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Abstract 

Connective tissue progenitors (CTPs) are defined as the heterogeneous population of 

tissue‐resident stem and progenitor cells that are capable of proliferating and differ-

entiating into connective tissue phenotypes. The prevalence and variation in clonal 

progeny of CTPs can be characterized using a colony formation assay. However, col-

ony assays do not directly assess the characteristics of the colony‐founding CTP. We 

performed large, field‐of‐view, time‐lapse microscopy to manually track colonies back 

to the founding cells. Image processing and analysis was used to characterize the col-

onies and their founding cells. We found that the traditional colony‐forming unit 

(CFU) assay underestimates the number of founding cells as colonies can be formed 

by more than one founding cell. After 6 days in culture, colonies do not completely 

express CD73, CD90, and CD105. Heterogeneity in colony cells was characterized 

by two cell populations, proliferative and spread cells. Regression modelling of dura-

tion of lag phase and doubling time by cell marker suggests the presence of CD90 

and CD105 in CTP subpopulations with different proliferative capabilities. From 

mathematical modelling of clonal colonies, we quantitatively characterized prolifera-

tion, migration, and cell marker expression rates to identify desirable clones for selec-

tion. Direct assessment of colony formation parameters led to more accurate 

assessment of CFU heterogeneity. Furthermore, these parameters can be used to 

quantify the diversity and hierarchy of stem and progenitor cells from a cell source 

or tissue for tissue engineering applications. 
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1 | INTRODUCTION  

Cell‐based regenerative therapy requires activity of stem and progen-

itor cells for tissue regeneration. Connective tissue progenitors (CTPs) 

are tissue‐resident stem and progenitor cells that can differentiate into 

connective tissue phenotypes (Muschler & Midura, 2002). Cell popula-

tions containing cells with CTP properties can be harvested from 
tissues including bone, bone marrow, and fat. The number of CTPs 

in a cell source can be estimated using a colony‐forming unit (CFU) 

assay. In the CFU assay, colony‐founding CTPs attach to a surface, 

proliferate, and give rise to a colony of CTP‐derived progenitor cells 

(Friedenstein, Chailakhjan, & Lalykina, 1970; Pochampally, 2008). 

Counting the number of colonies allows estimation of the prevalence 

of CTPs in the starting sample. 
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The heterogeneity among colony‐founding CTPs can be assessed 

by measuring differences between colonies (e.g., cell number, cell den-

sity, and expression of surface markers). The CFU assay for assessing 

heterogeneity of CTP and other stem cell types has been standardized 

with automated CFU analysis (American Society for Testing and Mate-

rials F2944‐12, 2012). Automated CFU analysis can minimize the high 

variability in colony counting by subjective reviewers and provides a 

rapid, objective method to assess functional differences in CTPs and 

their progeny. Although useful, the CFU assay is limited in that it does 

not directly assess the colony‐founding CTPs. The number and biolog-

ical variation among clones of colony‐founding CTPs are only inferred 

from the colonies that they form. 

It is therefore desirable to design methods that can directly char-

acterize the colony‐founding CTP. Clonal analysis can be performed 

using several established methods, but each are faced with limitations 

(Hope & Bhatia, 2011). A variation on the CFU assay that uses limiting 

dilution to clonally isolate CTPs is challenging because freshly isolated 

CTPs represent only a small fraction of cells in native tissue. This 

decreases, but does not eliminate, the chance that a colony has been 

founded by more than one cell. Establishing a single plating density 

for the limited dilution approach across multiple donor samples is also 

confounded by large variation in CTP prevalence between patient 

samples (Muschler, Nitto, Boehm, & Easley, 2001). Physical methods 

to separate cells, such as fluorescence activated cell sorting, can also 

damage cells and result in a loss of colony‐forming efficiency (Mollet, 

Godoy‐Silva, Berdugo, & Chalmers, 2008). 

To overcome the limitations of these methods and enable direct 

assessment of colony‐founding CTPs, we developed a large field‐of‐

view live‐cell imaging system with phase‐contrast and fluorescence 

capabilities that enables cell tracking from the time of seeding through 

colony formation. Using both manual cell tracking and mathematical 

modelling, quantitative characterization of CTP heterogeneity was 

developed on the basis of proliferation rate, time to first division, 

migration rate, and cell marker expression rate of both the founding 

CTP and progeny. These features derived from time‐lapse imaging 

can be reflective of the identity, starting state, and biological potential 

of the founding cell. These criteria can be used to understand the 

diversity and hierarchy of stem and progenitor cells within a cell 

source and evaluate clonal populations in colonies for subsequent 

use in research or therapeutic applications. 
2 | METHODS  

2.1 | Time‐lapse imaging strategy 

Time‐lapse imaging was performed on cells harvested from the tra-

becular surface of discarded bone core samples. Cells were plated 

and imaged every hour with phase‐contrast microscopy to document 

colony formation. Cells were labelled every 24 hr with fluorescent 

antibodies for cell‐surface markers to track cell marker expression. 

