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1 Introduction

Many dynamical systems not only depend on the present state but also the past ones,
which are described by differential delay equations (DDEs) [1]. Since DDEs have been
used in many fields, such as the population ecology, steam or water pipes, heat exchang-
ers, lossless transmission lines, and the mass-spring-damper model, etc, the dynamical
behavior for DDEs has been widely investigated. When DDEs are subject to the envi-
ronmental disturbances, it can be characterized by stochastic delay differential equations
(SDDEs)(see [2]-[7] and the references therein). One of the important issues in the study
of SDDEs is automatic control, with consequent emphasis being placed on the stabil-
ity analysis. Many papers on the stochastic stability analysis have been published. For
instance, in [8], the dynamical behavior for stochastic delay Lotka-Volterra model as a
particularly important application of SDDEs was analyzed. In [9], the exponential stabil-
ity analysis for linear stochastic delay differential equation has been investigated by one
useful and advanced method such as the comparison principle. In [10], by establishing
the LaSalle theorem, the stability analysis for SDDEs has been investigated.

Hybrid systems driven by continuous-time Markov chains have been used to describe
many practical systems, in which they may experience abrupt changes in their structure
and parameters, for example, electric power systems, manufacturing systems, financial
systems, etc. The hybrid systems comprise two parts: one is that the state takes values
continuously, and the other is that the state takes discrete values. Recently, the stability
analysis for SDDEs with Markovian switching has been extensively studied. For example,
in [13], the comparison principle was used to study the stability for SDDEs with Markovian
switching. In [15], by using the Lyapunov functional approach, the exponential stability in
pth(p ≥ 1)-moment and the almost sure exponential stability for SDDEs with Markovian
switching have been investigated under one monotonicity condition, which likes (2.6)
(see Hypothesis IV ). In [18], by utilizing a linear matrix inequality approach, the delay-
dependent exponential stability of stochastic systems with time-varying delays, Markovian
switching and nonlinearities has been discussed. In [14], by using the Lyapunov functional
approach, the delay feedback control was designed to achieve the stabilization of hybrid
SDDEs. In [16, 17], in order to reduce the control cost, the feedback control based on
discrete-time state observations was designed to guarantee the stabilization of SDDEs
with Markovian switching.

Note that there are some results on the stability analysis of SDDEs with Markovian
switching, in which the diffusion term and the drift term of the SDDEs obey the local
Lipschitz condition and the linear growth condition. Usually, for many nonlinear SDDEs,
these two terms often do not satisfy the linear growth condition, but satisfy the local
Lipschitz condition. When the linear growth condition is replaced with the monotonicity
condition, one of the most powerful technique used in the study of stability of SDDEs
with Markovian switching is based on a stochastic version of the Lyapunov direct method,
and there are some representative works on the stability analysis for highly nonlinear
SDDEs with Markovian switching. For example, In [19], the delay-dependent stability
criteria for highly nonlinear SDDEs with Markovian switching have been derived by using
the Lyapunov function approach. Without the linear growth condition, the existence
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and uniqueness, the stability analysis and boundedness for the global solution of highly
nonlinear SDDEs with Markovian switching were considered in [20, 21].

However, the obtained results in the literature are only suitable for the constant delay
or the time-varying delay with its derivative value being less than one. It is well known
that in most industrial process involving transportation of materials, delay variation is
one among the well-known structural time variations in the process plants. Since the
transportation time varies frequently according to varying flow rates, time-varying delay
is an inherent characteristics of these processes, which varies around a constant value
and depends on the frequency of the external excitation [23]. Thus, we will analyze the
existence and uniqueness of the global solution as well as its stability properties when this
restrictive condition imposed on the time-varying delay is removed, the local Lipschitz
condition is satisfied for the drift term and the diffusion term, and the linear growth
condition is replaced by the monotonicity condition.

In this paper, the existence and uniqueness theorem for the global solution of highly
nonlinear SDDEs with Markovian switching is primarily considered under a local Lipschitz
condition and a monotonicity condition. Without the derivative value of the time-varying
delay being less than one, the exponential stability in pth(p ≥ 1)-moment for such equa-
tions is discussed by using the integral inequality, and the almost sure exponential stability
is analyzed by employing the nonnegative semi-martingale convergence theorem. The al-
most sure asymptotical stability for the global solution of highly nonlinear SDDEs with
Markovian switching is also investigated by virtue of some stochastic analysis technique.
Finally, two examples including one coupled systems consisting of a mass-spring-damper
with the nonlinear external random forces are provided to validate the effectiveness of the
theoretical findings obtained.

Notations: Throughout this paper, unless otherwise specified, we use the following
notation. Let |·| denote the Euclidean norm in Rn. If A is a vector or matrix, its transpose
is denoted by AT . If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA).

Let (Ω,F , {Ft}t≥0,P) represent a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (i.e., it is increasing and right-continuous while F0 contains
all P-null sets). Let B(t) = col[B1(t), B2(t), . . . , Bm(t)] be an m-dimensional Brownian
motion on (Ω,F , {Ft}t≥0,P). For τ > 0, let C([−τ, 0];Rn) represent the family of all
continuous Rn-valued functions on [−τ, 0] with norm ‖ϕ‖C = sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}
for any ϕ ∈ C([−τ, 0];Rn). CFt([−τ, 0];Rn) denotes the family of all Ft-measurable and
C([−τ, 0];Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. C(Rn; [0,∞)) means
the family of all nonnegative continuous functions defined on Rn. Let E{·} stand for the
expectation operator. For any two numbers a, b, a ∨ b and a ∧ b denote the maximum
value and the minimum value between a and b, respectively. H(a−) denotes the left-hand
limit of the function H(·) at a, i. e. H(a−) = limu→0−H(a+ u). ‘a.s.’ stands for ‘almost
surely’. Ker(U(x)) = {x ∈ Rn : U(x) = 0}.
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2 Problem statement and preliminaries

Let r(t)(t ≥ 0) be a right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, ..., N} with generator Γ = (γij)N×N given by

P{r(t+4) = j|r(t) = i} =

{
γij4+ o(4), if i 6= j,
1 + γij4+ o(4), if i = j,

where lim4↓0
o(4)
4 = 0. Here, γij ≥ 0 is the transition rate from i to j, if i 6= j while

γii = −
∑

j 6=i γij.

