
IMPLEMENTATION OF A SCALE SEMI-AUTONOMOUS PLATOON TO TEST

CONTROL THEORY ATTACKS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Erik Miller

July 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/231901162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2019

Erik Miller

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Implementation of a Scale Semi-

Autonomous Platoon to Test Control

Theory Attacks

AUTHOR: Erik Miller

DATE SUBMITTED: July 2019

COMMITTEE CHAIR: Bruce Debruhl, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: John Bellardo, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: John Seng, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Implementation of a Scale Semi-Autonomous Platoon to Test Control Theory

Attacks

Erik Miller

With all the advancements in autonomous and connected cars, there is a developing

body of research around the security and robustness of driving automation systems.

Attacks and mitigations for said attacks have been explored, but almost always

solely in software simulations.

For this thesis, I led a team to build the foundation for an open source platoon

of scale semi-autonomous vehicles. This work will enable future research into

implementing theoretical attacks and mitigations. Our 1/10 scale car leverages an

Nvidia Jetson, embedded microcontroller, and sensors. The Jetson manages the

computer vision, networking, control logic, and overall system control; the

embedded microcontroller directly controls the car. A lidar module is responsible for

recording distance to the preceding car, and an inertial measurement unit records

the velocity of the car itself. I wrote the software for the networking, interprocess,

and serial communications, as well as the control logic and system control.

iv

ACKNOWLEDGMENTS

Thanks to:

• Uncle Steve for his editing expertise

• Mom and Dad for their support, patience, and feedback

• My sister Annika for her editing assistance

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

CHAPTER

1 Introduction . 1

2 Background and Related Works . 3

2.1 Levels of Autonomous Vehicles . 3

2.2 Adaptive Cruise Control . 5

2.3 Platooning Autonomous Vehicles . 6

2.4 Collaborative Vehicles . 7

2.5 Security Research . 8

3 Platoon Design . 10

3.1 Velocity Control . 10

3.2 Steering Control . 12

3.3 Discussion . 13

3.3.1 Why Steering is Controlled by a PID Controller 14

3.3.2 Steering Limitations . 14

3.3.3 Camera and Lidar Minimum Distances 15

4 Implementation . 17

4.1 Goals for the Semi-autonomous Platoon 17

4.2 The First Generation . 17

4.3 The Second Generation . 18

4.4 The Third Generation . 20

4.4.1 Overview . 22

4.4.2 My Contributions . 23

4.5 Part Selection for Cost and Simplicity 24

4.6 Discussion . 25

4.6.1 Challenges with an Off-the-Shelf RC Chassis 26

4.6.2 Why we chose 802.11n for V2V Communication 26

4.6.3 Write Design Documents before Coding 27

vi

4.6.4 Choose a Build System before Starting Development 28

4.6.5 Implement Tests . 28

4.6.6 Start with Interprocess Communication 29

5 Experimental Data . 30

5.1 Lidar Validation . 30

5.2 System Sensor Response . 31

5.3 Two Car Run Without Feed-Forward 33

6 Conclusion . 38

vii

LIST OF FIGURES

Figure Page

4.1 A High Level Block Diagram for the First Generation’s Design . . . 18

4.2 A High Level Block Diagram for the Second Generation’s Design . 19

4.3 A High Level Block Diagram for the Third Generation’s Design . . 21

5.1 300 mm Lidar Measurement Distribution 31

5.2 400 mm Lidar Measurement Distribution 32

5.3 1000 mm Lidar Measurement Distribution 32

5.4 Stationary Target 800 mm Drive 34

5.5 Non-cooperative Platooning Run 1 36

5.6 Non-cooperative Platooning Run 2 37

viii

Chapter 1

INTRODUCTION

Autonomous vehicles have captured the interest of researchers and businesses alike

with the promise of safer, faster, and more efficient transportation. Numerous

papers on the safety, security, and efficiency of such vehicles [13, 28, 35] have been

written, and many businesses are looking to produce their own autonomous vehicles.

Notable examples include Tesla’s autopilot program [37] and the Waymo One

autonomous taxi [43], which are some of the first commercially available self driving

vehicles. Many other automakers either have research groups working on developing

autonomous vehicles, such as GM [7], Mercedes-Benz [25], Toyota [39], Ford [22],

and Baidu [2], or have announced partnerships to do so, such as Renault-Nissan and

Microsoft [29], Volvo and Uber [42], Waymo and Chrysler [19], Waymo and

Honda [15], and BMW, Intel, and MobileEye [4].

Despite this research and interest, as of 2018 [16] there are still no autonomous

vehicles capable of handling every driving situation that may arise. While many

people are working to solve the technical, legal, and ethical challenges of creating a

fully autonomous vehicle, there are a number of more limited systems that have the

potential to provide many of the same efficiency and accessibility benefits under

more constrained circumstances. One current solution is a platoon of

semi-autonomous vehicles that follow behind a human driven vehicle [41]. This is

entirely feasible with current, widely implemented technologies such as Adaptive

Cruise Control and Lane Keeping, and communications protocols such as Dedicated

Short-Range Communications (DSRC) and 5G cellular.

Since this application involves humans and heavy, fast-moving machinery, there

are many projects [8, 9, 11, 32, 34, 38] that explore the robustness and security of

1

these systems. However, most of this research is being performed in simulation [9,

11, 32, 34, 38], without any verification on a physical implementation. The one

research group that did design their own scale platoon [8] does not appear to have

released more than a high-level overview of its construction as of March 2019, and

their platoon was fixed to a guide wire, circumventing the challenges posed by

steering. I speculate that the lack of physical implementation is largely due to the

lack of open source scale platoons. While simulation work is valuable to evaluate

different options much more quickly, physical implementations may have factors

that simulations don’t fully account for, such as steering, friction, and real world

communications.

In this paper, I describe the process of designing components for an open source,

1/10th scale platoon of semi-autonomous vehicles. In particular, we design control

logic, interprocess communications, and vehicle-to-vehicle communication. The

foundation we create will allow other researchers to build a scale, string-stable

platoon of semi-autonomous vehicles for the purpose of researching attacks and

mitigations on computer controlled vehicles.

2

Chapter 2

BACKGROUND AND RELATED WORKS

With the exploding popularity of autonomous vehicles, many different systems with

varying capabilities have been called autonomous vehicles.

2.1 Levels of Autonomous Vehicles

In order to distinguish between the capabilities of autonomous vehicles, the Society

of Automotive Engineers (SAE) created a scale with 6 levels of autonomy along

with supporting vocabulary [31]. To paraphrase:

Driving Automation System A catch all term that the SAE uses to describe a

system that automates some portion of the complex task of navigating and

controlling a car, referred to as the Dynamic Driving Task (DDT). This could

be as simple as a fixed speed cruise control or as complex as a fully

autonomous car.

Automated Driving System (ADS) A system capable of handling the entire

DDT without human input, though it may be constrained to specific

Operational Design Domains (ODD), like highway or city driving, and it may

request human intervention in cases it is not equipped to deal with. Thus,

ADSes must be a level 3, 4, or 5 autonomous system.

Level 0 – No Driving automation The driver is responsible for all driving

functions, though they may be assisted by active safety systems like lane and

blind spot warnings, as well as advanced features like automatic braking

systems.