Following 6 days in culture, image processing and analysis was per-

formed to segment and characterize colonies. The time lapse was 

reversed to identify the colony‐founding CTP and whether the colony 

was clonally founded by a single cell. Proliferative cells for both clonal 
and nonclonal colonies were manually tracked to determine time to 

first division and doubling time. Clonal colony time‐lapse images were 

processed and analysed with a mathematical model to additionally 

characterize cell migration rate and surface marker expression rate. 
2.2 | Live‐cell imaging system 

A custom, live‐cell imaging system was developed for tracking cell pro-

liferation using phase‐contrast imaging and changes in cell marker 

expression using fluorescence imaging. This system uses a DMI6000 

inverted fluorescence microscope (Leica Microsystems, Wetzlar, Ger-

many), EL6000 metal halide fluorescence source (Leica), Proscan 

H117 motorized stage (Prior Scientific, Rockland, MA), and Retiga 

2000R camera (QImaging, Surrey, BC, Canada). Fluorescence cubes 

were selected for imaging green (L5, 480‐nm excitation [ex]/527‐nm 

emission [em]), red (TX2, 560‐nm ex/645‐nm em), and deep red (Y5, 

620‐nm ex/700‐nm em) wavelengths. Automated image acquisition 

was performed using an OASIS‐blue controller card and Surveyor soft-

ware (Objective Imaging, Cambridge, UK). The imaging system was 

contained within an Xvivo System (Biospherix, Lacona, NY), which 

enabled cell culture under controlled oxygen tension. 
2.3 | Cell harvest and culture 

Discarded bone core samples from the proximal femur were received 

from three patients undergoing hip arthroplasty procedures. 

Discarded bone core samples from primary hip arthroplasty proce-

dures have been previously studied as a potential stem cell source 

(Chang, Docheva, Knothe, & Knothe Tate, 2014; Siclari et al., 2013). 

Discarded samples were de‐identified, human subject research 

exempt, and acquired under a protocol approved by the Cleveland 

Clinic Central Biorepository. Samples were sterilely minced in media 

into 1‐ to 2‐mm fragments using forceps and a sharp osteotome. 

Medium containing 100 U/ml Collagenase Type I in Hank's buffered 

salt solution was added to the fragments of trabecular bone for 

1.5 hr at 37°C. Collagenase activity was stopped using complete α‐

MEM media and 10% fetal bovine serum at a 1:1 ratio. Cells were 

passed through a 70‐μm cell strainer to filter out bone fragments 

and large debris. Cells were pelleted and resuspended in complete 

media to remove excess collagenase. Resulting cells were collected 

as the trabecular surface cell population (Qadan et al., 2018). 
2.4 | Cell culture and time lapse 

Cells were seeded in 2 × 2‐cm μ‐Slide 2 Well Ph+ chamber slide (Ibidi, 

Planegg/Martinsried, Germany) at a plating density of 250,000 cells 

per chamber in α‐MEM media, 10% fetal bovine serum, and 1% 

penicillin–streptomycin. Cells were cultured at 3% oxygen tension, 

physiologically relevant conditions for bone‐derived CTP characteriza-

tion (Villarruel et al., 2008). 

Cells were allowed 24 hr to settle and adhere to the slide. Cells 

were washed to remove nonadherent cells to allow visualization of 

the colony‐founding cells. Cells were then labelled using antibodies 

directly conjugated with fluorophores to characterize surface marker 



expression on live colony‐founding cells and their progeny. This tech-

nique has been used in several imaging applications for live, surface 

marker detection (Chan et al., 2009; Eilken et al., 2011). Cell markers 

CD73, CD90, and CD105 were selected for study. The International 

Society of Cell Therapy defines multipotent, mesenchymal stromal 

cells (MSCs) such that 95% of cells in a population have positive 

marker expression of CD73, CD90, and CD105 (Dominici et al., 

2006). Our aim was to determine the prevalence and variation in 

freshly isolated CTPs from human trabecular surface cells and the var-

iation in emergence of MSC marker expression among the progeny of 

colony‐founding CTPs during colony formation. 

Cells were labelled using directly conjugated antibodies Alexa488‐

CD105 (BioLegend, San Diego, CA), PE‐CF594‐CD73 (BD Biosci-

ences, San Jose, CA), and Alexa647‐CD90 (BioLegend). Controls used 

to titrate antibody concentrations for live labelling of cell‐surface 

markers resulted in a fluorescent antibody ratio of 1:150, which was 

added directly to the culture media for 30 min (Figure S1). Phase‐

contrast images were taken every hour at 10× magnification with 

2 × 2 binning to track cell proliferation and migration. Cells were 

labelled and fluorescently imaged every 24 hr to detect cell marker 

expression on the colony‐founding cells and their progeny. Prior to 

fluorescence imaging, α‐MEM media were removed. Cells were 

washed once with phosphate‐buffered saline, and OptiKlear Live Cell 

Imaging Buffer (Marker Gene Technologies, Eugene, OR) was added to 

reduce background autofluorescence. Cells were cultured for 6 days 

to provide sufficient time for colonies to develop and minimize the 

confounding effects of overgrowth or overlap between adjacent 

colonies. 
2.5 | Image processing and analysis 

Phase‐contrast images were processed using custom scripts devel-

oped in MATLAB 7.12.0 (MathWorks, Natick, MA). Images were 

cropped to only include the region of the chamber‐containing colo-

nies. Images were subsampled by 50% for a resolution of 2.7 μm 

per pixel for analysis. Background correction for large dark and bright 

background artefacts was performed by subtracting a median‐filtered 

(11 × 11 pixel) image from the original image. An 11 × 11‐pixel 

bottom‐hat filtering was performed on the background‐corrected 

image to filter out bright objects from dark adherent cells. Images 

were manually threshold segmented, and noncell artefacts were 

excluded by morphological filtering based on roundness (4 × Area/ 

(π × Major Axis Diameter2)) less than 0.7 and aspect ratio (Major 

Axis Diameter/Minor Axis Diameter) larger than 1.3 to segment cells 

with adherent cell morphology. Colonies were identified in Day 6 

images to cluster segmented cells using a Euclidean distance of 

108 μm. 

