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Maximal left ideals in Banach algebras

M. Cabrera Garcia, H. G. Dales, and A. Rodriguez Palacios

ABSTRACT

Let A be a Banach algebra. Then frequently each maximal left ideal in A is closed, but there
are easy examples that show that a maximal left ideal can be dense and of codimension 1 in A.
It has been conjectured that these are the only two possibilities: each maximal left ideal in a
Banach algebra A is either closed or of codimension 1 (or both). We shall show that this is the
case for many Banach algebras that satisfy some extra condition, but we shall also show that
the conjecture is not always true by constructing, for each n € N, examples of Banach algebras
that have a dense maximal left ideal of codimension n. In particular, we shall exhibit a semi-
simple Banach algebra with this property. We shall show that the questions concerning maximal
left ideals in a Banach algebra A that we are considering are related to automatic continuity
questions: When are A-module homomorphisms from A into simple Banach left A-modules
automatically continuous?

1. Introduction

Let A be an algebra, so that A is a linear algebra over a field K that is either the real or complex
field and A is associative unless stated otherwise. A left ideal in A is a linear subspace I of A
such that ax € I whenever a € A and x € I; a left ideal M is maximal if M # A andif I = M
or I = A whenever I is a left ideal in A with I D M. In this paper, we shall consider when all
maximal left ideals in a Banach algebra are necessarily either closed or of codimension 1, and
we shall give some positive results. However, we shall also show that, given n € N, there are
Banach algebras A with a maximal left ideal M such that M is dense and has codimension n in
A. We can also arrange that A be primitive, and hence semi-simple, or a Banach x-algebra or
such that A factors. We do not know whether there exists a Banach algebra A that has a dense
maximal left ideal of infinite codimension in A; the existence of such an example is equivalent
to that of a Banach algebra A that has a discontinuous left A-module homomorphism into an
infinite-dimensional, simple Banach left A-module.

Throughout, we shall concentrate on maximal left ideals in Banach algebras; for us, a normed
algebra A is an algebra A with a norm || - || with respect to which (A, || - ||) is a normed space and
[lad]] < ||lall ||b]l (a,b € A), and A is a Banach algebra if (A, || - ||) is complete. For the theory of
normed and Banach algebras, see [1, 2, 3, 4, 10]. A Banach x-algebra is a Banach algebra A
with a conjugate-linear involution * such that (ab)* = b*a* (a,b € A); for the theory of Banach
x-algebras, see, in particular, [10]. For example, every C*-algebra is a Banach *-algebra.

We shall also make a few remarks about non-associative algebras.

We first recall some standard notation.

For n € N, set N,, = {1,...,n}; the real and complex fields are R and C, respectively; set
I = [0, 1], the closed unit interval in R, and D = {z € C : |z| < 1}, the open unit disc in C. The
closed unit ball centred at 0 of a Banach space E is denoted by Ejy; the dual space to £ is .

Let A be an algebra. The opposite algebra to A is A°P; here the product in A°P of ¢ and b in
A is ba. The centre of A is denoted by 3(A), so that 3(A) ={be A:ab=ba (a € A)}. Take
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two non-empty subsets S and T of A. Then
S -T={ab:ae S, beT}, ST=I1nS- T,

the linear span of S - T. Further, set A2l = A - A and A% =1lin AP, as in [4]. The algebra
A factors if A= AP and A factors weakly if A= A2. For results on the factorization of
commutative Banach algebras, see [4, §2.9] and [5].

A character on an algebra A over K is a homomorphism from A onto K; all characters ¢ on
a Banach algebra are continuous, with [|¢]] < 1.

A linear subspace I of an algebra A is a right ideal if IA C I and an ideal if it is both a left
and right ideal; an ideal M in A is maximal if M # A and I = M or I = A whenever [ is an
ideal in A with I D M. The quotient algebra of A by an ideal I is A/I; in the case where A
is a normed or Banach algebra and I is closed in A, the quotient A/I is a normed or Banach
algebra, respectively, with respect to the quotient norm.

Let A be an algebra. Then A is simple if A? # {0} and if {0} and A are the only ideals in A.
For n € N, we denote by M, the algebra of n x n matrices over C; the algebras M,, are simple.
We also denote by M, (A) the algebra of all n x n matrices with coefficients in A. In the case
where A is a Banach algebra, M,,(A) is also a Banach algebra with respect to the norm given
by

(@i i, 5 €N =D Nlaigll ((aij:i,5 € Np) € My(A)).
ij=1
Suppose that A is a Banach *-algebra. Then M,,(A) is also a Banach x-algebra with respect
to the involution given by the transpose map (a; ;) — (aj ;).

An element ey of an algebra A is the identity of A if aeq = eqa =a (a € A); an algebra is
unital if it has a non-zero identity; the algebra formed by adding an identity to an algebra A
is A%, identified with K x A, as in [2, §1.1.104]. A Ieft identity in A is an element p € A such
that pa = a (a € A).

The set of invertible elements in a unital algebra A is denoted by InvA. More generally, an ele-
ment a in an algebra A is quasi-invertible if there exists b € A witha+b —ab=a + b — ba = 0;
the set of quasi-invertible elements in A is denoted by ¢ — InvA. A unital algebra in which every
non-zero element is invertible is a division algebra, and a commutative division algebra is a
field.

