
multivariate cases there are many more possibilities, so we study certain trivariate extreme value distributions
(Tawn, 1990), which have χC > 0 for at least one set |C| ≥ 2, and two classes of copula having χC = 0 for all
|C| ≥ 2. The results are summarized here.

The bivariate extreme value distribution in standard Fréchet margins has distribution function of the form
F (x, y) = exp {−V (x, y)} for some exponent measure

V (x, y) = 2

∫ 1

0
max {w/x, (1 − w)/y} dH(w), x, y > 0, (11)
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where H denotes the spectral measure defined in equation (2) on the unit simplex [0, 1]. In the bivariate case,
E = [0,∞]2 \ {0} can be partitioned into three natural cones: E1, E2 and E1,2. If H({0}) = θ2 ∈ [0, 1/2] and
H({1}) = θ1 ∈ [0, 1/2], the distribution places mass θ2, θ1, θ1,2 = 1− (θ1+ θ2) in the three cones. If θ1+ θ2 = 1,
the variables are independent, and µ(E1,2) = 0. In this case, all the limiting mass is placed on E1 and E2. Here,
Assumption 1 holds for C = {1}, {2} and {1, 2} with τ1(δ) = τ2(δ) = 1 for all δ ∈ [0, 1], and τ1,2 = η1,2 = 1/2.

When θ1+θ2 < 1, µ(E1,2) > 0 and τ1,2 = η1,2 = 1, i.e., both variables can be simultaneously large. If θi > 0,
it follows that τi(δ) = 1 for δ ∈ [0, 1] and i = 1, 2, and there is mass on the corresponding cone Ei. However,
when θ1 = θ2 = 0, there is no mass on either of these cones, and additional conditions are required for (10)
to hold. We suppose that H is absolutely continuous on (0, 1) with Lebesgue density h(w) = dH(w)/dw
satisfying h(w) ∼ c1(1 − w)s1 as w → 1, and h(w) ∼ c2w

s2 as w → 0, for s1, s2 > −1 and c1, c2 > 0.
In the Appendix, we show that for i = 1, 2, τi(δ) = {(si + 2)− δ(si + 1)}−1. To illustrate this final case,
consider the bivariate extreme value distribution with the logistic dependence structure (Tawn, 1988), with
V (x, y) =

(

x−1/α + y−1/α
)α

and

h(w) =
1

2

(

α−1 − 1
)

{

w−1/α + (1− w)−1/α
}α−2

{w(1− w)}−1−1/α , (12)

0 < w < 1, α ∈ (0, 1). For this model s1 = s2 = −2+1/α, and so τ1(δ) = τ2(δ) = α/(1+αδ−δ) which increases
from τi(δ) = α < 1 at δ = 0 to τi(δ) = 1 at δ = 1.

|C| = 1 |C| = 2 |C| = 3

(i) τ1(δ) = τ2(δ) = τ3(δ) = 1 τ1,2(δ) = τ1,3(δ) = τ2,3(δ) = 1/2 τ1,2,3 = 1/3
(ii) τ1(δ) = τ2(δ) =

α
1+αδ−δ , τ3(δ) = 1 τ1,2(δ) = 1, τ1,3(δ) = τ2,3(δ) =

α
αδ+1+α−δ τ1,2,3 = 1/2

(iii) τ1(δ) = τ2(δ) = τ3(δ) =
α

1+αδ−δ τ1,2(δ) = τ1,3(δ) = τ2,3(δ) =
α

2+αδ−2δ τ1,2,3 = 1

(iv) τ1(δ) = τ2(δ) = τ3(δ) = 1 τ1,2(δ) = τ1,3(δ) = τ2,3(δ) = 2−α τ1,2,3 = 3−α

Table 1: Values of τC(δ) for some trivariate copula examples. For all logistic models, the dependence parameter
α satisfies 0 < α < 1, with larger α values corresponding to weaker dependence. Case (i): independence;
case (ii): independence and bivariate logistic; case (iii): trivariate logistic; case (iv): trivariate inverted logistic.

When d = 3, there are many more possibilities for combinations of cones EC with mass. Table 1 gives τC(δ)
for four examples, in each case identifying τC(δ) on cones EC with |C| = 1, 2, 3. Cases (i)-(iii) in Table 1 are all
special cases of the trivariate extreme value copula. Case (i) is the independence copula, which has limit mass
on E1, E2 and E3. For the d-dimensional independence copula, τC(δ) = |C|−1 for |C| ≤ d, and does not depend
on the value of δ. Case (ii) is the copula corresponding to variables (X1,X2) following a bivariate extreme value
logistic distribution (12), independent of X3. Here all the limit mass is placed on E1,2 and E3. Again, τC(δ)
differs between cones where C is of different dimension. The trivariate extreme value logistic model, case (iii),
places all extremal mass on E1,2,3, so that τ1,2,3 = 1, and τC(δ) < 1 when δ < 1, for all C with |C| < 3. Since
this is a symmetric model, τC(δ) is the same on all three cones EC with |C| = 1, and is also equal for each cone
with |C| = 2.

Copula (iv) is the inverted extreme value copula (Ledford and Tawn, 1997), with a symmetric logistic
dependence model. It places all limiting mass on cones EC with |C| = 1, but unlike the independence copula,
has sub-asymptotic dependence, reflected by the values of τC(δ) for cones EC with |C| = 2, 3, which are closer
to one than in the independence case. The values of τC(δ) do not depend on δ for this case.

The Gaussian copula with covariance matrix Σ also exhibits asymptotic independence, with all limit mass
on EC with |C| = 1. We study the values of τC(δ) for the trivariate case in the Supplementary Material. For sets

C = {i}, i = 1, 2, 3, τC(δ) = 1 only if δ ≥ max
(

ρ2ij , ρ
2
ik

)

, where ρij > 0 is the Gaussian correlation parameter for

variables i and j; otherwise, τC(δ) < 1. We also know that τ1,2,3 = η1,2,3 =
(

1T3 Σ
−113

)−1
, with 1d ∈ R

d denoting

a vector of 1s. For C = {i, j}, i < j, under Assumption 1, Theorem 2 leads to τC(1) = ηC =
(

1T2 Σ
−1
i,j 12

)−1
,

with Σi,j denoting the submatrix of Σ corresponding to variables i and j, provided the correlations satisfy
1 + ρC 6= ∑

C′:|C′|=2,C′ 6=C

ρC′ ; for δ < 1, τC(δ) ≤ ηC .
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3 Methodology

3.1 Introduction to methodology

The coefficient τC(δ) defined in Assumption 1 reveals whether the measure µ places mass on the cone EC . For
µ(EC) > 0, we assume there exists δ∗ < 1 such that τC(δ

∗) = 1, but we could still have τC(δ) < 1 for values of
δ < δ∗. For cones with µ(EC) = 0, the detection problem becomes easier the further τC(δ) is from 1, and since
τC(δ) is non-decreasing in δ it is ideal to take δ as small as possible. We therefore have a trade-off between
choosing δ large enough that τC(δ) = 1 on cones EC with extremal mass, but small enough that τC(δ) is not
close to 1 on those EC without extremal mass. For the examples in Table 1, we could take δ = 0, since the cones
with µ(EC) > 0 have τC(δ) = 1 for all δ ∈ [0, 1]. However, the Gaussian case reveals that although µ(Ei) > 0,
for i = 1, . . . , d, we can have τi(0) < 1, so it is necessary to take δ > 0 for correct identification of cones with
extremal mass.

We therefore introduce two approaches for determining the extremal dependence structure of a set of vari-
ables. In the first method we set δ = 0, and apply a truncation to the variables X by setting any values below
some marginal threshold equal to zero. This transformation is analogous to the approach of Goix et al. (2017),
who partition the non-negative orthant in a similar way, but we additionally exploit Assumption 1. In our
second method, we consider δ > 0 when exploiting the regular variation assumption. As well as aiming to de-
termine the extremal dependence structure, both methods estimate the proportion of extremal mass associated
with each cone EC .

3.2 Method 1: δ = 0

We apply Assumption 1 with δ equal to zero by applying truncation (7) to variables X for some choice of p.
Recall that the cone E equals

⋃

C∈2D\∅ EC , with the components of the union disjoint and defined as in (6). We
wish to partition E with approximations to EC , by creating regions where components indexed by C are large
and those not in C are small. This is achieved via regions of the form

EC =
{

x∗ ∈ E : x∗C ∈ (−1/ log p,∞]|C|, x∗D\C ∈ {0}|D\C|
}

. (13)

Define the variable Q = min (X∗
i : X∗

i > 0, i = 1, . . . , d), and recall that we denoteXC
∧ = mini∈C Xi andX

D\C
∨ =

maxi∈D\C Xi. Under Assumption 1, as q → ∞,

pr (Q > q | X∗ ∈ EC) ∝ pr
(

XC
∧ > q,X

D\C
∨ < −1/ log p

)

∈ RV−1/τC (0),

so that pr (Q > q | X∗ ∈ EC) = LC(q)q
−1/τC (0) for some slowly varying function LC . We now let τC = τC(0),

and assume that the model

pr (Q > q | X∗ ∈ EC) = KCq
−1/τC , q > uC , (14)

holds for a high threshold uC , with τC ∈ (0, 1] and KC > 0 for all C ∈ 2D \ ∅. Here, the slowly varying function
LC is replaced by the constant KC as a modelling assumption, removing the possibility of having LC(q) → 0
as q → ∞.