3

Level 1 – Driver Assistance In this case, the driving automation system is

responsible for controlling either the steering (lateral movement) or the

acceleration and braking (longitudinal movement) of the vehicle. Such systems

can be simple, like cruise control that holds a static speed, or sense the world

around the car to handle more of the DDT, like Adaptive Cruise Control or

Lane-Keeping. However, the driver still carries the burden of Object and

Event Detection and Response (OEDR), meaning the human driver is

responsible to avoid objects the system does not detect, such as animals,

pedestrians, stopped vehicles, and debris, and they must react accordingly to

events like rain, ice, and emergency services.

Level 2 – Partial Driving Automation The driving automation system

controls both the lateral and longitudinal motion of the vehicle, but again

leaves OEDR to the driver. This is the point where the average consumer

might perceive that the car is “self driving”, so it is imperative that the driver

understand that they must prepared to take control of the vehicle back

without notice or warning.

Level 3 – Conditional Driving Automation The system performs the DDT

and OEDR in a sustained manner for a specific ODD with the expectation

that the driver will take over if the system requests driver intervention or fails.

Perhaps the most widely deployed implementation of such a system is Tesla’s

Autopilot [37], which supports freeway and limited city driving in mild

weather.

Level 4 – High Driving Automation The system performs the DDT and

OEDR for a specific ODD in a sustained manner, and is able to handle

fallback or failures without the user responding to an intervention request.

Compared to a level 5 autonomous system, a level 4 system may be limited to

4

certain areas, speeds, or weather. For example, a company may limit its cars

to a specific geographical areas to prevent cars getting stuck or lost in areas

where the car lack sufficient information to navigate successfully, or cars may

be prevented from operating in conditions that significantly degrade the

capabilities of their sensors, like snow or heavy rain. While such systems may

be achievable with current technologies, we may see their deployment delayed

for legislative or liability reasons [5].

Level 5 – Full Driving Automation The system performs the DDT and OEDR

in any ODD in a sustained manner without any user intervention. This is

unlikely to be achieved any time soon due to poor sensor performance in

extreme weather like snow and heavy rain [16], as well the challenge of

responding to pedestrians and other human controlled vehicles [16, 20].

2.2 Adaptive Cruise Control

With the advancements in developing higher-level ADSes, there have also been

many improvements to level 0 and 1 driving automation systems, like Lane Keeping,

Adaptive Cruise Control (ACC), and blind-spot warning systems. ACC is of

particular interest due to its already widespread deployment and increasing

availability in less expensive vehicles [40, 44]. Adaptive Cruise Control uses sensors

to observe the vehicle in front of the ACC equipped vehicle and maintain a safe

headway to the preceeding vehicle, or a set speed in the absence of one.

An ACC implementation can be as simple as a forward-facing lidar or radar [27]

that is fed into a control loop to balance the desired speed with the desired

headway. There has also been work with radar facing both forwards and

backwards [21] to balance the distance between the preceding and following vehicle.

The first situation is more common, likely because it requires fewer sensors, less

5

computation, and there is no real need to react to the following vehicle, as existing

law places the responsibility to not collide on the following vehicle.

ACC coupled with a simple latitudinal control system like Lane Keeping or

vehicle following creates a simple autonomous vehicle autonomous vehicle capable of

staying in its lane and keeping a safe headway behind the vehicles in front of

it.While that vehicle is only capable of operating in a narrow set of optimal

conditions, by following a vehicle capable of performing the full DDT and OEDR it

can piggyback off the preceding vehicle’s decisions to handle situations that it is

normally not equpped for. The preceding vehicle could be human-driven or a level 4

or 5 fully autonomous vehicle, and handle the important speed, safety, and

navigation duties for the simpler vehicles, expanding the number of situations in

which level 2 vehicles may be used.

2.3 Platooning Autonomous Vehicles

Additionally, a level 2 autonomous vehicle is able to follow another level 2

autonomous vehicle. Combined with the previous section, we can chain together a

large number of level 2 autonomous vehicles following a better-equipped vehicle in

what we will refer to as a platoon of semi-autonomous vehicles. A vehicle in a

platoon typically falls into one of two roles: the leader, which sets the speed and

direction of the platoon, and the followers, which are all governed by the same

control algorithm to follow the preceding vehicle and maintain a safe but efficient

spacing in the platoon.

It is important that as the platoon grows longer the control algorithm does not

allow any oscillations or errors to amplify; this design criteria is defined as string

stability [41].

6

Platooning autonomous vehicles together offers a number of benefits. The

primary benefit is that it can reduce the complexity of the hardware needed for

vehicle to drive under computer control. The leader of the platoon still needs to be

able to perform the full DDT and OEDR, whether that is a level 4 or 5 autonomous

system or a human driver, but the vehicles that follow the leader only need to be

level 2 autonomous vehicles capable of following the vehicle in front of them.

Autonomous platoons also can react much faster than a human driver is physically

able to, so the vehicles can drive much closer together [28]. The decreased distance

between vehicles can bring significant fuel savings by allowing the following vehicle

to draft in the wake of the preceding vehicle [33], and the decreased distance

increases the density of vehicles on the road, allowing more vehicle to use the same

road in a given time [28].

2.4 Collaborative Vehicles

Another area of significant interest is the use of wireless signals to enable

cooperation or collaboration between vehicles. The US Department of

Transportation’s AV 3.0 initiative [28] discusses a number of applications for Vehicle

to Vehicle (V2V) and Vehicle to Environment/Infrastructure (V2X) communication,

including “coordination of signalized intersection approach and departure. . . ”,

“cooperative lane change[s] and merge[s]. . . ”, “speed harmonization . . . to reduce

bottleneck conditions”, and “vehicle platooning to enable safe close following

between vehicles and improve highway capacity”.

The last point is of particular interest for this thesis. Connecting the members of

a semi-autonomous platoon together allows the vehicles to provide feed-forward

information to the other vehicles to let them react even faster than a

non-collaborative platoon can solely with sensor-based feedback. Current

7

implementations with networked pairs of tractor-trailers found a combined 7% fuel

savings and increased driver awareness and responsiveness [26].

2.5 Security Research

With the potential that autonomous vehicles and platoons offer, there are also risks

that must be addressed. Due to the combination of heavy, expensive vehicles

carrying humans traveling at high speeds and low following distances, autonomous

platoons require the underlying systems to react before a human can perceive the

change in conditions.

Most platoons are currently designed with the assumption that all parties

involved will act in the best interest of the platoon, but that is not a safe

assumption. Security researchers have introduced another role to the platooning

model: the attacker, which also follows the leader, but varies their velocity and uses

a different set of control parameters to disrupt the stability of the platoon. Through

manipulation of parameters that control the platoon, an attacker can

catastrophically destabilize the platoon, resulting in collisions [9]. With more

carefully-chosen-values, an attacker can cause crashes that involve vehicle behind

them in the platoon while the attacker’s vehicle drives away unscathed [11, 12]. If

platooning becomes commonplace and a large stream of vehicles on a highway are

platooning together, researchers have proposed methods by which attackers can

induce behavior that causes delay, discomfort, excess resource consumption, and an

increased rate of accidents [8].

In response, researchers have suggested methods to mitigate such attacks, such

as verifying the trustworthiness of participants in a platoon through both local

observations [38] and collaboration with other vehicles [34], as well as falling back

on safer control schemes when bad behavior is identified [32].

