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Abstract 23 

Objective  24 

While novel analytical methods have been used to examine movement behaviours, to date, no 25 

studies have examined whether a frequency-based measure, such a spectral purity, is useful in 26 

explaining key facets of human movement. The aim of this study was to investigate movement 27 

and gait quality, physical activity and motor competence using principal component analysis. 28 

Methods 29 

Sixty-five children (38 boys, 4.3±0.7y, 1.04±0.05m, 17.8±3.2kg, BMI; 16.2±1.9 kg.m2) took 30 

part in this study. Measures included accelerometer-derived physical activity and movement quality 31 

(spectral purity), motor competence (Movement Assessment Battery for Children 2nd edition; MABC2), 32 

height, weight and waist circumference. All data were subjected to a principal component analysis, 33 

and the internal consistency of resultant components were assessed using Cronbach’s alpha.  34 

Results 35 

Two principal components, with excellent internal consistency (Cronbach α >0.9) were found; 36 

the 1st principal component, termed “movement component”, contained spectral purity, traffic 37 

light MABC2 score, fine motor% and gross motor% (α=0.93); the 2nd principal component, 38 

termed “anthropometric component”, contained weight, BMI, BMI% and body fat% (α=0.91).  39 

Conclusion  40 

The results of the present study demonstrate that accelerometric analyses can be used to assess 41 

motor competence in an automated manner, and that spectral purity is a meaningful, indicative, 42 

metric related to children’s movement quality. 43 

Keywords: Pre-School; Motor Competence: Principal Component Analysis; Physical 44 

Activity; Motor Development 45 



3 
 

Introduction 46 

Global physical activity guidelines advocate that pre-school aged children (3-5 years) 47 

engage in at least 180 minutes of physical activity every day (Tremblay et al., 2012), with 48 

variables such as demographic, biological, sociocultural, and motor competence, defined as a 49 

child’s ability to perform a wide range of motor skills in a proficient manner (Haga, 2008), all 50 

influencing physical activity levels (Bingham et al., 2016; Lubans, Morgan, Cliff, Barnett, & 51 

Okely, 2010). Recent studies have established that development of motor competence has 52 

numerous tangible health and developmental benefits; for example, higher levels of motor 53 

competence are shown to positively predict cardiorespiratory fitness (Vlahov, Baghurst, & 54 

Mwavita, 2014), improve academic performance (Jaakkola, Hillman, Kalaja, & Liukkonen, 55 

2015), and are protective against obesity (Rodrigues, Stodden, & Lopes, 2015). Concerningly, 56 

studies have reported low levels of motor competence among primary school aged children 57 

(Bryant, Duncan, & Birch, 2013; LeGear et al., 2012). These findings highlight the need to 58 

examine motor competence during early years (3-5 years), which is considered a critical phase 59 

for fundamental movement skills development (Gallahue & Donnelly, 2003) and a facilitator 60 

for lifelong physically active lifestyles; moreover, children’s perceptions of their competency 61 

is asserted to influence this development (LeGear et al., 2012). 62 

Motor competence in the early years is traditionally assessed using subjectively scored 63 

observation tools in a controlled setting, most commonly, the movement assessment battery for 64 

children (MABC2 (Henderson, Sugden, & Barnett, 2007)) or the test of gross motor 65 

development (TGMD (Ulrich, 2000)). Although empirical and conceptual evidence exists to 66 

support the reciprocal relationship between motor competence and PA (Stodden et al., 2008), 67 

there is a limited evident base of motor competence related to PA measurement in pre-school 68 

children, largely due to the complexity in examining such constructs in this age group (Adamo 69 

et al., 2016; Goldfield, Harvey, Grattan, & Adamo, 2012). When studies have investigated PA 70 
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and motor competence they tend to examine this as a relationship, where large variability in 71 

not only motor competence, but also PA, is reported, which can conceivably mask, or indeed 72 

create spurious, responses or relationships (Adamo et al., 2016; Clark, Barnes, Swindell, et al., 73 

