
THE APPLICATION OF EXPERT SYSTEMS

TO SMALL SCALE MAP DESIGN

BY

DAVID FORREST

A thesis submitted for the degree of Doctor of Philosophy
University of Glasgow

Department of Geography & Topographic Science
June 1995

COPYRIGHT © DAVID FORREST, 1995.

ProQuest Number: 11007849

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007849

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

ii

ABSTRACT

The increased availability of inexpensive computer mapping programs in
recent years has lead to a great increase in the number of map authors and the
number of maps being produced, but does not however appear to have lead to
more widespread knowledge of cartographic design theory. The large number of
poorly designed maps created by users of these computer systems indicates that
there is a lack of knowledge of how to design maps. These poorly designed maps
are not the fault of the computer programs, since most programs do have the
capability of producing well designed maps when used by someone knowledgeable
in map design. Rather, the problem lies with map authors who are not skilled in
cartographic design and who would probably never produce a map by conventional
means, but would contract a cartographer to produce it. What is required are
programs to be used by naive map authors that are better able to produce
reasonably well designed maps, or at least maps which do not break the most
fundamental rules of map design. The area of computer science devoted to
producing programs that include knowledge of how an expert solves a problem is
that of Expert Systems. An Expert System is essentially a program which includes a
codified form of the rules that an expert uses to solve a problem. Thus a carto
graphic design expert system would include the rules a cartographer uses when
designing a map.

This study examines the fields of artificial intelligence and expert system to
assess how they may best be applied to the map design problem. A comprehensive
review of the application of expert systems in design, mapping generally and map
design in particular is also provided, in order to develop an expert system, the
problem or 'domain' must be defined in a relatively formal manner. A structure for
describing geographic information and cartographic representation is developed and
a model of the cartographic design process for application in expert systems is also
described. Based on the models developed, a functional specification for a
cartographic design expert system for small scale maps is produced, with the rules
required for each stage in the design process being set out. The development of an
expert system, written in Prolog, incorporating these rules is then described in some
detail. Details of how the Prolog language can be applied to a specific problem,
colouring the political map, are also given.

It has been found that as long as realistic goals are set and that the system
is limited either in scale or range of topics, it is possible to develop an operational
cartographic design expert system. However, it must be recognised that a
considerable amount of further development will be needed to bring such a system
to market with the support structures and robustness that this entails.

ACKNOWLEDGEMENTS

As supervisor, John Keates was very influential in the early stages of this
project. In particular his feedback on the models of cartographic representation and
cartographic design developed in Chapter Five helped turn rather loose descriptions
into rigorous, well defined statements. Advice was always available when sought, as
was stimulating conversation about more general cartographic matters. Towards the
later stages of writing up the project Alastair Morrison provided many useful
comments and I am indebted to him for volunteering to become involved at a late
stage. Yvonne Wilson produced figures 2.5, 3.1, 3.2, 3.3 & 3.5, all other figures are
by the author.

This whole project would not have started without the co-operation and
encouragement of Dr. Michael Staveley and Dr. Christopher Sharp, Dean and Head
of Geography respectively, at Memorial University of Newfoundland. Their
willingness to allow leave of absence, both paid and unpaid, was clearly more in my
interest than theirs and I am grateful to them for this.

Funding for part of the early stages of this study was provided by a post
graduate scholarship from the Natural Science and Engineering Research Council
of Canada (NSERC).

A very important influence on my life has been my parents whose continued
support, both moral and financial, has been of great value. What they have freely
given over the years is much more than any child could reasonably expect. I hope I
can provide as well for my children as they have for theirs.

To my children, Lillian and Euan, both born since the inception of this
project, I hope that 'Daddy's working' will become a less frequent rebuke when they
want to sit on my knee and play a game on the computer. And finally, to Pauline,
who has spent many evenings alone while I battled with some aspect or other of
developing the program and has often felt she played second fiddle to that 0AfiY!
PhD, that eternity is at last over and perhaps we can again spend more time
enjoying life together.

iv

Table of contents

TITLE.. i
ABSTRACT... ii
ACKNOWLEDGEMENTS..iii
TABLE OF CONTENTS...iv
LIST OF FIGURES... ix
LIST OF TABLES... xi

INTRODUCTION... 1

CHAPTER ONE
An introduction to Artificial Intelligence and Expert Systems....................................5
ARTIFICIAL INTELLIGENCE...5

Intelligence... 6
Problem Solving..7

EXPERT SYSTEMS..11
What are expert systems?..11
The Role of Expert Systems.. 15
Expert system structure...16
Heuristics.. 20
Applications of Expert System...22
Expert systems for whom?..26

PATTERN RECOGNITION..27
NATURAL LANGUAGE PROCESSING...28
CONCLUSION...29

CHAPTER TWO
Building Expert Systems...30
CONCEPTUAL MODELS..30
KNOWLEDGE ENGINEERING...31

Problem Identification..32
Knowledge Elicitation.. 33

THE KNOWLEDGE BASE..35
Knowledge Representation...36

THE INFERENCE ENGINE..40
Mechanisms of expert systems...40
Expert System Shells..42

V

THE USER INTERFACE... 42
DESIGNING THE USER INTERFACE.. 49

CHAPTER THREE
The Application of Expert Systems in Design, Cartographic Design and
Mapping..51
EXPERT SYSTEMS FOR CARTOGRAPHY...51
EXPERT SYSTEMS IN COMPUTER AIDED DESIGN...53

'Design' Expert Systems.. 54
EXPERT SYSTEMS FOR COMPUTER AIDED CARTOGRAPHY.................................. 57

Systems covering broad areas of design and symbolisation................................58
Expert systems for specific aspects of Computer Aided Cartography................. 76

OTHER MAPPING EXPERT SYSTEMS... 83

CHAPTER FOUR
An Expert System for Cartographic Design.. 84
PROBLEM IDENTIFICATION... 84

The need for expert systems in cartography...84
Cartographic expert systems for whom?...85
Choice of Subject.. 86

KNOWLEDGE ELICITATION... 88
The Cartographic Expert... 88
The map as a source of knowledge.. 89

THE EXPERTISE... 90
BUILDING THE KNOWLEDGE BASE.. 90

CHAPTER FIVE
Geographic Information, Representation and Map Design...93
PHENOMENA, DATA and REPRESENTATION... 93

Characteristics of Phenomena.. 94
Relationship Between Phenomena and Locational Data.....................................96
Level of Measurement... 97
Cartographic Representation.. 98
Phenomena, Data and Representation... 103

THE DESIGN PROCESS... 104
Description.. 104
Layout... 105
Data Selection... 107

vi

Symbolisation..110
Display..110
Modify..111

CHAPTER SIX
Developing Rules for Map Design: A Functional Specification of a
Cartographic Design Expert System...112
DESCRIPTION...114

What is the topic or theme of the map?.. 114
What purpose is the map for?...115
Who is the intended map user?..115
Output media?...115
What level of detail is required?.. 115

LAYOUT...116
Location...116
Format...117
Scale...117

SELECTION...117
RULES FOR GENERAL CARTOGRAPHIC REPRESENTATIONS.................................. 119

Point Symbols...120
Line Symbols...128
Area Symbols..133
Surfaces..142

RULES FOR PHENOMENA IN DATABASE... 143

CHAPTER SEVEN
Developing a prototype map design expert system... 147
THE SYSTEM...147
DEVELOPMENT ENVIRONMENT..147

Hardware...147
Software..149

PROLOG..152
PDC Prolog...152

Objects...153
Facts and Rules, Predicates and Clauses..154
Goals...155
Working with lists... 157
The Prolog Database... 159

vii

THE INFERENCE MECHANISM...161
KNOWLEDGE REPRESENTATION...162
THE USER INTERFACE...165

Help, How and Why..168
Database & metadata.. 169

The database..169
Metadata.. 170

CHAPTER EIGHT
Description of the MapDesigner System...174
THE BASIC STRUCTURE..174
MODULE 'MAIN'.. 176

Design_map..177
Other functions..177
Utilities.. 177

MODULE 'DESCRIPTION'..178
MapJJser & Map_Purpose...178
Map_Topic.. 178
Output_media..180
Level_of_detail..180

MODULE 'LAYOUT1..181
LatJong..182
Limits...183
Format...184
Scale.. 185

MODULE 'SELECTION'..186
Selection Index..186
B asejn fo jist..186
Theme JnfoJist...188

MODULE 'SYMBOLISATION'...189
Assemble..190
Representation..191
Symbolism...193

First attempt at symbolisation.. 194
Second attempt at symbolisation... 197
Checking selected symbols..207

Levels... 209

viii

DISPLAY...210
EXAMPLE RUN OF MAPDESIGNER...213

CHAPTER NINE
Colouring the Political Map..224

CHAPTER TEN
Summary and Conclusions..236

BIBLIOGRAPHY...240

APPENDICES

A MapDesigner module listings
B Knowledge base listings
C Other listings
D Example program runs, frames and maps
E File formats for database
F Meta data
G Related publications by author

ix

List of Figures

Figure 1.1 The shifting focus of Al research 6
Figure 1.2 Order of opening nodes in depth-first and

breadth-first search
10

Figure 1.3 Basic components of an expert system 17
Figure 1.4 Stages of image processing 27
Figure 2.1 Basic components of a cartographic expert

system
31

Figure 2.2 The process of developing an expert system 32
Figure 2.3 A semantic network 38
Figure 2.4 An example of a frame for a map 39
Figure 2.5 Major categories of search strategies used by

inference engines
40

Figure 3.1 The Structure of the Map-Aid Expert System 63
Figure 3.2 Flow diagram of the Map Production process 65
Figure 3.3 Evaluation Functions. Problems and Solutions 68
Figure 3.4 Example output from the MAPKEY system 74
Figure 3.5 An example frame from Nautical Chart Design

Expert System
75

Figure 5.1 Examples of symbols for different measurement
levels

98

Figure 5.2a Cartographic representations - points 99
Figure 5.2b Cartographic representations - lines 100
Figure 5.2c Cartographic representations - areas 101
Figure 5.2d Cartographic representations - surfaces 102
Figure 7.1 The Architecture of a Cartographic Design Expert

System
148

Figure 7.2 The MAP frame 163
Figure 7.3 Examples of MAP frame 164
Figure 7.4 An example of the standard text screen layout 166
Figure 7.5 An example of the graphics screen layout 167
Figure 7.6 Meta_data slots and possible values 171
Figure 7.7 Coord_file metadata and possible values 172
Figure 7.8 Data_file metadata and possible values 172
Figure 7.9 Look_up metadata and possible values 172
Figure 8.1 The Main menu 176
Figure 8.2 Map Topic menu 180

X

Figure 8.3 The select places menu 183
Figure 8.4 Format menu 184
Figure 8.5 Scale menu 185
Figure 8.6 Example of thematic topic selection - Map_topic = 189

Population
Figure 8.7 Examples of plotting parameters 213
Figure 8.8 Example run of MapDesigner producing a relief 214

(a - r) simple map of Nigeria - 220
Figure 8.9 Map frame for topographic map of Nigeria 221
Figure 8.10 Screen displays for a more detailed relief map 223
Figure 9.1 Automated colour assignment for political map 225
Figure 9.2 Menus for number of colours and colour scheme 232
Figure 9.3 An example of 'politically' coloured zones 233
Figure 9.4 A political map of Nigeria 233
Figure 9.5 Map frame for a political map of Nigeria 234

xi

List of Tables

Table 1.1 Generic categories of expert system applications 23
Table 2.1 Knowledge elicitation techniques and information 33

that can be obtained
Table 3.1 Suitability of task for applying expert systems 52
Table 3.2 Role of expert system in map design 53
Table 3.3 Muller's input and output elements 61
Table 3.4 Sets of rules governing the existence and 66

placement of symbols
Table 5.1 The relationship between phenomena and 97

locational data
Table 5.2 Relationship between phenomena, data & 103

representation
Table 5.3 Proposed database contents 108
Table 8.1 Possible values for symbolspec variables 200

INTRODUCTION

In the last twenty years or so a great number of programs have been
created to produce maps using a computer.1 Most of the commonly available
programs are for producing small scale statistical maps, but more recently there
has been a significantly increased interest in using Geographic Information
Systems for producing a wider variety of maps at a broader range of scales.2 The
continual decrease in hardware prices, particularly in association with the increased
power of micro-computers now available, has brought the possibility of computer
mapping to a much wider range of users.

The increase in the availability of computer mapping facilities has lead to a
great increase in the number map of authors and the number of maps being
produced, but does not however appear to have lead to more widespread
knowledge of cartographic design theory. The large number of poorly designed
maps created by map authors3 using computer systems to produce their own maps
indicates that there is a lack of knowledge of how to design maps. These poorly
designed maps are not the fault of the computer programs, since most programs
do have the capability of producing well designed maps when used by someone
knowledgeable in map design. Rather, the problem lies with authors who are not

1 Numerous terms have been used to describe maps produced with the aid of
computers: computer cartography, computer mapping, computer assisted
cartography, digital mapping, automation, etc. In the current study we are
examining the design and production of maps for display on computer monitors
(VDUs) or output on small-format plotters and printer/plotters. The term Computer
Aided Cartography (cf. Computer Aided Design) will be used to refer to computers
being used for the design and display of maps, whereas Computer Mapping will be
used to refer to the broader use of computers in map making.

2 A Geographic Information System (GIS) should include a database capable of
holding geographic information, tools for analysing this data and the capability of
mapping the results. Computer Aided Cartography could usefully be applied to the
third part of such a system.

3 The Map Author is one who conceives the map and often prepares the special
topic data. He may then proceed to carry out the design and production, or pass
this on to the Cartographer. The System User is the user of a Computer Mapping
system. He may be the Map Author and/or the Cartographer. The Map User may
be different from the Map Author and System User. The knowledge and experience
of the intended Map User(s) will influence the map's design and production.

2

skilled in cartographic design and who would probably never produce a map by
conventional means, but would contract a cartographer to produce it.

It is unlikely that the general level of cartographic education of most
computer map authors will be greatly increased, therefore cartographers must
strive to make the programs used by naive map authors better able to produce
reasonably well designed maps, or at least maps which do not break the most
fundamental rules of map design.

The area of computer science devoted to producing programs that include
knowledge of how an expert solves a problem is that of Expert Systems. An Expert
System is essentially a program which includes a codified form of the rules that an
expert uses to solve a problem. Thus a cartographic design expert system would
include the rules a cartographer uses when designing a map.

A long term goal would be to have a cartographic design expert system that
could design any map at any scale, but current literature on expert systems
suggests that at this time practical expert systems should be limited to narrow
domains, i.e. the problem area must be defined within quite narrow margins.
Several cartographic expert systems are currently under development. These have
tended to concentrate on elements of the map or map design, e.g. name place
ment, line generalisation, solution of spatial conflicts, etc., and while these
problems will all have to be solved in any realistic production system, there is a
pressing need for the application of expert system techniques to more general
design issues such as data selection, choosing an appropriate method of
portraying a data set in map context, and generally trying to prevent the author
from making poor design decisions when making the map.

Despite the huge amount of investment that has been made in Geographic
Information Systems and Computer Mapping systems in recent years Buttenfield &
Mackaness note that:

... the role of cartography in these systems has largely been ignored.
Instead, the graphics packages and pen plotters have 'replaced'
cartographers and their scribing tools. Failure to accommodate sound
principles of design into graphical defaults has resulted in the
production of some appalling maps, examples of which abound in the
literature.

(1991; 439)

3

It would seem, therefore, that a system that only went as for as having
sensible defaults for mapping would be a significant step forward. But it is not
sufficient to simply enter a series of standard unvarying defaults into a system. To
be useful, the defaults must change with the given circumstances. For example,
many systems use a default of five classes for choropleth maps. When this is
accepted, a map is produced with five sensible shadings (although not by all
systems). If the number of classes is reduced to three, the first three shadings are
used. This is less than optimal, but not too significant a problem. The situation is
much worse when the number of classes is increased. If six classes are requested
the resulting map uses the five standard symbols for the first five classes, but
leaves the sixth class blank or assigns it something unsuitable. Clearly this is not
satisfactory. Thus there is an urgent need to apply expert systems techniques to
providing sensible and variable defaults to allow non cartographers to produce
sensible maps.

Extending the use of expert systems techniques in mapping systems further
than providing sensible defaults should allow the map author to concentrate on his
primary objective, the making of a map to show some particular Information. He
should be relieved of the cartographic problems which are of no direct concern or
interest to him. The work reported on here illustrates how such a system could be
developed. The general area considered here is the production of small scale
maps as might be found in regional or educational atlases, or used to give national
or regional overviews of a variety of topics. The maps are relatively small scale, but
cover a wide range of subjects and representation methods.

First, Chapter One gives an overview of artificial intelligence research with
the emphasis being given to expert systems. Chapter Two further explores the
nature of expert systems, the fields in which they have been applied and their
intended uses. This chapter also briefly discusses the man-machine interface, an
important aspect of any interactive computer system.

A comprehensive review of the application of expert systems in design,
mapping generally and map design in particular is provided in Chapter Three. The
specific problem tackled by the system under development is defined in Chapter
Four along with the sources of knowledge and the intended users and uses of the
system.

4

In order to develop an expert system, the problem or 'domain' must be
defined in a relatively formal manner. Chapter Five provides this background,
developing a structure for describing geographic information and cartographic
representation. A model of the cartographic design process for application in expert
systems is also described. Following on from the descriptive information in Chapter
Five, Chapter Six presents a functional specification of the system to be developed
with the rules required for each stage in the design process being set out.

Chapter Seven is concerned with the background to the development of the
actual system. The hardware and software environments are described and an
introduction to the Prolog language is given. Chapter Eight describes the actual
system in some detail, converting the rules presented in Chapter Six into a specific
implementation, and concludes with an example run through the system,
culminating with a map produced by it. Following on from this, further details of how
Prolog can be applied to a specific problem, colouring the political map, are
presented in Chapter Nine.

Finally, Chapter Ten summarises the findings of the study, discusses the
problems that have been encountered and the limitations of the system as
developed. Possible future developments are also discussed.

CHAPTER ONE

An Introduction to Artificial
Intelligence and Expert Systems.

Artificial intelligence is simply the transfer of intelligence to machines.
Expert systems deal with a small area of expertise that can be
converted from human to artificial intelligence.1

ARTIFICIAL INTELLIGENCE
Artificial Intelligence is a branch of computer science involved in studying

mental faculties and reproducing them through the use of computational models.
The use of the word 'intelligence* may in fact be misleading as the term tends to be
used for mental feats of unusual creativity or cleverness, whereas most problems
in Artificial Intelligence (Al) arise in attempting to recreate the mental capability of
'ordinary people'. Al is concerned with the general behaviour that goes along with
intelligence; it is not limited to one particular method of producing 'intelligence', and
the methods used may not be the same as people use (Charniak & McDermott,
1985; 7).

The ultimate goal of A l"... is to produce human-like intelligence in a
non-human machine" (James, 1984; 122). Whether or not this is achievable does
not reduce the importance of developing programs that take us towards that goal.
The divisions of Al research can be seen as the elements to be solved in producing
such a machine. While there is no universal agreement on the subdivisions of Al,
the major groupings are Expert Systems, Natural Language Processing, Pattern
Recognition and Robotics. Other common sub-headings are Computer Vision and
Machine Learning, although the former of these is frequently encompassed by
Pattern Recognition and the latter is really an essential component of any system
which claims to have artificial intelligence.

Of these divisions only Robotics is not of concern to this study. While one
can imagine at some time in the future the possibility of a robot replacing a
cartographer at a drafting table, this does not currently merit serious consideration.
Of the other divisions, Expert Systems represents the 'brain' of a system and is the
major focus of attention here. Natural Language Processing is an important aspect
of communicating with the user of a computer program and ultimately should be
incorporated in any system calling itself 'intelligent.' Pattern Recognition, which is

1 Levine, R.I., Drang, D.E., Edelson, B. A Comprehensive Guide to Al and Expert
Systems. New York: McGraw-Hill Book Company, 1986, pp.1.

6

important in many areas of the mapping sciences - especially remote sensing -
does have some application to cartographic design.

While the general aim of Al research has not changed over its thirty year
history, that is to produce programs that can in some way 'think', there has been a
shift in emphasis from trying to find general methods for solving a broad range of
problems to that of solving very specific problems with very highly specialised
programs such as are illustrated by Figure 1.1. This chapter will examine some of
the basics of Artificial Intelligence and its subdivisions: Current concepts of Expert
Systems will be considered in detail, specifically, what they are, what they can do,
and how they differ from conventional programs.

high

Use extensive, high-quality
specific knowledge about some

narrow problem area to
create very specialized

a : programs.
LU
§o
Q_ Find general methods
2
<

to improve representation
and search and use them

(Do
to create specialized

programs.
a :
CL

Find general methods
for problem-soving

and use them to create

low
general-purpose programs.

1960 1970 1980

After Waterman 1986

Figure 1.1
The shifting focus of Al research

Intelligence
The idea of intelligence is not concerned solely with what can be done, but

also how it is done (i.e. the style or manner). For example:

7

1. When confronted with messy, ill-defined problems and situations,
and incomplete or uncertain information; an intelligent system should
degrade gracefully as the degree of difficulty/ complexity/noise/incompl
eteness etc. increases, rather than merely 'crashing', or rejecting the
problem. Degrading gracefully may involve being slower, less reliable,
less general, less accurate, or producing less precise or complete
descriptions etc.
2. Using insight and understanding rather than brute force or blind and
mechanical execution of rules, to solve problems, achieve goals, etc.
3. Plans should not be created simply by applying pre-defined rules for
combining primitive actions to achieve some goal, but should rely on
the ability to use inference to answer hypothetical questions about
'what would happen i f ..'. This should also play a role in the ability to
make predictions, or test generalisations.
4. Conflicting goals should not be dealt with simply by means of a
pre-assigned set of priority measures, but for example by analyzing the
reasons for the conflict and making inferences about the consequences
of alternative choices or compromises.

(Sloman, 1984; 3)

There is a very thin division between programs that are clever and those
that show artificial intelligence. Indeed,"... it is possible that there is no such thing
as an intelligent program - just clever programs that become increasingly clever"
(James, 1984; 116). It has been shown that by applying some simple rules one can
give an impression of intelligence that would convince an innocent onlooker.

This willingness [of people] to believe in the intelligence of computers
has two important aspects. Firstly,... it means that we can achieve
some useful results without too much effort by borrowing some of the
user's intelligence. Secondly, it cautions us that we must ourselves
beware of becoming believers too easily.

(James, 1984; 116)

Problem Solving
All branches of Al rely upon problem solving, to which there are two

elements: Representation and Search. All of the approaches to problem solving
require some sort of search for a solution. Conducting these searches as efficiently
as possible is one of the aims of Al. However, before a search process can begin,
the problem must be 'set up', or, in other words, a representation of the problem
must be formulated.

Usually one applauds a human problem solver not for conducting a fast
and orderly search through all solution possibilities, but for looking at
the problem in such a clever way that the solution seems elegantly
simple.

(Nilsson, 1971; 8)

8

There will often be alternative representations for the same problem, but
unfortunately Al research is still directed at producing a generalised automatic
method for the skilful formulation of problem representation.

Representation. The 'language' produced or operated upon during problem
solving is known as the Internal Representation (Charniak and McDermott, 1985).
This representation is, to some extent at least, an abstraction. The same
representation may be embodied in a variety of different data structures, to make
different operations efficient. It is normally assumed that it is easy to translate from
one internal representation to another, and certainly easier than translation to and
from external representations (i.e. questions and answers in English).

The internal representation is used by an Al program in the following
way:

-When a program gets a statement, it translates it into an internal
representation and stores it away.

-When it gets a question, it translates it into an internal representation
as well.

-It uses the internal representation of the question to fetch statements
from its memory.

-It translates the answer back into English.
(Charniak & McDermott, 1985; 11)

While this may seem more complex than simply storing the English, it is in fact
more how people do things, in that we tend to remember the 'gist' of what we are
told, long after we have forgotten the exact words. Specific knowledge
representation methods for expert systems are discussed in Chapter 2.

Search. Al programs work by searching the internal representation of knowledge
for a solution, often referred to as a goal or 'the goal state'. In human intelligence
we can see the parallel to this as being a specific response to solve a particular
problem. Our reactions to certain situations may appear to be automatic, but are
the result of all our thought processes being directed to achieve a certain 'goal'
(Levine et al., 1986; 4). We don't do things because we think, we think because we
have things to do. This must always be considered when designing Al systems.

Typically the internal representation of a problem can be expressed as a
tree structure or graph. This graph represents a structured series of nodes, each
with an associated state descriptor. A solution is obtained by applying operators to
these state descriptions until the 'goal state' is obtained (Nilsson, 1971). In the
graph theory search process we have a start node which is associated with the
initial state description. The successors of a node are 'calculated' using the

9

operators that are applicable to the state description associated with the node,
i.e. what process can be applied to the current situation to move towards the goal.
For example, if our goal is to choose the most appropriate map projection we may
first determine the purpose of the map. This will allow the appropriate special
property (conformality, equivalence, etc.) to be selected.

The successor nodes of the current node are checked to see if they are the
goal node (i.e. the associated state descriptor is the goal state or the solution
required). If a goal node is not yet found the successor nodes are expanded to the
next level and the process repeated until a goal is found. In our map projection
example, this may involve determining the latitude of the area of interest in order to
choose between cylindrical, conic or azimuthal projection. Once the goal node is
found the most direct route through the graph from the initial state to the solution
state is the solution path. The associated state descriptions of each node along this
path are then assembled into a solution sequence.

These steps merely describe the major elements of the search process. A
complete specification of a search process must also describe the order in which
the nodes are to be expanded. If the nodes are expanded in the order in which
they themselves were expanded, we have a breadth first search, i.e. each node at
a particular level of the hierarchy is tested before proceeding to expand the next
level of the hierarchy. Alternatively, if the most recently expanded node is
expanded first, we have a depth first search, i.e. we search all levels of the
hierarchy on one limb before proceeding to other limbs. Having explored one limb
without success the process of 'backtracking' is used to return to a node which has
remaining unexplored limbs, thus the system must use pointers to facilitate this
process (Figure 1.2).

Breadth-first and depth-first methods can be called blind search
procedures since the order in which nodes are expanded is unaffected
by the location of the goal.

(Nilsson, 1971; 43)

The blind search methods are exhaustive measures for finding the goal
node (solution), but often they are not feasible because the search will expand too
many nodes before a path is found. Since there is always some limit on the amount
of time and storage available to expend on search, some more efficient methods of
search are required. Also these 'brute force' methods do not allow the use of
additional knowledge about the solution to influence the search and clearly are not
exhibiting 'intelligence'. If however some information about the global nature of the
problem (graph) and the general direction of the goal is available then this may be

10

used to 'pull' the search towards the goal by causing the most promising nodes to
be expanded first. It is this use of knowledge that differentiates Al programs from
conventional programs. In other words, the key to intelligence is to do as little work
as possible. As Forsyth and Naylor (1985; 138) state "... one method of search is
said to be more 'intelligent' than another if the former examines fewer potential
solutions than the latter, but still succeeds."

Depth-first Search

Breadth-first Search

Start

Conclusions
(goals)

Start

Conclusions
(goals)

Figure 1.2
Order of opening nodes in depth-first and breadth-first search.

The resultant search strategy is known as a 'best first' search. Here the
additional knowledge about the task is used to evaluate each of the open nodes
and modify the choice of which successor node to select for further examination. In
this way the depth first search expands next the successor thought to be best, or
which is most likely to move the search towards the goal state (i.e. provide a
solution). Typically, this technique uses 'rules of thumb' or 'heuristics' to evaluate

11

the alternatives. Heuristics are discussed in more detail below in relation to expert
systems.

Even if heuristics and their associated evaluation procedures cannot
determine the most promising route to a solution, they should at least allow
'pruning 1 of the possibilities, that is, those nodes which obviously will not lead to a
solution can be 'pruned' so that attention may be focused on those routes which
may provide a solution. This does present one drawback: it is possible that a
solution might exist but heuristic search may fail to find it, although this is unlikely.

Again to take the map projection example, if the projection is required to
show Malaysia the system may suggest a conic projection based upon simple rules
of choice, whereas in fact an oblique cylindrical projection may be a better choice.

Another approach to problem solving in Al is that of 'problem reduction'. The
basis of this method is to "... reason backward from the problem to be solved,
establishing subproblems and sub-subproblems until finally, the original problem is
reduced to a set of trivial problems" (Nilsson, 1971; 80). This approach uses
'problem reduction operators' to transfer the 'problem description' into subproblem
descriptions. This is similar to the approach taken in conventional programming
where a task is broken down into subprograms and subroutines, each performing
some small part of the overall task. However, as Nilsson states:

For any given problem description there may be many reduction
operators that are applicable. Each of these produces an alternative set
of subproblems. Some subproblems may not be solvable, however, so
we may have to try several operators in order to produce a set [of
subproblems] whose members are all solvable. Thus the problem of
search appears again.

(1971; 80)

Knowledge representation and search procedures are basic to all aspects
of Al programming. Only the fundamentals have been discussed here. Obviously
there are other representations and search procedures. More detail of these and
how they may be applied in practice will be discussed later, particularly in relation
to expert systems.

EXPERT SYSTEMS

What are expert systems?
Cynics often seem to view an expert system (ES) as a program consisting

of IF THEN ELSE statements and having no other special property, an ES simply
being a program with a very large number of such statements compared to

12

conventional programs. Put simply however, an expert system is a computer
program which, by using facts and rules about a domain (problem), simulates the
decision making process normally carried out by a human expert. They differ from
conventional 'algorithmic' programs in both structure and operation.

There are in fact a number of different definitions of expert systems, and
what separates them from conventional programs. For example Gero defines
expert systems as:

. . . intelligent computer programs which use symbolic inference
procedures to deal with problems that are difficult enough to require
significant human expertise for their solution.

(1985; 396)

The British Computer Society's Committee of the Specialist Group on
Expert Systems has adopted the following definition of an expert system which
emphasises their programming, but allows for a wide range of applications:

The embodiment within a computer of a knowledge-based component
from an expert skill in such a form that the machine can offer intelligent
advice or take an intelligent decision about a processing function. A
desirable additional characteristic, which many would regard as
fundamental, is the capability of the system on demand to justify its own
line of reasoning in a manner directly intelligible to the enquirer. The
style adopted to attain these characteristics is rule-based programming.

(Simons, 1985; 126)

It may seem that any computer program that solves a problem may be
termed an expert system, but there are numerous points which distinguish an
expert system from a conventional program, for example

1. There is continuous interaction with the user, who conducts a
dialogue with the system, and leaves with an answer or conclusion.

2. The system weighs up the likelihood's, explores alternatives and
follows a course of reasoning which depends on the user's replies.
Whole areas of investigation may be initiated or discarded as a
consequence.

3. Uncertain or incomplete evidence is accepted and used.
4. The system elaborates [on] and explains why questions are asked,

and describes how conclusions are reached.
5. Only significant questions are asked, and questions related to a

particular topic are grouped together.

(ICL, 1984; 1)

Put simply, in a conventional program the user follows a rigorously defined
series of steps to meet the requirements of the program exactly. In an expert

13

system, the interaction is flexible and should emphasise the requirements of the
user.

The most comprehensive definition of expert systems is probably found in
Hayes-Roth et al. (1983), but according to Merry and Hammond in their report on
the first Alvey Directorate workshop on expert systems, the term 'expert system'
has in fact proved most difficult to define, and "... most short pithy definitions
usually exclude computer programs which one would consider to be expert
systems, and include those that one would not" (Merry and Hammond, 1984; 1). In
any event, a true expert system should rival the performance of human experts.

The term expert system has become much used and abused in recent
years and is probably best now used as a general term covering a small number of
specialist program types able to use facts and rules about a subject, infer things
from them, and solve a problem or draw some conclusion. It also implies a
particular type of structure within the program. In order of sophistication the
sub-types of expert systems are perhaps best referred to as Rule Based systems,
Knowledge Based systems (KBS) and Intelligent Knowledge Based systems
(IKBS).

Rule Based systems, sometimes referred to as production systems, are the type
of system most frequently described in the popular computer press of the 1980s as
Expert Systems. Most are of the classification or diagnostic type (see below).
These systems typically have a series of IF THEN ELSE type rules coded into the
program and ask the user to provide some facts in answer to questions from the
system. Typical of these are systems which will identify plants or animals in
response to information about their characteristics, or fault diagnosis for, say, why
a car won't start. These tend to be unsophisticated systems and cannot really be
considered to be 'intelligent', although some do have the capacity to increase their
knowledge by example. Despite their limitations they are an important phase in the
developing field of expert systems.

Knowledge Based systems may be considered to be the next stage of
development. In addition to storing rules and facts they may be able to use a
variety of structures for coding and interpreting knowledge. Almost invariably the
'knowledge' will be separated from the actual program, they will have the capability
of learning from experience, and will apply heuristics or 'fuzzy logic' to problem
solving.

Most true experts systems currently fall into this category.

14

Intelligent Knowledge Based systems (IKBS) is a term sometimes reserved to
describe the nebulous future systems we are working towards (Merry & Hammond,
1984; 1), however they have been defined as:

... semi-intelligent systems for carrying out a single complex task. This
implies working with large, incomplete, uncertain and rapidly changing
knowledge store, use of inferential procedures for applying this
knowledge in reacting to variegated and unreliable inputs, and the use
of sophisticated and flexible control mechanisms.

(Sloman, 1984; 19)

Sloman lists (and discusses) twelve requirements for a system to be
considered intelligent. These are: Rich stores of domain specific knowledge;
Powerful and varied descriptive resources; General and specific inference
procedures; Self monitoring; Meta-principles; Strategies for controlling search;
Matching and describing; Communication between sub-systems; Very large very
fast memory stores; Rapid re-organisation of part of memory; Fine-grain and
coarse-grain parallelism; and Interrupt mechanisms. Some of these requirements
are currently incorporated in expert systems, but without access to very special
hardware and software it is unlikely that all these requirements can be met. This is
reflected by the fact that most current ES are cause/effect driven versus the true
inferential systems of the future.

Due to the various definitions of the types of systems discussed above and
conflicts as to the hierarchy of systems, in this study the term 'expert system' (ES)
will be used as the broad term covering the field implying a system that uses some
form of facts and rules to make decisions. Terms such as 'rule-based system',
'IKBS', etc. will be used in the narrower sense described above. For example,
'knowledge based system' will be used to refer to systems where the knowledge
base is separated from the inference mechanism, but where the inference
mechanism does not have the broad range of 'intelligence' required of a true IKBS.

Inference/learning systems stand somewhat separately from the hierarchy of
expert systems discussed above. Most existing expert systems are based upon
knowledge obtained from a human expert. The 'knowledge engineer' works with
the expert to obtain domain specific knowledge and organises it for use by the
program. The expert is called upon to perform a difficult task, with which he is also
unfamiliar.

He must set out the sources and methodologies of his own expertise,
and do so in such a way that it makes sense to a non-expert [the
knowledge engineer] and can even be represented in a precise
machine readable form!

(Quinlan, 1982; 193)

15

This frequently is a difficult task and often creates a bottleneck in the development
of expert systems.

It is possible that machine inductance can replace the traditional knowledge
engineer to some extent. As explained by Berry & Broadbent:

In this technique large sets of examples from the task domain are fed
into the system as raw data and the system applies an inductive
algorithm to discover the simplest set of rules which will generate those
examples.

(1986; 229)

In other words, 'inductive inference', or learning by example, is a process of going
from the particular to the general.

A problem with this approach is that it requires a large database of
documented examples, which is not available or possible for many areas of human
expertise. Also,"... the rules induced from examples are often extremely complex
and difficult to understand" (Berry & Broadbent, 1986; 229). It may be more
appropriate for the expert to guide an inductive inference system in its search for
regularities rather than trying to specify the knowledge directly (Quinlan, 1982;
193).

Although one can conceive of independent learning machines, the concept
is also seen as being a basic component of all expert systems, in that a system
should be able to learn from its experience, and hence be able to solve problems
better or faster on future occasions. For this learning to take place there must be
some feedback into the system to let it know how it should modify its behaviour
(Forsyth & Naylor, 1985: Levine et al., 1986)

The Role of Expert Systems.
An obvious question to ask is why there is a need for expert systems, rather

than rely on human expertise. According to Basden, the benefits lie in:
greater reliability (will not forget factors).
increases consistency (same importance given to factors).
increases accessibility.
the ability to arrive at a faster solution or try a greater number of
alternatives in the time available.
the easier duplication of expertise (less training).

(1984; 61)

In the case of design, increased consistency also implies repeatability,
something not always achieved in manual processes. It should also be easier to

16

document and afford artificial expertise, and it is more permanent (Waterman 1986;
12).

Expert systems are especially appropriate where there is no efficient
algorithmic solution. "Such cases are called ill-structured problems ..." (Glarranto &
Riley, 1989; 20).

There are of course disadvantages to expert systems, hence there is good
reason not to eliminate human experts, but to supplement them. Human experts
are creative and adaptive and although expert systems can gain through
experience, they are not as flexible as humans. Expert systems rely upon symbolic
representations of objects and relationships and cannot make use of the wide
range of complex sensory inputs available to humans.

... human experts and nonexperts alike have what we might call
'commonsense knowledge'.... Because of the enormous quantity [and
range] of commonsense knowledge, there is no easy way to build it into
an intelligent program, particularly a specialist like an expert system.

(Waterman, 1986; 15)

A further limitation of many expert systems is their lack of causal
knowledge. "That is, the expert systems do not really have an understanding of the
underlying causes and effects in a system" (Giarranto & Riley, 1989; 8). They tend
to rely upon shallow knowledge such as heuristics rather than deep knowledge,
and as Giarranto and Riley point out:

Human experts also know the extent of their knowledge and qualify
their advice as the problem reaches their limits of ignorance. A human
expert also knows when to break the rules.

(1989; 7)

Computer systems cannot attach meanings to the data they use. Facts
imply that something exists or is true, and these facts can be related by rules, but
these are symbolic representations of (part of) the real world, rather than the fuller
knowledge and understanding of the world an expert possesses.

Expert system structure
Although some of the superficial differences between expert systems and

conventional programs have been discussed, it is perhaps in the underlying,
internal structure that the differences are most apparent.

The simplest model of an expert system consists of three main parts (Figure
1.3). These are the knowledge base, the inference mechanism or inference engine,
and the user interface. The term user interface is self explanatory, referring to the

17

part of the system that communicates with the user. This will be considered in a
later chapter. It is the structural difference whereby the knowledge relating to the
problem to be solved is separated from the inference mechanism that differentiates
expert systems from conventional programs. Clearly an expert system for
producing maps must also access a database of relevant data. The necessary
extension to the basic model are discussed in Chapter 2 and a model specifically
for a cartographic design system is given in Chapter 7.

User * - Inference - * Knowledge
Interface — Engine « - base

Figure 1.3
Basic components of an expert system.

Expert systems work by relating the contents of the knowledge base to the
Information supplied by the user's answers to questions formulated by the system.
The system infers the most appropriate action in any particular situation, either
giving its solution, or asking further questions.

The Knowledge Base. The skill, experience and judgement of one or more human
experts is captured in the form of a knowledge base. This can be viewed as a
model of the experts' reasoning leading to one or more conclusions. The term
knowledge is used by Al scientists to refer to the information a program needs
before it can behave intelligently (Waterman, 1986; 16). This information generally
takes the form of facts and rules about a particular topic or domain.

Facts are the simplest type of information in the knowledge base. Generally
they take the form of some object having a property, e.g." contours are brown."

Rules are methods or techniques for using (or linking) the facts (Bratko,
1982; 177). They typically take the form IF <condition> THEN <conclusion>. The
'condition' stands for a list of elementary conditions characterising a situation or
object to which a rule is applied. The 'conclusion' represents the specific advice or
action which this rule indicates when the condition is satisfied (Michalski, et al.,
1985; 257). For example, IF two people are brothers THEN they have the same
father. Thus, if we have a fact stating that two boys are brothers we can use this
rule to infer that they have the same father. The conclusion part of a rule in the
knowledge base may be the assignment of the status 'true' to some condition
which is in the 'condition' part of another rule. Consequently, the satisfaction of one

18

rule may lead to the satisfaction of another rule, etc., and in this fashion the system
can perform a chain of inferences.

The Inference Engine. This is the component of the system which controls the
order in which the knowledge base is used, generates new facts from existing rules
and known facts (Guilfoyle, 1987; 9), and is generally seen as the central module
in an expert system. In Rule Based systems it is sometimes called a rule
interpreter. It is in effect the component that provides the system with its thinking
power (Simons, 1984; 138). To explain further:

The inference engine generates answers to queries to the system by
either simply retrieving facts from the knowledge base, or, in the case
that the answer to the question is not explicitly stored as a fact in the
knowledge base, inferring new facts, which constitute the answer to the
query, from the facts [and rules] explicitly stored in the knowledge base.

(Bratko, 1982; 177)

Various mechanisms can be used by the inference engine to solve a
problem, but it is the use of inference that distinguishes it from the algorithmic
approach of conventional programs.

The inference engine can be of a general nature, capable of working with
knowledge bases from a variety of domains (commonly known as a shell) or can be
optimised to perform in a particular domain. Most early expert systems were of the
latter type, but in some cases, such as MYCIN, a system for diagnosing and
treating bacterial infections, the inference engine was later adapted to solve more
general problems, this being referred to as EMYCIN (Empty MYCIN).

Explanation facilities. If an expert system is to simulate a human expert it must,
like a human expert, have some capability of explaining its reasoning. This feature,
further differentiating expert systems from conventional programs, takes the form
of explaining 'how' a decision was reached or detailing 'why' a particular question is
being asked. This means that the user can ask the system for justification of
conclusions or questions at any point in a consultation (Merritt, 1989; 55). Although
neither of these two facilities are essential to solving the problem, they can help to
increase user confidence in the system, and also help to show up mistakes the
system may make.

Essentially, HOW? explains the conclusions which the system has reached
and is basically a list of the steps gone through to reach the current conclusion,
i.e. it would show the nodes on the shortest path between the initial state and the
current state.

19

The WHY? facility proceeds in much the same way inasmuch as it can
be used to give the current state of reasoning of the system - but the
main point about WHY? is that it should be able to say which hypo
theses are influenced by the current question.

(Forsyth & Naylor, 1985; 26)

That is, the system should be able to state the basic reason for asking the
question, and conclusions that may be drawn from its answer. WHY NOT? may
also be included to explain why a given conclusion has not been reached.

Although the explanation is often claimed to be an essential aspect of
expert systems, its importance to the user may be overestimated. Typically the user
is most concerned with solving the problem, often as quickly as possible.

Furthermore when the user does want an explanation, the explanation
[given by the ES] is not always useful. This is due to the nature of the
"intelligence" in an expert system.

(Merrit, 1989; 55)

The difficulty experts have in explaining their knowledge is often quoted in
relation to knowledge elicitation, but it appears to be assumed that once the
knowledge is in the system, explanation becomes trivial. This may be the case for
simple factually based systems, but for problems where more intuition is involved,
such as in design, then explanation is problematic even for very experienced
experts. If an expert system is to provide useful explanations it would need to do
more than simply list the rule applied. Deeper knowledge of the problem may be
attached to the rules as annotations to be used for explanation, or an alternative
approach would be to code deeper knowledge, sometimes called meta-knowledge,
into the system and use this to drive both inference and explanation.

