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Obstacle avoidance is an important subject in the control of robot manipulators, but

is remains challenging for robots with redundant degrees of freedom, especially when

there exist complex physical constraints. In this paper, we propose a novel controller

based on deep recurrent neural networks. By abstracting robots and obstacles into

critical point sets respectively, the distance between the robot and obstacles can be

described in a simpler way, then the obstacle avoidance strategy is established in form

of inequality constraints by general class-K functions. Usingminimal-velocity-norm (MVN)

scheme, the control problem is formulated as a quadratic-programming case under

multiple constraints. Then a deep recurrent neural network considering system models

is established to solve the QP problem online. Theoretical conduction and numerical

simulations show that the controller is capable of avoiding static or dynamic obstacles,

while tracking the predefined trajectories under physical constraints.

Keywords: recurrent neural network, redundant manipulator, obstacle avoidance, zeroing neural network,

motion plan

1. INTRODUCTION

As industrial automation develops, robot manipulators have been used in a wide range of
applications such as painting, welding, assembly, etc., (Cheng et al., 2009; Yang et al., 2018a).
With the evolution of intelligent manufacturing, the way robot works is also changing. In order
to fulfill more difficult tasks in complex environment, the robot is required to have better execution
capabilities (Pan et al., 2018). Therefore, robots with redundant DOFs have attracted much
attention in the field of robotic control since its wonderful flexibility (Chan and Dubey, 1995;
Zhang, 2015).

Obstacle avoidance is a core problem in the control of redundant manipulators, in order
to realize human-machine collaboration and integration, robots no longer work in a separate
environment that is completely isolated (Ge and Cui, 2000; Sugie et al., 2003; Lee and Buss, 2007).
Instead, collaboration is required between human or other robots, as a result, the obstacle avoidance
control is becoming a matter of urgency: robots need to achieve real-time avoidance of static or
dynamic obstacles while completing given motion tasks.

Many obstacle avoidance methods for robot manipulators haven been reported, which are
designed online or off-line. Based on stochastic sampling algorithm, a series of obstacle avoidance
methods are proposed, these methods could obtain effective solutions even in ultra-redundant
systems. In Wei and Ren (2018), Wei et al. propose a modified RRT based method, namely
Smoothly RRT, in which a maximum curvature constraint is built to obtain a smooth curve when
avoiding obstacles, simulation results also show that the method achieves faster convergence than
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traditional RRT based ones. InHsu et al. (2006), Hsu discusses the
probabilistic foundations of PRM based methods, a conclusion is
drew that the visibility properties rather than dimensionality of
C has a greater impact on the probability, and the convergence
would be faster if extract partial knowledge could be introduced.
However, due to the large computational costs, those methods
can be hardly used online.

Different from stochastic results obtained by abovementioned
methods, artificial potential field methods plan the same path
each time in the same environment, which is important in
industrial applications (Khatib, 1986). The basic idea of artificial
potential field methods is that the target bears as an attractive
pole while the obstacle creates repulsion on the robot, then
the robot will be controlled to converge to the target without
colliding with obstacles. At the same time, artificial potential field
methods have shown great ability in tracking dynamic targets
as well as avoiding dynamic obstacles. In Csiszar et al. (2011),
a modified method is proposed, which describes the obstacles
by different geometrical forms, both theoretical conduction and
experimental tests validate the proposed method. Considering
the local minimum problem that may be caused by multi-link
structures, in Badawy (2016), a two minima is introduced to
construct potential field, such that a dual attraction between links
enables faster maneuvers comparing with traditional methods.
Other improvements to artificial potential field method can be
found in Tsai et al. (2001); Tsuji et al. (2002); Wen et al. (2017).
Taking advantage of redundant DOFs, obstacles can be avoided
by the self-motion in the null space, by calculating pseudo-
inverse of Jacobian matrix, the solution can be formulated as the
sum of a minimum-norm particular solution and homogeneous
solutions (Cao et al., 1999; Moosavian and Papadopoulos, 2007;
Krzysztof and Joanna, 2016).

The application of artificial intelligence algorithms based on
neural networks provide a new idea for robotic control, these
methods are considered to be very promising since its excellent
learning ability (Jung and Kim, 2007). For instance, in Pan et al.
(2017), the authors propose a command-filtered back-stepping
method, in which a neural network based learning scheme is
introduced to deal with functional uncertainties. In Pan and Yu
(2017), a biomimetic hybrid controller is established, in which
the control strategy consist of a feed-forward predictive machine
based on a RBF Neural Network and a feedback servo machine
based on a proportional-derivative controller. In Fu et al. (2018),
a fuzzy logic controller is proposed for long-term navigation of
quad-rotor UAV systems with input uncertainties. Experiment
results show that the controller can achieve better control
performance when compared to their singleton counterparts.
In Fu et al. (2019), an online learning mechanism is built for
visual tracking systems. The controller uses both positive and
negative sample importances as input, and it is shown that the
proposed weighted multiple instance learning scheme achieves
wonderful tracking performance in challenging environments.
Typically, the structure of a neural network may be complex
in order to achieve better performance. Although the model of
robot manipulator is highly nonlinear, by introducing the priori
information of the system model, the neural network can be
optimized, i.e., the number of nodes in neural networks can

