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ABSTRACT

Designing a Simulator for an Electrically-Pumped Organic Laser Diode

Robert Hulbert

Organic semiconductors provide an alternative set of basis materials to fabricate

electronic devices like PN Junctions, LEDs, and FETs. These materials have sev-

eral benefits over traditional inorganic semiconductors including their mechanical

flexibility, reliance on renewable resources, and inexpensive large-scale manufactura-

bility. Despite the contemporary device implementations with organic semiconduc-

tors, a solid-state electrically-pumped organic laser diode does not exist. However,

organically-based lasers do exist by utilizing the organic material strictly for opti-

cal gain. The challenge occurs when charge carriers appear in the organic material.

The charge carriers must reach a concentration such that population inversion occurs

producing optical gain. However, between the overlapping emission and absorption

spectra of the organic material and insufficient carrier concentrations, positive optical

gain remains elusive in electrically-pumped organic diodes. Organic device simula-

tion provides a faster method of testing organic materials and device structures for

positive optical gain based on known organic physics. The results generated from

simulation provide key information in development of physical organic devices. This

project produces a simulator capable of modeling current density and optical density

with the intent of testing various device structures that allow for lazing in organic

materials.
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Chapter 1

INTRODUCTION

Semiconducting polymers offer a wide range of mechanical properties from plastic-

ity to elasticity, a larger configurable range of conductivity, and large, inexpensive

production. These properties yield the potential for inexpensive, power efficient,

bendable electronics. Televisions and smartphones with organic LED screens have

already been introduced into the marketplace due to these properties. Furthermore,

organically-based lasers, dye lasers, utilize polymers typically in solution to act as

the lasing medium. These dye layers photo-pump the polymer solution which am-

plifies the power and shrinks the optical bandwidth of the optical input [1]. Despite

these applications, an electrically-pumped organic laser diode remains undiscovered

due to charge carrier quenching and statistical excitation phenomenon [1]. Physical

synthesis attempts of this laser diode require significant time and resources. Instead,

simulation offers a method to accelerate the rate of testing of various organic materi-

als and device structures utilizing known physics. This report defends the following

thesis statement: It is possible to construct a simulator capable of calculating carrier

concentration, optical density, current-voltage characteristics, and luminous output

for organic materials to test device structures for positive optical gain by electrical

excitation.

Semiconducting organic materials conduct utilizing the long π-conjugated chains of

monomer sub-structures. Π-conjugated electrons form the alternating double or triple

bonds in materials as their wave functions bend to overlap with each other. These bent

wave functions provide the delocalization of electrons necessary to perform conduction

perpendicular to the plane of the structure [2, 3]. The electrons delocalize from
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the overlapping wave function, but the coherence distance does not extend as far

depending on the length of the polymer. Similar to the band structure of inorganic

semiconductors, polymer semiconductors utilize HOMO, highest occupied molecular

orbital, and LUMO, lowest unoccupied molecular orbital, to refer to the carrier states

in a short oligomer with discrete states. Once the polymers reach sufficient length ,

the discrete states become continuous yielding a band structure. In this case, LUMO

and HOMO become synonymous with conduction and valence as shown in Fig. 1.1.

Figure 1.1: Molecular Energy Levels and Band Equivalence

An exciton occurs when an electron excites above the HOMO level and attracts a

hole into a hydrogen-like object. The binding energy of this object is less than the

energy gap between the HOMO and LUMO levels due to Coulombic attraction [2].

A singlet exciton with spin 0 decays into either a photon with energy corresponding

to the binding energy or into the free hole-electron pair. A triplet exciton may also

form with spin 1 that only has non-radiative decays to lower energy levels.

Besides excited states, polymer semiconductors also differ from traditional semicon-

ductors in charge transport. Traditional inorganic semiconductors form rigid crystal

lattices that remain more unaffected by Coulombic fields generated by charge carriers

2



than polymer semiconductors. Due to the flexibility of the polymer chain, a higher

coupling between the molecular structure and charge carriers forms as the structure

bends to ensure the lowest energy. This shielding of the charge carrier forms a po-

laron, a charge carrier with higher mass and lower mobility than an electron or hole

in an inorganic material [3].

Figure 1.2: Schematic of Polymer LED: Cathode (Electron Injector), Film
(Emissive Layer), Anode (Hole Injector)

[4]

Polarons and excitons form the mechanisms which allow an organic LED to elec-

troluminesce, Fig. 1.2. The polarons carry the charges from the metal contacts to

the emissive layer where excitons form based on statistical selection rules. Singlet

excitons emit a photon with energy equivalent to their binding energy while triplet

excitons decay via vibrational relaxing, phonon generation. The statistical selection

rules dictate that a singlet to triplet generation follows a 1:3 rule when an exciton

forms [1]. Furthermore, these triplet excitons absorb photons produced by singlet

excitons and dissipate the energy non-radiatively [1]. For an electrically-pumped

organic laser diode, the major challenge occurs in generating population inversion

allowing positive optical gain despite the lower mobilities of polarons and selection

rules producing singlet excitons. Simulation offers a faster development cycle than

physical synthesis to test various device structures and organic materials with the

goal of positive optical gain.
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The semiconductor industry utilizes simulation to design and test different devices

and materials prior to physical implementation to save on development time and pro-

duction cost. Simulators rely on known semiconductor physics and material param-

eters to reproduce results obtained empirically. Reference [5] details the simulation

of edge-emitting lasers and VCSELs including the models, material parameters, and

results. It further notes the efficiency limits and temperature effects in these devices.

Despite the advances in inorganic laser diode simulation, organic laser diodes, due to

their inherent difficulty, have minimal results. However, simulation work in OLEDs

continues to increase for use in flexible screens. Organic material simulation includes

exciton populations and field-dependent mobility [6]. Multiple commercial simulator

solutions offer direct implementations or variants of these models for device simula-

tion. However, his project decided to build an open-source simulator as it offered

more flexibility and availability.
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Chapter 2

AVAILABLE SOFTWARE PLATFORMS

Due to finite storage and computational capabilities of modern computing, simulators

discretize the physical domain where the device modeling occurs. Finite Element, Fi-

nite Volume, and Finite Difference constitute the three main types of device modeling

techniques available. All three methods rely on a mesh that discretizes the spatial

domain by points and lines. The Finite Element method solves the user-specified

difference equations at the finite ”element” whether it be a point, line, or a higher

order discretization with a linear combination of basis functions of the equations. The

Finite Volume method solves difference equations by assuming quantity conservation

within a finite volume composed of the spatial features of the mesh. The simplest

method, Finite Difference, directly solves any difference equation specified on the

mesh. Finite Difference typically represents the easiest method to implement, but

does not handle irregular meshes well. The Finite Element method allows for more

flexibility of complex geometries as higher order terms can be added more easily in the

solution summation, but requires more knowledge of the mathematical solution space

to implement [7]. The Finite Volume method handles nonlinearities and transport

equations well, but only solves equations that handle the flux of conserved quantities

through a volume [7]. Silvaco and COMSOL represent commercial simulators that

may use one or more of the methods above. This project uses the open source project,

DEVSIM, due to availability and expandability, despite only implementing the Finite

Volume method.
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2.1 Silvaco

Silvaco provides an extensive platform for 2D device simulation, ATLAS [8]. ATLAS

contains multiple inter-connected sub-modules useful for developing a simulation of an

electrically-pumped organic laser diode: Quantum, Luminous, Organic Display, and

Laser [9]. The Quantum module utilizes a self-consistent Schrodinger-Poisson model

to simulate quantum transport and confinement in semiconductor quantum wells.

The Luminous package models photo-generation and absorption in devices utilizing

geometric ray-tracing to track photon travel accounting for reflections, refractions,

polarization, and dispersion. Organic Display simulates charge transport and re-

combination in organic materials utilizing the Frenkel-Poole hopping mechanism for

transport and accounting for exciton-exciton interactions. Finally, the Laser module

models spontaneous emission, stimulated emission, optical gain, strain in quantum

wells, and optical density. These four modules provide the necessary bases to begin

testing various structures/materials to generate an electrically-pumped organic laser

diode. This project did not use Silvaco ATLAS as it was not monetarily available at

the time of development.

2.2 COMSOL

COMSOL offers another platform to simulate an electrically-pumped organic laser

diode. This platform contains several modules that would serve as a basis to begin

structural/material testing of this diode: Electromagnetic, Semiconductor, and Wave

Propagation [10]. The Electromagnetic module provides all of Maxwell’s equations

which would be useful for vacuum and conductive media simulation. The Semiconduc-

tor module offers the Poisson equation, Current Continuity equations, recombination,

and doping. Finally, the Wave Propagation module offers models to simulate photon
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generation and flow through different media. Between the need for other models such

as Frequency-Dependent Mobility and Schottky Barriers as well as the inaccessibility

of the COMSOL models mentioned above due to limitations in the current contract,

this project did not utilize COMSOL.

2.3 DEVSIM

DEVSIM offers an open-source Finite Volume solver written in C++ to conduct

physics simulations. The platform operates utilizing the control volume approach and

evaluates any equation of the form in (2.1) [11]. This equation generates three types

of expressions: Node, Edge, and Element. The Node model describes any expression

that can be evaluated on a node in the mesh and integrates the expression over the

node volume, Fig. 2.1. The Edge model describes any expression evaluated on the

edge between two nodes on the mesh and integrates the expression as flux through a

surface area, Fig. 2.2. The Element model describes any Edge model that depends

on more information than the values at both nodes such as directional contributions

from other edge models, Fig. 2.3. From this, DEVSIM built a series of APIs to build

a mesh, add node, edge, or element models to construct a series of partial differential

equations, solve the generated matrices from the equations, and output the results

[11].