The need for an explanation capability and the depth to which reasoning is
explained will also vary with the intended users of the system. Clearly a different
kind of explanation would be required in a training system to be used by students
than in a decision support system for an expert in the domain in question. The
explanation system is invaluable to the system developer(s), in which case it serves
a similar purpose to program tracing in conventional programs. If the system does
not give expected answers, the expert can use the explanations to assess which
rules may be in error.

It is an important aspect of expert systems that they should not simply
follow a strict sequence of questions, but that the question that will yield the most
useful information towards finding a solution should be asked first. Typically this
involves the use of heuristics, probability and evaluation functors.

20

Heuristics
A traditional program is a list of instructions for giving a sure solution to a

problem, or reporting that no solution exists. This is known as an algorithm (James,
1984; 10). If one examines the way in which humans solve problems then one sees
that very often an algorithm is not followed, but a lose collection of 'rules of thumb'
that seem to work are followed. While these rules often do not guarantee a
solution, they make it more likely that you will get closer to one.

A rule that tends to get closer to a solution is known as a heuristic and
while it might seem . . . that a heuristic is a 'second class' algorithm ,
this is far from the truthl Heuristics may not be able to guarantee you a
solution to a problem, and they cannot tell you when a solution doesn't
exist, but they can be used in a wide range of situations.

(James, 1984; 11)

More explicitly, heuristics are:
... criteria, methods or principles for deciding which among several

alternative courses of action promises to be the most effective in order
to achieve some goal. They represent compromises between two
requirements: the need to make such criteria simple and, at the same
time, the desire to see them discriminate correctly between good and
bad choices.

(Pearl, 1984; 3)

Furthermore, when heuristics do produce a solution, it can take far less time
than an algorithm would take for the same problem, as was illustrated by best first
rather than brute force search methods.

Finding an heuristic may still be a difficult task. The sort of heuristics that
humans use are often difficult to discover and difficult to express. James (1984; 11)
makes the point that because computers work so fast it is "... easier to find simple
heuristics and allow computers to apply them repeatedly or in very clever ways",
rather than searching for a more complex rule.

Thus, although with heuristics the search effort can be greatly reduced, this
is at the expense of giving up the guarantee of finding the minimum cost path to
the solution for some problems. Practically, the requirement is to minimise the cost
of the path and the cost of the search to obtain it (Nilsson, 1971; 54).

In an expert system the use of heuristics for the pruning of the number of
possibilities of search to find a goal is known as an 'heuristic search mechanism'
(Levine et al., 1986; 22). The heuristic search mechanism focuses attention on the
path most likely to provide a solution.

21

Evaluation functions. Any search procedure other than blind search relies upon
some measure by which to evaluate the best path to a solution and becomes an
ordered search. Such measures are called evaluation functions.

The purpose of an evaluation function is to provide a means of ranking the
nodes that are candidates for expansion to determine which one is most
likely to be the best path to the goal.

(Nilsson, 1971; 54)

There is a variety of ways of applying evaluation functions. Some are based
upon the probability that a node is on the best path. Often in board games or
puzzles a configuration is scored on the basis of those features that it possesses
that are thought to relate to its promise as a step towards the goal. Most complex
problems require the evaluation of an immense number of possibilities. "Heuristics
play an effective role in such problems by indicating a way to reduce the number of
evaluations and to obtain solutions within reasonable time constraints" (Pearl,
1984; 4).

Certainty factors and fuzzy logic. Facts and rules in expert systems are not
always either true or false. Sometimes there is a degree of uncertainty about the
validity of a fact or the certainty of a rule. When this doubt is made an explicit part
of the knowledge base it is called a 'certainty factor1 (Waterman, 1986; 16). This
certainty factor is usually expressed as a number between 0 and 1, 1 representing
total certainty and 0 representing maximum uncertainty. A value of 0.5 would mean
that a fact or decision may be correct only half of the time. Facts and rules in such
a system could be expressed as follows:

FACTS: Building 3047 contains tank No23 with certainty 1.0
: The power saw was defective with certainty 0.8

RULES: If the spill material is sulphuric acid with certainty 1.0 then
the source of spill is building 3047 with certainty 0.9
: If the product was defective with certainty > 0.5 the theory
of strict liability applies with certainty 1.0

(Waterman, 1986; 16)

Thus, the rule format permits you to express the conditional knowledge of
experts and also the confidence or lack of confidence the expert has in this
knowledge (Michalski, et al., 1985; 257).

What this means in terms of expert systems is for example that based on a
patient's symptoms a medical diagnostic system will predict that the patient has a
particular disease with a given certainty factor; or that based on the geological
structure of an area a system may suggest drilling for oil in a certain location and

22

predict the likelihood of finding oil, but it may be a dry hole. In a cartographic expert
system a fact such as 'water is blue with certainty 0.8' would imply that water is
normally coloured blue, but there may be situations where it is another colour, e.g.
on a temperature map where blue is used for cold zones.

There are different methods of evaluating these certainty factors, but they
are all based upon an area of probability known as 'conditional probability'. These
theories were developed by Bayes and are sometimes referred to as 'Bayesian
Probability' (Levine et al, 1986). It is not intended here to get involved in a detailed
discussion of probability theories, but rather to give examples of how they may be
applied to expert systems.

For many facts and rules, and certainly for heuristics, it is difficult to express
any exact mathematical measure of certainty, rather we express ourselves in
general terms, such as "it is hot in here." The use of terms such as tall, hot, mild,
etc. are all relative linguistic variables that cannot be given a single value. The use
of such terms in formulating probabilities is known as 'fuzzy logic' (Levine et al,
1985; 90).

If, in a rule, we have a condition that depends upon two facts each with
different certainty factors, it is possible to calculate the resulting certainty that the
conclusion is true. This may also be modified by a certainty factory applying to the
rule as a whole. The calculations involved can become rather complex, therefore,
especially when the certainty factors are based upon rather imprecise linguistic
variables, many systems simplify the handling of these calculations. Some systems
simply average the probabilities or express figures for the maximum and/or
minimum certainty of the conclusion being correct.

Applications of Expert System
Expert systems have been applied to a wide range of problems of different

types. Their application to some problems is simpler than to others. The widest
application of ES has been to classification and diagnostic problems, which
generally have relatively simple flows of logic.

Like the subdivisions of Al, there appears to be no agreement on the sub-
types of ES. In the simpler classifications, three categories of ES are common,
based on the type of problem they address: classification (such as diagnosis of
disease); design; and decision support (Bharath, 1985; 65). Generally, however, a
more comprehensive classification is used such as that shown in Table 1.1. Of
these ten classes, the first three, interpretation, prediction and diagnosis are all
classification problems. Planning, monitoring, debugging and repair may also be

23

grouped together under the decision support heading. The final two entries in
Table 1.1, instruction and control, can perhaps be considered meta-systems in that
they contain aspects of several different categories. Each of the ten categories are
outlined briefly below, together with examples where appropriate.

Table 1.1
Generic categories of expert system applications.
Category Problem Addressed
Interpretation

Prediction

Diagnosis

Design

Planning

Monitoring

Debugging

Repair

Instruction

Control

Inferring situation descriptions from sensor data

Inferring likely consequences of given situations

Inferring system malfunction from observables

Configuring objects under constraints

Designing actions

Comparing observations to expected outcomes

Prescribing remedies for malfunctions

Executing plans to administer prescribed remedies

Diagnosing, debugging and repairing student behaviour

interpreting, predicting, repairing and monitoring system behaviour.

After Hayes-Roth et al, 1983, p. 14
and Waterman, 1986, p.33

Interpretation systems typically infer conditions from observations, for example
the use of seismic observations to interpret the geological structure of an area

An example of such a system is PROSPECTOR (Gaschnig, 1982) which
contains rules linking observed evidence of geological findings with hypotheses
implied by the evidence. The system uses probabilities for the facts and rules to
predict the existence of mineral deposits.

Prediction systems infer the likely consequences of given situations. This includes
weather forecasting, estimating global demand for commodities, population
predictions, etc. "Prediction systems sometimes use simulation models, programs
that mirror real-world activity, to generate situations or scenarios that could occur
from particular input data" (Waterman 1986; 34).

Diagnosis systems"... use situation descriptions, behaviour characteristics, or
knowledge about component design to infer probable causes of system
malfunction" (Waterman, 1986; 34). This category includes medical, electronic,

24

mechanical and software diagnosis, and is probably the widest used type of expert
system currently, with some of the best known expert systems, such as MYCIN,
falling into this category.

A good example of this type of system are the rule based systems for car
engine fault finding. These generally are relatively simple automated versions of
the fault diagnosis charts to be found in 'do-it-yourself' car maintenance manuals.

A more comprehensive example is Plant/ds, an expert system for the
diagnosis of disease in soybean plants (Michalski, et al, 1985). This queries the
user about factors such as precipitation, temperature, condition of the leaves, stem
and seeds, leaf spots, etc. It includes two types of diagnostic rules: expert derived,
from the formal knowledge of a plant pathologist; and inductively derived rules,
obtained by feeding observations from several hundred cases of disease into a
general inductive learning system. Each rule or fact has an associated confidence
factor, and the system uses three different evaluation schemes depending upon
the situation.

Design systems, sometimes called configuration systems, develop configurations
of objects that satisfy the constraints of the design problem. That is, they assemble
the proper components of a system in the proper way (Giarranto & Riley, 1989;
18). Examples are electronic circuit layout, building design, chemical or similar
plant layout, and creating complex organic molecules, the two most popular areas
being molecular biology and microelectronics (Waterman, 1986; 35). Many design
systems also try to minimise costs or other undesirable features of potential
designs (Hayes Roth et al., 1983; 14).

The most frequently quoted design system is XCON (also known as R1), a
system developed by Digital Equipment Corporation for the configuration of VAX
computer installations (e.g. Waterman, 1986, Williams, 1986). It takes over the job
previously performed by technical editors, who examine a customer's order and
determine what computer components are required. "XCON has the distinction of
being one of the most mature and widely used expert systems currently operating
on a commercial basis" (Waterman, 1986; 217). XCON is a rule based system with
over 3000 rules which configures systems at a very detailed level.

For each order it determines necessary modifications, produces
diagrams showing the spatial and logical relationships between
hundreds of components that comprise a complete system, defines
cable lengths between system components, and handles other jobs
usually relegated to skilled technicians.

(Waterman, 1986; 217)

25

XCON performs at a similar level to an experienced technical editor, but
typically performs the task in one minute compared to 20 for an editor. It is now a
'mature' system but will never have all the knowledge required to cover all
eventualities, thus it will make mistakes, but DEC have found it to be useful, even
during its early development stages.

Planning systems plan a series of actions to perform a function, for example,
project planning, communications, experiments and military planning.

An example of this type of system described by Waterman (1986; 264-265)
is CARGuide, a system to plan routes and help drivers navigate city streets
developed at Carnegie-Mellon University. The system calculates an optimum route
from known start point and destination, using information about the road network.
Once found, the route is displayed in map form on a graphic display. The car's
position is updated during the journey and gives directions at intersections.
Numerous similar systems have been developed recently, although not all use
expert system techniques.

Monitoring systems compare actual behaviour to expected behaviour, for
example, monitoring some instrumental readings to detect accidents or problems in
production. A major application area for this type of system is the nuclear industry.

Debugging systems prescribe remedies for malfunctions. "These systems rely on
planning, design and prediction capabilities to create specifications or
recommendations for correcting a diagnosed problem" (Hayes Roth et al., 1983;
15).

Repair systems follow on from debugging systems by developing and
administering a plan to remedy a problem.

instruction systems, in addition to providing education or training in the topic, can
analyse the system user's responses and attempt to correct gaps or faults.

"Typically these systems begin by constructing a hypothetical model of
the student's knowledge . . . Then they diagnose weaknesses in the
student's knowledge and identify an appropriate remedy. Finally they
plan a tutorial. . . to convey the remedial knowledge to the student.

(Hayes Roth et al, 1983; 15)

The inclusion of explanation facilities in expert systems means that any
system should be able to help increase the user's understanding of the problem,
but instructional systems have the specific goal of achieving this increased or

26

improved knowledge. Their use is not limited to students in the narrow sense, but
they have applicability in anywhere instruction is required.

Control systems, the final class, control the overall behaviour of an operation. To
do this they must include a monitoring system to asses the current situation, a
diagnostic system to determine what has caused any faults, and probably
debugging and repair systems to correct faults. They may also include aspects of
the other classes discussed above. Frequently, an important aspect of a control
system is the ability to predict future events, and take preventative measures.
Applications of expert control systems include air traffic control, business
management and mission control.

Expert systems for whom?
Expert System can be used by a wide range of people for a variety of

purposes. The major groups of users are likely to be experts themselves,
practitioners2, students and those with no experience in the field.

Experts will use expert systems in a decision support role, using them along
with other decision support systems to confirm their decisions, or to act as
intelligent checklists. The expert system may be used like an intelligent assistant
and as more intelligence is added to it, it acts more and more like an expert.
"Developing an intelligent assistant may be a useful milestone in producing a
complete expert system" (Giarranto & Riley, 1989; 3)

Also, although currently it does not appear likely that ES will replace the
human specialist, they will reduce the number of trivial enquiries, thus allow the
specialist to devote more time to less trivial problems.

Some expert systems will no doubt be used by novices, but there is some
feeling that this will be less widespread than was at first thought. Most fields of
study have their own special words or 'jargon' or apply special meaning to ordinary
words that a novice might be dangerously unaware of (Basden, 1984; 64).
Practitioners on the other hand will be familiar with the jargon of their domain.
According to Basden (1984) it is also likely that expert systems for practitioners will
be more cost effective than for novices.

Expert systems have much to offer in education. Instructional ES were
discussed above, but because of the nature of expert systems generally and their

2 A practitioner is one who has some experience in a domain, but does not have the deep
specialist understanding of an expert.

27

capability to explain their reasoning, most expert systems will be useful in training.
Students, like practitioners, will have some awareness of the 'jargon' and will be
able to use expert systems in example cases, or to test their own hypotheses.

A final group who will likely make use of expert systems are specialists or
experts in one particular domain wishing to apply their knowledge in a related field,
or to make use of a system to process their information; for example a geologist
using a cartographic expert system to map his data. He has specialist knowledge
about the geology of the area, but not the cartographic knowledge to produce the
map. This kind of expert system use receives little coverage in the literature.

The need for such systems for producing maps perhaps has something to
do with how many view cartography. Most Intelligent Computer Aided Design
(ICAD) systems are directed at assisting designers, not at making it easier for non
designers to produce designs.

PATTERN RECOGNITION
Pattern recognition was initially primarily concerned with the study of

artificial or computer vision, 'pattern' pertaining to visual pattern. The term has now
been extended to include such topics as patterns of sounds, patterns of events,
etc. James (1984; 82) notes that: "Most areas of Al use pattern recognition to
some extent, but usually in combination with other methods and theories that tend
to be just as important."

Perhaps the most obvious application of pattern recognition in mapping is in
the recognition of features on remotely sensed images, as part of an image
processing system. Generally the problem of recognition can be broken down into
two stages, feature extraction and classification as illustrated in Figure 1.4.

IMAGE
feature extraction

 > FEATURES
classification

 > RECOGNITION

Figure 1.4
Stages of image processing.

Sometimes the recognition of patterns is an end in its self, such as in
computer vision, letter recognition or speech recognition, which need not be used
in conjunction with any other 'intelligence'.

28

These and other important recognition problems have tended to
emphasis pattern recognition as a subject in its own right with few
connections with the rest of Al. However, it seems reasonable to
suppose that this will change as acceptable solutions are found to the
simpler pattern recognition problems.

(James, 1984; 99)

Artificial vision and hearing are clearly important to Al, but the other aspects
of pattern recognition, although less obvious, are equally important. For example,
one of the problems of implementing expert systems is to recognise the 'condition'
that forms part of a rule. Also, the recognition of patterns within data or information
will aid expert system processing.

For the purposes of this study pattern recognition will not be further
considered. However, it is likely to have increasing importance in future mapping
systems, not just as part of an image processing system, but also aiding in the
solution of a broader range of problems as part of the next generation of Al
programs in mapping. Its use can be foreseen in such applications as recognition
of information type from user descriptions by providing a best match to existing
patterns; the recognition of line 'types' as an aid to generalisation, e.g. recognising
different types of coastline; and in the longer term the recognition of distributions
and how they may be generalised or classified, and perhaps make a contribution to
the difficult problem of assessing map complexity.

NATURAL LANGUAGE PROCESSING
Natural Language Processing (NLP) is that branch of Artificial Intelligence

that tries to make the computer able to understand commands written (or spoken)
in a standard human language such as English. It is also concerned to some extent
with creating computer responses which appear to be in a natural language, but
this is less difficult, and follows fairly simply if the first problem is solved.

Natural languages are those which are spoken and understood by large
numbers of people: they haven't been invented, but have gradually developed over
long periods of time, hence the term 'natural'. They are complex, continually
developing and changing, and while there are often rules e.g. grammar, exceptions
often exist and it may be difficult to understand the logic in some situations.

Computers are more capable of handling formal languages. These are
languages that have been invented and defined, usually for some specific purpose.
Programming languages such as BASIC, Pascal, etc., are all formal languages.
Because these have a rigid structure and meaning computers are very good at
understanding them. Gradually, computer commands and languages have become

29

easier to use and now often resemble English, but usually there are strict
limitations on the structure and usage of commands.

Natural language processing has little or no use on its own, but is very
important in providing the 'front end' or part of the 'user interface' to other computer
programs (Schildt, 1987, 93). The application of NLP will be discussed along with
other types of user interfaces in later chapters.

CONCLUSION
This chapter has discussed the divisions and mechanisms of Artificial

Intelligence and Expert Systems in some detail. If in the long run computers are
ever to help people in general they must:"... cease to be the presen/e of
scientists, technologists and programmers and become a universal asset that
everyone can get something out of" (James 1984; 121). One of the objectives of
current work in Al and ES is to lower the threshold of knowledge necessary to
begin using a computer. "To this end it is important that part of the development of
Al concentrates on producing flexible systems that can interact with humans to
supply and record knowledge (James, 1984; 121).

The following chapters examine expert systems in more detail, look at the
application of Al to mapping and detail the development of an expert system for
one particular application.

CHAPTER TWO
Building Expert Systems

The computer as an intelligence amplifier is an abstract idea that we
are still a long way from implementing. Today most of the mutual
working together of man and machine is on the machine's terms!1

CONCEPTUAL MODELS
Weiss and Kulikowski identify three stages in the development of an expert

system. The first stage is the initial knowledge base design which deals with
problem definition, conceptualisation, and forming the computer representation of
the problem. The second phase is the prototype development and testing stage
and the third involves the refinement and generalisation (i.e. making it more
generally applicable) of the knowledge base (1983; 13).

In the development and usage of expert systems we can distinguish three
groups of people (Poiker et al, 1982). First, the systems designer or computer
scientist, now frequently called the knowledge engineer. Second, the specialist or
expert who creates the knowledge base, or whose knowledge is used to create it;
and third, the user of the system who may have some expert knowledge of the
subject, may be an expert in a related field or may be a student.

The task of the knowledge engineer is to: 1) define the expert system
domain; 2) elicit the desired information from the human expert(s); 3) structure that
knowledge in a suitable form in the knowledge base; and 4) test the system to
evaluate its robustness and accuracy (Williams, 1986; 67).

As noted in chapter one, an expert system consists of three essential
components, a knowledge base, an inference engine and a user interface. To this
other components may be added, such as a knowledge acquisition subsystem and
an explanation subsystem. The latter of these explains why a question is being
asked and how a conclusion has been reached; this capability is frequently
incorporated into the inference engine. For cartographic design purposes a
database of geographic information (spatial and attribute) and a graphical output
subsystem must be added (Figure 2.1).

1 James, M. (1984) Artificial Intelligence in BASIC, p.121.

31

USER
t I

User Interface

Explanation
subsystem

Knowledge acquisition subsystem

(spatial data,
attributes)

Database

(facts, rules)

Knowledge
base

(logic,
procedures)

Inference
engine

t 1
Expert or knowledge engineer

Figure 2.1
Basic components of a cartographic expert system (a more comprehensive model
is given in Figure 7.1) (After Harmon & King, 1985)

KNOWLEDGE ENGINEERING
Knowledge engineering encompasses a number of tasks in the

development of an expert system. These include problem identification, an
assessment of the usefulness of a system, cost-benefit evaluation, locating
suitable experts, knowledge elicitation, conceptualisation of the problem,
translation of the knowledge into a computer representation, and the testing
evaluation and refinement of the system (Weiss & Kulikowski, 1983) as illustrated
by Figure 2.2. The process is highly iterative and may result in several prototypes
(Lundberg, 1989).

32

EXPERT

Knowledge
programmer

Test situations

Behaviours Expectations

Modified
knowledge

Diagnosis
and

knowledge
refinement

Program

Knowledge
base

ADVICE
(domain knowledge)
Concept, Definitions

Behavioural constraints
Performance, Heuristics

after Klar & Waterman, 1986, p.61.

Figure 2.2
The process of developing an expert system

The development of an expert system is quite different to that of traditional
software engineering. For problems where an existing expert system shell or toolkit
is suitable, the ability to think rationally and communicate well are more important
than ability in computer programming (Williams, 1986).

Problem Identification
The aim of this phase is to determine the goals of the system and recognise

the constraints placed upon it. Rabbits & Wright list five aspects to be considered
during initial problem assessment. These are: who will be affected by use of the

33

proposed system; what are the success criteria; what are the constraints on the
system (time, cost, etc.); what assumptions are made; and what is the scope of the
system, especially what will it not do (1987; 16).

Knowledge Elicitation.
A number of methods for knowledge elicitation have been adopted (Table

2.1). Despite this range of methods, experience has proved that knowledge
elicitation is a major bottleneck in the development of expert systems (e.g. Berry &
Broadbent, 1986; 228, Kidd, 1987; vii, Merrit, 1989; 3). Experienced knowledge
engineers frequently describe the process as being "... more of an art or craft than
a science" (Berry & Broadbent, 1986; 228). The expert has to be able to explain

Table 2.1
Knowledge elicitation techniques and information that can be obtained

Technique Main information types

Focused interview Factual knowledge
Types of problems
Functions of expertise

Structured interview Structure of concepts
Mental models
Explanation

Introspection Global strategies
Justification
Evaluation of solutions

Observation Use of knowledge
Reasoning strategies

User dialogues Reasoning strategies
Modality information

Review of literature Factual knowledge
Repair of gaps
(Re) interpretation of information
Support knowledge

based on Breuker & Wielinga, 1987; p23.

34

the domain for which the system is developed in a manner which is understandable
to both the knowledge engineer and the eventual system users. Knowledge
elicitation has a reputation for being a difficult and unpredictable process. A reason
for this is that none of the commonly used methods are entirely satisfactory
(Rabbits & Wright, 1987). It also assumes that the capabilities of the expert are
transferable, which may not be the case, particularly if the wide experience and/or
intuitive skills of the expert are involved.

One reason for difficulty in knowledge elicitation is, as Sagalowicz points
out, that true expert knowledge is not only rare it is seldom explicit or measurable
and:

As a result it is difficult to communicate or acquire. Experts gain their
knowledge through experience, long periods of training,
apprenticeship and observation. Their value comes not from the
number of facts they know but the subtle, idiosyncratic ways in which
they come to organise their knowledge and experience.

(1984; 138)

Not only is the knowledge itself difficult to quantify, but experts often cannot
articulate how they solve a particular problem, or explain their approach in a
systematic manner. Good knowledge acquisition is however, critical, as the
resulting expert system is dependent upon the quality of this knowledge (Kidd,
1987; 1).

In the initial stages of knowledge elicitation written documentation can be
used, but this is rarely complete and additional information has to be obtained
directly from the experts (Breuker & Weillinga, 1987; 21). Interviewing is the most
frequent method of knowledge elicitation, although one problem with this method is
that the expert may be led in certain directions by the knowledge engineer, which
may not result in the best outcome (Rabbits & Wright, 1987; 16).

Introspection is where the expert himself analyses the problem and extracts
the necessary expertise. As has been noted, experts often find it difficult to
describe their expertise in a systematic manner, but many expert systems have
been developed in this way.

In the observation method the expert 'thinks aloud' as he solves a problem.
The knowledge engineer records the events, but it is possible for him to
misinterpret specialist knowledge, there may be gaps in what the expert says, or

35

the real reasoning may not be apparent even to the expert (Rabbits & Wright,
1987; 16).

Whatever method is used, gradually a large knowledge base of facts and
rules will be built up. In testing the system however, it is likely that the expert and
the system will disagree at some stage, therefor the expert must either provide a
new rule, or modify an old one."... sometimes the knowledge the human expert
provides is not knowledge about the task itself but, rather knowledge about the
knowledge in the program" (Hayes-Roth et al., 1983; 220). This information is
known as metaknowledge, i.e., knowledge about knowledge.

In fact Hayes-Roth et al., (1983) recognise three levels of knowledge
provided by experts: factual; heuristic; and metaknowledge. The first level provides
a base of facts, theorems, equations, categories and operations. This is typically
equivalent to the factual knowledge contained in textbooks on the subject. The
second level of knowledge is heuristic, including rules of thumb, inconsistent advice
and inexact judgmental criteria. This heuristic knowledge provides a "first order
correction" to the factual knowledge. This may be further modified by the
application of metaknowledge, providing "... a ‘second order correction' of the
previous system knowledge" (Hayes-Roth et al., 1983; 222)

Almost all expert systems incorporate all three levels of knowledge,
although there may be advantages in explicitly identifying metaknowledge.

THE KNOWLEDGE BASE
With traditional programs 'knowledge' is contained within the program code

itself. Moving much of this knowledge to a separate knowledge base has several
advantages. It is easier to update the knowledge i.e. to add new rules If, for
example, more data is added to the database, or additional map types were
required. The actual rule definitions in a separate knowledge base should be more
apparent to people other than the original programmer as it is frequently very
difficult to follow the exact flow of logic within a complex computer program.

Abstractly,
. . . knowledge consists of descriptions, relationships and

procedures in some domain of interest. The descriptions in a
knowledge base, which identify and differentiate objects are
sentences in some language whose elementary components consist
of primitive features or concepts. A descriptive system generally

36

includes rules or procedures for applying and interpreting descriptions
in specific applications. A knowledge base also contains particular
kinds of descriptions, known as relationships. These express
dependencies and associations between items in the knowledge
base. Typically such relationships describe taxonomic, definitional and
empirical associations. Procedures, on the other hand, specify
operations to perform when attempting to reason to solve a problem.

Hayes-Roth et al., 1983; 12

A number of strategies and tactics to enable expert systems to solve
problems have been investigated. There are two fundamental aspects to this: how
the knowledge is organised or represented; and the method of search for the
solution. Obviously these are to a great extent dependent upon one another.

Knowledge Representation
'Knowledge representation' is the term most frequently used for the internal

representation of information in the knowledge base. In simple terms it involves
writing down, in some language or communication medium that the computer can
comprehend, descriptions that correspond to real world information.

As has been discussed, knowledge generally takes the form of facts, rules
and heuristics. While this is the most basic and common representation, sometimes
known as first order logic, others are possible such as frames and semantic
networks. How best to organise the knowledge to support problem solving is an
important aspect of Al programming, but at the same time the knowledge in an
expert system must be transparent to the human user, easily incremented by a
human expert and easily modified by the human expert (Bratko, 1982; 180).

No one method of knowledge representation appears to be particularly
efficient in all situations. The problem is that the same piece of information can be
used in a number of ways and in a variety of contexts in solving a problem. There
are two basic school of thought (Steels & Campbell, 1985). The declarativists
believe that information should be represented in a neutral fashion, i.e.,
independent of its use. Control can be achieved by general purpose problem
solving strategies.

Alternatively, proceduralists believe that information cannot be represented
without some indication of how it may be used, i.e. the choice of representation
necessarily determines the complexity of the processes operating over it. This latter
view has gained popularity with the development of object oriented programming.

37

Here the data structures are such that they contain not only data about objects, but
also information on how the objects may be used or operated upon.

First-order logic. This is a formal method of representing logical propositions and
the relations between them i.e. facts and rules. This is probably the simplest way to
represent knowledge and the most widespread. It has been used extensively in
classification type rule based systems.

There is a template for each fact which consists of title, or relation name,
followed by one or more fields containing specific values (Giarranto & Riley, 1989;
380). For example:

Male (John)
Male (Alan)

are two instances of the fact Male which state that John and Alan are male.
Relationships can also be expressed by facts:

Father_of (John, James)
Father_of (Alan, Louise)

Facts can be related by using rules, for example if facts about the sex and
parenthood of individuals were stored in the knowledge base a rule could be used
to determine if two people are brothers:

Brother_of (A, B):-
Male (B),
Father_of (X, A),
Father_of (X, B).

This rule states B is a brother of A (not necessarily vice versa) if B is male and both
A and B have the same father.

A more easily recognisable way of expressing this knowledge is in the form
of production rules, such as:

IF: A is TRUE AND
B is TRUE AND
C is FALSE

THEN: Conclude X

Semantic networks. These are the most general knowledge representation
schema (Harman & King, 1985; 35), and were first developed for use as
psychological models of human memory (Waterman, 1986; 70). A semantic
network is composed of nodes and links (Figure 2.3). Nodes may represent
objects, concepts, situations, or descriptors. The links (or arcs) describe the
relationships between nodes, and may be directional. Links may be affirmative
such as 'object j^ a member of a class' or 'object has-a property', or they may

38

include heuristics, such as 'situation may-cause description'. The relationships
between objects in network systems can be more varied than in hierarchical
systems. According to Simons (1983; 136) the simplicity with which correct
deductions can be made once the semantic network has been generated is one of
the main reasons for their popularity. They have been particularly successful in
natural language systems for the representation of complex sentences (Waterman,
1986; 72).

Navigation

ijsed-for MAP
;-a

is-a
Chart

hows
shows

heights

Topographic
 _

Figure 2.3
A semantic network

Frames. Essentially these are semantic networks in which the knowledge is
represented in modular chunks rather than as individual items (Simons, 1985; 136).
In its simplest form a frame is like a questionnaire, consisting of a series of items,'
... each of which has a specific purpose and each of which has an associated
blank which must be filled to get the complete picture" (Forsyth & Naylor, 1985;
134). A frame can contain several different types of information:

Some of this information is about how to use the frame. Some is
about what one can expect to happen next. Some is about what to do
if expectations are not confirmed.

(Waterman, 1986; 73)

Each of the blanks or 'slots' in the frame must be filled in order (Figure 2.4).
This is achieved by a procedure or procedures being associated with each slot
which may for example, ask the user to answer a question, or refer to further
frames, thus resulting in a hierarchical system in which the topmost frames
represent generalities and the lower ones may be customised for more specific
instances or concepts by the creation of more specific frames. In other words:

39

Frames attempt to model real world objects by using generic
knowledge for the majority of an object's attributes and specific
knowledge for special cases.

(Giarranto & Riley, 1989; 83)

A basic characteristic of a frame is that it represents related knowledge
about a narrow subject, particularly when there is a considerable amount of default
knowledge. According to Giarranto & Riley"... frames provide a convenient
structure for representing objects that are typical to a given situation such as
stereotypes" (1989; 82). For example, many maps have several similar
characteristics and in many cases default values are adequate. Further details of
the components of the feature (map) can be obtained by examining the structure of
the frame.

Frames are also useful for representing common-sense knowledge which is
generally difficult to handle in computer system. While semantic nets are better for
representing broad knowledge, the advantage of frames is the ability to build
hierarchical systems with inheritance. "By using frames in the filler slots and
inheritance, very powerful knowledge representation systems can be built"
(Giarranto & Riley, 1989; 83).

Frame: MAP
slot name value if empty procedures on change

procedures
topic: menu of known types
map class derive from map type
date default = system date
map purpose [overview] choose from menu update level of detail
map user [general] choose from menu update level of detail
output media [screen] choose from menu update level of detail
level of detail derive from purpose,

user and media

Figure 2.4
An example of a frame for a map. The attached procedures are used to get values
for slots ([] = default value).

Blackboard. Often an important feature of problem solving is that diverse types of
knowledge must be handled. This may mean that more than one expert system is
needed. The communication of information between expert systems is done

40

through the blackboard mechanism. This is an area of computer memory (or
storage) where information stored within an expert system can be 'posted' in a
structured form so that it can be accessed by other expert systems if required to
reach their goals (Levine, et al.p 1986; 23, Waterman, 1986; 146). Some systems
also use a blackboard for storing intermediate results (Hayes Roth, et al, 1983; 16).

THE INFERENCE ENGINE

Mechanisms of expert systems
In any complex process of reasoning a whole series or 'chain' of rules may

have to be considered. The relationships typically form a hierarchical tree structure,
thus the procedures used are typical of the graph search methods outlined in
chapter one, although there are two distinct approaches used in expert systems.
These are known as forward chaining and backward chaining. Both of these
methods can be applied to breadth first and depth first search, as illustrated in
Figure 2.5.

Conclusions''
(goals) Conclusions

(goals)

Breadth-first

Conclusions
(goals)

After Harmon & King, 1985

Figure 2.5
Major categories of search strategies used by inference engines

Forward Chaining. Analysis by continually narrowing down the possibilities is
called 'forward chaining', and is so called because the information is considered

41

before the conclusions, which is the same order as used in writing the rules
(Davies, 1986; 6). This works like inductive logic by working forward from existing
facts and rules to derive new ones that are true (Williams, 1986; 69), but must also
consider the various search possibilities at a given node.

Forward chaining, sometimes called a data driven strategy, is simple to
program, is much used in rule based systems, and appears much as if the
computer is working through a list of possibilities, making what inferences it can
from the answers. It is quite likely with this method that a wrong line may be taken,
resulting in backtracking to find the correct path, and giving the appearance to the
user of an unconnected series of questions. More sophisticated systems make
better use of heuristics and evaluation functions in an attempt to avoid this.

This strategy is most appropriate where many facts are known and the
search tree is broad but not deep.

Backward Chaining. The converse situation occurs when one starts with a
conclusion and works back to find out if the conditions for that conclusion are true
(Guilfoyle, 1987; 9). This is known as backward chaining, or a goal driven strategy,
and like deductive logic one works back from a given hypothesis or goal, searching
the knowledge base for facts and rules which support (or disprove) it.

According to Bramer, backward chaining :
... has the additional value that it helps to ensure that groups of
questions asked by the system appear 'focused' towards evaluating a
particular hypothesis. Once a hypothesis is found to be justified or
refuted, further questions relating to it do not need to be asked.

(1982; 14)

This produces a form of information gathering that is probably more
acceptable to most users than the more random gathering of facts by forward
chaining, and is widely used by many of the well known systems such as MYCIN.
Backward chaining is best applied where there is a known hypothesis for which
evidence can be gathered."... backward chaining facilitates depth first search. A
good tree for depth first search is narrow and deep" (Giarranto & Riley, 1989; 164).

In fact, it is possible to combine forward and backward chaining in one
system, using them at different stages in the search for a solution. For example in
a frame based system, many slots may be filled by assembling facts from the
knowledge base or user and moving forward to more specific frames. However,

42

some slots may contain hypotheses (or default values) for which backward
chaining could be used to determine their validity.

Although an expert may be able to visualise the final map and break this
down to produce specifications, it is difficult to see how an overall backward
chaining strategy could apply in a map design system as neither the non expert nor
system can easily hypothesis a map design then test it. This is due partly to the
difficulty of evaluating good design as shall be discussed later. It is quite likely
however that backward chaining would be used in certain stages, for example by
assigning some default representation method to a particular phenomena, then
testing for other factors such as scale, map purpose and the symbolisation of other
phenomena to confirm or reject this representation.

Expert System Shells
An expert system shell is in effect an expert system without any built in

knowledge base. That is, it consists of the inference engine and an empty
knowledge base. The theory is that once an inference mechanism has been
developed it can be applied to solving more than one problem. Many expert system
shells exist, one of the most famous being EMYCIN or Empty MYCIN, the MYCIN
medical diagnostic system with the knowledge base removed. Clearly for an expert
system shell to be of use, the inference mechanisms and knowledge
representation methods used must match those of the problem to be solved.

The VP Expert shell has been applied to some cartographic tasks,
(Siekierska 1989), but generally it has been found that the inference mechanism of
commercially available shells does not support the requirements of cartographic
systems, and until recently few have the necessary graphical capabilities.

THE USER INTERFACE
"From the very earliest times Man has been trying, without much success, to

speak to, and receive intelligible replies from, non-human objects" (Forsyth &
Naylor, 1985; 35). It seems natural therefore that one should be able to converse
easily with a computer. The major reason that this is not the case is essentially the
problem of natural language. Natural language is what we speak and write, and
although there are many rules, there is no language definition, it has just
developed (naturally) with time. The same cannot, however be set for the other
type of language, formal language.

43

Formal languages are those which have been designed for specific
purposes, the most common examples being computer languages. Inherent in
these is some formal definition of the language. So, despite advances in the
man/machine interface, making computers, and more particularly certain computer
programs, easier for users to communicate with, the formal language will still
remain which will require the user to learn at least some rules of the language.

In order to communicate in any language the recipient of a message must
be able to understand it. Models of communication have been extensively used in
cartography in recent years, but many apply equally to (or were copied from) other
areas of communication research. Thus, any language may be viewed as a
communication chain such as:

message > encode > transmission > decode > message

For communication to succeed then, the message at the recipient must be
the same, or at least have the same meaning, as that at the sender.

When the computer has a message it will print this on the screen. (For the
current discussion we will ignore the possibility of acoustic communication). How
clear this message is will depend upon the individual program, but generally
speaking it is not very hard to make the computer's responses appear to be in
natural language, mainly because in any given situation the number of messages
that the computer is likely to want to communicate will be limited. Careful
programming should ensure that messages are unambiguous and easy to
interpret. An example of this may be the computer giving an error message
describing an error condition which exists, rather than simply giving the error
number. Although in the later case communication may still be successful, the user
will probably have to find the appropriate manual and look up the error number to
get the meaning of the message.

There is also the advantage that when it is the computer which is doing the
sending, it is up to the user to understand the message. The brain has a much
greater processing power for this type of problem than the computer, so in the
difficult stage of decoding the message is passed to the more powerful processor,
with the easier process, encoding, being handled by the less powerful processor
(the computer) (Forsyth and Naylor, 1985;39).

44

While some form of natural language communication between the computer
and the user may be seen as a long term goal, most programmes are very
restricted in the language or 'Interface' they use. Also, until relatively recently there
have been no standard user interfaces, and although the Macintosh desktop,
Windows, etc., have promoted standardisation, it often seems to the user that
every program has a different interface. Despite this lack of standards, one can
identify several generic types of user interface (particularly for input to the
computer). These are:

1. Parameter lists
2 . Command language input Strict format
3. aa Flexible format
4. Constrained language
5. Natural language
6. Menu systems Strict sequence
7 . aa 'Random' Access
8. Graphical interface

Parameter lists. The commonest form of command and data entry into many early
programs relied on a very strict format. Commands, parameters etc., had to be
located in a particular column on a punched card or on the screen. Typically
everything was numeric, the user referring to a manual to locate the correct
sequence and position. Unless one uses such a system frequently it is very difficult
to remember the correct positioning of items, even if one can remember all of the
various permutations. Errors occur frequently due to what may be considered minor
mistakes such as getting a decimal point in the wrong column or a number in the
wrong field, or using a decimal number instead of an integer.

These types of program tended also to lack any significant level of error
checking, so when an error was present either the program would crash, or the
output would contain errors, which may not be easily detected by the user.

With the development of interactive computing the system can prompt for
values to be entered, although the strict sequence of questions is maintained. This
simplicity can be useful for occasional users, but frequent users may find it tedious
to have to read questions that he has come to know.

Command languages. A slightly more user friendly variant of the above, although
still designed for batch processing, is the ability to enter a command followed by its
parameters. This has been used in several mapping programs, one well developed
example being Surface II. This method apparently allows greater flexibility than
only entering parameters, but the main advantages are in the readability of batch

45

files at a later date - the command name making it more obvious what the intent is -
and the ease with which it can be used interactively, the user selecting commands
at will.

Later variants of this approach allow considerable flexibility. One of the
better developed versions is the General Purpose Input System of the GIMMS
package (Waugh, 1980). Here there is considerable flexibility in the order in which
commands are given, the parameters may be entered in a standard sequence, or
the order varied by using the appropriate keyword. It also allows comments to be
added, which improves understanding if the file is retained for later use.

There are disadvantages in most command systems. Typically the user is
faced with a blank screen and must know what command to enter. Often systems
develop to a stage where there is a large number of possible commands and
options within these commands. Therefore unless the user frequently uses the
system repeated reference to manuals or help screen will be essential. Some
programs use function keys with templates, or lists of commands in a reserved
area of the screen. In the latter case, to preserve space the commands are often
abbreviated which may cause difficulties for infrequent users, e.g. the two or three
letter cryptic abbreviations used by MapData. In order to avoid ambiguity,
particularly when abbreviations are used, the terms adopted are often not the most
obvious or meaningful.

Constrained language. In several systems an attempt has been made to make
command input appear like English sentences, but there is a strict underlying
structure which must be adhered to. One well developed example of this is the
MAP system (Tomlin, 1980). This uses an interesting input structure which can
operate in either batch or interactive mode. A command is string of alphanumeric
characters read as one or more eighty character input lines. The system
automatically echoes the input to acknowledge its receipt (the original system was
developed for teletype terminals). The command is then either confirmed, an error
message issued, or a request for supplementary information made. For example:

46

prompt
command

echo
error message

prompt
command

echo
confirmation

protect thismap
PROTECT THISMAP
NO, THERE IS NO MAP IN THE FILE CALLED
"THISMAP"
>
rename thatmap to thismap
RENAME THATMAP TO THISMAP
OK, "THATMAP" HAS BEEN RENAMED TO "THISMAP"

(Tomlin, 1980; 21)

Each command must begin with an imperative verb which names the
operation to be performed. Unless a command begins with one of these verbs an
error will be signalled. In some cases this is all that is required, however, many
imperative verbs must be followed immediately by the object of that verb. This
imperative phrase may be followed by one or more modifying phrases. Each
modifying phrase is made up of a modifier and one or more objects. The order of
these modifying phrases is flexible. For example:-

AVERAGE THISMAP TIMES 20 PLUS THATMAP TIMES 80

The command processor creates words from the input line. A blank or
blanks must separate each word or number, all non blank characters are assumed
to be intentional parts of the input. In most cases the full verb does not have to be
supplied, only enough of the first few letters to distinguish it from all other verbs.
This has the advantage that longer verbs do not need to be typed in full, but it can
lead to confusion on the part of the user (see above). With the commands currently
available in the system up to five characters may be required, although often only
one or two are needed.

In attempts like this to save keystrokes where abbreviation rules are not
uniform, the savings tend to be lost by the user having to remember the right
abbreviation for each command (Ledgard et al, 1981; 4). An additional problem
arises if the system is later expanded and new commands added. For example if a
user becomes used to typing W for WRITE as this is initially the only command
starting in "W", confusion could well result if a command WHERE were later added.
A more sophisticated system would allow one to type in a possible abbreviation of
a command, but if this is still ambiguous, to prompt for more input without the
whole input line being ignored as being an error.

