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14, Niš, Serbia

Abstract

The Galerkin method is widely applied for �nding approximate solutions
to vibration problems of beam and plate structures and for estimating their
dynamic behaviour. Most studies employ the Galerkin method in the analysis of
the undamped systems, or for simple structure models with viscous damping. In
this paper, a novel approach of using the Galerkin method and Fourier transform
to �nd the solution to the problem of vibration of fractionally damped beams
with an arbitrary number of attached concentrated masses and base excitation is
presented. The considered approach is novel and it lends itself to determination
of the impulse response of the beam and leads to the solution of the system
of coupled fractional order di�erential equations. The proposed approximate
solution is validated against the exact solution for a special case with only one
tip mass attached, as well as against the Finite Element Method Solution for
a special case with classical viscous damping model. Numerical analysis is also
given, including the examples of vibration analysis of viscoelastic beams with
di�erent fractional derivative orders, retardation times, and the number, weight
and position of the attached masses.

Keywords: Galerkin method, fractional viscoelasticity, beam mass system,
base excitation, impulse response

1. Introduction

Many mechanical systems commonly met in practice can be modelled as a
cantilever beam with one or more attached concentrated masses. Application
of such systems ranges from civil engineering [1] to mechanical engineering [2]

∗Corresponding author
Email address: mcajic@mi.sanu.ac.rs (Milan Cajić )
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purposes and they have been addressed in experimental and theoretical stud-
ies extensively over the last several decades. Most of the �rst approaches to
treat such systems were based on analytical techniques to reach exact frequency
equations, eigenvalues and the corresponding eigenfunctions. One of the �rst
approaches to �nd the exact frequencies and mode shape functions, for a beam
with attached mass introduced via Dirac delta function, was based on spatial
domain Laplace transform method [3]. The cited author has solved the initial
value and forced vibration problems by using eigenfunctions orthogonal with
respect to a new weighting function. Another commonly used method to obtain
the exact eigenfrequency equation and mode shapes is based on compatibility
conditions introduced at the place of the attached mass. In [4], this method has
been compared to the method based on Laplace transform, where it was con-
�rmed that both methods yield exactly the same eigenvalues. Analytic form of
frequency equations can be obtained, but it has been shown to be a comprehen-
sive task with the increase of the number of concentrated masses. In addition,
some authors have used the generalised functions to deal with beams with inter-
nal discontinuities such as changes in sti�ness and/or material properties, and
external discontinuities in the form of attached elements or additional boundary
conditions [5, 6] .

Another approach for obtaining the solution for the beam mass problem
is based on approximate methods such as Rayleigh-Ritz or Galerkin method
[7]. Such methods are much easier to apply to problems with multiple at-
tached masses since they do not demand derivation of orthogonality relations
or calculation of complex frequency equations. Hamdan and Latif [8] solved
the beam mass problem using approximate methods and compared them to
the exact and numerical solution based on the �nite element method. The au-
thors have compared the numerical results to the exact solution, and it was
shown that the �nite element method yielded the best approximation, while the
Galerkin method results signi�cantly improve by increasing the number of con-
sidered modes. In that paper, it was also con�rmed that Rayleigh-Ritz method
was computationally less expensive than the Galerkin method but it yielded a
larger error. In the literature, there are also analytical-and-numerical-combined
methods (ANCM) [9, 10] that are suitable for the problems of beams carrying
concentrated masses or spring-damper-mass systems. In comparison to transfer
matrix and �nite element methods, it was demonstrated that such combined
methods could be more e�cient and even faster than the �nite element method
but at the expense of accuracy of the results. Recently, much e�ort has been
devoted to experimental and theoretical investigation of nanotube based mass
detection sensors. Non-atomic based theories to model nanotubes as nanobeam
structures mostly relies on modi�ed continuum theories to account for the small
scale e�ects. This results in complex governing equations for the vibration of
nanobeams with concentrated masses representing nanoparticles at the molec-
ular level. However, such models are much simpler and computationally more
e�cient compared to the atomistic ones. Solution methods for nanobeam mass
problems are similar to the classical ones and range from application of the �nite
element method [11], di�erential quadrature method [12], Galerkin method [13],
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and transfer function method [14] to meshless techniques [15, 16].
Consideration of structural damping in beam vibration problems is impor-

tant step in achieving a more accurate response. Depending on the source
of dissipation, damping can be divided into two main categories, the external
and internal damping. The former are usually described by using some of the
available models of viscoelastic body, while the external damping is usually con-
sidered as viscous type of damping [17]. Further, classical viscoelastic or viscous
damping constitutive relations can be divided into di�erential and integral type
of models. Using the aforementioned relations in structural vibration analysis
leads to damped vibration problems, where governing equations after spatial dis-
cretization become time dependent di�erential equations with the corresponding
sti�ness, mass and damping matrices and the corresponding eigenvalue problem
with complex frequencies [18, 19]. Nevertheless, the fractional order derivative
viscoelastic models are shown to be advantageous compared to the classical in-
teger order ones, since they require fewer parameters in order to �t experimental
data [20]. History of fractional rheological models dates back to Scott Blair and
Gerasimov and later they were applied by many authors to describe the mate-
rials with behavior ranging from �uid like to solid like behavior [21]. Rossikhin
and Shitikova [22] reviewed a large amount of literature concerning the appli-
cation of fractional calculus to various dynamic problems in solid mechanics.
Problems of vibration of fractional viscoelastic beam and rod structure based
models were studied in numerous papers [23]. [23, 24] studied the longitudi-
nal and transverse vibrations of rod and beam structures using fractional order
derivative constitutive equations. The problems were solved using the corre-
sponding eigenvalue problem and power series solution. Atanackovic et al. [25]
performed a comprehensive study on di�erent problems in mechanics described
via fractional calculus based models. In spite that there is a vast literature on
vibration of fractional viscoelastic structures [26�34] , only a few papers are
considering such problems with concentrated masses, e.g. [35, 36]. Cajic et al.
[37] analyzed the free transverse vibration of a nanobeam with a single attached
mass using modi�ed nonlocal and fractional viscoelastic constitutive equation.
The authors used compatibility conditions to introduce the attached mass into
the model and found the exact solution of the problem. In [38], the authors con-
sidered a more complex nonlocal fractional viscoelastic nanobeam model with
an arbitrary number of attached masses and in�uence of the axial magnetic �eld
and fractional viscoelastic foundation. In this case, however, an approximate
solution for the free vibration problem was found.