The C++ APIs can be directly utilized, but have also been wrapped with python

allowing for quicker development in a scripting language. DEVSIM provides several

benefits including the ability to contribute to the source if needed, easily adding more

complex models to the simulator, and cooperation with other open source projects

that specialize in meshing and visualization in Sec. 2.3.1 and Sec. 2.3.2 [11]. DEVSIM

relies on another open source platform known as SYMDIFF which operates as a
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natural language parser for mathematical equations. This tool evaluates complex

mathematical expressions and their derivatives, allowing for ease of incorporation of

new models as they can be written in a string format and parsed by SYMDIFF as

long as they contribute to (2.1). The user provides all the necessary physical models,

Sec. 3, in string format for SYMDIFF. After SYMDIFF parses the models, the

user generates the Control Volume compliant equations from the parsed models. The

DEVSIM solver then executes on the built equations yielding the numerical solutions,

Sec. 4.

∫
∂X

∂t
dr +

∫
~Y · ds+

∫
Zdr = 0 (2.1)

Figure 2.1: Node Evaluation Components in 2D Mesh
[11]
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Figure 2.2: Edge Evaluation Components in 2D Mesh
[11]

2.3.1 GMSH

The open-source meshing software, GMSH, provides a scripting platform to generate

1D, 2D, and 3D meshes. GMSH accepts a .geo file which contains the geometric in-

formation of the structure to be simulated and overlay a corresponding mesh utilized

by DEVSIM to simulate the desired device. The .geo file allows the user to specify

points, curves (1D), surfaces (2D), and volumes (3D) to generate their structure. Fur-

thermore, these geometric components can be grouped into a ”Physical” aggregation

DEVSIM may reference to specify the bulk region, the electrical contacts, and the

interfaces between different materials. GMSH then overlays mesh nodes (0D), edges

(1D), triangles (2D), and tetrahedrons (3D) to discretize the constructed geometry.
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Figure 2.3: Element Edge Evaluation Components in 2D Mesh
[11]

2.3.2 VISIT

DEVSIM produces a file type, .vtk, as one of its several output formats. VISIT, pro-

duced by Lawrence Livermore National Laboratory, extracts from this file the models

evaluated by DEVSIM [12]. These models include the intrinsic models produced by

DEVSIM such as the node position, edge lengths, unit directions, etc. and the models

generated by the user such as the charge at a node or the current through an edge.

VISIT supports data analysis of the processed models including scalar operations,

binning, and plotting of one up to three imported models at a given time. This

flexibility of analysis shows charge concentration and optical density of the device

structure during operation.
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Chapter 3

GENERATING NECESSARY MODELS

The mesh discretization (GMSH), solving method (DEVSIM), and visualization (VISIT)

provide the necessary building blocks to begin building the physics to simulate the

device. The user-defined differential equations describe the desired physics and in-

formation that the solver produces. The Poisson and Current Continuity equations

describe the electrostatic potential, carrier concentrations, and carrier flux through

the desired organic device. The recombination equations allow for the production

of photons which, when included with the photon rate equation, describe generated,

emitted, and absorbed electromagnetic energy in the device. The Helmholtz equa-

tion unlike the other equations relies on an external 1-D complex eigenvalue and

transcendental equation solver as the DEVSIM solver does not provide these addi-

tional solvers. The Helmholtz equation represents the wave-like nature of photons

and determines the density and confinement within the device.

3.1 Poisson

The Poisson Equation which relates potential to charge concentration starts with

Gauss’ Law. The creation of an Electric Field results from the presence of net charge

within a given volume as shown in (3.1) [13]. When in matter, the permittivity of

free space must be replaced by the permittivity of the desired material resulting in

Electric Displacement (3.2). A scalar field (potential) produces an Electric Field in

the absence of a Magnetic Field (3.3). The equation created from substituting (3.3)

into (3.1) is known as Poisson’s Equation (3.4) [13] [14]. Furthermore, the net charge
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density results from the difference between the electron density, hole density, and the

net doping of acceptors and donors in the material (3.5). The particular solution of

the Poisson equation arrives from the application of boundary conditions, Ohmic or

Schottky, and self-consistent solving with the carrier models.

∇ · ~E =
ρ

ε0
(3.1)

~D = ε ∗ ~E (3.2)

~E = −∇ψ (3.3)

∇2ψ = −ρ
ε

(3.4)

ρ = q ∗ (p− n+Nd −Na) (3.5)

3.1.1 Ohmic Boundary Condition

The Ohmic boundary condition physically represents a metal-semiconductor junction

where the metal work-function and semiconductor conduction or valence band match

exactly yielding a zero potential drop across the junction. This boundary condition

applied to the Poisson equation specifies a Dirichlet boundary condition for the elec-

trostatic potential ((3.16)) setting the potential to the band edge at the contact of

the device [14] [15]. For an intrinsic semiconductor, the conduction and valence band
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density of states dictate the Ohmic contact potential shown in (3.7) and (3.6) [14]

. However, for a doped semiconductor, the donors and acceptors density of states

directs the Ohmic contact potential resulting in (3.9) and (3.8) [14]. The intrinsic

carrier concentration marks the zero energy reference band edge as shown in (3.10).

Figure 3.1: Ohmic Contact Energy Band Diagram for Intrinsic Semicon-
ductor

ψ = Vappl −
kT

q
ln

(
Nv

ni

)
(3.6)

ψ = Vappl +
kT

q
ln

(
Nc

ni

)
(3.7)

In Fig. 3.1, the Ohmic contacts attached to the conduction and valence band represent

(3.7) and (3.6) with the device operating in forward bias. As characteristic of Ohmic

contacts, the electrostatic potential at the contact matches the band edge.
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Figure 3.2: Ohmic Contact Energy Band Diagram for Doped Semiconduc-
tor

ψ = Vappl −
kT

q
ln

(
Na

ni

)
(3.8)

ψ = Vappl +
kT

q
ln

(
Nd

ni

)
(3.9)

ψ = Vappl (3.10)

Similar to Fig. 3.1, Fig. 3.2 demonstrates the physical interpretations of (3.8) and

(3.9). However, band bending occurs in a doped semiconductor due to the abrupt

junction and change in carrier charge polarity. The Ohmic contacts continue to set

the electrostatic potential to the band edge at the contact.
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3.1.2 Schottky Boundary Condition

The Schottky boundary condition provides a more realistic Dirichlet boundary condi-

tion for the Poisson equation. Typically, at the interface between a metal-semiconductor

junction, a potential drop forms due to the unequal energies of the work-function and

band-edge between the metal and semiconductor. The Schottky boundary condition

accounts for this potential difference and corrects the Ohmic boundary condition with

this difference between the energies as shown in the n-type (3.11) and p-type (3.12)

Schottky boundaries [16].

Figure 3.3: Schottky Contact Energy Band Diagram for Intrinsic Semi-
conductor

ψ = Vappl +
kT

q
ln

(
Nc

ni

)
+ (ψm − Ec) (3.11)
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ψ = Vappl +
kT

q
ln

(
Nv

ni

)
+ (ψm − Ev) (3.12)

Fig. 3.3 demonstrates the difference between Schottky and Ohmic contacts with the

potential difference between the bands and contact value. (3.11) and (3.12) account

for this difference, in m − Ec,v.

3.2 Carrier Models

The electron and hole concentrations arise from two separate mechanisms: equilib-

rium and injection. The equilibrium concentrations arise from the electron and hole

Fermi levels in thermal equilibrium. The injected carriers arise from the current flow-

ing in through the contacts which may be dominated by the Drift-Diffusion current

in the bulk material or contact current in the case of Schottky contacts.

3.2.1 Thermal Equilibrium

The electron and hole densities at equilibrium must equate as the thermal promotion

of an electron to the conduction band yields a hole in the valence band [14]. A

single (intrinsic) carrier results from the product of the electron and hole densities as

the product remains constant with constant temperature (3.13). The electron (3.14)

and hole densities (3.15) instead rely on the intrinsic carrier concentration and the

electrostatic potential (3.16) within the material (3.17) (3.18) [14].

np = n2
i = NcNvexp

(
−Eg
kT

)
(3.13)
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n = Nc ∗ exp
(
Ec − Ef
kT

)
(3.14)

p = Nv ∗ exp
(
Ef − Ev
kT

)
(3.15)

ψ = Ei − Ef (3.16)

n = ni ∗ exp
(
ψ

kT

)
(3.17)

p = ni ∗ exp
(
− ψ

kT

)
(3.18)

3.2.2 Current Continuity Equation

Under an applied bias, excess carriers from the contacts inject into the semiconduc-

tor and the total current through the device must be conserved given by the current

continuity equation. Ampere’s Law (with Maxwell’s addition) (3.19) dictates that

the Magnetic Field results from either the free current in a material or an oscillating

Electric Displacement. The current continuity equation, however, derives from ap-

plying the divergence operator to Ampere’s Law and the vector calculus identity that

the divergence of a curl is zero (3.20). This equation when separated by the carriers

produces the electron (3.21) and hole (3.22) current continuity equations as well as

the relation between them, recombination [13].
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∇× ~H = ~J +
∂ ~D

∂t
(3.19)

0 = ∇ · ~Jn +∇ · ~Jp +
∂ρ

∂t
(3.20)

∇ · ~Jn −
∂n

∂t
= qR (3.21)

∇ · ~Jp +
∂p

∂t
= −qR (3.22)

3.2.3 Drift-Diffusion

The current generated in the semiconductor bulk seen in the current continuity equa-

tions comes from two mechanisms: Drift and Diffusion. Under an external bias,

charged carriers experience a force generating a current. This form of current genera-

tion known as Drift current follows Ohm’s Law (3.23) [13]. As such, positively-charged

holes flow in the direction of the bias and negatively-charged electrons flow against

the direction of the bias. Aside from Drift, current also forms from the concentra-

tion gradient of these carriers, diffusion. The Diffusion current follows from Fick’s

law (3.24) with diffusion coefficient D shown in (3.25). Together, the Drift-Diffusion

model classically describes the current in a semiconductor for electrons (3.26) and

holes (3.27) [13].