be reduced effectively while maintaining the learning efficiency
(Fontaine and Germain, 2001). Inspired by this, a series dynamic
neural networks are proposed to realize robotic control in
realtime (Zhang et al., 2004; Li et al., 2017; Yang et al.,
2018b). Based on the idea of constraint-optimization, quadratic-
programming approaches haven been introduced for kinematic
control of redundant manipulators. The designed outer-loop
controller is described as equality constraints, and objective
functions are established to describe certain performance of
the system. Using the learning and parallel calculation ability,
dynamic neural networks are established to solve the quadratic-
programming problem online. The kinematic control is thus
achieved by ensuring the equality constraints, and the flexibility
is used by optimizing the objective functions. On the other hand,
these methods is capable of handling inequality constraints and
model uncertainties (Zhang et al., 2018; Li et al., 2019; Xu et al.,
2019b). In Cheng et al. (1993), the obstacle avoidance strategy
is described as equality constraints, but the parameters of escape
velocity is difficult to obtain. In Zhang and Wang (2004), Zhang
et al. propose an inequality based method, in which the distance
between the robot and obstacles are formulated as a group of
distances from critical points and robot links. On this basis, an
improved method is proposed by Guo et al. in Guo and Zhang
(2012), which is capable of suppressing undesirable discontinuity
in the original solutions.

Motivated by the above observations, in this paper, we
proposed a novel obstacle avoidance strategy based on deep
recurrent neural networks. By abstracting robot and obstacles
as a set of critical points, the distances between the robot and
obstacles are approximately described by a group of point-
to-point distances. And the obstacle avoidance is realized by
inequality constraint described by class-K functions. Then the
obstacle avoidance problem is reformulated as a QP problem in
the speed level, and a deep recurrent neural network is designed
to solve the QP online. Numerical results show that the robot is
capable of avoiding the obstacles while tracking the predefined
trajectories. Before ending this section, the main contributions of
this paper are summarized as below

• The proposed deep RNN based controller is able to achieve
both path tracking and obstacle avoidance, at the same time,
physical constraints such as angular joints and velocities
are satisfied.

• In this paper, we propose a class-K function based obstacle
avoidance strategy, which has a more general form of
description than traditional linear escape velocity methods.

• By abstracting robots and obstacles into critical point sets
respectively, the distance between the robot and the obstacle
can be described in a simpler way. Besides, numerical results
show that the control algorithm can realize the avoidance of
static and dynamic obstacles.

2. PROBLEM FORMULATION

2.1. Basic Description
When a redundant robot is controlled to track a particular
trajectory in the cartesian space, the positional description of the
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end-effector can be formulated as:

x = f (θ), (1)

where x ∈ R
m and θ ∈ R

n are the end-effector′s positional vector
and joint angles, respectively. In the velocity level, the kinematic
mapping between ẋ and θ̇ can be described as:

ẋ = J(θ)θ̇ , (2)

where J(θ) ∈ R
m×n is the Jacobian matrix from the end-effector

to joint space.
In engineering applications, obstacles are inevitable in

the workspace of a robot manipulator. For example, robot
manipulators usually work in a limited workspace restricted by
fences, which are used to isolated robots from humans or other
robots. This problem could be even more acute in tasks which
requires collaboration of multiple robots. Let C1 be the set of all
the points on a robot body, and C2 be the set of all the points on
the obstacles, then the purpose of obstacle avoidance of a robot
manipulator is to ensure C1 ∪C2 = ∅ at all times. By introducing
d as a safety distance between the robot and obstacles, the obstacle
avoidance is reformulated as

|OjAi| ≥ d, ∀Ai ∈ C1,∀Oi ∈ C2. (3)

where |OjAi| =

√

(Ai − Oj)T(Ai − Oj) is the Euclidean norm of

the vector AiOj.
Equation (3) gives a basic description of obstacle avoidance

problem in form of inequalities. However, there are too many
elements in sets C1 and C2, the vast majority of which are
actually unnecessary. Therefore, by uniformly selecting points
of representative significance from C1 and C2, and increasing d
properly, Equation (3) can be approximately described as below:

|OjAi| ≥ d, (4)

with Ai, i = 1, . . . , a and Oj, j = 1, . . . , b being the representative
points of the robot and obstacles, respectively. The schematic
diagram of Equation (4) in shown in Figure 1.

