
SURVEYING UNDERWATER SHIPWRECKS WITH PROBABILISTIC

ROADMAPS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Amy Jeannette Lewis

June 2019

© 2019
Amy Jeannette Lewis

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Surveying Underwater Shipwrecks with

Probabilistic Roadmaps

AUTHOR: Amy Jeannette Lewis

DATE SUBMITTED: June 2019

COMMITTEE CHAIR: Zoë Wood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Jonathan Ventura, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Julie Workman

Computer Science Lecturer

iii

ABSTRACT

Surveying Underwater Shipwrecks with Probabilistic Roadmaps

Amy Jeannette Lewis

Almost two thirds of the Earth’s surface is covered in ocean, and yet, only about

5% of it is mapped. There are an unknown amount of sunken ships, planes, and

other artifacts hidden below the sea. Extensive search via boat and a sonar tow fish

following a standard lawnmower pattern is used to identify sites of interest. Then, if

a site has been determined to potentially be historically significant, the most common

next step is a survey by either a human dive team or remotely operated vehicle. These

are time consuming, error prone, and potentially dangerous options, but autonomous

underwater vehicles (AUVs) are a possible solution.

This thesis introduces a system for automatically generating paths for AUVs to survey

and map shipwrecks. Most AUVs include software to set a lawnmower path for a given

region of ocean, and individualized paths can be set via specifying GPS encoded

nodes for the AUV to pass through. This thesis presents an algorithm for generating

an individualized path that permits the AUV, equipped with a camera to "see" all

sides of a region of interest (i.e. a shipwreck). This allows the region of interest

to be completely documented. Photogrammetry can then be used to reconstruct a

three-dimensional model, but a path is needed to do so. Paths are generated by a

probabilistic roadmap algorithm that uses a rapidly-exploring random tree to quickly

cover the volume of exploration space and generate small maps with good coverage.

The roadmap is constructed out of nodes, each having its own weight. The weight of

a given node is calculated using an objective function which measures an approximate

view coverage by casting rays from the virtual view and intersecting them with the

region of interest. In addition, the weight of a node is increased if this node allows

the AUV to see a new side of the region of interest. In each iteration of the algorithm,

a node to expand off of is selected based off its location in space or its high weight,

iv

a new node with a given amount of freedom is generated, and then added to the

roadmap. The algorithm has degrees of freedom in position, pitch, and yaw as well as

the objective function to encourage the path to see all sides of the region of interest.

Once all sides of the region of interest have been viewed, a path is determined to be

complete.

The algorithm was tested in a virtual world where the virtual camera acted as the

AUV. All of the images collected from our automatically generated path were used to

create 3D models and point clouds using photogrammetry. To measure the effective-

ness of our paths versus the pre-packaged lawnmower paths, the 3D models and point

clouds created from our algorithm were compared to those generated from running

a standard lawnmower pattern. The paths generated by our algorithm captured im-

ages that could be used in a 3D reconstruction which were more detailed and showed

better coverage of the region of interest than those from the lawnmower pattern.

v

ACKNOWLEDGMENTS

Thanks to:

• Mom, Dad, Hanna, Trent, and my family for always being my biggest fans. I

love you.

• Zoë for being a great advisor and friend. I will never be able to thank you

enough for the ICEX project and your constant support.

• Julie, Alex, and my SLO family for consistent love, confidence, food, and much

needed fun.

• The graphics team - Kirsten, Tim, and Kole for encouragement, debugging,

endless help, and laughs.

• My committee - Zoë, Dr. Keen, Dr. Ventura, and Julie for editing and much

appreciated help.

• My friends - Tori, Athena, Clara, Kirsten, Erik, Liam, Jake, Austin, Sam, Bria,

Martin, and Katie - for getting me through this crazy and wonderful year.

• The ICEX teams, specifically Chris Clark, Timmy Gambin, Roslyn Patrick-

Sunnes, Jane Wu, Jeffrey Rutledge, Katie Davis, and again, Sam Freed and

Zoë

• Bonita Galvan and Mitchell Keller for base code.

• Leanne for carrying the entire CSSE department.

• Scout, Charlie, Bailey, Olive, Tigger, and all the other good dogs for being dogs.

• Andrew Guenther, for uploading this template.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

1.1 Photogrammetry . 2

1.2 Path Planning . 3

1.3 International Computer Engineering Experience 4

1.4 Contributions of this Thesis . 5

2 Background . 8

2.1 A Robot’s Degrees of Freedom . 8

2.2 Fundamentals of Path Planning for a Robot 9

2.3 Location of the Robot in Space . 10

2.4 Representing Space . 11

2.5 Path Planning in Unknown or Partially Known Environments 11

2.5.1 Probabilistic Roadmap (PRM) 12

2.5.2 Rapidly-Exploring Random Trees (RRT) 13

2.6 Photogrammetry . 14

2.7 Summary . 15

3 Related Works . 16

3.1 Various Path Planning Algorithms for AUVs 16

3.2 Probabilistic Roadmaps Algorithms for AUVs 17

3.3 Photogrammetry for Shipwreck Reconstruction 18

vii

3.4 Next Best View Path Planning . 19

4 Implementation . 21

4.1 Terminology . 22

4.1.1 Configuration Space . 22

4.1.2 Nodes . 23

4.1.3 Spatial Data Structure . 24

4.2 Probabilistic Roadmap Algorithm . 26

4.3 The Objective Function . 28

4.3.1 View Coverage . 29

4.3.2 Encouraging Exploration of Space for Greater Coverage 35

4.3.3 Bit Encoding to Keep Track of Sides Seen by Camera 36

4.4 High Weight Threshold Initialization 38

4.5 Root Node Selection . 38

4.6 Using the Spatial Data Structure . 39

4.7 Node Selection . 39

4.8 Node Generation . 40

4.9 Path Completion . 43

4.10 Replaying a Complete Path . 44

4.11 The Virtual World . 45

4.12 AUV Pathing . 46

4.13 Testing Details . 47

4.14 Implementation Summary . 47

5 Results and Validation . 48

5.1 Expected Results . 48

5.2 Hypothesis . 49

viii

5.3 Variables . 49

5.4 Measures . 49

5.5 Experiment Protocol . 50

5.6 Results and Validation . 51

5.7 Result and Validation Conclusions . 61

5.8 Algorithm Performance . 61

5.8.1 The Objective Function . 61

5.8.2 Cubic Hermite Interpolation 63

5.8.3 The Hash Map . 64

5.9 Time Performance . 64

5.10 Analysis of Parameters . 65

5.11 Limitations . 66

6 Conclusions . 68

6.1 Conclusion . 68

6.2 Future Work . 69

BIBLIOGRAPHY . 71

ix

LIST OF TABLES

Table Page

5.1 Summary of Paths with Good Potential. Includes the images aligned
out of how many were inputted to Agisoft Photoscan ®, the percent
of those actually aligned, and the average weight of each path. . . . 52

5.2 Point Cloud data for PRM and lawnmower paths 60

5.3 Distance covered by the selected paths in virtual world units. . . . 61

5.4 Average, minimum, and maximum weight from each generated path. 63

5.5 Summary of generated paths. Includes the length of each path, the
number of nodes in each roadmap, and the time to generate each
path in seconds. 65

x

LIST OF FIGURES

Figure Page

1.1 Iver3 - the AUV used by ICEX [5] 4

1.2 3D Reconstruction of the Fairey Swordfish [5] 5

1.3 3D Models from the Original Shipwreck, the lawnmower pattern, our
algorithm . 7

2.1 Three Rotation Actions of an Object in 3D Space [23] 8

2.2 Result of Photoscan aligning the images to create a 3D model. . . . 15

3.1 Yamafune et al. Lawnmower Pattern [24] 19

4.1 System Diagram of the PRM Path Generation Algorithm 22

4.2 AUV configuration in space. 24

4.3 Three-Dimensional Uniform Spatial Grid [17] 25

4.4 Rays cast towards the region of interest from camera to determine
weight of node. 30

4.5 Where the ray intersects the plane at the tValues [18]. 32

4.6 Rays may intersect planes but miss the bounding box [18]. 33

4.7 Rays cast towards area of interest from camera to determine weight
of node. 35

4.8 Each node (blue sphere) represents a configuration of the AUV while
following the path. 44

4.9 The Virtual World. 45

4.10 The Bristol Beaufighter. 46

5.1 3D Models from the Original Shipwreck, the lawnmower pattern, and
PRM Path 6 . 53

xi

5.2 3D Model created by Lawnmower Pattern 54

5.3 3D Models created by PRM 11 and PRM 6 55

5.4 Point Cloud of Original Shipwreck 57

5.5 Point Cloud from Lawnmower Pattern 58

5.6 Point Clouds from paths PRM 3 59

5.7 Point Clouds from paths PRM 11 60

xii

Chapter 1

INTRODUCTION

Almost two thirds of the Earth’s surface is covered in ocean, and yet, only about 5% of

it is mapped. Yes, there are topographies of the seafloor publicly available, but these

are created by ambiguous satellite estimates. Robert Ballard, the oceanographer best

known for re-discovering the Titanic, claims these estimates are like throwing a wet

blanket over the table set for a dinner party. One might be able to make out the

outlines of the candelabras, but not much else. No one would know that there are

utensils, plates, or food hidden beneath the somewhat bumpy surface [11]. In other

words, the satellite estimates can only provide a rough image of what hides on the

seafloor.

There is an unknown amount of sunken ships, planes, and other artifacts hidden

under the sea. Currently, searching for archaeological sites underwater involves many

time consuming steps with expensive equipment. The first step is to select a large

area to survey. While doing this, it is important to take into account the risk that the

value of the site and the potential artifacts there could be damaged (e.g. fisheries,

pipeline construction). Next, a side sonar scan can provide a high altitude survey.

Third, the sonar images are analyzed by experienced people who then rank potential

sites. There is normally only enough time and resources to revisit the highest ranked

sites, so the ranking is significant. Then, sites are revisited by an accomplished human

dive team or remotely operated vehicles (ROVs) to confirm or deny its value [16]. The

last, and most important step, is data collection from the site. The data can be used

to map the site and create reconstructions for further research. This method still

leaves many of its steps up to humans to complete, and human time is expensive in

addition to being error prone and risky.

A potential safer and less expensive solution is the use of Autonomous Underwater

Vehicles (AUVs). New advances in robotic hardware have led to AUVs that, in many

1

aspects, exceed the performance of human dive teams. AUVs can dive thousands

of meters deep for many hours, while human dive teams are normally limited to

100 meters. Also, the advances made in sonar imaging technology allow for higher-

resolution images to be taken of the seafloor by AUVs. More importantly, AUVs can

dive without risk to human life. Along with advances in software, much of the survey

process described above can be automated by AUVs [5]. By leaving this repetitive

step to technology, archaeologists and others interested in what hides on the seafloor

will have more time to focus on the content of their research.