For a continuous-time Markov chain r(t) with its generator Γ, it can be given as one
stochastic integral with respect to a Poisson random measure

dr(t) =

∫
R

h̄(r(t−), y)ν(dt, dy), t ≥ 0

with the initial value r(0) = i0 ∈ S, where ν(dt, dy) is a Poisson random measure with
intensity dt×m(dy) in which m is the Lebesgue measure on R, while the explicit definition
of h̄ : S ×R→ R can be founded in [12].

Consider the following highly nonlinear hybrid stochastic delay differential equations:

dx(t) = f(t, x(t), x(t− τ(t)), r(t))dt+ g(t, x(t), x(t− τ(t)), r(t))dB(t), t ≥ 0, (2.1)

with the initial condition {x(θ) : −τ ≤ θ ≤ 0} = ϕ ∈ CF0([−τ, 0];Rn) and r(0) = i0 ∈ S,
where x(t) = col[x1(t), x2(t), . . . , xn(t)] ∈ Rn is the state vector. The time-varying delay
τ(·) : [0,∞)→ [0, τ ] is a bounded measurable function. f(·, ·, ·, ·) : [0,∞)×Rn×Rn×S →
Rn is the drift coefficient vector, and g(·, ·, ·, ·) : [0,∞) × Rn × Rn × S → Rn×m is the
diffusion coefficient matrix. In this paper, it is also assumed that the Markov chain r(·) is
independent of the Brownian motion B(·). Let x(t, 0, ϕ, i0) be the solution of Eq. (2.1).
For simplicity, x(t) = x(t, 0, ϕ, r(0)).

In this paper, the existence-uniqueness theorem, and the asymptotic behavior for the
global solution of Eq. (2.1) will be checked. In general, the following assumptions are
imposed.
Hypothesis I (Local Lipschitz condition): For each k = 1, 2, . . ., there exists a positive
constant ck such that

|f(t, x, y, i)− f(t, x̄, ȳ, i)| ∨ |g(t, x, y, i)− g(t, x̄, ȳ, i)| ≤ ck(|x− x̄|+ |y − ȳ|)

for any (t, i) ∈ [0, T ]×S (T > 0), x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ k. In addition,
f(t, 0, 0, i) = 0 and g(t, 0, 0, i) = 0.

Hypothesis II (Linear growth condition): There is a positive constant L such that

|f(t, x, y, i)| ∨ |g(t, x, y, i)| ≤ L(1 + |x|+ |y|)

for any (t, x, y, i) ∈ [0, T ]×Rn ×Rn × S.
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Note that Hypothesis II is a conservative condition to check the existence of the global
solution. For example, when S = {1, 2}, f(t, x, y, 1) = −0.15x− 2x3 + 0.4y, f(t, x, y, 2) =
−2x−0.5xy4+0.82y, g(t, x, y, 1) = 2x2, and g(t, x, y, 2) = xy2, for any t ≥ 0, Hypothesis II
does not hold for f(·, ·, ·, ·) and g(·, ·, ·, ·). Here, we shall persist Hypothesis I but replace
Hypothesis II by a more general condition to guarantee the existence of the unique global
solution to Eq. (2.1). To state a general condition, we need a few notations. Let C1,2 ≡
C1,2([0,∞) × Rn × S; [0,∞)) denote the family of all continuous nonnegative functions
V (t, x, i) defined on [0,∞) × Rn × S, such that for each i ∈ S, they are continuously
once differentiable in t and twice in x. Given V ∈ C1,2, then we define the Itô operator
LV : [0,∞)×Rn ×Rn × S −→ R by

LV (t, x, y, i)

= Vt(t, x, i) + Vx(t, x, i)f(t, x, y, i) +
1

2
trace[gT (t, x, y, i)Vxx(t, x, i)g(t, x, y, i)]

+
N∑
j=1

γijV (t, x, j).

where

Vt(t, x, i) =
∂V (t, x, i)

∂t
, Vx(t, x, i) =

(
∂V (t, x, i)

∂x1

,
∂V (t, x, i)

∂x2

, . . . ,
∂V (t, x, i)

∂xn

)
,

and

Vxx(t, x, i) =

(
∂2V (t, x, i)

∂xl∂xm

)
n×n

.

To obtain the main results, one more general condition is presented as follows:
Hypothesis III (Monotonicity condition): There exist one Lyapunov function V ∈ C1,2,
one function U ∈ C(Rn; [0,∞)) and some positive constants c1, c2, λ1 and λ2 such that
for any x, y ∈ Rn, t ≥ 0, and i ∈ S,

c1U(x) ≤ V (t, x, i) ≤ c2U(x), (2.2)

and

LV (t, x, y, i) ≤ −λ1U(x) + λ2U(y), (2.3)

and

lim
|x|→∞

U(x) =∞. (2.4)

When U(x) = |x|p, Hypothesis III can be written as the following form:
Hypothesis IV : There exist one Lyapunov function V ∈ C1,2, and some positive con-
stants p, c1, c2, λ1 and λ2 with λ2c2 < λ1c1 such that for any x, y ∈ Rn, t ≥ 0, and
i ∈ S,

c1|x|p ≤ V (t, x, i) ≤ c2|x|p, (2.5)
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and

LV (t, x, y, i) ≤ −λ1|x|p + λ2|y|p, (2.6)

where p ≥ 1.

Remark 2.1 In [9, 11, 12, 15], Hypothesis IV has been imposed with τ(t) ≡ τ or dτ(t)
dt
∈

(0, 1). It should be mentioned that the restrictive condition that the derivative value of
time-varying delay is less than one is not required in this paper. Thus, the proposed
methods in [9, 11, 12, 15] can not be used here. The asymptotic behavior for high nonlinear
SDDEs with Markovian switching has been considered under the general monotonicity
condition [19, 20, 21, 22], but this restrictive condition is also imposed.