2018).  74 

Recently there have been developments in technological and analytical capability, 75 

permitting the quantification of complex human movement behaviours (Clark, Barnes, 76 

Stratton, et al., 2016) which have as yet untapped potential to be applied to the assessment of 77 

motor competence. Pervasive technologies, such as accelerometers, inertial measurement units 78 

and magnetometers have been used, albeit in only a small number of studies, with reasonable 79 

success to automatically assess and score motor competence (Barnes, Clark, Rees, Stratton, & 80 

Summers, 2018; Bisi, Panebianco, Polman, & Stagni, 2017). For example, Barnes et al (2018) 81 

demonstrated good agreement between observer and magnetometry derived motor competency 82 

scores, where raw tri-axial magnetometer traces underwent pattern recognition and were 83 

systematically compared against human-assessed scores, with correlation coefficients of the 84 

overall score in the range of 0.62-0.71 for different cohorts. Whilst Bisi et al (2017), with the 85 

application of inertial measurement units, which consisted of an in-built, tri-axial, 86 

magnetometer, gyroscope and accelerometer, showed that automatic assessment, compared to 87 

observer assessment, yielded an agreement of 87% on average across an entire cohort for each 88 

skill. Recently, a novel metric, spectral purity, has been proposed as a viable measure of 89 

movement and gait quality, where the purity of the fundamental frequency spectra (signal) 90 

during movement, specifically relating to gait, is quantified (Clark, 2017). Interestingly, in 91 

Clark et al. (2017), it was suggested that spectral purity may be a viable proxy for motor 92 

competence, assessed using MABC2, and movement quality in pre-school children. 93 

Concomitantly, in slightly older children, the same metric, spectral purity, was shown to be 94 
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hierarchically clustered with cardiovascular fitness (Clark, Barnes, Holton, Summers, & 95 

Stratton, 2016a).  96 

Analytically, feature extraction and principal component analysis have been used to 97 

highlight the key components in any given set of variables to reveal hidden or ‘unseen’ patterns 98 

(Clark, Barnes, Stratton, et al., 2016). The feature extraction approach revolves around the idea 99 

that data representations can be constructed in subspaces with reduced dimensions, while 100 

concurrently retaining, and conceivably increasing, the discriminative capability of the new set 101 

of feature variables (Jain, Duin, & Mao, 2000; Mannini & Sabatini, 2010); thereby reducing 102 

complex and cumbersome data into more manageable or revealing components. 103 

Given the complexity inherent within human movement, its’ assessment, and the 104 

inception of novel variables, exploring and understanding such complexity is of paramount 105 

importance for eventual, and successful, interventions. While novel analytical methods are 106 

starting to be used to examine PA and motor competence, to date, no studies have examined 107 

whether a measure, such as spectral purity, is useful in explaining key facets of human 108 

movement in pre-school children. Such an examination is a needed first step for enhancing our 109 

knowledge base and to provide previously unreported insights in to movement behaviours. 110 

Thus, the aim of this study was to investigate movement and gait quality, physical activity and 111 

motor competence using principal component analysis. 112 
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Methods 113 

Participants and Settings 114 

Sixty-five children (38 boys, 4.3±0.7y, 1.04±0.05m, 17.8±3.2kg, body mass index; 115 

16.2±1.9 kg.m2 (underweight, N = 3; normal weight, N = 40; overweight, N = 13; obese, N = 116 

9)) volunteered to take part in this study. Prior to research commencing, informed parental 117 

consent and child assent was attained. In order to be included in this study, each participant 118 

had to be free from any physical or neurological impairment that may hinder normal movement. 119 