Most importantly, AUVs are excellent for data collection. Detailed 3D reconstruc-

tions can be created from the images collected at a site. The reconstructions can be

shared and examined to help motivate the care and study of these historically sig-

nificant sites. Dr. Timmy Gambin from the University of Malta would like to apply

this to studying the decay of these sites. If a site is mapped once a year, decay can

be tracked to help decide on issues like site maintenance, fishing and shipping rules,

and if recreational diving is affecting the site.

1.1 Photogrammetry

AUVs can be equipped with a camera to collect video data. This video data can then

be split into a series of images to be used in photogrammetry. Photogrammetry is the

process of generating a digital 3D model by taking measurements from a set of images.

Photogrammetry software, like Agisoft PhotoScan®, is used to align the photos,

create a dense point cloud, build a mesh, and then build a texture. The resulting

reconstruction can then be exported. In order to create accurate reconstructions, it

is important to have overlapping images from multiple different views of every aspect

of the site. If the collected images allow photogrammetry to successfully produce

a detailed reconstruction, that 3D model can be shared and used to represent the

shipwreck in studies.

2

1.2 Path Planning

For an AUV to survey a site, it must be given a path to follow. Assuming the side

sonar scan has provided low resolution scans of the region of interest, it is possible to

compute a bounding box for the volume where the potential shipwreck is. Then, a

path that allows the AUV to effectively "see" all sides of the bounding box containing

the shipwreck is needed. Paths can either be hard-set or created in real-time with in-

telligent path planning. The lawnmower pattern or a basic circle pattern are examples

of commonly used pre-computed paths. Intelligent path planning algorithms include

Dijkstra’s shortest path, A*, the fast-marching based algorithm, and the probabilistic

roadmap algorithm.

According to Yamafune et al., the most effective way to collect data is by following

a lawnmower pattern [24]. In a lawnmower pattern, data is collected by moving

repeatedly up and down looking down from above the site. Due to the repetitive

nature of the path, image alignment for photogrammetry is high. For Yamafune et

al. there was always above 90% of images aligned. Yamafune et al.’s work is discussed

in more detail in Chapter 3. While the lawnmower pattern gets great coverage of the

top of the shipwreck, it does not visit the sides of the region of interest. The standard

lawnmower pattern is a built in pathing option for AUVs, but it is not sufficient. If

images are not collected of the sides of the shipwreck, the reconstruction will also lack

the sides and be incomplete.

Intelligent path planners are dynamic and offer the option to influence paths

towards more specific goals - like collecting images of all sides of the region of interest.

The probabilistic roadmap algorithm uses a rapidly-exploring random tree to quickly

cover the volume of exploration space and generate small maps with good coverage.

View coverage can be determined by casting rays from the camera view (whether it

is a camera on the AUV or a virtual camera) and intersecting them with the region

of interest. The probabilistic roadmap algorithm can then automatically generate a

path with good coverage of the shipwreck by moving to regions that offer these views.

3

1.3 International Computer Engineering Experience

This thesis has grown out of the International Computer Engineering Experience

(ICEX), a decade-long project between Harvey Mudd College and California Poly-

technic State University, San Luis Obispo. For the ICEX project, robotics and com-

puter graphics students from the two universities travel to Malta with an AUV. With

the AUV they are able to gather video, sonar scans, and data for photogrammetry.

The collected data is then used to create 3D computer graphics models of the found

artifacts (e.g., shipwrecks and plane wrecks) that are put into a virtual underwater

world.

Figure 1.1: Iver3 - the AUV used by ICEX [5]

Although the methods this thesis explores are general, ICEX is focused specifi-

cally on finding artifacts in the part of the Mediterranean sea surrounding the island

country of Malta. Malta’s rich history includes the Tarxien temple site, one of the

oldest freestanding structures on Earth, initially built between 3,600 and 3,000 BC [7].

Aspects of this civilization’s relationship with the sea is depicted in the Tarxien tem-

ple with fish and ship images (c.3000-2500 BC) [12]. This means to archaeologists

concerned with underwater artifacts, the window of potential wrecks covers 3000BC

to the present.

4

The abundance of the Mediterranean sea around Malta is not made up of just

ancient trade ships, but is also scarred by the Second World War. Modern estimates

suggest that 707 aircraft were lost in the Mediterranean theatre from the British

Royal Air Force alone. For the Axis power aircraft, estimates range from 1,129 to

1,252 destroyed [2]. This destruction leaves thousands of artifacts for archaeologists

to recover. In 2017, the ICEX team made a historically significant discovery of a

wreck - a Fairey Swordfish (an Allied WWII airplane) shown in Figure 1.2.

Figure 1.2: 3D Reconstruction of the Fairey Swordfish [5]

1.4 Contributions of this Thesis

This thesis explores a path planning algorithm used to map the shipwrecks given an

identified region of interest. While AUVs are autonomous by definition, they do need

to be given a path to follow in order to explore potential archaeological sites. Instead

of just following a set path, AUVs would have a better chance of getting imagery

while surveying if the path adapted to the site.

We have developed an intelligent path planning algorithm that takes into account

the geometry of the site of interest to create a path for the AUV. The path is optimized

to see all aspects of the region of interest with good visual coverage. Our algorithm can

5

automatically generate paths using a robotics motion planning algorithm, specifically

the probabilistic roadmap (PRM). Small maps with good coverage are generated by

rapidly-exploring random trees. Each node of the path is a potential viewpoint of the

site, and is only added to the final path if it meets certain criteria (e.g., good view of

the wreck, not in the same immediate location of previous nodes).

The algorithm was tested in a virtual world where the virtual camera acted as

the AUV. All of the images collected from our automatically generated path were

used to create 3D models and point clouds using photogrammetry. To measure the

effectiveness of our paths versus the pre-packaged lawnmower paths, the 3D models

and point clouds created from our algorithm were compared to those generated from

running a standard lawnmower pattern. The paths generated by our algorithm cap-

tured images that could be used in a 3D reconstruction which were more detailed and

showed better coverage of the shipwreck than those from the lawnmower pattern. A

comparison of the side profiles of the original shipwreck 3D model used in the vir-

tual world, the 3D model from the lawnmower pattern, and the 3D model from our

algorithm is shown in Figure 1.3.

6

Figure 1.3: 3D Models from the Original Shipwreck, the lawnmower pat-
tern, our algorithm

7

Chapter 2

BACKGROUND

The goal of this work is to automatically create paths for an AUV to travel through

space and capture images of a site of interest which is represented by a bounding box

in three-dimensional space. Our algorithm must support the way the AUV can move

through space, thus we present the degrees of freedom for our system, background on

path planning for robots, and photogrammetry.

2.1 A Robot’s Degrees of Freedom

Degrees of freedom are used to define the configuration of an object, in this case

a robot, in three-dimensional space. The x, y, and z of position represent the first

three degrees of freedom. They exist is relation to the current coordinate frame that

the robot is in. The pitch, yaw, and roll of orientation are the next three degrees of

freedom shown in Figure 2.1 below.

Figure 2.1: Three Rotation Actions of an Object in 3D Space [23]

8

Refer to Figure 2.1 for an explanation of the rotational degrees of freedom. We

define the coordinate frame as follows: the x-axis is shown in red in Figure 2.1, the

y-axis is shown in green, and the z-axis is in blue and is aligned along the length of

the plane. Yaw is the plane turning left or right, or the rotation around the vertical

y-axis. Pitch is the plane turning up into the sky or down towards the ground, or

rotation around the horizontal x-axis. Roll is the plane rolling over its wings around

the z-axis, so (hopefully) something only trained fighter pilots do.

2.2 Fundamentals of Path Planning for a Robot

The key problem in path planning is finding out if it is possible for a robot to move

from one position to another while remaining in the configuration space, or “the space

of all possible configurations of the robot” [4]. The invalid states, which the robot

cannot occupy, are referred to as obstacles. A configuration itself defines the state of

the robot, including its position, direction, and camera angle. To successfully navi-

gate the configuration space, it is necessary to gather information on the following:

robot perception, localization, and mapping. Robot perception is how the robot de-

termines its configuration space and which parts of the environment have obstacles.

Localization is how the robot determines its location in the configuration space. Map-

ping involves allowing the robot to determine its configuration space by building a

representation of the its surroundings [9]. Solving for all of these elements together

make it possible for a robot to navigate its configuration space.

In general, for robot path planning, the goal is to have a robot start at a location

S and move to location T while remaining in the configuration space. Both the start

and end locations also must be in the configuration space. If a direct path exists in

the configuration space from S to T, then the robot should follow that straight line.

If there is an obstacle in the way, the robot should follow the straight line drawn from

S to T (ST) until it reaches the obstacle, circumnavigate it, return to ST at a point

closer to the goal than where the robot encountered the obstacle, and then continue

along ST once again moving towards the goal. If no point closer to the goal is found,

9

the robot can determine that there is no path to the goal T.

Algorithm 1: How the Robot Navigates its Configuration Space along ST [9]
Result: The Robot Navigates its Configuration Space along ST

1 visualize a direct path from the starting location S to the goal T ;

2 while the goal T is not achieved do

3 while the path ST to the goal is not obstructed do

4 move towards the goal along the path ST ;

5 if the path is obstructed then

6 mark the current location as P and circumnavigate the obstacle

until the robot either:;

7 (a) hits the line ST at a point closer to T than P and can move

towards T, in which case the robot follows ST ;

8 (b) returns to P in which case T is unreachable;

9 end

10 end

11 end

While this Algorithm 1 does work, it is still necessary to have the robot’s local-

ization and mapping to generate complete paths.

2.3 Location of the Robot in Space

It is a common mistake to think that if the starting position of the robot and every

move it has been instructed to make are known, then the location of the robot must

also be known. This makes sense, but localization is not that straightforward. The

real world is not so perfect. For every move the robot makes, an epsilon needs to be

added to account for the small, random errors that are associated with motion [9].

Path planning for underwater vehicles introduces additional potential error factors

10

including rapidly varying currents and the fact that geolocation can only happen at

the surface.

Therefore, if the the starting position S of the robot is:

(x0, y0)

then the location of the robot after N motions would be:

(xN , yN) = (x0, y0) +
N∑
i=1

(∆xi,∆yi) (2.1)

2.4 Representing Space

Spatial decomposition allows the representation of space itself, instead of representing

individual objects within it. A number of different subdivision methods can be used

for sampling this space. By dividing the configuration space into regions, it can be

more simply described as a grid. In two dimensions, these grids are sometimes known

as pixel maps. In three dimensions, like real-world space and space in this thesis,

the sampling elements are called voxels. No assumptions are made regarding object

type, so the grid can represent anything - a classroom floor, a warehouse, or the

ocean. However, the main disadvantage of this grid that is even when much of the

environment is empty or occupied, fidelity is limited by cell size and the representation

storage is intensive [9].

2.5 Path Planning in Unknown or Partially Known Environments

In the classic examples of path planners, knowing the environment in advance is

a requirement. This allows the robot to calculate, plan its path, and then begin

executing it. However, this is not accurate in the real world. At some point while

the robot is executing its path it will most likely encounter an event that makes the

path invalid. This causes the robot to replan, wasting the initial plan. Instead of

starting over and replanning, repairing the plan can be more efficient. D*, Dynamic

11

A*, is an extension of the A* algorithm that allows path replanning when new events

occur. Replanning the path involves searching the entire configuration space, and for

complex spaces or complex robots with many degrees of freedom, this is not practical.

