
Rigidity of frameworks with

coordinated constraint relaxations

Hattie Serocold

Supervisor: Dr. Bernd Schulze

Department of Mathematics and Statistics

Lancaster University

This thesis is submitted for the degree of

Doctor of Philosophy

September 2019



Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this thesis are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other university.

This thesis is the result of my own work, except as specified in the text and

Acknowledgements. Many of the ideas in this thesis were the product of discussion with

my supervisor, Bernd Schulze. This thesis contains research carried out jointly: work

that appears in Chapter 4 and Section 7.4 may also be found in the paper co-authored

with Bernd Schulze and Louis Theran [SST18]. I declare that I contributed fully to

this work.

This dissertation contains fewer than 80,000 words including appendices, bibliogra-

phy, footnotes, tables and equations and has fewer than 150 figures.

Hattie Serocold

September 2019



Acknowledgements

I first wish to thank my supervisor Bernd Schulze for his support and patience

throughout the process of producing this thesis, and for his understanding while I was

making corrections.

My thanks also go to Steve Power for his expertise and time acting as my HDC

chair. I am grateful to my examiners, Tony Nixon and Bill Jackson, for taking the

time to read this thesis and for their insightful comments.

I am very grateful to Louis Theran for his interest in coordinated frameworks, and

for the engaging discussions during our work together.

I am also grateful to the Geometric Rigidity group in Lancaster, including Derek

Kitson, Lefteris Kastis and Sean Dewar. I have appreciated the opportunities to share

my work with the community within the department, as well as the wider community

at the conferences each year.

There are many more people to whom thanks are due for their friendship and

support over the last few years, and I hope they will forgive me for not listing every

name. I have greatly appreciated getting to know and work alongside the other PhD

students in the Department of Mathematics and Statistics throughout my time in

Lancaster, especially those students who also began their PhD studies in 2014. I am

very grateful to Shane Turnbull, Jared White, Jason Hancox and Abbie Jones for their

friendship, and also Chris Menez, to whom I owe additional thanks for his proofreading

help. Special thanks are also due to Mateusz Jurczyński and James Maunder for being



iv

so welcoming when I first arrived in Lancaster, and making me truly feel like part of

the community of mathematics PhD students here in Lancaster.

Lancaster Fish Ultimate Frisbee club, Zoo Ultimate, and the wider Ultimate

community all deserve my thanks. Their friendship, positive attitude and good spirit,

and the encouragement to get outside whatever the weather, have been invaluable in

the last five years.

I am especially grateful to Sarah Donaldson for her encouragement throughout the

writing and correcting of this thesis. She listened to more maths than I could ever have

expected of her, put up with some incredibly basic questions about plants, and is an

invaluable friend. I appreciate every coffee break and film night more than I can say.

Jenny Sarsfield deserves my deepest thanks and eternal gratitude: not only for

allowing me to retreat to her house (and cat) to write my thesis, but also for over a

decade of friendship. She has seen the best and worst of me, from writing this thesis

all the way back to GCSE coursework and beyond, and I don’t know what I would do

without her.

I am also grateful to my parents, siblings and family, who have loved and supported

me from afar during my eight years in Manchester and Lancaster, and have welcomed

me back home with open arms.

Thanks are also due to everyone who has listened to me talk about maths over the

last five years, whether in a formal seminar, on a sideline in the rain, or over a cup of

tea. So many people have encouraged me and shown an interest in my work, and I

am especially grateful to the non-mathematicians in my life for smiling and nodding

through as much maths as they could handle.



Abstract

This thesis is concerned with the rigidity of coordinated frameworks. These are

considered to be bar-joint frameworks for which the requirement that the lengths

of bars be kept fixed is relaxed on some collection of bars, with the caveat that all

bars within a coordination class must change length by the same amount. We begin

by formulating the conditions for a framework to be continuously coordinated rigid,

infinitesimally coordinated rigid, and statically coordinated rigid. We prove that static

and infinitesimal rigidity are equivalent for coordinated frameworks, and that for regular

coordinated frameworks, continuous rigidity and infinitesimal rigidity are equivalent.

We give a characterisation of the rigidity of frameworks in d-dimensional Euclidean

space with k coordination classes, based on the rigidity of the structure graph of such a

framework. Since minimal infinitesimal rigidity of bar-joint frameworks is characterised

in R1 and R2, we extend the standard characterisations to a combinatorial characteri-

sation of minimally infinitesimally rigid frameworks with one class of coordinated bars,

and with two classes of coordinated bars, in both dimension 1 and dimension 2. We also

obtain an inductive characterisation of such minimally infinitesimally rigid frameworks

using coordinated analogues to standard inductive constructions. We conclude by

considering coordinated frameworks with symmetric realisations, and give some initial

results in this area.
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Chapter 1

Introduction

There are many situations in which humans wish to be able to construct rigid structures,

which will not deform when a load or force is applied to them. Construction scaffolding

is one intuitive example of a framework formed of bars and joints that is required to

be rigid, though similar techniques may be applied to much smaller problems such as

analysing rigid components of molecules [Hen95].

1.1 History of rigidity

Euler stated the following conjecture on the rigidity of polyhedra with rigid faces,

which was an early motivation for the study of rigid structures.

Conjecture 1.1.1 (Euler, 1766 [Eul62]). A closed spatial figure allows no changes, as

long as it is not ripped apart.

Cauchy [Cau05] gave an initial proof that strictly convex polyhedra with rigid faces

are continuously rigid in 1813, though this proof contained some errors. Steinitz and

Rademacher [SR34] produced a corrected proof of this result in 1934, and Gluck [Glu75]

gave a corresponding result in 1975 that a simply connected closed polyhedron in 3

dimensions is rigid for an open dense subset of the realisations of the vertices.
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In contrast, Connelly [Con77] produced a construction for a 3-dimensional closed

polyhedron that is flexible, and hence is a counterexample to Euler’s 1766 conjecture.

The “Bricard octahedra” [Bri97] are used in this construction, and Connelly also verifies

that such a flexible convex polyhedron has constant volume. This corresponds to the

“Bellows Conjecture”, later proved by Connelly, Sabitov and Walz [CSW97], that the

volume contained within a flexible triangulated polyhedron is constant.

Polyhedra with rigid faces may be considered as a 2-skeleton, comprised of vertices,

edges and faces. The corresponding 1-skeleton of a polyhedron consists only of vertices

and edges, which may be considered as a bar-joint framework. Alexandrov [Ale05]

produced work relating to the rigidity of 1-skeletons of triangulated polyhedra, which

Asimow and Roth [AR78] extended to prove that the existence of at least one non-

triangular face within the 1-skeleton of a strictly convex 3-dimensional polyhedron

implies that the corresponding 3-dimensional bar-joint framework is not rigid.

Another area of classical interest is the concept of linkages: 2-dimensional bar-joint

frameworks with particular flexes. Kempe’s Universality Theorem [Kem76] states

that a flexible linkage may be constructed to trace out any given algebraic curve in

the plane, though the complete proof is attributed to Kapovich and Millson [KM02].

Chebyshev [Che78] designed flexible frameworks that trace an approximation of a

straight line with either a designated vertex (Chebyshev’s Lambda Mechanism) or with

the centre of a designated bar (the Chebyshev linkage). Hartenberg and Denavit [HD64]

include an overview of many types of linkage, including the Peaucellier linkage.

Thus far, we have discussed rigidity in terms of continuous motions. It is a common

technique to consider a linearised version known as infinitesimal rigidity.

Infinitesimal rigidity is in fact equivalent to static rigidity, a perspective on rigidity

derived from engineering. Maxwell [Max64b] studied arbitrary d-dimensional bar-joint

frameworks, rather than 1-skeletons of polyhedra, and characterised the orthogonal
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complement to the image of a linear transformation as the “space of stresses”. Non-

trivial infinitesimal motions of a framework may be seen to be the dual of equilibrium

stresses within a framework, which we wish to avoid in order to obtain minimally

infinitesimally rigid frameworks.

A framework may also satisfy the stronger condition of having a unique realisation

within d-dimensional space, which is known as global rigidity.

The following key result is the basis for much work relating to static and infinitesimal

rigidity [Whi84].

Theorem 1.1.2 (Maxwell, 1864 [Max64b]). Let G = (V,E) be a framework in d-space.

The space of equilibrium stresses of G has dimension at least |E| − d|V | +
(
d+1

2

)
, with

equality if and only if the framework is infinitesimally rigid.

In more recent years, there has been a key shift in the study of rigidity towards

generic rigidity: that is, rigidity as a property of the underlying graph. For generic

frameworks in all dimensions, Asimow and Roth prove that finite and infinitesimal

rigidity are equivalent [AR78, AR79]. The following result was a key motivator towards

the study of generically rigid graphs. It is conventionally referred to as Laman’s

Theorem [Lam70], although work by Pollaczek-Geiringer [PG27] predates that source.

Theorem 1.1.3 (Laman’s Theorem [Lam70]). A graph G′ is rigid in 2 dimensions if

and only if G′ contains a spanning subgraph G = (V,E) such that |E| = 2|V | − 3 and

|D| ≤ 2|V (D)| − 3 for all D ⊆ E.

Laman’s Theorem encouraged the study of rigid graphs, rather than particular

frameworks, and opened up the study of combinatorial rigidity. Graphs that satisfy

the conditions of Laman’s Theorem themselves are often referred to as Laman graphs,

or (2,3)-tight graphs. An overview of rigidity of frameworks in 1 and 2 dimensions

is given by Jackson [Jac07], while parts of Whiteley’s 1978 draft book on “structural

geometry” also remain available online [Whi78a, Whi78b].
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Lovász and Yemini [LY82] give an alternate proof of Laman’s Theorem based on

matroid theory, which has a natural connection to the sparsity characterisation of rigid

graphs in the plane. Laman’s Theorem may be viewed as a characterisation of the

2-dimensional generic rigidity matroid, which is discussed in detail by Whiteley [Whi92,

Whi96]. Jordán [Jor14] gives an overview of the generic rigidity matroid for graphs

that are rigid in the plane, and Jackson and Jordán [JJ05] use the rigidity matroid to

characterise globally rigid graphs in 2 dimensions.

The abstract rigidity matroid, introduced by Graver [Gra91] as an extension of the

generic rigidity matroid, is discussed in more detail by Nguyen [Ngu10]. Graver et

al [GSS93] also use the abstract rigidity matroid in their matroidal discussion of rigidity

theory, while Servatius and Servatius [SS10] use the rigidity matroid to characterise

rigid graphs in the plane.

Crapo [Cra90] gives a characterisation of generically isostatic frameworks in the

plane in terms of tree decompositions of graphs, using an adaptation of an algorithm

for partitioning matroids. Tay [Tay93] gives an alternative proof of this result, based

purely on graph theory. Characterisations of additional classes of graphs also exist,

such as planar minimally rigid graphs [HOR+03], 3-connected rigidity circuits [BJ03b]

and (k, ℓ)-sparse graphs for 0 ≤ ℓ ≤ 2k − 1 [LS08].

Henneberg’s 1911 work “Die graphische Statik der starren Systeme” [Hen11] sum-

marises much of the existing engineering literature about rigid structures at that time,

and uses static rigidity to prove that there are certain recursive constructions that may

be applied to a rigid framework to construct a larger rigid framework.

Since Laman’s 1970 work, the inductive constructions used by Henneberg have been

extended. Tay and Whiteley [TW85] give a generalisation of the 1-extension (often

referred to as a Henneberg II move) to replace a larger subset of edges with a vertex of

appropriate degree, and Whiteley [Whi90] gives additional vertex splitting moves. A
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survey of inductive constructions across various types of rigidity is given by Nixon and

Ross [NR14], while Jordán and Szabadka [JS09] discuss inductive constructions that

preserve global rigidity.

For d ≥ 3, Connelly [Con05] gives a necessary condition for a d-dimensional

bar-joint framework to be globally rigid, while global rigidity of a d-dimensional bar-

joint framework is characterised as a property of the underlying graph by Gortler et

al [GHT10]. Tanigawa [Tan15] and Hendrickson [Hen92] give additional properties of

globally rigid graphs in d dimensions.

Since there is no combinatorial characterisation of generic rigid d-dimensional

bar-joint frameworks for d ≥ 3 for either local or global rigidity, there is interest

in special classes of framework in higher dimensions [Tay84, TW84, WW87]. Katoh

and Tanigawa [KT11] give a characterisation of generic infinitesimally rigid panel-

hinge frameworks, proving Tay and Whiteley’s Molecular Conjecture [TW84]. In

particular, for d = 3 partial characterisations of global rigidity exist for body-bar

frameworks [CJW13] and body-hinge frameworks [JKT16].

Along with considering alternative types of framework, many authors have consid-

ered the same notions of rigidity within alternative settings to d-dimensional Euclidean

space, such as frameworks that are restricted to a particular surface. Necessary condi-

tions for generic global rigidity on some surfaces are given by Jackson et al [JMN14].

Globally rigid frameworks constrained to a family of concentric cylinders are char-

acterised by Jackson and Nixon [JN16], while a characterisation of infinitesimally

rigid frameworks constrained to a family of concentric spheres is given by Nixon et

al [NOP12]. The minimally rigid graphs for surfaces with exactly two trivial motions,

such as the circular cylinder, are characterised as the (2,2)-tight graphs. Nixon et

al [NOP12] give a construction for (2,2)-tight graphs, which Nixon and Owen [NO14]

extend to a construction of (2,1)-tight graphs.
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Another alternative problem is the rigidity of frameworks in non-Euclidean space.

Kitson and Power [KP14] state a characterisation for minimally infinitesimally rigid

frameworks in 2 dimensions with the ℓq-norm with 1 ≤ q ≤ ∞, q ̸= 2, where for

(x1, x2) ∈ R2, ∥(x1, x2)∥q = ((x1)q + (x2)q)
1
q , while Kitson and Schulze [KS14] give

Maxwell-style counts for frameworks in an arbitrary normed space (X, ∥·∥).

Symmetric frameworks are another area of interest, since symmetry often naturally

occurs in applications of rigidity theory. Depending on the geometry of the framework

and the symmetry group, additional flexibility may occur within the framework. Forced

symmetric frameworks are required to only have motions that preserve symmetry, and

for frameworks that are generic with a given symmetry, the existence of a symmetric

infinitesimal motion is equivalent to the existence of a symmetry-preserving continuous

motion within the framework [Sch10d, SW17b]. Many sources on the rigidity of

symmetric frameworks exist [MT14, NSSW14, OP10, Sch10a, Sch10c, ST15, SW11,

SW12, The12], and we shall discuss rigidity of symmetric frameworks in further detail

in Chapter 8, including the rigidity of frameworks with incidental symmetry.

It is natural that there is much interest in applications of rigidity theory. Hen-

drickson discusses algorithms for application in biology contexts [Hen95], and fast

algorithms for checking Laman-style sparsity characterisations, such as FRODA [FS14]

and KINARI [FJLS11], have been implemented in software to analyse rigid components

of molecules.

Systems of geometric constraints, such as those discussed by Owen [Owe96], are

often used in Computer Aided Design (CAD). Combinatorial algorithms now exist for

identifying dependencies within graphs that occur generically, and dependencies that

occur due to specific geometric realisations, and these algorithms may be applied to

CAD problems [FKS+16]. Rigidity and persistence of directed graphs is also of interest

in the context of analysing networks of autonomous agents [HADB07, JJ09].
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It is also possible to consider a generalisation of bar-joint frameworks, referred to as

tensegrity frameworks. Rather than bars having fixed lengths, these frameworks permit

bars with minimum or maximum lengths (usually modelled by struts and cables respec-

tively), and are an area of interest within engineering, introduced by Snelson [Sne96].

Williams [Wil03] combines results from both engineering and mathematical literature

to give an overview of the kinematic and static rigidity of tensegrity structures. An

identical graph may have both rigid and flexible generic realisations, since rigidity is

not a generic property of tensegrity frameworks.

Roth and Whiteley [RW81] define various flavours of rigidity for tensegrity frame-

works, and prove that static and infinitesimal rigidity are equivalent in the tensegrity

context. The authors also characterise infinitesimal rigidity for a tensegrity framework,

based on the infinitesimal rigidity of a standard bar-joint framework with the same

structure and the space of stresses of this corresponding framework.

1.2 Coordinated rigidity

The main area of study within this thesis is the rigidity of coordinated frameworks, in

which a subset of bars may change length, but must all change length by the same

amount. These frameworks may be considered to be related to tensegrity frameworks,

however rigidity of coordinated frameworks is a generic property only of the underlying

graph. This allows us to develop a complete combinatorial characterisation for both

1-coordinated and 2-coordinated frameworks in the line and the Euclidean plane.

We model coordinated frameworks using coloured graphs. Motions of the framework

are required to preserve the length of any uncoloured bars, while edges with the same

colour are permitted to change length, provided that all edges of that colour change

length by the same amount. Infinitesimal rigidity of these coordinated frameworks

remains a generic property, and we have a Roth-Whiteley style equivalence between
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infinitesimal rigidity and static rigidity. We have also obtained inductive constructions

for 1-coordinated and 2-coordinated frameworks in both R1 and R2, along with a

characterisation of k-coordinated frameworks based on the graph being redundantly

rigid to an appropriate degree.

The initial motivation for the study of coordinated frameworks was the existing

work on the rigidity of frameworks on a family of concentric spheres, which may

expand [NSTW18]. This type of framework may be viewed as a specific type of

coordinated framework, in which all edges from a coordination class have the same

length, and are all adjacent to a common vertex.

Another motivation for considering frameworks with coordinated classes of bars is

the potential application of a collection of pistons which are all connected to a central

pump, and so will extend or contract based on the pressure across the whole system.

Discussions with John Owen also identified an alternative potential application, based

around frameworks built from multiple different types of materials, which may expand

at different rates when the framework is heated.

It seems likely that the concepts of coordinated rigidity will be applicable across

many existing types of framework, such as periodic coordinated frameworks, or body-

bar frameworks with coordinated bars. There is also the potential for different types of

coordination constraint, such as preserving the ratio between lengths of bars from the

same coordination class, or preserving the total length of all bars within a coordination

class - which could clearly be of use in the construction of systems containing pulleys.

1.3 Overview

We begin by giving an overview of some results for rigidity of standard frameworks in

Chapter 2. This includes a brief discussion of continuous rigidity in Section 2.3 and

setting up the notions used to consider static rigidity in Section 2.5, along with an
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introduction to infinitesimal rigidity. The definitions given in Chapter 2 are extended in

Chapter 3 to define the analogous concepts within coordinated frameworks, including

continuous coordinated rigidity and infinitesimal coordinated rigidity in Section 3.1

and coordinated static rigidity in Section 3.3. We give an Asimow-Roth style result

proving the equivalence of these types of rigidity for most frameworks.

We use coordinated static rigidity along with the rigidity matroid to develop a

characterisation of infinitesimally rigid k-coordinated frameworks in any dimension

in Chapter 4. This characterisation is based on the rigidity of a standard bar-joint

framework with the same structure, similar to Roth and Whiteley’s characterisation

of the rigidity of tensegrities [RW81]. We make use of matroid theory in this chapter,

which is introduced in Section 2.6.

The inductive constructions that preserve the infinitesimal rigidity of the underlying

framework, introduced in Section 2.8, are also extended to coordinated frameworks in

Chapter 5. In Chapter 6 we give Henneberg-type constructive characterisations along

with Laman-type combinatorial characterisations for generically rigid 1-dimensional

frameworks with one and two classes of coordinated edges, along with a Laman-type

characterisation in the case of three coordinated classes. Chapter 7 contains both Laman-

type combinatorial characterisations, and Henneberg-type inductive constructions, for

generically rigid 2-dimensional frameworks with one and two classes of coordinated

edges. We also discuss necessary conditions for frameworks in 1 and 2 dimensions with

any number of coordination classes, and state conjectures for sufficient conditions.

Chapter 8 discusses existing work on infinitesimal rigidity of symmetric frameworks,

and includes some initial work towards extending these results to symmetric coordinated

frameworks. Chapter 9 concludes with a discussion of current open problems, and

some areas that may yield interesting research in this field.



Chapter 2

Standard Rigidity

In this chapter, we shall begin by defining some different viewpoints on rigidity, and

lead into the set up for combinatorial rigidity, which shall be the focus of much of this

thesis.

2.1 Flavours of rigidity

Much of the mathematical research into geometric rigidity focuses on the study of

bar-joint frameworks. The bars within such a framework are considered to be rigid,

with fixed lengths, while the joints allow any motion within the d-dimensional space in

which the framework exists. One question that is intuitive to ask is whether or not

such a framework has a non-trivial continuous motion. A non-trivial continuous motion

of a framework will preserve the lengths of the bars, while changing the distances

between pairs of joints that are not directly connected. An example of a framework

with a clear continuous motion would be the rectangular framework C4, as illustrated

in Figure 2.1a. We may consider the lower pair of joints as being held fixed, along with

the bar that connects them, and the upper pair of joints each tracing a circular path

around its neighbouring joint. The upper vertices may move in tandem to preserve the
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lengths of the bars of the framework, while the distances between diagonally opposite

pairs of vertices vary. An alternative position of the framework, and the circular paths

traced by the upper vertices, are shown in Figure 2.1b. We shall discuss continuous

rigidity further in Section 2.3.

a

b

Figure 2.1 A continuous motion links Figure 2.1a and Figure 2.1b, showing that this
is clearly not a continuously rigid framework. The motion may be considered as the
upper pair of vertices tracing circles centred around the lower pair of vertices.

Another question that it is reasonable to ask is whether a framework, that may

not seem to have any continuous motions, still might not be completely rigid, and

may instead be noticed to be slightly shaky. We refer to this type of small motion

as an infinitesimal motion. These motions are considered to be made up of velocity

vectors assigned to each joint of the framework, but are still required to preserve the

length of each bar of the framework at first order. Some infinitesimal motions may

be considered as the very beginnings of a corresponding continuous motion, such as

infinitesimal translations and rotations of the framework as a whole, which coincide

with the continuous translations and rotations. Additional infinitesimal motions may

occur that do not correspond to any continuous motion, such as that illustrated in

Figure 2.2b. Section 2.4 defines infinitesimal motions and infinitesimal rigidity in more

detail.

An alternative viewpoint on rigidity, which often occurs in an engineering context,

is that of static rigidity. Instead of being concerned with whether there is a motion of a
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a b

Figure 2.2 Figure 2.2a and Figure 2.2b share the same graph. The colinearity of the
top three vertices in Figure 2.2b creates an infinitesimal motion, denoted by the arrow,
which does not exist in the infinitesimally rigid framework of Figure 2.2a.

bar-joint framework, we wish to be sure that any equilibrium load placed on the joints

of the framework can be resolved by a stress within the bars within the framework.

Stresses indicate whether each bar is in compression or tension, and we wish to avoid

stresses that may be resolved without any load being applied to the framework, referred

to as equilibrium stresses.

These equilibrium stresses may be seen to be duals of any non-trivial infinitesimal

motions using the rigidity matrix, as equilibrium stresses are ωωω ∈ R|E| such that

ωωω⊤R(G, p) = 0 ∈ Rd|V |, and infinitesimal motions are u ∈ Rd|V | such that R(G, p)u =

0 ∈ R|E| [Con87b]. Section 2.5 looks more closely at static rigidity, and its relationship

with infinitesimal rigidity.

Another type of rigidity of bar-joint frameworks that is often considered is that of

global rigidity. Two positions of a framework are still required to have the same distances

between joints that are connected by a bar, but the requirement for a continuous motion

to exist between the two positions within the same space is relaxed, and motions may

be considered to move through higher dimensional spaces. Belk and Connelly [BC07]

constructed frameworks that are not globally rigid in Rd, but require at least R2d for

a motion between the positions, while Bezdek and Connelly [BC04] proved there is

a motion in R2d between an arbitrary pair of positions of a framework in Rd, so R2d

is sufficient, and also necessary in some cases. Gortler et al [GHT10] proved that if a
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generic framework in Rd is not globally rigid, it will have another position that may

be attained through a motion in Rd+1, however this result does not apply to every

alternative position of the framework.

We note that if a framework is not continuously rigid then it is clearly also not

globally rigid, as illustrated by the two different positions of the framework in Fig-

ure 2.1. The converse does not hold, as may be seen in Figure 2.3. There are many

sources on global rigidity, such as [Con05, Tan15, JS09], however we shall not consider

global rigidity within this thesis. We shall begin by considering continuous rigidity

in Section 2.3, infinitesimal rigidity in Section 2.4 and static rigidity in Section 2.5.

Section 2.8 discusses some inductive constructions that may be applied to extend a

framework, while preserving the infinitesimal rigidity properties of the underlying frame-

work. We shall discuss analogous inductive constructions for coordinated frameworks

in Chapter 5.

a b

Figure 2.3 Figure 2.3a and 2.3b represent two positions of a framework that is clearly
not globally rigid, as the two positions have very different distances between the pair
of vertices not connected by an edge. The motion between the two positions is not
contained within R2, and both realisations may be seen to be continuously rigid.

2.2 Definitions

Let G = (V,E) be a graph, where V denotes the vertex set and E is the edge set. We

shall frequently consider |V | = n, and may often identify V by {1, . . . , n} = [n].
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We shall usually represent edges in E by unordered pairs of vertices, {i, j}. We

may sometimes denote |E| by m.

We consider the dimension d to be fixed.

Definition 2.2.1. Given a graph G = (V,E), let p : V → Rd be a map taking each

vertex i ∈ V to a position p(i) ∈ Rd, with p(i) ̸= p(j) for any edge {i, j} ∈ E. The

d-dimensional framework (G, p) is the graph G together with the configuration of the

vertices p. We may refer to G as the graph of the framework (G, p).

When we identify V by {1, . . . , n}, we may also consider the map as a point

p := (p(1), . . . , p(n)) ∈ Rdn. We refer to p ∈ Rdn as a d-dimensional configuration.

Remark 2.2.2. In situations where the dimension is clear, we may refer simply to

frameworks and configurations instead of d-dimensional frameworks and d-dimensional

configurations.

Remark 2.2.3. For convenience of notation, we may sometimes use pi to denote p(i)

for each vertex i ∈ V .

Definition 2.2.4. The edge-length function in Rd for a graph G is fG : Rdn → Rm,

where fG(p){i,j} = ∥p(i) − p(j)∥2.

Definition 2.2.5. Let p, q ∈ Rdn be two distinct d-dimensional configurations. The

frameworks (G, p) and (G, q) are equivalent if

∥p(i) − p(j)∥2 = ∥q(i) − q(j)∥2 for all {i, j} ∈ E. (2.1)

The frameworks (G, p) and (G, q) are congruent if

∥p(i) − p(j)∥2 = ∥q(i) − q(j)∥2 for all i, j ∈ V. (2.2)
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Remark 2.2.6. It is straightforward to see that a pair of d-dimensional frameworks

(G, p) and (G, q) being equivalent corresponds to the configurations p, q ∈ Rdn having

the same edge-length function, fG(p) = fG(q).

Figure 2.1 shows two equivalent configurations of the rectangle C4.

2.3 Finite rigidity

Definition 2.3.1. A framework (G, p) is (locally) rigid if there is a neighbourhood U

of p ∈ Rdn such that, if q ∈ U and the frameworks (G, p) and (G, q) are equivalent,

then the frameworks (G, p) and (G, q) are congruent.

If a framework is not locally rigid, we may refer to it as flexible.

Definition 2.3.2 ([Gra01]). A continuous motion of a framework (G, p) is a family of

continous functions Pi : [0, 1] → Rd, indexed by the vertex set V , such that:

1. Pi(0) = p(i) for all i ∈ V ;

2. Pi(t) is differentiable on the interval [0, 1] for all i ∈ V ;

3. ∥Pi(t) − Pj(t)∥2 = ∥p(i) − p(j)∥2 for all t ∈ [0, 1], for all edges {i, j} ∈ E.

A continuous motion is non-trivial if there is some t0 ∈ (0, 1] such that setting

q(i) = Pi(t0) gives a framework (G, q) that is equivalent, but not congruent, to the

framework (G, p).

A trivial continuous motion of a framework (G, p) preserves the distance between

every pair of vertices within the framework.

Remark 2.3.3. The trivial continuous motions of any d-dimensional framework (G, p)

may be viewed as being isometries of the space Rd applied at the vertices of the

framework. In Euclidean space, these shall be translations, rotations, or combinations

of these. We may also refer to the trivial motions of a framework as rigid body motions.
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Remark 2.3.4. If a pair of d-dimensional frameworks, (G, p) and (G, q), are related

through a trivial motion, then the framework (G, p) is clearly congruent to the frame-

work (G, q).

Asimow and Roth [AR78] prove that a framework being flexible is equivalent to

that framework having a non-trivial motion.

Proposition 2.3.5 (Proposition 1 [AR78]). Let G be a graph on n vertices, K be the

complete graph on n vertices, and p ∈ Rdn. The following are equivalent:

1. (G, p) is not rigid in Rd;

2. (G, p) has a non-trivial continuous motion;

3. There exists a continuous path y in f−1
G (fG (p)) with y(0) = p and y(t) /∈

f−1
K (fK (p)) for some t ∈ (0, 1].

The notation of the third condition looks a bit unusual in our context, but occurs

quite naturally as Asimow and Roth [AR78] define a framework (G, p) as not rigid

if there is no neighbourhood U ⊂ Rdn of p, such that the real algebraic varieties

f−1
G (fG (p)) and f−1

K (fK (p)) coincide on U . The style of proof used in [AR78] is

therefore very different to the other proofs within this thesis, so we shall give a

restatement using slightly more intuitive notation, and using our Definition 2.3.1 in

the first condition.

The third condition may in fact be seen to be equivalent to the existence of a

continuous path y : [0, 1] → Rdn, where y(0) = p and (G, y(t)) is not congruent to

(G, p) for some t ∈ (0, 1]. It is straightforward to see the equivalence between this path

y, and a non-trivial continuous motion of the framework (G, p).

If a framework (G, p) is not locally rigid (as in Definition 2.3.1), any neighbourhood

U of the configuration p that contains an equivalent configuration, will contain an

equivalent configuration that is not congruent to p. We may choose arbitrarily small
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neighbourhoods, and use these non-congruent configurations to construct a non-trivial

motion of the framework (G, p).

Conversely, if there is a non-trivial motion {Qi}i∈V of the framework (G, p), let

t0 ∈ [0, 1) be the last point in the motion where the configuration given by qt0(i) = Qi(t0)

gives a framework (G, qt0) that is congruent to (G, p).

There is an isometry T of Rdn such that T (qt0) = p. If there is a neighbourhood U

of qt0 with qt ∈ U for some t ∈ (t0, 1], then there is a neighbourhood T (U) of p that

contains T (qt). The frameworks (G, qt) and (G, T (qt)) are congruent, since T is an

isometry, but (G, qt) is not congruent to (G, p). Hence the neighbourhood T (U) of p

contains a configuration T (qt) such that (G, T (qt)) is equivalent, but not congruent, to

the framework (G, p). As each motion in {Qi}i∈V is continuous, any neighbourhood of

qt0 will contain at least one qt for t ∈ (t0, 1], and so there will be a configuration which

gives an equivalent but not congruent framework in every neighbourhood of p, and so

(G, p) is not locally rigid.

2.4 Infinitesimal rigidity

The study of continuous motions is a logical place to begin when considering whether

a given framework is rigid or flexible, however in general this problem is coNP-hard

when d ≥ 2 [Abb08]. Rather than consider quadratic algebra to find a motion for a

2-dimensional framework, it is useful to linearise the problem into something rather

more tractable. Instead of our requirement that a continuous motion preserve the

length of each bar, we now require that the projection along the bar of the motion on

the vertices at each end of the bar be equal.

We have the following definition:
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Figure 2.4 An infinitesimal motion of two joints and a single bar.

Definition 2.4.1. An infinitesimal motion of the framework (G, p) is a velocity field

p′ ∈ Rdn supported on p, such that

[p(i) − p(j)] · [p′(i) − p′(j)] = 0 for all {i, j} ∈ E. (2.3)

Definition 2.4.2. The infinitesimal motion p′ is a trivial infinitesimal motion of the

framework (G, p) if it corresponds to a trivial motion in the continuous context, as

defined in Definition 2.3.2, by differentiating and evaluating at t = 0.

A trivial infinitesimal motion p′ of a framework (G, p) will satisfy the following

equation:

[p(i) − p(j)] · [p′(i) − p′(j)] = 0 for all i, j ∈ V. (2.4)

Remark 2.4.3. If a framework (G, p) affinely spans Rd, the space of trivial infinitesimal

motions of (G, p) has dimension
(
d+1

2

)
= d +

(
d
2

)
. This space is generated by d

infinitesimal translations, and
(
d
2

)
infinitesimal rotations, which correspond to the

continuous translations and rotations.

If the framework (G, p) is contained within some strictly smaller subspace Rf ( Rd,

there may be non-trivial infinitesimal motions that satisfy Equation (2.4). Example 2.4.4

describes one such framework, which is illustrated in Figure 2.5.
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Example 2.4.4. Figure 2.5 shows the triangle K3 with the configuration p given

by p(a) = (−2, 0), p(b) = (0, 0), p(c) = (2, 0), which has the following non-trivial

infinitesimal motion p′:

p′(a) = (0, 0) p′(b) =
(

0, 1
2

)
p′(c) = (0, 0)

Note that the edge {a, c} is illustrated as being curved for clarity, but would be

considered to have length ∥p(a) − p(c)∥ = 4.

a b c

Figure 2.5 Example 2.4.4: a co-linear copy of K3 with a non-trivial infinitesimal
motion.

It is straightforward to check that the following all hold:

[p(a) − p(b)] · [p′(a) − p′(b)] = [(−2, 0) − (0, 0)] ·
[
(0, 0) −

(
0, 1

2

)]
= (−2, 0) ·

(
0,−1

2

)
= 0;

[p(b) − p(c)] · [p′(b) − p′(c)] = [(0, 0) − (2, 0)] ·
[(

0, 1
2

)
− (0, 0)

]
= (−2, 0) ·

(
0, 1

2

)
= 0;

[p(a) − p(c)] · [p′(a) − p′(c)] = [(−2, 0) − (2, 0)] · [(0, 0) − (0, 0)]

= (−4, 0) · (0, 0) = 0.

Hence p′ satisfies Equation (2.4), though it does not correspond to any trivial

motion of the whole framework (G, p). This is due to the fact that p′ /∈ span(p).

Remark 2.4.5. We note that Example 2.4.4 gives a situation in which an infinitesimal

motion of a framework satisfies Equation (2.4) while not being a trivial infinitesimal

motion, as defined in Definition 2.4.2. This suggests that we shall want to avoid
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configurations that create degenerate frameworks or subframeworks, which in turn

motivates some of the later definitions of this section, such as Definition 2.4.14.

Definition 2.4.6. The framework (G, p) is infinitesimally rigid if the only infinitesimal

motions of the framework are the trivial infinitesimal motions.

Since the edge-length function fG, defined in Definition 2.2.4, is clearly continuously

differentiable, we make the following definition.

Definition 2.4.7. The rigidity matrix R(G, p) for a d-dimensional framework (G, p)

is an m by dn matrix derived from the edge-length function (Definition 2.2.4), with

dfG(p) = 2R(G, p).

The entries of R(G, p) are functions of the coordinates of p ∈ Rdn. These may

be written in terms of the vectors p(i) for i ∈ V . Each vertex i ∈ V has d columns

corresponding to it, with one row corresponding to each edge {i, j} ∈ E. The rigidity

matrix is illustrated in Equation (2.5).

R(G, p) =

i j


... . . . ... . . .

... . . . ...

0 . . .
(
p(i) − p(j)

)
. . .

(
p(j) − p(i)

)
. . . 0 {i, j}

... . . . ... . . .
... . . . ...

(2.5)

Remark 2.4.8. In situations where the graph of the framework (G, p) is clear, we

may sometimes abbreviate R(G, p) to simply R(p).

Let (G, p) be a framework, and consider p′ ∈ Rdn as an arbitrary vector. The

set of equations defined by Equation (2.3) correspond exactly to the matrix equation

R(G, p)p′ = 0 when p′ is an infinitesimal motion of the framework (G, p).
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In fact, R(G, p)p′ may be considered for any pair of vectors p, p′ ∈ Rdn. If p is not

a valid configuration for the graph G and has p(i) = p(j) for an edge {i, j} ∈ E, there

will be a zero row within R(G, p).

In Remark 2.4.3 we saw that the space of trivial infinitesimal motions of a framework

spanning Rd has dimension
(
d+1

2

)
. This leads straightforwardly to the conclusion that,

as a framework (G, p) will be infinitesimally rigid if and only if the rigidity matrix

R(G, p) has maximal possible rank, (G, p) will be infinitesimally rigid if and only if

the kernel of R(G, p) has dimension
(
d+1

2

)
. We therefore have the following result.

Theorem 2.4.9 ([AR78]). A framework (G, p) that affinely spans Rd is infinitesimally

rigid if and only if rankR(G, p) = dn−
(
d+1

2

)
.

Definition 2.4.10. If the rows of R(G, p) are independent, we refer to the framework

(G, p) as being independent.

The framework (G, p) is isostatic if it is infinitesimally rigid and independent.

An independent framework will have rankR(G, p) = |E| = m. As an isostatic

framework simultaneously requires rankR(G, p) = d|V |−
(
d+1

2

)
and rankR(G, p) = |E|,

we reach the following standard results, which may be found in [SW17a] and other

sources.

Theorem 2.4.11. Let (G, p) be a framework in Rd with |V | ≥ d. The following are

equivalent:

1. (G, p) is isostatic;

2. (G, p) is independent, and |E| = d|V | −
(
d+1

2

)
;

3. (G, p) is infinitesimally rigid, and |E| = d|V | −
(
d+1

2

)
;

4. (G, p) is infinitesimally rigid and (G \ {e}, p) is infinitesimally flexible for any

e ∈ E.
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Corollary 2.4.12. A framework (G, p) in Rd with n ≤ d is isostatic if and only if

rankR(G, p) =
(
n
2

)
. Equivalently, (G, p) in Rd with n ≤ d is isostatic if and only if G

is the complete graph on n vertices and the vertices of (G, p) do not lie in an affine

space of dimension n− 2.

Example 2.4.13. Figure 2.6 shows three frameworks, where (G1, p) and (G2, p),

illustrated in Figure 2.6b and 2.6c respectively, are clearly both obtained by adding

two edges to the framework (G′, p) shown in Figure 2.6a.

We note that from Theorem 2.4.11, the framework (G′, p) clearly cannot be isostatic,

as |E ′| = 7 < 9 = 2|V ′| −
(

3
2

)
, though it is straightforward to see that the rows of

R(G′, p) will be independent. This suggests that adding two edges will be sufficient to

obtain an isostatic framework from (G′, p), provided that adding these edges preserves

independence.

It is useful to note that the rows of R(K4, q) cannot be independent for any

configuration q ∈ R2, as the column rank is at most 2|V | −
(

3
2

)
= 8 − 3 = 5 which is

strictly less than the number of rows. Therefore since the framework (G1, p) has a

subgraph isomorphic to K4, the rows of R(G1, p) will also not be independent, so the

framework cannot be isostatic. We may also see that the subgraph isomorphic to C4

will have a similar continuous motion to that illustrated in Figure 2.1.

(G2, p) is obtained from (G′, p) by adding a diagonal edge across each C4 subgraph

of G′. It is straightforward to see that the rows of R(G2, p) will be independent, and as

|E2| = 9 = 2|V2| −
(

3
2

)
, (G2, p) is an isostatic framework. It may also be checked to be

a minimally rigid framework, as removing any edge will result in an underconstrained

framework and hence a continuous motion, as seen in (G1, p). Similarly we may see that

(G2, p) is infinitesimally rigid by Theorem 2.4.9, as the independent rows of R(G2, p)

give rankR(G2, p) = 9 as required.
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a (G′, p)

b (G1, p) c (G2, p)

Figure 2.6 Example 2.4.13. (G1, p) and (G2, p) are both obtained by adding two bars
to the underconstrained framework (G′, p), however (G1, p) has a continuous motion
while (G2, p) is infinitesimally rigid.

To be able to apply combinatorial techniques, we wish to avoid configurations

p ∈ Rdn that lead to row dependencies due to the geometry of p, rather than due to the

structure of G, as these lead to situations such as Example 2.4.4. We instead choose

to work with the following kind of configurations.

Definition 2.4.14. A configuration p ∈ Rdn is regular if rankR(G, p) ≥ rankR(G, q)

for all q ∈ Rdn.

The set of such configurations is an open, dense subset of Rdn [AR78].

Definition 2.4.15 ([Con87a]). When the dn coordinates of p ∈ Rdn are algebraically

independent over Q, the configuration p is generic.

If the configuration p is generic, we refer to the framework (G, p) as being generic.

The condition for a configuration to be generic is stronger than the condition for a

configuration to be regular, however the generic configurations are also a dense subset

of Rdn [SW17a].

Theorem 2.4.16 ([AR79]). If the d-dimensional framework (G, p) is infinitesimally

rigid, then (G, p) is rigid.
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This statement is intuitively true, as it is clear that given a non-trivial continuous

motion {Pi(t)}, we may obtain a corresponding non-trivial infinitesimal motion by

differentiating and evaluating at t = 0. The details of this result are slightly more

involved, and in fact Connelly [Con87a] gives three different proof techniques. The

first is attributed to Alexandrov [Ale05] and Gluck [Glu75], and also given by Asimow

and Roth [AR78, AR79]. These authors apply the implicit function theorem and use

differential topology, while an alternate proof by Connelly uses the notion of analytic

rigidity to show that the existence of a non-trivial analytic motion implies the existence

of a non-trivial infinitesimal motion. The other proof, referenced to Whiteley, relies on

what is often referred to as the averaging method, and is the method we shall use in

Section 3.2 to prove that the same result holds for coordinated frameworks.

There may be situations in which a non-trivial infinitesimal motion does not have

a corresponding non-trivial continuous motion, such as the motion in Example 2.4.13.

By requiring that the framework (G, p) has a rigidity matrix R(G, p) with maximum

possible rank, we may see the following result from Asimow and Roth [AR79].

Theorem 2.4.17 ([AR78, AR79]). Let (G, p) be a d-dimensional framework with a

regular configuration p ∈ Rdn. Then (G, p) is rigid if and only if (G, p) is infinitesimally

rigid.

Asimow and Roth prove in their first paper [AR78] that for regular configurations

p ∈ Rdn that span the space, the framework (G, p) is rigid if and only if the derivative

of the edge length function at p has rank dfG(p) = dn−
(
d+1

2

)
. The authors then show

in their second paper [AR79] that a framework (G, p) is infinitesimally rigid if and

only if rank dfG(p) = dn−
(
d+1

2

)
, and so rigidity and infinitesimal rigidity coincide for

regular configurations p ∈ Rdn.

The following lemma, given by Graver, Servatius and Servatius [GSS93], allows us

to transform regular configurations without losing the regular property. The authors
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state this result in terms of “generic” configurations, which they define as being

those configurations for which no non-zero minor of the rigidity matrix R(G, p) has

determinant equal to zero. This condition is weaker than our notion of generic, as

defined in Definition 2.4.15, however it is a stronger condition than our notion of

regular (Definition 2.4.14) and also results in an open dense set of configurations. We

shall restrict use of this property to regular configurations, and apply it when proving

that coordinated inductive constructions preserve generic rigidity (see Chapter 5).

Lemma 2.4.18 (Lemma 2.2.2 [GSS93]). Let V = {1, . . . , n} and let p : V → Rd be

any configuration of V . Let A be an affine transformation of Rd, and let K = (V,EK)

be the complete graph on V . Then

a. For any edge set E ⊆ EK , the rows of R(K,A(p)) corresponding to E are

independent if and only if the rows of R(K, p) corresponding to E are independent.

b. A(p) is a regular configuration if and only if p is a regular configuration.

2.5 Static rigidity

We shall now consider the concept of static rigidity, leading up to the standard result

that static rigidity and infinitesimal rigidity are equivalent.

Recall that (G, p) is a framework in Rd, with |V | = n and |E| = m. We begin with

the following standard definitions (see, for example, [Con87b, RW81, Whi78b]).

Definition 2.5.1. A load on a d-dimensional framework (G, p) is a set F := {F1, . . . , Fn},

where each Fi ∈ Rd.

F is an equilibrium load of (G, p) if

n∑
i=1

Fi = 0, (2.6)
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and, for each pair of coordinate directions 1 ≤ h < k ≤ d,

n∑
i=1

[
(Fi)k (pi)h − (Fi)h (pi)k

]
= 0, (2.7)

where (Fi)k denotes the kth component of the force vector Fi, and (pi)h similarly

denotes the hth component of the position vector pi = p(i).

We may consider a load as assigning a force Fi at each distinct joint p(i) of the

framework (G, p), for each vertex i ∈ V .

By restricting to the class of equilibrium loads, we remove those loads that would

induce a translation or rotation of the whole framework. Equation (2.6) requires that

the load apply no net force to the framework as a whole, which is equivalent to there

being no rigid body translation of the framework. Equation (2.7) requires that any

equilibrium load apply no net rotation to the framework. The space of equilibrium

loads therefore has dimension dn−
(
d+1

2

)
, when (G, p) affinely spans the space.

At times, it may be useful to consider each force Fi as a vector, and F as the

concatenation of these vectors, F := [F1, . . . , Fn] ∈ Rdn.

Definition 2.5.2. A stress on the framework (G, p) is an assignment of a scalar ω{i,j}

to each edge {i, j} ∈ E. Using the same ordering of the edges as is used to order the

rows of the rigidity matrix R(G, p), we may consider the stress as a vector ωωω ∈ Rm.

A stress ωωω ∈ Rm on (G, p) is a resolution of an equilibrium load F if, for every

vertex i ∈ V , ∑
j:{i,j}∈E

ω{i,j}
[
p(i) − p(j)

]
= Fi. (2.8)
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Remark 2.5.3. It is useful to note that by considering every vertex in V , we may

write Equation (2.8) in terms of the rigidity matrix, as follows:

ωωω⊤R(G, p) = F. (2.9)

We consider ωωω as a column vector in Equation (2.9).

Definition 2.5.4. We say that the load F is resolvable by (G, p) when a resolution ωωω

exists.

Definition 2.5.5. A framework (G, p) is statically rigid if every equilibrium load on

(G, p) has a resolution.

Rather than consider every equilibrium load when checking whether the framework

(G, p) is statically rigid, we define the following class of loads that generate the space

of equilbrium loads.

Definition 2.5.6. An edge load Fij is defined for any pair of vertices i, j ∈ V , where

Fi = p(i) − p(j), Fj = p(j) − p(i), Fk = 0 for k ̸= i, j.

It is straightforward to check that for every edge {i, j} ∈ E, the edge load Fij is an

equilibrium load.

Lemma 2.5.7 ([Con87b]). Let p ∈ Rdn be a configuration that affinely spans Rd.

Then the set of edge loads
{
Fij : 1 ≤ i < j ≤ n

}
generates the space of equilibrium

loads on (G, p).

We now define a resolution for each edge load as follows.

Definition 2.5.8. An edge resolution ρρρ{i,j} for the edge {i, j} ∈ E is given by ρ{i,j}ij =

1, and ρ{i,j}kl = 0 for all edges {k, l} ≠ {i, j}.

It is clear that the edge resolution ρρρ{i,j} resolves the edge load Fij for each edge

{i, j} ∈ E.
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Definition 2.5.9. An equilibrium stress is a stress ωωω ∈ R|E| that resolves the zero

load, so for every vertex i ∈ V we have

∑
j:{i,j}∈E

ω{i,j}
[
p(i) − p(j)

]
= 0. (2.10)

This is equivalent to ωωω⊤R(G, p) = 0. The space of equilibrium stresses of a

framework (G, p) may be denoted by S(G, p).

The following key result allows us to consider the infinitesimal rigidity and static

rigidity of a framework as being interchangeable.

Theorem 2.5.10 ([Con87b, Hen11, RW81, Whi78b]). Infinitesimal rigidity and static

rigidity are equivalent.

We give a sketch of the standard proof here, as we use a similar style of proof for

the coordinated analogue to this result (Theorem 3.3.7).

Let (G, p) be a framework that affinely spans Rd. A framework is statically rigid

when every equilibrium load has a resolution, and from Lemma 2.5.7 all equilibrium

loads can be generated by the set of edge loads
{
Fij : 1 ≤ i < j ≤ n

}
. The equilibrium

loads exclude those inducing a translation or rotation of the whole framework (G, p),

and hence the space of equilibrium loads has dimension dn− d−
(
d
2

)
= dn−

(
d+1

2

)
.

An edge load is defined for every pair of vertices i, j ∈ V , and for any {i, j} ∈ E the

edge load Fij corresponds to the associated row of the rigidity matrix R(G, p). Every

equilibrium load of (G, p) may be considered as a sum of edge loads, and hence every

equilibrium load has a resolution if and only if each edge load F ∈
{
Fij : 1 ≤ i < j ≤ n

}
has a resolution. This is equivalent to the row rank of the rigidity matrix R(G, p)

being dn−
(
d+1

2

)
, so (G, p) has dn−

(
d+1

2

)
independent edges. From Theorem 2.4.9, a

framework (G, p) is infinitesimally rigid if and only if rankR(G, p) = dn−
(
d+1

2

)
, and

hence static and infinitesimal rigidity are equivalent.
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By considering the space of infinitesimal motions of the framework (G, p), and the

set of equilibrium loads on the framework (G, p), Roth and Whiteley [RW81] prove

that every infinitesimal motion is a trivial infinitesimal motion if and only if every

equilibrium load is resolvable. This leads to the following correspondence, as stated by

Connelly [Con87b].

Lemma 2.5.11 ([Con87b]). Let (G, p) be a framework in Rd and let i, j ∈ V be any

pair of vertices. Then the edge load Fij cannot be resolved if and only if there is an

infinitesimal motion p′ of (G, p) such that
(
p(i) − p(j)

)
·
(
p′(i) − p′(j)

)
̸= 0.

Lemma 2.5.11 is illustrated in Example 2.5.12. This example also gives some

intuition towards Proposition 4.1.2, which shall be required for the coordinated statics

viewpoint used in Chapter 4. We also define the following concept.

Example 2.5.12. Let (G, p) = (G1, p) from Example 2.4.13 (Figure 2.6b). Let the

rows of the rigidity matrix R(G, p) be ordered lexicographically, with respect to the

labelling of the vertices given in Figure 2.7. We use the same ordering for the entries

of ρρρ ∈ R9, which is a resolution of the load F when ρρρ⊤R(G, p) = F.

Let ρρρ :=
[
1 1 −1 −1 1 1 −1

2
−1
2

−1
2

]⊤
∈ R9. This is a resolution of the

equilibrium load F := [(0, 0), (0, 0), (1, 0), (1, 0), (−1,−1), (−1, 1)] ∈ R12, which is

illustrated by grey arrows in Figure 2.7.

2 4 6

531

Figure 2.7 Example 2.5.12: the framework (G1, p) from Example 2.4.13 (Figure 2.6b)
with an equilibrium load indicated in grey.

Similarly, let ωωω :=
[
1 1 −1 −1 1 1 0 0 0

]⊤
∈ R9. Clearly ωωω ̸= 0, however

ωωω⊤R(G, p) = 0, and hence ωωω is an equilibrium stress of the framework (G, p).
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We note that τττ := ρρρ−ωωω =
[
0 0 0 0 0 0 −1

2
−1
2

−1
2

]⊤
may be straightfor-

wardly checked to be another resolution to the equilibrium load F. This gives some

intuition towards Proposition 4.1.2.