This research was conducted following approval of the institutional research ethics committee 120 

and conformed to the Declaration of Helsinki. 121 

Instruments and Procedures  122 

Children participated in free-play (100 ± 3 minutes per day), which in the context of 123 

this work is synonymous with outdoor recess, where children had access to an enclosed 124 

playground, whilst wearing a custom-built Micro Electro-Mechanical System (MEMS) based 125 

device, which incorporated a tri-axial accelerometer with a ±16g dynamic range, 3.9mg point 126 

resolution and a 13-bit resolution (with a z-axis amplitude coefficient of variation of 0.004 at 127 

40 Hz (Clark, Barnes, Holton, Summers, & Stratton, 2016b); ADXL345 sensor, Analog 128 

Devices). The MEMS device was housed in a small plastic case and affixed via a Velcro strap 129 

to the lateral malleolar prominence of the fibula of the right leg and set to record at 40 Hz, 130 

which has been validated in previous studies (Barnes, Clark, Holton, Stratton, & Summers, 131 

2016; Clark, Barnes, et al., 2016a), and does not violate the Nyquist-Shannon sampling 132 

theorem, which specifies that the sample must contain all the available frequency information 133 

from the signal to result in a faithful reproduction of the analogue waveform signal (Farrow, 134 

Shaw, Kim, P., & Billinge, 2011). Further, put simply, if the highest frequency component, in 135 

Hz, for a given analogue signal is fmax, according to the Nyquist-Shannon sampling theorem, 136 
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the sampling rate must be at least 2fmax, or twice the highest analogue frequency component. 137 

Mannini and colleagues (2013) highlighted that for movement characteristics related to 138 

ambulation, an ankle-mounted monitor may be most suitable, whilst Barnes and colleagues 139 

(2016) systematically demonstrated that ankle affixed accelerometers can be used to accurately 140 

compute locomotion. Data were stored locally on the device, with no incidences of data loss.  141 

Physical activity was concurrently recorded using an ActiGraph GT3X+ device 142 

(ActiGraph, Pensacola, FL, USA). The accelerometer measures 4.6 cm × 3.3 cm × 1.5 cm, and 143 

weighs 19 g. Its sampling frequency was set to 100 Hz, and the sampling interval (epoch) in 144 

the present study was set to be 1-s (Østbye et al., 2013; Pate, Almeida, McIver, Pfeiffer, & 145 

Dowda, 2006). Participants wore their accelerometer on the waist, above the right hip, affixed 146 

using an elastic belt (Hesketh et al., 2014), in accordance with manufacturer guidelines 147 

(Migueles et al., 2017). All children also completed the MABC2, using standardised 148 

procedures as described below Henderson et al. (2007). 149 

Stature (measured to the nearest 0.01m) and body mass (to the nearest 0.1kg) were 150 

measured using standard procedures using a stadiometer and digital scales (SECA, Hamburg, 151 

Germany), respectively (Lohmann, Roche, & Martorell, 1988). Skinfold measurements of the 152 

left triceps and subscapular were made by trained researchers using calibrated skinfold callipers 153 

(Harpenden, Baty International, U.K.), waist circumference was measured at the level of the 154 

naval and measurements were subsequently used to estimate body fat percentage (Eisenmann, 155 

Heelan, & Welk, 2004; Slaughter et al., 1988). Intra- and inter-observer technical error of 156 

measurement (TEM) for waist circumference, triceps and subscapular skinfolds were evaluated 157 

and relative TEMs were acceptable and indicative of ‘skilful’ anthropometrists (Perini, de 158 

Oliveira, Ornelia, & de Oliveira, 2005) 159 
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 Further, children were classified based on body-mass index percentiles as either; 160 

underweight (≤5th percentile), normal weight (5th to 85th percentile), overweight (>85th to <95th 161 

percentile) or obese (≥ 95th percentile) (Cole & Lobstein, 2012).  162 

Data Analysis 163 

Spectral purity (Movement quality): 164 

Raw acceleration data from the MEMS device were uploaded into MatLab (MATLAB 165 

version R2016a), where spectral purity was derived (Barnes et al., 2016; Clark, Barnes, et al., 166 