Algorithms like Randomized Path Planner or Probabilistic Roadmap (PRM) can be

used in these cases.

2.5.1 Probabilistic Roadmap (PRM)

For PRM algorithms, instead of sampling all of the configuration space, the space

is sampled probabilistically instead. This is completed in two phases: the learning

phase, where the roadmap is constructed in the configuration space, and the query

phase, where probabilistic searches are conducted using the roadmap to accelerate

the search.

In the learning phase, an undirected, acyclic graph is built in the configuration

space where an edge connects two nodes if and only if a valid path can be found

between the nodes, with nodes representing locations. To grow, random new locations

are chosen in the configuration space and the algorithm attempts to make a path from

this new location to one of the nodes already in the graph. The graph continues to

grow until the path planner decides it is complete - for example, a certain path length

or time limit is reached.

In the query phase, the search is sped up by using the roadmap. When a path is

being built between two nodes, J and K, paths first are found from J to some node

J’ in the roadmap and from K to K’. The roadmap can then navigate between J’ and

K’. Following each query, the nodes and their edges that connect them to the graph

are added to the roadmap [9].

12

Algorithm 2: Probabilistic Roadmap Algorithm [6]
Result: Path from starting node S to ending node T

1 R(N, E) = Roadmap(Nodes, Edges);

2 S = start configuration;

3 while the goal T is not achieved do

4 select a random node x to expand from;

5 randomly generate x’ from x ;

6 if edge e from x to x’ is collision free then

7 R.add(x’, e);

8 if x’ reaches the end T then

9 return complete path;

10 end

11 end

12 end

The success or failure of the PRM algorithm is left to how random the different

configurations generated are and the nature of the configuration space itself. For

example, expanding into narrower regions of the configuration space is important as

they are often high interest and offer access to other larger pieces of the configuration

space [14].

2.5.2 Rapidly-Exploring Random Trees (RRT)

PRMs are suited for multi-query cases while rapidly-exploring random tree (RRT)

handles single-query problems. RRTs make random selections in the path planning

process to avoid examining all of the configuration space. A RRT grows in the con-

figuration space starting from the initial position and expanding out until it reaches

the goal, although there is no promise that there will be a solution. The roadmap is

incrementally constructed as the search carries on following breadth-first search and

A* [9]. Once a path is created from start to end by an RRT, the path often needs

13

to be smoothed by a path smoothing operation like cubic Hermite interpolation to

make it operable for vehicles [8].

RRTs are a good approach for motion planning for several reasons. First, because

the maximum size of the search is limited, local searches minimize exploring plateaus.

They keep balance between exploration and exploitation during search. Also, only a

relatively small tree must be kept in memory [1].

2.6 Photogrammetry

Photogrammetry is the process of generating a digital 3D model from images by

making measurements from the images. Agisoft Photoscan®, takes images and uses

photogrammetry to align them, generate a point cloud, and then a mesh and texture.

The result of running Photoscan is shown in Figure 2.2. The images are taken from

stills or video - either from a virtual camera moving through a virtual world or from

a camera on an AUV. Framebuffer objects are objects in OpenGL that allow the

creation of user-defined framebuffers. This makes it possible to render to locations

other than the default framebuffer and, therefore, render without affecting what is

displayed on the main screen. When capturing images in a virtual world, individual

frames can be written out as images in a framebuffer object. The pipeline of taking

this camera data and generating 3D models and point clouds is discussed in more

detail by Seibert von Fock et al. [21].

14

Figure 2.2: Result of Photoscan aligning the images to create a 3D model.

2.7 Summary

The process of generating 3D models of shipwrecks requires many steps. The robot

needs to know both its configuration space and how it is located and orientated

within it in order to navigate and gather data. A robot’s degrees of freedom define

it in 3D space. Path planning is finding out if it is possible for a robot to move from

one position to another while remaining in configuration space. The probabilistic

roadmap algorithm uses a rapidly-exploring random tree to quickly cover the volume

of exploration space and generate small maps with good coverage. With a generated

path that provides good view coverage, a robot can follow the path and collect video

data. The video data can be split into images that can be aligned to generate 3D

models with photogrammetry.

15

Chapter 3

RELATED WORKS

Path planning, or motion planning, for mobile robots is not a new idea. There are

grid-based search algorithms, interval-based search algorithms, geometric algorithms,

reward-based algorithms, sampling-based algorithms, and many more. The trade-

offs of each algorithm and how they affect the final implementation are important to

understand, as there is often no individual best approach to the problem of path plan-

ning for autonomous vehicles. Detailed below are some of the previously completed

and popular methods used for path planning. Additional comments are also presented

on the major differences between the related works and the algorithm implemented

in this thesis.

3.1 Various Path Planning Algorithms for AUVs

Path planning for AUVs is not a new concept. Many planners use an algorithm called

A* to find an optimal path over the configuration space. For example, Carroll et al.

impose a regular grid and build a quadtree to represent collision-free space that they

then use A* to navigate through [3]. Garau, Alvarez, and Oliver introduce a heuristic

cost function that estimates the time the AUV would need to travel from one grid

point to the next making their algorithm more dynamic. It is even able to take ocean

currents into account [13]. Rao and Williams create a rapidly-exploring random tree

(RRT) algorithm to plan collision-free paths for an underwater glider in 3D space

[15]. Tan, Sutton, and Chudley also create a RRT algorithm to plan collision-free

paths in three-dimensions while also accounting for vehicle dynamics [19].

Petres et al. account for vehicle dynamics as well in their path-planning algo-

rithm with a fast marching-based approach. Their approach involves developing a

fast-marching algorithm to efficiently find a continuous two-dimensional path in an

16

environment, accounting for ocean currents with an extension of the original fast

marching algorithm, and introducing the AUV’s constraints for optimal path curva-

ture. This algorithm is great for finding optimal paths from a starting configuration

to a goal configuration. However, this is not the point of this thesis. The goal of

this thesis is to automatically create paths for an AUV to travel through space and

capture images of all sides of a site. In other words, while the fast marching-based

algorithm can find optimal paths, it is not necessarily good at creating paths that

can get views of all sides of a shipwreck. We develop an algorithm that employs a

probabilistic roadmap that uses a rapidly-exploring random tree to quickly cover the

volume of exploration space in order to generate small maps with good coverage with

a goal of seeing all sides of the site.

3.2 Probabilistic Roadmaps Algorithms for AUVs

Davis wrote a probabilistic roadmap planning algorithm to generate virtual camera

paths for fly-throughs of a digital scene [6]. She uses cinematographic and geometric

principles to determine if potential viewpoints belong in the final path. The ‘rule

of thirds’ is the metric for cinematographic views and the normals of the 3D model

relative to the camera viewpoint represent the geometric principles. Similarly to

our algorithm, a RRT is implemented to quickly cover space generating small maps

with good coverage. However, there are some differences as well. First, while she

is planning for good viewpoints, the goal of this thesis is to create paths with good

coverage. Yes, good viewpoints may provide good coverage, but the goal is not the

same. Additionally, Davis’ algorithm has degrees of freedom in only pitch and height

as her virtual camera follows a roughly circular path. Our algorithm has freedom in

both pitch and yaw, and has no given radius.

The research by Davis was continued the following year by Clark et al. [5]. The

goal of this work was still to create virtual camera paths for fly-throughs of a digital

scene, but with an additional degree of freedom - yaw. While the path was still given

a radius to influence a circular path, it could rotate on the y-axis. This allowed the

17

paths to vary around the vertical axis, creating more random and interesting views

from a cinematographic perspective. However, the goal of Clark et al.’s work was still

to create good cinematographic and geometric views instead of getting good coverage

while surveying a shipwreck.

Viswanathan et al. also implemented a motion planner with an RRT with a goal

similar to ours - “to obtain images from multiple viewpoints of the wreck to enable

off-board 3D mapping via photogrammetric reconstruction” [20]. In other words, they

also wanted good coverage while surveying a shipwreck. However, there are differences

in how they approach this solution. Most notably, in node selection. Node selection

for this thesis is discussed thoroughly in Section 4.7, but in short, either a node is

selected randomly from nodes that have a weight above a certain threshold or a node

is selected if it is from a region that has been explored the least at that moment.

Viswanathan et al. implemented node selection by either selecting a random node or

selecting a node from a “high weight node” list. This list is made of previously grouped

nodes that all have weights above a certain value, so in a way it performs similarly to

the node selection above a certain weight threshold that this thesis adopts because

nodes are guaranteed to have a high weight. How Viswanathan et al. determine node

weight is significantly different than our objective function. Our objective function, as

described in Section 4.3, measures an approximate view coverage by casting rays from

the virtual view and intersecting them with the region of interest. Viswanathan et

al.’s objective function gives a high objective score to nodes correlating to areas with

a high degree of elevation change. Also, like Davis’s algorithm, in node generation,

rotation is only free around one axis instead of two as in our algorithm. In the end,

both the work of Viswanathan et al. and our own result in 3D models of surveyed

shipwrecks.

3.3 Photogrammetry for Shipwreck Reconstruction

Yamafune et al. share the same goal in their work as our own - to survey shipwrecks

for the purpose of reconstruction. Their pipeline involves “extracting, integrating, and

18

sharing archaeological information from tridimensional models” [24]. The differences

between their work and ours is in how the data is collected. Instead of an AUV,

Yamafune et al. use a team of professional human divers to capture their video data.

Additionally, they follow a lawnmower pattern as shown in Figure 3.1 as opposed to

our PRM generated path.

Figure 3.1: Yamafune et al. Lawnmower Pattern [24]

Images collected from following the lawnmower pattern were then inputted into

Agisoft PhotoScan® to align the photos, create a dense point cloud, build a mesh,

and then build a texture. The completed model can then be used as a reference to

the actual shipwreck.

3.4 Next Best View Path Planning

Dunn et al. have also created a path planning for autonomous vehicles. With a goal

of creating detailed 3D reconstructions, their paths a motivated to get the “next best

view”. Computer vision is used to obtain the geometric structure of the scene being

reconstructed. The next best view is determined by their novel cost function that

“quantifies the expected contribution of future viewing configurations” [10]. By using

19

a cost-driven recursive search of immediate viewing configurations, the path can move

towards the next best view. Similar to our algorithm, once the path has determined

that it has seen every view, it is complete.

20

Chapter 4

IMPLEMENTATION

This chapter details the implementation of the AUV path planning algorithm. Proba-

bilistic roadmaps, a robotics motion planning algorithm, is used to create the paths as

a rapidly-exploring random tree explores the configuration space. After a root node

is generated and added to a newly initialized roadmap and spatial data structure, the

process of node selection, node generation, and node weighting continues until a path

is created. To create a path that fits the objectives of this thesis (i.e., viewing all

sides of the region of interest and having large coverage of the region of interest), we

use an objective function to evaluate any configuration with respect to these features.