~Jn,p = σn,p ~E = qµn,p(n, p) ~E (3.23)
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~Jn,p = (+,−)qDn,p∇(n, p) (3.24)

Dn,p =
kT

q
µn,p (3.25)

~Jn = qµnn~E + qDn∇(n) (3.26)

~Jn = qµp ~E − qDp∇(p) (3.27)

However, the Drift-Diffusion model must be discretized to satisfy the most accu-

rate and least computationally complex differential operators on the grid [17]. The

Scharfetter-Gummel discretization method produces the electron and hole currents

shown in (3.28) and (3.29) by utilizing the Bernoulli Function, B, shown in (3.30) and

voltage difference, t, shown in (3.31) [17]. The Scharfetter-Gummel method assumes

that the current and electric field on an edge remain constant and then solves the

Drift-Diffusion equation for the carrier concentration. After finding the analytical

solution (the exponential in the Bernoulli function), the constant current and electric

fields relate the two carrier concentrations at the nodes of the edge. Solving for the

current between the two nodes yields the Scharfetter-Gummel discretized currents.

For the full derivation of these discretized currents using the Scharfetter-Gummel

method, see Appendix B [18].

Jn =
µnkT

xi+1 − xi
∗ (ni+1 ∗B(t)− ni ∗B(−t)) (3.28)
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Jp =
µpkT

xi+1 − xi
∗ (pi+1 ∗B(−t)− pi ∗B(t)) (3.29)

B =
x

exp(x)− 1
(3.30)

t = q
ψi+1 − ψi

kT
(3.31)

3.2.4 Field-Dependent Mobility

The mobilities of electrons and holes in the Drift-Diffusion model for organic materials

depend on the Electric field through the device. Due to the absence of a rigid lattice,

organic semiconductors offer mechanical flexibility while maintaining conductance,

however, this system also produces a higher coupling of carrier-phonon interactions.

A new carrier known as a polaron with higher mass and lower mobility forms from the

electrons and holes moving through the structure bending the molecular backbone as

they move. Mathematically, this system produces lower, field-dependent electron and

hole mobilities. While performing simulations and experiments of single and double

carrier organic device structures, Blom demonstrated that these organic mobilities

show a root dependence on the DC electric field through the material [19]. Depending

on the disordering of the material, the mobilities fit closer to the Gaussian Disorder

Model or the Correlated Disorder Model shown in (3.32) and (3.33) [19] [20]. The

equation parameters σ, C, and a represent the width of the Gaussian density of states,

the site-spacing, and the intersite-spacing.
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µc = µinfexp

(
−
(

2σ

3kT

)2

+ C

(( σ

kT

)2
− 2.25

)√
E

)
(3.32)

µc = µinfexp

(
−
(

3σ

5kT

)2

+ .78

(( σ

kT

)2
− 2

)√
eaE

σ

)
(3.33)

3.2.5 Ohmic Boundary Condition

As with the Poisson equation, the current continuity equations require boundary con-

ditions to attain a specific solution. The Ohmic boundary condition, when applied to

carrier injection, specifies an infinite contact recombination velocity and space charge

neutrality [15], meaning charge density continuity on either side of the junction. How-

ever, the work-function of a metal does not change with an applied bias resulting in

the carrier density remaining at its equilibrium concentrations at the contact. This

system manifests a Dirichlet boundary condition for the electron and hole densities

such that their concentrations must remain at the thermodynamic equilibrium den-

sities at the contact as seen in (3.34) and (3.35) [15].

n = n0 (3.34)

p = p0 (3.35)

The contact equilibrium concentrations depend on the doping of the material. The

concentrations derive from the Mass Action law (3.36) and space-charge neutrality

(3.37). In a doped semiconductor, these equations produce a polynomial equation
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with quadratic solutions that represent the concentrations shown in (3.38) and (3.39)

[14]. The placing of the potential boundary condition matches the energy band equiv-

alent of these concentrations.

np = n2
i (3.36)

ρ = (p− n+Nd −Na) = 0 (3.37)

n =
Nd −Na

2
+

√(
Nd −Na

2

)2

+ n2
i ; p =

n2
i

n
(3.38)

p =
Na −Nd

2
+

√(
Na −Nd

2

)2

+ n2
i ;n =

n2
i

p
(3.39)

In an intrinsic semiconductor, the acceptor and donor ions represent minimal contri-

bution yielding n = p = ni. However, the placement of the potential on a specific

band edge raises the carrier concentration associated with the band to the band den-

sity of states value as shown in (3.40) and (3.38) with the Mass Action Law yielding

the complementary carrier concentration.

n = Nc; p =
n2
i

n
(3.40)

p = Nv;n =
n2
i

p
(3.41)
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3.2.6 Schottky Boundary Conditions

The Schottky boundary condition forgoes the assumption of infinite contact recom-

bination velocity and requires the carrier concentrations at the semiconductor side

of the contact to rely on the current density across the junction [15]. The carrier

density on the metal side of the contact remains at the thermal equilibrium concen-

tration, but a finite contact recombination velocity stipulates a current density across

the junction. Thermionic emission and diffusion constitute the two current mech-

anisms that form this current density normal to the junction, ~Jn,p · n̂. Thermionic

emission accounts for the current generated by an applied voltage which raises or

lowers the Fermi-level of the semiconductor causing carrier flow shown in (3.43) and

(3.44). The thermionic recombination velocity, vc, developed by Cromwell and Zhe

accounts for the potential barrier effects on the flux through the junction [21] [20].

Diffusion accounts for the current generated by a carrier concentration gradient. By

instituting the thermionic boundary condition after the diffusion equilibrium condi-

tions (discussed further in Sec. 4.3), the thermionic and diffusion theories run in

series including the contributions from both mechanisms [21].

vn,p =

√
kT

2πmn,p

(3.42)

~Jn · n̂ = −qvn(n− n0) (3.43)

~Jp · n̂ = qvp(p− p0) (3.44)
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3.3 Recombination

After separating the current continuity equations by their carriers, the constant term

that balances the two equations relies on recombination. Recombination accounts

for all the possible interactions that occur between holes and electrons. This project

implements Spontaneous Emission and Stimulated Emission for photon production

and gain modeling.

3.3.1 Spontaneous Emission

Electron-Hole pairs combine to produce excitons and excitons with spin 0, singlets,

radiatively decay producing a photon equivalent to the binding energy. Generation

and recombination of carrier pairs equate at thermal equilibrium 3.45, but with the

application of a bias, excess carriers increase the recombination rate above equilibrium

as shown in (3.46) [22] [6]. The constant, Br, represents the bi-molecular radiative

recombination rate.

Rsp = G = Brn0p0 (3.45)

Rsp = Brnp−G = Br(np− n0p0) (3.46)

3.3.2 Net Stimulated Emission

Stimulated emission occurs when a photon interacts with an exciton stimulating the

emission of another photon. This interaction yields two photons with the same energy

and phase. However, this process experiences competition from the reverse process,
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stimulated absorption, where a photon excites an Electron-Hole pair. (3.47) and

(3.48) represent the stimulated emission and absorption rates [23]. The rates rely on

β, the Einstein coefficients representing the probability of transition; the density of

electrons and holes in the proper band for the transition; and the density of photons

at the desired optical energy. Einstein showed B21 and B12 equate which leads to the

reduction seen in (3.49). Optical gain in a laser occurs when the net rate between

stimulated emission and absorption rates reach a positive value (3.49) [23]. ρc dn

ρv represent the density of states and fe(Ee) and fp(Ep) represent the carrier Fermi

function of the carrier quasi-Fermi energy for the carriers in [23]. Population inversion

marks the threshold of positive gain where more electrons exist in the excited state

than the ground state, fe(Ee)− fp(Ep) > 0. This gain changes with position through

the material due to changes in carrier concentrations. The Stimulated Emission ex-

pression 3.51 relies on the modal gain which calculates the average gain over the bulk

factoring the effects of the optical density produced by the Helmholtz as seen in 3.50.

rst = β21n2p1 (3.47)

rab = β12n1p2 (3.48)

g = rst − rab = β21ρc(Ee − Ec)ρv(Ev − Ep)(fe(Ee)− fp(Ep)) (3.49)

Gm =

∫
g‖E‖2∫
‖E‖2

(3.50)
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Rst =
c

neff
GmS (3.51)

3.4 Optical Density

Langevin recombination and Stimulated Emission produce photons which propagate

as waves in the cavity. The Helmholtz equation describes the steady-state opti-

cal density within the cavity. Applying the curl operator to Ampere’s Law (3.19)

and incorporating Faraday’s Law (3.52) produces the electromagnetic wave equation

(3.53) when applying the curl of the curl identity. This equation describes the elec-

tromagnetic fields as perpetual propagating waves in a material. The steady-state

Helmholtz equation derives from the Fourier transform of the electromagnetic wave

equation (3.54). The frequency dependence of the Helmholtz equation requires a sep-

arate instantiation in the simulator for each desired optical wavelength and cavity

mode.