8

Most of the works referenced are conducted in simulation, as it is significantly

faster and cheaper, and there are currently no inexpensive, open source platoon

implementations on which to test. The one work that did implement a physical

platoon [8] fixed their vehicles to a guide wire, simplifying their implementation at

the cost of some realism. This thesis seeks to address that by providing a platform

on which a semi-autonomous collaborative platoon can be built.

9

Chapter 3

PLATOON DESIGN

In this thesis, we design components that can be used for a human-led, string-stable

platoon of 1/10th scale semi-autonomous vehicles in the future. A human-led

semi-autonomous platoon lets security researchers focus on the level 2 autonomous

vehicle implementation without needing to develop a level 4 or 5 ADS to lead the

platoon. The platoon must be string-stable [41] to prevent the error between

vehicles from growing as we increase the number of cars in the platoon, as that

could result in instability or collisions. To acheive string stability, we designed a

PID controller for the throttle based on previous platooning work, as well as a PID

controller for the steering due to instability that occurred during testing

3.1 Velocity Control

To decrease the complexity of the implementation, our scale platoon makes four

assumptions that are commonly found in string stability literature [8, 10, 11, 41];

the vehicles in the platoon:

• Will follow a single path

• Will not reorder themselves

• No vehicle will join or leave the platoon while it is in progress

• The platoon is homogeneous (all the vehicles perform similarly).

Restricting the platoon to a single path means the followers only need to follow the

human-driven vehicle and thus do not require additional sensors and logic to follow

10

other paths or avoid obstacles that the lead car did not detect. By keeping the order

and size of the platoon fixed, the headway can be fixed and the platoon does not

need to have logic to expand or contract the headway between vehicles or modify

the sources and destinations of the feed-forward logic in the control loops. A

homogeneous platoon decreases the effort required to source, configure, and

assemble the platoon, as we only need to build one model. While a heterogeneous

collection of vehicles may more accurately reflect real world conditions, the same

control logic applies to either platoon composition, so it should not affect the results.

Our platoon consists of K Cars numbered C0 through CK−1, which want to keep

a reference headway dr,i from the preceding car. Car C0 is the human-driven leader

while Cars C1 thorough CK−1 are the semi-autonomous followers. Each following

Car Ci is equipped with a lidar sensor to measure the distance to the preceding Car,

di, and an inertial measurement unit (IMU) to measure the velocity, vi. The

reference headway for car Ci is defined such that dr,i = hd,ivi + Li, where hd,i is a

headway in seconds to increase the space between cars at higher speeds, and Li is a

constant offset distance to prevent the cars from coming into contact at low speeds.

From that, the error is defined as ei = di − dr,i, which expands to

ei,vel = di − hd,ivi − Li (3.1)

Because we are using a double integrator model, we also need the derivative of the

error, which is approximated on-the-fly by dividing the difference between the

current error at time τ and previous error at time τ − 1 by the period ∆t

ėi,vel[τ] =
ei,vel[τ] − ei,vel[τ − 1]

∆t
(3.2)

11

Uff,i−1 is the feed-forward throttle input from Car Ci−1, and is the portion that,

as discussed in Section 2.4, allows the platoon to react more quickly and smoothly.

The throttle input Ui is calculated by adding together the error, derivative error,

and feed-forward value, adjusted by control constants kp(roportional),vel, kd(erivative),vel,

and kf(eed)f(orward),vel.

Ui = kp,velei,vel + kd,velėi,vel + kff,velUff,i−1 (3.3)

3.2 Steering Control

We do make one modification to the common assumption [8, 10, 11, 41] that the

platoon will follow a fixed path. To the best of the author’s knowledge, most other

research platoons fix the steering, either by only calculating forwards velocity [8, 10,

11, 41], or by physically attaching the platoon to a guide wire to limit motion to one

dimension [8]. Since real world platoons, such as Peloton’s [26], need to be able to

steer, we chose to implement a system to allow our cars to steer towards the marked

car in front of it. Our implementation does limit the steering to gentle curves like

one would experience in highway driving due to sensor based limitations we will

discuss in Section 3.3.2.

We also found that just feeding the raw error between the expected and desired

heading caused our cars to overshoot the steering and oscillate, as discussed in

section 3.3.1. To mitigate this, we filtered the steering input through another PID

controller.

12

For the steering PID controller, Car Ci measures ameas to the center of the

preceding car Ci − 1, which is a combination of the angular distance from the center

of the following car’s view and angular skew of the back of the vehicle. Due to the

implementation of our vehicle, an ameas of 90◦ is straight forward. From there, the

error is defined as

ei,ang = ai,meas − adesired (3.4)

adesired is defined to be 90◦ for our platoon, as we would always like to be moving

straight towards the preceding car. Like the velocity PID controller, the derivative

angular error is computed taking the difference of the error at time τ and τ − 1.

Unlike the velocity PID controller, the derivative error is not divided by the period,

as we found that it destabilized our results in testing. Since our target period of 8

milliseconds is so small, it ended up magnifying even small changes in proportional

error. Instead of compensating by using a tiny kd,ang, we essentially factored the

time constant into kd,ang.

ėi,ang[τ] = ei,ang[τ] − ei,ang[τ − 1] (3.5)

Our new dampened angle Adampened is the combination of the proportional and

derivative errors, also tempered by control constants kp,ang and kd,ang.

Ai,dampened = kp,angei,ang + kd,angėi,ang (3.6)

3.3 Discussion

As we will discuss in Section 4, our platoon has been through three generations of

implementation. As stability improved with each iteration, we discovered several

sources of instability in the steering and sensors that we did not anticipate. A large

source of instability was eliminated by filtering the steering through a PID

13

controller, while others are mitigated by constraining the operation of the platoon

until future work can address them.

3.3.1 Why Steering is Controlled by a PID Controller

The first two generations of the platoon only implemented the velocity PID

controller, as they hit some roadblocks that prevented them from reaching stability

at higher speeds, and the raw angles from the camera system were deemed good

enough to guide the platoon. As the velocity control of our third-generation platoon

matured to the point that we could consistently keep up with the preceding car, we

found that raw angles from the camera system would cause the system to steer

towards the center of the preceding car so aggressively that it commonly overshot

its target. The correction for the overshoot commonly became an oscillation which

grew until the car ended up turning so far that it completely lost sight of the

preceding car.

This destructive oscillation led to the implementation of the steering PID

controller detailed in Section 3.2, and provided the context for why the vast

majority of platoon simulations and implementations assume only velocity control.

3.3.2 Steering Limitations

Another behavior that appeared once our third generation platoon matured was the

tendency of the following car to engage full throttle and take off if the preceding car

moved too far from the center of the following car’s view. This was the result of our

lidar, the only source of distance to the next car, having a very narrow field-of-view.

The TeraRanger One lidar sensor we use is a hobby-grade distance sensor with a

3◦ field-of-view [36] that is commonly used for drones and robotics platforms. It

works well when the object we would like to identify is directly in front of the car.

14

The OpenCV portion of our project is good at keeping the following car lined up

with the tracking pattern on the back of the preceding car through gentle curves.

However, if the preceding car turns sharply, it may move so far laterally that the

lidar on the following car registers the next obstacle beyond the preceding car,

usually meters away. With that large distance fed into the PID controller, it

outputs full throttle and the car takes off.