Let F′ be the edge load F36 = [(0, 0), (0, 0), (−1, 1), (0, 0), (0, 0), (1,−1)] ∈ R12.

This is an equilibrium load, illustrated in Figure 2.8a, which corresponds to the

non-trivial motion shown in Figure 2.8b by Lemma 2.5.11, and hence has no resolution.

2 4 6

531

a

2
4

6

5
3

1

b

Figure 2.8 Example 2.5.12: an equilibrium load with no resolution, and the corre-
sponding non-trivial motion.

2.6 The rigidity matroid

The structure of a matroid on a set E may be defined by the independent subsets of

E, the minimal dependent sets, the closure operator, or in terms of the submodular

rank function on all subsets of E. We shall mainly consider the rigidity matroid in

terms of the independent and minimally dependent sets.

Definition 2.6.1 ([Oxl06]). A finite set E, and a collection I of subsets of E, form a

matroid on E, M = (E, I), when I satisfies the following conditions:

(I1) ∅ ∈ I;

(I2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I;
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(I3) If I1, I2 ∈ I and |I2| < |I1|, there there exists e ∈ I1 \ I2 such that I2 ∪ {e} ∈ I.

E is referred to as the ground set of M. A subset I ⊆ E with I ∈ I is an

independent set of M, and any subset of E that is not in I is dependent.

Definition 2.6.2 ([Oxl06]). A circuit of M is C ⊆ E such that C /∈ I and, for every

proper subset C ′ ( C, C ′ ∈ I. These are the minimal dependent sets of E.

A basis of M is a maximal independent set of E. These are B ⊆ E such that

B ∈ I, and for any other I ∈ I, |I| ≤ |B|.

Matroids may be straightforwardly generated by rows of a matrix, where the

independent sets I ⊆ E clearly correspond to submatrices with independent rows.

The rank of these submatrices corresponds to the submodular rank function (see, for

example, [Oxl06]). We may use the rigidity matrix R(G, p) to generate the rigidity

matroid as follows.

Definition 2.6.3 ([GSS93]). Let V be a set of n vertices and let Kn = (V,K(V ))

denote the complete graph on the vertex set V . Let the dimension d ≥ 1 be given,

and let p ∈ Rdn be a generic configuration of V in Rd. The d-dimensional generic

infinitesimal rigidity matroid for Kn is denoted by Md(Kn) (or Md), and is generated

by the rows of the rigidity matrix R(Kn, p).

Let G = (V,E) be a graph on n vertices. The d-dimensional generic rigidity matroid

for G, Md(G), is generated by the rows of the rigidity matrix R(G, p). This matroid

may be viewed as a deletion of Md(Kn), since R(G, p) is a submatrix of R(Kn, p).

Remark 2.6.4. Each edge e ∈ K(V ) has a corresponding row in the matrix R(Kn, p).

A collection of edges E ⊆ K(V ) is independent if the rows of R(Kn, p) corresponding to

the edges in E are independent. This coincides exactly with the notion of a framework

(G, p) being independent, introduced in Section 2.4.
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Definition 2.6.5 ([GSS93]). Let E ⊂ K(V ) be an edge set from the complete graph

on n vertices, Kn = (V,K(V )). An edge e ∈ K(V ) \ E is independent of E if the row

of R(Kn, p) corresponding to the edge e is independent of the rows corresponding to

the edges in E. If e is not independent of E, then it is induced by E.

The vertex set of E ⊂ K(V ) is denoted by V (E), where v ∈ V (E) if and only

if {v, w} ∈ E for some vertex w ∈ V . When every vertex is contained in V (E) (i.e.

V (E) = V ), E may be referred to as a spanning edge set for Kn = (V,K(V )).

The graph with edge set K(V ) \ E may be denoted by Kn \ E.

Remark 2.6.6 (Lemma 2.5.1 [GSS93]). Let G = (V,E). It may be useful to note

that an edge {i, j} ∈ K(V ) being independent of the edge set E is equivalent to the

regular framework (G, p) having an infinitesimal motion p′ such that [p(i) − p(j)] ·

[p′(i) − p′(j)] ̸= 0.

Definition 2.6.7 ([GSS93]). An edge set E is rigid if the framework (G, p), where

G = (V (E), E) and p ∈ Rdn is any regular configuration, is infinitesimally rigid.

Lemma 2.6.8 (Lemma 2.5.2 [GSS93]). Let V be a set of n vertices, where Kn =

(V,K(V )) denotes the complete graph on the vertex set V . Let p ∈ Rdn be a regular

configuration of V , and let E ⊆ K(V ) be a spanning edge set (i.e. V (E) = V ). The

edge set E is rigid if and only if every edge f ∈ K(V ) \ E is induced by the edge set

E.

2.7 Combinatorial rigidity

From Theorem 2.4.9 we know that an infinitesimally rigid framework (G, p) has

rankR(G, p) = dn −
(
d+1

2

)
. Definition 2.4.14 defines the regular configurations of

a framework to be those p ∈ Rdn for which rankR(G, p) is maximal in Rdn, so we

note that if (G, p) is infinitesimally flexible for some regular p ∈ Rdn then (G, q) is
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infinitesimally flexible for all q ∈ Rdn. If instead (G, p) is infinitesimally rigid for some

regular p ∈ Rdn, then (G, q) is infinitesimally rigid for all regular q ∈ Rdn. This may

be formally stated as follows.

Lemma 2.7.1 (Corollary 2 [AR78]). If a framework (G, p) is infinitesimally rigid

for some configuration p ∈ Rdn, then (G, q) is infinitesimally rigid for all regular

configurations q ∈ Rdn.

It may also be useful to note that by Theorem 2.4.17, we know that for frameworks

(G, p) with a regular configuration p ∈ Rdn, infinitesimal rigidity and continuous

rigidity are equivalent. When p is regular, rather than consider the rigidity of specific

realisations of frameworks, we may consider rigidity as a property of the graph G.

Definition 2.7.2. A graph G is generically rigid in dimension d if there is a generic

configuration p ∈ Rdn such that the framework (G, p) is infinitesimally rigid. If G is

also independent, we may refer to G as being d-isostatic.

We may now characterise frameworks in Rd that are isostatic for all regular con-

figurations p ∈ Rdn, by characterising d-isostatic graphs. We may therefore apply

combinatorial and graph theoretic techniques while avoiding frameworks in singular

positions.

From the rigidity matrix R(G, p) and Theorem 2.4.11, it seems useful to define

certain sparsity counts for graphs. For d-isostatic graphs, we require that |E| =

d|V | −
(
d+1

2

)
, and we note that for an independent framework we will also have

|E(V ′)| ≤ d|V ′| −
(
d+1

2

)
for any subgraph generated by V ′ ⊂ V with |V ′| ≥ d. We give

the following standard definition in general, noting that the counts in Theorem 2.4.11

are equivalent to the case where k = d and ℓ =
(
d+1

2

)
.

Definition 2.7.3. A finite graph G is (k, ℓ)-sparse if, for all subgraphs G′ = (V ′, E ′)

with |V ′| ≥ k, |E ′| ≤ k · |V ′|−ℓ. If G also satisfies |E| = k · |V |−ℓ, then G is (k, ℓ)-tight.

We may refer to G as a (k, ℓ)-graph when G is (k, ℓ)-tight.
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A (k, ℓ)-circuit is a graph G where the removal of any edge e ∈ E results in a

(k, ℓ)-tight graph G− e. This is equivalent to |E| = k|V | − ℓ+ 1, with |E ′| ≤ k · |V ′| − ℓ

for all proper subgraphs G′ = (V ′, E ′) with |V ′| ≥ k.

If G is a (k, ℓ)-sparse graph with a (k, ℓ)-tight subgraph G′, the subgraph G′ is a

(k, ℓ)-block.

Remark 2.7.4. Recall the definition of a matroid Section 2.6: they may be viewed

either as a collection of independent subsets of the ground set E, or in terms of a rank

function on the subsets of E, where D ⊆ E is independent if and only if r(D) = |D|.

The subsets of rows of the rigidity matrix of the complete graph on n vertices, R(G, p),

that are independent correspond straightforwardly to the independent sets of the

infinitesimal rigidity matroid Md(G) (Definition 2.6.3).

The independent sets of the (k, ℓ)-sparsity matroid [LS08, Whi96] on an edge set E

are precisely all (k, ℓ)-sparse subgraphs. These matroids are characterised for integers

k, ℓ such that 0 ≤ ℓ ≤ 2k − 1 by the (k, ℓ)-pebble game algorithms [LS08].

The minimal dependent sets of a matroid are referred to as the circuits of the

matroid, and the circuits in the (k, ℓ)-sparsity matroid correspond precisely to the

(k, ℓ)-circuits as defined above.

Remark 2.7.5. Following convention, we refer to graphs that are (2,3)-tight as Laman

graphs, and (2,3)-sparse graphs as Laman-sparse graphs. We may also refer to (2,3)-

tight subgraphs within a graph as rigid blocks, and (2,3)-circuits as rigidity circuits (or

circuits where the context is clear).

Remark 2.7.6. We note that some authors refer to graphs that are
(
d,
(
d+1

2

))
-tight

as satisfying the d-dimensional Maxwell-Laman conditions.

Theorem 2.7.7 ([Max64a, GSS93]). If a framework (G, p) that affinely spans Rd is

d-isostatic, the graph G is
(
d,
(
d+1

2

))
-tight.
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This result follows from Theorem 2.4.11, as an isostatic framework in Rd must have

|E| = d|V |−
(
d+1

2

)
, and independence of the rows of R(G, p) will lead to rankR(G, p) =

|E|. Any submatrix generated by a subset of the rows of R(G, p), equivalent to a subset

of the edges F ⊂ E, will also be independent, and so rankR
(
(V (F ), F ), p|V (F )

)
= |F |.

This rank cannot be larger than the number of non-zero columns of the submatrix

with the dimension of the space of trivial infinitesimal motions subtracted, and so

rankR
(
(V (F ), F ), p|V (F )

)
≤ d|V (F )| −

(
d+1

2

)
, leading to the required subgraph count.

2.8 Inductive constructions

We shall now consider some inductive graph moves which preserve rigidity, and so may

be used to construct larger rigid graphs from smaller graphs that are known to be

generically rigid, and are also often used to prove combinatorial rigidity results. We

begin with the definitions of the types of extension we shall consider, and state results

about them sorted by dimension.

Definition 2.8.1. Let G = (V,E) be a graph. The d-dimensional 0-extension of

G is the graph G′ = (V ′, E ′), where V ′ := V ∪ {x} for some new vertex x, and

E ′ := E ∪
{
{x, vi} : 1 ≤ i ≤ d

}
for some {vi : 1 ≤ i ≤ d} ⊂ V .

Lemma 2.8.2 ([TW85]). Let G′ = (V ′, E ′) be a graph obtained from G = (V,E) by

applying the d-dimensional 0-extension. Then G is generically d-isostatic if and only if

G′ is generically d-isostatic.

Definition 2.8.3. Let G = (V,E) be a graph with some edge {a, b} ∈ E. The d-

dimensional 1-extension of G on the edge {a, b} is G′ = (V ′, E ′), where V ′ := V ∪ {x}

for some new vertex x, and E ′ := E \
{
{a, b}

}
∪
{
{x, vi} : 1 ≤ i ≤ d − 1

}
for some

{vi : 1 ≤ i ≤ d− 1} ⊂ V \ {a, b}.
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Lemma 2.8.4 ([AR78, TW85]). Let G = (V,E) be a graph with an edge {a, b} ∈ E

and d− 1 distinct vertices vi ∈ V \ {a, b} for 1 ≤ i ≤ d− 1, and let G′ = (V ′, E ′) be a

graph obtained from G by applying a d-dimensional 1-extension to the edge {a, b}. If

G is generically d-isostatic, then G′ will also be generically d-isostatic.

Remark 2.8.5. We may refer to the reverse of the 0-extension and 1-extension moves

as the 0-reduction and 1-reduction respectively.

Remark 2.8.6. The 0-extension and 1-extension were described by Henneberg [Hen11],

and so are often referred to as Henneberg moves of type I and II respectively.

There are also other types of inductive move, such as vertex splitting and extensions

applied to higher numbers of edges [NR14, TW85]. We discuss the 2-extension further

in Section 2.8.2, as we require a coordinated analogue to this move for the 2-coordinated

2-dimensional constructive characterisation (Theorem 7.2.20), and we also consider

some other types of extension in Section 2.9.

2.8.1 Dimension 1

When d = 1, continuous rigidity and infinitesimal rigidity coincide [Gra01]. The

1-dimensional Maxwell-Laman conditions are equivalent to requiring that the graph

G be a tree, and so a framework (G, p) is isostatic if and only if the graph G is a

tree [Gra01]. It is also known that all trees may be constructed from a single vertex

by repeated applications of the 1-dimensional 0-extension (see, for example, [Gra01,

Theorem 2.20]), and so the 0-extension is sufficient to generate all isostatic frameworks

in R1, though the 1-dimensional 1-extension also preserves isostaticity.

Theorem 2.8.7 ([Gra01]). Let G be a graph. The following are equivalent:

1. G is infinitesimally rigid in 1 dimension, and independent;

2. G is continuously rigid in 1 dimension, and independent;
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3. G is a tree;

4. G can be constructed from a single vertex by a sequence of 0-extensions.

2.8.2 2 dimensions

When d = 2, the conditions for a graph to be
(
d,
(
d+1

2

))
-tight are more commonly

referred to as the Laman conditions (Remark 2.7.5). Graphs that satisfy these are

known as Laman graphs. It is conventional to refer to Laman [Lam70], though many

of his results were discovered earlier by Pollaczek-Geiringer [PG27].

Theorem 2.8.8 (Laman’s Theorem [Lam70]). A graph G is generically infinitesimally

rigid, and independent, in 2 dimensions if and only if G is a Laman graph.

Laman’s proof of this result rests on the characterisation of what he refers to as

“E-graphs”: graphs with |V | ≥ 3, |E| = 2|V | − 3, and |E(V ′)| ≤ 2|V ′| − 3 for any

subgraph induced by V ′ ⊂ V with |V ′| ≥ 2. These may be seen to be the (2,3)-tight

graphs with |V | ≥ 3, and so the minimal such “E-graph” is K3, which may be obtained

by applying a 0-extension to K2, the minimal (2,3)-tight graph.

Laman begins by proving that any graph that is infinitesimally rigid in 2 dimensions

has a spanning subgraph G′, where G′ is infinitesimally rigid in 2 dimensions and

|E ′| = 2|V ′| − 3, and follows this by proving that any graph G that is infinitesimally

rigid in 2 dimensions with |E| = 2|V | − 3 is in fact (2,3)-tight.

As the minimally infinitesimally rigid frameworks are characterised, we have the

following straightforward consequence.

Corollary 2.8.9. A graph G is infinitesimally rigid in 2 dimensions if and only if G

has a spanning Laman subgraph.

Laman proves the following statement (also given by Tay and Whiteley [TW85]),

along with an equivalent result to Lemma 2.8.2 in 2 dimensions.
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Lemma 2.8.10 (Thm 6.4 [Lam70], Prop 3.3 [TW85]). Let G′ = (V ′, E ′) be a (2,3)-

tight graph with a degree 3 vertex x, adjacent to vertices v1, v2, v3, and let G∗ = (V ∗, E∗)

be obtained from G′ by removing x and its three associated edges. Then one of the

edges {v1, v2}, {v1, v3}, {v2, v3} may be added to G∗, such that the resulting graph G

is also a (2,3)-tight graph.

Laman applies Lemma 2.8.2 and Lemma 2.8.10 to give the following inductive proof

that any (2,3)-tight graph on at least 3 vertices has an infinitesimally rigid realisation.

It is clear that G = K3 has an infinitesimally rigid realisation in 2-dimensions, and

it is easy to see that any (2,3)-tight graph has no vertices of degree 1, and at least

one vertex of degree at most 3. As any (2,3)-tight graph G′ on n+ 1 ≥ 4 vertices will

therefore have a vertex of degree 2 or degree 3, we may apply either Lemma 2.8.2 (in

the case of a degree 2 vertex), or Lemma 2.8.10 (in the case of a degree 3 vertex) to

reduce to a (2,3)-tight graph G on n vertices. By the inductive hypothesis, G will have

an infinitesimally rigid realisation, which we may extend to an infinitesimally rigid

realisation of G′ by applying either Lemma 2.8.2 or Lemma 2.8.4.

As a consequence of this inductive method of proof, we obtain the following result,

often referred to as Henneberg’s Theorem. Such a construction of a (2,3)-tight graph

may be referred to as a Henneberg construction.

Theorem 2.8.11 (Henneberg’s Theorem [Lam70]). A graphG is generically 2-isostatic

if and only if there is a sequence of 0-extensions and 1-extensions from a single edge to

create G.

There are other inductive moves in 2 dimensions, but Theorem 2.8.11 shows that

only 0-extensions and 1-extensions are necessary to construct all generically isostatic

graphs. Multiple surveys of such inductive constructions exist (see, for example,

[BLW02, NR14, TW85]), and we shall consider a few further inductive moves that

shall be required for the construction of coordinated isostatic graphs.
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a 0-extension in 2 dimensions.

b 1-extension in 2 dimensions.

Figure 2.9 Henneberg moves in 2 dimensions.

It is logical to consider extending the definitions of 0-extensions and 1-extensions,

to replace increasingly large subsets of edges by vertices of increasing degree. The first

such step gives us the following definition.

Definition 2.8.12 ([TW85]). Let G = (V,E) be a graph with a pair of edges

{v1, v2}, {v3, v4} ∈ E, such that all four end vertices are distinct. Let G∗ = (V,E∗)

be the graph created by deleting these edges, and let G′ = (V ′, E ′) be obtained by

adding a new vertex x, and four new edges {x, vi} for 1 ≤ i ≤ 4. We refer to G′ as a

2-extension of G.

As the two edges removed from G have distinct end vertices, this move is often

referred to as an X-replacement. Tay and Whiteley [TW85] also consider a similar

extension move when the two removed edges share a vertex, known as a V-extension,

however this move is less useful for our purposes.

Figure 2.10 A 2-extension in 2 dimensions, or “X-replacement”.



2.9 3 dimensions and higher 40

Lemma 2.8.13 (Prop 3.9 [TW85]). Let G be a 2-isostatic graph, and let G′ be the

graph formed by applying an X-replacement on the pair of edges {v1, v2}, {v3, v4} ∈ E.

Then G′ is also 2-isostatic.

Tay and Whiteley [TW85] state the following result in general for 2-isostatic graphs,

to permit the removal of a vertex of degree b+ 2. We only require the case where b = 2,

to allow the removal of a vertex of degree 4 from a Laman graph.

Lemma 2.8.14 (Prop 3.8 [TW85]). Let G′ be a (2,3)-tight graph, with a vertex x of

degree 4, and edges {x, vi} for 1 ≤ i ≤ 4. There exists a pair of edges e1, e2 between

the vertices v1, v2, v3, v4 such that removing the vertex x and adding e1, e2 results in a

(2,3)-tight graph G.

This result only gives that some pair of edges may be added, so it may be that the

degree 4 vertex arose as the result of either an X-replacement or a V-replacement. As

we shall require a coordinated analogue to the X-replacement in Section 7.2, we will

need to use some additional structure within the graph to ensure that the two edges

may be added to our coordinated framework with distinct end points.

2.9 3 dimensions and higher

For any dimension d ≥ 3, from Theorem 2.7.7 we have the necessary conditions that a

d-isostatic framework that affinely spans Rd is
(
d,
(
d+1

2

))
-tight. The following result is

known as folklore, as the proof is straightforward.

Theorem 2.9.1 ([SW17a]). If a graph G is generically isostatic in dimension d with

|V | > d, then G is d-connected.

We have seen in Sections 2.8.1 and 2.8.2 that when d = 1 and d = 2, the condition

that |E| = d|V | −
(
d+1

2

)
together with the associated subgraph condition is equivalent

to a graph being isostatic. However when d = 3, the conditions given in Theorem 2.7.7
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are only necessary and are not sufficient. The canonical example of a (3,6)-tight graph

that is not generically isostatic in 3 dimensions is the double banana, illustrated in

Figure 2.11. There is an intuitive continuous motion of the two parts around the

central axis, which may be seen to remain even when the graph is extended to being

3-connected (Figure 63.1.4(c) [SW17a]).

Figure 2.11 The Double Banana.

The following conjecture is often known as the “Sufficient Connectivity Conjecture”.

Conjecture 2.9.2 ([LY82]). If a graph G is d(d+ 1)-connected, then G is generically

rigid in d-space.

There are significant partial results and conjectures for rigidity in 3 dimensions, in

particular for alternative types of framework.

Definition 2.9.3 ([WW87, CJW13]). Let H = (B,E) be a multigraph, and let

GH = (V,EG) be the simple graph induced by H by replacing each vertex v ∈ B by

a complete graph Bv (on degH(v) vertices), where edges {v1, v2} ∈ E correspond to

edges {u1, u2} ∈ EG, where u1 ∈ V (Bv1) and u2 ∈ V (Bv2), assigned in such a way that

the edges between bodies are pairwise disjoint. GH is a body-bar graph.



2.9 3 dimensions and higher 42

Let b′ ∈ Rd|V | be a d-dimensional configuration of the vertices of GH . Then

b ∈ R(d+1
2 )|E| is the corresponding bar configuration of the multigraph H, where

b{i,j} ∈ R(d+1
2 ) is the vector consisting of the Plücker coordinates (2 by 2 minors) of the

2 by d+ 1 matrix

b′
i 1

b′
j 1

.

Tay [Tay84] gives the following combinatorial characterisation for infinitesimal

rigidity of body-bar frameworks.

Theorem 2.9.4 (Tay’s Theorem [Tay84, SW17a]). For a multigraph H, the following

are equivalent:

1. The body-bar framework (H, b) is infinitesimally rigid, for some bar configuration

b of H;

2. The body-bar framework (H, b) is infinitesimally rigid for almost all bar configu-

rations b;

3. GH contains
(
d+1

2

)
edge-disjoint spanning trees.

One class of body-bar frameworks are body-hinge frameworks. These consist of

rigid bodies, connected by d − 2-dimensional “hinges”, which constrain the relative

positions of the bodies. For body-hinge frameworks in 3-dimensions, a hinge between a

pair of bodies is equivalent to the bodies being joined by five bars, which all intersect

the same line. This line may be referred to as the hinge line between the pair of bodies.

Body-hinge frameworks may also be modelled using bar-joint frameworks by re-

placing each body by a complete graph, where two bodies connected by a hinge have

d− 1 common vertices, as described below.

Definition 2.9.5 ([JKT16]). Let H = (B,E) be a multigraph. The d-dimensional

body-hinge graph induced by H is GH = (V,EH), obtained by replacing each body

v ∈ B with a complete graph B(v) on (d − 1) degH(v) + d + 1 vertices, where d + 1
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vertices form the core of the body, C(v), and the remaining vertices are partitioned

such that any pair of bodies u, v ∈ B that are connected by a hinge (i.e. {u, v} ∈ E)

share d− 1 common vertices: |B(u) ∩B(v)| = d− 1.

We denote the set of common vertices B(u) ∩B(v) by H(e), where e = {u, v} ∈ E,

and refer to H(e) as the hinge between B(u) and B(v).

There is an analogous result to Tay’s Theorem (Theorem 2.9.4) for body-hinge

frameworks, known as Tay and Whiteley’s Theorem [TW84, SW17a].

Molecular frameworks are a special class of 3-dimensional body-hinge frameworks,

where all hinges incident to a body intersect at a common point. As the name suggests,

these type of frameworks are of interest for modelling the rigidity or flexibility of

molecules [Hen95].

Katoh and Tanigawa [KT11] give a proof that the infinitesimally rigid body-hinge

frameworks are equivalent to the infinitesimally rigid molecular frameworks, building

on work by Jackson and Jordán [JJ08, JJ06]. This confirms the Molecular Conjecture,

originally posed by Tay and Whiteley [TW84], and extends the characterisation of

body-hinge frameworks to molecular frameworks.

Global rigidity characterisations also exist for body-bar and body-hinge frame-

works [CJW13, JKT16].



Chapter 3

Coordinated Rigidity

We shall now define a coordinated framework, which is the main topic for this thesis.

We wish to define analogous flavours of rigidity to those discussed in Chapter 2, and

develop a similar equivalence between them.

3.1 Definitions

As previously, let the dimension d be fixed and let G = (V,E) be a graph with

vertex set V and edge set E. Recall that n = |V | and V will often be identified by

{1, . . . , n} = [n], while m may at times be used to denote |E|. Edges shall continue to

be indicated by unordered pairs, {i, j} ∈ E for i, j ∈ V .

Consider the number of colours k to be fixed. We shall extend our definition of a

framework (G, p) to that of a k-coordinated framework (G, c, p, r) as follows.

Definition 3.1.1. For a graph G = (V,E), we define the edge-colouring function

c : E → {0, 1, . . . , k}. We use E0 := c−1(0) to denote the set of uncoloured edges of

the graph G, and define the k colour classes to be the induced partitions c−1(ℓ) for

1 ≤ ℓ ≤ k. We denote each colour class by Eℓ := c−1(ℓ).
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We may then refer to (G, c) as a k-edge-coloured graph, or k-coloured graph, and

refer to edges in E1 ∪ · · · ∪ Eℓ as the coloured edges of (G, c).

Remark 3.1.2. Throughout this thesis, we shall represent uncoloured edges of coloured

graphs with straight lines. Coloured edges will be indicated by wavy lines, with edges

from the same colour class having the same frequency and amplitude of waves. Figure 3.1

shows a graph with |E0| = 9, |E1| = 4 and |E2| = 2. Edges that may be allocated

to any colour class, or equally may be uncoloured, will be represented by dashed

lines. (These may be seen, for example, in the case of coordinated 0-extensions and

1-extensions, shown in Figures 5.1, 5.2a and 5.2b.)

Figure 3.1 A 2-coloured framework with |E0| = 9, |E1| = 4 and |E2| = 2.

In Definition 2.2.1, a d-dimensional framework (G, p) was defined by combining

a graph G = (V,E) with a configuration of the vertices p ∈ Rdn, where p(i) ̸= p(j)

for any edge {i, j} ∈ E. We shall now extend this notion to our edge-coloured graph

(G, c).

Definition 3.1.3. A configuration of the k-edge-coloured graph (G, c) is a pair

(p, r) ∈ Rdn+k, where p ∈ Rdn is a configuration of the uncoloured graph G in Rdn

(Definition 2.2.1), and r ∈ Rk is a vector.

We refer to (G, c, p, r) as a k-coordinated framework.

Remark 3.1.4. In situations where the number of colour classes is clear, we may

suppress the k and refer to a coordinated framework.
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Remark 3.1.5. We may consider r ∈ Rk as representing the “strain” r(ℓ) in each

colour class 1 ≤ ℓ ≤ k. We shall see in Definition 3.1.16 that infinitesimal motions are

defined independently of the choice of r. (See Remark 3.1.20).

Definition 3.1.6. Let (p, r) and (q, s) be two configurations of the k-edge-coloured

graph (G, c). The k-coordinated frameworks (G, c, p, r) and (G, c, q, s) are equivalent if

they satisfy the following:

∥p(i) − p(j)∥2 = ∥q(i) − q(j)∥2 for all {i, j} ∈ E0, (3.1)

∥p(i) − p(j)∥2 + r(ℓ) = ∥q(i) − q(j)∥2 + s(ℓ) for all {i, j} ∈ Eℓ, ℓ ∈ {1, . . . , k}.

(3.2)

The k-coordinated frameworks (G, c, p, r) and (G, c, q, s) are congruent if the frameworks

are equivalent and the configurations p and q are congruent. From Definition 2.2.5,

the configurations p and q will satisfy

∥p(i) − p(j)∥2 = ∥q(i) − q(j)∥2 for all i, j ∈ V. (3.3)

Remark 3.1.7. It is straightforward to observe that the k-coordinated frameworks

(G, c, p, r) and (G, c, q, s) being congruent implies that r = s.

Definition 3.1.8. The coordinated edge-length function for a k-edge-coloured graph

(G, c) is f(G,c) : Rdn+k → Rm, where

f(G,c)(p, r){i,j} =


∥p(i) − p(j)∥2 for all {i, j} ∈ E0,

∥p(i) − p(j)∥2 + r(ℓ) for all {i, j} ∈ Eℓ, ℓ ∈ {1, . . . , k}.
(3.4)
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Remark 3.1.9. This is the coordinated analogue to Definition 2.2.4. Two frameworks

(G, c, p, r) and (G, c, q, s) are equivalent if and only if they have the same coordinated

edge-length function, i.e. f(G,c)(p, r) = f(G,c)(q, s).

We now define equivalent notions to those seen in Definition 2.3.1 and Defini-

tion 2.3.2.

Definition 3.1.10. A k-coordinated framework (G, c, p, r) is (locally) rigid if there

is a neighbourhood U of (p, r) ∈ Rdn+k such that, if (q, s) ∈ U and the frameworks

(G, c, p, r) and (G, c, q, s) are equivalent, then the frameworks (G, c, p, r) and (G, c, q, s)

are congruent.

If a coordinated framework is not rigid, we may refer to it as being flexible.

Definition 3.1.11. A continuous motion of a k-coordinated framework (G, c, p, r) is a

family of continuous functions indexed by the vertex set V = {1, . . . , n}, Pi : [0, 1] → Rd,

and a family of continuous functions indexed by the colour classes Eℓ for 1 ≤ ℓ ≤ k,

Rℓ : [0, 1] → R, such that:

1. Pi(0) = p(i) for all i ∈ V ;

Rℓ(0) = r(ℓ) for all ℓ ∈ {1, . . . , k};

2. Pi(t) is differentiable on the interval [0, 1] for all i ∈ V ;

Rℓ(t) is differentiable on the interval [0, 1] for all ℓ ∈ {1, . . . , k};

3. ∥Pi(t) − Pj(t)∥2 = ∥p(i) − p(j)∥2 for all t ∈ [0, 1] for all edges {i, j} ∈ E0;

∥Pi(t) − Pj(t)∥2 + Rℓ(t) = ∥p(i) − p(j)∥2 + r(ℓ) for all t ∈ [0, 1] for all edges

{i, j} ∈ Eℓ, for all ℓ ∈ {1, . . . , k}.

A continuous motion is non-trivial if there is some t0 ∈ (0, 1] such that setting

q(i) = Pi(t0) for i ∈ V and s(ℓ) = Rℓ(t0) for 1 ≤ ℓ ≤ k gives a framework (G, c, q, s) that

is equivalent to (G, c, p, r) but not congruent to (G, c, p, r). Otherwise, a continuous

motion is trivial.



3.1 Definitions 48

Remark 3.1.12. Let qi(t) := Pi(t) for i ∈ V and sℓ(t) := Rℓ(t) for 1 ≤ ℓ ≤ k for

t ∈ [0, 1] for a trivial continuous motion {P,R}. The sequence of frameworks attained

by {P,R}, (G, c, q(t), s(t)) for t ∈ [0, 1], are all congruent to the initial framework

(G, c, p, r), and so the configurations q(t) are congruent to p for all t ∈ [0, 1]. It follows

that s(t) = r for all t ∈ [0, 1]. (See Remark 3.1.7.)

The trivial continuous motions of a k-coordinated framework (G, c, p, r) are therefore

the trivial continuous motions of the uncoloured framework (G, p), which are the rigid

body motions discussed in Remark 2.3.3.

We also have the following equivalent restatement of Definition 3.1.11.

Remark 3.1.13. A continuous motion of a k-coordinated framework (G, c, p, r) is a

family of frameworks (G, c, pt, rt) with t ∈ [0, 1], such that (p0, r0) = (p, r) and all the

(G, c, pt, rt) are equivalent to (G, c, p, r). A continuous motion is non-trivial if there is

some t0 ∈ (0, 1] such that (G, c, pt0 , rt0) is not congruent to (G, c, p, r).

It is equivalent for a k-coordinated framework (G, c, p, r) to be flexible, and for

there to be a non-trivial continuous motion of the framework. We may therefore refer

to a non-trivial continuous motion as a flex.

Remark 3.1.14. We note that the difference in edge lengths within a colour class Eℓ

does not depend on rt(ℓ), so it must be constant over the flex:

∥p(i) − p(j)∥2 + r(ℓ) − ∥p(u) − p(w)∥2 − r(ℓ) = ∥p(i) − p(j)∥2 − ∥p(u) − p(w)∥2.

Other types of coordination, such as preserving the ratio of lengths of a pair of edges,

may be considered instead, and we shall discuss some of these further in Chapter 9.

Example 3.1.15. The framework (G2, p) from Example 2.4.13, shown in Figure 2.6c,

is infinitesimally rigid. We apply the 1-edge-colouring c with |E1| = 3, shown in

Figure 3.2a, to create the 1-coordinated framework (G, c, p, r). There is a continuous
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1-coordinated motion between (G, c, p, r) and (G, c, q, s), which are a pair of equivalent

but not congruent 1-coordinated frameworks.

a (G, c, p, r) b (G, c, q, s)

Figure 3.2 Example 3.1.15. The framework (G, p) is infinitesimally rigid when
uncoloured (see (G2, p) in Example 2.4.13, Figure 2.6c). The 1-edge-coloured graph
(G, c) has a continuous 1-coordinated motion between the equivalent configurations
(G, c, p, r) and (G, c, q, s).

As in the standard rigidity context, we wish to make it easier to determine the

rigidity of a coordinated framework by linearising. We give the following definition, as

an analogue to Definition 2.4.1.

Definition 3.1.16. An infinitesimal motion of the k-coordinated framework (G, c, p, r)

is (p′, r′) ∈ Rdn+k, where p′ ∈ Rdn is a velocity field supported on p and r′ ∈ Rk is a

vector, such that

[p(i) − p(j)] · [p′(i) − p′(j)] = 0 for all {i, j} ∈ E0, (3.5)

[p(i) − p(j)] · [p′(i) − p′(j)] + r′(ℓ) = 0 for all {i, j} ∈ Eℓ, ℓ ∈ {1, . . . , k}. (3.6)

As with the standard rigidity definition of an infinitesimal motion in Section 2.4,

this may be viewed as the first derivative of a continuous motion, evaluated at t = 0,

but we may also take this as the formal definition of a coordinated infinitesimal motion.
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Any standard d-dimensional trivial infinitesimal motion (see Definition 2.4.2) is

also a trivial infinitesimal motion of a k-coordinated d-dimensional framework. We

therefore define the trivial infinitesimal motions of coordinated frameworks as follows.

Definition 3.1.17. A trivial infinitesimal motion (p′, r′) of a k-coordinated framework

(G, c, p, r) is (p′,0), where p′ is a trivial infinitesimal motion of the uncoloured framework

(G, p).

Remark 3.1.18. The trivial infinitesimal motions of a k-coordinated framework

(G, c, p, r) will satisfy the following equation:

[p(i) − p(j)] · [p′(i) − p′(j)] = 0 for all i, j ∈ V. (3.7)

When the infinitesimal motion (p′, r′) affinely spans Rdn+k, this may be taken as the

definition of a trivial infinitesimal motion.

Definition 3.1.19. A k-coordinated framework (G, c, p, r) is considered to be in-

finitesimally rigid if all the infinitesimal motions of (G, c, p, r) are trivial infinitesimal

motions.

Remark 3.1.20. As Equations (3.5) and (3.6) are both independent of r, in the

infinitesimal case we may consider r = 0 and refer instead to a k-coordinated framework

(G, c, p).

The standard rigidity matrix R(G, p) (Definition 2.4.7) corresponds to the equations

of an infinitesimal motion. We now set up the coordinated analogue to the rigidity

matrix.

As |E| = m, we may consider the edge set of a graph G as an m-dimensional vector,

ordered in the same way as the rows of the standard rigidity matrix R(G, p). We
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denote by 1ℓ ∈ Rm the characteristic vector of the colour class Eℓ:

1ℓ(e) =


1 if e ∈ Eℓ,

0 if e /∈ Eℓ.

We may combine the characteristic vectors for the k colour classes, E1, . . . , Ek, into

the m by k matrix given by 1(c) :=
[
11, . . . ,1k

]
. This gives us a matrix condition for

an infinitesimal motion of a k-coordinated framework, equivalent to those given in

Definition 3.1.16:

R(G, p)p′ + 1(c)r′ = 0. (3.8)

To simplify this notation, we define the coordinated rigidity matrix as follows.

Definition 3.1.21. The coordinated rigidity matrix of the k-coordinated framework

(G, c, p, r) is R(G, c, p) :=
[
R(G, p),1(c)

]
.

R(G, c, p) =

i j E1 Ek


... . . . ... . . .

... . . . ... ... . . .
...

0 . . . (pi − pj) . . . (pj − pi) . . . 0 ∗ . . . ∗ {i, j}
... . . . ... . . .

... . . . ... ... . . .
...

We take this as the formal definition of the coordinated rigidity matrix, but this may

be related to the coordinated edge-length function f(G,c) (Definition 3.1.8) in a similar

way to the derivation of the standard rigidity matrix R(G, p) (Definition 2.4.7) using the

standard edge-length function fG (Definition 2.2.4). The Jacobian of the coordinated

edge-length function is df(G,c)(p, r) =
[
2R(G, p), ∂

∂1 (r(1))11, . . . ,
∂
∂k

(r(k))1k
]
, where

1ℓ is the characteristic vector for the colour class Eℓ. Multiplying columns by non-zero
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scalars preserves the rank of the matrix, and so obtaining R(G, c, p) from df(G,c)(p, r)

in this way will give rankR(G, c, p) = rank df(G,c)(p, r).

By defining an extension of the rigidity matrix in this way, we may rewrite Equa-

tion (3.8) as follows, where [p′, r′] is considered as a single vector in Rdn+k:

R(G, c, p) [p′, r′] = 0. (3.9)

We may now state the coordinated analogue to Theorem 2.4.9.

Theorem 3.1.22. Let (G, c, p, r) be a k-coordinated framework that affinely spans Rd.

Then (G, c, p, r) is infinitesimally rigid if and only if rankR(G, c, p) = dn+ k−
(
d+1

2

)
.

Proof. We note first that any infinitesimal motions of the framework (G, c, p, r) are

contained within the kernel of R(G, c, p), and that (G, c, p, r) is infinitesimally rigid if

and only if the only infinitesimal motions of the framework are the trivial infinitesimal

motions. Recall from Remark 2.4.3 that the trivial infinitesimal motions of Rd have

dimension
(
d+1

2

)
. The trivial infinitesimal motions are always contained within the

kernel of the coordinated rigidity matrix, and hence dim kerR(G, c, p) ≥
(
d+1

2

)
for all

frameworks (G, c, p, r).

If (G, c, p, r) is infinitesimally flexible, the kernel of R(G, c, p) contains a non-

trivial infinitesimal motion, and hence has dim kerR(G, c, p) >
(
d+1

2

)
. Therefore

rankR(G, c, p) < dn+k−
(
d+1

2

)
. Conversely if (G, c, p, r) is infinitesimally rigid, the only

infinitesimal motions of (G, c, p, r) are the trivial infinitesimal motions. The kernel of

R(G, c, p) therefore has dimension
(
d+1

2

)
, and hence rankR(G, c, p) = dn+k−

(
d+1

2

)
.

Example 3.1.23. The framework (G, c, p, r) from Example 3.1.15 (Figure 3.2) has

the following coordinated rigidity matrix R(G, c, p) (where the vertices are labelled
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from top to bottom, left to right, as in Figure 2.7 in Example 2.5.12):



p(1) − p(2) p(2) − p(1) 0 0 0 0 1

p(1) − p(3) 0 p(3) − p(1) 0 0 0 0

0 p(2) − p(3) p(3) − p(2) 0 0 0 0

0 p(2) − p(4) 0 p(4) − p(2) 0 0 0

0 0 p(3) − p(4) p(4) − p(3) 0 0 0

0 0 p(3) − p(5) 0 p(5) − p(3) 0 1

0 0 p(3) − p(6) 0 0 p(6) − p(3) 1

0 0 0 p(4) − p(6) 0 p(5) − p(6) 0

0 0 0 0 p(5) − p(6) p(6) − p(5) 0



The rank of this matrix is |E| = 9 < 10 = 2|V | + 1 − 3. This corresponds to the

framework (G, c, p, r) being flexible, as seen in Example 3.1.15.

Lemma 3.1.24. Let (Kn, c) be a k-coloured copy of the complete graph on n vertices,

and let (Kn, c, p, r) affinely span Rd. If (Kn, c, p, r) is infinitesimally rigid, then k ≤(
n−d

2

)
.

Proof. Suppose that (Kn, c, p, r) is infinitesimally rigid. Since (Kn, c, p, r) affinely

spans Rd, by Theorem 3.1.22 we have that rankR(Kn, c, p) = dn + k −
(
d+1

2

)
. Since

rankR(Kn, c, p) ≤ |E| =
(
n
2

)
, we have that dn + k −

(
d+1

2

)
≤
(
n
2

)
. This may be

rearranged as follows:

k ≤
(
n

2

)
+
(
d+ 1

2

)
− dn = n(n− 1)

2 + d(d+ 1)
2 − dn

= n2 − n+ d2 + d− 2dn
2 = (n− d)(n− d− 1)

2 =
(
n− d

2

)
. (3.10)
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Lemma 3.1.25. Let (Kn, c) be a k-coloured copy of the complete graph on n vertices. If

the k-coordinated complete framework (Kn, c, p, r) that affinely spans Rd is independent

and infinitesimally flexible, then k >
(
n−d

2

)
.

Proof. If (Kn, c, p, r) is independent, then rankR(G, c, p) = |E| =
(
n
2

)
. By Theo-

rem 3.1.22, when (Kn, c, p, r) is infinitesimally flexible, rankR(G, c, p) < dn+k−
(
d+1

2

)
.

The result follows from rearranging
(
n
2

)
< dn+ k −

(
d+1

2

)
.

Through algebraic manipulation of Equation (3.10), we may also obtain the following

equivalent result.

Lemma 3.1.26. Let (Kn, c) be a k-coloured copy of the complete graph on n vertices.

If the k-coordinated framework (Kn, c, p, r) that affinely spans Rd is infinitesimally

rigid, then n ≥ 1+2d+
√

8k+1
2 .

As we have defined a coordinated rigidity matrix, we may extend Definition 2.4.14

to configurations of k-coordinated frameworks. We also extend Definition 2.4.15 to the

k-coordinated context.

Definition 3.1.27. A configuration (p, r) ∈ Rdn+k of a k-edge-coloured graph (G, c)

is regular if rankR(G, c, p) ≥ rankR(G, c, q) for all q ∈ Rdn, which is equivalent to p

being regular.

A k-coordinated framework (G, c, p, r) is regular if (p, r) is regular, and hence if p

is regular.

Definition 3.1.28. A configuration (p, r) ∈ Rdn+k of the k-edge-coloured graph (G, c)

is generic if p is generic (as in Definition 2.4.15).

A k-coordinated framework (G, c, p, r) is generic if (p, r) is generic, and hence if p

is generic.

Remark 3.1.29. As k-coordinated frameworks are generic or regular based only on

p ∈ Rdn, rather than the coordinated configuration (p, r) ∈ Rdn+k, this gives further
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justification to considering r = 0 and referring to the framework (G, c, p) (as discussed

in Remark 3.1.20).

We may now state the following result, from work with Louis Theran [SST18],

which we shall cover in more detail in Section 3.2. We prove one direction using an

extension of Whiteley’s averaging method, as discussed by Connelly [Con87a] (see

Theorem 3.2.6), and adapt work by Asimow and Roth [AR78] for the other direction

(see Theorem 3.2.7).

Theorem 3.1.30. Let (G, c, p, r) be a k-coordinated framework. If (G, c, p, r) is in-

finitesimally rigid in Rd, then it is rigid in Rd. If (G, c, p, r) is regular and infinitesimally

flexible in Rd, then it is flexible in Rd.

Definition 3.1.31. A k-coordinated framework (G, c, p, r) is isostatic in Rd if it is

infinitesimally rigid in Rd, and the rows of R(G, c, p) are independent.

We note that the framework (G, c, p, r) is isostatic for some p ∈ Rdn if and only if

the framework (G, c, q, s) is isostatic for all generic q ∈ Rdn. This is straightforward to

prove for regular configurations (p, r) ∈ Rdn+k, and so holds for generic configurations

as these are contained within the set of regular configurations. As in the standard

rigidity context, we shall characterise the rigidity of regular k-coordinated frameworks,

by characterising the rigidity of k-edge-coloured graphs with regular configurations:

we discuss the case of coordinated frameworks in R1 in Chapter 6, and coordinated

frameworks in R2 are discussed in Chapter 7.

Definition 3.1.32. The k-edge-coloured graph (G, c) is d-isostatic if the framework

(G, c, p, r) is isostatic for some (p, r) ∈ Rdn+k.

We have the following k-coordinated analogue to Theorem 2.4.11.

Theorem 3.1.33. Let (G, c, p, r) be a k-coordinated framework in Rd with |V | ≥ d,

where p ∈ Rdn is a regular configuration. The following are equivalent:
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1. (G, c, p, r) is d-isostatic;

2. (G, c, p, r) is independent, and |E| = d|V | + k −
(
d+1

2

)
;

3. (G, c, p, r) is infinitesimally rigid, and |E| = d|V | + k −
(
d+1

2

)
;

4. (G, c, p, r) is infinitesimally rigid, and the k-coordinated framework (G′, c′, p′, r′) =

(G− e, c|E\{e} , p, r) is infinitesimally flexible for all edges e ∈ E0 and e ∈ Eℓ for

1 ≤ ℓ ≤ k with |Eℓ| ≥ 2.

Proof. From Theorem 3.1.22, a framework (G, c, p, r) is infinitesimally rigid if and only

if rankR(G, c, p) = d|V | + k−
(
d+1

2

)
, and the rows of R(G, c, p) are independent if and

only if rankR(G, c, p) = |E|. Equivalence of the first three conditions follows from

these facts.

If the framework (G, c, p, r) is d-isostatic, rankR(G, c, p) = |E| since the rows

of the coordinated rigidity matrix are independent. If (G′, c′, p′, r′) is formed by

removing an edge e ∈ E, the rows of R(G′, p′, c′) will clearly still be independent, and

rankR(G′, c′, p′) = |E ′| = |E| − 1. If e ∈ E is chosen such that E ′
ℓ ̸= ∅ for 1 ≤ ℓ ≤ k,

all columns of R(G′, c′, p′) will remain non-zero, so d|V | + k−
(
d+1

2

)
> rankR(G′, c′, p′)

and hence the framework (G′, c′, p′, r′) is infinitesimally flexible.

a b

Figure 3.3 The 1 edge-coloured graph (K4, c) with |E0| = 5 and |E1| = 1 (a) is
effectively equivalent to the uncoloured graph K4 − e (b).

The final condition requires that (G, c, p, r) be “minimally rigid” as a k-coordinated

framework. We note that a colour class with Eℓ = {e} is equivalent to e ∈ E being a

“non-edge”. An example of this situation is shown in Figure 3.3.
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The following example further illustrates Statement 4 of Theorem 3.1.33.

a The isostatic 2-coloured framework
(G, c, p, r).

b The isostatic 1-coloured framework
(G1, c1, p, r).

c The flexible 2-coloured framework
(G2, c2, p, r).

d The flexible 2-coloured framework
(G2, c2, p+ p′, r + 2r′).

e The flexible 2-coloured framework
(G3, c3, p, r).

f The flexible 2-coloured framework
(G3, c3, p+ p′′, r + 2r′′).

Figure 3.4 Example 3.1.34: a 2-coordinated framework (G, c, p, r) that is minimally
rigid as a 2-coordinated framework (illustrated by applying the non-trivial flexes (p′, r′)
and (p′′, r′′) to the reduced 2-coloured frameworks (G2, c2, p, r) and (G3, c3, p, r)), but
remains rigid as a reduced 1-coordinated framework ((G1, c1, p, r)).
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Example 3.1.34. The 2-coloured framework illustrated in Figure 3.4a is infinitesimally

rigid, with |E0| = 10, |E1| = 4 and |E2| = 1. (The edges of E1 are indicated by smoothly

waved lines, in contrast to the zig-zag indicating the single edge of E2.)

Removing any uncoloured edge results in a flexible framework, one of which is

illustrated in Figure 3.4c, with an equivalent but not congruent realisation shown in

Figure 3.4d. Removing an edge from E1, as seen in Figure 3.4e, similarly creates a

framework with a continuous motion. Figure 3.4f illustrates an equivalent realisation

that may be achieved through such a motion.

In contrast, Figure 3.4b shows the framework created by removing the single edge

from E2. This results in an infinitesimally rigid 1-coordinated framework, unlike the

flexible 2-coordinated frameworks described above.

3.2 Coordinated finite versus infinitesimal rigidity

We now show that infinitesimal rigidity implies local rigidity in the coordinated case,

by extending Whiteley’s “Averaging Method” to coordinated frameworks. We also give

an analogue to a result by Asimow and Roth [AR78] to prove the equivalence in the

other direction.

The following result is attributed to Whiteley when stated by Connelly [Con87a],

and described as “The Averaging Method”.

Theorem 3.2.1 (Proposition 2.41 [Con87a]). Let p, q ∈ Rd be two configurations in

Rd. Then

a. (G, p) is equivalent to (G, q) if and only if p − q is an infinitesimal motion for

(G, p+q
2 ),

b. If p− q is a trivial infinitesimal motion of (G, p+q
2 ), then (G, p) is congruent to

(G, q),
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c. If the affine span ⟨p+q
2 ⟩ contains p − q, and (G, p) is congruent to (G, q), then

p− q is a trivial infinitesimal motion of (G, p+q
2 ).

The following restatement is also given, which we shall adapt and prove for coor-

dinated frameworks in Theorem 3.2.3. Rather than begin by considering two config-

urations p and q that may be equivalent, and finding an infinitesimal motion of the

framework with configuration p+q
2 , we begin with a configuration p and a potential

infinitesimal motion p′, and find pairs of equivalent or congruent frameworks based

on the properties of p′. By choosing p′ to be a non-trivial infinitesimal motion of very

small magnitude, we may find pairs of equivalent frameworks that get arbitrarily close

together, but are not congruent.

Theorem 3.2.2 (Remark 2.42 [Con87a]). Let p ∈ Rd be a configuration in Rd, and

let p′ ∈ Rd be a velocity field supported on p. Then

a. (G, p+ p′) is equivalent to (G, p− p′) if and only if p′ is an infinitesimal motion

for (G, p),

b. If p′ is a trivial infinitesimal motion of (G, p), then (G, p + p′) is congruent to

(G, p− p′),

c. If the affine span ⟨p⟩ contains p′, and (G, p+ p′) is congruent to (G, p− p′), then

p′ is a trivial infinitesimal motion of (G, p).

We adapt Theorem 3.2.2 to the coordinated case as follows, which we shall then

restate to get an adaptation of Theorem 3.2.1 (Theorem 3.2.5).