Fluorescence images were processed sequentially and 

analysed using Fiji (Schindelin et al., 2012). Denoising using the 

Rudin–Osher–Fatemi method was used to reduce background noise 

in each fluorescence channel. A 21‐pixel rolling ball algorithm was 

used to correct for background fluorescence. Positive cell marker 

expression was identified using a normalized histogram of the 

corrected fluorescence image and the triangle threshold algorithm. 
Due to the halo effect, phase‐contrast images were found to 

undersegment the cell area relative to the fluorescence segmentation 

of certain markers. Therefore, total cell area in the colony was calcu-

lated as the union of the phase‐contrast segmentation and the fluores-

cence segmentation masks (derived above from MATLAB and Fiji) of 

all the markers. Analysis of cell, cell marker, and colony segmentation 

was performed using Fiji. Per cent cell marker expression was normal-

ized to the total cell area. Further details and image workflow are 

described in Appendix A. 
2.6 | Cell tracking 

Image analysis was performed for colonies at Day 6 (Figure 1a). 

Following colony identification, after 6 days in culture, the time lapse 

was reversed, and colonies were manually tracked back to the colony‐

founding CTP. Image analysis was performed on CTPs as described 

above (Figure 1b). Apparent prevalence is calculated by assuming each 

colony is founded by a single founding cell and dividing the number of 

colonies identified in the chamber by the total number of cells plated. 

Colonies founded by a single founding cell were classified as a clonal 

colony. Colonies founded by more than one cell or were formed by 

the merging of more than one colony were classified as nonclonal. 

Colonies not formed by identifiable founding cells and arose as a result 

of migration from a main colony or displacement from a main colony 

after a media change were classified as pseudocolonies (Figure 2). 

The number of CTPs contributing to colony formation was deter-

mined from the cell tracking. This number was used to calculate the 

observed prevalence of CTPs by dividing the number of cells contrib-

uting to colony formation by the total number of cells plated. CTP lag 

time and doubling time were determined through manual tracking of 

cell populations. Linear regression analysis was used to determine dif-

ferences in lag time and doubling time based on CTP cell marker char-

acteristics at Day 1. A Kruskal–Wallis test with multiple comparisons 

was used to determine differences in lag time and doubling time 

between patients. Statistical analysis was performed using MATLAB. 
2.7 | Mathematical model for clonal colony 

characterization 

Clonal colonies were identified, and colony time‐lapse images were 

segmented for the colony formation model. The following processes 

were modelled: proliferation, cell marker expression, and migration. 

We assumed that these processes were not limited by the surrounding 

medium and that cell death was negligible over the experimental 

period of study. Furthermore, we assumed that random migration 

can be represented as radially symmetric on a culture surface with 

no directional impediments. 

When performing phase‐contrast imaging, cells were often touch-

ing, making them difficult to segment into individual cells. Experimen-

tally, it was possible to follow the colony development by 

measurement of cell area rather than cell number. Assuming the area 

that cells occupy is proportional to the cell number, a proliferation 

model can be expressed in terms of the total cell area A(t). A prolifer-

ation model assumed with a constant rate coefficient kp after a time 
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FIGURE 1 Representative colony analysis. (a) Cells were segmented in phase (white) and clustered to identify colonies (yellow). Cell markers 
were segmented, and area expression within the colony was determined. Triple positive area for CD73, CD90, and CD105 was determined as 
the common area between the three markers. (b) Colony was traced back to the colony‐founding cell (yellow). Phase‐contrast segmentation (cyan) 
and fluorescence segmentation were used to determine connective tissue progenitor (CTP) metrics. Time lapse in Movie S1. Scale bar: 500 μm 
[Colour figure can be viewed at wileyonlinelibrary.com] 
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delay τ, which represents the duration of the lag phase. The total cell 

area at any time is the integral of the average cell area density a(r,t) 

locally at any radial position over an arbitrarily large radius (r∞) on a

material surface (Equation 1). 

r∞ dA 0; t < τ 
A t ¼ 2π ∫ ra r; t dr ⇒ ¼ t ¼ 0; A ¼ A0; ð Þ ð Þ

0 dt kPA; t ≥ τ 

(1) 

where A0 is the initial cell area. Assuming that cells move by random 

migration with coefficient D and proliferate with rate coefficient kP, 

the local area cell number density changes over the spatial domain 

0 ≤ r ≤ r∞ according to 

∂a 1 ∂ ∂a ¼ rD þ kPa: (2) 
∂t r ∂r ∂r 

At the initially low cell density, we expect the least hindrance to migra-

tion. As the cell population and cell density increase, greater contact 
�  �  

� � � �

inhibition decreases the migration rate, which can be empirically rep-

resented as D a r½� ; t ¼ −ϕa , where D0 is the initial migration rate ð Þ  D0e
4 

coefficient and ϕ is a contact inhibition constant. Contact inhibition 

has been previously found to be important in stem cell proliferation 

(Hoffmann, Kuska, Zscharnack, Loeffler, & Galle, 2011). For larger 

values of a(r,t), D decreases quickly from D0 to a small value indicated 

by the gradient: 