For the time being, it is sufficient to limit the platoon to straight paths and

gentle curves, given that most platooning research assumes only forward motion

anyway [8, 10, 12, 41].

In the long term, the team plans to investigate different lidar modules and

computer vision based distance tracking to alleviate this limitation. There are lidar

modules that offer much wider fields of view through the use of a spinning module

or more advanced arrays of lasers. Unfortunately, the wider and more precise the

field-of-view is, the more expensive the module; a quote we received in October of

2018 put full-scale automotive modules in excess of $10,000. Computer vision based

systems have the advantage of working with our existing 74◦ field-of-view

camera [14], and thus are much cheaper, but will require additional cameras and

processing if we want to track the distance of objects other than the tracking

pattern on the back of the preceding car.

3.3.3 Camera and Lidar Minimum Distances

There is one more limitation on our third-generation design. Our current mounting

positions for the lidar and camera place them at the front of the car, protected from

collisions by 8-10 cm of bumper. The lidar’s minimum range is 20 cm, so it is

impractical to have a following distance lower than 25-30 cm, as the lidar will have

difficulty differentiating between a slight slowdown and an impending collision.

15

Additionally, when following less than 30 cm behind another car, any significant

side-to-side movement by the preceding car may cause the tracking pattern to leave

the view of the following car’s camera, causing OpenCV to return inaccurate values.

Overall, these are low impact issues, as the lateral limitation is within the

limitations imposed by the lidar discussed in Section 3.3.2, and our typical headway

values of 30 to 50 cm are comparable with current full-scale platoon

implementations [26] when we account for the 10 cm the bumper takes up.

16

Chapter 4

IMPLEMENTATION

The scale platoon has gone through at least three different generations at Cal Poly:

the initial project before I was involved, the generation that I worked on for my

senior project, and the generation that I am leading for this thesis.

4.1 Goals for the Semi-autonomous Platoon

The overarching goal of building a scale semi-autonomous platoon is to test a

number of control-theory-based attacks and attack mitigations that had previously

only been tested in simulation [9, 11, 32, 34, 38].

The specific focus of this thesis was to build the string-stable semi-autonomous

platoon which could be used to test these attacks. By implementing our platoon at

1/10th scale, we decrease the danger of collisions that inevitably happen in

development, as well as the collisions we plan to induce in future security research.

Additionally, building in scale allows us to significantly decrease the cost through

the use of an off-the-shelf RC car chassis, sensors, and microcontrollers.

4.2 The First Generation

My first exposure to the project was with the generation created by David Xenakis

and Willy Okpobua. This version used an off-the-shelf 1/10th scale RC car chassis

controlled by a Pixhawk drone controller and a Raspberry Pi 2B. The Pixhawk used

a sonar sensor to measure the distance to the next car in the platoon while the

Raspberry Pi ran an OpenCV program to communicate to the Pixhawk how to

17

Electronic

Speed

Controller

Steering

Servo

RC Car Chassis

Raspberry

Pi

Pixhawk

Webcam

Lidar

USB Battery Pack
2S Lipo

Pack

Figure 4.1: A High Level Block Diagram for the First Generation’s Design
The Raspberry Pi calculated the angle to next car using the webcam. The Pixhawk
then took that angle, along with the distance from the lidar, and forwarded that to
the RC car’s electronic speed controller and steering servo. Power for the Raspberry
Pi and camera was supplied by a USB power bank, while the Pixhawk, lidar, and car
were powered by a 2S lipo pack. The arrows indicate the high level data and power
flow.

steer towards the preceding car. The sonar sensor did not perform well in even

moderately noisy environments, so it was swapped out for a fixed lidar sensor.

While I did not personally see the platoon driving, it reportedly reacted slowly

due a combination of the Raspberry Pi’s low compute power and the lack of

hardware or GPU optimizations for OpenCV on a Raspberry Pi 2B. Thus, the

system had difficulty performing real-time tracking of an object in OpenCV with

low enough latency to direct an RC car. This was the main factor in the upgrade

that led to the second generation.

4.3 The Second Generation

The second generation was undertaken as my Senior Project at Cal Poly, and was

done in conjunction with Eva Chen (also for her senior project [6]), Willy Okpobua,

Sebastian Seibert von Fock, Justin Nguyen, Greg Chu, Alexandria Adams, and

Cassidy Elwell. This iteration was largely predicated on the upgrade from a

Raspberry Pi to an Nvidia Jetson TX 1, mostly due to the Jetson’s 256 CUDA

18

Electronic

Speed

Controller

Steering

Servo

RC Car Chassis

Nvidia

Jetson

Arduino

OrangeRX

Receiver

Lidar

Webcam

3S Lipo

Pack

2S Lipo

Pack

Figure 4.2: A High Level Block Diagram for the Second Generation’s
Design
The Jetson is responsible for calculating the angular distance to the next car using
the webcam, then sending that angle to the Arduino. The Arduino is responsible
for forwarding that angle to the steering servo, as well as retrieving the distance to
the next car from the lidar, then calculating the next throttle and send that to the
ESC. The Jetson and lidar are directly powered by the 3S lipo pack, while the ESC
is powered by the 2S lipo and shares that power with the servo and Arduino. The
OrangeRX Receiver is used to communicate a stop signal to the platoon as a fail safe
mechanism. The arrows indicate the high level data and power flow.

19

cores that could significantly accelerate the OpenCV work. While recent hardware

optimizations allow the Raspberry Pi to perform SIMD [24] and improve the

Floating Point operation performance [23] for very noticeable gains in OpenCV

performance [30], the Jetson’s much more powerful GPU still provides a significant

advantage.

While in the process of migrating, we found the Pixhawk models we had on

hand required too much development effort for what was a relatively simple PWM

control of our RC car chassis’ electronic speed controller and steering servo, so the

Pixhawk was dropped in favor of an Arduino Mega.

Sebastian and Justin were responsible for porting the python-based OpenCV

code from the Pi to C++ on the Jetson for the significantly better performance

from CUDA support in C++. The rest of the functionality was implemented on the

Arduino by the rest of the team, including lidar-based distance following with ESC

control, passing the steering value from the Jetson to the steering servo, and a

radio-based “kill button” to allow us to halt the entire platoon for testing safety.

We did successfully test a two-car platoon, with one computer-controlled car

following a human-driven one. This implementation lacked a network to send

feed-forward information, and it was a bit jerky and responded slowly, which

motivated the creation of the third generation.

4.4 The Third Generation

The two main goals of the third generation were to implement a network connection

for the feed-forward mechanism and to smooth out and improve the performance of

the platoon. This portion of the project was completed in conjunction with Justin

Nguyen, Matt Lewis, and Willy Okpobua.

20

Electronic

Speed

Controller

Steering

Servo

RC Car Chassis

Nvidia

Jetson

Arduino

OrangeRX

Receiver

Lidar

Intertial

Measurement

Unit

Webcam

Power

Distribution

Unit

3S Lipo

Pack

2S Lipo

Pack

Figure 4.3: A High Level Block Diagram for the Third Generation’s Design
This generation builds off much of the architecture of the second generation, with
some components and roles shifted around. The Jetson is still responsible for using
the webcam to meausure the angle to the preceeding car, but it also is now responsible
for retreiving the sensor data from the lidar (previously done by the Arduino) and the
IMU (a new addition to capture the velocity of the vehicle). This change was made
to shift the PID logic onto the much more capable 4 or 6 core processor of the Jetson.
The Arduino was also upgraded to communicate back to the Jetson, so that it can
keep the Jetson appraised of the throttle of the lead, human-driven car and any stop
signals that come through. The Arduino’s connction to the Jetson was also switched
to USB as that simplified the logic level shifting between the 5 V Arduino and 3.3
V Jetson, as well as the power distribution. For this generation, the 3S lipo powers
a Power Distribution Unit (PDU), which in turn powers the lidar, Jetson, and IMU.
The PDU is used to more cleanly step the voltage down to levels more appropriate
for the individual components, as well as provide a sufficient number of connectors
for all the compoents that need power. The arrows indicate the high level data and
power flow.