Theorem 3.2.3. Let (p, r) be a configuration of the k-edge-coloured graph (G, c), and

let (p′, r′) ∈ Rdn+k with p′ a velocity field supported on p. Then

a. (G, c, p+ p′, r + 2r′) is equivalent to (G, c, p− p′, r − 2r′) if and only if (p′, r′) is

an infinitesimal motion for (G, c, p, r).
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b. If (p′, r′) is a trivial infinitesimal motion of (G, c, p, r), then (G, c, p+ p′, r + 2r′)

is congruent to (G, c, p− p′, r − 2r′).

c. If the affine span ⟨p⟩ contains p′, and (G, c, p + p′, r + 2r′) is congruent to

(G, c, p− p′, r − 2r′), then (p′, r′) is a trivial infinitesimal motion of (G, c, p, r).

Proof. a. Let {i, j} ∈ E be an edge, and consider the difference of the length of {i, j} in

(G, c, p+p′, r+2r′), and the length of {i, j} in (G, c, p−p′, r−2r′). Recall the coordinated

edge-length function f(G,c) from Definition 3.1.8, and note that f(G,c)(p+p′, r+2r′){i,j} =

∥(p+ p′)(i) − (p+ p′)(j)∥2 + (r + 2r′)(ℓ) for an edge {i, j} ∈ Eℓ, 1 ≤ ℓ ≤ k. We may

extend this to edges {i, j} ∈ E0 by considering r(0) = r′(0) = 0, and hence we have

the following for all edges in E:

[
∥(p+ p′)(i) − (p+ p′)(j)∥2 + (r + 2r′)(ℓ)

]
−
[
∥(p− p′)(i) − (p− p′)(j)∥2 + (r − 2r′)(ℓ)

]
= ∥p(i) − p(j) + p′(i) − p′(j)∥2 + (r + 2r′)(ℓ)

− ∥p(i) − p(j) − p′(i) + p′(j)∥2 − (r − 2r′)(ℓ)

=
[
p(i) − p(j)

]2
+ 2

[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
+
[
p′(i) − p′(j)

]2
+ r(ℓ) + 2r′(ℓ)

−
[
p(i) − p(j)

]2
+ 2

[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
−
[
p′(i) − p′(j)

]2
− r(ℓ) + 2r′(ℓ)

= 4
[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
+ 4r′(ℓ). (3.11)

When (p′, r′) is an infinitesimal motion,
[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
+ r′(ℓ) = 0, and

so when (p′, r′) is an infinitesimal motion, the final line of Equation (3.11) is equal to 0.

From the first line of Equation (3.11), we therefore have that f(G,c)(p+ p′, r+ 2r′){i,j} =

f(G,c)(p−p′, r−2r′){i,j} for all edges {i, j} ∈ E and hence the frameworks are equivalent.

Conversely when the frameworks are equivalent, we have that the coordinated

edge-length functions are equal for all edges {i, j} ∈ E, and hence the final line of
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Equation (3.11) gives
[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
+ r′(ℓ) = 0, as required for (p′, r′) to

be an infinitesimal motion.

b. Let (p′, r′) be a trivial infinitesimal motion of (G, c, p, r). By definition, for any

pair of vertices i, j ∈ V we have
[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
= 0, and as a consequence

we see that r = r′ = 0.

As in part a, we compare the distance within (G, c, p + p′, r + 2r′) and within

(G, c, p − p′, r − 2r′) between any pair of vertices i, j ∈ V , and no longer restrict to

only considering pairs of vertices connected by an edge.

[
∥(p+ p′)(i) − (p+ p′)(j)∥2

]
−
[
∥(p− p′)(i) − (p− p′)(j)∥2

]
= ∥p(i) − p(j) + p′(i) − p′(j)∥2 − ∥p(i) − p(j) − p′(i) + p′(j)∥2

=
[
p(i) − p(j)

]2
+ 2

[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
+
[
p′(i) − p′(j)

]2
−
[
p(i) − p(j)

]2
+ 2

[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
−
[
p′(i) − p′(j)

]2
= 4

[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
= 0. (3.12)

Hence the frameworks (G, c, p+ p′, r + 2r′) and (G, c, p− p′, r − 2r′) are congruent.

c. When the frameworks (G, c, p+p′, r+2r′) and (G, c, p−p′, r−2r′) are congruent,

for any pair of vertices i, j ∈ V we have that ∥(p+p′)(i)−(p+p′)(j)∥2 = ∥(p−p′)(i)−(p−

p′)(j)∥2. Expanding this equation out, as above, we see that
[
p(i)−p(j)

]
·
[
p′(i)−p′(j)

]
=

−
[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
, which gives us that

[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
= 0 for

all vertices i, j ∈ V .

Recall (from Definition 3.1.17) that the trivial infinitesimal motions of a k-coordinated

framework (G, c, p, r) are (p′,0) for a trivial infinitesimal motion p′ of the uncoloured

framework (G, p). The standard trivial infinitesimal motions, as discussed in Defi-

nition 2.4.2 and Remark 2.4.3, are spanned by the infinitesimal translations, where

p′(i) = p′(j) for every pair of vertices i, j ∈ V , and the infinitesimal rotations, for which
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p′(i) − p′(j) is orthogonal to p(i) − p(j) for each pair of vertices i, j ∈ V . If p′ is not

an infinitesimal motion of this type, then p′ is not a trivial motion in the span of the

framework (G, c, p, r), and hence p′ /∈ ⟨p⟩. As we assumed that p′ ∈ ⟨p⟩, p′ must be a

trivial infinitesimal motion, and so (p′,0) = (p′, r′) is a trivial infinitesimal motion of

the k-coordinated framework (G, c, p, r).

The following example illustrates a framework with an infinitesimal motion, and

the associated pair of equivalent frameworks that are not congruent.

Example 3.2.4. Let (G, c, p, r) be a 1-coordinated framework, with the structure

graph G as illustrated in Figure 3.5, p ∈ R12 defined as follows:

p(1) = (−4, 6) p(2) = (4, 6) p(3) = (0, 4)

p(4) = (0, 0) p(5) = (−2, 3) p(6) = (2, 3)

We may consider r(1) as being arbitrary.

We define an infinitesimal motion (p′, r′) of this framework, by setting p′ as follows:

p′(1) = (0, 0) p′(2) = (0, 0) p′(3) = (0, 0)

p′(4) = (0, 0) p′(5) =
(

− 1
2 ,−

1
3

)
p′(6) =

(
1
2 ,−

1
3

)
.

It is straightforward to check that
[
p(3)−p(5)

]
·
[
p′(3)−p′(5)

]
=
[
2, 1

]
·
[
− 1

2 ,−
1
3

]
=

4
3 =

[
p(3) − p(6)

]
·
[
p′(3) − p′(6)

]
, and that

[
p(i) − p(j)

]
·
[
p′(i) − p′(j)

]
= 0 for all other

edges {i, j} ∈ E. Thus (p′, r′) is a non-trivial infinitesimal motion of (G, c, p, r) with

r′(1) = −4
3 , and is illustrated in Figure 3.5.

It is worth noting that rescaling this motion gives another non-trivial infinitesimal

motion of (G, c, p, r), such as (p′′, r′′) with p′′ = −p′, and r′′ = 4
3 = −r′. In fact a
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1 2

3

4

5 6

Figure 3.5 Example 3.2.4: (G, c, p, r), with the non-trivial infinitesimal motion p′

illustrated. Edges in E1 are indicated by wavy lines.

a (G, c, p+ p′, r + 2r′) b (G, c, p− p′, r − 2r′)

Figure 3.6 Example 3.2.4: a pair of equivalent, but not congruent, frameworks. Both
are infinitesimally rigid.
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non-trivial infinitesimal motion (p′, r′) will generate a 1-dimensional space of non-trivial

infinitesimal motions of (G, c, p, r).

We may apply the result from Theorem 3.2.3 to get a pair of infinitesimally rigid

1-coordinated frameworks, (G, c, p + p′, r + 2r′) and (G, c, p − p′, r − 2r′). These are

illustrated in Figure 3.6. The equivalence of these frameworks is straightforward

to check: for the uncoloured edges, it is as simple as checking the lengths in both

frameworks. For the pair of coloured edges in each framework, it is similarly easy to

check that ∥(p+p′)(3)−(p+p′)(5)∥2+(r+2r′)(1) = ∥(p−p′)(3)−(p−p′)(5)∥2+(r−2r′)(1)

and ∥(p+ p′)(3) − (p+ p′)(6)∥2 + (r+ 2r′)(1) = ∥(p− p′)(3) − (p− p′)(6)∥2 + (r− 2r′)(1)

(which holds for any initial definition of r(1)).

We may also restate Theorem 3.2.3 as follows, to get an adaptation of Theorem 3.2.1.

Theorem 3.2.5. Let (p, r) and (q, s) be a pair of configurations of the k-edge-coloured

graph (G, c). Then

a. (G, c, p, r) is equivalent to (G, c, q, s) if and only if (p−q
2 , r−s4 ) is an infinitesimal

motion for (G, c, p+q
2 , r+s2 ),

b. If (p−q
2 , r−s4 ) is a trivial infinitesimal motion of (G, c, p+q

2 , r+s2 ), then (G, c, p, r) is

congruent to (G, c, q, s),

c. If the affine span ⟨p+q
2 ⟩ contains p−q

2 , and (G, c, p, r) is congruent to (G, c, q, s),

then (p−q
2 , r−s4 ) is a trivial infinitesimal motion of (G, c, p+q

2 , r+s2 ).

Proof. For clarity of notation, let (p, r) and (q, s) be a pair of configurations of (G, c).

Let (p, r) :=
(
p+q

2 , r+s2

)
and let (p′, r′) :=

(
p−q

2 , r−s4

)
. Since (p, r) is the average of

two configurations of (G, c), it is also a configuration of (G, c). It is straightforward to

confirm that p′ is a velocity field supported on p.
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We note the following:

(p+ p′, r + 2r′) =
(
p+ q

2 + p− q

2 ,
r + s

2 + r − s

2

)
= (p, r) ,

(p− p′, r − 2r′) =
(
p+ q

2 − p− q

2 ,
r + s

2 − r − s

2

)
= (q, s) .

Thus (G, c, p, r) is equivalent to (G, c, q, s) if and only if (G, c, p+p′, r+2r′) is equivalent

to (G, c, p − p′, r − 2r′). By Theorem 3.2.3a,(G, c, p + p′, r + 2r′) is equivalent to

(G, c, p−p′, r−2r′) if and only if the velocity field (p′, r′) =
(
p−q

2 , r−s4

)
is an infinitesimal

motion of (G, c, p, r) =
(
G, c, p+q

2 , r+s2

)
as required to prove a.

The proofs of Theorem 3.2.3b and c may be applied to b and c with the same

substitutions of (p, r) :=
(
p+q

2 , r+s2

)
and (p′, r′) :=

(
p−q

2 , r−s4

)
.

We shall use this statement to prove the equivalence of rigidity and infinitesimal

rigidity.

We will find it useful to refer to the set of infinitesimally rigid configurations,

I(G, c) = {(q, s) : the k-coordinated framework (G, c, q, s) is infinitesimally rigid}.

Theorem 3.2.6. Let (G, c, p, r) be a k-coordinated framework. If (G, c, p, r) is in-

finitesimally rigid, then it is rigid.

Proof. Let (p, r) ∈ Rdn+k be a configuration of the k-edge-coloured graph (G, c) such

that (G, c, p, r) is an infinitesimally rigid framework, i.e. (p, r) ∈ I(G, c). From Defini-

tion 3.1.21, and Theorem 3.1.22, we know that an infinitesimally rigid k-coordinated

framework (G, c, p, r) has rigidity matrix R(G, c, p) with rank dn+ k −
(
d+1

2

)
. (Recall

from Remark 3.1.20 that r may be considered to be 0 in the infinitesimal case.)

Since the rank of any matrix is lower semi-continuous, any (p, r) ∈ I(G, c) will

have an open neighbourhood U(p,r) of points (q, s) ∈ Rdn+k such that rankR(G, c, p) =

rankR(G, c, q), and hence (G, c, q, s) will be infinitesimally rigid for any (q, s) ∈ U(p,r).
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Therefore U(p,r) ⊂ I(G, c), and the set of infinitesimally rigid configurations of the

k-coloured graph (G, c) is an open set within Rdn+k.

Let U ⊂ Rdn+k be an open neighbourhood of (p, r) such that U ⊂ I(G, c) and,

for all (q, s) ∈ U , (p+q
2 , r+s2 ) ∈ U . Thus the frameworks (G, c, p, r), (G, c, q, s) and

(G, c, p+q
2 , r+s2 ) are all infinitesimally rigid.

If (G, c, p, r) is equivalent to (G, c, q, s), then by Theorem 3.2.5(a) the framework

(G, c, p+q
2 , r+s2 ) will have the infinitesimal motion (p− q, r−s2 ). As (p+q

2 , r+s2 ) ∈ I(G, c),

the only infinitesimal motions of (G, c, p+q
2 , r+s2 ) will be the trivial infinitesimal motions.

Since (p−q, r−s2 ) is a trivial infinitesimal motion of (G, c, p+q
2 , r+s2 ), by Theorem 3.2.5(b)

the frameworks (G, c, p, r) and (G, c, q, s) are congruent. Hence, as all frameworks within

the neighbourhood U that are equivalent to (G, c, p, r) are congruent to (G, c, p, r), the

framework (G, c, p, r) is locally rigid.

We finally have the following result to prove the other direction of Theorem 3.1.30.

Theorem 3.2.7. Let (G, c, p, r) be a d-dimensional k-coordinated framework, where

the configuration p affinely spans Rd. If (G, c, p, r) is regular and infinitesimally flexible

in Rd, then the framework (G, c, p, r) is flexible in Rd.

Proof. Let G = (V,E) and let c : E → {0, 1, . . . , k} be a k-colouring of the edges of

G. This partitions the edge set of G into the edges E0 that are considered uncoloured,

and the coloured edges. Let F denote the coloured edges, i.e. F := E1 ∪ · · · ∪ Ek.

Let (p, r) ∈ Rdn+k be a regular configuration for (G, c), where p affinely spans Rd.

We assume that the k-coordinated framework (G, c, p, r) is infinitesimally flexible, and

hence rank df(G,c)(p, r) < dn+ k −
(
d+1

2

)
.

Let Kn = (V,K) be the complete graph on the vertex set V , and note that the

uncoloured framework (Kn, p) is infinitesimally rigid since p affinely spans Rd.

We construct the k-coloured multigraph (M, c̃) by adding the coloured edges F ⊂ E

to the complete graph. This results in M = (V,K ∪F ) with c̃(f) := c(f) for all f ∈ F ,
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and we define c̃(e) := 0 for every edge e ∈ K. We note that (M, c̃) is a multigraph

with pairs of parallel edges exactly where one edge is coloured and one is uncoloured.

The “multi-framework” (M, c̃, p, r) contains an uncoloured copy of Kn as a subgraph,

with rank dfKn(p) = dn −
(
d+1

2

)
. The k-coordinated “multi-framework” (M, c̃, p, r)

therefore has rank df(M,̃c)(p, r) = dn + k −
(
d+1

2

)
. Since this is the maximal possible

rank, (p, r) ∈ Rdn+k is a regular configuration for the multigraph (M, c̃).

By Proposition 2 (and the subsequent discussion) in [AR78], there exist neigh-

bourhoods of (p, r) ∈ Rdn+k, U(p,r) and U ′
(p,r), such that f−1

(G,c)

(
f(G,c)(p, r)

)
∩ U(p,r) is a

smooth manifold of dimension dn+k−rank df(G,c)(p, r), and f−1
(M,c̃)

(
f(M,c̃)(p, r)

)
∩U ′

(p,r)

is a smooth manifold of dimension dn+ k − rank df(M,c̃)(p, r).

Let U := U(p,r)∩U ′
(p,r). We note that f−1

(G,c)

(
f(G,c)(p, r)

)
∩U is a strict submanifold of

f−1
(M,c̃)

(
f(M,c̃)(p, r)

)
∩U since it has smaller dimension, and hence every neighbourhood

of (p, r) will contain elements of f−1
(M,c̃)

(
f(M,c̃)(p, r)

)
\ f−1

(G,c)

(
f(G,c)(p, r)

)
. These may be

used to construct a continuous non-trivial motion of (G, c, p, r) in the same way as in

the standard case, as seen in the discussion after Proposition 2.3.5 [AR78, Proposition

1].

3.3 Coordinated static rigidity

We now extend the concept of static rigidity, discussed in Section 2.5, to coordinated

frameworks, with the aim of extending the equivalence between infinitesimal rigidity

and static rigidity to the coordinated context. We shall also use the static rigidity

viewpoint when considering redundant rigidity in Chapter 4.

Definition 3.3.1. A k-coordinated load on a k-coordinated framework (G, c, p, r) is

given by (F, S), where F is a load on the uncoloured framework (G, p) (as described in

Definition 2.5.1), and S ∈ Rk is any vector.
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The k-coordinated load (F, S) is an k-coordinated equilibrium load on the k-

coordinated framework (G, c, p, r) when F is an equilibrium load on the uncoloured

framework (G, p).

As before, we may consider the coordinated load (F, S) as a vector in Rdn+k.

Definition 3.3.2. A stress ρρρ ∈ R|E| resolves the load (F, S) if

∑
j:{i,j}∈E

ρij(pi − pj) = Fi for all i ∈ V, (3.13)

∑
{i,j}∈Eℓ

ρij = Sℓ for all ℓ ∈ {1, . . . , k}. (3.14)

Remark 3.3.3. As in Remark 2.5.3, we may rewrite these constraints in terms of the

coordinated rigidity matrix as follows:

ρρρ⊤R(G, c, p) = [F, S] . (3.15)

Definition 3.3.4. A k-coordinated framework (G, c, p, r) is statically rigid if every

k-coordinated equilibrium load on (G, c, p, r) has a resolution.

We note that each row of the coordinated rigidity matrix may be considered as an

k-coordinated equilibrium load, similarly to each row of the standard rigidity matrix.

(Definition 2.5.6.) We shall now define a coordinated analogue to the standard edge

loads.

Definition 3.3.5. A k-coordinated edge load for any pair of vertices i, j ∈ V is (Fij, Sij),

where Fij is the standard edge load for the vertices i, j ∈ V , and Sij is a vector in

{0, 1}k.
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If there is an edge {i, j} ∈ E, the corresponding row of the coordinated rigidity

matrix is a k-coordinated equilibrium load of this form. This may be denoted by

(Fij, Sℓ) for an edge {i, j} ∈ Eℓ, 0 ≤ ℓ ≤ k, where Sℓ = 0 for {i, j} ∈ E0, and Sℓ = eℓ

for 1 ≤ ℓ ≤ k.

Remark 3.3.6. The edge resolution ρρρ{i,j} in Definition 2.5.8 remains well defined on

a k-coordinated framework (G, c, p, r), so we do not need to define a k-coordinated

edge resolution.

Theorem 3.3.7. A k-coordinated framework (G, c, p, r) that affinely spans Rd is

statically rigid if and only if it is infinitesimally rigid.

Proof. As the k-coordinated equilibrium loads of a d-dimensional k-coordinated frame-

work (G, c, p, r) exclude any load that induces a translation or rotation of the whole

framework, the space of such loads has dimension dn+ k −
(
d+1

2

)
. Each row of the co-

ordinated rigidity matrix R(G, c, p) corresponds to a k-coordinated edge load, (Fij, Sℓ),

for an edge {i, j} ∈ Eℓ with 0 ≤ ℓ ≤ k, and each of these k-coordinated edge loads has

a corresponding edge resolution ρρρ{i,j} for {i, j} ∈ E.

These k-coordinated edge loads generate all k-coordinated equilibrium loads if

and only if the rank of the coordinated rigidity matrix is dn + k −
(
d+1

2

)
, which is

equivalent to the framework (G, c, p, r) being infinitesimally rigid by Theorem 3.1.22.

The k-coordinated edge loads of the rigidity matrix generating every k-coordinated

equilibrium load means that a resolution for every k-coordinated equilibrium load

may be generated in the same way, and hence the framework (G, c, p, r) is statically

rigid.



Chapter 4

Generic Coordinated Rigidity via

Redundant Rigidity

In order to define coordinated rigidity in terms of redundant edge sets, we begin by

defining the rigidity matroid for the standard rigidity case. The main characterisation

of rigid coordinated frameworks in terms of coloured redundant edge sets, discussed in

Section 4.1, is also given in a joint paper with Bernd Schulze and Louis Theran [SST18],

though the proofs in this thesis contain more detail than is given in that paper.

Recall that as a consequence of Remark 3.1.20, we may simplify notation and refer

to the k-coordinated framework (G, c, p), rather than the k-coordinated framework

(G, c, p, r).

The d-dimensional generic infinitesimal rigidity matroid Md(G) for a generic

d-dimensional framework (G, p) is defined in Section 2.6 as a restriction of the d-

dimensional generic infinitesimal rigidity matroid for the complete graph on n vertices,

Md(Kn) = Md(n) (Definition 2.6.3). We shall use matroidal techniques to characterise

rigidity of k-coordinated frameworks (G, c, p) in terms of the rigidity of the underlying

structure graph G.
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We recall from Definition 2.6.3 that the complete graph on the vertex set V with

|V | = n may be denoted by Kn = (V,K(V )), and recall from Definition 2.6.5 that for

any E ′ ⊂ K(V ), the graph with edge set K(V ) \ E ′ may be denoted by Kn \ E ′. For

consistency, we use similar notation G \ e to denote the graph G = (V,E) with the

edge e ∈ E removed, and G \ E ′ to denote the subgraph of G = (V,E) with edge set

E \ E ′ and vertex set V (E \ E ′) ⊆ V .

4.1 Characterisation using redundant rigidity

We now develop a characterisation of rigidity of k-coordinated frameworks (G, c, p),

based on the rigidity of the underlying uncoloured graph G. We use a statics viewpoint

to achieve this, by restricting the class of resolutions permitted to resolve equilibrium

loads, rather than extending the class of loads that may be applied (as discussed in

Section 3.3). Since static and infinitesimal rigidity are equivalent, this allows us to

characterise infinitesimal rigidity of regular k-coordinated frameworks.

We recall from Definition 2.5.9 that S(G, p) denotes the space of equilibrium stresses

of a framework (G, p).

Definition 4.1.1. Let G = (V,E) be a graph. If the edge e ∈ E is induced in the

matroid Md (G \ {e}), then the edge e is redundant. If e is not redundant, it is a

bridge.

Proposition 4.1.2 (Proposition 2.4 [SST18]). Let (G, p) be a generic framework and

let F be an equilibrium load. Then

a. Every resolution ρρρ of F has a unique decomposition ρρρ = ωωω+τττ , where ωωω ∈ S(G, p)

is an equilibrium stress and τττ ∈ S(G, p)⊥.

b. The matrices of the linear maps ρρρ 7→ τττ and ρρρ 7→ ωωω are made up of rational

functions of the coordinates of p.
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c. These rational functions are non-constant on coordinates corresponding to re-

dundant edges in the support of ρρρ.

Proof. a. Let F be a given equilibrium load that is resolvable by (G, p). For any

resolution ρρρ of the equilibrium load F, from Equation (2.9) we have ρρρ⊤R(G, p) = F,

and ωωω⊤R(G, p) = 0 for any equilibrium stress ωωω by definition. Hence (ρρρ+ωωω)⊤R(G, p) =

ρρρ⊤R(G, p) +ωωω⊤R(G, p) = F + 0 = F, and the space of resolutions of F has the form

ηηη + S(G, p) ⊂ R|E| for some ηηη ∈ S(G, p)⊥. For a given resolution ρρρ of F, we may

therefore subtract any equilibrium stresses in ρρρ to give a unique decomposition ρρρ = τττ+ωωω,

with ωωω ∈ S(G, p) and τττ ∈ S(G, p)⊥.

b. We note that S(G, p) is the kernel of the matrix R(G, p)⊤, and hence that

S(G, p)⊥ is the column space of the rigidity matrix R(G, p). Let D(G, p) be the

matrix that projects the resolution ρρρ onto its component in S(G, p), ρρρ 7→ ωωω, and hence

Id−D(G, p) is the matrix for the projection ρρρ 7→ τττ , since τττ = ρρρ−ωωω = ρρρ−D(G, p)ρρρ.

The matrix D(G, p) may be obtained using the singular value decomposition, and both

D(G, p) and Id−D(G, p) have rational functions of the coordinates of p as entries.

c. Let (G, p) be a generic framework, and let F be an equilibrium load on (G, p)

with a resolution ρρρ = τττ +ωωω for ωωω ∈ S(G, p) and τττ ∈ S(G, p)⊥.

Let {i, j} ∈ E be a redundant edge in (G, p), and hence there is an equilibrium

stress ωωω∗ on (G, p) with ω∗
{i,j} ̸= 0. ρρρ∗ = τττ +ωωω∗ is another resolution for F on (G, p).

Let p′ be another generic configuration of G, where p′(v) := p(v) for all vertices

v ∈ V \ {i}, and p′(i) is a perturbation of p(i) that remains arbitrarily close to p(i).

The generic framework (G, p′) will have a corresponding equilibrium stress (ωωω∗)′ that

is also non-zero on the edge {i, j}, with (ω∗)′
{i,j} ̸= ω∗

{i,j}. Moving p′(i) along the

line p′(j) − p′(i) results in the component (ω∗)′
{i,j} of (ωωω∗)′ increasing, and hence the

projection ρρρ 7→ ωωω is non-constant on the edge {i, j}. Since the matrix for the projection
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ρρρ 7→ τττ is obtained from the matrix for ρρρ 7→ ωωω, this will also be non-constant on the

edge {i, j}.

Lemma 4.1.3 (Proposition 2.5 [SST18]). Let (G, p) be a framework that affinely

spans Rd. Any equilibrium stress ωωω ∈ R|E| will have ω{i,j} = 0 for all bridges {i, j} ∈ E.

This equilibrium stress is only supported on redundant edges in E.

Proof. From Definition 2.5.9, any equilibrium stress of (G, p), ωωω ∈ R|E|, has∑j:{i,j}∈E ω{i,j}
[
p(i)−

p(j)
]

= 0 for every vertex i ∈ V . Since each bridge {i, j} ∈ E is independent (in the

coordinated rigidity matroid) of the other edges in E, it is clear that there cannot

be a linear dependence ωωω with ω{i,j} ̸= 0 where ∑k:{i,k}∈E ω{i,k}
[
p(i) − p(k)

]
= 0 and∑

k:{j,k}∈E ω{j,k}
[
p(j) − p(k)

]
= 0.

We shall generalise the concept of a bridge and a redundant edge as follows.

Definition 4.1.4. A subset of edges E ′ ⊆ E of a graph G = (V,E) with |E ′| = k is

k-redundant if the edge set E \ E ′ induces each edge e′ ∈ E ′. If the graph G \ E ′ does

not induce the set E ′, then E ′ is a k-bridge.

Lemma 4.1.5 (Lemma 4.2 [SST18]). Let G = (V,E) be a graph and let (G, p) be a

generic framework that affinely spans Rd. A subset of edges E ′ ⊆ E with |E ′| = k is

k-redundant if and only if any linear combination of the edge loads Fij for {i, j} ∈ E ′

can be resolved by the framework (G \ E ′, p).

Proof. Let E ′ = {e1, . . . , ek} be a subset of edges of the generic framework (G, p), with

a corresponding set of edge loads Fe1 , . . . ,Fek . Recall that the space of equilibrium

loads has dimension dn−
(
d+1

2

)
, and that the dimension of the space of equilibrium

loads that can be resolved by the framework (G, p) is the rank of the rigidity matrix

R(G, p). This space is spanned by the set of edge loads {Fe : e ∈ E}.

Let X be the space of equilibrium loads spanned by the edge loads Fe1 , . . . ,Fek .

Since each edge ei exists in the framework (G, p), each edge load Fei has a corresponding
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edge resolution ρρρei , and hence every equilibrium load in X has a resolution in terms

of the edge resolutions ρρρe1 , . . . , ρρρek . If there is some F ∈ X that cannot be resolved

by the reduced framework (G \ E ′, p), the rank of R(G \ E ′, p) is strictly less than the

rank of R(G, p), and so E ′ is not a k-redundant set of edges.

Conversely, if E ′ is not a k-redundant set of edges, then rankR(G \ E ′, p) <

rankR(G, p), and hence there is some equilibrium load F that is resolvable by (G, p)

and not by (G \ E ′, p). Since the edge loads Fe for e ∈ E span the space of resolvable

equilibrium loads for (G, p), and the edge loads Fe for e ∈ E \E ′ span the equilibrium

loads that are resolvable by (G \E ′, p), the support of any equilibrium load that is not

resolvable by (G \ E ′, p) will contain at least one Feℓ for 1 ≤ ℓ ≤ k.

Lemma 4.1.6 (Lemma 4.3 [SST18]). Let G = (V,E) be a graph, let (G, p) be a

generic framework and let E ′ ⊆ E with |E ′| = k be a k-redundant set of edges. Then

there are linearly independent equilibrium stresses {ωωωe′ : e′ ∈ E ′} that remain linearly

independent when restricted to the coordinates corresponding to E ′.

Proof. Since E ′ is a k-redundant set of edges and p is generic, by Lemma 4.1.3 there is

an equilibrium stress ωωωe′ supported on the edges of (G \ E ′) ∪ {e′}, for each e′ ∈ E ′.

These will be linearly independent, and remain linearly independent when only the

coordinates corresponding to the edges in E ′ are considered, since for each e′ ∈ E ′,

(ωe′)f ′ = 0 for all f ′ ∈ E ′ \ {e′}.

Rather than extend the definition of equilibrium loads in F ∈ Rdn to k-coordinated

equilibrium loads (F, S) ∈ Rdn+k (Definition 3.3.1), with resolutions in R|E|, we shall

instead define an additional class of equilibrium loads in Rdn with corresponding

resolutions.
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Definition 4.1.7 ([SST18]). A k-coordinated framework (G, c, p) has a coordination

class load Fℓ for each coordination class Eℓ, 1 ≤ ℓ ≤ k, defined as

Fℓ :=
∑

{i,j}∈Eℓ

F{i,j}, (4.1)

where F{i,j} is the edge load for each edge {i, j} ∈ Eℓ (see Definition 2.5.6).

Recall from Definition 2.5.8 that for each edge {i, j} ∈ E, the edge load F{i,j} has

an edge resolution ρρρ{i,j}. The natural resolution of each coordination class load Fℓ is

defined to be

ρρρℓ :=
∑

{i,j}∈Eℓ

ρρρ{i,j}. (4.2)

We recall that the coordinated rigidity matrix R(G, c, p) corresponds to the standard

rigidity matrix R(G, p), together with the characteristic matrix 1(c). The column span

of 1(c) corresponds to the linear span of these natural resolutions.

Definition 4.1.8. The linear span of the natural resolutions of the coordination class

loads is C(G, c, p) := lin {ρρρℓ : 1 ≤ ℓ ≤ k}.

Lemma 4.1.9 (Lemma 3.6 [SST18]). Let p span Rd. The k-coordinated framework

(G, c, p) is infinitesimally rigid if and only if the column space C(G, c, p) of 1(c) intersects

the column space S(G, p)⊥ of the rigidity matrix R(G, p) trivially.

Equivalently, (G, c, p) is infinitesimally rigid if and only if the projection of C(G, c, p)

onto S(G, p) is k-dimensional.

Proof. We recall (from Equation (3.8)) that (p′, r′) ∈ Rdn+k is an infinitesimal motion

of the framework (G, c, p) if and only if R(G, p)p′ + 1(c)r′ = 0, and that (G, c, p) is

infinitesimally rigid if and only if rankR(G, c, p) = dn+ k −
(
d+1

2

)
by Theorem 3.1.22.

Therefore (G, c, p) is infinitesimally rigid if and only if rankR(G, c, p) = dn+k−
(
d+1

2

)
≤
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rankR(G, p) + rank1(c) ≤ dn−
(
d+1

2

)
+ k. This is equivalent to when 1(c) has rank k,

R(G, p) has rank dn−
(
d+1

2

)
, and the column spaces C(G, c, p) and S(G, p)⊥ intersect

trivially.

Since C(G, c, p) has dimension k, and the projection onto S(G, p)⊥ is trivial, the

projection onto S(G, p) will clearly have dimension k.

Definition 4.1.10. A subset of edges E ′ ⊆ E of a k-coloured graph (G, c) with

|E ′| = k is a rainbow set of edges if |E ′ ∩ Eℓ| = 1 for all colour classes 1 ≤ ℓ ≤ k.

Theorem 4.1.11 (Theorem 4.1 [SST18]). For d ≥ 1 and k ≥ 1, the k-coordinated

graph (G, c) on n vertices is generically rigid in d dimensions if and only if G is

generically rigid in Md(n), and some rainbow subset E ′ ⊆ E is k-redundant in Md(G).

Proof. Let p ∈ Rdn be a generic configuration, so (G, p) is a generic framework in Rd

and (G, c, p) is a generic k-coordinated framework in Rd. We recall from Equation 3.8

that a coordinated infinitesimal motion (p′, r′) ∈ Rdn+k of the generic framework

(G, c, p) satisfies R(G, p)p′ + 1(c)r′ = 0, which may be restated as

R(G, p)p′ = −1(c)r′. (4.3)

We recall also that the trivial infinitesimal motions of a k-coordinated framework

are (p′,0) where p′ is a trivial infinitesimal motion of the standard framework (G, p)

(Definition 3.1.17).

Suppose first that G is generically rigid in Md(n) and that (G, c) contains a k-

redundant rainbow subset of edges E ′ := {e1, . . . , ek}, where c(ei) = i for 1 ≤ i ≤ k.

Since (G, p) is a generic framework, it is infinitesimally rigid, and hence the only

infinitesimal motions p′ ∈ Rdn satisfying R(G, p)p′ = 0 are the trivial infinitesimal

motions. This is equivalent to Equation 4.3 having no solution (p′, r′) where p′ is a

non-trivial infinitesimal motion and r′ = 0.
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Assume instead that (G, c, p) has a non-trivial infinitesimal motion, (p′, r′) with

r′ ̸= 0, that is a solution to Equation 4.3. The left kernel of R(G, p) is the space

of equilibrium stresses of the generic framework (G, p). Considering r′ ≠ 0 as fixed,

Equation 4.3 has a solution p′ if and only if −1(c)r′ is orthogonal to each equilibrium

stress of (G, p).

By Lemma 4.1.6 there is a set of k linearly independent equilibrium stresses

{ωωω1, . . . ,ωωωk} corresponding to the k-redundant edges E ′ = {e1, . . . , ek}, such that for

1 ≤ i ≤ k, (ωi)ei ̸= 0 and (ωi)ej = 0 for j ̸= i, 1 ≤ j ≤ k. Since 1(c)r′ is orthogonal to

all equilibrium stresses of (G, p), 1(c)r′ is orthogonal to each ωωωi for 1 ≤ i ≤ k.

Since p is generic, in order for these k linearly independent equilibrium stresses

to be orthogonal to 1(c)r′, we require that (1(c)r′)ei = 0 for 1 ≤ i ≤ k. Since E ′ is a

rainbow set of edges, the submatrix of 1(c) corresponding to the edges E ′ consists of

the k-dimensional basis vectors e1, . . . , ek. This is therefore equivalent to ei · r′ = 0

for 1 ≤ i ≤ k, which occurs if and only if (r′)i = 0 for 1 ≤ i ≤ k, and hence r′ = 0.

A non-trivial infinitesimal motion of (G, c, p) with r′ ≠ 0 therefore cannot exist when

(G, c) contains a k-redundant rainbow set of edges.

Hence when G is generically rigid and (G, c) contains a k-redundant rainbow set of

edges, the generic framework (G, c, p) is rigid, and therefore (G, c) is generically rigid.

Suppose instead that (G, c, p) is an infinitesimally rigid generic k-coordinated

framework. We recall from the proof of Lemma 4.1.9 that (G, c, p) is infinitesimally

rigid if and only if rankR(G, c, p) = dn+ k −
(
d+1

2

)
= rankR(G, p) + rank1(c), which

is equivalent to rankR(G, p) = dn −
(
d+1

2

)
, rank1(c) = k, and the projection of the

column space of 1(c) onto the space of equilibrium stresses of the framework (G, p)

being k-dimensional. This clearly implies that the uncoloured framework (G, p) is

infinitesimally rigid (by Theorem 2.4.9), and that all colour classes are non-empty. It

remains to show that (G, c, p) contains a k-redundant rainbow subset of edges.
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Recall from the proof of Proposition 4.1.2 that the matrix D(G, p) projects a

resolution ρρρ ∈ R|E| onto its component in the left kernel of R(G, p), the space of

equilibrium stresses S(G, p). The dimension of the projection of C(G, c, p) having

dimension k is equivalent to D(G, p)1(c) having rank k, and hence D(G, p)1(c) contains

a k by k minor with non-zero determinant.

It is clear that a k by k minor with non-zero determinant cannot contains any zero

rows, which are the rows of 1(c) corresponding to uncoloured edges of (G, c). Since

each row of 1(c) contains at most one non-zero entry, and the rows of this k by k minor

must therefore contain exactly one non-zero entry, it is clear that each row of the minor

must correspond to an edge of a distinct colour, in order to avoid a zero column within

the minor. This minor of 1(c) therefore corresponds to a rainbow subset of edges, E ′.

We may label the edges of E ′ as {e1, . . . , ek}, where c(ei) = i for 1 ≤ i ≤ k.

Each edge in E ′ has a corresponding edge load on the framework (G, p), Fe1 , . . . ,Fek .

For arbitrary ααα ∈ Rk, let F(ααα) be an equilibrium load spanned by the edge loads

corresponding to E ′, F(ααα) := α1Fe1 + · · · +αkFek . To confirm that E ′ is a k-redundant

subset of edges, we require a resolution ρρρ of F(ααα) with ρe1 = · · · = ρek = 0, which is a

resolution of F(ααα) by the framework (G \ E ′, p).

Since G is generically rigid, F(ααα) has a resolution ρρρ(ααα), and hence by Proposi-

tion 4.1.2, ρρρ(ααα) = τττ(ααα) +ωωω(ααα) where τττ(ααα) = [Id−D(G, p)]ρρρ(ααα) ∈ S(G, p)⊥ is also a

resolution for the equilibrium load F(ααα), and ωωω(ααα) is an equilibrium stress. We note

that each ei is in the support of τττ(ααα). If ρ(ααα)ei = 0 for 1 ≤ i ≤ k, we already have a

resolution of F(ααα) by (G \ E ′, p), hence assume that ρ(ααα)eℓ ̸= 0 for some eℓ ∈ E ′.

As the projection of C(G, c, p) onto S(G, p) by D(G, p) is k-dimensional, there are

k linearly independent equilibrium stresses corresponding to the edges e1, . . . , ek. Let

these be denoted by ωωω1, . . . ,ωωωk ∈ S(G, p), where the support of each ωωωi contains ei. It

is clear that these ωωωi are linearly independent from τττ(ααα) ∈ S(G, p)⊥.
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Since D(G, p) consists of rational functions of the coordinates of the generic con-

figuration p and (ωi)ei ̸= 0 for 1 ≤ i ≤ k, the equilibrium stresses ωωωi remain linearly

independent when restricted to the coordinates corresponding to the edges in E ′. We

denote this restriction by ω̂ωωi, and let ̂τττ(ααα) ∈ Rk denote the restriction of τττ(ααα).

Since both ̂τ(ααα)ei ≠ 0 and (ωi)ei ≠ 0 for 1 ≤ i ≤ k, we may use the linearly

independent equilibrium stresses ωωω1, . . . ,ωωωk to obtain an equilibrium stress ωωω∗ such

that (ω∗)eℓ + (τ(ααα))eℓ = 0 for any eℓ ∈ E ′ with ρ(ααα)eℓ ̸= 0. This gives a resolution

ρρρ∗ := τττ(ααα) + ωωω∗ for F(ααα) with (ρ∗)ei = 0 for 1 ≤ i ≤ k, as required for E ′ to be a

k-redundant rainbow subset of edges.

We note that the coordination class loads Fi are also equilibrium loads on the

framework (G, c, p) for 1 ≤ i ≤ k. Since Fi is generated by the edge loads of the edges

e ∈ Ei, and all e ∈ Ei\{ei} remain in the framework (G\{e1, . . . , ek}, p), Fi is resolvable

by (G \ {e1, . . . , ek}, p) since each edge load Fei is resolvable by (G \ {e1, . . . , ek}, p).

As rigidity in M1(n) and M2(n) is known, we may apply Theorem 4.1.11 to certify

whether or not any k-coordinated graph (G, c) is generically rigid in 1 dimension and

in 2 dimensions, however for high k this is not possible in polynomial time. Conversely,

since generic rigidity in Md(n) has not been classified for d ≥ 3, we do not gain any

increased intuition in higher dimensions from Theorem 4.1.11.

The existence of a k-redundant rainbow subset of edges is not equivalent to every

rainbow subset of edges being k-redundant, and the existence of a single k-bridge does

not confirm that the k-coordinated framework (G, c) is generically flexible. This is

illustrated by Example 4.1.12.

Example 4.1.12. Let (G, c) be the 2-coloured framework illustrated in Figure 4.1. If

(G, c) contains a 2-redundant rainbow pair then it is generically rigid, however there

are 9 rainbow pairs that may need to be checked.
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f1

f2

e1
e2

a

b c

Figure 4.1 A 2-coordinated framework in R2. The framework in Figure 4.1b, created
by removing the rainbow pair {e1, e2} from the framework in Figure 4.1a, is a flexible
uncoloured framework. The motion is indicated by gray arrows. Figure 4.1c shows
a rigid uncoloured framework, resulting when the 2-redundant rainbow pair of edges
{f1, f2} is removed from the framework in Figure 4.1a.

The pair of edges labelled e1 and e2 are a rainbow pair, with e1 ∈ E1 and e2 ∈ E2.

Removing this rainbow pair results in the uncoloured reduced graph G \ {e1, e2},

illustrated in Figure 4.1b. This reduced graph is flexible, and contains a copy of K4. (A

motion is indicated by gray arrows.) The rainbow pair {e1, e2} is therefore a 2-bridge.

Figure 4.1c shows the uncoloured reduced graph G \ {f1, f2}, where f1 ∈ E1 and

f2 ∈ E2. This reduced graph is generically rigid as an uncoloured graph, and hence

{f1, f2} is a 2-redundant rainbow pair, implying that the 2-coordinated framework

(G, c) is generically rigid in 2 dimensions.



Chapter 5

Coordinated Inductive

Constructions

We considered some standard inductive constructions that preserve generic rigidity

of frameworks in Section 2.8. As we have now defined the class of k-coordinated

frameworks, we wish to find similar inductive constructions that characterise these

k-coordinated frameworks. We shall begin with k-edge-coloured analogues to the

standard Henneberg moves.

As in Chapter 3, we consider the uncoloured graph G = (V,E) to have |V | = n,

and may sometimes denote the number of edges, |E|, by m. The k-edge-colouring

c : E → {0, 1, . . . , k} induces a partition of the edges of G into the uncoloured edges

E0, and colour classes Eℓ for 1 ≤ ℓ ≤ k. We consider the dimension d and the number

of colours k to be fixed.

We note that as a consequence of Remark 3.1.20, we may refer to k-coordinated

frameworks as (G, c, p) instead of (G, c, p, r).

We begin by defining the coloured 0-extension and coloured 1-extension in general,

and proving that these moves preserve generic isostaticity.
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5.1 Coordinated 0-extension

Definition 5.1.1. A d-dimensional 0-extension of a k-edge-coloured graph (G, c) is

applied by creating a new vertex x, and adding d new edges {x, vi} for some distinct

vertices {vi : 1 ≤ i ≤ d} ⊂ V .

The new edges may be allocated in any way to the sets E0, E1, . . . , Ek while

preserving the infinitesimal rigidity of the original graph, as we shall see in Lemma 5.1.2.

When all new edges are added to E0, we refer to this move as the standard

0-extension.

v1

v2 . . . vd

x

v1

v2 . . . vd

Figure 5.1 A d-dimensional 0-extension.

Lemma 5.1.2. Let (G, c) be a d-isostatic, k-edge-coloured graph, and let (G′, c′) be

obtained by applying a 0-extension of any type to (G, c). Then (G′, c′) is also d-isostatic.

Proof. Let (G, c, p) be an isostatic k-coordinated framework in Rd with |V | = n, and

hence rankR(G, c, p) = dn + k −
(
d+1

2

)
= |E| by Theorem 3.1.22. Let (G′, c′) be

obtained by applying a d-dimensional 0-extension to (G, c), where c′(e) := c(e) for

all e ∈ E, and c′(e) is arbitrary for e ∈ E ′ \ E. Let p̂ ∈ Rd(n+1) be a configuration

of (G′, c′) such that p̂(v) := p(v) for v ∈ V , and p̂(x) is chosen for the new vertex

x ∈ V ′ \ V such that p̂(x) lies outside the affine span of p̂(v1), . . . , p̂(vd).

The coordinated rigidity matrix for the extended graph R(G′, c′, p̂), contains

R(G, c, p) as a submatrix, together with d additional rows and d additional columns.
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Each additional row corresponds to an edge {x, vi}, and contains the d-dimensional

vector p̂(x) − p̂(vi) in the first d columns. For 1 ≤ i ≤ d, these vectors are linearly inde-

pendent, and hence rankR(G′, c′, p̂) = rankR(G, c, p) + d = dn+ k−
(
d+1

2

)
+ d = d(n+

1)+k−
(
d+1

2

)
. Since R(G′, c′, p̂) has |E|+d = dn+k−

(
d+1

2

)
+d = d(n+1)+k−

(
d+1

2

)
rows,

this is the maximal possible rank and hence rankR(G′, c′, p̂) = d(n+1)+k−
(
d+1

2

)
= |E ′|.

Thus (G′, c′, p̂) is infinitesimally rigid and independent, and hence is isostatic in Rd.

5.2 Coordinated 1-extension

Definition 5.2.1. A d-dimensional 1-extension of a k-edge-coloured graph (G, c),

applied to the edge {u0, u1} ∈ E, is the creation of a new graph G′ by removing the

edge {u0, u1} and creating a new vertex x of degree d+ 1, with edges {x, u0}, {x, u1}

and {x, ui} for some {ui : 2 ≤ i ≤ d} ⊂ V \ {u1, u2}.

If the initial edge is {u0, u1} ∈ E0, we require that both edges {x, u0}, {x, u1} be

added to E ′
0. If instead {u0, u1} ∈ Eℓ for some 1 ≤ ℓ ≤ k, we require that at least one

of the edges {x, u0} and {x, u1} be added to E ′
ℓ. The other may be added to any Ej

for 0 ≤ j ≤ k. In either case, the additional edges {x, ui} for 2 ≤ i ≤ d may be added

to any Ej for 0 ≤ j ≤ k.

Lemma 5.2.2. Let (G, c) be a d-isostatic, k-edge-coloured graph, and let (G′, c′) be

obtained by applying a 1-extension of any type to an edge of (G, c). Then (G′, c′) is

also d-isostatic.

As previously noted, all vectors within this proof are assumed to be column vectors.

Proof. Let (G′, c′) be a k-edge-coloured graph on n+ 1 vertices obtained by applying

a 1-extension on the edge {u0, u1} to the d-isostatic k-edge-coloured graph (G, c). Let

x ∈ V ′ \V be the new vertex created by this 1-extension, with neighbours u0, u1, . . . , ud.
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u0
u1u2

u3 . . .
ud

x

u0
u1u2

u3 . . .
ud

a A d-dimensional 1-extension applied to an edge in E1.

u0
u1u2

u3 . . .
ud

x

u0
u1u2

u3 . . .
ud

b A d-dimensional 1-extension applied to an edge in E0.

Figure 5.2 Two types of d-dimensional 1-extension.

Let q ∈ Rdn be a regular configuration of (G, c). By Lemma 2.4.18, A(q) is also a

regular configuration of V for any affine transformation A of Rd. We may apply appro-

priate affine transformations to obtain a regular configuration A(q) = p ∈ Rdn such

that p(u0) = 0 and p(ui) = ei for 1 ≤ i ≤ d. This configuration gives a k-coordinated

regular framework (G, c, p).

Suppose first that {u0, u1} ∈ Eℓ for some 1 ≤ ℓ ≤ k, and so at least one of {x, u0} ∈ E ′
ℓ

or {x, u1} ∈ E ′
ℓ. Since |V | = n and |V ′| = n+ 1, we may relabel the vertices of (G′, c′)

using {0, 1, . . . , n} as follows: let one of u0 and u1 that is adjacent to an edge in E ′
ℓ be

labelled 1, and let the other vertex of this pair be labelled 0. Let the other neighbours

of x, u2, . . . , ud, be labelled by 2, . . . , d, and let x be labelled n. The remaining vertices

of (G′, c′) may be arbitrarily labelled with d+ 1, . . . , n− 1.
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0
1

2
3 . . . d

0
1

2
3 . . . d

n

0
1

2
3 . . . d

n

0
1

2
3 . . . d

Figure 5.3 The steps of a d-dimensional 1-extension applied to an edge in E1: the
edge {0, 1} ∈ E1 is removed from (G, c), resulting in the reduced graph (V, F ). The
graph Ĝ is then obtained by applying a 0-extension to the vertices {1, 2, . . . , d}, where
the edge {1, n} is required to be added to E ′

1. Finally, the edge {0, n} is added to E ′
0

to obtain the 1-extended graph G′ = (V ′, E ′).

We note that this labelling induces a labelling of the vertices of (G, c) by {0, 1, . . . , n− 1},

and also that {0, 1} /∈ E ′, since this edge is removed from (G, c) by the application

of the 1-extension. Let F denote the set of edges that are common to (G, c) and

(G′, c′), hence E = F ∪
{
{0, 1}

}
and E ′ = F ∪

{
{0, n}, {1, n}, . . . , {d, n}

}
. Note that

c′(f) = c(f) for all edges f ∈ F , since they are unchanged by the 1-extension.

Since (G, c, p) is isostatic, E is independent with rankR(G, c, p) = d|V | + k−
(
d+1

2

)
,

and it follows that F is also independent. Let Ê = F ∪
{
{1, n}, . . . , {d, n}

}
, which we

note has the structure of applying a 0-extension to F . Let ĉ be the k-edge-colouring

of Ê induced by c′, and recall that ĉ({1, n}) := ℓ = c′({1, n}). Since Ĝ = (V ′, Ê)

is obtained by applying a k-edge-coloured 0-extension to F , Ĝ is independent by

Lemma 5.1.2.

In order to obtain a k-coordinated framework, we require a configuration of V ∪{n} =

V ′, p̂ ∈ Rd(n+1). We may extend the existing regular configuration of V by defining

p̂(i) := p(i) for 0 ≤ i ≤ n− 1, and choosing p̂(n) such that the coordinates of p̂(n) are

algebraically independent over Q.
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Since {0, 1} /∈ F and (G, c, p) is isostatic, there exists a coordinated infinitesimal

motion (p′, r′) ∈ Rdn+k such that
[
p(1) − p(0)

]⊤[
p′(1) − p′(0)

]
+ r′(ℓ) ̸= 0, while[

p(i) − p(j)
]⊤[

p′(i) − p′(j)
]

+ r′
(
c({i, j})

)
= 0 for all {i, j} ∈ F . This is a coordinated

infinitesimal motion of (V, F ) that is not a coordinated infinitesimal motion of the

original framework G = (V,E).