Model (14) may be fitted using a censored likelihood approach. Suppose that we observe nC values q1, . . . qnC

of Q in EC . The censored likelihood associated with EC , is

LC(KC , τC) =

nC
∏

j=1

(

1−KCu
−1/τC
C

)

1{qj≤uC}

(

KC

τC
q
−1−1/τC
j

)

1{qj>uC}

, (15)

with uC a high threshold. Analytical maximization of (15) leads to closed-form estimates of (KC , τC), with the
latter corresponding to the Hill estimate (Hill, 1975). In particular,

τ̂C =





nC
∑

j=1

1{qj>uC}





−1
nC
∑

j=1

1{qj>uC} log

(

qj
uC

)

, K̂C =

(

∑nC
j=1 1{qj>uC}

nC

)

u
1/τ̂C
C .
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This estimate of τC can exceed 1, so we prefer to use min(τ̂C , 1), with an appropriate change to K̂C . The Hill
estimator for τC is consistent if uC → ∞,

∑

j 1{qj>uC} → ∞ and
∑

j 1{qj>uC}/nC → 0; the assumption of
LC(q) ∼ KC > 0 is not required for this. The second condition ensures that the number of points in EC with

Q > uC goes to infinity, and since the expected number nCpr(Q > uC | X∗ ∈ EC) ∼ nCKCu
−1/τC
C , this entails

uC = o(nτC
C ).

The method of Goix et al. (2017) produces empirical estimates of pr(X ∈ EC | R > r0), for R = ‖X‖∞, and
some value of r0 within the range of observed values. These estimates are then assumed to hold for all R > r0
and are used to approximate the limit. If the conditional probability pr(X ∈ EC | R > r) changes with r > r0,
Goix et al. estimate this as a positive constant or as zero. In contrast, our semiparametric method allows us to
estimate pr(X∗ ∈ EC | Q > q), for all q above a high threshold, via

pr(X∗ ∈ EC | Q > q) =
pr(Q > q | X∗ ∈ EC)pr(X

∗ ∈ EC)
∑

C′∈2D\∅

pr(Q > q | X∗ ∈ EC′)pr(X∗ ∈ EC′)
, C ∈ 2D \ ∅, (16)

with EC as in (13). Our estimate of probability (16) varies continuously with q, with this variation being
determined by the estimated values τ̂C , for C ∈ 2D \∅. In situations where sub-asymptotic dependence leads to
many points in a region EC , but µ(EC) = 0 and τ̂C < 1, this extrapolation can be helpful in obtaining a better
approximation to the limit. The relative merits of these differences to the approach of Goix et al., which are
common to Methods 1 and 2, are illustrated in Sections 4 and 5.

The right-hand side of equation (16) consists of two types of component. We estimate terms of the form
pr(X∗ ∈ EC) empirically, and we estimate those of the form pr(Q > q | X∗ ∈ EC) as in (14) by replacing KC

and τC by their estimates, and evaluating for some large choice of q, discussed in Section 5. This approach yields
an estimate for the proportion of mass in each region. We denote the estimated vector of these proportions
by p̂ = (p̂C : C ∈ 2D \ ∅). In order to obtain a sparse representation of the mass on the simplex, we follow
Goix et al. (2016, 2017) and ignore any mass that has been detected which is considered to be negligible; see
use of parameter π, below. A summary of our method is as follows.

First, transform the data to standard Fréchet margins, and for a choice of the tuning parameter p, apply
transformation (7). Then assign each transformed observation to a region EC as in (13), removing any all-zero
points. For each region EC containing more than m points, fit model (14) for a choice of threshold uC , and
estimate pr(X∗ ∈ EC | Q > q) for a large value of q by equation (16). Set pr(X∗ ∈ EC | Q > q) = 0 in
the remaining regions, denoting the resulting estimate by p̂C . Finally, if p̂C < π, for a choice of the tuning
parameter π, set p̂C to zero, renormalizing the resulting vector.

The parameter m ensures there are enough points to estimate the parameters on each cone EC . In simula-
tions, it was found not to have a significant effect on results, so we take m = 1.

3.3 Method 2: δ > 0

An alternative to setting δ = 0 and partitioning the positive orthant using regions EC , is to consider δ > 0

in the application of Assumption 1, specifically pr
(

XC
∧ > t,X

D\C
∨ ≤ tδ

)

∈ RV−1/τC(δ). However, unlike with

δ = 0, this does not lead directly to a univariate structure variable with tail index 1/τC(δ). We instead consider

pr
{

XC
∧ > t,X

D\C
∨ ≤

(

XC
∧

)δ
}

= pr
(

XC
∧ > t,X ∈ ẼC

)

, with ẼC defined as

ẼC =
{

x ∈ E : x
D\C
∨ ≤

(

xC∧
)δ
}

, |C| < d; ẼD = E \
⋃

C∈2D\∅:|C|<d

ẼC ,

for each C ∈ 2D \ ∅. We denote the corresponding tail index as 1/τ̃C(δ), and assume that

pr
(

XC
∧ > q,X ∈ ẼC

)

∈ RV−1/τ̃C(δ), q → ∞.

Analogously to equation (14) of Method 1, for each region ẼC , we assume the model

pr(XC
∧ > q | X ∈ ẼC) = KCq

−1/τ̃C (δ), q > uC , (17)
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for some large threshold uC , where estimates of KC and τ̃C(δ) are again obtained by maximizing a censored
likelihood. In the Supplementary Material, we examine estimates of τ̃C(δ), which we find to reasonably approxi-
mate the true values of τC(δ). This indicates that the indices τ̃C(δ) provide useful information about τC(δ). We
note that the regions ẼC are not disjoint. Supposing we have observations x1, . . . , xn, we obtain an empirical
estimate of pr(X ∈ ẼC) using

1

n

n
∑

j=1

1{xj∈ẼC}
∑

C′∈2D\∅ 1{xj∈ẼC′}

, (18)

so that the contribution of each observation sums to one. Combining (17) and (18), we estimate

pr
(

XC
∧ > q,X ∈ ẼC

)

= pr(XC
∧ > q | X ∈ ẼC)pr(X ∈ ẼC), C ∈ 2D \ ∅, (19)

for some large q. To estimate the proportion of extremal mass associated with each cone EC , we consider
probability (19) for a given ẼC divided by the sum over all such probabilities, corresponding to ẼC′ , C ′ ∈ 2D \∅.
As in Method 1, the result is evaluated at a high threshold q, and mass estimated to be below the threshold π
is removed.

4 Simulation study

4.1 Overview and metrics

We present simulations to demonstrate Methods 1 and 2, and compare them with the approach of Goix et al.
(2017). Here, we consider a max-mixture distribution involving Gaussian and extreme value logistic distribu-
tions, described in equation (21). In the Supplementary Material we present results for a special case of this, the
asymmetric logistic distribution (Tawn, 1990), that is used by Goix et al. (2017) to assess the performance of
their methods. The key difference between these two distributions is that the Gaussian components in the max-
mixture model lead to sub-asymptotic dependence, in contrast to independence, on certain sub-cones. Hence,
distinguishing between cones EC with and without limiting mass is a more difficult task for our max-mixture
distribution. For the classes of model we consider, it is possible to calculate the proportion of extremal mass
on the various cones analytically, allowing us to compare our estimates to the true distribution of mass using
the Hellinger distance.

When incorporating a cut-off for sparse representation of the measure µ, as mentioned in Section 3.2, the
methods can be viewed as classification techniques. Plotting receiver operating characteristic curves is a common
method for testing the efficacy of classifiers (Hastie et al., 2009). To obtain such curves, the false positive rate
of a method is plotted against the true positive rate, as some parameter of the method varies. In our case, the
false positive rate is the proportion of cones EC incorrectly detected as having mass, while the true positive
rate is the proportion of correctly detected cones. To obtain our curves, we vary the threshold, π, above which
estimated mass is considered non-negligible. For π = 0, all cones will be included in the estimated dependence
structure, leading to the true and false positive rates both being 1, while π = 1 includes none of the cones, so
both equal 0. A perfect result for a given data set and method would be a false positive rate of 0 and true
positive rate of 1: the closer the curve is to the point (0, 1), the better the method. This is often quantified
using the area under the curve, with values closer to 1 corresponding to better methods.

Let p =
(

pC ;C ∈ 2D \ ∅
)

denote the true proportion of mass on each cone, and denote its estimate by p̂.
The Hellinger distance between p and p̂,

hd(p, p̂) =
1√
2







∑

C∈2D\∅

(

p
1/2
C − p̂

1/2
C

)2







1/2

, (20)

is used to determine the precision of the estimated proportions. In particular, hd(p, p̂) ∈ [0, 1], and equals 0 if
and only if p = p̂. The closer hd(p, p̂) is to 0, the better p is estimated by p̂. Errors on small proportions are
penalized more heavily than errors on large proportions. A small positive mass on a region, estimated as zero,
will incur a relatively heavy penalty.
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4.2 Max-mixture distribution

Segers (2012) shows how to construct distributions that place extremal mass on different combinations of cones.
Here, we take a different approach by considering max-mixture models with asymptotic and sub-asymptotic
dependence in different cones. This can be achieved by using a mixture of extreme value logistic and multivariate
Gaussian copulas, a particular example of which we consider here.