2016a; Clark, Barnes, Summers, Mackintosh, & Stratton, 2018). The characteristics used for 167 

analysis were derived from acceleration in the axis along the lower leg towards the origin of 168 

motion, termed the radial axis (Barnes et al., 2016; Clark, Barnes, et al., 2016a). Acceleration 169 

data were converted from the time into the frequency domain. To convert the data into the 170 

frequency domain, a Fast Fourier transform (FFT) was applied to the data.  The FFT computes 171 

the discrete Fourier transform (DFT) of a sequence. 172 

Let x_0,…,x_(N-1) be a sequence of N complex numbers. The Fast Fourier transform 173 

computes the Discrete Fourier transform 174 

𝑋𝑘 =  ∑ 𝑥𝑛. 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0  , 𝑘 ∈ 𝑍 175 

Equation 1. Fast Fourier Transform 176 

Where, N = number of time samples, n = current sample under consideration (0 .. N-1), xn = 177 

value of the signal at time n, k = current frequency under consideration (0 Hertz up to N-1 178 

Hertz), Xk = amount of frequency k in the signal (amplitude and phase, a complex number), 179 

n/N is the percent of the time gone through, 2 * pi (𝜋) * k is the speed in radians.sec-1, e^-ix is 180 

the backwards-moving circular path. 181 
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To determine the quality of a child’s movement - ‘Spectral purity’ was calculated from 182 

the cumulative distribution function (CDF) of the frequency spectrum. The CDF plot is used 183 

to generate a value for spectral purity. The empirical CDF F(x) is defined as the proportion 184 

of X values less than or equal to some value x. In this case, it is the number of values less than 185 

or equal to some frequency in a spectrum being considered. A measure for spectral purity is 186 

therefore considered to be the frequency at which the midway point of the CDF (0.5) occurs. 187 

As a result, spectra that is 'clean', i.e. consisting of a tall narrow peak at the fundamental 188 

frequency and only low amount of noise and small harmonics will have a different value to 189 

spectra where there is lots of noise, a shorter wider peak, and higher peaks at the harmonics. 190 

Spectral purity measures how tightly the frequency components of the raw accelerations are 191 

distributed using fundamental frequency to harmonics and the frequency spectrum analysis is 192 

directly related to the ambulation of a participant (Barnes et al., 2016; Clark, Barnes, et al., 193 

2016a).  194 

Actigraphy: 195 

ActiGraph acceleration data were analysed using commercially available analytics 196 

(KineSoft version 3.3.67, KineSoft; www.kinesoft.org). Non-wear periods were defined as any 197 

sequence of >20 consecutive minutes of zero activity counts (Tudor-Locke et al., 2015). 198 

Sedentary behaviour was defined as <100 counts per minute, while 100, 2296 and 4012 counts 199 

per minute were thresholds to define light, moderate and vigorous physical activity, 200 

respectively (Evenson, Catellier, Gill, Ondrak, & McMurray, 2008; Trost, Loprinzi, Moore, & 201 

Pfeiffer, 2011). Mean counts per minute during valid wear time and percentage of total time 202 

spent in moderate-to-vigorous physical activity (MVPA) were used to define physical activity 203 

(Migueles et al., 2017). 204 

2.3.3 Motor competence: 205 

http://www.kinesoft.org/
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The MABC2 measures both fine and gross motor skill performance for children in three 206 

age bands (3–6 years, 7–10 years, and 11–16 years). It contains eight tasks for each of the three 207 

age bands in three different constructs: manual dexterity, ball skills, and static and dynamic 208 

balance, and was scored by a trained, experienced assessor. Each participant received a 209 

standardised familiarisation of the test battery, in line with the MABC2 manual (Henderson et 210 

al., 2007). Each task's raw score can be converted to a standard score, and a total test score can 211 

be calculated by summing the eight task standard scores. Using the total test score, a percentile 212 

score can be found from the norm tables published in the MABC2 manual to determine a child's 213 