21

4.4.1 Overview

After analyzing the code to diagnose the jerky performance of the second generation,

I discovered that several portions of the code on the Arduino would halt execution

while waiting for results. Since the Arduino only has a single core and only executes

a single code loop at a time, the sleeps would halt the execution of everyone’s code.

After a quick test with FreeRTOS on the Arduino to enable multiprocessing

support, we decided to re-architect the project to move most of the processing to

the Jetson, as the Jetson’s four cores and use of Ubuntu allow for multiple

concurrent processes.

The Jetson communicates with the lidar and IMU over I2C, the Arduino over

UART via USB, and the camera over USB. The reader processes for the lidar and

IMU, as well as the OpenCV code that makes use of the CUDA cores and USB

camera, all run as independent processes written in C++, as most of our collective

developmental experience is in writing code for Linux. There was some discussion of

using a real-time operating system like FreeRTOS or ROS, but the non-standard

packages used by our OpenCV implementation and our general inexperience with

RTOSes led us to choose Linux.

All of the sensor processes are connected through named pipes back to a central

piece of code, dubbed “Grand Central”, that is responsible for collecting data input

from the reader processes asynchronously. Grand Central is also responsible for

receiving a throttle value over a wifi network from the preceding car in the platoon

for the feed-forward portion of the control algorithm. Periodically, Grand Central

calculates the next throttle value based on the control parameters and inputs it has

through the process described in Chapter 3. Once Grand Central has calculated the

next throttle value, it sends the updated velocity and turning angle to the Arduino,

as well as the next car in the platoon for its feed-forward value.

22

We were able to do some preliminary testing with a leader and one following car

that proved to be much more stable than the previous generation, but we did not

achieve string stability or test platoons with 3 or more cars.

4.4.2 My Contributions

For the third generation, I was responsible for the code for the control logic,

interprocess, serial, and networking communications, and main process, named

Grand Central, that combined all those.

The control logic is separated out into a set of functions to allow for simple unit

tests, and the control constants exist in a separate header file. The unit tests were

very helpful to double check that the logic implemented produced sane results and

prevent simple slip ups like sign errors. Separating the control constants into a

header file allows for quick changes that make calibration of the control systems

very simple.

All of the communications for the platoon are serialized by NanoPb, a C-based

implementation of Google’s Protobuf that fits well in the memory constraints of the

Arduino. This allows for a simple centralized declaration of the data that is being

transported around, as well as a consistent serialization library that has already

been extensively tested. The interprocess communications are backed by Posix

named pipes, the serial communications are backed by the Posix Serial

implementation, and the network communications are a publisher-subscriber scheme

backed by NNG. The publisher-subscriber model of network communications was

chosen because it allows any number of vehicles to subscribe to the feed-forward

signal of any car in the platoon, enabling other schemes than the current model that

only listens to the preceding car. Each of the communication methods lives in its

own class designed to abstract away many of the specifics and make integration into

23

other module compact and easy to understand.

Grand Central collects all those parts into one central place. It opens up a serial

connection to the Arduino and a network connection to any sources it is

programmed to subscribe to. Each of the sensor processes open a named pipe to

Grand Central and will send their data as they retrieve it. Grand Central uses

Posix’s Select function to wait and asynchronously consume the data from the

sensor processes. On a timeout that is defined in the control constants, Grand

Central will calculate the next throttle and angle, send those values to the Arduino

over serial, and publish the throttle to any network subscribers. Once Grand

Central has sent out the throttle and angle, it will return to waiting with Select. As

of the current implementation, it is the responsibility of the sensor processes to

update in a timely manner; if a process does not send an update, then Grand

Central will simply re-use the previous value. That said, in our testing, we found

that the sensors often update as many as 10 times faster than Grand Central did

even with an 8 ms tick, so that is not a large concern for us.

4.5 Part Selection for Cost and Simplicity

One of the main goals of this project is to develop a platoon that is inexpensive and

easy for others to replicate. The components chosen for this project were purchased

for $750 and are available off-the-shelf. All prices and availability are as of March

2019.

For the chassis, we purchased a Redcat Volcano 1/10th scale RC car for $150. It

has handled the various collisions in our testing very well, though we are looking for

a model that trades some of the speed for torque, as discussed in Section 4.6.1.

Our latest generation of platoon makes use of Nvidia Jetsons and Arduinos to

control the cars. Specifically, we use a mix of Jetson TX1s and TX2s in the default

24

carrier dev board and Arduino Megas. The TX2 offers a noticeable improvement in

processing speed for OpenCV, the two extra ARM cores offer some extra headroom

for additional processing, and the extra flash storage on board make installing large

packages like OpenCV much easier, but the TX1’s $100 price difference may make it

more attractive. Nvidia’s education discount of 50% brings them down to a much

more affordable $300 for the TX2 and $250 for the TX1.

Our selection of the $40 Arduino Mega was influenced by our second generation

design, as we intended to do much more computation and communicate with

multiple sensors. For the third generation, our microcontroller requires a serial

communication channel to talk to the Jetson and three to five PWM channels to

control the ESC and steering, and read the stop, throttle, and angle signals from the

remote control. There are a number of smaller, less expensive microcontrollers that

should still be sufficient, like the AtTiny microcontroller family, the Adafruit

Trinket or Feather series, or Arduino Pro Micro clones.

As for sensors, we use the $170 Teraranger One lidar sensor, $24 Adafruit

LSM9DS0 IMU, $3 Sparkfun Bi-directional Logic Level Converter, and $30 Logitech

C615 webcam. As discussed in Section 3.3.2, we are exploring other options for the

lidar sensor to provide a wider field of view.

We power our cars with a 2S Lithium Polymer (lipo) pack for the motor and

servo, and a 3S lipo pack for the Jetson and sensors. Both packs were found on

Amazon for around $25, though there are many different options that can be found

for cheaper elsewhere, including using the NiMH packs that come with the cars.

4.6 Discussion

As we built the the platoons, there were some limitations that cropped up, as well

as a number of lessons that we learned.

25

4.6.1 Challenges with an Off-the-Shelf RC Chassis

One of the main design choices we made for this project was to use an off-the-shelf

1/10th scale hobby RC car to allow us to focus our budget and development efforts

on implementing the control portions of the project. While the cars were reasonably

priced and quick to assemble, their pwm control and lack of low-speed torque

created additional challenges for the project.

The largest issue was that the chassis was optimized for racing, trading low

speed torque for a higher top speed. This made it difficult to drive at or under 6.5

miles per hour, which simulates highway speeds for our 1/10th scale platoon.