The base excitation of beams is another interesting problem for analysis
due to recent application for energy harvesting purposes [39]. The literature
on this problem is sparse and some of the papers are considering elastic [40]
and fractional viscoelastic beam models [41, 42]. Freundlich [43] analyzed the
vibration of the fractional Kelvin-Voigt cantilever beam with base excitation and
tip mass at the free end. The author used the separation of variables method
and found the exact eigenvalues and eigenfunctions of the problem. After the
derivation of the corresponding orthogonality relationship for eigenfunctions,
a fractional di�erential equation is obtained and solved using the methodology
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from [44] based on impulse response and Green function as well as residue theory.
The exact analytical solution obtained in this way is limited to problems with
a single attached mass introduced through boundary conditions.

The aim of this study is to construct a more general model and solution
method for the vibration of fractional viscoelastic beams with base excitation
and an arbitrary number of concentrated masses attached to the beam. This is
achieved by using the Galerkin method for space discretization, where the ob-
tained system of coupled fractional order di�erential equations is solved using
the methodology adopted from [44]. The presented approach is a step forward
in investigation of this type of problems. The obtained solution is validated for
a special case against the exact solution from [43] and numerical �nite element
method. The observed theoretical problem and the developed solution methods
possess good potential for future use in energy harvesting devices with frac-
tional damping considered. The developed methodology could be extended to
consider the systems of multiple coupled beams with attached masses and base
excitation for possible application as energy harvesting devices implemented in
civil engineering structures and for green energy production.

2. Theoretical preliminaries

2.1. Fractional derivatives

If the order of a derivative is not an integer, but rather a real number, the
derivative is called a fractional order derivative or simply fractional derivative.
Derivatives of this kind are de�ned in fractional calculus, and they have already
been used in various problems of mechanics [25]. Several de�nitions of fractional
derivatives are in use. In this paper, the Riemann-Liouville de�nition is used,
which can be stated as follows [45].

Let N and C denote the set of natural, and the set of complex numbers, re-
spectively, and letAC([a, b]) denote the space of absolutely continuous functions,
and ACn, n ∈ N, n ≥ 2 denote the space of functions f that have continuous
derivatives up to the order of n− 1 and f (n−1) ∈ AC([a, b]).

De�nition 1. Let α ∈ C, Re α ≥ 0, n − 1 < Re, α < n, n ∈ N, and f ∈
ACn([a, b]), then:

The left Riemann-Liouville fractional derivative of order α is de�ned as

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ,

t ∈ [a, b];

The right Riemann-Liouville fractional derivative of order α is de�ned as

tD
α
b f(t) = (−1)n

1

Γ(n− α)

dn

dtn

∫ b

t

f(τ)

(τ − t)α−n+1
dτ,

t ∈ [a, b];
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According to [25], the de�nition of the Riemann-Liovulle fractional derivative
in the case α ∈ R follows from the above given de�nition. In this paper, the
left Riemann-Liouville fractional derivative for α ∈ [0, 1) is used, and it will be
denoted by Dα throughout the text.

3. Formulation of the problem

3.1. The problem statement

In this paper, a cantilever beam of a constant geometry and made of a ho-
mogeneous isotropic viscoelastic material, carrying an arbitrary number of con-
centrated masses is analysed. The beam is subjected to an arbitrary transversal
load and to an arbitrary transversal movement of the support. The schematic
representation of the described system is presented in Fig. 1.

E, A, I, const.ρ, τ =
α

w  (t)s

a1

a2

ap

aN

L

m1 m2 mp mN
... ...

b(x,t)

Figure 1: The schematic representation of the analysed model

Viscoelastic material behavior can be more conveniently described by using
a constitutive relation with a time derivative of a fractional (non-integer) order.
In this paper, the following constitutive relation is used to describe the material
[21]:

σ(t) = E (ε(t) + ταDαε(t)) (1)

where σ(t) is the normal stress, ε(t) is the dilatation, E is the material elasticity
modulus, and τα is the retardation time.

3.2. The equation of motion

For the previously described model, the derived equation of motion is of the
form:

EIw′′′′ + EIταDα(w′′′′) +

(
ρA+

N∑
p=1

Mpδ(x− ap)

)
ẅ = b(x, t) (2)

where w is the transversal displacement of the beam, I is the cross-sectional
moment of inertia, ρ is the material mass density, A is the cross-sectional area
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of the beam, x is the longitudinal coordinate, Mp is the p-th attached mass and
δ is the Dirac function. In this paper, the symbol (•)′ will be used to represent

∂(•)/∂x, ˙(•) will symbolize ∂(•)/∂t, and (•)(α) will denote Dα(•).
The corresponding boundary conditions were taken to be

w(0, t) = ws(t) and w′(0, t) = EIw′′(L, t) = EIw′′′(L, t) = 0

where ws(t) is the motion function of the support. Also, the zero initial condi-
tions were taken.

Currently, the boundary conditions are not homogeneous. In order to ho-
mogenise them, the following procedure can be applied [46]. Namely, if the beam
support moves according to the function ws = ws(t), the absolute transversal
displacements of the beam can be decomposed into two parts - a rigid body
motion of the beam, where each point moves exactly like the support, and the
displacements relative to the supported end of the beam (v(x, t)):

w(x, t) = ws(t) + v(x, t) (3)

Introducing this relation to the equation of motion gives

EIv′′′′(x, t) + EIταDα(v′′′′(x, t)) +

(
ρA+

N∑
p=1

Mpδ(x− ap)

)
v̈(x, t) =

= F (x, t)

(4)

where F (x, t) ≡ b(x, t)−
(
ρA+

∑N
p=1Mpδ(x− ap)

)
ẅs(t).

This leads to the homogeneous boundary conditions:

v(0, t) = v′(0, t) = EIv′′(L, t) = EIv′′′(L, t) = 0

4. The Galerkin method

4.1. The system equations

Since there are concentrated masses attached to the beam along the span,
the exact solution of the Eq.(4) would require the use of complex algebraic op-
erations and complicated mode shape functions that need to satisfy the speci�c
orthogonality conditions (e.g. [47]). The other way to �nd the exact solution is
the multi-span beam approach, but it quickly leads to a very large number of
equations with the increase of number of the attached masses. To avoid these
di�culties, the approximate methods are usually suggested in literature [8], such
as the Galerkin, Rayleigh-Ritz or the Finite element method. In this paper, the
Galerkin method will be used to �nd the approximate solution of the Eq.(4).