motor delays. The test percentile scores were described as a traffic light scoring system 214 

including a red zone (1), amber zone (2), and green zone (3). A percentile score ≤5th is 215 

classified in the red zone indicating a significant movement difficulty, a percentile score 216 

between the 5th and 15th is classified in the amber zone indicating at risk of movement 217 

difficulty, and a percentile score >15th is classified in the green zone indicating no movement 218 

difficulty detected. Fine (i.e., manual dexterity) and gross (i.e., ball skills, static and dynamic 219 

balance) motor skill raw scores were converted to percentile scores for each child using the 220 

MABC2 conversion tables (Henderson et al., 2007). The percentile scores were generated for 221 

each area (i.e., manual dexterity, ball skills, static and dynamic balance) and their overall 222 

percentile scores (combination of all eight tasks) (Henderson et al., 2007). All tests were video 223 

recorded using a high-resolution (350 fps) video camera (Bonita 480m, Biometrics, France) 224 

positioned medio-laterally to the participant, and assessed post-hoc, and 5 participants were 225 

classified as “red”, 10 participants classified as “amber”, and 50 participants classified as 226 

“green”. 227 

2.3.4 Statistical analysis: 228 

All data were subjected to a principal component analysis using ‘one’ as the prior 229 

communality estimate (Kline, 2000; Pearson, 1901). Varimax orthogonal transformation was 230 

https://en.wikipedia.org/wiki/Orthogonal_transformation
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used to convert the set of physical and anthropometric variables into a set of linearly 231 

uncorrelated variables, termed principal components. The number of distinct principal 232 

components was equal to either, the number of original variables or the number of observations 233 

minus one (whichever is smallest). This transformation was defined in such a way that the first 234 

principal component had the largest possible variance (that is, accounts for as much of the 235 

variability in the data as possible), and each succeeding component in turn has the highest 236 

variance possible under the constraint that it is orthogonal to the preceding components. The 237 

resulting vectors were an uncorrelated orthogonal basis set. Principal components with Eigen 238 

values greater than one were retained (Kline, 2000; Nunnally & Bernstein, 1994). The internal 239 

consistency of components were assessed using Cronbach’s alpha (α), and reported according 240 

to (Nunnally & Bernstein, 1994);α < 0.5 is unacceptable, α ≥ 0.5 but < 0.6 is poor, α ≥ 0.6 but 241 

<0.7 is questionable, α ≥ 0.7 but <0.8 is acceptable, α ≥ 0.8 but <0.9 is good, and α ≥ 0.9 is 242 

excellent. All statistical analyses were conducted using JASP statistical package (JASP Team, 243 

2018, jasp-stats.org).  244 

https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Correlation_and_dependence
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Results 245 

Two principal components, with excellent internal consistency (Cronbach α >0.9) 246 

were found; the 1st principal component, termed “movement component”, contained Spectral 247 

purity, traffic light MABC-2 score, fine motor% and gross motor% (α=0.93; Table 1); the 2nd 248 

principal component, termed “anthropometric component”, contained weight, BMI, BMI% 249 

and body fat% (α=0.91; Table 1). The percentage of variance, defined by the Eigenvalues, is 250 

displayed in Table 2, whilst the PCA structure is displayed in Figure 1.   251 

**Table 1 about here** 252 

**Table 2 about here** 253 

**Figure 1 about here** 254 
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Discussion 255 

Developments in the field of objectively measured human movement are progressing 256 

expediently, with sensors now efficaciously being able to analyse gait patterns and determine 257 

safety, control, balance, variability and rhythmicity during ambulation (Aziz, Park, Mori, & 258 

Robinovitch, 2014; Aziz & Robinovitch, 2011; Bellanca, Lowry, Vanswearingen, Brach, & 259 

Redfern, 2013; Brach et al., 2011; Kangas, Korpelainen, Vikman, Nyberg, & Jamsa, 2015), 260 

through exploitation of the periodicity of  raw signal outputs (Gage, 1964; Smidt, Arora, & 261 

