
COBOUNDARY OPERATORS FOR INFINITE FRAMEWORKS

ELEFTHERIOS KASTIS, DEREK KITSON, STEPHEN C. POWER

Dedicated in memory of Richard M. Timoney.

Abstract. We consider, from the point of view of operator theory, a class of
infinite matrices in which the matrix entries are determined by an underlying

graph structure with accompanying geometric data. This class includes the

rigidity matrices of infinite bar-joint frameworks as well as the incidence ma-
trices of infinite directed graphs. We consider the following questions: When

do these matrices give rise to bounded operators? Can we compute the oper-

ator norm? When are these operators compact? And when are they bounded
below?

1. Introduction

Graph rigidity is an interdisciplinary field in which the central aim is to develop
theoretical and computational techniques for identifying and characterising forms of
rigidity and flexibility in discrete geometric structures. The objects of study can be
thought of as an assembly of rigid building blocks, with rotational connecting joints,
and are typically categorized by the nature of these blocks and joints; eg. bar-and-
joint, body-and-bar and plate-and-hinge frameworks. Constraint systems of these
forms are ubiquitous in engineering (eg. trusses, mechanical linkages and deployable
structures), in nature (eg. periodic and aperiodic bond-node structures in proteins
and materials) and in technology (eg. formation control for autonomous multi-agent
systems, sensor network localization, robotics and CAD software) (see for example
[2, 3, 9, 10, 18]).

The origins of graph rigidity can be traced back to two seminal results of the 19th
century: Cauchy’s proof in 1813 that a convex polyhedron in three-dimensional Eu-
clidean space is a (continuously) rigid plate-and-hinge structure [6]; and Maxwell’s
1864 observation that the structure graph of a rigid bar-and-joint framework must
obey certain counting rules [14]. Dehn’s subsequent proof of Cauchy’s theorem for
simplicial polyhedra developed the now standard analytic and linear methods of
infinitesimal rigidity [7].

The aim of this article is to understand, from the perspective of operator theory,
the rigidity matrices which arise from the infinitesimal rigidity theory of infinite bar-
joint frameworks. A fundamental issue in this regard is the nature of the null space
of the rigidity matrix as a linear transformation on a particular domain of velocity
fields. For infinite matrices, this domain can be a normed vector-valued sequence
space, such as a Hilbert space of square-summable (finite energy) velocity fields.
Moreover, the range of this transformation is a linear space of bar-joint framework
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stresses and so it becomes relevant to determine boundedness properties of the
rigidity matrix.

Determining whether an infinite matrix gives rise to a bounded linear operator
and, in the affirmative case, computing the operator norm, are in general difficult
problems. Schur and Toeplitz are credited with developing the classical theory. For
example, Schur’s test provides sufficient conditions for `2-space together with an
upper bound for the operator norm, and can be generalised to `p-space (see for
example [11, ch. 5]). Maddox [13] and others have extended some aspects of the
classical theory to infinite matrices of operators and we have found these techniques
to be particularly useful here. Also of relevance are a series of papers by Mohar
and various co-authors in which similar problems are considered for the adjacency
matrices of infinite graphs G = (V,E), regarding these infinite matrices as bounded
operators on `2(V ). See for example the survey article [15]. More recently, Agarwal
et. al. [1] have extended these considerations to adjacency matrices on `p(V ).

In Section 2, we introduce the notion of a framework (G, q) and a coboundary
matrix C(G, q). These generalise respectively a directed graph and an incidence
matrix commonly used in graph theory and the notion of a bar-joint framework and
a rigidity matrix used in Euclidean space rigidity theory. Also, the k-frame matrices
of Whiteley [18] and the rigidity matrices of bar-joint frameworks in non-Euclidean
spaces [12] are particular instances of coboundary matrices. We show that, under
suitable conditions, coboundary matrices give rise to bounded operators and we
either provide a formula for the operator norm, or provide upper and lower bounds
for the operator norm. In Section 3, we provide conditions under which the operator
norm can be computed by considering subframeworks of the given framework. We
also provide necessary and sufficient conditions for coboundary operators to be
compact. In Section 4, we provide necessary conditions for a coboundary operator
C(G, q) to be bounded below and in particular we show that the graph G cannot
be amenable (i.e. have isoperimetric constant 0). On the other hand, coboundary
operators with a non-amenable graph structure can be bounded below and, in
Section 5, we raise the interesting problem of whether there are natural classes
of bar-joint frameworks for which the rigidity matrix gives rise to an operator
which is bounded below on various spaces of velocity fields. We also present an
example of a bar-joint framework with a non-amenable graph structure for which the
associated rigidity matrix determines a bounded operator which is neither compact
nor bounded below.

2. Coboundary operators

Throughout this article, G = (V,E) will denote a simple graph (i.e. no loops or
multiple edges) with a countably infinite set of vertices. Denote by E(v) the set of
edges e ∈ E which are incident with a vertex v ∈ V and let ∆(G) = supv∈V |E(v)|.
The graph G is said to be locally finite if |E(v)| < ∞ for all v ∈ V and to have
bounded degree if ∆(G) <∞.

Let X and Y be a pair of normed linear spaces over a field K (= R or C) and
denote by L(X,Y ) the space of K-linear maps from X to Y . Let ϕ : V × V →
L(X,Y ) be a map with the property that ϕ(v, w) = −ϕ(w, v) whenever vw ∈ E
and ϕ(v, w) = 0 whenever vw /∈ E. We refer to the pair (G,ϕ) as a framework.
We will assume throughout the article that X and Y are finite dimensional and we
write ‖ϕ‖∞ = supvw∈E ‖ϕ(v, w)‖op where ‖ · ‖op is the induced operator norm.
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Definition 2.1. A coboundary matrix for a framework (G,ϕ) is a matrix C(G,ϕ)
with rows indexed by E, columns indexed by V , and (e, v)-matrix entry,

ce,v =

{
ϕ(v, w) if e = vw,

0 if e /∈ E(v).