Definition 2.2 Let x(t) : −τ ≤ t < σ∞ be a continuous Ft-adapted Rn-valued local
process, where σ∞ is a stopping time and we set Ft = F0 for t ∈ [−τ, 0]. It is called a
local solution of Eq. (2.1) with initial condition ϕ ∈ CF0([−τ, 0];Rn). If x0 = ϕ = {x(θ) :
−τ ≤ θ ≤ 0} and for all t ≥ 0

x(t ∧ σk) =ϕ(0) +

∫ t∧σk

0

f(s, x(s), x(s− τ(s)), r(s))ds

+

∫ t∧σk

0

g(s, x(s), x(s− τ(s)), r(s))dB(s)

holds for any k ≥ 1, where {σk}k≥1 is a nondecreasing sequence of finite stopping times
such that σk ↑ σ∞, a.s. Furthermore, if lim supk→∞ |x(σk)| = ∞ is satisfied whenever
σ∞ <∞, it is called a maximal solution and σ∞ is called the explosion time. A maximal
local solution x(t) : −τ ≤ t < σ∞, is said to be unique if for any other maximal local
solution x̂(t) : −τ ≤ t < σ̂∞, we have σ∞ = σ̂∞ a.s., and x(t) = x̂(t) for all −τ ≤ t < σ∞
a.s.

Definition 2.3 The global solution x(t) of Eq. (2.1) is said to be exponentially stable
in pth(p ≥ 1) moment with decay et of order γ, if there exists a positive constant γ such
that

lim sup
t→∞

log(E|x(t)|p)
t

≤ −γ

holds for any ϕ ∈ CF0([−τ, 0];Rn). Furthermore, the global solution x(t) of Eq. (2.1) is
said to be almost surely exponentially stable with exponential decay et of order γ′, if

lim sup
t→∞

log(|x(t)|)
t

≤ −γ′, a.s.

holds for any ϕ ∈ CF0([−τ, 0];Rn).
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Lemma 2.4 ([24]) For γ > 0, there exist two positive constants: λ, λ′ with λ′ < γ, and
a function y : [−τ,∞)→ [0,∞). If the inequality

y(t) ≤
{
λe−γt + λ′

∫ t
0
e−γ(t−s) supθ∈[−τ,0] y(s+ θ)ds, for t ≥ 0,

λe−γt, for t ∈ [−τ, 0],
(2.7)

holds, then we have y(t) ≤ M̃e−µt, for any t ∈ [−τ,∞), where µ is a unique positive root

of the algebra equation: λ′eµτ

γ−µ = 1 and M̃ = max

{
λ(γ−µ)
λ′eµτ

, λ

}
> 0.

3 Main results

Lemma 3.1 Let x(t) be a solution to Eq. (2.1) with the initial condition ϕ. Suppose
that Hypotheses I and III hold. Assume that the inequality

λ2c2 < λ1c1,

holds, then we have

∆(ε) =

∫ ∞
0

eεt sup
θ∈[−τ,0]

EU(x(t+ θ))dt <∞, (3.1)

where ε ∈ (0, ε0), ε0 is a unique positive solution of the algebraic equation:

λ2c2e
ετ

λ1c1 − c1c2ε
= 1.

Proof : Define a function: H(ε) = λ2c2eετ

λ1c1−c1c2ε − 1. It can be proved that H(0) < 0,

H((λ1

c2
)−) = ∞, and H(ε) is a nondecreasing function on (0, λ1

c2
). Therefore, there exists

a scalar ε0 ∈ (0, λ1

c2
) satisfying H(ε0) = 0. That is, for any ε ∈ (0, ε0), we have

Λ(ε) ≡ λ2c2e
ετ

λ1c1 − c1c2ε
< 1. (3.2)

Using the Itô formula, for any t ≥ 0, it follows

e
λ1
c2
t
V (t, x(t), r(t))

≤ V (0, x(0), r(0)) +

∫ t

0

e
λ1
c2
s

[
λ1

c2

V (s, x(s), r(s)) + LV (s, x(s), x(s− τ(s)), r(s))

]
ds

+

∫ t

0

e
λ1
c2
s
Vx(s, x(s), r(s))g(s, x(s), x(s− τ(s)), r(s))dB(s)

+

∫ t

0

∫
R

e
λ1
c2
s
[V (s, x(s), i0 + h̄(r(s−), l)− V (s, x(s), r(s))]µ(ds, dl),

(3.3)

where µ(ds, dl) = ν(ds, dl)−m(dl) is a martingale measure, which is related to the Markov
chain but not the Brownian motion.
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From conditions (2.2) and (2.3), we obtain

λ1

c2

V (s, x(s), r(s)) + LV (s, x(s), x(s− τ(s)), r(s)) ≤ λ2U(x(s− τ(s)). (3.4)

Substituting (3.4) into (3.3), and then taking the expectation, it yields

e
λ1
c2
tEV (t, x(t), r(t)) ≤ EV (0, x(0), r(0)) + λ2

∫ t

0

e
λ1
c2
sEU(x(s− τ(s))ds.

By using condition (2.2), it concludes that for any t ≥ 0,

EU(x(t)) ≤ EV (0, x(0), r(0))

c1

e
−λ1
c2
t
+
λ2

c1

∫ t

0

e
−λ1
c2

(t−s)EU(x(s− τ(s))ds

≤M ′e
−λ1
c2
t
+
λ2

c1

∫ t

0

e
−λ1
c2

(t−s)EU(x(s− τ(s))ds,

(3.5)

where M ′ = EV (0,x(0),r(0))
c1

> 0.

For any t ≥ τ and θ ∈ [−τ, 0], from (3.5), we have

EU(x(t+ θ)) ≤M ′e
−λ1
c2

(t+θ)
+
λ2

c1

∫ t+θ

0

e
−λ1
c2

(t+θ−s)EU(x(s− τ(s))ds

≤M ′e
−λ1
c2

(t+θ)
+
λ2

c1

∫ t+θ

0

e
−λ1
c2

(t+θ−s)
sup

u∈[−τ,0]

EU(x(s+ u))ds.

Multiplying by eεt(ε ∈ (0, ε0)) on both sides of inequality above in turn, and then
integrating with τ to T (T > τ), it follows∫ T

τ

eεtEU(x(t+ θ))dt

≤M ′
∫ T

τ

e
εt−λ1

c2
(t+θ)

dt+
λ2

c1

∫ T

τ

∫ t+θ

0

e
εt−λ1

c2
(t+θ−s)

sup
u∈[−τ,0]

EU(x(s+ u))dsdt.