A proper left ideal I in an algebra A is modular if there exists u € A witha —au € I (a € A);
in this case, u is a right modular identity for I. Let I be a left ideal in an algebra A with a
right modular identity w. Then it is immediate from Zorn’s lemma that the family of left ideals
J in A such that J D I and w ¢ J (when the family is ordered by inclusion) has a maximal
member, say M. Clearly M is a maximal modular left ideal in A, and hence a maximal left
ideal in A.

Let A be an algebra, and let F' be a subspace of A. The core of F' in A is the largest ideal
of A contained in F'. A primitive ideal in A is the core of a maximal modular left ideal in A;
a non-zero algebra is primitive if {0} is a primitive ideal. See [2, Definition 3.6.12].

The (Jacobson) radical of an algebra A is defined to be the intersection of the maximal
modular left ideals of A [1, Chapter III], [2, Section 3.6], [4, §1.5]; it is denoted by rad A, with
rad A = A when A has no maximal modular left ideals. In fact, rad A = rad A°? and rad A is
an ideal in A. The algebra A is semi-simple when rad A = {0} and radical when rad A = A; the
quotient algebra A/rad A is always a semi-simple algebra; a primitive algebra is semi-simple.

An element a € A is quasi-nilpotent if za € ¢ —InvA (z € K); in the case where A is a
Banach algebra, a € A is quasi-nilpotent if and only if lim,, ||a”H1/” = 0. A Banach algebra
A is topologically nilpotent if

1/n |

lim sup{||a; - - - an|| ai,...,an € A} =0;
n—o0
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see [3, Subsection 8.4.2 and §8.4.121] and [10, §4.8.8].
Let A be an algebra, and let E be a left A-module for the operation

(a,2)~a- -2z, AXE—E.

Then E is non-trivial if there exist a € A and = € F with a - x # 0, E is faithful if the only
element @ € Asuch thata - =0 (z € E) is a =0, and E is simple if E is non-trivial and the
only left A-modules in E are {0} and E. Let E be a simple left A-module, and take xg € F
with g # 0. Then {a - z¢:a € A} = E and

zy ={a€A:a- xo=0}

is a maximal modular left ideal in A. A left A-module is also a left A*-module.

Take n € N. By regarding the elements of E™ as column matrices, the space E™ is naturally
a left M, (A)-module. It is easy to check that E™ is faithful or simple whenever E has the
corresponding property. Since an algebra B is primitive if and only if there is a faithful, simple
left B-module [2, Definition 3.6.35 and Theorem 3.6.38(i)], it follows that M, (A) is primitive
whenever A is a primitive algebra.

Let A be a Banach algebra. A Banach left A-module is a Banach space (E, || - ||) such that
E is a left A-module and

la -zl <flall [z (a €A, zeE);

see [2, Subsection 3.6.3] and [4, §2.6]. For example, a closed left ideal in A is a Banach left
A-module. Similarly, one can define a Banach right A-module.

The following theorem, which is originally due to Rickart, is given in [1, Lemma 25.2] and
[4, Theorem 2.6.26].

THEOREM 1.1. Let A be a Banach algebra, and let E be a simple left A-module. Then
there is a norm || - || on E such that (E, || -||) is a Banach left A-module. In this case, the norm
is uniquely so specified up to equivalence of norms. O

We shall use the following propositions and corollaries; some are already contained in [3, pp.
658-659] and [4, §1.4] in somewhat different forms.

PROPOSITION 1.2. Let A be an algebra with A2 C A. Then A contains a maximal left
ideal that is an ideal in A and that contains A?. Each maximal left ideal that contains A has
codimension 1 in A.

Proof. Let M be a subspace of codimension 1 in A such that A2 € M. Then M is a maximal
left ideal and a (maximal) right ideal. Clearly, each maximal left ideal that contains A% has
codimension 1. U

ProroSITION 1.3. Let A be an algebra. Suppose that M is a maximal left ideal in A and
that b € A, and set J, = {a € A:ab € M}. Then either J, = A or J, is a maximal modular
left ideal in A.

Proof. Set E = A/M, a left A-module. Then either Ab C M, and hence J, = A, or F is
a simple left A-module and b+ M € E\ {0}. In the latter case, J, = (b+ M)+ is a maximal
modular left ideal in A. O



Page 4 of 16 M. CABRERA GARCIA, H. G. DALES, AND A. RODRIGUEZ PALACIOS

PROPOSITION 1.4. Let A be an algebra. Then the following are equivalent:
(a) A has no maximal left ideal;
(b) A is a radical algebra and A% = A;

(¢) A has no maximal right ideal.

Proof. (a) = (b) Since A has no maximal left ideal, it has no maximal modular left ideal,
and so A is a radical algebra. By Proposition 1.2, 42 = A.

(b) = (a) Assume that M is a maximal left ideal in A, and take b € A. By Proposition 1.3,
Jy = A, and so Ab C M. Hence A> C M C A, a contradiction of (b). Thus (a) holds.

(a) & (c) Since rad A = rad A°P, this is immediate. O

An example of a simple, radical algebra is given in [11]. Since a simple algebra A is such
that A% = A, it follows from Proposition 1.4 that this algebra has no maximal left or maximal
right ideal. However, it does have a maximal ideal, namely {0}.