Increasing the PWM throttle signal 200 hz above the neutral throttle will make the

car run at 6.5 mph, but the cars often won’t move from rest until we increase the

throttle to 100-150 hz above the neutral throttle. The remaining 50 hz do not

correspond linearly to any particular speed, leading to very coarse speed control.

Additionally, the Jetson is not designed to output PWM signals [17], so we need

another microcontroller to translate the Jetson’s calculated values to a PWM signal

the car can understand. We are looking into a different RC car or a robotics

platform that is better suited for speed control up to 7 mph and ideally controlled

by a protocol that is better supported by the Jetson, such as I2C or UART.

4.6.2 Why we chose 802.11n for V2V Communication

Our decision to send the feed-forward data over a standard 802.11n wifi network

was made with cost and simplicity in mind. The Nvidia Jetson already supports

wifi, and there are a plethora of mature, stable APIs to transfer data over it. Our

initial tests with traditional wifi access points performed well, and the Jetson’s

support for creating an ad-hoc wireless network [18] will allow one of the vehicles to

create a network in the absence of traditional infrastructure.

26

This does not affect our testing, but it arguably means our implementation does

not use true V2V communications. However, since the proposed V2V standards of

Digital Short Range Communications (DSRC) and cellular 5G are both still in

development [1, 3], the modules to implement them are large, expensive, and not

guaranteed to work with the final standard. As such, we will wait for a clearer

standard to emerge before trying to implement it on our vehicles.

4.6.3 Write Design Documents before Coding

As touched on in Sections 4.3 and 4.4, starting with design documents could have

saved us a lot of time and helped speed development along, potentially saving us an

entire generation of development.

For the second generation, our initial planning only went so far as assigning high

level functions to each person, such as reading from the lidar, setting the speed and

steering, or transferring the data between the Jetson and Arduino. Everyone

developed and tested their function in relative isolation, and some of those pieces

were reliant on halting the processor’s execution while that task completed. When

all the pieces were merged together, one halted part blocked everything else,

resulting in very jerky acceleration that hampered the stability of the platoon.

In hindsight, the second generation had too many resources contending for

processor time on the Arduino, so for the third generation we backtracked and made

sure to talk about not only the individual parts, but how they fit together before we

started development. This planning led to our decision to move most of the

processing to the more capable Jetson.

27

4.6.4 Choose a Build System before Starting Development

Since the features of this project were developed concurrently by different

developers without prior agreement on a build system, each section of code used a

slightly different build setup. The simpler sections could get away with comments

with the g++ command to invoke or a simple Makefile, but the codebase grew and

we started making simple libraries to share among features. Maintaining Makefiles

and individual commands to point to the libraries became a headache that required

updating a number of files across the project for even simple changes in the libraries.

That prompted us to switch to Bazel for a more unified build system and nicer

syntax than alternatives like cmake. With that move, our code is much better

organized, less redundant, and more reliable, so I am much more confident that we

can make changes without breaking something elsewhere.

4.6.5 Implement Tests

Testing the intersection of software and hardware can be challenging, especially if

we want to automate it. As is quite common on student projects, implementing

features on our project took precedence over unit and integration tests.

Later in development, we encountered several bugs whose symptoms were

mistaken for or masked by other bugs in our limited manual testing. One such case

was a jitter in the steering that made it difficult to get the cars to stay in line while

driving. We assumed the jitter originated from the OpenCV data and spend time

attempting to smooth out the results from OpenCV. When that did not resolve the

bug, our further testing found that a bug in the Jetson to Arduino communication

was actually introducing the jitter. With that jitter addressed, we found that our

vehicles overshot the expected headway we set, regardless of how we set the control

28

variables. That led us to discover a missed unit conversion that left the derivative

error orders of magnitude smaller than it should be. A simple unit test could have

caught the control logic bug, and integration tests could have caught the

Arduino-Jetson miscommunication bug and the shown that OpenCV was not the

issue.

For some of the more recently developed features, I started with a set of unit

and integration tests, and they proved invaluable to confirm that all the parts of my

code worked. Development went much faster when I could confirm that the changes

I made did not break other functionality. When the module didn’t work when

dropped into the other code, the tests reassured me that the functionality of the

code worked and allowed me to find the bug another portion of the code.

4.6.6 Start with Interprocess Communication

In hindsight, we should have prioritized code that connected the parts that different

people worked on individually, then moved on to the parts that were individually

accomplishable. In our case, this was mostly the code that transferred data between

processes and microcontrollers. The individual development went relatively

smoothly, but getting multiple people together to coordinate communication

between their code took time and schedule coordination. Front loading that work

and filling in gaps with individual development would have been a more efficient

approach.

The three practices described above compliment and reinforce each other.

Discussing and documenting the connections between the components can help

define a number of test cases. Good test cases help development of the connecting

portions of the code, and allow developers to confirm that their portion of the code

will likely work without needing to wait for the rest of the code to be completed.

29

Chapter 5

EXPERIMENTAL DATA

5.1 Lidar Validation

This section validates the performance of our lidar sensor. These tests came later in

the development; in hindsight, they probably should have been done much sooner,

as the results might have encouraged us to choose a different sensor. While we were

aware that our measured results were offset from the actual results, we were not

aware that it was not constant.

The accuracy of the sensor left a bit to be desired. Figure 5.1 shows the

distribution of approximately 3000 readings of the lidar 300 mm away from a

cardboard box. The lidar module measured an average of 434.5 mm (134.5 mm

farther than the actual distance), with a standard deviation of 5.2 mm and variance

of 27.4 mm.

Figure 5.2 repeats the same test with approximately 2,500 readings 400 mm

away from the cardboard box. The module measured an average of 525.7 mm (125.7

farther than the actual distance), with a standard deviation of 4.4 mm and variance

of 19.4 mm.

Figure 5.3 shows the distribution of approximately 4,900 readings 1000 mm

away from the tracking pattern on a metal filing cabinet. The module measured an

average of 820.1 mm (179.9 closer than the actual distance), with a standard

deviation of 6.4 mm and variance of 41.4 mm.

30

415 420 425 430 435 440 445 450

0

200

400

Distance Measured (mm)

D
is

tr
ib

u
ti

on
of

M
ea

su
re

m
en

t

Figure 5.1: 300 mm Lidar Measurement Distribution
The distribution of measurements when the lidar is placed 300 mm from a cardboard
box.

During those tests, the lidar module would not read lower than 200 mm, despite

having the surface nearly touching the sensor, and did not read higher than

approximately 1100 mm away, significantly limiting its useful range.

5.2 System Sensor Response

Figure 5.4 shows the velocity response when the system is placed two times the

resting distance from a wall (with the tracking pattern attached to it to keep the car

straight). In this case, the resting distance is 400 mm, kprp is 0.255, and kdrv is 0.48.

31

500 505 510 515 520 525 530 535 540 545

0

100

200

Distance Measured (mm)

D
is

tr
ib

u
ti

on
of

M
ea

su
re

m
en

t

Figure 5.2: 400 mm Lidar Measurement Distribution
The distribution of measurements when the lidar is placed 400 mm from a cardboard
box.

785 790 795 800 805 810 815 820 825 830 835 840 845

0

100

200

300

Distance Measured (mm)

D
is

tr
ib

u
ti

on
of

M
ea

su
re

m
en

t

Figure 5.3: 1000 mm Lidar Measurement Distribution
The distribution of measurements when the lidar is placed 1000 mm from a cardboard
box.