Note that a coboundary matrix C(G,ϕ) has the following form,


v w

...
...

e=vw · · · 0 ϕ(v, w) 0 · · · 0 −ϕ(v, w) 0 · · ·
...

...

.
Moreover, C(G,ϕ) determines in a natural way a linear map C(G,ϕ) : XV → Y E ,
whereby a vector x = (xv)v∈V ∈ XV is mapped to a vector C(G,ϕ)x ∈ Y E with
e-component,

(C(G,ϕ)x)e =
∑
ṽ∈V

ce,ṽ(xṽ) = ϕ(v, w)(xv − xw),

for each edge e = vw ∈ E.

Example 2.2. Let G be a directed graph. Define ϕ : V × V → L(R,R) by setting
ϕ(v, w) = 1 if vw ∈ E is an edge directed from v to w, ϕ(v, w) = −1 if vw ∈ E
is an edge directed from w to v, and ϕ(v, w) = 0 if vw /∈ E. Note that the pair
(G,ϕ) satisfies the conditions of a framework and the associated coboundary matrix
C(G,ϕ) is an incidence matrix for G.

Example 2.3. A bar-joint framework in Rd is a pair (G, q) where q : V → Rd and
q(v) 6= q(w) for all edges vw ∈ E. Given such a bar-joint framework, we would like
to know if it is continuously flexible (i.e. admits a non-trivial continuous motion
which preserves the Euclidean distance between pairs of points q(v) and q(w) for all
edges vw ∈ E) or continuously rigid (i.e. admits only isometric motions).

A (Euclidean) rigidity matrix for (G, q) is a matrix with rows indexed by E,
columns indexed be V × {1, . . . , d} and matrix entries

re,(v,k) =

{
q(v)k − q(w)k if e = vw,

0 if e /∈ E(v),

where we write q(v) = (q(v)1, . . . , q(v)d) ∈ Rd for each v ∈ V . Note that if the
columns labelled (v, 1), . . . , (v, d) are grouped together for each vertex v ∈ V then
the rigidity matrix R(G, q) has the following form,


(v,1) ··· (v,d) (w,1) ··· (w,d)

...
...

e=vw · · · 0 q(v)− q(w) 0 · · · 0 q(w)− q(v) 0 · · ·
...

...

.
If the set of points {q(v) : v ∈ V } affinely spans Rd then the null space of the

linear transformation induced by R(G, q) has dimension at least
(
d+1

2

)
. The bar-

joint framework (G, q) is said to be infinitesimally rigid if the dimension of the null
space is exactly

(
d+1

2

)
. In general, infinitesimal rigidity is a stronger (and more

easily verifiable) property than continuous rigidity. (See for example [3, 9, 18]).
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Define ϕ : V × V → L(Rd,R) by setting ϕ(v, w)x = (q(v) − q(w)) · x for each
x ∈ Rd, if vw ∈ E, and ϕ(v, w) = 0 otherwise. Note that the pair (G,ϕ) satisfies
the conditions of a framework and the transformations induced by the associated
coboundary matrix C(G,ϕ) and the (Euclidean) rigidity matrix R(G, q) are iso-
morphically equivalent.

Example 2.4. Let X be a finite dimensional real normed linear space. A bar-joint
framework in X is a pair (G, q) where q : V → X and q(v) 6= q(w) for all edges
vw ∈ E. As in Example 2.3, we would like to know if (G, q) is continuously flexible
or continuously rigid with respect to the distance constraints imposed by the norm
on X. To achieve this we can adopt the following more general approach.

Recall that a support functional for a point x ∈ X\{0} is a linear functional ψ on
X which satisfies ‖ψ‖ = ‖x‖ and ‖ψ(x)‖ = ‖x‖2. Also recall that a point in X\{0}
is said to be smooth if it has a unique support functional. Suppose q(v) − q(w) is
a smooth point in X for each edge vw ∈ E (note that this assumption is redundant
in the Euclidean context). Then we can define ϕ : V × V → L(X,R) by setting
ϕ(v, w) to be the unique support functional for q(v)−q(w) if vw ∈ E and ϕ(v, w) = 0
otherwise.

The pair (G,ϕ) satisfies the conditions of a framework. Moreover, the associated
coboundary matrix C(G,ϕ) plays a similar role to the Euclidean rigidity matrix in
Example 2.3. In particular, C(G, q) can be used to determine the infinitesimal rigid-
ity and hence rigidity properties of a bar-joint framework in X. (See for example
[12] which considers the special case where X is a finite dimensional `p-space).

2.1. Coboundary operators on `p-spaces. In this section, we provide conditions
under which a coboundary matrix will determine a bounded linear operator between
two normed linear spaces. We also provide formulae, or upper and lower bounds,
for the operator norm. The space of bounded linear operators from a normed space
Z to a normed space W will be denoted B(Z,W ).

For a countable index set I and a normed space X, denote by `∞(I;X) the space
of sequences x = (xi)i∈I in X with supi∈I ‖xi‖ <∞ and write ‖x‖∞ = supi∈I ‖xi‖.
Denote by c00(I;X) the vector space of sequences in X with at most finitely many
non-zero terms.

Proposition 2.5. Let C(G,ϕ) be a coboundary matrix and let Z be a subspace of
`∞(V ;X) which contains c00(V ;X). The following statements are equivalent.

(i) ϕ : V × V → L(X,Y ) is a bounded function.
(ii) C(G,ϕ) ∈ B(Z, `∞(E;Y )).

Moreover, when the above conditions hold, the induced operator norm satisfies,

‖C(G,ϕ)‖op = 2‖ϕ‖∞.