At this point, the solution v(x, t) is approximated by a series

v(x, t) =

n∑
i=1

φi(x)qi(t) (5)
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where n is the number of terms in the Galerkin series approximation, φi(x)
are the trial functions for the Galerkin solution, and qi(t) are the Galerkin
coe�cients, herein considered to be some yet undetermined time functions. As it
is known from literature [48], any function from the set of comparison functions,
i.e. the functions that exactly satisfy the boundary conditions, can be used as a
trial function in the Galerkin approximation. For now, it will be assumed that
the trial functions φi(x) are known, and they will be speci�cally determined in
the next subsection.

Taking into account the above approximation, the equation of motion be-
comes

n∑
i=1

EIφ′′′′i (x)qi(t) +

n∑
i=1

EIφ′′′′i (x)ταDαqi(t)+

+

n∑
i=1

(
ρA+

N∑
p=1

Mpδ(x− ap)

)
φi(x)q̈i(t))− F (x, t) = R∗

(6)

where R∗ 6= 0 is a nonzero residual that arises due to the introduced approxima-
tion. The Galerkin weighted residual method requires that the integral of the
weighted residual over the whole problem domain vanishes [7], while the trial

functions are used as the weighting functions, i.e.
∫ L
0
φj(x)R∗dx = 0, j =

1, 2, . . . , n. This produces the following system of n equations

n∑
i=1

(∫ L

0

EIφ′′′′i (x)φj(x)dx

)
qi(t) +

n∑
i=1

(∫ L

0

EIταφ′′′′i (x)φj(x)dx

)
Dαqi(t)+

+

n∑
i=1

(∫ L

0

(
ρA+

N∑
p=1

Mpδ(x− ap)

)
φi(x)φj(x)dx

)
q̈i(t)) =

=

∫ L

0

F (x, t)φj(x)dx ≡ Qj(t), j = 1, 2, . . . , n

(7)

which can be expressed in matrix form as

Kq+Cq(α) +Mq̈ = Q (8)

where q(α) ≡ Dαq, as stated previously, and with the matrix and vector
elements calculated as
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Kij =

∫ L

0

EIφ′′′′i (x)φj(x)dx =

=

∫ L

0

EIφ′′i (x)φ′′j (x)dx+ EIφ′′′i (x)φj(x)|
L

0 −EIφ′′i (x)φ′j(x)|
L

0

Cij =

∫ L

0

EIταφ′′′′i (x)φj(x)dx

=

∫ L

0

EIταφ′′i (x)φ′′j (x)dx+ ταEIφ′′′i (x)φj(x)|
L

0 −ταEIφ′′i (x)φ′j(x)|
L

0

Mij =

∫ L

0

(
ρA+

N∑
p=1

Mpδ(x− ap)

)
φi(x)φj(x)dx

Qj =

∫ L

0

F (x, t)φj(x)dx

qT = [q1, q2, ..., qn]

4.2. The trial functions

In the Galerkin method, the trial functions are chosen from the set of compar-
ison functions, i.e. the functions that exactly satisfy all the boundary conditions
of the problem, and are mutually orthogonal. In this paper, the mode shape
functions for the bare beam (with no concentrated masses attached) with the
appropriate boundary conditions are used as the trial functions φi(x) [7].

Accordingly, for a cantilever beam, the trial functions are taken as:

φi(x) =

√
1

ρAL

(
cosβix− coshβix+

cosβiL+ coshβiL

sinβiL+ sinhβiL
(sinβix− sinhβix)

)
where βi

4 = ω̄4
i
ρA
EI is the i−th dimensionless frequency parameter of the bare

beam, and ω̄i is th i−th natural frequency of the bare beam. The frequency
parameters βi are determined from the frequency equation

cosβiL coshβiL = −1

which has an in�nite number of roots, but only the �rst n roots are used for
constructing the Galerkin trial functions.

4.3. Calculation of the matrix elements

Since the trial functions are chosen to be orthogonal and to satisfy the bound-
ary conditions, the elements of the Galerkin system matrices can be evaluated
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as follows:

Kij =

∫ L

0

EIφ′′i (x)φ′′j (x)dx =

{∫ L
0
EI (φ′′i (x))

2
dx for i = j

0 for i 6= j

Cij =

∫ L

0

EIταφ′′i (x)φj(x)′′dx = ταKij

Mij =

{∫ L
0
ρAφ2i (x)dx+

∑N
p=1Mpφ

2
i (ap) for i = j∑N

p=1Mpφi(ap)φj(ap) for i 6= j

Qj =

∫ L

0

F (x, t)φj(x)dx

(9)

When Eq.(9) are introduced to Eq.(8), the di�erential equation obtained is
equivalent to the one found in [49], if in Eq.(1) it is taken that E · τα = E1,
where E1 is de�ned in [49]. Also, as it can be seen, the matrix M is symmetric,
but not diagonal, due to the presence of the attached masses. Therefore, the
system of equations expressed with Eq.(8) is a non-homogeneous coupled system
of fractional order di�erential equations, with n equations and n unknown time
functions qi(t). This type of system of equations cannot be solved directly, due
to the presence of the fractional order derivative. In this paper, in order to
�nd the solution, the Fourier transformation is used. Moreover, �rst the unit
impulse response of the system is determined, and then the total response for an
arbitrary load and support motion function are calculated by the convolution
integral of the unit impulse response and the load function.

4.4. Determining the impulse response

The impulse response of the system is called the Green function, here denoted
with G(t). For a unit impulse response calculation, a unite impulse load is used
instead of arbitrary transversal load and inertia forces represented by F (x, t),
the Eq.(8) becomes

Kg(t) +Cg (α)(t) +Mg̈(t) = δm(t) (10)

where g T (t) = [G1(t), G2(t), ..., Gn(t)], and δm(t) is the unit impulse vector in
the m-th coordinate, used in the same manner as in [44]. This means that, if
n terms in the Galerkin approximation are considered, δm(t) is a vector of n
elements, all of which are zero, except for the m-th one, that equals the Dirac
delta function, thus representing the unit impulse load in the m-th coordinate.