This objective function allows us to compute the weight for any node in the configu-

ration space. More specifically, the objective function measures an approximate view

coverage by casting rays from the virtual view and intersecting them with the region

of interest. In addition, the weight of a node is increased if this node allows the AUV

to see a new side of the region of interest. While there are many potential paths,

we want to explore the configuration space completely to find the best paths. To do

this, our path planning algorithm uses a mix of randomly selected nodes with a high

weight (with the weight measured using the objective function) and nodes located in

less explored regions of the space. An overview of this is shown in Figure 4.1 below

and then covered in detail throughout this chapter. After that, other information

such as a description of the virtual world and implementation details are discussed.

21

Figure 4.1: System Diagram of the PRM Path Generation Algorithm

4.1 Terminology

Much of the terminology was covered in the background (Chapter 2), but in this

section it will be defined more specifically to this thesis.

4.1.1 Configuration Space

As stated in Section 2.2, the configuration space is “the space of all possible config-

urations of the robot” [4]. Here, the configuration space is a virtual representation

of a general volume of ocean encasing the region of interest. In the real world, this

region of interest is identified from low resolution side scan sonar data obtained from

a high altitude scan by the AUV [16]. A bounding box is placed around the region

of interest (i.e., the potential shipwreck), creating a constraint that keeps the robot

from colliding with it as well as defining the region we want to capture multiple good

views of for mapping and reconstruction. More specifically, the configuration space is

the position and pitch-yaw space within the bounding box of the virtual underwater

world.

22

4.1.2 Nodes

Nodes mark the potential robot configurations in the configuration space. Displayed

in Listing 4.1 is the information that each node contains.

c l a s s Node

{

vec3 po s i t i o n ;

Camera camera ;

f l o a t weight ;

i n t newSideSeen ;

vec3 v e l o c i t y ;

i n t index ;

i n t parentIndex ;

i n t path length ;

unsigned i n t h i t ;

}

Listing 4.1: Node Class

Position of the node is a valid potential location for the AUV in the configuration

space. The camera is oriented 90 degrees orthogonal to the AUV, thus, the view is

orthogonal to the velocity as shown in Figure 4.2. In the real world, the camera is how

data is collected. In this virtual world, the virtual camera represents the camera on

the AUV. In other words, all of the views generated in the path and captured by the

virtual camera are similar to what a camera on the AUV would collect. The potential

views captured by the camera are a major part of determining the weight of a given

node. The weight is high if it maximizes information gain and low if not. If a new side

of the wreck is visible from a node that had not been before, the weight is increased

as well. How weights are determined by the objective function is explained in more

detail in Section 4.3. Velocity is what determines the magnitude and the direction

23

in which the robot moves towards the next node in the path. Index represents the

ordered location of the node in the path. If a node’s index is n, its parent index

would be n - 1. Pathlength is the length of the current path generated by the PRM

algorithm. Finally, hit is an unsigned integer that uses 5 bits to keep track of which

sides of the region of interest have been seen so far. This is discussed in detail in

Subsection 4.3.3.

Figure 4.2: AUV configuration in space.

The starting configuration of the robot, the node where the PRM algorithm begins,

is called the root node. The root node is the first node placed on a tree called a

roadmap. The PRM algorithm populates the roadmap each time it runs. After a run

of the PRM algorithm, the roadmap contains all of the generated nodes including

those that will not be in the final path. The path is the selected set of nodes from

the roadmap with configurations that complete the goal of seeing every side of the

region of interest.

4.1.3 Spatial Data Structure

A spatial data structure is a division of three-dimensional space. They are often used

because they are “compact and depending on the nature of the data, they save space

24

as well as time and also facilitate operations such as search” [17]. One type of spatial

data structure, and the one implemented in this thesis, is a uniform spatial grid. As

shown in Figure 4.3, it can be drawn as a 3D grid. The bounds of space used for

creating our path planning algorithm is two times the bounding box of the region of

interest, but it should be noted that this bound is configurable. Every element, or

volume, of the grid is known as a voxel. Each voxel corresponds to a certain region of

space. All nodes that can be found within that region in the virtual world are placed

into the same voxel. In this way, it is possible to easily see which region in space has

the least nodes, and expand the roadmap in that direction. This process of using the

spatial data structure will be explained more in Section 4.6.

Figure 4.3: Three-Dimensional Uniform Spatial Grid [17]

25

4.2 Probabilistic Roadmap Algorithm

The PRM algorithm implemented in this thesis is given at a high level in Algorithm

3. It uses a rapidly-exploring random tree to explore the three-dimensional virtual

configuration space. The configuration space, as described in Section 4.1.1, is the 3D

position and pitch-yaw space in the virtual underwater world where the PRM can

generate paths with variation in x, y, z, pitch, and yaw.

The goal is to see as much of the region of interest as possible by exploring all of

potential space, checking that the views have good coverage of the region of interest,

and adding nodes to a roadmap until all sides of it have been marked as seen. In

Algorithm 3, the algorithm starts by creating a roadmap on Line 1 and a spatial data

structure on Line 2. On Line 3, the root node is added to the roadmap to act as the

root of the tree. The root node is also inserted into the spatial data structure. How

the root node is selected is described in Section 4.5. How nodes are stored in voxels in

the spatial data structure is detailed in Section 4.6. Lines 7 through 15 select which

node to expand from as described in Section 4.7. On Line 16, a node is generated

which is specified in Section 4.8. The new node is given a weight by the objective

function on Line 18 which is discussed in Section 4.3. If the new weight exceeds the

high weight threshold, the threshold is increased in order to maintain a high standard

for weight. Finally, once all sides of the region of interest have been seen, the loop

finishes and a path is outputted.

26

Algorithm 3: High Level PRM Algorithm for Path Generation
Result: A path through 3D space that visits all sides of the region of interest

1 RM(N, E) = RoadMap(Nodes, Edges);

2 SDS(P, V) = SpatialDataStructure(Position, Voxel);

3 Add rootNode to beginning of RM;

4 Insert rootNode into appropriate Voxel in SDS by its position;

5 while !allSidesSeen do

6 // select node n to expand off of

7 if even iteration of loop then

8 n = getNodeFromVoxelWithLeast();

9 else

10 index = RM.size();

11 while n.weight < highLevelWeightThreshold do

12 index = index - 1;

13 n = RM.at(index);

14 end

15 end

16 randomly generate n’ from n;

17 calculate edge e from n to n’;

18 n’.weight = calculateWeight(n’);

19 RM.add(n’, e);

20 SDS.insert(n’.position);

21 pathlength = n’.pathlength;

22 if n’.weight < highLevelWeightThreshold then

23 updateHighLevelWeightThreshold();

24 end

25 end

27

4.3 The Objective Function

To create a path that fits the objectives of this thesis (i.e. viewing all sides of the

region of interest and having large coverage of the region of interest), we use an ob-

jective function to evaluate any configuration with respect to these features. This

objective function allows us to compute the weight for any node in the configuration

space. More specifically, the objective function measures an approximate view cov-

erage by casting rays from the virtual view and intersecting them with the region

of interest. There are several factors that contribute to a node’s weight, and all of

them are motivated towards the goal of getting good views of all sides of the region

of interest.

Algorithm 4 shows the objective function discussed in this section. On lines 1

and 2, weight and the number of intersections are initialized to zero. The number of

rays that are cast from the camera is set to 200 and the camera rays are initialized.

Then, on lines 6 through 8, every ray is checked to see if it intersects the bounding

box around the region of interest. If it does, the number of intersections is increased.

This is detailed below in Subsection 4.3.1. On line 9, the weight is set to how many of

the cast rays intersect the bounding box. Lines 10 through 17 can increase the weight

if the node whose weight is getting set is not the root node. On lines 11 through 13,

if the new weight is greater than the weight of the parent, the weight is increased. On

lines 14 through 16, the weight is increased if any of the rays intersect a side of the

bounding box that had not been intersected (or “seen”) previously. This is discussed

in more detail in Subsection 4.3.2. Finally, on line 18, the weight is returned.

28

Algorithm 4: The Objective Function
Result: The weight of the node.

1 weight = 0;

2 numIntersections = 0;

3 numRays = 200;

4 //initialize 200 rays from camera to bounding box

5 cameraRays = rays[numRays];

6 for ray : cameraRays do

7 numIntersections += rayBBIntersection(ray);

8 end

9 weight = numIntersections / numRays;

10 if parentIndex != -1 then

11 if weight > roadMap[parentIndex]->weight then

12 weight += (numIntersections / numRays) * 0.25;

13 end

14 if this->hit > roadMap[parentIndex]->hit then

15 weight += (numIntersections / numRays) * 0.25;

16 end

17 end

18 return weight;

4.3.1 View Coverage

Most of what contributes to a node’s weight has to do with how much of the region

of interest is being seen at that configuration. From the configuration stored in the

current node, 200 rays are cast from the camera towards the bounding box that

surrounds the region of interest. Figure 4.4 shows this in a simplified manner where

the solid lines collide with the region of interest and the dashed line does not.

29

Figure 4.4: Rays cast towards the region of interest from camera to deter-
mine weight of node.

Every ray has an origin and direction as shown in Equation 4.1. The parameter

t can be any real value and, by changing it, we can use it to define any point on the

ray.

pt(t) = ray.origin+ ray.direction ∗ t (4.1)

Each ray originates at the current position of the camera and ends when it collides

with the bounding box around the region of interest or the far plane of the view

frustum. The view frustum is the region of space in the modeled world that is in the

field of view of the camera and may appear on the screen. The far plane represents the

maximum depth visible in the scene where everything behind it is clipped. Each ray

is oriented towards a random position on the far plane. This calculation is only made

once so the direction of the rays from the camera to the far plane remains consistent

as the camera moves through space. Then, for each ray, we use the camera’s location

30

relative to the current node’s position as the ray origin, and see how many of the rays

collide with the bounding box on their way to the far plane.

This computation is completed for every ray and is detailed in Algorithm 6, but

first, the logic behind it is explained in detail. For axis-aligned bounding boxes like

the one encasing the region of interest, we us Equation 4.2 to find where the Ray r

intersects one side of the bounding box.

r.origin.x+ r.direction.x ∗ t = bb.min.x (4.2)

Reordering this we get t0x in Equation 4.3. We can solve for the bounding box’s

maximum extent for the x-component in a similar way as shown in Equation 4.4.

t0x = (bb.min.x− r.origin.x)/r.direction.x (4.3)

t1x = (bb.max.x− r.origin.x)/r.direction.x (4.4)

The minimum and maximum extents, also known as tValues, are calculated for

the y-component and z-component as well. The problem then becomes finding which

of these values corresponds to an intersection (if the ray intersects the bounding box

at all). The tValues represent where the ray intersects the planes defined by each face

of the bounding box (or the individual sides) as shown in Figure 4.5.

31

Figure 4.5: Where the ray intersects the plane at the tValues [18].