To extend (p′, r′) to an infinitesimal motion of the independent framework (Ĝ, ĉ, p̂),

(p′′, r′′) ∈ Rd(n+1)+k with p′′(i) := p′(i), 0 ≤ i ≤ n − 1 and r′′(j) := r′(j), 1 ≤ j ≤ k,

it remains to determine p′′(n). To be an infinitesimal motion of (Ĝ, ĉ, p̂), p′′(n) must

satisfy
[
p̂(i) − p̂(n)

]⊤[
p′′(i) − p′′(n)

]
+ r′′

(
ĉ({i, n})

)
= 0 for each edge {i, n} with

1 ≤ i ≤ d. These d constraints determine the d-dimensional vector p̂(n).

In order to verify that the edge {0, n} remains independent over Ê when added as

an uncoloured edge, we must check that
[
p̂(n) − p̂(0)

]⊤[
p′′(n) − p′′(0)

]
̸= 0.

For simplicity of notation, let s′(i, n) denote r′′
(
ĉ({i, n})

)
for 1 ≤ i ≤ d, and for

any pair of vertices x, y ∈ V , let

π(x, y) :=
[
p̂(x) − p̂(y)

]⊤[
p′′(x) − p′′(y)

]
.

Our constraints on p′′(n) are therefore equivalent to the infinitesimal motion (p′′, r′′) of

the framework (Ĝ, ĉ, p̂) satisfying π(i, n) + s′(i, n) = 0 for 1 ≤ i ≤ d.

For each i, 1 ≤ i ≤ d, we may expand
[
p̂(i) − p̂(n)

]⊤[
p′′(i)−p′′(n)

]
+r′′

(
ĉ({i, n})

)
=

0 as follows:

[
[p̂(i) − p̂(0)] − [p̂(n) − p̂(0)]

]⊤[
[p′′(i) − p′′(0)] − [p′′(n) − p′′(0)]

]
+ s′(i, n) = 0,

π(i, 0) −
[
p̂(i) − p̂(0)

]⊤[
p′′(n) − p′′(0)

]
−
[
p̂(n) − p̂(0)

]⊤[
p′′(i) − p′′(0)

]
+ π(n, 0) + s′(i, n) = 0. (5.1)
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Recall that p̂(0) = 0 and p̂(i) = ei for 1 ≤ i ≤ d, and so the second component of

Equation 5.1 may be rewritten as ei⊤
[
p′′(n) − p′′(0)

]
for each i, 1 ≤ i ≤ d. Note also

that for each i,
[
p̂(n)

]⊤[
p′′(i) − p′′(0)

]
=
[
p′′(i) − p′′(0)

]⊤[
p̂(n)

]
, since the components

are vectors in Rd. We may therefore rewrite these d equations as the following matrix

equation, where Q represents the d by d square matrix with ith column p′′(i) − p′′(0):



π(1, 0)

π(2, 0)
...

π(d, 0)


−
[
p′′(n) − p′′(0)

]
−Q⊤p̂(n) +



π(n, 0)

π(n, 0)
...

π(n, 0)


+



s′(1, n)

s′(2, n)
...

s′(d, n)


= 0.

We may rearrange and multiply through on the left hand side by p̂(n)⊤ =[
p̂(n) − p̂(0)

]⊤
to obtain the following:

p̂(n)⊤


π(n, 0)

...

π(n, 0)

−
[
p̂(n) − p̂(0)

]⊤ [
p′′(n) − p′′(0)

]
= p̂(n)⊤Q⊤p̂(n)

− p̂(n)⊤


π(1, 0) + s′(1, n)

...

π(d, 0) + s′(d, n)

 .

This may be simplified further:

π(n, 0)

p̂(n)⊤


1
...

1

− 1

 = p̂(n)⊤Q⊤p̂(n) − p̂(n)⊤


π(1, 0) + s′(1, n)

...

π(d, 0) + s′(d, n)

 . (5.2)
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Since the coordinates of p̂(n) are algebraically independent over Q, p̂(n)⊤


1
...

1

− 1

is a non-zero scalar. Equation 5.2 therefore gives us a polynomial expression in p̂(n)

for π(n, 0), and hence for p′′(n).

Recall that the edge {1, n} was added to the ℓth colour class, and so s′(1, n) = r′(ℓ).

We noted earlier that π(1, 0) + r′(ℓ) ̸= 0, and so the first entry of the vector[
π(1, 0) + s′(1, n) π(2, 0) + s′(2, n) . . . π(d, 0) + s′(d, n)

]⊤
is non-zero. This expres-

sion for π(n, 0) is therefore a non-trivial polynomial in p̂(n) that determines p′′(n) ∈ Rd.

Since the coordinates of p̂ are algebraically independent, p̂(n) cannot be a solution

to this polynomial, and hence π(n, 0) ̸= 0. We construct the graph (G′, c′) from (Ĝ, ĉ)

by adding the edge {0, n} to the class of uncoloured edges, E ′
0. Since the uncoloured

edge {0, n} is independent of (Ĝ, ĉ, p̂), using the same configuration p̂ gives a framework

(G′, c′, p̂) such that (p′′, r′′) is no longer a coordinated infinitesimal motion. Thus (G′, c′)

is generically isostatic.

It is straightforward to confirm that the edge {0, n} may be added to any colour

class. For w = r′′(j), 1 ≤ j ≤ k, we may add p̂(n)⊤


w

...

w

 − w to both sides of

Equation 5.2 in order to obtain the following:

π(n, 0)


p̂(n)⊤



1

1
...

1


− 1


+ p̂(n)⊤



w

w

...

w


− w =
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p̂(n)⊤Q⊤p̂(n) − p̂(n)⊤



π(1, 0) + s′(1, n)

π(2, 0) + s′(2, n)
...

π(d, 0) + s′(d, n)


+ p̂(n)⊤



w

w

...

w


− w,

(
π(n, 0) + w

)

p̂(n)⊤



1

1
...

1


− 1


= p̂(n)⊤Q⊤p̂(n) − w − p̂(n)⊤



π(1, 0) + s′(1, n) + w

π(2, 0) + s′(2, n) + w

...

π(d, 0) + s′(d, n) + w


.

(5.3)

Equation 5.3 is a polynomial in p̂(n), and hence for w ≠ 0, π(n, 0) + w ̸= 0. (We

note that w = 0 results in Equation 5.2.) The result follows as above, for all c′ ({0, n}).

Suppose instead that {u0, u1} ∈ E0. As previously, let the new vertex x be labelled

by n, let u0 and u1 be labelled by 0 and 1 respectively, and let the other neighbours

of n be labelled by 2, . . . , d. Recall that p(0) = 0, p(i) = ei for 1 ≤ i ≤ d, and

that {0, 1} is not an edge in the extended graph (G′, c′): we have E = F ∪
{
{0, 1}

}
and E ′ = F ∪

{
{0, n}, {1, n}, . . . , {d, n}

}
. For all edges f ∈ F , c′(f) := c(f), while

c′({0, n}) := 0 and c′({1, n}) := 0. For 2 ≤ i ≤ n, c′({i, n}) is arbitrary.

As previously, let Ĝ = (V ′, Ê) be obtained from G by removing the edge {0, 1} and

applying a d-dimensional 0-extension to the vertices 1, . . . , d. We define a configuration

p̂ ∈ Rd(n+1) for (Ĝ, ĉ) by p̂(i) := p(i) for 0 ≤ i ≤ n − 1, and choosing p̂(n) such that

the coordinates of p̂ are algebraically independent.

Let (p′, r′) ∈ Rdn+k be a coordinated infinitesimal motion of ((V, F ), c, p) such that

π(0, 1) ̸= 0, so (p′, r′) is not a coordinated infinitesimal motion of (G, c, p). We wish to
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extend this to a coordinated infinitesimal motion (p′′, r′′) ∈ Rd(n+1)+k of (Ĝ, ĉ, p̂) such

that π(0, n) ̸= 0.

Recall that c({0, 1}) = 0 and note that since c′({1, n}) = 0, s′(1, n) = 0. We require

that p′′(n) satisfies π(i, n) + s′(i, n) = 0 for 1 ≤ i ≤ d. We may therefore obtain the

following equivalent constraint to Equation 5.2:

π(n, 0)


p̂(n)⊤



1

1
...

1


− 1


= p̂(n)⊤Q⊤p̂(n) − p̂(n)⊤



π(1, 0)

π(2, 0) + s′(2, n)
...

π(d, 0) + s′(d, n)


. (5.4)

Since p̂(n) is not a solution to this polynomial, which is clearly non-trivial through

our initial assumption that π(1, 0) ̸= 0, we therefore have π(n, 0) ̸= 0, as required

for the edge {0, n} to be independent. The coordinated infinitesimal motion (p′′, r′′)

is therefore not a coordinated infinitesimal motion of (G′, c′, p̂), and hence (G′, c′) is

generically isostatic.

The 1-extension applied to an edge {u1, u2} ∈ Eℓ may be generalised to allow the

edge added to E ′
ℓ to be {x, v} for any neighbour v of the new vertex x, however the

geometric proof given here does not apply in those cases. In Chapter 7 we define an

additional type of coloured 1-extension, referred to as the “chosen 1-extension” and

defined formally in Definition 7.2.11. This is required for the 2-dimensional 2-coloured

characterisation, along with the X-replacement operation (Definition 7.2.17), and the

2-dimensional 2-coloured 0-extension and 1-extension, illustrated in Figure 7.7 and

Figure 7.8 respectively. The 2-dimensional 1-coloured 0-extensions and 1-extensions

are shown in Figure 7.1, and Figure 7.2.

The 1-dimensional 0-extension and 1-extension will be discussed in more detail in

Chapter 6, and the 1-coloured versions are illustrated in Figure 6.1 and Figure 6.2.



Chapter 6

Combinatorial Coordinated

Rigidity in 1 Dimension

We begin by characterising 1-dimensional frameworks with coordinated edges, to provide

some intuition for the analogous situation in 2 dimensions. Recall from Remark 3.1.20

that coordinated frameworks are denoted (G, c, p).

6.1 One colour class in 1 dimension

We first consider the case of 1 coordination class. From Theorem 4.1.11 a 1-coordinated

graph (G, c) will be generically rigid in 1 dimension if and only if the graph G

is generically rigid in M1, and there is at least one coloured edge that is not a

bridge in M1(G). Since any connected graph is generically rigid in 1 dimension (see

Theorem 2.8.7 [Gra01, Theorem 2.16]) this is equivalent to (G, c) being a connected

graph with at least one edge e ∈ E1 within a cycle.

Definition 6.1.1. A graph G = (V,E) is tree-plus-one if there is an edge e ∈ E such

that G− e is a tree.



6.1 One colour class in 1 dimension 92

Any tree-plus-one graph contains a unique cycle, which we shall often denote by

C = (V (C), E(C)). It is useful to note that for a cycle C ⊂ G, removing any edge

e ∈ E(C) will result in a tree G− e.

It is straightforward to apply Theorem 4.1.11 to show that 1-coordinated frameworks

(G, c, p) will be isostatic for any regular configuration p ∈ Rn if and only if (G, c) is a

tree-plus-one graph with at least one edge from E1 within the cycle of (G, c), however

we also have an inductive construction for such frameworks.

In Section 2.8.1 we noted that continuous rigidity and infinitesimal rigidity coincide

in 1 dimension, and that 1-dimensional frameworks are minimally rigid if and only if

the graph G is a tree. We also noted that a tree may be constructed from a single

vertex using only 0-extensions. For 1-coloured coordinated rigidity, we shall allow

both 0-extensions with the edge added to E0, and 0-extensions with the new edge

being added to the coordination class E1. These are illustrated in Figure 6.1, and will

preserve 1-coordinated infinitesimal rigidity by Lemma 5.1.2.

To construct isostatic frameworks with a class of coordinated edges, we also require

a 1-dimensional 1-extension. This is applied by removing a single edge {u1, u2}, and

adding a new vertex x with two new edges {x, u1}, {x, u2}. If {u1, u2} ∈ E0, we require

that both new edges be added to E0, as would occur in the non-coordinated situation. If

instead {u1, u2} ∈ E1, we require that at least one new edge be added to E1, though the

other may be added to either E0 or E1. Both types of coloured 1-extension may be seen

in Figure 6.2, and will preserve 1-coordinated infinitesimal rigidity by Lemma 5.2.2.

We now state the following main result for this section.

Theorem 6.1.2. Let (G, c, p) be a 1 edge-coloured framework with a regular configu-

ration p ∈ Rn. The following are equivalent:

1. (G, c, p) is an isostatic framework;

2. The graph G is tree-plus-one, and at least one edge in the cycle of (G, c) is in E1;
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a A 0-extension with the edge added to E0.

b A 0-extension with the edge added to E1.

Figure 6.1 Coloured 0-extensions in 1 dimension.

a A 1-extension applied to an edge from E1, creating a new vertex with one edge in E0 and
one edge in E1.

b A 1-extension applied to an edge from E1, creating a new vertex with two edges in E1.

Figure 6.2 Coloured 1-extensions in 1 dimension.
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3. The graph G is tree-plus-one, and for any D ⊆ E0:

|D| ≤ |V (D)| − 1. (6.1)

4. The edge-coloured graph (G, c) can be constructed from a copy of K3 with at

least one edge in E1, by a sequence of coloured 0-extensions and 1-extensions.

Proof. We begin by proving the equivalence of the second and third statements. Let

(G, c) be a tree-plus-one graph and let C = (V (C), E(C)) denote the unique cycle of

(G, c). Suppose that at least one edge in E1 is in the cycle of G, and consider the

subgraph of G made up of the edges in E0, denoted by G0 = (V,E0). This subgraph

will have |E0| = |V | − |E1| ≤ |V | − 1, and will have no cycle since E1 ∩ E(C) ̸= ∅.

Thus G0 is at most a tree, and so will have |D| ≤ |V (D)| − 1 for any subset D ⊆ E0.

Suppose instead that (G, c) is a tree-plus-one graph with |D| ≤ |V (D)| − 1 for all

D ⊆ E0. The unique cycle C = (V (C), E(C)) within G will have |E(C)| = |V (C)|,

and hence there must be at least one edge in E1 ∩ E(C).

We next prove that the third condition is necessary for the first condition to hold. It

is clear that a disconnected graph cannot lead to an isostatic framework, so we may

assume that G is connected. It is also a straightforward consequence of Theorem 3.1.33

that a 1 edge-coloured graph (G, c) with |E| < |V | or |E| > |V | cannot be isostatic

in 1 dimension, and hence we may assume that (G, c) is a connected 1 edge-coloured

graph with |E| = |V |.

A connected graph with |E| = |V | is tree-plus-one, so it remains to prove the

necessity of Equation (6.1). Suppose that (G, c) contains some D0 ⊆ E0 such that

|D0| > |V (D0)| − 1. Any subgraph of a tree-plus-one graph, generated by D ⊆ E,

has |D| ≤ |V (D)|, so the subgraph generated by these uncoloured edges must have



6.1 One colour class in 1 dimension 95

|D0| = |V (D0)|. This leads to the conclusion that this subgraph contains all the edges

of the unique cycle of (G, c), E(C) ⊆ D0, and so the cycle of (G, c) is uncoloured.

The subset of rows of R(G, c, p) associated with the edges of E(C) will contain a

dependence, and so rankR(G, c, p) < |E|. The framework (G, c, p) therefore will not

be independent, and so cannot be isostatic.

We now prove that any graph (G, c) satisfying the third condition may be constructed

as described in the fourth condition. We shall prove this by applying induction on

|V | = n.

The only tree-plus-one graph on 3 vertices is K3, and all 1 edge-colourings that

result in |D| ≤ |V (D)| − 1 for D ⊆ E0 will give |E1| ≥ 1, as required for the set of

base graphs (K3, c) in the fourth condition.

Let (G, c) be a tree-plus-one graph on n ≥ 4 vertices, which satisfies |D| ≤ |V (D)|−1

for every D ⊆ E0. Since |E| = |V |, the average degree is two, so (G, c) will either

contain at least one vertex of degree strictly less than two, or every vertex will have

degree exactly two.

Suppose first that (G, c) contains a vertex u of degree one. If u is adjacent to an

edge in E0, this edge and vertex may clearly be considered as the result of a standard

0-extension move. We note that if instead u is adjacent to an edge in E1, |E1| ≥ 2,

since (G, c) satisfies |D| ≤ |V (D)|−1 for all D ⊆ E0 and the edge adjacent to u cannot

be in any cycle of (G, c). We may therefore also consider the vertex u and its associated

edge as the result of a 0-extension.

In both cases, the reverse of the move may be applied to remove the vertex and

associated edge. This results in a graph (G′, c) on n− 1 vertices, which is tree-plus-one

and still satisfies Equation (6.1). The coloured 0-extensions are illustrated in Figure 6.1.
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Suppose instead that every vertex of (G, c) has degree exactly two, and so the

structure of G is a single cycle. As any set of uncoloured edges generates a subgraph

that is at most a tree, there will be at least one edge in E1 within the cycle.

First suppose that there is also at least one edge of the cycle in E0. There will

be at least one vertex u that is adjacent to one edge in E0 and one edge in E1. We

shall denote this pair of edges by {u, x0} ∈ E0 and {u, x1} ∈ E1 respectively. The pair

of edges and their common vertex u may be considered as the result of a coloured

1-extension, of the type illustrated in Figure 6.2a. We may apply the reverse of this

move to produce a 1 edge-coloured graph on n − 1 vertices that satisfies the third

condition of the Theorem.

Suppose instead that E0 = ∅, so (G, c) is a cycle on n vertices with every edge in

E1. Any vertex u and its pair of adjacent edges, {u, x1}, {u, x2}, may be viewed as

the result of an all coloured 1-extension, as depicted in Figure 6.2b. The reverse of

this move may be applied, to replace the vertex and its pair of edges with a single

edge, {x1, x2}, and create a cycle of edges in E1 on n − 1 vertices. This will clearly

still satisfy the third condition.

By the inductive hypothesis, any 1 edge-coloured graph (G, c) satisfying the third

condition may be reduced to (K3, c), where c is an edge-colouring that induces a

partition with |E1| ≥ 1.

We conclude by proving that the fourth statement implies the first. It is straightforward

to confirm that for (K3, c, p) with |E1| ≥ 1 and any regular configuration p ∈ R1·3, the

coordinated rigidity matrix will have rankR(K3, c, p) = 3. We may therefore apply

Theorem 3.1.33 to see that (K3, c, p) is isostatic in 1 dimension. From Lemma 5.1.2 and

Lemma 5.2.2, applying a coloured 0-extension or coloured 1-extension to an isostatic
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framework will result in a larger isostatic framework, so any framework constructed in

this way from a coloured copy of K3 with |E1| ≥ 1 will be isostatic.

In Figure 6.3 we illustrate a pair of graphs on five vertices, and their respective

reductions to coloured copies of K3. Both graphs will give isostatic frameworks when

combined with a configuration p ∈ R1|V |.

→ →

→ →

Figure 6.3 Two examples of a reduction of 1-coloured 1-dimensional graphs.

6.2 Two colour classes in 1 dimension

A natural next step is to characterise frameworks with two classes of coordinated edges.

We consider edge-coloured graphs (G, c) where the edges are partitioned by c into

E = E0 ∪ E1 ∪ E2. We extend Definition 6.1.1 as follows.

Definition 6.2.1. A graph G = (V,E) is tree-plus-two if there is a pair of edges

{e, f} ⊂ E such that G− {e, f} is a tree.
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A tree-plus-two graph may contain two edge-disjoint cycles, or may instead contain

two intersecting cycles - the disjoint union of which will create a third cycle. We shall

refer to the two shortest cycles as Ca and Cb.

We denote the base graphs for our inductive construction by A4, A5 and A6,

where |V (Ai)| = i and each base graph contains two copies of C3. A4, illustrated in

Figure 6.4a, consists of two 3-cycles which intersect on a single edge, and also contains

a cycle of length 4. Figure 6.4b shows the base graph A5, which has two copies of C3

intersecting on a single vertex, while the base graph A6 has two completely disjoint

cycles, connected by a single edge. This base graph may be seen in Figure 6.4c.

a The base graph A4. b The base graph A5. c The base graph A6.

Figure 6.4 The base graphs for 1-dimensional frameworks with 2 colour classes.

We allow the 1-dimensional 0-extension, as described in Section 6.1 and illustrated

in Figure 6.1, to be applied with the new edge added to any of E0, E1 and E2. We

also allow the 1-dimensional 1-extensions on edges in E1 seen in Figure 6.2, as well as

permitting equivalent moves to be applied to an edge in E2. Along with the standard

1-dimensional 1-extension, wherein an edge from E0 is replaced by two edges added

to E0, we define an additional 1-extension to be applied to an edge e = {u1, u2} with

either e ∈ E1 or e ∈ E2. The edge e is removed and replaced by a new vertex x, and

edges {x, u1}, {x, u2} with one edge added to each of E1 and E2. An illustration of

this move being applied to e ∈ E1 is shown in Figure 6.5.

We state the following main result for 1-dimensional frameworks with two classes

of coordinated edges, which we prove through a sequence of equivalences.
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Figure 6.5 1-dimensional 1-extension, replacing an edge in E1 with one edge in E1
and one edge in E2.

Theorem 6.2.2. Let (G, c, p) be a 2 edge-coloured framework with a regular configu-

ration p ∈ Rn. The following are equivalent:

1. (G, c, p) is an isostatic framework;

2. The graph G is tree-plus-two, there is at least one edge from each of E1 and E2

that lies within a cycle of (G, c), and the following counts are satisfied:

|D| ≤ |V (D)| − 1 ∀D ⊆ E0, (6.2)

|D| ≤ |V (D)| ∀D ⊆ E0 ∪ E1 or D ⊆ E0 ∪ E2. (6.3)

3. The edge-coloured graph (G, c) may be constructed from a coloured copy of one

of the three base graphs A4, A5, A6, with at least one coloured edge in each cycle,

and at least one edge from each colour class in a cycle, by a sequence of coloured

0-extensions and 1-extensions.

We may also use the language of redundant rigidity to give an equivalent statement

to the first two conditions.

Theorem 6.2.3. Let (G, c) be a 2-edge-coloured graph. The graph (G, c) is generically

rigid in 1 dimension if and only if G is generically rigid in M1, and there is a pair of

edges {e1, e2} with e1 ∈ E1, e2 ∈ E2, that is not a 2-bridge in M1(G).
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This statement is the specific 2-coloured 1-dimensional case of Theorem 4.1.11.

However it does not give the inductive construction of such graphs that is obtained

from Theorem 6.2.2, which we now prove using a series of Lemmas.

Lemma 6.2.4 (1 ⇒ 2). If (G, c, p) is an isostatic framework, then (G, c) is a tree-plus-

two graph with at least one edge from each of E1 and E2 within a cycle, satisfying

Equations (6.2) and (6.3).

Proof. It is clear that a disconnected graph cannot be isostatic, and from Theorem 3.1.33

that a graph with |E| ≠ |V | + 1 will also not be isostatic. We may therefore assume

that G is a connected graph with |E| = |V | + 1, and hence G has two more edges than

a tree. These will create cycles, so G has at least two cycles that may be labelled Ca

and Cb. We may choose two edges e ∈ E(Ca) \ E(Cb) and f ∈ E(Cb) \ E(Ca).

Let G′ = G − {e, f}, so |E ′| = |V ′| − 1. The cycles Ca and Cb in G are still

connected in G′, and shall be denoted by C ′
a := Ca − {e} and C ′

b := Cb − {f}. If

G is not tree-plus-two, G′ cannot be a tree, and hence must be disconnected. Let

e = {u1, u2} and f = {v1, v2}. The graph G′ still contains a path between u1 and u2,

in C ′
a, and a path in C ′

b between v1 and v2. Replacing the edges e, f into G′ will create

the cycles Ca and Cb, and since G′ is disconnected, G will remain disconnected. Hence

if G with |E| = |V | + 1 is not tree-plus-two, then G must be disconnected and so

cannot be isostatic.

We may now assume that G is tree-plus-two. Suppose that one colour class, say

E1, does not contain any edges in the cycles of (G, c), so E1 ⊂ E \
{
E(Ca) ∪ E(Cb)

}
.

We define a 1-edge-colouring c′ of the graph G, where c′(e) := 0 for e ∈ E0 ∪ E2, and

c′(e) := 1 for e ∈ E1. As no edge in E ′
1 is in a cycle of G, the 1-coloured graph (G, c′)

cannot be infinitesimally rigid by Theorem 6.1.2, and this non-trivial infinitesimal

motion will remain in the 2-coloured graph (G, c). A similar argument applies when
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E2 ⊂ E \
{
E(Ca) ∪E(Cb)

}
, and hence both colour classes must have at least one edge

within a cycle of G.

Let D ⊆ E be a collection of edges in the tree-plus-two graph G, and so |D| ≤

|V (D)| + 1. Suppose first that D ⊆ E0 such that |D| ≥ |V (D)|. In this case, as in the

1-coordinated situation seen in Theorem 6.1.2, the coordinated rigidity matrix R(G, c, p)

will contain a submatrix with |D| rows and at most |V (D)| non-zero columns. This

submatrix will have rank at most |V (D)| − 1 < |D|, and so there will be a dependence

preventing G from being isostatic.

Suppose instead that D ⊆ E0 ∪ E1 or D ⊆ E0 ∪ E2 with |D| = |V (D)| + 1. The

coordinated rigidity matrix R(G, c, p) will contain a submatrix of |D| rows with at

most |V (D)| + 1 non-zero columns, and hence this submatrix will have rank at most

(|V (D)| + 1) − 1 = |D| − 1. This submatrix will therefore identify a dependence within

the graph G, and so G will not be isostatic. The second condition of Theorem 6.2.2 is

therefore necessary for a framework (G, c, p) to be isostatic.

Lemma 6.2.5 (2 ⇒ 3). The 2-edge-coloured graph (G, c) can be constructed from

some (Ai, c), i ∈ {4, 5, 6}, by a sequence of coloured 0-extensions and 1-extensions,

when (G, c) is a tree-plus-two graph with at least one edge from each of E1 and E2

within a cycle, satisfying Equations (6.2) and (6.3).

Proof. Let G be a tree-plus-two graph, with an edge-colouring c that induces a partition

of E into E0 ∪ E1 ∪ E2, such that (G, c) has at least one edge from E1 and E2 within

a cycle and satisfies Equations (6.2) and (6.3). We note that since any tree-plus-two

graph has |V | ≥ 4, the average degree within the tree-plus-two graph (G, c) is strictly

less than three:

1
|V |

∑
v∈V

deg(v) = 1
|V |

(
2|E|

)
= 1

|V |
(
2|V | + 2

)
= 2 + 2

|V |
. (6.4)
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The only tree-plus-two graph with |V | = 4 is the base graph A4, so we shall apply

induction on V and suppose that (G, c) has |V | ≥ 5. The minimum degree is either

1 or 2, and we suppose first that (G, c) has a vertex of degree 1, so is clearly not a

base graph. Since edges from both E1 and E2 are within cycles of (G, c), if a vertex of

degree 1 is adjacent to an edge from E1 then |E1| ≥ 2, and similarly if an edge from E2

is adjacent to a vertex of degree 1 then |E2| ≥ 2. Any vertex of degree 1 may therefore

be considered as the result of an appropriately coloured 0-extension, so we may remove

this vertex and its associated edge.

We now suppose that there are no vertices of degree 1, and so the minimum degree

within (G, c) is 2. We shall consider the cycle structure of (G, c). A tree-plus-two

graph will contain at least two cycles, which may be vertex disjoint and connected by

a path, share a single vertex, or have some path of edges in common. We consider each

of these cases separately.

Suppose first that (G, c) contains exactly two cycles Ca and Cb, such that V (Ca ∩ Cb) =

∅. Necessarily |V | ≥ 6, however if |V | = 6 then (G, c) is a coloured copy of the base

graph A6. We assume that |V | ≥ 7 to apply induction.

Let P denote the subgraph generated by E \ {E(Ca), E(Cb)}, which may be

considered as the path between Ca and Cb. There is one vertex xa ∈ V (Ca) ∩ V (P )

and one vertex xb ∈ V (Cb) ∩ V (P ) with deg(xa) = deg(xb) = 3, and all other vertices

have degree 2. This is shown in Figure 6.6. As |V | ≥ 7, either |V (P )| ≥ 3 or at least

one cycle contains at least four edges.

All edges in E(P ) are outside the cycles of the edge-coloured graph (G, c). If

there exists some v ∈ V (P ) with deg(v) = 2 and associated edges {v, u1}, {v, u2}, we

may apply the reverse move to a 1-extension to create a reduced graph (G′, c′), and

replace v and its pair of edges with the single edge {u1, u2}. The edge {u1, u2} will

be in the reduced path P ′ and hence will remain outside the (unchanged) cycles of
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xa
xb

P
CbCa

Figure 6.6 The graph (G, c) has two cycles Ca and Cb, linked by a path P .

the reduced graph G′. We may define the edge-colouring c′ of G′ by c′(e) := c(e)

for all edges in E ′ \
{
{u1, u2}

}
, and define c′

(
{u1, u2}

)
as appropriate, based on the

colours of the removed edges {v, u1} and {v, u2}. Since (G, c) satisfied all conditions

on the edge-colouring, and the colouring of the edges in the cycles of (G′, c′) remains

unchanged, the reduced graph (G′, c′) will clearly satisfy the same coloured sparsity

conditions.

If instead P is made up of only the edge {xa, xb}, there is at least one cycle made

up of at least four edges since |V | ≥ 7. Without loss of generality, let |V (Ca)| ≥ 4.

If there is an edge in E0 ∩ E(Ca), this edge will be adjacent to at least one vertex of

degree 2. Let v be the vertex of degree 2, with {v, u1} ∈ E0 and {v, u2} ∈ Ei for some

0 ≤ i ≤ 2. We may apply the reverse of a 1-extension move at v, and replace the vertex

v and its pair of edges with a single edge {u1, u2} added to E ′
i for the same 0 ≤ i ≤ 2.

This will either be the reverse of a standard 1-extension, or replace an uncoloured and

a coloured edge with a single edge of the same colour. The reduced graph (G′, c′) will
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have Cb unchanged, and the same number and type of coloured edges within C ′
a as

were in Ca.

If E0 ∩ E(Ca) = ∅, Ca is either made up of only edges from one colour class,

or from a mixture of edges from E1 and E2. By swapping the labels of the colour

classes if necessary, we first suppose that there is a vertex v of degree 2 in V (Ca)

with {v, u1}, {v, u2} ∈ E1. We may replace v and its pair of edges with a single edge

{u1, u2} ∈ E ′
1. The reduced graph G′ will still have at least one edge from E ′

1 within

C ′
a, and any edges within Ca from E2 will remain in E ′

2 within C ′
a. The other cycle

Cb will also remain unchanged, and so the reduced graph (G′, c′) will satisfy the same

conditions.

If there is no degree 2 vertex within V (Ca) adjacent to two edges from the same

colour class, every vertex v ∈ V (Ca) with deg(v) = 2 will be adjacent to a pair of edges

{v, u1} ∈ E1, {v, u2} ∈ E2. As |E(Ca)| ≥ 4, we shall have |E1∩E(Ca)|, |E2∩E(Ca)| ≥ 2.

Without loss of generality, suppose that |E2 ∩E(Ca)| ≥ |E1 ∩E(Ca)|. We may remove

a vertex v and its pair of adjacent edges, and replace them with a single edge {u1, u2}

which we add to E ′
1, in the reverse of the 1-extension illustrated in Figure 6.5. (G′, c′)

has |E ′
1 ∩ E(C ′

a)| ≥ |E ′
2 ∩ E(C ′

a)| ≥ 1, and so edges from both colour classes remain

within C ′
a. As before, the cycle Cb remains unchanged, and the reduced graph (G′, c′)

has edges from both E1 and E2 within cycles, and satisfies Equations (6.2) and (6.3).

Suppose next that (G, c) contains exactly two edge-disjoint cycles, with V (Ca ∩ Cb) =

{x} for some vertex x ∈ V . As the minimum degree within (G, c) is 2, every vertex

v ∈ V \ {x} will be in exactly one of the cycles, with deg(v) = 2. We assumed that

|V | ≥ 5, however if |V | = 5 then G = A5, so we may instead assume |V | ≥ 6 to apply

induction on |V |. At least one cycle will have |E(C)| ≥ 4, and so we may reduce

this cycle by applying an identical reduction to that described above for reducing
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completely disjoint cycles.

Suppose finally that the two shortest cycles within (G, c), labelled Ca and Cb, in-

tersect on some non-empty collection of edges. We denote by P the subgraph Ca ∩ Cb,

and since there are no vertices of degree 1, we have two vertices of degree 3, labelled x

and y, and three edge-disjoint paths between them. We denote the paths Ca \ P and

Cb \ P by Pa and Pb respectively, which is illustrated in Figure 6.7.

x

y

P
Pa Pb

Figure 6.7 Three paths between two vertices. Ca = Pa ∪ P ; Cb = Pb ∪ P .

The base graph with this cycle structure is A4, so we may continue assuming that

|V | ≥ 5 to apply induction on |V |. Since Ca and Cb are the shortest cycles within

(G, c), P will be either the shortest or equal shortest path between x and y.

Since |E| = |V | + 1 ≥ 6, either all three paths have length at least two, or there is

a path of length at least three if there is a path of length one.

There can be at most one path Q ∈ {P, Pa, Pb} made up only of uncoloured edges,

as the union of two uncoloured paths would create an uncoloured cycle. Suppose first

that there is an uncoloured path of length at least two. Any vertex v ∈ V (Q) \ {x, y}

will be adjacent to two uncoloured edges, {v, u1}, {v, u2}, so these edges and the vertex

v may be removed, to be replaced by a single uncoloured edge {u1, u2} in the reverse of

a standard 1-extension. The coloured paths will remain unchanged, and the uncoloured

path will have reduced in length by 1, so the reduced graph will still satisfy the

conditions of the statement.
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If there is no uncoloured path of at least two edges, there is either an uncoloured

path of length one, or every path contains at least one coloured edge. If there is a path

Q1 ∈ {P, Pa, Pb} with |E(Q1)| = 1, we shall consider the longest path Q ∈ {P, Pa, Pb},

with |E(Q)| ≥ 3 as noted above.

If there is an uncoloured edge in E(Q), it will be adjacent to at least one vertex

of degree 2, v. We label the edges adjacent to v as {v, u1} ∈ E0 and {v, u2} ∈ Eℓ for

some ℓ ∈ {0, 1, 2}. We may apply the reverse of a 1-extension at v, and replace this

pair of edges by a single edge {u1, u2} ∈ Eℓ. The number of coloured edges within Q

remains unchanged, as do the other two paths between x and y, so the reduced graph

will also satisfy the conditions required.

If E(Q) is made up only of edges from E1 ∪ E2, we first check whether there is

a vertex v ∈ V (Q) \ {x, y} adjacent to a pair of edges {v, u1}, {v, u2} ∈ Eℓ for ℓ = 1

or ℓ = 2. Without loss of generality, suppose that such a vertex exists for ℓ = 1,

so we may apply the reverse of a 1-extension to replace v and its pair of edges with

a single edge {u1, u2} added to E1. The reduced path Q′ will have |E(Q′)| ≥ 2,

|E ′
2 ∩ E(Q′)| = |E2 ∩ E(Q)| and |E ′

1 ∩ E(Q′)| = |E1 ∩ E(Q)| − 1 ≥ 1. Since the other

pair of paths between x and y will remain unchanged, the reduced graph (G′, c′) will

still satisfy the conditions of the statement.

If there is no such vertex adjacent to two edges from the same colour class, every

vertex v ∈ V (Q) \ {x, y} will be adjacent to a pair of edges {v, u1} ∈ E1, {v, u2} ∈ E2,

and so the edges of Q will alternate between the two colour classes. Without loss of

generality, suppose that |E2 ∩ E(Q)| ≥ |E1 ∩ E(Q)| ≥ 1. We may apply the reverse of

the 1-extension illustrated in Figure 6.5, and replace v and its pair of adjacent edges

by a single edge {u1, u2} added to E1. This results in |E ′
1 ∩ E(Q′)| = |E1 ∩ E(Q)| and

|E ′
2 ∩E(Q′)| = |E2 ∩ E(Q)| − 1, so overall |E ′

1 ∩E(Q′)| ≥ |E ′
2 ∩E(Q′)| ≥ 1 and edges
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of both colours remain in the reduced path Q′. The reduced graph (G′, c′) will still

satisfy all the conditions required.

We note that in the case where |E1 ∩ E(Q)| = 1, since |E(Q)| ≥ 3 we have

|E2 ∩ E(Q)| ≥ 2 and hence |E ′
2 ∩ E(Q′)| ≥ 1.

The remaining case to check is when all three paths contain at least one coloured edge.

If there is a path Q ∈ {P, Pa, Pb} with |E(Q)| ≥ 3, we may apply the argument above

to reduce the path Q, and hence reduce the graph (G, c) to a smaller graph satisfying

the conditions stated. If no such path exists, we have |E(P )| = |E(Pa)| = |E(Pb)| = 2,

with at least one coloured edge in each path.

If one path is made up of a coloured edge and an uncoloured edge, we may apply

the reverse of the 1-extension illustrated in Figure 6.2a. This allows us to replace the

vertex and its pair of edges with a single edge {x, y} of the same colour as the single

coloured edge removed. If instead there are no uncoloured edges within (G, c), but

there is a vertex v ∈ V \ {x, y} with {v, x}, {v, y} ∈ Eℓ for ℓ = 1 or ℓ = 2, we may

remove this vertex and pair of edges, to replace them with a single edge {x, y} added

to Eℓ. This is the reverse of the 1-extension illustrated in Figure 6.2b, in the case ℓ = 1.

In either case, the reduced graph will clearly still satisfy Equations (6.2) and (6.3).

If no vertex of either of these types exists, we have V = {x, y, v1, v2, v3} where each

vertex vi is adjacent to one edge in E1 and one edge in E2. Without loss of generality,

consider the edges {v1, x} ∈ E1 and {v1, y} ∈ E2. We may remove the vertex v1 along

with its pair of edges, and create a new edge {x, y} to be added to either E1 or E2, say

E1. The reduced graph (G′, c′) will have |E ′
1| = |E1| = 3 and |E ′

2| = |E2| − 1 = 2, so it

is straightforward to confirm that (G′, c′) will still satisfy Equations (6.2) and (6.3), as

well as having at least one edge from both E ′
1 and E ′

2 within a cycle of (G′, c′), since

every edge in (G′, c′) is within a cycle.
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We have shown that any graph (G, c) with at least one edge from each colour class

within a cycle of G, that satisfies Equations (6.2) and (6.3), may be reduced to a smaller

graph (G′, c′) that still satisfies Equations (6.2) and (6.3) and retains at least one edge

from each colour class within a cycle of (G′, c′), by applying the reverse of a coloured

0-extension or 1-extension. Hence by the inductive hypothesis, any coloured graph

satisfying these conditions may be constructed from an appropriately coloured copy of

a base graph A4, A5, A6 by a sequence of coloured 0-extensions and 1-extensions.

Lemma 6.2.6 (3 ⇒ 1). Let (G, c) be a 2 edge-coloured graph (G, c) and let p ∈ Rn be

a regular configuration of the vertex set of G. If (G, c) is constructed from some base

graph (Ai, ci), i ∈ {4, 5, 6}, by a sequence of coloured 0-extensions and 1-extensions,

then (G, c, p) is an isostatic framework.

Proof. For each base graph Ai ∈ {A4, A5, A6} let ci be a colouring that induces a

partition of E into E0 ∪ E1 ∪ E2, such that |E1| ≥ 1, |E2| ≥ 1, at least one edge of

each colour is in a cycle, and at least one coloured edge is in each cycle.

Let p4 = (1, 2, 3, 4), p5 = (1, 2, 3, 4, 5), p6 = (1, 2, 3, 4, 5, 6), and consider the coordi-

nated rigidity matrices: we have rankR(A4, c4, p4) = 5 = |E(A4)|, rankR(A5, c5, p5) =

6 and rankR(A6, c6, p6) = 7. Since this is the maximum possible rank for each coor-

dinated rigidity matrix, each pi is a regular configuration of (Ai, ci), and all regular

configurations have full rank. We may therefore apply Theorem 3.1.33 to confirm that

the regular framework (Ai, ci, pi) is isostatic for i ∈ {4, 5, 6}.

a The base graph (A4, p4). b The base graph (A5, p5). c The base graph (A6, p6).

From Lemma 5.1.2 and Lemma 5.2.2, any coloured 0-extension or coloured 1-

extension will preserve isostaticity of the framework it is applied to, and hence any

framework constructed in this way from an appropriately coloured base graph will be

isostatic.
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Example 6.2.7. Figure 6.9 shows a 2-coloured graph that results in an isostatic

2-coordinated framework when each vertex is given a placement p(i) ∈ R1, i ∈ V . The

steps to reduce this graph to a 2-coloured copy of the base graph A4 are also shown.

→ →

→ →

→ →

→ →

Figure 6.9 Example 6.2.7. A reduction of a 2-coloured graph to the base graph A4.
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6.3 Higher k in 1 dimension

We shall now consider k-coloured graphs with k ≥ 3.

Definition 6.3.1. The ℓ-chromatic subgraphs of a k-coloured graph (G, c) are the

subgraphs induced by E0 ∪ Ek1 ∪ · · · ∪ Ekℓ for all sequences (k1, . . . , kℓ) with 1 ≤ k1 <

· · · < kℓ ≤ k.

Remark 6.3.2. A k-coloured graph (G, c) has k 1-chromatic subgraphs, induced by

E0 ∪ E1, E0 ∪ E2, . . . , E0 ∪ Ek.

A 3-coloured graph (G, c) has three 2-chromatic subgraphs, induced by E0 ∪E1 ∪E2,

E0 ∪ E1 ∪ E3 and E0 ∪ E2 ∪ E3.

It is clearly necessary that, in order for a k-coordinated regular framework (G, c, p)

to be isostatic in 1 dimension, the ℓ-chromatic subgraphs of a k-coloured graph (G, c)

must be independent. This implies that each ℓ-chromatic subgraph must at most be

a tree-plus-ℓ graph, since this is a necessary condition for an ℓ-coloured graph to be

independent in 1 dimension.

From Theorem 4.1.11, a k-coordinated graph (G, c) is generically rigid in 1 dimension

if and only if the graph G is generically rigid in 1 dimension, and (G, c) contains a

k-redundant rainbow subset of edges. We note that redundant edges in a 1-dimensional

framework are exactly those edges that lie within at least one cycle.

6.3.1 Three colour classes

We apply Theorem 4.1.11 and Theorem 6.2.3 to prove the following result.

Theorem 6.3.3. Let (G, c, p) be a 3-edge-coloured framework with a regular config-

uration p ∈ Rn. (G, c, p) is isostatic if and only if the graph G is tree-plus-three, at

least one edge from E1, E2 and E3 lies within a cycle of G, each 1-chromatic subgraph
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of (G, c) is independent as a 1-coloured graph, and each 2-chromatic subgraph of (G, c)

is independent as a 2-coloured graph.

Proof. From Theorem 4.1.11, the 3-edge-coloured graph (G, c) is generically rigid

in 1 dimension if and only if the graph G is generically rigid in 1 dimension and

contains three edges {e1, e2, e3} with ei ∈ Ei for 1 ≤ i ≤ 3 such that G \ {e1, e2, e3} is

generically rigid as an uncoloured graph in 1 dimension. This implies that for (G, c) to

be generically rigid in 1 dimension, G has |E| ≥ |V | − 1 + 3.

We note that in order for an ℓ-chromatic subgraph to be independent as an ℓ-

coloured graph, any subgraph (V (D), D) satisfies |D| ≤ |V (D)| + k(D) − 1, where

k(D) is the number of non-empty colour classes within D. This may be restated as

follows for the 1-chromatic and 2-chromatic subgraphs of (G, c):

|D| ≤ |V (D)| − 1 ∀D ⊆ E0, (6.5)

|D| ≤ |V (D)| ∀D ⊆ E0 ∪ E1, D ⊆ E0 ∪ E2, D ⊆ E0 ∪ E3, (6.6)

|D| ≤ |V (D)| + 1 ∀D ⊆ E0 ∪ E1 ∪ E2, D ⊆ E0 ∪ E1 ∪ E3, D ⊆ E0 ∪ E2 ∪ E3. (6.7)

Suppose that (G, c, p) is isostatic. It is clear from Theorem 3.1.33 that a 3-coloured

graph with |E| ≠ |V | + 2 cannot be isostatic in 1 dimension, and hence (G, c) is a

tree-plus-three graph, with the redundant edges e1 ∈ E1, e2 ∈ E2, e3 ∈ E3 within

cycles of (G, c).

If (G, c) contains a subset of edges D ⊆ E0 with |D| > |V (D)| − 1, this is

clearly equivalent to an uncoloured subgraph of (G, c) that is not independent, since

the coordinated rigidity matrix R(G, c, p) will contain a submatrix of rank at most

|V (D)| − 1 < |D|. The graph (G, c) will therefore contain the same dependence, and

cannot be isostatic.



6.3 Higher k in 1 dimension 112

If instead (G, c) contains a subgraph generated by a 1-coloured edge set, D ⊆ E0∪E1,

with |D| > |V (D)|, the submatrix of R(G, c, p) corresponding to these edges will have

rank at most (|V (D)| + 1) − 1 = |V (D)|. This subgraph will therefore contain

a dependence, and hence the graph (G, c) is also not independent. An analogous

argument applies for all other 1-coloured subgraphs of (G, c).

Similarly, if (G, c) contains a 2-coloured subgraph, generated by D ⊆ E0 ∪E1 ∪E2,

with |D| > |V (D)| + 1, the corresponding submatrix of R(G, c, p) will have rank at

most (|V (D)| + 2) − 1 = |V (D)| + 1, and hence this subgraph is not independent. This

also applies for subgraphs of the other 2-chromatic subgraphs of (G, c) generated by

D ⊆ E0 ∪ E1 ∪ E3 and D ⊆ E0 ∪ E2 ∪ E3.

Suppose finally that (G, c) contains a 2-chromatic subgraph that is not independent

as a 2-coloured graph, and without loss of generality let this be the 2-chromatic

subgraph generated by E0 ∪ E1 ∪ E2.

Since this subgraph is not independent as a 2-coloured graph, and hence is not

isostatic, we consider the conditions of Theorem 6.2.2. This 2-chromatic subgraph

is at most tree-plus-two, and all subgraphs satisfy Equations (6.5) and (6.6), which

are equivalent to Equations (6.2) and (6.3) respectively. Therefore the 2-chromatic

subgraph generated by E0 ∪E1 ∪E2 cannot contain edges from both E1 and E2 within

a cycle.

If this 2-chromatic subgraph contained no cycles or exactly one cycle, it would be

independent as a 2-coloured graph. Therefore there are at least two cycles within the

2-chromatic subgraph, and one colour class contains only edges outside the cycles of

the 2-chromatic subgraph. If no edge from E2 is within a cycle of the 2-chromatic

subgraph generated by E0 ∪ E1 ∪ E2, and this 2-chromatic subgraph contains at least

two cycles, then the 1-chromatic subgraph generated by E0 ∪ E1 also contains at least

two cycles. This implies that the 1-chromatic subgraph generated by E0 ∪ E1 is also
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not independent as a 1-coloured graph. There will therefore be a dependence within

the corresponding submatrix of R(G, c, p), and hence (G, c, p) cannot be independent.

Hence the conditions are necessary for the regular framework (G, c, p) to be isostatic.

Suppose instead that the graph (G, c) is a tree-plus-three graph with at least

one edge from each colour class E1, E2 and E3 within a cycle of G, where all three

1-chromatic subgraphs are independent as 1-coloured graphs, and all three 2-chromatic

subgraphs are independent as 2-coloured graphs. We shall show that the graph (G, c)

contains a 3-redundant rainbow set of edges {e1, e2, e3}, and hence by Theorem 4.1.11

(G, c) is generically rigid in 1 dimension. It then follows from Theorem 3.1.33 that

since |E| = |V | + 3 − 1, (G, c, p) is isostatic in 1 dimension.

Since the graph G is tree-plus-three, G contains at least three cycles, which may

be edge-disjoint or intersect non-trivially with each other, and for any edge within a

cycle, e ∈ E(C), the graph G \ {e} contains at least two cycles C1 and C2. There is at

least one edge from each colour class within a cycle of G, and at most one cycle within

each of E0 ∪ E1, E0 ∪ E2 and E0 ∪ E3.

A) There is a 1-coloured cycle

Suppose first that there is at least one cycle containing uncoloured edges together

with edges from exactly one colour class. We label this cycle C3, and without loss of

generality may assume E(C3) ⊆ E0 ∪E3. Let e3 ∈ E3 ∩E(C3). The graph (G \ {e3}, c)

will contain at least two cycles, which we may label C1 and C2, with edges from both

E1 and E2 within E(C1 ∪ C2).

We may define an edge-colouring c′ : E\{e3} → {0, 1, 2} for the graph G\{e3} := G′

with c′(e) := c(e) for e ∈ E0 ∪E1 ∪E2, and c′(e) := 0 for e ∈ E3. The 2-coloured graph

(G′, c′) is a tree-plus-two graph, with at least one edge from each E ′
1 and E ′

2 within

a cycle of G′. Since C3 was a cycle in (G, c) made up of edges from E0 ∪ E3, every
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cycle remaining in G′ contains at least one edge from E1 = E ′
1 or E2 = E ′

2, and hence

|D| ≤ |V (D)| − 1 for all D ⊆ E ′
0.

The 2-edge-coloured graph (G′, c′) therefore satisfies the conditions of Theorem 6.2.2

to be isostatic. We may then apply Theorem 6.2.3 to find a 2-redundant rainbow pair

of edges e1 ∈ E ′
1, e2 ∈ E ′

2 such that G′ \ {e1, e2} = G \ {e1, e2, e3} is a tree. This gives

a 3-redundant set of edges e1 ∈ E1, e2 ∈ E2, e3 ∈ E3 for the 3-edge-coloured graph

(G, c), which is therefore generically rigid by Theorem 4.1.11, and hence (G, c, p) is

isostatic.

B) All cycles contain edges from at least two colour classes

We now suppose that all cycles within (G, c) contain edges from at least two colour

classes.

Claim 6.3.4. Let C be a cycle of (G, c) with f1 ∈ E1 ∩ E(C) and f2 ∈ E2 ∩ E(C).

Then at least one of the following holds:

• G \ {f1} has at least one edge from E2 within a cycle,

• G \ {f2} has at least one edge from E1 within a cycle.

Proof of Claim 6.3.4. Suppose that the claim is false. Both G \ {f1} and G \ {f2}

contain at least two cycles, where the cycles of G\{f1} are contained within E0∪E1∪E3,

and the cycles of G \ {f2} are contained within E0 ∪E2 ∪E3. This implies that f1 lies

outside all cycles of G \ {f2}, and f2 lies outside of all cycles of G \ {f1}, and hence f1

and f2 are contained in exactly the same cycles of (G, c).

Since f1 and f2 lie in precisely the same cycles of (G, c), the cycles of G \ {f1}

and G \ {f2} are identical, and hence these cycles are contained within E0 ∪ E3. This

contradicts the assumption that every cycle contains edges of at least two colours.

Therefore either G \ {f1} contains at least one edge from E2 within a cycle, or G \ {f2}

contains at least one edge from E1 within a cycle.
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We note that Claim 6.3.4 holds whether the cycle C contains edges from precisely

two colour classes, or edges of all three colours.