(3.6)

Note that for any θ ∈ [−τ, 0] and t ≥ τ , the formula of integration by parts implies∫ T

τ

∫ t+θ

0

e
εt−λ1

c2
(t+θ−s)

sup
u∈[−τ,0]

EU(x(s+ u))dsdt

≤ eετ
∫ T

τ

e
−(

λ1
c2
−ε)(t+θ)

∫ t+θ

0

e
λ1
c2
s

sup
u∈[−τ,0]

EU(x(s+ u))dsdt

≤ e
λ1
c2
τ

λ1

c2
− ε

∫ τ

0

e
λ1
c2
s

sup
u∈[−τ,0]

EU(x(s+ u))ds

+
eετ

λ1

c2
− ε

∫ T

0

eεs sup
u∈[−τ,0]

EU(x(s+ u))ds.

(3.7)
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Substituting (3.7) to (3.6) implies∫ T

τ

eεtEU(x(t+ θ))dt

≤M ′e
λ1
c2
τ

∫ T

τ

e
εt−λ1

c2
t
dt+

λ2c2e
λ1
c2
τ

λ1c1 − c1c2ε

∫ τ

0

e
λ1
c2
s

sup
u∈[−τ,0]

EU(x(s+ u))ds

+
λ2c2e

ετ

λ1c1 − c1c2ε

∫ T

0

eεs sup
u∈[−τ,0]

EU(x(s+ u))ds.

(3.8)

From (3.8), we have∫ T

0

eεtEU(x(t+ θ))dt

=

∫ τ

0

eεtEU(x(t+ θ))dt+

∫ T

τ

eεtEU(x(t+ θ))dt

≤ M̄ + Λ(ε)

∫ T

0

eεs sup
u∈[−τ,0]

EU(x(s+ u))ds,

(3.9)

where M̄ =
∫ τ

0
eεtEU(x(t+ θ))dt+ c2M ′eετ

λ1−c2ε + λ2c2e
λ1
c2
τ

λ1c1−c1c2ε

∫ τ
0
e
λ1
c2
s
supu∈[−τ,0] EU(x(s+ u))ds.

Combing (3.2) and (3.9), it gives∫ T

0

eεt sup
θ∈[−τ,0]

EU(x(t+ θ))dt ≤ M̄

1− Λ(ε)
<∞.

Let T →∞, the desired result (3.1) is obtained. 2

Remark 3.2 From (3.1), it follows that

∆ =

∫ ∞
0

sup
θ∈[−τ,0]

EU(x(t+ θ))dt <∞. (3.10)

Theorem 3.3 Suppose that the conditions of Lemma 3.1 hold for any initial condition
ϕ ∈ CF0([−τ, 0];Rn), there is a unique global solution x(t) to Eq. (2.1) on t ∈ [−τ,∞)
with probability one.

Proof : From Hypothesis I, for any initial data ϕ ∈ CF0([−τ, 0];Rn), by using Theorem
7.12 (see, pp. 278 [12]), it is shown that there exist a unique maximal local strong solution
x(t) on [−τ, σe], where σe is the explosion time. To show that this solution is global, we
only need to prove σe =∞, a.s. Note that ϕ ∈ CF0([−τ, 0];Rn), consequently, there must
exist a positive number k0 such that ||ϕ||C ≤ k0. For each integer k > k0, define the
stopping time

τk = inf{t ∈ [0, σe) : |x(t)| ≥ k},
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with the traditional convention inf ∅ = ∞, where ∅ denotes the empty set. Clearly, τk
is increasing and τk → τ∞ ≤ σe a.s. (as k → ∞). If we can show τ∞ = ∞ a.s., then
σe =∞ a.s., which implies that x(t) is actually global. This is equivalent to proving that
for any t > 0, P(τk ≤ t)→ 0, as k →∞.

By using Itô formula, it yields that for any t ≥ 0,

V (t ∧ τk, x(t ∧ τk), r(t ∧ τk))

= V (0, x(0), r(0)) +

∫ t∧τk

0

LV (s, x(s), x(s− τ(s)), r(s))ds

+

∫ t∧τk

0

Vx(s, x(s), r(s))g(s, x(s), x(s− τ(s)), r(s))dB(s)

+

∫ t∧τk

0

∫
R

[V (s, x(s), i0 + h̄(r(s−), l)− V (s, x(s), r(s))]µ(ds, dl).

(3.11)

Taking the expectation on both sides of inequality (3.11), it yields from (2.3) that

EV (t ∧ τk, x(t ∧ τk), r(t ∧ τk))

≤ EV (0, x(0), r(0)) + λ2

∫ t∧τk

0

sup
u∈[−τ,0]

EU(x(s+ u))ds

≤M,

(3.12)

where M = EV (0, x(0), r(0)) + λ2∆ > 0, and ∆ is given in (3.10).

Define, for each k ≥ 0,

ψ(k) = inf{U(x) : x ∈ Rn, with |x| ≥ k}

By condition (2.4), we note that limk→∞ ψ(k) = ∞. On the other hand, using (2.2),
we have

EV (t ∧ τk, x(t ∧ τk), r(t ∧ τk))
≥ E{I{τk≤t}V (t ∧ τk, x(t ∧ τk), r(t ∧ τk))}
≥ c1ψ(k)P{τk ≤ t},

(3.13)

where |x(τk)| = k by the definition of stopping time τk.

From (3.12) and (3.13), it follows

c1ψ(k)P{τk ≤ t} ≤M, (3.14)

For any t ≥ 0, when k → ∞, ψ(k) → ∞. Then by (3.14), we can conclude that
P{τ∞ ≤ t} = 0. Since t ≥ 0 is arbitrary, P{τ∞ < ∞} = 0, which implies that τ∞ = ∞,
a.s. That is, Eq. (2.1) almost surely admits a unique global solution x(t) on [−τ,∞). 2

Theorem 3.4 Let the conditions of Lemma 3.1 hold, for any initial data ϕ ∈ CF0([−τ, 0];
Rn), the global solution x(t) of the Eq. (2.1) obeys

lim
t→∞

sup
1

t
logEU(x(t)) ≤ −µ̄,

where µ̄ ∈ (0, λ1

c2
) is a unique root of the algebra equation : λ2c2eµτ

λ1c1−c1c2µ = 1.
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Proof : From (3.5), it follows that for any t ≥ 0,

EU(x(t)) ≤M ′e
−λ1
c2
t
+
λ2

c1

∫ t

0

e
−λ1
c2

(t−s)EU(x(s− τ(s))ds

≤M ′e
−λ1
c2
t
+
λ2

c1

∫ t

0

e
−λ1
c2

(t−s)
sup

u∈[−τ,0]

EU(x(s+ u))ds.