Let ZC =
(

Zi,C : i ∈ C
)

be a |C|-dimensional random vector with standard Fréchet marginal distributions,
and {ZC : C ∈ 2D \ ∅} be independent random vectors. Define the vector X = (X1, . . . ,Xd) with components

Xi = max
C∈2D\∅:i∈C

(θi,CZi,C) , θi,C ∈ [0, 1],
∑

C∈2D\∅:i∈C

θi,C = 1, (21)

for i = 1, . . . , d. The constraints on θi,C ensure that X also has standard Fréchet margins. The random vector
ZC may exhibit asymptotic dependence, in which case mass will be placed on the cone EC , or it may exhibit
asymptotic independence, in which case mass will be placed on the cones Ei, i ∈ C.

Here, we consider one particular five-dimensional example. We define Z1,2 and Z4,5 to have bivariate
Gaussian copulas with correlation parameter ρ, and Z1,2,3, Z3,4,5 and Z1,2,3,4,5 to have three-dimensional and
five-dimensional extreme value logistic copulas with dependence parameter α. The bivariate Gaussian dis-
tribution is asymptotically independent with sub-asymptotic dependence, while the logistic distribution is
asymptotically dependent for α ∈ (0, 1). As such, the cones with mass resulting from this construction are
E1,E2,E4,E5,E1,2,3,E3,4,5 and E1,2,3,4,5. The Gaussian components mean that cones E1,2 and E4,5 have no mass
asymptotically, but the parameter ρ controls the decay rate of the mass. We assign equal mass to each of the
seven charged cones by setting

θ1,2 =(5, 5) /7, θ4,5 = (5, 5) /7,

θ1,2,3 = (1, 1, 3) /7, θ3,4,5 = (3, 1, 1) /7, θ1,2,3,4,5 = (1, 1, 1, 1, 1) /7.

In this model, the cones with mass are fixed, in contrast to the asymmetric logistic examples in the Supple-
mentary Material, where following Goix et al. (2017), they are chosen at random over different simulation runs.
Setting ρ = 0 in this max-mixture distribution gives an asymmetric logistic model.
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Figure 2: Mean Hellinger distance, 0.05 and 0.95 quantiles over 100 simulations. Method 1: solid lines; Method 2:
dashed lines; Goix et al.: dotted lines.

Each setting in the simulation study is repeated 100 times, taking samples of size 10,000. In Method 1,
we set p = 0.5, uC to be the 0.75 quantile of observed Q values in region EC for each C ∈ 2D \ ∅, and the
value of q for which we estimate pr(X∗ ∈ EC | Q > q) to be the 0.9999 quantile of all observed Q values. In
Method 2, we set δ = 0.5, each threshold uC to be the 0.85 quantile of observed XC

∧ values in region ẼC , and
the extrapolation level q to be the 0.9999 quantile of observed values of X. The parameters in the method of
Goix et al. (2017) are chosen to be (ǫ, k) = (0.1, n1/2), using notation from that paper. When calculating the
Hellinger distances, we used π = 0.001 as the value above which estimated mass is considered significant in all
three methods. The tuning parameters are not optimized for individual data sets, but fixed at values that we
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have found to work well across a range of settings. In Section 4.3, we discuss stability plots, which could be used
as a guide as to which tuning parameter values may be sensible for a given set of data. In Section 5, we consider
how the estimated extremal dependence structure changes as the tuning parameters vary for a particular data
set, allowing us to further examine this mass stability and choose a reasonable value of p in Method 1 or δ in
Method 2.

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
α 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Goix et al. 100 (0.0) 100 (0.0) 98.0 (1.1) 99.7 (0.4) 99.8 (0.4) 96.3 (1.4) 92.3 (0.6) 91.9 (0.5) 90.1 (1.2) 91.0 (1.0) 90.1 (1.7) 87.6 (1.2)
Method 1 100 (0.0) 100 (0.1) 97.7 (1.4) 100 (0.1) 99.9 (0.3) 96.7 (1.2) 97.3 (1.6) 96.3 (1.9) 91.5 (1.9) 92.9 (1.0) 90.0 (0.9) 87.5 (0.2)
Method 2 100 (0.0) 99.2 (0.7) 96.0 (1.6) 100 (0.1) 98.9 (0.8) 94.6 (1.8) 99.5 (0.6) 97.5 (1.1) 92.7 (1.7) 94.4 (1.9) 92.9 (1.9) 89.1 (2.0)

Table 2: Average area under the receiver operating characteristic curves, given as percentages, for 100 samples
from a five-dimensional mixture of bivariate Gaussian and extreme value logistic distributions; the standard
deviation of each result is given in brackets.
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Figure 3: Plots to show the number of times each cone is assigned mass greater than π = 0.01 (top) and π = 0.001
(bottom), for (α, ρ) = (0.75, 0.5). Darker lines correspond to higher detection rates over 100 simulations. True
cones with mass: solid lines; cones without mass; dashed lines.

In Fig. 2, we show the mean Hellinger distance achieved by each method for ρ ∈ {0, 0.25, 0.5, 0.75} and
α ∈ [0.1, 0.9]. Results for the area under the receiver operating characteristic curves are provided in Table 2.
The performance of all three methods deteriorates as the value of the correlation parameter ρ, or the dependence
parameter α, increases. In the former case this is due to the stronger sub-asymptotic dependence on cones
without extremal mass; in the latter case, larger values of α in logistic component ZC lead to larger values of
τC(δ) for C ⊂ C, so it is harder to determine which cones EC truly contain extremal mass. In terms of the
Hellinger distance, Method 1 is the most successful for ρ = 0, 0.25, although its performance deteriorates when
there is stronger correlation in the Gaussian components. Method 2 yields the best results for ρ = 0.5, 0.75. In
terms of estimating the proportion of extremal mass associated with each cone EC , at least one of our proposed
methods is always more successful than Goix et al. for this max-mixture model. The results in Table 2 reveal
that all three methods are successful classifiers for low values of ρ and α. For α = 0.75 and ρ = 0, 0.25, Method 1
and the approach of Goix et al. demonstrate similarly strong performance, while for ρ = 0.5, 0.75, Method 2
again provides the best results.

As a further comparison of the methods, in Fig. 3, we investigate how often each cone EC is detected as

11



having mass above π = 0.01, 0.001 for the (α, ρ) = (0.75, 0.5) case. For π = 0.001, the approach of Goix et al.
places mass on around three times as many cones as Methods 1 and 2, and over twice as many for the π = 0.01
case, so our methods provide sparser representations of the extremal mass that are both much closer to the
truth. The reason for this difference is explained by the method of Goix et al. assuming there is extremal mass
on a cone EC if pr(X ∈ EC | R > r0) > π, whereas we recognize that when τ̂C < 1 or τ̂C(δ) < 1, non-limit mass
can be on a cone at a finite threshold, but may progressively decrease to zero as the level of extremity of the
vector variable is increased to infinity. When τ̂C = 1 or τ̂C(δ) = 1, we estimate mass on cone EC similarly to
Goix et al. As a consequence, our approach integrates information over the entire tail to estimate which cones
have limit mass, as opposed to Goix et al., who use information only at a single quantile. We also observe from
Fig. 3 that Method 2 often fails to detect the cone corresponding to all five variables being large simultaneously,
and places more mass on lower-dimensional cones, arising from the estimated values of τC(δ). Method 1 also
places mass on these lower-dimensional cones, but more often detects the true higher-dimensional cones with
mass.

4.3 Stability plots

One way to decide on reasonable tuning parameter values for a given set of data is via a parameter stability plot.
Here, we outline how to construct such a plot for an example using the max-mixture distribution of Section 4.2
with Method 2, where our aim is to obtain a sensible range of values for the tuning parameter δ, by considering
the region of δ where the number of cones determined as having mass is stable.
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Figure 4: Stability plot (left) for Method 2, with dashed lines showing a 95% bootstrapped confidence interval
for the number of cones EC with mass, and a plot of the Hellinger distance (right) for each value of δ. The shaded
regions correspond to the stable range of tuning parameter values. Data were simulated from the max-mixture
distribution of Section 4.2 with n = 10, 000, α = 0.25 and ρ = 0.25.

For δ ∈ {0.05, 0.075, . . . , 0.95}, we use Method 2 to estimate the proportion of extremal mass on each cone,
and find the number of cones whose estimated mass is greater than π = 0.001 in each case. The remaining
parameters are fixed as in Section 4.2. Figure 4 shows the estimates of the number of cones, with a 95%
confidence interval constructed from 250 bootstrapped samples: these constitute our stability plot. Analogous
plots can be created to choose p in Method 1, or in each case to choose π. In practice, the choice of threshold
π should depend on the dimension of the data; this is not explored here.