It should be pointed out that the equations (8) and (10) formally resemble
the equation obtained in a modal analysis. However, since the trial functions
φi(x) are the mode shape functions of a bare beam, they are not the actual mode
shape functions of the analysed beam with the attached masses. Therefore,
the time functions qi(t) are also not the modal coordinates, and thus in the
Galerkin systems (8) and (10) the vibration modes are coupled. Consequently,
the functions qi(t) represent the coupled total response functions of the system,
and similarly, Gi(t) are the coupled impulse responses of the system.
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As it has already been mentioned, the Fourier transformation will be used
to solve the system of equations (10). Now, when the Fourier transformation
is applied to the Green functions Gi(t), they become Ĝi(ω). Note that for the
transition from the original, real, time domain, to the Fourier, frequency domain
of the Green function, one is referred to [44, 50]. Introducing the described
Fourier transform, the equation (10) becomes

Kĝ(ω) + (iω)αCĝ(ω) + (iω)2Mĝ(ω) = em(ω) (11)

where em(ω) is the Fourier transform of the unit impulse vector δm(t). Eq.(11)
can be expressed more conveniently as[

K+ (iω)αC+ (iω)2M
]
ĝ(ω) = em(ω) or A(ω)ĝ(ω) = em(ω) (12)

where i is the imaginary unit, and A(ω) = K+ (iω)αC+ (iω)2M. It is obvious
that the matrix A is not diagonal, since M is not diagonal.

Now, as previously noted, in Eq.(12) the vibration modes are coupled. In
order to determine the natural frequencies of the system, it is necessary to
decouple the modes. Moreover, the decoupled system of equations is much
easier to solve.

In this paper, the case with the proportional damping is analysed. Accord-
ing to [49], if the proportional damping is encountered and the beam sti�ness
matrices depend on only one elastic modulus, then the modal projection method
can be used to decouple the system of equations 12, same as in the undamped
case. Moreover, according to [44], the matrix of eigenvectors of the correspond-
ing undamped system can be used to diagonalize the system matricesM, K and
C, if they are linearly dependant.

The eigenproblem for the corresponding undamped system can be expressed
as (

K− ωr2M
)
ur = 0, r = 1, 2, . . . .n (13)

where ωr is the r−th natural frequency and ur is the r−th eigenvector of the
undamped system. These eigenvectors are normalized with respect to the mass
matrix M, through which the in�uence of the attached concentrated masses is
introduced (Eq.(9)). The eigenvectors ur also satisfy the generalized orthogo-
nality condition

uTrMus = uTrKus = 0 for r 6= s.

By solving the stated eigenproblem, the n eigenvectors ur are obtained and
they can be organized into the matrix of eigenvectors as Φ = [u1,u2, . . . ,un].
As has been shown in [44], this matrix can be used to diagonalize the damped
system matrices:

Md = ΦTMΦ = I

Kd = ΦTKΦ

Cd = ΦTCΦ = ταKd

or

Ad = ΦTAΦ

(14)
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whereMd,Kd, Cd andAd are the diagonal mass, sti�ness, damping and system
matrices, respectively, τα is the retardation time and I is the identity matrix.

Since the matrix Φ diagonalizes the system matrices, it e�ectively decouples
the vibration modes. Therefore, it holds that: η̂(ω) = ΦTĝ(ω), or, stated
di�erently: ĝ(ω) = Φη̂(ω), where

η̂T (ω) = [η̂1(ω), η̂2(ω), . . . , η̂n(ω)]

and η̂i(ω) is the Fourier transform of ηi(t), which is the decoupled unit response
of the system in the i−th vibration mode, that is, ηi(t) is the i−th generalized
(modal) coordinate of the whole system (with the attached masses).

Bearing in mind the above relations, and multiplying Eq.(12) from the left
by ΦT, it becomes

Ad(ω)η̂(ω) = ΦTem(ω) (15)

Eq.(15) represents the decoupled system of independent equations and it can
be solved for the transformed decoupled impulse response as

η̂(ω) =
(
Ad(ω)

)−1
ΦTe(ω) ,

or

η̂r(ω) =
1

Adrr

n∑
s=1

Φsres , r = 1, 2, . . . , n

(16)

Taking into account equations (12) and (14), Eq.(16) can be expressed as

η̂r(ω) =
ur · em

Kd
rr + (iω)αCdrr + (iω)2Md

rr

=
Φmr

Kd
rr + (iω)αCdrr + (iω)2Md

rr

(17)

The denominator of the above expression is the characteristic polynomial
associated with Eq.(17), and the corresponding characteristic equation is:

Kd
rr + (iω)αCdrr + (iω)2Md

rr = 0 (18)

If the substitution iω = s is introduced and minding that Cdrr = ταKd
rr, the

characteristic equation can be rearranged as follows

s2 + ταω2
rs
α + ω2

r = 0 (19)

where it is taken that ω2
r = Kd

rr/M
d
rr . It can be shown that this characteristic

equation of decoupled system is equivalent to the equation corresponding to a
single-mass system [51], and it has two roots - a complex conjugate pair s1,2 =
−σr±iΩr [22]. The real part of the root s1,2 represents the damping ratio, while
the imaginery part represents the damped frequency of the system. In order to
determine these roots, in general case when α ∈ R, the characteristic equation
cannot be solved directly, and an analytical procedure involving trigonometric
functions has to be applied. Namely, another substitution is introduced [22]:
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s = ξeiψ, which transforms the characteristic equation for the r -th vibration
mode into

ξ2re
2iψr + ταω2

rξ
α
r e

αiψr + ω2
r = 0

Using the Euler's formula and noting that both real and imaginary parts
should equal zero, the following system of trigonometric equations is obtained:

ξ2r cos 2ψr + ταω2
rξ
α
r cosαψr + ω2

r = 0

ξ2r sin 2ψr + ταω2
rξ
α
r sinαψr = 0

This system can easily be solved for the unknown parameters ξ and ψ by taking
that X1 = ξ2r and X2 = ταω2

rξ
α
r , then solving it for the unknown X1 and X2,

and then calculating the sought parameters ξ and ψ. This leads to the solution

ξr =

√
Kd
rr

Md
rr

sinαψr
sin (2− α)ψr

τα = − sin 2ψr
sin (2− α)ψr

ξ−αr

where ψr is related to the given retardation time τα by the second equation,
and the given system of two equations can be solved to obtain ψr and ξr, thus
de�ning the complex conjugate roots of the characteristic equation Eq.(19).