Note that, for any t ∈ [−τ, 0], we have EU(x(t)) ≤ M ′e
−λ1
c2
t
. Therefore, by using

Lemma 2.4, we can obtain

EU(x(t)) ≤ M̂e−µ̄t,

for any t ≥ −τ , where µ̄ ∈ (0, λ1

c2
) and M̂ = {M

′(λ1c1−c1c2µ̄)
λ2c2eµ̄τ

,M ′} > 0, which implies that

lim supt→∞
1
t

logEU(x(t))≤ −µ̄. 2

Remark 3.5 From (3.1) in Lemma 3.1, the Chebyshev inequality, and the Fubini theo-
rem, it follows ∫ ∞

0

eεt sup
θ∈[−τ,0]

U(x(t+ θ))dt <∞, a.s.,

for any ε ∈ (0, ε0), where ε0 is given in Lemma 3.1. In addition, from (3.1) in Lemma
3.1 and the Fubini theorem, we have

E
∫ ∞

0

U(x(t))dt <∞.

Theorem 3.6 Suppose that the conditions of Lemma 3.1 are satisfied. Then the global
solution x(t) of Eq. (2.1) with the initial condition ϕ ∈ CF0([−τ, 0];Rn) obeys the following
property

lim
t→∞

sup
1

t
logU(x(t)) ≤ −ε, a.s.,

for ε ∈ (0, ε0), where ε0 is given in Lemma 3.1.

Proof : For any ε ∈ (0, ε0), applying the Itô formula, we obtain that for any t ≥ 0,

eεtV (t, x(t), r(t))

= V (0, x(0), r(0)) +

∫ t

0

eεs[εV (s, x(s), r(s)) + LV (s, x(s), x(s− τ(s)), r(s))]ds

+

∫ t

0

eεsVx(s, x(s), r(s))g(s, x(s), x(s− τ(s)), r(s))dB(s)

+

∫ t

0

∫
R

eεs[V (s, x(s), i0 + h̄(r(s−), l)− V (s, x(s), r(s))]µ(ds, dl), a.s.
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Then, from (2.2) and (2.3), we have

eεtV (t, x(t), r(t)) ≤ V (0, x(0), r(0)) + λ2

∫ t

0

eεs sup
u∈[−τ,0]

U(x(s+ u))ds+M(t)

≤ ξ0 + A(t) +M(t), a.s.,

(3.15)

where ξ0 = V (0, x(0), r(0)) is a nonnegative bounded F0-measurable random variable,

A(t) = λ2

∫ t

0

eεs sup
u∈[−τ,0]

U(x(s+ u))ds, a.s.,

and

M(t) =

∫ t

0

eεsVx(s, x(s), r(s))g(s, x(s), x(s− τ(s)), r(s))dB(s)

+

∫ t

0

∫
R

eεs[V (s, x(s), i0 + h̄(r(s−), l)− V (s, x(s), r(s))]µ(ds, dl)

is a local continuous martingale with M(0) = 0.

Applying the nonnegative semi-martingale convergence theorem [25], it deduces from
Remark 3.5 and (3.15) that

lim sup
t→∞

[eεtV (t, x(t), r(t))] <∞, a.s.

Therefore, there exists a finite positive random variable ζ such that

eεtV (t, x(t), r(t)) ≤ ζ, a.s. (3.16)

From (2.2) and (3.16), it gives

U(x(t)) ≤ ζ

c1

e−εt, a.s.

for any t ≥ 0 holds, which follows that lim supt→∞
1
t

logU(x(t)) ≤ −ε. a.s. 2

Theorem 3.7 Suppose that the conditions of Lemma 3.1 hold. Then the global solution
x(t) of Eq. (2.1) satisfies

lim
t→∞

d(x(t), Ker(U)) = 0, a.s.,

and Ker(U) 6= ∅. In particular, if U has the property that

U(x) = 0 if and only if x = 0,

then the solution obeys that

lim
t→∞

x(t) = 0, a.s.,

for all initial condition ϕ ∈ CF0([−τ, 0];Rn). That is, the global solution of Eq. (2.1) is
almost surely asymptotically stable.
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Proof : The proof is very technical and follows the same steps in [16], which is split into
five step.

Step 1 : By using Remark 3.5 and the Chebyshev inequality, it implies∫ ∞
0

U(x(t))dt <∞, a.s.

Furthermore,

lim inf
t→∞

U(x(t)) = 0, a.s. (3.17)

Now, we claim that

lim
t→∞

U(x(t)) = 0, a.s. (3.18)

If this is false, then

P(lim sup
t→∞

U(x(t)) > 0) > 0.

Hence, we can find a positive number ε sufficiently small, such that

P(Ω1) ≥ 3ε, (3.19)

where

Ω1 = {lim sup
t→∞

U(x(t)) > 2ε}.

Step 2 : Let h > ||ϕ||C be a number. Define the stopping time

βh = inf{t ≥ 0 : |x(t)| ≥ h}.

Similar to the derivation of inequality (3.12), from (2.2), it deduces

EU(x(t ∧ βh)) ≤
EV (0, x(0), r(0))

c1

+
λ2

c1

∫ t∧βh

0

sup
u∈[−τ,0]

EU(x(s+ u))ds

≤ M

c1

,

(3.20)

where M = EV (0, x(0), r(0)) + λ2∆ > 0, where ∆ is given in (3.10).

According to the definition of the function ψ(·), we have

ψ(h) = inf{U(x) : x ∈ Rn, with |x| ≥ h} (3.21)

From (3.20) and (3.21), it yields

ψ(h)P(βh ≤ t) ≤ M

c1

.
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where |x(βh)| = h by the definition of stopping time βh.