Remark. 1 In real implementations, there are many ways
to measure |OjAi|. For instance, since physical structure of

FIGURE 1 | The basic idea of obstacle avoidance in this paper.

the a manipulator is known, the key points Ai are available
in advance, both positions and velocities of those points can
be calculated directly using the feedback of robot joints. The
real-time measurement of obstacles can be achieved through
industrial cameras. Therefore, the information of Ai and Bj are
all available. As to measurement noise, by introducing a bigger
safety distance d, e.g., d = 1.5(d1+d2), the safety can be ensured.

2.2. Reformulation of Inequality in Speed
Level
In order to guarantee the inequality (4), by definingD = |OjAi|−

d, an inequality is rebuilt in speed level as:

d(|OjAi|)/dt ≥ −sgn(D)g(|D|), (5)

in which g(•) belongs to class-K. Remarkable that the velocities
of critical points Ai can be described by joint velocities:

Ȧi = Jai(θ)θ̇ , (6)

where Jai ∈ R
m×n is the Jacobian matrix from the critical point

Ai to joint space. If Oj is prior known, the left-side of Equation
(5) can be reformulated as:

d

dt
(|OjAi|) =

d

dt
(
√

(Ai − Oj)T(Ai − Oj))

=
1

|OjAi|
(Ai − Oj)

T(Ȧi − Ȯj)

=
−−−→
|OjAi|

TJai(θ)θ̇ −
−−−→
|OjAi|

TȮj, (7)

where
−−−→
|OjAi| = (Ai − Oj)

T/|OjAi| ∈ R
1×m is the unit vector

of
−−−−→
Ai − Oj. Therefore, the collision between critical point Ai and

object Oj can be obtained by ensuring the following inequality:

Joiθ̇ ≤ sgn(D)g(|D|)−
−−−→
|OjAi|

TȮj, (8)

where Joi = −
−−−→
|OjAi|

TJai ∈ R
1×n. Based on the inequality

description (8), the collision between robot and obstacle can be
avoided by ensuring:

Joθ̇ ≤ B, (9)

where Jo = [JTo1, · · · , J
T
o1

︸ ︷︷ ︸

b

, · · · , JToa, · · · , J
T
oa

︸ ︷︷ ︸

b

]T ∈ R
ab×n is the

concatenated form of Joi considering all pairs between Ai and
Oj, B = [B11, · · · ,B1b, · · · ,Ba1, · · · ,Bab]

T ∈ R
ab is the vector

of upper-bounds, in which Bij = sgn(D)g(|D|)−
−−−→
|OjAi|

TȮj.
Remark 2: According to 5 the definition of class-K functions,

the original escape velocity based obstacle avoidance methods in
Zhang andWang (2004); Guo and Zhang (2012) can be regarded
as a special case of 5, in whichG(|D|) is selected asG(|D|) = k|D|.
Therefore, in this paper, the proposed obstacle avoidance strategy
is more general than traditional methods.
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2.3. QP Type Problem Description
As to redundant manipulators, in order to take full advantage
of the redundant DOFs, the robot can be designed to fulfill
a secondary task when tracking a desired trajectory. In this
paper, the secondary task is set to minimize joint velocity while
avoiding obstacles. In real implementations, both joint angles
and velocities are limited because of physical limitations such
as mechanical constraints and actuator saturation. Because of
the fact that rank (J) < n, there might be infinity solutions
to achieve kinematic control. In this paper, we aim to design
a kinematic controller which is capable of avoiding obstacles
while tracking a pre-defined trajectory in the cartesian space. For
safety′s sake, the robot is wished to move at a low speed, on the
other hand, lower energy consumption is guaranteed. By defining
an objective function scaling joint velocity as θ̇Tθ̇/2, the tracking
control of a redundant manipulator while avoiding obstacles can
be described as:

min θ̇Tθ̇/2, (10a)

s.t. x = xd, (10b)

θ− ≤ θ ≤ θ+, (10c)

θ̇− ≤ θ̇ ≤ θ̇+, (10d)

Joθ̇ ≤ B. (10e)

It is remarkable that the constraints 10b–10e and the objective
function 10a to be optimized are built in different levels, which
is very difficult to solve directly. Therefore, we will transform
the original QP problem (10) in the velocity level. In order to
realize precise tracking control to the desired trajectory xd, by
introducing a negative feedback in the outer-loop, the equality
constraint can be ensured by letting the end-effector moves at a
velocity of ẋ = ẋd + k(xd − x). In terms with (10c), according
to escape velocity method, it can be obtained by limiting joint
speed as α(θ− − θ) ≤ θ̇ ≤ α(θ+ − θ), where α is a positive
constant. Combing the kinematic property (2), the reformulated
QP problem is:

min θ̇Tθ̇/2, (11a)

s.t. J(θ)θ̇ = ẋd + k(xd − x), (11b)

max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+,α(θ+ − θ)), (11c)

Joθ̇ ≤ B. (11d)

It is noteworthy that both the formula (11a) and (11d) are
nonlinear. The QP problem cannot be solved directly by
traditional methods. Using the parallel computing and learning
ability, a deep RNN will be established later.