47

Natural language. Several natural language interfaces to database systems have
been developed in an attempt to make the systems more user friendly. To
communicate effectively between users and systems a natural language interface
must have a knowledge about the domain as well as linguistic knowledge (Ishikawa
et al., 1987). A natural language interface uses a linguistic model as a knowledge
base for semantically interpreting user queries. Domain specific knowledge is
required to resolve ambiguities that queries may contain.

In order to ensure that the computer has correctly translated the natural
language request it normally must restate the query for approval by the user
(Gittins, 1986; 28). This may seem to neutralise the advantage of using natural
language in the first place, but is essential due to ambiguities present in most
natural languages (and perhaps in the query itself) and confirms with the user the
intention of the query before processing the request.

It seems unlikely that general purpose natural language interfaces will be
available in the short term. Moreover, there is currently considerable debate within
the GIS community about query languages for spatial queries (e.g. Egenhofer &
Frank, 1988, Menon & Smith, 1989, Mainguenaud & Portier, 1990, Raper &
Bundock, 1990). There does not seem to be any consensus on the how queries
should be formed and most of the existing database query languages do not have
the ability to handle spatial queries.

Menu Systems. There are numerous ways in which menus can be applied. Menus
can be usefully incorporated into command driven systems where the options
available for a command are displayed when the command is entered. In this case
there is no hierarchy to the menus and one cannot switch from one menu to
another without going through the command prompt.

Many early (and current) menu driven systems use a strict sequence of
menus in a hierarchical tree structure with the user selecting the appropriate item
from a menu to get to the next level menu and so on until the desired result is
achieved. To proceed to the next task it may be necessary to traverse back to the
top level menu and back down some other branch. Unless the menu is
exceptionally well designed it is likely that this task will have to be repeated
frequently leading to frustration on the part of the user. Some systems allow
shortcuts to be taken, for example by specifying the menu one requires, but this

48

presumes frequent use of the system. At the very least the user should be able to
return directly to the top level menu.

More recent menu systems make use of pop-up or pull-down menus. Here
the top level menu is available all the time. To access a menu function a trigger1
key pressed activates the menu. The selection is then made by using the cursor to
select the appropriate sub menu and function. To speed up responses for regular
users it may be possible to follow the trigger key with a code for the desired
function. The widespread availability of the mouse has considerably increased the
utility of such systems, although constant changes from mouse to select items and
keyboard to enter information can be aggravating.

Menu systems are probably most appropriate where there is a limited range
of options available at any given point in operating the system, otherwise the user
can waste time searching the available menus for the desired function. They do,
however, have the advantage of not requiring users to remember the names of
commands.

Graphical Interfaces. These have become increasingly popular in recent years
particularly since the advent of the Apple Macintosh computer which relies heavily
on them and the increasingly widespread use of Microsoft Windows on PCs. They
are based on the use of a mouse to interactively select icons or item from menus.
Menus or commands are selected by pointing to them with the mouse pointer on
the screen and clicking the appropriate mouse button. Further sub menus may 'pull
down' or 'fly out' to allow further choices or 'dialogue boxes' may appear to allow
the user to enter further information.

While these interfaces are supposed to be intuitive and are supposed to
imitate the user's desktop, they often pre-suppose some familiarity with the system
although the fact that the main menu headings and most commonly used icons are
always visible means that less reliance has to be placed on memory than with
command language systems. The speed of moving from one command to another
also gives them distinct advantages over structured menus in many situations.

Perhaps the greatest advantage of these systems is that fact that all
programs conforming to the Windows convention, for example, will have a similar
'look and feel', i.e. the user interface to a wide range of programs is essentially
standardised.

49

A disadvantage of these interfaces is that casual users can be left
wondering what to do next, or where to find the appropriate command.

DESIGNING THE USER INTERFACE
Perhaps the most important criteria in designing a user interface is that

whatever method is chosen, it should be "user friendly". What user friendly actually
means may be different in different situations or with users of varying experience
with computer systems in general and with the individual program. However there
are certain attributes of user friendly systems that can be generally accepted.
Crosley (1985) discusses four aspects of user interface design. In the first instance,
if the program is to be used by people with a variety of experience, the system
directions or prompts should be concise, but clearly understandable by non-
technically oriented personnel. Some systems allow the user to set the level or
verbosity of prompts and responses to reflect the familiarity of the user with the
system.

Second, the system should allow the experienced user to take short cuts
where feasible. For example, repeatedly having to go through several menus to
perform a task that the user is familiar with can become very tedious. Third, the
system should be robust enough not to fail if the user makes a simple mistake, and
"... error messages should be clear in their meaning and provide some direction on
howto correct the problem ..." (Crosley, 1985; 134).

Fourth, the user should be able to obtain "help" at any time, which may take
the form of more detailed directions which more fully illustrate what is required of
the user, or give the user a list of options available in the current situation, to
perhaps offering some further explanation of why a particular question has been
asked or how the system arrived at a certain decision (this capability of answering
how and why is a particular feature of many expert systems).

Additionally, one point not considered by Crosley, it is desirable that the
user can easily and quickly exit the system at almost any time without destroying
files etc., and if possible return at a later date and quickly resume work without
having to re specify large amounts of basic information.

One consideration that does not seem to be given much attention is the
maintenance of records of what has been done, particularly in interactive sessions.

50

Several systems do maintain journal files so the situation can be recovered after a
system 'crash1, but these are seldom retained after a job has been completed.
Diagnostic files may be produced, but these document every step undertaken.
What is required is the ability to return and say "I made this map last year. Now I
want a similar one showing ...". Using a large mainframe system, with good record
keeping this should be possible, although it may be time consuming, requiring
information to be restored from backup tapes. On smaller systems it is obviously
not practical to record the details of every map produced, but an expert system
should at least have retained the 'knowledge1 to create such a similar map with as
little input from the user as possible.

In the long term it should be expected that expert systems will communicate
with the user in natural language, perhaps even by voice communication. Ideally
the user would simply enter the type of map they want and the computer would
interpret their request. This is a longer term aim however, and initially it would seem
that as there is a specific goal to achieve in using an expert system, some form of
structured interface largely based on the use of menus is more likely to be the main
form of interface. The use of an expert system is quite different to that of a general
purpose word processor or spreadsheet, therefor the use of the desktop metaphor
is not the most suitable although this does not preclude the use of windows, the
mouse, etc. when appropriate.

CHAPTER THREE

The Application of Expert Systems in

Design, Cartographic Design and Mapping.

Probably the user most at risk is the one who produces maps or other
graphical output for his own use or for limited circulation.... the user,
in designing his output, will often use an interactive graphic facility and
therefore he needs to optimise the information appearing on the
screen appropriate to his particular expertise.... [also] the final
product may appear on a totally different medium, e.g. paper, which
leads to further problems.1

EXPERT SYSTEMS FOR CARTOGRAPHY
A broad overview of possible applications of expert systems to

"cartographic processes" is provided by Granklanoff (1985). He also tries to assess
quantitatively the suitability of expert systems for various mapping tasks. Each of
17 mapping tasks from geodetic control to printing were assessed for their
suitability by eight mapping experts using standard criteria. Although a very limited
study, interestingly several tasks related to design feature near the top of the list for
suitability, including generalisation and symbolisation, and feature selection and
placement (Table 3.1).

Robinson and Jackson (1986) also identify a number of broad areas of
cartography and digital mapping where expert systems could be of benefit. Their
list includes: Manual and Automated Map Design; Digital Data-base/User Interface;
Cartographic Education and Training; Spatial Data Error-train Analysis; Data
Capture and Storage Standards; Data Format and Transfer Standards; and
Replacing Cartographers. This is a very wide ranging list encompassing most areas
of cartography, although they see the last entry on the list as being impractical for
several reasons, not the least being the need for cartographers to provide their
knowledge and monitor the achievements of automated systems.

A more recent review is provided by Buttenfield and Mark (1991). The
purpose of their chapter is to present the design criteria for a cartographic expert
system, essentially for map design. They note that the concept of a full
cartographic expert system (CES) which could effectively design a wide range of
maps over a wide range of scales from a single database is a monumental task.
They review recent work on CES under three headings: generalisation,

1 Robinson & Jackson, 1986; 431

52

symbolisation and production which they view as the logical major components of
producing a map. Their table (Table 3.2) illustrates their view of the applicability of
experts systems and progress in their development at that time. They consider this
ability to split up cartography into a number of 'relatively easily isolated' sub tasks
accounts for the relatively high volume of published articles on certain aspects of
design (ibid.; 136) and hence makes cartographic design and production a suitable
candidate for an expert systems approach. While this view is theoretically possible,
in practice there is considerable interaction between various sub tasks, which
probably accounts for many poor maps in the visual / aesthetic sense.

Table 3.1
Suitability of task for applying expert systems

Rank Task name

1 Source Evaluation
2 Source Selection & Compilation Planning
3 Generalization and Symbolization
4 Feature Selection and Placement
5 Stereo Photogrammetric Plotting
6 Typesetting & Type Placement
7 Geodetic Control Identification
8 Color Separation Proofing
9 Overlay Proofing
10 Analytical Triangulation
11 Mensuration
12 Distribution & Shipping
13 Inventory & Stockage Control
14 Press Printing
15 Engraving (Scribing)
16 Plate Making
17 Negative Preparation

after Granklanoff (1985, p.621)

Further overviews of the application of expert systems in cartography are
also to be found in Forrest (1991 & 1993 - see Appendix G), Mark & Buttenfield
(1988) and Buttenfield & Mackaness (1991).

The emphasis of the remainder of this chapter is on reviewing systems
falling into the first category on Robinson & Jackson's list and generally the middle
class of Buttenfield & Mark's, but before concentrating on map design it is

53

worthwhile reviewing some examples from the broader areas of design. Finally a
brief summary of other applications of Al and ES to cartography and mapping is
provided.

Table 3.2
Role of expert system in map design.

GENERALIZATION
SIMPLIFICATION

CLASSIFICATION
aggregation
partition
overlay

ENHANCEMENT
interpolation
smoothing
generation

SYMBOLIZATION
encoding strategy
conceptual constraints
situation constraints

PRODUCTION
plotting
layout
displacement
label placement

visual contrast

reduction
selection XXXXXXXXXXX
reposition

xxxx

xxxxxxxxxxx

xxxxx

xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

boxes represent potential
application
XX = represent progress

after Buttenfield & Mark, 1991,

EXPERT SYSTEMS IN COMPUTER AIDED DESIGN
Computer aided design (CAD) systems have been available for some time,

and are now extensively used in many engineering, architectural and similar
applications. These systems rely upon human experts to solve design problems

54

based upon experience, specialised knowledge and engineering judgement, using
the computer only for analysis and drawing. Conventional CAD systems are based
upon the assumption that feasible solutions exist to solve design problems, but
this premise does not always apply in real-world design (Jansen & Puttgen, 1987).
Human experts frequently have to deal with problems where all constraints and
objectives of the design cannot be met. Thus, there has been considerable interest
shown in the use of expert systems to enhance the capabilities of CAD systems
(e.g. Begg, 1984, Gero, 1987, Tomiyama & ten Hagen, 1987 a, b).

'Design1 Expert Systems.
The 'traditional' role of expert systems has been that of a diagnostic tool.

Authors such as Waterman (1986) have provided detailed descriptions of a wide
range of expert systems, but few of these are related to design or have a design
component. Of those described in the pre 1990s literature as 'design' system, only
DEC'S XCON (see chapter 1) appears to have been in continual commercial use.
However, systems such as XCON are perhaps more appropriately called 'selection
by constraint' systems rather than approaching the general concept of 'design'.
Although there have been several discussions about the use of Al in design for
some years, it is only recently that ES technology has been examined for its
general applicability to design.

Oxman and Gero identify two approaches to the application of expert
systems in the design process: first, 'design synthesis' where the ES is a design
generator; and secondly, 'design diagnosis' where the ES functions as a design
critic to evaluate, criticise and recommend corrections to designs.

In both modes of operation solutions are generated before they are
analyzed and evaluated. . . . Both the way in which knowledge is
represented and the way in which it is applied in the inference
mechanism must in design application, recognise the recursive nature
and multiple modes of design paradigms.

(Oxman & Gero, 1987; 4)

They also state that a design which is generated according to rules should
be assessed through models of performance, using some form of performance or
evaluation knowledge. This additional knowledge is used to check the validity of a
system's solution against its knowledge base of performance requirements. While
one can generally see the applicability of this function, it is, however, unlikely that it
can be rigorously applied to the design of maps which are notoriously difficult to
evaluate in any quantitative manner. Any true evaluation of map design must go
beyond assessing the spatial relationship between objects or the calculation of the
amount of information.

55

Where design evaluation can be of considerable practical use is in systems
such as PREDKIT, a system for the design (i.e. the layout of components) of
kitchens (Oxman & Gero, 1987) where there are obvious and generally simple
functional requirements, such as adequate ventilation and light. Despite its
apparent simplicity, PREDKIT, which has under 100 rules of the
object-attribute-value approach, shows that rule based systems can be utilised for
simple design problems. Oxman and Gero do however state that from their
experience simple rule-based knowledge bases are insufficient for more advanced
modelling of design problems and intend supplementing PREDKIT with a frame
based semantic modelling system.

Similarly, a system called ASDEP for designing power plant auxiliary
electrical systems has clear guidelines for evaluating design quality, such as
operational performance, reliability, maintainability, flexibility, expandability and
cost. Interestingly, this system specifically aims to produce good or satisfactory
designs rather than optimum ones (Jansen & Puttgen, 1987).

Yet again the basic functioning of this system is not compatible with the
map design problem. ASDEP works by producing an initial design which conforms
to the lowest cost and minimum reliability model which is then refined to produce a
satisfactory design. An alternative strategy would be to start with a highly reliable
but high cost design and modify it to achieve lower cost while still meeting stated
constraints. The design evaluation in ASDEP is performed by two 'critics'. The first
ascertains whether the physical constraints imposed on the design are satisfied,
and the second evaluates overall design reliability.

ASDEP uses a simple rule structure and chains rules in the from IF
<antecedent> THEN <action>, although it also incorporates meta-rules to direct the
system. It also incorporates skeletal plans into its knowledge base. Contrary to
most expert systems, ASDEP uses little or no backtracking, progressing in an
orderly fashion from initial designs to detail designs.

As in many other fields the literature on design expert systems has
expanded in recent years and there are now several books on the topic (e.g.
Coyne et al., 1988; Gero, 1987; Pham, 1991; Roseman et al., 1988; ten Hagen &
Tomiyama, 1987; Yoshikawa & Warman, 1987) and three conferences have been
held entitled Artificial Intelligence in Design (in 1991, 92 & 94)2. A wide variety of
application areas have been attempted including aircraft design (Morris, 1985), ship

2 A paper describing the concept of the system developed here was submitted to the first of
these conferences. Despite favourable comment from the referee and encouragement to
publish the paper in the form submitted, the organisers were not interested a paper
concentrating on cartography for the conference.

56

design (Akagi, 1991), building design (Newton, 1986), landscape design (Hsu,
1992), fixture design (Nee & Poo, 1991; Pham & de Sam Lazaro, 1991) and design
for assembly of components (Gairola, 1986), although most reports are of
experimental or theoretical systems. Unfortunately, due to the cost of creating
sophisticated expert systems, details of working systems are rarely made freely
available.

Similar to the trends in recent cartographic literature on expert systems,
although to a much greater extent, considerable emphasis has been placed on
formalising the design process in an attempt to derive a "knowledge-based model
of design" and several conferences and books have been devoted to this theme
(e.g. Coyne et al., 1988, Earnshaw, 1987, Yoshikawa & Warman, 1987). This is
based upon a much larger body of literature on the design process than is
available for cartographic design, and is a natural transition from previous attempts
to explain design. Apart from communication theory and a few notable exceptions
(e.g. Bertin, 1967; Keates 1982), cartographic design literature is generally lacking
in this type of introspection. The aim of these studies is intelligent CAD (ICAD)
systems which act as "intelligent design assistants" (Tomiyama & ten Hagen,
1987a, 1987b).

Interestingly, despite the increase in literature on Expert Systems for design
in general, Architecture, a field which makes substantial use of computer aided
design, appears to have been little influenced by expert systems. Searches of two
architectural bibliographic databases carried out in October 1990 revealed only 27
and 7 references on 'expert systems', of which only 4 and 3 respectively related to
'design'.

It emerges from the literature that most design problems attempted with
expert systems so far have neither the flexibility nor the constraints imposed on
map design. These terms may seem contradictory: the flexibility of map design
refers to the ability to select, simplify and combine information, as well as
considerable flexibility in its symbolisation, whereas the constraints include the
requirement of the geographical rigidity in location of most information and the
need to maintain relationships between many varied types of information.

Thus, while some guidance on general principles may be gained from
examination of expert systems in other fields of design, it seems unlikely that
significant use can be made of their results in developing a cartographic design
expert system. Parallels can however be seen. Several authors suggest that
frames provide the most appropriate knowledge representation method for design
(Cao et al, 1990; Coyne et al., 1988; ludica, 1989; Landsdown, 1988), a conclusion
reached independently for cartographic design both in the present study (see

57

Forrest 1992a and Chapter 7), by Wang (Wang, 1992) and by several other
cartographic researchers. Also, in examining the automation of floor plan design,
the aim of which is to "... create two-dimensional layouts based on topological,
geometrical functional and aesthetic constraints", Coa et al., observe that "Because
of the combinatorially explosive nature of the search problem it is impossible to
search exhaustively for a solution" (1990; 213). Experience has shown that this
applies equally to map design!

One interesting comparison with the general trend in design experts
systems generally and their cartographic counterparts is the intended user. The
concept of ICAD and the 'intelligent assistant' is clearly intended for trained
designers, not untrained users of CAD systems, whereas most cartographic design
expert systems seem to be aimed at the cartographically illiterate user. In this
sense, cartography suffers along with other graphic arts such as typography where
it seems anyone with access to a computer and a desk top publishing package is
an instant typographer! The recent rash of kitchen designer and garden designer
packages at low cost perhaps provides some parallel to the cartographic situation,
but these are specifically intended for 'amateur' use, not professional or pseudo
professional use. It is unlikely that plans for a home extension produced on one of
the low cost CAD systems by a non qualified person would meet the approval of
the Local Authority Building Control Officer, but no such checks exist on the use of
cartographic products.

EXPERT SYSTEMS FOR COMPUTER AIDED CARTOGRAPHY
If the number of publications using the terms in their title is any indication,

then in the last few years there has been considerable interest shown in the
application of artificial intelligence and expert systems to cartography. Most are
theoretical considerations of what can and might be done, or what can't, and while
a few do report actual working examples, these are all of fairly limited scope or
sophistication. A small number of publications try to deal with the general problem
of map design, or significant portions of it, but more are concerned with specific
aspects of map design and production, such as line simplification, name
placement, or symbol selection.

It is fairly obvious that much of the research has been carried out by people
who have little experience in the design and production of maps, nor indeed do
they appear to have consulted acknowledged cartographic 'experts'. The tendency
has been to rely on a relatively small portion of the cartographic literature, much of
which is theoretical in nature. As Forrest and Pearson (1990) have shown, there is
a large body of literature giving practical advice on map design, and more

58

attention should be given to existing maps which solve the problems automation is
attempting to solve.

Systems covering broad areas of design and symbolisation
Perhaps the first reported application of Al and ES to cartography was that

of Poiker, Squirrel and Xie in 1982. Programs that may now be classified as being
expert systems may have been in existence before then, but the terminology does
not appear to have been used in the cartographic literature before this.

The proposed system was termed an 'Intelligent Cartographic System', as It
combined current developments in computer assisted cartography and in artificial
intelligence. The paper sets out a tentative framework for a system that could learn
interactively as the cartographer creates maps, and would attempt to combine the
artistic talents of the cartographer while freeing him from the repetitive work that
computers can perform quickly and accurately. As the system relies on
knowledgeable cartographic input it is clearly not intended for use by non
cartographers.

Poiker et al., recognised three areas in the production of digital maps: data
input; geometric processing; and map design. These are connected by two
interfaces: the data base and the display file. They briefly mention that some
subset of information will be extracted from the database to form the display file,
but do not expand upon this operation. Their view initially is that the cartographer
will primarily be responsible for presenting the information, having been told what
to select. This leaves a very narrow area of map design to be resolved,
i.e. representation. Later they do address the problem of data selection and
recognise that there must be interaction between data selection and design,
although their view that selection, simplification and classification as aspects of
generalisation are easily solved is rather naive.

What they in effect describe is a system for resolving spatial conflicts when
features overlap due to the scale of the display. All features are initially placed
using their correct co-ordinates. If two features collide (overlap) then one or both
must be moved. The aim is to position all features with the minimum of
displacement to all of them.

Solutions to these problems form the knowledge base. Conflicts are
resolved by three processes: a) Using hierarchies of feature attributes, i.e. more
important features or attributes take precedence, b) Using negotiation protocols in
the form of rules such as 'IF a river and a road overlap THEN move the road. In this
case move would be a function programmed into the system for these

59

eventualities, c) By manual intervention, when neither a) nor b) can solve the
conflict. The cartographer has the option at this stage either to solve the problem
directly, or to teach the system a new rule to solve it.

This last option is very important. Initially the system would contain few
rules, only a few of the most important and obvious hierarchies and protocols. The
system will learn from the experience of the cartographer in resolving conflicts as
they arise, although the functions actually performing the solutions would have to
be programmed separately and explicitly.

As with many early writings on ES, this appears to have been a purely
theoretical exercise, with little information given as to how such a system would
have been implemented in practice. The authors were, however, quite narrow in
their expectations of what expert systems might achieve, something not typical of
many early studies.

Muller et al., (1986) developed what appears to be a fairly simple, but
nevertheless operational cartographic expert system for deriving the specifications
for mapping thematic information. However, it is not a complete system, lacking a
fully developed user interface. Also, it does not actually produce maps, i t "
... defines the most suitable graphic representation" (Muller et al., 1986; 568), so it
is acknowledged as only covering a small part of traditional cartographic expertise.

Usefully, Muller et al., discuss at some length the background to the
decision making process for executing map design, and find, like others, there are
no universally accepted rules, although some convergence of general principles is
apparent in the literature. They rightly point out that this type of uncertain, non-
numerical knowledge is unsuited to traditional computing methods and that expert
systems are well suited to represent, manipulate and modify cartographic
knowledge.

A major emphasis of Muller et al's study was the development of a formal
model of 'cartographic knowledge' and how to represent this. The model is in the
form of a two level hierarchy of declarative knowledge for on the one hand the
input (i.e. map requirements) and on the other the output (i.e. map specifications).
There are nine categories of input, comprising 40 elements, and 55 output
elements grouped into ten categories, as illustrated in Table 3.3. Generally, but not
in every case, the output elements in each category are mutually exclusive.

The declarative knowledge is represented as a matrix of 40 by 55 cells with
a value between -5 and +5 assigned to each cell, adopting the method used by
Naylor (1983). This value indicates the relatedness of the input type to the output,

60

+5 indicating an imperative relationship, -5 an exclusive relationship, and 0
uncertainty or ignorance. Values between 0 and 5 represent degrees of positive
relation and values between 0 and -5 degrees of non-reiation.

While this approach is open ended, in that the matrix can be expanded, it
would become extremely unwieldy if developed for the production of more complex
maps. There is also the problem of depicting several phenomena with conflicting
specifications on one map: no solutions are offered for such situations. This
approach is well suited to more restricted problems such as the selection of an
appropriate map projection. Such a scheme was developed in an early phase of
the current project, but not pursued as it was peripheral to the main aims of the
project, and the model was felt to be too simple to expand to the full range of
problems encountered in map design.

The system described by Muller et al., makes decisions by simple arithmetic
sums of the coefficients of the matrix for each output option corresponding to the
active input elements. For each output group the element with the highest score is
selected. If a tie occurs, all of the contenders are displayed, and presumably the
user would select which option to adopt.

In the example cited by Muller, the rule matrix was formed by feeding 40
examples into the system ranging from topographic to statistical maps and from
"large" to "small" scale. (Examples ranged from surveyed property lines to highway
traffic across Canada.) The system, like many other proposed cartographic expert
systems is claimed to be capable of designing any type of map at any scale. As the
criteria for mapping various phenomena changes dramatically with scale, this must
be seen as being an unrealistic objective of such a simple model. After the initial 40
examples were fed into the system to construct the knowledge base, the system
was tested to try and regenerate the examples. Interestingly, none of the 40
examples were given the correct specifications, and only after considerable
modification to the knowledge base (up to 24 iterations) was the system able to
produce correct specifications for the forty examples used to create it. No testing of
the system for producing maps other than those used to create the knowledge
base is reported, a clear limitation.

61

Table 3.3
Muller's input and output elements.

INPUT CATEGORIES OUTPUT CATEGORIES
DYNAMIC PROJECTION ASPECT
1. Movement X-Y 1. Oblique
2. Static X-Y 2. Polar

3. Time Series 3. Transverse
4. Equatorial

DATA TYPE PROJECTION SURFACE
4. Network 1. Conical
5. Volume Data Over Area 2. Cylindrical
6. Volume Data Along Line 3. Azimuthal

7. Volume Data At Point PROJECTION QUALITY
1. Aphilactic

8. Area Data 2. Equidistant
9. Line Data 3. Equal Area
10. Point Data 4. Conformal
11. Spatially Discrete 5. Continuous

12. Non-areally Related Census 6. Interupted
PROJECTION V EW NQ PO NT

13. Areally Related Census 1. Vertical
14. Differentiable Surface 2. Oblique
15. Continuous Surface REPRESENTATION TYPE
16. Spatially Ubiquitous 1. Area Cartogram
ACCURACY REQUIREMENT 2. Unear Cartogram

17. Neighborliness
3.
4.

Graphic Chart
Color Patch Map

18. Angular Accuracy 5. Simple Proportional Symbols
19. Length Accuracy 6. Compound Proportional Symbols
20. Positional Accuracy 7. Une Map
21. Area Accuracy 8. Flow Map

QUERY LEVEL 9. Dot Map
10. Choropleth Map

22. What is Related to What 11. Trend Surface
23. Where is What 12. Isopleth
24. What is There 13. Isometric
NUMBER OF COMPONENTS 14. Stereogram

25. 1 Component 15.
16.

Hypsometric Rendering
Hill Shading

26. 2 Components 17. Inclined Contours
27. >2 Components 16. Physiographic Diagram
IMAGE DIMENSION NUMBER OF DISPLAYS
28. 3-D 1. Map Series

29. 2-D 2. One Map (Several Components)

MEASUREMENT
3. One Map (One Component
CHROMATIC

30. Ratio 1. Polychromatic
31. Absolute 2. Monochromatic
32. Ordinal GRAPHIC PRIMITIVE
33. Categorical 1.

2.
Form
Orientation

MAP SCALE 3. Texture
34. Small Scale 4. Color
35. Medium Scale 5. Value
36. Large Scale 6. Size
FUNCTION GRAPHIC IMPOSITION

37. Advertising 1.
2.

Volume Symbology
Area Symbology

38. Communicating 3. Line Symbology
39. Processing 4. Point Symbology
40. Storage GENERALIZATION

1. High Generalization
2. Low Generalization

After Muller, 1986, pp. 560-1

62

While this simple approach clearly does work, as more and more variables
are considered the matrix would of necessity become very large and therefor
development is limited. There is some utility in the model for certain aspects of the
map design process, such as using the scores to represent the likelihood of
including particular datasets in a range of map types.

MAP-AID. One of the larger projects on expert systems for map design reported to
date is the MAP-AID project and its offshoots initiated in 1984 by the Thematic
Information Service (TIS) of NERC in the U.K. (e.g. Robinson & Jackson, 1986:
Mackaness et al, 1985). This project was initially set up as a co-operative venture
between the TIS and collaborators in several U.K. universities and polytechnics,
although the main project never reached fruition.

The proposed MAP-AID system (Figure 3.1) is composed of three
elements: an expert system; a data base system which holds spatial and
associated attribute data; and a graphics package (Robinson & Jackson, 1986;
435-7). The expert system itself is divided into four modules. The 'core' contains
the map design rules and other information in the form of rules. The user module
operates as the user friendly interface, translating user input into a format suitable
for processing by the core, and vice versa. The data base module similarly trans
lates between the external data base(s) and the core. The fourth and final part, the
graphics module, translates standard core graphical output into the requirements of
the particular graphics package implemented, thus allowing different devices, etc.,
to be used.

Surprisingly, no specific mention is made of an inference engine. One
assumes this must be incorporated into the core along with the knowledge base.
The structure of the knowledge base is not discussed either, although Jackson
earlier (1984, pers com) mentions the use of the Naylor matrix model as used by
Muller et al.

Robinson and Jackson point out that rule identification often leads one from
a simple statement into a complex issue, for example 11... a simple sounding rule
. . . such as 'don't use too many colours on complicated data' leads one into
questions of perception of colour, measurement of colour, spatial interaction of
colour etc." (1986; 437). For this particular example they list ten factors that should
be considered and/or measured.

63

Map Design
Rules

(After Robinson & Jackson, 1985)

GRAPHICS
PACKAGE 2

GRAPHICS
PACKAGE 1

OTHER
DATA-BASES

DATA-BASE
SYSTEM 2

(Non-Spatial)

DATA-BASE
SYSTEM 1
(Spatial)

USERS
Interactive graphics

devices

Figure 3.1
The structure of the Map-Aid Expert System

The MapAid concept is developed considerably further by Mackaness et ai
(1985), and although this was mainly theoretical, a prototype system was
developed. Like others they recognise the large amount of literature published on
map design in recent years and assume that this means that there is a
considerable domain of expertise available. They do not, however, appear to have
analyzed this literature for its applicability to rule formation in any depth. They
foresaw the main problems of creating cartographic expert systems (CES) as being
the representation of graphic design knowledge and hardware dependence of the
final output (1985; 11). They also believe that a knowledge based system:

... must be capable of quantitatively assessing the spatial
relationship between point, line and area data in a geographical data
set whilst constraining its search procedure.

(Mackaness et ai, 1985; 11)

It must also be capable of associating measures of visual acceptability with
partial design solutions. They do not define these terms nor offer any solutions to
the problem of evaluating how good a design is. This lack of any systematic

64

evaluation procedure for map design is a recurring problem with any attempt to
automate design.

A major component of the study, like Muller's, is an attempt to model the
map production process for automation, their model being illustrated in Figure 3.2.
However, they make the common assumption, or over simplification, that one
model can be used for all maps at any scale, and suggest that a system like
MapAid could design Topographic, Oceanographic, Hydrographic, Geological,
Political and Statistical maps, among others at scales from 1:500 to 1:20 000 000.
It is extremely unlikely that, given the current state of development of cartographic
expert systems, such a system is feasible, even if it were desirable, which is
questionable. In many cases where fully developed designs have evolved, such as
hydrographic charts, a specific system to aid in their production is likely to be more
useful.

In the description of the MapAid system, the first stage is determining some
of the map author's basic requirements, such as the type of map required, whether
any data to be represented in a certain way, what conventions are appropriate, and
whether there are any special needs of the user. They then immediately discuss
the symbolisation of the data, despite quoting Monmonier's (1981) comment that
the selection of content is equally if not more important than the symbology used in
the design of the map. Mackaness et al., set out eleven sets of rules, (Table 3.4)
the first four of which '... govern the choice [presumably of symbols] for each
component' (1985; 16), and a further six dealing with the evaluation of conflicts that
may exist between these symbols. The final set of rules deals not with map
content, but with ancillary information such as titles, legends, etc. This procedure is
similar to, although more comprehensive than that proposed by Poiker et al.,
(1982) with every item being symbolised ideally, then conflicts resolved.

65

User
Priorities SelectionDatabase

Featurecode (
look up tab!

Select
DataPrioritarise

data Data directory
no. of lines

polyg.+FC at
original scale

Users choice of
appropriate
map type

FC
Deduce scale
forvdu film or

paper
Select map

typ*Rules of
convention

Symbol Ibrary
Assign

symbols to
FC

Symbol library

List of FC with
allocated symbols

Spatial conflictsCheck for spatial
conflicts with all
symbols & data

Map data
Data flow Graphics package/Form at \

data
suitable for

graphics
\packagev /D isp lay

map to
~ user on
P id m V graphical

\ terminal
Generate
gazetteer User desired

labels
Process

Plctura

Data source
and sinks Text gazetteer (text

♦broad location
of features)

Rules of text
v placementPosition text

Rule base Graphics package

Text parameters
for mapping
‘ je-font size,

location, shape
Draw final

& complete
map with

v text j

Expert
systems

After Mackaness et al, 1985

Figure 3.2
Data Flow Diagram of the Map Production Process

66

Table 3.4
Sets of rules governing the existence and placement of symbols
1. Rules governing the choice of Areas
2. " Lines
3. " Points
4. " Text

5. Rules of conflict between Areas and Lines & vice versa
6. " Areas and Points ll

7. " Areas and Text II

8. " Lines and Points H

9. " Lines and Text II

10. " Points and Text II

11. Rules of conflict between Locational and non-locational data and vice
versa.

After Mackaness, et al 1985 p. 16

The whole philosophy of the MapAid project seems to revolve around
symbols. "Once this [the map topic] was chosen the CES could select a particular
field of symbols . . . along with their respective priority ratings (i.e. the relative
importance of each symbol over one another)" (Mackaness et al, 1985; 18). This
concentration on symbols rather than the representation of phenomena must result
in limitations on the system. There are numerous cases where a phenomenon may
be represented by a variety of different symbol types. For example, relief may be
represented by continuous variation in tone (hill shading), area colours
(hypsometric tints), lines (contours) or point symbols (spot heights) depending on
the type of map and the other information to be represented. Thus, decisions about
symbolisation depend partly on what other information is included on the map,
cannot be made in isolation, and cannot always be standardised. Mackaness et al.,
view the selection of information for mapping as a 'process' (see Fig 3.2), not
requiring rules and inference, although several CES for selection have since been
developed (e.g. Richardson, 1989; Rusak Mazur & Castner, 1990).

The selection and priority of particular symbols are based upon a value
between 0 and 5 assigned to each symbol for each of the possible map types they
identify. If there is a conflict between two symbols and they have the same priority
then rules will be used to resolve this (1985; 19), these rules being developed to a
greater extent later by Mackaness (1986) and Mackaness et al., (1986). There Is
no discussion of what happens when two symbols of different priorities conflict, the
implication being that the higher priority symbol takes precedence and the lower
one is lost, but this is rarely a satisfactory solution.

67

While recognising that many areas of map design are complex, some
problems are dismissed as being trivial, such as the"... problem of knowing
whether two colours are different is relatively simple ..." (1985; 21). Although this
may be the case for colours in isolation, when colours are used for small areas of
varying complex shapes scattered about a map, the perception of differences is
less easy. It is not simply sufficient to say that two colours are different. Are they
different enough? This involves complex questions of contrast, size of feature (or
symbol), texture, etc. The creation of, for example, a graded series with
significantly different, but not displeasing steps is not simple, although other
researchers have examined some aspects of this problem for computer graphic
displays (Dobson, 1983 & 1984, McGranahan, 1985 & 1986, Gilmartin, 1987).

The final visual appearance of the map is obviously of paramount
importance. Mackaness et al., discuss the problem of 'clutteredness' and suggest
that the problem might be solved byM... better selection of colours for the range of
data, changing the size and colour of the text, making symbols iconic, reducing the
amount of data shown, or all of the above!" (1985; 22), but they do not offer any
practical solutions at this stage to the determination of 'clutteredness' nor how to
adjust map design to remove it. Some of their suggestions are of dubious value:
iconic point symbols typically have to be larger than simple geometric ones, and
even if the same size, it is difficult to see how this would reduce 'clutter1.

Later work by Mackaness (1986, & Mackaness et al., 1986) considerably
develops the ideas of resolution of spatial conflicts when two symbols occupy the
same map space, and also tackles the problem of evaluating map complexity.
Figure 3.3 shows some of the evaluative functions performed and how some
conflicts may be resolved. Some of the solutions are rather obvious and trivial,
although they still require formalisation if they are to be incorporated into an expert
system. Of particular importance and utility is the work by Mackaness on the
problem of clustered point symbols and how they should be generalised or
displaced to avoid overlap. His solutions depend upon cluster analysis and appear
to provide satisfactory solutions even in difficult situations such as when in
proximity to lines. These developments should obviously be included in any
comprehensive cartographic expert system.

68

1)

FUNCTION
REQUIRED

is a point
on a line?

REASON FOR
INVESTIGATION

Points must not
be obscured by
lines

POTENTIAL
PROBLEM

POSSIBLE SOLUTIONS
Size Symbol Movement

2)
a po

point in
ilygon?

Points must not be
obscured by polyon
symbol «

Symbol Mask Contrast

3) For any two
lines, how
much segment
overlap is
there?

Line must not be
obscured by line

Movomant Size Symbol
X /

X

4) For any points,
are they
clustered?

Points must not
obscure one another

Symbol Size Generalise

5) Total number of
points in cluster?

If large number then spatial
separation method must
not be used

6) Centroid of the
cluster?

To determine mean proximity
of potential interference
from lines and areas

Centroid

Not
acceptable

7) With area of
polygon and
number of
occurances,
calculate free
map area (FMA)

FMA used to evaluate
complexity of maps,
and use of symbols

Feature
Free Map Area
No. of Occurances
Mean Feature Size

(FMA/Occ.)

1
24
6

4.0

2
30
5

6.0

3
20
6

3.3

4
26
5

5.2

100%
22

8) Number of
different fcs for
lines

To determine FMA for lines

9) Number of
different fca fo
points

To determine FMA for points

After Mackaness & Fisher, 1987

Figure 3.3
Evaluation Functions, Problems and Solutions

The other main concern of Mackaness is the measurement of map
complexity. The concept of 'Free Map Area' as described by Yoeli (1972) for areas,
lines and points is used - see figure 3.3, items 7, 8 & 9. The 'Free Map Area' for a

69

feature is the amount of space on the map not occupied by another symbol of the
same type, i.e. the total map area minus the area taken up by symbols for that
class.

Free map area can be calculated for individual symbols, single data
types, particular tones, or as an indication of the visual content for the
map as a whole.

(Mackaness, 1986; 20)

This can be calculated at any stage in the design process, and if certain
thresholds are exceeded then the expert system will invoke rules to alter the value,
such as reducing the size of symbols, reducing the amount of information shown,
or re-classifying the data. As has been stated elsewhere, the evaluation of map
complexity is not a simple problem and it is unlikely that such a physical evaluation
yields particularly useful results, as perceived complexity by the map user is more
important. It may, however, have some limited application in keeping simple maps
simple, although in many designs the 'spaces' are important components, not just
empty areas, i.e. white or 'unsymbolised' areas may be part of the overall
classification, even if only representing a very broad general class. Also, in many
cases it is the pattern of symbols that is important, not the physical space which
they occupy. In such a case some correlation coefficient (e.g. see Unwin 1981) is
likely to be as good a measure of complexity.

Inevitably in such a new field of study, rapidly growing in popularity and
attention there will be several individuals or groups striving to form the appropriate
methodologies. Mid 1990 saw the publication of several reports on systems for
map design, including the background structure of the system described here
(Forrest 1990), largely as a result of the 4th International Symposium for Spatial
Data Handling (SDH90). Indeed, there appears to be a considerable convergence
on the structure of cartographic design expert systems, although the concentration
is on defining the relationship between information and representation. Several of
the systems described, although appearing to be of a general nature, concentrate
largely upon the symbolisation aspects.

The most extensive published information about a cartographic design
expert system relates to the system developed by Wang (Wang, 1990; Muller &
Wang, 1990; Wang & Brown, 1991; Wang 1992; Wang, 1993). The first of these
articles concentrates on the handling of 'quantitative' information, in particular that
relating to population and socio-economics, and develops a conceptual graph of
the information and the relationships between various categories. The rationale is
that this formalisation is required to establish the correct representation for the
data. The knowledge is represented in the form of a semantic network showing
concepts (entity, action or state) linked by conceptual relations. The purpose of this

70

is to allow additional knowledge about the information to be added to a GIS, with
the schema of relationships limiting the user from requesting unmeaningful
relationships to be represented by the system, or limiting the representations
appropriate in a given situation.

In contrast, Muller and Wang (1990) concentrate upon the representational
aspects of map design, describing a system fo r"... symbolic representation of
statistical information based on physical or administrative units" (1990; 26). This is
largely based upon Bertin's graphic semiology and is more comprehensively
discussed by Wang (1992).

They identify seven types of statistical "maps" as possible representations,
although this includes qualitative maps, which in the strictest sense do not
represent statistical information (statistic: tabulated numerical facts - Chamber's
Etymological English Dictionary). The representation of numerical data is limited to
proportional symbol and choropleth maps, eliminating both dot maps and isopleth
maps from consideration in order to “ ... simplify the situation . . . [and limiting] the
correspondence between data type and the map type to a one-to-one relationship"
(Muller and Wang, 1990; 27). As will be discussed in Chapter 5, this is a very
limited view of the relationship between geographic phenomena and cartographic
representation, although clearly making the development of a prototype system
much more achievable.

For each of the seven map types they list a number of possible "solutions"
(i.e. set of symbols) based upon perceptual properties of the visual variables. The
most appropriate solution is selected based upon several factors, including map
use requirements, numerical analysis and conventional associations (Muller and
Wang, 1990; 28). In some cases this is determined directly by the system, but
more likely the user will be prompted for more information, usually by selecting
options from menus. If more than one factor is involved in selecting the "solution",
certainty factors are used to determine the most appropriate solution, although how
these are applied is not fully detailed.

Once the map type and optimal solution have been determined the actual
symbols will be assigned. To assist with this the knowledge base includes some
conventions, e.g. woodland should be coloured green. If no conventions exist then
colour and/or shape are assigned in sequence from lists. Size of point symbols is
selected such that between 5% and 13% of the total map area is covered by the
symbols. No details are given of how the sizes of proportional point symbols are
then determined, nor of how lightness values are assigned to choropleth classes.
Unfortunately, despite the obvious merits of the system, the article describing it is
weak in both use of terminology and in explaining the many aspects of the working

71

of the system, although some of the latter Is better described in Wang's
dissertation (1992).

A more comprehensive description of the ESSYD system is provided by
Wang (1992). Like the present study, a frame based approach is used for the
system and Turbo Prolog (in conjunction with Turbo C) used for programming,
although a predominantly backward chaining procedure is followed. A hypothesis
for Map Type (representation method) is set up and the inference engine attempts
to establish evidence for this being correct. The system also incorporates
probabilities and certainty factors to allow 'best first' search of alternatives, a further
description of this aspect being given by Wang in 1993. In most situations the
systems searches the knowledge base for all possible solutions, ranks these and
presents the user with a list of possibilities with associated probabilities of being the
preferred choice. The user then selects from the list, the system adopts this choice
and proceeds to the next stage. No description is given of backtracking should the
system fail at some subsequent stage.

The ESSYD system has built into it a module for selecting appropriate
colours based on the ITC Ostwald colour chart (Wang & Brown, 1991). This
module will select a set of colours for various area representation types. The
system also includes mechanisms to explain how an answer was derived and why
a question is being asked, although these answers are programmed into the
system rather than being derived automatically, i.e. they are predetermined, not
deductive.