Let t→∞ and then choose h sufficiently large, we have

P(βh <∞) ≤ ε,

which implies

P(Ω2) ≥ 1− ε, (3.22)

where

Ω2 = {|x(t)| < h, for all 0 ≤ t <∞}.

Then, it follows from (3.19) and (3.22) that

P(Ω1 ∩ Ω2) ≥ 2ε. (3.23)

Step 3 : Define a sequence of stopping times:

α1 = inf{t ≥ 0 : U(x(t)) ≥ 2ε},
α2i = inf{t ≥ α2i−1 : U(x(t)) ≤ ε}, i = 1, 2, . . . ,

α2i+1 = inf{t ≥ α2i : U(x(t)) ≥ 2ε}, i = 1, 2, . . . .

It is observed that from (3.17) and the definition of Ω1 and Ω2, we have α2i <∞ when
α2i−1 <∞. Moreover,

βh(ω) =∞ and α2i(ω) <∞, for all i ≥ 1, whenever ω ∈ Ω1 ∩ Ω2. (3.24)

From Remark 3.5, we obtain

∞ > E
∫ ∞

0

U(x(t))dt ≥
∞∑
i=1

E
{
I{α2i<∞, βh=∞}

∫ α2i

α2i−1

U(x(t))dt

}
≥ ε

∞∑
i=1

E{I{α2i<∞,βh=∞}[α2i − α2i−1]}.
(3.25)

From Hypothesis I, we have

|f(t, x, y, i)|2 ∨ |g(t, x, y, i)|2 ≤ Ch ∀ t ≥ 0,

for any |x| ∨ |y| ≤ h, where Ch is positive constant.

By the Hölder inequality and the Doob’s martingale inequality, it is derived that for
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any T > 0,

E{I{βh∧α2i−1<∞} sup
0≤t≤T

|x(βh ∧ (α2i−1 + t))− x(βh ∧ α2i−1)|2}

≤ 2E
{
I{βh∧α2i−1<∞} sup

0≤t≤T
|
∫ βh∧(α2i−1+t)

βh∧α2i−1

f(s, x(s), x(s− τ(s)), r(s))ds|2
}

+ 2E
{
I{βh∧α2i−1<∞} sup

0≤t≤T
|
∫ βh∧(α2i−1+t)

βh∧α2i−1

g(s, x(s), x(s− τ(s)), r(s))dB(s)|2
}

≤ 2TE
{
I{βh∧α2i−1<∞}

∫ βh∧(α2i−1+T )

βh∧α2i−1

|f(s, x(s), x(s− τ(s)), r(s))|2ds
}

+ 8E
{
I{βh∧α2i−1<∞}

∫ βh∧(α2i−1+T )

βh∧α2i−1

|g(s, x(s), x(s− τ(s)), r(s))|2ds
}

≤ 2ChT (T + 4).

(3.26)

Since U(x) is continuous in Rn, it must be uniformly continuous. That is, when |x| ∨
|y| ≤ h, we can therefore choose δ = δ(ε) satisfying

|U(x)− U(y)| < ε, whenever |x− y| < δ, |x| ∨ |y| ≤ h. (3.27)

Choose T sufficiently small such that

2ChT (T + 4)

δ2
< ε, (3.28)

From (3.26) and (3.28), it follows that

P({βh ∧ α2i−1 <∞} ∩ { sup
0≤t≤T

|x(βh ∧ (α2i−1 + t))− x(βh ∧ α2i−1)| ≥ δ})

≤ 2ChT (T + 4)

δ2
< ε.

Accordingly, we have

P({α2i−1 <∞, βh =∞} ∩ { sup
0≤t≤T

|x(α2i−1 + t)− x(α2i−1)| ≥ δ})

= P({βh ∧ α2i−1 <∞, βh =∞} ∩ { sup
0≤t≤T

|x(βh ∧ (α2i−1 + t))− x(βh ∧ α2i−1)| ≥ δ})

≤ P({βh ∧ α2i−1 <∞} ∩ { sup
0≤t≤T

|x(βh ∧ (α2i−1 + t))− x(βh ∧ α2i−1)| ≥ δ})

< ε.

Using (3.23) and (3.24), we have

P({α2i−1 <∞, βh =∞} ∩ { sup
0≤t≤T

|x(α2i−1 + t)− x(α2i−1)| < δ})

= P({α2i−1 <∞, βh =∞})
− P({α2i−1 <∞, βh =∞} ∩ { sup

0≤t≤T
|x(α2i−1 + t)− x(α2i−1)| ≥ δ})

> 2ε− ε = ε.
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From (3.27), it yields

P({α2i−1 <∞, βh =∞} ∩ { sup
0≤t≤T

|U(x(α2i−1 + t))− U(y(α2i−1))| < ε}

≥ P({α2i−1 <∞, βh =∞} ∩ { sup
0≤t≤T

|x(α2i−1 + t)− x(α2i−1)| < δ})

> ε.

(3.29)

Set

Ω̂i = { sup
0≤t≤T

|U(x(α2i−1 + t))− U(y(α2i−1))| < ε},

and note that

α2i(ω)− α2i−1(ω) ≥ T, if ω ∈ {α2i−1 <∞, βh =∞} ∩ Ω̂i.

Using (3.25) and (3.29), we have

∞ ≥ ε
∞∑
i=1

E{I{α2i<∞,βh=∞}[α2i − α2i−1]}

≥ ε
∞∑
i=1

E{I{α2i<∞,βh=∞}∩Ω̂i
[α2i − α2i−1]}

≥ εT
∞∑
i=1

P({α2i <∞, βh =∞} ∩ Ω̂i)

> εT
∞∑
i=1

ε =∞,

which is a contradiction. Hence, (3.18) holds.