The ray first intersects the planes defined by the minimum extent of the bounding

box - in Figure 4.5 this is t0x and t0y. While the intersections do occur on the plane,

this does not necessarily mean they lie on the bounding box. We can find which of

the tValues lie on the bounding box by comparing them as in Equation 4.5 for the

minimum extent and Equation 4.6 for the maximum extent.

tMin = (t0x > t0y)?t0x : t0y (4.5)

tMax = (t1x < t1y)?t1x : t1y (4.6)

Figure 4.6 demonstrates that rays can intersect planes while missing the bounding

box.

32

Figure 4.6: Rays may intersect planes but miss the bounding box [18].

This can be tested for by comparing the tValues as in Equation 5. If the test is

true, we can automatically return 0 because we know there is no intersection and the

ray is completely outside of the bounding box.

Algorithm 5: Ray Intersection
Result: If the ray misses the intersection with the plane.

1 if (t0x > t1y) || (t0y > t1x) then

2 MISS;

3 end

Otherwise, we extend this method to the third dimension [22]. The first seven

lines of Algorithm 6 cover testing intersections with the x and y-components of the

bounding box. Then, on lines 8 through 13, we reset the minimum tValue and maxi-

mum tValue to reflect the minimum and maximum for both the x and y-component.

This can then be compared to the z-component on lines 16 through 18 in the same

way we did in Equation 5. On line 19 we see which side was actually intersected by

the ray. This will be discussed in more detail in Subsection 4.3.3. Finally, we return

1 so that Algorithm 4 can account for another ray intersection.

33

Algorithm 6: Ray Bounding Box Intersection Function
Result: Int value 1 if Ray r collides with BoundingBox bb or 0 if not.

1 float tMin = (bb.min.x - r.origin.x) / r.direction.x;

2 float tMax = (bb.max.x - r.origin.x) / r.direction.x;

3 float tyMin = (bb.min.y - r.origin.y) / r.direction.y;

4 float tyMax = (bb.max.y - r.origin.y) / r.direction.y;

5 if (tMin > tyMax) || (tyMin > tMax) then

6 return 0;

7 end

8 if tyMin > tMin then

9 tMin = tyMin;

10 end

11 if tyMax < tMax then

12 tMax = tyMax;

13 end

14 float tzMin = (bb.min.z - r.origin.z) / r.direction.z;

15 float tzMax = (bb.max.z - r.origin.z) / r.direction.z;

16 if (tMin > tzMax) || (tzMin > tMax) then

17 return 0;

18 end

19 bitEncodeSidesHit(ray);

20 return 1;

For each ray, if it collides with the bounding box, the integer value 1 is returned,

0 if not. The returned integer values are added up for every ray as shown on lines 6

through 8 of the Objective Function - Algorithm 4. The total number of intersections

is then divided by the total number of rays to find a value for weight. Therefore, the

more rays that hit the bounding box, the higher the weight.

34

4.3.2 Encouraging Exploration of Space for Greater Coverage

As the goal is to see all sides of the region of interest, if a node offers a view of

a side that had not previously been seen, the weight is significantly increased as

shown on lines 11 through 13 of Algorithm 4. It is explained in Section 4.7 on

Node Selection that nodes with a weight above a certain threshold are selected for

expansion. Therefore, increasing the weight of nodes that offer new views encourages

expansion to continue in that new direction. How a ray determines if it has, in fact,

collided with a new side is explained in Subsection 4.3.3. Also, as seen on lines 14

through 16 of Algorithm 4, if a node’s weight is greater than it’s parent’s weight, it

is increased to keep the idea of continuing to expand towards high weight nodes. In

Figure 4.7, the sides of the region of interest in red have already been seen and the

white sides have not. There is a ray colliding with a white side of the box, so the

weight of the node would be increased.

Figure 4.7: Rays cast towards area of interest from camera to determine
weight of node.

35

4.3.3 Bit Encoding to Keep Track of Sides Seen by Camera

Due to the fact that there are 440 nodes, it would take quite a bit of space for every

node to hold five boolean values indicating if each of the visible sides of the region of

interest has been seen. Instead, each node holds an unsigned int where five bits are

encoded which sides of the region of interest have been seen by the camera.

Algorithm 7 shows how this is implemented. Every visible side of the bounding

box was given a general label (i.e. side1, side2, side3, side4, and side5). On lines 3 and

4, we calculate a float to see if the ray intersected the first side of the bounding box.

If the float value if greater than 0, the side was intersected and, therefore, pushed

back into the vector of intersected sides. This is reflected on lines 5 through 7. Lines

3 through 7 are completed in the same way for all of the sides of the bounding box.

Then, if any sides were pushed back into the vector, we encode its respective bit

to reflect that. Every side of the bounding box corresponds to a specific bit in the

unsigned int hit value that each node has. Thus, on lines 8 through 25, we test to

see if a side has been seen. If it has, we flip its respective bit. We also can set a bit

if it’s parent node has seen a side. This is how we can keep track of how many sides

of the bounding box have been seen for any potential path.

36

Algorithm 7: Bit Encoding Sides Seen
Result: An unsigned int with its bits set corresponding to what sides of the

region of interest have been seen.

1 vector<float> sidesHit;

2 //the following 5 lines are repeated for sides 2-5 as well

3 float side1 = bb.side1.normal.w - dot(r.origin, vec3(bb.side1.normal.x,

bb.side1.normal.y, bb.side1.normal.z);

4 side1 /= dot(r.direction, vec3(bb.side1.normal.x, bb.side1.normal.y,

bb.side1.normal.z);

5 if side1 > 0 then

6 sidesHit.pushback(side1);

7 end

8 if sidesHit.size() > 0 then

9 float t = tValues.at(0);

10 if t == t1 then

11 hit = roadmap[parentIndex].hit | 16;

12 end

13 if t == t2 then

14 hit = roadmap[parentIndex].hit | 8;

15 end

16 if t == t3 then

17 hit = roadmap[parentIndex].hit | 4;

18 end

19 if t == t4 then

20 hit = roadmap[parentIndex].hit | 2;

21 end

22 if t == t5 then

23 hit = roadmap[parentIndex].hit | 1;

24 end

25 end

37

4.4 High Weight Threshold Initialization

In Section 4.7 in the discussion of node selection, it was mentioned that every other

iteration a node is randomly selected from the roadmap, but the node is not actually

chosen unless it is above a certain weight threshold. The weight threshold exists to

encourage the path towards high weight nodes, so the value is initialized quite high.

To set it, the weight is calculated for the initial 440 nodes placed in the virtual world

with the objective function discussed in Section 4.3. Then, both the average and

standard deviation are found for these 440 weights. The high weight threshold is

then initialized to the average weight plus the standard deviation.

4.5 Root Node Selection

The root node is important because it represents the starting configuration of the

AUV where all generated paths and the roadmap begin. Using the known data of

a region of space of high interest (i.e., the upper corner of the bounding box), the

search begins with the camera looking directly at its center. This creates an optimal

starting position, orientation, and high weight for the root node.

This is the chosen starting position and orientation for the root node, but the al-

gorithm can start in any configuration. The different tested root node configurations

include: a root node with a random position and orientation pointing towards the

center and root node starting in the upper corner of the bounding box with random

orientation. While these configurations did successfully create paths, they often took

several minutes longer to do so. For the starting configuration with random orienta-

tion, the roadmap would expand in a direction away from the region of interest before

correcting itself. The starting configuration with random position started so close to

the bounding box that the roadmap had to first expand away from the bounding box

before it could see other sides of it. While these were successful options, the starting

configuration in the upper corner oriented towards the center of the region of interest

performs best and, therefore, was selected for implementation.

38

4.6 Using the Spatial Data Structure

Each newly created node is inserted into the spatial data structure by its location.

This is done by first converting the world coordinates of the node’s position into index

coordinates. The equation for this is shown in Equation 4.7 where worldCoord is the

coordinate in world space, minSDS is the minimum value of the spatial data structure,

and voxelSize is the size of the voxels that make up the spatial data structure. The

indexCoord is the returned index coordinate which has x, y, and z values. This index

coordinate is then used to insert the node into the correct location in the spatial data

structure.

indexCoord = floor((worldCoord−minSDS)/voxelSize) (4.7)

Inserting the nodes into the spatial data structure by their location is important

because it is then possible to keep track of the direction in which the roadmap is

expanding. With a goal of viewing the entire region of interest, it is important that

the algorithm expands in all directions. Therefore, the voxel that contains the least

amount of nodes is the direction in which the algorithm is encouraged to continue

expanding. The roadmap would produce many nodes in a single area that offers high

weight views of the region of interest, so this expansion serves to de-cluster it. This

is part of node selection, which is discussed further in Section 4.7 below.

4.7 Node Selection

As mentioned in the discussion of Algorithm 3 in Section 4.2, lines 7 through 15 select

which node to expand from. While, the main goal is to see all sides of the region of

interest, the algorithm does not just want to expand totally randomly because first,

this might take an extremely long time, and second, the views generated might not

even be looking at the region of interest.

The spatial data structure is used to optimize expansion by ensuring the algorithm

39

expands towards a region that has been visited the least amount of times. As shown

on line 8 of Algorithm 3, this is done by selecting a node from the voxel in the spatial

data structure that contains the least amount of nodes. The spatial data structure

is made up of voxels that contain the nodes with locations in the three-dimensional

regions they represent. Thus, it is trivial to select a random node from the voxel that

contains the least amount of nodes. This is done for every other node selected to

encourage exploration for coverage of the configuration space.

For the other half of the loop iterations, the algorithm focuses on getting nodes

with high weights. To do this, any node with a weight above a given threshold is

selected for expansion. How the value for the threshold is initially set using the node

weight average and standard deviation is discussed in detail in Section 4.4.

If the weight of the selected node is greater than the high weight threshold, the

weight of the new node is added to the previously used node weight total and a

new average and standard deviation are calculated. These values are added together

to create a new, higher valued threshold to encourage even higher weight nodes for

future selections. By expanding the roadmap towards higher quality nodes, the algo-

rithm effectively prunes low quality directions and decreases the potential size of the

roadmap.

4.8 Node Generation

After selecting a node as described in Section 4.7, a new node is generated based off of

it. The velocity of the old node is taken and a new velocity with a different pitch and

yaw is added to it. A delta value, within a range of 0 and π of the old node’s pitch

is randomly chosen. The new delta value is then added to phi. The same process

happens for yaw with a delta and added to theta. This is shown on lines 5 through

8 of Algorithm 8. The new, semi-random pitch and yaw are then used to calculate

the new velocity as seen on lines 9 through 13. On line 14, the new velocity is added

to the previous position, creating the position of the new node. If that is, in fact, a

40

valid position and not colliding with the region of interest, then the orientation for

the robot at that position is calculated as shown on lines 15 through 22. The node

is then generated with degrees of freedom in x, y, z, pitch, and yaw. Having roll also

be free would not make sense as AUVs cannot move in that way.