Let C3 be a cycle of (G, c) containing edges from E2 and E3, and let e3 ∈ E3 ∩ E(C3).

By Claim 6.3.4, if G \ {e3} does not contain any edges from E2 within a cycle, then

for some e2 ∈ E2 ∩ E(C3), G \ {e2} contains at least one edge from E3 within a cycle,

e′
3. In such a case, we may apply the following argument with e′

3 in place of e3.

Let G′ denote G \ {e3}. Let C1 and C2 be two cycles within G′, and hence all cycles

of G′ are contained within C1 ∪ C2. Both C1 and C2 are cycles within G, and hence

contain edges from at least two colour classes.

B1) C3 contains no edges from E1

Since every colour class has an edge within a cycle of (G, c), if there is no edge from

E1 within the cycle C3 (where e3 ∈ E(C3)), then there is at least one edge from E1 in

E(C1 ∪ C2).

We define an edge-colouring c′ : E \ {e3} → {0, 1, 2} for the graph G′ with

c′(e) := c(e) for e ∈ E0 ∪ E1 ∪ E2, and c′(e) := 0 for e ∈ E3. By assumption, there

is at least one edge from E ′
2 within a cycle of G′. Since every cycle of G contains

edges from at least two colour classes, every cycle of G′ contains edges from at least

one colour class, and hence |D| ≤ |V (D)| − 1 for all D ⊆ E ′
0. Since there is at least

one edge in E1 ∩ E(C1 ∪ C2), there is at least one edge from E ′
1 in a cycle of G′,

and so the 2-coloured graph (G′, c′) is a tree-plus-two graph satisfying the conditions

of Theorem 6.2.2. Applying Theorem 6.2.3 gives a 2-redundant pair of edges in G′,

e1 ∈ E ′
1, e2 ∈ E ′

2, such that e1, e2, e3 are a 3-redundant rainbow set of edges for G.

Hence (G, c) is generically rigid by Theorem 4.1.11, and (G, c, p) is isostatic.

B2) C3 contains edges of all three colours

Suppose instead that E1 ∩E(C3), E2 ∩E(C3), E3 ∩E(C3) ̸= ∅, and recall that G \ {e3}
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contains at least one edge from E2 in a cycle. By Claim 6.3.4, since C3 contains e1 ∈ E1

and e3 ∈ E3, then either G \ {e1} contains at least one edge from E3 in a cycle, or

G \ {e3} contains at least one edge from E1 in a cycle. In the second case, we have

edges from both E1 and E2 within cycles of G \ {e3}, and we may therefore define

the colouring c′ : E \ {e3} → {0, 1, 2} on G \ {e3} as discussed in Case B1, and apply

Theorem 6.2.3 to find a 2-redundant rainbow pair within the 2-edge-coloured graph

(G′, c′).

Suppose instead that all edges from E1 lie outside the cycles of G \ {e3}, and hence

G \ {e1} contains at least one edge from E3 within a cycle. Since C3 contains edges

from E1 and E2, either G \ {e1} has an edge from E2 within a cycle, or G \ {e2}

has an edge from E1 within a cycle. In the first case, we have that G \ {e1} has

edges from both E2 and E3 within a cycle, and as above we may define a colouring

c′′ : E \ {e1} → {0, 2, 3} with c′′(e) := c(e) for e ∈ E0 ∪ E2 ∪ E3, and c′′(e) := 0 for

e ∈ E1. This gives a 2-edge-coloured graph (G \ {e1}, c′′) that satisfies the conditions

of Theorem 6.2.3, and hence contains a 2-redundant rainbow pair. This pair combines

with e1 to give a 3-redundant rainbow subset of edges for (G, c).

It remains to consider the case in which there are no edges from E2 within a cycle

of G \ {e1} and there are no edges from E1 within a cycle of G \ {e3}, but G \ {e2}

contains at least one edge from E1 within a cycle, and G \ {e1} contains at least one

edge from E3 within a cycle. We recall that we are assuming throughout that G \ {e3}

contains at least one edge from E2 within a cycle.

We first note that e1 lies outside the cycles of G \ {e3}, which implies that e1 and e3

lie in the same cycles. Since the cycles of G \ {e1} are contained within E0 ∪ E1 ∪ E3,

and the cycles of G \ {e3} are within E0 ∪ E2 ∪ E3, the fact that these cycles are

the same implies that multiple cycles are contained within the 1-coloured subgraph
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generated by E0 ∪E3. Since every cycle contains edges from at least two colour classes,

this is a contradiction, and hence this case cannot occur.

Remark 6.3.5. We note that the average degree within a tree-plus-three graph is

1
|V |

∑
v∈V

deg(v) = 2|E|
|V |

= 2|V | + 4
|V |

= 2 + 4
|V |

.

K4 is the minimal tree-plus-three graph, while any tree-plus-three graph with |V | ≥ 5

will have average degree strictly less than 3. The 1-dimensional 0-extensions and

1-extensions will still preserve rigidity, however proving an inductive construction using

the same style of proof as that used for Lemma 6.2.5 in the k = 2 case seems likely

to increase in complexity since a tree-plus-three graph contains at least three cycles.

After applying a 1-reduction to a vertex in a tree-plus-three graph, all cycles that

vertex was in must be checked to ensure that the reduced graph satisfies the coloured

subgraph constraints. Figure 6.10 shows a 3-coloured graph that may be obtained

from an appropriately coloured copy of K4 by applying 1-extensions. Since all cycles of

this graph intersect, every vertex of degree 2 lies in four cycles which must be checked

after applying a 1-reduction to ensure that the coloured subgraph contraints are still

satisfied.

Figure 6.10 A tree-plus-three graph on 10 vertices, obtained by applying repeated
1-extensions to a 3-coloured copy of K4. Each vertex of degree 2 lies in four cycles.
Applying a coloured 1-reduction at any vertex of degree 2 requires checking the colour
composition of all four reduced cycles.
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6.3.2 More than three colour classes

For any k-edge-coloured graph (G, c) to be generically rigid in 1 dimension, Theo-

rem 4.1.11 requires that (G, c) contain a spanning tree-plus-k subgraph (H, c|H), with

a k-redundant rainbow subset E ′ within H. It is therefore equivalent for a regular

1-dimensional k-coordinated framework (G, c, p) to be isostatic, and for (G, c) to be

a tree-plus-k graph such that at least one set of k-redundant edges E ′ is a rainbow

subset.

For a k-edge-coloured tree-plus-k graph (G, c) to have a k-redundant rainbow subset

E ′, it is clearly necessary for there to be at least one edge from each colour class within

a cycle of (G, c). It is also clear that any ℓ-coloured subgraph should be at most a

tree-plus-ℓ graph for 1 ≤ ℓ ≤ k − 1, and so inductively it seems necessary that each

ℓ-chromatic subgraph is independent as an ℓ-coloured graph, for 1 ≤ ℓ ≤ k.

The complexity of producing an inductive construction for such k-edge-coloured

graphs will get increasingly difficult, due to the increasing permutations in which

multiple cycles may interact, and the number of ways that colours may be distributed

across the different cycles.

By Lemma 3.1.24, when the complete k-edge-coloured graph (Kn, c) is generically

rigid in 1 dimension, we have that k ≤
(
n−1

2

)
. This suggests that for larger k, the base

graphs for a construction will have correspondingly larger vertex sets. This agrees with

the minimal tree-plus-k graphs increasing in size as k increases.

Theorem 6.3.6. Let (G, c, p) be a k-edge-coloured framework with a regular config-

uration p ∈ Rn. If (G, c, p) is isostatic, then the k-coloured graph (G, c) satisfies the

following conditions, for all 0 ≤ ℓ ≤ k:

The graph G is tree-plus-k;

At least one edge from each colour class lies within a cycle of (G, c);
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Each ℓ-chromatic subgraph is independent as an ℓ-coloured graph.

Proof. We note first that by Theorem 4.1.11, in order for (G, c) to be generically

infinitesimally rigid, the k-coloured graph (G, c) must contain a k-redundant rainbow

subset of edges. Since the redundant edges within a 1-dimensional framework correspond

precisely to the edges within cycles, this implies that every colour class contains an

edge that lies in a cycle of (G, c).

Removing this k-redundant rainbow subset results in a graph that is still generically

rigid, so (G, c) must contain a spanning tree-plus-k graph. By Theorem 3.1.33, the

regular framework (G, c, p) is isostatic if and only if |E| = |V | + k − 1, and so if (G, c)

is isostatic, then G is a tree-plus-k graph.

Suppose that some ℓ-chromatic subgraph of (G, c) is not independent as an ℓ-

coloured graph. The row dependence in the submatrix of the coordinated rigidity

matrix for the regular framework (G, c, p) that corresponds to this ℓ-chromatic subgraph

remains as a row dependence in the whole coordinated rigidity matrix R(G, c, p), and

hence (G, c, p) is not an isostatic framework.

We conjecture that these necessary conditions are in fact sufficient, but leave this

area as an open question to any interested parties.

Conjecture 6.3.7. Let (G, c, p) be a k-edge-coloured framework with a regular con-

figuration p ∈ Rn. Then (G, c, p) is isostatic, if and only if the k-coloured graph (G, c)

satisfies the following conditions, for all 0 ≤ ℓ ≤ k:

The graph G is tree-plus-k;

At least one edge from each colour class lies within a cycle of (G, c);

Each ℓ-chromatic subgraph is independent as an ℓ-coloured graph.



Chapter 7

Combinatorial Coordinated

Rigidity in 2 Dimensions

We shall now consider coordinated frameworks in 2 dimensions. We begin by char-

acterising the isostatic frameworks with one class of coordinated bars, for which we

have a Laman-style sparsity condition and a Henneberg-type inductive construction

(Theorem 7.1.2). Recall that, as discussed in Remark 3.1.20, coordinated frameworks

are denoted (G, c, p).

For frameworks in 2 dimensions with two classes of coordinated bars, we prove

the Laman-style characterisation (Theorem 7.2.4) by applying the characterisation of

rigid coordinated frameworks using redundant rigidity (Theorem 4.1.11). We require

the Laman-style result in order to prove the Henneberg-style inductive construction

(Theorem 7.2.20).

7.1 One colour class in 2 dimensions

It is reasonable to be interested in extending Theorem 6.1.2 to frameworks in R2, as

we have the standard result of Laman’s Theorem (Theorem 2.8.8 [Lam70]). As the
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isostatic 1-coloured frameworks in 1 dimension are composed of a graph that would be

isostatic when uncoloured, with an additional edge and a colouring c : E → {0, 1}, we

find the following definition useful.

Definition 7.1.1. A graph G = (V,E) is Laman-plus-one if there is an edge e ∈ E

such that G− e is a Laman graph. A (rigidity) circuit is a Laman-plus-one graph such

that G− e is a Laman graph for every edge e ∈ E.

Similarly to the unique cycle within any tree-plus-one graph, every Laman-plus-

one graph contains a unique circuit as a subgraph. We shall denote this circuit by

C = (V (C), E(C)).

Any generic framework that is rigid in 2 dimensions has a spanning Laman graph

as a subgraph (Corollary 2.8.9). From Theorem 4.1.11, a 1-coordinated framework

with a regular 2-dimensional configuration, (G, c, p), will be infinitesimally rigid if and

only if the graph G is generically rigid in M2, and there is at least one coloured edge

that is not a bridge within M2(G). The bridges within M2(G) are those edges that do

not lie within any circuit, so we require at least one edge from E1 within a circuit of

(G, c) for the framework (G, c, p) to be infinitesimally rigid.

We also have a constructive characterisation of the isostatic 1-coordinated frame-

works in 2 dimensions. We require the 2-dimensional 1-coloured 0-extensions and

1-extensions, which were initially defined in general in Definition 5.1.1 and Defini-

tion 5.2.1. The 0-extension in 2 dimensions is applied by creating a new vertex x,

along with a pair of new edges {x, u1}, {x, u2} for some u1, u2 ∈ V . In the standard

0-extension (Definition 2.8.1) both edges are added to E0, though Lemma 5.1.2 shows

that the edges may be added to E0 or E1 arbitrarily. All three types of 1-coloured

0-extension in 2 dimensions are shown in Figure 7.1.
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a A 0-extension with both edges added to E0.

b A 0-extension with one edge added to each of E0 and E1.

c A 0-extension with both edges added to E1.

Figure 7.1 2-dimensional 1-coloured 0-extensions.

The 1-extension in 2 dimensions is the replacement of an edge {u1, u2} by a new

vertex x, along with three new edges, {x, u1}, {x, u2}, {x, u3} for some other vertex

u3 ∈ V \ {u1, u2}.

We permit the edge {u1, u2} to be removed from E0, and all three new edges

be added to E0, as in the case of the standard 1-extension (Definition 2.8.3). Our

1-coloured 1-extension only requires that the two edges {x, u1}, {x, u2} be added to E0

if the initial edge {u1, u2} ∈ E0, and the third edge may be added to either E0 or E1.

This extension move is illustrated in Figure 7.2a. If we apply a 1-coloured 1-extension

to an edge {u1, u2} ∈ E1, this constraint is relaxed further and we require only that

one of {x, u1} and {x, u2} be added to E1. The other of this pair, and the third edge

{x, u3}, may be added to either E0 or E1 arbitrarily. These moves are illustrated

in Figure 7.2, and more intuition for these constraints may be found in the proof of

Lemma 5.2.2.
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Theorem 7.1.2. Let (G, c, p) be a 1-coordinated framework with a regular configura-

tion p ∈ R2n. The following are equivalent:

1. (G, c, p) is an isostatic framework;

2. The graph G is Laman-plus-one, and at least one edge in the circuit of (G, c) is

in E1;

3. The graph G is Laman-plus-one, and for any D ⊆ E0:

|D| ≤ 2|V (D)| − 3. (7.1)

4. The 1-edge-coloured graph (G, c) can be constructed from a copy of K4 with at

least one edge in E1, by a sequence of coloured 0-extensions and 1-extensions.

a A 1-extension applied to an edge from E0, with at least two edges added to E0.

b A 1-extension applied to an edge from E1, with at least one edge added to E0 and E1.

c A 1-extension applied to an edge from E1, with at least two edges added to E1.

Figure 7.2 Three kinds of 2-dimensional 1-coloured 1-extensions.
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Remark 7.1.3. For the proof of Theorem 7.1.2 we shall require 0-extensions with

all combinations of uncoloured and coloured edges, as illustrated in Figure 7.1. We

shall also require the standard 1-extension, where all three new edges are added to E0,

along with 1-extensions to replace an edge in E1 with either one, two or three edges

added to E1 (where the remaining two or one edges are added to E0). These are shown

in Figure 7.2. We note that other combinations of coloured edges may give a valid

1-extension, however these additional moves are not required for our proof.

Proof. We begin by proving the equivalence of the second and third statements. The

circuit of the coloured graph (G, c) is defined as the subgraph C = (V (C), E(C)) such

that |E(C)| = 2|V (C)| − 2 and every subgraph of C, generated by D ( E(C) has

|D| ≤ 2|V (D)| − 3. Any subgraph of G with |F | = 2|V (F )| − 2 must contain C, and

so if the circuit contains at least one edge in E1, every collection of edges D0 ⊆ E0 will

have |D0| ≤ 2|V (D0)| − 3. Conversely, if |D0| ≤ 2|V (D0)| − 3 for every D0 ⊆ E0, then

the circuit with |E(C)| = 2|V (C)| − 2 must have at least one edge in E1.

We shall now prove that the third condition is necessary for the first condition. Clearly

if |E| ̸= 2|V | − 2, G cannot be isostatic by Theorem 3.1.33, so we may assume that

|E| = 2|V | − 2. Suppose first that G is not Laman-plus-one. If G is a circuit, G will be

Laman-plus-one, so G instead has a proper subgraph H such that |E(H)| = 2|V (H)|−2.

Let e ∈ E(H) and let G′ = G− e. G′ has |E ′| = 2|V ′| − 3, but G′ cannot be a Laman

graph as G was not Laman-plus-one, and so G′ is not rigid as an uncoloured graph.

Since H ′ = H − e will be a rigid block within G′, G will remain flexible when the edge

e is added back into H ′.

Suppose instead that (G, c) is Laman-plus-one, and contains some D ⊂ E0 such

that |D| ≥ 2|V (D)|−2. If |D| > 2|V (D)|−2, G cannot be Laman-plus-one, so we may

assume that |D| = 2|V (D)| − 2. If this is true, the subset of rows of the rigidity matrix
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R(G, c, p) that correspond to the edges of D will form a submatrix with 2|V (D)| − 2

rows and at most 2|V (D)| non-zero columns. This submatrix will hence have rank at

most 2|V (D)| − 3, and so there will be a row dependence within the submatrix. This

corresponds to a dependence within the subgraph (V (D), D), and hence (G, c) cannot

be isostatic.

We shall use induction on |V | = n to prove that any graph satisfying the third

condition may be constructed as described in the fourth condition.

The smallest Laman-plus-one graphs have |V | = 4 and |E| = 6, which is clearly

equivalent to G being K4. For such graphs to satisfy |D| ≤ 2|V (D)| − 3 for all D ⊆ E0,

we clearly require |E1| ≥ 1, which is equivalent to the condition that (G, c) is K4 with

at least one edge in E1.

Let (G, c) be a Laman-plus-one graph with |V | ≥ 5 and |D| ≤ 2|V (D)| − 3 for all

D ⊆ E0, and recall that the unique circuit within G is denoted by C = (V (C), E(C)).

We note that the average degree in a Laman-plus-one graph is 4 − 4
|V | < 4, so G will

contain vertices of degree 2 or 3.

Suppose first that G contains a vertex of degree 2. This vertex v will lie outside

the circuit of G, as the minimum degree within a circuit is 3. We may view v as the

result of a 0-extension of the appropriate type for the edges adjacent to v, and may

therefore apply the reverse of this move by removing v and its pair of associated edges.

Suppose instead that G contains no vertices of degree 2, and so the minimum degree

is 3. We first show that if G ̸= C, there is a vertex of degree 3 outside the circuit C.

Let V (X) = V \V (C) generate a subgraph outside the circuit C, X = (V (X), E(X)).

Since this is a subgraph of G that does not contain C, we shall have |E(X)| ≤

2|V (X)| − 3. Let F ⊂ E denote the set of edges that run between a vertex in C and a

vertex in X, so E = E(C) ∪ E(X) ∪ F .
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As |E| = 2|V | − 2 = 2|V (C)| + 2|V (X)| − 2, and |E(C)| = 2|V (C)| − 2, we have

that |E(X)| + |F | = 2|V (X)|. Therefore |E(X)| = 2|V (X)| − |F | ≤ 2|V (X)| − 3, and

so |F | ≥ 3. We now consider the total degree of vertices outside C: ∑v∈V (X) deg(v) =

2|E(X)| + |F | = 2
(
2|V (X)| − |F |

)
+ |F | = 4|V (X)| − |F |. If V (X) ̸= ∅, we have

that the average degree of vertices outside C is 1
|V (X)|

∑
v∈V (X) deg(v) = 4 − |F |

|V (X)| < 4.

There are no degree 2 vertices, so there must be degree 3 vertices outside C.

Let v ∈ V (X) be a vertex of degree 3. There may be at most two neighbours of v

in V (C), and |V (C)| ≥ 4, so there exists an edge {x, y} ∈ E(C) which is not adjacent

to a neighbour of v. Removing any edge e ∈ E(C) from G will result in a Laman

graph G− e, in which C − e is a rigid block. We may therefore temporarily remove the

edge e = {x, y} to obtain a Laman graph G− e with a degree 3 vertex v. By standard

rigidity results (see, for example, [Lam70, Theorem 6.4], or [TW85, Proposition 3.3]),

there exists a well-defined 1-reduction at v that results in a smaller Laman graph.

We may remove v and its three adjacent edges {v, u1}, {v, u2}, {v, u3}, and replace

them with a new edge {ui, uj} between some pair of vertices that were neighbours of

v, i, j ∈ {1, 2, 3}. Since C − e is a rigid block, the new edge {ui, uj} will not be added

between two vertices in V (C), and so C − e will remain unchanged by the 1-reduction.

This allows us to replace the temporarily removed edge e = {x, y}, and obtain a smaller

Laman-plus-one graph containing the circuit C. Since |E1(C)| ≥ 1 in G, the reduced

graph will retain at least one edge in E1 within the circuit.

Suppose now that no degree 3 vertices exist outside the circuit C, and hence by the

argument above the Laman-plus-one graph (G, c) is a circuit. We note that all circuits

are at least 2-connected [HOR+03].

If the graph G is a 3-connected circuit, Berg and Jordán [BJ03b] give that the

uncoloured graph G has at least three vertices of degree 3 at which a standard

1-reduction may be applied, and will result in a smaller 3-connected circuit. Let
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e = {x, y} ∈ E1 be a coloured edge in G. Since there are at least three vertices at which

the potential 1-reduction may be applied to obtain a 3-connected circuit G′, there will

be at least one such vertex that is not adjacent to e. We may apply a 1-reduction at

this other vertex. Since e ∈ E1 will not be touched by the reduction, and will remain

within the reduced circuit, we shall retain |E ′
1| ≥ 1.

The final case to consider is when the circuit G is 2-connected. Let a, b ∈ V be a

cut pair, separating G into subgraphs H1 and H2. Berg and Jordán [BJ03b] show that

degG(a), degG(b) ≥ 4, and that H1 and H2 are Laman subgraphs. They also note that

{a, b} /∈ E, and H1 + {a, b}, H2 + {a, b} are circuits.

H2H1

a

b

v

a

b

Figure 7.3 A 2-connected circuit with the cut pair a, b ∈ V identified. This cut pair
splits the circuit into Laman subgraphs H1 and H2, with a vertex v ∈ V (H1) of degree
3 and an edge e ∈ E1 ∩ E(H2).

Without loss of generality, let e ∈ E1 ∩ E(H2), and consider H1. Since H1 is a

Laman graph and the minimum degree of vertices in G is 3, there exists v ∈ V (H1) such

that degG(v) = degH1(v) = 3. Let the neighbours of v be u1, u2, u3. As d(H1, H2) = 0,

all three neighbours of v will be in V (H1), and since H1 is a Laman graph there is a

valid 1-reduction that may be applied at v, resulting in a reduced Laman subgraph.

Let G′ be the graph created by applying this 1-reduction at v, removing v and it’s

three associated edges, and adding the edge {x, y} for some x, y ∈ {u1, u2, u3}. Let H ′
1

denote the Laman subgraph of G′ corresponding to H1 within G.
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G′ is Laman-plus-one, so there exists a unique circuit C ′ within G′. Clearly C ′

cannot be confined to a single side of the cut pair a, b, as the subgraphs on either side

of the cut pair are Laman, so C ′ = J1 ∪ J2 where J1, J2 are the minimal rigid blocks

contained within H ′
1 and H2 respectively with a, b ∈ V (J1) and a, b ∈ V (J2). If H2

contained a strictly smaller subgraph J2 with a, b ∈ V (J2) and |E(J2)| = 2|V (J2)| − 3,

any vertices in V (H2) \ V (J2) would be outside the circuit of G, contradicting the

assumption that G is a 2-connected circuit. Hence H2 is the minimal such subgraph

within H2, and C ′ = J1 ∪H2.

We note that the minimal rigid block contained within H1 that contains both a and

b is H1. If a, b ∈ {u1, u2, u3}, the 1-reduction may be applied at v by adding the new

edge {a, b}, which will clearly be the minimal rigid block within H ′
1 containing both a

and b. In this case, the circuit within the Laman-plus-one graph H ′ is C ′ = H2 + {a, b}.

As there was e ∈ E1 ∩ E(H2), and H2 remains within the reduced circuit C ′ in

either case, we shall obtain |E1(C ′)| ≥ 1 as required.

We finish by proving that any graph constructed as described in the fourth state-

ment will create an isostatic framework (G, c, p) with any regular configuration p ∈ R2n.

It is clear from Theorem 3.1.33 that a coloured copy of K4 with at least one edge

in |E1| will have |E| = 2|V | − 2 and be independent, and hence be isostatic. From

Lemma 5.1.2 and Lemma 5.2.2, it may be seen that by applying coloured 0-extensions

and 1-extensions to a 2-isostatic graph, we will obtain a larger 2-isostatic graph, and

so any graph constructed in this way will be 2-isostatic.

Remark 7.1.4. Theorem 4.1.11 is equivalent to the second statement of Theorem 7.1.2.

We note that other coloured versions of the 1-extension will preserve infinitesimal

rigidity of a framework, provided that at least one coloured edge is preserved within
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the circuit of the graph, however we do not have a geometric proof equivalent to

Lemma 5.2.2 in these cases.

Figure 7.4 illustrates a reduction of a 1-coloured framework in 2 dimensions, as

described in this proof. Vertices of degree 2 are straightforwardly removed, and vertices

of degree 3 are replaced by an edge between the neighbours of the vertex, coloured

appropriately as specified in Remark 7.1.3.

7.2 Two colour classes in 2 dimensions

In this section we shall characterise frameworks in 2 dimensions with two classes

of coordinated bars. Sections 6.1, 6.2 and 7.1 give a characterisation of each type

of coordinated framework simultaneously in terms of graph counts, and inductive

constructions. In this section, we shall rely on the characterisation of generically rigid

coordinated frameworks in terms of redundant rigidity (Theorem 4.1.11) in order to

prove the Laman-style characterisation of rigidity, which we then use to prove our

inductive construction. Some smaller classes of rigid 2-coordinated frameworks may

in fact be characterised without need for the redundant rigidity result, and this is

discussed further towards the end of this section (Remark 7.2.23).

In Section 6.2 we saw that 2-coordinated frameworks in 1 dimension had the

structure of tree-plus-two graphs, while the 1-coordinated frameworks considered in

Section 6.1 had a tree-plus-one structure. It is therefore logical to define the following

class of graphs, an extension to the Laman-plus-one graphs discussed in Section 7.1.

These will be seen to be the structure of isostatic 2-coordinated frameworks in 2

dimensions.

Definition 7.2.1. A graph G is Laman-plus-two if there exist a pair of edges e, f ∈ E

such that G− {e, f} is a Laman graph.
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v1

a The framework (G, c, p).

v1

v2

b The reduced framework (G1, c, p), attained
by removing the vertex v1 of degree 2.

v2

v3

c The reduced framework (G2, c, p), attained
by reducing the vertex v2 of degree 3.

v3

v4

d The reduced framework (G3, c, p), attained
by removing the vertex v3 of degree 2.

v4

e The reduced framework (G4, c, p), attained
by removing the vertex v4 of degree 2. G4 is
a circuit.

v5

f The reduced circuit (G5, c, p), attained by
reducing the vertex v5 of degree 3.

Figure 7.4 An example reduction of a 1-coloured 2-dimensional framework (G, c, p)
to a coloured copy of K4.
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Each of the edges e, f will create a circuit within G, so a Laman-plus-two graph

may be straightforwardly seen to contain at least two circuits. These may be disjoint,

intersect on a single vertex, or intersect on some non-empty collection of edges.

7.2.1 Structural results

We shall begin by characterising some properties of Laman-plus-two graphs. Sec-

tion 7.2.4 includes an inductive construction for Laman-plus-two graphs, using 0-

extensions, 1-extensions and X-replacements (Theorem 7.2.25).

Laman-plus-two graphs have an overall count of |E| = 2|V | − 1, with all subgraphs

having |D| ≤ 2|V (D)| − 1 for D ⊆ E. Any subgraph D ( E(C) for some circuit

C has |D| ≤ 2|V (D)| − 3, while |E(C)| = 2|V (C)| − 2. Connected subgraphs of a

Laman-plus-two graph with |D| = 2|V (D)| − 2 contain all the edges of exactly one

circuit C, since they must contain at least one circuit, and the union of any two circuits

has |D| = 2|V | − 1. Those subgraphs with |D| = 2|V (D)| − 1 have E(C1) ∪E(C2) ⊆ D

for a pair of circuits C1, C2 in G.

Proposition 7.2.2. Let G be a Laman-plus-two graph, with two circuits within G

labelled C1 and C2. Let X be the subgraph induced by V (X) = V \ {V (C1) ∪ V (C2)}.

The following properties hold:

a. If E(C1) ∩ E(C2) ̸= ∅, any other circuit C3 is contained within C1 ∪ C2;

b. A vertex v ∈ V (X) has at most two neighbours within a circuit C;

c. If |V (C1 ∩ C2)| ≥ 2, the subgraph C1 ∩ C2 is a Laman graph.

Proof. a. Let C1 and C2 be two circuits such that |E(C1 ∩C2)| ≥ 1, and let C3 denote

a third circuit within G.

Suppose first that C3 is edge-disjoint with C1. Removing any e ∈ E(C3) and f ∈

E(C1 \C2) will result in a graph G′ = G−{e, f} with |E ′| = 2|V ′|−3, that still contains
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the circuit C2. Removing instead any edge f ∈ E(C1 ∩C2) will leave G− {e, f} with a

subgraph (C1 ∪ C2)′ which has |E
(
(C1 ∪ C2)′

)
| = |E(C1 ∪C2)|−1 = 2|V (C1 ∪C2)|−2,

so no pair of edges e, f can remove all three circuits of the Laman-plus-two graph

G to result in a Laman graph G − {e, f}. Hence the third circuit C3 must intersect

non-trivially with C1. A symmetric argument shows that C3 must intersect non-trivially

with C2.

The union of any pair of circuits that intersect non-trivially will have |E(Ci∪Cj)| =

2|V (Ci ∪ Cj)| − 1. If C3 is not contained within C1 ∪ C2, the subgraph containing all

the vertices of (C1 ∪ C2) ∪ C3 would contain more than 2|V (C1 ∪ C2 ∪ C3)| − 1 edges,

which is impossible within the Laman-plus-two graph G. Hence the union C1 ∪ C2

contains all other circuits within the Laman-plus-two graph G.

b. Let v be a vertex in X of degree δ, with δ1 ≤ δ neighbours within V (C1). The

subgraph B induced by V (C1)∪{v} will have |E(B)| = |E(C1)|+δ1 = 2|V (C1)|−2+δ1.

Since |V (B)| = |V (C1)| + 1, we have |E(B)| = 2|V (B)| + δ1 − 4. Since v ∈ V (X)

lies outside all circuits of G by a., B contains exactly one circuit, C1. Therefore

|E(B)| ≤ 2|V (B)| − 2. This gives δ1 − 4 ≤ −2, and so δ1 ≤ 2 as required.

c. Suppose that |V (C1 ∩ C2)| ≥ 2. The union of the pair of circuits, C1 ∪ C2,

is a subgraph of a Laman-plus-two graph and so |E(C1 ∪ C2)| ≤ 2|V (C1 ∪ C2)| − 1.

Individually, each circuit has |E(Ci)| = 2|V (Ci)| − 2, with |D| ≤ 2|V (D)| − 3 for any

D ( E(Ci). We note that C1 ∩ C2 is a subgraph of both C1 and C2, so we have the

following:

|E(C1 ∪ C2)| = |E(C1)| + |E(C2)| − |E(C1 ∩ C2)|

= 2|V (C1)| − 2 + 2|V (C2)| − 2 − |E(C1 ∩ C2)|

≥ 2|V (C1)| − 2 + 2|V (C2)| − 2 − 2|V (C1 ∩ C2)| + 3

= 2
(
|V (C1)| + |V (C2)| − |V (C1 ∩ C2)|

)
− 2 − 2 + 3
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= 2|V (C1 ∪ C2)| − 1.

Hence |E(C1 ∪ C2)| = 2|V (C1 ∪ C2)| − 1, and |E(C1 ∩ C2)| = 2|V (C1 ∩ C2)| − 3. Any

subgraph of C1 ∩C2 will also be a subgraph of both circuits, and so |D| ≤ 2|V (D)| − 3

for any D ⊂ E(C1 ∩ C2), as required for C1 ∩ C2 to be a Laman graph.

By Proposition 7.2.2a, any subgraph of G with |D| = 2|V (D)| − 1 will contain all

circuits of G.

Proposition 7.2.3. Let G be a Laman-plus-two graph, with two circuits within G

labelled C1 and C2. Let X be the subgraph induced by V (X) = V \ {V (C1) ∪ V (C2)},

and suppose that the minimum degree within V (X) is at least 4. The following

properties hold:

a. The circuits C1 and C2 are disjoint;

b. Either X = {x} for some vertex x ∈ V with deg(x) = 4, or X = H for some

Laman graph H with exactly three edges from each circuit to X;

c. Every vertex in V (X) has degree exactly 4.

Proof. a. Suppose that C1 and C2 are not disjoint, and consider the subgraph induced

by V (C1 ∪C2). Let Fα denote the set of edges that run between vertices in V (C1 \C2)

and vertices in V (C2 \ C1). The subgraph C1 ∪ C2 will therefore satisfy the following:

|E(C1 ∪ C2)| = |E(C1)| + |E(C2)| + |Fα| − |E(C1 ∩ C2)|

= 2|V (C1)| − 2 + 2|V (C2)| − 2 + |Fα| − |E(C1 ∩ C2)|. (7.2)

We suppose first that |V (C1 ∩C2)| ≥ 2, so by Proposition 7.2.2c C1 ∩C2 is a Laman

graph with |E(C1 ∩ C2)| = 2|V (C1 ∩ C2)| − 3. In this case, Equation (7.2) becomes
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the following:

|E(C1 ∪ C2)| = 2
(
|V (C1)| + |V (C2)| − |V (C1 ∩ C2)|

)
− 2 − 2 + 3 + |Fα|

= 2|V (C1 ∪ C2)| − 1 + |Fα|.

Since G is a Laman-plus-two graph, C1 ∪C2 must have |E(C1 ∪C2)| ≤ 2|V (C1 ∪C2)|−1,

so Fα = ∅.

If instead C1 ∩C2 is a single vertex, we have |E(C1 ∩C2)| = 0 = 2|V (C1 ∩C2)| − 2,

and so Equation (7.2) gives

|E(C1 ∪ C2)| = 2
(
|V (C1)| + |V (C2)| − |V (C1 ∩ C2)|

)
− 2 − 2 + 2 + |Fα|

= 2|V (C1 ∪ C2)| − 2 + |Fα|.

We therefore have |Fα| ≤ 1. If |Fα| = 1, we have |E(C1 ∪ C2)| = 2|V (C1 ∪ C2)| − 1 as

above, or we have |E(C1 ∪ C2)| = 2|V (C1 ∪ C2)| − 2 when Fα = ∅.

The Laman-plus-two graph G has an overall constraint that |E| = 2|V | − 1. Let

F denote the edges between vertices in V (C1 ∪ C2) and vertices in V (X), so G has

|E| = |E(C1 ∪ C2)| + |E(X)| + |F |, while recalling that |V | = |V (C1 ∪ C2)| + |V (X)|

by the definition of the subgraph X.

We begin by considering the cases where |E(C1 ∪ C2)| = 2|V (C1 ∪ C2)| − 1. We

note that |E| = |E(C1 ∪C2)| + |E(X)| + |F | = 2|V (C1 ∪C2)| − 1 + |E(X)| + |F |. Since

|E| = 2|V | − 1 = 2|V (C1 ∪ C2)| + 2|V (X)| − 1, we obtain

|E(X)| = 2|V (X)| − |F |. (7.3)

Since X is a subgraph of G that lies outside both circuits, when |V (X)| ≥ 2 we have

|E(X)| = 2|V (X)| − |F | ≤ 2|V (X)| − 3, and so |F | ≥ 3.
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We note that from standard graph theory, the total degree of a graph is at least

the minimum degree multiplied by the number of vertices. The total degree within X

is the following:

∑
v∈V (X)

deg(v) = 2|E(X)| + |F | = 2
(
2|V (X)| − |F |

)
+ |F |

= 4|V (X)| − |F |.

As the minimum degree within X is 4, we have ∑v∈V (X) deg(v) ≥ 4 · |V (X)|, which

leads to a contradiction with |F | ≥ 3.

If instead |V (X)| = 1, |E(X)| = 0 = 2|V (X)| − 2 and so |F | = 2. This gives X as

a single vertex of degree 2, which clearly does not have minimum degree 4.

We now consider the case where |E(C1 ∪ C2)| = 2|V (C1 ∪ C2)| − 2. The following

statement may be derived similarly to Equation (7.3):

|E(X)| = 2|V (X)| + 1 − |F |.

If |V (X)| ≥ 2, we see that |F | ≥ 4, and the total degree within X will be 4|V (X)| +

2 − |F |. When the minimum degree within X is 4, this implies that |F | ≤ 2, and so

we have another contradiction.

As above, if |V (X)| = 1 we obtain that X is a single vertex of degree 3, from the

requirement that 0 = 2|V (X)| + 1 − |F | = 3 − |F |.

Therefore when V (C1 ∩ C2) ̸= ∅, the minimum degree within X must be strictly

less than 4, and when minv∈V (X) deg(v) = 4 we have C1 ∩ C2 = ∅.

b. By (a) the circuits C1 and C2 are disjoint. As before, we denote by F the set of

edges with one end point in X and one end point in C1 ∪ C2, and we use Fα to denote

any edges {u1, u2} with u1 ∈ V (C1), u2 ∈ V (C2).
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Let C denote the subgraph induced by V (C1) ∪ V (C2), so |E(C)| = |E(C1)| +

|E(C2)| + |Fα| = 2|V (C1)| − 2 + 2|V (C2)| − 2 + |Fα| = 2|V (C)| + |Fα| − 4. We therefore

have |Fα| ≤ 3, since |E(C)| ≤ 2|V (C)| − 1.

The overall constraint that |E| = 2|V | − 1 may be broken down into |E| =

|E(C)| + |E(X)| + |F | and |V | = |V (C)| + |V (X)| to give the following:

|E(X)| + |F | = |E| − |E(C)|

=
(
2|V (C)| + 2|V (X)| − 1

)
−
(
2|V (C)| + |Fα| − 4

)
= 2|V (X)| + 3 − |Fα|. (7.4)

Suppose first that |V (X)| ≥ 2. Since X is a subgraph of a Laman-plus-two graph that

lies outside both circuits, |E(X)| ≤ 2|V (X)|−3, and so |E(X)|+|F | ≤ 2|V (X)|−3+|F |.

This gives that 3 − |Fα| ≤ |F | − 3, and hence |F | ≥ 6 − |Fα|.

We now consider the average degree within X:

1
|V (X)|

∑
v∈V (X)

degG(v) = 2|E(X)| + |F |
|V (X)|

= 4|V (X)| + 6 − 2|Fα| − 2|F | + |F |
|V (X)|

= 4|V (X)| + 6 − |F | − 2|Fα|
|V (X)|

= 4 + 6 − |F | − 2|Fα|
|V (X)| .

As the minimum degree within X is 4, the average degree must be at least 4, so

we require that 6 − |F | − 2|Fα| ≥ 0. This implies that |F | ≤ 6 − 2|Fα|, therefore

6 − |Fα| ≤ |F | ≤ 6 − 2|Fα| and |Fα| ≤ 0. When |V (X)| ≥ 2 and the minimum degree

within X is 4, there can be no edges running directly between the two circuits, and

|F | = 6. This gives an overall constraint that |E(X)| = 2|V (X)| + 3 − |Fα| − |F | =

2|V (X)| + 3 − 0 − 6, and so |E(X)| = 2|V (X)| − 3. Since any subgraph of X is a
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subgraph of a Laman-plus-two graph that does not contain any circuits, any such

subgraph (V (D), D) will satisfy |D| ≤ 2|V (D)| − 3, and so X is a Laman subgraph of

G.

Let F be partitioned into F1 and F2, where Fi =
{
{u,w} ∈ E : u ∈ V (Ci), w ∈

V (X)
}
. As |F | = 6, we have |F1| + |F2| = 6. Without loss of generality, consider

the subgraph A1 induced by V (C1) ∪ V (X). |E(A1)| = |E(C1)| + |E(X)| + |F1| =

2|V (C1)| − 2 + 2|V (X)| − 3 + |F1| = 2|V (A1)| + |F1| − 5. Since A1 contains exactly

one circuit of the Laman-plus-two graph G, |E(A1)| = 2|V (A1)| − 2, and hence

|F1| = 3 = |F2|.

Suppose instead |V (X)| = 1. Then |E(X)| = 0 = 2|V (X)| − 2, and so by

Equation (7.4) 2|V (X)|−2+ |F | = 2|V (X)|+3−|Fα|. This implies that |F |+ |Fα| = 5.

Since by (a), a vertex in V (X) can have at most two neighbours within each circuit,

when the minimum degree within X is 4 and |V (X)| = 1, we have a single vertex of

degree 4 and |Fα| = 1.

c. By (a) the circuits C1 and C2 are disjoint, and by (b) the subgraph X outside

both circuits is either a single vertex, or a Laman graph with exactly three edges

between vertices in V (X) and vertices in V (Ci) for each circuit Ci.

Suppose first that X = {x} for some single vertex x ∈ V . As the minimum degree

in X is 4, we have degG(x) = 4 and so trivially every vertex in X has degree 4.

Suppose instead that X is some Laman graph H, and let |F | denote the number of

edges from vertices in V (C1 ∪C2) to vertices in V (X). The average degree within X is

1
|V (X)|

∑
v∈V (X)

degG(v) = 2|E(X)| + |F |
|V (X)| = 2(2|V (X)| − 3) + 6

|V (X)|

= 4|V (X)| − 6 + 6
|V (X)| = 4.



7.2 Two colour classes in 2 dimensions 138

Since the average degree is exactly 4, and the minimum degree within V (X) is 4, every

vertex in V (X) has degree 4.

These properties will be useful for characterising the 2-edge coloured isostatic

graphs in 2 dimensions, and for the general characterisation of Laman-plus-two graphs

given in Section 7.2.4 (Theorem 7.2.25).

7.2.2 Laman-type result

We shall now use the result from Chapter 4 to give a characterisation of 2-edge-coloured

graphs that give isostatic 2-dimensional frameworks when combined with a regular

configuration.

Theorem 7.2.4. Let (G, c, p) be a 2-coloured framework with a regular configuration

p ∈ R2n. Then (G, c, p) is an isostatic framework if and only if the graph G is a

Laman-plus-two graph, the 2-edge-coloured graph (G, c) has at least one edge from

each of E1 and E2 within a circuit, and the following counts are satisfied:

|D| ≤ 2|V (D)| − 3 ∀D ⊆ E0, (7.5)

|D| ≤ 2|V (D)| − 2 ∀D ⊆ E0 ∪ E1, D ⊆ E0 ∪ E2. (7.6)

Proof. By Theorem 4.1.11, the 2-coloured graph (G, c) is generically rigid if and only

if the graph G is generically rigid, and (G, c) contains a 2-redundant rainbow pair of

edges e1 ∈ E1, e2 ∈ E2. This is equivalent to G \ {e1, e2} containing a spanning Laman

subgraph. In order for (G, c) to be isostatic, G \ {e1, e2} must be precisely a Laman

graph, where replacing each of the edges from the rainbow pair e1, e2 creates a circuit

within (G, c).
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If (G, c) does not satisfy Equation (7.5), for all regular configurations p ∈ R2n the

submatrix of the coordinated rigidity matrix R(G, c, p) corresponding to the uncoloured

subgraph will contain a dependence by Laman’s Theorem [Lam70] (Theorem 2.8.8).

Similarly if (G, c) does not satisfy Equation (7.6), Theorem 7.1.2 implies that the

submatrix of R(G, c, p) corresponding to this 1-chromatic subgraph will contain a

dependence for all regular configurations p.

Suppose now that (G, c) satisfies the conditions stated. We shall show that there

is a 2-redundant rainbow pair {e, f} ⊂ E, and so the sufficiency of these conditions

will follow from Theorem 4.1.11.

As noted previously, the Laman-plus-two graph G will contain at least two circuits,

so we shall label two of the circuits C1 and C2.

Suppose first that C1 and C2 are edge-disjoint, and so these are the only two circuits

within G. There is at least one edge of each colour within a circuit, and each circuit

contains at least one coloured edge. We may therefore choose a coloured edge from

each circuit, one from each colour class, to create the desired rainbow pair of edges.

Suppose next that C1 ∩ C2 contains at least one edge. If one circuit contains only

edges from one colour class, say E(C1) ⊆ E0 ∪ E1, then C2 \ C1 contains at least one

edge from E2, since there is at least one edge from E2 within a circuit of (G, c), and

all circuits of (G, c) are contained within C1 ∪ C2 (Proposition 7.2.2a).

Suppose finally that both circuits C1 and C2 contain edges from both colour classes,

and let e1 ∈ E1 ∩E(C1). If e1 ∈ E(C1 \C2), there is an edge e2 ∈ E2 ∩E(C2), and hence

e1, e2 is the rainbow 2-redundant pair of edges required. If instead e1 ∈ E(C1 ∩C2)∩E1,

by the circuit elimination axiom there is a circuit C3 with E(C3) ⊆ E(C1 ∪ C2) \ {e1}.

If C3 contains edges from only one colour class, we may apply the argument above.
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If instead C3 contains edges from both colour classes, we may choose an edge f2 ∈

E2 ∩ E(C3) to form a rainbow pair e1, f2, that is clearly 2-redundant.

Corollary 7.2.5. Let (G, c, p) be a 2-coordinated isostatic framework, with a regular

configuration p ∈ R2n. Then the 2-coloured Laman-plus-two graph (G, c) contains at

most one circuit within each of E0 ∪ E1 and E0 ∪ E2.

Proof. Since (G, c, p) is a 2-coordinated isostatic framework in 2 dimensions, by Theo-

rem 7.2.4, the 2-coloured graph (G, c) is Laman-plus-two, with at least one edge from

each colour class within a circuit, and Equations (7.5) and (7.6) are satisfied.

If (G, c) contains exactly two edge-disjoint circuits C1 and C2, it is clear from the

condition that each colour class has at least one edge within a circuit that E(C1 ∪C2) ̸⊆

E0 ∪ E1 and E(C1 ∪ C2) ̸⊆ E0 ∪ E2.

Suppose instead that E(C1) ∩ E(C2) ̸= ∅, and so by Proposition 7.2.2a, all circuits

of the Laman-plus-two graph (G, c) are contained within C1 ∪ C2, and C1 ∩ C2 is a

Laman graph. If E(C1) ⊆ E0 ∪ E1 and E(C2) ⊆ E0 ∪ E1, the subgraph C1 ∪ C2 has

|E(C1 ∪ C2)| = |E(C1)| + |E(C2)| − |E(C1 ∩ C2)|

= 2|V (C1)| − 2 + 2|V (C2) − 2 − 2|V (C1 ∩ C2) + 3

= 2|V (C1 ∪ C2)| − 1.

Since E(C1 ∪ C2) ⊆ E0 ∪ E1, this contradicts Equation 7.6. A symmetric argument

applies for E(C1), E(C2) ⊆ E0 ∪ E2.

Figure 7.5 shows two different generically flexible 2-coloured Laman-plus-two graphs.

7.2.3 Henneberg type result

In Section 7.1, we were able to characterise 1-coordinated frameworks in 2 dimensions

simultaneously by coloured sparsity conditions, and with an inductive construction.
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a

b c

Figure 7.5 Two examples of generically flexible 2-coloured Laman-plus-two graphs.
The graph in Figure 7.5(a) contains two disjoint circuits, and each circuit contains one
edge from E1, however all edges in E2 are bridges. Since no 2-redundant rainbow pair
can exist, generic flexibility of the graph follows from Theorem 4.1.11.
The graph in Figure 7.5(b) contains multiple intersecting circuits. Removing any
coloured edge results in a Laman-plus-one graph with a circuit made only of uncoloured
edges, contradicting Equation 7.5. Figure 7.5(c) shows a congruent configuration of the
same graph, which may clearly be obtained from Figure 7.5(b) through a continuous
2-coordinated flex.
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For frameworks with two coordination classes, we rely on our characterisation in

terms of redundant rigidity (Theorem 4.1.11 and Theorem 7.2.4) in order to give a

combinatorial proof of an inductive construction. In the case where the circuits of our

2-edge-coloured graph (G, c) remain disjoint throughout the construction, we are not

reliant on Theorem 4.1.11, as discussed in Remark 7.2.23.

To develop a Henneberg-style construction of 2-dimensional generically isostatic

graphs with two coordination classes, in the style of the construction for 1-coordinated

frameworks in 2 dimensions given in Section 7.1, we begin by defining a class of

base graphs. Let B be the set of base graphs (B, c), where the graph B is one of

the smallest Laman-plus-two graphs, for which the minimal two circuits are copies

of K4. These graphs are illustrated and labelled in Figure 7.6, and we require B ∈{
B5, B6, B7, B8,1, B8,2, B8,3

}
for (B, c) ∈ B. We also require that the colouring c of B

has at least one edge of each colour within a circuit, and at least one coloured edge

within each circuit.

Lemma 7.2.6. Any base graph (B, c) ∈ B is isostatic.

Proof. Every graph B ∈
{
B5, B6, B7, B8,1, B8,2, B8,3

}
contains exactly two copies of

K4, along with other circuits in the case of B5 and B6. Removing one edge from each

copy of K4 will destroy any subgraphs with |D| > 2|V (D)| − 3, as all circuits are

contained within the union of any pair of circuits by Proposition 7.2.2a. Thus B is a

Laman-plus-two graph.

For (B, c) ∈ B to be a base graph, we require that every circuit contains at least one

coloured edge, and so any uncoloured subgraph D ⊆ E0 must have |D| ≤ 2|V (D)| − 3.

Any subgraph with |D| = 2|V (D)| − 1 will contain at least two circuits, and so by

Proposition 7.2.2a will contain all circuits. As we require that the colouring c of a base

graph has at least one edge from each of E1 and E2 within a circuit, any subgraph

with |D| = 2|V (D)| − 1 will contain edges from both E1 and E2. Any subgraph
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a Base graph on 5 vertices, B5. b Base graph on 6 vertices, B6.

c Base graph on 7 vertices, B7. d A base graph on 8 vertices, B8,1.

e A base graph on 8 vertices, B8,2. f A base graph on 8 vertices, B8,3.

Figure 7.6 The graphs for B.
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containing only one colour of edges, so D ⊆ E0 ∪ E1 or D ⊆ E0 ∪ E2, will therefore

have |D| ≤ 2|V (D)| − 2.

Hence (B, c) ∈ B satisfies the conditions of Theorem 7.2.4, and so is isostatic.

Remark 7.2.7. An alternative proof for Lemma 7.2.6 exists by applying checking the

rank of the rigidity matrix R(B, c, p) for any regular p ∈ R2n to verify that the base

graph is infinitesimally rigid by Theorem 3.1.22, and applying Theorem 3.1.33. This

avoids the need to rely on Theorem 7.2.4.

Geometric moves

As with the 1-coordinated frameworks discussed in Section 7.1, we shall require the

coloured 0-extensions and 1-extensions described in Chapter 5. A 0-extension is applied

by creating a new vertex x of degree 2, where the new edges {x, v1}, {x, v2}, for

some distinct v1, v2 ∈ V , may be uncoloured or coloured in any combination. This

is illustrated in Figure 7.7, where the dashed lines indicate that edges may be either

uncoloured, or coloured with any colour. Any such 0-extension will preserve generic

rigidity by Lemma 5.1.2.

Figure 7.7 The 2-coloured 0-extensions.