Step 4 : Now, it is necessary to show that Ker(U) 6= ∅. From (3.18), it is seen that
there exists an Ω0 ⊂ Ω with P(Ω0) = 1 such that

lim
t→∞

U(x(t)) = 0 and sup
0≤t<∞

|x(t)| <∞, for any ω ∈ Ω0. (3.30)

Choose any ω ∈ Ω0, then {x(t)}t≥0 is bounded in Rn. Then, there must be an increasing
sequence {tk}k≥1 such that tk →∞ and {x(tk)}k≥1 converges to some x̄ ∈ Rn. Thus,

U(x̄) = lim
k→∞

U(x(tk)) = 0,

which implies that x̄ ∈ Ker(U). That is, Ker(U) 6= ∅.
Step 5 : It is necessary to show that for any ω ∈ Ω0,

lim
t→∞

d(x(t), Ker(U)) = 0. (3.31)
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If this is false, then there exists some ω̄ ∈ Ω0 such that

lim sup
t→∞

d(x(t, ω̄), Ker(U)) > 0.

Thus, there exists a subsequence {x(tk, ω̄)}k≥0 of {x(t, ω̄)}t≥0 satisfying

lim sup
k→∞

d(x(tk, ω̄), Ker(U)) > ε̄,

for some ε̄ > 0. Since {x(tk, ω̄)}k≥0 is bounded, we can find a subsequence converging to
some x̃ ∈ Rn. Clearly, x̃ /∈ Ker(U) and U(x̃) > 0. However, from (3.30),

U(x̃) = lim
k→∞

U(x(tk, ω̄)) = 0.

Thus, there is a contradiction. Consequently, (3.31) holds. In addition, if U(x) = 0 ⇔
x = 0, then Ker(U) = 0. Consequently, from (3.31), it is deduced that

lim
t→∞

x(t) = 0, a.s.

The proof is therefore complete. 2

Corollary 3.8 Suppose that Hypotheses I and IV are satisfied, then the existence and
uniqueness for the global solution of Eq. (2.1) can be guaranteed. Furthermore, we have
the following two results:
i) for any initial data ϕ ∈ CF0([−τ, 0];Rn), the pth(p ≥ 1)-moment Lyapunov exponent of
the solution of the Eq. (2.1) obeys

lim
t→∞

sup
1

t
log(E|x(t)|p) ≤ −µ̄,

where µ̄ ∈ (0, λ1

c2
) is a root of the algebra equation : λ2c2eµτ

λ1c1−c1c2µ = 1. That is, the solution

of the Eq. (2.1) is exponentially stable in pth(p ≥ 1) mean;
ii) for any initial data ϕ ∈ CF0([−τ, 0];Rn), the sample Lyapunov exponent of the solution
of the Eq. (2.1) obeys

lim
t→∞

sup
1

t
log(|x(t)|) ≤ −ε

p
, a.s.

where p ≥ 1, and ε ∈ (0, ε0), where ε0 is given in Lemma 3.1. That is, the solution of the
Eq. (2.1) is almost surely exponentially stable.

4 Two Examples

In order to illustrate the advantages of the main results, two examples are provided.

Example 4.1 : Let B(t) be a scalar Brownian motion on (Ω,F , {Ft}t≥0,P). Consider
one dimensional stochastic differential equations with time-varying delay and Markovian
switching:

dx(t) = f(t, x(t), x(t− τ(t)), r(t))dt+ g(t, x(t), x(t− τ(t)), r(t))dB(t), t ≥ 0, (4.1)
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with the initial value {x(θ) : −τ ≤ θ ≤ 0} = ϕ ∈ CF0([−τ, 0];R) and r(0) = i0 ∈ S and
r(0) = 1 ∈ S = {1, 2}, where x(t) and x(t−τ(t)) are the state scalar and the delayed state
scalar, respectively. τ(t) is a bounded measurable function with 0 ≤ τ(t) ≤ τ (t ≥ 0, τ >
0), and r(t) is a right-continuous Markov chain taking values in S with the generator

Γ = (γij)2×2 =

[
−2 2
1 −1

]
.

In (4.1), we assume that f, g : [0,∞)×R×R× S → R with

f(t, x, y, i) =

{
−0.15x− 2x3 + 0.4y, if i = 1,
−2x− 0.5xy4 + 0.82y, if i = 2,

and

g(t, x, y, i) =

{
2x2, if i = 1,
xy2, if i = 2.

Define a Lyapunov function

V (t, x, i) =

{
x2, if i = 1,
0.5x2, if i = 2,

then, it is computed for the Itô operator to Eq. (4.1) that

LV (t, x, y, 1) = 2x[−0.15x− 2x3 + 0.4y] + 4x4 +
2∑
j=1

γ1jV (t, x, j)

= − 1.3x2 + 0.8xy

≤ − 0.9x2 + 0.4y2,

and

LV (t, x, y, 2) = x[−2x− 0.5xy4 + 0.82y] + 0.5x2y4 +
2∑
j=1

γ2jV (t, x, j)

= − 1.5x2 + 0.82xy

≤ − 1.09x2 + 0.41y2.

Hence, we have

LV (t, x, y, i) ≤ −0.9x2 + 0.41y2,

with λ1 = 0.9, λ2 = 0.41, c1 = 0.5 and c2 = 1. Then, λ2c2 < λ1c1 holds, which
implies that the conditions of Corollary 3.8 hold. Thus, the existence and uniqueness, the
exponential stability in mean square, the almost sure exponential stability and the almost
sure asymptotical stability of the global solution for Eq. (4.1) are guaranteed. When the
initial condition x(t) = −1 (t ∈ [−2.3, 0]), r(0) = 1, and τ(t) = 1.1| sin(t)|+ 1.2 are fixed,
Fig. 1 and Fig. 2 illustrate the asymptotic behavior in mean square and in almost sure
sense of the global solution for Eq. (1), respectively.
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Figure 1: Asymptotic behavior in mean square of the global solution for Eq. (4.1)
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Figure 2: Asymptotic behavior in almost sure sense of the global solution for Eq. (4.1)

Example 4.2 : One coupled system consists of a mass-spring-damper (MSD) model [26].
An actuator is taken to a transfer system. The mathematical expression of the system is
DDEs, which are written as

Mÿ(t) + Cẏ(t) +Ky(t) = 0 (4.2)

on t ≥ 0, where M , C, K are the mass, stiffness and damping of a mass-spring-damper
model, and y(t), ẏ(t), ÿ(t) denote the position, velocity and acceleration of MSD at time t.
If this physical model is affected by the external force, then Eq. (4.2) is further described
as