COROLLARY 1.5. Let R be a radical algebra. Then R has a maximal left ideal if and only
if R C R, and in this case every maximal left ideal contains R?. a

We shall also use the following results on primitive algebras.

LEMMA 1.6. Let A be an algebra, and let E be a faithful left A-module. Suppose that, as
a left A*-module, E is not faithful. Then A has an identity element.

Proof. By hypothesis, there is a non-zero element (o, a) € A* with (a,a) - =0 (z € E).
Since E is a faithful left A-module, necessarily a # 0, and so there exists e € A such that
(I,—e) - =0 (z € E). Hence

(a—ea)-x=(a—ae) - z=0 (a€A x€E).

It follows that a = ea = ae (a € A), and so e is the identity of A. O

PROPOSITION 1.7. Let A be a primitive algebra, and take n € N. Suppose that A is non-
unital and that 2 is a subalgebra of M,,(A") containing M,,(A). Then 2 is a primitive algebra.

Proof. Since A is primitive, there is a faithful, simple left A-module, say E. By Lemma
1.6, E™ is a faithful left Af*-module, hence E™ is a faithful M, (A*)-module, and hence E" is a
faithful left 2l-module. On the other hand, E™ is a simple left M, (A)-module, and so E™ is a
simple left 2-module because 20 D M,,(A). Hence 2l is a primitive algebra. |

PROPOSITION 1.8. Let A be an algebra containing a maximal left ideal M of codimension
1 such that A* ¢ M, and take n € N. Then the set of matrices (a;;) in M, (A) for which
a;1 € M (i €N,,) is a maximal left ideal in M.,,(A) of codimension n.
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Proof. The matrices that we are considering have the form

M A ... A
M= M A ... A
M A ... A

It is clear that M is a left ideal of codimension n in M, (A).

To show that M is a maximal left ideal in M,,(A), consider a left ideal J in M,,(A) such
that J 2 M. Since A2 ¢ M, there exist a,b € A with ab & M, and so b € M, and this implies
that Kab+ M = Kb+ M = A. Further there are a1, ...,a, € K, not all zero, such that

Ollb 0 0
OZQb 0 0 Ej.
ab 0 ... 0

Suppose that a; # 0, and take r € N,,. Multiply the above matrix on the left by the matrix
that has a in the (r, j)-th position and 0 elsewhere. This gives the matrix that has a;ab in the
(r,1)-th position and 0 elsewhere. Since Kab+ M = A, it follows that J contains each matrix
that has any element of A in the (r, 1)-th position. Hence J = M,,(4), and so M is a maximal
left ideal in M, (A). O

The theory of non-associative normed algebras is covered in [2, 3]. Proposition 1.2, the
equivalence of clauses (a) and (b) in Proposition 1.4, Corollary 1.5, and Propositions 1.7 and
1.8 also hold if the requirement of associativity in the definition of an ‘algebra’ be removed.
However the equivalence of (a) and (c) in Proposition 1.4 does not necessarily hold in the
non-associative case: see [2, Corollary 3.6.60].

An algebra A that is also a topological linear space is a topological algebra if the product
(a,b) — ab, A x A — A, is continuous. A Fréchet algebra is a complete, metrizable topological
algebra such that there is a base of neighbourhoods of the origin consisting of sets that are
absolutely convex and closed under products. A topological algebra A is a Q-algebra if ¢ — InvA
is open in A; of course, every Banach algebra is a Q-algebra [2, Example 3.6.42]. The radical
of a @Q-algebra is a closed ideal in A. For these definitions and facts, see [2, 4].

Let A be a topological algebra. Then it is obvious that the closure of each left ideal in A is
also a left ideal, and so a maximal left ideal in A is either closed or dense in A.

The following theorem is elementary and standard [4, Theorem 2.2.28(i)].

THEOREM 1.9. Every maximal modular left ideal in a -algebra is closed. a

The following corollary is immediate from Proposition 1.3 and Theorem 1.9.

COROLLARY 1.10. Let A be a Q-algebra, and let M be a maximal left ideal in A. For each
non-empty subset S of A, the set

Js={a€A:aSC M}

is a closed left ideal in A. O

On the other hand there are trivial examples of Banach algebras that have maximal left
ideals that are not closed.
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ExAMPLE 1.11. Let E be an infinite-dimensional Banach space. Then E has a dense
subspace F' that has codimension 1 in E. The space F is a commutative Banach algebra
with respect to the zero product, and F' is a maximal (left) ideal in this algebra such that F
is not closed. a

We now give a modification of the above example that shows that a Banach algebra that
factors may have a dense maximal left ideal of codimension 1.

EXAMPLE 1.12. Let G be any linear space, and set A = C x C x G. Define
(a,¢z)(B,my) =C(Biny) (,B,(neC a,yed).

Then A is an associative algebra with respect to this product. Set
M ={(0,n,9) :n€C,ye€G}.

Then M is a left ideal of codimension 1 in the algebra A, and so M is a maximal left ideal.
The element p = (0, 1,0) is a left identity for A, and so the algebra A factors.

Now suppose that F is an infinite-dimensional, complex Banach space. Let A\ € E' with
[IAl = 1, and choose es € E with A(ez) = 1. Then E = Cesy @ ker A, and

Il =[MCez +y)| < [Cea+yll (C€C,yecker)).