∇× ~E = −∂
~B

∂t
(3.52)

−∇2 ~E +
1

c2
∂2 ~D

∂2t
= 0 (3.53)

∇2Ew(x, y, z) + k2εEw(x, y, z) = 0 (3.54)

The Helmholtz equation describes the optical density, Ew, in the transverse plane and

accounts for optical cavity effects, k2ε or k2(n2 +n2
eff ), that increases the optical gain
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of the device [6, 22, 24, 25]. The complex eigenvalue solver retrieves the fundamental

mode of the optical density from the Helmholtz equation after solving for the effective

refractive index, neff . The effective refractive index describes the effects of multiple

layers of varying refractive indices on the optical density. The multiple layers generate

a series of nonlinear equations that produce a transcendental equation which provides

the value of the effective refractive index discussed further in Sec. 4.2.1. The resulting

optical density (fundamental mode) produces the modal factor which describes the

cavity mode effect on that specific optical wavelength discussed further in Sec. 4.2.2.

The stimulated recombination rate in Sec. 3.3.2 utilizes the modal factor with the

optical gain to produce the modal gain for that wavelength. This project did not

implement laser diode noise analysis nor modal dispersion, so these components of

the polarity, P , in the electric displacement, D, are neglected from [6, 22, 24, 25].

The noise analysis includes the Langevin noise produced by spontaneous emission,

Sec. 3.3.1, and the modal dispersion includes the effects of impurities on traveling

waves with different momentum vectors.

3.4.1 Perfect Electric Conductor Boundary Condition

The optical cavity of a laser physically requires two reflective boundaries that confine

the coherent light and augment the optical gain. The perfect electric conductor

boundary condition describes the reflective nature of the ends of the cavity. A solid

perfect electrical conductor (PEC) with infinite conductivity has zero internal Electric

field as the surface charge of the conductor negates the field. With the contact

specified as a PEC and optical density conserved across the optical junction, the

PEC boundary condition states that the optical density must be zero at the contact

(3.55). This boundary condition does not account for optical density emission as it

stipulates perfect reflection of the incident wave. Optical emission physically occurs
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due to the transmission properties of the materials as they do not perfectly reflect

the optical wave. Sec. 3.5 discusses the emission of electromagnetic radiation due to

transmission through the boundary.

Ew = 0 (3.55)

3.4.2 Absorbing Boundary Condition

The absorbing boundary condition (ABC) does not designate a physical condition of

the simulation. Optical waves approach zero intensity as their propagation distance

reaches infinity. However, a computational domain can not simulate infinite space,

so the ABC provides a method to truncate the computational domain and retrieve

the optical information that occurs in that infinite distance. The ABC solves the

Helmholtz equation (3.54) using evanescent instead of propagative wave solutions

absorbing the optical power and minimizing reflections back into the computational

domain [26].

∂Ew
∂x

+ i
w

k

√
1− c2w2

k2
Ew = 0 (3.56)

However, the c2w2

k2
term represents waves close to the normal of the surface at small val-

ues. The zero-order Taylor expansion of (3.56) approximates the appropriate bound-

ary condition used to truncate the domain (3.57) and in one dimension represents the

exact solution to the wave equation [26]. This boundary condition did not find use in

the current project, but remains implemented in the external 1-D Helmholtz solver.

∂Ew
∂x

+ i
w

k
Ew = 0 (3.57)
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3.5 Photon Rate Equation

The Helmholtz equation yields the optical density distribution inside the optical cav-

ity, but does not account for the power emanated from the device. The Electro-

magnetic Energy Conservation equation, (3.58), derives from Ampere’s Law (3.19)

with the application of the dot product of the Electric Field [27]. This equation de-

scribes the change in energy in a volume, ∂U
∂t

, as the power emanated from the surface

containing the volume, ∇ · ~u, and the power generated within the volume ~E · ~J .

However, this equation only describes classical electromagnetism. Reference [28]

shows the full derivation of the photon rate equation shown in (3.62) which demon-

strates a similar format to the electromagnetic energy conservation equation. The

source term includes the energy generation due to stimulated and spontaneous emis-

sion. The drain term includes the different losses: emission (modal loss) 3.59 and bulk

absorption loss 3.60. Emission (modal loss) accounts for the loss in the mode which

relies on the length of the cavity, L, and the reflectivity of the ends of the cavity,

R1 and R2. Bulk absorption loss accounts for re-absorption of the photons into an

undesired energy gap and relies on the extinction coefficient, κ, and wave number in

free space, λ0. The photon lifetime, (3.61), derives from the total absorption length,

αm + αa, and effective velocity through the device, c
neff

. The photon rate equation

describes energy conservation for a single wavelength and cavity mode of that wave-

length in the device. The optical density derived from the Helmholtz equation Sec.

3.4 provides the cavity effects with the material gain Sec. 3.3.2 generates the net

modal stimulated emission in 3.62. Each net modal stimulated emission term must

be included in the carrier equations.

∂U

∂t
= −∇ · ~u− ~E · ~J (3.58)
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αm =
1

2L
ln(

1

R1R2

) (3.59)

αa =

∫
4πκ
λ0
‖E‖2∫
‖E‖2

(3.60)

1

τph
=

c

neff
(αm + αa) (3.61)

∂S

∂t
= − S

τph
+Br(np− n2

i ) +
c

neff
GmS (3.62)

3.5.1 Emitted Power

Power output of the cavity derives from photon loss due to emission. Utilizing the

loss term, S
τph

, and multiplying by the energy of each photon, hf , yields the power

loss of the cavity. To obtain the cavity’s emitted power, the power loss multiplied

the emitted percentage yields (3.63) [23]. This component marks the extent of base

models necessary to simulate basic electrical and optical device operation.

P =
αm

αm + αa
hf

S

τph
(3.63)

The construction, discretization, and computation of the Poisson, Current Continuity,

Helmholtz, and Photon Rate equations occur utilizing Python. The next section, Sec.

4, shows the methodologies used to construct and solve these equations and their

constituent models.
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Chapter 4

DEVELOPING IN PYTHON

The models described in Sec. 3 constitute the information that needs solving. The ac-

tual model implementation occurs utilizing the DEVSIM Solver or the 1-D Helmholtz

Solver. The high-level script executes each solver individually and combines the re-

sults to provide all the desired information from the models specified above. Appendix

A provides links to the DEVSIM manual, DEVSIM source code, and Simulator source

code.

4.1 DEVSIM Solver

As noted in Sec. 2.3, DEVSIM constructs the Control Volume Equation (2.1) utiliz-

ing the node, edge, and element models. A user-defined equation solves for a special

implementation of a node model known as a node solution which updates all other

dependent models after convergence. DEVSIM’s internal matrix constructor assumes

that all designated model descriptions were generated with the appropriate sign for a

left hand side equation. Furthermore, a model of a given type may be described by a

subsidiary model of the same type, constants, and provided mathematical functions.

To cross model types, DEVSIM provides in their API a list of up-converting functions

with a node solution providing the base of any future model. DEVSIM also provides

methods to define additional mathematical functions from their python interface or

by direct implementation in the source code. DEVSIM processes the constructed

equations and produces a matrix and its Jacobian to converge upon a solution uti-
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lizing the Newton method. DEVSIM provides several solving methods including DC,

Transient DC, AC, and Noise.

4.1.1 Material Parameters And Units

This project utilized OC1C10-PPV as the main organic material and retrieved the

material parameters for OC1C10-PPV from [19], [3], [29], [30] including refractive

index, band edges, constant mobilities, permittivity, constant bi-molecular recombi-

nation rate, and gain. The other materials utilized by this project include Indium

Tin Oxide and Calcium for the contacts. The parameters needed for these materials

included refractive index obtained from [31] and work function obtained from [4]. The

units for these parameters should all be in the standard SI units except for meters

and Joules as the simulator assumes centimeters and Electron-Volts. DEVSIM pro-

vides a base implementation of a database to store these values and access them in

the models. The data entries in the database include the name of the material, the

material parameter name, the value of the parameter, its corresponding units, and a

generic description of the parameter. Upon generating the mesh, each region gains a

material type that corresponds to an entry in the database. If a parameter value does

not exist for a given material, the generic global material should contain the value of

this parameter or an error occurs.

4.1.2 Python Model Format

The project developer built three library files: util/model.py, util/model create.py,

and util/model factory.py to create an infrastructure that allows model additions to

the simulator. These libraries provide a simple model format demonstrated in Listing

4.1 to create new models.
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Listing 4.1: Model Format

class NetDoping ( NodeModel ) :

def i n i t ( s e l f , device , r eg i on ) :

s e l f . name = ( s e l f . getName ( ) , )

s e l f . e qua t i on s = ( ”Nd − Na” , )

s e l f . s o l u t i o n V a r i a b l e s = ( )

s e l f . parameters = {”Nd” : ”Donor Concentrat ion ” ,

”Na” : ” Acceptor Concentrat ion ”}

super ( NetDoping , s e l f ) . generateModel ( device , r eg i on )

The requirements include the name of the model and the corresponding expression.

These components must be entered as lists even if they constitute only a single item.

The solutionV ariables allow for derivation of the expression with respect to that vari-

able. The parameters aid the user in remembering other constants and parameters

necessary for operation. The most important aspect of the format relies on inheriting

from one of the three model types in util/model.py as seen by (NodeModel). Further-

more, these library files simplified most of the API provided by DEVSIM, however,

the DEVSIM API should be learned for generating new boundary conditions as these

implementations tend to rely on more specific information. These new models must

be instantiated in the overall script, see Listing 4.2.