3. DEEP RNN BASED SOLVER DESIGN

In this section, a deep RNN is proposed to solve the obstacle
avoidance problem (11) online. To ensure the constraints (11b),
(11c), and (11d), a group of state variables are introduced in the
deep RNN. The stability is also proved by Lyapunov theory.

3.1. Deep RNN Design
Firstly, by defining a group of state variables λ1 ∈ R

m, λ2 ∈ R
ab,

a Lagrange function is selected as:

L = θ̇Tθ̇/2+ λT1 (ẋd + k(xd − x)− J(θ)θ̇)+ λT2 (Joθ̇ − B), (12)

λ1 and λ2 are the dual variables corresponding to the constraints
(11b) and (11d). According to Karush-Kuhn-Tucker conditions,
the optimal solution of the optimization problem (12) can be
equivalently formulated as:

θ̇ = P�(θ̇ −
∂L

∂θ̇
), (13a)

J(θ)θ̇ = ẋd + k(xd − x), (13b)
{

λ2 > 0 if Joθ̇ = B,

λ2 = 0 if Joθ̇ ≤ B,
(13c)

where P�(x) = argminy∈�||y − x|| is a projection operator

to a restricted interval �, which is defined as � = {θ̇ ∈

R
n|max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+,α(θ+ − θ))}. Notable

that Equation (13c) can be simply described as:

λ2 = (λ2 + Joθ̇ − B)+, (14)

where (•)+ is a projection operation to the non-negative space,
in the sense that y+ = max(y, 0).

Although the solution of (13) is exact the optimal solution of
the constrained-optimization problem (11), it is still a challenging
issue to solve (13) online since its inherent nonlinearity. In this
paper, in order to solve (13), a deep recurrent neural network is
designed as:

ǫθ̈ = −θ̇ + P�(J
Tλ1 − JTo λ2), (15a)

ǫλ̇1 = ẋd + k(xd − x)− J(θ)θ̇ , (15b)

ǫλ̇2 = −λ2 + (λ2 + Joθ̇ − B)+, (15c)

with ǫ is a positive constant scaling the convergence of (15).
Remark. 3 As to the established deep RNN (15), the first

dynamic equation is also the output dynamics, which combines
the dynamics of state variables λ1 and λ2, as well as the physical
limitations including joint angles and velocities. State variable λ1
is used to ensure the equality constraint (11b), as shown in (15b),
λ1 is updated according to the difference between reference speed
ẋd + k(xd − x) and actually speed J(θ)θ̇ . Similarly, λ2 is used
to ensure the inequality constraint 11d, which will be further
discussed later. It is remarkable that ǫ plays an important role
in the convergence of the deep RNN. The smaller ǫ, the faster the
deep RNN converges.

Remark. 4 By introducing the model information such as
J, Jo, etc., the established deep RNN consists of three class of
nodes, namely θ̇ , λ1 and λ2, and the total number of nodes is
n+m+ab. Comparing to traditional neural networks in Jung and
Kim (2007), the complexity of neural networks is greatly reduced.
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3.2. Stability Analysis
In this subsection, we offer stability analysis of the obstacle
avoidance method based on deep RNN based. First of all, some
basic Lemmas are given as below.

Definition 1: A continuously differentiable function F(•) is
said to be monotone, if∇F+∇FT is positive semi-definite, where
∇F is the gradient of F(•).

Lemma 1:A dynamic neural network is said to converge to the
equilibrium point if it satisfies:

κ ẋ = −x+ PS(x− ̺F(x)), (16)

where κ > 0 and ̺ > 0 are constant parameters, and PS =

argminy∈S||y− x|| is a projection operator to closed set S.

Lemma 2: (Slotine and Li, 2004) Let V :[0,∞) × Bd → R be
a C1 function, α1, α2 be class-K functions defined on [0, d) which
satisfy α1(||x||) ≤ V(t, x) ≤ α2(||x||), ∀(t, x) ∈ [0, d) × Bd, then
x = 0 is a uniformly asymptotically stable equilibrium point if
there exist some class-K function g defined on [0, d), to make the
following inequality hold:

∂V

∂t
+

∂V

∂x
f (t, x) ≤ −α(||x||),∀(t, x) ∈ [0,∞)× Bd, (17)

About the stability of the closed-loop system, we offer the
following theorem.