A 1-extension is applied to the coloured graph (G, c) by removing an edge {v1, v2},

and replacing this edge with a new vertex of degree 3, with edges {x, v1}, {x, v2}, {x, v3}

for some vertex v3 distinct from both v1 and v2. If the edge {v1, v2} is uncoloured, the

new edges are added to E0. If instead the removed edge was coloured, at least one of

the edges {x, v1} and {x, v2} must be given the same colour as {v1, v2}, though the
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other two edges may be coloured in any way. A selection of these coloured 1-extensions

are shown in Figure 7.8. Figure 7.9 illustrates that 1-extensions applied to edges of

different colours, may result in vertices of degree 3 that are adjacent to the same

number of edges of each colour.

Remark 7.2.8. We note that the proof of Lemma 5.2.2 permits the replacement of

an uncoloured edge, {v1, v2} ∈ E0, with a vertex x of degree 3 with the requirement

that only {x, v1} and {x, v2} are added to E0, while the third edge may be coloured

arbitrarily. To simplify the proof, in this case we require that all three edges be added

to E0.

We note that by Lemma 5.2.2, these 2-coloured 1-extensions will preserve generic

rigidity.

a The standard, uncoloured 1-extension.

b A 1-extension on one colour of edge.

c A 1-extension on the other colour of edge.

Figure 7.8 The 2-coloured 1-extensions.
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Figure 7.9 A degree 3 vertex adjacent to edges of both colours could be the result of
either type of 1-extension.

The geometric proof of Lemma 5.2.2 requires that when applying a coloured 1-

extension to an edge {v1, v2} ∈ E1, at least one of the new edges {x, v1} and {x, v2}

must be added to E ′
1. We wish to generalise the 1-extension move to allow an edge

{v1, v2} ∈ E1 within a circuit of (G, c) to be replaced by a new vertex x of degree 3,

with {x, v1}, {x, v2} ∈ E ′
0 ∪ E ′

2, in situations where there will still be an edge from

E ′
1 within the corresponding circuit of (G′, c′). This shall be called the “chosen 1-

extension”, defined formally in Definition 7.2.11. In order to prove that this move

preserves infinitesimal rigidity, we rely on Theorem 4.1.11.

Figure 7.10 shows an example of a graph that requires the reverse of such a move.

There are exactly two vertices of degree 3, labelled u and v. The vertex u lies within a

copy of K4, and so no 1-reduction may be applied at u, while applying the reverse of a

coloured 1-extension at v would result in an uncoloured copy of K4 on the left-hand

side. To preserve the counts of Theorem 7.2.4, and hence obtain a smaller isostatic

graph, we require a 1-reduction at v that allows us to place an edge of colour 1 within

the new copy of K4.

We begin by defining notation in Remarks 7.2.9 and 7.2.10, before formally defining

the “chosen 1-extension” in Definition 7.2.11.
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u

v

Figure 7.10 A graph that requires the reverse of a “chosen 1-extension”.

Remark 7.2.9. By relabelling the circuits, we may assume without loss of generality

that the “chosen 1-extension” is applied to an edge f ∈ E(C1). If C1 contains edges

from both colour classes, we may relabel the colour classes as necessary to assume that

E2 ∩ E(C2) ̸= ∅, and if C1 contains edges from only one colour class, we may assume

without loss of generality that this colour class is E1. We may therefore assume that

f ∈ E1 ∩ E(C1), and so we require that E ′
1 ∩ E(C ′

1) ̸= ∅ after applying the “chosen

1-extension”.

Remark 7.2.10. The extended graph (G′, c′) may contain more than two circuits.

When applying a “chosen 1-extension” to an edge f = {v1, v2} ∈ E1 ∩ E(C1), we

create a vertex x and three edges {x, v1}, {x, v2}, {x, v3} for some v3 ∈ V \ {v1, v2}.

We shall show that there exists a circuit C ′
1 of (G′, c′) such that V (C ′

1) ⊇ V (C1) ∪ {x}

and E(C ′
1) ⊇ E(C1) \ {f} ∪

{
{x, v1}, {x, v2}, {x, v3}

}
. Since the vertices v1 and v2 are

within the circuit C1 of (G, c), the graph G \ {f} contains a Laman subgraph with

vertex set V (C1). If v3 ∈ V (C1), then V (C1) ∪ {x} is the vertex set of a circuit within
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G′, and this circuit is denoted C ′
1. If instead v3 /∈ V (C1), V (C1) ∪ {x} is the vertex set

of a Laman subgraph of G′, with the structure of a 0-extension applied to the Laman

subgraph C1 \ {f}. Adding the third edge {x, v3} creates a circuit C ′ within G′, with

v1, v2, v3, x ∈ V (C ′). This circuit will consist of x, the three additional edges, and a

minimal Laman subgraph of G that contains v1, v2, v3. Since C1 is a circuit, C1 \ {f}

is the minimal Laman subgraph of G \ {f} containing v1 and v2, and any non-empty

subgraph of a Laman subgraph is a Laman subgraph, C1 \ {f} will be contained within

the circuit C ′. Hence C ′
1 is of the desired form.

When f ∈ E(C1 \ C2), the circuit C2 will remain unchanged, and we shall label

this circuit with C ′
2.

If instead f ∈ E(C1 ∩ C2), we shall confirm that every vertex of G′ remains in a

circuit. We note first that V (C1) ∪ {x} ⊆ V (C ′
1), and hence these vertices all lie in at

least one circuit of G′. It remains to consider the vertices V (C2 \ C1).

Suppose that there is some vertex u ∈ V (C2 \ C1) that does not lie in any circuit

of G′. We note that since u lies outside the intersection C1 ∩ C2 within the graph

G, u is unchanged by the application of the structure of a 1-extension on the edge

f ∈ E(C1 ∩C2). Since u lies outside all circuits of G′, the graph G′ \ {u} must contain

at least two circuits, however deg(u) ≥ 3 since u ∈ V (C2). We note that G′ \ {u} has

|E(G′ \ {u})| = |E ′| − deg(u) = |E| − 1 + 3 − deg(u) = 2|V | − 1 − 1 + 3 − deg(u) =

2|V ′ \ {u}| + 1 − deg(u) ≤ 2|V ′ \ {u}| − 2. It is clearly impossible for such a graph to

contain more than one circuit, therefore every vertex in V (C2 \ C1), and hence every

vertex in G′, lies in at least one circuit.

We may label by C ′
2 a circuit within G′ that contains the unchanged Laman

subgraph C2 \ C1. C ′
1 and C ′

2 are not necessarily the minimal pair of circuits within

(G′, c′), as illustrated in Example 7.2.14 (Figure 7.13), however by Proposition 7.2.2a,

any other circuit within (G′, c′) is contained within the union C ′
1 ∪ C ′

2.
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We formally define the “chosen 1-extension” as follows, for an edge f ∈ E1. An

analogous move may be defined for an edge f ′ ∈ E2.

Definition 7.2.11. Let (G, c) be a 2-edge-coloured Laman-plus-two graph, containing

at least two circuits C1 and C2. By relabelling the circuits and colours if necessary,

there exists an edge f ∈ E1 ∩ E(C1) where |E1| ≥ 2. We apply a “chosen 1-extension”

to (G, c) on the edge f = {v1, v2} by creating a new vertex x, and extending G

into G′, where V ′ = V ∪ {x} and E ′ = E \
{
{v1, v2}

}
∪
{
{x, v1}, {x, v2}, {x, v3}

}
for

some distinct vertex v3 ∈ V \ {v1, v2}. We define a k-colouring c′ for the extended

G′ where c′(e) := c(e) for all edges e ∈ E ∩ E ′, c′({x, v1}), c′({x, v2}) ̸= 1, and

c′({x, v3}) ∈ {0, 1, . . . , k} may be chosen.

We require that every vertex of G′ be within at least one circuit, and require that

the coloured graph (G′, c′) has E ′
1 ∩ E(C ′

1) ̸= ∅.

Remark 7.2.12. A “chosen 1-extension” is applied to an edge f ∈ E1 ∩ E(C1),

and from Remark 7.2.9, the original graph (G, c) has E2 ∩ E(C2) ̸= ∅. Since C ′
2 is

defined to have E(C ′
2) ⊃ E(C2) \ {f} (Remark 7.2.10), the extended graph (G′, c′) has

E ′
2 ∩ E(C ′

2) ̸= ∅.

Remark 7.2.13. Since v1, v2 ∈ V (C1), we shall have x, v1, v2, v3 ∈ V (C ′
1), and so the

three edges {x, v1}, {x, v2}, {x, v3} will be contained within E(C ′
1) in the extended graph

G′. For this to be a valid “chosen 1-extension”, we require only that E1 ∩ E(C ′
1) ̸= ∅,

so if there is already another edge in E1 ∩ E(C1), we may choose for all three edges

adjacent to x to be added to either E0 or E2. We may also choose c′({x, v3}) = 1,

and hence guarantee that there will be at least one edge from E1 within the extended

circuit C ′
1.

The following example illustrates how the circuits of the extended graph may be

much larger than those within the original graph. This depends on how many circuits
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Figure 7.11 An example of a “chosen 1-extension”.

the edge that is extended lies within, and how any vertices outside the circuits of the

original graph are connected to the circuits.

Example 7.2.14. Let (G, c) be a coloured copy of the graph B6, with a 0-extension

applied to create an additional vertex v ∈ V (X). The minimal circuits of (G, c) are the

two copies of K4, of which the left-hand copy will be considered C1 and the right-hand

copy will be C2. We apply a “chosen 1-extension” to the edge e1 ∈ E1 ∩ E(C1) by

creating a new vertex x, and requiring that there be at least one edge from E ′
1 within

the circuit C ′
1 of the extended graph G′. We ensure this by defining c′({x, v}) = 1,

though the edge e2 ∈ E1 ∩ E(C1) ∩ E(C2) would satisfy this condition. Figure 7.12

shows the graph (G, c) and the extended graph (G′, c′), together with the circuits C ′
1

and C ′
2 of (G′, c′).

As e1 ∈ E(C1) \ E(C2), the circuit C2 remains unchanged in the extended graph

(G′, c′). We may instead apply the “chosen 1-extension” to the edge e2 ∈ E1 ∩E(C1) ∩

E(C2), to create an extended graph (G′′, c′′). This is illustrated in Figure 7.13. The

circuits C ′′
1 and C ′′

2 , with V (Ci) ⊂ V (C ′′
i ), are illustrated, along with the minimal

circuit within (G′′, c′′), C ′′
3 .

Lemma 7.2.15. The 2-coloured graph (G′, c′), obtained by applying a “chosen 1-

extension” to an isostatic 2-coloured graph (G, c), will be an isostatic 2-coloured

graph.

Proof. Let (G, c) be an isostatic 2-coloured graph, so by Theorem 4.1.11 (G, c) is a

Laman-plus-two graph with a 2-redundant rainbow pair of edges. As discussed in
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v

e1

e2

a The graph (G, c).
vx

b The extended graph (G′, c′).

c The circuit C ′
1. d The circuit C ′

2 = C2.

Figure 7.12 Example 7.2.14: the graph (G, c), and the graph (G′, c′) obtained by
applying a “chosen 1-extension” on e1 ∈ E(C1), along with two circuits of (G′, c′).

vx

a The extended graph (G′′, c′′). b The circuit C ′′
1 .

c The circuit C ′′
2 . d The circuit C ′′

3 .

Figure 7.13 Example 7.2.14: the extended graph (G′′, c′′) obtained by applying a
“chosen 1-extension” to e2 ∈ E(C1) ∩ E(C2), along with three circuits within (G′′, c′′).
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Remark 7.2.9, we may suppose that one such 2-redundant rainbow pair is e1, e2 with

e1 ∈ E1 ∩ E(C1) and e2 ∈ E2 ∩ E(C2).

Suppose first that (G′, c′) is obtained by applying a “chosen 1-extension” to an

edge f = {v1, v2} ∈ E1 ∩ E(C1 ∩ C2). The circuits C ′
1 and C ′

2 both contain x and

the three new edges {x, v1}, {x, v2}, {x, v3} created by the “chosen 1-extension” (see

Remark 7.2.10), and hence x, v1, v2, v3 ∈ V (C ′
1 ∩ C ′

2). By definition, E ′
1 ∩ E(C ′

1) ̸= ∅,

and since E2 ∩ E(C2) ̸= ∅ and E(C ′
2) ⊇ E(C2) \ {f} ∪

{
{x, v1}, {x, v2}, {x, v3}

}
there

is at least one edge in E ′
2 ∩ E(C ′

2).

Suppose that no rainbow pair of edges in (G′, c′) is 2-redundant, and let e′
1 ∈

E ′
1 ∩E(C ′

1), e′
2 ∈ E2 ∩E(C ′

2) be one such rainbow pair. Since e′
1, e

′
2 is not 2-redundant,

there is a circuit C ′
3 within (G′, c′) that does not contain either e′

1 or e′
2. There is at

least one coloured edge within C ′
3, say f ′

1 ∈ E ′
1 ∩ E(C ′

3), which forms another rainbow

pair f ′
1, e

′
2. By assumption there is a circuit C ′

4 that does not contain either f ′
1 ∈ E ′

1

and e′
2 ∈ E ′

2. However this implies that e′
2 /∈ E(C ′

3 ∪ C ′
4), and hence the circuit C ′

2 is

not contained within C ′
3 ∪ C ′

4. This contradicts Proposition 7.2.2a, since every circuit

is contained within the union of any other pair of circuits, and hence (G′, c′) contains

a 2-redundant rainbow pair of edges.

Suppose instead that (G′, c′) is obtained by applying a “chosen 1-extension” to

an edge f ∈ E1 ∩ E(C1 \ C2). The circuit C2 remains unchanged in (G′, c′), and is

labelled by C ′
2, while C ′

1 is the circuit of (G′, c′) such that V (C ′
1) ⊇ V (C1) ∪ {x} and

E(C ′
1) ⊇ E(C1)\{f}∪

{
{x, v1}, {x, v2}, {x, v3}

}
. By definition, the circuit C ′

1 contains

at least one edge in E ′
1, and there is at least one edge in E ′

2 ∩ E(C ′
2) since C ′

2 = C2.

By a similar argument to that given above, the extended graph (G′, c′) contains a

2-redundant rainbow pair of edges e′
1 ∈ E ′

1, e′
2 ∈ E ′

2.

Since e′
1, e

′
2 is a 2-redundant pair within (G′, c′), the graph G′ \ {e′

1, e
′
2} contains

no circuits, and hence |D| ≤ 2|V (D)| − 3 for all subgraphs (V (D), D) of G′ \ {e′
1, e

′
2}.
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Since |E ′| − 2 = 2|V ′| − 3, G′ \ {e′
1, e

′
2} is a Laman graph, and hence (G′, c′) is a

Laman-plus-two graph containing a 2-redundant rainbow pair. Therefore the extended

graph (G′, c′) is isostatic by Theorem 4.1.11.

C1 C2

e1

e2

a Case A: both outside the
intersection of C1 and C2.

C1 C2

e1

e2

b Case B: one outside the
intersection of the circuits
and one within C1 ∩ C2.

C1 C2

e1

e2

c Case C: both within the
intersection of C1 and C2.

Figure 7.14 Possible placements for a 2-redundant rainbow pair in two intersecting
circuits.

Remark 7.2.16. We note that the “chosen 1-extension” could be defined more gen-

erally for any edge such that the extended graph retains a 2-redundant rainbow pair

of edges, however we only require the move to be applied to an edge within a circuit.

(See Remark 7.2.24.)

Along with these types of 0-extension and 1-extension, we shall also require a move

to replace two edges with a vertex of degree 4. This style of move may be referred to

as a 2-extension (Definition 2.8.12), though we shall use the more intuitive name of

X-replacement in the style of Tay and Whiteley [TW85], to make clear that the four

end vertices of the pair of edges are distinct.

Definition 7.2.17. Let (G, c) be an isostatic 2-coloured graph, which contains two

disjoint circuits C1 and C2. A coloured X-replacement is applied on a pair of edges

{v1, v2}, {v3, v4} ∈ E \
{
E(C1) ∪ E(C2)

}
with distinct vertices v1, v2, v3, v4. The edges

may be either uncoloured or coloured with either colour. The pair of edges is removed

and replaced by a new vertex x of degree 4, with new edges {x, v1}, {x, v2}, {x, v3}, {x, v4}.

Each new edge may be either uncoloured, or coloured arbitrarily.
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v

Figure 7.15 Applying the reverse to a “chosen 1-extension” to the graph in Figure 7.10
at v results in a smaller isostatic graph. Figure 7.10 may similarly be viewed as the
result of a “chosen 1-extension” applied to this graph on the coloured edge within the
left-hand circuit.

C1 C2

v1

v2

v3

v4
G

C1 C2

v1

v2

v3

v4

x

G′

a An X-replacement applied to a pair of edges that run between the circuits of (G, c).

C1 C2

v1

v2

v3

v4
G

C1 C2

v1

v2

v3

v4

x

G′

b An X-replacement applied to a pair of edges {v1, v2}, {v3, v4} with all four vertices outside
the circuits of (G, c).

Figure 7.16 Two potential types of X-replacement.
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As we apply this move only to (G, c) where the circuits are disjoint, and only to edges

that lie outside both circuits, the colours of the edges involved in the X-replacement

may be considered as arbitrary due to the following result.

Lemma 7.2.18. Let (G, c) be a 2-edge-coloured graph, and let (G, c′) be another

colouring of the same graph, such that the colourings c and c′ differ only on a single

edge outside the circuits of G. For any regular p ∈ R2d, (G, c, p) is infinitesmally rigid

if and only if (G, c′, p) is infinitesimally rigid.

Proof. Let e1 ∈ E \
{
E(C1) ∪ E(C2)

}
and suppose that the colourings c and c′ differ

only on e1, so c′(e1) ̸= c(e1), and c′(e) = c(e) for all e ∈ E \ {e1}.

Suppose that (G, c, p) is infinitesimally rigid and (G, c′, p) is infinitesimally flex-

ible. We therefore have a non-zero equilibrium stress ωωω of R(G, c′, p) such that

ωωω⊤R(G, c′, p) = 0 and ωωω⊤R(G, c, p) ̸= 0. Since the only difference between R(G, c, p)

and R(G, c′, p) is on the row corresponding to e1, ωe1 ̸= 0.

By Lemma 4.1.3, any equilibrium stress ρρρ of the standard rigidity matrix R(G, p)

is zero on all bridges of G. Since ωωω is an equilibrium stress of R(G, c, p), ωωω is also an

equilibrium stress of the standard rigidity matrix R(G, p), and hence ωe1 = 0 since

e1 lies outside the circuits of (G, c). Hence (G, c′, p) has no equilibrium stress with

ωe1 ̸= 0, and so (G, c′, p) is also infinitesimally rigid.

A symmetrical argument applies in the converse direction, and so the infinitesimal

rigidity of (G, c, p) and (G, c′, p) is equivalent.

Lemma 7.2.19. Applying a coloured X-replacement on edges outside the circuits of

an isostatic 2-coloured graph (G, c) will result in an isostatic 2-coloured graph (G′, c′).

Proof. Let (G, c) be a 2-coloured graph that is generically isostatic in 2 dimensions,

so (G, c) satisfies the conditions of Theorem 7.2.4. Since (G, c) is an appropriately

coloured Laman-plus-two graph, we may remove a 2-redundant pair of edges e1, e2
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from the circuits of G to create an uncoloured Laman graph G∗ = G \ {e1, e2}. By

Theorem 2.8.8, G∗ will be generically isostatic in 2 dimensions as an uncoloured graph,

containing rigid blocks C∗
1 and C∗

2 that correspond to the circuits C1 and C2 within

the Laman-plus-two graph G.

Lemma 2.8.13 states that applying a standard X-replacement to an isostatic

uncoloured graph H will result in a larger isostatic uncoloured graph H ′. Let

{v1, v2}, {v3, v4} be a pair of edges in G∗ that lie outside the rigid blocks C∗
1 and C∗

2 , and

so also lie outside the circuits C1 and C2 within G, with distinct vertices v1, v2, v3, v4.

We may apply a standard X-replacement to create a larger graph G∗′, where V (G∗′) =

V (G)∪{x} and E(G∗′) = E(G∗)\
{
{v1, v2}, {v3, v4}

}
∪
{
{x, v1}, {x, v2}, {x, v3}, {x, v4}

}
.

By Lemma 2.8.13 G∗′ will also be generically isostatic, and will be a larger Laman

graph.

As the rigid blocks C∗
1 and C∗

2 are unchanged by the X-replacement, we may replace

the edges e1, e2 to create a larger G′ containing unchanged circuits C1 and C2, where

V (G′) = V (G)∪{x} and E(G′)\
{
{v1, v2}, {v3, v4}

}
∪
{
{x, v1}, {x, v2}, {x, v3}, {x, v4}

}
.

As G∗′ is a Laman graph, G′ is clearly a Laman-plus-two graph.

Since the edges {v1, v2}, {v3, v4} are outside the circuits of G, there can be at

most two vertices out of v1, v2, v3, v4 within each circuit. The new vertex x will

therefore be outside the circuits of the extended graph G′, and so the new edges

{x, v1}, {x, v2}, {x, v3}, {x, v4} will be outside the circuits of the Laman-plus-two graph

G′. We wish to define a colouring c′ of G′, and by Lemma 7.2.18 we may define

c′ ({x, vi}) arbitrarily for i = 1, 2, 3, 4.

We may extend this to define a colouring c′ for the graph G′ with c′(e) = c(e)

for all edges e ∈ E(G) ∩ E(G′). This gives a 2-coloured graph (G′, c′) with coloured

circuits (C ′
1, c

′) = (C1, c) and (C ′
2, c

′) = (C2, c). As (G, c) satisfied the conditions of
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Theorem 7.2.4 to be generically isostatic, the extended graph (G′, c′) will also satisfy

the same conditions, and hence be generically isostatic in 2 dimensions.

Henneberg-type construction

We may now give a construction for all generically isostatic 2-coordinated graphs in 2

dimensions.

Theorem 7.2.20. A 2-coloured graph (G, c) is a generically isostatic graph if and

only if it may be constructed from a 2-coloured base graph (B, c) ∈ B (as illustrated

in Figure 7.6) by a sequence of coloured 0-extensions, coloured 1-extensions, coloured

X-replacements applied outside disjoint circuits, and “chosen 1-extensions”.

Since the proof of this result is lengthy, we first give an outline of the proof steps

required.

It is straightforward to prove that a graph constructed in this way is generically iso-

static, first by verifying that any base graph (B, c) ∈ B is isostatic (Lemma 7.2.6), and

verifying that the coloured extension moves listed preserve isostaticity (Lemma 5.1.2,

Lemma 5.2.2, Lemma 7.2.19 and Lemma 7.2.15). We note that the proofs of Lem-

mas 7.2.6 and 7.2.19 rely on Theorem 7.2.4, which in turn relies on Theorem 4.1.11,

while the proof of Lemma 7.2.15 relies directly on Theorem 4.1.11.

We shall prove the converse using induction on the number of vertices in (G, c),

and checking that any isostatic graph may be reduced to a smaller isostatic graph. We

apply the characterisation from Theorem 7.2.4 that a 2-coloured graph is generically

isostatic if and only if G is Laman-plus-two, each circuit contains at least one coloured

edge, each colour class contains an edge within a circuit and certain coloured sparsity

conditions (Equations (7.5) and (7.6)) are satisfied.

The minimum degree within a Laman-plus-two graph is at least 2, and any vertex

of degree 2 will lie outside both circuits, and so may be straightforwardly reduced. We
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next confirm that any vertex of degree 3 outside both circuits may be reduced. We

finally consider the case in which the circuits are disjoint, and every vertex outside

the circuits has degree 4 (see Proposition 7.2.3) and confirm that vertices of degree 4

outside the circuits may be reduced. In these cases, we verify that the reduced graph

contains circuits that still satisfy the conditions of of Theorem 7.2.4, and so the reduced

graph is isostatic.

We continue by showing that when every vertex is within a circuit, if a circuit C

has |V (C)| ≥ 5, there is a vertex v ∈ V (C) with degG(v) = degC(v) = 3 that may be

reduced to produce a smaller graph that is isostatic by Theorem 7.2.4. We do this

in two cases, first where (G, c) contains exactly two edge-disjoint circuits, and finally

when the two minimal circuits intersect on some non-empty collection of edges.

Proof of Theorem 7.2.20. Lemma 5.1.2 and Lemma 5.2.2 give that the coloured 0-

extensions and 1-extensions will preserve isostaticity for any k-coloured graph in d

dimensions. From Lemma 7.2.15, we see that the “chosen 1-extension” will preserve

isostaticity of a 2-coloured graph in 2 dimensions, and a coloured X-replacement ap-

plied to edges outside the circuits of a 2-coloured graph (G, c) will preserve isostaticity

by Lemma 7.2.19. From Lemma 7.2.6 the base graphs are isostatic, therefore any

2-coloured graph constructed from a base graph using a sequence of these moves will

be isostatic.

By Theorem 7.2.4, a 2-coloured graph (G, c) is generically isostatic in 2 dimensions

if and only if the graph G is a Laman-plus-two graph, the 2-edge-coloured graph

(G, c) has at least one edge from each of E1 and E2 within a circuit, and the following

conditions (Equations (7.5) and (7.6)) are satisfied:

|D| ≤ 2|V (D)| − 3 ∀D ⊆ E0, (7.5)
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|D| ≤ 2|V (D)| − 2 ∀D ⊆ E0 ∪ E1, D ⊆ E0 ∪ E2. (7.6)

We shall apply induction on the number of vertices to prove that any 2-edge-coloured

Laman-plus-two graph (G, c), which has at least one edge of each colour within a

circuit and satisfies Equations (7.5) and (7.6), may be constructed from a base graph

(B, c) ∈ B by a sequence of coloured 0-extensions, 1-extensions, “chosen 1-extensions”,

and X-replacements applied outside disjoint circuits.

Let (G, c) be a 2-edge-coloured Laman-plus-two graph that satisfies the conditions

of Theorem 7.2.4. We begin by considering the average degree within G:

1
|V |

∑
v∈V

deg(v) = 2|E|
|V |

= 4|V | − 2
|V |

= 4 − 2
|V |

.

Since the average degree is strictly less than 4, there will be vertices of degree 2 or 3.

Throughout this proof we shall refer to the two smallest circuits of (G, c) as C1 and

C2, and denote by X the subgraph generated by V (X) = V \ {V (C1) ∪ V (C2)}. The

vertices of X will be outside all circuits of (G, c) by Proposition 7.2.2a.

Case 1: Vertices outside circuits

Suppose first that V (X) ̸= ∅. The minimum degree within (G, c) is at least 2, and any

vertices of degree 2 will lie outside the circuits of G, as the minimum degree within a

circuit is 3. As the 0-extension permits the addition of a vertex of degree 2 with any

combination of coloured or uncoloured edges, any vertex of degree 2 may be considered

as the result of a 0-extension, and so the reverse move may be applied. The circuits of

(G, c) will remain unchanged in the reduced graph (G′, c′), so (G′, c′) will be isostatic.

We may now suppose that the minimum degree within (G, c) is 3, and that V (X)

remains non-empty. Let x ∈ V (X) be a vertex of degree 3. By Proposition 7.2.2b, x

may have at most two neighbours within any circuit of (G, c).
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Let e1 ∈ E(C1 \ C2) and e2 ∈ E(C2 \ C1) be a pair of edges within the circuits

of (G, c). Since both edges lie outside the intersection of the circuits C1 and C2, it

is straightforward to confirm that they are a 2-redundant pair. The graph G∗ =

G − {e1, e2} will be a Laman graph, with each circuit of G corresponding to a rigid

block within G∗. We may apply the structure of a 1-reduction at x, which will create a

reduced Laman graph (G∗)′ with a new edge between some pair of vertices u1, u2 that

were neighbours of x in G∗. The new edge will be added outside the rigid blocks of G∗,

so the edges e1, e2 may be replaced to create a reduced graph G′ with identical circuits

to G. We may define a colouring c′ for the Laman-plus-two graph G′ with c′(e) = c(e)

for any edge e ∈ E(G) ∩ E(G′), and c′({u1, u2}) induced by c({x, u1}) and c({x, u2}),

which were two of the edges removed by the 1-reduction. The reduced graph (G′, c′)

will be isostatic by Theorem 7.2.4, since the circuits remain unchanged.

We finally suppose that the minimum degree within X is 4. By Proposition 7.2.3a

the circuits C1 and C2 are disjoint, by Proposition 7.2.3c every vertex in V (X) has

degree 4, and by Proposition 7.2.3b X is either a single vertex or a Laman graph. Note

that the minimum degree within (G, c) remains 3, so there are at least two vertices of

degree 3 within V (C1) ∪ V (C2).

Case 1A: Vertices of degree 4

Let x ∈ V (X) be a vertex of degree 4, with N(x) = {v1, v2, v3, v4}. We may partition

the neighbours of x into those in V (C1), those in V (C2), and those that also lie in

V (X). We shall denote the “type” of the vertex x by τ(x) := (|N(x) ∩ V (C1)|, |N(x) ∩

V (C2)|, |N(x) ∩ V (X)|) = (q1, q2, qX), where q1 + q2 + qX = 4. By Proposition 7.2.2b,

any vertex in V (X) may have at most two neighbours within a circuit, so q1, q2 ≤ 2. We

shall only need to consider those cases where q1 ≥ q2, as a relabelling of the argument

for τ(x) = (a, b, c) will apply for any vertex y with τ(y) = (b, a, c).
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When |V (X)| ≥ 2, there are exactly three edges between vertices in V (X) and

vertices in each circuit by Proposition 7.2.3b. We may therefore assume that the vertex

we wish to reduce has at least one neighbour within a circuit, and disregard the case

where τ(x) = (0, 0, 4). Since there are exactly three edges from each circuit to vertices

in X, a vertex of type (2,0,2) implies the existence of a vertex of type (1,1,2) or (1,2,1),

which we may reduce instead, and so we may disregard any vertices x ∈ V (X) with

τ(x) = (2, 0, 2).

In the case where X is a single vertex x of degree 4, it is clear that τ(x) =

(2, 2, 0). When |V (X)| ≥ 2, the cases that remain to be considered are τ(x) =

(2, 1, 1), (1, 1, 2), (1, 0, 3). These are illustrated in Figure 7.17.

v1

v2

v3

v4

x

a τ(x) = (2, 2, 0).

v1

v2

v3

v4

x

b τ(x) = (2, 1, 1).

v1 v2

v3 v4

x

c τ(x) = (1, 1, 2).

v1

v2
v3

v4

x

d τ(x) = (1, 0, 3).

Figure 7.17 The four types of degree 4 vertex to be considered.

Given a vertex x ∈ V (X) with degG(x) = 4, we wish to apply the reverse of an

X-replacement at x. This requires removing the vertex x and its adjacent edges, and

creating two new edges {u1, u2}, {u3, u4} for distinct vertices u1, u2, u3, u4 ∈ N(x). We

denote the graph G− x by G∗, and the reduced graph with the new edges added by G′.

The four neighbours of x will have three potential pairs of edges that could be

created:
{
{v1, v2}, {v3, v4}

}
,
{
{v1, v3}, {v2, v4}

}
,
{
{v1, v4}, {v2, v3}

}
. For each type of

vertex x, we shall verify that at least one potential pair of edges {u1, u2}, {u3, u4} may

be added to create a smaller Laman-plus-two graph G′, where V (G′) = V \ {x} and

E(G′) = E(G) \
{
{x, v1}, {x, v2}, {x, v3}, {x, v4}

}
∪
{
{u1, u2}, {u3, u4}

}
. We may refer
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to the potential pair of edges {u1, u2}, {u3, u4} as being valid when such a graph G′ is

Laman-plus-two.

Note that we may define a colouring c′ for G′ by c′(e) = c(e) for any edge e ∈

E(G′) ∩ E(G). As the new edges {u1, u2}, {u3, u4} lie outside both circuits, they may

be coloured arbitrarily by Lemma 7.2.18. We shall therefore have a 2-edge-coloured

graph (G′, c′) with |V ′| = |V | − 1 that satisfies the conditions of Theorem 7.2.4, and is

hence also isostatic.

Case 1A(i): τττ(x) = (2,2,0)

When V (X) = {x} and the minimum degree within X is 4, we have that τ(x) = (2, 2, 0)

and there is a single edge {w1, w2}, where w1 ∈ V (C1) and w2 ∈ V (C2). This is

illustrated in Figure 7.17a and Figure 7.18a.

Suppose that v1, v2 ∈ V (C1) and v3, v4 ∈ V (C2). We note that the potential edge

pair {v1, v2}, {v3, v4} clearly cannot be valid, as both edges would be added within the

existing circuits of (G, c). There is exactly one edge with an end point in each circuit,

which could prevent exactly one of the other edge pairs from being valid, and so at

least one of the edge pairs {v1, v3}, {v2, v4} and {v1, v4}, {v2, v3} will be valid. The

steps of such a reduction are shown in Figure 7.18, where existing edges are denoted

by solid lines, and potential edges that cannot be part of a valid edge pair are denoted

by angled dashes.

Case 1A(ii): τττ(x) = (2,1,1)

Suppose next that |V (X)| ≥ 2, and x ∈ V (X) has τ(x) = (2, 1, 1). As degX(x) = 1

and X is a Laman graph by Proposition 7.2.3b, X will be a pair of vertices connected

by a single edge, as that is the only Laman graph containing vertices of degree 1. Let

V (X) = {x, y}, and so by a similar argument τ(y) = (1, 2, 1). This type of vertex is

illustrated in Figure 7.17b and Figure 7.19a. Note that N(x) = {v1, v2, v3, y}.
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v1

v2

v3

v4

x

a The graph G.

v1

v2

v3

v4

x

b The graph G − x, with
edges that cannot be part of
a valid edge pair marked.

v1

v2

v3

v4

x

c A permitted X-
replacement of x.

Figure 7.18 The steps of a reduction of a degree 4 vertex x, with τ(x) = (2, 2, 0).

As two neighbours of x lie in C1, say v1, v2 ∈ V (C1), the potential edge pair

{v1, v2}, {v3, y} will not be valid. There is exactly one other edge from X to C1, say

{y, w1} for some w1 ∈ V (C1), which can only prevent one of the two other potential

edge pairs if w1 is also a neighbour of x. Without loss of generality, suppose that

w1 = v1, and so the potential edge pair {v1, y}, {v2, v3} cannot be valid. The final

potential edge pair, {v1, v3}, {v2, y} will however be valid, as there are no other edges

from C1 into X. This reduction is illustrated in Figure 7.19.

C1 C2

X

x

v1

v2

v3

y

a The graph G.

C1 C2

X

x

v1

v2

v3

y

b The graph G − x, with
edges that cannot be in a
valid edge pair marked.

C1 C2

X

x

v1

v2

v3

y

c The reduced graph G′.

Figure 7.19 Reduction of a degree 4 vertex x with τ(x) = (2, 1, 1).

Case 1A(iii): τττ(x) = (1,1,2)

We may now suppose that |V (X)| ≥ 3. Let x ∈ V (X) with N(x) = {v1, v2, v3, v4}
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and degX(x) = 2, so the graph G∗ = G− x will have a Laman subgraph X∗ = X − x.

We wish to add a pair of edges to G∗ to create a Laman-plus-two graph G′ and since

G∗ contains a pair of circuits, we do not wish to create a new circuit by adding one

of these edges within the Laman graph G∗. Preventing an edge from being added

between the neighbours of x within X, say v3, v4 ∈ V (X), corresponds to the edge pair

{v1, v2}, {v3, v4} not being valid, where v1 ∈ V (C1) and v2 ∈ V (C2).

By Proposition 7.2.3b, there are exactly three edges from each circuit into X, and

each set of three edges will have at least two distinct end points within X and within

the circuit, as otherwise G would contain a cut vertex, which cannot occur in a Laman

graph, and hence does not occur in a Laman-plus-two graph. Therefore v3 and v4

cannot both be neighbours of v1, and cannot both be neighbours of v2.

Without loss of generality, suppose first that v3 is not adjacent to v1, and v4 is

not adjacent to v2, and let H1 be a subgraph of G∗ containing both v1 and v3. For

H1 to be a Laman subgraph with |E(H1)| ≥ 2, it must contain both edges in G∗

that run from a vertex in C1 to a vertex in X, along with a subgraph B1 of C1

and a subgraph BX of X. Let {w1, w2}, {w3, w4} ∈ E(G∗) be the pair of edges with

w1, w3 ∈ V (C1), w2, w4 ∈ V (X∗), and not both w1 = w3, w2 = w4. The subgraph B1

must contain v1, w1, w3, and v3, w2, w4 ∈ V (BX), so both subgraphs contain at least

two vertices. Since BX lies in the Laman subgraph X∗, and B1 is strictly contained in

the circuit C1 (as H1 cannot be a Laman subgraph if it contains the circuit C1), we

have |E(B)| ≤ 2|V (B)| − 3 for B = B1 and B = BX . This gives the following:

|E(H1)| = |E(B1)| + |E(BX)| + 2

≤ 2|V (B1)| − 3 + 2|V (BX)| − 3 + 2

= 2|V (H1)| − 4.

Hence the subgraph H1 cannot be a Laman subgraph.
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We note that this argument is equivalent to proving that a subgraph containing a

pair of edges between two non-trivial subgraphs cannot be Laman.

By a similar argument, any subgraph H2 of G∗ containing both v2 and v4 cannot

be a Laman subgraph of G∗, and so the potential edge pair {v1, v3}, {v2, v4} is valid.

Such a reduction is shown in Figure 7.20.

C1 C2

X∗

x
v1 v2

v3
v4

C1 C2

X∗

x
v1 v2

v3
v4

w1

w2

w3

w4

Figure 7.20 A straightforward reduction of a vertex x with τ(x) = (1, 1, 2).

Suppose next that v3 is adjacent to v1, which prevents the potential edge pair

{v1, v3}, {v2, v4} from being valid, whether or not the edge {v2, v4} exists in G. The

third edge from C1 into X will be {w1, w2} for some w2 ∈ V (X), w1 ∈ V (C1) \ {v1},

since the three edges from a circuit to X must be adjacent to at least two vertices in

V (C1). This situation is illustrated in Figure 7.21a. We shall consider a subgraph H3

of G∗ that contains v3 and v2, and a subgraph H4 of G∗ that contains both v1 and v4.

Since the third edge from C1 to X is adjacent to a vertex w1 ̸= v1, H4 cannot be

the single edge {v1, v4}, and v1, w1, v3, v4 ∈ V (H4) since H4 must contain both edges

from C1 into X. By a similar argument to that used for H1, no subgraph H4 can be a

Laman subgraph, and so the edge {v1, v4} will not prevent a potential edge pair from

being valid.

We consider now a subgraph H3 with v2, v3 ∈ V (H3). G∗ contains two edges

from vertices in C2 to vertices in X, which we shall denote by {w5, w6}, {w7, w8} with
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w5, w7 ∈ V (C2) and w6, w8 ∈ V (X∗). These edges are shown in Figure 7.21b. There

must be at least two vertices in C2 adjacent to vertices in X, so at most one of w5, w7

may be the vertex v2. Since |V (X)| ≥ 3, no vertex in X may be adjacent to more

than one vertex in either circuit, and hence v3 may be the same as at most one of the

vertices w6, w8.

We first consider the situation in which {v2, v3} /∈ E, and then consider the case in

which the edge {v2, v3} exists separately. This is illustrated in Figure 7.22. We shall

show that although no potential edge pair among the neighbours of x is valid, there is

an alternative vertex within V (X) at which a valid edge pair exists.

Suppose first that the edge {v2, v3} does not exist, and hence there cannot be a

Laman subgraph of G∗ containing both v2 and v3 made up of the single edge {v2, v3}.

Let H3 be a subgraph of G∗ with v2, v3 ∈ V (H3). We note that in order for H3 to

be a Laman subgraph, both edges from X∗ into C2 must be within H3, and hence

v3, w6, w8 ∈ V (X∗) ∩V (H3) and v2, w5, w7 ∈ V (C2) ∩V (H3). This would be equivalent

to H3 containing a pair of edges whose removal results in two non-trivial subgraphs,

and hence H3 cannot be a Laman subgraph of G∗. This shows that the potential edge

pair {v2, v3}, {v1, v4} will be valid in this case, and the reduction shown in Figure 7.21c

may be applied.

If instead the edges in G from C2 into X are {v2, x}, {v2, v3}, {w7, w8} with w7 ≠ v2

and w8 ̸= x, it is clear that there is no valid edge pair that can be added. (This

situation is illustrated in Figure 7.22.) As X is a Laman subgraph and |V (X)| ≥ 3,

τ(v3) = (2, 1, 1) would imply the existence of a degree 1 vertex within X, and hence

τ(v3) = (1, 1, 2). A similar argument shows that no potential edge pair between the

neighbours of v3 will be valid.

Since there are exactly three edges from each circuit into X, there will either

be a vertex y with τ(y) = (1, 1, 2), or two vertices y1, y2 with τ(y1) = (1, 0, 3),
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Figure 7.21 Reduction of a vertex x with τ(x) = (1, 1, 2).
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Figure 7.22 A vertex x with τ(x) = (1, 1, 2) where no valid reduction exists.
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τ(y2) = (0, 1, 3). A vertex of type (1,0,3) will be seen to be reducible below, so we

must only consider y with τ(y) = (1, 1, 2).

C1 C2

X∗

x
v1 v2

v3
v4

w1

w7

v5

v6

y

C1 C2

X∗

x
v1 v2

v3
v4

w1

w7

v5

v6

y

Figure 7.23 Another vertex y with τ(y) = (1, 1, 2), with a valid reduction at y
indicated.

For a vertex y ∈ V (X) to have τ(y) = (1, 1, 2), we have y = w8 = w2. This is

shown in Figure 7.23, where N(y) = {w1, w7, v5, v6} for some v5, v6 ∈ V (X) \ {x}. As

all six edges from X into C1 and C2 are known, neither of v5 and v6 can be adjacent

to either of w1 or w7. Thus two potential edge pairs amongst the neighbours of y will

be valid: {w1, v5}, {w7, v6} and {w1, v6}, {w7, v5}.

Case 1A(iv): τττ(x) = (1,0,3)

Let x ∈ V (X) with N(x) = {v1, v2, v3, v4}, where v1 ∈ V (C1), v2, v3, v4 ∈ V (X). As X

is a Laman subgraph of G, by Proposition 7.2.3b, it is clear that not all three edges

can exist between v2, v3, v4, and X∗ = X − x will have |E(X∗)| = 2|V (X∗)| − 4 so X

cannot contain three rigid blocks that each contain a distinct pair of neighbours of x.

Since there are exactly three edges between C1 and X, and G must be 2-connected,

at most one of v2, v3, v4 may also be a neighbour of v1 ∈ V (C1). Suppose first that

none of the edges {v1, v2}, {v1, v3}, {v1, v4} exist. At least one pair of neighbours of x

within V (X), say v2, v3, is not contained within a rigid block of X∗, so the potential

edge pair {v1, v4}, {v2, v3} will be valid.
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Suppose instead that the edge {v1, v4} already exists, and that there are Laman sub-

graphs of X∗, H1 and H2, that contain v2, v4 and v3, v4 respectively. (See Figure 7.25a.)

If both Laman subgraphs are non-trivial, so neither of the edges {v2, v4}, {v3, v4} exist,

and |V (H1 ∩H2)| ≥ 2, then the subgraph H of X, induced by V (H1) ∪ V (H2) ∪ {x},

would have |E(H)| = 2|V (H)| − 2. This contradicts the fact that X is Laman, hence

H1 ∩H2 = {v4}.

C1 C2

X

x

v1

v2
v3

v4

a

C1 C2

X

x

v1

v2
v3

v4

b

Figure 7.24 Reduction of a vertex x with τ(x) = (1, 0, 3).

Since {v4, x}, {v4, v1} ∈ E, v4 must be adjacent to exactly one edge in each of

the Laman subgraphs H1 and H2. This implies that H1 and H2 are both single

edges, E(H1) =
{
{v4, v2}

}
and E(H2) =

{
{v4, v3}

}
. This situation is illustrated in

Figure 7.25b, and it is straightforward to see that no potential edge pair between

the neighbours of x will be valid (and by a similar argument, there will be no valid

reduction at v4). We shall instead find an alternative vertex at which to reduce.

There are exactly three edges from V (C1) to V (X), two of which are {v1, x} and

{v1, v4}. The third edge must be adjacent to some w1 ∈ V (C1), w1 ≠ v1, since G

must be 2-connected. This edge may either be adjacent to another neighbour of x (v2

or v3), or adjacent to some other w ∈ V (X) \ {x, v2, v3, v4}. These are illustrated in

Figure 7.26.
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Figure 7.25 A vertex x with τ(x) = (1, 0, 3), and rigid blocks indicated.
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Figure 7.26 The two potential cases for the third edge from C1 to X.
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Suppose first that {w1, v2} ∈ E (Figure 7.26a). If τ(v2) = (1, 1, 2), we may

apply a reduction at v2 as already discussed, since neither neighbour of v2 within

X may be adjacent to w1. If instead τ(v2) = (1, 0, 3), let v5 ∈ N(v2) ∩ V (X), so

N(v2) = {w1, x, v4, v5}. We consider the potential Laman subgraph H3 within X − v2

containing both x and v5: there cannot be an edge {x, v5}, so x must have degree at

least 2 within H3 for it to be a Laman subgraph. Within X − v2, x has degree 2, so

both edges {x, v3}, {x, v4} must be within H3. If such a subgraph containing x, v5, v4

was a Laman subgraph, X would contain an overconstrained subgraph generated by

V (H3) ∪ {v2}, so no such Laman subgraph can exist to block the potential edge {x, v5}.

The other edge of this potential edge pair, {w1, v4}, is clearly not prevented from being

added by any Laman subgraph since w1 ∈ V (C1) and v4 ∈ V (X), and hence adding

the edge pair {x, v5}, {w1, v4} is valid. This is illustrated in Figure 7.27.

C1 C2

X

x

v1

v2
v3

v4
w1

v5

a The neighbours of v2.

C1 C2

X

x

v1

v2
v3

v4
w1

v5

b The reduction applied at v2.

Figure 7.27 A reduction applied at v2 with τ(v2) = (1, 0, 3).

Suppose finally that the third edge between V (C1) and V (X) is {w1, w} for some

w1 ∈ V (C1) \ {v1}, w ∈ V (X) \ {x, v2, v3, v4} (Figure 7.26b). It is clear that no

neighbour of w can be adjacent to w1, as the three edges from C1 to X are known, so

it is straightforward to see that there will be a valid potential edge pair at w, whether

τ(w) = (1, 1, 2) or τ(w) = (1, 0, 3).
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Case 2A: Vertices in edge-disjoint circuits

As any vertex outside the circuits of the Laman-plus-two graph (G, c) may be reduced,

we may now assume that every vertex in G lies in at least one circuit. We shall begin

by considering the case where E(C1 ∩ C2) = ∅. We shall either have C1 ∩ C2 = ∅, in

which case (G, c) consists of two circuits connected by exactly three edges, or we shall

have C1 ∩C2 = {y} for some single vertex y ∈ V (C1) ∩ V (C2), and so there is precisely

one edge {y1, y2} ∈ E with y1 ∈ V (C1) \ {y}, y2 ∈ V (C2) \ {y}. These two cases are

illustrated in Figure 7.28. The Laman-plus-two graph (G, c) will contain at least two

vertices of degree 3.

C1 C2

a A Laman-plus-two graph containing two
disjoint circuits.

C1 C2

y

y1 y2

b A Laman-plus-two graph containing two
circuits with a single common vertex, y.

Figure 7.28 The two types of edge-disjoint Laman-plus-two graphs, with every vertex
in at least one circuit.

We first consider the case in which C1 ∩ C2 = ∅. The base graph in this situation

has |V | = 8, so we may assume that |V | ≥ 9, and hence at least one circuit contains at

least five vertices. We therefore consider |V (C1)| ≥ 5.

Since the minimum degree within a circuit is 3, V (C1) contains at least four vertices

with degC1(v) = 3. Exactly two or three vertices within C1 are adjacent to vertices

outside C1, so there is at least one vertex x ∈ V (C1) with degG(x) = degC1(x) = 3.

Suppose instead that C1 ∩C2 = {y} for some single vertex y. We assume that (G, c)

is not a base graph, and hence at least one circuit is not a copy of K4, so we may assume

that |V (C1)| ≥ 5. Each circuit contains exactly two vertices with degG(v) > degC(v),

and hence since the circuit C1 contains at least four vertices of degree 3, there are at

least two vertices with degG(v) = degC1(v) = 3.
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We may now assume, in either case, that we have a vertex x ∈ V (C1) with

degG(x) = degC1(x) = 3, where N(x) = {v1, v2, v3} ⊆ V (C1). Since C1 is a circuit on

at least 5 vertices, we may apply the structure of a 1-reduction at x, and replace x and

its three associated edges by a single edge between two neighbours of x. We assume

that the edge to be added is {v1, v2}.

Let G′ denote the reduced graph, within which Ĉ ′
1 is the Laman-plus-one graph

corresponding to the circuit C1 in G. Ĉ ′
1 contains a unique circuit C ′

1, which consists of

the new edge {v1, v2} together with the minimal Laman subgraph of C1 containing both

v1 and v2. We shall denote this Laman subgraph by C̃1, and so C ′
1 = C̃1 +{v1, v2} ⊆ Ĉ ′

1.

We require a colouring c′ of the reduced graph G′ such that (G′, c′) satisfies the

conditions of Theorem 7.2.4, and hence (G′, c′) is generically isostatic. Since the

structure of a 1-reduction is applied at a vertex within C1, the circuit C2 remains

unchanged within (G′, c′). It remains to verify that an edge from each colour class

remains within a circuit of (G′, c′), and that the circuit C ′
1 (and hence the Laman-plus-

one subgraph C̃ ′
1) satisfy Equations (7.5) and (7.6).

Suppose first that C1 contains edges from only one colour class, so we may assume

that E(C1) ⊆ E0 ∪ E1 and E2 ∩ E(C2) ̸= ∅. Since (G′, c′) requires that C ′
1 contains at

least one coloured edge, we require that E ′
1 ∩ E(C ′

1) ̸= ∅ for (G′, c′) to contain edges

from both colour classes within a circuit. If there is at least one edge in E1 ∩ E(C̃1),

we may apply a 1-reduction with the colour of {v1, v2} induced by the colours of the

initial edges {x, v1}, {x, v2}. If instead C̃1 is uncoloured, we may create a new edge

{v1, v2} ∈ E ′
1, either in the reverse of a coloured 1-extension if either {x, v1} or {x, v2}

is in E1, or in the reverse of a “chosen 1-extension” if {x, v1}, {x, v2} ∈ E0.

Suppose instead that C1 and C2 both contain edges from both colour classes. Since

C2 remains unchanged, we require only that C ′
1 contains at least one coloured edge,

and (G′, c′) will retain at least one edge from each colour class within a circuit. If
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either edge {x, v1} or {x, v2} is coloured, we may apply an appropriately coloured

1-reduction to create an edge {v1, v2} of the same colour within (G′, c′). If instead

both {x, v1}, {x, v2} ∈ E0 and there is at least one coloured edge within C̃1, we may

apply a uncoloured 1-reduction as there will straightforwardly be at least one coloured

edge within C ′
1. If instead {x, v1}, {x, v2} and C̃1 are all uncoloured, we may apply

the reverse of a “chosen 1-extension” to create a new edge added to either E ′
1 or E ′

2.