3 4 dD ¼ −4ϕa D0 exp −ϕa ¼ −4ϕa3D: (3) 
da 

Combining Equations 2 and 3, the average area density of all cells 

changes according to 

∂a 
∂t 

¼ D 
∂2a 
∂r2 

þ 

( 
1 
r 

∂a 
∂r 

− 4ϕa3 ∂a 
∂r 

2 
) 

þ kPa: (4) 

Corresponding to the model of total cell area in a colony, we construct 

a model of the triple positive surface area expression of CD73, CD90, 
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FIGURE 2 Colony tracking: Phase‐contrast images after 6 days in culture from three different patients were segmented for cells (cyan). Colonies 
were classified as clonal (green), nonclonal (red), or migratory (blue). Apparent prevalence was calculated on the basis of number of colonies. 
Tracking the colonies back to the first phase‐contrast image enabled identification of cells contributing to colony formation (yellow). Proliferative 
connective tissue progenitors (CTPs) were identified, and observed prevalence was calculated. Green numbers indicate clonal colony number for 
modelling. Scale bar: 2,000 μm [Colour figure can be viewed at wileyonlinelibrary.com] 
� � � �
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and CD105 at any time. The total area of cells with surface expression, 

AE, corresponding to Equation (1) is 

dAE ¼ kEA; t > τ ; AE ¼ AE 
0 ; t ≤ τ: (5) 

dt 

This model assumes negligible proliferation and death of the cells with 

surface marker expression; however, the increase of cell‐surface 

expression at rate kE is proportional to the area of all cells: kEA. Corre-

sponding to Equation (4), the average area density of cells with surface 

expression, represented by aE, changes with time according to 

( ) 
2 ∂aE ∂2aE 1 ∂aE 3 ∂aE dDE 3 ¼ DE þ − 4ϕa þ kEa; ¼ −4ϕaED0;E; ∂t ∂r2 r ∂r E ∂r da 

(6) 

where kEa is the rate of area cell‐surface expression resulting from 

nonexpressing cells. Note that the solution to Equation (6) depends 

on the solution of Equation (4). 

The initial conditions were based on the initial area of the colony‐

founding cell: 

t ¼ τ : a ¼ a0U r½� 0 − r ; aE ¼ aE;0U rE;0 − r ; (7) 
2 2 where U is the unit step function, a0 ¼ πr0, and aE;0 ¼ πrE;0. At the 

centre of the surface (r = 0), the gradients are zero by radial symmetry; 

at the farthest edge of the surface (r = r∞), there are no cells: 

∂a ∂aE r ¼ 0: ¼ ¼ 0; r ¼ r∞ : a ¼ aE ¼ 0: (8) 
∂r ∂r 

2.8 | Model discretization 

Experimentally, corresponding to measurements of cell distribution 

over discrete spatial regions, we express the model in discretized 

form. In the continuous spatial domain 0 ≤ r ≤ r∞, we define a 

discrete spatial domain i =  0, 1, 2,  …, M, where M is the 

number of spatial intervals of size Δ = r∞/M (Figure 3a). The rela-

tionships between continuous and discrete spatial variables are 

ri = iΔ, Di ð Þ ¼ Doe−ϕai 
4
, ai(t) =  a(ri, t)dri, and aE, i(t) =  aE(ri, t)dri. t The 

fractional area occupied by nonexpressing or expressing cells in 

the interval is dri. Second‐order central difference for the second 

derivative and a first‐order forward difference for the first deriva-

tive were implemented. 
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FIGURE 3 Colony formation model. (a) Cell segmentation modelled with a radially symmetric model based on the centroid of the colony. (b) Four 
experimental intervals (ME) were used for parameter estimation. (c) Total cell area density plot for a representative colony: Area density is 
modelled in four experimental intervals (ME). Best fit parameters were determined with respect to the experimental data. In this example, 
D0 = 1.9e3 μm2/hr. Scale bar 500 μm [Colour figure can be viewed at wileyonlinelibrary.com] 

 

2.9 | Model cell segmentation 

Segmented images were discretized by first transforming every seg-

mented cell pixel from Cartesian coordinates to polar coordinates, 

where the centre of the colony was the origin. The total number of 

pixels was used as experimental data for the spatially lumped model 

for cell area. The spatially lumped data from phase‐contrast imaging 

were used to estimate the proliferation constant kp for the total cell 

area colony with Equation (1). The spatially lumped data from the fluo-

rescence imaging were used to estimate kE for rate of triple positive 

cell expression with Equation (5). 

Cell area density for cells with or without surface expression was 

discretized into equally spaced (radially symmetric) experimental 
intervals, ME (Figure 3b). The outer boundary of radial domain was 

chosen as r∞, the minimum radius at which no cells were present 

throughout the experiment. The cell area density at r = 0,  a0, is

assumed to be equal to a1 according to the initial cell area density. 