Listing 4.2: Equation Builder

#MODEL INSTANTIATION

p o t e n t i a l . E l e c t r i c F i e l d ( device , r eg i on )

p o t e n t i a l . S e m i c o n d u c t o r I n t r i n s i c C a r r i e r P o t e n t i a l ( device , r eg i on )

#EQUATION CONSTRUCTION ( needs dev ice , region , Node S o l u t i o n Var iab l e )
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potent ia lEquat ion = e q u a t i o n b u i l d e r . Equat ionBui lder ( device ,

reg ion ,

” Po t en t i a l ” ,

( ” Po t en t i a l ” ,

” E l e c t rons ” ,

” Holes ” ) ,

” d e f a u l t ” )

#MODEL ADDITION TO EQUATION

potent ia lEquat ion . addModel ( ” Potent ia lEdgeFlux ” , ”EdgeModel” )

potent ia lEquat ion . addModel ( ” P o t e n t i a l I n t r i n s i c C h a r g e ” , ”NodeModel” )

#BUILD EQUATION

potent ia lEquat ion . bui ldEquat ion ( )

4.1.3 Equation Building

An equation for each solution variable (intrinsic potential; electron, hole, and photon

densities) forms from the instantiated models. The project developer constructed a

library file equation builder.py to manage the addition of new models to an equation

and build the equation on the region as seen in Listing 4.2 As stated above, Node

Solutions represent the base models, which all other models rely upon and only the

user or an evaluated equation sets the values of these models. All other models

update after their parent model updates. For this reason, the user must instantiate

the models and add them to an equation for proper evaluation.
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4.1.4 Contact Assembly

The boundary conditions in Sec. 3 with the junctions including metal assume a

perfect, isotropic conductor and represent the end of the computation domain aside

from boundary conditions produced exclusively to end the computation domain. The

simulation of a perfect, isotropic conductor does not offer any additional information

in the current system than the boundary conditions specified. Furthermore, the

simulation of these components would extend the computation domain requiring more

processing time to converge upon a solution.

4.2 Helmholtz Solver

The 1-D Helmholtz Solver calculates the effects of the cavity on wave propagation and

the resulting optical density through the region. The separation of these computations

from the DEVSIM Solver results from the lack of implementation of complex numbers

in the solver and the different types of solution methods needed to calculate the

waveguide refractive index and optical density.

4.2.1 Waveguide Refractive Index

The waveguide refractive index, neff , as stated in Sec. 3.4, represents the wave prop-

agation index that occurs from many-layered materials of varying refractive indices.

Two equations that equate the optical density and derivative of the optical density

result from the interface from two differing refractive indices materials, see Fig. C.1

in Appendix C. This generation of equations results in 2(N + 1) equations, see Fig.

C.2 in Appendix C. The matrix determinant of this system of equations yields a

transcendental equation as shown in Listing 4.3. The solutions to this transcenden-
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tal equation represent the waveguide modes. This portion of the Helmholtz solver

currently utilizes the fundamental Transverse Electric mode.

Listing 4.3: Transcendental Equation

def t r ans cendenta l ( x ) :

#2N+2 EQUATIONS

l ength = 2∗ len ( g e t r e g i o n l i s t ( dev i c e=s e l f . d e v i c e ) ) + 2

#COMPLEX MATRIX

modalMatrix = np . z e r o s ( ( length , l ength ) , dtype=’ complex ’ )

s e l f . r e f r a c t i v e I n d i c e s . s o r t ( key=lambda x : x [ 0 ] , r e v e r s e=True )

for index , i n d i c e s in enumerate ( s e l f . r e f r a c t i v e I n d i c e s ) :

p o s i t i o n = i n d i c e s [ 0 ]

#CONTACTS SHOULD HAVE DECAYING WAVES

boundTypes = i n d i c e s [ 3 ]

i f boundTypes == ”Contact” :

k0 = cmath . s q r t ( x∗∗2 − ( k 0∗ i n d i c e s [ 1 ] ) ∗ ∗ 2 )

k1 = cmath . s q r t ( ( k 0∗ i n d i c e s [ 2 ] ) ∗ ∗ 2 − x∗∗2)

i f index == len ( s e l f . r e f r a c t i v e I n d i c e s ) − 1 :

#OPTICAL DENSITY CONTINUITY

modalMatrix [2∗ index , index ] = cmath . exp(−1 j ∗k1∗ p o s i t i o n )

modalMatrix [2∗ index , index +1] = cmath . exp (1 j ∗k1∗ p o s i t i o n )

modalMatrix [2∗ index , index +2] = −1

#OPTICAL DENSITY DERIVATIVE CONTINUITY

modalMatrix [2∗ index +1, index ] = k1∗cmath . exp(−1 j ∗k1∗ p o s i t i o n )

modalMatrix [2∗ index +1, index +1] = −k1∗cmath . exp (1 j ∗k1∗ p o s i t i o n )

modalMatrix [2∗ index +1, index +2] = −1 j ∗ k0

else :

#OPTICAL DENSITY CONTINUITY
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modalMatrix [2∗ index , index ] = −1

modalMatrix [2∗ index , index +1] = cmath . exp(−1 j ∗k1∗ p o s i t i o n )

modalMatrix [2∗ index , index +2] = cmath . exp (1 j ∗k1∗ p o s i t i o n )

#OPTICAL DENSITY DERIVATIVE CONTINUITY

modalMatrix [2∗ index +1, index ] = 1 j ∗ k0

modalMatrix [2∗ index +1, index +1] = k1∗cmath . exp(−1 j ∗k1∗ p o s i t i o n )

modalMatrix [2∗ index +1, index +2] = −k1∗cmath . exp (1 j ∗k1∗ p o s i t i o n )

#INTERFACES SHOULD HAVE PROPAGATING WAVES

e l i f boundTypes == ” I n t e r f a c e ” :

k0 = cmath . s q r t ( ( k 0∗ i n d i c e s [ 1 ] ) ∗ ∗ 2 − x∗∗2)

k1 = cmath . s q r t ( ( k 0∗ i n d i c e s [ 2 ] ) ∗ ∗ 2 − x∗∗2)

#OPTICAL DENSITY CONTINUITY

modalMatrix [2∗ index , index ] = cmath . exp(−1 j ∗k0∗ p o s i t i o n )

modalMatrix [2∗ index , index +1] = cmath . exp (1 j ∗k0∗ p o s i t i o n )

modalMatrix [2∗ index , index +2] = cmath . exp(−1 j ∗k1∗ p o s i t i o n )

modalMatrix [2∗ index , index +3] = cmath . exp (1 j ∗k1∗ p o s i t i o n )

#OPTICAL DENSITY DERIVATIVE CONTINUITY

modalMatrix [2∗ index , index ] = −1 j ∗k0∗cmath . exp(−1 j ∗k0∗ p o s i t i o n )

modalMatrix [2∗ index , index +1] = 1 j ∗k0∗cmath . exp (1 j ∗k0∗ p o s i t i o n )

modalMatrix [2∗ index , index +2] = −1 j ∗k1∗cmath . exp(−1 j ∗k1∗ p o s i t i n )

modalMatrix [2∗ index , index +3] = 1 j ∗k1∗cmath . exp (1 j ∗k1∗ p o s i t i o n )

else :

print ( ”Do not r e c o g n i z e boundary type ” )

return ( s c ipy . l i n a l g . det ( modalMatrix ) ∗ 1 j ) . r e a l
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4.2.2 Optical Density

The transverse optical density, Ew, results from the complex eigen-value analysis of

the Helmholtz equation. Applying the Helmholtz equation to each node in the mesh

results in a system of equations. The discretization of the 2nd order ∇ operator in 1-D

comes from [32] which constitutes the values of the entries in the matrix as seen in

Listing 4.4. The eigen-vectors of the resulting matrix generated from the discretized

Helmholtz equation applied to each node yield the transverse optical density of the

device. The lowest energy eigen-value determines the fundamental optical mode of

the region and yields the fundamental eigen-vector utilized by DEVSIM upon the

next iteration.

Listing 4.4: Matrix Construction

def GenerateMatrixRow ( s e l f , index ) :

i f s e l f . d imens ion > 1 :

raise NotImplementedError

e l i f s e l f . d imens ion == 1 :

i f index == s e l f . nodeS ize − 1 :

edgeLength = s e l f . p o s i t i o n s [ index ] − s e l f . p o s i t i o n s [ index − 1 ]

else :

edgeLength = s e l f . p o s i t i o n s [ index + 1 ] − s e l f . p o s i t i o n s [ index ]

s e l f . AddMatrixVal ( index , index − 1 , −1 / pow( edgeLength , 2 ) )

s e l f . AddMatrixVal ( index , index + 1 , −1 / pow( edgeLength , 2 ) )

s e l f . AddMatrixVal ( index , index ,

2 ∗ cmath . cos (

cmath . s q r t ( s e l f . complexRefIndex [ index ] ) ∗ edgeLength ) /

pow( edgeLength , 2 ) )
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4.3 Semiconductor Simulation

An overall script, 1D PPV diode.py generates the mesh, constructs the necessary

models and equations in DEVSIM, initializes the Helmholtz Solver, and iteratively

solves the equations presented in Sec. 3 with the DC condition as shown in Fig. 4.1.