Theorem 1: Given the obstacle avoidance problem for a
redundant manipulator in kinematic control tasks, the proposed
deep recurrent neural network is stable and will globally converge
to the optimal solution of (10).

Proof: The stability analysis consists of two parts: firstly, we
will show that the equilibrium of the deep RNN is exactly the
optimal solution of the control objective described in (11), which
prove that the output of deep RNNwill realize obstacle avoidance
while tracking a given trajectory, and then we will prove that the
deep recurrent neural network is stable in sense of Lyapunov.

Part I. As to the deep recurrent neural network (15),
let (θ̇∗, λ∗1 , λ

∗
2) be the equilibrium of the deep RNN, then

(θ̇∗, λ∗1 , λ
∗
2) satisfies:

−θ̇∗ + P�(J
Tλ∗1 − JTo λ∗2) = 0, (18a)

ẋd + k(xd − x)− J(θ)θ̇∗ = 0, (18b)

−λ∗2 + (λ∗2 + Joθ̇
∗ − B)+ = 0, (18c)

with θ̇∗ be the output of deep RNN. By comparing Equation (18)
and (13), we can readily obtain that they are identical, i.e., the
equilibrium point satisfies the KKT condition of (10).

Then we will show that the equilibrium point(output of
the proposed deep RNN) is capable of dealing with kinematic
tracking as well as obstacle avoidance problem. Define a
Lyapunov function V about the tracking error e = xd − x as V =

eTe/2, by differentiating V with respect to time and combining
(11b), we have:

V̇ = eTė = eT(ẋd − J(θ)θ̇∗)

= −keTe ≤ 0, (19)

in which the dynamic Equation 18b is also used. It can readily
obtained that the tracking error would eventually converge to 0.

It is notable that the dynamic (Equation 18c) satisfies:

λ∗2 + Joθ̇
∗ − B− (λ∗2 + Joθ̇

∗ − B)+ = Joθ̇
∗ − B. (20)

According to the property of projection operator (•)+, y−(y)+ ≤

0 holds for any y, then we have Joθ̇
∗ − B ≤ 0, together with (5),

the inequality (5) is satisfied. Notable that (5) can be rewritten as:

Ḋ ≥ −sgn(D)g(|D|). (21)

As to (21), we first consider the situation when equality holds.
Since g(|D|) is a function belonging to class K, it can be
easily obtained that D = 0 is the only equilibrium of Ḋ =

−sgn(D)g(|D|). Define a Lyapunov function as V2(t,D) = D2/2,
and select two functions as α1(|D|) = α2(|D|) = D2/2. It
is obvious that α1(|D|) = α2(|D|) belong to class-K, and the
following inequality will always hold:

α1(|D|) ≤ V2(t,D) ≤ α2(|D|). (22)

Taking the time derivative of V2(t,D), we have:

∂V2

∂t
+

∂V

∂D
Ḋ = −|D|g(|D|) ≤ 0. (23)

According to Lemma 2, the equilibrium x = 0 is uniformly
asymptotically stable. Then we arrive at the conclusion that if the
equality d(|OjAi|)/dt = −sgn(D)g(|D|) holds, |D| = 0 will be
guaranteed, i.e., |OjAi| − d for all i = 1 · · · a, = 1 · · · b. Based
on comparison principle, we can readily obtain that |OjAi| ≥ d
when d(|OjAi|)/dt ≥ −sgn(D)g(|D|).

Part II. Then we will show the stability of the deep RNN
(15). Let ξ = [θ̇T, λT1 , λ

T
2 ]

T be the a concatenated vector of
state variables of the proposed deep RNN, then (15) can be
rewritten as:

ǫξ̇ = −ξ + P�̄[ξ − F(ξ )], (24)

where PS(•) is a projection operator to a set S, and F(ξ ) =

[F1(ξ ), F2(ξ ), F3(ξ )]
T ∈ R

n+m+ab, in which:





F1
F2
F3



 =





θ̇ − JTλ1 + JTo λ2
Jθ̇ − ẋd − k(xd − x)

−Joθ̇
∗ − B



 .

Let ∇F = ∂F/∂ξ , we have:

∇F(ξ ) =





I −JT JTo
J 0 0

−JTo 0 0



 . (25)

According to the definition of monotone function, we can readily
obtain that F(ξ ) is monotone. From the description of (24), the
projection operator PS can be formulated as PS = [P�;PR;P3],
in which P� is defined in (13), PR can be regarded as a projection
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operator of λ1 to R, with the upper and lower bounds being±∞,
and P3 = (•)+ is a special projection operator to closed set R

ab
+ .

Therefore, PS is a projection operator to closed set [�;R
m;R

ab
+ ].