Johnston, 1971). It is asserted that this type of analysis is highly suggestive of the fundamental 262 

neural control of movement (Stergiou & Decker, 2011) and shown to be representative of 263 

movement quality in standardised settings (Clark, Barnes, et al., 2016a). Feature extraction of 264 

such variables has the potential to yield unseen insights, with reduced dimensionality, while 265 

concurrently retaining the discriminative capability of the new set of feature variables (Jain et 266 

al., 2000; Mannini & Sabatini, 2010). Thus, the aim of this study was to investigate movement 267 

and gait quality, physical activity and motor competence using principal component analysis. 268 

In accord with the aim of this study, two principal components, with excellent internal 269 

consistency (Cronbach α >0.9) were found; the 1st principal component contained Spectral 270 

purity, traffic light MABC2 score, fine motor% and gross motor% (α=0.93; Table 1); the 2nd 271 

principal component contained weight, BMI, BMI% and body fat% (α=0.91; Table 1). The 272 

results of the current study are novel as no study has examined this issue in pre-school children. 273 

Moreover, the data we present are practically significant in that we demonstrate the efficacy of 274 

spectral purity as a meaningful metric related to children’s movement. 275 

Movement component   276 

This study highlighted that accelerometric analyses of motor competence, and 277 

traditional assessment tools (MABC), represent one, distinct principal component, and as such, 278 
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the authors strongly recommend further work be done investigated the veracity of 279 

accelerometer derived measures of motor competence as a time-saving, automated and accurate 280 

proxy for traditionally assessed motor competence. Such assertions are concordant to that of 281 

Clark et al (2017), who highlighted that the frequency and harmonic content of movement is 282 

reflective of movement characteristics such as gait pattern and overall physical activity, in 283 

addition to cardiorespiratory fitness. The authors reported that spectral purity and motor 284 

competence (MABC2 classification) were more closely, cophenetically, linked (0.06) than 285 

integrated acceleration (0.19), which was previously unreported; whilst in older children, 286 

spectral purity was demonstrated to be indicative of fundamental aspects of movement (Clark, 287 

Barnes, et al., 2016a). Collectively, the current study, and antecedent findings, suggest that 288 

spectral purity may be a movement quality indicator in early years’ children. 289 

Ubiquitous sensors have been used with signal analysis to machine-score specific 290 

activities or components within a varied activity programme with reasonable success (Allen, 291 

Ambikairajah, Lovell, & Celler, 2006; Bisi et al., 2017; Clark, Nobre, et al., 2018; Rocha et 292 

al., 2019). Barnes and colleagues (Barnes et al., 2018) presented an alternative, process-293 

oriented quantification of complex motion in which pairwise comparison of individuals is made 294 

using time trace correlations of position sensor data. Previous approaches using wearable 295 

sensors have focussed on identification of specific gestures (Akl, Feng, & Valaee, 2011) or 296 

discrimination between specific activities, e.g. walking or cycling (Mannini et al., 2013). 297 

Whilst Barnes et al (Barnes et al., 2018) show that comparison of an automated, sensor-based 298 

method to the standard approach has a strong correlation to subjective human-assessed scores. 299 

 Previous examples of measurement variability within physical activity tests have 300 

reported correlation coefficients of 0.6 when comparing overall scores between different FMS 301 

tests (Lander, Morgan, Salmon, Logan, & Barnett, 2017), and 0.5 – 0.7 for comparison of 302 

process and product-oriented scores of individual skills (Logan, Barnett, Goodway, & Stodden, 303 
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2017). Moreover, comparison of inter-rater variability within a single test indicated κ values in 304 

the range of 0.2 – 0.6 for overhand throw and strike skills (Barnett, Minto, Lander, & Hardy, 305 