Despite the obvious strong points of this system and its well developed use
of certainty factors and their combination, the system still appears to be limited to
determining the representation method and symbols for a single 'statistical' data
set.

Jaakkola, Sarjakoski, Blom & Laurema (1990) similarly discuss the
development of an expert system based upon a taxonomy of thematic maps. They
consider there to be five phases in making thematic maps, summarised below:

1. Processing of numeric theme data
2. Selection of presentation type [i.e. form of graphic representation].
3. Selection of base map.
4. Selection of the graphic presentation symbols and formation of the

semantic relations between each symbol and the data it
represents.

5. Selection of layout. [In effect, they describe compilation.]

The emphasis of the report is on the selection of the most appropriate 'map
type'. In order to arrive at this Jaakkola et al., develop taxonomies of data, of

72

queries and of map types. The tree structures of these taxonomies are well
presented but, unfortunately, as with several other studies, the importance of the
relationship between phenomena, information and representation is not discussed
(see Chapter 5). Also some of the branches are not fully expanded, with the
concentration being on the handling of areal data. The taxonomy of map types (i.e.
representation methods) includes "raster" as one class of area maps, but raster is a
specific data structure with the representation appearing as an artefact of this
structure. It is possible to have, for example, a raster choropleth map or a raster
chorochromatic map which have quite different characteristics in terms of
cartographic representation.

These taxonomies are used to develop a selection table for representation
method which is coded in the form of IF-THEN rules. For example: "IF type of data
is A AND the point of view of the query is B THEN use map type C" (Jaakkola, et
al., 1990; 716). In fact, although these rules have been developed, they were only
used to create a series of maps to be stored as part of an electronic atlas, with
several maps being created and stored for each variable and for combinations of
variables. Thus, the user does not interact with the knowledge base to create his
own map. Given the user's query, the system will display the most appropriate map
from its archive, clearly greatly limiting the use of the knowledge base.

De Jong and van der Wei (1990) discuss the development of a cartographic
expert system (CES) front end to a GIS for use by planners. They outline five
stages in composing a map:

1. Data-retrieval from user-database and topological database and
(re)classification of variables.

2. Choice of mapscale or mapsize and of layout-type.
3. Choice of map-symbols.
4. Key-generation.
5. Map-composition.

Much of the paper concentrates upon data quality and accuracy. In the
verbal presentation of the paper it was clear that the concentration was again on
map symbol generation, rather than the broader issues of design, and that item 2
above was only at a primitive stage. The selection of symbols is based on a multi
criteria analysis of weights based upon the relation between map purpose and type
of data (similar to the Muller's CES). These weights were determined by a panel of
professional cartographers. If more than one possibility remains, the user must
choose which to use (de Jong & van der Wei, 1990; 725).

In the last of the reports on ES at SDH90, Kottenstein discussed the
development of a knowledge based "symbol reference system." The aim of this
system is "... to organize the logical reference between the chosen data and the

73

symbols representing them in the map" (Kottenstein, 1990; 776). Interestingly the
"geometrical, substantial and graphic criterias [sic] of all data" are described by the
user separately from the symbolisation stage, and this information is held as part of
the database. It would appear, however, that the user is given little help in
performing this task, nor in selecting the appropriate information to include in a
given map.

In creating a map, the parameters loaded from the database are used as
default values. These are then checked by the rules in the knowledge base. If this
checking procedure produces a different outcome the default value is replaced.
These new values are then checked against the knowledge base, this being
repeated until the input and output values match, i.e. an interactive approach is
used.

The development of cartographic design expert systems has not been
limited to western institutes. Several Chinese researchers are known to be active in
expert systems for cartography and GIS. The MAPKEY system is a knowledge
based system for producing thematic maps (Zang et al., 1991; Su, et al., 1993).
Like several others, including the system described in later chapters, a frame
based approach is used to store structured knowledge about maps. The system
allows data analysis, data classification, symbol design, colour assignment, map
lettering and legend design, although it is not clear from published information how
much of this is automated. Certainly photographs of maps said to be produced by
the system, although relatively simple, do show acceptable results (Fig 3.4).

The later paper on MAPKEY (Su et al., 1993) again concentrates on
structural issues and does not give details of which processes are implemented
with expert systems. The list of 'map types' produced by the system includes
"Choropleth, Dot, Proportional symbol, Isarithmic and Value-by-area", so that the
emphasis would appear to be similar to that of Wang's ESSYD in selecting
representation method and symbols for a single statistical theme.

74

Figure 3.4
Example output from the MAPKEY system

Another flurry of activity in reporting the development of Cartographic expert
systems may be found in the proceedings of the 16th ICA conference of 1993
including reports by Wang (1993) and Su et al (1993) mentioned above. No less
than 13 papers are related to expert systems or Al applications, ten of which relate
to design issues. Of these, 6 are reports from Chinese research groups, although
several of these papers are very brief and superficial. Lu (1993) and Hua & Gao
(1993) both outline the basic structure of statistical mapping expert systems and
both propose the use a frame based structure.

Zhen et al (1993) describe a prototype system for nautical chart 'design'.
They list six more or less independent subsystems comprising the system:

Sheet line determination
Mathematical factors determination
Compilation materials analysis and selection
Chart arrangement
Content element selection
Element presentation selection

Each of these have their own inference engine and knowledge base. Although

introduced as a general system, the emphasis appears to be on the analysis of

compilation material and determining the suitability of this, its up-to-dateness and

accuracy for a given chart at a particular scale.

75

The system uses a combination of frames and production rules to represent
knowledge, an example frame being shown in Figure 3.5. The inference engine is
not described in detail, but uses both forward and backward chaining. Currently no
certainty factors are included in the system which seems surprising given its
emphasis.

Frame: chart2037
slot: name: kind:

value: common nautical
slot: name: usage:

value: navigation
slot: name: scale:

value:
if_needed: get_value (2037, scale)

slot: name: projection:
value:
default: Mercator

after Zhen et al, 1993; 99
Figure 3.5
An example frame from Nautical Chart Design Expert System

Despite the number of publications in the early 1990s reporting on the
development of general map design systems, few appear to go beyond the
function specification stage, and examples of maps produced by prototype systems
are extremely rare3. This may indicate a lack of success in putting the theory into
practice in an overall map design system and therefor the concentration of effort
has moved to narrower problems for the time being. It could also be that, as
Buttenfield & Mark have pointed out, "The actual development of a full cartographic
expert system will require the work of cartographers, programmers, and knowledge
engineers, over a period of several to many years" (1991; 146) and that none have
yet reached the stage of being implemented in a fully working or commercial
system.

3 Even the dissertation by Wang (1992) fails to include examples of maps actually produced
by the system reported on, and none of the other publications on this system include
example map output.

76

An alternative approach to developing automated mapping systems has
been suggested by Hutzler and Speiss (1993). In their 'knowledge-based thematic
mapping system - the other way round' they are sceptical about true 'expert
systems' but do see a role for 'knowledge based systems'. For a system to be
considered a true expert system they believe all a user should have to do is load a
data set and answer a few simple questions then be given the required result.
Hutzler and Speiss consider this to be impractical currently but suggest that
knowledge should gradually be built into existing map production systems to take
care of, or assist with certain tasks. This is clearly a logical approach and is likely to
be the model adopted by many commercial systems. It is clear, however, that
Hutzler and Speiss are discussing systems for use by cartographers, not systems
for users with little cartographic experience.

Expert systems for specific aspects of Computer Aided
Cartography
Map Projections

One obvious application of expert systems in cartography is in the selection
of map projections. This problem falls within the capabilities of diagnostic or
classification systems. A very thorough report of the development of one such
system is given in Nyerges and Jankowski (1989) and Jankowski and Nyerges
(1989). Unlike many others, they commence with a detailed examination of the
knowledge required to develop an expert system by examining the major works on
the classification and selection of projections. From this they develop a conceptual
structure for the knowledge base tying in both classification attributes and selection
criteria.

They present a decision tree for map projection selection (1989; 36),
although it must be said that there are a great many gaps in this, for example the
branches for world equidistant projections are either 'centre at pole' or 'centre at
city': Clearly this should only apply to equidistant azimuthal projections, not all
equidistant projections. None-the-less, their methodology is clear and well
illustrates the first step in developing an expert system.

This conceptual structure is later expanded upon and used to assess
appropriate knowledge representation methods for MaPKBS, a map projection
knowledge-based system (Jankowski and Nyerges, 1989). They investigated the
use of frames and production rules for the representation of information in the
knowledge base, and adopted a compromise solution allowing both unambiguous,
innumerable information and ambiguous noninnumerable information to be used.

77

At the time of reporting the system was in the initial prototype stage using a
proprietary expert system shell, but no results or analysis are presented.

Name arrangement.
A popular area of cartographic research in recent years has been the

automation of name placement, particularly for those names relating to point
features (e.g. Basoglu, 1982, Hirsch, 1982, Ahn and Freeman, 1983). That this is
so is not surprising given the large amount of time reportedly devoted to this
process in more detailed maps. Clearly, however, the proportion of time will depend
upon the number of names and the distribution of features, but it is frequently
significant. Most of the earlier attempts use an algorithmic approach and
conventional programming, although some, such as the work by Hirsch (1980), do
not guarantee a solution in all cases. Several of the more recent attempts at
solving this problem have used expert system techniques to resolve conflicts in
placement. Most systems appear to use the rules outlined by Imhof (1975) and
Yoeli (1975), and concentrate on naming point features, not the more difficult area
and linear feature names.

The first widely reported 'expert system' for name placement is the Autonap
system by Freeman and Ahn (1984). This system uses heuristic knowledge about
name placement based upon traditional cartographic conventions and procedures.

The heuristic knowledge is embedded in a set of explicit rules that
form the knowledge base of the system. The knowledge base is
organised in such a way that it is relatively easy to add new rules or
modify existing rules, or replace it altogether with a different
knowledge base.

(Freeman and Ahn, 1984; 544.)

Thus, the system shows several of the basic characteristics of a true expert
system. The knowledge base is composed of twenty five rules, covering general
principles, plus more specific rules for area, line and point feature name
positioning. Freeman and Ahn recognise that "No single set of placement rules can
satisfy all cartographic needs" (1984; 549). The rule based approach makes
customising the system easier than the more traditional algorithmic approach. The
system uses a graph search technique with the goal state being all names placed.
If a name cannot be placed the system backtracks, removing names already
placed until there is space for the unplaced name. Removed names are then
replaced in new positions and the process repeated until all names are placed.

ACES (A Cartographic Expert System) appears essentially similar to
Autonap. ACES uses a "procedural knowledge base" (Pfefferkorn et al., 1985;
400), presumably in the form of rules. Inference is carried out in a similar manner to

78

Autonap using an heuristic graph search method. It uses a decision tree to contain
a history of previous strategies and where to look for possible solutions.

A rule-based system for name placement (NAMEX) written in Prolog has
been developed by Cook and Jones (Jones, 1989, Jones & Cook, 1989, Jones,
1990, Cook & Jones, 1990). This was specifically designed for placing names
based on the O.S. Routemaster database, but the system has more general
application. For example, it has been used for automatic placing of crater names
on lunar maps (Cook & Jones, 1990).

It must be pointed out that there are alternative views. Zoraster (1986) for
example believes that 'optimisation techniques' are more appropriate to automating
the name placement problem than the use of Al, and that optimisation techniques
may even extend to the more general problems of selection of features for display.

One limitation of most name placement systems is that they do not interact
with name selection, as would be done by an experienced cartographer. Kadmon
(1972) described a database system to assist in the selection of names relating to
settlements and this would provide a useful basis for integrating automated name
selection and placement. Such an approach has been described by Langran and
Poiker (1986).

Generalisation.
Another topic which has attracted the use of expert systems is

generalisation. In one of the earlier published descriptions of a cartographic expert
system, Nickerson and Freeman (1986) developed a rule-based system called
MAPEX which uses English-like rules to describe the generalisation processes that
may be used and the conditions under which they are invoked. This system goes
considerably beyond the problem of line simplification, often seen to be the only
problem of automated generalisation, although it is restricted primarily to linear
features (including area outlines). Nickerson and Freeman recognise that the
reason for generalisation is the reduction of information that can be shown as scale
is reduced, the scale factor of change being of primary importance in most
operations. The first stage in MAPEX is to generate an 'intermediate' map in which
each symbol is replaced by one whose width is representative of the symbol at final
map scale. Depending upon the scale change and the amount of detail, the system
determines feature combination, deletion and simplification. The system will detect
interference of features and displace them if necessary, propagating this to
adjacent features where required (Nickerson and Freeman, 1986; 540-542).

The MAPEX system separates the rules governing generalisation from the
mathematical algorithms required to carry out the geometrical changes. This has

79

been found to be very beneficial and "the rules can be maintained and expanded
independent from the rest of the automated generalization process" (Nickerson and
Freeman, 1986; 555). In addition to global parameters the system has specific
rules about different types of feature, such as roads, railways, hydrography, etc.,
and their interaction. Clearly if expert systems are to be of use to cartography this
is the type of approach that must be taken, although it is likely that the rules will
vary from system to system or even within a system for dealing with different scales
or map types to meet requirements of different agencies, users, etc.

A useful approach is adopted by Richardson (1988) who used a relational
database for rule-based feature selection of hydrography on small scale maps. As
she rightly points out, in the initial stages of map design it is the overall information
content of the map that is important, not the density of features or their
representation (1988; 165).

The system described uses a large amount of attribute and relationship
information stored in tables of a powerful relational database. This includes river
segment length, discharge, distance to settlements, settlement size, etc. The user
can enter queries to the system with several criteria to be met, and the resulting
river network will be plotted. Although the facts stored are useful in extracting the
appropriate river segments, the 'rules' would appear to be entered at run time, and
thus little help is given to the user as to what usefully may be included in a map at
a particular scale for a specific purpose, and the knowledge is not captured for
future use.

The strength of this work is the appreciation that feature selection cannot be
reduced to a simple quantitative rule, such as Topfer and Pillewizer's (1966) radical
law. It also shows how the relational database of a geographic information system
can be used to great advantage in map design if properly structured and applied.

Although most studies on generalisation concentrate upon line
simplification, other aspects have received some attention. Robinson & Zaltash
(1989) reported on the development of a system for the generalisation of buildings
on O.S. large scale plans. The system (OSGEN) uses the Leonardo expert system
shell to provide advice on the simplification, aggregation or removal of buildings
when scale is reduced, although the range of possible reduction is currently limited
to derived maps at 1:10,000 and 1:50,000 scales. Further development in this area
was reported by Lee and Robinson (1993), although the description was still very
much limited to the development of a prototype system.

Muller (1990) notes that there are two aspects to automated generalisation.
The first involves the cartographic knowledge to assess the information

80

requirements of the map and which generalisation processes to apply, and the
second is the execution of these procedures. Muller concentrates on the first of
these and examines the potentials and difficulties of a rule based approach, but no
attempt is made to produce an operational system. Unusually, the basis of the
knowledge was gathered by examining a series of topographic maps of the same
area at scales between 1:1000 and 1:500,000.

A verbal description of the generalisations observed at the various scales is
given, followed by a more formal representation of these statements as facts and
rules using predicate calculus. For some reason the example given is for Imhof s
table of the relationship between settlement population, scale and graphic
representation for scales between 1:200,000 and 1:30,000,000, which does not
seem to relate to the scale range considered by the rest of the study! Other
possible knowledge representations such as a matrix similar to that use earlier by
Muller et al (1986) and semantic nets are discussed briefly.

It is noted that generalisation at the larger scales was dominated by
geometric processes such as simplification, enlargement and displacement,
whereas at the smaller scales conceptual processes such as selection and
classification were more evident (Muller, 1990; 329). One of the impediments to
automated generalisation is what Muller terms 'catastrophic events' such as the
change in symbolising a road by two lines representing its edges to a single line
symbol.

A list summarising the sequence of generalisation processes involved is
given, but further explanation of how these would be implemented is required. For
example, item 1 states "Elimination of all objects which belong to categories of
objects not to be represented on the derived map." Who decides what is to be
represented on the derived map? It is hard to see how this could be done other
than by manual intervention. The system cannot decide unless further rules were
previously entered. Often it is not simply a matter of eliminating classes, but the
basis of classes changes with scale. Muller gives two technical impediments to
rule-based generalisation. These are that many rules indicate what not to do, but
not what to do and that when rules do indicate what to do they do not indicate how
to do it. While this may be true if one examines the problem superficially, a deeper
understanding of the process should lead to the more specific rules that apply in
specific cases.

On a technical aspect, Muller defines search strategies such as depth-first
search and backward chaining as being heuristic (1990; 319). Backward chaining is
not inherently heuristic, only being made so by using appropriate evaluation
functions, and depth-first searching by definition is not heuristic.

81

Although Muller does point out that priorities vary in different countries, it
would be interesting to see how the rules developed from examining a series of
maps of an area south west of Hannover would apply elsewhere.

The most significant work on automating generalisation is without doubt
Buttenfield and MacMasters1 book on the topic published in 1991, resulting from a
meeting held under the U.S. National Centre for Geographic Information and
Analysis (NCGIA) initiative. This looks broadly at the issues involved in
generalisation and although very few practical examples are given of operational
systems, and no production systems are evident, the book is a worthwhile source
of potential developments, research topics and potential solutions. A
comprehensive review of the book by this investigator published in the
Cartographic Journal (Forrest, 1993) can be found in Appendix G.

Generalisation is clearly an area of increasing research interest, with many
GIS researchers active in the subject and many theoretical papers being published
linking generalisation and Al (e.g. Muller et al, 1993; Wang, Wu & Wu, 1993).
Often the term 'multiple representations' is used in preference to generalisation e.g.
Buttenfield (1993), Kidner & Jones (1994). Arguably multiple representations (i.e.
multiple scale dependent data sets and/or symbols stored in a system) and
generalisation (i.e. deriving representations for smaller scales from larger scale
data) are different, but the links are obvious and the intended end result - the use
of appropriate representation depending on scale - is the same and often Al
methods are incorporated (e.g. Kilpelainen & Sarjakoski, 1993).

Colour selection.
A final area of cartographic design relevant here that expert systems have

been applied to is in the selection of colours for graphic display devices.

Samson and Poiker (1985) describe a rule-based system for selecting area
colours for nominally coded (i.e. feature coded) polygon maps on a micro-computer
display based upon principles suggested by Imhoff (1982). The system uses dither
patterns on a basic eight colour system to produce 48 usable colours. This simple
system uses rules such as 'large areas should not be too vivid1. It is an interactive
system. Areas with a water feature code are identified first and assigned a blue
colour. Once features are assigned a colour, that colour becomes 'reserved' and
additional features are assigned colours to avoid clashing with those already
assigned. The system allows for colour themes to be selected by the user,
restricting the possible colour choices, but maintaining distinct differences. The
selection of colour should be based upon the principle of showing nominal

82

differences by hues and similarity of importance (equivalence) by similar lightness,
which could be automated if a hierarchical feature coding system was used.

The system as described does not appear to include any backtracking
which would allow previous selections to be modified as the situation develops, this
lack of backtracking is clearly a great limitation and not a characteristic of a true
expert system. This limitation could create problems if the total number of colours
required is not known before allocation commences and there is a large number of
classes.

A more extensive system 'CANVAS' has been developed for automatically
assigning colours to classified satellite images and thematic maps (Trigg & Gill,
1988, Gill & Trigg, 1988). The reports point out many of the problems of developing
such a system, such as the variability of phosphors on CRT displays, effects of
incident light on the display, etc. Although the methods employed for assisting the
user have wide application, the system itself is 'hard-wired' for the l2S System 600
image processing system and therefore is not generally applicable to other
environments.

As part of the development of a more general map design expert system
(reported above) Wang and Brown (1991) and Wang (1992) also describe in some
detail how area colour symbols may be chosen based on the use of the ITC colour
chart. This system will select a set of colours for either a choropleth representation,
or categorically defined (chorochromatic) areas.

Liang et al (1993) describe the development of an expert system for
'automatic colour design'. That this was a four year government funded
collaborative research programme with relatively restricted goals gives some
indication the magnitude of the task of developing cartographic expert systems.
The main aim was to develop a system to match printed colours to screen colours,
that is, the conversion from RGB colour specification to CMY or CMYK. The system
appears to be well thought out and works interactively, with the user specifying
broadly what is required in terms of colour scheme and the system automatically
producing an appropriate colour palette.

Grossler (1993) reports on empirical research on the use of colour on
population change maps and describes how such research could be used to
develop a knowledge base for a cartographic expert system. An important aspect
of this work is the recognition that while it may be difficult to extract knowledge
directly from cartographic experts, it is possible to analyse their results (maps).
However, no clear method for analysing maps to provide this knowledge is
presented and there still appears to be a heavy reliance on the subjective.

83

OTHER MAPPING EXPERT SYSTEMS
Expert systems and Al have been seen as being useful to many aspects of

cartography and the mapping sciences. Two areas of particular note are the use of
Al techniques in Geographic Information Systems (GIS) and in Remote Sensing.

More specific cartographic applications include various aspects of
automated interpolation and contouring (Mark, 1986, Palmer, 1987), matching lines
at sheet edges (Heivly, 1986) and accuracy assessment (Clark, 1987). Applications
in GIS have been particularly with respect to data structures (Gahegan & Roberts,
1988, Peuquet, 1983,1984, Ranzinger, 1985, Smith et al., 1987) and intelligent
handling of queries to the system (e.g. Goodwin, 1987, Maggio, 1987, Menon &
Smith, 1989, V. Robinson, 1988, V. Robinson et al., 1987, 1988, Stoms, 1987).

Remote Sensing has seen a particularly wide interest in Al and ES
techniques, particularly in the interpretation of satellite imagery. This body of
literature, which has expanded exponentially since the mid 1980s, is now probably
larger than all other aspects of Al in the mapping sciences, but is beyond the scope
of the present study.

CHAPTER FOUR

An Expert System for Cartographic Design

Never admit to being an expert. An expert is someone who knows
most of what there is to know about a subject. . . 1

PROBLEM IDENTIFICATION

The need for expert systems in cartography
The previous chapter indicates that there is currently a considerable interest

in developing expert systems for various aspects of cartographic design and
production. Few of the reported studies discuss who the intended user of the
system is or how the system will be applied in the map making process. An
obvious starting point is to re-examine the needs for developing expert systems
discussed in Chapter One, with specific reference to cartographic design, although
as a first step it may be useful to eliminate areas of map design where expert
systems have little application

There are large areas of cartographic design where expert systems
currently have little to offer. For example, designing a topographic series is an
event that takes place relatively rarely and the design adopted is likely to be used
for many years, perhaps with some modifications through experience, changing
requirements, or new production methods. Each series has to take into account
many factors, many of which will not be the same as the topographic series
required for a different country or different scale. The time scale for producing the
design is likely to be relatively long and there will be opportunities to consult
acknowledged experts and experienced map users.

Similarly, the design of products such as hydrographic and aeronautical
charts has evolved to a highly refined state and there are international agreements
on many aspects of the design of such products.

In these cases expert systems will have many more benefits in production
rather that design, particularly in many aspects of compilation where smaller scale
maps have to be derived from larger scale (digital) source data. Many of the
systems discussed in Chapter Three address these needs, such as line
simplification, name placement, etc. Other aspects include the selection of

1 Poiker, T.K. pers. comm. 1985

85

soundings for hydrographic charts, contouring, selective omission of minor
tributaries in river networks, etc.

The two situations where expert systems do have much to offer map design
are (a) where the map is likely to be a 'one off1 design and is wanted quickly and (b)
where the map author is not an experienced cartographer and cannot 'imagine'
what the final design will look like. In many cases both of these circumstances will
apply.

Cartographic expert systems for whom?
Another important element is the level of cartographic knowledge of the

map maker. Most serious expert systems have been developed to assist users
with at least a basic knowledge of the system domain. Intelligent computer aided
design (ICAD) systems are intended to assist designers in their normal job.
Similarly several of the systems identified in Chapter 3 as aiding the map
production process would be most beneficial to experienced map editors and
cartographic draughtsmen. As already noted, however, an increasing number of
maps are being produced by those who have no cartographic background, have
some knowledge of the information they require to be illustrated and have access
to a computer mapping programme or GIS which can produce maps of their data
In the past one might have expected these specialists to employ a cartographer to
produce their maps, but now they can produce maps themselves with the same
technical quality as a cartographic draughtsman by using computer plotters, etc.,
i.e. they have also taken on the role of the cartographer.

A group at even greater risk of producing inadequate maps are those with
access to mapping systems who have limited knowledge both about the
information and cartography. Current developments in information technology are
allowing much wider access to large amounts of information. Encyclopaedias,
atlases and large databases are now being promoted on CD ROM (compact disk
read only memory). In theory anyone with a CD player attached to a personal
computer can access the U.K. or U.S. census files and produce statistical maps of
a wide range of attributes. Unfortunately, although many such products include
mapping programs (e.g. Supermap), they offer no guidance in producing sensible
maps with the data Indeed, some packages encourage the wrong choice of
mapping method and may not include generally accepted and appropriate methods
for the data they contain.

The importance of the totally naive user should not be over-emphasised
however. Despite the apparent popularity of the general idea, it is difficult to take
seriously the concept that someone will suddenly decide to create a map of deaths

86

due to bilharzia in West Africa, with no prior knowledge or understanding of tropical
diseases, or mapping.

Thus, the group of users most likely to benefit from the development of a
cartographic design expert system are those with some specialist knowledge about
the information to be mapped, but with limited cartographic knowledge, or limited
time to explore the options available for mapping the information. The extension of
such a system to cope with less knowledgeable users relies more on developing
explanations of the information than on developing the cartographic design
aspects.

Choice of Subject
As stated in the Introduction, current advice on developing practical expert

systems suggest that relatively well defined narrow domains should be chosen.
They should be applied to subjects where there are human experts who regularly
perform the task better than most other people. "Designing an expert system to
add single digit numbers is silly, because almost everyone does this well. On the
other hand, designing an expert system to predict the stock market is doomed to
failure as no human expert does this consistently well" (Bahill & Ferrell, 1986; 50).
Most expert systems have been developed for well structured problems which can
be easily formalised. Design problems have proved especially difficult in this
context. Design has been characterised as an ill-structured problem,"... i.e. one
which is difficult to formalize and difficult to solve, especially with man made
problem solvers" (Begg, 1984; 45).

In identifying a narrow domain within cartographic design there are two
limiting factors to be considered, map topic and scale. If the topics which can be
produced are limited to a single subject or small group of related subjects, e.g.
geological maps, or population maps, then specific rules for these maps at a wide
range of scales could be developed. If a broader range of topics is desired, then to
develop a practicable system the range of map scales considered must be limited.
This limitation on scales is imposed due to problems of generalisation, many
aspects of which have still to be automated satisfactorily.

Several options are worthy of consideration. There are many computer
mapping packages designed to produce statistical maps at relatively small scales.
Most of these have the capability of producing well designed maps, but there is
nothing built into the system to assist a user with little knowledge or ability in map
design. Most systems do provide default values, but often these are inadequate or
even contrary to basic cartographic principles. Thus a cartographic design module
added to such a system would be very beneficial.

87

The use of Geographic Information Systems for managing and mapping the
natural environment is becoming more common and the maps produced in this
field, which vary considerably in type and scale, would present an interesting
challenge for expert system development.

As mentioned above, there is considerable interest in the development of
databases based on CD ROM technology. This includes digital atlases where pre
designed maps are displayed on a computer monitor, but more interestingly,
extensive databases of map-based information, such as the proposed World Digital
Database for Environmental Science (WDDES) or the Digital Chart of the World
(DCW). These include base information for mapping at a nominal scale of 1:1 M.
Users may add their own special topic information to this database. Cartographic
publishers, such as Bartholomew and Lovell-John's, are also currently developing
similar products, and this is seen as a growth area for cartography.

The map topics selected for this project are those that would be based on
this last group of products. This includes maps of individual countries, parts of
countries or groups of small countries found in regional atlases, such as those
used for secondary education. An example would be the home country and
regional maps in products like "A Senior Secondary Atlas for Nigeria" by Collins-
Longman (1983). This type of atlas, while being in part a general world reference
atlas, includes a number of maps devoted to a variety of special topics about the
home country and surrounding region. It forms a suitable model as the types of
maps and phenomena depicted are varied, testing the breadth of the system, but
the maps are generally relatively clear and uncomplicated. Typically, multiple maps
are used to show the wide range of phenomena, rather than highly complex maps
showing many phenomena. Similar maps are also found in textbooks and atlases
about specific countries and regions, so such a system would have wide
applicability in the shift from printed reference material to the digital domain.

Scale for these maps ranges from about 1:2 000 000 to 1:15 000 000. The
format of this type of product is also appropriate given the hardware limitations of
most micro computer systems. These atlases are typically A4 size (about 30 x 20
cm) or smaller, and therefore maps larger than A3 size do not have to be
considered. A common size for computer monitor displays is around 30 cm wide
by 20 cm high. Thus, maps intended for hard copy output up to this size can be
shown true to scale on the display; an A4 portrait (upright) image with no margins
would be shown at about 75% of its true size and an A3 landscape image at about
50% of its true size. Other factors have to be taken into account, but it is at least
practical to consider displaying these maps on standard computer monitors, and
also to produce hard copy on inexpensive printers and plotters. Designing maps

88

specifically for slides and overhead projection foils would be obvious extensions.
For the prototype system however, only maps displayed on the computer monitor
will be considered in detail.

In addition to small scale topographic maps, the type of atlas mentioned has
a wide range of special topic maps, such as relief, land use, communications,
climate, etc., which include point, line and area features and attributes in both
numerical and non-numerical form. Thus rules will be required to deal with most
types of information found on maps. It is intended that a database containing base
data (i.e. topographic information) and special topic data will be part of the system.
This will allow a variety of maps to be produced. Apart from this database, the map
author must also be able to add special topic information for the system to be of
more general use. To facilitate this, a complete system must be capable of
interacting with the author to allow him to describe the nature of the phenomena to
be mapped and the information available.

KNOWLEDGE ELICITATION
Having determined what a cartographic design expert system is for and who

the intended user is, the next step is to gather the knowledge required to solve the
problems involved and to enter it in the knowledge base in the most appropriate
way to solve the problem.

Cartographic design, like many other areas of design has few formally
stated rules to follow. Most of the research on cartographic expert systems seems
to rely heavily upon written evidence in text books and 'scientific' journals. This is
the easiest way of acquiring the basic knowledge required, but, as was noted in
Chapter 2, it is rarely complete and texts intended for students do not always mirror
the process as carried out by the expert.

The Cartographic Expert
If more direct input from experts is required, how are they identified, and

how is their knowledge acquired? Identifying true cartographic experts is not an
easy task. There are obvious examples, such as Imhof, but although one may
identify well designed maps, frequently their designer is not directly credited. As a
minimum, to be called an expert, one should have practical experience of applying
the knowledge, but being an expert implies greater depth and breadth of
knowledge than possessing the technical ability to carry out a skilled task.

The production of one map may involve a number of people. The map
editor who compiles the information may be or become an expert in the
information, must have some ability to judge how much information can be included

89

in a given map and some appreciation for how it may be represented, but may not
necessarily have the graphic abilities to design a 'successful' map. The
cartographic draughtsman may be highly skilled, but his main task is in reproducing
the information included in the compilation by following a set of specifications, and
again need not possess the ability to design the map. This is not to say that
neither of these groups of people should be consulted, nor imply that they may
never be considered as being 'expert'. Indeed, in many cases both the compilation
and production are carried out by one individual: if this person also carries out the
design of the map and does this successfully on a regular basis then they must
seriously be classed as being a map design expert. In the European context of the
'map editor' is often responsible for negotiations with clients on content and design;
carry out any experimental work; compile the map; write the design specifications;
draw the production flow diagram; and oversee the work to proof correction. Such
individuals to be successful must be, or soon become, real 'experts'.

An obvious group to consider as being cartographic experts are academics
and educators, particularly those with extensive publication records. Unfortunately,
however, the ability to carry out research and write about map design does not
necessarily imply an ability to practice map design, and many of the deficiencies
noted in Chapter 3 are due to lack of experience in map design. There does
appear to be a great emphasis on the use of academic publications as the basis for
map design expert systems. In conversation with a researcher from a major
cartographic expert systems project in the mid 80's, it emerged that the idea of
discussion of the problems with acknowledged cartographic experts had not been
considered, with published works forming the sole basis of knowledge elicitation.

The map as a source of knowledge
Even if cartographic experts are not directly consulted, they can be

consulted indirectly through the artefact of their expertise, the map. Forrest and
Pearson (1990) and Keates (1982) have emphasised the importance of studying
existing maps as an aid to understanding map design (as opposed to
understanding the phenomena depicted, i.e. map reading), yet this appears to be a
minority view in standard cartographic textbooks. Muller (1990) based his
generalisation system on an examination of a series of maps at different scales
and Grossler (1993) carried out a comprehensive review of population change
maps to help build rules for an expert system, so there has been some use of this
approach.

One immediate difficulty would appear to be in deciding what is a good
map, or how maps should be judged. It is unlikely that this will ever become
anything other than a subjective process, although some guidelines could be

90

followed. Obviously some appreciation of cartography, the processes involved and
the possible alternatives that could have been employed is essential for meaningful
evaluation. Some knowledge of the phenomena and data being depicted will also
be beneficial. It must be remembered that the map is more than a decorative
object: its function is to portray spatial relationships in a symbolic form.

Despite the apparent difficulty in assessing map design, there is obviously
wide agreement amongst cartographers on maps that are well designed. A classic
example is the Swiss topographic maps which are universally acclaimed for their
depiction of relief. Evidence of this type of agreement was apparent in the British
Cartographic Society 1990 design awards where a map designed by Geoprojects
Ltd. won several awards, assessed by independent judging panels, and other
maps by the same firm were highly commended in several categories. A similar
pattern of events is frequently repeated.

THE EXPERTISE
The basis of knowledge elicitation for this project is introspection. To be

appointed an expert by self acclaim may be viewed with derision, but it is
expedient, and as long as operational use of the knowledge can be evaluated it
serves a useful purpose. In this instance, it is based upon some 20 years of
studying cartography, and longer in looking at maps. During this period some
experience has been gained in designing maps both for print and for computer
displays, although this is less than would be desirable. This knowledge is backed
by reference to the cartographic literature. It is not possible to list every source
consulted in developing this knowledge, although a review of the main sources is
provided by the author in Forrest and Pearson (1990, see Appendix G). The
primary source of textual knowledge is Keates (1989a).

Further support for the rules incorporated into the system is from the study
of existing maps and atlases that cover the relevant scales and representations.
Again the sources are too numerous to detail, but the main atlases consulted
include Collins-Longman "Senior Secondary Atlas" for Nigeria (1983), Collins "Atlas
of the World" (1984), Philips' "New World Atlas" (1988), Times Books/Bartholomew
"The Times World Atlas (Comprehensive Edition)" (1986) and "The Ordnance
Survey Atlas of Great Britain" (1982).

BUILDING THE KNOWLEDGE BASE
Cartographic design, like most design problems, is characterised as being

an unstructured problem. In order to create a cartographic design expert system
the first step should be to formalise the map design process, but like many other

91

areas of design this has yet to be done, if this can be achieved then what initially
appears to be an uncomputable problem can be at least partially solved if it is
properly divided up.

This lack of formalism has not prevented cartographers from designing
maps. Evidence in the form of published maps indicates that the practice of
cartography is well known, even if the cartographers concerned have not started
from a theoretical analysis of what they are doing2.

There has been some interest shown in formalising the map design
process. Eastman (1987) attempted to develop a "graphic syntax" for map design
directed at expert systems applications, but fails to relate this directly to the actual
process of designing maps. Mackaness and Scott (1987) attempted to define map
design for expert systems. There is a brief passage on the 'conventional' design
process, but this is not developed into a model for design by expert system.
Aspects considered extend well beyond what might be considered the design
process and discuss geographical knowledge and spatial cognition. They
concluded that there is a wide range of aspects related to map design that need to
be researched before any reasonable attempt can be made to automate the
process, although they dismiss the notion of using expert systems to produce
derived maps as 'simple', and concentrate on the processes involved in making the
'original' map.

This pessimistic view expressed by Mackaness and Scott (ibid) and by
many cartographers when expert systems are proposed seems to stem from a lack
of understanding of map design and expert systems. The apparent lack of written
rules for cartographic design only causes concern if one considers the extreme
range of possibilities for map topics and map scales. Once the scale range,
location, subject and purpose have been established, the options are greatly
reduced and there are many example maps which illustrate what can be achieved.
That is, by moving from some vague notion of map design to the design of a
specific map the problem of design becomes potentially solvable.

Thus, before attempting to develop a working system an attempt has been
made to formalise the map design process. This is based upon an understanding
of the information to be mapped and the processes involved in producing a map.
These two themes are developed in the following chapter. Chapter 6 then builds
on this model by codifying relevant cartographic practice in the form of verbal

2 Keates, J.S. 1990 - pers. comm.

92

descriptions of the rules, conventions and processes required for the prototype
system. These are then used to form the system's knowledge base.

CHAPTER FIVE

Geographic Information, Representation

and Map Design

The design process is a series of analytical and creative thinking
steps that provide logical approaches for design solutions, helps the
solutions meet [user] requirements, aids in the determination of
suitability studies and serves as a visual and oral presentation basis.1

This chapter comprises two main sections. The first is a consideration of
information for mapping and its representation; the second outlines the basic map
design process and how it may be automated, in effect an outline specification of
the system to be developed. In some cases, broad generalities are stated. These
are not intended to be specific solutions to all situations that may occur in
cartographic design, but descriptions of some of the problems that may face the
proposed system and their possible solution. This is seen as a preamble to
developing specific rules which are detailed in subsequent chapters.

PHENOMENA, DATA AND REPRESENTATION
Many of the writings on cartographic design expert systems immediately

launch into the problems of symbolising the information. However, in a proper
analysis of the map design process one must first of ail establish some basic facts
about the information to be mapped. Arguably, one should go even further back in
the process and examine the reasons why the map is to be made in the first place,
its intended user or uses and many other factors. Apart from a few very basic
questions this is beyond the scope of the present study, but a full consideration of
the nature of information which is to be mapped is appropriate.

There are four aspects to be considered here: the nature of the phenomena
being mapped; the locational data available about the phenomena; the
measurement of the characteristics of the phenomena; and their possible
cartographic representations. Cartographic texts understandably concentrate on
the last of these. Unfortunately, there seems to be no comprehensive study of the
relationships between these aspects, although Peuquet (1984a & 1990) discusses
some basic relationships in relation to establishing a framework for cartographic

1 Hsu (1992) - on the role of design in landscape architecture.

94

data structures, and Keates (1989a) considers the direct influence of phenomena
on map design2.

Characteristics of Phenomena
Most authors (e.g. Robinson & Sale, 1969) consider three basic categories

of phenomenon: points, lines and areas. To this, several add surfaces or volumes
(e.g. Morrison 1974, Unwin, 1981)3. Strictly speaking temporal variation and
movement should also be considered, but generally these will be omitted from this
study, as is typically the case in cartographic literature. Although this is an
apparently simple classification of the myriad possible phenomena, it is worth
examining the four main classes in more detail. Fundamentally, however, the most
important distinction is between continuous phenomena and discontinuous
phenomena (Keates, 1989a) and this should ideally be reflected in their
representation.

A phenomenon distributed at points appears intuitively simple with each
occurrence being denoted by a set of co-ordinates. However, very few features
actually occur at a point in the strictest sense of the term. Normally what we are
considering are discrete features of some finite size, which are discontinuous in
their coverage and which we deem to be points given the scale of the map. For
example a factory can cover some considerable number of square meters on the
ground. On a large scale plan it is be represented as an area enclosed by its walls,
but on small scale maps it may well be shown by a point symbol representing the
existence of the factory or by a symbol representing the value of its output. Another
classic example of this is the treatment of towns and cities on small scale maps.
Clearly these spread over some considerable extent, but for small scale mapping
purposes we can consider them to be distributed at points.

Many kinds of discrete phenomena are seldom considered as occurring at
points, such as population. "Generally they are not fixed in location, and can only
be recorded as being present at or within a location at a given time." (Keates,
1989a; 205) Rarely do we have data on individuals. Normally they are enumerated

2 In recent GIS literature the terms entity, attribute and object have become widely used.
The terms used here are more in line with ‘traditional1 cartographic literature. Effectively,
phenomenon and entity are equivalent, an attribute describes a characteristic property of an
entity, which necessarily defines its level of measurement, and object refers to a digital
representation of the entity as opposed to a graphical representation.

3 It should be noted that there is some confusion in the literature about the use of the terms
'surface' and Volume', with some authors such as Morrison (1974) considering a volume to
be the difference (quantitative value) between a surface and a datum plane (actual or
conceptual) and others using the term surface to refer to essential the same thing e.g.
Unwin (1981).

95

by some area and may be represented by area or point symbols depending upon
map scale, purpose and design.

Linear phenomena by their very nature must be continuous, (in space if not
in time) although often what we consider to be linear features are actually zones of
transition between two surfaces, such as the coastline, and indeed most 'natural'
boundaries are of this type. They may also be tangible features on the ground such
as fences or walls, but again our treatment of many features will depend upon map
scale, e.g. a road at large scale may be depicted by two bounding kerbs
representing its physical extent, whereas at small scale it is its importance as a line
of communication that is mapped. Thus we may have both a change of concept
from area (space between kerbs) to line (nominal centreline) and of representation
(area to line). This is part of the generalisation process.

Phenomena occurring within specific areas may be present continuously
over the whole surface, such as geology, soils, etc., or may be discontinuous, such
as lakes, built-up area, etc. Effectively the latter dichotomous type is a subdivision
of the first type where we have a binary division of the surface, rather than a more
numerous set of classes and sub-classes. There are also cases where large parts
of the map area may be 'unclassified', e.g. residential building type. Again this can
be considered as a further refinement of this general class.

Surfaces refer to those phenomena which are continuous and vary
quantitatively in space, expressed as a variation in value above some datum, the
topographic surface being the obvious example. Some phenomena vary
continuously both spatially and temporally, but variables such as temperature and
pressure, if considered at some specific level, e.g. ground level, may also be
treated as surfaces. Precipitation, while not continuous, may also conveniently be
grouped here (Keates, 1989a; 205) as we are normally dealing with averages over
time.

Volumes are three dimensional entities bounded by a set of surfaces. If we
adopt a fixed datum and measure the distance or value of one of the bounding
surfaces from this we can simplify this to be considered a surface phenomenon
(see above). Volumes will not be considered further.

For clarity, the terms discrete, linear, specific area(s) and continuous
surface will be used subsequently to describe the distribution of phenomena to
distinguish them from data or symbol types.

96

Relationship Between Phenomena and Locational Data
Before one can commence to design a map one must have data to map.

This data will in some way, although not necessarily simply, relate to a
phenomenon or phenomena which has in some way been measured or sampled.
While a phenomenon may be distributed at discrete locations, along lines,
contained in specific areas, or vary continuously over a surface, spatial data can
only exist in the form of points, lines, or areas4. Areas must either be defined by
their outlines, which implies there must be line data, or as some regular tessellation
of the surface (e.g. grid cell data)5. Area boundaries may be the actual outline(s) of
the phenomenon, or some imposed (often arbitrary) boundary.