Next, choose a dense linear subspace G of ker\ of codimension 1, say ker A = Ce; & G, and set
F = Ces + G, so that F' is a dense linear subspace of E of codimension 1. We have

¢ < laer +Cea+ 2| (¢ €C,z€G).

The linear bijection ae; + Ces +z — (o, (,x), E — A, identifies F' with M and transfers
the norm from E to A, so that M is dense in the Banach space (4, || - |). For o, 8,¢,n € C and
z,y € G, we have

(e, &, 2) (B, m, )| = [CLIB, m )| < Nl e, )L By m, )l

and so (A, || -]|) is a Banach algebra.

Thus there is a Banach algebra A and p € A such that pa = a (a € A), so that AP = A,
and such that A has a dense maximal left ideal of codimension 1.

Clearly every linear subspace of A is a left ideal, so that the maximal left ideals of A are just
the subspaces of codimension 1. However H := {(«,0,2) : « € C, x € G} is clearly the unique
maximal modular left ideal (with right modular identity v = (0,1,0)). Thus rad A = H, and
so A is far from being semi-simple. |

EXAMPLE 1.13. A maximal modular left ideal in a (non-commutative) Banach algebra
does not necessarily have codimension 1. For example, let E be a complex Banach space, and
consider the unital Banach algebra B(FE) of all bounded linear operators on E. Set

M, ={T € B(E) : Tz = 0},

where z is a non-zero element of E. Then M, is a singly-generated maximal left ideal of B(E) |7,
Proposition 2.4] and M, is closed in B(E). Take n € N, and set E = C™. Then we obtain closed,
maximal left ideals in M, of codimension n. Now suppose that E is an infinite-dimensional
space. Then M, has infinite codimension in B(E) for each non-zero = € E. a

These examples suggested the possibility that every maximal left ideal in a Banach algebra
is either closed or of codimension equal to 1. We shall show in §4 that this is not the case.
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2. Commutative algebras

Suppose that M is a maximal modular ideal in a commutative algebra A over C. Then A/M
is a field containing C. In the case where A is a Banach algebra, M is necessarily closed,
and so A/M is a Banach algebra. By the Gel'fand—-Mazur theorem, we have A/M = C, and
so M is the kernel of a continuous character. In fact, the Gel’fand—Mazur theorem applies
to Fréchet algebras (and more general topological algebras) [4, Theorem 2.2.42], and so each
closed, maximal modular ideal in a commutative Fréchet algebra is the kernel of a continuous
character. (It is a formidable open question, called Michael’s problem, whether all characters
on each commutative Fréchet algebra are automatically continuous.)

Now suppose that A is a commutative, unital Fréchet algebra. Then a maximal ideal (which
is necessarily modular) in A is not necessarily either closed or of finite codimension, as the
following example, which essentially repeats [4, Proposition 4.10.27], shows.

EXAMPLE 2.1. Let O(C) denote the space of entire functions on C. This is a commutative,
unital algebra for the pointwise algebraic operations, and it is a Fréchet algebra with respect to
the topology of uniform convergence on compact subsets of C. It is standard that each maximal
ideal M of codimension 1 in O(C) is closed and has the property that there exists z € C such
that

M=M,:={feO(C): f(z)=0}.

Let I be the set of functions f € O(C) such that f(n) = 0 for each sufficiently large n € N.
Clearly I is an ideal in O(C), and it is easy to see that I is dense in O(C). Since O(C) has
an identity, I is contained in a maximal modular ideal, say M, of O(C). The ideal M is dense
in O(C), but M is not of the form M, for any z € C, and so M does not have codimension
1 in O(C). It follows from [4, Theorem 1.5.30], that M does not have finite codimension; the
quotient A/M is a ‘large field’. O

PROPOSITION 2.2. Let A be a Q-algebra, and let M be a maximal left ideal in A. Suppose
that M is also a right ideal in A and that M does not contain A?. Then M is closed in A.

Proof. By Corollary 1.10, the set J4 = {a € A:aA C M} is a closed left ideal in A. Since
M is a right ideal in A, we have M C J4. Further, J4 # A because A2 ¢ M, and so J4 = M.
Hence M is closed in A. U

COROLLARY 2.3. Let A be a commutative QQ-algebra, and suppose that M is a dense
maximal ideal in A. Then A%> C M. a

THEOREM 2.4. Let A be a commutative, normed @Q-algebra over a field K, and suppose
that M is a maximal ideal in A.

(i) Suppose that K = C. Then M has codimension 1 in A. Further, either A/M = C and M
is closed in A or A? C M.

(ii) Suppose that K =R. Then M has codimension 1 or 2 in A. Further, M is closed in A
when M has codimension 2.

Proof. Suppose that A2 C M. By Proposition 1.2, M has codimension 1 in A.
Now consider the case where A%2 ¢ M, so that A2 + M = A. By Corollary 2.3, M is closed
in A, and then A/M is a normed, commutative, simple algebra, and hence a normed extension
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field over K, as in [1, Lemma 30.2]. It follows from the Gel'fand-Mazur theorem, as in [2,
Corollary 1.1.43 and Proposition 2.5.40], that A/M is isomorphic to C when K = C and to R
or C when K =R. |

The above theorem does not necessarily apply to non-associative algebras. Indeed, take A
to be My, with the product given by a e b = (ab+ ba)/2 for a,b € A. Then A is a complete,
normed, commutative, non-associative algebra over C. Further, {0} is a maximal ideal of A [2,
Proposition 3.6.11(i)], and this ideal has codimension 4 in A.