The number of cones detected as having mass is most stable for values of δ between 0.3 and 0.6, indicated
by the shaded regions in Fig. 4, suggesting values of δ in this range may be appropriate for this sample.
The right-hand panel of Fig. 4 shows the Hellinger distance corresponding to the set of estimated proportions
obtained for each value of δ. For this particular sample, although values of δ within the stable range slightly
overestimate the number of cones with mass, the smallest Hellinger distance occurs for a value of δ within
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the stable range, and the Hellinger distance is reasonably consistent across these tuning parameter values. In
practice, the true proportions on each cone EC are unknown, so Hellinger plots cannot be constructed; the
plot here supports the idea of using stability plots in choosing suitable tuning parameter values. There is no
guarantee that stability plots will find the optimal tuning parameter values, but they do offer some insight
into tuning parameter optimization. Consideration of the context of the problem may be useful in determining
whether it is reasonable for extremal mass to be placed on particular combinations of cones, and such insight
could facilitate the choice of different p or δ values for different cones EC .

5 River flow data

We apply Methods 1 and 2 to daily mean river flow readings from 1980 to 2013, measured in cubic metres
per second, at five gauging stations in the North West of England. These data are available from the Centre
for Ecology and Hydrology at nrfa.ceh.ac.uk (Morris and Flavin, 1990, 1994). Estimates of the extremal
dependence structure of the flows could be used to aid model selection, or one could carry out density estimation
on each cone EC to give an overall model. The locations of the five gauges are shown in Fig. 5; the labels assigned
to each location will be used to describe the dependence structures estimated in this section. Figure 5 also
illustrates the boundaries of the catchments associated with each gauge. These catchments demonstrate the
areas from which surface water, usually as a result of precipitation, will drain to each gauge. The spatial
dependence of river flow is studied by Keef et al. (2013) and Asadi et al. (2015). As high river flow is mainly
caused by heavy rainfall, we may observe extreme river flow readings at several locations simultaneously if they
are affected by the same extreme weather event. Gauges with adjacent or overlapping catchments are expected
to take their largest values simultaneously, with stronger dependence between gauges that are closer together.

A

B

C

DE

�

�

�

��

Figure 5: Locations of the river flow gauges, labelled A to E, and corresponding catchment boundaries.

Table 3 shows the percentage of the extremal mass assigned to each cone for tuning parameter values
p ∈ {0.7, 0.725, . . . , 0.975} and δ ∈ {0.2, 0.25, . . . , 0.75}. We set π = 0.01 to be the threshold below which the
proportion of mass is deemed negligible, and the extrapolation levels q to be the 0.999 quantile of the observed
Q and X values in Methods 1 and 2, respectively. Remaining parameters are fixed as in Section 4.2. By
observing how the estimated dependence structure changes over a range of tuning parameter values, we aim
to find a ‘stable region’ in which the results are most reliable. A further consideration is whether the tuning
parameters give a feasible estimate of the extremal dependence structure. In particular, each variable should
be represented on at least one cone, and moment constraint (3) should be taken into account. For Method 2,
Table 3 indicates that for δ ≥ 0.45, the cone corresponding to location E is assigned more than 20% of the
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extremal mass, which is not possible due to the moment constraint. Feasible stable regions are demonstrated
by the shaded regions in Table 3. For Method 2, one could also look for a value of δ that give estimates of τC(δ)
satisfying maxC:C⊇i τ̂C(δ) = 1, subject to estimation uncertainty, for every i = 1, . . . , d.

p B C D E AC AD BC ABC ACD ADE ABCD ACDE ABCDE

0.700 2 3 95
0.725 2 4 93
0.750 1 4 95
0.775 1 11 88
0.800 7 11 82
0.825 10 3 16 71
0.850 13 7 17 63
0.875 12 12 19 1 55
0.900 8 31 15 46
0.925 6 57 2 2 15 19
0.950 5 52 4 2 16 21
0.975 14 1 73 2 1 2 6

δ B C D E AC AD BC ABC ACD ADE ABCD ACDE ABCDE

0.20 1 99
0.25 4 15 81
0.30 3 1 7 24 65
0.35 8 1 9 33 49
0.40 14 3 2 49 30
0.45 27 1 26 1 4 29 12
0.50 22 1 49 1 2 15 2 7
0.55 16 52 1 1 3 18 4 6
0.60 13 55 2 2 19 5 4
0.65 16 3 48 2 2 3 17 6 3
0.70 16 2 4 45 2 3 3 4 13 6 3
0.75 19 3 4 40 1 2 3 5 4 1 11 4 2

Table 3: The percentage of mass assigned to each sub-cone for varying values of the tuning parameters in
Method 1 (left) and Method 2 (right). The grey regions demonstrate the feasible stable ranges.

Focusing on tuning parameter values within each of the stable regions in Table 3, Method 1 suggests the
dependence structure to be {B, E, ABCD, ABCDE}, while Method 2 suggests {B, E, ABC, ABCD, ABCDE}.
All the cones detected by Method 2 are either also detected by Method 1, or are neighbours of cones detected
by Method 1, showing there is some agreement between the methods. If we had used a higher threshold for
the negligible mass, say π = 0.1, for tuning parameter values in the stable region, both methods would have
detected the structure {B, ABCD, ABCDE}. We also investigated the behaviour of the methods using the 0.99
and 0.9999 quantiles for extrapolation level q. For both methods, the set of cones estimated as having mass was
stable, but for the lower quantile Method 2 placed less mass on ABCDE, and there was more mass assigned to
this cone at the higher quantile.

The subsets of locations detected as having simultaneously high river flows seem feasible when considering
the geographic positions of the gauging stations. For instance, both methods suggest mass on ABCD; as station
E lies towards the edge of the region under consideration, it is possible for weather events to affect only the other
four locations. Both methods also suggest that locations B and E can experience high river flows individually;
this seems reasonable as they lie at the edge of region we consider. The catchment of gauge C lies entirely
within the catchment of gauge A. We observe that location C occurs with location A in the subsets of sites
determined to take their largest values simultaneously, which may be a consequence of this nested structure.

p A B C D AC AD BC ABC ACD ABCD

0.700 100
0.725 100
0.750 100
0.775 100
0.800 100
0.825 3 97
0.850 3 97
0.875 4 96
0.900 2 98
0.925 5 1 94
0.950 7 2 5 2 84
0.975 35 3 1 2 7 52

δ A B C D AC AD BC ABC ACD ABCD

0.20 100
0.25 100
0.30 2 98
0.35 4 96
0.40 9 91
0.45 23 1 2 1 72
0.50 28 2 1 1 1 6 60
0.55 19 1 4 2 2 3 14 55
0.60 22 1 4 5 2 4 17 45
0.65 26 2 5 6 3 5 18 36
0.70 26 3 6 5 4 6 20 30
0.75 1 28 4 7 1 6 6 9 17 20

Table 4: Estimated percentage of extremal mass on to each sub-cone when considering locations A-D, for
varying values of the tuning parameters in Method 1 (left) and Method 2 (right).

To assess whether our methods are self-consistent across different dimensions, Table 4 shows similar results
for locations A, B, C and D. We would expect the subsets of locations deemed to be simultaneously large to be
the same as in Table 3 if we ignore location E. Considering the same tuning parameter values as for Table 3, we
see that the extremal dependence structures are estimated to be {B, ABCD} for both methods. For Method 1,
this is the set of cones we would expect based on the five-dimensional results. For Method 2, we would also
expect to detect the cone labelled ABC, although this was only assigned a relatively small proportion of the
mass in the five-dimensional case.

Tables 3 and 4 demonstrate the importance of tuning parameter selection in Methods 1 and 2. As p or δ

14



increase, we are more likely to detect mass on the one-dimensional cones, or cones corresponding to subsets of
the variables with low cardinality. Likewise, for low values of p or δ, we assign more extremal mass to the cone
representing all variables being simultaneously extreme. In practice, we should consider the feasibility of the
detected dependence structures, as well as the stability of the regions determined to have extremal mass as p
or δ vary. Our methods could be used to impose structure in more complete models for multivariate extremes.
Even if a handful of different options look plausible with some variation in p or δ, this is still a huge reduction
over the full set of possibilities.
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Supplementary Material

Supplementary Material includes calculations of τC(δ) for copulas in Table 1, simulation results for estimates
of τC(δ) in Method 2, plots of simulation results for the max-mixture distribution of Section 4.2, and additional
simulation results for the asymmetric logistic model.

Appendix

Calculation of τC(δ) for a bivariate extreme value distribution

We determine the value of τC(δ), defined in (10), by establishing the index of regular variation of

pr
(

Xi > t, i ∈ C;Xj < tδ, j ∈ D \ C
)

.

Here, we calculate τ1(δ), τ2(δ) and τ1,2 for a bivariate extreme value distribution, with distribution function
given in (11). The exponent measure V can be written as

V (x, y) =
2

y

∫ 1

0
(1− w)dH(w) − 2

y

∫ 1

x
x+y

(1− w)h(w)dw +
2

x

∫ 1

x
x+y

wh(w)dw +
2θ1
x

.

To study τ1(δ), suppose that h(w) ∼ c1(1−w)s1 as w → 1, for s1 > −1. For x → ∞ and y = o(x), applying
Karamata’s theorem (Resnick, 2007, Theorem 2.1), we have

V (x, y) =
1

y
− 2c1

y(s1 + 2)

(

y

x+ y

)s1+2

{1 + o(1)}+ 2c1
x(s1 + 1)

(

y

x+ y

)s1+1

{1 + o(1)} + 2θ1
x

=
1

y
+ 2c1

(

y

x+ y

)s1+1{ 1

x(s1 + 1)
− 1

(s1 + 2)(x+ y)

}

{1 + o(1)} + 2θ1
x

=
1

y
+

2c1y
s1+1x−(s1+2)

(s1 + 1)(s1 + 2)
{1 + o(1)} + 2θ1

x
.