The average area fraction was defined in each of the equally spaced 

intervals i = 1,  2,  … M. Because ME < M, we obtain an average cell 

area fraction, which is a partial sum with (M/ME) =  p points for each 

interval k: 

kp 
∑ airi 

i¼ð k − 1 Þpþ1 
Ak ¼ : (9) 

kp 
∑ ri 

i¼ð k − 1 Þpþ1 
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In this study, the number of intervals for simulation was M = 100, and 

the number of experimental intervals is ME = 4 so that p = 25, where 

25 50 100 
∑ airi ∑ airi ∑ airi 
i¼1 i¼26 i¼76 ME ¼ 1; A1 ¼ ; ME ¼ 2; A2 ¼ ; …ME ¼ 4; A4 ¼ : (10) 
25 50 100 
∑ ri ∑ ri ∑ ri 
i¼1 i¼26 i¼76 

2.10 | Simulation and parameter estimation 

procedure 

Simulations were performed in MATLAB to simultaneously estimate 

the migration coefficient D0 based on total cell area density 

discretization and the triple positive migration coefficient DE,0 for 

the discretized positive area density expression. The first time point 

after t = τ was discretized into experimental intervals M and used as 

the initial condition for simulations. Simulations were evaluated with 

experimental data by averaging model outputs ai(t) and aE,i(t) in

intervals. 

In these model equations, the model parameters characterize lag 

time to division, total cell proliferation rate, cell marker expression 

rate, total cell migration, cell marker proliferation rate, and contact 

inhibition as indicated by the experimental data of colony formation. 

A sequential strategy was applied to estimate parameters: (a) prolifer-

ation coefficient kP and lag time τ from A(t) data; (b) total cell migration 

coefficient D0 and ϕ from ai(t) data; and (c) triple positive cell expres-

sion kE and migration D0,D from AE(t) data. The optimal parameter esti-

mates were obtained by minimizing an objective function defined as 

the sum of least squares between the simulated and the experimental 

data for four discretized areas ME and time points (Figure 3c). 

Parameters were normalized to their highest respective value for 

ranked comparison among colonies. From these results, we can expect 

colonies with the highest normalized values of kP, D0, kE, and D0,E and 

the lowest normalized values of τ and ϕ to characterize CTPs and 

potential for selection in clinical application. We expect cells with 

the greatest proliferation, migration, and appropriate cell marker 

expression to be the desired clones of cells for biomanufacturing. 
3 | RESULTS  

3.1 | Colony cell marker expression 

Phase‐contrast images taken after 6 days in culture were processed 

and segmented to automatically identify cells and colonies. Among 

three patient samples, 69 colonies were identified. The per cent area 

expression of each cell marker for each colony was determined 

(Figure 4). Colonies were on average 81.5% positive for CD73, 

52.4% positive for CD90, 18.8% positive for CD105, and 11.6% posi-

tive for all three markers. 

3.2 | Colony‐founding cell identification and analysis 

After colony identification, the time lapse was reversed to identify the 

colony‐founding cell (sample colony time lapse in Movie S1). This 
analysis demonstrated that colonies were not always founded by a 

single cell (Figure 2). Twelve clonal colonies, 47 nonclonal colonies, 

and 9 pseudocolonies were identified across the three patient sam-

ples. CTPs (n = 375) with proliferative cell progeny contributed to col-

ony formation (Figure 5). The 97.6% (n = 366) were positive for CD73 

and 81.2% (n = 291) for CD90. Only 18.8% (n = 103) of CTPs were 

positive for CD105. The 97.0% of the CD105 positive cells were also 

positive for CD73 and CD90 (n = 100). 

CTP progeny proliferation was manually tracked over the course 

of the time lapse. Time to first division, or the end of the lag phase, 

was determined. Cell population was also counted to determine a dou-

bling time according to an exponential growth model that fit well with 

Pearson's correlation coefficient of 0.95 ± 0.04 (mean ± standard devi-

ation). Doubling time for CTPs also varied with an average of 

22.5 ± 8.74 hr. Time to first division varied with an average of 

75.8 ± 15.3 hr (Figure 5). Regression modelling was used to determine 

if there was a correlation between cell marker expression at Day 1 

with lag phase duration and doubling time (Table 1). Positive expres-

sion of CD90 on the CTP at Day 1 was significantly correlated with 

higher doubling time. Positive expression of CD105 was significantly 

correlated with decreased time to the first division. 
3.3 | Mathematical model of colony formation 

dynamics 

Time‐lapse data from 12 clonal colonies were analysed to quantify the 

characteristics of CTPs. The spatially lumped model for total cells was 

used to simulate experimental data of the total cell area in the colony 

and to estimate lag time τ and proliferation rate kP. Using the same lag 

phase τ determined from the total cell area data, the model for triple 

positive cell area simulated the corresponding experimental data in 

order to estimate the proliferation rate kE for positive expressing cells 

(Figure 6). 

The development of larger colonies was characterized by larger kP 

or proliferation rates. The degree to which contact inhibition influ-

enced colony migration is indicated by ϕ, which varied from 0.4 to 

4.0. Lag time τ varied between 25 and 65 hr. A comparison of param-

eter values for each colony showed a positive correlation between kP 

and kE, indicating more proliferative colonies had higher rates of differ-

entiation. A positive correlation was observed between kP and D0, 

indicating more proliferative colonies also had higher migration rates. 