32

This response is reasonable, but demonstrates both a bug, and the need for some

additional PID tweaking. The bug in this case seems to be that when the velocity

controller requests Neutral throttle, the Arduino outputs a full speed backwards

signal. This appears around times 5000 ms, 6000 ms, and 14000 ms where the

system suddenly jerks away from the resting headway. Of course, the sudden change

in velocity creates a large derivative error, jerking the car back towards the resting

headway. This seems to cause the system to overshoot the desired resting headway

at 14000 ms. The distance does not creep back up to the desired resting distance

because the chassis reverses slower than it travels forward and doesn’t always follow

reverse commands unless they are preceded by a very large reverse signal.

With that bug addressed, it appears that the system would rather smoothly

asymptotically approach the desired resting distance. That said, the performance of

the PID controller could still likely be improved. In particular, the derivative error

rapidly swings between values that greatly exceed the proportional error, and, as

mentioned earlier, seems to exacerbate the bug in the throttle to PWM translation.

This would appear to be the small time period (40 ms in this case)

disproportionately increasing the derivative error. Perhaps we should remove the

period like we did for the steering controller

5.3 Two Car Run Without Feed-Forward

Figures 5.5 and 5.6 show the velocity control data from one of our cars following the

human driven lead car before the feed-forward from the lead car was implemented.

The PID controller is running with kprp = 0.255 and kdrv = 0.48. These results are

not stable, as they do not stay bounded.

33

·104

400

600

800

D
is

ta
n
ce

to
P

re
ce

d
in

g
ca

r
(m

m
)

·104

0

200

400

P
ro

p
or

ti
on

al
E

rr
or

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

−1,000

0

1,000

Time (ms)

D
er

iv
at

iv
e

E
rr

or

Figure 5.4: Stationary Target 800 mm Drive
These graphs show the system response with only the sensors active while it drives
towards a fixed point (in this case, the wall). The system starts at approximately 800
mm away from the wall; twice the headway at rest of 400 mm.

34

There are a number of factors that likely play into this instability. The control

parameters could likely be tweaked further. In particular, the derivative error is

very large; that may be a side effect of our very small period amplifying the results.

That could be addressed by significantly reducing the derivative constant, or by

removing the period, as we did in the steering PID controller. Additionally, adding

in the feed-forward will increase the stability of the system by reducing the reaction

time of the system. The instability may also be a compounded by the challenges

with the chassis, as described in Section 4.6.1.

35

·104

300

400

500

600

D
is

ta
n
ce

to
P

re
ce

d
in

g
ca

r
(m

m
)

·104

−100

0

100

200

P
ro

p
or

ti
on

al
E

rr
or

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·104

−500

0

500

Time (ms)

D
er

iv
at

iv
e

E
rr

or

Figure 5.5: Non-cooperative Platooning Run 1
These graphs show the measured distance as well as the proportional and derivative
error from the desired distance to the leader of the non-cooperative platoon. The
headway at rest was set to 400 mm.

36

·104

200

300

400

500

600
D

is
ta

n
ce

to
P

re
ce

d
in

g
ca

r
(m

m
)

·104

−200

−100

0

100

P
ro

p
or

ti
on

al
E

rr
or

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

·104

−1,000

−500

0

500

Time (ms)

D
er

iv
at

iv
e

E
rr

or

Figure 5.6: Non-cooperative Platooning Run 2
These graphs show another run with the measured distance as well as the proportional
and derivative error from the desired distance to the leader of the non-cooperative
platoon. The headway at rest was set to 400 mm.

37

Chapter 6

CONCLUSION

While completely autonomous vehicles are still in development, platoons of

semi-autonomous vehicles offer a simple way to achieve most of the same

functionality. We laid the foundation for a 1/10th scale platoon of collaborative

semi-autonomous vehicles to verify that research conducted in simulation works in

scale. This project will enable future research into more complex attacks and

mitigation schemes.

38

Bibliography

[1] A new connected-car battle: Cellular vs. DSRC. en.

https://www.autonews.com/mobility-report/new-connected-car-battle-

cellular-vs-dsrc, Feb.

2019.

[2] Apollo. http://apollo.auto/.

[3] Backers of V2V aren’t waiting for a mandate. en.

https://www.autonews.com/article/20180224/MOBILITY/180229894/backers-

of-v2v-aren-t-waiting-for-a-mandate, Feb.

2018.

[4] BMW Group, Intel and Mobileye Team Up to Bring Fully Autonomous

Driving to Streets by 2021. en-US. https://newsroom.intel.com/news-

releases/intel-bmw-group-mobileye-autonomous-driving/.

[5] J. S. Brodsky. Autonomous Vehicle Regulation: How an Uncertain Legal

Landscape May Hit the Brakes on Self-Driving Cars Cyberlaw and Venture

Law. eng. Berkeley Technology Law Journal, 31:851–878, 2016.

[6] E. Chen. Modeling Autonomous Vehicles through Radio Controlled Cars.

Computer Engineering, June 2017.

[7] Cruise Automation. https://getcruise.com/.

[8] D. D. Dunn, S. Mitchell, I. Sajjad, R. M. Gerdes, R. Sharma, and M. Li.

Regular: Attacker-Induced Traffic Flow Instability in a Stream of

Semi-Automated Vehicles. In pages 499–510, June 2017. doi:

10.1109/DSN.2017.61.

39

https://doi.org/10.1109/DSN.2017.61

[9] S. Dadras, R. M. Gerdes, and R. Sharma. Vehicular Platooning in an

Adversarial Environment. en. In Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security - ASIA CCS ’15,

pages 167–178, Singapore, Republic of Singapore. ACM Press, 2015. isbn:

978-1-4503-3245-3. doi: 10.1145/2714576.2714619.

[10] S. Dadras, R. M. Gerdes, and R. Sharma. Vehicular Platooning in an

Adversarial Environment. en. In Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security - ASIA CCS ’15,

pages 167–178, Singapore, Republic of Singapore. ACM Press, 2015. isbn:

978-1-4503-3245-3. doi: 10.1145/2714576.2714619.

[11] B. DeBruhl and P. Tague. Optimizing a MisInformation and MisBehavior

(MIB) Attack Targeting Connected Cars. en. IEEE Connected and Automated

Vehicles Symposium (CAVS):5, Aug. 2018.

[12] B. DeBruhl, S. Weerakkody, B. Sinopoli, and P. Tague. Is your commute

driving you crazy?: a study of misbehavior in vehicular platoons. en. In

Proceedings of the 8th ACM Conference on Security & Privacy in Wireless

and Mobile Networks - WiSec ’15, pages 1–11, New York, New York. ACM

Press, 2015. isbn: 978-1-4503-3623-9. doi: 10.1145/2766498.2766505.

[13] D. J. Fagnant and K. Kockelman. Preparing a nation for autonomous vehicles:

opportunities, barriers and policy recommendations. Transportation Research

Part A: Policy and Practice, 77:167–181, July 2015. issn: 0965-8564. doi:

10.1016/j.tra.2015.04.003.

[14] HD Webcam C615 - Logitech Support.

https://support.logitech.com/en us/product/hd-webcam-c615/specs.

[15] Honda and Alphabet Inc.’s Waymo Enter Discussions on Technical

Collaboration of Fully Self-driving Automobile Technology.