However, although Eq.(17) gives the transformed decoupled Green functions,
the inverse Fourier transform required to determine the real Green functions is
not so straightforward. But it can be shown [50] that each real decoupled Green
function consists of two parts, namely

ηr(t) = K1r(t) +K2r(t) (20)

The �rst term is the residue part, and the second one is the characteristic
integral. These two terms can be calculated as

K1r(t) = a1re
(−σrt) sin(Ωrt+ a2r)

K2r(t) =
ταω2

r sin(πα)

π

∫ ∞
0

zαe−ztdz

[z2 + ταω2
rz
α cos(πα) + ω2

r ]
2

+ [ταω2
rz
α sin(πα)]

(21)

where

a1r = Φmr
2√

µ2
r + ν2r

, a2r = arctan

(
µr
νr

)
µr = Re[P ′(s1,2)]

νr = Im[P ′(s1,2)]

P (s) = s2 + ταω2
rs
α + ω2

r

P ′(s) ≡ dP (s)/ds = 2s+ αταω2
rs
α−1

(22)
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It can be shown that the drift part K2r(t) is numerically much smaller than
K1r(t) and that it diminishes with time, so it can be neglected with only a slight
loss in accuracy [43]. Thus it will not be considered here, leaving only the �rst
term.

Finally, when the decoupled real Green functions are known, the coupled
impulse response functions can be determined by

g(t) = Φη(t) . (23)

4.5. The total response of the system

After the impulse system response has been determined, the total response
can be calculated as a convolution of the impulse response and the actual loads,
that is:

qi(t) =

∫ t

0

Gi(t− τ)Qi(τ)dτ (24)

where Qi are the functions de�ned in Eq.(9).
When the time functions qi(t) are known, the relative transversal displace-

ments of the beam can be calculated by Eq.(5), and the absolute beam displace-
ments can be obtained by Eq.(3), which presents the solution to the analyzed
problem.

5. Validation of the proposed approximate solution

In this Section the approximate solution proposed in this paper will be vali-
dated. However, to the best of authors' knowledge there is no exact solution to
the herein analysed problem in literature. For this reason, the proposed solution
will be validated for a special case whith only one mass attached to the tip of
the beam, since in [43] Freundlich presented the exact analytical solution for
this problem.

Moreover, in order to validate the applied Galerkin spatial discretisation for
the case with multiple attached masses, the results will be compared to the
Finite element method (FEM) solution. However, the fractional damping FEM
solution would require some additional numerical approximation schemes for
treating the fractional derivative (such as the application of Grünwald-Letnikov
time discretisation scheme in the Newmark integration procedure, as it was done
in [29] for instance). This would in turn also introduce additional numerical error
as compared to the approximate solution presented in this paper, where only
the spatial discretisation is used. Therefore, the presented procedure and the
trial functions used will be validated for the case with classical viscous damping,
i.e. for an integer order of the time derivative - α = 1.0. The comparison of the
obtained results shows that the presented model with the Galerkin discretisation
and the chosen trial functions adequately describes the beam behaviour also in
the case of multiple attached masses present, and that it can be successfully
applied to a system with integer order damping.
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5.1. The case with one mass attached - comparison with the exact solution

As previously mentioned, in [43] Freundlich presented the exact analytical
solution to the problem of vibrations of a viscoelastic cantilever beam carrying
a tip mass due to the transversal load and motion of the support. In that
paper, the material was also de�ned by a fractional-order derivative constitutive
equation, and the cantilevered beam was subjected to an arbitrary distributed
transversal load and an arbitrary transversal support motion. However, there
was only one mass attached to the tip of the beam. This led to the equation of
motion of the same form as Eq.(2), only without the summation term (which
represents the e�ect of the other attached masses). The in�uence of the attached
tip mass was introduced via the appropriate boundary conditions, while both
the mass translational and rotational inertia were considered. Accordingly, the
boundary conditions at the free end (x = L) di�ered from the herein adopted
homogeneous ones, and they were de�ned as

mpẅ(L, t) = −V (L, t) and Ip ¨(w′)(L, t) = Mb(L, t) (25)

where mp and Ip are the mass and the moment of inertia of the attached tip
mass, respectively, V (L, t) and Mb(L, t) are the transversal force and the bend-
ing moment at the free end, respectively, and w(x, t) is the transversal displace-
ment.

In order to validate the proposed approximate solution, the numerical results
were obtained by setting all the parameters' values to be exactly as in [43],
while only the rotational inertia of the tip mass was neglected. Therefore, the
following parameter values were adopted: beam length L = 0.8 m, mass density
ρ = 1190.0 kg/m3, cross-sectional area A = 5 · 10−4 m2, bending sti�ness
EI = 1.667 ·10−8 m4 and elasticity modulus of E = 3.2 GPa, attached tip mass
mp = 0.0476 kg, while the order of the fractional derivative α, and retardation
time τα were varied. The mass of the beam can be calculated as mb = ρAL,
and the attached tip mass is taken to be mp = µmb, where µ is the attached
mass to beam mass ratio. The motion function of the support was taken to be

ws(t) = w0 sin
(
εa · t2/2

)
(26)

where w0 = 0.001 m is the amplitude of the support motion, and εa = 10 s−2

is the angular acceleration of the support.
For the Galerkin solution, the number of the considered terms in the approx-

imation series directly in�uences the accuracy of the solution. After preliminary
numerical analysis of the beam eigenfrequency in the �rst vibration mode, by
requiring that the approximation error be less than 0.015 percent, it was shown
that the approximation with n = 7 terms satis�es this criterion, while present-
ing reasonable computational requirements. Therefore, this approximation was
adopted for all the following considerations.

First, the eigenfrequencies of the described system were analysed. As previ-
ously pointed out, the elastic (undamped) eigenfrequencies of the system can be
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calculated as ωr =
√

Kd
rr

Md
rr
. However, the damped frequencies and the damping

ratios correspond to the imaginary and real parts of the roots of the character-
istic Eq.(18), respectively. That is, if the r-th root with the positive imaginary
part is expressed as sr = −σr + i · Ωr, then σr will represent the damping ra-
tio in the r -th mode, and Ωr would represent the corresponding r -th damped
frequency of the system.