Lastly, a positive correlation was observed between kE and D0,E. This 

indicated triple positive cells with more proliferation had higher cell 

migration. A sensitivity analysis was applied to show that colony rank-

ing was insensitive to a range of values for the lag phase and contact 

inhibition constant (Appendix B). 
4 | DISCUSSION  

A system for cell culture, live‐cell imaging and analysis was developed 

for direct identification and quantitative characterization of colony‐

forming cells under physiological conditions. These included appropri-

ate oxygen tension in a two‐dimensional cell culture environment 

prior to the first cell division in vitro. These techniques enabled direct 



FIGURE 4 Cell marker distribution. (a) Overlay of CD73, CD90, and CD105 expression within colonies. (b) Plot of colony cell marker expression. 
Each point represents a different colony from a given patient. Cell marker expression per colony was normalized to total cell area in the colony. 
Scale bar: 2,000 μm [Colour figure can be viewed at wileyonlinelibrary.com] 

FIGURE 5 Connective tissue progenitor heterogeneity. Connective tissue progenitor proliferative characteristics were quantified over the 
course of the time lapse according to (a) duration of the lag phase and (b) doubling time. Patient 2 lag time and doubling time were 
significantly lower than the other patients (* p < 0.05) [Colour figure can be viewed at wileyonlinelibrary.com] 
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TABLE 1 Linear regression for doubling time and duration of lag phase based on cell marker expression of initial CTP at the start of the time 
lapse 

Doubling time regression coefficients Lag phase duration regression coefficients 

Term Coefficient Standard error coefficient p value Term Coefficient Standard error coefficient p value 

Constant 18.617 6.1849 0.003 Constant 71.392 10.823 0 

CD73 −1.5468 5.9651 0.795 CD73 6.1423 10.64 0.564 

CD90 5.7142 1.8837 0.002 CD90 −1.3917 2.3245 0.549 

CD105 3.3253 1.7867 0.065 CD105 −5.9021 2.6419 0.026 

FIGURE 6 Colony model parameters. Model parameters were fit to the experimental data to produce six parameters for colony formation. 
Equally weighing each parameter enabled assigning of clonal colony ranks, with the highest ranked colony (Rank 1) representing the highest 
parameters of proliferation and migration for total cells and cell marker expression [Colour figure can be viewed at wileyonlinelibrary.com] 
assessment of prevalence, proliferative, and cell marker attributes of 

colony‐founding cells derived from trabecular surface of human can-

cellous bone. 

The prevalence of colony‐founding cells is very low in many bio-

logical systems. As a result, samples of tissue‐derived cells and cells 

in the early culture environment will contain a greater number of 

nonprogenitor and nonstem cells than stem and progenitor cells. 

Selection of stem and progenitor cells can be accomplished by identi-

fying unique surface markers or physical attributes. The systematic 

and objective study of CTPs from various tissue sources or the design 

of optimal methods for rapid CTP characterization and isolation 

requires greater understanding of the attributes of native tissue‐

resident CTPs. This paper contributes both valuable tools and useful 

information towards this objective. The determination of markers that 

predict colony formation could be to (a) distinguish CTPs from non‐

CTPs in freshly isolated cell preparations, (b) define or predict the 

quality or biological potential of a population of cells obtained from 
a given donor or tissue, or (c) provide useful diagnostic or therapeutic 

information related to tissue health or disease. 

The methods reported here yield an improved objective assess-

ment of the accuracy of traditional CFU assays. The results suggest 

that a variety of variables may contribute to underestimation or over-

estimation of CTP number. We found that CTP prevalence estimated 

by counting apparent colonies at Day 6 was substantially less than 

the prevalence measured from the number of colony‐founding cells 

that contribute to those colonies. This occurred when several CTPs 

attached close enough together on the culture surface such that pro-

liferation and migration resulted in progeny populations combining 

into one apparent but nonclonal colony. 

Identification of individual colony‐founding cells enabled the char-

acterization of CTPs with respect to expression of CD73, CD90, and 

CD105. Examining the cell marker expression on the colony‐founding 

cells, we observed that most cells were positive for CD73 and CD90. 

Few cells were positive for CD105. As the CTPs proliferated and 

http:wileyonlinelibrary.com


formed colonies, we found that the trend of significant expression for 

CD73 and CD90 and relatively little expression for CD105 remained 

consistent. Their progeny do not conform to the positive cell marker 

criteria set by International Society of Cell Therapy for MSCs. Previous 

publications show variation in CD105 in early culture and an increase 

in CD105 expression with more time in culture (Anderson, Carrillo‐

Gálvez, García‐Pérez, Cobo, & Martín, 2013; Pittenger et al., 1999; 

Wang et al., 2014). It is possible that the progeny of CTPs from trabec-

ular surface cells may go on to fully express all three markers at high 

levels after a longer period of expansion. However, although individual 

batches of culture expanded MSCs may vary little with respect to 

expression of CD73, CD90, and CD105, they vary widely with respect 

to other markers associated with multipotent cell properties (Qadan 

et al., 2018). As a result, alternative markers may provide more dis-

criminating metrics for prediction of future performance. 

Time‐lapse microscopy enabled quantitative characterization of 

two key functional metrics of colony formation: the time lag between 

plating and cell division for CTPs and the doubling time of the progeny 

of individual CTPs after first cell division. Although these parameters 

varied between CTPs, CD90 expression by CTPs was associated with 

significantly longer doubling time (slower proliferation). CTPs that 

expressed CD105 at 24 hr demonstrated significantly shorter lag time 

between plating and first cell division, possibly suggesting that expres-

sion of CD105 may increase the chance that the CTP involved is 

already in the cell cycle and divide. Other studies that show subpopu-

lations of MSCs based on CD90 and CD105 expression may have dif-

ferent osteogenic potential (Pérez‐Silos, Camacho‐Morales, & 

Fuentes‐Mera, 2016). However, this was not tested in this study. 