We noted in Corollary 1.5 that a commutative, radical Banach algebra R has a maximal
ideal if and only if R? C R. There are many examples of commutative, radical Banach algebras
R such that R? = R, and hence such that R has no maximal ideals. For example, it follows
from Cohen’s factorization theorem (see [1, Theorem 11.10] and [4, Theorem 2.9.24]) that each
Banach algebra A with a bounded approximate identity necessarily factors. In particular, this
is the case for the Volterra algebra V), which is the space L!(I) taken with the (truncated)
convolution product x given by

t
(7> a)(®) = | St=9a(as (e

for f,g € V; this is a commutative, radical Banach algebra with a bounded approximate
identity, and so V2l = V. There are also examples which are integral domains; see [4, §4.7]. An
example of a commutative, separable, radical Banach algebra R with R[? = R, but such that
R does not have a bounded approximate identity, is given in [5].

The following example shows that there are commutative, radical Banach algebras R such
that R?2 = R, even RI2l = R, but such that R does have a (dense) maximal ideal, necessarily
of codimension 1.

EXAMPLE 2.5. Define R = {f € C(I): f(0) = 0}, taken with the uniform norm |- |; and
the above truncated convolution product. Then R is a commutative, radical Banach algebra.
By [3, Example 8.4.41], R is topologically nilpotent.

For a > 0, set

I ={1e R jim s/ =0}

so that I, is a linear subspace of R; in fact, it is immediate that I, is an ideal in (R, ). Thus
I:=|J{I,:a >0} is a (proper) ideal in R. Take f,g € R and £ > 0. Then there exists § > 0
such that |g(s)] <e (0 < s <), and so, for 0 <t < 4, we have

I(F * 9)(0)] < |f|ﬂjo l9(s)] ds < <t |fl,

whence f x g € I; C I. Hence R? C I, and so I is contained in a maximal ideal in R. By
Proposition 1.2 and Corollary 1.5, every maximal ideal in R has codimension 1 and contains
R%.

For n € N, take e, € R such that suppe,, C [0,1/n], such that e, (¢) >0 (¢ € I), and such
that fé en(t)dt = 1. Then (e,) is a sequence in R. Take f € R. For € > 0, choose ng € N
such that |f(t—s)— f(t)| <e for t €I and s € [0,1/ng] N[0,¢] and such that |f(r)| < e for
r € [0,1/ng]. Take n > ng. Then, for t € [1/n,1], we have

1/n

[(f % en)(t) = f(?)] SJ [f(t=s) = f(B)en(s)ds <,

0
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and, for t €[0,1/n], we have [(f % e,)(t) — f(t)| < 2e. Hence |f % e, — f|; <2¢, and so
limy, oo f * €, = f in R. This shows that (e,) is an approximate identity in R; in particular,
R[] = R. Thus every maximal ideal in R is dense in R. ]

3. Non-commutative algebras

We now consider some conditions on a Banach algebra A that imply that every (or at least
some) maximal left ideal in A is either closed or of codimension 1. The first theorem of the
section follows immediately from Propositions 1.2 and 2.2.

THEOREM 3.1. Let A be a Q-algebra. Suppose that M is a maximal left ideal and a right
ideal in A. Then either M is closed in A or M has codimension 1 in A. a

PrOPOSITION 3.2. Let A be a Q-algebra. Suppose that M is a maximal left ideal in A such
that A3(A) ¢ M. Then M is closed in A.

Proof. Set Z = 3(A). By Corollary 1.10, the set Jz; ={a € A:aZ C M} is a closed left
ideal in A, and M C Jyz. Further, Jz # A because AZ ¢ M. Thus M = Jz is closed in A. [

ProroSITION 3.3. Let A be a topologically nilpotent Banach algebra. Then A has maximal
left ideals, and every maximal left ideal contains A% and has codimension 1.

Proof. By [10, Theorem 4.8.9] (see also [2, Proposition 4.4.59(i)] and [3, Proposition 8.4.56
and Remark 8.4.67]), A is radical and A2 C A. By Corollary 1.5, A contains maximal left ideals,
and every maximal left ideal in A contains A%. By Proposition 1.2, each maximal left ideal in
A has codimension 1. U

The definition of a topologically nilpotent Banach algebra can be suitably extended to the
non-associative setting in such a way that Proposition 3.3 still holds; see [3, Definition 8.4.10
and p. 620].

PRrROPOSITION 3.4. Let A be a Banach algebra over C that is separable as a Banach space,
and suppose that A% has countable codimension in A and that A> C A. Then A contains a
maximal left ideal that is closed and of codimension 1 in A.