Based on Lemma 1, the proposed neural network (15) is stable
and will globally converge to the optimal solution of (10). The
proof is completed.

4. NUMERICAL RESULTS

In this section, the proposed deep RNN based controller
is applied on a planar 4-DOF robot. Firstly, a basic case
where the obstacle is described as a single point is discussed,
and then the controller is expanded to multiple obstacles
and dynamic ones. Comparisons with existing methods are
also listed to indicate the superiority of the deep RNN
based scheme.

4.1. Simulation Setup
The physical structure of the 4-link planar robot to be simulated
in shown in Figure 2, in which the critical points of the robot are
alsomarked. As shown in Figure 2A, critical pointsA2,A4,A6 are
selected at the joint centers, and A1, A3, A5, A7 are selected at the
center of robot links. The D-H parameters are given in Figure 2B.
It is notable that Ai and the Jacobian matrix Joi are essential in
the proposed control scheme. Based on the above description
of Ai, the D-H parameters of A1 is a1 = 0.15, a2 = a3 = 0,
α1 = α2 = α3 = 0, d1 = d2 = d3 = 0, then both the position
and Jacobian matrix Ja1 of A1 can be calculated readily. Based on
the definition in Equation 8, Jo1 can be obtained. Ai and Joi can be
calculated similarly. The control parameters are set as ǫ = 0.001,
α = 8, k = 8. As to the physical constraints, the limits of joint
angles and velocities are selected as θ−i = −3rad, θ+i = 3rad,
θ̇−i = −1rad/s, θ̇+i = 1rad/s for i = 1 . . . 4. The safety distance d
is set to be 0.1m.

4.2. Single Obstacle Avoidance
In this simulation, the obstacle is assumed to be centered
at [−0.1, 0.2]Tm, the desired path is set as xd = [0.4 +

0.1cos(0.5t), 0.4+ 0.1sin(0.5t)]Tm, and the initial joint angles are
set to be θ0 = [π/2,−π/3,−π/4, 0]Trad. The class-K function is
selected as G(|D|) = K1|D| with K1 = 200. In order to show

the effectiveness of the proposed obstacle avoidance method,
contrast simulations with and without inequality constraint
(10e) are conducted. Simulation results are shown in Figure 3.
When ignoring the obstacle, the end-effector trajectories and
the corresponding incremental configurations are shown in
Figure 3A, although the robot achieves task space tracking to
xd, obviously the first link of the robot would collide with the
obstacle. After introducing obstacle avoidance scheme, the robot
moves other joints rather than the first joint, and then avoids
the obstacle effectively (Figure 3B). Simultaneously, the tracking
errors when tracking the given circle are shown in Figure 3C.
From the initial state, the end-effector moves toward the circle
quickly and smoothly, after that, the tracking error in stable
state keeps < 1 × 10−4m, showing that the robot could achieve
kinematic control as well as obstacle avoidance tasks. To show
more details of the proposed deep RNN based method, some
important process data is given. As the obstacle is close to the
first joint, critical points A1 and A2 are more likely to collide
with obstacle, therefore, as a result, the distances between the
obstacle O1 and A1, A2 are shown in Figure 3D, from t = 2s
to t = 6.5s, ||A1O1|| remains at the minimum value d = 0.1,
that is to say, using the proposed obstacle avoidance method, the
robotmaintainsminimumdistance from the obstacle. The profile
of joint velocities are shown in Figure 3E, at the beginning of
simulation, the robot moves at maximum speed, which leads to
the fast convergence of tracking errors. The curve of joint angles
change over time is shown in Figure 3F.

4.3. Discussion on Class-K Functions
In this part, we will discuss the influence of different class-
K functions in the avoidance scheme (5). Four functions are
selected as G1(|D|) = K|D|2, G2(|D|) = K|D|, G3(|D|) =

Ktanh(5|D|), G4(|D|) = Ktanh(10|D|), Figure 4A shows the
comparative curves the these functions. Other simulation settings
are the same as the previous one. Simulation results are shown
in Figure 4B. When selecting the same positive gain K, the
minimum distance is about 0.08m, which shows the robot
can avoid colliding with the obstacle using the avoidance
scheme (5). The close-up graph of the tracking error is also
shown, it is remarkable that the minimum distance deceases,
as the gradient of the class-K function increases near 0.

FIGURE 2 | The planar robot to be simulated in this paper. (A) is the physical structure and critical points, (B) is the corresponding Dh parameters.
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FIGURE 3 | Numerical results of single obstacle avoidance. (A) is the motion trajectories when ignoring obstacle avoidance scheme, (B) is the motion trajectories

when considering obstacle avoidance scheme, (C) is the profile of tracking errors when considering obstacle avoidance scheme, (D) is the profile of distances

between critical points and obstacle, (E) is the profile of joint velocities, (F) is the profile of joint angles.