To use the computer data structure analogy, these classes of data are 0-
dimensional, 1-dimensional or 2-dimensional data. Despite this seemingly simple
classification of phenomena and data, frequently the data available about a
phenomenon has not been collected for the purpose of mapping and may not
reflect the actual distribution of it. This situation may also be compounded by the
available data being of a secondary nature, having been pre-processed for a
variety of reasons.

While there is an unlimited number of phenomena that may be mapped we
can identify a small number of frequently recurring combinations of classes of
phenomena and the spatial data available about them. These are illustrated in
Table 5.1, from which 8 primary combinations emerge:

1. Discrete units, specific (point) location data
2. Discrete units, data aggregated by bounded area
3. Discrete units, data aggregated by cells
4. Linear phenomenon, with line data
5. Specific areas, outline data
6. Specific areas, cell data
7. Continuous surface, data sampled at points
8. Continuous surface, data sampled along lines.

In addition to these primary combinations, there are several possible
secondary or derived distributions. For example, frequently information about
specific areas is attributed to a single point within the zone, usually its centroid.
Also, any set of numerical point data may have isolines produced from it. Thus we
may have discrete units aggregated by specific areas, data attributed to a point
within each unit, and isarithms interpolated from these. Other such complex
permutations are possible, but there may be occasions when the map author may

4 Three dimensional co-ordinates (X,Y,Z) may be given, but generally the third (Z) co
ordinate can be considered to be an attribute.

5 Three dimensional tesselations of space are not considered.

97

only know the nature of the phenomenon and the form of data available, but not
how the data has been derived.

Table 5.1
The relationship between phenomena and locational data (frequently occurring
combinations). ___

Data
Dimension

0 1 2
bounded

2
tessellation

Phenomena
Discrete
units

P S PorS P

Linear P - -

Specific
areas

S P P

Continuous
surface

P PorS

P = primary data
S = secondary data

Level of Measurement
In addition to the locational characteristics of the information we can also

classify its attributes. When information is gathered, measurement is the process of
assigning a class or value to the observation. This attribute of a feature may be
either numerical or not. It can also be seen that non numerical attributes can either
be simply describing differences in kind or types of features, or can indicate ranks
or hierarchies of features. This characteristic of information is known as its level of
measurement (Unwin, 1981, Robinson et al., 1984). The conventional classes are
nominal, where there is a change in type or kind, ordinal where there is a ranking of
the data, and interval & ratio where some numerical value has been measured or
calculated. Morrison (1994) also usefully identifies dichotomous as a sub-class of
nominal and further expands the range of possible data types to include the
relationships between sets of points and sets of areas. Combinations of these
classes are possible for some phenomena. For example, power stations may be
distinguished nominally by their method of generation and on a ratio scale of their
output capacity. Knowledge of the level of measurement together with the nature of
the phenomenon and the spatial data type will allow one or more cartographic
representations to be assigned to the information. Figure 5.1 illustrates the
relationship between locational data and level of measurement and shows some
typical representations.

98

Point Line Area

☆ copper Fence wheat
i l l i

O zinc Wall (1 barley

O lead Hedge corn

/
c f

large

(^J) medium
q small

_ _ _ Intemat.

__ __ _ , State

............... County

i
poor

average

good

_ _ _ 1000
800

If 600 in CO
fo

—x
o

o
o

o

o
o

o

o
o

X;'.vXvXv

2000

4000

6000

Figure 5.1
Examples of symbols for different measurement levels

Cartographic Representation
Despite the wide range of phenomena that may be mapped, there is a

limited number of cartographic representations available. Figure 5.2 a, b, c & d
outlines these. Frequently it will be possible to depict a data set by more than one
of these methods, although once the purpose of the map has been determined and
the other information to be included has been decided, the choice is often limited.
Where there remains a choice, the map author may decide which representation to
use or accept the default option.

99

OA Dot Distribution.
All points have the same symbol,

a represents occurances of discrete individuals
b represents some fixed quantity for each symbol.

OB Categorised
A range of features depicted by a set of point O n O
symbols of visually equal importance. w L_l v

OC Ranked
Visual ranking is implied by the symbols* 0

OD Proportional or graduated.
Some visual impression of magnitude is given.
May represent points, areas considered as points
at map scale or areas represented at points
(usually zone centroid),
graduated unipolar distributions
proportional unipolar distributions
graduated bipolar distributions
proportional bipolar distributions

©
OE Subdivided Quantitative

Visual impression of proportions of sub-classes
Overall visual impression of magnitude may be
given (b, c).
fixed size
graduated
proportional

OF Spot Values
Series of point locations with numerical values.
May have regular or irregular distribution,

a sparse locations, e.g. spot heights 24
b dense, irregularly spaced, e.g. soundings, TIN .50
c regularly spaced, e.g. grid DTM .40

Figure 5.2a
Cartographic representations - points

100

1A Boundaries
Can represent

natural boundaries (often zone of change)
actual ground feature (often man made)
intangible (no real existence)

symbols visually equivalent
visual hierarchy of symbols

1B Networks
a linked network structure (e.g. roads, pipelines)

b tree structure (branching) (e.g. drainage)

1C Isolines (contours)
lines of known or assumed numerical value.

1D Flow lines
can be in form of network, or independent
routes / movement

1E Linear cartograms (not shown)

1F Unstructured line symbols
miscellaneous, non network, often isolated and/or
discontinuous line symbols not included in 1A or 1B
(e.g. fences, walls, geological faults).

Figure 5.2b
Cartographic representations - lines

101

2A isolated areas
binary (dichotomous) division of the surface
- special case of 2C

2B Unclassed
-simplifed case of 2C, e.g. 'political' map

a single visual level - al symbols equivalent
b hierarchy of visual levels (e.g country/state/county)

2C

a
b

Chorochromatic (colour patch, mosaic or categorical)
several instances of same class, classes equivalent
single visual level (uniform)
hierarchy of visual levels (i.e. classes and
sub-classes)

2D Graded series
two possibilities for boundaries, but treatment of
symbolisation the same
- Choropleth - delimited zones imposed on

distribution (normally administrative)
- Dasymmetric - delimited zones with boundaries

derived from distribution
Unipolar variation of symbols, implying quantities
bipolar variation of symbols around neutral
bivariate symbolism (not dasymetric

2E

2F

Layered colour series
graphically the same as 2D, but different spatial
distribution.
unipolar variation in symbols, implying quantities
bipolar variation (e.g. temperature zones)

Hypsometric and Bathymetric colours
Spatially the same as 2E, but different (specific)
graphical treatment.

(not shown)

2G Area Cartogram
areas scaled by some quantity, not true extent (not shown)

Figure 5.2c
Cartographic representations - areas

102

3A Shading
e.g. hill shading

3B Block Diagrams (2 1/2 D views)
(arguably not a true map - non orhtogonal)

3C 3D Surface Model
(cannot be displayed in this form - an internal
representation in a computer or a physical model)

Figure 5.2d
Cartographic representations - Surfaces

103

Having classified phenomena, data and level of measurement, Table 5.2
illustrates the relationships between these and possible cartographic representa
tions. It is planned to develop a separate expert system to classify information the
user may wish to add to the database. This would take the form of a relatively
simple classification type of expert system, which could run independently or as a
sub-system of the main package.

Table 5.2
Relationship between phenomena, data & representation

Phenomenon
distribution

Locational
data

dimension

Level of
measurement

Possible
representation

methods
discrete 0 nominal OB, OA
discrete 0 ordinal OC
discrete 0 interval/ratio 0D,[1C,2E]
discrete 1 ord./int./ratio 1C,2E
discrete 2 ord./int./ratio 2D,0D,[0A,1C,2E]
linear 1 nominal 1A.1B
linear 1 ord./int./ratio 1B,1D
specific areas 0 interval/ratio 0D,[1C,2E]
specific areas 2 nominal 1A,2A,2B,2C
specific areas 2 ord./int./ratio 2D,0D,[1C,2E]
cont. surface 0 interval/ratio OF,[1C,23
cont. surface 1 interval/ratio 1C,2E

Notes: 2 dimensional data is in the form of boundaries (area outlines)
[] - requires further processing or information for this representation

104

THE DESIGN PROCESS
The general procedure for designing a map follows the route of: Compose;

Compile; Symbol specification; Produce; Adjust. A similar route can be followed
with computer aided cartography, and indeed it is logical that an expert system
follow a similar route to a Cartographic expert. The stages to be followed
are: Description; Layout; Data Selection; Symbolisation; Display; Modify. These are
described in more detail below.

Description
In this step the aim is for the user to describe to the system some basic

information about the map required.

First then, the user must inform the system of the type of map to be
produced. Immediately, a distinction can be made between topographic or 'general
purpose1 maps and special topic maps. A topographic map ideally shows all
information with the same level of importance, i.e. no one aspect of the map should
dominate, although in practice cultural information tends to dominate on most
topographic maps, and in any good design there should in any case be several
'visual levels'. For a special topic map, the special topic information normally will be
the dominant part of the graphic image with the base information providing context
and orientation for the map user. Thus, the system will have to know the topic of
the map at an early stage.

The system will 'know' about a definitive number of map topics that can be
produced from the information in its database, but the user may not be familiar with
such titles and may require help in defining what he wants. He may indeed require
a map that the system does 'know' about, but refer to it by a different title. From
the author's description of the information to be included in the map the system
should be able to determine the type of map required. The user's name for this
may be added to the knowledge base for future reference.

If a topographic map is required then the system will be able to exercise
almost total control over the map design as all the information will be contained in
the system data base and the system 'knows' about this type of map topic. If a
special topic map is required, more information will be needed from the user,
particularly if the main information to be mapped is not included in the system data
base. In this event the user will have to describe the phenomena to be mapped,
the data available, and supply the necessary spatial and/or non spatial data.

105

The purpose for which the map is to be used is also important in
determining what must or may be included in the map, the level of detail which may
be required and hence the scale that will be required to show the desired detail. As
the system will be specifically limited to producing small scale maps in a particular
scale range, there are obviously limits on the intended use of the output. Clearly
maps at these scales are not intended for detailed measurement, but more for
providing general information about an area or an overview of specific distributions
in an area.

The intended user of the output should also be considered at this stage.
The map author can also be the map user, but the map may be being produced for
a wider range of users. If the author is also the intended user then one can
normally assume some familiarity with the location or information being portrayed.
If the map is intended for others they may or may not be knowledgeable about the
area or subject. If the map is intended for naive users it may be desirable to make
the map simpler than for an expert user. This will reflect on both the content of the
map and the level of detail at which each element is shown.

The form of output required may impose limitations on the cartographic
possibilities. For example a monochrome map generally cannot show as much
detail as a colour one; screen resolution is usually much lower than that of
lithographic printing; maps for showing as slides generally need to be quite simple.

The desired level of detail required on the map will influence the amount of
information selected and also the level of generalisation used. It is closely related
to the map purpose, the form of output and to the scale of the map, scale probably
being the most important limiting factor in the actual amount of detail that can be
shown.

Layout
The factors to be decided at this stage are the actual geographical area to

be mapped; the format (i.e. height and width) of the output; and the scale of the
output. A decision on the first of these and one other will determine the third. The
level of detail determined above may influence the choice of scale. Some
backtracking may be required if it is not possible to show the desired area in the
available format at a scale commensurate with the topic or the level of detail
requested.

Location. As a general point, the map author will know within reasonable limits the
area to be mapped, although the size and shape of the area of primary interest and
the purpose of the map may influence how much of the surrounding area should

106

be included. It is unlikely that the system will be of much assistance in determining
this, although an interim plot of the area may help the author.

Format. If the map is only to be displayed on a CRT display then the format will
most likely be the maximum size allowed on the display, or that portion of the
screen reserved for showing the map. If hard copy is required this will be limited by
size of printer or plotter to be used, but may also be limited by other factors, such
as the page size of a publication. If the map is for reproduction the author may
have fixed criteria. If the author needs help at this stage then some basic rules of
appearance can be used, such as ratio of sides etc., and selection of portrait or
landscape orientation depending on the shape of the area being mapped.

Scale. The general principle with atlas maps is to use the maximum scale possible
(to the nearest round figure) within the given format, so this will normally be
calculated by the system based upon the size of the area and the format. It is
possible that the user will require the map to be of a certain scale (if one of a series
perhaps), thus once scale and location have been specified the required format
can be calculated. Scale is atopic that is frequently misunderstood by map authors
and users, particularly at the small scales used here so it is likely that the system
will have to provide a considerable amount of explanation when it is being
determined.

Marginal Information. The standard layout for the marginal information is to have
the title, scale and legend placed outside the map neat line, with the title and scale
across the top of the map and the legend on the right hand side. The user should
be able to 'switch off' the legend on the screen to allow a larger map area to be
shown, or a larger scale to be used.

Beyond this, the proposed system will not at this time make any attempt to
design the layout of marginal information such as titles, legends, etc., to make the
best use of the space available, although the inclusion of a few alternative layouts
would be a trivial addition.

Reserving space for marginal information will influence the scale or format
of the map, but will be the authors responsibility if they are required to be located
elsewhere. Future developments could include assessment of the outline of the
map area, the amount of legend space required, etc., and the suggestion of
possibilities to the map author.

107

Data Selection
In producing a map conventionally, the selection of information and its

classification is normally part of the compilation process. In a digital mapping
system the data has in effect been compiled when it is entered into the database.
What an expert system must do is extract the appropriate information from the
database as it is likely to contain data on more phenomena than can reasonably be
shown on a single map.

The information to be included in a given map will depend upon the type of
map, the scale, and the level of detail required. Table 5.3 lists the information to be
included in the system database. For this data to be used in a flexible manner
knowledge about it must be incorporated into the system. This metadata could be
included in the map design knowledge base, but more usefully it would be a
separate knowledge base linked to the database which would allow easier
integration of different databases. In the longer term the development of
comprehensive metadata is seen as critical to the widespread application of expert
systems to cartography and GIS.

General Maps. If a topographic or outline map is required then, as all the
information will be contained in the system database and the system will be
'familiar' with the selected map topic, the system will be able to exercise almost
total control over the selection and representation aspects of design. For a
topographic map all the Information described as 'basic information' in Table 5.3
would normally be included, although the user could be given the choice of a
'physical' type map which includes hypsometric tints or a 'political' type map which
has coloured administrative zones. The level of detail at which each feature is
depicted will however depend upon the scale, the purpose and the specified level
of detail of the map.

Special Topic Maps. If a special topic map is being produced, more information
will be needed from the user, particularly if the main information to be mapped is
not included in the system data base. Maps whose topic is one of those listed as
supplementary information in Table 5.3, may require more user input than general
maps, but will require considerably less than for special topic information supplied
wholly by the map author. The basic cartographic representations of the
information in Table 5.3 will be known to the system, as well as what base
information is normally included in a map of the selected topic (i.e. there will be
information about this in the knowledge base).

If information to be mapped is not in the database the user would be
prompted to describe the phenomenon and the data he has available at this stage

108

and build up a file of metadata. This can in fact be seen as a separate task to the
design aspects of the system and fits the model of a classification expert system.

Table 5.3
Proposed database contents___
TOPOGRAPHIC BASE INFORMATION
Political/Administrative Boundaries - International and internal (2 levels if

available). These will be used with separate census datafile for statistical
maps.

Coastline - similar level in hierarchy as International boundaries. Two levels of
generalisation should be available.

Drainage - network classified with at least 3 levels.
Lakes - large lakes (greater than 2mm2 at the largest map scale). Must be linked

with drainage network.
Railways - one level.
Roads - classified as highways/motorways, major roads, other roads.
Settlements - (administrative definition) database would contain classification

based on simple hierarchy, e.g. National capital, State capitals, other cities
and important towns, giving 4 levels of hierarchy.
Ideally settlements would be chosen from a separate database with a
variety of factors, e.g. population, political status, remoteness, etc., with a
ranking calculated from these. Cut-off point determined by scale Initially.
User could specify number of settlements to be included, or selection
criteria based on facts in database and system make choice. Different
default parameters could be specified for different map types. Number of
categories dependent on scale, number of settlements to be included and
map type.

Contours - frequently shown on atlas maps with non uniform interval, as basis of
layer colours. Database should include all contours based upon minimum
interval appropriate for region. Actual intervals used selected automatically
depending upon scale. Area symbolisation may be included depending on
the type of map.

SUPPLEMENTARY INFORMATION
(Information frequently used for special topic maps in regional atlases)
Geology, Soils, Land Use, Land Cover (Vegetation), Precipitation, Temperature.
Census data, including population etc. (to be used with administrative boundaries
and settlements above). Economic data (ports, industry, etc.)________________

While perhaps to be avoided for reasons of simplicity, it is possible that a
map author will require a map showing more than one special topic. (The use of
bivariate mapping of statistical/census information is not included in this
discussion.) The map may for example show both temperature and precipitation.
As there are strict limits on the number of continuous phenomena that can be
shown by area symbolism - probably two at most, one being shown by area colours
and the other by area patterns - the user will have to prioritise the phenomena to
be depicted, and may have to opt for line or point symbols to depict some

109

continuous phenomena. For example, a map could show annual precipitation by
layer tints and January and July isotherms by two sets of lines.

Base Information for Special Topic Maps. In designing a special topic map one
must have an appropriate base map on which to display the information. There are
two common approaches to this. The first is to take a topographic map and reduce
it to a background image, often by printing it in grey. This will mean that much
superfluous information will be included and also that some essential information
may be obscure.

The second approach is to design the base specifically for the map. This
involves selecting the appropriate information from the topographic base and
symbolising it to complement the special topic information. This should result in a
better solution, and is the approach adopted here.

Frequently little consideration appears to be given to the level of detail of
the base image when compared to the special topic representation. For example, a
map with a very detailed coastline showing very generalised climatic information
can mislead the user into thinking the special topic information is as detailed as the
topographic information. Thus, some attempt must be made to have
commensurate levels of detail for different elements of the map. This may involve
simplifying the base information to reflect more closely the detail or accuracy of the
special topic information.

Map complexity. Although the level of detail, map purpose and scale together will
provide some indication of how much information should be included in the map,
some problems will only emerge after the data has been (provisionally) selected.
For example if a coverage of areas is to be included the system should check to
see that the polygons are large enough to be perceived. If not, a more generalised
representation must be used. Similar tests can be done on total length of line and
number and average spacing of point symbols. Although this is not a true measure
of complexity as it doesn't take distribution into account, it provides an initial
indication to the system that the map may be too detailed.

Interaction of representations. As noted above, it is generally not possible to
show many sets of area symbolisation. Some areas may have to be implied by
their boundaries. Problems of spatial conflicts have been deal with in some detail
by Mackaness (1986) and Mackaness & Fisher (1987) and solutions developed
therein could be incorporated. Generally, and whenever possible, problems should
be avoided by not selecting too many classes of information that normally require
area symbolisation over the whole map area. Other conflicts will normally be
resolved at the symbolisation stage by selecting symbols with sufficient contrast.

110

Generalisation. This creates many problems in map design, particularly as scale
decreases. As discussed in Chapter 3, there have been several studies on expert
systems applied to map generalisation and it is beyond the scope of this study to
incorporate all the possibilities. Given that the range of scales available to the
system is limited, generalisation can be resolved partly by selection and, where
appropriate, by having two sets of linear data or coding linear data so that it can be
produced at two levels of generalisation, determined by scale and level of detail
required. Automated generalisation is not a feature of the proposed system.

Symbolisation
Having made an initial selection of the information to be included in the map

(which may have to be modified once the map has been displayed) each element
of the map will have to be given a symbol specification. The actual details of this
will vary quite considerably depending on the phenomena being mapped, the
scale, etc. The first step is to assign the cartographic representation to be used
(Table 5.2). Each of the data sets to be included in the data base may be assigned
one or more possible representation(s) based upon the nature of the phenomena,
the locational data and its level of measurement as discussed above.

This is only the first step in specifying the symbols. Once the type of
representation is known, specific symbols will have to be assigned to the
information. In some cases this will be trivial, such as specifying colour and gauge
of rivers. In other cases considerable effort will be required to select the most
appropriate set of point symbols or area colour scheme, for example. Rules for the
representation and for the data set will be used to narrow the choice, but inevitably
user choice will play a major role here, at least in approving defaults, or choices
suggested by the system.

Display
Having determined the information to be included and its graphical

representation, the map can be displayed on the screen. This is largely a
procedural task for the system, although, due to the nature of computer graphics
and some of the representation methods, consideration will have to be given to the
order in which items are drawn. Generally speaking area symbols will be produced
first followed by lines, then points. More sophisticated measures will be required in
many cases for hard copy output, in particular the masking of underlying
symbolisation so that subsequent features are visible.

111

Modify
It would be ambitious to suppose that the first attempt at designing the map

will be exactly what the system user requires, therefore the system should be able
to interact with the user to modify any of the decisions previously made. This is
similar to what a cartographer would do: preliminary designs may be reviewed for
their effectiveness, or presented to the map author for approval. Any modifications
requested would of course have to be processed through the knowledge base, and
the user notified of any consequences. The system will store parameters for
completed designs so that it is possible to backtrack should the modification not
result in an improved map.

The biggest difficulty here however, is in assessing what good design is, as
this is largely subjective and attempts to quantify this (e.g. Mackaness et al., 1986)
bear little resemblance to the user's perceptual response. It is also arguable that
the intended user of a cartographic design expert system is unlikely to be able to
pinpoint what the design problems are, far less quantify them, therefore
modifications are more likely to affect what is shown, rather than how it is shown.

This latter section on map design is further expanded in Chapter 7 to
provide a full functional specification of an expert system for the design of small
scale maps.

CHAPTER SIX

Developing Rules for Map Design:
A Functional Specification of a Cartographic Design

Expert System

The lack of formal rules for map design is not simply a consequence
of cartographic incompetence, or a lack of interest in the map user. It
simply reflects the sheer difficulty of deducing a set of rules, capable
of universal application.... The complexity of obtaining information
from a map is matched by the complexity of creating it.1

To cover every aspect involved in developing a cartographic design expert
system, one would have to write what amounts to a textbook on cartography. The
intention here is to discuss the main factors involved in each situation and note the
rules that are relevant in developing the prototype system. The discussion
concentrates on the requirements for small scale maps. In some instances the
extensions required for scales beyond those proposed for the system are noted.

Although the steps involved are described here in a sequential manner,
there will be cases where there is interaction between the main sections of the
system described here and in Chapter 8, and where an iterative approach is
necessary. For example, the amount of information selected is based upon the
purpose, level of detail and scale. If too much is selected initially, then one or more
of the earlier variables may have to be altered. Another situation which may arise is
at the symbolisation stage when conflict arises between the representation of data
sets, when it may be necessary to re-evaluate the selections made.

The emphasis of this chapter is on a verbal description of what will later be
specifically coded into the system. For each aspect there is a brief description of
the situation and what is required to solve it. in some cases this discussion is
summarised by a list of 'Factors'. This shorthand form has been adopted in order to
keep the discussions as brief as is practical. The discussion on each aspect is
concluded by a list of the 'Rules' that need to be built into the system. The
statements under the Rules heading include rules stating basic cartographic design
principles, facts and definitions required by the system, queries for more

1 Keates, 1982; p. 113.

113

information and operating instructions for both the system and the system user.
Unless the user seeks further information by using the help and explanation
systems, all he will be aware of is operating instructions and questions which the
system cannot answer from its knowledge base.

For convenience, the 'Rules' in each section to be incorporated into the
knowledge base are numbered. An * indicates that the rule is specific to this
system, rather than a general rule or statement, there being some form of limitation
imposed by the system on the possibilities. Unnumbered rules (shown b y '-') will not
be included in the knowledge base, but are included here for completeness and to
indicate possible future developments. Some of the 'rules' are statements of facts
that apply to the system or the task and always apply; others are conditional and
only apply when the condition is met. At this stage, confidence factors have not
been included as part of the knowledge, although they are included in the system
where appropriate.

In order to simplify the structure of the 'rules' set out in this chapter, several
key words, etc., are used. These are explained below:
IF .. THEN .. (ELSE) general format of a rule
AND, OR logical conjunctions
ASK get information from user
MENU a list of choices is available. Options, if given, enclosed in {}•
CONFIRM Items or values either set or selected are shown (verbally) on the

screen. The user is asked for confirmation.
[] default value enclosed

Generally, before moving from one module to the next the information
gathered or set in that module will be displayed and the user asked to confirm that
this is correct or what is desired.

It is important to note that the functional specification (this chapter) was
written before the programming reached an advanced stage, i.e. the functional
specification was developed before the program and not afterwards. Some
subsequent editing has taken place to remove errors and inconsistencies or to
clarify points, but these changes have been relatively minor. This does mean that
there are some differences between what is suggested here and the actual
implementation discussed in subsequent chapters, but the functional specification
is retained in its original form so as to allow different implementations of various

114

aspects to be attempted. One obvious difference is that in several places only the
automated solution is incorporated into the system as it is this that is under test in
the prototype system.

DESCRIPTION
Several factors have to be decided at this stage: the topic of the map to be

produced; the purpose of the map; the intended map users; the level of detail
required; and medium for final output. It is likely that the range and type of
questions asked at this stage will be a major part of future developments of the
system. A natural language interface would be particularly relevant for this module.

What is the topic or theme of the map?
Initially only the primary theme may be defined, but this may be extended

later to allow secondary and tertiary themes. The map author can either enter a
name which the system will match against list of known map topics (themes), or a
menu of known map topics can be displayed.

If the map topic is unknown to the system, the user will have to describe his
requirements to a greater extent. He may however be able to state that it is similar
to a 'known' map topic. At the very least the basic 'class' of map must be stated.
The three primary classes are : (1) basic, which includes outline and topographic
maps; (2) cultural, which includes population and economic maps (mainly
statistical); and (3) physical, such as climatic, relief, soils, etc. The class helps in
identifying the type of base information most likely to be appropriate for the map.

In addition, the user may have to supply special topic data to be
incorporated with basic data from system. A facility must exist for describing user
data in terms of basic phenomena and information types to allow appropriate rules
for its incorporation and representation to be applied. As mentioned earlier, this
function will be performed by a related expert system.

RULES
1 System user must specify map topic (MENU available)

115

What purpose is the map for?

RULES
1 Choose between overview and analysis [default = overview]

Who is the intended map user?

RULES
1 Choose one of general users, knowledgeable users, map author (map

author = knowledgeable user for the purposes here)

Output media?
This will control various factors, such as size, resolution, colour availability, etc.
Initially only coloured screen output will be considered.

RULES
1 ASK what output media [Screen], MENU {Screen, Hardcopy, Slide,

Overhead}
2 ASK if monochrome or colour required.

What level of detail is required?
A ten point scale is used with 1 = low detail and 10 the most detailed.

Based on user, purpose and output media the systems suggests the appropriate
level of detail to the system user. This may be accepted or modified. If modified,
the system will ask for confirmation of any change varying by greater than 2 from
default. Note that for screen based maps 8 is the maximum level of detail
suggested. Initially a simple set of facts in the knowledge base will suffice, but in
the longer term an algorithm could be developed which would allow more flexibility.

RULES
1 IF Purpose = Overview AND User = General AND Media = Screen THEN 2

IF Purpose = Overview AND User <> General AND Media = Screen THEN 4
IF Purpose = Analysis AND User = General AND Media = Screen THEN 6
IF Purpose = Analysis AND User <> General AND Media = Screen THEN 8

2 CONFIRM level with system user. IF change > +2 OR change > -2 then
ASK for confirmation

116

LAYOUT
The three decisions required in this module interact with one another. The

user will have to specify the desired area to be mapped. Once either the scale or
format are specified, the other can be calculated.

Location
There are a number of ways by which location could be specified. These

include area name, by latitude and longitude limits, by projection co-ordinates, by
specifying a number of places that must be included, or by graphical methods.

The use of names other than demarcated areas such as countries poses
problems of interpretation. What is the extent exactly of 'West Africa'? These
general terms may however be useful as a first stage in delimiting the area, forming
the basis of an interim plot allowing co-ordinates to be given or a graphic definition
to be indicated.

Graphical methods are where an outline plot of some large area (e.g. the
World or a continent) is displayed and the user uses the cursor or a mouse to
indicate a box on this. This may need several iterations as successive interim plots
zoom in on the area of interest.

The use of different projections creates some difficulties as large regions
will vary in shape on different projections. Taking this into account is beyond the
scope of this study. As the test area is near the equator a simple Lambert's
Cylindrical Equal Area projection will be used which allows simple conversion from
latitude and longitude to xy co-ordinates for plotting. An equal area projection is
used as equivalence is desirable for many of the topics to be mapped.

RULES
1 Location must be specified
2 IF location is adjusted THEN check scale and format

Format
The default format is the maximum size possible on the screen. Standard

dimensions such as those for A4, A5, etc. should be built in to the system, both for
full page images and layouts with a margin outside the neat line.

117

The interaction with location and scale must be checked any time there is a
change in format.

RULES
1 IF know location and scale THEN calculate format ELSE ASK user for

format [default = fill screen]. Menu available, one option is to calculate from
scale.

2 Check that format fits output device
3 IF format changed THEN update scale and report this.

Scale
To simplify matters automatically selected scales will be limited to a

predefined set of scales varying between 1:2 000 000 and 1:15 000 000, although
the user may choose any scale within this range. The default scale is the maximum
possible for the specified format, rounded to the nearest available smaller scale in
the list.

The interaction of scale with location and format must be checked any time
there is a change in scale.

RULES
1 IF know location and format THEN calculate scale ELSE ASK user for scale

[default = maximum possible]. Menu available, one option is to calculate
from format.

2 IF scale specified by user THEN check that scale fits output device
3 IF scale changed THEN check format and report any conflict.

SELECTION
From known values for level of detail and scale a 'selection index* is

calculated (see Chapter 8 for formula). This is used as the initial basis for selecting
what information is to be included in a given map. This is not a true indication of
how complex the final map may appear, but determines which classes of
information are to be included. The calculation used is derived empirically and
alternatives could be substituted. This is a simplistic solution and is viewed as a
first attempt at evaluating how much information to include. The ability to test more
sophisticated methods will be incorporated into the system and should prove
valuable in future developments and allow further research in this important area

118

The selection index will be in the range 1 to 10 with higher values indicating less
information is to be included.

Each known map topic will have a list of scores for each base information
class and sub-class. Each of these scores has a value from 0 (do not include) to 10
(must include) indicating the priority of including the respective dataset in that map
type. From this, a list of recommended datasets will be constructed by selecting
those datasets which have a score equal to or higher than the selection index
value. (Those with a score > 0 for the map type could be entered in an 'optional1 list
allowing the user to select these if desired, or to assist later with modifying the
design specification).

The actual selection procedure is similar in some ways to the method
developed by Naylor (1983) and adopted by Muller (1986) as described in Chapter
3, but in this case it is only used for the information selection process, not for all
aspects of map design. It also has greater flexibility than Muller's method in that
one only needs to change the method of deriving the selection index, to effect a
change in the system's operation, whereas in Muller's system every input and
output category would have to be re-evaluated.

Once the datasets have been selected a list will be displayed for the user's
approval. It is likely however, particularly for more complex maps, that some re-
evaluation of the information selected may have to take place after initial attempts
at assigning representation methods.

RULES
1 Calculate selectionjndex
2 For each class of base data IF selection score >= selection index THEN add

to selected list
3 IF topic includes a single theme data set THEN select this ELSE IF topic

multiple possible themes ASK user to select those he wants (MENU)
4 CONFIRM selected information with user

119

RULES FOR GENERAL CARTOGRAPHIC REPRESENTATIONS
Although an experienced cartographer could devise an infinite number of

symbols, for the purposes of developing an expert system this range must be
somehow limited. Based upon the regime of cartographic representations
developed earlier (Figure 5.2) the various major possibilities are discussed and
guidelines presented. These are generally limited to the maps being considered in
this study, in the scale range 1:2M to 1:15M, although many could be extended to
other scales.

Further restrictions are placed on the symbols used by the limitations of the
hardware and software used to develop the system. These are discussed in more
detail in Chapters 7 & 8, but some general points are noted here. Point symbols
are limited to a small number of simple geometric symbols. Line gauge is limited to
normal (single pixel wide) and thick (3 pixel wide) lines. It would be desirable to
have at least 3 line gauges available, and this is indicated in some rules by
referring to fine, medium, wide and very wide lines. The actual gauge of the line
used is less important than the contrast effects achieved. Once the system moves
beyond the prototype stage a more sophisticated graphical interface would allow
the more comprehensive range of point symbols and line gauges to be used.

There are many ways of describing colour, the detailed discussion of which
is beyond the scope of this exercise. To keep colour descriptions simple, the hues
Magenta, Red, Orange, Yellow, Green, Cyan, Blue, Purple and Brown will be
referred to, plus Black, White and Grey. Adjectives such as pale, light, medium and
dark are also used to indicate the lightness of colours. For more detailed
specification percentage combinations of the subtractive primaries are preferred in
cartography, although for computer graphic displays the image is generated by
mixing proportions of the additive colours. For untrained users it is simpler to refer
to the hues listed above and illustrate the range available on the screen.

The graphic displays used in the development of the system have a
relatively limited range of possible colours. For this reason, and more general
reasons of clarity, single hue look up tables are limited to a maximum of five
lightness levels.

The rules for the precise definition of individual symbols make extensive
use of look up tables (LUTs) which store default descriptions of various options for

120

symbolisation. This includes point symbol collections, line styles and colour set
specifications.

As far as possible symbolisation will be dealt with automatically by the
system. The problem arises when additional information is required from the
system user who may not be familiar with the cartographic terms used to describe
the various representations (which not even cartographers agree on) or terms for
the graphic variables. The most appropriate method of dealing with this in an
expert system is to incorporate extensive explanation and help facilities and a
dictionary of synonyms. For example, for each of the representation methods there
should be a simple graphical example available which can be quickly displayed on
the screen. Similarly, graphic representations of each of the look up tables should
be able to be viewed. How these are described or titled verbally will require careful
consideration.

Point Symbols
Generally these represent features or information occurring at points, or

considered to be points at map scale. In some cases data may be collected for
areas and the value assigned to a point within the area The graphic variables used
are point form; point size; and point colour. Point form refers to all variations in the
shape of the symbol, including internal variations, additions, etc. Point size is self
explanatory, although it only has a strict, accurate relationship with the feature
when the scale or feature is large enough to show the true plan extent: in all other
cases variation in size are related to other characteristics of the feature. Point
colour refers mainly to variations in hue unless the symbol is large enough to cover
a considerable area, in which case internal variations similar to those used for area
symbols are possible.

0A Repeated point symbols. All points have same value,
a represents occurrences of discrete individuals or features
b represents some fixed quantity grouped for each symbol

This representation method shows the distribution of a phenomenon by
means of a series of uniform symbols, frequently dots.

In its simplest form (OAa) there is one dot per occurrence of the phenomenon, with
locations known, giving arguably a version of OB, the difference being that OB

121

represents multiple categories. An example of OAa could be the location of all
power stations. Differentiating power stations by energy source would be OB.

Frequently, each dot represents a number of occurrences (OAb). Normally
the data used is of the census type, with the number of occurrences within a given
zone known rather than the actual location of individuals. Simply spacing the
appropriate number of dots evenly (or randomly as done by several computer
mapping packages) within the zone does not express the true distribution of the
phenomenon, unless both the dots and the zones used are very small and the
impression of a continuous variation in density is created (see 3A).

The advantage of representation OAb over area symbolisation (typically 2D
- choropleth) is that when there is some information available about the likely
distribution of the phenomenon within the zone a good representation of the
distribution can be achieved. For example, in mapping population based on
residency, topographic maps or aerial photographs can be used to eliminate from
consideration areas which are obviously unpopulated, allowing the dots to cluster
in areas which obviously are populated. Because of the need for additional
information to reasonably locate the dots, currently this method is not a good
candidate for automation. Consideration of its use should perhaps be notified to
the system user, and guidance could be given on supplying the required additional
information.

One common and very appropriate application of this method is the
representation of rural population by dots in combination with urban population
represented by graduated circles (OC).

FACTORS
dot shape - generally, round dots are used, although if the dots are relatively large

squares, triangles, etc., can be used, or even pictographic symbols. The
System is limited to true small round dots.

dot size - generally the dots should be small as smaller dots allow more detailed
representation, though very small isolated dots are likely to be
imperceptible. Mainly due to hardware limitations 3 fixed sizes of dots are
available, although others could be specified by the user.

dot colour- This is limited to colours with high contrast against the background, as
colour perception is limited for small symbols. Traditionally, the use of black
or other 'dark' colours predominates. On a monitor however, it can be

122

effective to use light dots on a dark background. Care must be taken with
multi-colour backgrounds to ensure sufficient contrast is maintained against
all the background colours.

dot value - ratio of occurrences per dot (OAb only). Obviously the more occurrences
per dot, the fewer dots there are and the less detailed the representation.
Generally this ratio is found by trial and error, but a nomogram was
developed by Mackay (Robinson et al., 1984; 304) which, although still
requiring discretion, could be used as a basis for automatic selection. The
interaction between dot size and value represents the major compromise
between detail and visual effect in this type of representation.

multiple distributions - These may be depicted by varying the colour (normally hue)
of the dots. It is necessary to ensure that dots do not overlap.

RULES - OA
1* dots assumed to be round
2* 3 sizes of dot are available. Actual sizes will depend on resolution of output

device. DEFAULT is medium size.
3 dots may touch, but should not overlap - affects dot size and dot ratio
4 IF points relatively clustered THEN use smaller dot size ELSE IF points

relatively sparse THEN use larger dot size
5 use colour with high contrast against background
6 most suited for representing main theme information
7 can be combined with graduated symbols (0C) but avoid combinations with

other point symbols.
OAa
8 IF multiple distributions (i.e. more than one topic is to be shown by this

method) THEN use rules for OB
OAb
9 use rules based on nomograph (Mackay/Robinson) to calculate dot value
10* maximum of 2 distributions allowed
11* IF multiple distributions THEN use large dots
12 IF multiple distributions to be represented THEN use total number in

calculating density
13 IF multiple distributions THEN use high colour contrast between dots

OB Categorised point symbols. All features depicted by symbols of visually
equal importance. Data feature coded.

123

A different symbol is used to represent each category of information. An
example might be the representation of industrial plants. Each category would have
its own shape or colour of symbol. If there is only a single category then the
treatment is as OAa (e.g. all power stations represented the same would be OAa,
differentiating coal, hydro and nuclear would be OB). Each point in the database
must be feature coded or have an appropriate attribute in the database. Symbols
are assigned according to feature code or attribute value by use of a look-up table
of symbols, either specifically for the phenomenon (preferred), or a general look-up
table containing geometric symbols. Rules could be developed to select a range of
appropriate geometric symbols indicating the relationship or hierarchy of features.

Symbol size will generally be small, typically 1 to 3 millimetres. For some
distribution maps it may be desirable to use pictographic symbols, but these
normally must be larger (3 to 5 mm.) and it may not be practical to depict these
satisfactorily on CRT displays or with dot matrix printers, without increasing the size
still further (Morrison & Forrest, in press).

As differences between classes are nominal, form and/or hue are the
primary distinguishing variables. Sub-classes are often depicted by minor variation
in form, although retaining form and changing colour, or retaining colour and
changing form or orientation are also valid.

Perhaps the biggest difficulty with this type of representation is the
likelihood of symbols overlapping excessively and hence becoming illegible. It is
beyond the scope of the system developed here to check and resolve such
overlap. A rule could be added that if overlap is extensive then the symbol size is
too large or the scale is too small. In the longer term, the rules and procedures for
determining and resolving such spatial conflicts devised by Mackaness (1986)
could be incorporated.

FACTORS
symbol size - all should appear approximately the same size.
symbol form - selecting most suitable symbol; may be pictographic or geometric

(many 'standard' or conventional symbols exist - use LUTs)
symbol colour - colour choice is usually limited, but very important. Because of the
small sizes involved, variation in hue is the most important.

124

RULES - OB
1 each category must be given a different shape of symbol AND/OR different

hue
2* IF displayed with multi-coloured area representation THEN use variation in

shape
3 use colours with high contrast against background AND to each other
4* do not use more than 12 categories (if possible). (Affects use of sub

classes)
5 IF small number of categories (<= 4) symbols can be small (2 mm), ELSE

must be large (4 mm) to allow greater variation to be visible.
6* Hierarchy not allowed in monochrome
7 IF hierarchy THEN use colour variation for main categories with shape

(square, circle, triangle, etc.) for sub-classes. (User may reverse this)
8 IF there are conventional or pictographic symbols refer to LUT. (Existence

of this will be known from the metadata about the class of feature.)
IF overlap extensive (define) THEN reduce symbol size OR increase scale.
(Such checking is currently not included in the system due to the
computational overhead involved.)

OC Ranked (hierarchical) point symbols.
These symbols may represent point locations, or areas considered to be

points at map scale. A hierarchy should be immediately obvious from the
representations used. The phenomenon most frequently depicted by this method is
settlements ranked either by population or administrative status. These are not only
shown on topographic maps but frequently on other special topic maps as part of
the base information. In these instances the symbols are normally relatively small.
It may be possible to use numerical values to derive ranks, but frequently this is not
the case, e.g. the use of administrative status in classifying settlements.

FACTORS
symbol shape - normally simple geometric symbols are used, typically circles,

squares, or a combination (e.g. use circles for low ranking and larger
squares for high ranking). Symbols may be solid or outline only.

symbol size - generally relatively small symbols are used (0.5 to 2 mm).
symbol colour - usually all are same colour (typically black on printed maps). Due to

small size high contrast is required.

125

RULES - OC
1* use default LUTs in knowledge base to determine symbol sizes and shapes

for 2, 3, 4, and 5 ranks OR give user choice of using circles, squares, or
mixture, and solid or outline.

2 use colour with high contrast against background [black, red, purple]
(assumes white or light background)

OD Proportional or graduated point symbols. Some visual impression of
magnitude is given,

a graduated (classed) unipolar distribution
b proportional (unclassed) unipolar distribution
c graduated bipolar distributions [not considered]
d proportional bipolar distributions [not considered]

These point symbols may represent values relating to points; small areas
treated as points at map scale; or values relating to areas, but represented at a
point, normally at the centre of the zone. The data may be assigned ordinal classes
(small town, big town, city, etc.), in which case the rules for representation OC may
be used. More frequently some value will be known which can be depicted on a
continuous scale with symbol size varying in relation to the numerical value (ODb),
or from which classes may be determined, using criteria similar to 2D (ODa).

If one of the primary purposes of the map is to illustrate a phenomenon by
this method then the range of symbol sizes may be relatively large. A great deal
has been published about the depiction of graduated symbols, but the important
point is that if the data is grouped (ODa), there should be a perceptual difference
between the size of symbol for each class, and a suitable legend. The number of
classes will probably range from 3 to 7, more than this making the map user's task
difficult. It is also common to use unclassed data (ODb), in which case the size of
the symbol relates directly to the value. The perceptual issues involved in this latter
form of representation are complex and producing satisfactory results with the wide
range of values often involved can be very difficult. Legend design also presents
problems. At this stage the system will only handle classed representations, i.e.
graduated and not proportional symbols.

A certain amount of overlap of symbols is usually acceptable, although
excessive overlap, particularly of similarly sized symbols, makes evaluation difficult.
As a general rule large symbols are interrupted by smaller overlapping ones.