41

Algorithm 8: High Level Algorithm for New Node Generation
Result: A new position and orientation for the new node

1 while NOT new validPosition do

2 vec3 prevVelocity = parentNode.velocity;

3 float phi = asin(prevVelocity.y);

4 float theta = atan2(prevVelocity.x, prevVelocity.z) - PI;

5 float pitchDelta = random(0, PI);

6 float yawDelta = random(0, PI);

7 phi += pitchDelta;

8 theta += yawDelta;

9 vec3 newVelocity;

10 newVelocity.x = cos(phi) * sin(PI + theta);

11 newVelocity.y = sin(phi);

12 newVelocity.z = cos(phi) * cos(PI - theta);

13 newVelocity *= auvSpeed;

14 vec3 pos = prevNode.pos + newVelocity;

15 if pos NOT colliding with the wreck then

16 newNode.velocity = newVelocity;

17 newNode.position = pos;

18 vec3 up = vec3(0, 1, 0);

19 vec3 right = cross(newVelocity, up);

20 newNode.lookAt = cross(newVelocity, right);

21 validPosition = true;

22 end

23 end

42

4.9 Path Completion

Our algorithm terminates based a path on one of three things: a time limit, a path

length, or if all sides of the region of interest have been seen. The time limit and

path length options are only used for debugging purposes as the goal of this thesis

is to create paths that see all sides of the region of interest in order to reconstruct

a 3D model. Each time a node is added to the roadmap, the algorithm evaluates if

all sides of the bounding box around the region of interest have been seen; when all

sides have been seen the algorithm begins its termination sequence. After the final

side has been seen, the algorithm runs for a finite amount of time (a random time

between 10 and 15 seconds) to ensure there is good coverage of the final side. After

the time limit is hit, we have a complete path. The time limit is an experimental

choice and other methods to ensure further coverage of the final side of the region of

interest could be explored. This is left to future work.

After the algorithm has explored the space and found a path that sees all sides of

the region of interest, we need to extract the exact path from the rapidly-exploring

random tree in order to use this path for the AUV trajectory (or in our case to replay

a virtual trajectory to gather images for reconstruction). In order to extract the path

from the tree, each node holds the index of its parent node. The path is reversed

from that terminating node to the root node.

Then, important information for each node is written out to a text file so that the

path can be replayed later as discussed in Section 4.10. For each node, its weight,

position, and camera information are written out. The camera information is how the

AUV knows its orientation at each position. Statistics like the roadmap size, average

weight of nodes in the path, minimum weighted node, and maximum weighted node

are also written to the file.

Finally, the virtual world is rendered to the screen. The positions are then inter-

polated between using a cubic Hermite interpolation function creating a spline [8].

The camera can then move along the smooth spline instead of jumping from node to

43

node. An image is taken every third frame by the virtual camera as it follows the

spline. These images are all saved to be used for reconstruction later.

4.10 Replaying a Complete Path

If a path has completed and a file has been successfully output as discussed in Section

4.9, that file can be used to replay the path. Instead of generating a new path, if the

command line arguments provided to the application specify the name of a previously

generated path, the old path will be played back. Each node (with position and

camera information) in the path is read in from the file and put into a vector. The

positions are then interpolated between using a cubic Hermite interpolation function

creating a spline [8]. The camera can then move along the smooth spline instead of

jumping from node to node. Figure 4.8, below, shows the nodes that the path visits

with each node representing a configuration of the AUV.

Figure 4.8: Each node (blue sphere) represents a configuration of the AUV
while following the path.

44

4.11 The Virtual World

This thesis includes the algorithm to compute a path in 3D space given a region of

interest and an application to test these paths via the creation of a virtual scene for the

virtual AUV/camera to travel through. The virtual camera captures an image every

third frame for use in reconstruction. This virtual world is an OpenGL application

which in its current implementation includes simple geometric models. The ground

plane represents the seafloor. It is textured with an image of a sandy seafloor like

that of the Mediterranean. The texture does not repeat to make the captured images

more unique so image alignment discussed in Chapter 5 is more accurate. There are

no rocks as the Mediterranean is a sandy environment. Figure 4.9 shows a view of a

3D modeled shipwreck in the virtual world.

Figure 4.9: The Virtual World.

The 3D model shipwreck captured in Figure 4.9 is a simple "Old Boat" model.

45

The geometry of the wreck is loaded from an .obj file and the texture loaded from

a .jpg. The texture is applied to the model via the texture coordinates. Other 3D

models could be loaded in place of the old boat, and the algorithm would still be able

to generate paths around it.

This thesis is not specific to any one model. The algorithm was run with multiple

other 3D models including a 3D reconstruction of the "Bristol Beaufighter". Figure

4.10 is a frame captured from a path generated around the beaufighter model.

Figure 4.10: The Bristol Beaufighter.

4.12 AUV Pathing

For actual AUV trajectories, the AUV can only locate itself at the surface of the

water. Therefore, in order to convert the automatically generated paths to paths

that could be used with the AUV for ICEX missions, additional way-points (nodes)

would have to be added. Pairs of nodes with similar velocities would be selected and

46

corresponding surface way-points appropriately spaced to reach the correct depth for

each node before and after the node pairs would be added. This process would be

repeated until all nodes are paired and associated with surface way-points. The AUV

would then travel linearly to each way-point until the path is complete. This is left

to future work.

4.13 Testing Details

This thesis was executed for testing on a 2019 MSI GS63 Stealth with an Intel 8th

Generation Core i7-8750H processor. The computer also has a dedicated graphics

card - NVIDIA Geforce GTX 1060. The code was written in C++14 along with the

Open Graphics Library (OpenGL) version 4.6. The OpenGL Mathematics library,

GLM, version 0.9.8.5 and GLFW3 version 3.2 were also used.

4.14 Implementation Summary

The path generation system implemented in this thesis was described in detail in

this chapter. Paths are generated by a probabilistic roadmap algorithm that uses

a rapidly-exploring random tree to quickly explore space. In each iteration of the

algorithm, a node to expand off of is selected based on its location in space or its

high weight, a new node with a given amount of freedom is generated, the objective

function determines the weight of the new node, and then it is added to the roadmap.

Once all sides of the shipwreck have been viewed, a path is determined to be complete,

it is extracted from the rapidly-exploring random tree, and is written to a file. This

file can replay the completed paths.

47

Chapter 5

RESULTS AND VALIDATION

This thesis presents a probabilistic roadmap algorithm for the generation of paths for

an AUV to travel in order to capture multiple views of a region of interest. In addi-

tion, we present an application to test these paths in a virtual environment which uses

simple geometry but allows for virtual frames to be written out and then used with a

photogrammetry application. The algorithm features a rapidly-exploring random tree

to quickly cover the volume of exploration space and generate small maps with good

coverage. The roadmap is constructed out of nodes, each having its own weight. The

weight of a given node is calculated using an objective function which measures an ap-

proximate view coverage by casting rays from the virtual view and intersecting them

with the region of interest. The algorithm was tested in a virtual world where the

virtual camera acted as the AUV. All of the images collected from our automatically

generated path were used to create 3D models and point clouds using photogramme-

try. To measure the effectiveness of our paths versus the pre-packaged lawnmower

paths, the 3D models and point clouds created from our algorithm were compared to

those generated from running a standard lawnmower pattern. The paths generated

by our algorithm captured images that could be used in a 3D reconstruction, that

were more detailed, and that showed better coverage of the region of interest than

those from the lawnmower pattern.

5.1 Expected Results

It is expected that the probabilistic roadmap algorithm will be able to produce paths

based on path length, time limit, and viewing sides of the region of interest. Viewing

all sides of the region of interest means the camera has seen each of the sides of

the region of interest (front, right, left, back, top) with good coverage. The virtual

camera/AUV then follows the generated path through a virtual world. Every third

48

frame, an image is captured. These images are used in photogrammetry where a

reconstruction of the site of interest is created. The reconstructions created by the

generated paths can then be compared to those created by following a lawnmower

pattern. Point clouds of each reconstruction can also be compared to determine the

level of detail of each. It is expected that reconstruction created from data gathered

by the generated paths will be more detailed and offer more interesting views and

coverage of the site of interest than those from the lawnmower pattern.

5.2 Hypothesis

If a PRM algorithm is used to generate paths, then the reconstructions produced

using photogrammetry from the images collected when following the path with a

camera/AUV will be more detailed, more interesting, and provide better coverage

than those made by following a lawnmower pattern.

5.3 Variables

In this thesis, the independent variables include the type of algorithm being used

- either the PRM algorithm paths or the lawnmower pattern. Both algorithms are

used to survey the same location. The dependent variables include the resulting

reconstructions and point clouds each running each algorithm, collecting image data,

and using photogrammetry. The reconstructions and point clouds can be compared

for best details, views, and coverage of the site of interest.

5.4 Measures

Both algorithms output an image every third frame that can be used to create a recon-

struction using photogrammetry. The quality of the images, surface area of the site

of interest covered, and distance from the site of interest, all affect the fidelity of the

reconstruction. After the PRM algorithm automatically generates a path, the virtual

49

camera/AUV follows it taking an image every third frame. Software called Agisoft

Photoscan® can then be used for photogrammetry - where a 3D model is created

from aligning images. This reconstruction can then be qualitatively compared to one

made from running a standard lawnmower pattern. A reconstruction is considered to

have better views and coverage if all sides of the site of interest can be seen (front,

right, left, back, top) in the 3D model. Point clouds of each reconstruction can also

be compared to determine the level of detail of each. Point clouds can be created and

compared with an open source software called “CloudCompare”. The most important

metric for level-of-detail comparison is the mean distance between each point of the

point cloud. The less distance between each point, the denser and more detailed the

point cloud.

Both the 3D models and point clouds are also compared to the original 3D model

of the shipwreck (the site of interest) used in the virtual world and the point cloud

of that model. The reconstruction that provides the most information about the

shipwreck with the best detail and that is most similar to the original 3D model of

the shipwreck can then be decided on.

5.5 Experiment Protocol

The first step of this thesis is to automatically generate paths using the PRM algo-

rithm. The success or failure of this algorithm is left to how random the different

configurations generated are and to the nature of the configuration space itself. There-

fore, some of the paths automatically generated may not be worth moving forward

with. A path has good potential for gathering data for a reconstruction if the ran-

domness moves it all around the site of interest so all sides can be seen, while not

moving too far away from it to not lose any detail or coverage. A path with a high

average weight is decidedly one with good potential.

After a path has been determined to have good potential, it can be run in a

virtual world where the virtual camera acts as the AUV. An image is taken every

50

third frame as the camera follows the path. The images can then be given to Agisoft

Photoscan® to create a 3D model of the site with photogrammetry. First, Agisoft

Photoscan® aligns the collected images. If not enough images are aligned, it is not

worth continuing on to create a 3D model. The standard lawnmower pattern is also

run over the shipwreck model in the virtual world to collect images and build another

reconstruction.

The PRM reconstruction can then be compared to the lawnmower reconstruction.

The 3D models are analyzed for level of detail and if all sides of the site were recon-

structed with good coverage. Multiple reconstructions can be made for comparison.

CloudCompare is also used to create point clouds from each 3D model. The mean

distance between each point in the point cloud determines the density and, therefore,

detail of each reconstruction. If the PRM algorithm continuously leads to denser

point clouds and better reconstructions, then it is possible to conclude that it is the

algorithm that should be used in both virtual and real-world scenarios as opposed to

the standard lawnmower pattern.