The correlation between lag time, proliferation rate, and cell‐

surface marker expression may provide a functional means of 

selecting subpopulations of CTPs with preferred biological attributes. 

All of the CTPs derived in Patient 2 were found to have lag and dou-

bling time significantly lower than those from other patients, reinforc-

ing the concept of patient to patient variation. However, the clinical 

implications (diagnostic or predictive value) of this variation remains 

uncertain. 

Using the mathematical model, we were able to quantitatively 

characterize differences between colonies in proliferation rate, lag 

time, and migration using total cell area and triple positive cell area 

occupied in discrete radial intervals. Although these parameters can 

be estimated with conventional imaging, individual cell tracking of 

centroids, trajectories, and automated lineage mapping over time 

would be required. Such analysis is problematic when cells are over-

lapping and touching in phase‐contrast images. This method of param-

eter estimation by modelling cell area growth provides a simpler 

alternative approach for clonal population characterization. 

Colonies with higher cell proliferation rates were associated with 

higher migration rates. These colonies with faster growth were also 

associated with higher rate of triple positive area expression. By 

equally weighing all simulation parameters, colonies were ranked, 

thereby categorizing specific colonies that could be suitable for pick-

ing and selection for further expansion based on a combination of pro-

liferation rate and cell marker expression. Different ranking 

methodologies can be used depending on the specific needs or release 

criteria for a cell therapy product. 
This model was developed to deal with the limitations of the 

imaging data. Segmenting single cells with conventional automated 

thresholding techniques, such as Otsu's method, is not possible due 

to the halo effect and shade off artefacts in phase‐contrast imaging 

and necessitated the use of a manual threshold. Improved automated 

segmentation algorithms designed for phase‐contrast images can be 

used to more accurately segment individual cells (Chalfoun et al., 

2013; Jaccard, Szita, & Griffin, 2017). Additionally, quantitative phase 

imaging technologies, which are free of artefacts and more easily seg-

mented with conventional threshold algorithms, can be utilized here 

(Zangle & Teitell, 2014). 

Additionally, cells are constantly changing in cell area as they 

move and divide over the course of the time lapse, which contributed 

to experimental noise in the area measurements. Model assumptions 

of radial symmetry can be broken when cells divide, but the natural 

tendency for cells to migrate away restores radial symmetry in colo-

nies over time. 

To evaluate cell migration coefficients, we simulated the cell num-

ber density variation with radius. Setting the outer radius of the model 

could be automated to more easily prevent empty simulation intervals. 

With sparse data, it was necessary to reduce the number of experi-

mental radial intervals to 4 to get a reasonable estimates of D0 and 

D0,E. For cell types that change shape less over time, more experimen-

tal intervals could be used to provide better granularity to the output 

data. Cell marker data were limited by fluorescence cell marker label-

ling performed every 24 hr. More frequent labelling and fluorescence 

imaging may provide more accurate determination of relevant varia-

tion in expression parameters. Longer term time‐lapse and modelling 

studies are needed to determine if early proliferation, migration, and 

marker expression behaviour can be used to predict and select for pre-

ferred biological potential among CTP progeny. 

In this study, characterization of colony‐founding cells began 

24 hr after seeding. Imaging the cells immediately after seeding is 

compromised by the presence of obscuring nonadherent cells, which 

must be removed. Therefore, changes in cell marker expression that 

may have occurred between the time of seeding and 24 hr later were 

not observed. Previous studies have identified 13 hr as the mean 

adherence time for MSCs (Schlie, Gruene, Dittmar, & Chichkov, 

2012). An earlier media change and characterization of the colony‐

founding cells may better reflect the native state of CTPs. 

Future work includes analysing other morphological attributes as 

well as surface markers that may have predictive value in identifying 

CTP subtypes with preferred biological attributes in short‐ and long‐

term cultures and in tissue‐specific differentiation assays. Migration 

rates determined from mathematical modelling can also serve as a mea-

sure of potency. Proliferative colonies with higher migration rates tend 

to be more chondrogenic than slower proliferating colonies (Bertolo 

et al., 2015). Non‐invasive assessments of cell morphology based on 

observed differences in culture‐expanded MSC populations of differ-

ent trilineage differentiation capabilities may be informative in inferring 

colony‐level heterogeneity (Seiler et al., 2014). However, trilineage dif-

ferentiation needs to be linked to early functional metrics and surface 

markers to enable modelling and selection based on biological potential. 

To our knowledge, this is the first application of live‐cell, time‐

lapse imaging for quantitative analysis of the colony formation assay. 