Proof. (i)⇒ (ii). Let z = (zv)v∈V ∈ Z. Then,

‖C(G,ϕ)z‖∞ = sup
vw∈E

‖ϕ(v, w)(zv − zw)‖ ≤ 2‖ϕ‖∞‖z‖∞.

(ii) ⇒ (i). Suppose ϕ is unbounded and let M > 0. Then there exists an edge
e = vw ∈ E with ‖ϕ(v, w)‖op > M . Let ε > 0 and choose a unit vector x ∈ X with
‖ϕ(v, w)x‖ > ‖ϕ(v, w)‖op − ε. Consider the unit vector z = (zṽ)ṽ∈V ∈ Z with,

zṽ =

{
x if ṽ = v,
0 otherwise.
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Then, ‖C(G,ϕ)z‖∞ ≥ ‖(C(G,ϕ)z)e‖ = ‖ϕ(v, w)x‖ > M − ε. Thus C(G,ϕ) is
unbounded.

Finally, suppose conditions (i) and (ii) hold. From the proof of (i) ⇒ (ii) we
have ‖C(G,ϕ)‖op ≤ 2‖ϕ‖∞. To show ‖C(G,ϕ)‖op = 2‖ϕ‖∞, let ε > 0 and choose
an edge e = vw ∈ E with ‖ϕ(v, w)‖op > ‖ϕ‖∞ − ε

4 . Choose a unit vector x ∈ X
such that ‖ϕ(v, w)x‖ > ‖ϕ(v, w)‖op− ε

4 . Consider the unit vector z = (zṽ)ṽ∈V ∈ Z
with,

zṽ =

 x if ṽ = v,
−x if ṽ = w,
0 otherwise.

Then ‖C(G,ϕ)z‖∞ ≥ ‖(C(G,ϕ)z)e‖ = 2‖ϕ(v, w)x‖ > 2‖ϕ(v, w)‖op− ε
2 > 2‖ϕ‖∞−

ε. The result follows. �

Let p ∈ [1,∞). For a countable index set I, denote by `p(I;X) the Banach
space of sequences x = (xi)i∈I in X with

∑
i∈I ‖xi‖p < ∞ and write ‖x‖p =(∑

i∈I ‖xi‖p
) 1

p .

Proposition 2.6. Let C(G,ϕ) be a coboundary matrix. The following statements
are equivalent.

(i) ϕ : V × V → L(X,Y ) is a bounded function.
(ii) C(G,ϕ) ∈ B(`1(V ;X), `∞(E;Y )).

(iii) C(G,ϕ) maps `1(V ;X) into `∞(E;Y ).

Moreover, when the above conditions hold, the induced operator norm satisfies,

‖C(G,ϕ)‖op = ‖ϕ‖∞.

Proof. (i)⇒ (ii) Let z = (zv)v∈V ∈ `1(V ;X). Then,

‖C(G,ϕ)z‖∞ = sup
vw∈E

‖ϕ(v, w)(zv − zw)‖ ≤ ‖ϕ‖∞‖z‖1.

(ii)⇒ (iii) This is immediate.
(iii)⇒ (i) For each edge e = vw ∈ E, consider the linear map,

ψe : `1(V ;X)→ Y, z 7→ ϕ(v, w)(zv − zw).

Note that ‖ϕ(v, w)‖op ≤ ‖ψe‖op for each edge e = vw ∈ E. Since C(G,ϕ) maps
`1(V ;X) into `∞(E;Y ), the set {‖ψe(z)‖ : e ∈ E} is bounded for each z ∈ `1(V ;X).
Thus, by the Banach-Steinhaus theorem, supe∈E ‖ψe‖op < ∞ and so the result
follows.

Finally, suppose conditions (i)-(iii) hold. To show ‖C(G,ϕ)‖op = ‖ϕ‖∞, apply
an argument similar to the proof of Proposition 2.5. Note that in this case z

2 is a

unit vector in `1(V ;X) with ‖C(G,ϕ)z‖∞ > ‖ϕ‖∞ − ε. �

Proposition 2.7. Let C(G,ϕ) be a coboundary matrix and let p ∈ [1,∞). If the
graph G has bounded degree then the following statements are equivalent.

(i) ϕ : V × V → L(X,Y ) is a bounded function.
(ii) C(G,ϕ) ∈ B(`p(V ;X), `p(E;Y )).

(iii) C(G,ϕ) maps `p(V ;X) into `p(E;Y ).

Moreover, when the above conditions hold, the induced operator norm satisfies,

21− 1
p ‖ϕ‖∞ ≤ ‖C(G,ϕ)‖op ≤ 21− 1

p ‖ϕ‖∞∆(G)
1
p .
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Proof. (i) ⇒ (ii) Suppose p ∈ (1,∞) and choose p′ such that 1
p + 1

p′ = 1. Let

z = (zv)v∈V ∈ `p(V ;X). By Holder’s inequality, for each edge e ∈ E,∑
v∈V
‖ce,v‖op‖zv‖ =

∑
v∈V
‖ce,v‖

1
p′
op

(
‖ce,v‖

1
p
op‖zv‖

)

≤

(∑
v∈V
‖ce,v‖op

) 1
p′
(∑
v∈V
‖ce,v‖op‖zv‖p

) 1
p

Thus, noting that
∑
v∈V ‖ce,v‖op ≤ 2‖ϕ‖∞ for each edge e ∈ E,

‖C(G,ϕ)z‖pp ≤
∑
e∈E

(∑
v∈V
‖ce,v‖op‖zv‖

)p

≤ (2‖ϕ‖∞)
p
p′
∑
e∈E

(∑
v∈V
‖ce,v‖op‖zv‖p

)

= (2‖ϕ‖∞)
p
p′
∑
v∈V

(∑
e∈E
‖ce,v‖op‖zv‖p

)

≤ (2‖ϕ‖∞)
p
p′ ‖ϕ‖∞∆(G)