2013). Thus, given novel, automated assessment appears not only accurate, but comprises one 306 

principal component with overall MC, further confirmatory assessment, and eventual adoption 307 

of such metrics is warranted. 308 

 Product-oriented assessments evaluate the outcome of a movement (e.g. how fast, how 309 

many), offer an objective evaluation of the outcome of the task, but do not allow interpretation 310 

on how it was achieved. On the other hand, process-oriented motor competence assessments 311 

analyse how a movement is performed and with which strategy, with the advantage of allowing 312 

the identification of specific skill components that may need improving (Barnett et al., 2013). 313 

A particular limitation of process-oriented assessment is that it is time consuming and requires 314 

the involvement of numerous trained observers to ensure reliability. In general, the use of 315 

combined process and product assessments is suggested, if a complete and comprehensive 316 

capture of the motor development of the child is to be made (Logan et al., 2017). Thus, of 317 

further, contemporary interest, is the time saving capability of novel metrics such as spectral 318 

purity. Bisi et al (2017) report a tangible reduction in assessment, per person, of 13 minutes 319 

when using sensor-based analytics, vs. traditional assessment in the TGMD2. Given the 320 

retention in accuracy of automated assessments using novel metrics, concomitant to marked 321 

time saving, both in terms of analyses and human time, and the findings of the current study, 322 

where automated novel analytical outputs are related to MC; this may act as a valid and useful 323 

alternative, or addition, to the assessment of MC and PA in children. 324 

 325 

Anthropometric component 326 

The present study found one principal component containing weight, BMI, BMI% and 327 

body fat% (α=0.91), which is indicative of groups of variables that measure the same 328 
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underlying dimensions of a data set (Davis, 2001). This finding is unsurprising and congruent 329 

with previous literature, where BMI and body fat percentage have been shown to be 330 

cophenetically clustered (Clark, Barnes, et al., 2016a; Clark et al., 2017) and significantly 331 

positively correlated (Cui, Truesdale, Cai, Koontz, & Stevens, 2013; Lindsay et al., 2001). 332 

Furthermore, Pasco et al (Pasco, Nicholson, Brennan, & Kotowicz, 2012) reported an exact 333 

agreement between BMI and waist circumference criteria for categorising normal, overweight 334 

and obese groups in males and females, whilst BMI was correlated to other indices of adiposity 335 

in both men and women. Pietrobelli et al (1998) identified that body fat (in kilograms) and 336 

percent of body weight as fat (BF%) were estimated by dual energy x-ray absorptiometry 337 

(DEXA) in 198 healthy Italian children and adolescents between 5 and 19 years of age. BMI 338 

was strongly associated with TBF (R2 = 0.85 and 0.89 for boys and girls, respectively) and 339 

BF% (R2 =0.63 and 0.69 for boys and girls, respectively), and asserted that BMI as a fatness 340 

measure in groups of children and adolescents. Further, Jelena et al (2016) reported the 341 

correlation between BMI and %BF was very strong, positive, among young girls (r = 0.975) 342 

and boys (r = 0.752). However, this study was not seeking to support the veracity of one 343 

anthropometric variable over another, but has reiterated the already well-established linear 344 

relationship between such anthropometric indices (i.e. BMI, BMI percentile, BF%), utilising 345 

principal component analyses. As such, given all of the anthropometric measures, 346 

independently and strongly correlated with the overall, rotated principal component (Table 1.), 347 

the authors would suggest the choice of which measures to take be carefully considered 348 

according to researcher and participant time and resource constraints, and following transparent 349 

reporting practices. 350 

Limitations, recommendations, and practical implications 351 

Although this study employed novel signal analytics of accelerometer data, in the form 352 

of spectral purity, there are further analytics that could be employed and should be the focus of 353 
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future research, for example, the intensity gradient (Rowlands et al., 2018), Euclidean Norm 354 

Minus One (ENMO) (van Hees et al., 2013) and Mean Amplitude Deviation (MAD) (Vaha-355 