Mÿ(t) + Cẏ(t) +Ky(t) + F (t) = 0 (4.3)

on t ≥ 0, where F (t) denotes the external force, M = 10, C = 25, and K = 15. Assume
that this external force is subject to the environmental noise and abrupt changes in the
parameters, which is characterized by

F (t) = F1(ẏ(t), ẏ(t− τ(t)), r(t)) + F2(ẏ(t), y(t− τ(t)), ẏ(t− τ(t)), r(t))Ḃ(t)
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where Ḃ(t) is a scalar white noise ( i.e. Ḃ(t) is a scalar Brownian motion), τ(t) is the
time-varying delay, r(t) is a Markovian switching taking values in S = {1, 2} with its

generator Γ =

[
−2 2
3 −3

]
,

F1(ẏ(t), ẏ(t− τ(t)), r(t)) =

{
5.4ẏ(t)ẏ2(t− τ(t)), if i = 1,
15ẏ3(t)ẏ2(t− τ(t)), if i = 2,

and

F2(ẏ(t), y(t− τ(t)), ẏ(t− τ(t)), r(t))

=

{
6ẏ(t)ẏ(t− τ(t)) + 3y(t− τ(t)) + 3ẏ(t− τ(t)), if i = 1,
10ẏ2(t)ẏ(t− τ(t)) + 2y(t− τ(t)) + 2ẏ(t− τ(t)), if i = 2.

Let x1(t) = y(t) and x2(t) = ẏ(t), Eq. (4.3) can be written as highly nonlinear SDDEs
with Markovian switching:

dx(t) = f(t, x(t), x(t− τ(t)), r(t))dt+ g(t, x(t), x(t− τ(t)), r(t))dB(t) (4.4)

where x(t) = col[x1(t), x2(t)],

f(t, x(t), x(t− τ(t)), 1) =

[
x2(t)

−1.5x1(t)− 2.5x2(t)− 0.54x2(t)x2
2(t− τ(t))

]
,

f(t, x(t), x(t− τ(t)), 2) =

[
x2(t)

−1.5x1(t)− 2.5x2(t)− 1.5x3
2(t)x2

2(t− τ(t))

]
,

g(t, x(t), x(t− τ(t)), 1) =

[
0

0.6x1(t− τ(t)) + 0.3x2(t− τ(t)) + 0.3x2(t)x2(t− τ(t))

]
,

and

g(t, x(t), x(t− τ(t)), 2) =

[
0

x1(t− τ(t)) + 0.2x2(t− τ(t)) + 0.2x2(t)x2(t− τ(t))

]
.

For Eq. (4.4), consider a Lyapunov function

V (t, x, i) =

{
|x|2, if i = 1,
0.8|x|2, if i = 2,

with |x|2 = x2
1 + x2

2.

Then, for Eq. (4.4), the Itô operator is computed as

LV (t, x(t), x(t− τ(t)), i)

= 2qix
T (t)f(t, x(t), x(t− τ(t)), r(t)) + qitrace[gT (t, x(t), x(t− τ(t)), i)

× g(t, x(t), x(t− τ(t)), i)] +
2∑
j=1

γijV (t, x(t), j),
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Figure 3: Asymptotic behavior in mean square of the global solution for Eq. (4.4)
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Figure 4: Asymptotic behavior in almost sure sense of the global solution for Eq. (4.4)

where q1 = 1, q2 = 0.8.

Consequently, when i = 1, we have

LV (t, x(t), x(t− τ(t), 1) ≤ − 2[x2
1(t) + x2

2(t)]− 1.08x2
2(t)x2

2(t− τ(t))

+ [0.6x2(t)x2(t− τ(t)) + 0.3x1(t− τ(t)) + 0.3x2(t− τ(t))]2

− 0.4[x2
1(t) + x2

2(t)]

≤ − 2.4|x(t)|2 + 0.27|x(t− τ(t))|2,

and when i = 2,

LV (t, x(t), x(t− τ(t), 2) ≤ − 1.6[x2
1(t) + x2

2(t)]− 2.4x4
2(t)x2

2(t− τ(t))

+ 0.8[x2
2(t)x2(t− τ(t)) + 0.2x1(t− τ(t)) + 0.2x2(t− τ(t))]2

+ 0.6[x2
1(t) + x2

2(t)]

≤ − |x(t)|2 + 0.096|x(t− τ(t))|2.

Thus, for any i ∈ S.

LV (t, x(t), x(t− τ(t)), i) ≤ −|x(t)|2 + 0.27|x(t− τ(t))|2.
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with λ1 = 1, λ2 = 0.27, c1 = 0.8 and c2 = 1. Thus, λ2c2 < λ1c1 is satisfied. Con-
sequently, by Corollary 3.8, the existence and uniqueness, the exponential stability in
mean square, the almost sure exponential stability and the almost sure asymptotical sta-
bility of the global solution for Eq. (4.4) are guaranteed. When the initial condition
x(t) = col[− sin(t), 0.5 cos(t)] (t ∈ [−2.3, 0]), r(0) = 1, and τ(t) = 1.1| cos(t)| + 1.2 are
given, Fig. 3 and Fig. 4 show the asymptotic behavior in mean square and in almost sure
sense of the global solution for Eq. (4.4), respectively.

5 Conclusion

The method of Lyapunov function has been widely used in the study for the stabil-
ity of highly nonlinear stochastic differential delay equations with Markovian switching.
However, so far, most of the existing results in this area usually require that the de-
lay is a constant or the time-varying delay with its derivative value being less than one,
which limits their applications to some extent. When the involved delay is time-varying
with it being a bounded measurable function, one integral lemma has first been given.
Then, under a locally Lipschitz condition and a monotonicity condition, the existence and
uniqueness for the global solution of stochastic differential delay equations with Marko-
vian switching has been proved; by using the integral inequality, some stochastic analysis
technique and the nonnegative semi-martingale convergence theorem, the stability analy-
sis for the global solution of highly nonlinear stochastic differential delay equations with
Markovian switching have been discussed. Finally, two examples have been provided to
illustrate the effectiveness of the theoretical results obtained.
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