Proof. By a theorem of Loy given as [4, Theorem 2.2.16], A? is closed and of finite
codimension in A. By Proposition 1.2, there is a maximal left ideal M in A that has codimension
1in A and contains A2. Clearly M is closed in A. |

Let (E, | -||) be a Banach space. Then a null sequence in E is a sequence (x,,) in F such that
lim,,_, o ||Zn|| = 0; the space of null sequences in E is denoted by c¢o(E), and ¢o(E) is itself a
Banach space for the norm defined by

[(@n)l| = sup{[lzn|| : n € N} ((25) € co(E))

Let A be a Banach algebra. Then ¢p(A) is a Banach right A-module for the action defined by
(an) - a = (ana), and null sequences factor (on the right) in A if, for each (a,) in co(A), there
exist @ € A and (b,) in ¢o(A) with a, =bpa (n € N). It follows from Cohen’s factorization
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theorem [4, Corollary 2.9.29] that null sequences factor for each Banach algebra that has a
bounded right approximate identity (but the converse does not necessarily hold [5]).
The following result is [4, Proposition 2.6.13].

ProPOSITION 3.5. Let A be a Banach algebra for which null sequences factor. Then every
maximal left ideal in A is closed.

Proof. Let M be a maximal left ideal in A.

Take a € A and (a,) in M such that lim,_, a, = a. By hypothesis, there exist b,by € A
and (b,) € co(A) with a=bob and a—a, =b,b (n€N). Set J={zxe€ A:zbe M}. By
Proposition 1.3, either J = A or J is a maximal modular left ideal in A; in either case, J
is closed in A. Tt follows that (bg — b,,)b = a, € M (n € N), and so by = lim,,—, o (bg — by,) € J.
Thus a € M, and so M is closed. ]

COROLLARY 3.6. Let A be a C*-algebra. Then every maximal left ideal in A is closed.

Proof. Every C*-algebra has a bounded approximate identity; for example, see [2,
Proposition 3.5.23] or [4, Lemma 3.2.20]. O

Thus, to find a maximal left ideal M in a Banach algebra A that is neither closed nor of
codimension 1, one must at least construct an example A without a bounded right approximate
identity and with a maximal left ideal M such that A% ¢ M, such that A3(A4) C M, and such
that M is not also a right ideal.

We shall now see that the question that we are considering is related to an ‘automatic
continuity’ question. (See [4].)

THEOREM 3.7. Let A be a Banach algebra. Then the following conditions are equivalent:
(a) each maximal left ideal M in A such that A? ¢ M is closed in A;

(b) each A-module homomorphism from A into a simple Banach left A-module is auto-
matically continuous.

Proof. (a) = (b) Let E be a simple Banach left A-module, and let #: A — E be an
A-module homomorphism. We may suppose that  # 0. Thus @ is surjective and M := ker 0 is a
maximal left ideal in A. Clearly there exist a,b € A with 6(ab) = a - 8(b) # 0, and so A? ¢ M.
By (a), M is closed in A. Thus E is a Banach left A-module with respect to the quotient norm
on F, and so, by Theorem 1.1, this norm is equivalent to the given norm on E. Hence 6 is
continuous.

(b) = (a) Let M be a maximal left ideal in A with A%2 ¢ M. Then E := A/M is a simple
left A-module. By Theorem 1.1, F is a Banach left A-module with respect to a norm that
is equivalent to the quotient norm on E. The quotient map ¢: A — A/M is an A-module
homomorphism from A onto E, and so M = ker ¢ is closed in A. ]
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4. Examples

We shall now construct Banach algebras A each having a maximal left ideal M such that M
is neither closed nor of codimension 1 in A. Indeed, given n € N, there are such examples such
that M has codimension n in A.

THEOREM 4.1. Let n € N. Then there is a Banach algebra A with a left identity, so that
A factors, and such that A has a dense maximal left ideal of codimension n.

Proof. Let A be the Banach algebra described in Example 1.12, and set A = M,,(A), so
that A is a Banach algebra. Take M to be as specified in Proposition 1.8, so that M is a
maximal left ideal of codimension n in A; clearly M is dense in A. Take P to be the matrix
in A with the element p in each diagonal position and with 0 in all other positions. Then P is
a left identity for A. In particular, A factors. |

However, the algebra A of the above theorem is not semi-simple. We now seek examples of
Banach algebras A with dense maximal left ideals of codimension n such that A is semi-simple
and has some other properties.

DEFINITION 4.2. Let A be an algebra with a character ¢. Then M, is the kernel of ¢ and
Jo =lin{ab— p(a)b:a,be A}.

Certainly J,, is a right ideal in A and M,A C J, C M,,.

LEMMA 4.3. Let A be an algebra with a character . Suppose that there exists u € A\ M,
with u? = u. Then

Jo = M2+ Myu+ (1 —u)M,. (4.1)

Proof.  Clearly M2 + Myu+ (1 —u)M, C J,.
Now take a,b € A, say a = au+ x and b = fu + y, where o, 8 € K and z,y € M. Then

ab — p(a)b = zy + fru — a(l —u)y € Mi + Myu+ (1 —u)M,,
and so J, C M2 + Myu + (1 — u)M,. This gives the result. O

LEMMA 4.4. Let A be an algebra with a character . Suppose that A is a non-zero linear
functional on A such that \ | J, = 0. Then M := ker A is a maximal left ideal in A such that
A% ¢ M. Further, suppose that A | My, # 0. Then M is not a modular left ideal.