Figure 4.1: Full Execution Cycle of Simulator in 1D PPV diode.py

The mesh subroutine resides in mesh.py and constructs a 1D mesh with the appropri-

ate number of nodes and spacing between the nodes. The equation subroutine differs

for each equation, but follow the format shown in Listing 4.2 where the script initial-

izes the models and dependent equations for each region. The solver then executes in

two major steps: equilibrium and bias application. The equilibrium stage calculates

the intrinsic potential, equilibrium carrier concentrations, and the optical density of

the cavity. The bias application stage utilizes these evaluated models to initialize the

carrier concentrations described by the current continuity and Helmholtz equations.

The voltage sweep occurs after this initialization by setting the voltage parameter at

the contact at each iteration and executing the solver. The execution of the DEVSIM
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and Helmholtz solver occur utilizing the solve commands as shown in Listing 4.5.

The DEVSIM solver evaluates the Poisson, Current Continuity, and Photon Rate

equation and then the Helmholtz solver executes for each applied voltage reporting

the absolute and update errors for each iteration of the Newton Method. DEVSIM

writes the result of the last converged iteration to a file allowing for voltage, current,

carrier density, optical gain, and luminescence.

Listing 4.5: Solver Executions

s o l v e ( type=”dc” , a b s o l u t e e r r o r=1e06 ,

r e l a t i v e e r r o r =1e−06, maximum iterations =30)

o p t i c a l D e n s i t y = helmholtz . HelmholtzSolver ( device , ”5 e14” , ”MyRegion” )

o p t i c a l D e n s i t y . So lve ( )
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Chapter 5

RESULTS AND DISCUSSION

The project constructs the simulation utilizing a 1-D equidistant mesh with ITO and

Calcium contacts encasing the 200nm long OC1C10-PPV polymer semiconductor as

shown in Fig. 5.1. In the OC1C10-PPV, the solver calculates the potential, electron,

hole, and photon densities from the Poisson, Current Continuity, and Photon Rate

equations. These node solutions then propagate their values to dependent models

such as current and photon emission. The results below show solution densities, I-V

characteristics and optical output for varying combinations of models: Ohmic vs.

Schottky Boundary Conditions and Constant vs. Field-Dependent Mobility. This

section focused on the convergence of the simulator starting with the simplest case of

Constant Mobility and Ohmic Contacts. With each instance, the simulator includes

more complex models until the Field-Dependent Mobility and Schottky Contacts

instance converges. These two models represent a more realistic Organic LED. The

Field-Dependent Mobility marks the main difference between traditional and organic

semiconductors other than the material parameter values; and the Schottky Contacts

represent more realistic metal-semiconductor junctions.

Figure 5.1: LED Device Structure and Mesh Representation in Simulator
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Table 5.1: Simulation Parameters
Parameter Value

Number of Nodes 500
Node Spacing 3e-11m

Simulation Dimension 1-D
N-Type Contact Calcium

Bulk OC1C10-PPV
P-Type Contact ITO

Voltage Increment .1V

Table 5.2: Global Constants
Name Value Units Description

ElectronCharge 1.602e-19 Coulombs Charge of an Electron
T 300 Kelvin Temperature
k 8.6173303e-05 eV/K Boltzmann Constant

Permittivity 8.85e-14 F/cm2 Vacuum Permittivity
h 4.135e-15 eV*s Planck’s Constant
pi 3.1415 N/A π
c 299000000.0 m/s speed of light
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Table 5.3: OC1C10-PPV Material Parameters
Name Value Units Description

B 2.9e-05 eV(m/V) Empirical Mobility Constant
C 3e-05 (m/V).5 site spacing

Permittivity 2.6550000000000003e-13 F/cm2 OC1C10 Permittivity
a 1.2e-07 cm lattice spacing

eps r 3 Relative Permittivity
sigma 0.112 eV energetic disorder bandwidth
B r 3.32e-11 cm3/s bimolecular recombination rate
Na 0 1/cm3 acceptor ions
Nd 0 1/cm3 donor ions

mu inf n 5.1e-06 cm2/V s Field-Dependent Electron mobility
mu inf p 5.1e-05 cm2/V s Field-Dependent Hole mobility

mu n 5e-06 cm2/(V s) Constant Electron Mobility
mu p 5e-05 cm2/(V s) Constant Hole Mobility

E Electrons -2.8 eV conduction band energy (LUMO)
E Holes -4.9 eV valence band energy (HOMO)

N Electrons 2.5e19 1/cm3 conduction band carriers
N Holes 2.5e19 1/cm3 valence band carriers

M Electrons 9.0864e-35 kg mass of electrons
M Holes 9.0864e-35 kg mass of holes
k 5e14 0.02 N/A Extinction Coefficient of 5e14 Hz
n 5e14 1.96 N/A Refractive Index at 5e14 Hz

gain0 5e14 2000 1/cm Intrinsic gain
N t 1.1e+17 1/cm3 Density of Trap States

Table 5.4: ITO Material Parameters
Name Value Units Description

WorkFunction -4.7 eV Work Function
k 5e14 0.0023 N/A extinction coefficient at 5e14 Hz
n 5e14 1.72 N/A refractive index at 5e14 Hz

Table 5.5: Calcium Material Parameters
Name Value Units Description

WorkFunction -2.9 eV Calcium Work Function
k 5e14 2.6362 N/A extinction coefficient
n 5e14 0.29 N/A refractive index
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5.1 Density Distributions

Fig. 5.2 shows the nodal values of the electrostatic potential, ψ = Ef − Ei, through

the material at equilibrium. The intrinsic Fermi level marks the reference point for

the electrostatic potential. For both cases, x = 0 represents the n-type contact and

x = 1e−7 represents the p-type contact. Fig. 5.2 demonstrates the difference between

the net bandgaps between Ohmic and Schottky contacts. The Ohmic contacts case

results in a net gap of 2.1eV between the electron and hole quasi-Fermi levels or the

full bandgap of OC1C10 whereas the Schottky contacts case results in a reduced gap

of 1.9eV between the quasi-Fermi levels.

Figure 5.2: Nodal Intrinsic Potential for Ohmic and Schottky Contacts
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The additional barrier height in the Schottky contacts case yields a lower electrostatic

potential and consequently lower electron and hole densities shown in Figures 5.3 and

5.4.

Figure 5.3: Nodal Electron and Hole Densities for Ohmic Contacts
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Figure 5.4: Nodal Electron and Hole Densities for Schottky Contacts
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Figure 5.5: Nodal Optical Densities for Ohmic and Schottky Contacts for
Contact Refractive Indices of 1

Fig. 5.5 shows the modal profile of the LED structure with metal contact refractive

indices of 1 and a 1000 node mesh. This profile confirms the convergence of the

Helmholtz Effective Index and Optical Density solvers with sufficient discretization

of the mesh. The fluctuations within the magnitude of the densities derive from the

optical gain. The optical gain nonlinearly relies on the electron and hole popula-

tions which also derive from the nonlinear Scharfetter-Gummel method. Despite the

nonlinearities, the optical density shows the distribution associated with a wave in

its fundamental mode. To improve computational efficiency, the simulation instances
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below utilized a 500 node mesh. However, the modal profile affects optical gain which

may improve the results of the lasing section, 6.

Figure 5.6: Nodal Optical Densities for Ohmic and Schottky Contacts for
Calcium and ITO Refractive Indices

Fig. 5.6 shows the resulting optical density distributions from the Ohmic and Schottky

contact cases with the 500 node mesh. The 500 node mesh does not provide enough

discretization to achieve the fundamental mode. For instances testing optical gain, a

finer optical mesh is necessary.
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5.2 I-V Curves

Figure 5.7: I-V Plot of 1D Emissive Layer and Ohmic Contacts

Fig. 5.7 demonstrates typical LED operation with a turn-on voltage at the bandgap

of the material for OC1C10, 2.1eV . The nonlinearity that occurs above the turn-

on voltage in this plot results from the Ohmic contact boundary condition. The

Ohmic boundary condition specifies the electron and hole populations at the boundary

allowing the bulk current to dominate the current flow through the device. The bulk

current relies on the nonlinear Scharfetter-Gummel method to discretize the current

flow on an edge in the device. Finally, the scale of the bulk current demonstrates the

lower mobilities existent in organic materials, 10−5 − 10−7 cm2

V s
.
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Figure 5.8: Log I-V Plot of 1D Emissive Layer and Ohmic Contacts

The log plot, Fig. 5.8, demonstrates the exponential growth of the current shown in

the 1.5 − 2V range with a slightly nonlinear growth at voltages above the turn-on

voltage due to the Ohmic boundary conditions. The fluctuations observed below 1V

result from the insignificant magnitude of the Drift-Diffusion current in comparison

to the Langevin recombination below the turn on voltage. Since the Drift-Diffusion

current remains small, the Langevin recombination does not balance the smaller cur-

rent densities from the continuity equations, so current conservation does not occur

at the contacts until the excess carriers produce a large enough current that Langevin

recombination balances the current continuity equations. Shockley Read Hall recom-

bination due to the linear reliance on the carrier densities should balance the current

continuity equations at lower voltages if implemented. The following log I-V curves

exhibit this same phenomenon.
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Figure 5.9: I-V Plot of 1D Emissive Layer, Ohmic Contacts, and Field-
Dependent Mobility

Fig. 5.9 also shows a nonlinear growth in current after the turn on voltage. However,

the key difference comes in the growth of the current after the turn voltage. In

Fig. 5.7, the current reaches 5 A
cm2 with the application of 3V , however, the Field-

Dependent mobility decreases the overall current density yielding only 5mA
cm2 with the

application of 3V . The Field-Dependent mobility also affects the growth rate as the

current reaches 240mA
cm2 by 5V whereas the constant mobility only reaches 30 A

cm2 .