(∑
v∈V
‖zv‖p

)
= 2

p
p′ ‖ϕ‖p∞∆(G)‖z‖pp

It follows that C(G,ϕ) maps `p(V ;X) into `p(E;Y ) and that C(G,ϕ) is bounded

with ‖C(G,ϕ)‖op ≤ 2
1
p′ ‖ϕ‖∞∆(G)

1
p . For the case p = 1 a similar (and more direct)

argument can be applied.
(ii)⇒ (iii) This is immediate.
(iii)⇒ (i) Apply Proposition 2.6.
Finally, suppose conditions (i)-(iii) hold. The proof of (i) ⇒ (ii) provides the

upper bound for ‖C(G,ϕ)‖op. To obtain the lower bound, let ε > 0 and choose
e = vw ∈ E with ‖ϕ(v, w)‖op > ‖ϕ‖∞ − ε

4 . Choose a unit vector x ∈ X such that
‖ϕ(v, w)x‖ > ‖ϕ(v, w)‖op − ε

4 . Let z ∈ `p(V ;X) be the vector with components,

zṽ =

 x if ṽ = v,
−x if ṽ = w,
0 otherwise.

Then ‖z‖p = 2
1
p ‖x‖ = 2

1
p . Note that ‖(C(G,ϕ)z)e‖ = 2‖ϕ(v, w)x‖ > 2‖ϕ‖∞ − ε.

Thus, ‖C(G,ϕ)z‖p > 2‖ϕ‖∞ − ε = 21− 1
p ‖ϕ‖∞‖z‖p − ε and so it follows that

‖C(G,ϕ)‖op ≥ 21− 1
p ‖ϕ‖∞. �

For a countable index set I, denote by c0(I;X) the vector space of null sequences
x = (xi)i∈I in X. i.e. x ∈ c0(I;X) if, given any ε > 0, there exists a finite subset
I0 ⊂ I such that supi∈I\I0 ‖xi‖ < ε. Note that c0(I;X) is a closed subspace of

`∞(I;X).

Proposition 2.8. Let C(G,ϕ) be a coboundary matrix. If G is locally finite then
the following statements are equivalent.

(i) ϕ : V × V → L(X,Y ) is a bounded function.
(ii) C(G,ϕ) maps c0(V ;X) into c0(E;Y ).
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(iii) C(G,ϕ) ∈ B(c0(V ;X), c0(E;Y )).

Moreover, when the above conditions hold, the induced operator norm satisfies,

‖C(G,ϕ)‖op = 2‖ϕ‖∞.

Proof. (i) ⇒ (ii) Let x = (xv)v∈V ∈ c0(V ;X) and let ε > 0. Then there exists a
finite subset V0 ⊂ V such that supv∈V \V0

‖xv‖ < ε
2‖ϕ‖∞ . Thus, for each e ∈ E,

‖
∑

v∈V \V0

ce,v(xv)‖ ≤
∑

v∈V \V0

‖ce,v‖op‖xv‖ <

 ∑
v∈V \V0

‖ce,v‖op

 ε

2‖ϕ‖∞
< ε.

Let E0 ⊂ E denote the finite subset of edges which are incident with a vertex in
V0. Then, noting that ce,v = 0 whenever e ∈ E\E0 and v ∈ V0,

sup
e∈E\E0

‖
∑
v∈V

ce,v(xv)‖ = sup
e∈E\E0

‖ ∑
v∈V \V0

ce,v(xv)‖

 ≤ ε.
Thus C(G,ϕ) maps c0(V ;X) into c0(E;Y ).

(ii)⇒ (i) Apply Proposition 2.6.
(ii)⇒ (iii) Note that, by the above arguments, ϕ is bounded. Thus, by Propo-

sition 2.5, C(G,ϕ) : c0(V ;X)→ c0(E;Y ) is bounded.
(iii)⇒ (ii) This is immediate.
The formula for the operator norm follows from Proposition 2.5. �

For ease of reference we note the following corollary.

Corollary 2.9. Let C(G,ϕ) be a coboundary matrix. If G has bounded degree then
the following statements are equivalent.

(i) ϕ : V × V → L(X,Y ) is a bounded function.
(ii) C(G,ϕ) ∈ B(c0(V ;X), c0(E;Y )).

(iii) C(G,ϕ) ∈ B(`p(V ;X), `p(E;Y )), for all p ∈ [1,∞].
(iv) C(G,ϕ) ∈ B(`p(V ;X), `p(E;Y )), for some p ∈ [1,∞].

Proof. (i)⇒ (ii) Apply Proposition 2.8.
(ii)⇒ (i) Apply Proposition 2.5.
(i)⇒ (iii) Apply Proposition 2.5 for p =∞ and Proposition 2.7 for p ∈ [1,∞).
(iii)⇒ (iv) This is immediate.
(iv) ⇒ (i) Apply Proposition 2.5 when p = ∞ and Proposition 2.6 when p ∈

[1,∞). �

Remark 2.10. In the case where X = Y = K and p = 2, results on the boundedness
and operator norm of coboundary operators C(G,ϕ) : `2(V ;K) → `2(E;K) can
be found in [19, p. 15] and in [4, Section 5.2]. These results can be applied in
particular to incidence matrices for directed graphs, as described in Example 2.2,
and to rigidity matrices for one-dimensional bar-joint frameworks, as described in
Example 2.3.

3. Norm approximation and compactness

Let (G,ϕ) be a framework and let G0 = (V0, E0) be a subgraph of G = (V,E).
Denote by (G0, ϕ) the subframework obtained by restricting ϕ to V0 × V0. Denote
by PE0

: Y E → Y E the projection of Y E onto Y E0 along Y E\E0 .
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A sequence (Gk)k∈N of subgraphs of G converges to G if Gk is a subgraph of
Gk+1 for each k ∈ N and, given any e ∈ E, there exists N ∈ N such that e ∈ E(Gk)
for all k ≥ N . In this case, we write Gk → G as k →∞.