Proof. Since X | J, =0, it follows that A(ab) = ¢(a)A(b) (a,b € A), and so M is a proper
left ideal in A of codimension 1 such that A? ¢ M. Hence M is a maximal left ideal in A.
Suppose that A | M, # 0, and assume that u is a right modular identity for M. Then

Aa) —p(a)M(u) =A(a—au) =0 (a€ A),

and so A | M, =0, a contradiction. So M is not a modular left ideal. U
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We continue to use the above notation in the next theorem.

THEOREM 4.5. Let A be a topological algebra with a character ¢, and suppose that J, is
not closed in A. Then A contains a maximal left ideal M such that A?> ¢ M, such that M has
codimension 1 in A, and such that M is dense in A.

Proof.  Since J,, is not closed in A, there is a (discontinuous) linear functional A on A such
that A | J, =0 and A | J, # 0. By Lemma 4.4, M := ker A is a maximal left ideal in A such
that A2 ¢ M, and M has codimension 1 in A. Clearly M is not closed in A, and so M is dense
in A. O

Note that M is not a modular left ideal and that, by Proposition 2.2, M cannot be a right
ideal in A in the case where A is a Q-algebra.

We now give a construction of a Banach algebra from a certain ‘starting point’, as follows.

Starting point: We suppose that we have a Banach algebra (I, || -[|;) over a field K such that
I CI? =1, and we take B = I* to be the unitization of I, so that B is a unital Banach
algebra, with identity ep, say, and [ is a maximal ideal in B.

Several examples that show that we can reach the starting point (with algebras I with various
additional properties) will be given in Examples 4.7, below. We shall note that, for some of
these examples, the starting ideal I is a Banach %-algebra and a primitive algebra.

Construction: From our starting point, we consider the Banach algebra %6 = M (B), so that B
is also a unital Banach algebra. Set J = My ([). Then J is a closed ideal in B (of codimension
4).

Consider the elements

(e O (0 0
P—(O 0) and Q_(OeB)

in B. Then P? = P, Q?> = Q, PQ = QP =0, and P + Q is the identity of B.
Next, consider the subset 2 = J 4+ CP in B. Symbolically, 2 has the form

B I
as(B 1)
Then 2l is a closed subalgebra of 2%, and J is a maximal ideal in 2 of codimenison 1; the
quotient map ¢ : A — A/T = K(P + J) is a character on 2.

We define M, and J, (in relation to 2 and the character ¢) as in Definition 4.2. Then we
see that J = M, and that, by Lemma 4.3,

J,=02+3P+Q3C P3Q+PIP+QIC7T, (4.2)

andsoTJzCJ@CJZMg,.
We claim that J2 is dense in M. Indeed, given € > 0 and z € I, there exist n € N and
Ui, ..., Un,V1,. ..Uy € such that ||z — " | uv;; <e because I? = I. It follows that

(3853 (5 D150 )]

with similar calculations in the other three positions. The claim follows. Hence JTO =M,.
We also claim that J, # M. Assume towards a contradiction that J, = M. Then it follows
from (4.2) that

J=PIP+ P3Q+ Q3 = P3*Q + PIP + Q7.
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Since J = PJP @ PJQ @ Q7J, this implies that PJQ = PJ?Q. However, take z € I\ I?, and

consider the element
X = 0w eJ
“\L0 o0 ’

Since Px(@Q = x, we see that x € PJQ. But every element of PJ2(Q has the form

(05)

where u € I?, and so x € PJ?Q, the required contradiction. Thus the claim holds.
We conclude at this stage that

3 CJ,CJ,=T=M,.

Suppose that the starting ideal I is a primitive algebra. Then the corresponding algebra
2 is a primitive algebra by Proposition 1.7. In the case where I is a Banach x-algebra, the
corresponding algebra 2 is also a Banach x-algebra.

We note that we could have defined B and J as the spaces of upper-triangular matrices
in My(B) and My (I), respectively; the same arguments would lead to the same conclusion,
save that J would now have codimension 3 in B and the corresponding algebra 2 would not
necessarily be primitive or a Banach *-algebra when I has these properties.

The following theorem now follows from Theorems 3.7 and 4.5.

THEOREM 4.6. The Banach algebra 2l contains a maximal left ideal 9 such that 2A* ¢ 9,
such that 9 has codimension 1 in 2, and such that 9 is dense in 2A. There is a discontinuous
A-module homomorphism from 2l into a simple Banach left A-module. a

We now give various examples that show that we can reach our starting point. Recall that
we require Banach algebras I such that I? is dense in I and I% C I.

ExampLes 4.7. (i) Let I = (¢P,]|-|[,), where 1 <p < oo, taken with the coordinatewise
product, as in [4, Example 4.1.42], so that I is a commutative, semi-simple Banach algebra.
Clearly I? is dense in I and I? = ¢?/2 C I. Further, I is a Banach *-algebra for the involution
(an) — ().

(ii) Take K to be a non-empty, compact, metric space without isolated points, and take
a € (0,1). Let B be the Lipschitz algebra lip, K, as in [4, §4.4], so that B is a commutative,
unital, semi-simple Banach algebra, and take I to be any maximal ideal of B. Then, by [4,
Theorem 4.4.30, (i) and (iv)], I has an approximate identity, so that I'?! is dense in I, and I?
has infinite codimension in I. Again, I is a Banach *-algebra for the involution f + f.