40

https://doi.org/10.1145/2714576.2714619
https://doi.org/10.1145/2714576.2714619
https://doi.org/10.1145/2766498.2766505
https://doi.org/10.1016/j.tra.2015.04.003

http://hondanews.com/releases/honda-and-alphabet-inc-s-waymo-enter-

discussions-on-technical-collaboration-of-fully-self-driving-automobile-

technology.

[16] R. Hussain and S. Zeadally. Autonomous Cars: Research Results, Issues and

Future Challenges. IEEE Communications Surveys Tutorials :1–1, 2018. issn:

1553-877X. doi: 10.1109/COMST.2018.2869360.

[17] Jetson/PWM - eLinux.org. https://elinux.org/Jetson/PWM.

[18] Jetson/TX1 WiFi Access Point - eLinux.org.

https://elinux.org/Jetson/TX1 WiFi Access Point.

[19] J. Krafcik. A first look at our Waymo fully self-driving Chrysler Pacifica

Hybrid minivans, Dec. 2016.

[20] U. Lee, J. Jung, S. Jung, and D. H. Shim. Development of a self-driving car

that can handle the adverse weather. en. International Journal of Automotive

Technology, 19(1):191–197, Feb. 2018. issn: 1229-9138, 1976-3832. doi:

10.1007/s12239-018-0018-z.

[21] F. Lin, M. Fardad, and M. R. Jovanovic. Optimal Control of Vehicular

Formations With Nearest Neighbor Interactions. IEEE Transactions on

Automatic Control, 57(9):2203–2218, Sept. 2012. issn: 0018-9286. doi:

10.1109/TAC.2011.2181790.

[22] Looking Further.

http://corporate.ford.com/innovation/autonomous-2021.html.

[23] A. Ltd. Instruction Sets — Floating Point. en.

https://developer.arm.com/architectures/instruction-sets/floating-point.

[24] A. Ltd. SIMD ISAs — Neon. en.

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon.

41

https://doi.org/10.1109/COMST.2018.2869360
https://doi.org/10.1007/s12239-018-0018-z
https://doi.org/10.1109/TAC.2011.2181790

[25] Mercedes-Benz Innovation: Autonomous Driving. en-US.

https://www.mercedes-benz.com/en/mercedes-benz/next/automation/.

[26] Peloton Tech Website.

[27] J. Ploeg, B. T. M. Scheepers, E. van Nunen, N. van de Wouw, and

H. Nijmeijer. Design and experimental evaluation of cooperative adaptive

cruise control. In 2011 14th International IEEE Conference on Intelligent

Transportation Systems (ITSC), pages 260–265, Oct. 2011. doi:

10.1109/ITSC.2011.6082981.

[28] Preparing for the Future of Transportation: Automated Vehicle 3.0. en.

https://www.transportation.gov/av/3, Text, Sept. 2018.

[29] Renault-Nissan and Microsoft partner to deliver the future of connected

driving. en-US. https://news.microsoft.com/2016/09/26/renault-nissan-and-

microsoft-partner-to-deliver-the-future-of-connected-driving/, Sept.

2016.

[30] A. Rosebrock. Optimizing OpenCV on the Raspberry Pi. en-US, Oct. 2017.

[31] SAE J 3016-2018 - Taxonomy and Definitions for Terms Related to Driving

Automation Systems for On-Road Motor Vehicles.

https://webstore.ansi.org/Standards/SAE/SAE30162018?source=blog.

[32] I. Sajjad, D. D. Dunn, R. Sharma, and R. Gerdes. Attack Mitigation in

Adversarial Platooning Using Detection-Based Sliding Mode Control. en. In

Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security

and/or PrivaCy - CPS-SPC ’15, pages 43–53, Denver, Colorado, USA. ACM

Press, 2015. isbn: 978-1-4503-3827-1. doi: 10.1145/2808705.2808713.

[33] J. Smith, R. Mihelic, B. Gifford, and M. Ellis. Aerodynamic Impact of

Tractor-Trailer in Drafting Configuration. en. SAE International Journal of

42

https://doi.org/10.1109/ITSC.2011.6082981
https://doi.org/10.1145/2808705.2808713

Commercial Vehicles, 7(2):619–625, Sept. 2014. issn: 1946-3928. doi:

10.4271/2014-01-2436.

[34] M. Sun, M. Li, and R. Gerdes. A data trust framework for VANETs enabling

false data detection and secure vehicle tracking. In 2017 IEEE Conference on

Communications and Network Security (CNS), pages 1–9, Oct. 2017. doi:

10.1109/CNS.2017.8228654.

[35] E. R. Teoh and D. G. Kidd. Rage against the machine? Google’s self-driving

cars versus human drivers. Journal of Safety Research, 63:57–60, Dec. 2017.

issn: 0022-4375. doi: 10.1016/j.jsr.2017.08.008.

[36] TeraRanger One - The best distance sensor for drones and robotics. en-US.

[37] Tesla Autopilot. https://www.tesla.com/autopilot.

[38] T. Tithi, C. Winstead, and R. Gerdes. Viability of Using Shadows Cast by

Vehicles for Position Verification in Vehicle Platooning. In 2017 IEEE

Trustcom/BigDataSE/ICESS, pages 210–217, Aug. 2017. doi:

10.1109/Trustcom/BigDataSE/ICESS.2017.239.

[39] Toyota Research Institute Demonstrates Progress in Advanced Technology

Research — Toyota USA Newsroom.

http://corporatenews.pressroom.toyota.com/releases/toyota+research+institute+demonstrates+progress+advanced+technology+research.htm.

[40] Toyota Safety Sense. en.

https://www.toyota.com/safety-sense/animation/pcspd.

[41] D. v a h g Swaroop. String Stability Of Interconnected Systems: An

Application To Platooning In Automated Highway Systems. en, 1997.

[42] Volvo Cars and Uber join forces to develop autonomous driving cars. en-us.

https://www.media.volvocars.com/us/en-

us/media/pressreleases/194795/volvo-cars-and-uber-join-forces-to-develop-

autonomous-driving-cars.

43

https://doi.org/10.4271/2014-01-2436
https://doi.org/10.1109/CNS.2017.8228654
https://doi.org/10.1016/j.jsr.2017.08.008
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.239

[43] Waymo. en. https://waymo.com/.

[44] What is Honda Sensing R© Suite? Features & More — Honda. en.

https://automobiles.honda.com:443/sensing.

44

	LIST OF FIGURES
	Introduction
	Background and Related Works
	Levels of Autonomous Vehicles
	Adaptive Cruise Control
	Platooning Autonomous Vehicles
	Collaborative Vehicles
	Security Research

	Platoon Design
	Velocity Control
	Steering Control
	Discussion
	Why Steering is Controlled by a PID Controller
	Steering Limitations
	Camera and Lidar Minimum Distances

	Implementation
	Goals for the Semi-autonomous Platoon
	The First Generation
	The Second Generation
	The Third Generation
	Overview
	My Contributions

	Part Selection for Cost and Simplicity
	Discussion
	Challenges with an Off-the-Shelf RC Chassis
	Why we chose 802.11n for V2V Communication
	Write Design Documents before Coding
	Choose a Build System before Starting Development
	Implement Tests
	Start with Interprocess Communication

	Experimental Data
	Lidar Validation
	System Sensor Response
	Two Car Run Without Feed-Forward

	Conclusion