126

Mackaness1 (1986) rules could be used to adjust symbol positions to reduce
conflicts.

Symbols can vary in one dimension (length or height of bars), two
dimensions (area) or simulation of three dimensions (appear to vary in volume).
Only the second of these is considered at this stage. The length, area or volume
respectively varies with the quantity being represented.

FACTORS
symbol form - although many shapes can be used, circles and squares are the

most common, and discussion here is limited to these.
symbol size - maximum and minimum sizes of symbol must be determined. If

symbols are too large they will overlap excessively. It is harder for the user
to perceive variation if sizes are too small.

continuous or classified ranges - while continuous variation may be seen as
desirable, if the ratio between largest and smallest value is large then there
is difficulty in creating a scale without either the largest symbol being too
large or the smallest symbol too small. Only classified ranges will be used
here.

method of scaling- applies to continuous symbols where size is directly related to
value. Various scaling methods can be used e.g. radius of circle or side of
square, area scaling and perceptual modifications of these.

number of classes - too few classes reduce useful information; too many create
confusion

class intervals - see 2D
filled or open - symbols can be in outline or can have the internal area filled with

colour. If the symbols are large enough the fill may be constant for all
symbols, vary in lightness to enhance the effects of size, or vary in hue to
allow secondary classification of phenomena. For example, graduated
circles of power station output may be colour coded to indicate generating
method (coal, hydro, nuclear, etc.)

RULES - OD
1* default symbol is circle. User may select square.
2* initial maximum size = 1/2 average distance between nearest neighbours

OR set by system user.
3 IF data being represented is primary topic THEN solid symbols, ELSE

outline.

127

4 IF outline only THEN use high contrast colour.
5 IF solid THEN use medium to high contrast against background.
6 IF secondary coding data available THEN use hue to differentiate

categories.
7* Maximum of 5 secondary categories, colours by look-up table or by user
8* Multiple distributions not allowed by other means.
ODa
9* default is 5 classes. User may select 3 - 8
10* default is equal interval classes initially. User may modify this as for 2D

classes (initially either quantiles or user specified).
11* use look-up table to determine symbol sizes, or user specify
ODb

Scale symbols by area, i.e. use square root for computing radius/side.
IF continuous scaling would give smallest symbol radius/side less than 2mm
OR less than one tenth largest THEN use classified ranges (ODa).

0E Subdivided and multivariate point symbols.
a Fixed size
b Graduated
c Proportional

May represent information about points, areas considered as points at map
scale, or areas (usually by zone centroid). Pie symbols most common but many
possibilities. Simple rules as for 0D but many variations possible.

[not considered further]

OF Spot Values. Series of point locations with values. May have regular or
irregular distribution, (e.g. Digital Terrain or Surface Model)

a sparse data e.g. spot heights
b dense irregular data e.g. triangular irregular network
c grid digital surface model

The simplest representation is a small dot with the value written beside it. Spot
heights (OFa) often used to supplement contours or show data points used to
determine isolines. Soundings on hydrographic charts vary between OFa and OFb,
but would generally be considered as the latter.

[not considered further]

128

Line Symbols
Generally these represent linear features or change In class of a surface,

i.e. the outline of an area. They can also be used to represent movement, but this
is not considered.

The graphic variables used are line form, line gauge and line colour. Line
form refers to the structure of the line which may be continuous or broken, have
additional elements, or be composed of multiple lines. Line gauge refers to the
width of the line which generally depends upon relative importance of the
phenomenon. This also includes the spacing of multiple lines. Line colour is
normally limited to variations in hue unless the line is wide enough to allow
variations similar to those for area symbols. Wide lines may or may not be
enclosed by contrasting casing.

Maps for the screen present special problems for selecting line gauge, due
to screen resolution and dot pitch. It is probable that gauge will be specified in
multiples of dot widths (typically 0.25 - 0.4 mm) and may not relate directly to
hardcopy values. The terms fine, medium, wide and very wide are used to refer
ordinally to the gauge of lines. What these actually translate to will depend upon
the graphics processor card and the monitor, or the hard copy output device. (The
actual system is limited to single pixel and 3 pixel wide lines.)

1A Boundary symbols. Can represent:
natural boundaries (often zone of change)
actual ground feature forming boundary (often man made)
intangible (no real existence on the ground)

a nominal - all of same value - may be feature coded,
b hierarchical - typical of political/administrative boundaries.

Although a bounding line will be required for their production, the zone
outlines of area symbolism methods may or may not be enhanced by line
symbolisation. In some cases the change in area symbolisation may be all that is
required, although this could result in the apparent amalgamation of some adjacent
zones which may not be desired. The general rule is that boundaries of areas with
contrasting area symbols can be fine lines. Boundary lines unsupported by area
contrast need to be stronger.

How dominant the boundaries should be depends on the phenomenon and
how it has been classified. If the boundaries in reality can be clearly delineated and

129

there is a sudden change from one class to another over the boundary then the
boundary may be depicted strongly. Frequently, however, boundaries are either
approximate or an attempt to delineate one class gradually becoming another, i.e.
the boundary is indistinct. In these cases the boundary should be less dominant
graphically.

Administrative boundaries are commonly used as a convenient way of
parcelling land to collect data, but the boundaries may exhibit little sympathy with
the distribution of the phenomenon. Despite this, administrative boundaries often
seem to be given a high level of importance on maps and are normally symbolised
quite prominently. Indeed, they are frequently included as line symbols without the
accompanying area symbolisation, and are probably the only boundaries sensibly
treated in this manner.

FACTORS
line form - may relate to continuity or permanence of feature.
line gauge - relates to importance or permanence of feature.
importance - is specific linear feature required or is line required for change of area

symbols or can it be implied by this?
coincidence - does the boundary coincide with other linear features? If so generally

the other feature will be symbolised, or the boundary superimposed on the
other feature.

RULES - 1A
1 use continuous line form unless rules for phenomena specify otherwise,

e.g. use of LUT for administrative boundaries.
2 use minimum line gauge available unless boundaries main theme of map

when LUT used. May be user specified.
3 IF boundary important (ASK user) THEN use colour with high contrast

against background ELSE use low contrast.
4 is boundary symbol necessary or can it be implied by change in area

symbol without outline? Use rules for phenomena or ASK user.
[5 IF boundaries are hierarchical THEN map purpose, level of detail and map

scale can select levels to show OR user specify. (Part of select module?)]

1B Networks.
a feature coded, often hierarchical networks e.g. roads,
b branching hierarchical networks e.g. river systems.

130

Typically network data will be feature coded in a hierarchical scheme for
representation type a), or a hierarchy is explicit or can be computed for type b).
Symbolisation will follow this hierarchy for most data In colour each network would
be assigned a different hue, with sub-categories within a network being
differentiated by line width or form, the exception being roads where several
colours are often used, although this is less common on small scale maps. In
monochrome the number of networks may have to be limited to avoid confusion.
Hardware limitations may be important as it is often only possible to have a limited
number of variations in line weight and form.

Although multiple lines and variation of casing and fill are frequently used at
larger scales, at the very small scales considered here these are less common.

FACTORS
line form - generally at this scale continuous lines are used. Unless otherwise

specified in a look-up table for the phenomenon, plain lines will be used.
line gauge - the greater the importance/significance the wider the line. Lowest level

in hierarchy will generally get thinnest line possible and increase from that.
line colour - due to the use of thin lines, the main distinction will be in hue. Hues

used need high contrast with background.
level in hierarchy- the number of levels which can be shown is dependant on

scale, level of detail, etc.

RULES-1B
1 use continuous line form unless LUT available
2 IF other lines (1 A, 1B) THEN use different colour for each network OR

different form.
3 IF network hierarchical THEN map purpose, level of detail and map scale

can select level to show OR user specify
4 IF single level THEN use importance of feature (defined in knowledge base

or by user) to determine gauge, ELSE IF hierarchy THEN use thinnest line
for lowest level and increase up hierarchy. Ideally a lookup table for 2, 3, or
4 levels should be available. (For hard copy output a minimum difference of
0.1mm could be used) Some datasets will have specific look-up tables (e.g.
roads). As only two line gauges are available for the screen, rules for the
datasets will match the data to line width.

131

1C Isolines (contours). Lines representing a value and
dividing the surface into zones between two values,

a uniform interval
b progressive interval [not considered, but see 2E]

The representation of lines of equal value should in theory indicate the
nature of the data used to derive it. The data may be measured along the lines,
such as photogrammetric contours, or derived by interpolation from a number of
points. In the latter case '...its quality will depend largely on the density and
distribution of the points and any assumption adopted about the gradients between
them1 (Keates, 1973; 62). Thus, measured lines are appropriately symbolised as
solid lines, whereas lines interpolated from widely scattered points should indicate
their lower precision by being symbolised with pecked lines. In practice this is rarely
the case and solid lines are the most common. In addition, at the small scales
being considered here, the lines are likely to be derived from larger scale sources
and shown in a highly generalised form. Reliability is probably more important than
high positional accuracy.

If a colour series is used for the phenomenon (such as hypsometric or layer
colours) the isolines may either be implied by the change in area colour, or the
lines can be made a more dominant part of the image. The latter is more likely to
be the case for relatively simple special topic maps, where the primary
phenomenon is being depicted by isolines and colour series, whereas the former
approach is more typical of contours on topographic maps or where several
phenomena are being depicted on the one map. The isoline interval may be
smaller than that between area classes, with several lines within a layer.

While topographic contours typically have equal intervals, many other
isolines use a variety of unequal intervals which often appear arbitrary, although
usually there is a progressive, if uneven, increase or decrease in the interval. It is
beyond the scope of the present exercise to attempt to rationalise this. The data
made available to the system will be labelled with values. The system, based on
the map scale may suggest reducing the total number of isolines by increasing the
interval, but no attempt will be made to interpolate new isolines to force a particular
interval.

FACTORS
line form - can be used to indicate accuracy/reliability (e.g. solid = measured;

dashed = interpolated), but most often continuous plain lines are used.

132

line gauge - bold if important to theme of map or not supported by area colours.
line colour - contrast with background will depend upon importance. Normally all

isolines will be same colour.
vertical intervals - contours are normally equal, others may be progressive or

occasionally irregular. This will be incorporated into the data base. System
abilities limited to selecting every other line for simplified output at smaller
scales, or allowing user to select intervals.

index lines - these are emphasised lines every 4 or 5 times the standard vertical
interval, using a convenient round number. Normally only applied to
contours on topographic maps at scales >= 1:1M

multiple sets - it is quite common to have more than one set of isolines, e.g.
average temperature and average rainfall. These are normally distinguished
by colour, form, or both.

RULES-1C
1 IF main theme of map AND no layer colours THEN use bold continuous

lines.
2 IF layer colours being used AND lines required THEN use fine lines with

medium contrast to layer colours, [black, white, grey, or same as base hue
used for layer colours]

3 IF background information, use fine lines with medium contrast.
4 IF multiple sets, vary by colour OR form

1D Flow lines.
[not considered further]

1E Linear Cartograms
[not considered further]

1F Unstructured line symbols. Miscellaneous, non network, often isolated
and/or discontinuous line symbols not included in 1A or 1B (e.g. fences,
walls, geological faults, etc.)
Although widespread as part of the line image on large scale maps,

features such as fences and walls are rarely depicted on small scale maps. Often
they form boundaries and may be considered in part with 1Aa. Features such as
pipelines, power lines, etc., can be treated as for networks (1Ba).

[not considered further]

133

Area Symbols
- each zone homogeneous; changes occur at zone boundaries.

The use of the graphic variables for area symbols is much more flexible
than for either point or line symbols. Although the basic variables remain form,
dimension and colour, more precise definitions of the major variations are useful:
Area form - the actual shape of the areas cannot vary (except for cartograms),

although many authors (e.g. Robinson, et al., 1984) consider area patterns
(see below) to be a variation in form for area. Here, area pattern is treated
separately.

Area size - the size of areas cannot vary (except for cartograms), although again
many text books refer to changing the size of pattern components to be a
change in area size. This is treated here under area lightness and area
pattern.

Area colour- full use of hue, lightness and saturation is possible for areas. Great
contrasts in colour should be avoided if not warranted by the data: i.e. small
variation in data value = small variation in colour.

Area hue - used mainly for variations in type or kind. In selecting hues,
consideration must be given to their emotive effect. In representing natural
phenomena such as precipitation and temperature colour associations are
strong: e.g. red = hot and blue = cold.

Area lightness (value) - changes in lightness are used mainly to depict variations in
quantity or importance. Graphically this includes variations in the lightness
of solid hues as well as variation in the dimension and spacing of repeated
point or line symbols either in the form of tints or visible patterns.

Area saturation - seldom deliberately used as part of classification system. Varying
saturation can be used to create or enhance ordering or to help create
visual balance. Its systematic use is beyond the scope of the proposed
system.

Area pattern - Area patterns can vary widely in form (of component symbol(s)),
orientation, dimension (both of symbol and spacing), and colour. Variations
in pattern, signify nominal differences, but can be used to enhance Area
lightness and/or hue differences. Although patterns can be assigned a
lightness value, the visible structure of patterns allows them to be
differentiated from areas of continuous colour, either solid or tint. The term
area colour will be used to refer to the latter type of representation.

134

Apart from 2A, all area representations depict phenomena as continuously
covering the surface. The symbolisation will generally cover the whole area of
interest. All areas are delimited by (boundary) lines. Change in symbolisation can
only occur at these boundaries. The boundary may be specifically symbolised or
implied by change in area symbol. This will depend upon the nature of the
boundary and will be determined by rules for the phenomena

2A Isolated areas. Binary (dichotomous) division of surface - special case of
2C.
The simple subdivision of the surface into areas which do have some

particular characteristics and those which do not is a common occurrence in
mapping. For example lakes; woodland areas; oilfields. The surface distinctions
show actual area of occupancy of the phenomenon and are usually nominal. The
symbolisation of this type is graphically simple, the subject areas being symbolised
and the remainder left blank, creating a distribution map.

Other candidates for this classification would be 'non study area', such as
countries adjoining the country of study, which are often depicted in a pale grey
tone, or the sea. Often this type of symbol is a major component in creating a
visual hierarchy on the map.

This is probably the only type of area symbolisation that can coexist with
other area symbols satisfactorily, without very complex rules of interaction, but can
affect the choice of either continuous area colour, or pattern.

FACTORS
Colour or pattern? Simply, if the areas do not overlap other area distributions, or
take precedence over them (typical of water areas) then continuous colour used. If
there is overlap then use pattern, e.g. land over 1,000 metres on layer coloured
temperature map.

RULES - 2A
1 IF areas do not overlap other area symbolisation or precedence exists

(rules for phenomenon) then use Area Colour, ELSE use Area Pattern
2 IF phenomenon is part of main theme THEN use medium to high contrast

colour or pattern ELSE use low contrast colour or pattern
3 IF areas small at map scale THEN use solid high saturation colours

135

4 IF other area symbols being shown THEN use medium to high contrast with
those.

2B Unclassed, e.g. 'Political' map.
a single level
b hierarchical e.g. Country/state/county

In theory each area should be given a unique symbol. In practice, the main
rule is that each area must be assigned a symbol (colour or pattern) different from
each of its neighbours, but appearing to be of equal importance by controlling
lightness and saturation (2Ba). A minimum of four colours is required for this,
although more may be used. With the hardware limitations imposed on the system
it would be difficult to obtain more than 8 or perhaps 16 colours, or 8 appropriate
patterns that are distinctly different, but all appearing to be of equal lightness. For
the purposes here the top level of the hierarchy will use up to six colours or
patterns in look-up tables.

One solution to assigning symbols is to have each zone assigned a feature
code for its symbolisation in the database. This would, however, restrict the
possibilities of symbolisation. It is possible, given the relationships of the zones (i.e.
the topological structure), to automatically assign symbols to the zones to meet the
above criteria. This is a more flexible approach as it allows the number of colours
or patterns to be used to be determined when the map is being designed, not when
the data is being entered into the database. No implementation is known of this in
existing mapping systems.

If there is a hierarchy of zones (2Bb), the problem is a little more complex.
At the top of the hierarchy the solution is the same as above. Lower down the
hierarchy there should be an association between sub-zones within a zone which is
greater than that between zones. One solution to this is to distinguish zones by hue
and sub-zones by lightness, although the number and contrast of sub-zones will
depend upon the zone hue. While this use of lightness ostensibly breaks the
fundamental rule of this type of map, as long as the values used and their distri
bution do not appear to create a graded scale and that the purpose of the map is
made clear, this scheme can be used to good effect, e.g., the Political maps in
Collins Atlas of the World (1983). Varying saturation as well as lightness can help
to retain visual balance between the sub-zones. A more technically correct solution
may be to depict sub-zones in the zone colour and use variation in pattern to
distinguish them.

136

Again, due to hardware limitations, two levels of hierarchy would be the
maximum that could be depicted adequately. In colour, level 1 would be
distinguished by hue, with level 2 by lightness or pattern. In monochrome it is
probably only realistic to use area symbols for one level, i.e. patterns, but it would
be possible to use texture to create a second level e.g. a diagonal line pattern may
be modified by changing the spacing and width of the lines, but retain the same
'lightness' (Bertin's grain), or perhaps changing the orientation, but this can lead to
displeasing visual effects and is best avoided.

In selecting the colours or patterns for zones, an attempt can be made
either to maximise or minimise the differences, e.g. one could choose red, blue,
green and yellow, or one could choose four colours in the blue/green area of the
spectrum. Several recent atlases show a tendency towards the use of less
saturated colours than was once the case. This choice can probably only be made
by the author with examples of the possibilities being displayed.

FACTORS
area colour assignment - arbitrary assignment of colour (hue), but no adjacent

areas have same colour (minimum of 4 colours required).
area colour- choice of colours/colour range

- for uniform all should appear equivalent.
- for hierarchical - for all sub-classes, variation within a class should appear
less than between class variations, e.g. classes in red, blue, green, etc.
Sub-classes in shades of red, blue, green, etc., pattern, or texture.

level of hierarchy to display - Practically limited to two levels of hierarchy.

RULES - 2B
1 No adjacent zone may have the same symbol
2* Use scale and level of detail to determine level of hierarchy to show OR ask

user
3* Default is 5 colours, use look up table of equivalent colours OR user can

specify up to 6 colours or patterns.
4 IF hierarchy to be shown, use hue for first level and lightness (4 tints) or

patterns (4 or 5) for second
5 Cannot be combined with other area symbolism except [2A]
6 ASK user to select colour scheme from 3 options displayed (e.g. light

colours, strong colours, etc.), or create own LUT

137

2C Categorical. Data feature coded, e.g. land use, vegetation, geology,
a uniform
b hierarchical (i.e. includes sub-classes)

This representation is used for a great number of phenomena, such as land use,
soils, geology, vegetation, etc. A feature of these phenomena is that they tend to
be classified into a relatively large number of classes and sub-classes. Also, in
some cases there are standard area colours used for their depiction.

Like (2B) above, in theory each class should appear to be of equal
importance and therefore of the same lightness value, thus the primary distinction
between classes will be one of hue or pattern. Due to the number of classes and/or
sub-classes this is not always possible, but variations in lightness should be used
in a way which does not imply quantities or importance.

For this representation, feature coding must be included in the database
and symbolisation will be assigned according to this. If there is a 'standard1
symbology for a phenomenon, this may be included in the knowledge base. For
user supplied data the map author will have to assign symbols to the top level of
the hierarchy at least, although the system would select the appropriate number of
colours or patterns. The system will then be able to symbolise sub-classes
automatically if desired, provided that there is a limited number.

The solution to this type of symbolisation is basically that which Sampson
and Poiker (1985) attempted to automate, as described in Chapter 3.

FACTORS
usually main theme of map
area colour - assigned via look-up table, either using defaults tables (as for 2B) or

specifically for phenomenon.
level of hierarchy to display- depends upon scale and level of detail.
hierarchies - for all sub-classes, variation within a class should appear less than

between class variations, e.g. classes in red, blue, green, etc. Sub-classes
in shades of red, blue, green, etc., or use of pattern.

reclassification of attributes or combination of sub-classes may be required if too
many feature codes or if scale required creates many very small areas.

138

RULES - 2C
1 use scale and level of detail to determine level of hierarchy to show.
2 IF average area of sub-class zones too small [define] THEN show top level

only
3 If average area of zones too small [define] THEN suggest larger scale, OR

let user redefine classes.
4 IF known use 'standard' symbolisation ELSE use rules for selecting required

number of colours and patterns.
5 Cannot show other area symbols except [2A]

2D Graded series. Two possibilities for boundaries, but treatment of
symbolisation the same:

Choropleth. Discrete zones with numerical values - boundaries
imposed on distribution (normally administrative, but could also be
grid).
Dasymetric. Discrete zones with numerical values - boundaries
derived from distribution. (Could be from fine grid with internal
boundaries removed.)

a unipolar distribution
b bipolar distribution
c bivariate (not Dasymetric) [not considered further]

The representation scale of the phenomenon may be single or double
ended (bipolar). For a single ended scale, variation in value (lightness) is used,
although how this is applied depends on the phenomenon. Normally the use of
colour in such scales is metaphysical, i.e. the stronger (darker) the colour, the
greater the quantity. For bi-polar scales the lightest colour would be used for the
middle value with progressively darker colours away from the this, e.g. for
population change, yellow or white for little or none; progressively darker reds for
increase; and progressively darker blues for decrease. Bivariate schemes involve
representing two variables simultaneously in a cross-tabulated form.

The phenomena represented by this method can vary widely, although
generally the data are quantities aggregated over areas. The most common data to
be represented in this manner is census data which has been collected by
enumeration districts, but aggregated for larger statistical areas, commonly the
same as administrative units. It is arguable that populations are not suitable for
mapping as a continuous phenomenon, and the choropleth technique has been
much overused, but in the absence of a more detailed breakdown of data it is at

139

least possible to show some measure of the distribution. The value of the method
depends largely on the sizes of the zones and how well the boundaries relate to
actual changes in the distribution. If data is available at the sub-zone level (e.g.
unpopulated areas) then its use may help to remove some of the faults of this type
of depiction.

The boundaries employed are not usually natural boundaries of the
phenomenon but imposed political/administrative units. Due to variation in the size
and shape of the zones it is rarely satisfactory (despite common practice) to
represent total values. Either densities or ratios are more appropriate, or zonal
averages for the phenomenon. If the zones are of similar size (e.g. grid square
data) then absolute values may be appropriate.

Although it is possible to produce an 'unclassed1 map by assigning a grey
scale value (lightness) to each zone in proportion to its value (in effect having as
many classes as there are zones), typically the zones are grouped into a number of
classes based on their data value. Commonly 4 to 7 classes are used, but most
choropleth mapping programs allow up to ten classes (some allow many more, but
this is generally pointless). Too many classes are undesirable as the number of
perceptible differences is limited and it becomes difficult for the map user to
distinguish between them. Experience indicates that 4 or 5 classes are probably a
good basis from which to start examining the possibilities.

In addition to choosing the number of classes, the boundaries between
classes must be selected. There are numerous methods which may be employed,
common ones being equal intervals and quantiles. Typically the values are not
normally distributed so to try and more adequately match the distribution, some
methods are based on a more complex statisitical classification of the data, or
employ arithmetic or geometric progressions. Examination of the data values for
'natural breaks' is in many cases the best solution, but, unless some form of pattern
matching can be applied, it is unlikely that this can be automated. What can be
automated is the calculation of some measure of 'goodness of fit' of various class
interval schemes to the data, and although this cannot give a definitive answer, it
may be used as a guide.

The choice of the number of classes and the class intervals is a more
complex and skilful task than is apparent from the widespread use (abuse?) of
choropleth maps. Although often left to the cartographer, this matter should be

140

resolved by the map author (in consultation). More familiarity with the phenomenon
and the nature of the available data by the map authors would improve matters.
This whole aspect could be developed into an independent expert system and
detailed development is beyond the scope of the current project.

The choice of colour for this general class is quite wide, but some care must
be exercised. While it is important to differentiate classes, large differences in
lightness may imply larger differences between data values than is warranted. This
is one of the few types of representation for which the perception of screen images
has been studied (e.g. Dobson, 1984a; McGranahan 1985 & 1986a, b; Gilmartin,
1986; Gilmartin & Shelton, 1989) and some of the guidelines discussed are
incorporated.

FACTORS
number of classes - usually the data values will be continuous. Unless a continuous

representation is required the data must be divided into classes.
class intervals - the method of dividing the data into classes.
selection of base hue(s) - some common colour schemes exist.
determination of 'grey scale' - depends upon hue, number of classes and data

range.

RULES - 2D
1* Default is 5 classes but allow user to specify 3-8.
2* Default is equal interval classes OPTIONS: Quantiles; User specified.
3 IF classes <= 5 THEN single hue set of tints - [Greens, Yellow/Browns,

Reds, Magentas, Greys]
ELSE IF classes > 5 THEN part spectral range of tints [Yellow-Green,
Yellow-Red, Magenta-Purple, Blue-Purple]

4 IF bipolar THEN user must specify classes and change over point.
5 IF bipolar THEN choose complementary colours: Reds-Blues; Reds-Greens

USE rules of equal appearing steps for grey scale (look-up tables for each
hue)

2E Layer coloured series.
a unipolar distribution (e.g. average rainfall)
b bipolar distribution (e.g. temperature zones)

141

Graphically this is the same as the previous representation, the difference being in
the type of phenomena represented and hence the spatial relationships of the
zones.

The structure of the information is quite different from those areas
considered thus far, as here a continuous variation over the surface is implied
rather than a sudden discontinuity at a boundary, although the symbolisation can
only change at the boundary. This method is an enhancement of [1C], and uses
the same data

Many of the considerations discussed above (2D) apply, although it is
easier for the user to perceive a larger number of classes due to the spatial
arrangement (nesting) of zones. There are several conventions for phenomena
normally depicted this way, such as the use of blues for rainfall, red for high and
blue for low temperatures, etc.

Like [2Dc] above, the depiction may be bipolar with distinct ranges of colour
used above and below a specific value, which may be zero, the average value, or
some arbitrary value.

Data available will most often consist of isolines based on a relatively small
number of point observations; therefore the portrayal of the phenomenon will be
highly generalised. Selecting the number of classes and their range will seldom be
a requirement, although it may be desirable to merge classes on smaller scale
maps.

FACTORS
selection of vertical intervals - The data available will be the limiting factor, but

some multiple of the isoline interval may be used.
selection of base hue(s) - most 'natural' phenomena have some associated hue(s).

For others it is arbitrary.
determination of ‘value scale1- depends upon hue and number of classes.

RULES - 2E
1 Use rules for phenomena to select base colour(s)
2 Use LUTs of colours and patterns
2Da
3* maximum classes = 8

142

4* IF scale very small or detail low THEN max. classes = 5
2Db
5 change point = 0 or user specify value
6* maximum intervals = 10 (5 above, 5 below change point)

2F Hypsometric and Bathymetric colours
Spatially the same as 2E but difference in graphical treatment warrants separate
class.

Normally a progressive interval is used for heights (and depths). A variety of
colour schemes have been used for heights, although pseudo-spectral schemes
such as greens/yellows/reddish browns/purple is currently popular. The only
obvious solution to this is to have standard height ranges and use LUT.

Bathymetric colours are simpler as usually only blues or blues and white are used.

RULES -2F
1 Use LUT for colours

2G Area Cartograms. Areas scaled by a variable.
[not considered further]

SURFACES
- These differ from areas in that continuous variation is represented.

3A Shading. Symbolisation has continuous variation in lightness (e.g. hill
shading).
In addition to hill shading, this form of representation has also been

suggested for representing 'continuous' quantitative or statistical surfaces, by using
semi random dots in a set of cells on raster output devices (e.g. Groop and Smith,
1982).

[not considered further]

3B Block Diagrams.
a continuous
b stepped

Arguably these are not true maps as they are non-orthogonal. Sometimes referred
to as 2 1/2 D representations.

143

[not considered further]

3C 3D Surface Model.
It is not possible to display information in this form (except as a physical model or
hologram), but there is increasing importance in this as an internal representation
in a computer. The visualisation and rendering of the 3D surfaces could be
developed in this class

[not considered further]

RULES FOR PHENOMENA IN DATABASE
Here the rules applying to the various phenomena included in the database are
given. After the name the possible representation types are given (see above).
Default values for the factors involved are given followed by a list of possible
alternatives in square brackets. The majority of the rules presented here are
system specific, although several may well extend to other scales or uses.

Coastline (1A) This will be included on all maps (assuming the area includes the
coast).
Line_colour blue [black, white]
Line_form simple continuous
Line_gauge fine (single pixel)

Seas (2A) Generally symbolised except for outline maps.
Area_colour light blue [white, light grey, dark blue]

Rivers (1B)
Line_colour blue [black, grey, white]
Line_form continuous
Line_gauge Levels 2 and 3 - finest lines; Level one 5:3 of level 2 & 3.

Inland Water Bodies (2A, 1 Aa)
Normally these will be shown if rivers are shown.
IF Rivers shown THEN outline shown in River line_colour
Area_colour light blue [dark blue, white, light grey] (normally same as Seas)

Political Boundaries (1A)
Level 1 (International) shown by default - may be deselected
Level 1 must be shown when countries selected

144

Level 2 must be shown if first level internal division shown
Level 3 must be shown if second level internal divisions shown
Line_form level 1 long dash/short dash OR continuous

level 2 long dash/short dash; level 3 short dash/dot
Line_gauge level 1 medium, level 2 & 3 fine
Line_colour level 1 [black, red, grey]; level 2 & 3 [black or grey]

Countries (2Ba, 1Aa)
IF other area symbols (except 2A) THEN show by boundaries only
Default colour set = 5 hues, low saturation, medium lightness. Other LUTs

available.

Internal Divisions (2Bb, 1Ab)
Political boundaries must be shown to at least same level in hierarchy
IF size of units small [define] THEN show level by boundaries only (1Ab) and omit

lower levels
IF countries symbolised by 2Ba THEN first level divisions shown by tints and

shades (5) of country hue, second level by patterns (5) or boundaries only
ELSE IF countries symbolised by 1Ab THEN first level use hues (default set

as for countries) and second level tints or patterns

Settlements (administrative status) (OC)
LUT of default symbol form and size for 1, 2, or 3 levels
Colour - solid magenta [red, dark grey]

Major Urban Areas (2A)
Only show when scale > 1:2.5M
Area_colour - Grey [white, yellow, orange]

Roads (1Ba)
LUTs for 1, 2, or 3 levels being shown
Line_form continuous
Line_colour Red [grey, yellow, black], (note LUT may include dual coloured lines,

e.g. thick red with thin yellow fill. Line_colour refers to the outline colour as
contrast between this and the background is the most important
consideration. Normally all road classes will have same primary colour, but
may have different secondary colours.)

Check for conflict with other line symbols, especially boundaries

145

Line_gauge Level 1 only - medium (0.4mm)
Level 1 & 2 - Level 1 medium, level 2 fine (0.2mm)
Level 1 2 & 3 - Level 1 thick (0.6mm), level 2 medium, level 3 fine

Railways (1Ba)
Line__form continuous
Line_colour black [grey]
line_gauge fine

Relief (2F, 1C, 2A)
IF number of levels = 1 (e.g. land over 1000m) then 2A
ELSE IF other area symbols (except 2A) then 1D (rare at these scales)
2F specific LUTs for 2 to 8 levels
1D Line_form continuous [dashed]

Line_colour brown [orange, black, white, grey]
Line_gauge fine

2A IF other area symbols THEN Area_pattern = fine black [white] diagonal lines
ELSE grey tint

Geology, Soils, Land Cover, Land Use (2Ca)
Specific LUTs for each, based on feature classes

Annual Precipitation (2Ea, 1C)
IF other area symbols (except 2A) then 1C
1C Line_form continuous [dashed, chained]

Line_colour blue [white grey black]
Line_gauge medium [fine .. thick]

2Ea IF classes < 5 use blue LUT
IF classes >= 5 use yellow/blue LUT

Ave Annual Temperature (2Eb, 2Ea, 1C)
IF other area symbols (except 2A) THEN use 1C
IF min temp < 0 THEN 2Eb, with 0 as change point
IF min temp >= 0 THEN 2Ea [user select 2Eb and change point]
1C Line_form continuous [dashed, chained]

Line_colour red [white, grey, black]
Line_gauge medium [fine .. thick]

2E IF classes <= 5 use red [magenta] LUT

146

IF classes > 5 use yellow/red LUT
2Eb Use blue LUT for classes with values < 0

Use red LUT for classes with values > 0

Population (2Da, ODa)
IF population density required THEN compute and use 2Da

ELSE IF Total population required THEN use ODa
2Da
Area_colour Greens (yellow/brown, reds, magentas, greys, part spectral)
Use colour LUT, depending on number of classes.
ODa
Point_colour red [magenta, orange, white, grey, black]
Point_size use LUT (ideally should compute size based upon number of points,

map area and average spacing, but this is not implemented currently)

Urban Population (Settlements) ODa
Point_colour red [magenta, orange, white, grey, black]
Point_size use LUT (ideally should compute size based upon number of points,

map area and average spacing, but this is not implemented currently).

Rural Population (2Da)
Compute or use density
Area_colour Greens (yellow/brown, reds, magentas, greys, part spectral).
Use colour LUT, depending on number of classes.

Population Change (2Db)
IF even number of classes THEN compute classes above and below zero

ELSE have middle class centred on zero.
Use bipolar colour LUT, depending on number of classes.

CHAPTER SEVEN

Developing a prototype map design

expert system

Many problems studied within Al call for inference. Unfortunately, the
general purpose inference mechanisms which have been built in Al
are known to be susceptible to combinatorial explosions. One solution
to this problem is to build domain-specific inference mechanisms.
Building such a mechanism is non-trivial and, by definition, the
researcher can inherit little from those which have been built before.1

THE SYSTEM
The MapDesigner system essentially consists of four parts. These are the

database of geographic information; the knowledge base which holds information
on how to use the data; a user interface; and a control program (inference engine)
which interacts with the user interface, the database and the knowledge base and
guides inference. In addition to these primary components, several supporting
elements are also required for a complete cartographic design expert system. As
shown in Figure 7.1, these include a knowledge acquisition system and an
explanation system, required for ail expert systems, together with a graphical
output system, a geographical data input system and a geographical data
description system required specifically for a cartographic expert system. The
geographical descriptions, or metadata, could be incorporated into the main
knowledge base, or stored independently as illustrated. Before detailing each of
these components, some general points about the selection of hardware and
software for developing the system should be considered, and the effects these
decisions may have on the resulting system.

DEVELOPMENT ENVIRONMENT

Hardware
Although the best advice in 'going digital' is first to define your problem, find

the software that can solve the problem and then buy the hardware which that

1 Bundy, A., Byrd, L., Mellish, C.S. Special-purpose but domain independent, inference
mechanisms. In: Steels & Campbell Progress In Artificial Intelligence. Chichester: Ellis
Horwood Ltd., 1985, p.93.

148

o m
<co

cn

0)0

Fig
ure

7.1

Th

e
Ar

ch
ite

ctu
re

of

a
Ca

rto
gr

ap
hic

De

sig
n

Ex
pe

rt
Sy

st
em

149

software runs on, in setting out to develop a system slightly different criteria come
into force. Although ten years ago personal computers seldom had the necessary
power, memory capacity, or graphics capability to serve as the main development
platform for a comprehensive design expert system, the current generally available
models certainly are sufficiently fast and powerful to develop a system to the
prototype stage, if not the full production stage. Indeed, with the release of the
Windows NT operating system there has been a considerable increase in the
possibilities of comprehensive GIS packages moving onto the PC platform as
witnessed by the current move by Intergraph from Unix workstations to top of the
range PCs running Windows NT.

Perhaps one of the most significant developments of PC hardware from the
mapping view point was the introduction of the VGA graphics standard in the late
1980s and its subsequent adoption as the virtually universal graphics standard by
most systems. Although there are now enhanced version of the VGA standard, its
ability to plot at a resolution of 640 by 480 pixels in 16 colours from a choice of 64
resulted in a practical system for plotting coloured maps without recourse to
esoteric, specialist graphics adapters which would limit potential distribution of any
system relying upon them.

Thus, the decision was made to develop the system based on fairly basic,
standard hardware available. As developed, the system could conceivably run on
an 8088 based PCXT with 640k RAM, but a more realistic minimum is an 80386
PC with 1 Mb of RAM and a hard disk. A standard VGA graphics card is also
required.

The system as developed is compiled and no additional special software or
software licence (or hardware) is required to run it.

Software
There are two options in developing an expert system: use an existing

inference engine, i.e. use a proprietary expert system shell; or develop an
Inference engine specifically for the system. An evaluation of several Mainframe
and PC based expert system shells indicated that none had the facilities required
to develop a cartographic design expert system. The main difficulties are in
integrating the inference mechanism with the required cartographic database and
the production of graphic displays. Some shells, such as VP Expert and Knowledge
Pro do have the ability to incorporate graphics, but these are either pre-created

150

stored images or simple charts and diagrams2. Robinson and Jackson (1985)
examined the use of expert system shells for the MAPAID system and reached the
conclusion that they were inadequate for the complexities of map design. Thus, at
an early stage a decision was taken to develop a customised inference
mechanism. This view has also received support by others developing map design
systems (e.g. Muller and Wang, 1990; Zhen et al, 1993) and Intelligent CAD
systems (e.g. Ditterich and Ullman, 1987).

As noted previously, knowledge engineering is frequently cited as being a
major bottleneck in the development of expert systems. A customised inference
mechanism has the advantage that the format of the knowledge base can be
designed to facilitate the knowledge engineering process and the nature of the
problem to be solved. Thus, the structures used to represent the knowledge can be
as close as possible to those used by the domain expert (Merritt, 1989; 4), or at
least those that offer the most appropriate representation. This further supports the
development of a customised inference engine.

Having decided to develop a specialist inference engine, the choice of
development language must be considered. While traditional (procedural)
languages such as Pascal, C and Basic have been used for some expert system
development, they generally are viewed as being less than ideal and most opt to
use 'fifth generation' languages. These languages support the declarative
programming approach (see below) which is more suited to the type of problem
solving involved with Al and ES rather than the procedural approach adopted by
more traditional languages.

Amongst those developing cartographic expert systems and systems in
other fields, Prolog is one of the most popular languages. In this case Turbo Prolog
by Borland International was adopted for a number of reasons. First, it was
relatively inexpensive when first introduced (under £200). Borland had developed a
reputation for good quality language products and their introduction of a Prolog
compiler quickly led to a much wider distribution and knowledge of Prolog. Second,
the author was familiar with other Borland products such as their Pascal compiler
and the development environment was similar. Unlike most versions of Prolog for
the PC, Turbo Prolog allowed the use of real arithmetic not just integer arithmetic,
clearly essential for processing map co-ordinates, etc. The compiler includes a set

2 The 1994 release of Knowledge Pro for Windows (Developers Edition) reportedly has the
capability to plot the required graphics and merits further investigation.

151

of basic graphical commands which could be used to plot maps on the screen, a
facility not included in other Prologs available at the time. And, finally, the system
generates true compiled code which does not require an interpreter to be used at
run time, resulting in significantly faster execution of the system.

The initial version of the compiler was quite limited in the scope of programs
which could be developed, mainly due to memory limitations, but since Version 2 it
has been possible to develop modular programs which overcome many of the
limitations of the earlier version. In the early 1990s Borland withdrew the product
but it has continued to be made available by PDC of Denmark, the original
developers of the system for Borland. The current version is Version 3.3, although
most of the changes since Version 2 are minor. There are in fact four different V3.3
compilers: a DOS compiler, an extended DOS compiler, a Windows version and a
Unix compiler. As initial development took place in the Prolog V2 and V3.0
compilers under DOS, this environment has been retained. It was hoped with
Version 3.3 to use the extended DOS compiler which allows access to memory
beyond the DOS 640K limit, but the extended version does not allow graphics,
which would entail writing a graphics system in C which could be linked to the
Prolog system. The Windows compiler has not been investigated, but clearly there
is potential for future developments in that direction, particularly as the graphical
capabilities under Windows greatly exceed those currently available.

There have been some problems with the compiler, mainly due to memory
restrictions. Prolog is notoriously memory hungry and the DOS memory limit and
the necessary use of modular programming place some limitations on the flexibility
of the inference engine. Also, the development environment is not very stable, with
unexplained crashes of the system happening rather more frequently than would
be desirable. On many occasions a version of the program which previously
compiled satisfactorily would lock the whole computer on subsequent compilation,
requiring a 'cold reboot' (i.e. switching the whole system off).

In addition to the compiler, use has also been made of the PDC Prolog
Toolbox, a suite of routines which can be 'included' in programs being developed.
Many of these are related to the user interface and extensive use has been made
of the menu system. There is also a further development of the graphics system,
the main advantage of which is a built-in scaling system to convert from an arbitrary
co-ordinate system to that of the selected graphics device, and some use has been
made of this.

152

PROLOG
Prolog was fist developed in the early 1970s at the University of Marseilles

as a convenient tool for programming in logic (hence pro - log) and is now one of
the best known languages for artificial intelligence development. The generally
accepted standard definition of Prolog is the description of the language given by
Clocksin and Mellish (1981).

Unlike conventional programs in languages like Pascal, in Prolog a
description of the problem is given by a series of facts and rules and the program
asked to find all solutions to the problem. The essential premise is that the
programmer describes what must be done, but the Prolog system itself organises
how the computation is carried out (Borland International, 1986). This is known as
a 'declarative' approach, rather than the 'procedural' approach to programming
adopted by Basic, Pascal, etc. where the programmer is also concerned with the
mechanisms of solving the problem. This in theory should result in Prolog programs
being shorter (i.e. requiring less lines of code) than procedural programs, easier to
program, and easier to read and understand. While this may hold true for relatively
simple programs, as program complexity increases programming in Prolog is not
necessarily as simple of some of the introductory textbooks might imply. What is
clear is that the thought processes involved in programming in Prolog are quite
different from procedural programming and the conversion from programming in
one paradigm to the other is not trivial.

PDC Prolog
Although conforming to the basic principles outlined by Clocksin and Mellish

(1981) the implementation of the Prolog language in the PDC Prolog compiler has
some distinct features, some of which extend the language and others which place
restrictions on it. The discussion of Prolog here concentrates on this specific
version, although some of the differences from 'standard' Prolog are mentioned.

Essentially a Prolog program is descriptive: it consists of a description of
how to solve the problem. This description is made up of two basic components: a
series of named objects involved in the problem; and a set of facts and rules

describing relations between objects. A PDC Prolog program consists of a series of
initial declarations defining objects and their structure followed by a list of logical
statements combining the rules and facts. Most implementations of Prolog do not
require the detailed declaration stage required by PDC Prolog. The system
operates by trying to solve a goal. When the program is executed the system tries

153

to find all possible solutions to that goal. If only one solution is required, execution
can be stopped at that stage.

Objects
The PDC Prolog compiler is known as a typed' compiler. That Is, before any

variable is used it must first be declared and its characteristics defined. The first
section of any program is the 'domains' section which contains these declarations.
The four main standard (built in) domains are integer, real, string, and symbol. The
first two are self explanatory. Strings are any series of alphanumeric characters
enclosed in double quotes e.g. "this is a string". Symbols can have two formats: the
first is identical to a string; the second is any sequence of letters, numbers or
underscores (J starting with a lower case letter and not including spaces, e.g.
map_topic.