By this result,

pr
(

X1 > t,X2 < tδ
)

= pr
(

X2 < tδ
)

− pr
(

X1 < t,X2 < tδ
)

= exp
(

−t−δ
)

− exp
{

−V
(

t, tδ
)}

= exp
(

−t−δ
)

− exp

{

− 1

tδ
− 2c1t

δ(s1+1)t−(s1+2)

(s1 + 1)(s1 + 2)
{1 + o(1)} − 2θ1

t

}
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=
{

1− t−δ + o
(

t−δ
)}

·
(

1−
[

1− 2c1t
δ(s1+1)t−(s1+2)

(s1 + 1)(s1 + 2)
+ o

{

tδ(s1+1)−(s1+2)
}

]

{

1− 2θ1t
−1 + o

(

t−1
)}

)

=

{

2θ1t
−1 +

2c1t
δ(s1+1)−(s1+2)

(s1 + 1)(s1 + 2)

}

{1 + o(1)} .

If θ1 > 0, i.e., the spectral measure places mass on {1}, we see that pr
(

X1 > t,X2 < tδ
)

∼ 2θ1t
−1 as t → ∞,

hence τ1(δ) = 1 for all δ ∈ [0, 1]. If θ1 = 0, we have τ1(δ) = {(s1 + 2) − δ(s1 + 1)}−1, which increases from
(s1 + 2)−1 at δ = 0 to 1 at δ = 1. By similar calculations, if h(w) ∼ c2w

s2 as w → 0 for s2 > −1, we have
τ2(δ) = 1 if θ2 > 0, and τ2(δ) = {(s2 + 2) − δ(s2 + 1)}−1 otherwise. Since τ1,2 = η1,2, we have τ1,2 = 1 if
θ1 + θ2 < 1, and τ1,2 = 1/2 if θ1 + θ2 = 1.
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Supplementary Material

A Calculation of τC(δ)

A.1 Overview

In the Appendix, we derived τ1(δ), τ2(δ) and τ1,2 for a particular subclass of bivariate extreme value distribution.
Here, we present further calculations of τC(δ) for several trivariate copula models.

In general, there are two cases to consider: δ = 0 and δ > 0. For many models, the asymptotic relations we
study will differ by a constant in these two cases, while the tail index remains the same. For this reason, we
focus on δ > 0, and present δ = 0 calculations separately only when the slowly varying function is no longer a
constant, but instead varies with t.

A.2 Independence copula

We begin by considering the case where all three variables X1,X2,X3 are independent. To calculate the value
of τC(δ), we need to determine the index of regular variation of

pr
(

Xi > t, i ∈ C;Xj < tδ, j ∈ D \ C
)

.

In the independence case, this is equivalent to

pr (Xi > t)|C| pr
(

Xi < tδ
)|D\C|

=
(

1− e−1/t
)|C| (

e−1/tδ
)|D\C|

∼ t−|C|,

so that τC(δ) = 1/|C|, which does not depend on the value of δ. That is, τ1(δ) = τ2(δ) = τ3(δ) = 1,
τ1,2(δ) = τ1,3(δ) = τ2,3(δ) = 1/2, and τ1,2,3 = 1/3.

A.3 Trivariate logistic distribution

The trivariate extreme value logistic distribution belongs to the class of trivariate extreme value distributions.
The exponent measure of the logistic distribution has the form

V (x, y, z) =
(

x−1/α + y−1/α + z−1/α
)α

, (22)

for α ∈ (0, 1]. Since α = 1 corresponds to the independence case, we restrict our calculations to α ∈ (0, 1).
This distribution exhibits asymptotic dependence, with all limiting mass on E1,2,3. Since τ1,2,3 = η1,2,3 = 1, our
interest lies with the values of τC(δ) for |C| = 1 and |C| = 2, and we consider each of these in turn.
|C| = 1: τ1(δ), τ2(δ), τ3(δ). In a similar approach to the bivariate case, we calculate τ1(δ) by considering

pr
(

X1 > t,X2 < tδ,X3 < tδ
)

= pr
(

X2 < tδ,X3 < tδ
)

− pr
(

X1 < t,X2 < tδ,X3 < tδ
)

= exp
(

−2αt−δ
)

− exp
[

−2αt−δ
{

1 + 2−1t(δ−1)/α
}α]

= 1− 2αt−δ +O(t−2δ)− exp
(

−2αt−δ
[

1 + 2−1αt(δ−1)/α +O
{

t2(δ−1)/α
}])

= 2α−1αt(δ−1−αδ)/α +O(t−2δ) +O
{

t(2δ−2−αδ)/α
}

∼ 2α−1αt(δ−1−αδ)/α ,

yielding τ1(δ) = α/(1+αδ− δ). By similar calculations, we have τ2(δ) = τ3(δ) = α/(1+αδ− δ), which increase
from α < 1 at δ = 0 to 1 at δ = 1.
|C| = 2: τ1,2(δ), τ1,3(δ), τ2,3(δ). We carry out a similar calculation to find the value of τ1,2(δ). Here, we have

pr
(

X1 > t,X2 > t,X3 < tδ
)

= pr
(

X3 < tδ
)

− pr
(

X1 < t,X3 < tδ
)

− pr
(

X2 < t,X3 < tδ
)
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+ pr
(

X1 < t,X2 < t,X3 < tδ
)

= exp
(

−t−δ
)

− 2 exp
{

−
(

t−1/α + t−δ/α
)α}

+ exp
{

−
(

2t−1/α + t−δ/α
)α}

= exp
(

−t−δ
)

{

1− 2 exp

(

−t−δ

[

αt(δ−1)/α +
1

2
α(α − 1)t2(δ−1)/α +O

{

t3(δ−1)/α
}

])

+ exp
(

−t−δ
[

2αt(δ−1)/α + 2α(α − 1)t2(δ−1)/α +O
{

t3(δ−1)/α
}])

}

=
{

1− t−δ +O
(

t−2δ
)}[

α(1 − α)t(2δ−2−αδ)α +O
{

t(3δ−3−αδ)/α
}]

∼ α (1− α) t(2δ−2−αδ)/α.

This implies that τ1,2(δ) = α/ (2 + αδ − 2δ), which varies from α/2 at δ = 0 to 1 at δ = 1. Similarly, we have
τ1,3(δ) = τ2,3(δ) = α/ (2 + αδ − 2δ).

These calculations reveal different indices of regular variation on cones EC with |C| = 1, 2 in the trivariate
logistic case.

A.4 Trivariate distribution with extremal mass on one vertex and one edge

Now we consider a trivariate example where the extremal mass is placed on one cone EC with |C| = 1, and
another with |C| = 2. This can be achieved by taking (X1,X2) to have a bivariate extreme value logistic
distribution, and X3 to be a standard Fréchet random variable independent of (X1,X2). The exponent measure
in this case has the form

V (x, y, z) =
(

x−1/α + y−1/α
)α

+ z−1, α ∈ (0, 1).

|C| = 1: τ1(δ), τ2(δ), τ3(δ). We first consider the index of regular variation on the cone E1. Following a similar
procedure to previously, and exploiting the independence of (X1,X2) and X3, we have

pr
(

X1 > t,X2 < tδ,X3 < tδ
)

= pr
(

X3 < tδ
){

pr
(

X2 < tδ
)

− pr
(

X1 < t,X2 < tδ
)}

= exp
(

−t−δ
)(

exp
(

−t−δ
)

− exp
[

−t−δ
{

1 + t(δ−1)/α
}α])

= exp
(

−2t−δ
){

1− exp
(

−t−δ
[

αt(δ−1)/α +O
{

t2(δ−1)/α
}])}

=
{

1− 2t−δ +O
(

t−2δ
)} [

αt(δ−1−αδ)/α +O
{

t(2δ−2−αδ)/α
}]

∼ αt(δ−1−αδ)/α ,

revealing that τ1(δ) = α/(1+αδ− δ). By similar calculations, τ2(δ) = α/(1+αδ− δ). For the cone E3, we have
τ3(δ) = 1, since

pr
(

X1 < tδ,X2 < tδ,X3 > t
)

= pr (X3 > t) pr
(

X1 < tδ,X2 < tδ
)

=
(

1− e−1/t
)

exp
{

−
(

t−δ/α + t−δ/α
)α}

=
(

1− e−1/t
)

exp
(

−2αt−δ
)

=
{

t−1 +O
(

t−2
)}

{

1− 2αt−δ +O
(

t−2δ
)}

∼ t−1.

|C| = 2: τ1,2(δ), τ1,3(δ), τ2,3(δ). We begin by showing that τ1,2(δ) = 1. We have

pr
(

X1 > t,X2 > t,X3 < tδ
)

= pr
(

X3 < tδ
)

{1− pr (X1 < t)− pr (X2 < t) + pr (X1 < t,X2 < t)}

= exp
(

−t−δ
)

{

1− 2 exp (−1/t) + exp
(

−2αt−1
)}

=
{

1− t−δ +O
(

t−2δ
)}

{

(2− 2α) t−1 +O(t−2)
}

∼ (2− 2α) t−1.
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Next, we consider the cone E1,3. In this case, we have

pr
(

X1 > t,X2 < tδ,X3 > t
)