Therefore, one conclusion can be drawn that the function
can be more similar with Sign function, to achieve better
obstacle avoidance.

4.4. Multiple Obstacles Avoidance
In this part, we consider the case where there are two obstacles
in the workspace. The obstacles are set at [0.1, 0.25]Tm and
[0, 0.4]Tm, respectively. Simulation results are shown in Figure 5.
The desired path is defined as xd = [0.45 + 0.1cos(0.5t), 0.4 +

0.1sin(0.5t)]T. The initial joint angle of the robot is selected as
θ0 = [1.5,−1 − 1, 0]T. To further show the effectiveness of
the proposed obstacle avoidance strategy 5, g|D| is selected as
g|D| = K1/(1 + e−|D|) − K1/2 with K1 = 200. When λ2
is set to 0, as shown in Figure 5A, the inequality constraint
(11d) will not work, in other words, only kinematic tracking
problem in considered rather than obstacle avoidance, in this
case, the robot would collide with the obstacles. After introducing
online training of λ2, the simulation results are given in
Figures 5B–H. The tracking errors are shown in Figure 5C,
with the transient time being about 4s, and steady state error
< 1 × 10−3m. Correspondingly, the robot moves fast in the
transient stage, ensuring the quick convergence of the tracking
errors. It is remarkable that the distances between the critical
points and obstacle points are kept larger than 0.1m at all times,
showing the effectiveness of the proposed method. At t =

14s, from Figures 5D,G, when the distance between A3 and O1

is close to 0.1m, the corresponding dual variable λ2 becomes
positive, making the inequality constraint (11d) hold, and the

boundedness between the robot and obstacle is thus guaranteed.
After t = 18s, ||A3O1|| becomes greater, then λ2 converges to
0. Notable that although λ1 and λ2 do not converge to certain
values, the dynamic change of λ1 and λ2 ensures the regulation
of the proposed deep RNN.

4.5. Enveloping Shape Obstacles
In this part, we consider obstacles of general significance.
Suppose that there is a rectangular obstacle in the workspace,
with the vertices being [0, 0.5]T, [0.4, 0.5]T, [0.4, 0.6]T and
[0.5, 0.6]T, respectively. By selecting the safety distance d =

0.1m, and obstacle points as O1 = [0.05, 0.55]T, O2 =

[0.15, 0.55]T, O3 = [0.25, 0.55]T and O4 = [0.35, 0.55]T. It
can be readily obtained that the rectangular obstacle is totally
within the envelope defined by Oi and d. The incremental
configurations when tracking the path while avoiding the
obstacle are shown in Figure 6B, in which a local amplification
diagram is also given. showing that the critical points A3

is capable of avoiding O2 and O3. It is worth noting that
by selecting proper point group and safety distance, the
obstacle can be described by the envelope shape effectively.
While in Figure 6A, when obstacle avoidance is ignored, the
collision emerges. Figures 6C–H also give important process
data of the system under the proposed controller, including
tracking errors, joint angles, angular velocities, and state
variables of deep RNNs. We can observe that the physical
constraints as well as kinematic control task are realized using
the controller.
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FIGURE 4 | Discussions on different obstacle avoidance functions. (A) is the comparative curves of different obstacle avoidance functions. (B) is the profile of

minimum distance of the robot and obstacle using different obstacle avoidance functions.

FIGURE 5 | Numerical results of multiple obstacle avoidance. (A) is the motion trajectories when ignoring obstacle avoidance scheme, (B) is the motion trajectories

when considering obstacle avoidance scheme, (C) is the profile of tracking errors when considering obstacle avoidance scheme, (D) is the profile of distances

between critical points and obstacles, (E) is the profile of joint velocities, (F) is the profile of λ2, (G) is the profile of joint angles, (H) is the profile of λ1.
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FIGURE 6 | Numerical results of enveloping shape obstacles. (A) is the motion trajectories when ignoring obstacle avoidance scheme, (B) is the motion trajectories

when considering obstacle avoidance scheme, (C) is the profile of tracking errors when considering obstacle avoidance scheme, (D) is the profile of distances

between critical points and obstacles, (E) is the profile of joint velocities, (F) is the profile of joint angles, (G) is the profile of λ2, (H) is the profile of λ1.