In addition to the standard domains, the programmer can also declare
custom domains. These custom domains are always composed of a standard
domain, a combination of the standard domains, or custom domains already
declared. They may be a subset of an existing domain. A common example is the
'key' domain which includes definitions of all the keys on the normal computer
keyboard. Domains such as 'row' and 'column' both declared as integers are useful
for making other definitions easier to read and understand, etc., rather than simply
using the standard domains. For referring to dates as a single entity a 'date'
domain could be declared:

date = date (Integer, Integer, Integer)

List domains, which consist of a list of terms all in the same domain can
also be declared, e.g. Integerlist = a list of integers. Lists can be passed by the
program as a single entity or the contents of the list can be worked on individually.
Lists and operations on them are a very important aspect of programming in Prolog
and are discussed in more detail later.

So, for example, we could declare a domain 'point' which contains the pair
of real values indicating the position of a point and a domain 'line' which consists of
the list of co-ordinate pairs making up the line:

DOMAINS
point = point (REAL, REAL)
line = point*

154

where the * indicates a list of the denoted domain. This would allow the whole set
of co-ordinates describing a line to be passed as a single entity to a plotting routine
for example.

Domains can be quite complex as becomes apparent from the 'symbolspec'
and 'symbolspeclist' described in Chapter 8.

Facts and Rules, Predicates and Clauses
'Facts' and 'rules', referred to as terms', are used by Prolog to relate

objects. These terms are defined by a 'predicate' declaration and used
operationally as 'clauses'. Many versions of Prolog do not require predicates to be
specifically declared before use, but PDC Prolog does. The declaration indicates
the domain of each element in the predicate call, e.g.

predicates
colour (symbol, symbol)
level_of_detail (integer)

Thus, the predicate call for colour includes two objects, both symbols, and that for
level_of_detail one integer.

Facts take the general form:
relation_name (objectl, object2, object3, . . .).
e.g.
clauses
colour (water, blue).
colour (minor_roads, yellow).
map_user (general).
map_use (overview).

The example facts express the English language statements the colour of water is
blue', the colour of minor roads is yellow, 'the map user type is general' and the
map use is overview'.

Rules link facts together and take the general form
relation_name_a (object, object, . . .) if
relation_name_b (object, object, . . .) and

relation_name_z (object, object, . . .).

155

Generally the 'if' is replaced by the s y mb o l a n d the 'and' by the s y m b o l T h e
relations within a rule may be either facts or further rules, so we can have a
hierarchical definition of rules. A rule such as 'if the user of the map is general
users and the purpose of use is overview then the level of detail is 4' could be
expressed in Prolog as3:

level_of_detail (Level)s- % rule head
map_user (general), % }
map_use (overview), % } rule body
Level =4 . % }

Note that objects starting with a capital letter are variables in Prolog. In the
example both 'overview' and 'general' are assigned (fixed) values to the symbols in
the map_user and map_use facts (i.e. they are not variables). These two facts
must be true for the clause to succeed. 'Level' is an 'unbound' variable (i.e. has no
value) in the 'head' of the rule (the predicate call), only being assigned a value
(bound) in the last line. The value 'bound' to Level in the last line would be returned
as its value after the 'body' of the rule has been executed. This bound value for
Level could be used as an input variable in the head of subsequent predicates.

In fact, the example does not illustrate efficient use of Prolog and conforms
closer to the procedural paradigm. As both map_user and map_use are fixed, this
rule could more efficiently be written as:

level_of_detail (4):-
map_user (general),
map_use (overview).

There would be several alternative versions for such a level_of_detail rule (i.e.
multiple clauses) in the program, each returning the appropriate value depending
on the truth of the facts for use and user.

In effect the domains and predicates sections of the program are equivalent
to the declaration portion of procedural languages and the clauses section is like
statements part.

Goals
Prolog operates by trying to solve a goal. Goals can be entered in two

ways. There can be a goal section in the program which determines the problem to

3 Note: anything entered on a line after a % sign is treated as a comment and does not
affect execution. Also, predicates can extend over several lines - spaces between terms are
not significant.

156

be solved. The goal looks like any other clause, i.e. It can include both facts and
rules. It can simply call one predicate or it can be 'compound1 goal calling several
predicates in sequence. The goal will only be satisfied if all the predicates called by
it can be satisfied. A program can only have one goal, although this is not a major
limitation. For example the goal section in MapDesigner takes the form:

goal
initialise,
mainmenu,
closedown.

Mainmenu is a call to the main menu of the system that repeats until the user
selects exit, thus satisfying the predicate and allowing processing to move on to the
closedown predicate.

% map user
% map use
% level of detail

If there is no goal section in the program, the Prolog system opens a
dialogue window and requests a goal. To illustrate this, we could rewrite our
level_of_detail predicate in a different way:

predicates
level_of_detail (SYMBOL,

SYMBOL,
INTEGER)

clauses
level_of_detail (general, overview, 4) .

level_of_detail (general, analysis, 6).
level_of_detail (specialist, overview, 6) .
level_of_detail (specialist, analysis, 8).

Here we have level_of_detail declared with three components, the first two input
values and the third an output. We have four different facts for level_of_detail
If the goal level_of_detail (general, overview, X) was entered at the
goal prompt the system would respond with : x = 4, no more solutions.

This simple example can also be used to further illustrate the power of
Prolog. We can use the same predicate to carry out different functions. We could
for example enter the goal ievei_of_detaii (specialist, x, 8) and the
system would respond With X = analysis, no more solutions.

If we asked ievei_of detail (x, y, 6) the system would respond
with:

X = general, Y = analysis.

157

X = specialist, Y = overview,
no more solutions.

In this last case, the system has continued to search for all possible alternatives to
the goal and reported them.

Although this section has described the goal section, the process is
essentially the same throughout the system. The predicates making up the goal are
subgoals. Each predicate called by those predicates are subgoals of that and so
on. An essential element of Prolog is its ability to follow a line or reasoning until it
fails to satisfy a goal (or subgoal). If this occurs, it 'backtracks1 to look for
alternatives to goals already satisfied. If it finds an alternative it then moves forward
again adopting the new values for objects. In order to carry out this backtracking, it
is essential that pointers to backtracking points are stored. It is for this reason that
Prolog requires relatively large amounts of memory. Everywhere in the program the
system encounters a predicate with alternative solutions, e.g. two facts for the
same predicate, two clauses for the same predicate, a clause which calls a
predicate with more than one solution, etc., a backtracking point is retained.

Without control over the search process, Prolog's 'relentless search for
solutions' will continue its blind search until every possible alternative route through
the solution tree has been examined. The way this is prevented is to use the 'cut'.
The cut (expressed in programs by an I) effectively tells the system that we are
satisfied with the solution found to this point and all previous backtracking points
for the current predicate can be removed. In our level_of_detail example above, If
we entered ievei_of_detaii (x, y, 6), i . at the goal prompt we would only get
the first answer. Further examples of how the cut operates are given in Chapter 8.

Working with lists
As noted above, lists are an important structure of Prolog. Lists can hold an

arbitrary number of objects, so although they appear initially like arrays in other
languages, the length does not have to be declared. A list is composed of
elements; each element will belong to the same domain. Examples of lists of
integers and of strings might be [1,2,3] and ["red","blue","green"]. A list is
considered to be composed of two parts: the head, which is the first element; and
the tail, which is a list containing all the remaining elements. An empty list is
expressed as []. Conceptually a list is a tree structure composed of a head and a
tail, the tail being composed of a head and a tail and so on. For example, the list

158

[a,b,c,d] could be written as [a | [b, c, d]], or decomposed even further to [a | [b |
[c | [d | []]]]] . The 'I1 symbol is used to separate the head of the list from the tail.

A list is a 'recursive compound data structure' and as such needs special
procedures to process it. The general case is that the list is divided into two
portions, the 'head' and the 'tail'. The head element is operated on then the tail,
which will itself be split into a head and a tail, and so on. It is generally necessary
to have at least two clauses to process a list, one which does the main processing
and one which checks to see if the end of the list has been reached.

The classic list operation is to determine if a value is present in a list. This is
generally referred to as the member predicate, e.g.

member (name, namelist)

member (blue, [red, green, blue, yellow]).
In English the processing of this routine is as follows: 'name' is a member of the list
if 'name' is the first element (the head) of the list, or 'name' is a member of the list if
'name' is a member of the tail. The first clause checks the head of the list. If the
head does not match 'name', the clause fails and alternative clauses for the
member rule are sought. In the second clause, the head (which we now know is
not a member) is discarded and the tail processed. The tail then becomes the list
used in the member test. In Prolog a simple program might be (PDC, 1992; 183):

e.g

domains
colour = symbol
colourlist = colour*

predicates
member (colour, colourlist)

clauses
member(Name,[Name|_]).
member(Name,[_|Tail]) % second clause

% check to see if name is head

% define a list of colours

member(Name,Tail). % recursive call to the member
% predicate with the tail

If the goal member (blue, [red green, blue]). was entered the system would
answer'true'. If the goal member (yellow, [red, green, blue]). was entered, it
would respond 'false'.

159

The MapDesigner system makes extensive use of lists. Further examples of
list processing are given in Chapter 8.

The Prolog Database
Although all facts and rules can be included in the main program sections, it

is convenient to be able to manipulate facts at run time. This is achieved in PDC
Prolog by the use of a 'database' section. The database section of the program
looks identical to the predicates section and in effect declares the facts which can
be stored in a database. These facts can be used in exactly the same way as facts
in the main program, but additional facts can be entered (asserted) into the
database at run time, or removed (retracted) from the database. Thus, having
determined the level of detail using the clauses described above, we may assert its
value into the database:

predicates
get_level

level_of_detail (

ask (

database
l_o_d (INTEGER)

clauses
level_of_detail (
level_of_detail (
level_of_detail (
level_of_detail (

get_level:-
ask ("who is intended map user? ", User),
ask ("what purpose is the map for? ", Purpose),
1, % the cut means don't backtrack

% beyond here
level_of_detail (User, Purpose, Level)

% try and match User and Purpose
% with facts for level of detail

SYMBOL,
SYMBOL,
INTEGER)

STRING,
SYMBOL)

% get level of detail
% and store in database
% map user
% map use
% level of detail
% asks for information
% question
% response

general, overview, 4).
general, analysis, 6).
specialist, overview, 6).
specialist, analysis, 8).

160

assert (l_o_d (Level)). % add value to database
goal
get_level.

In practice, the level_of_detail facts could be stored in a database (i.e. the
knowledge base) and loaded into the system's memory at run time using the built in
predicate 'consult1. Databases modified during program execution can be stored in
a file using the 'save' predicate.

PDC Prolog is not limited to a single database. There is always one (and
only one) unnamed database associated with a programme, but there may be any
number of named databases loaded into memory. Naming a database has no
effect on the use of predicates, but by having several named databases
(knowledge bases), only the facts relevant to the particular task need be loaded
into memory at any given time, hence reducing memory usage for facts and
allowing more to be used for backtracking pointers, etc.

Individual facts can be removed from the database using the retract
command, although retract will fail if the elements in the predicate call do not match
a fact in the database. Whole databases can be removed by using the retractall
command (which never fails) and specifying the database to be removed.

Many versions of Prolog allow both facts and rules to be stored in the
database, but PDC Prolog only allows facts in the database. This is one of the
major limiting factors in developing an expert system where all the domain
knowledge is stored in the database (or knowledge base) rather than incorporated
into the main program. The limitation can be overcome to some extent in some
situations but not entirely. The approach adopted in the system being developed is
at least to separate the cartographic rules from the general inference procedures,
even if practically the rules have to be part of the program rather than part of the
knowledge base.

In summary, PDC Prolog is a 'typed' Prolog compiler which has the
advantage of many built in graphics predicates allowing relatively easy
development of graphics programs without the need to interface to other languages
or systems. A major disadvantage is the limitation that only facts may be asserted

161

into the knowledge base at run time. This makes it harder (but not impossible) for
new rules, either inferred by the system or supplied by the user, to be added.

THE INFERENCE MECHANISM
The inference method adopted is a predominantly forward chaining

mechanism, i.e. it is a data driven solution, where rules are matched against
existing facts to establish new facts. Backward chaining, using hypothesis testing,
is used at some points, mainly to establish if a default value is the most appropriate
or to make a choice between options. An overall backward chaining approach has
been attempted for map design (e.g. Muller & Wang, 1990), but in the author's
opinion the lack of adequate evaluation procedures for assessing map design
makes this approach less desirable. Merritt (1989; 7) points out that where it is not
possible to enumerate all of the possible answers beforehand and have the system
select the correct one, a goal driven, or backward chaining, approach will not work.
This is because the variability of the inputs and the number of ways they can be
combined is almost infinite.

The choice of inference method has some effect on the interface with the
user. In a data driven system a number of facts must be initially established for the
system to infer new facts from, whereas in a goal driven system facts are only
gathered as they are needed. Thus, the initial fact gathering part of the mechanism
may appear more like a conventional procedural program, although if correctly
programmed only relevant questions will be asked.

A forward chaining system consists of three components: the rule set; a
working storage area with the current state; and an inference mechanism which
knows howto apply the rules (Merritt, 1989; 74). Rules take the general form:

Rule (no.) IF [condition(s)] THEN [action(s)]
The execution cycle is:

1. Select a rule whose condition(s) match the currently stored state.
2. Execute the action (s) to change the current state.
3. Repeat until no more rules apply.

A disadvantage of forward chaining systems is that it is harder to implement
explanation because as each rule is processed it modifies the working storage,
thus covering its tracks. 'Why' can be implemented by having an associated
explanation for each rule but to answer 'How' some form of trace facility would
have to be implemented.

162

KNOWLEDGE REPRESENTATION
Frames are used as the main knowledge representation method for the

map design specification. These are particularly appropriate for problems where we
can identify a number of stereotypes, in this case a relatively small number of basic
map themes and representation methods. Each of the blanks or 'slots' in the frame
must be filled in order. This is achieved by a procedure or procedures being
associated with each slot which may, for example, ask the user to answer a
question, or refer to other frames (Giarranto & Riley, 1989). The resulting system
has a hierarchical structure where the topmost frames represent generalities and
the lower ones are customised for more specific instances. Frame based systems
have been identified as being particularly appropriate representations of objects in
the design process (Lansdown, 1988; 1162).

The structure of frame based systems adds intelligence to the
representation by allowing objects to inherit values from other objects.
"Furthermore, each of the attributes can have associated with it procedures (called
demons) which are executed when the attribute is asked for, or updated “ (Merritt,
1989; 9).

In some examples, the inheritance feature of frames is used to reduce the
number of slots in an individual frame by using a slot labelled 'a kind of which
indicates that the frame inherits the properties of the frame(s) further up the
hierarchy. Slots for these properties are not included in the frame unless the value
is different from the default. While this is a more compact representation than fully
representing each frame it is less clear. An alternative is to distinguish between
frame definitions and instances of frames. Frame definitions specify the slots for a
frame and instances provide specific values, for the slots. Frame instances will be
updated in working storage and accessed by the rules (Merritt, 1989; 114). For
example, Map would be a frame definition and Topographic would be an instance
of Map.

Examples of the MAP frame are given in Figures 7.2 and 7.3. The generic
MAP frame (Fig. 7.2) indicates the slots to be filled, the kind of information that will
fill them and the procedures that are used to fill them, or that come into operation
when the value in the slot is altered. A frame from the second level of the hierarchy
is illustrated in Fig. 7.3a. There are three possible frames at this level, for 'basic',
'cultural1 and 'physical' maps which exist largely as a starting point for designing
maps of topics 'unknown' to the system. At the third level of the hierarchy frames

163

represent individual map topics, and at the fourth and most detailed level frames
represent individual map designs, which have all slots filled (Fig. 7.3b). Space does
not allow the members of lists or details of the procedures to be shown in these
diagrams.

Frame: MAP
SLOT FILLER PROCEDURES
Title Optional Askjjser
Author System user Ask_user
Date System date Ask_system
Map_topic Compulsory Built_menu
Map_class Derived from topic get_class
Notes Optional Ask_user
Description
Map_user General Menu; if_change_rules
Map_purpose Overview Menu; if_change_rules
Output_media Screen Menu; if_change_rules
Level_of_detail Computed get_LOD
Layout
Location Compulsory Build_Menu; if_change_rules
Format Fill screen Menu; when__added_rules;

if_change_rules
Scale Max possible Menu; when_added_rules;

if_change_rules
Selection
Selectionjndex Computed compute_SI; if__change_rules
Basejnformation List derived Selection_ru!es
Thematicjnformation List derived Selection_rules
Symbol_specification
Specifications List derived Fill_representation_frames

Notes - Filler column - italics = default value.
Figure 7.2
The MAP frame

There is also a series of cartographic representation frames (described in
Chapter 8). Each of these contains slots for the parameters specifying the symbols
in enough detail for them to be drawn. These slots are filled by default values,
procedures, or by reference to look-up tables containing colour sequences, point
symbols, line patterns, etc.

164

Frame: (a) MAP: Basic (b) MAP: Geological
SLOT FILLER FILLER
Title Optional Nigeria Geology
Author System user David Forrest
Date System date 01/01/95
Map_topic Basic Geological
Map_class Basic Physical
Notes Optional
Description
Map_user General Specialist
Map_purpose Overview Overview
Output_media Screen Screen
Level_of_detail Computed 4
Layout
Location Compulsory (2,3,15,15)
Format Fill screen Fill screen
Scale Max possible 7500000
Selection
Selectionjndex Computed 7
Basejnformation known list of options [known list]
Thematicjnformation known list of options [known list]
Symbol_specification
Specifications List derived [List of symbols]

Notes - example columns- italics = default value, bold = slot filled,
[] = list, details omitted.

Figure 7.3 a & b
Examples of MAP frames.

The rules associated with the slots are represented in the system in a
number of ways. Due to the difficulties of placing rules In the external knowledge
base with PDC Prolog, some are associated with particular modules of the
inference mechanism. Those procedures which are basic to the system and would
apply universally to any cartographic design system, such as those for calculating
and checking scale and format, are integrated with the inference mechanism.
Others more specific to this system are separated to allow for easy modification.

As the size of the knowledge base grows, performance becomes
problematic. Various indexing systems can be used to speed up the process
required to find the next rule to solve. The rules in forward chaining systems
generally need to be indexed by more complex methods than required for
backward chaining systems. By using the MAP frame definition as the controlling
structure for inference and filling the slots in a specific order to create instance
frames, complex rule indexing methods may be avoided initially. They may be

165

required if full flexibility is to be achieved at the Modify stage of design. The
problem is also reduced in MapDesigner by declaring a number of different rule
and fact structures for specific aspects of the problem, rather than trying to use
generic rules and facts to cover all situations. This is essential as the problems to
be solved for different slots are unique to that stage in the process. The whole
nature of the problem, and hence the solution, is quite different to the 'classical'
classification type of expert system typically described. A possible future
development would be to incorporate a version of the Rete match algorithm as
described by Merritt (1989; 138) used in other forward chaining systems to optimise
performance.

Although the order of processing the slots is fixed in the inference engine,
any slot may in fact have its value pre-assigned, i.e. the system can load partially
complete frames. Before calling the procedures associated with a slot, a check is
made to see if it is already filled.

THE USER INTERFACE
The user interface to the system is menu based. The user is never

confronted with a blank screen and left wondering what to do next. Two basic
screen arrangements are used, one during text based queries and the other when
graphics are being displayed. This is due to the simpler handling of textual
information with PDC Prolog in text mode rather than graphics mode. The user
interface toolbox that is supplementary to the main Prolog system provides a wide
range of facilities such as different types of menus, but only for text mode
operation.

Responses to menus are entered via the keyboard. Mouse support is
available in the toolbox, but has not been implemented for two reasons. First the
systems used in the initial development of MapDesigner did not have a mouse and
second, the types of response required can be quite satisfactorily achieved using
the keyboard. It would be quite possible to add mouse support as the predicates in
the user interface toolbox are designed to allow this.

The screen layout is similar throughout the different modules of the program
and is made up of three areas in text mode (see Figure 7.4). and four in graphics
mode. At ail times the bottom line is a status line. This indicates the action required
by the user, such as 'press space bar to continue', and the other keys which are
active, such as F1 for help, etc. Immediately above the status line is a message

166

window. This is used to inform the user about current actions by the system, or
issue warnings and error messages. Simple messages such as 'loading knowledge
base - please wait' may appear and disappear without the user being aware of
them - no particular attention is drawn to them and they largely are issued to inform
the user that something is happening. If an error occurs (e.g. the user has entered
an illegal value) the message is accompanied by a beep and the system pauses
until the space bar is pressed (indicated in the status line) to acknowledge the
message.

The largest part of the screen in text mode is used for the main dialogue
with the user. The current module name is indicated by a title at the top of the box
surrounding the dialogue area. These modules are colour coded (e.g. Description
has a green frame and uses green highlight boxes), although most users will
probably be unaware of this. The dialogue area has a blue background with
normally yellow text. Menus appear within this area and have a black background
with white text.

Most of the interface simply requires the user to move the cursor to the
appropriate menu item using the cursor keys and then press the F10 key to
activate. Occasionally the enter key has to be used and the space bar after any
pauses in execution to allow the user to read the screen. The F1 key is used to call
the help facility, the F2 key to ask 'Why' a question is being asked, the F3 key for
'How' decision has been reached and the Esc key to terminate the current activity.
Wherever possible default values are given to questions (both with and without
menus) so the user only needs to press the F10 or enter key to accept that
response.

The majority of the menus used simply list the options and require the
appropriate choice to be made. Some menus allow for multiple selections and, for
the selection of map topic, a tree structured menu is used rather than a simple list.
The construction of this tree menu is discussed in Chapter 8. The interactive
screen handler of the toolbox is also used where more varied input is required,
such as in entering the limits of the area to be mapped. This allows the user to
enter (or edit) values in a number of boxes in the screen. When the F10 key is
pressed the values in each of these boxes is passed to the program. The use of
this technique is particularly useful in editing existing parameter values.

167

lAFDESIGNER

Hodify or display a previous nap
Load existing nap design f i l e
Save nap design
Hon Nap Designer Works
Utilities
Exit Hap Designer (QUIT)

-nessayes

Use arrou keys to select, F10 to ac t iva te

Figure 7.4

An example of the standard text screen layout.

nw> Dl

Figure 7.5

Example of graphics screen layout.

168

In graphics mode, the status and message windows are similar, but the
main part of the screen is divided into a map window and a legend window (Figure
7.5), although currently no legend is plotted. This rather simplistic approach to
layout is satisfactory to illustrate the operation of the system, but clearly better use
could be made of the available space depending upon the shape of the map, or
indeed the outline of the area of interest. Such matters of overall composition of
the image are obvious areas for future development.

Help, How and Why
Some form of help system is an important part of any fully developed user

interface. Although no help system is currently implemented in the program, the
necessary links for a comprehensive context sensitive help system are built into the
user interface toolbox predicates, which is one of the reasons for adopting these
for all input from the user. All that is required to implement a help system is to
provide a file of the necessary help information and to set the correct help context
before each opportunity for the user to enter information. If the user then presses
the F1 key the appropriate help message would appear. On clearing the help
message, execution would proceed as normal.

Explanation facilities are much harder to implement, particularly, as noted
above, for forward chaining systems. In asking 'Why' the user is seeking
information about a question - why is it being asked; in asking 'How* he is seeking
information about an answer - how has that result been determined. The difficulty
in implementation probably accounts for the almost total lack of mention of
explanation facilities being implemented in the literature on cartographic design
expert systems.

It is easier to include a system that appears to answer 'why' than 'how1.
Many 'why' questions can be answered in a similar way to the context sensitive
help system described above as one can predict the situations where these
questions are likely to be asked and incorporate standard answers. Such an
explanation is included in the system developed by Wang (1992), but this is not a
true explanation system as it does not track the logic of the program as it is
executed. Although one could try and predict where 'how1 would be asked and
provide stock answers - basically textbook definitions of standard situations - this is
not a satisfactory solution. Also, all discussions in the literature refer to textual
explanations of questions or solutions. A comprehensive explanation facility for a

169

cartographic design expert system would also need to incorporate graphical
explanations. This possibility clearly demands further investigation.

For certain parts of the system it would not be too difficult to track events
and provide satisfactory textual explanations, particularly the description and layout
modules, but where questions would be more significant is in the symbolisation
module. Here the extensive use of recursion and backtracking and the number of
symbolisation possibilities resulting in the combinatorial expansion of the search
tree make it much harder to implement satisfactory explanation facilities. As a
result the system does not incorporate an explanation system, although like the
help facility links exist in the program to allow one to be implemented at a later
date.

DATABASE & METADATA

The database
Although the system is capable of producing a specification for an abstract

map, in order to produce an actual map it is first necessary to have some
information to map. In the longer term it is desirable that the system be capable of
interfacing with a number of databases, but it is expedient to limit the interface to a
customised database in the first instance. Experience has shown that PDC Prolog
is very particular about the format of files to be read and is prone to problems in
reading 'foreign' files. The preferred situation is for PDC Prolog to read files it has
previously written. It is possible to simply read in lines from text files and carry out
type checking and conversion, but this is a diversion from the main task of the
system, so the most straight forward solution was adopted in order to speed
development.

Database files read by the system are all of one of four formats: node files
which contain point information; chain files which contain line data; polygon files
which contain the boundaries of areas; and data files which contain attribute
information about points or areas (Currently all lines used by the system have
either a feature code or a single value and therefore do not need to be associated
with a datafile). The format of each of these files is given in Appendix E. In many
current GIS, chain and polygon files are equivalent and the polygon boundaries are
built from topologically encoded chains, but polygon construction has not been
incorporated into the system as developed, although the specification of chain files
is such that they could be used to build polygons if required.

170

In order to match the requirements of the Borland Graphics Interface (BGI)
plotting routines in PDC Prolog all chains and polygons are read as terms1, i.e. the
whole string of co-ordinates is read as a single entity (a list). In practice, this places
a limit on the maximum number of co-ordinates in any chain or polygon (although
no details of limits for list membership are given in the manuals). The main difficulty
is getting the data into a file written by PDC Prolog. In building the database it is
necessary to reconfigure compiler memory allocation to enter large data sets, but it
is not possible to run the map design system with this configuration. Once read in
and stored as Prolog terms there seems to be no difficulty in accessing,
manipulating and plotting the information.

Metadata
There are some differences in the use of the term metadata in current

literature on GIS. In some cases it is used to refer to rather general, global
characteristics of databases or data sets, containing information about sources,
availability, dataset quality, etc., to enable potential users to evaluate their utility
before purchasing or otherwise acquiring the data The alternative use refers to a
more detailed description of individual elements of the dataset and is perhaps more
an extension to the data dictionary incorporated into most database management
systems. Although there is obviously overlap between these two levels of
knowledge, the differences are significant. Here the term is used to refer to the
more specific information describing in some detail every element in the database.

As mentioned previously, a long term goal is to develop an expert system
capable of interactively building this metadata or knowledge base about the data,
shown in Figure 7.1 as the Geographical knowledge acquisition sub-system.
Currently the knowledge has been determined manually based upon analysis of
the data using the guidelines set out in Chapter 5 about phenomena and
information. As the system developed, the importance of this metadata became
increasingly obvious, although it is rarely if ever discussed in developing design
expert systems, where the emphasis is usually on representational issues. Having
determined the metadata characteristics these are entered into a series of facts in
a knowledge base called 'Meta'. The expert system to be developed to acquire this
knowledge would quite likely use a frame based model as again there are
stereotypical situations, and the storage structure used by 'Meta' would allow this
approach.

171

Four different types of metadata are stored in the metadata knowledge
base. These are the main information about classes of data, details of individual
co-ordinate files, details about data (attribute) files and lookup tables to translate
between names for features used in the system's knowledge base and their names
in the database. These are referred to as meta_data, coord_file, data_file and
look_up respectively. Their structure and possible contents are illustrated by
Figures 7.6, 7.7, 7.8 & 7.9.

SLOT Possible values () = comment
feature category (symbolic name for feature class used in

MapDesigner expert system)
data capture date

comment
phenomenon discrete (point at map scale)

linear
specific areas
continuous surface

spatial data points
lines
boundaries (polygons not explicit)
polygons
cells

attribute level identical
feature coded
hierarchical_feature_coded
ordinal
interval
ratio_absolute
ratio_density
ratio_derived
external (not defined here)

nature of phenom tangible
conceptual

symbolic name of
co-ordinate file

(reference to 'coord_file' not actual name)

lookup file name (actual file name)
symbolic name of data file (reference to 'data file')
symbolic name in data file (the name of the attribute or column)

Figure 7.6
Meta_data slots and possible values.

172

SLOT Possible values 0 = comment
symbolic name of file (provides link with meta-data)

file type point
line
boundary
polygon
cell

digitising date
coord limits of data

digitising scale
source

projection sphere (i.e. coords in Lat & Long)
plane
projection name

units degrees
miles
kilometres

scale factor for coords (multiplier of file co-ordinates to get units)
filename (actual name of file stored on disk)

comments

Figure 7.7
,coord_filel metadata and possible values.

SLOT Possible values 0 = comment
symbolic name of file (provides link with meta-data)

file type data (only attribute values)
coord (both co-ordinates and attributes)

data source
variable names list (list in order of columns in file)

filename (actual name of file stored on disk)
format (generally Prolog terms, but may be

specified)
comments

Figure 7.8
'data_file' metadata and possible values

SLOT Possible values 0 = comment
feature class (class name in MapDesigner)

feature kbase name (name in MapDesigner knowledge base)
feature dbase name (name in database)

Figure 7.9
'lookjjp' metadata and possible values

173

It should be noted that as currently implemented by MapDesigner, the
datafile may consist only of data or may include co-ordinates as well as data. The
data format used for point data allows one feature code and one numerical value
for each point to be included in the file. Polygon and chain records both include a
field for a feature code (See Appendix E). This means that the symbolic names in
'meta_data' for 'coord_file' and 'data_file‘ may be the same. The system checks for
this and only opens the appropriate file once. If no 'data_file' is specified in
'meta_data' the system assumes that the feature code in the co-ordinate file will be
used.

The fourth set of metadata, the lookup table of feature names allows
greater flexibility in linking existing data with the system. MapDesigner makes
extensive use of descriptive names for features, e.g. major_river, state_boundary,
whereas in digitising different feature codes may have been used (for example
MapData uses numerical codes). It would not be practical to convert all existing
datasets to the MapDesigner names so the 'lookup1 metadata provides the
linkage. Where the database name is the same as the MapDesigner name no
look_up file need be specified in 'meta-data'.

This chapter has outlined the basic structure of the system and its major
components. It has also introduced some of the basic principles of programming in
Prolog. The next chapter describes how these principles have been applied to the
particular problem and gives details of the solutions to the tasks involved.

CHAPTER EIGHT

Description of the MapDesigner System

While it is possible to download information [to a computer]... this
would not retain the essential experience. There is an ineffable quality
to [human] memory which cannot survive this procedure.1

THE BASIC STRUCTURE
As was shown in Figure 2.1 the basic components of a cartographic expert

system are the knowledge base, the inference engine, the user interface and a
database of spatial and attribute data. MapDesigner conforms to this basic pattern,
although due to limitations of the Prolog compiler the separation of the knowledge
base from the main program or inference engine is not complete. Where elements
that would ideally be part of the knowledge base are incorporated into the program
modules they are generally kept separate from the inference mechanisms and any
parts that can be accessed from the knowledge base are. This results in an
inference engine that is more specific to this particular problem than would be the
ideal case, but there is still sufficient flexibility in the system to extend the range of
scales or topics which could be accommodated.

The system is of considerable size and is broken down into modules. This is
essential due to the memory limitation of PDC Prolog, but also means that the
program is split into logical units and a single unit can be developed independently
of others. The main disadvantage of modular programming is that it is not possible
to retain backtracking points across module boundaries. This means, for example,
that when choosing representation methods, if the range of features selected
cannot all be assigned a representation method the system should backtrack to the
selection process and reduce the number of features selected. Currently the
system would fail in this situation and the user would need to interactively reduce
the number of features selected. In practice, testing of the system has never
resulted in such a failure and it is thought to be unlikely that this will occur given the
way the system prevents conflict at the selection stage. Problems are most likely to
arise when the user requires several thematic topics to be included in the one map.
Two such topics is probably the practical limit of the current system (e.g. urban and
rural population; temperature and precipitation). Beyond this the map is likely to be
rather complex. There is body of opinion against including too many topics in one

1 Lt. Cmdr. Data [an android], Star Trek: The Next Generation, 'The Measure of Man.'

175

map as they become too complex to communicate their message. It is probably
better to carry out some analysis of the information and map the results of that
analysis, or to produce a number of simpler maps.

There are more modules than the main sections indicated in the discussion
on the map design process in Chapter 5. This is due to memory limitations and
primarily affects the symbolisation stage which is further broken down into sub
modules. There are also additional modules such as a utilities module and there
are links built into the main system to allow further expansion by including modules
for data verification, editing the knowledge base, etc.

In parallel to the modular structure of the inference engine, the knowledge
base is also split into modules. While this is not the most desirable scenario, it is
again due primarily to memory constraints, but also simplifies the loading and
removal of facts relevant to the current program module. The sectioning of the
knowledge base does not affect operation in any way, other than using separate
predicate names for the different modules where perhaps one predicate could be
used more extensively.

The intention here is not to describe each and every minor step in detail, but
to follow through the process of designing a map and outline the main function(s)
of each module and show how the various tasks are solved. This is followed by a
more detailed discussion of some specific cases and examples of system output.

In the program extracts included here the following should be noted:
1. the extracts are not necessarily complete operational examples, but an

indication of the structure of predicates and clauses.
2. many predicate names in the actual programs have an additional prefix to help

identify their context, e.g. all knowledge base predicates are prefixed by 'k',
frame slots by T, temporary working values by V , etc. These prefixes are
generally omitted here for ease of reading unless needed to distinguish
between predicates.

3. Prolog conventions such as the use of [] to identify l i s t s , t o represent 'if, etc.
are used.

4. predicates called within a given clause are indented. Clauses end with a
Prolog statements can extend over several lines, all blank spaces (except
between quotes) being of no significance, or several predicates can be on the
same line.

176

5. the underscore character _ is used to join characters to form a single identifier
in Prolog and is widely used to increase readability, it can also be used on its
own to represent the 'anonymous' variable, i.e. it will 'match' any value.

6. anything on a line to the right of a ’%' is a comment and is ignored during
compilation.

7. the menus shown here represent the main element of the screen. However
generally there will be other information shown as to how to use the menu, etc.
Items in bold in these menu (reversed out text in system) indicate defaults.

Full listings of the programs, knowledge bases, etc., are given in the
appendices, as are screen images of some of example menus.

MODULE 'MAIN1
This is largely a housekeeping module. It issues messages welcoming the

user, reads a set-up file (setup.kba) and checks to see that the knowledge bases
are valid. The main menu is presented to the user who selects the appropriate task
(Figure 8.1). The main menu operates in a similar fashion to most of the menus
presented to the user with the relevant instructions on how to use the menu being
given in the status line at the bottom of the screen. The default choice is
highlighted and can be selected by pressing the F10 (or Enter) key. Other choices
are made by using the arrow keys to highlight the appropriate choice then pressing
F10. It should be noted that at no stage is the user confronted with a blank screen:
there is always some instruction as to how to proceed.

__________ MAIN MENU_____________
Design a new map
Modify or display a previous map
Load existing map design file
Save map design
How MapDesigner works
Utilities
Exit MapDesigner (QUIT)__________

Use arrow keys to select/ F10 to activate

Figure 8.1
The Main menu

177

The main controlling predicate 'designjnap' is part of this module. This predicate
calls each of the modules required to produce the map in turn. Once a map has
been designed the user is returned to the main menu. When exit is selected all
open knowledge bases are closed, the most recent map design specification is
written to a default file (frame.frm) and execution stops.

Design_map
This is the main predicate which builds up the map specification frame and

plots the map. When entering each of the main predicates called by design_map, a
check is made to see if the appropriate slot is already filled. If so, the system
moves on to the next slot. This allows partially specified maps to be loaded by the
system and completed. Thus, if the user knows he wants a particular feature
included and/or symbolised in a certain way this can be pre-set. This does not alter
the knowledge base, but does allow, for example, a standard base map to be
specified for a series of maps. It also allows one mechanism for editing previous
maps whereby the values to be changed are simply deleted from the frame. This
chapter concentrates on the modules called by this predicate.

Other functions
As noted, many of the functions of the Main module are of a housekeeping

nature. Several of the functions called from the main menu are still to be
implemented, such as loading existing map design frames and explicitly saving
them. Saving the most recent frame occurs automatically to a default file called
'frame.frm', although this is only intended as a mechanism for checking the
operation of the program, and clearly any released version would have to
implement these functions. 'How MapDesigner Works' is intended to provide a brief
tutorial on the system.

Utilities
Selecting 'Utilities' from the main menu brings up a further menu which

allows one to: edit the set up file; edit the knowledge base; load different
knowledge bases; or carry out operating system commands. Apart from the last on
this list, these functions have not been fully implemented in the current version of
the system.

178

MODULE 'DESCRIPTION1
This module largely gathers preliminary information about the user, the map

topic, etc., and as such uses a forward chaining (data gathering) mechanism. It
provides values for the slots map_date, map_author, map_title, map_topic,
map_purpose, map_user, output_media and level_of_detail. In any run of the
system the maps produced are automatically allocated a sequence number. This
ensures that all maps within a given run of the program are unique. Previous map
frames from the run can be selected for editing in the Main module (as well as
loading frames from previous sections).

Although this module provides values that fill more slots than any of the
others, it is the least complex. Map_date is automatically filled by the system.
Map_title and Map_author are both filled by the user entering the desired name
when prompted, null values being acceptable (i.e. no title or author designated).
Map_purpose, map_user and outputjnedia slots are all filled by selecting from
simple menus, whereas level_of_detail is obtained from the knowledge base.

The module ends by displaying a summary of the slots filled by this module.

MapJJser & Map_Purpose
These two slots are filled by values returned from pre-defined menus. The

map user is by default the system user, with alternatives of general users or
specialist users being presented. Maps for general users will have less detail; those
for specialists or the map author (system user) will have more. The default for
purpose is 'overview' with the only alternative being 'analysis'. Maps for analysis will
contain more detail; maps for general overview will be simpler. Thus the least
detailed maps will be overview maps for general users and the most detailed will be
maps for analysis by specialist users.

Map_Topic
The map^opic2 slot is a critical slot as it is one of the primary controls over

map content. The more closely the user can choose the main map topic to his
desired product, the more the system can help, or complete the process
automatically. The menu presented to the user is in the form of a tree rather than a

2This slot was previously referred to as map_type, and this name is used in the programme.
At a late stage it was decided that map_type could lead to confusion and therefore either
map_theme or map_topic was preferable.

179

simple list of topics. The further to the right a topic is in the tree the more detailed it
is defined.

This menu is not pre-defined; the tree is built automatically for each run
from information in the knowledge base (see 'kbase.kba' in Appendix B), and
consequently it is a simple matter to add new map topics to the system without
requiring recompilation of the inference engine.

The fact kmap_content essentially represents a partially filled Map frame or
'child' of Map for each of the known map topics. It takes the form:

kmap_content(map_topic, map_class, [list of base_info scores],
[theme_info_list], base_info_list)

Map_topic is the primary subject of the map, e.g., topographic, population,
precipitation. Because each topic belongs to a higher level class (map_class), a
hierarchy of map classes is defined and a tree structured menu built as shown in
Figure 8.2. The list of scores for base information (currently 18 features, but
modifiable in the knowledge base without recompilation) indicate the probability of
including each potential base map feature in a map of that topic. A feature with a
score of 10 means that the feature should always be included in maps of the
selected topic and a score of 0 means never include it. The names of these base
information features are stored in a list with the name given by 'basejnfojist', the
names being listed in the same order as the scores. Therefore it is possible to have
different knowledge bases using different sets of base information. Further detail of
the map_content predicate describing how selection is carried out is given below.

'Themejnfojist' is a list of the sets of topic information that could be
expected to be included in a map of that topic. If the topic is well defined (to the
right of the tree) e.g. 'urban population', a single theme data set (or none) will be
included. For less well specified map topics, e.g. 'population', a number of themes
or variables will be included. In this case further questions will be asked later to
determine which of the possible themes are to be included. (Potentially, new
variables could be added or computed from the database, but this is currently not
implemented).

180

map topic

> basic
> outline

-> topographic

> cultural

political

> population

economic

► settlements

> urban

> rural

> industries

> agriculture

» communication

relief > soils

* physical
land cover -> vegetation

-> geology

> climate
> precipitation

temperature

Figure 8.2
Map Topic menu

Output_media
This important slot is filled by a value returned from a pre-defined menu.

Various options are presented, including screen, monochrome print, colour print,
slide, etc., but currently only screen can be selected. Although there are many
parallels in designing maps for different media, there are differences in resolution,
colour etc., to be considered and certain parts of the knowledge base are specific
to the medium, particularly those parts connected with the specification of symbols
and the display module. In a fully developed system different knowledge bases
would be loaded for different output media, but the prototype is limited to screen
maps.

Level_of_detail
This slot is derived from the values of mapjjser, map_purpose and

output_media. Currently there is a series of facts in the knowledge base covering
the possible permutations of these values, each with a value attached:

level_of_detail(map_user, map_purpose, output_media, l_o_d).
e.g.

181

level_of_detail("author", "overview", "screen", 4).
level_of_detail("general", "overview", "screen", 2).
level_of_detail("specialist", "analysis", "screen", 8).

With three values known (map_user, map_purpose and output_media), the
unification function of Prolog searches for the appropriate fact that matches the
bound input variables and binds a value (l_o_d) to the unknown variable:

get_levelofdetail flevel_of_detail(_),1.

assert(flevel_of_detail(LOD)). % put value into frame slot

It would be possible to contrive a method of computing the level of detail,
but a simple solution described above was adopted. The level of detail can range
from 1 to 10, although for screen maps the maximum value returned is 8 due to the
limited resolution of the screen display. Output media such as slides or overhead
foils would normally have a more restricted range, whereas maps designed for print
would use the full range. Monochrome output would have less detail than colour.

Although this value is derived automatically, the user has the opportunity to
modify it in the 'show description' screen.

This module is responsible for filling slots determining the location, the
format and the scale. No attempt is made to produce anything other than a
rectangular map area. Overall map composition is not considered, although space
is reserved on the screen for titles, legend, etc., in standard positions. Again, this
module ends by displaying a summary of the information gathered.

get_levelofdetail
map_user(User),
map_purpose(Purpose),
output_media(Media),

% value already in frame
% don't do any more
% main clause
% get user from frame
% get purpose from frame
% get media from frame
% cut - having got these values
% don't look for alternatives

klevel_of_detail(User, Purpose, Media, LOD),
% look in kbase for matching fact
% this will give a value to LOD
% which was unbound

MODULE 'LAYOUT'

182

Latjong
As the system is directed to small scale maps, latitude and longitude are

seen as the primary means of defining the area of interest, although the user may
opt to enter projection co-ordinates of the area (see below). Ideally the user would
be able to have an outline map displayed on the screen and pick the desired area
with the mouse, but this has not been implemented. An alternative is to let the user
choose the area of interest by name from those entered into a gazetteer and this
possibility is offered as the default choice. The gazetteer is organised in a
hierarchical fashion which first shows continents, then countries then states or
regions. The menu allows multiple zones to be selected simultaneously (rather than
having to repeat the menu several times). Between levels in the hierarchy of places
a menu requests whether all sub-zones or only a selection are required. Having
selected the required zones, the system computes the maximum and minimum
values for latitude and longitude from the individual zone limits.