= pr (X3 > t)
{

pr
(

X2 < tδ
)

− pr
(

X1 < t,X2 < tδ
)}

= {1− exp (−1/t)}
[

exp
(

−t−δ
)

− exp
{

−
(

t−1/α + t−δ/α
)α}]

=
{

t−1 +O
(

t−2
)}

exp
(

−t−δ
)(

1− exp
[

−αt(δ−1−αδ)/α +O
{

t(2δ−2−αδ)/α
}])

=
{

t−1 +O
(

t−2
)}

{

1− t−δ +O
(

t−2δ
)} [

αt(δ−1−αδ)/α +O
{

t(2δ−2−αδ)/α
}]

∼ αt(δ−1−αδ−α)/α ,

so we have τ1,3(δ) = α/(αδ + 1+ α− δ). Again by symmetry, τ2,3(δ) = α/(αδ + 1+ α− δ). These indices vary
from α/(1 + α) at δ = 0 to 1/2 at δ = 1.
|C| = 3: τ1,2,3. Finally, we consider the cone E1,2,3, where

pr (X1 > t,X2 > t,X3 > t)

= pr (X3 > t) {1− pr (X1 < t)− pr (X2 < t) + pr (X1 < t,X2 < t)}
= {1− exp (−1/t)}

{

1− 2 exp (−1/t) + exp
(

−2αt−1
)}

=
{

t−1 +O
(

t−2
)}{

(2− 2α) t−1 +O
(

t−2
)}

∼ (2− 2α) t−2,

i.e., τ1,2,3 = 1/2.

A.5 Trivariate inverted logistic distribution

Next, we consider an inverted trivariate extreme value distribution, defined via its distribution function

pr(X1 < x,X2 < y,X3 < z)

= 1−
{

FX1
(x′) + FX2

(y′) + FX3
(z′)
}

+
{

FX1,X2
(x′, y′) + FX1,X3

(x′, z′) + FX2,X3
(y′, z′)

}

− FX1,X2,X3
(x′, y′, z′),

where FX1,X2,X3
denotes the corresponding trivariate extreme value distribution function; FX1,X2

, FX1,X3
and

FX2,X3
are the corresponding bivariate distribution functions; FX1

, FX2
and FX3

are the marginal distributions
of X1, X2 and X3; and noting that − log

(

1− e−1/x
)

= − log
{

x−1 +O(x−2)
}

,

x′ = − 1

log
(

1− e−1/x
) ∼ 1

log x
,

as x → ∞, with y′, z′ defined analogously. In the case of the trivariate inverted logistic distribution, which we
focus on here, FX1,X2,X3

(x, y, z) = exp {−V (x, y, z)}, for V defined as in (22). The inverted logistic distribution
exhibits asymptotic independence, placing all extremal mass on the cones EC with |C| = 1. We will show that
τ1(δ) = τ2(δ) = τ3(δ) = 1 for this model, and then calculate τ1,2(δ), τ1,3(δ), τ2,3(δ) and τ1,2,3.
|C| = 1: τ1(δ), τ2(δ), τ3(δ). To begin, we focus on calculating τ1(δ) for δ > 0, by considering

pr
(

X1 > t,X2 < tδ,X3 < tδ
)

= pr (X1 > t)− pr
(

X1 > t,X2 > tδ
)

− pr
(

X1 > t,X3 > tδ
)

+ pr
(

X1 > t,X2 > tδ,X3 > tδ
)

=
(

1− e−1/t
)

− 2 exp

(

−
[

{

log t+O
(

t−1
)}1/α

+
{

δ log t+O
(

t−2δ
)}1/α

]α)

+ exp

(

−
[

{

log t+O
(

t−1
)}1/α

+ 2
{

δ log t+O
(

t−2δ
)}1/α

]α)

=
{

t−1 +O
(

t−2
)}

− 2 exp
[

−
(

1 + δ1/α
)α

log t+O
{

(t log t)−1
}

]
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+ exp
[

−
(

1 + 2δ1/α
)α

log t+O
{

(t log t)−1
}

]

=
{

t−1 − 2t−(1+δ1/α)
α

+ t−(1+2δ1/α)
α}

{1 + o(1)} ∼ t−1,

so we have τ1(δ) = 1 for δ > 0.
For δ = 0, we consider variables X∗

1 ,X
∗
2 ,X

∗
3 defined via truncation (7), and study

pr (X∗
1 > t,X∗

2 = 0,X3 = 0) = pr (X1 > t,X2 < −1/ log p,X3 < −1/ log p)

= pr (X1 > t)− pr (X1 > t,X2 > −1/ log p)− pr (X1 > t,X3 > −1/ log p)

+ pr (X1 > t,X2 > −1/ log p,X3 > −1/ log p)

=
{

t−1 +O
(

t−2
)}

− 2 exp
(

−
[

{

log t+O
(

t−1
)}1/α

+ {− log(1− p)}1/α
]α)

+ exp
(

−
[

{

log t+O
(

t−1
)}1/α

+ 2 {− log(1− p)}1/α
]α)

=
{

t−1 +O
(

t−2
)}

− 2 exp

{

−
{

log t+O
(

t−1
)}

(

1 +

[ − log(1− p)

{log t+O (t−1)}

]1/α
)α}

+ exp

{

−
{

log t+O
(

t−1
)}

(

1 + 2

[ − log(1− p)

{log t+O (t−1)}

]1/α
)α}

=
{

t−1 +O
(

t−2
)}

− 2 exp

[

−
{

log t+O
(

t−1
)}

− α
{− log(1− p)}1/α

{log t+O (t−1)}1/α−1

− α(α − 1)

2

{− log(1− p)}2/α

{log t+O (t−1)}2/α−1
+ o

{

(log t)1−2/α
}

]

+ exp

[

−
{

log t+O
(

t−1
)}

− 2α
{− log(1− p)}1/α

{log t+O (t−1)}1/α−1

− 2α(α − 1)
{− log(1− p)}2/α

{log t+O (t−1)}2/α−1
+ o

{

(log t)1−2/α
}

]

=
{

t−1 +O
(

t−2
)}

+ t−1

(

− 2 exp

[

− α
{− log(1− p)}1/α

{log t+O (t−1)}1/α−1

+
α(1 − α)

2

{− log(1− p)}2/α

{log t+O (t−1)}2/α−1
+ o

{

(log t)1−2/α
}

+O
(

t−1
)

]

+ exp

[

− 2α
{− log(1− p)}1/α

{log t+O (t−1)}1/α−1

+ 2α(1 − α)
{− log(1− p)}2/α

{log t+O (t−1)}2/α−1
+ o

{

(log t)1−2/α
}

+O
(

t−1
)

])

∼ t−1

(log t)2/α−1

[

α(1 − α) {− log(1− p)}2/α
]

,

as t → ∞, which is regularly varying of order −1. As such, the index of regular variation is τ1(δ) = 1 for δ = 0.
Combining these results, τ1(δ) = 1 for all δ ∈ [0, 1]. By symmetric arguments, τ2(δ) = τ3(δ) = 1 for all δ ∈ [0, 1].
|C| = 2: τ1,2(δ), τ1,3(δ), τ2,3(δ). We first consider the cone E1,2. For δ > 0, we have

pr
(

X1 > t,X2 > t,X3 < tδ
)

= pr (X1 > t,X2 > t)− pr
(

X1 > t,X2 > t,X3 > tδ
)
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= exp
[

−2α
{

− log
(

1− e−1/t
)}]

− exp

(

−
[

2
{

− log
(

1− e−1/t
)}1/α

+
{

− log
(

1− e−1/tδ
)}1/α

]α)

=
(

1− e−1/t
)2α

− exp

(

−
[

2
{

log t+O
(

t−1
)}1/α

+
{

δ log t+O
(

t−2δ
)}1/α

]α)

= t−2α +O
(

t−1−2α
)

− exp
[

−
(

2 + δ1/α
)α

log t+O
{

(t log t)−1
}]

∼ t−2α ,

i.e., τ1,2(δ) = 2−α, δ > 0. For δ = 0, using similar arguments as for the |C| = 1 case, we have

pr (X∗
1 > t,X∗

2 > t,X∗
3 = 0) = pr (X1 > t,X2 > t,X3 < −1/ log p)

= pr (X1 > t,X2 > t)− pr (X1 > t,X2 > t,X3 > −1/ log p)

= exp
[

−2α
{

log t+O
(

t−1
)}]

− exp
(

−
[

2
{

log t+O
(

t−1
)}1/α

+ {− log(1− p)}1/α
]α)

= exp
[

−2α
{

log t+O
(

t−1
)}]

·
(

1− exp

[

−α2α−1 {− log(1− p)}1/α

{log t+O (t−1)}−1+1/α
+ o

{

(log t)1−2/α
}

])

∼ t−2α

(log t)−1+1/α
α2α−1{− log(1− p)}1/α,

as t → ∞. As such, the index of regular variation is τ1,2(δ) = 2−α for all δ ∈ [0, 1]. By analogous arguments,
we also have τ1,3(δ) = τ2,3(δ) = 2−α, δ ∈ [0, 1].
|C| = 3: τ1,2,3. To calculate the index of regular variation for cone E1,2,3, we consider

pr (X1 > t,X2 > t,X3 > t) = exp
{

log
(

1− e−1/t
)

V (1, 1, 1)
}

=
(

1− e−1/t
)V (1,1,1)

=
{

1− 1 + t−1 +O(t−2)
}3α ∼ t−3α ,

so τ1,2,3 = 3−α. This corresponds to the known value of η1,2,3 for the trivariate inverted logistic distribution, as
η1,2,3 = V (1, 1, 1)−1 = 3−α.