Ypya, Vasankari, Husu, Manttari, et al., 2015; Vaha-Ypya, Vasankari, Husu, Suni, & Sievanen, 356 

2015). Furthermore, although we utilised a reasonable sample size in this work, larger samples 357 

will be required in order to better generalise, and indeed validate, our approach. Another 358 

potential limitation is the use of varying demarcations for variables such as BMI grouping, 359 

MVPA cut-points and MABC2 traffic light score. However, we presented the information 360 

according to literature norms; nevertheless, we acknowledge that, as this field of analytics 361 

progresses, harmonization of data outputs will become necessary. Although the findings of the 362 

present study are useful, further work must be conducted in order to affirm the utility of 363 

movement quality measurement, and indeed, track changes and development longitudinally 364 

and in response to interventions. Whilst practically, the implications of being able to robustly 365 

quantify movement quality using an automated sensor is extremely advantageous, particularly 366 

when standard assessment batteries necessitate a time and resource consumptive approach, 367 

with limited reliability. 368 

Conclusion 369 

Firstly, the results of the present study are practically significant in that we demonstrate 370 

the efficacy of spectral purity as a meaningful, indicative metric related to children’s movement 371 

quality Secondly, one of the primary functions of PCA is to reveal groups of variables that 372 

measure the same underlying dimensions of a data set, indeed, we have demonstrated that 373 

spectral purity, a quantitative measure of movement quality, comprises a principal component 374 

with overall, and derivatives of, motor competence, indicating that movement quality may 375 

inform the level of motor competence in children. Moreover, the measure of movement quality 376 

requires comparatively little time and resource, accompanied by an automated analytical 377 

procedure. 378 
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Table 1. Principal components, Eigenvalues and internal consistency 597 

 Component 

1 2 3 4 5 

Age - - .789 - - 

Height - - .897 - - 

Weight - .777 .569 - - 

Sex - - - .695 - 

BMI - .950 - - - 

BMI% - .932 - - - 

Waist circumference - - - - .916 

Body fat% - .897 - - - 

Activity counts  - - - .638 - 

MVPA - .- - -.596 - 

Spectral purity .866 - - - - 

Traffic light score .882 - - - - 

Fine motor% .718 - - - .342 

Gross motor% .790 - - - -.364 

Eigen Value 3.7 2.6 1.6 1.2 1.1 

Cronbach α 0.93** 0.91** 0.81* 0.24 0.21 

Note. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser 598 

Normalization. Rotated component matrices supressed <0.3. ** denotes excellent (≥0.9) internal consistency. 599 

*denotes good internal consistency.  600 



24 
 

Table 2. Principal components and variance explained 601 

 602 

603  

 

Initial Eigenvalues Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared Loadings 

Total %var  Cum.% Total %var  Cum.% Total %var  Cum.% 

1 3.782 27.018 27.018 3.782 27.018 27.018 3.333 23.810 23.810 

2 2.683 19.163 46.180 2.683 19.163 46.180 2.666 19.043 42.853 

3 1.627 11.623 57.803 1.627 11.623 57.803 2.030 14.502 57.355 

4 1.281 9.149 66.952 1.281 9.149 66.952 1.336 9.540 66.894 

5 1.113 7.953 74.905 1.113 7.953 74.905 1.121 8.011 74.905 

Note. Extraction Method: Principal Component Analysis. %var: percent of variance; Cum.%: cumulative percentage. 
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 604 

Figure 1. PCA structure. 605 

Note. The sign of the correlations are indicated by colour; positive correlations are green, negative are red. The 606 

thickness of the lines indicates strength of correlation (thicker = stronger). Fine: fine motor%; Gross: gross 607 

motor %; MC: motor competence; IA: integrated acceleration; SP: spectral purity;     : traffic light classification; 608 

BMI: body mass index; BF: body fat%; W: weight; H: height; MVPA: moderate-to-vigorous physical activity; 609 

count: activity count; WC: waist circumference. 610 
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