Table 1 and shows these damped frequencies for both the exact analyti-
cal solution calculated in accordance with [43], and the approximate solution
presented in this paper. The results are shown for various di�erent fractional
derivative orders α, as well as di�erent attached mass to beam mass ratios µ, for
the �rst six vibration modes. As it can be seen from the tables, the results are
in very good agreement - the error in frequency value for the �rst mode (which
is the most in�uential one) is less then 0.012%, while the largest error occurred,
as expected, in the highest considered mode and it was 1.12%.

As it has already been mentioned, the solution presented in this paper for a
case with multiple attached masses will be validated against the FEM solution
in the next subsection. In order to validate the FEM solution itself, the damped
frequencies obtained by FEM were also compared to the exact solution. These
results are also shown in Table 1. As it can be seen, the developed FEM solution
is also in a reasonable agreement to the exact analytical solution, and it is
therefore adopted for later validation of the proposed approximate solution for
cases with multiple attached masses.

Table 1: Damped frequencies in the �rst six vibration modes for the cantilever carrying
only a tip mass, and with b = 0 kN/m ; α - fractional derivative order, µ = mp/mb ,
sr = −σr + i · Ωr , r = 1, 2, . . . n - root of the characteristic equation; E - Exact solution
[43], G - Galerkin approximation

Ωi

α = 0.25 α = 0.50 α = 1.00

E [43] G Error E [43] G Error E [43] G Error FEM Error
[s−1] [s−1] [%] [s−1] [s−1] [%] [s−1] [s−1] [%] [s−1] [%]

µ = 0.20

Ω1 38.74 38.74 0.011 38.82 38.83 0.011 38.62 38.63 -0.14 38.63 -0.12
Ω2 270.36 270.45 0.03 272.48 272.57 0.03 259.40 259.48 0.03 259.54 0.05
Ω3 796.18 797.12 0.12 808.07 809.03 0.12 483.41 483.01 -0.08 483.18 -0.05
Ω4 1609.85 1614.29 0.28 1645.79 1650.39 0.28 - - - - -
Ω5 2716.68 2730.78 0.52 2797.90 2812.65 0.53 - - - - -
Ω6 4118.03 4154.27 0.88 4272.78 4311.13 0.90 - - - - -

µ = 0.50

Ω1 29.89 29.90 0.01 29.94 29.95 0.01 29.81 29.82 0.01 29.83 0.04
Ω2 250.94 251.07 0.05 252.82 252.95 0.05 242.08 242.19 0.05 242.24 0.07
Ω3 768.53 769.79 0.16 779.78 781.06 0.16 492.73 492.40 -0.07 492.58 -0.03
Ω4 1578.04 1583.65 0.36 1612.88 1618.68 0.36 - - - - -
Ω5 2682.25 2699.30 0.64 2761.88 2779.72 0.65 - - - - -
Ω6 4081.84 4124.28 1.04 4234.49 4279.39 1.06 - - - - -

µ = 1.00

Ω1 23.08 23.09 0.01 23.12 23.12 0.01 23.03 23.03 0.01 23.04 0.05
Ω2 241.26 241.40 0.06 243.03 243.17 0.06 233.34 233.47 0.05 233.50 0.07
Ω3 756.55 757.94 0.18 767.52 768.94 0.19 495.51 495.22 -0.06 495.39 -0.02
Ω4 1565.23 1571.31 0.39 1599.63 1605.91 0.39 - - - - -
Ω5 2668.96 2687.16 0.68 2747.98 2767.01 0.69 - - - - -
Ω6 4068.24 4113.03 1.10 4220.10 4267.49 1.12 - - - - -
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Furthermore, the displacements of the free end of the cantilever relative to
its support were analysed and the approximate results obtained through the
herein presented procedure were compared to the exact results of the analytical
solution. In Fig. 2 the relative displacements of the free end of the beam in the
�rst 10 seconds are shown, for the cases of µ = 0.25 and µ = 0.75, respectively.
All the results are calculated for the value of the retardation time τα = 0.002
and b = 0.0 kN/m. As it can be seen, the results are in a very good agreement,
especially for a smaller attached tip mass. The system frequencies are practically
the same (beams are moving in phase), and the amplitudes di�er only slightly. It
is well known that the Galerkin solution accumulates error over time [8, 52�54],
so the best approximation is achieved in the �rst several seconds of motion.

Exact solution 35 Galerkin approximation

a) b)

μ = 0.25 μ = 0.75

Figure 2: The relative displacements of the free end of the cantilever with only one attached
mass; τα = 0.002, b = 0; dashed line - the exact solution, continuous line - the Galerkin
solution; a) µ = 0.25 , b) µ = 0.75

It should also be noted that the Galerkin solution, again, as expected, gives
somewhat smaller displacements and somewhat higher frequencies than the ex-
act solution. This is due to the fact that higher order terms in the series ap-
proximation are neglected, which could be interpreted as introducing some "ad-
ditional supports" in higher vibration modes, thus increasing the sti�ness of the
system.

5.2. Multiple attached masses - comparison with the FEM solution

Finally, the presented Galerkin approximation was validated against the
Finite Element Method (FEM) solution for a case of a cantilever beam carrying
2, 3 and 5 equidistantly attached masses of equal weight. In each considered
case, total weight of the attached masses was equal to the weight of the beam.
In Table 2 the system eqigenfrequencies for the �rst 3 modes are presented for
the cases of 2,3 and 5 masses attached, for both the FEM and the proposed
Galerkin solution, and the results are in very good agreement.