51



Figure 5.10: I-V Plot of 1D Emissive Layer, Ohmic Contacts, and Field-
Dependent Mobility

Figure 5.11: I-V Plot of 1D Emissive Layer and Schottky Contacts

Fig. 5.11 shows the first linear growth rate of the current as a function of volt-

age. This linear growth occurs due to the contact limiting Schottky current. The

Schottky current, Sec. 3.2.6, shows a linear dependence on the excess carriers at the

contact. The Schottky/Injection current instead of the Drift-Diffusion/Bulk current
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determines the overall current through the device. As a result, the magnitude of the

current shows much lower values than those observed in Fig. 5.7. Furthermore, the

current begins increasing below the bandgap at 1.9eV because of the smaller Fermi

level separation caused by Schottky contacts. The difference between the workfunc-

tions of the metals, Calcium and ITO, approximates to 1.9eV which coincides with

the turn-on voltage.

Figure 5.12: I-V Plot of 1D Emissive Layer and Schottky Contacts

Due to the linear growth seen in Fig. 5.11, Fig. 5.12 of this simulation instance

shows a significant tapered growth after the turn on voltage in comparison to Figures

5.8 and 5.10. The ending point of the fluctuations due to the small carrier and

current densities also shifts due to the smaller net bandgap of the metal workfunctions.

Furthermore, Figures 5.12 and 5.14 show an unexpected, non-physical step increase

in current density from 0−0.5V in contrast to the Ohmic case which may result from

high thermionic emission at low voltage.

To demonstrate the simulator’s validity, the final LED simulation instance (Schottky

Contacts, Field-Dependent Mobility) also contain the experimental results of a similar
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Organic LED. The EE 422 lab constructs an Organic LED utilizing the same materials

as this simulation instance with the exception of an additional hole transport layer of

PEDOT between the ITO and OC1C10 layers. The lab begins with the acetone bath,

alcohol bath, and 15 minute UV Ozone baking of the ITO layered glass substrate.

Then, PEDOT through spin-coating at 8000 RPM binds to the ITO on the substrate.

After PEDOT application, 1mL of a 7.5mL solution of .5% OC1C10-PPV and 99.5%

Toluene deposits onto the PEDOT and again evenly distributes via spin-coating.

Finally, the metal evaporation of Calcium occurs at 1.5 ∗ 10−6 Torr producing a 4000

Angstrom cathode layer. This setup produces the experimental device shown in the

results below.

Figure 5.13: Simulated and Experimental I-V Plot of 1D Emissive Layer,
Schottky Contacts, and Field-Dependent Mobility

Fig. 5.13 demonstrates well the Field-Dependent mobilities’ effect on the I-V curve.

Without the Field-Dependent mobility, Fig. 5.11, the current demonstrates a linear

relationship with Schottky contacts, however, the decrease in current magnitude and

nonlinear growth of the current represent the effects of the Field-Dependent mobility.

The differences between Ohmic and Schottky contacts remain present as the turn-on
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voltage still shifts from 2.1eV to 1.9eV and the current drops by an order of magnitude

shown in Figures 5.9 and 5.13.

Figure 5.14: Simulated and Experimental I-V Plot of 1D Emissive Layer,
Schottky Contacts, and Field-Dependent Mobility

Figures 5.13 and 5.14 demonstrate significant consistency with the experimental re-

sults. The absence of electron trapping in the simulation and the additional PEDOT

layer in the experimental device may account for the discrepancy in the magnitude

of the currents.
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5.3 P-V Curves

Figure 5.15: P-V Plot of 1D Emissive Layer and Ohmic Contacts

The P-V curve, Fig. 5.15, shows traditional LED operation with the turn on voltage

occurring at the bandgap, 2.1eV for OC1C10-PPV. However, the large magnitude of

the power output, 2e5 − 1.4e6 W
cm2 , results from the large current densities, Fig. 5.7,

and consequent Spontaneous Recombination. The position-dependent gain shows a

net negative of 2200 1
cm

demonstrating no contribution from Stimulated Emission.
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Figure 5.16: Semi-Log P-V Plot of 1D Emissive Layer and Ohmic Contacts

Figure 5.17: P-V Plot of 1D Emissive Layer and Ohmic Contacts and
Field-Dependent Mobility

Fig. 5.17 demonstrates a significant drop in power output by three orders of magni-

tude due to including the Field-Dependent mobility. Furthermore, the growth rate

shows significant bending in comparison to Fig. 5.15 resulting from the nonlinear

dependence on the electric field.
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Figure 5.18: Semi-Log P-V Plot of 1D Emissive Layer and Ohmic Contacts

Figure 5.19: P-V Plot of 1D Emissive Layer and Schottky Contacts

Fig. 5.19 demonstrates the Schottky contacts’ effect on the output power of the

Organic LED. The turn on voltage shift effect as can be seen in the current corollary,

Fig. 5.11, appears in the output power case as well. The turn on voltage shifts from

2.1V to 1.9V due to the smaller net bandgap between the contact workfunctions. The

abrupt power saturation after the turn on voltage results from the contact current
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dominating the bulk current despite the quasi-Fermi level separating past the bandgap

allowing for Spontaneous emission.

Figure 5.20: Semi-Log P-V Plot of 1D Emissive Layer and Schottky Con-
tacts

Figure 5.21: Simulated and Experimental P-V Plot of 1D Emissive Layer
and Schottky Contacts
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Unlike Fig. 5.19, Fig. 5.21 demonstrates the nonlinear growth as seen in Fig. 5.17 de-

spite the presence of the Schottky contacts. The Schottky contacts still limit the bulk

current through device as seen by the lower power output, but the Field-Dependent

mobility further lowers the current and hence the Spontaneous Emission.

Figure 5.22: Simulated and Experimental Semi-Log P-V Plot of 1D Emis-
sive Layer and Schottky Contacts

Figures 5.21 and 5.22 again show a fairly accurate replication of experimental results

obtained from the EE 422 lab. The results displayed above demonstrate the sim-

ulator’s capability of converging upon fairly accurate current and optical densities

for a typical Organic LED as shown with the comparison to [19]. Lasing, however,

requires carrier and optical confinement to yield population inversion. Sec. 6 focuses

on attaining population inversion for positive optical gain.

60



Chapter 6

LASING SIMULATION

Lasing utilizes carrier and optical confinement to produce population inversion. Popu-

lation inversion allows for positive optical gain and stimulated emission. This project

attempts lasing using the same LED structure as shown in Fig. 6.1 with higher

contact reflectivity (98.9%), higher applied voltage (0-25V), and increasing constant

mobility shown in Table 6.1. For simplicity, this simulation did not use the Field-

Dependent mobility models. Tables 5.1, 5.2, 5.3 remain the same for this simulation,

and tables 6.2 and 6.3 describe the material changes to the contacts. Appendix D

contains the I-V and P-V plots obtained from the mobility and contact iterations.

Figure 6.1: Laser Device Structure and Mesh Representation in Simulator

Table 6.1: Mobility Iterations

Iteration Electron Mobility cm2

V s
Hole Mobility cm2

V s

Low Mobility 5.1e-6 5.1e-5
Mid Mobility 5.1e-3 5.1e-2
High Mobility 5.1 51.0
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Table 6.2: Modified ITO Material Parameters
Name Value Units Description

WorkFunction -4.8 eV Work Function
k 5e14 0.0023 N/A extinction coefficient at 5e14 Hz
n 5e14 0.001 N/A refractive index at 5e14 Hz

Table 6.3: Modified Calcium Material Parameters
Name Value Units Description

WorkFunction -2.9 eV Calcium Work Function
k 5e14 2.6362 N/A extinction coefficient
n 5e14 0.001 N/A refractive index

Figure 6.2: G-V Plot of 1D Emissive Layer with Ohmic Contacts

6.1 Ohmic

In Fig 6.2, 2.1V marks the starting point of increasing optical gain. This voltage co-

incides with the bandgap of OC1C10 as Stimulated Emission does not occur without

a source, Spontaneous Emission. The Low Mobility represents the typical operating

mobility in OC1C10-PPV which does not yield a system capable of lasing as popula-

tion inversion can not be attained with these mobilities and device design. The higher
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mobilities reach and saturate at −651 1
cm

. The gain and P-V curves saturate despite

the continuing current increase as shown in the I-V curves in Appendix D. Figures

6.3 and 6.4 further show that the electron and hole quasi-Fermi levels saturate at the

higher mobilities similar to gain. This saturation may occur due to carrier confine-

ment failure as the current increases, but the quasi-Fermi levels remain constant at

higher voltages and mobilities. Table 6.4 shows the color mapping of the different

Fermi levels.