Suppose finally that C1 contains edges from both colour classes, and C2 contains

edges from only one colour class. We may assume that E(C2) ⊆ E0 ∪ E2, and so we

require that the colouring c′ of G′ induces E ′
1 ∩E(C ′

1) ̸= ∅. If there is an edge from E1

within C̃1, we may apply an appropriately coloured 1-reduction based on the edges

{x, v1} and {x, v2}, and similarly if either {x, v1} or {x, v2} is in E1, we may apply

the coloured 1-reduction to add the edge {v1, v2} ∈ E ′
1. If instead C̃1 ⊆ E0 ∪ E2 and

{x, v1}, {x, v2} /∈ E1, we may apply the reverse of a “chosen 1-extension” to add the

edge {v1, v2} to E ′
1, and hence E ′

1 ∩ E(C ′
1) ̸= ∅.

Case 2B: Vertices in intersecting circuits

If every vertex within the Laman-plus-two graph (G, c) is within at least one circuit,

the minimum degree within (G, c) is 3, and (G, c) contains at least two vertices of

degree 3. Let C1 and C2 be the two minimal circuits, and let H denote the subgraph

C1 ∩ C2, which is a Laman subgraph by Proposition 7.2.2c. Suppose that |V | ≥ 7, so

at least one of C1 and C2 has |V (C)| ≥ 5. Without loss of generality, suppose that this

is C1.

If C2 = K4, the intersection of C1 and C2 must either be K2 or K3. There will

therefore be at most three vertices in V (C1) with degG(v) > degC1(v). As the circuit

C1 contains at least four vertices with degC1(v) = 3, there will be at least one vertex x

in V (C1) \ V (C2) with degG(x) = degC1(x) = 3.
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Suppose instead that both circuits contain at least five vertices, and note that if C1

contains only one vertex outside C1 ∩ C2, this vertex will have degree 3.

Claim 7.2.21. If |V (C1)|, |V (C2)| ≥ 5 and |V (C1) \ V (C2)| ≥ 2, there is at least one

vertex in V (C1) \ V (C2) with degG(v) = degC1(v) = 3.

Proof of Claim 7.2.21. Recall that H denotes the Laman subgraph C1 ∩C2, and let J

denote the subgraph of C1 induced by V (C1)\V (C2). E(C1) = E(H)∪E(J)∪F , where

F denotes the set of edges {u1, u2} with u1 ∈ V (C1) \ V (C2), u2 ∈ V (C1) ∩ V (C2).

Since J is a proper subgraph of C1 containing at least two vertices, |E(J)| ≤

2|V (J)| − 3. Since C1 is a circuit, |E(C1)| = 2|V (C1)| − 2, and we have that |E(C1)| =

|E(H)| + |E(J)| + |F | ≤ 2|V (H)| − 3 + 2|V (J)| − 3 + |F | = 2|V (C1)| + |F | − 6. Hence

−2 ≤ |F | − 6 and so |F | ≥ 4.

We now consider the average degree within J :

1
|V (J)|

∑
v∈V (J)

degG(v) = 2|E(J)| + |F |
|V (J)|

≤ 4|V (J)| − 6 + 4
|V (J)| = 4 − 2

|V (J)| .

The average degree within J is therefore strictly less than 4. As degG(v) = degC1(v)

for all v ∈ V (J), and the minimum degree within a circuit is 3, J contains at least one

vertex with degG(v) = degC1(v) = 3.

We may therefore suppose that there is a degree 3 vertex x ∈ V (C1) \ V (C2), and note

that |V (C1)| ≥ 5.

Let the neighbours of x ∈ V (C1) be denoted by {v1, v2, v3} ∈ V (C1). Since C1

is a circuit on at least five vertices, and hence does not contain a copy of K4, the

subgraph C1 \ {x} of G is a Laman subgraph on at least four vertices, and at least

one pair of neighbours of x is not connected by an edge. We may apply the structure
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of a 1-reduction to the circuit C1 by removing x and its three associated edges, and

replacing them by a single edge between the neighbours of x. Reducing x in the circuit

C1 results in a Laman-plus-one subgraph Ĉ ′
1 of (G′, c′), containing a unique circuit C ′

1.

Without loss of generality, suppose that the edge created by the 1-reduction is

{v1, v2}. The reduced circuit C ′
1 will be C̃1 + {v1, v2}, where C̃1 denotes the minimal

Laman subgraph of C1 \ {x} containing both v1 and v2 (with |V (C̃1)| ≥ 4). We require

a colouring c′ of the reduced graph G′ such that (G′, c′) satisfies the conditions of

Theorem 7.2.4, in order for this to be a valid reduction of (G, c). By Theorem 4.1.11,

this is equivalent to (G′, c′) being a Laman-plus-two graph containing a 2-redundant

rainbow pair of edges.

Suppose first that at least one of v1 and v2 lies in V (C1 \C2). Applying the structure

of a 1-reduction at x will leave C2 unchanged, and hence C ′
2 = C2 is a circuit within

the reduced graph (G′, c′).

We may relabel the colour classes as required, in order to assume that (G, c) has

E1 ∩ E(C1) ̸= ∅ and E2 ∩ E(C2) ̸= ∅: if either circuit contains only edges from one

colour class, we may assign that colour class the appropriate label (noting that if both

circuits contain edges from only one colour class, the colours in each circuit will be

distinct, and E(C1 ∩ C2) ⊆ E0). Alternatively, if both circuits contain edges of both

colours, no relabelling is required. This allows us to assume that we wish to obtain a

2-redundant rainbow pair with e1 ∈ E ′
1 ∩ E(C ′

1) and e2 ∈ E ′
2 ∩ E(C ′

2).

We apply the structure of a 1-reduction at x to create the new edge {v1, v2}, and

we require that c′({v1, v2}) = 1: if both c({x, v1}), c({x, v2}) ̸= 1, we may apply the

reverse of the “chosen 1-extension” to add the new edge to E ′
1, however if either

c({x, v1}) = 1 or c({x, v2}) = 1, we may apply the reverse of the coloured 1-extension.

This guarantees that E ′
1 ∩ E(C ′

1) ̸= ∅.
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Since {v1, v2} ∈ C ′
1 \ C ′

2, removing {v1, v2} from the reduced graph (G′, c′) results

in a 2-coloured Laman-plus-one graph, with the unique circuit C ′
2 = C2. Since

E2 ∩E(C2) ̸= ∅, there is an edge e2 ∈ E ′
2 ∩E(C ′

2). Removing any edge from the circuit

of a Laman-plus-one graph results in a Laman graph, and we therefore obtain the

necessary 2-redundant rainbow pair of edges, {v1, v2} ∈ E ′
1, e2 ∈ E ′

2, for (G′, c′) to be

generically rigid by Theorem 4.1.11. Since (G′, c′) is a Laman-plus-two graph, (G′, c′)

is generically isostatic.

Suppose instead that v1, v2 ∈ V (C1 ∩ C2). We apply the structure of a 1-reduction

at x to add the edge {v1, v2} and create the graph G′. Since |V (C1 ∩C2)| ≥ 2, C1 ∩C2

is a Laman subgraph of (G, c) by Proposition 7.2.2c, and by Proposition 7.2.2a, all

other circuits within (G, c) are contained within C1 ∪C2, since C1 ∩C2 is a non-empty

Laman subgraph and hence E(C1 ∩ C2) ̸= ∅.

We note that the Laman subgraph C1 ∩ C2 of (G, c) remains a Laman subgraph

when the vertex x and its three associated edges are removed. We shall denote this

subgraph by H. Completing the application of the 1-reduction by adding the edge

{v1, v2} results in a Laman-plus-one subgraph within the reduced graph G′. This

subgraph contains a unique circuit C, consisting of the edge {v1, v2} together with the

minimal Laman subgraph of H containing both v1 and v2, denoted by H ′. Requiring

that c′({v1, v2}) = 1 (by either applying the reverse of the standard 1-reduction if either

c({x, v1}) = 1 or c({x, v2}) = 1, and applying the reverse of the “chosen 1-extension”

otherwise) ensures that E1 ∩ E(C) ̸= ∅, with e1 = {v1, v2} ∈ E ′
1 ∩ E(C).

As x ∈ V (C1) \ V (C2), removing x and its three associated edges leaves the circuit

C2 unchanged in the reduced graph G′, and we may denote this circuit by C ′
2 = C2.

We note that (G′, c′) therefore retains the edge e2 ∈ E ′
2 ∩ E(C ′

2).

Since the circuit C consists of a subgraph of H = C1 ∩ C2 together with one

additional edge, E(C ∩ C ′
2) ̸= ∅. By Proposition 7.2.2a, any other circuits within
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(G′, c′) are contained within C ∪ C ′
2. This confirms that {v1, v2} ∈ E ′

1 ∩ E(C) and

e2 ∈ E ′
2∩E(C ′

2) are a 2-redundant rainbow pair of edges, and hence the Laman-plus-two

graph (G′, c′) is generically isostatic as required.

Remark 7.2.22. Example 7.2.26 shows a Laman-plus-two graph that has vertices of

degree 3 in V (C1 \ C2) and V (C1 ∩ C2).

Remark 7.2.23. When (G, c) and (G′, c′) contain exactly two disjoint circuits, Lemma 7.2.15

may be proved straightforwardly using the coordinated rigidity matrix, without relying

on Theorem 7.2.4. The 2-coordinated isostatic graphs in 2 dimensions with disjoint

circuits may therefore be characterised by an inductive construction, without relying

on the redundant rigidity results (Theorem 4.1.11).

Remark 7.2.24. The “chosen 1-extension” (Definition 7.2.11) may be defined more

broadly. In fact, we could permit any coloured 1-extension that results in a 2-edge-

coloured Laman-plus-two graph with a 2-redundant rainbow pair, which is clearly

generically rigid by Theorem 4.1.11. This would simplify the stated conditions, however

we have prioritised a construction that is easily verified to be valid at each step, rather

than requiring a 2-redundant rainbow pair to be found at each step.

7.2.4 Further comments

Laman-plus-two characterisation

It is straightforward to see that a similar reduction to that described in the proof of

Theorem 7.2.20 may be applied to characterise all Laman-plus-two graphs, using only

a set of standard inductive moves.

Theorem 7.2.25. G is a Laman-plus-two graph if and only if G may be constructed

from a base graph B ∈ {B5, B6, B7, B8,1, B8,2, B8,3} by a sequence of 0-extensions,

1-extensions, and X-replacements applied outside the circuits of G.
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Proof. The base graphs are illustrated in Figure 7.6, and may be straightforwardly

checked to confirm that each is a Laman-plus-two graph. As 0-extensions and 1-

extensions result in a larger Laman graph when applied to a Laman graph, it is clear

that applying these moves to a Laman-plus-two graph will produce a Laman-plus-

two graph. We note that applying X-replacements to edges outside the circuits of a

Laman-plus-two graph also results in a larger Laman-plus-two graph. Therefore any

graph constructed from a base graph B ∈ {B5, B6, B7, B8,1, B8,2, B8,3} by applying

0-extensions and 1-extensions, and by applying X-replacements to pairs of disjoint

edges that lie outside the circuits of the smaller graph, will be a Laman-plus-two graph.

To prove that any Laman-plus-two graph may be constructed in this way, we apply

induction on the number of vertices. This proof follows the same structure as the proof

of Theorem 7.2.20. Let G = (V,E) be a Laman-plus-two graph that is not one of the

base graphs.

The Laman-plus-two graph G will contain at least two circuits. Let two of these

circuits be labelled C1 and C2. Removing any edge e1 ∈ E(C1) \ E(C2) results in a

Laman-plus-one graph that still contains the circuit C2, so C2 is the unique circuit

within G − e1. Any edge e2 ∈ E(C2) \ E(C1) may be removed to leave the Laman

graph G∗ = G− {e1, e2}.

If G contains any vertices of degree 2, they will lie outside all circuits within G.

The vertex and its pair of edges may be removed without changing the circuits of G, so

the reduced graph G′ will remain as a Laman-plus-two graph. By a similar argument

to that seen in the proof of Theorem 7.2.20, any vertex of degree 3 that lies outside

the circuits of the Laman-plus-two graph G may be reduced while leaving the circuits

unchanged, and so this 1-reduction will result in a smaller Laman-plus-two graph.

By Proposition 7.2.3, if the Laman-plus-two graph G contains two disjoint circuits

and the vertices outside these circuits have minimum degree 4, every vertex outside
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the circuits of G will have degree exactly 4. The section “Vertices of degree 4” of the

proof of Theorem 7.2.20 (page 160) shows that in such a situation, there will be a

vertex of degree 4 outside the circuits of G that may be removed and replaced by a

pair of edges with distinct end points, such that the reduced graph G′ will also be a

Laman-plus-two graph.

It remains to show that when every vertex of the Laman-plus-two graph G is

within a circuit, the reverse of an inductive move may be applied to create a smaller

Laman-plus-two graph. As the minimum degree within a circuit is 3, the minimum

degree within G is 3.

There will either be exactly two edge-disjoint circuits within G, at least one of

which has |V (C)| ≥ 5, or there will be two circuits with E(C1) ∩ E(C2) ̸= ∅. All other

circuits within G will be contained within C1 ∪ C2, by Proposition 7.2.2a, and so we

may suppose that any other circuit C3 has |V (C3)| ≥ |V (C1)|, |V (C3)| ≥ |V (C2)|, and

that at least one of C1 and C2 has |V (C)| ≥ 5. Without loss of generality, suppose

that |V (C1)| ≥ 5.

The Laman-plus-two graph G contains at least two vertices with degG(x) = 3,

and a circuit contains at least four vertices with degC1(x) = 3. If G contains exactly

two edge-disjoint circuits, there will be either two or three vertices within C1 with

degG(v) > degC1(v), and so there will be at least one vertex with degG(x) = degC1(x) =

3. If instead C1 has a non-trivial intersection with C2, and C2 is a copy of K4, there

will also be either two or three vertices with degG(v) > degC1(v), and at least one

vertex in V (C1) \ V (C2) of degree 3. From Claim 7.2.21, if neither of C1 and C2 is

a copy of K4 and |V (C1 ∩ C2)| ≥ 2, there is at least one vertex of degree 3 within

V (C1) \ V (C2).

Removing the vertex x ∈ V (C1) with degG(x) = degC1(x) = 3, and its three

associated edges, results in a graph Ĝ with |Ê| = |E| − 3 = 2|V | − 1 − 3 = 2|V̂ | − 2,
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which is a Laman-plus-one graph. Since the removed vertex was not within a copy

of K4, at least one pair of neighbours of this vertex will not be joined by an edge in

Ĝ. We may add this edge to complete the reverse of the 1-extension, and create a

Laman-plus-two graph G′.

Example 7.2.26. Figure 7.29 shows a Laman-plus-two graph G where every vertex

lies within at least one circuit. Three circuits C1, C2, C3 are illustrated below, and

it is straightforward to see that any circuit lies within the union of the other two

(Proposition 7.2.2a). Each of the vertices labelled v1, v2 and v3 has degree 3 and the

reverse of a 1-extension may be applied at any of these vertices. We note that removing

the vertex vi and its three associated edges from G results in precisely the circuit Ci

(1 ≤ i ≤ 3).

v2

v1
v3

a The Laman-plus-two graph, G. b The circuit C1.

c The circuit C2. d The circuit C3.

Figure 7.29 A Laman-plus-two graph and three of its circuits.
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Reducing at the vertex v2 ∈ V (C1)∩V (C3) produces the reduced graphG′ illustrated

in Figure 7.30. The circuit C2 remains unchanged in the reduced graph G′, which also

contains the two reduced circuits C ′
1 and C ′

3 shown below, among others.

v2

a The reduced Laman-plus-two graph, G′.

v2

b The unchanged circuit C2.

v2

c A reduced circuit C ′
1.

v2

d A reduced circuit C ′
3 = W4.

Figure 7.30 A reduced Laman-plus-two graph and three of its circuits.

Reducing instead at the vertex v1 ∈ V (C2) ∩ V (C3) results in a different reduced

Laman-plus-two graph, which is isomorphic to the reduced graph produced by applying

the reverse of a 1-extension at v3 ∈ V (C1)∩V (C2). The reduced graph G′′ is illustrated

in Figure 7.31, along with five of its circuits. We note that the union of any pair of

circuits illustrated here is the graph G′′.

7.3 Higher k in 2 dimensions

For a regular k-coordinated framework (G, c, p) to be isostatic in 2 dimensions, it is

clearly necessary for (G, c) to contain a k-redundant rainbow set (Theorem 4.1.11),
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v1

a The reduced Laman-plus-two graph, G′′.

v1

b The unchanged circuit C1.

v1

c A reduced circuit C ′′
2 = W4.

v1

d A reduced circuit C ′′
3 = K4.

v1

e A reduced circuit C ′′
4 .

v1

f A reduced circuit C ′′
5 .

Figure 7.31 Another reduced Laman-plus-two graph, and five of its circuits.
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and so (G, c) must be at least a Laman-plus-k graph. This condition is equivalent to

every colour class Eℓ having at least one edge within a circuit of (G, c).

Recall from Definition 6.3.1 that the 2-chromatic subgraphs of the k-coloured

graph (G, c) are generated by the edge sets E0 ∪E1 ∪E2, E0 ∪E1 ∪E3, . . . , E0 ∪E1 ∪

Ek, E0 ∪E2 ∪E3, . . . , E0 ∪E2 ∪Ek, . . . , E0 ∪Ek−1 ∪Ek. It is clearly necessary for each

2-chromatic subgraph of (G, c) to be independent as a 2-coloured graph, in order for

(G, c) to be generically rigid. This is equivalent to each 2-chromatic subgraph being

at most a Laman-plus-two graph, at least one edge from each colour class within a

circuit, and satisfying Equations (7.5) and (7.6).

It seems natural to extend the sparsity conditions from Theorem 7.1.2 and Theo-

rem 7.2.4 to k-edge-coloured graphs. As in the 1-dimensional case, each ℓ-chromatic

subgraph should be independent as an ℓ-coloured graph. This implies that the ℓ-

chromatic subgraphs are at most Laman-plus-ℓ graphs, where any subgraph of the

ℓ-chromatic subgraph generated by D ⊆ E satisfies |D| ≤ 2|V (D)| + ℓ− 3.

A Laman-plus-k graph will contain at least k circuits, for which each pair of circuits

may be edge-disjoint or intersect non-trivially. This increase in potential combinations

of circuits leads to increased complexity of proving a constructive characterisation

similar to those given in Section 7.1 and Section 7.2.

The interaction between circuits also seems likely to increase the difficulty of proving

that the necessary conditions we conjecture here are equivalent to the existence of

k-redundant rainbow subset of edges in (G, c), which implies generic rigidity of (G, c)

by Theorem 4.1.11.

Theorem 7.3.1. Let (G, c, p) be a k-edge-coloured framework with a regular configu-

ration p ∈ R2n. If (G, c, p) is isostatic, then the k-coloured graph (G, c) satisfies the

following conditions, for all 0 ≤ ℓ ≤ k:

The graph G is Laman-plus-k;
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At least one edge from each colour class lies within a circuit of (G, c);

Each ℓ-chromatic subgraph is independent as an ℓ-coloured graph.

Proof. By Theorem 3.1.33, the k-coloured regular framework (G, c, p) cannot be iso-

static with |E| ≠ 2|V | + k− 3. If the uncoloured graph G has |E| = 2|V | + k− 3 but is

not a Laman-plus-k graph, then G cannot contain a k-redundant set of edges, and hence

(G, c) does not contain a k-redundant rainbow subset of edges. By Theorem 4.1.11,

such a k-coloured graph is not infinitesimally rigid, and hence is not isostatic.

By Theorem 4.1.11, any generically rigid k-coloured graph (G, c) contains a k-

redundant rainbow subset of edges. We note that any edge in a k-redundant subset of

edges is itself a redundant edge, and that the redundant edges within a Laman-plus-k

graph G are exactly those within the circuits of G. Therefore the existence of a

k-redundant rainbow subset of edges in (G, c) implies that every colour class contains

an edge within a circuit of (G, c).

Suppose that some ℓ-chromatic subgraph of (G, c) is not independent as an ℓ-

coloured graph. The submatrix of the coordinated rigidity matrix corresponding to

this subgraph of (G, c) contains a row dependence, which remains as a row dependence

in the coordinated rigidity matrix R(G, c, p). Hence (G, c, p) is not isostatic.

Conjecture 7.3.2. Let (G, c, p) be a k-edge-coloured framework with a regular con-

figuration p ∈ R2n. Then (G, c, p) is isostatic, if and only if the k-coloured graph (G, c)

satisfies the following conditions, for all 0 ≤ ℓ ≤ k:

The graph G is Laman-plus-k;

At least one edge from each colour class lies within a circuit of (G, c);

Each ℓ-chromatic subgraph is independent as an ℓ-coloured graph.
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7.4 Algorithms

Since we have obtained inductive characterisations for 1-coloured Laman-plus-one

graphs and 2-coloured Laman-plus-two graphs that give isostatic frameworks in 2

dimensions for regular configurations, we have polynomial time algorithms for checking

that a given graph satisfies these constraints.

For a given graph G with |V | = n and |E| = m, the standard pebble-game

algorithm [LS08, LST05, BJ03a] may be applied to find the maximal (2,3)-sparse

subgraph of G in time O(n2), and, for each additional edge outside this rigid subgraph,

the circuit containing this edge can be identified in O(mn) time.

In order to verify that a 1-coloured graph (G, c) is generically isostatic in 2 dimen-

sions (Theorem 7.1.2), we require a spanning Laman subgraph of G and an overall

count of |E| = 2|V | − 2, which allows us to characterise (G, c) as Laman-plus-one.

The additional edge outside the spanning Laman subgraph induces a unique circuit

which we require to contain at least one coloured edge. The circuit may be identified

in O(mn) time, while O(m) time is required to check the colours of the edges within

this circuit. This gives an overall requirement of O(mn).

To characterise a 2-coloured graph (G, c) as being generically isostatic in 2 dimen-

sions, we require that (G, c) is a Laman-plus-two graph with a 2-redundant rainbow

pair (Theorem 4.1.11, Theorem 7.2.4). A Laman-plus-two graph contains an edge e

such that G \ e is a Laman-plus-one graph, for which the removal of an additional edge

f results in a Laman graph G \ {e, f}. In order to verify the existence of a 2-redundant

rainbow pair, we first check whether G \ e1 is a Laman-plus-one graph for each e1 ∈ E1,

and then confirm whether the unique circuit of G \ e1 contains an edge e2 ∈ E2. This

procedure may be applied in O(mn) time for each e1 ∈ E1, which results in an overall

requirement of O(m2n) time. It seems likely that this requirement may be reduced by

applying improved algorithms or data structures [SST18, LS08].



Chapter 8

Symmetry

Frameworks with symmetric realisations may have infinitesimal motions that preserve

all symmetries of the framework, and motions that preserve only a subgroup of the

symmetries of the initial framework. Frameworks for which any motion preserves all

symmetries of the framework, known as forced symmetric rigid frameworks, may be

considered as a subset of the incidentally symmetric rigid frameworks, for which a

motion may preserve only a subgroup of the overall symmetry group. We introduce

some definitions and concepts for analysing symmetric rigidity, for which further

details and references may be found in [SW17b] and [Sch17], and include some initial

extensions to symmetric frameworks with collections of coordinated bars.

As previously, we model coordinated frameworks by edge-coloured graphs, with the

additional constraint that symmetric copies of an edge are all coloured identically. We

shall use Schoenflies notation for symmetry groups, where Cs denotes the reflection

group (of order 2), Cn denotes the group generated by an n-fold rotation, and Cnv

denotes the dihedral group of order 2n, consisting of a reflection and an n-fold rotation.

Recall that as a consequence of Remark 3.1.20, a coordinated framework (G, c, p, r)

may simply be denoted by (G, c, p).
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8.1 Rigidity of frameworks with forced symmetry

Throughout this chapter, let G = (V,E) be a graph and Γ be a group, where id denotes

the identity element of Γ.

Definition 8.1.1 ([Ser77, ST15]). An automorphism of the graph G is a permutation

of the vertex set, α : V → V , such that {v1, v2} ∈ E if and only if {α(v1), α(v2)} ∈ E.

The set of all automorphisms of G form a group, denoted by Aut(G).

A group homomorphism θ : Γ → Aut(G) is an action of the group Γ on the graph

G. If, for all γ ∈ Γ \ {id}, θ(γ)(v) ̸= v for all v ∈ V , the action θ is free (on the vertices

of G).

The following standard definitions may be found in (among others) [ST15] and

[SW17b].

Definition 8.1.2. A graph G is Γ-symmetric (with respect to θ) when the group Γ

acts on G by θ.

Definition 8.1.3. The Γ-symmetric graph G = (V,E) has vertex orbits which partition

the vertex set, Γv := {θ(γ)(v) : γ ∈ Γ} for v ∈ V . Similarly, an edge orbit of G is

Γ{v1, v2} := {θ(γ)({v1, v2}) : γ ∈ Γ} for an edge {v1, v2} ∈ E.

Definition 8.1.4. The quotient graph G/Γ = (V ∗, E∗) for the Γ-symmetric graph G

is the multigraph with vertex set V ∗ := {Γv : v ∈ V }, and edge set E∗ := {Γ{v1, v2} :

{v1, v2} ∈ E}.

Definition 8.1.5. Let G be a Γ-symmetric graph with quotient graph G/Γ = (V ∗, E∗).

A representative vertex may be chosen for each vertex orbit, Γv = {θ(γ)v : γ ∈ Γ}.

Each edge orbit Γ{v1, v2} in E∗, connecting the vertex orbits Γv1 and Γv2, may be

viewed as {{θ(γ)(v1), θ(γ) ◦ θ(α)(v2)} : γ ∈ Γ} for some unique α ∈ Γ. We orient the

edge orbit Γ{v1, v2} from Γv1 towards Γv2, and label it with gain α. The labelling of

all edge orbits E∗ is denoted by ψ : E∗ → Γ.
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This gives the directed, labelled, quotient Γ-gain graph of G, (G/Γ, ψ).

Remark 8.1.6. The quotient Γ-gain graph (G/Γ, ψ) is unique up to the choice of

representative vertex for each vertex orbit, and the choice of orientation of directed

edges. We may reverse the orientation of an edge e ∈ E∗ by replacing ψ(e) with

(ψ(e))−1.

Remark 8.1.7. For simplicity, in figures any edges with ψ(e) = id will usually be left

unlabelled.

Definition 8.1.8. Let v1, e1, v2, . . . , vk, ek, vk+1 = v1 be a closed walk W within the

quotient Γ-gain graph (G/Γ, ψ). This closed walk is balanced if

ψ(W ) :=
k∏
i=1

ψ(ei)sign(ei) = id,

where sign(ei) = 1 if the edge ei = {vi, vi+1} is directed from vi to vi+1, and sign(ei) =

−1 if the edge ei is directed from vi+1 to vi.

Let D ⊆ E∗ be a (possibly disconnected) subset of edges of the quotient Γ-gain

graph (G/Γ, ψ). W(D, v) is the set of closed walks in G/Γ starting at v ∈ V (D) using

only edges of D, and ⟨D⟩ψ,v := {ψ(W ) : W ∈ W(D, v)} is the subgroup of Γ induced

by D.

A connected component F of D ⊆ E∗ is balanced if ⟨F ⟩ψ,v = id for some v ∈ V (F ).

If each connected component of D ⊆ E∗ is balanced, then the edge set D is balanced.

If not, D is unbalanced.

Remark 8.1.9. If Γ is an additive group, we define instead ψ(W ) := ∑k
i=1 ψ(ei)sign(ei).

Lemma 8.1.10 ([JKT12]). Let (G/Γ, ψ) be a quotient Γ-gain graph where G/Γ =

(V ∗, E∗). For a connected component F ⊆ E∗, ⟨F ⟩ψ,v = id for some v ∈ V (F ) is

equivalent to ⟨F ⟩ψ,v = id for all v ∈ V (F ).

We have the following extension of Definition 2.7.3.
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Definition 8.1.11 ([ST15]). Let G = (V,E) be a Γ-symmetric graph, and let ψ :

E∗ → Γ be a gain labelling of the quotient graph G/Γ = (V ∗, E∗). The quotient Γ-gain

graph (G/Γ, ψ) is (k, ℓ,m)-gain-sparse (for non-negative integers k, ℓ,m with m ≤ ℓ)

when

|F | ≤


k|V (F )| − ℓ for all non-empty balanced F ⊆ E∗,

k|V (F )| −m for all non-empty F ⊆ E∗.

If (G/Γ, ψ) also satisfies |E∗| = k|V ∗| −m, then (G/Γ, ψ) is (k, ℓ,m)-gain-tight.

We wish to extend standard rigidity results to Γ-symmetric frameworks, which

requires some extension from these definitions on Γ-symmetric graphs. We note that

O(Rd) denotes the orthogonal group of Rd, consisting of the isometries of Rd that

preserve the origin.

Definition 8.1.12 ([SW17b, ST15]). Let (G, p) be a framework, where G = (V,E)

is a Γ-symmetric graph with respect to the homomorphism θ : Γ → Aut(G) and

p : V → Rd is a configuration of the vertices. If τ : Γ → O(Rd) is a homomorphism

such that τ(γ)
(
p(v)

)
= p

(
θ(γ)(v)

)
for all v ∈ V , (G, p) is a Γ-symmetric framework.

The Γ-symmetric framework (G, p) has symmetry group τ(Γ) := {τ(γ) : γ ∈ Γ} ⊂

O(Rd).

For simplicity, we assume that the action θ : Γ → Aut(G) is free on the vertices of

G in the following definition.

Definition 8.1.13 ([SW11, SW17b, ST15]). Let (G, p) be a Γ-symmetric framework

(with respect to the free action θ : Γ → Aut(G) and the homomorphism τ : Γ → O(Rd)),

with quotient Γ-gain graph (G/Γ, ψ). Let V ∗ = {v1, . . . , vk} be a set of representative

vertices, one for each vertex orbit of V ∗, and recall that each edge orbit Γ{u1, u2}

may be represented by {θ(γ)(vi), θ(γ) ◦ θ(α)(vj)}, where u1 ∈ Γ(vi), u2 ∈ Γ(vj) for

representative vertices vi, vj.
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The orbit rigidity matrix O(G/Γ, ψ, p) consists of |E∗| rows, where the row corre-

sponding to the edge orbit Γ{vi, vj} is

[
. . . 0 p(vi) − τ(ψ({vi, vj}))p(vj) 0 . . . 0 p(vj) − τ(ψ({vi, vj}))−1p(vi) 0 . . .

]
.

The row corresponding to a loop at vi is

[
0 . . . 0 2p(vi) − τ(ψ({vi, vi}))p(vi) − τ(ψ({vi, vi}))−1p(vi) 0 . . . 0

]
.

Example 8.1.14. Figure 8.1 shows a Cs-symmetric realisation of the graph C4, together

with the corresponding quotient Cs-gain graph (G/Γ, ψ, p).

1 1′

2 2′

a (G, p)

1 2s
s s

b (G/Γ, ψ, p)

Figure 8.1 Example 8.1.14: a Cs-symmetric realisation of the graph C4, together with
the corresponding quotient Cs-gain graph. (G, p) is forced Cs-symmetric infinitesimally
rigid, since the only non-trivial infinitesimal motion is not symmetric.

The quotient Cs-gain graph (G/Γ, ψ, p) has the following orbit rigidity matrix:

O(G/Γ, ψ, p) =


p(1) − τ(s)p(2) p(2) − τ(s)−1p(1)

2p(1) − τ(s)p(1) − τ(s)−1p(1) 0

0 2p(2) − τ(s)p(2) − τ(s)−1p(2)

 .
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Figure 8.2 shows another Cs-symmetric realisation of the graph C4, which is not

forced-symmetric rigid. The Cs-symmetric framework (G′, p′) has orbit rigidity matrix

O(G′/Γ, ψ′, p′) =

 p′(1) − p′(2) p′(2) − p′(1)

p′(1) − τ(s)p′(2) p′(2) − τ(s)−1p′(1)

 .

1

2

1′

2′

a (G′, p′)

1 2

s

b (G′/Γ, ψ′, p′)

Figure 8.2 Example 8.1.14: an alternative Cs-realisation of the graph C4, with
corresponding quotient Cs-gain graph. (G′, p′) has a symmetry-preserving non-trivial
infinitesimal motion, and hence has a corresponding continuous symmetry-preserving
motion by Theorem 8.1.17.

Definition 8.1.15 ([ST15]). The Γ-symmetric framework (G, p) is Γ-regular when

the orbit rigidity matrix O(G/Γ, ψ, p) has rankO(G/Γ, ψ, p) ≥ rankO(G/Γ, ψ, q) for

all Γ-symmetric realisations q of G.

Definition 8.1.16 ([SW17b, ST15]). Let (G, p) be a Γ-symmetric framework with

respect to θ : Γ → Aut(G) and τ : Γ → O(Rd). An infinitesimal motion p′ of (G, p) is

a fully Γ-symmetric infinitesimal motion of the framework (G, p) when, for all γ ∈ Γ

and all v ∈ V ,

τ(γ)p′(v) = p′
(
θ(γ)(v)

)
.

A trivial infinitesimal motion that is also a fully Γ-symmetric infinitesimal motion

is a fully Γ-symmetric trivial infinitesimal motion. We denote the space of fully Γ-
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symmetric trivial infinitesimal motions of (G, p) by TΓ(G, p), or TΓ when the framework

(G, p) is clear, with dimension trivτ(Γ).

A Γ-symmetric framework (G, p) for which every fully Γ-symmetric infinitesimal

motion p′ is a trivial infinitesimal motion is forced Γ-symmetric infinitesimally rigid.

We have the following result, which motivates the consideration of forced symmetric

rigidity.

Theorem 8.1.17 ([Sch10d]). A Γ-regular framework (G, p) has a non-trivial fully

Γ-symmetric infinitesimal motion if and only if (G, p) has a non-trivial symmetry-

preserving continuous motion.

The orbit rigidity matrix allows us to check for forced symmetric rigidity as follows:

Theorem 8.1.18 ([SW11]). Let (G, p) be a Γ-symmetric framework with respect to

θ : Γ → Aut(G) and τ : Γ → O(Rd). The orbit rigidity matrix O(G/Γ, ψ, p) has the

following properties:

a. The kernel of O(G/Γ, ψ, p) is isomorphic to the space of fully Γ-symmetric

infinitesimal motions of (G, p);

b. (G, p) is forced Γ-symmetric infinitesimally rigid if and only if rankO(G/Γ, ψ, p) =

d|V/Γ| − trivτ(Γ) (where trivτ(Γ) is the dimension of the space of trivial fully Γ-

symmetric infinitesimal motions of (G, p)).

Definition 8.1.19. If the rows of the orbit rigidity matrix O(G/Γ, ψ, p) are also

independent, then (G, p) is forced Γ-symmetric isostatic.

There are necessary conditions for a Γ-symmetric framework (G, p) to be forced

Γ-symmetric isostatic [SW17b, Theorem 64.1.4], and Laman-type characterisations of

forced Γ-symmetric infinitesimally rigid frameworks when Γ is C2, Cs, or Cnv for odd

n [JKT12, MT14, MT15], in terms of (k, ℓ,m)-gain-sparsity of the quotient Γ-gain

graph (G/Γ, ψ, p).



8.2 Incidental symmetry 194

8.2 Incidental symmetry

Γ-symmetric frameworks may have some infinitesimal motions that preserve the whole

symmetry group, but may also have infinitesimal motions that preserve only some

symmetries. The orbit rigidity matrix identifies infinitesimal motions that are fully

Γ-symmetric, and in order to identify other infinitesimal motions, we decompose the

rigidity matrix into smaller submatrices. Each of these may be considered as being

associated with an irreducible representation of the group Γ.

We note that many of the following standard definitions are collected in [SW17b].

Definition 8.2.1 ([Ser77]). A group representation is a homomorphism ρ : Γ →

GL(X), where the linear space X is the representation space of ρ. A subspace U ⊆ X

is ρ-invariant if ρ(γ)(U) ⊆ U for all γ ∈ Γ.

A representation ρ is irreducible if the only ρ-invariant subspaces of X are X and

the trivial subspace {0}.

The character of a representation ρ : Γ → GL(X) is the row vector χ(ρ) :=[
trace (ρ(γ1)) . . . trace

(
ρ(γ|Γ|)

)]
, for some fixed ordering of the elements of Γ,

γ1, . . . , γ|Γ|.

Let ρ0, . . . , ρr denote the irreducible representations of the group Γ, where ρ0 is the

trivial irreducible representation.

Definition 8.2.2 ([ST15]). Let (G, p) be a Γ-symmetric framework (with respect to

θ : Γ → Aut(G) and τ : Γ → O(Rd)). Recall that the Kronecker delta is defined as

δi,j = 1 for i = j, δi,j = 0 for i ̸= j.

The external representation of (G, p) is the group representation τ ⊗ PV : Γ → Rdn,

where PV : Γ → GL(Rn) is the permutation matrix of the vertex set V by θ(γ), given

by PV (γ) :=
[
δi,θ(γ)(j)

]
i,j

.

The internal representation of (G, p) is the group representation PE : Γ → GL(Rm),

where PE(γ) is the permutation matrix of the edge set E by θ(γ).



8.2 Incidental symmetry 195

Definition 8.2.3 ([ST15]). Let ρ1, ρ2 be matrix representations of the group Γ, and

let R : Rs → Rt be a matrix. If Rρ1(γ) = ρ2(γ)R for all γ ∈ Γ, R is a Γ-linear map of

ρ1 and ρ2. The linear space of all such Γ-linear maps is denoted by HomΓ(ρ1, ρ2).

Theorem 8.2.4 ([ST15, Sch10a]). Let (G, p) be a Γ-symmetric framework (with

respect to θ : Γ → Aut(G) and τ : Γ → O(Rd)). Then the rigidity matrix R(G, p) lies

in HomΓ(τ ⊗ PV , PE).

Since R(G, p) ∈ HomΓ(τ ⊗PV , PE), Schulze [Sch10a] shows that by Schur’s Lemma

R(G, p) may be block-diagonalised as follows.

Corollary 8.2.5 ([Sch10a]). Let R(G, p) be the rigidity matrix for the framework

(G, p), which is Γ-symmetric (with respect to θ : Γ → Aut(G) and τ : Γ → O(Rd)).

There exist non-singular matrices S and T such that T⊤R(G, p)S is in block diagonalised

form, with each block corresponding to an irreducible representation of Γ.

We refer to R̃(G, p) := T⊤R(G, p)S as the block diagonalised rigidity matrix.

Remark 8.2.6 ([Sch10a, SW17b]). The matrices S and T correspond to the external

representation and internal representation respectively. These decompose Rdn into the

direct sum of (τ ⊗ PV )-invariant subspaces X0 ⊕ . . .⊕Xr, and Rm into the direct sum

of the PE-invariant subspaces Y0 ⊕ . . .⊕ Yr. Each block R̃i(G, p) for 0 ≤ i ≤ r consists

of dim(Xi) columns and dim(Yi) rows, and corresponds to an irreducible representation

ρi of Γ.

R̃(G, p) := T⊤R(G, p)S =


R̃0(G, p) . . . 0

... . . . ...

0 . . . R̃r(G, p)

 .

As ρ0 denotes the trivial irreducible representation, the submatrix R̃0(G, p) is

equivalent to the orbit rigidity matrix.[SW11]



8.2 Incidental symmetry 196

Definition 8.2.7 ([Sch10a]). The space of trivial infinitesimal motions of a framework

(G, p) is denoted by T (G, p), or T when the framework (G, p) is clear.

Schulze proves that T (G, p) is a (τ⊗PV )-invariant subspace of Rdn [Sch10a, Lemma

4.2]. We may decompose T (G, p) into the direct sum T0 ⊕ . . . ⊕ Tr, and for each

irreducible representation ρi, 0 ≤ i ≤ r, it is necessary that dim(Yi) = dim(Xi)−dim(Ti)

for the Γ-symmetric framework (G, p) to be infinitesimally rigid and independent. We

note that the fully Γ-symmetric trivial infinitesimal motions (Definition 8.1.16) are the

trivial infinitesimal motions that correspond to the trivial irreducible representation,

T0 = TΓ(G, p).

We may restate the necessary conditions discussed above in the following way,

where (τ ⊗ PV )(T ) denotes the subrepresentation of τ ⊗ PV with representation space

T (G, p).

Theorem 8.2.8 ([OP10, Sch10a, SW17b]). Let G be a Γ-symmetric graph with respect

to θ : Γ → Aut(G) and τ : Γ → O(Rd). Then when (G, p) is isostatic, the following

holds:

χ(PE) = χ(τ ⊗ PV ) − χ
(
(τ ⊗ PV )(T )

)
.

Definition 8.2.9 ([SW17b]). If the action θ is not free on the vertex set V , and hence

there is a vertex v ∈ V such that θ(γ)(v) = v for some γ ∈ Γ, we refer to v as a fixed

vertex.

An edge {v1, v2} ∈ E such that either θ(γ)(v1) = v1 and θ(γ)(v2) = v2, or θ(γ)(v1) =

v2 and θ(γ)(v2) = v1, will have θ(γ)({v1, v2}) = {v1, v2}, and shall be referred to as a

fixed edge.
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We denote the set of vertices fixed by γ ∈ Γ by Vγ, and the set of edges fixed by

γ ∈ Γ by Eγ.

Theorem 8.2.10 ([SW17b, CFG+09]). Let (G, p) be a Γ-symmetric isostatic frame-

work (with respect to θ : Γ → Aut(G) and τ : Γ → O(Rd)). For each γ ∈ Γ, we have

the following:

|Eγ| = trace(τ(γ)) · |Vγ| − trace((τ ⊗ PV )(T )(γ))

Table 8.1 contains the standard 2-dimensional characters which have been calculated

for various elements of symmetry groups [SW17b, AH94], where Cn denotes a rotation

around the origin by 2π
n

.

id s C2 Cn, n > 2

χ (PE) |E| |Es| |EC2| |ECn|

χ
(
τ ⊗ PV

)
2|V | 0 −2|VC2|

(
2 cos 2π

n

)
|VCn|

χ
(
(τ ⊗ PV )(T )

)
3 −1 −1 2 cos 2π

n
+ 1

Table 8.1 The 2-dimensional characters calculated for elements of the symmetry group
τ(Γ) in 2 dimensions [SW17b]

For isostatic incidentally Γ-symmetric frameworks in R2, we may use the character

equations to obtain additional necessary conditions for such frameworks to be isostatic,

in terms of the number of elements fixed by a given symmetry element.

Theorem 8.2.11 (Theorem 64.2.5 [SW17b]). Let (G, p) be a 2-dimensional framework

that is Γ-symmetric with respect to θ : Γ → Aut(G), and τ : Γ → O(R2), and let |Vγ|,

|Eγ| denote the number of vertices and edges fixed by γ ∈ Γ respectively. If (G, c, p) is

isostatic then the following are satisfied:

a. if s ∈ τ(Γ), then |Es| = 1;
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b. if C2 ∈ τ(Γ), then |VC2| = 0 and |EC2| = 1;

c. if C3 ∈ τ(Γ), then |VC3| = 0;

d. Cn /∈ τ(Γ) for any n > 3.

When θ is a free action on the vertex set V , infinitesimal rigidity may be charac-

terised for Γ-symmetric frameworks where Γ ∈ {C2, Cs, Cn : n odd} [ST15, Ike15]. The

counts in Theorem 8.2.11 are sufficient for (G, p) to be Γ-symmetric isostatic, when

when G also satisfies the Laman conditions and (G, p) is Γ-generic (i.e. R(G, p) has max-

imum rank among Γ-symmetric realisations of G) [Sch10c, Sch10b, CFG+09, SW17b].

Such a characterisation remains an open problem for the dihedral groups C2v and C3v.

By Theorem 8.2.11 there can be no isostatic frameworks in R2 with Cn symmetry for

n > 3, hence there are no isostatic Γ-symmetric frameworks with Γ ∈ {Cn, Cnv : n > 3}.

8.3 Coordinated symmetry

In order to consider coordinated frameworks with symmetry, we require that all

symmetric copies of an edge have the same colour. We give the following definition.

Definition 8.3.1. Let G be a Γ-symmetric graph with respect to θ : Γ → Aut(G)

and τ : Γ → O(Rd). A Γ-symmetric k-edge-colouring for G is a k-edge-colouring

c : E → {0, 1, . . . , k} such that for every edge {u1, u2} ∈ E, c (γ({u1, u2})) = c({u1, u2})

for all γ ∈ Γ.

Definition 8.3.2. The k-coloured graph (G, c) is k-coloured Γ-symmetric (with respect

to θ : Γ → Aut(G) and τ : Γ → O(Rd)) if G is a Γ-symmetric graph (with respect

to θ : Γ → Aut(G) and τ : Γ → O(Rd)), and c : E → {0, 1, . . . , k} is a Γ-symmetric

k-edge-colouring.

Since the colouring c is consistent for all edges within each edge orbit, we may

define an equivalent k-edge-colouring on the quotient Γ-gain graph.
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Definition 8.3.3. Let (G, c) be a Γ-symmetric graph (with respect to θ : Γ → Aut(G)

and τ : Γ → O(Rd)) with a Γ-symmetric k-edge-colouring c : E → {0, 1, . . . , k}.

The k-coloured quotient Γ-gain graph (G/Γ, ψ, cΓ) is the directed ψ-labelled quotient

graph G/Γ = (V ∗, E∗), with a k-edge-orbit-colouring cΓ : E∗ → {0, 1, . . . , k}, where

cΓ(Γ{v1, v2}) = c({v1, v2}).

Definition 8.3.4. Let (G, c) be a k-coloured Γ-symmetric graph with respect to

θ : Γ → Aut(G) and τ : Γ → O(Rd), and let p : V → Rd be a configuration of the

vertices of G. If τ : Γ → O(Rd) satisfies τ(γ)
(
p(v)

)
= p

(
θ(γ)(v)

)
for all v ∈ V , (G, c, p)

is a k-coordinated Γ-symmetric framework.

Remark 8.3.5. We may equivalently define a k-coordinated Γ-symmetric framework

to be a Γ-symmetric framework (G, p) with a Γ-symmetric k-edge-colouring, since in

both cases the edge colours are preserved by the symmetry operation.

8.3.1 Forced coordinated symmetry

We may extend the notion of the orbit rigidity matrix to k-coordinated Γ-symmetric

frameworks as follows.

Definition 8.3.6. Let 1Γ(c) denote the matrix consisting of |E∗| rows, where the

row corresponding to the edge orbit Γ{v1, v2} is ecΓ(Γ{v1,v2}) = ec({v1,v2}) ∈ Rk when

cΓ(Γ{v1, v2}) = c({v1, v2}) ∈ {1, . . . , k}, and the row is the k-dimensional zero vector

if cΓ(Γ{v1, v2}) = c({v1, v2}) = 0. This may be referred to as the orbit characteristic

matrix.

The coordinated orbit rigidity matrix for a Γ-symmetric k-coordinated framework

(G, c, p) is O(G/Γ, ψ, cΓ, p) :=
[
O(G/Γ, ψ, p)

∣∣∣1Γ(c)
]
.

This allows us to define the following class of infinitesimal motions of a k-coordinated

Γ-symmetric framework (G, c, p).
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Definition 8.3.7. Let (G, c, p) be a k-coordinated Γ-symmetric framework with respect

to θ : Γ → Aut(G) and τ : Γ → O(Rd), and let (p′, r′) be a k-coordinated infinitesimal

motion of (G, c, p). Then (p′, r′) is a fully Γ-symmetric k-coordinated infinitesimal

motion of (G, c, p) if, for all γ ∈ Γ and all v ∈ V ,

τ(γ)p′(v) = p′
(
θ(γ)(v)

)
.

Remark 8.3.8. We note that since (G, c, p) is a Γ-symmetric k-coordinated framework,

τ(γ)p(v) = p
(
θ(γ)(v)

)
for all v ∈ V and γ ∈ Γ, and that τ(γ)p′(v) = p′

(
θ(γ)(v)

)
for

all v ∈ V and γ ∈ Γ for the fully Γ-symmetric k-coordinated infinitesimal motion

(p′, r′) ∈ Rd|V |+k.

Recall that G/Γ = (V ∗, E∗) and that (G/Γ, ψ, cΓ, p) is the k-coordinated quotient

Γ-gain graph of (G, c, p). We may define an equivalent fully Γ-symmetric infinitesimal

motion (p∗, r∗) ∈ Rd|V ∗|+k on (G/Γ, ψ, cΓ, p) by p∗ := p′|V ∗ and r∗ := r′, since any edge

orbit may be written as
{
{θ(γ)(vi), θ(γ) ◦ θ(ψij)(vj)} : γ ∈ Γ

}
for some unique ψij ∈ Γ.

It is equivalent for O(G/Γ, ψ, cΓ, p)(p∗, r∗) = [0,0] and R(G, c, p)(p′, r′) = [0,0].

Remark 8.3.9. Since the trivial infinitesimal motions of a coordinated framework

correspond exactly to the trivial infinitesimal motions of a standard framework (Defini-

tion 3.1.17), the fully Γ-symmetric trivial infinitesimal motions of the k-coordinated

framework (G, c, p) are the standard fully Γ-symmetric trivial infinitesimal motions

of the uncoloured framework (G, p) (Definition 8.1.16). We denote the space of fully

Γ-symmetric trivial infinitesimal motions of (G, c, p) by TΓ(G, c, p), and the dimension

remains trivτ(Γ).
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Definition 8.3.10. The k-coordinated Γ-symmetric framework (G, c, p) is forced Γ-

symmetric infinitesimally rigid when every fully Γ-symmetric infinitesimal motion of

(G, c, p) is a trivial fully Γ-symmetric infinitesimal motion.

(G, c, p) is forced Γ-symmetric isostatic if (G, c, p) is forced Γ-symmetric infinitesi-

mally rigid and the rows of the coordinated orbit rigidity matrix O(G/Γ, ψ, cΓ, p) are

independent.

Example 8.3.11. Figure 8.3 contains two 2-coordinated Cs-symmetric realisations

of K4, labelled (G, c, p) and (G′, c′, p′), and their corresponding 2-coloured quotient

Cs-gain graphs, (G/Γ, ψ, cΓ) and (G′/Γ, ψ′, c′
Γ). Both are forced Cs-symmetric flexible.

1 1′

2 2′

a The 2-coordinated Cs-symmetric
framework (G, c, p).

1 1′

2 2′

b The 2-coordinated Cs-symmetric
framework (G′, c′, p′).

1 2

s

s s

c The 2-coordinated quotient Cs-gain
graph (G/Γ, ψ, cΓ, p).

1 2

s

s s

d The 2-coordinated quotient Cs-gain
graph (G′/Γ, ψ′, c′

Γ, p
′).

Figure 8.3 Example 8.3.11: two different 2-coordinated Cs-symmetric realisations of
the graph K4, and the corresponding quotient Cs-gain graphs.
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(G, c, p) has the following coordinated orbit rigidity matrix O(G/Γ, ψ, cΓ, p):



p(1) − p(2) p(2) − p(1) 1 0

2p(1) − τ(s)p(1) − τ(s)−1p(1) 0 0 1

p(1) − τ(s)p(2) p(2) − τ(s)−1p(1) 0 0

0 2p(2) − τ(s)p(2) − τ(s)−1p(2) 1 0


,

while (G′, c′, p′) has coordinated orbit rigidity matrix O(G′/Γ, ψ′, c′
Γ, p

′):



p′(1) − p′(2) p′(2) − p′(1) 1 0

2p′(1) − τ(s)p′(1) − τ(s)−1p′(1) 0 0 0

p′(1) − τ(s)p′(2) p′(2) − τ(s)−1p′(1) 0 1

0 2p′(2) − τ(s)p′(2) − τ(s)−1p′(2) 0 0


.