Time‐lapse imaging and image analysis increased the accuracy of the 

CFU assay by moving from the apparent prevalence, on the basis of 

the assumption that one CFU founded every apparent colony, to 

directly measuring the observed true CFU prevalence. Direct observa-

tion provides more definitive documentation of colony‐founding cells 

in the starting cell population and improves estimates of CFU preva-

lence. Measurement of colony formation parameters as determined 

by our direct analysis more accurately characterizes CFU heterogene-

ity. These methods directly enable increased precision in CTPs assays 

and in examination of early variation in biological performance that 

may be used to dissect hierarchy in native tissues and in the selection 

of CTP clones and sources with preferred biological performance for 

use in cell therapy. 
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Data S1: Supporting Information 

Figure S1: Caprine cells were used as a negative control for nonspe-

cific binding of surface markers. Caprine bone marrow cells were har-

vested under a protocol approved by the Clevelend Clinic Institutional 

Animal Care and Use Committee. Mesenchymal stem cells were used 

as a positive contro; for CD73, CD90, and CD105 positive cells (Texas 

A&M Health Science Center, Temple, Tx). Unstained trabecular surfce 

cells cells were used as a negative control for auto fluorescence and 

lgG1 Isotype control (Bio Legend, San jose CA) was used to test for 

nonspecific binding. Surface markers were stained at a 1:150 dilltion. 
FIGURE A1 Flow chart of image processing and analysis steps. ROF: Ru
Antibodies demonstrated specific binding based on positive staining 

with MSCs used as a positive control. Antibodies demonstrated low 

non‐specific binding based on low staining to caprine cells and low 

isotype staining to trabecular surface cells. All scale bars 500 μm. 
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APPENDIX  A  

IMAGE PROCESSING AND ANALYSIS 

Image processing and analysis was performed using MATLAB and 

Fiji using the following workflow. Phase‐contrast processing, cell 

segmentation, and colony segmentation were performed using cus-

tom MATLAB scripts. Cell marker segmentation was performed 

sequentially using Fiji. All time points were processed for phase‐

contrast processing, cell segmentation, and cell marker segmenta-

tion. Day 6 images were processed using automated colony segmen-

tation. Based on the resulting output masks from MATLAB and Fiji 

processing, analysis of colony parameters at Day 6 was performed 

in Fiji using the Analyze Particles function on the Colony Mask 

and redirecting to the Cell Mask and Cell Marker Masks to get den-

sity metrics. 

For all other time points, cells were manually traced back to iden-

tify the colony lineage and the colony‐founding cell. Image registration 

between tiles is not critical for cell modelling as model inputs are made 
din–Osher–Fatemi 
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with respect to the centroid of the colony, which is automatically iden-

tified. Image registration can be added to improve visualization for 

identifying the colony‐founding cell. 
FIGURE B1 Sensitivity analysis for colony 
parameters. Parameters were estimated for 
nonfixed and fixed cases for lag phase and 
contact inhibition. Dotted line in each plots 
represents 1:1 line where points would lie 
when parameters were unchanged [Colour 
figure can be viewed at wileyonlinelibrary. 
com] 
On the basis of cell tracking and resulting masks, analysis of fluo-

rescence images at 24‐hr intervals was similarly processed in Fiji using 

the Analyze Particles function on the Colony Mask and redirecting to 



FIGURE B2 Sensitivity analysis for colony rank. Colony rank was 
evaluated following parameter estimation with fixed lag phase and 
contact inhibition constant. Three colonies had ranks change by one 
than one rank. The remaining nine colony ranks were unchanged or 
changed by one [Colour figure can be viewed at wileyonlinelibrary. 
com] 
the Cell Mask and Cell Marker Masks to get density metrics. Cell 

Masks, Cell Marker Masks, and Colony Masks from all time points 

were used as inputs into the colony model. 

Plots made in MATLAB using modified beeswarm plot and break 

axis functions from MATLAB Central File Exchange (Jonas, 2017; 

MikeCF, 2014). MATLAB source code for image processing analysis 

and colony model parameter estimation is available at https://sites. 

google.com/case.edu/edward‐kwee/. 

APPENDIX  B  

COLONY  PARAMETER  SENSITIVITY  

ANALYSIS  

Sensitivity analysis was performed by examining simulations with fixed 

lag phase duration (τ) at 40 hr and contact inhibition constant (φ) at 2.  

These values were chosen to analyse colony formation after most colo-

nies passed the lag phase. Most colonies initiated proliferation within 

40 hr of the lag phase. A contact inhibition constant of 2 was within 

the range of estimated parameter values. From simulations, the effect 

of parameter change was evaluated, and colonies were reranked. 

When fixing lag phase and contact inhibition, proliferation rates 

were largely unchanged between nonfixed and fixed parameter simu-

lations. The estimates were of the same order of magnitude in both 

simulation cases (Figure B1). Parameter estimates for total cell prolif-

eration, triple positive cell proliferation, and triple positive cell migra-

tion were relatively unchanged with parameters lying close to or 

equally distributed across the 1:1 line. For fixed lag phase and contact 

inhibition, estimates of the total cell migration coefficient were higher 

than for the nonfixed case. This can be attributed to migration occur-

ring before the 40 hr. This indicates that early cell contact is important 

for accurate parameter estimation. Overall, the model parameters 

were comparable, within one order of magnitude when lag time and 

contact inhibition were not fixed. 
Additionally, when reranking colonies desirable for use as a ther-

apy, we found that the colony ranks were mostly unchanged 

(Figure B2). With the exception of three colonies, colony rank was 

either unchanged or changed by only one position. The highest ranked 

colony was also unchanged. Therefore, given that parameter estimates 

were within the same of order of magnitude and colonies' ranks were 

generally unchanged, it appears that the model analysis is insensitive 

to changes in lag phase and contact inhibition parameters. 
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