Theorem 3.1. Let C(G,ϕ) be a coboundary matrix where G has bounded degree
and ϕ : V × V → L(X,Y ) is a bounded function.

(i) If Gk → G as k →∞ then,

‖C(G,ϕ)‖op = lim
k→∞

‖C(Gk, ϕ)‖op.

(ii) If S and S ′ denote respectively the set of all subgraphs of G and the set of all
finite subgraphs of G then,

‖C(G,ϕ)‖op = sup
G0∈S

‖C(G0, ϕ)‖op = sup
G0∈S′

‖C(G0, ϕ)‖op.

The operator norms in (i) and (ii) refer to the following two cases:

(a) C(G,ϕ) ∈ B(c0(V ;X), c0(E;Y )) and C(Gk, ϕ) ∈ B(c0(Vk;X), c0(Ek;Y )).
(b) C(G,ϕ) ∈ B(`p(V ;X), `p(E;Y )) and C(Gk, ϕ) ∈ B(`p(Vk;X), `p(Ek;Y )), where

p ∈ [1,∞).

Proof. We will prove the statements for case (a) (similar arguments apply for case
(b)).

(i) Let ε > 0. Note that the sequence (‖C(Gk, ϕ)‖op)k∈N is bounded above by
‖C(G,ϕ)‖op and that ‖C(Gk, ϕ)‖op = ‖PEk

◦C(G,ϕ)‖op for each k ∈ N. Also note
that PEk

∈ B(c0(E;Y ), c0(E;Y )) for each k ∈ N and, since Gk → G as k →∞, the
sequence (PEk

)k∈N converges strongly to the identity map in B(c0(E;Y ), c0(E;Y )).
Thus PEk

◦ C(G,ϕ) → C(G,ϕ) strongly as k → ∞. Since the operator norm is
strongly lower semi-continuous, there exists N ∈ N such that,

|‖C(G,ϕ)‖op − ‖C(Gk, ϕ)‖op| = ‖C(G,ϕ)‖op − ‖PEk
◦ C(G,ϕ)‖op < ε,

for all k ≥ N . This proves (i).
(ii) Note that ‖C(G,ϕ)‖op is an upper bound for {‖C(G0, ϕ)‖op : G0 ∈ S} and

so
‖C(G,ϕ)‖op ≥ sup

G0∈S
‖C(G0, ϕ)‖op ≥ sup

G0∈S′
‖C(G0, ϕ)‖op.

For the reverse inequalities, let ε > 0. Choose a sequence (Gk)k∈N of finite sub-
graphs of G such that Gk → G as k → ∞. By (i), there exists k ∈ N such that
‖C(Gk, ϕ)‖op > ‖C(G,ϕ)‖op − ε. The result follows. �

The set of compact operators T : Z → W between two Banach spaces Z and
W is denoted K(Z,W ). Recall that the essential operator norm for an operator
T ∈ B(Z,W ) is given by,

‖T‖e = inf
K∈K(Z,W )

‖T −K‖op.

Given a framework (G,ϕ) we define,

k(G,ϕ) = inf
E0 finite

(
sup

vw∈E\E0

‖ϕ(v, w)‖op

)
,

where the infimum is taken over all finite subsets E0 ⊆ E.

Proposition 3.2. Let C(G,ϕ) be a coboundary matrix and suppose ϕ : V × V →
L(X,Y ) is a bounded function.
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(i) If Z is a closed subspace of `∞(V ;X) which contains c00(V ;X) then the
bounded operator C(G,ϕ) : Z → `∞(E;Y ) satisfies,

‖C(G,ϕ)‖e ≤ 2k(G,ϕ).

(ii) If G has bounded degree and p ∈ [1,∞) then the bounded operator C(G,ϕ) :
`p(V ;X)→ `p(E;Y ) satisfies,

‖C(G,ϕ)‖e ≤ 21− 1
p k(G,ϕ)∆(G)

1
p .

Proof. (i) Let E0 be a finite subset of E. Define K : Z → `∞(E;Y ) by setting
(K(z))e = C(G,ϕ)z if e ∈ E0 and (K(z))e = 0 otherwise. Since E0 is finite, and X
and Y are finite dimensional, K is a finite rank operator. Note that C(G,ϕ) −K
is similar to a column operator,[

0
C(G0, ϕ)

]
: Z → `∞(E0;Y )⊕ `∞(E\E0;Y ),

where G0 is the subgraph of G with vertex set V and edge set E\E0. (Note that
G0 may contain vertices of degree zero). Since ϕ is bounded, by Proposition 2.5,

‖C(G,ϕ)‖e ≤ ‖C(G,ϕ)−K‖op = ‖C(G0, ϕ)‖op = 2 sup
vw∈E\E0

‖ϕ(v, w)‖op.

The proof of (ii) is similar and uses Proposition 2.7. �

The function ϕ : V ×V → L(X,Y ) is said to vanish at infinity if given any ε > 0,
there exists a finite subset E0 ⊂ E such that supvw∈E\E0

‖ϕ(v, w)‖op < ε.

Corollary 3.3. Let C(G,ϕ) be a coboundary matrix and suppose ϕ : V × V →
L(X,Y ) vanishes at infinity.

(i) If Z is a closed subspace of `∞(V ;X) which contains c00(V ;X) then C(G,ϕ) ∈
K(Z, `∞(E;Y )).

(ii) If G has bounded degree and p ∈ [1,∞) then C(G,ϕ) ∈ K(`p(V ;X), `p(E;Y )).