(iii) Take I to be the commutative, radical Banach algebra R of Example 2.5. Then I has
the required properties. Again, I is a Banach x-algebra for the involution f +— f.

(iv) Let X be a compact plane set, and let R(X) be the usual uniform algebra on X.

For example, consider the ‘road-runner’ set, defined as follows [8, p. 52]. For > 0 and r
with 0 <7 <z, set D(z,r) ={z € C:|z—z| <r}. Let X be the compact set in C obtained
by deleting from D a sequence (D,, = D(x,,,7,)) of open discs, where we ensure that the closed
discs D,, are contained in D, are pairwise-disjoint, and that (x,) decreases to 0. Consider the
maximal ideal

I'=Mo={feR(X): f(0)=0}.

It follows from a result of Hallstrom [9, p. 156] that Mg is dense in M, if and only if
Yoo, ri/x? = 0o, and it follows from Melnikov’s Criterion [8, Theorem VIIL4.5] that Mg = M,
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if and only if "7, 7;/2; = co. Thus there is a choice of (z,,) and (r,,) such that M is a uniform
algebra satisfying the required conditions on I.

(v) Let H be an infinite-dimensional Hilbert space, and take I to be the non-commutative
Banach algebra of all Hilbert—Schmidt operators on H, with the standard norm on I. Then
I? = 1% is the space of trace-class operators. Here I is a primitive algebra ([2, Example 3.6.40],
[4, Theorem 2.5.8(i)]) and a Banach x-algebra, so that the corresponding algebra 2[ has the
same properties. For details and definitions for this example, see [12].

(vi) Let F be an infinite-dimensional Banach space, and let I = N (E), the nuclear operators
on E, so that I is a non-commutative Banach algebra with respect to the nuclear norm [4,
§2.5]. Then I is dense in I and I? has infinite codimension in I [6], as required. Again, I is
a primitive algebra, and so the corresponding algebra 2l is also a primitive algebra. a

We can combine the above results to exhibit our main example.

THEOREM 4.8. Let n € N. Then there is a Banach algebra A with a maximal left ideal M
such that M is dense in A and has codimension n in A. In the case where the starting algebra
I is primitive, A is also primitive, and, in the case where the starting algebra I is a Banach
x-algebra, A is also a Banach x-algebra.

Proof. By Theorem 4.6, there is a Banach algebra 2 with a maximal left ideal 9t such that
22 ¢ 9, such that O has codimension 1 in 2, and such that 90 is dense in 2. Set A = M, (),
and take M to be the corresponding maximal left ideal in 4 specified in Proposition 1.8. Then
M has codimension n in A, and it is clear that M is dense in A.

Suppose that the starting algebra I is primitive or a Banach x-algebra. Then we have noted
that 21 and A both have the corresponding properties. O

COROLLARY 4.9. Letn € N. Then there is a primitive Banach x-algebra A with a maximal
left ideal M such that M is dense in A and has codimension n in A. m]

In particular, the algebra A is semi-simple.
As we said, we do not know the answer to the following question:

Question 1 Is there a Banach algebra that has a dense maximal left ideal of infinite
codimension?

Asin Theorem 3.7, the existence of such an example is equivalent to the existence of a Banach
algebra A that has a discontinuous left A-module homomorphism into an infinite-dimensional,
simple Banach left A-module.

We shall now show that, given n € N, we can modify the above example to obtain a semi-
simple Banach algebra A and a dense maximal left ideal of codimension n and, additionally,

such that A factors weakly.
Take I, B, B = My(B), and elements P and @ in 9B as before, but now set

B I I 1
ﬂz(BI) and j:(BI)'
We see that 2 is again a closed subalgebra of B and that J is a closed maximal ideal in

of codimension 1. Further, ¢ : A — 2/J = K(P + J) is still a character on 2. We define M,
and J,, (in relation to the new algebra 2 and the character ¢) as before. Certainly, equation
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(4.2) still holds, and now, as before, 32 is dense in My (I). We claim that this implies that J,

is dense in J. Indeed, choose
0 0
X = ( er 0 ) €8,

and note that x = xP = xP — p(x)P € J,. It follows that
J=My(I)+Kx=32+KxC J,.

Since J, C J and 7J is closed in 2, it follows that J, = 7, as claimed. As before, J, # M, and
so we again have a Banach algebra %[ with a character ¢ such that J, is not closed in .
We also claim that 2 factors weakly. Indeed, take

1,1 T1,2
X = ’ ’ e,
21 T22

where 11,221 € B and 1 2,722 € I. Then

_ 0 0 To1 T2 2
X_PX+<eB 0)<0 0)691,

as required for the claim.

Now take n € N, and set A = M, (), as before. Then there is a maximal left ideal M in A
such that M is dense and has codimension n in A. Again it follows from Proposition 1.7 that
we can arrange that A be primitive and, in particular, semi-simple. The extra point is that
now A% = A, and so we have proved the following theorem.

THEOREM 4.10. Let n € N. Then there is a semi-simple Banach algebra A that factors
weakly and that has a dense maximal left ideal of codimension n in A. a

This suggests the following question.

Question 2 Given n € N, is there a semi-simple Banach algebra A that factors and has a
dense maximal left ideal of codimension n in A?
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