4.6. Dynamic Obstacles
In this part, we consider dynamic obstacles moving in the
workspace. In real applications, pedestrian or other obstacles
always tend to be mobile. Obstacle avoidance for dynamic
obstacles is of more general significance. In real time, static
obstacles can be considered a special case. In this simulation,
the simulation duration is selected as 20s, and the trajectory of
a dynamic obstacle is defined as xd = [−0.1 + 0.01t, 0.3]T.
The snapshots in the control process are shown in Figure 8.
While ensuring effective tracking of the defined path, the robot
is able to use its self-motion to avoid the dynamic obstacle
effectively, and maintain a safe distance. The distances between
critical points and the dynamic O is shown in Figure 7B. At

the beginning of simulation, the tracking error is big, in order
to ensure the convergence of tracking error, the joints move a
big range except J1. It is worth noting that since the critical
point A2 is next to O, joint 1 rotates in the direction which
conforms to themovement ofO. In the stable state, tracking error
is < 5 × 10−4m (Figure 7A). At about t = 14s, A2O decreases
to 0.1m, accordingly, the joint velocities change obviously (as
shown the significant change of joint velocities in Figure 7C, the
tracking error changes to 10−3m, and then converges quickly.
At t = 18s, although A2 and A3 are near O, the robot is still
capable of avoiding the dynamic obstacle. During the control
process, joint angles are ensured not to exceed the limits, as
shown in Figure 7D.
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FIGURE 7 | Numerical results of enveloping shape obstacles. (A) is the profile of tracking errors when considering obstacle avoidance scheme, (B) is the profile of

distances between critical points and obstacles, (C) is the profile of joint velocities, (D) is the profile of joint angles.

FIGURE 8 | Snapshots when robot avoiding a dynamic obstacle. (A) is the snapshot when t = 0s, (B) is the snapshot when t = 6s, (C) is the snapshot when t = 12s,

(D) is the snapshot when t = 18s.
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FIGURE 9 | Comparative results when the proposed controller is used on a 7-DOF manipulator iiwa in 3-dimensional space. (A) is the tracking trajectory and the

corresponding joint configurations when obstacle avoidance scheme is introduced. (B) is the tracking trajectory and the corresponding joint configurations when

obstacle avoidance scheme is not introduced.

4.7. Obstacle Performance on 7-DOF
Manipulator in 3-Dimensional Space
To further verify the effectiveness of the control scheme, another
simulation on a 7DOF manipulator iiwa is carried out. The
desired path to be tracked is also a planar circular, which
is centered at [0,−0.6, 0.1]Tm with radius being 0.15m. The
physical parameters can be found in Xu et al. (2019a). Suppose
that there exist a cylinder obstacle in the workspace, the obstacle
is centered as [−0.13,−0.3, 0]Tm, with the radius and height
being 0.15m and 2m, respectively. Simulation results are shown
in Figure 9. It can be readily found that the proposed schemes
can obtain satisfying performance in 3-dimensional spaces.

4.8. Comparisons
To illustrate the priority of the proposed scheme, a group
of comparisons are carried out. As shown in Table 1, all the
controllers in Zhang and Wang (2004); Csiszar et al. (2011);
Guo and Zhang (2012); Krzysztof and Joanna (2016) achieve the
avoidance of obstacles. Comparing to APF method in Csiszar
et al. (2011); Krzysztof and Joanna (2016) of JP based method in
Csiszar et al. (2011); Krzysztof and Joanna (2016), the proposed
controller can realize a secondary task, at the same time, we
present a more general formulation of the obstacle avoidance
strategy, which is helpful to gain a deeper understanding of
the mechanism for avoidance of obstacles. Moreover, in this
paper, both dynamic trajectories and obstacles are considered.
The comparisons above also highlight the main contributions of
this paper.

5. CONCLUSIONS

In this paper, a novel obstacle avoidance strategy is proposed
based on a deep recurrent neural network. The robots are
obstacles are presented by sets of critical points, then the
distance between the robot and obstacle can be approximately
describes as point-to-points distances. By understanding the
nature escape velocity methods, a more general description

TABLE 1 | Comparisons among different obstacle avoidance controllers

on manipulators.

Method Convergence Secondary

task

Handling

physical

constraints

Dynamic

obstacles

obstacle

avoidance

description

This paper Yes Yes Yes Yes Inequalities

Guo and Zhang,

2012

Yes Yes Yes * Inequalities**

Zhang and

Wang, 2004

Yes Yes Yes * Inequalities**

Csiszar et al.,

2011

Yes No No Yes Repulsion

Krzysztof and

Joanna, 2016

Yes No No * Null space

*In Zhang and Wang (2004); Guo and Zhang (2012); Krzysztof and Joanna (2016),

dynamic obstacles are not considered.

**Regular escape velocity method is used, which is only a special case of 5.

of obstacle avoidance strategy is proposed. Using minimum-
velocity-norm (MVN) scheme, the obstacle avoidance together
with path tracking problem is formulated as a QP problem, in
which physical limits are also considered. By introducing model
information, a deep RNN with simple structure is established
to solve the QP problem online. Simulation results show that
the proposed method can realize the avoidance of static and
dynamic obstacles.
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