Both coordinated orbit rigidity matrices consist of four rows and six columns,

however there is only one trivial motion preserved by Cs. This makes it clear that both

2-coordinated 2-dimensional Cs-symmetric frameworks will be forced Cs-symmetric

flexible.

Example 8.3.12. Figure 8.4 shows a 1-coordinated Cs-symmetric realisation of K4

that is forced Cs-symmetric rigid. This may be obtained from (G′, p′) in Example 8.1.14

(Figure 8.2) by adding two coloured edges, which remove the fully Cs-symmetric motion.

The coordinated orbit rigidity matrix is



p′(1) − p′(2) p′(2) − p′(1) 0

p′(1) − τ(s)p′(2) p′(2) − τ(s)−1p′(1) 0

2p′(1) − τ(s)p′(1) − τ(s)−1p′(1) 0 1

0 2p′(2) − τ(s)p′(2) − τ(s)−1p′(2) 1


.
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1

2

1′

2′

1 2

s

s s

Figure 8.4 A 1-coordinated realisation of K4 that is forced Cs-symmetric rigid, and
the associated quotient Cs-gain graph.

This matrix has rank four, which corresponds to the 1-coordinated 2-dimensional

Cs-symmetric framework being forced Cs-symmetric rigid, and forced Cs-symmetric

isostatic.

Theorem 8.3.13. Let (G, c, p) be a k-coordinated framework that affinely spans Rd,

and is Γ-symmetric with respect to θ : Γ → Aut(G) and τ : Γ → O(Rd). Then (G, c, p)

is forced Γ-symmetric infinitesimally rigid if and only if the coordinated orbit rigidity

matrix O(G/Γ, ψ, cΓ, p) satisfies

rankO(G/Γ, ψ, cΓ, p) = d|V/Γ| + k − trivτ(Γ).

Proof. Let (G, c, p) be a k-coordinated Γ-symmetric framework. The coordinated orbit

rigidity matrix O(G/Γ, ψ, cΓ, p) consists of |E/Γ| rows and d|V/Γ| + k columns, and

hence rankO(G/Γ, ψ, cΓ, p) = d|V/Γ| + k − dim ker
(
O(G/Γ, ψ, cΓ, p)

)
.

We recall that by Theorem 8.1.18a, the kernel of the standard orbit rigidity matrix

O(G/Γ, ψ, p) is isomorphic to the space of fully Γ-symmetric infinitesimal motions

of (G, p). The kernel of O(G/Γ, ψ, cΓ, p) is therefore isomorphic to the space of fully

Γ-symmetric coordinated infinitesimal motions of (G, c, p).
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Since the space of trivial coordinated infinitesimal motions has equal dimension to

the standard space of trivial infinitesimal motions (see Definition 3.1.17), the space

of fully Γ-symmetric trivial coordinated infinitesimal motions of (G, c, p) will have

the same dimension as the space of fully Γ-symmetric trivial infinitesimal motions,

trivτ(Γ). Therefore (G, c, p) is forced Γ-symmetric infinitesimally rigid if and only if

dim kerO(G/Γ, ψ, cΓ, p) = trivτ(Γ), and hence rankO(G/Γ, ψ, cΓ, p) = d|V/Γ| + k −

trivτ(Γ).

Theorem 8.3.14. Let (G, c, p) be a k-coordinated framework that is Γ-symmetric

with respect to θ : Γ → Aut(G) and τ : Γ → O(Rd). If (G, c, p) is forced Γ-symmetric

isostatic then the k-coordinated quotient Γ-gain graph (G/Γ, ψ, cΓ, p) satisfies

|E/Γ| = d|V/Γ| + k − trivτ(Γ)

|F | ≤ d|V (F )| + k(F ) − trivτ(⟨F ⟩ψ,v)(p(F )) for all F ⊆ E/Γ and all v ∈ V (F ),

where v ∈ V (F ) is identified with its representative vertex in V/Γ, k(F ) denotes

the number of non-empty colour classes (F ∩ Ei ̸= ∅ for 1 ≤ i ≤ k), p(F ) ={
τ(γ)

(
p(v)

)
: v ∈ V (F ), γ ∈ Γ

}
, and trivτ(⟨F ⟩ψ,v)(p(F )) denotes the dimension of the

space of fully (⟨F ⟩ψ,v)-symmetric trivial infinitesimal motions of the configuration

p(F ).

Proof. Let (G, c, p) be a k-coordinated framework that is forced Γ-symmetric isostatic.

By Theorem 8.3.13, rankO(G/Γ, ψ, cΓ, p) = d|V/Γ| + k − trivτ(Γ) when (G, c, p) is

forced Γ-symmetric infinitesimally rigid, and rankO(G/Γ, ψ, cΓ, p) = |E/Γ| when

(G, c, p) is an independent framework. This gives the overall constraint that |E/Γ| =

d|V/Γ| + k − trivτ(Γ).
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We consider subgraphs of the k-coordinated quotient Γ-gain graph (G/Γ, ψ, cΓ, p) as

being generated by a set of edges F ⊂ E/Γ, where V (F ) is the set of vertices adjacent

to edges in F , identified with their representative vertices in V/Γ.

Suppose that there is a subgraph (V (F ), F ) such that |F | > d|V (F )| + k(F ) −

trivτ(⟨F ⟩ψ,v)(p(F )). The submatrix of O(G/Γ, ψ, cΓ, p) consisting of the rows correspond-

ing to the edges in F will have a kernel with dimension trivτ(⟨F ⟩ψ,v)(p(F )), since it con-

sists of fully (⟨F ⟩ψ,v)-symmetric trivial infinitesimal motions of the configuration p(F ),

and hence the rank of this submatrix is equal to d|V (F )| + k(F ) − trivτ(⟨F ⟩ψ,v)(p(F )).

This rank is strictly smaller than |F |, and hence the submatrix contains a row depen-

dence.

The row dependence within this submatrix is a row dependence within the co-

ordinated orbit rigidity matrix O(G/Γ, ψ, cΓ, p). The existence of such a subgraph

implies that (G, c, p) is not independent, and hence cannot be k-coordinated forced

Γ-symmetric isostatic.

We also conjecture that for k = 1 and either Γ ∈ {Cs, Cn, Cmv : n,m ∈ N, n ≥

2,m odd}, the conditions stated in Theorem 8.3.14 are both necessary and sufficient for

a Γ-regular 1-coordinated Γ-symmetric framework to be forced Γ-symmetric isostatic

in R2. It seems likely, however, that inductive proofs similar to those that exist in

the uncoloured case will be hard to produce, since Γ = C2 and Γ = Cs will require

characterising the 1-coordinated quotient Γ-gain graph with |E/Γ| = 2|V/Γ|, and so a

vertex of degree 3 is no longer guaranteed. For Γ = Cmv with m odd, the 1-coordinated

Γ-gain graph satisfying these counts has |E/Γ| = 2|V/Γ| + 1. It is possible that a

matroid union argument may gain more traction than an inductive argument in these

cases, if an appropriate matroid can be identified.
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8.3.2 Incidental coordinated symmetry

We first prove the following key result, related to the standard “intertwining property”,

which allows us to block-decompose the coordinated rigidity matrix.

Theorem 8.3.15. Let (G, c, p) be a Γ-symmetric k-coordinated framework (with

respect to θ : Γ → Aut(G) and τ : Γ → O(Rd)). Then the coordinated rigidity matrix

R(G, c, p) lies in HomΓ((τ ⊗ PV ) ⊕ Ik, PE).

Proof. Let R(G, c, p) be the coordinated rigidity matrix for the k-coordinated Γ-

symmetric d-dimensional framework (G, c, p). Recall that for any edge e = {vi, vj} ∈ E,

the row of R(G, c, p) corresponding to e will contain p(vi) − p(vj) in the d columns

corresponding to vi, and p(vj) − p(vi) in the d columns corresponding to vj . For e ∈ Eℓ,

1 ≤ ℓ ≤ k, the final k columns of the row corresponding to e may be considered as

the k-dimensional basis vector eℓ, while for e ∈ E0, the final k columns of the row

corresponding to e will contain only zeros.

Let Re denote the matrix obtained from R(G, c, p) by replacing all entries outside

the row corresponding to the edge e with zeros, and hence R(G, c, p) = ∑
e∈E Re. Each

Re may be viewed as the combination of a pair of matrices,
[
R̂e,1e

]
, where R̂e is the

|E| by d|V | matrix obtained from the standard rigidity matrix R(G, p) by deleting

all non-zero entries outside the row corresponding to e, and 1e is the |E| by k matrix

obtained similarly from the characteristic matrix 1(c). We note that for all e ∈ E0, 1e

is the zero matrix.

We may construct a directed graph G⃗ from G by assigning an arbitrary direction

to each edge e ∈ E. Let IG⃗ denote the directed incidence matrix for G⃗. For each

e ∈ E, we obtain Ie⃗ from IG⃗ as above, by replacing all non-zero entries outside the row

corresponding to e with zeros. As discussed by Schulze and Tanigawa [ST15], each

matrix R̂e for e = {vi, vj} ∈ E may be viewed as the Kronecker product p(e)⊤ ⊗ Ie⃗,
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where p(e) := p(vi) − p(vj) ∈ Rd. We therefore have Re =
[
p(e)⊤ ⊗ Ie⃗,1e

]
for each

e ∈ E.

Recall that for each γ ∈ Γ, PV (γ) is the permuation matrix of the vertex set V by γ(θ)

and PE(γ) is the permutation matrix of the edge set E by θ(γ), i.e. PV (γ) =
[
δi,θ(γ)(j)

]
i,j

is a square matrix of dimension |V |.

Since R(G, c, p) = ∑
e∈E Re, we consider PE(γ)Re

[(
(τ ⊗ PV ) ⊕ Ik

)
(γ)

]⊤
for each

e ∈ E and γ ∈ Γ:

PE(γ)Re

[(
(τ ⊗ PV ) ⊕ Ik

)
(γ)

]⊤
= PE(γ)

[
p(e)⊤ ⊗ Ie⃗,1e

][(
τ(γ)⊤ ⊗ PV (γ)⊤

)
⊕ Ik

]
= PE(γ)

[ (
p(e)⊤ ⊗ Ie⃗

) (
τ(γ)⊤ ⊗ PV (γ)⊤

)
, (1(e)) (Ik)

]
= PE(γ)

[(
p(e)⊤τ(γ)⊤

)
⊗
(
Ie⃗PV (γ)⊤

)
,1e

]
=
[
PE(γ)

((
τ(γ)p(e)

)⊤
⊗
(
Ie⃗PV (γ)⊤

))
, PE(γ)1e

]
=
[(
τ(γ)p(e)

)⊤
⊗
(
PE(γ)Ie⃗PV (γ)⊤

)
, PE(γ)1e

]
.

Since (G, c, p) is Γ-symmetric with respect to θ : Γ → Aut(G) and τ : Γ → O(Rd),

for e = {vi, vj} ∈ E, τ(γ)p(e) = τ(γ)
(
p(vi) − p(vj)

)
= τ(γ)p(vi) − τ(γ)p(vj) =

p
(
θ(γ)(vi)

)
− p

(
θ(γ)(vj)

)
= p

(
θ(γ)(e)

)
, where θ(γ)(e) = {θ(γ)(vi), θ(γ)(vj)} ∈ E.

It is straightforward to confirm that since PV (γ) and PE(γ) are permutation matrices

for the vertex set and edge set of (G, c, p) respectively, and G is Γ-symmetric with

respect to θ, PE(γ)Ie⃗PV (γ)⊤ = I ⃗θ(γ)(e).

Recall that since (G, c, p) is a Γ-symmetric k-coordinated graph, the colouring c is

consistent for all edges within each edge orbit. For each γ ∈ Γ, the permutation matrix

PE(γ) will map e ∈ E to θ(γ)(e) ∈ E, with c(θ(γ)(e)) = c(e). Thus PE(γ)1e = 1θ(γ)(e).
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We therefore have PE(γ)Re

[(
(τ ⊗ PV ) ⊕ Ik

)
(γ)

]⊤
=
[
p (θ(γ)(e))⊤⊗I ⃗θ(γ)(e),1θ(γ)(e)

]
=

Rθ(γ)(e) for all e ∈ E and γ ∈ Γ. Hence for each γ ∈ Γ,

PE(γ)R(G, c, p)
[(

(τ ⊗ PV ) ⊕ Ik
)
(γ)

]⊤
=
∑
e∈E

PE(γ)Re

[(
(τ ⊗ PV ) ⊕ Ik

)
(γ)

]⊤
=
∑
e∈E

Rθ(γ)(e) =
∑
e∈E

Re = R(G, c, p).

Therefore R(G, c, p) ∈ HomΓ ((τ ⊗ PV ) ⊕ Ik, PE).

By applying Schur’s Lemma [Ser77], we obtain the following result.

Corollary 8.3.16. LetR(G, c, p) be the coordinated rigidity matrix for the Γ-symmetric

k-coordinated framework (G, c, p). There exist non-singular matrices P and Q such

that R(G, c, p) := Q
⊤
R(G, c, p)P is block-diagonalised, where each block is associated

to an irreducible representation of Γ.

Remark 8.3.17. We may refer toR(G, c, p) = Q
⊤
R(G, c, p)P as the block-diagonalisation

of R(G, c, p). As discussed in Remark 8.2.6, the matrices P and Q decompose Rdn+k

and Rm into direct sums of (τ ⊗ PV ) ⊕ Ik-invariant and PE-invariant subspaces respec-

tively. For irreducible representations ρ0, . . . , ρr of Γ, let Rdn+k = X ′
0 ⊕ . . .⊕X ′

r and

Rm = Y ′
0 ⊕ . . .⊕Y ′

r , where each X ′
i and Y ′

i correspond to the irreducible representation

ρi. Each block Ri(G, c, p) within R(G, c, p) will have dimension dim(Y ′
i ) by dim(X ′

i).

R(G, c, p) =



R0(G, c, p) 0 . . . 0

0 R1(G, c, p) . . . 0
... ... . . . ...

0 0 . . . Rr(G, c, p)


.
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This block-diagonalisation R(G, c, p) gives similar necessary conditions for a Γ-

symmetric coordinated framework to be infinitesimally rigid and independent (as

discussed after Definition 8.2.7). These are discussed in Remark 8.3.26.

We note that this block-diagonalised form of R(G, c, p) loses the separation between

the standard rigidity matrix R(G, p) and the characteristic matrix 1(c). By reordering

the basis of Rdn+k, we may obtain an alternative block decomposition of R(G, c, p)

which retains this property of the coordinated rigidity matrix.

Corollary 8.3.18. LetR(G, c, p) be the coordinated rigidity matrix for the Γ-symmetric

k-coordinated framework (G, c, p) (with respect to θ : Γ → Aut(G), and τ : Γ → O(Rd)).

There exist non-singular matrices Ŝ and T̂ such that R̃(G, p) := T̂⊤R(G, c, p)Ŝ has the

following form:

R̃(G, c, p) =



R̃0(G, c, p) 0 . . . 0 1Γ(c)

0 R̃1(G, c, p) . . . 0 0
... ... . . . ... ...

0 0 . . . R̃r(G, c, p) 0


.

Proof. By Schur’s Lemma [Ser77] Ŝ and T̂ must be matrices of basis transformation

for Rdn+k and Rm respectively. For the irreducible representations ρ0, . . . , ρr of Γ, Ŝ

is a transformation matrix from the standard basis to the basis of the (τ ⊗ PV ) ⊕ Ik-

invariant subspaces of Rdn+k. We label these subspaces X ′
0, . . . , X

′
r, and similarly label

the PE-invariant subspaces of Rm by Y ′
0 , . . . , Y

′
r . Each X ′

i and Y ′
i corresponds to the

irreducible representation ρi. Let X0, . . . , Xr be the (τ ⊗ PV )-invariant subspaces of

Rdn.

Recall that a vector v ∈ Rp is fully Γ-symmetric with respect to a representation

φ : Γ → Rp if φ(γ)v = v for every γ ∈ Γ. We note that for any v ∈ Rdn that is fully
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Γ-symmetric with respect to (τ ⊗PV ), (v, r) ∈ Rdn+k is fully Γ-symmetric with respect

to (τ ⊗PV ) ⊕ Ik for all r ∈ Rk. The subspace X ′
0 of Rdn+k, corresponding to the trivial

representation ρ0, therefore has dim(X ′
0) = dim(X0) + k.

For 1 ≤ i ≤ r, the (τ ⊗ PV ) ⊕ Ik-invariant subspace X ′
i ⊂ Rdn+k is isomorphic to

the (τ ⊗ PV )-invariant subspace Xi ⊂ Rdn, so we may take the same basis for X ′
i as

for Xi.

The standard basis vectors edn+1, . . . , edn+k of Rdn+k are clearly basis vectors of

X ′
0. An appropriate ordering of the basis vectors of X0, . . . , Xr gives the non-singular

matrix S that is applied to the standard rigidity matrix R(G, p) to obtain the standard

block-diagonalised rigidity matrix R̃(G, p) (as discussed in Remark 8.2.6). We may

therefore apply an appropriate ordering of the basis vectors of X ′
0, . . . , X

′
r to get

Ŝ = S ⊕ Ik =

S 0

0 Ik

.

For 0 ≤ j ≤ r, each Y ′
j is identical to the equivalent PE-invariant subspace Yj for

the uncoloured framework (G, p), so we may take the same orthonormal basis of Rm to

construct the change of basis matrix T (as discussed in Remark 8.2.6). We therefore

obtain the following, where M is a dim(Y0) by k matrix:

T⊤R(G, c, p)Ŝ = T⊤
[
R(G, p),1(c)

](
S ⊕ Ik

)
= T⊤

[
R(G, p)S,1(c)

]
=
[
T⊤R(G, p)S, T⊤

1(c)
]

=



R̃0(G, p) 0 . . . 0 M

0 R̃1(G, p) . . . 0 0
... ... . . . ... ...

0 0 . . . R̃r(G, p) 0


.

Since T is the matrix used in the uncoloured case, the first dn columns contain the

standard block-diagonalised rigidity matrix R̃(G, p).
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Our claim is that M = 1Γ(c) for an appropriate choice of basis for Y0. We may

multiply the rows of T⊤ by appropriate scalars to obtain a matrix T̂⊤ such that

T̂⊤
1(c) results in the coordinated orbit characteristic matrix 1Γ(c), augmented by an

appropriate number of rows containing only zeros. We therefore obtain

T̂⊤R(G, c, p)Ŝ =



R̃0(G, c, p) 0 . . . 0 1Γ(c)

0 R̃1(G, c, p) . . . 0 0
... ... . . . ... ...

0 0 . . . R̃r(G, c, p) 0



as required.

Remark 8.3.19. We may refer to R̃(G, c, p) as the “quasi”-block-diagonalisation of

R(G, c, p). We note that each block within the first dn columns of R̃(G, c, p), R̃i(G, c, p)

is a similar matrix to the equivalent block R̃i(G, p) of the block-diagonalisation of the

standard rigidity matrix R(G, p), but they are not necessarily identical due to the

scalar multiplication applied to obtain T̂⊤ from T⊤.

Remark 8.3.20. Since each pair R̃i(G, p) and R̃i(G, c, p) are similar matrices, they will

have the same dimension and rank, including the rank of submatrices. For 1 ≤ i ≤ r,

these blocks are also similar to the blocks within the block-diagonalisation of R(G, c, p),

Ri(G, c, p), since R̃(G, c, p) and R(G, c, p) are obtained through identical processes,

apart from a reordering of the basis of Rdn+k (and subsequent scalar multiplication of

the rows of T ).

The first block of R(G, c, p), R0(G, c, p) may be checked to be the coordinated orbit

rigidity matrix O(G/Γ, ψ, cΓ, p), which is made up of the standard orbit rigidity matrix

O(G/Γ, ψ, p) = R̃0(G, p) and the orbit characteristic matrix 1Γ(c). Since R̃0(G, p) is

similar to R̃0(G, c, p), the first dim(Y0) rows of R(G, c, p) and R̃(G, c, p) are also similar

matrices: both may be considered to contain two blocks of non-zero entries, together
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with dn− dim(X0) zero columns. The k columns corresponding to 1Γ(c) are identical

in both, and the other non-zero blocks R̃0(G, p) and R̃0(G, c, p) are similar matrices.

These are the blocks that correspond to the trivial irreducible representation ρ0.

Remark 8.3.21. We note that the block decomposition of 1(c) occurs due to the

constraint that c(γ(e)) = c(e) for all γ ∈ Γ: since all symmetric copies of an edge

are coloured identically, any infinitesimal motion of the Γ-symmetric k-coordinated

framework (G, c, p) with a non-trivial coordination component must either be fully

symmetric, or the linear combination of infinitesimal motions in multiple irreducible

representations.

Example 8.3.22. Example 8.3.11 discussed two 2-coordinated Cs-symmetric reali-

sations of K4, illustrated together with their quotient Cs-gain graphs in Figure 8.3.

Through an appropriate choice of basis, we obtain the following matrices which may

be applied to obtain the block-decompositions R̃(G, c, p) and R̃(G′, c′, p′). Since both

frameworks have the same structure, R(G, p) = R(G′, p′), and the coordinated rigidity

matrices differ only in 1(c) and 1(c′).

R(G, p) =



0 4 0 −4 0 0 0 0

−4 0 0 0 4 0 0 0

−4 4 0 0 0 0 4 −4

0 0 −4 −4 4 4 0 0

0 0 −4 0 0 0 4 0

0 0 0 0 0 4 0 −4



, 1(c) =



1 0

0 1

0 0

0 0

1 0

1 0



, 1(c′) =



1 0

0 0

0 1

0 1

0 0

1 0



,
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Ŝ = S ⊕ I2 =





1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0

−1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

,

T̂ = T =



1 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 1 0 0 −1

0 0 0 1 0 0

1 0 0 0 −1 0



, T̂−1 =



1
2 0 0 0 0 1

2

0 1 0 0 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1 0
1
2 0 0 0 0 −1

2

0 0 1
2 −1

2 0 0



.

The block-decomposed coordinated rigidity matrices for the 2-coordinated Γ-

symmetric frameworks (G, c, p) and (G′, c′, p′) are therefore the following:

R̃(G, c, p) =





0 4 0 −4 0 0 0 0 1 0

−8 0 0 0 0 0 0 0 0 1

−4 4 −4 −4 0 0 0 0 0 0

0 0 −8 0 0 0 0 0 1 0

0 0 0 0 0 4 0 −4 0 0

0 0 0 0 −4 4 4 4 0 0

,
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R̃(G′, c′, p′) =





0 4 0 −4 0 0 0 0 1 0

−8 0 0 0 0 0 0 0 0 0

−4 4 −4 −4 0 0 0 0 0 1

0 0 −8 0 0 0 0 0 0 0

0 0 0 0 0 4 0 −4 0 0

0 0 0 0 −4 4 4 4 0 0

.

In each matrix, the first four rows may be noted to be the coordinated orbit rigidity

matrix (with four additional columns of zeros), as stated in Example 8.3.11.

Definition 8.3.23. Let ρ0, . . . , ρr denote the irreducible representations of Γ, and recall

that these decompose Rdn+k and Rm into X ′
0 ⊕ . . .⊕X ′

r and Y ′
0 ⊕ . . .⊕ Y ′

r respectively,

where the subspaces X ′
i and Y ′

i correspond to the irreducible representation ρi.

For an irreducible representation ρj with 1 ≤ j ≤ r, an infinitesimal motion (p′, r′)

of the k-coordinated Γ-symmetric framework (G, c, p) is ρj-symmetric if p′ ∈ X ′
j.

The ρ0-symmetric infinitesimal motions are contained in the kernel of the co-

ordinated orbit rigidity matrix O(G/Γ, ψ, cΓ, p) =
[
R̃0(G, p),1Γ(c)

]
. This space is

isomorphic to the space of fully Γ-symmetric infinitesimal motions.

Remark 8.3.24. Recall that the coordinated rigidity matrix R(G, c, p) may be de-

composed into blocks corresponding to the irreducible representations of Γ:

R̃(G, c, p) =



R̃0(G, p) 0 . . . 0 1Γ(c)

0 R̃1(G, p) . . . 0 0
... ... . . . ... ...

0 0 . . . R̃r(G, p) 0


.

Each block R̃i(G, p) consists of dim(Y ′
i ) rows and dim(X ′

i) columns. The kernel of this

block is isomorphic to the space of ρi-symmetric infinitesimal motions.
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Remark 8.3.25. Recall from Definition 8.2.7 that T (G, p) denotes the space of trivial

infinitesimal motions of the framework (G, p), and let T (G, c, p) denote the space of

trivial infinitesimal motions of the k-coordinated framework (G, c, p). We note that

from Definition 3.1.17, dim
(
T (G, c, p)

)
= dim

(
T (G, p)

)
.

Remark 8.3.26. Recall that T (G, p) may be decomposed into the direct sum T0⊕. . .⊕

Tr, where each Ti corresponds to the irreducible representation ρi, and T0 = TΓ(G, p).

We note that for 1 ≤ i ≤ k, the blocks R̃i(G, c, p) and Ri(G, c, p), in R̃(G, c, p) and

R(G, c, p), are identical matrices. These are the blocks corresponding to the non-trivial

irreducible representations of Γ, and each block is made up of of dim(Y ′
i ) rows and

dim(X ′
i) columns. We therefore have dim(Y ′

i ) = dim(X ′
i) − dim(T ′

i ) for each block,

1 ≤ i ≤ r, as a necessary condition for (G, c, p) to be isostatic as a symmetric framework.

From the block-decomposition of the coordinated rigidity matrix, R̃(G, c, p), we

obtain the condition dim(Yi) = dim(Xi) − dim(Ti) for 1 ≤ i ≤ r, and dim(Y0) =

dim(X0) + k − dim(T0) for the trivial irreducible representation ρ0.

Let ((τ ⊗ PV ) ⊕ Ik)(T ) denote the subrepresentation of (τ ⊗ PV ) ⊕ Ik with repre-

sentation space T (G, c, p) = T (G, p), and recall that (τ ⊗ PV )(T ) denotes the subrepre-

sentation of τ ⊗ PV with representation space T (G, p). We may restate the conditions

obtained from the block-decomposed coordinated rigidity matrix in the following way.

Theorem 8.3.27. Let (G, c, p) be a k-coordinated framework that is Γ-symmetric

with respect to θ : Γ → Aut(G), and τ : Γ → O(Rd). If (G, c, p) is isostatic, then the

following character equation holds:

χ(PE) = χ
(
(τ ⊗ PV ) ⊕ Ik

)
− χ

(
((τ ⊗ PV ) ⊕ Ik)(T )

)
= χ

(
τ ⊗ PV

)
+ χ (Ik) − χ

(
(τ ⊗ PV )(T )

)
. (8.1)
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Proof. We recall that in the standard case, χ(PE) = χ(τ ⊗ PV ) − χ
(
(τ ⊗ PV )(T )

)
when the uncoloured framework (G, p) is isostatic (Theorem 8.2.8). The representation

PE remains unchanged in the coordinated case, while the representation (τ ⊗ PV )

is augmented by the k-dimensional identity matrix (see Theorem 8.3.15). We may

therefore apply a similar method to the standard result in order to obtain .χ(PE) =

χ
(
(τ ⊗ PV ) ⊕ Ik

)
− χ

(
((τ ⊗ PV ) ⊕ Ik)(T )

)
.

We note that the character of a direct sum is equal to the sum of the characters.

This allows us to simplify χ
(
(τ ⊗ PV ) ⊕ Ik

)
to χ

(
τ ⊗ PV

)
+ χ (Ik), which are known.

Similarly χ
(

((τ ⊗ PV ) ⊕ Ik)(T )
)

= χ
(
(τ ⊗ PV )(T )

)
+ χ

(
(Ik)(T )

)
. (Ik)(T ) is empty, and

hence χ
(

((τ ⊗ PV ) ⊕ Ik)(T )
)

= χ
(
(τ ⊗ PV )(T )

)
as required.

We note that, since χ(Ik)(γ) = k for all γ ∈ Γ, all components of Equation 8.1

may be obtained from the calculations of characters for the rigidity of uncoloured

Γ-symmetric frameworks in R2 and R3. For clarity, Table 8.2 contains the standard

results stated in Table 8.1, with the addition of χ(Ik).

We restrict our statements to d = 2 and d = 3 here, since for symmetric frameworks

within these spaces, all elements of the symmetry group may be listed, making the

problem tractable, and the trivial motions are known from point group tables [AH94].

We may therefore apply the existing standard results for symmetric 2-dimensional or

3-dimensional frameworks [Sch10a] to obtain the entries for the final row of Table 8.2,

without need for further calculation.

id s C2 Cn, n > 2

χ (PE) |E| |Es| |EC2| |ECn|

χ
(
τ ⊗ PV

)
2|V | 0 −2|VC2|

(
2 cos 2π

n

)
|VCn|

χ (Ik) k k k k

χ
(
(τ ⊗ PV )(T )

)
3 −1 −1 2 cos 2π

n
+ 1

Table 8.2 Character calculations for k-coordinated frameworks in 2 dimensions.
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Example 8.3.28. Let (G, c, p) be the 2-coordinated Cs-symmetric framework con-

sidered in Example 8.3.11a, and illustrated in Figure 8.3. From standard rigidity

results [SW17b], we have χ
(
(τ ⊗ PV )(T )

)
= (3,−1), and we note that χ (I2) = (2, 2).

Since χ(τ) = (2,−2) and χ(PV ) = (4, 0), χ (τ ⊗ PV ) = (8, 0), and we have that

χ(PE) = (6, 2). This implies that

χ
(
τ ⊗ PV

)
+ χ (Ik) − χ

(
(τ ⊗ PV )(T )

)
=

(8, 0) + (2, 2) − (3,−1) = (7, 3) ̸= (6, 2) = χ(PE)

which confirms that (G, c, p) is not 2-coordinated Γ-symmetric rigid.

The standard irreducible representations for Cs are ρ0 = (1, 1) and ρ1 = (1,−1).

It is straightforward to obtain that χ(PE) = (6, 2) = 4ρ0 + 2ρ1, while χ
(
τ ⊗ PV

)
+

χ (Ik) − χ
(
(τ ⊗ PV )(T )

)
= (7, 3) = 5ρ0 + 2ρ1, which implies that (G, c, p) has a fully

Cs-symmetric infinitesimal motion.

Example 8.3.29. Let (G, c, p) be the 1-coordinated Cs-symmetric framework shown

in Figure 8.5a. (G, c, p) has χ(PE) = (10, 0) and χ(τ ⊗ PV ) = (12, 0), and hence

χ
(
τ ⊗ PV

)
+ χ (Ik) − χ

(
(τ ⊗ PV )(T )

)
=

(12, 0) + (1, 1) − (3,−1) = (10, 2) ̸= (10, 0) = χ(PE).

Since ρ0 = (1, 1) and ρ1 = (1,−1) are the standard irreducible representations for Cs,

we have χ(PE) = (10, 0) = 5ρ0 + 5ρ1, while χ
(
τ ⊗ PV

)
+ χ (Ik) − χ

(
(τ ⊗ PV )(T )

)
=

(10, 2) = 6ρ0 + 4ρ1. This implies that (G, c, p) has a fully Cs-symmetric infinitesimal

motion, and an “anti-symmetric” equilibrium stress.

Figure 8.5b shows a C2-symmetric realisation of the 1-coordinated graph (G, c),

(G, c, p′). We note that (G, c, p′) also has a fully C2-symmetric flex, and an “anti-
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1

2

3

4

5

6

a The 1-coordinated Cs-symmetric frame-
work (G, c, p).

1

2

3

4

5

6

b The 1-coordinated C2-symmetric frame-
work (G, c, p′).

Figure 8.5 Example 8.3.29: two realisations of the 1-edge-coloured graph (G, c), where
(G, c, p) is a Cs-symmetric framework and (G, c, p′) is a C2-symmetric framework.

symmetric” equilibrium stress since, as above, χ
(
τ ⊗ PV

)
+ χ (Ik) − χ

(
(τ ⊗ PV )(T )

)
=

(12, 0) + (1, 1) − (3,−1) = (10, 2) = 6ρ0 + 4ρ1 and χ(PE) = (10, 0) = 5ρ0 + 5ρ1.

We note that the realisation in Figure 8.5b makes it clear that the 1-edge-coloured

graph (G, c) is a 2-connected circuit, and hence (G, c) is clearly generically rigid as a

non-symmetric 1-coordinated framework in R2.

Since the statement of Theorem 8.3.27 is equivalent to a condition for each γ ∈ Γ,

we obtain Corollary 8.3.30, based on the standard counts (Table 8.1) and the fact that

χ(Ik)(γ) = k for all γ ∈ Γ. We state results for some specific symmetry groups in

Theorem 8.3.31.

Corollary 8.3.30. Let (G, c, p) be a k-coordinated framework that is Γ-symmetric

with respect to θ : Γ → Aut(G), and τ : Γ → O(Rd), and let |Vγ|, |Eγ| denote the

number of vertices and edges fixed by γ ∈ Γ respectively. If (G, c, p) is isostatic then,

for each γ ∈ Γ,

|Eγ| = trace(τ(γ)) · |Vγ| + k − trace
(
(τ ⊗ PV )(T )(γ)

)
.
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Theorem 8.3.31. Let (G, c, p) be a k-coordinated 2-dimensional framework that is

Γ-symmetric with respect to θ : Γ → Aut(G), and τ : Γ → O(R2), and let |Vγ|, |Eγ|

denote the number of vertices and edges fixed by γ ∈ Γ respectively. If (G, c, p) is

isostatic then we have the following:

a. if s ∈ τ(Γ), then |Es| = k + 1;

b. if C2 ∈ τ(Γ), then |VC2| = 0 and |EC2| = k + 1, or |VC2 | = 1 and |EC2| = k − 1;

c. if C3 ∈ τ(Γ), then |EC3| = 0, |VC3| = 1 and k = 1;

d. if C4 ∈ τ(Γ), then |EC4| = 0, k = 1 and either |VC4| = 0 or |VC4| = 1;

e. if Cn ∈ τ(Γ) for n ≥ 5, then |ECn| = 0, |VCn| = 1 and k = 1.

Proof. From Theorem 8.3.30 and Table 8.2 we have the following necessary conditions

for each potential symmetry element γ ∈ Γ in order for the k-coordinated framework

(G, c, p) to be Γ-symmetric isostatic:

|E| = 2|V | + k − 3, |Es| = 0 + k + 1, |EC2| = −2|VC2| + k + 1,

and, for n ≥ 3,

|ECn| = 2 cos 2π
n

(|VCn| − 1) + k − 1.

It is clear that if (G, c, p) is isostatic and s ∈ τ(Γ), then |Es| = k + 1.

We note that for a rotation Cn, n ≥ 2, there can be at most one vertex fixed by

Cn, since the configuration p of the framework is assumed to be injective.

Suppose that (G, c, p) is Γ-symmetric isostatic and C2 ∈ τ(Γ). If |VC2| = 0, then

|EC2| = k + 1. If instead |VC2 | = 1, |EC2| = −2 + k + 1 = k − 1.
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Suppose next that (G, c, p) is Γ-symmetric isostatic and C3 ∈ τ(Γ). Since no edge

can be fixed by a rotation Cn with n > 2, |EC3 | = 0 = 2 cos 2π
3 (|VC3| − 1) + k − 1.

If |VC3| = 1, k − 1 = 0, and hence the only isostatic coordinated frameworks with

C3 ∈ τ(Γ), |EC3| = 0 and |VC3 | = 1 are 1-coordinated frameworks. If instead |EC3| = 0

and |VC3| = 0, we have 0 = k − 1 − 2 cos 2π
3 = k. This implies that (G, c, p) is an

uncoloured isostatic Γ-symmetric framework, a contradiction.

Suppose next that C4 ∈ τ(Γ). As above, |EC4| = 0, and hence 0 = 2 cos 2π
4 (|VC4 | − 1)+

k−1 = k−1, since cos π
2 = 0. Since p is assumed to be injective, |VC4| = 0 or |VC4 | = 1.

We suppose finally that Cn ∈ τ(Γ) for n ≥ 5, and note that |ECn| = 0 =

2 cos 2π
n

(|VCn| − 1) + k − 1. When |VCn| = 1, this implies that k = 1 as before.

If instead |VCn| = 0, 0 = k − 1 − 2 cos 2π
n

. For n ≠ 6, 2 cos 2π
n
/∈ Z, which would

imply that (G, c, p) has a non-integer number of colour classes, a contradiction. When

n = 6, 2 cos 2π
n

= 1, and hence k = 2. We also note that C6 ∈ τ(Γ) implies that

C2, C3 ∈ τ(Γ), and |VC6| = 0 implies that |VC2| = |VC3| = 0. From the initial condition

that |ECn| = 2 cos 2π
n

(|VCn| − 1) + k − 1 we obtain that |EC3| = k, which gives a clear

contradiction between the statements |EC3| = 0 and k = 2. Hence no such isostatic

framework with C6 ∈ τ(Γ) and |VC6| = 0 exists.

We note that Theorem 8.3.31 implies that the only symmetry groups for which

isostatic frameworks with more than one class of coordinated edges exist are Cs, C2

and C2v.

In contrast to the standard symmetric result (Theorem 8.2.11), there are 1-

coordinated isostatic frameworks with all n-fold rotational symmetries with one central

fixed vertex, while 1-coordinated isostatic frameworks with no fixed central vertex may

have a 4-fold rotation.

One family of examples of 1-coordinated frameworks with Cn ∈ τ(Γ) are the

1-coordinated wheel graphs (Wn, cn) for n ≥ 3, where cn is a Cn-symmetric 1-edge-
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1
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a The 1-coordinated Cs-symmetric iso-
static framework (G, c, p).

1

2

3

4

5

6

b The 1-coordinated C2-symmetric iso-
static framework (G, c, p′).

c The 1-coordinated C4-symmetric iso-
static framework (Ĝ, ĉ, p̂).

d The 1-coordinated C5v-symmetric iso-
static framework (G, c̄, p̄).

Figure 8.6 Figure 8.6a and Figure 8.6b show a Cs-symmetric and a C2-symmetric 2-
dimensional realisation of the same 1-edge-coloured graph (G, c). Both are Γ-symmetric
isostatic.
Figure 8.6c is an example of an isostatic 2-dimensional 1-coordinated C4-symmetric
framework, (Ĝ, ĉ, p̂), while Figure 8.6d shows an example of an isostatic 2-dimensional
1-coordinated C5v-symmetric framework.
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Figure 8.7 A C2-symmetric 2-dimensional 2-coordinated framework, (G, c, p). We
note that the graph G is the 2-coordinated 2-dimensional base graph B5 (Figure 7.6a).
The curved edge should be considered as a direct edge fixed by C2, however it is shown
curved for clarity.

colouring of Wn. We note that Wn is a circuit with |V (Wn)| = n+ 1 and |E(Wn)| =

2n = 2|V (Wn)| − 2.

Let pn be a Cn-symmetric realisation of (Wn, cn), and note that pn is also a Cs-

symmetric realisation of (Wn, cn). The quotient Cn-gain graph of Wn contains two

vertex orbits and two edge orbits, which implies that there are three potential Cn-

symmetric 1-edge-colourings. These are illustrated in Figure 8.8, and all may be

checked to be Cs-symmetric 1-edge-colourings for the appropriate axes of symmetry

of (Wn, pn): when n is even, (Wn, cn, pn) will have axes of Cs symmetry with |Vs| = 1,

|Es| = 2, and axes with |Vs| = 3, |Es| = 2. Every axis of Cs-symmetry for (Wn, cn, pn)

with n odd has |Vs| = 2, |Es| = 2. (Wn, cn, pn) also has |ECn| = 0 and |VCn| = 1.

The 1-coordinated framework (Wn, cn, pn) is therefore Cnv-symmetric. It is straight-

forward to confirm, by the rank of the coordinated rigidity matrix R(Wn, cn, pn) or

otherwise, that (Wn, cn, pn) is Cnv-symmetric isostatic. We may also apply a geometric

argument when one edge orbit (with respect to Cn) is coloured, and the other is

uncoloured, and it seems likely that a similar geometric argument applies when all

edges are coloured.

We conjecture that we may extend the sufficient conditions for standard Γ-symmetric

isostatic frameworks to 1-coordinated Γ-symmetric isostatic frameworks, and potentially
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Cn 0 vid

Cn 0 vid
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v2
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Figure 8.8 The three potential quotient Cn-gain graphs for the 1-coordinated wheel
framework (Wn, cn, pn), and the corresponding realisations for n = 3.

extend such characterisations for higher k in the case Γ = Cs, Γ = C2 and Γ = C3. We

formally state the following conjecture when k = 1 for a subset of groups.

Conjecture 8.3.32. Let (G, c, p) be a 1-coordinated 2-dimensional incidentally-Γ-

symmetric framework (with respect to θ : Γ → Aut(G) and τ : Γ → O(R2). Then

(G, c, p) is isostatic if and only if G is a Laman-plus-one graph such that |D| ≤

2|V (D)| − 3 for all uncoloured subgraphs D ⊆ E0, and G (and any symmetric Laman-

plus-one subframeworks of G) satisfy the following:

a. when τ(Γ) = Cs, |Es| = 2;

b. when τ(Γ) = C2, either |VC2 | = 0 and |EC2| = 2, or |VC2 | = 1 and |EC2| = 0;

c. when τ(Γ) = C3, |EC3| = 0 and |VC3| = 1;

d. when τ(Γ) = C4, |EC4 | = 0, and either |VC4| = 0 and |EC2| = 2, or |VC4| = 1 and

|EC2| = 0.



Chapter 9

Further directions

We now briefly discuss some additional open questions related to the rigidity of

coordinated frameworks.

The bulk of this thesis considers infinitesimal rigidity of k-coordinated frameworks,

leaving global rigidity of such frameworks as a natural area of additional interest.

It may also be of interest to extend our work to higher dimensions or to alter the

class of coordinated frameworks considered: either by considering alternative types of

framework in place of the standard bar-joint framework, or by redefining the type of

coordinated motion permitted.

9.1 Higher dimensions

As a combinatorial characterisation for rigidity of standard bar-joint frameworks in

R3 has not yet been found, there is also no three-dimensional characterisation of

rigid k-coordinated bar-joint frameworks. Instead, it may be of interest to consider

alternative types of framework within R3.

One class of frameworks for which a complete combinatorial characterisation of rigidity
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exists is the class of body-bar frameworks. As discussed in Section 2.9, these consist of

rigid bodies linked by bars, which may be represented using a copy of the complete

graph Kn for each body (on an appropriate number of vertices to ensure that the

bars between rigid bodies remain vertex disjoint). The bodies within a k-coordinated

body-bar framework would still be required to be rigid blocks, and may be modelled

by uncoloured complete bar-joint frameworks, while edges between bodies may be

coloured arbitrarily.

Generically rigid body-bar frameworks in Rd are characterised to be those containing(
d+1

2

)
edge-disjoint spanning trees [Tay84, Tay’s Theorem]. Since this characterisation

has an inductive proof, it seems possible that we may be able to obtain a similar

inductive proof to characterise generically rigid k-coordinated body-bar frameworks.

Multiple authors have considered the rigidity of frameworks restricted to surfaces

within R3 [NOP12, JMN14, JN16]. It is possible that our results for the rigidity of

coordinated frameworks in R2 would extend similarly to characterise the rigidity of

coordinated frameworks on 2-dimensional surfaces within R3. In the plane we were able

to utilise the X-replacement construction. On surfaces other than the plane or sphere it

seems to be a difficult problem to show that X-replacement preserves rigidity without re-

lying on existing combinatorial characterisations (e.g. [NOP12]), and hence alternative

techniques would need to be developed. The counting conditions for rigid frame-

works on surfaces are also different than the standard conditions in R2, so there may

also be additional difficulties that arise in adding constraints for coloured edges to these.

Frameworks that lie on concentric spheres that may expand or contract [NSTW18]

may be modelled as vertex-coloured frameworks, where each colour class contains the

vertices that lie on one surface. This may be considered as being equivalent to an
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edge-coloured coned framework, obtained by creating a new central vertex x adjacent

to every existing vertex, where the edge {x, v} for each existing vertex v is coloured

identically to the vertex-colouring of v. Since every edge within a colour class will have

equal length, frameworks that lie on expanding concentric spheres may be considered

as a special type of our coordinated frameworks, with the additional constraint that

every coloured edge is adjacent to a central vertex x, and all edges within a colour class

are required to have the same length. This type of construction could result in some

partial results for rigidity of coordinated frameworks in R3, however this is a highly

non-generic type of coordinated framework, compared to those considered throughout

this thesis, and hence our combinatorial results do not apply to such frameworks.

9.2 Periodic frameworks

Another type of framework for which it may be of interest to consider coordinated

analogues is periodic frameworks. These are infinite frameworks with a symmetry

group Γ (isomorphic to Zd), such that every vertex has finite degree and the quotient

Γ-gain graph G/Γ is finite [BS10, MT13, KST16].

As with symmetric frameworks, we require each copy of a given edge to be coloured

identically by the k-edge-colouring c of the periodic framework (G,Γ, p), and so each

edge orbit will be contained within a single colour class. This naturally induces a

k-edge-colouring cΓ of the quotient Γ-gain graph G/Γ, as discussed for symmetric

frameworks.

Periodic frameworks may be characterised with respect to their quotient frameworks.

Ross [Ros11] and Malestein and Theran [MT13] characterise rigidity of periodic frame-

works through Laman-type characterisations of the quotient graph. Ross considers the

quotient framework of a periodic framework in the plane as a framework on the fixed

torus, proving that minimally rigid frameworks on the fixed torus are equivalent to
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(2,2)-tight frameworks and providing an inductive construction for such frameworks.

It seems likely that an analageous characterisation for 1-coordinated minimally rigid

frameworks on the fixed torus would require |E| = 2|V | + 1 − 2 = 2|V | − 1, and a

construction may be possible since a (2,1)-tight quotient graph will contain at least one

vertex of degree 2 or degree 3. This would allow us to study the coordinated rigidity

of infinite periodic frameworks by considering the rigidity of the corresponding finite

coordinated quotient framework.

Crystallographic frameworks are a subset of the periodic frameworks, for which the

symmetry group Γ is a crystallographic symmetry group [KP18, BS14]. Since there

are many applications for crystallographic frameworks, it is natural to ask whether

coordinated crystallographic frameworks may also have similar applications.

9.3 Alternative constraint systems

Many questions may be asked about extending the class of coordinated frameworks for

which rigidity is considered. The type of coordination constraint may be adapted, and

coordination constraints may be added to alternative types of framework, as discussed

previously for body-bar frameworks.

9.3.1 Alternative types of framework

It is possible that existing work on frameworks within non-Euclidean geometries (see,

for example, [KP14]) may be extended to k-coordinated frameworks within spaces with

non-Euclidean norms, by adapting the initial definitions of Chapter 3 to alternative

norms.
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Another alternative type of framework that may be of interest to apply coordination

to is the class of direction-length frameworks.

Definition 9.3.1 ([JK11]). A mixed graph G = (V ;D,L) is a graph G = (V,E) for

which the edge set E is decomposed into disjoint sets D and L, denoting direction

edges and length edges respectively. Parallel edges are permitted within G if one is

of each type. A d-dimensional direction-length framework is (G, p) for a mixed graph

G = (V ;D,L) and a configuration of the vertices p ∈ Rd|V |.

Two direction-length frameworks (G, p) and (G, q) are equivalent if ∥p(u) − p(v)∥ =

∥q(u) − q(v)∥ for all {u, v} ∈ L, and p(u) − p(v) is a scalar multiple of q(u) − q(v)

for all {u, v} ∈ D. (G, p) and (G, q) are congruent if, for all u, v ∈ V , p(u) − p(v) =

±1 ·
(
q(u) − q(v)

)
.

We note that length edges within a direction-length framework are equivalent to

bars in a standard bar-joint framework, so it is straightforward to define coordinated

length edges. Since the length of a direction edge is not defined, it would be possible to

define a k-coordinated direction-length framework to be a direction-length framework

with a k-edge-colouring of the length edges only, c : L → {0, 1, . . . , k}, which induces

a partition L0 ∪ · · · ∪ Lk. It may also be natural in some circumstances to define

coordinated changes to direction edges, perhaps by allowing all direction edges within

a colour class to change angle by the same amount.

9.3.2 Alternative coordination constraints

This thesis mainly concerns itself with coordinated frameworks in which the coordinated

edges increase or decrease length by the same amount, which is equivalent to preserving

the pairwise differences of edges within a coordination class (see Note 3.1.14). This

perspective allowed for straightforward notation for equivalent frameworks in the

context of continuous rigidity, where (G, c, p, r) and (G, c, q, s) are equivalent when
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∥p(i) − p(j)∥2 + r(ℓ) = ∥q(i) − q(j)∥2 + s(ℓ) for all edges {i, j} ∈ Eℓ. We were also

able to define a reasonable notation for infinitesimal rigidity of this type of coordinated

framework, by using the characteristic vectors 1ℓ for each colour class to define the

coordinated rigidity matrix.

It may be intuitive to define coordinated motions of frameworks as preserving ratios

of the lengths of edges within a coordination class. If this type of coordinated motion

is permitted, it is possible to define equivalence of two realisations of a k-coloured

graph, (G, c, p) and (G, c, q), as follows:

∥p(i) − p(j)∥2 = ∥q(i) − q(j)∥2 for all {i, j} ∈ E0,

∥p(i) − p(j)∥2

∥p(u) − p(w)∥2 = ∥q(i) − q(j)∥2

∥q(u) − q(w)∥2 for all pairs {i, j}, {u,w} ∈ Eℓ, ℓ ∈ {1, . . . , k}.

Another alternative type of coordination constraint that seems natural is to require

that the sum of the lengths of edges within a coordination class remains constant. This

may be considered as a generalisation of the concept of a pulley system, within which

the total length of the rope cannot change.

Figure 9.1 Two positions of a pulley system. The length of the rope connecting two
joints via the third remains fixed, though their positions relative to one another change.

In the context of continuous rigidity, two such frameworks (G, c, p) and (G, c, q)

would be equivalent when

∥p(i) − p(j)∥2 = ∥q(i) − q(j)∥2 for all {i, j} ∈ E0,∑
{i,j}∈Eℓ

∥p(i) − p(j)∥2 =
∑

{i,j}∈Eℓ

∥q(i) − q(j)∥2 for ℓ ∈ {1, . . . , k}.
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In both these contexts, the length constraint for a single edge within a colour class

depends on the position vectors of every vertex adjacent to an edge in this colour class.

Any analogue to the rigidity matrix in either case would therefore have a very different

structure to the standard rigidity matrix, since it would contain rows involving more

than two vertices. This suggests that the underlying combinatorial structure in these

situations will be a hypergraph. Defining infinitesimal rigidity for either of these types

of framework, and obtaining combinatorial characterisations for generic rigidity for

them, remain as open questions.
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