Table 6.4: Mobility Mapping
Green Low Mobility
Yellow Mid Mobility
Orange High Mobility

Red Band Energy

Figure 6.3: Electron Quasi Fermi Level at Low (Green), Mid (Yellow), and
High (Orange) Mobilities at 25V
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Figure 6.4: Hole Quasi Fermi Level at Low (Green), Mid (Yellow), and
High (Orange) Mobilities at 25V

64



Figure 6.5: Zoomed Electron Quasi Fermi Level at Low (Green), Mid
(Yellow), and High (Orange) Mobilities at 25V
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Figure 6.6: Zoomed Hole Quasi Fermi Level at Low (Green), Mid (Yellow),
and High (Orange) Mobilities at 25V

Figures 6.5 and 6.6 show the minimal separation between Fermi levels and exemplify

the saturation of carrier densities that occur at higher mobilities. Schottky contacts

may provide better carrier confinement due to reduced current across the junction.
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6.2 Schottky

Figure 6.7: G-V Plot of 1D Emissive Layer with Schottky Contacts

Fig. 6.7 demonstrates the effect of current saturation from the Schottky current

boundary condition. The carrier densities reach their saturation level and limit the

overall current in the device through the Schottky boundary condition. The Schottky

contacts in decreasing the allowable current at high voltages decreases the optical

gain because the Schottky current instead of Spontaneous Recombination maintains

current continuity.
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Figure 6.8: Electron Quasi Fermi Level at Low (Green), Mid (Yellow), and
High (Orange) Mobilities at 25V
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Figure 6.9: Hole Quasi Fermi Level at Low (Green), Mid (Yellow), and
High (Orange) Mobilities at 25V
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Figure 6.10: Zoomed Electron Quasi Fermi Level at Low (Green), Mid
(Yellow), and High (Orange) Mobilities at 25V
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Figure 6.11: Zoomed Hole Quasi Fermi Level at Low (Green), Mid (Yel-
low), and High (Orange) Mobilities at 25V

The decreased carrier saturation reflects in figures 6.8 and 6.9 where the quasi-Fermi

levels saturated at fewer electron Volts, 1.045 instead of 1.049. The zoomed figures

6.10 and 6.11 show a more linear decrease in the quasi-Fermi levels in comparison to

the exponential decrease in the Ohmic counterparts which may be due to the linear

current at the contacts. The decrease in gain suggests that the desired device structure

needs to be capable of high injection and high containment. The introduction of

blocking layers should improve carrier confinement. These blocking layers should

have larger gaps in their mobilities to limit carrier escape from the emissive layer.

Lasing did not occur in this instance, but the addition of blocking layers to confine the

carriers and exciton rate equations may provide an initial estimate to begin physical

synthesis.
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Chapter 7

CONCLUSION AND FUTURE WORK

The simulator produces the electrostatic potential, electron, hole, transverse optical

field, and photon densities per node in the device region. These solutions then up-

date dependent models such as total current, gain, recombination, and optical power

output. Table 7.1 shows the complete set of implemented models available in the

simulator. With the correct combination of implemented models and material pa-

rameters, the simulator accurately reproduces theoretical and experimental results as

seen in ??. This simulator provides the basis to begin constructing structures to test

for positive optical gain in electrically-pumped organic devices.
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Table 7.1: Implemented Equations and Constituent Models
Equations: Models
Poisson:
• E-Field
• D-Field
• ρ(Free, Trapped, Ion)
Current Continuity:
• Drift-Diffusion
Recombination:
• Shockley-Read-Hall
• Auger
• Langevin
• Stimlated
Helmholtz:
• Effective Index
• Optical Intensity
Photon Rate:
• Photon Generation
• Photon Absorption
• Optical Power Output
Boundary Conditions:
• Ohmic
• Schottky
• Perfect Electric Conductor

Furthermore, this simulator relies on an open-source Finite Volume Solver, DEVSIM,

and open-source 1-D Helmholtz solver allowing for availability and customization to

future users. The simulator also contains a material database that allows for simple

maintenance of available materials. With this framework, future work should focus on

finding a device structure with the currently implemented models to confine the the

carriers for lasing. Once a device structure yields a positive optical gain, the next step

should confirm that positive optical gain still occurs with charge carrier quenching

produced by the Exciton Rate equation and at a temperature below the melting point

of the polymer given by Energy Balance Transport equation as shown in 7.1 [6] and

7.2 [8]. Physical implementation can begin once the set of material parameters and

device structure in the simulator yield a lazing diode with these additional models.
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Figure 7.1: Exciton Rate Equation Including Singlet/Triplet Excitons and
Charge Carrier Quenching [6]

Figure 7.2: Energy Balance Transport Model yielding Heat Transport [8]
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APPENDICES

Appendix A

USEFUL LINKS

• Simulator Github Repository: https://github.com/Bob95132/EE599-Thesis

• DEVSIM Github Repository: https://github.com/devsim/devsim

• DEVSIM Manual: https://devsim.net/
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Abstract

The Scharfetter-Gummel method provides an optimum way to discretize the drift-
diffusion (or Nernst-Planck) equation for charged particle transport in semiconduc-
tor devices (or ionic flow in biological ion channels). This is an exponential fitting
method usually called in the literature of convection-dominated fluid models.

The steady state 1D Nernst-Planck (drift-diffusion) equation of cations (or
holes) in an ion channel (or a semiconductor device) is

−
d

dx
J(x) = 0, ∀x ∈ (0, l) (1)

where

J(x) = −D
dC(x)

dx
+ µEC(x) (2)

is the flux density of cations, C(x) is an unknown concentration (distribution)

function of cations, E = −
dφ(x)
dx

is the electric field, φ(x) is the electrostatic
potential, µ is the hole mobility, and D is the diffusion coefficient of cations.
The Einstein relation of charged particles is D = µkBT/q, where kB is the
Boltzmann constant, T is absolute temperature, and q is the charge on each
particle (cation or anion).

Assuming that µ, E, D, J are constant within the interval [xi, xi+1] ⊂ [0, l],
we have from (2)

dC(x)

dx
=
µE

D
C(x)−

J

D
= bC(x)−

J

D
(3)

which implies that
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1

C(x)− J
bD

dC(x)

dx
= b, b =

µE

D

d

dx
ln
∣∣∣∣C(x)−

J

bD

∣∣∣∣= b

ln
∣∣∣∣C(x)−

J

bD

∣∣∣∣= bx+ c, c is a constant,

C(x)−
J

bD
=±ebx+c on [xi, xi+1] . (4)

Therefore, the flux J at the grid point xi+ 1

2

= xi+xi+1
2

(denoted by Ji+ 1

2

) can
be written as

Ci+1 −
J
i+1

2

bD

Ci −
J
i+1

2

bD

= ebhi , hi = xi+1 − xi, Ci = C(xi), (5)

Ci+1 −
Ji+ 1

2

bD
= ebhi

(

Ci −
Ji+ 1

2

bD

)

(
ebhi − 1

) Ji+ 1

2

bD
=
(
−Ci+1 + e

bhi
i Ci

)

Ji+ 1

2

=
bD

(ebhi − 1)

(
−Ci+1 + e

bhi
i Ci

)

=
D

hi

[
−bhi

(ebhi − 1)
Ci+1 +

−bhi
(e−bhi − 1)

Ci

]

=
D

hi
[−B(−ti)Ci+1 +B(ti)Ci] (6)

where

b=
µE

D
= −β

dφ

dx
= −β

φi+1 − φi
hi

, β =
q

kBT
ti=β∆φi, ∆φi = φi+1 − φi

B(t)=
t

et − 1
is the Bernoulli function. (7)

For uniform mesh, i.e., hi−1 = hi, the Scharfetter-Gummel method for (1) at
xi is thus

d

dx
J(xi) ≈

1
hi−1+hi

2

(
Ji+ 1

2

− Ji− 1

2

)
= 0⇒ ai−1Ci−1 + aiCi + ai+1Ci+1 = 0 (8)

Ji+ 1

2

=D [−B(−ti)Ci+1 +B(ti)Ci] , Ji− 1

2

= D [−B(−ti−1)Ci +B(ti−1)Ci−1]

ai−1=−B(ti−1), ai = B(−ti−1) +B(ti), ai+1 = −B(−ti).

2
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Appendix C

MODE PROPAGATION CONSTANT

Figure C.1: Wave Solutions in Material
[36]
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Figure C.2: Transcendental Equation from Matrix Determinant
[36]
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Appendix D

LASING PLOTS

Figure D.1: IV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts Low
Mobility

Figure D.2: Log IV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Low Mobility
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Figure D.3: PV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Low Mobility

Figure D.4: Log PV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Low Mobility
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Figure D.5: GV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Low Mobility

Figure D.6: IV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts Mid
Mobility
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Figure D.7: Log IV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Mid Mobility

Figure D.8: PV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Mid Mobility
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Figure D.9: Log PV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Mid Mobility

Figure D.10: GV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
Mid Mobility
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Figure D.11: IV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
High Mobility

Figure D.12: Log IV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
High Mobility
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Figure D.13: PV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
High Mobility

Figure D.14: Log PV-Plot of 1D Emissive Layer (OC1C10) Ohmic Con-
tacts High Mobility
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Figure D.15: GV-Plot of 1D Emissive Layer (OC1C10) Ohmic Contacts
High Mobility

Figure D.16: IV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
Low Mobility
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Figure D.17: Log IV-Plot of 1D Emissive Layer (OC1C10) Schottky Con-
tacts Low Mobility

Figure D.18: PV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
Low Mobility
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Figure D.19: Log PV-Plot of 1D Emissive Layer (OC1C10) Schottky Con-
tacts Low Mobility

Figure D.20: GV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
Low Mobility
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Figure D.21: IV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
Mid Mobility

Figure D.22: Log IV-Plot of 1D Emissive Layer (OC1C10) Schottky Con-
tacts Mid Mobility
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Figure D.23: PV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
Mid Mobility

Figure D.24: Log PV-Plot of 1D Emissive Layer (OC1C10) Schottky Con-
tacts Mid Mobility
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Figure D.25: GV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
Mid Mobility

Figure D.26: IV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
High Mobility
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Figure D.27: Log IV-Plot of 1D Emissive Layer (OC1C10) Schottky Con-
tacts High Mobility

Figure D.28: PV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
High Mobility
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Figure D.29: Log PV-Plot of 1D Emissive Layer (OC1C10) Schottky Con-
tacts High Mobility

Figure D.30: GV-Plot of 1D Emissive Layer (OC1C10) Schottky Contacts
High Mobility
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