A.6 Multivariate Gaussian distribution

The multivariate Gaussian provides a further example of a distribution which asymptotically places all mass
on cones EC with |C| = 1. In the case where d = 3, for a multivariate Gaussian distribution with covariance
matrix Σ, Nolde (2014), for example, shows that

η1,2,3 =
(

1T3 Σ
−113

)−1
; ηi,j =

(

1T2 Σ
−1
i,j 12

)−1
, i < j ∈ {1, 2, 3},

where Σi,j is the submatrix of Σ corresponding to variables i and j, and 1d ∈ R
d is a vector of 1s.

The covariance matrix Σ may be written as

Σ =





1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1



 =

[

Σ12 B
BT 1

]

, where Σ12 =

[

1 ρ12
ρ12 1

]

and B =

[

ρ13
ρ23

]

.

We note that since Σ and Σ12 are covariance matrices, they must be positive definite, with det (Σ) =
1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23 > 0 and det (Σ12) = 1− ρ212 > 0. The inverse of Σ is given by the block matrix

Σ−1 =

[

Σ−1
12 +Σ−1

12 B(1−BTΣ−1
12 B)−1BTΣ−1

12 −Σ−1
12 B(1−BTΣ−1

12 B)−1

−(1−BTΣ−1
12 B)−1BTΣ−1

12 (1−BTΣ−1
12 B)−1

]

,
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so that

1T3 Σ
−113 = 1T2 Σ

−1
12 12 + (1−BTΣ−1

12 B)−1
(

1− 1T2 Σ
−1
12 B −BTΣ−1

12 12 + 1T2 Σ
−1
12 BBTΣ−1

12 12
)

= 1T2 Σ
−1
12 12 +

1− ρ212
1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23

(

1− 21T2 Σ
−1
12 B + 1T2 Σ

−1
12 BBTΣ−1

12 12
)

= 1T2 Σ
−1
12 12 +

det(Σ12)

det(Σ)

(

1− 1T2 Σ
−1
12 B

)2

= 1T2 Σ
−1
12 12 +

det(Σ12)

det(Σ)

(

1− ρ13 + ρ23
1 + ρ12

)2

≥ 1T2 Σ
−1
12 12,

with equality if and only if 1 + ρ12 = ρ13 + ρ23. By similar calculations,

1T3 Σ
−113 ≥ 1T2 Σ

−1
i,j 12, i < j ∈ {1, 2, 3},

with equality if and only if 1+ρij = ρik+ρjk, in which case η1,2,3 = ηi,j . Applying Theorem 2, for this trivariate
case, if 1 + ρC 6= ∑

C′:|C′|=2,C′ 6=C

ρC′ for all C ⊂ {1, 2, 3} with |C| = 2, then τC(1) = ηC for any set C ⊆ {1, 2, 3}

with |C| ≥ 2. Since τC(δ) is non-decreasing in δ, τC(δ) ≤ ηC for δ ∈ [0, 1). We also know τ1,2,3 = η1,2,3.
In this case, calculation of the explicit formulas for δ < 1, in a manner similar to the inverted logistic case, is

complicated by the need to consider asymptotic approximations of Gaussian cumulative distribution functions
beyond first order. As such, we do not attempt this here, but note that since τC(1) ≤ ηC , |C| ≥ 2, we would be
likely to estimate τC(δ) < 1 in practice.

To gain some insight into the remaining cases of C = {i}, i = 1, 2, 3, we consider the conditional ex-
treme value model of Heffernan and Tawn (2004). Let Y = logX, so that Y has standard Gumbel marginal
distributions, and all correlations be positive. Then conditioning on Yi gives

pr
(

Yj − ρ2ijt ≤ t1/2zj , Yk − ρ2ikt ≤ t1/2zk, Yi > t
)

∼ N(zj , zk)pr(Yi > t), t → ∞,

for N(zj , zk) denoting the distribution function of a particular Gaussian distribution (Heffernan and Tawn,
2004, Section 8). For zj = zk = 0, this equates to

pr
(

Yj ≤ ρ2ijt, Yk ≤ ρ2ikt, Yi > t
)

∼ N(0, 0)pr(Yi > t), t → ∞. (23)

In the trivariate case with Gumbel margins, equation (10) of Assumption 1 can be written as

pr (Yj ≤ δt, Yk ≤ δt, Yi > t) ∈ RV−1/τC (δ), t → ∞.

Considering equation (23) again, we see that if δ ≥ max
(

ρ2ij , ρ
2
ik

)

, in place of the limiting Gaussian distribution,

mass will occur at (−∞,−∞) for variables (Yj , Yk), which implies that τi(δ) = 1. Alternatively, if ρ2ij ≤ δ < ρ2ik

or ρ2ik ≤ δ < ρ2ij , we have mass at (−∞,∞) or (∞,−∞), respectively, and for δ < min
(

ρ2ij , ρ
2
ik

)

mass occurs at

(∞,∞). In these cases, the left-hand side of equation (23) is o {pr (Yi > t)}, which is consistent with τi(δ) < 1.

B Simulation study

B.1 Estimation of τC(δ) in Method 2

In Method 2, introduced in Section 3.3 of the paper, we consider regions of the form

ẼC =
{

x ∈ E : x
D\C
∨ ≤

(

xC∧
)δ
}

, |C| < d; ẼD = E \
⋃

C∈2D\∅:|C|<d

ẼC ,

for C ∈ 2D \ ∅, and assume that pr
(

XC
∧ > q,X ∈ ẼC

)

∈ RV−1/τ̃C(δ), for X
C
∧ = mini∈C Xi. This is used as an

alternative to considering pr
(

XC
∧ > t,X

D\C
∨ ≤ tδ

)

∈ RV−1/τC (δ), for which there is no clear structure variable.
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In Fig. 6, we demonstrate how well the parameter τC(δ) is approximated using Method 2. We consider the
trivariate logistic distribution, with theoretical τC(δ) values given in case (iii) of Table 1. For α = 0.25 and
α = 0.5, we take samples of size 100,000 from this distribution, and use Method 2 to estimate τ̃1(δ), τ̃1,2(δ)
and τ̃1,2,3 for values of δ ∈ {0.1, . . . , 0.95}. The thresholds used correspond to the 0.985 quantile of observed
XC

∧ values in each region ẼC . Each simulation is repeated 100 times, and the true τC(δ) parameter values are
shown in grey.

The results indicate that the estimator derived from considering pr
{

XC
∧ > t,X

D\C
∨ ≤

(

XC
∧

)δ
}

yields τC(δ)

as defined through pr
(

XC
∧ > t,X

D\C
∨ ≤ tδ

)

. We observe increased variability in the estimates of τ̃1(δ) and

τ̃1,2(δ) for small values of δ, and τ̃1,2,3 for large values of δ, which is likely due to the limited data in the
corresponding regions ẼC for these cases.
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Figure 6: Estimates of τ1(δ), τ1,2(δ) and τ1,2,3 for data simulated from trivariate logistic distributions with
α = 0.25 (top) and α = 0.5 (bottom).

B.2 Area under the receiver operating characteristic curve results for the max-mixture

distribution

In Table 2 of the main paper, we present the average area under the receiver operating characteristic curve for
Method 1, Method 2 and the approach of Goix et al. applied to samples taken from a particular max-mixture
distribution. Figure 7 provides boxplots of all the values obtained in these simulations.

B.3 Asymmetric logistic distribution

We now present simulation results for the asymmetric logistic distribution, using the same metrics as for the
max-mixture distribution in Section 4 of the paper. This model belongs to the class of multivariate extreme
value distributions, and it is possible to calculate the proportion of extremal mass associated with each cone
EC .

In standard Fréchet margins, the multivariate extreme value distribution function is of the form exp {−V (x)}.
Coles and Tawn (1991) show that the spectral density corresponding to cone EC is hC (wC) = −V {C}(wC)/d,
where

V {C}(xC) = lim
xj→0:j∈D\C

(

∏

i∈C

∂

∂xi

)

V (x), xC = {xi : i ∈ C},
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Figure 7: Area under the receiver operating characteristic curve results for 100 simulations from a five-
dimensional max-mixture distribution.

for wC = xC/rC and rC =
∑

i∈C xi. Hence, for BC = {w ∈ Sd−1 : wi ∈ (0, 1], i ∈ C; wj = 0, j ∈ D \ C}, the
proportion of mass on corresponding cone EC is

pC = −1

d

∫

BC

V {C}(wC)
∏

i∈C

dwi. (24)

For the asymmetric logistic model (Tawn, 1990), the exponent measure V is defined as

V (x) =
∑

C∈2D\∅

{

∑

i∈C

(θi,C/xi)
1/αC

}αC

, θi,C ∈ [0, 1], (25)

with θi,C = 0 if i /∈ C,
∑

C∈2D\∅

θi,C = 1 for all i = 1, . . . , d and C ∈ 2D\∅, and dependence parameters αC ∈ (0, 1].