Proof. (i) Since ϕ : V × V → L(X,Y ) vanishes at infinity, k(G,ϕ) = 0. Thus, by
Proposition 3.2(i), ‖C(G,ϕ)‖e = 0 and so the result follows. A similar argument
applies for (ii). �

Proposition 3.4. Let C(G,ϕ) be a coboundary matrix and suppose one of the
following conditions holds.

(i) C(G,ϕ) ∈ K(c0(V ;X), c0(E;Y )).
(ii) C(G,ϕ) ∈ K(`p(V ;X), `p(E;Y )), where p ∈ [1,∞).

Then the function ϕ : V × V → L(X,Y ) vanishes at infinity.

Proof. Suppose (i) holds and suppose ϕ : V × V → L(X,Y ) does not vanish at
infinity. Then there exists ε > 0 and a countably infinite subset E′ ⊂ E such
that infe=vw∈E′ ‖ϕ(v, w)‖op ≥ ε. For each edge e = vw ∈ E′, choose a unit vector
xe ∈ X with ‖ϕ(v, w)(xe)‖ > ‖ϕ(v, w)‖op − ε

2 . Then let ze ∈ c00(V ;X) be the
vector with components,

zeṽ =

{
xe if ṽ = v,
0 otherwise.

Note that ‖ze‖∞ = ‖xe‖ = 1 for all e ∈ E′ and so the set {ze : e ∈ E′} is bounded in
c0(V ;X). Since C(G,ϕ) ∈ K(c0(V ;X), c0(E;Y )), the image {C(G,ϕ)ze : e ∈ E′}
is precompact in c0(E;Y ) and hence contains a sequence (C(G,ϕ)zek)k∈N which
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converges in c0(E;Y ). Let y = (ye)e∈E ∈ c0(E;Y ) be the limit of this sequence.
Note that,

‖(C(G,ϕ)zek)ek‖ = ‖ϕ(vk, wk)xek‖ ≥ ‖ϕ(vk, wk)‖op −
ε

2
≥ ε

2
,

for each ek = vkwk. On the other hand,

‖(C(G,ϕ)zek)ek‖ ≤ ‖(C(G,ϕ)zek)ek − yek‖+ ‖yek‖ ≤ ‖C(G,ϕ)zek − y‖∞ + ‖yek‖,
where the right-hand side tends to 0 as k →∞. This is a contradiction and so (i)
is proved. A similar argument applies when (ii) holds. �

Corollary 3.5. Let C(G,ϕ) be a coboundary matrix. If G has bounded degree then
the following statements are equivalent.

(i) The function ϕ : V × V → L(X,Y ) vanishes at infinity.
(ii) C(G,ϕ) ∈ K(c0(V ;X), c0(E;Y )).

(iii) C(G,ϕ) ∈ K(`p(V ;X), `p(E;Y )), where p ∈ [1,∞).

Proof. For the implications (i)⇒ (ii) and (i)⇒ (iii), apply Corollary 3.3. For the
implications (ii)⇒ (i) and (iii)⇒ (i), apply Proposition 3.4. �

Proposition 3.6. Let C(G,ϕ) be a coboundary matrix and suppose ϕ ∈ `1(V ×
V,L(X,Y )).

(i) C(G,ϕ) ∈ B(`∞(V ;X), `1(E;Y )) and the induced operator norm satisfies,

‖C(G,ϕ)‖op ≤ 2
∑
vw∈E

‖ϕ(v, w)‖op.

(ii) C(G,ϕ) ∈ K(c0(V ;X), `1(E;Y )).

Proof. (i) Let L =
∑
vw∈E ‖ϕ(v, w)‖op. If x = (xv)v∈V ∈ `∞(V ;X) then,

‖C(G,ϕ)x‖1 =
∑
e∈E
‖
∑
v∈V

ϕ(v, w)xv‖ ≤
∑
e∈E

(∑
v∈V
‖ϕ(v, w)‖op‖xv‖

)
≤ 2L‖x‖∞.

Thus, C(G,ϕ)x lies in `1(E;Y ) and ‖C(G,ϕ)‖op ≤ 2L.
(ii) By (i), C(G,ϕ) ∈ B(c0(V ;X), `1(E;Y )). Now apply Pitt’s theorem [8,

proposition 6.25]. �

4. The bounded below property

Let G = (V,E) be a simple graph. If V0 is a finite subset of V then denote by
∂V0 the set of edges of G with exactly one vertex in V0. The isoperimetric constant
for G is the value,

i(G) = inf
V0 finite

|∂V0|
|V0|

,

where the infimum is taken over all finite subsets V0 of V . (See [5] eg.)
Denote by χ(V ;X) the set of finitely supported vectors in XV with constant

non-zero entries. i.e. z ∈ χ(V ;X) if z ∈ XV and there exists a finite subset V0 ⊂ V
and a non-zero vector x ∈ X such that zv = x for all v ∈ V0 and zv = 0 otherwise.

Proposition 4.1. Let C(G,ϕ) be a coboundary matrix where G = (V,E) is locally
finite, ϕ : V × V → L(X,Y ) is a bounded function and p ∈ [1,∞).

(i)

inf{‖C(G,ϕ)z‖p : z ∈ χ(V ;X), ‖z‖p = 1} ≤ i(G)
1
p ‖ϕ‖∞.
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(ii) If dimX = dimY = 1 then,

i(G)
1
p

(
inf
vw∈E

‖ϕ(v, w)‖op
)
≤ {‖C(G,ϕ)z‖p : z ∈ χ(V ;K), ‖z‖p = 1}.

In particular, if ‖ϕ(v, w)‖op is constant on {(v, w) : vw ∈ E} then,

inf{‖C(G,ϕ)z‖p : z ∈ χ(V ;K), ‖z‖p = 1} = i(G)
1
p ‖ϕ‖∞.

Proof. (i) Let V0 be a finite subset of V . Choose a unit vector x ∈ X and define a
unit vector z ∈ `p(V ;X) by setting,

zv =


(

1
|V0|

) 1
p

x if v ∈ V0,

0 otherwise.