Aside from the frequencies, the displacements were also considered for each
of the previously described cases. Fig. 3 shows the relative displacements of
the free end in the �rst 10 seconds for the cases with 2 and 5 attached masses,
and with α = 1.0 and τα = 0.002. The results obtained by both methods are
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Table 2: Damped frequencies for a cantilever beam carrying N masses, and with α = 1.0,
τα = 0.002 and b = 0 ; FEM - Finite Element Method solution, G = Galerkin approximation

Ωi

N=2 N=3 N=5

FEM G Error FEM G Error FEM G Error
[s−1] [s−1] [%] [s−1] [s−1] [%] [s−1] [s−1] [%]

µ = 1.0

Ω1 28.83 28.82 -0.03 31.20 31.19 -0.03 33.30 33.29 -0.03
Ω2 175.46 175.50 0.03 191.26 191.37 0.06 203.74 203.84 0.05
Ω3 497.39 502.51 1.03 448.84 450.98 0.48 473.47 475.86 0.50

in reasonably good agreement, which implies that the presented solution is also
valid for analysis of beams with multiple attached masses.

a) b)

FEM solution Galerkin approximation

N = 2 N = 5

Figure 3: The relative displacements of the free end of the cantilever with N = 2 attached
masses and µ = 0.5, α = 1.0, τα = 0.002, b = 0; continuous line - the FEM solution, dashed
line - the Galerkin solution

As it can be seen, the Galerkin solution proposed in this paper gives a
very good approximation in all the considered cases, for beams carrying one or
more attached masses, with various fractional derivative orders and attached
masses weights. Therefore, it can be concluded that the solution proposed in
this paper does present a valid approximate solution to the stated problem. In
further text, the proposed solution will be used for further numerical analysis
of forced vibrations of a beam carrying multiple attached masses.

6. Numerical analysis

In this section, the numerical analysis of forced vibrations of a viscoelastic
cantilever beam due to the motion of the support is presented. The �xed end
of the beam moves as described by the function ws(t) de�ned in the previous
Section, with the same parameter values adopted. Parameters describing the
order of the fractional derivative, retardation time, and the number, weight and
position of the attached masses were varied, and the results are presented in the
following text.
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6.1. Frequency analysis

In�uence of the fractional derivative order and the retardation time

First, the in�uence of the order of the fractional derivative α and the time
of retardation τα on the damped frequencies and damping ratios of the beam is
analysed. Since the �rst vibration mode is the most in�uential one, the e�ects
on the �rst damped frequency were of most interest. As already pointed out, the
real part σr of the complex roots of the characteristic equation represents the
damping ratio, while the imaginary part Ωr represents the damped frequency.
In Fig. 4 both these characteristics for the �rst vibration mode are shown for
several di�erent fractional derivative orders. Each point of the presented dia-
gram was obtained by choosing the appropriate value for α, and letting τα range
from 0 to∞. If the trigonometric functions are used in solution, as described in
Section 4, since τα = − sin 2ψ

sin (2−α)ψ ξ
−α
r , the angle ψ ranges from π/2 to π/(2−α).

The diagram is in complete agreement with the used fractional Kelvin-Voigt
model and diagrams given in [22]. However, on the given diagram, the short-
comings of the fractional Kelvin-Voigt model become apparent. Namely, for
relatively low fractional derivative order, cca. α < 0.6, frequencies of the beam
appear to be increasing with the increase of the retardation time (therefore also
the damping ratio), which makes no physical sense. However, there are systems
and cases were this model is applicable and where it produces valid results, as
has been discussed in several papers, e.g. [22], especially for somewhat higher
order of the fractional derivative.

α = 0.20α = 0.50α = 0.70

α = 0.90

α = 0.99

α = 1.00

Figure 4: The in�uence of the order of the fractional derivative on the complex root of the
characteristic equation in the �rst vibration mode

In�uence of the number and weight of the attached masses

Next, the in�uence of the number of the attached masses N and their weight,
represented by the attached mass to beam mass ratio µ, is considered. For
this analysis, the fractional derivative order and time of retardation were kept
constant, at values of α = 0.5 and τα = 0.002. Five models were considered -
a bear beam with no attached masses, and beams with 1, 2, 3 and 4 attached
masses. Each attached mass was of equal mass mp, which was calculated as
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mp = µρAL, while the ratio µ was varied between the limits of 0 and 1. The
results are presented in Fig. 5 and Fig. 6, showing the dependence of the
damping ratio σ1 and the damped frequency of the beam Ω1, respectively, on the
number of the attached masses N and the ratio µ. It can be seen from these two
diagrams that more attached masses reduce the beam frequency, as expected,
and they also reduce the damping e�ects, monotonically and proportionally.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

- ? 1

µ

The damping ratio in the first vibration mode - ?1

N=0 N=1 N=2 N=3 N=4

σ

σ

Figure 5: The in�uence of the number and weight of the attached masses on the damping
ratio σ1 in the �rst vibration mode

In�uence of the position of the attached mass

Finally, the in�uence of the position of the attached masses on the damping
ratios and the damped frequencies of the beam was analysed. As in the previous
analysis, the order of the fractional derivative and the retardation time were kept
constant, at the values of α = 0.5 and τα = 0.002. For the present analysis, the
case with two attached masses was considered. One of the masses was always
attached at the free and, while the other was "slid" along the beam, and the
in�uence of these various positions of the attached masses was analysed. The
"slid" mass was calculated as mp = µpρAL and it was positioned at ap, while
the tip mass was always positioned at the free end of the beam at ae = L and
it was determined as me = µeρAL. For the present analysis, the weights of the
attached masses were chosen as µe = 0.5, while the weight ratio for the "slid"
mass was varied, and it was taken to be 0.25, 0.50, and 1.00, successively. The
results are presented in Fig. 7 and Fig. 8, where the in�uence on the damping
ratio σ1 and the damped frequency Ω1 are shown, respectively.

6.2. Displacement analysis

In further analysis, the displacements of the free end of the cantilever beam
relative to the clamped end were considered. The time of retardation was kept
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Figure 6: The in�uence of the number and weight of the attached masses on the damped
frequency of the beam Ω1 in the �rst vibration mode
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Figure 7: The in�uence of the position and weight of the attached masses on the damping
ratio σ1 in the �rst vibration mode

constant throughout the analysis and it was �xed at τα = 0.002. Other param-
eters were varied according to each tested in�uence.
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Figure 8: The in�uence of the position and weight of the attached masses on the damped
frequency of the beam Ω1 in the �rst vibration mode

In�uence of the order of the fractional derivative

For the analysis of in�uence of the fractional derivative order α on the total
beam response, represented by the relative displacements of the free end v(L, t),
the case with 4 equidistant attached masses of equal weight was considered.
Each of the attached masses was taken to be mp = 0.5ρAL. The results are
presented in Fig. 9, which shows the relative displacements v(L, t) in the �rst 10
seconds of motion. The diagram clearly shows that the increase in the fractional
derivative order leads to a higher damping e�ect, while the frequency of the total
beam response remains practically una�ected.