In Proposition 1 of Section C, we show that for the d-dimensional asymmetric logistic model with all αC ≡ α,
the proportion of mass on cone EC is

p
(d)
C =

∑

i∈C

θi,C/d, C ∈ 2D \ ∅.

Using this new result, we can compare our estimated proportions to the truth using the Hellinger distance
defined in equation (20) of the paper.

Following Goix et al. (2017), we simulate data from an asymmetric logistic distribution with αC ≡ α, whose
extremal mass is concentrated on f randomly chosen sub-cones, ensuring that moment constraint (3) is satisfied.
Suppose the sub-cones chosen correspond to subsets F1, . . . , Ff ∈ 2D \ ∅. The conditions on the parameters of
the asymmetric logistic distribution are satisfied by setting

θi,C = |{j : i ∈ Fj , j ∈ {1, . . . , f}}|−1 , C ∈ {F1, . . . , Ff}, (26)

and θi,C = 0 otherwise. We present results for dimensions d = 5 and d = 10. For d = 5, we simulate samples of
size n = 10, 000, and test both our methods when there are truly 5, 10 and 15 cones EC with extremal mass.
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For d = 10, we have n = 100, 000 samples, and consider 10, 50 and 100 cones with extremal mass. We set the
tuning parameters as in Section B.3 of the paper, and repeat each setting 100 times. In Table 5, we present
the average area under the receiver operating characteristic curve for α ∈ {0.25, 0.5, 0.75}. Boxplots of the full
results obtained are provided in Figs. 8 and 9. In the asymmetric logistic model, the closer αC is to 1, the
larger the values of τC(δ) for any fixed δ and C ⊂ C, as demonstrated by cases (ii) and (iii) in Table 1. Thus,
the larger the value of α in our simulations, the more difficult it is to determine which cones EC truly contain
extremal mass.

(α, f) (0.25, 5) (0.25, 10) (0.25, 15) (0.5, 5) (0.5, 10) (0.5, 15) (0.75, 5) (0.75, 10) (0.75, 15)

Goix et al. 100 (0.1) 99.7 (0.5) 99.0 (1.3) 100 (0.2) 99.8 (0.5) 99.4 (0.9) 98.6 (1.7) 91.1 (4.9) 87.1 (7.1)
Method 1 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.1) 99.9 (0.3) 92.5 (4.1) 87.0 (5.5) 85.6 (7.3)
Method 2 100 (0.0) 100 (0.0) 100 (0.0) 99.7 (0.6) 98.5 (1.8) 96.8 (3.2) 85.4 (4.3) 84.4 (5.7) 84.7 (7.5)

(α, f) (0.25, 10) (0.25, 50) (0.25, 100) (0.5, 10) (0.5, 50) (0.5, 100) (0.75, 10) (0.75, 50) (0.75, 100)

Goix et al. 100 (0.0) 100 (0.0) 100 (0.1) 100 (0.0) 100 (0.0) 99.8 (0.1) 99.5 (0.2) 98.8 (0.1) 96.9 (0.5)
Method 1 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 99.9 (0.0) 99.6 (0.1) 98.5 (0.4) 96.0 (0.8)
Method 2 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 99.6 (0.1) 99.2 (0.1) 99.0 (0.1) 98.8 (0.2) 97.9 (0.4)

Table 5: Average areas under the receiver operating characteristic curves, given as percentages, for 100 samples
from five-dimensional (top) and ten-dimensional (bottom) asymmetric logistic distributions, with dependence
parameter α and θi,C determined via (26). Standard deviations of these results are given in brackets.

The average areas under the receiver operating characteristic curves in Table 5 show that all three methods
perform well when α = 0.25 and α = 0.5, for both d = 5 and d = 10, with Method 1 slightly outperforming the
other two approaches. The results suggest that the method of Goix et al. (2017) is generally the most successful
classifier when α = 0.75, followed by Method 1, although the most substantial difference in results occurs for
(d, f, α) = (10, 100, 0.75), where Method 2 is most successful; this is supported by the boxplots of results in
Figs. 8 and 9. In principle, Method 1 should be better than Method 2 here, so greater assessment of tuning
parameters may be required. It is possible that the method of Goix et al. is most successful for larger values of
α since it is more difficult for Methods 1 and 2 to distinguish between regions where τC(δ) does and does not
equal 1 in these cases.

Figure 10 shows the average Hellinger distance for α ∈ [0.1, 0.9] for each of the cases described above. For
the most sparse cases, (d, f) = (5, 5) and (d, f) = (10, 10), Method 1 performs significantly better than the other
two approaches overall. For the less sparse cases, (d, f) = (5, 15) and (d, f) = (10, 100), the three methods give
similar results in terms of the Hellinger distance for α ≤ 0.5, but the method of Goix et al. is most successful
for larger α values. When the extreme values are concentrated on fewer cones EC , it may be easier to estimate
true values of τC(δ) = 1 using Method 1 than in less sparse examples. For the asymmetric logistic distribution,
Method 1 often performs better in terms of estimating the proportion of extremal mass on each cone EC , while
the method of Goix et al. (2017) is better at classification, although this method does tend to place mass on
too many cones EC , as shown in Fig. 3 of the paper.

C Calculating the mass on each cone EC for an asymmetric logistic model

Proposition 1. For the d-dimensional asymmetric logistic model with exponent measure (25) and αC ≡ α ∈
(0, 1) for all C ∈ 2D \ ∅,

dp
(d)
C =

∑

i∈C

θi,C ,

where p
(d)
C denotes the proportion of mass on cone EC .

Proof. Consider the exponent measure of the asymmetric logistic model V (x) as a sum of functions VC(xC),
for C ∈ 2D \ ∅, i.e.,

V (x) =
∑

C∈2D\∅

VC(xC), VC(xC) =

{

∑

i∈C

(

θi,C
xi

)1/α
}α

.
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Figure 8: Areas under the receiver operating characteristic curves for 100 simulations from a five-dimensional
asymmetric logistic distribution.
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Figure 9: Areas under the receiver operating characteristic curves for 100 simulations from a ten-dimensional
asymmetric logistic distribution.
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Figure 10: Mean Hellinger distance, 0.05 and 0.95 quantiles over 100 simulations. Method 1: solid lines;
Method 2: dashed lines; Goix et al.: dotted lines.

Then for any dimension d ≥ |C|,

V {C}(xC) =

(

∏

i∈C

∂

∂xi

)

VC(xC) =







|C|−1
∏

i=0

−
(

α− i

α

)











∏

i∈C

θ
1/α
i,C

x
1+1/α
C,i





{

∑

i∈C

(

θi,C
xC,i

)1/α
}α−|C|

,

since for C ⊃ C, lim
xi→0:i∈C\C

(

∏

j∈C

∂
∂xj

)

VC(xC) = 0. Hence, by result (24),

dp
(d)
C = −

∫

BC

V {C}(wC)
∏

i∈C

dwi, (27)

which we note does not depend on d. We claim that

−
∫

BC

V {C}(wC)
∏

i∈C

dwi =
∑

i∈C

θi,C . (28)

First consider |C| = 1, i.e. BC = {w : wi = 1} for C = {i}. Here,

V {i}(xi) =
∂

∂xi
Vi(xi) = −θi,i

x2i
,

so

dp
(d)
i =

θi,i
w2
i

∣

∣

∣

wi=1
= θi,i, i = 1, . . . , d.

Now consider |C| = 2. We have

V {i,j}(xi, xj) =

(

α− 1

α

)

{

(1− θi,i)(1− θj,j)
}1/α

(xixj)1+1/α

{(

θi,ij
xi

)1/α

+

(

θj,ij
xj

)1/α}α−2

,
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so

hi,j(wi) =

(

1− α

α

)

(

θi,ijθj,ij
)1/α

{

wi(1− wi)
}1+1/α

{(

θi,ij
wi

)1/α

+

(

θj,ij
1− wi

)1/α}α−2

,

and

dp
(d)
i,j =

∫ 1

0
hi,j(wi)dwi. (29)

However, taking d = 2, we know 2p
(2)
1,2 + 2p

(2)
1 + 2p

(2)
2 = 2, so dp

(d)
1,2 = θ1,12 + θ2,12, and similarly, by (29),

∫ 1
0 hi,j(wi)dwi = dp

(d)
i,j = θi,ij +θj,ij. So, (27) holds for |C| = 1 and |C| = 2, and we suppose it holds for |C| ≤ k,

i.e. dp
(d)
C = −

∫

BC
V {C}(wC)

∏

i∈C
dwi =

∑

i∈C
θi,C .

Since (27) does not depend on d, take d = k + 1. So for all C with |C| ≤ k, (k + 1)p
(k+1)
C =

∑

i∈C
θi,C . Now

take C = {1, . . . , k + 1}. Then,

(k + 1)p
(k+1)
C = (k + 1)−

∑

C⊂C

∑

i∈C

θi,C = (k + 1)−
∑

i∈C

∑

C⊂C

θi,C

=
∑

i∈C



1−
∑

C⊂C

θi,C





=
∑

i∈C

θi,C .

As such, (28) holds by induction.
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Goix, N., Sabourin, A., and Clémençon, S. (2016). Sparse representation of multivariate extremes with applica-
tions to anomaly ranking. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, volume 51, pages 75–83, Cadiz, Spain. PMLR.
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