Note that z ∈ χ(V ;X). Moreover,

‖C(G,ϕ)z‖pp =
1

|V0|
∑

vw∈∂V0

‖ϕ(v, w)x‖p ≤ |∂V0|
|V0|

‖ϕ‖p∞.

The result follows.
(ii) Let z ∈ χ(V ;K) with ‖z‖p = 1 and let V0 be the support of z. Then

zv = x for all v ∈ V0, for some non-zero x ∈ K, and zv = 0 otherwise. Note that

|x| =
(

1
|V0|

) 1
p

. Thus,

‖C(G,ϕ)z‖pp =
∑

vw∈∂V0

‖ϕ(v, w)‖pop|x|p ≥
(

inf
vw∈E

‖ϕ(v, w)‖pop
)
|∂V0|
|V0|

.

The inequality now follows. For the final statement, combine this inequality with
(i). �

Remark 4.2. Note that Proposition 4.1(ii) applies in the particular case where
C(G,ϕ) is an incidence matrix for an infinite directed graph G. In this case, X =
Y = R and ‖ϕ(v, w)‖op = 1 for all edges vw ∈ E.

Given a framework (G,ϕ) and a unit vector x ∈ X we define,

i(G,ϕ;x) = inf
V0 finite

(
sup

vw∈∂V0

‖ϕ(v, w)x‖
)
,

where the infimum is taken over all finite subsets V0 of V .

Proposition 4.3. Let C(G,ϕ) be a coboundary matrix, let p ∈ [1,∞) and let x ∈ X
be a unit vector. If G has bounded degree then,

inf{‖C(G,ϕ)z‖p : z ∈ χ(V ;Kd), ‖z‖p = 1} ≤ i(G,ϕ;x)∆(G)
1
p .

Proof. Let V0 be a finite subset of V and construct a unit vector z ∈ `p(V ;X) as
in the proof of Proposition 4.1(i). Then,

‖C(G,ϕ)z‖pp =
1

|V0|
∑

vw∈∂V0

‖ϕ(v, w)x‖p ≤ ∆(G)

(
sup

vw∈∂V0

‖ϕ(v, w)x‖p
)
.

The result follows. �

Recall that a linear operator T : Z → W between normed spaces Z and W is
said to be bounded below if inf‖z‖=1 ‖Tz‖ > 0.
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Corollary 4.4. Let C(G,ϕ) be a coboundary matrix, where ϕ : V × V → L(X,Y )
is a bounded function, and let p ∈ [1,∞). Suppose at least one of the following
conditions holds.

(a) G is locally finite and i(G) = 0.
(b) G has bounded degree and i(G,ϕ;x) = 0 for some unit vector x ∈ X.

Then the operator C(G,ϕ) : `p(V ;X)→ `p(E;Y ) is not bounded below.

Proof. Apply Proposition 4.1 in case (a) and Proposition 4.3 in case (b). �

Remark 4.5. Note that if a graph G is periodic then i(G) = 0. (Recall that a graph
G is periodic if the automorphism group of G contains a free abelian subgroup Γ
which acts on G freely and the set {Γv : v ∈ V } of vertex orbits is finite). Thus,
for any framework (G,ϕ) with ϕ bounded, condition (a) of Corollary 4.4 is satisfied
and so C(G,ϕ) : `p(V ;X)→ `p(E;Y ) is not bounded below for all p ∈ [1,∞). This
applies, in particular, to the rigidity matrices of periodic bar-joint structures ([10]).

Proposition 4.6. Let C(G,ϕ) be a coboundary matrix and let x ∈ X be a unit
vector.

(i)

inf{‖C(G,ϕ)z‖∞ : z ∈ χ(V ;X), ‖z‖∞ = 1} ≤ i(G,ϕ;x).

(ii) If dimX = dimY = 1 then,

inf{‖C(G,ϕ)z‖∞ : z ∈ χ(V ;K), ‖z‖∞ = 1} = i(G,ϕ;x).

Proof. (i) Let V0 be a finite subset of V and define a unit vector z ∈ `∞(V ;X) by
setting,

zv =

{
x if v ∈ V0,
0 otherwise.

For each edge e = vw ∈ E(G),

‖(C(G,ϕ)z)e‖ =

{
‖ϕ(v, w)x‖ if vw ∈ ∂V0,

0 otherwise.

Thus,

‖C(G,ϕ)z‖∞ ≤ sup
vw∈∂V0

‖ϕ(v, w)x‖.

The result follows since z ∈ χ(V ;X) and ‖z‖∞ = 1.
(ii) Let z ∈ χ(V ;K) with ‖z‖∞ = 1 and let V0 be the support of z. Then zv = x

for all v ∈ V0 where |x| = 1. Thus,

‖C(G,ϕ)z‖∞ = sup
vw∈∂V0

‖ϕ(v, w)‖op|x| ≥ i(G,ϕ;x).

For the reverse inequality apply (i). �

Corollary 4.7. Let C(G,ϕ) be a coboundary matrix, where ϕ : V ×V → L(X,Y ) is
a bounded function, and let Z be a subspace of `∞(V ;X) which contains c00(V ;X).
If i(G,ϕ;x) = 0 for some unit vector x ∈ X then the operator C(G,ϕ) : Z →
`∞(E;Y ) is not bounded below.

Proof. Note that Z contains χ(V ;X) and so the result follows from Proposition
4.6. �
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Let (G,ϕ) be a framework and, for each v ∈ V , define

l(v) = sup
vw∈E(v)

‖ϕ(v, w)‖op,

where the supremum is taken over all edges incident with v. The function ϕ :
V × V → L(X,Y ) is said to be weakly bounded away from zero if infv∈V l(v) > 0.

Corollary 4.8. Let C(G,ϕ) be a coboundary matrix and suppose one of the fol-
lowing conditions holds.