In�uence of the number of the attached masses

The in�uence of the number of the attached masses on the total beam re-
sponse was also analysed. In each analysed model, the fractional derivative order
was kept �xed at α = 0.5, and masses were equidistantly positioned. The num-
ber of the attached masses was varied, but they were always of mutually equal
weight, and the total weight of the attached masses was always equal to the
weight of the bare beam, that is: µ = 1.0/N and mp = µmb, p = 1, 2, . . . , N .
Four cases were considered - a bear beam, and a beam carrying 1, 3, and 5
attached masses, i.e. N ∈ {0, 1, 3, 5}. The obtained relative displacements of
the free end of the beam v(L, t) in the �rst 10 seconds of motion are presented
in Fig. 10, for the cases of 0, 1, 3 and 5 attached masses, respectively. It can be
observed that the more mass is concentrated at the tip of the cantilever, both

21



0.25

0.50

0.75

α

α

α

Figure 9: Relative displacements of the free end of the beam for di�erent order of the fractional
derivative

the vibration amplitudes and frequency of the beam decrease more. There is
also a resonance region shift observable. The �rst resonance occurs between 2
and 3 seconds of motion, depending on the considered case.

It should also be pointed out that, under the stated analysis conditions, the
more masses are attached to the beam, the more that system resembles the case
of the bare beam of two times bigger mass. It is as if the attached mass (that
is kept equal to the original weight of the bare beam in each considered case)
gets "smeared" along the beam, and theoretically, for a case with N →∞, the
original beam with N attached masses would practically be the same as a beam
of twice the original beam's mass.
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a) b)

c) d)

N = 0 N = 1

N = 3 N = 5

Figure 10: Relative displacements of the free end of the beam with di�erent number of the
attached masses; a) N = 0, b) N = 1, c) N = 3, d) N = 5

In�uence of the weight of the attached masses

For the analysis of the in�uence of the weight of the attached masses, a
case of a beam with N = 4 equidistant attached masses of equal weight was
considered. Each mass was taken to be mp = µρAL, while the ratio µ was
varied. Four di�erent cases were considered, that is: µ ∈ {0.0, 0.10, 0.25, 0.50}.
The relative displacements of the free end of the beam in the �rst 10 seconds
of motion are presented in Fig. 11. It can be seen that the heavier masses are
attached, the lower the response frequency and vibration amplitudes. Moreover,
as the attached weight increases, the damping in�uence becomes less distinct
(the motion amplitudes decay slower), since because of the considerable weight
of the attached masses (for instance, for the case of µ = 0.50, the total attached
mass is 2 times greater than the mass of the bare beam), it is harder for the
beam to attenuate the movement of the attached masses.
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a) b)

c) d)

μ = 0.00 μ = 0.10

μ = 0.25 μ = 0.50

Figure 11: Relative displacements of the free end of the beam due to various weight of the
4 equidistantly attached masses; α = 0.5, N = 4; a) µ = 0.00, b) µ = 0.10, c) µ = 0.25, d)
µ = 0.50

In�uence of the position of the attached masses

Finally, the in�uence of the attached mass position on the total response of
the beam was also analysed. For this purpose, a model with N = 2 attached
masses was considered, with the same characteristics as for the frequency and
damping ratio analysis - one of the attached masses of me = 0.5 ρAL was always
kept at the free end of the beam, while the other mass of the same weight, i.e.
mp = 0.5 ρAL was "slid" along the beam, that is, the various positions of the
"sliding" attached mass were considered. The position of the "sliding" mass
is represented by the parameter ap, and 6 di�erent positions were analysed:
ap ∈ {0.00, 0.33, 0.66, 1.0}. Material parameters were held constant at α = 0.5
and τα = 0.002. The results are summarised in Fig. 12, where the relative
displacements of the free end over the �rst 10 seconds of motion are presented.
It can be seen that the closer the "sliding" mass gets to the free end of the
beam, the lower the response frequency and vibration amplitudes.

It can also be observed that the position of the "sliding" mass in�uences the
dynamical characteristics of the beam by shifting the resonance region. Namely,
the �rst resonance region is around 2 seconds for all the analysed models, but
in the case of the "sliding" attached mass positioned near the midspan of the
beam, as well as right at the free end of the beam, the second resonance oc-
curs somewhat sooner, after slightly less than 10 seconds of motion. The sec-
ond resonance region occurs in viscoelastic models described by fractional order
derivative constitutive equation, as presented in [43], for instance.
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a) b)

c) d)

a  = 0.00 a  = 0.33

a  = 0.66 a  = 1.00

p p

p p

Figure 12: Relative displacements of the free end of the beam for di�erent position of the two
attached masses; α = 0.5, N = 2; a) ap = 0.00, b) ap = 0.33, c) ap = 0.66, d) ap = 1.00

7. Concluding remarks

In this paper, vibrations of a viscoelastic cantilever beam carrying an ar-
bitrary number of attached concentrated masses and exposed to an arbitrary
transversal motion of the support was analysed. The constitutive relation was
formulated with the use of fractional order Kelvin-Voigt model, and the equa-
tions of motion were derived accordingly. These equations were solved by using
the Galerkin approximation method, combined with the Fourier integral trans-
form method and residue theory. The proposed solution was validated against
the exact analytical solution for a special case of a beam carrying only a tip
mass that was presented in [43], as well as against the FEM solution for a case
of a beam carrying multiple masses, but with an integer order time derivative,
instead of the fractional order derivative that was ultimately aimed for by the
solution proposed in this paper. All the tested results were in good agreement,
so the proposed solution is indeed a novel and valid approximate solution to the
analysed problem.

The proposed method presents an approximate solution to a general prob-
lem of transient vibration of a cantilever beam carrying an arbitrary number of
attached masses, while also providing the possibility to use di�erent values of
fractional parameters. Its application was demonstrated in numerical analyses
of dependence of dynamic characteristics such as eigenfrequencies and damping
ratios of the beam, on several parameters such as the number, weight and po-
sition of the attached masses, as well as on the fractional parameters, i.e. the
order of the fractional derivative and the retardation time.

25



The presented solution should be extended to an even more general case of a
Timoshenko beam and other higher order beam theories, or by introducing ma-
terial and/or geometrical non-linearities or the non-local e�ects, or by including
some attached sti�ness elements. Moreover, the exact analytical solution for
the problem solved in this paper should be further sought and found.
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