5.6 Results and Validation

Of all of the paths generated by the PRM algorithm, twelve had above average

weights. The averages were computed by adding the weights of all of the nodes

in the generated path and dividing by the number of nodes. These twelve paths were

run in the virtual world and the resulting images were given to Agisoft Photoscan®.

Of the paths, the one with a high percent of images aligned, PRM 3, was selected for

reconstruction. Two paths with only about 50% of images aligned, PRM 6 and PRM

11, were also selected. This is to show that even average PRM paths can produce

better results than a reconstruction following the lawnmower pattern. The data for

all of the paths is summarized in Table 5.1. Three lawnmower pattern paths were

also run. While one of them led to a good reconstruction and point cloud as shown in

Figure 5.2 and Figure 5.5, the other two, including an attempt to run the lawnmower

pattern created by Yamafune et al. in their work [24], did not produce usable models.

51

Path Images Aligned Percent Aligned Average Weight

PRM 1 599/608 98.52 0.53825

PRM 2 121/666 18.17 0.523266

PRM 3 468/551 84.94 0.577008

PRM 4 198/614 32.25 0.507342

PRM 5 296/641 46.18 0.566364

PRM 6 790/1322 59.76 0.574813

PRM 7 476/988 48.18 0.563158

PRM 8 429/743 57.74 0.541949

PRM 9 544/646 84.21 0.569361

PRM 10 83/268 30.97 0.561669

PRM 11 295/573 51.48 0.57375

PRM 12 478/592 80.74 0.553023

Table 5.1: Summary of Paths with Good Potential. Includes the images
aligned out of how many were inputted to Agisoft Photoscan ®, the per-
cent of those actually aligned, and the average weight of each path.

By comparing both reconstructions from running path PRM 6 and from the lawn-

mower pattern to the original 3D model of the shipwreck used in the virtual world,

it is easy to see which of the reconstructions was more successful - PRM 6. Figure

5.1 shows the side profiles of the reconstructions alongside the original 3D model.

The lawnmower pattern clearly did not get good views or coverage of the sides of the

shipwreck as they are completely missing from the reconstruction. PRM 6, however,

followed a path with freedoms in pitch and yaw, so all of the sides of the shipwreck

were seen and reconstructed very similarly to the original 3D model. All of the paths,

PRM and lawnmower, produced good reconstructions of the top of the shipwreck as

shown in Figure 5.2 and Figure 5.3.

52

Figure 5.1: 3D Models from the Original Shipwreck, the lawnmower pat-
tern, and PRM Path 6

53

Figure 5.2: 3D Model created by Lawnmower Pattern

54

Figure 5.3: 3D Models created by PRM 11 and PRM 6

All of the reconstructed 3D models were then given to CloudCompare to create

point clouds for further comparison. The denser the point cloud, the more detailed the

reconstruction. The density can be measured by the mean distance between points

where the smaller distance between points means greater density. All of the point

clouds are compared to each other and to the point cloud of the original shipwreck

used in the virtual world.

55

In the images, Figure 5.4 shows the point cloud of the original 3D model in gray.

In the point clouds created from the lawnmower pattern and the PRM paths, the

point cloud of the original model is left in for comparison purposes. The original

model’s point cloud is colored gray while the lawnmower and PRM point clouds are

rendered over it in blue. Figure 5.5, Figure 5.6, and Figure 5.7 show their own point

clouds in blue over the gray point cloud created from the original model. As shown in

the images and reinforced in the data displayed in Table 5.2, the point clouds created

by the PRM paths are significantly more dense than the point clouds created by the

lawnmower pattern. When comparing mean distance of points in point clouds, it is

better if the value is smaller because it means the point cloud is denser. The mean

distance of the PRM paths’ point clouds range from being 1.5 to 2.3 times better

than that of the lawnmower pattern.

56

Figure 5.4: Point Cloud of Original Shipwreck

57

Figure 5.5: Point Cloud from Lawnmower Pattern

58

Figure 5.6: Point Clouds from paths PRM 3

59

Figure 5.7: Point Clouds from paths PRM 11

Path Mean Distance Standard Deviation

PRM 3 0.14937 0.18863

PRM 6 0.120192 0.387108

PRM 11 0.232785 0.590656

Lawnmower 0.336414 0.431753

Table 5.2: Point Cloud data for PRM and lawnmower paths

60

It is also important to note that the distance covered by each path does not

correlate to the quality of the reconstruction. Table 5.3 shows the distance each path

covered in the virtual world. The lawnmower pattern covers a distance of almost

twice as far as path PRM 11, but PRM 11 is a better reconstruction overall.

Path Distance Covered

PRM 3 1678.94

PRM 6 2270.19

PRM 11 664.24

Lawnmower 1128.49

Table 5.3: Distance covered by the selected paths in virtual world units.

5.7 Result and Validation Conclusions

The 3D models created by the generated PRM paths are more detailed and show

better views with better coverage of all sides of the shipwreck than the 3D models

created by the lawnmower pattern. While all paths produced good reconstructions

of the top of the shipwreck, the lawnmower pattern almost completely missed the

sides of the shipwreck in its reconstruction. The PRM paths also created significantly

denser point clouds than the lawnmower paths, with a mean distance between points

that ranges from 1.5 to 2.3 times better than that of the lawnmower pattern.

5.8 Algorithm Performance

5.8.1 The Objective Function

The objective function, as detailed in Section 4.3, had a significant effect on perfor-

mance. Initially, the algorithm was allowed to expand by choosing a node completely

randomly from the roadmap. On multiple occasions, the algorithm was left to run

61

overnight without generating a complete path because it either never saw all sides of

the region of interest or the computer ran out of memory. In Section 4.6, on “Using

the Spatial Data Structure”, and Section 4.7, on “Node Selection”, how the algorithm

expands to less explored areas with the spatial data structure is discussed. This was

the primary form of node selection for awhile, but it was still very slow. The algo-

rithm often took hours, but it did generate complete paths. When the high weight

threshold was added to the node selection process, path generation went from taking

hours to minutes.

The average, minimum, and maximum weights for each path are summarized in

Table 5.4. The weights in this table accurately reflect the node selection process

of the algorithm. The nodes selected from less explored areas within the spatial

data structure are more likely to have lower weights. The objective function creates

regions of space with many high weight nodes. Often the nodes not in these denser

high weight regions have lower weights. As the spatial data structure de-clusters

the roadmap by expanding to unexplored areas, it selects low weight nodes. The

other half of the nodes selected for roadmap expansion are those above a high weight

threshold. Therefore, we have an equal distribution of low weight and high weight

nodes leading to paths with average weight overall.

62

Path Average Weight Minimum Weight Maximum Weight

1 0.53825 0.12375 0.985

2 0.523266 0.005 1

3 0.577008 0.0075 1

4 0.507342 0 1.19375

5 0.566364 0.125 1.25

6 0.574813 0 1.225

7 0.563158 0.12375 1.25

8 0.541949 0.1075 1

9 0.569361 0 1

10 0.561669 0 1

11 0.57375 0.1275 1.25

12 0.553023 0 1.25

Table 5.4: Average, minimum, and maximum weight from each generated
path.

5.8.2 Cubic Hermite Interpolation

The final algorithm produced paths with anywhere from 20 to 200 nodes as shown

in Table 5.5. More nodes means a higher memory cost and higher times to generate.

The virtual camera moves through the world by visiting each node, but this creates

very jumpy motion. Significantly more nodes would have to be added between the

original node in order for the virtual camera to move smoothly along the final path.

Instead, to keep the number of nodes in a path from increasing when generating the

final path, a cubic Hermite spline was created to interpolate between the nodes. The

camera can then move along the spline instead of jumping from node to node.

63

5.8.3 The Hash Map

The largest improvement on performance, by far, was the addition of a hash map.

Previously, the spatial data structure was looping over all of 3D space to find which

voxel had the least amount of nodes. This was an O(n3) operation. With the hash

map, the algorithm could look up the voxel with the least amount of nodes in O(1)

time. After the implementation of the hash map, paths could be generated in seconds.

As shown below in Table 5.5, all of the generated paths were between 10 and 27

seconds.

5.9 Time Performance

As mentioned above, before the addition of features such as the objective function and

the hash map, the algorithm took hours to find a path that completed our goals. Now,

it only takes seconds. Table 5.5 shows a summary of the generated paths including

the length of each path, the number of nodes in each respective roadmap, and the

time it took to generate them. The larger the roadmap, the more time the algorithm

took to create a path. However, even the largest roadmap with 538 nodes took only

27 seconds to generate a path - Path 12.

64

Path Path Length Roadmap Size Time (s)

1 20 36 10

2 62 99 15

3 160 261 23

4 87 193 17

5 33 48 11

6 207 407 26

7 76 178 16

8 118 189 20

9 92 137 20

10 155 234 22

11 61 100 14

12 189 538 27

Table 5.5: Summary of generated paths. Includes the length of each path,
the number of nodes in each roadmap, and the time to generate each path
in seconds.

5.10 Analysis of Parameters

There were numerous factors that contributed to choosing the values for the param-

eters used in the algorithm. The most important parameters include delta phi, delta

theta, root node configuration, the high weight threshold, bounding box volume en-

casing the region of interest, the volume of exploration area, and what contributes to

node weight with the objective function.

The deltas used in node generation mentioned in Section 4.8, phi and theta, could

vary from −π to π allowing pitch and yaw to be completely free. When the roadmap

was having trouble expanding throughout the entire space and clustering on one or

two sides of the region of interest, it was first thought that maybe the deltas needed

65

to be limited to encourage more circular expansion. Instead, both the volume the

algorithm was able to explore and the bounding box around the region of interest

were increased. Increasing the size of the bounding box around the region of interest

seems counterproductive, but it was actually very beneficial. By forcing the virtual

AUV to off from the region of interest, it had a much broader view of the region of

interest and was able to see more sides more quickly. The volume the algorithm could

explore was also increased thus making it easier to get around the sides of the region

of interest by creating more space to expand.

The root node was positioned at the top left corner of this volume and oriented

to face the center of the region of interest creating an initial high weight node that

realistically reflected where an AUV would be positioned at the beginning of a survey.

The objective function measures an approximate view coverage by casting rays

from the virtual view and intersecting them with the region of interest. We started

with casting only six rays out from the camera to ensure weighting this way was

effective. Once the paths started to move towards higher weight nodes and we were

sure this was an effective method to determine weight, we began increasing the amount

of rays. The chosen amount of rays to get an accurate percentage of how much of

the region of interest is visible without slowing down performance was determined

to be 200 rays. In addition, to encourage expansion towards new sides of the region

of interest, the weight of a node is increased if this node allows the AUV to see a

new side of the region of interest and if the new node has a higher weight than its

parent node. Without careful consideration of all of these different parameters, the

algorithm would not be able to generate paths.