(a) C(G,ϕ) ∈ B(Z, `∞(E;Y )), where Z is a subspace of `∞(V ;X) which contains
c00(V ;X), and the operator C(G,ϕ) : Z → `∞(E;Y ) is bounded below.

(b) G has bounded degree, C(G,ϕ) ∈ B(`p(V ;X), `p(E;Y )) and the operator C(G,ϕ) :
`p(V ;X)→ `p(E;Y ) is bounded below, where p ∈ [1,∞).

Then the function ϕ : V × V → L(X,Y ) is weakly bounded away from zero.

Proof. Note that in general, i(G,ϕ;x) ≤ infv∈V l(v) for each unit vector x ∈ X.
Thus the results follow from Corollary 4.4 and Corollary 4.7. �

Remark 4.9. By [17, Theorem 4.27], the incidence matrix of a directed graph
G with bounded degree is bounded below if and only if i(G) > 0. In the next
section, we present an example which suggests there is no simple variant of this
result for general coboundary operators. In particular, we construct a bar-joint
framework (G, q) in the Euclidean plane with the property that the rigidity matrix
R(G, q) : `2(V ;R2)→ `2(E;R) is not bounded below and i(G) > 0.

5. An application to rigidity theory

In this section, we apply the results of the preceding sections to a countably
infinite bar-joint framework (G, q) in the Euclidean plane. The associated rigidity
matrix is denoted R(G, q). (See Example 2.3 for the relevant definitions.)

v0,1

v1,1

v1,2

v2,1

v2,2

v2,3

v2,4

v3,1

v3,8

v4,1

v4,16

v0,1

v1,1

v1,2

v2,1

v2,2

v2,3

v2,4

v3,1

v3,8

v4,1

v4,16

Figure 1. Placement q of the full binary tree G (top) and the
augmented bar-joint framework (G′, q) in Example 5.1 (bottom).
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Example 5.1 (Binary tree framework). Define inductively the following unbounded
placement q of the full binary tree G in R2. Place the root node v0,1 at (0, 1

2 ). Given
now a joint q(vn,k) = (x, y) that corresponds on a vertex lying on the nth-depth of
G, we assign its two children at the points q(vn+1,2k−1) = (x + 1, y − 1

3n+1 ) and

q(vn+1,2k) = (x+ 1, y + 1
3n+1 ) (see top of Figure 1).

Note that the vertices of the same depth of the tree share the same first coordinate.
Moreover, each joint of the framework satisfies q(vn,k) = (n, y) for some y ∈ (0, 1).

We insert extra bars on the flexible framework (G, q) to obtain an infinitesimally
rigid framework on the plane. Namely, we add the set of vertical bars

{q(vn,k)q(vn,k+1) : 1 ≤ k ≤ 2n − 1, n ∈ N},

and the sets of diagonal bars

{q(vn,k)q(vn+1,2k+1) : 1 ≤ k ≤ 2n − 1, n ∈ N}.

Let (G′, q) be the resulting framework (see bottom of Figure 1). It is evident
that G is a spanning tree of G′. Moreover, (G′, q) is infinitesimally rigid, since it is
sequentially infinitesimally rigid (see [12]). Indeed, let Gn be the subgraph of G′ that
is determined by the restriction of (G′, q) on the half-plane Hn := {(x, y) : x ≤ n}.
Observe that {(Gn, q

∣∣
Hn

)}n is a vertex-complete tower of infinitesimally rigid bar-

joint frameworks in (G′, q).
Note that by the full binary tree theorem we have i(G′) = 1. We claim that the

rigidity operator R(G′, q) : c0(V ;R2) → c0(E;R) is not bounded below and that
the rigidity operator R(G′, q) : `p(V ;R2)→ `p(E;R) is not bounded below for each
p ∈ [1,∞). By Corollary 4.4 and Corollary 4.7, it suffices to show that given any
n ∈ N there exists a finite set V0 and some direction specified by a unit vector x in
R2, such that

sup
vw∈∂V0

|ϕ(v, w)x| = sup
vw∈∂V0

|(q(v)− q(w)) · x| ≤ 1

n
.

Let n ∈ N. Choose V0 = {vn,1, vn+1,1} and let x be the unit vector (0, 1). Check
that for every edge vw in ∂V0 we have supvw∈∂V0

|(q(v) − q(w)) · x| = 2
3n ≤ 1

n , so
the proof of our claim is complete.

In light of Example 5.1 and the preceding results, we make the following conjec-
ture.

Conjecture 5.2. Let (G, q) be a bar-joint framework in R2 with the following
properties:

(i) G has bounded degree,
(ii) q : V → R2 is a planar embedding of G (i.e. no edge-crossings are allowed),

(iii) (G, q) is bounded in R2 (i.e. supv∈V ‖q(v)‖ <∞).

Then the rigidity operator R(G, q) : c0(V ;R2) → c0(E;R) is not bounded below
and, for each p ∈ [1,∞), the rigidity operator R(G, q) : `p(V ;R2)→ `p(E;R) is not
bounded below.

Finally, we pose a general problem. Note that if a rigidity operator R(G, q) is
bounded below in either of the cases stated below then the bar-joint framework
(G, q) may be viewed as satisfying a robust form of rigidity for the given space of
vanishing velocity fields.
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Problem 5.3. Let (G, q) be a bar-joint framework in Rd where G has bounded
degree and supvw∈E ‖q(v)− q(w)‖2 <∞.

(a) Find necessary and sufficient conditions on G and q for the rigidity operator
R(G, q) : c0(V ;Rd)→ c0(E;R) to be bounded below.

(b) Given p ∈ [1,∞), find necessary and sufficient conditions on G and q for the
rigidity operator R(G, q) : `p(V ;Rd)→ `p(E;R) to be bounded below.
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