5.11 Limitations

The parameters above are set specifically to work with this virtual scene. However,

as shown in Section 4.11 with the Bristol Beaufighter model, the algorithm can work

with any other virtual scene with either no or only minor adjustments. How the

66

algorithm determines if it sees every side of the region of interest is specific to one

bounding box. Therefore, the algorithm can work with multiple 3D models, but only

if they are all put into one larger bounding box. It would be possible to provide

each 3D model with its own bounding box, creating more interesting paths, in future

iterations of this work.

67

Chapter 6

CONCLUSIONS

6.1 Conclusion

While most of the ocean is still unexplored, this thesis offers a way to speed up sur-

veying sites of potential historical significance. Paths are generated by a probabilistic

roadmap algorithm that uses a rapidly-exploring random tree to quickly cover the vol-

ume of exploration space and generate small maps with good coverage. The roadmap

is constructed out of nodes, each having its own weight. The weight of a given node

is calculated using an objective function which measures an approximate view cov-

erage by casting rays from the virtual view and intersecting them with the region of

interest. In addition, the weight of a node is increased if this node allows the AUV to

see a new side of the region of interest. In each iteration of the algorithm, a node to

expand off of is selected based on its location in space or its high weight, a new node

with a given amount of freedom is generated, and then added to the roadmap. The

algorithm has degrees of freedom in position, pitch, and yaw as well as the objective

function to encourage the path to see all sides of the region of interest. Once all sides

of the region of interest have been viewed, a path is determined to be complete.

The algorithm was tested in a virtual world where the virtual camera acted as the

AUV. All of the images collected from our automatically generated path were used to

create 3D models and point clouds using photogrammetry with Agisoft Photoscan®.

The reconstructions could then be used in CloudCompare to create point clouds. To

measure the effectiveness of our paths versus the pre-packaged lawnmower paths, the

3D models and point clouds created from our algorithm were compared to those gener-

ated from running a standard lawnmower pattern. In both the reconstruction having

more detailed sides with good coverage and in point cloud density, the PRM algo-

rithm outperformed the lawnmower pattern when compared to the original shipwreck

model.

68

6.2 Future Work

This thesis introduces a path planning algorithm for AUVs using a probabilistic

roadmap. When compared to the standard lawnmower pattern, the generated PRM

paths performed better. However, there is always room for improvement. The fol-

lowing areas allow for potential future work:

• Expand the PRM algorithm to account for multiple bounding boxes.

• As mentioned in Section 4.12, more accurately reflect AUV pathing by adding

surface way-points (nodes). Nodes would be placed at the water surface and

the path would be linear lines between each node.

• Instead of casting rays from the camera to the bounding box, render the bound-

ing box in a given color. Then, count the colors in the frame buffer object from

the virtual camera configured at a given node.

• Analysis of the number of rays being cast. There is potentially a better number

of rays to cast than 200 rays.

• For node generation, analyze lessening the delta values to a smaller range.

• Bit encode sections of the sides of the bounding box to count how many rays

have hit which sections. This could be used to encourage not oversampling/

over-viewing a certain region of the site.

• Instead of having the algorithm run for a finite amount of time after the last side

of the bounding box has been seen, count how many rays have intersected it and

terminate the path after a certain amount. This could ensure good coverage of

the final side for any size region of interest.

• Expand the PRM algorithm to work with a sixth degree of freedom to poten-

tially create more interesting paths.

69

• Explore other methods of interpolating between nodes besides cubic-Hermite

splines.

• Deploying an AUV off the coast of Malta to follow the PRM generated paths

from this thesis.

70

BIBLIOGRAPHY

[1] V. Alcazar, M. M. Veloso, and D. Borrajo. Adapting a rapidly-exploring

random tree for automated planning. January 2011.

[2] A. Burgess and T. Gambin. The underwater aviation heritage of the second

siege of malta. Malta Archaeological Review, 10:53–60, 2010-2011.

[3] K. Carroll, S. McClaran, E. Nelson, D. Barnett, D. Friesen, and G. William.

Auv path planning: an a* approach to path planning with consideration of

variable vehicle speeds and multiple, overlapping, time-dependent exclusion

zones. In Proceedings of the 1992 Symposium on Autonomous Underwater

Vehicle Technology, pages 79–84. IEEE, June 1992.

[4] C. Clark. E160 - lecture 13 autonomous robot navigation.

http://www.hmc.edu/lair/E160/E160-Lecture14-MotionPlanning.pdf,

June 2016.

[5] C. Clark, A. Lewis, S. Freed, J. Rutledge, and Z. Wood. Auv and graphics

research motivated by marine archaeology: From development to discovery.

In International Conference on Aviation Archaeology and Heritage

(ICAAH), Valetta, Malta, November 2017. Heritage Malta.

[6] K. Davis. Probabilitic roadmaps for virtual camera pathing with

cinematographic principles. Master’s thesis, California Polytechnic State

University - San Luis Obispo, 1 Grand Ave. San Luis Obispo, CA 93405,

2017.

[7] P. Debertolis, N. Earl, and M. Zivic. Archaeoacoustic analysis of tarxien

temples in malta. Journal of Anthropology and Archaeology, 4(1):7–27,

June 2016.

[8] Demofox. Cubic hermite interpolation. https:

71

http://www.hmc.edu/lair/E160/E160-Lecture14-MotionPlanning.pdf
https://blog.demofox.org/2015/08/08/cubic-hermite-interpolation/
https://blog.demofox.org/2015/08/08/cubic-hermite-interpolation/

//blog.demofox.org/2015/08/08/cubic-hermite-interpolation/,

2015.

[9] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics.

Cambridge, 2010.

[10] E. Dunn, J. v. d. Berg, and J. Frahm. Developing visual sensing strategies

through next best view planning. In 2009 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4001–4008, October

2009.

[11] K. Frischkorn. Why the first complete map of the ocean floor is stirring

controversial waters.

https://www.smithsonianmag.com/science-nature/first-complete-

map-ocean-floor-stirring-controversial-waters-180963993/, July

2017. Last accessed 21 January 2019.

[12] T. Gambin. The maritme heritage of malta: Past, present and future. Maritme

Heritage: Advances in Architecture, 65, 2003.

[13] B. Garau, A. Alvarez, and G. Oliver. Path planning of autonomous underwater

vehicles in current fields with complex spatial variability: an a* approach.

In Proceedings of the 2005 IEEE International Conference on Robotics and

Automation, pages 194–198. IEEE, January 2006.

[14] M. Rantanen. Improving Probabilistic Roadmap Methods for Fast Motion. PhD

thesis, School of Information Sciences, University of Tampere, 2014.

[15] D. Rao and S. B. Williams. Large-scale path planning for underwater gliders in

ocean currents. In Australasian Conference on Robotics and Automation

(ACRA), December 2009.

[16] J. Rutledge, W. Yuan, J. Wu, A. Lewis, S. Freed, Z. Wood, and C. Clark.

Intelligent shipwreck search using autonomous underwater vehicles. IEEE

72

https://blog.demofox.org/2015/08/08/cubic-hermite-interpolation/
https://blog.demofox.org/2015/08/08/cubic-hermite-interpolation/
https://www.smithsonianmag.com/science-nature/first-complete-map-ocean-floor-stirring-controversial-waters-180963993/
https://www.smithsonianmag.com/science-nature/first-complete-map-ocean-floor-stirring-controversial-waters-180963993/

International Conference on Robotics and Automation (ICRA), pages 1–8,

September 2018.

[17] H. Samet. Spatial data structures. Modern Database Systems, The Object

Model, Interoperability and Beyond, pages 361–385, 1995.

[18] Scratchapixel. Ray-box intersection. http:

//www.scratchapixel.com/lessons/3d-basic-rendering/minimal-

ray-tracer-rendering-simple-shapes/ray-box-intersection, 2004.

[19] C. S. Tan, R. Sutton, and J. Chudley. An incremental stochastic motion

planning technique for autonomous underwater vehicles. volume 37, pages

483–488, May 2017.

[20] V. Viswanathan, Z. Lobo, J. Lupanow, S. von Frock, T. Gambin, Z. Wood, and

C. Clark. Auv motion-planning for photogrammetric reconstruction of

marine archaeological sites. IEEE International Conference on Robotics

and Automation (ICRA), pages 5096–5103, May 2017.

[21] S. von Fock, K. Davis, S. Bilich, V. Viswanathan, Z. Lobo, J. Lupanow,

T. Gambin, Z. Wood, and C. Clark. Pipeline for reconstruction and

visualization of underwater archaeology sites using photogrammetry. In

International Conference on Computers and Their Applications (ISCA),

March 2017.

[22] A. Williams, S. Barrus, R. Keith, and M. P. Shirley. An efficient and robust

ray-box intersection algorithm. Journal of Graphics Tools, 10:54, 2004.

[23] Xojo. Tutorial 12: Quaternions. http://www.xojo3d.com/tut012.php.

[24] K. Yamafune, R. Torres, and F. Castro. Multi-image photogrammetry to

record and reconstruct underwater shipwreck sites. Journal of

Archaeological Method and Theory, 2016.

73

http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
http://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
http://www.xojo3d.com/tut012.php

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Photogrammetry
	1.2 Path Planning
	1.3 International Computer Engineering Experience
	1.4 Contributions of this Thesis

	2 Background
	2.1 A Robot's Degrees of Freedom
	2.2 Fundamentals of Path Planning for a Robot
	2.3 Location of the Robot in Space
	2.4 Representing Space
	2.5 Path Planning in Unknown or Partially Known Environments
	2.5.1 Probabilistic Roadmap (PRM)
	2.5.2 Rapidly-Exploring Random Trees (RRT)

	2.6 Photogrammetry
	2.7 Summary

	3 Related Works
	3.1 Various Path Planning Algorithms for AUVs
	3.2 Probabilistic Roadmaps Algorithms for AUVs
	3.3 Photogrammetry for Shipwreck Reconstruction
	3.4 Next Best View Path Planning

	4 Implementation
	4.1 Terminology
	4.1.1 Configuration Space
	4.1.2 Nodes
	4.1.3 Spatial Data Structure

	4.2 Probabilistic Roadmap Algorithm
	4.3 The Objective Function
	4.3.1 View Coverage
	4.3.2 Encouraging Exploration of Space for Greater Coverage
	4.3.3 Bit Encoding to Keep Track of Sides Seen by Camera

	4.4 High Weight Threshold Initialization
	4.5 Root Node Selection
	4.6 Using the Spatial Data Structure
	4.7 Node Selection
	4.8 Node Generation
	4.9 Path Completion
	4.10 Replaying a Complete Path
	4.11 The Virtual World
	4.12 AUV Pathing
	4.13 Testing Details
	4.14 Implementation Summary

	5 Results and Validation
	5.1 Expected Results
	5.2 Hypothesis
	5.3 Variables
	5.4 Measures
	5.5 Experiment Protocol
	5.6 Results and Validation
	5.7 Result and Validation Conclusions
	5.8 Algorithm Performance
	5.8.1 The Objective Function
	5.8.2 Cubic Hermite Interpolation
	5.8.3 The Hash Map

	5.9 Time Performance
	5.10 Analysis of Parameters
	5.11 Limitations

	6 Conclusions
	6.1 Conclusion
	6.2 Future Work

	BIBLIOGRAPHY