Facts in the gazetteer take the form:
extent (Zone_name, zone_class, min_long, min_lat, max_long,

max_lat).
e.g.
extent ("Africa", "World", xl, yl, x2, y2).
extent ("Nigeria", "Africa", xm, ym, xn, yn).
extent ("Anambra", "Nigeria", ...).
extent ("Bauchi", "Nigeria", ...).

The list of places for the menu at the appropriate level of the hierarchy is
assembled using the Prolog predicate 'findall', e.g.

findall (Place, extent (Place, "Africa", _/_/_/_)* Places)
This assembles the list 'Places' which contains all the values for 'Place' which have
"Africa" as the second argument in the predicate 'extent'. (In practice, Africa could
have been passed from the higher level menu call listing all the continents.)
"Places" would then be passed to the menu. This again illustrates the principle that
wherever possible information is removed from the controlling program, and that
menus, etc., are only constructed when they are needed and that what is in the
menu depends on the knowledge base attached, i.e. it is independent of the
inference engine.

The location selection menu uses the Prolog Toolbox 'Menumult' which
allows multiple values to be returned from the menu, rather than just one (Figure
8.3). If the user fails to select a zone from the list, the system automatically repeats

183

the menu with the warning message that somewhere must be selected (i.e the
system doesn't just crash). The returned list from the menu is the position of the
items chosen from the input (displayed) list, not the actual values (names). This
index list is then processed to extract the names of the zones required from the
'Places' list. This resulting list of the desired zones is then scanned, the gazetteer
searched for the maximum and minimum extent of each and the overall maximum
and minimum latitude and longitude computed.

Select place(s) to be mapped

Bauchi
Bendel
Borono

Use ENTER key to select choices, F10 when finished

Figure 8.3
The select places menu

Further additions to these options would be to allow the user to specify
certain places (i.e. 'point' features) to be included or to specify a radius around a
point. This would be simple to add to the system at a later date.

Limits
The limits are the minimum and maximum co-ordinates in the selected

projection. If latitude and longitude values are entered then the limits are calculated
by the system. The module has the ability to use any number of projections, but
currently only one is included, reflecting the projection of the test data set. It is
beyond the scope of the present exercise to develop a map projection selection
module although in a fully developed system one of the map projection expert
systems described in the literature could be incorporated.

184

It is a requirement that map limits are specified, and this must be done
before the scale or format is determined. It is not possible to produce map
specifications without defined limits.

Format
Once the limits have been determined, if either the format or the scale are

known the other can be calculated. Either format or scale could be determined first,
but it is likely that there will be constraints on format, due to screen size, plotter
size, report format, etc., therefore, if neither is pre-defined, the format menu is
shown first. To assist users in specifying the format, a list of common formats is
given (Figure 8.4), although the user is allowed to specify any dimensions required
or to opt to specify scale first. When the output is to the screen, the default setting
is 'fill screen'. For plotter output the default would probably change to 'A4 with
margin'. The system automatically determines if portrait or landscape format is
more suitable.

Select format - Size of Map
Full A3 - 42 * 29 cm
A3 with margin - 38 * 25 cm
Full A4 - 29 ★ 21 cm
A4 with margin - 25 * 18 cm
Full A5 - 21 * 15 cm
A5 with margin - 18 ★ 12 cm
Fill Screen
Specify own dimensions
Calculate from scale and location

Figure 8.4
Format menu

Clearly an 'intelligent' system must be able to check if the selected format
fits within the allowable format of the output device. Many systems do include this
facility for printers and plotters, but most systems, both mapping and other graphic
packages, handle the size and scale of screen images very poorly. It appears to
have escaped the attention of software developers that the image area on a 17"
monitor is bigger than that on a 14" monitor. Generally the only set up parameter
that can be accessed by the user is the screen resolution, but a virtually univeral
assumption is made that a 14" screen is in use. For example, in all Microsoft

185

Windows based software the author has used, selecting an image view of 100%
(i.e. life size) gives a larger than full size view on a 17" monitor. If it is possible to
inform Windows of the monitor size, this facility is not easy to find. The monitor
size, therefore, should be specified in the program set up information, in the same
way as the size of a printer or plotter would be, in order that a check can be made
on the maximum size of map that can be shown at the selected scale.

Scale
If the format has been specified first the scale is computed. If this is outwith

the scale range allowed by the current system the user is prompted to reselect a
suitable format. The allowable scale range is specified in the knowledge base and
reflects the range of scales for which the knowledge base has been developed. It is
not a limitation of the inference engine. Although the exact scale is calculated
initially, the value entered into the slot is the nearest smaller scale from a list of
sensible rounded scales stored in the knowledge base.

If the format has not been specified, a menu is displayed listing a selection
of rounded scales within the range allowed by the system (Figure 8.5). The user
may select one of these or enter any specific scale. The format is then computed. If
this exceeds the known dimensions of the output device the maximum possible
scale for the selected limits is computed and reported to the user.

Select Scale
: 2 000 000
: 3 000 000
: 5 000 000
i 7 500 000
s 10 000 000
: 15 000 000

Calculate from location and format
Specify own scale__________________

Figure 8.5
Scale menu

186

MODULE 'SELECTION'
As the name implies, this module is concerned with selecting the

appropriate datasets to be plotted from those available in the database, based
upon the information gathered above together with facts from the knowledge base
about what should be included in the desired kind of map. The selection process
operates at the level of classes, and also at the sub-classes level when such
hierarchical information is available, i.e. it will choose the appropriate level of the
hierarchy to include but will exclude less important levels. It does not currently
selectively omit (i.e. eliminate) members within a sub-class.

Selection Index
In order to include the appropriate level of base information, the first stage

is to compute a selection index. Values for scale and level_of_detail are retrieved
from the current frame and the maximum scale is retrieved from the knowledge
base. The formula used to compute the selection index is:

Index = 11 - (trunc { (max scale number / selected scale number) * 10}
+ { (level_of_detail - 5) / 2}).

This formula was developed empirically and has produced satisfactory
results over the scale ranges involved. Alternatives may be required for different
scale ranges and this is a topic that merits further investigation.

The predicate returns a value in the range 1 to 10. The larger the scale, or
the higher the level of detail required, the lower the index value. The index value is
then checked against the list of scores for base information in the 'map_content'
predicate (see Map_Topic above) and those feature classes with scores equal to or
above the index are selected. This assumes that the scores were determined with
a knowledge of this criterion, although the critical element is the maximum scale for
which the knowledge base is designed.

Basejnfojist
The user may opt for either automatic or manual selection of base

information. Currently only the default, auto selection, of base information is
implemented. It would be a trivial matter to let the user select their own base
information and this should be possible in an operational system. However, this is a
situation where the system can easily remove a task from the user, and one which
he will rarely be greatly concerned about, thus leaving him to concentrate on more

187

difficult tasks. Even with manual selection it would be useful for the system to
highlight the set of preferred choices.

The classes of base information stored in the database are given by the
fact:

klist ("base_info_types",
["Coastline", "Major Rivers", "Large Rivers", "Other Rivers",
"International Boundaries”, "State Boundaries", "Tertiary
Boundaries",
"Capitals", "Main Towns", "Minor Towns", "Urban Areas",
"Main Highways", "Highways", "Other Road", "Railways",
"Main Relief", "Minor Relief"]).

These are given in the same order as the numerical values given in the list
'base_info_scores' in the 'map_content' fact. The names on the list are used
internally within MapDesigner to refer to these features. The feature codes used for
these features in the database may be different, look-up tables being used to relate
the two (see Display Module below).

The assumption is made that these are the most likely classes of base
information to be available for inclusion in small scale maps of the types under
consideration and will be in the database. It is possible for any of these features to
be absent from the actual database. The system will not fail if it is unable to find
data for them. It will however assume that they are present during the
symbolisation phase and therefore the map specification (i.e. the frame) will include
them. It is quite possible to link the system to different geographic databases with
different contents, although ideally the map_content facts should closely match the
database contents.

The list of scores in 'map_content' is scanned and features selected which
have a score greater than or equal to the selection index. Both the feature name
and its score are stored in the frame. It is important that the names list and the
scores are in the same order as all future references to base information are taken
from the names stored in the frame.

Although automatic selection should not result in inconsistencies, further
checks are made on the base features selected to ensure that where a feature
depends on another one being present that this is in fact present. This uses a
knowledge base predicate that states if 'a' exists then 'b‘ is required:

188

required (context, a, b, probability)
e.g.
required ("baseinfo", "Large Rivers", "Major Rivers", 5).

% if large rivers are required then so are major rivers.

The probability can range from +5 (absolute certainty) to -5 (no possibility or
exclusion). In this case values below 3 are of little relevance and currently it is
assumed that in this situation only facts for positive probabilities are entered into
the knowledge base.

This checking procedure is seen to be of particular value when user
selection is implemented where any omissions found would be presented to the
user. Clearly when selecting from a menu with many choices (currently 18 for base
information) it would be easy for the user to accidentally omit a feature further up
the hierarchy or generally required for plotting a selected feature (e.g. if colour fill
for lakes is required then the lake shores must also be selected).

The list of base information classes to be included in the map are asserted
into the frame as are each individual feature with its associated probability. The
latter is done to facilitate base map editing at a later stage, although it is
recognised that features could only be removed later with this approach. It would
be possible to store the unselected features and their scores separately, but this is
not considered necessary at present. To improve the flexibility at the modify stage
a threshold could be used to store possible additional features which narrowly
missed selection. This would at least remove categories of no value to the current
map topic.

Them ejnfojist
Three scenarios arise in selecting theme information. First, the list of theme

information in 'map_content' (see above) may be empty, e.g. for a topographic
map; second, there may be only one single theme, in which case this is asserted
into the slot; or third there may be several possible sets of theme information for
the selected topic or class.

For this third case, the user is presented with a menu listing the theme data
sets available for that map topic (Figure 8.6). The user is asked to select the
topic(s) to be included. The menu invoked here allows multiple selections to be
made from it. If a single topic is selected this is added to the frame and the

189

selection phase is completed. Alternatively, if multiple topics are selected from the
menu, a recursive procedure is called to determine the priority order of the topics
selected.

Select Thematic Topic
Population change
Population density
Rural population
Total population
Urban population_____

Figure 8.6
Example of thematic topic selection - Map_topic = Population

In this second phase, the first menu shows all those topics selected and the
user is asked to indicate the most important topic. Once a topic has been picked, it
is removed from the list shown in subsequent menus. When a null response is
made to the menu of remaining topics or all have been selected, the topics are
asserted into the frame as a list in priority order. The priority order is used to
determine which topic will be assigned representation method and symbols first,
resulting in it being assigned the preferred values. For example, a climatic map
may show both precipitation and temperature. The preferred representation
method for both of these is layer colours. As it is only possible to show one set of
area colour symbols, one topic must use an alternative method (isolines). Only the
user can determine which has priority.

Although perhaps something that should be considered at this stage, the
selection of the number of classes and setting class intervals for numerical data is
part of the symbolisation process, and similarly selecting any subset of classes
from a topic with categorical data is handled after the representation method has
been chosen for the class.

MODULE ■SYMBOLISATION'
This module is by far the largest part of the whole system and has gone

through several major iterations in its development. The central part, the assigning
of graphic variables to the selected features presents numerous problems, the two
greatest being the almost infinite number of permutations possible and how to

190

check for conflicts between them. Two main versions of this central section are
discussed, the first being an early attempt using a simplified set of graphic
variables and the second, the current implementation, using a more comprehensive
set of graphic variables. Although the author is critical of several other proposed
cartographic design expert systems for concentrating almost entirely upon
symbolisation, it must be recognised that although the stages described above are
important and can be of considerable help to the map author, it is this
symbolisation aspect which is the most difficult to resolve in a satisfactory manner,
largely due to the combinatorial expansion of the search space.

The general sequence of steps in this module is:
1. Get the list of selected features and order this list in terms of priority for

showing features.
2. Work through this list assigning representation methods. Initially assign the

preferred representation to the current item, then check this against those
already assigned. If there is no clash then proceed to the next item on the list. If
there is a clash, choose an alternative representation method. If no viable
alternative is available then backtrack to the previous item.

3. Assign specific symbols to features / representations. Again check for conflicts.
4. Assign symbols to appropriate plot level (i.e. layer or stratum).

Due to the complexity of the inference mechanism and the memory
requirements of the knowledge bases associated with this module, it is in fact
composed of four separately compiled, or global, sub-modules. The initial
symbolisation module (symbolisation) deals with assembling the contents and
assigning the representation methods. The second module (getsymbols) assigns
symbols to the features which are checked by calls to the third part (check_symbol)
at each stage. Once all symbols have been assigned the final part (assignjevels)
adds the level to each symbol specification. Finally the 'getsymbols' displays the
symbol specifications. Both 'symbolisation' and 'getsymbols' are called by the
predicate 'design_map', whereas 'check_symbol' and 'assignjevels' are both
called by 'getsymbols'.

Assemble
It would be possible to simply add the list of base information to the theme

information then assign symbols to features on the list, but several of the base
information classes are actually hierarchically related, e.g. major rivers, large rivers,
other rivers, and it is more logical to treat these as a single class of phenomena for

191

assigning representation method. Thus, a first stage is to build a list of classes of
base information to be included, such as roads, settlements, rivers, etc. This is
achieved by using the 'member_of fact, in the form:

member-of (Feature_class, Feature),
e.g. member_of("Rivers", "Major Rivers")

in the knowledge base. These higher level classes are then appended to the
priority ordered theme information classes and asserted into the working
knowledge base. This information about feature classes is not stored as part of the
map specification frame, i.e. the base information is stored in the frame at the
feature level.

Representation
Most of the processing up to this point has involved forward chaining and

could equally well have been carried out with a procedural programming language.
Both representation and symbolism tasks make extensive use of the power of
Prolog as a declarative language and operate in an essentially backward chaining
paradigm. Both recursion and backtracking are essential components of finding the
solution and generally a ‘best first' search is followed.

The main predicate for assigning representations is 'assign_reps‘ which has
three arguments, each of which are lists:

assign_reps ([features to be processed],[reps assigned so far],
[final reps])

This predicate is recursive, which means that the main clause works on the
input list of features by repeatedly calling itself to process the remainder of the list.
Wherever possible, for efficient memory management, recursive predicates should
contain a 'cut' (ideally immediately before the last predicate) to prevent having to
retain backtracking points in every recursive call, and should also make the
recursive call to itself the last predicate in the rule (known as tail elimination).
However, if it is necessary to process a list and retain the ability of backtracking to
earlier parts of the list (as is required here), then backtracking points must be
retained, with their necessary drain on memory, i.e. a pointer must be stored in
memory for every backtracking point. Only when program execution passes a cut
are the stored backtracking pointers removed, freeing memory.

192

Possible representations for each class of information are derived from the
nature of the phenomenon and the spatial and attribute data as described in
Chapter 5,3 and are stored in the knowledge base in the form:

representation_type (feature class , representation type,
probability)

e.g.
representation_type ("Settlements" , "ranked points", 10)

Starting with the first feature class on the list, the preferred representation
type is found and added to the list of representations assigned so far. The same
procedure is followed for the subsequent feature classes, except that before
adding it to the list a check is made to see if it conflicts with those already on the
list of representations. Conflicts between representation methods are stored as
facts in the knowledge base in the form:

conflict (context, value 1, value 2)
e.g.
conflict ("rep type", "categorical - one level",

"layers - unipolar").

In order that each conflict need only be entered into the knowledge base
once, the check for conflicts is made in both the forward and reverse order for all
representation types already selected (i.e. check_rep is recursive). For example,
checking for conflicts with the current representation type 'Rep' and the list of
previously selected rep_types '[First | Rest]':

check_rep (_ / []) . % end of list of selected reps
% no conflicts.

check_rep (Rep, [First | Rest]):- % main clause
not (conflict ("rep_type", Rep, First)),
not (conflict ("rep_type", First, Rep)),
check_rep (Rep, Rest). % recursive call to check

% against rest of reps already
% assigned

Note that there need to be two clauses for this predicate. The second
clause is the main one that does the actual checking, whereas the first clause

3 Consideration has been given to automating this function based on meta-knowledge about
the features in the database (see Chapter 7) but this is currently seen as a diversion from
the main aims of the project.

193

merely checks to see if the end of the list has been reached, [] signifying an empty
list. This type of structure is always required with recursive rules so that they know
when recursion has finished. In some of the subsequent program extracts this first
clause is omitted for clarity.

If there is a conflict, 'check_rep' fails causing a backtrack to the next
possible representation for the current feature class. If an alternative is found, this
is again tested and so on. If no suitable alternative representation can be found
then the 'assignj’eps' rule fails and backtracks to the previous recursion of the
rule. Here alternative solutions will be sought for the representation of that class. If
another choice is found, the system will move forward again in the list of feature
classes, if not it will backtrack further until an alternative solution can be found for a
previously set feature class.

Although adopting a best first solution, the procedure adopted allows full
traversing of the 'solution tree'. Further heuristics could be applied to limit the range
of search, but the fact that most features can only have a limited number of
representation types (often only one) limits the expansion of the search tree and
the fact that the representations are chosen in preferential order means that little
further optimisation would be achieved in practice. Theoretically if it proved
impossible to find a complete set of representation methods the system should
backtrack to the selection process and reduce the number of feature classes to be
included. Practically, largely due to the nature of modular programming in PDC
Prolog mentioned above, this cannot be done by the current system. To date in
testing the system it has never failed to assign representations to all feature
classes.

Once the complete list of representations has been determined the
representation method for each feature class is asserted into the current map
frame.

Symbolism
This stage proved to be particularly problematic in developing the system

and numerous partial implementations were developed on paper. An early attempt
at programming this section using a simplified set of graphic variables became
overly complex and failed to work. After re-examining the functional specification
presented in Chapter 6 a revised version, initially more elaborate in concept, but

194

with a more fully developed set of graphic variables proved to be successful. Both
versions are described below.

First attempt at symbolisation
In an effort to keep the program simple, the first attempt at the symbolisation stage
involved using only three graphic variables, form, dimension and colour. The basic
procedure was to get the first feature1 from the list of contents and extract its
representation from the frame and assign this an appropriate form, dimension and
colour. An immediate difficulty here is that some features' will be represented by a
number of identical symbols (e.g. all minor rivers will have the same form,
dimension and colour), but other features' would be depicted by a number of
different symbols (e.g. graduated points would all be the same form and colour, but
there would be a number of different sizes of symbol). This difference was to be
handled by noting that a feature could be complex (i.e. use a number of symbols).
As discussed below, a more rigorous definition of 'feature classes' and features
was used in the later attempt.

The selected graphic variables were then checked against lists of forms,
dimensions and colours already used. If there were no clashes the values for the
current feature were saved, the graphic variables added to the list of values used
and then the next feature processed. If there was a clash, different symbols for the
current feature were sought.

The basic predicate specifying each symbol took the form:
syinb (feature, representation, type, colour, dimension, form)
e.g.

symb (minor_river, network_branching, line, darkblue,
norm_width, continuous)

The graphic variables used were closely linked to the values available in the
Borland Graphics Interface of the PDC Prolog system (see discussion under
Display Module) and all were assigned integer values (e.g. blue = 1, square = 3,
dashed line = 2, etc.). Using these values clearly put considerable limitations on the
system for further development, although it was thought that it would initially
simplify the translation from graphic variables to actual display on the screen.

In order to assign the graphic variables, a series of rules were developed.
Each rule was given a unique five digit number. The first digit was always 1; the

195

second digit indicated the dimension of the symbol (0,1,2, 3) with 4 used for
general rules; the third digit referred to the particular or main representation type
the rule refers to (0 for general rules for that dimension); and the final two digits
identified the individual rule.

Generally each rule dealt with a single graphic variable, but some set more
than one. For example, rule 10101 (i.e. point feature, representation type 1, rule
01) set the symbol shape to be a dot:

rule (10101):- % dot shape
assign (form (dot)).

Rule 10103 sets the colour of a point symbol:
rule (10103):- % dot colour
output_media (media),
background_colour (media, bkcolour),
palette (media, bkcolour, [list of colours]),

% get available colours
menu ("choose colour", [list of colours], Choice),
assign (colour (Choice)).

Rule 10301 (point feature, representation type 3, rule 01) sets both the size
and shape of ranked point symbols:

rule (10301):- % size & shape
current_feature ("Settlements"), % known
assign(symb("National Capital", "ranked points", point,

null, 4, square)), % size given in pixels
assign(symb("State Capital", "ranked points", point,

null, 4, circle)),
assign(symb("Major Town", "ranked points", point,

null, 2, dot)).
This rule is obviously specific to settlements. Another similar rule would be

required to deal with other similar representations. Colour would be chosen by a
rule similar to rule 10103, or indeed that rule could be used, replacing the 'null'
value for colour.

This system operated by working through the ordered list of contents and
calling up the list of rules that applied to each feature:

symbol_rules(feature_class, representation_type, list_of_rules)

196

e.g.
symbol_rules(settlements, "ranked points",

[10301,10302,10303]).
Rules for either the specific feature or the representation can be found by leaving
the other value as the anonymous variable (_).

Overall processing was carried out by the recursive predicate get_symbols:
get_symbols(

[Feature | Rest]
[Incolours],
[Outcolours],
[Indims],
[Outdims],
[Informs],
[Outforms])

% current feature & remainder
% list of colours already used
% colours passed forward
% list of sizes used
% sizes passed forward
% list of forms used
% forms passed forward

The main clause for get_symbols was:
get_symbols ([Feature|Rest], Incolours, Outcolours, Indims,

Outdims, Informs, Outforms)
frepresentation (Feature, Rep_type), % get rep type
assert (current_feat (Feature)), % these are placed in
assert (current_rep (Rep_type)), % a working database
symbol_rules (Feature , Rep_type, [Rule_numbers]),

% get list of rules
apply_rules ([Rule_numbers]),

% predicate that calls rules
check_symbol, % predicate to check for clashes

% if OK go on, else look for
% different symbols

update_lists (Incolours, Workcolours, Indims, Workdims,
Informs, Workforms),

% adds new symbols to lists
get_symbols (Rest, Workcolours, Outcolours, Workdims,

Outdims, Workforms, Outforms). % recursive call

There were several problems with this approach. While the idea of
numbered rules and calling up the list of relevant rules in a given situation is a tried

197

and proved method in classification type expert systems4, it is rather restrictive in
this application. All the rules in the list must succeed if the predicate is to succeed;
there is no easy way of accepting partial success. Alternative lists of rules could be
provided to allow for backtracking or for failure of the first set, but it may only be
one rule on the list that needs to set a different value, not every rule in the list. This
problem could be solved by having a list of lists, the rules in the sub-lists being
alternatives, but it would still be very difficult to track attempts at symbolising
features.

Secondly, as already noted, this approach did not seem to deal effectively
with the different nature of representation types. In some cases all symbols will be
the same for the whole feature class (or entity class), in some cases one graphic
variable will differ for the symbols representing different features (entities) within a
feature class and in other cases quite different symbols will be required for each
feature. These differences were not elegantly dealt with by this method. There
were also some practical difficulties in allowing the incorporation of both general
rules for the representation type and rules for a specific feature class using a
representation type.

The third and perhaps most critical limitation of this approach was the
difficulty in expressing symbol differences and checking for conflicts between
symbols. Limiting the graphic variables to three and having these expressed in
relatively abstract values reflected by the colours, shapes and sizes allowable in
the Borland Graphics Interface restricted flexibility and made any rules for finding
conflicts cumbersome. It was also not possible to incorporate more complex
symbols, such as cased roads, point symbols outlined in one colour and filled in
another, etc.

Second attempt at symbolisation
Having decided that the simplistic approach initially adopted was not satisfactory, a
further examination of what was actually required in terms of symbol specification
was carried out. Perhaps not surprisingly, a more comprehensive set of graphic
variables was developed. This does not exactly mirror the graphic variables
discussed in most treaties on symbolisation (e.g. Bertin, 1967; Robinson et al,
1984; MacEachren, 1994) but is closer to the general cartographic approach than

4 It has been suggested that this 'numbered rule1 approach is one way of overcoming the
inability of PDC/Turbo Prolog to assert clauses other than simple facts at run time (as can
be done by some versions of Prolog). All the possible rules need to be pre-defined: those to
be used are 'asserted' by asserting the rule number into the database at run time.

198

the model described above. The previous domain for 'symbolspec' was replaced by
a more comprehensive domain which contained the following fields:

symbolspec(
symbol type, % point, line, or area
hue, % descriptive name
lightness, % descriptive name
saturation, % descriptive name
form_code, % class of form
form, % actual form name
orientation, % angle clockwise from north
dimension, % descriptive name
level) % integer value of level to be plotted on

% (i.e. a layered model is used similar to
% many CAD and mapping systems

This use of customised 'domains' or what may be referred to as types' in
other languages is an important feature of PDC Prolog (but not all versions of
Prolog). Domains perform three useful functions. First they allow meaningful
names to be used in the declaration of predicates (e.g. the 'key' domain includes
the codes for all the characters on the keyboard); second, they allow data
structures to be declared that can be quite complex, but can be referred to simply -
such as the symbolspec domain. Such complex domains can be referred to as a
single variable, and can be passed by predicates in this way, or they can be
referred to by the domain name followed by the components in brackets. E.g.:

symbol_a = symbolspec(point, blue, dark, high, geometric,
circle, 0, small, 301).

could be a valid statement. Symbol_a could then be passed to other statements in
this shorthand form, and picked up by them either as a single entity or expanded to
access the individual elements.

A list domain 'symbolspeclist' was also declared as a list of symbol
specifications. This means that the complete set of symbol specifications for a
feature class can be referred to as a single object, useful in simplifying
programming and making the code more readable. But there is still the ability to
refer to an individual symbol or an individual graphic variable.

In this second version no reference to the actual feature was included in the
symbol specification domain, it containing only graphic variables and the plot level.

199

The feature referred to is maintained by the frame slot predicate fsymbolism' and
can also be found in specifically defined symbols in the knowledge base in the
'ksymbolism' predicate, both of which take the form:

symbolism(feature_class, feature, symbolspec).
where feature_class' is the main class of the feature and 'feature1 is the specific
entity. Both lfeature_classl and feature1 will be the same where there are no
subclasses. This allows a more elegant treatment of subclasses than in the first
attempt. Complex (multi_part) symbols are dealt with by the use of appropriate
values for form' and form_code' and look-up tables, or alternatively by having
symbol components on different levels (i.e. two or more 'symbols' can be specified
for the same feature). Thus, a cased road could have the casing on one level and
the fill on a higher level.

As can be seen from the definition of 'symbolspec' above, most of the
values use descriptive names rather than integer values as used previously. This
simplifies the creation of menus when the user is asked to choose a value (a colour
of 5 is meaningless to most users; in VGA display terms it is magenta). This
approach keeps the specification of symbols more neutral to the eventual display
media, with a series of look-up tables for the selected output device being used to
translate from these generic terms to specific values for plotting. Table 8.1 lists the
values currently available for the different variables.

The current method of assigning symbols follows similar principles to the
first attempt, but with differences in implementation. The five steps involved are:

1) check to see of any symbols have been pre-specified;
2) use special rules for features if present;
3) use rules for representation type;
4) check for clashes, if none go on, else backtrack;
5) add symbol specifications to frame.

200

Table 8.1
Possible values for symbolspec variables
Variable Values

Hue purple, magenta, red, orange, yellow, green,
cyan, blue, brown, grey, black, white

Lightness pale, light, mid, dark 5

Saturation / Brightness low, mid, high

Form code -
Type = area
Type = line
Type = point

solid, tint, pattern
continuous, dotted, dashed, cased, complex
geometric, combined, pictorial, subdivided

Form - (examples)
F code = pattern
F code = dashed
F code = geometric

a range of patterns set in a look-up table
short_dash, long_dash, dash_dot
circle, dot, square, box, cross, plus

Dimension -
Type = line
Type = point

fine, medium, thick
pixel, v_small, small, medium, large, vjarge
(note: these sizes only refer to nominal & ranked
point symbols. Quantitative point symbols use
separate rules to determine sizes)

The 'get_known' predicate is recursive and works through the ordered list of
contents checking to see if any symbols are already specified. There are four
possibilities, each dealt with by a 'symbol_known' rule. In the first case there is only
one feature in the feature class (i.e. 'feature_class' and 'feature' are the same) and
this is already specified in the frame. The second case is similar, except that a
specific symbol for the feature is stored in the knowledge base. This assumes that
the feature must always have that symbol and that there are no alternatives. This is
important where there are widely recognised standard symbols for features, and

5 An expansion to 6 or 7 terms would be useful, but it is difficult to find appropriate terms.
For graduated colour series (e.g. on choropleth maps) it is still possible to use 5 or 6 tints of
one hue.

201

also allows those setting up the knowledge base to impose standards or a 'house
style' for certain features. The third and fourth clauses for 'symbol_known' are
similar to the pair above, but deal with situations where there are a number of
features in the feature class. Currently it is assumed that if one feature in the class
is specified they all are, although this is a rather limited view and should be
modified to allow only selected features to be pre-specified. For example, we might
have standard symbols for National and State capitals, but allow flexibility in the
symbols for other settlement classes. Like the 'symbol_rule' clause, the 'get_known'
clauses check to see if there are any conflict between symbols, although it is not
expected that clashes will be found.

The main clause of the predicate for assigning symbols, get_symbols1 is
relatively short, and is again recursive, working through the list of contents:

([Feature_class | Rest]):-
frepresentation (Feature_class, Rep), % get rep method
!, % cut forces backtrack to previous

% feature_class on failure of
% symbol_rule

symbol_rule (Rule, Rep, Feature_class, Features, Symbols),
% the predicate that gets the symbols

update_symbols(Feature_class, Features, Symbols),
% adds symbol specs to frame

get_symbolsl(Rest). % recursive call

Before examining the mechanism of the symbolisation rules it is worth
describing how the symbol specifications are updated in the frame. The functioning
of 'update_symbols' predicate is important as it must be able to retract previously
asserted symbols on backtrack as well as adding new ones while processing is
moving forwards in the list of feature classes. To achieve this it has an additional
clause which is not called during the process of adding symbols to the frame, but is
called during backtrack as Prolog looks for an alternative solution to the predicate.
In fact this additional clause having removed the symbols from the frame then fails,
causing the system to backtrack further to the symbol_rule predicate to seek
alternative symbols for the feature_class whose specifications have just been
retracted. The three clauses for this predicate are:

202

update_symbols (_ / _ # []) • % end of adding list of
% symbols to frame

update_symbols (Feature_class, [Feature | Rest],
[Symbol | Symbols]):-

% normal case - assert new symbols
assert (fsymbolism (Feature_class, Feature, Symbol)),
update_symbols (Feature_class, Rest, Symbols).

% recursive call

update_symbol (Feature_class, _, _)
% alternative on backtrack

retractall (fsymbolism (Feature_class, _, _)),
1, fail. % ensure fail to continue backtracking

Symbolisation rules take the general form:
symbol_rule (number, representation_type, feature_class,

[features], [symbol specifications])
e.g.
symbol_rule(105,"ranked points","Settlements",Features,Symbols)

The number in symbol_rule is arbitrary and is used for record purposes,
although generally it conforms to the rule numbering system described above. It
could in future be used to help develop the explanation facility by recording the
order of rules processed. The representation type is, with one exception, always
required to be specified in the predicate call. The feature class is also always
required. The lists of features and of symbols are returned by the predicate.

There are three main groups of symbol rules. The first group of rules, the
only ones not requiring the representation type to be specified are used to check to
see if the symbol for a feature should be the same, in whole or in part, as another
symbol already specified. This utilises the knowledge base fact lassociate_withl in
the form:

associate_with (Feature_class 1, Feature_class 2,
graphic variable, probability)

e.g.
associate_with ("Seas", "Lake_fill", hue, 8).

203

This means that if the symbol for Seas has already been specified then there is an
80% probability that the hue for lake fill will be the same. In order to save
replication, it is assumed that the reverse is also the case. Probabilities are
included in the facts for completeness, but as only cases where there is a high
probability of association are included in the knowledge base they are not utilised
in the current implementation.

The second group of rules are those for particular feature classes. These
are special versions of the general rules for the representation type reflecting some
special treatment required in these cases. For example, while it would be possible
to use the standard rules for "ranked points" to symbolise settlements, the set of
symbols used to show the administrative status of settlements on small scale atlas
maps is often different to that which would be used for other ordinally scaled point
symbols.

The main group of rules are those for each representation type, there being
at least one rule for each type. These rules vary in structure and complexity
depending upon the representation type. In some cases fully specified symbols or
sets of symbols will be extracted from the knowledge base. In others the individual
graphic variables will be set in turn. For example, in setting area symbols for an
'unclassed areas' representation (political map) there are several sets of visually
equivalent area colours stored in the knowledge base. These sets of symbols (or
single graphic variables in other cases) may contain more symbols than is required
by the current specification. It is, however, important that wherever possible these
sets of symbols exceed the number likely to be required in order to allow for one or
more of them to be eliminated due to conflict with other symbols on the map.

Generally the symbol_rules call a small set of rules to assign the actual
graphic variables or symbols to the individual features, such rules including:
assign_ranked_sizes; assign_line_colour, assign_tints; etc. While conceptually it
would be preferable to have a single predicate called assign_symbol with multiple
clauses, in practice due to the different information that has to be passed and
returned in different situations it is simpler to have separate predicates.

To illustrate the processing involved, the rules for the representation type
'unclassed areas - one level' (2Ba in Figure 5.2) and for the actual assignment of
available symbols to classes are given below.

204

PREDICATES (only main ones not mentioned before given here)
assign_equiv_colours(% returns equally appearing symbols

% versions for points, line & areas
SYMBOL, % symbol type - p,l,a

% or feature class
STRINGLIST, % Groups,
SYMBOLSPECLIST) % Groupsymbols

assign_symbols(% assigns fully specified symbols to
% features

STRINGLIST, % list of features to be done
% - stops when list empty

SYMBOLSPECLIST, % symbols available for use
SYMBOLSPECLIST, % working symbols list
SYMBOLSPECLIST) % assigned symbols output

ask_symbolset(
SYMBOL, % Feature_class
SYMBOL, % type of symbol set
SYMBOL) % selected set

CLAUSES % note: bold used to indicate the start of new clause
symbol_rule(22101,"unclassed areas - one level”, Feature_class,

Groups, Symbols):- % 1 group for each symbol
message("a minimum of four colours is required ”,

"the system is currently limited to the possibilities shown"),
menu([" 4"," 5"," 6"], " Select number of colours ",

2,Choice), % ask user how many colours
Num = Choice +3, % add 3 to selected list pos'n
str_int(N,Num), % convert to string
concat("group_names" ,N,Name), % make up reference name

% for list of group names
kstringlist(Name,Groups), % get list of group names

% from knowledge base
% one symbol will be assigned to
% each group name & stored

1, % don't backtrack
assign_equiv_colours(area,Groups,Symbols).

% call predicate to assign cols.

205

assign_equiv__colours(point,Features,Symbols)s- % first clause
% not used here as Feature_class <> point

1,
ksymbolset(equiv_point_colours,Symbollist),
assign_symbols(Features,Symbollist,[],Symbols).

assign_equiv_colours(line,Features,Symbols)s- % second cl.
% not used here as Feature_class <> line

I ,
ksymbolset(equiv_line_colours,Symbollist),
assign_symbols(Features,Symbollist,[],Symbols).

assign_equiv__colours(area,Features,Symbols):-
%third clause

% in this case Features = Groups
ask_symbolset(_,equiv_area_colours,Set),

% ask user which set of symbols to use
ksymbolset(equiv_area_colours,Set,_,Symbollist),

% get set of symbol possibilities
1,
assign_symbols(Features,Symbollist,[],Symbols).

There are three clauses for assign_equivalent_colours: one for points, one
for lines; and one for areas, the latter used in the example. This uses
ask_symbolset to get the user's choice of symbol set, the options currently included
being mid tones, light tones and light, bright colours. Each of these sets stored in
the knowledge base contain at least seven different area colours which are
approximately visually equivalent. Other sets could easily be added to the
knowledge base. (Currently there is only one set of colours for points and lines,
hence ask_symbolset is not included in the clauses for these.) Ask_symbolset uses
the findall predicate to collect all symbol sets with the name passed to it in 'Type' -
in this case 'equiv_area_colours' and presents these as a menu to the user.

ask_symbolset(Feature_class,Type,Set):-
% choose a set of symbols

findall(Name,ksymbolset(Type,Name,_,_),Names),
% find all sets for type in kbase

menu(Names, " Select set of symbols ",1,Choice),
member_from_index(Names,Choice,Set). % get name of

% selected set using index
% number from menu

206

assign_symbols([],_,Symbols,Symbols)j-1. % all features done
assign_symbols(_, [],So_far,So_far) % clause when list

% symbols finished before
% all features assigned

I, % prevent search for alternative clause
ermessage("insufficient symbols in set",

"some features not symbolised"),
fail. % backtrack to previous feature_class

assign_symbols([_|Features],[Symbol|Symbollist],
Insymbols,Outsymbols)s- % main clause

check_symbol(Symbol), %if ok continue, else fail
% and find next symbol

1,
append(Insymbols,[Symbol],Working), % add symbol to list
assign_symbols(Features,Symbollist,Working,Outsymbols).

% next feature - recursive call
assign_symbols(Features,[_|Symbollist],Insymbols,Outsymbols)s-

% after check_symbol fail
% - try next symbol in list

assign_symbols(Features,Symbollist,Insymbols,Outsymbols).

Assign_symbols is the predicate which does the work of assigning an
allowable symbol to the right number of groups. This is a recursive predicate with
four different clauses. The first clause simply checks to see if all groups have been
assigned a symbol and the task completed. The second clause checks for the list
of symbols being exhausted before all groups have been assigned, if this happens
the system backtracks and looks for alternative symbols to previous features,
hopefully freeing further possibilities for this feature_class. The third clause is the
normal processing clause. It first checks that the next symbol on the list has no
conflicts. If it passes this test, the symbol is added to the list of symbols to use and
the recursive call is used with the reminder of the list of features (groups) and
symbols. If the check for conflicts fails, the third clause fails and the four clause is
entered. Here the first symbol on the list (the one in conflict) is removed and the
predicate called again with the new list.

Thus, it is important that the lists of equivalent colours have more than the
number of features or groups to be symbolised if at all possible to allow for one or

207

more symbols to be rejected without causing this whole predicate and hence the
current symbol_rule to fail. The greater the number of equivalent colours on the list,
the less likely failure is.

Finally, there is a symbol_rule intended only for testing which always
succeeds if all others fail. This sets the symbol to null and reports this to the user.
When rules for all eventualities have been developed this rule will be superfluous.
It does however mean that the symbolisation process will never fail, but may not
assign symbols to some features, although this only happens when all possibilities
have been tested. Thus the symbolisation process uses heuristics to carry out a
best first search for the solution, but the heuristics do not cut off the possibility of
other branches of the search tree being followed eventually.

Wherever possible the ideals of knowledge based systems have been
applied to the solution of the problem. For example, as discussed above, in
choosing the set of colours for a political map, there are several possible sets of
Visually equivalent area colour1 symbols known to the system. While it would be
possible for the first of these to be selected or some priority to be established, in
reality this is a case where only the user can decide which is most appropriate.
Thus, in such situations the system will collect together the possibilities, construct a
list of these and present this to the user in the form of a menu for a choice to be
made. The default choice highlighted in the menu will either be the first case
matching the current criteria found in the knowledge base, or will be the case with
the highest level of confidence. The important principle is that the menus are not
pre-defined in the inference engine; they are built during run time from information
in the knowledge base to meet the current requirements.

Checking selected symbols.
An integral part of assigning symbols is checking that the symbol selected

does not conflict with symbols already specified. This is without doubt the most
complex problem to be solved by the system and was largely responsible for the
failure of the first attempt at symbolisation. The main difficulty is in determining all
the possible combinations of conflicts that may occur between symbol type (point,
line, or area) and the graphic variables. This is one area where the human visual
system is particularly efficient, but difficult to simulate, although the abundance of
maps published with poorly differentiated symbols does lead to speculation about
the designers' attention to this detail.

208

Essentially the problem is how much difference does there have to be for
two symbols to be seen as being different, or discriminated from one another. Our
ability to discriminate in not equal for all perceptual variables. In terms of the
relatively small visual images involved here, generally our ability to discriminate is
better for colour than it is for size, and shape is the poorest (e.g. see Forrest, 1981;
Williams, 1971), although there are many influencing factors and situations which
contradict this. Despite the large amount of perceptual testing of cartographic
symbols carried out in the last thirty years there are still no easily available guides
to this which can simply be entered into the system.

The current implementation uses four basic predicates: one which checks a
fully specified symbol, one which checks colours; one for form; and one for
dimension. The first two of these are the most important and most frequently used.
Generally conflicts of the latter two types are less likely to arise given the current
implementation of the system. The check_symbol predicate for complete symbols
calls the other predicates in turn to check these variables.

The reason for having the ability to check the individual graphic variables as
well as the whole symbol is to do with the order of specifying the graphic variables.
Although there are exceptions, most symbol_rules assign colour first, then form
then size. If there was only one point to check for the symbol being unsuitable then
backtracking from the symbol_check rule would look for alternative graphic
variables in the reverse order to which they were determined. While this could be
exploited in some cases by changing the order in which the graphic variables are
determined, there are cases where it is useful to determine that, for example, the
colour is permissible before attempting to determine form and dimension. This is
especially so where a set of symbols will all have the same colour, but vary in form
and/or dimension.

It is not sufficient to simply check that all symbols are different by some
standard threshold values. There are distinct differences in what is suitable for
differentiating features within the same feature class as opposed to between two
different feature classes. For example, in a layer coloured map all layers can have
the same hue; the variation between the symbols for features is by lightness, and
these lightness differences may be relatively small. Generally speaking different
feature classes will have different hues; if they have the same hue, the differences
in lightness and saturation must be significant.

209

The operation of check_symbol is to:
1. if the current feature has exactly the same symbol as a previously symbolised

feature then fail.
2. if it has the same hue as an existing symbol then goto 4.
3. the colour is checked using a set of conflict rules to see that the colour is not

too similar to the colour for a feature in another feature class. If conflict then
goto 5 else goto 7

4. if lightness and saturation similar then fail else goto 7
5. If either 2 or 3 then check form - if same as existing then goto 6 else goto 7
6. if dimension similar then fail else goto 7
7. check_symbol succeeds - move on to next feature

This is clearly much more limited than the skill and visual processing employed by
the expert cartographer, but the main aim is to eliminate potential conflicts and
produce sensible symbols rather than ideal ones.

Levels
The final part of the symbolisation module assigns each feature class to a level for
plotting. Before plotting commences the symbols will be sorted by level so that they
are plotted in the correct order. This approach is similar to that of most CAD
packages, drawing packages, etc., where the information is divided into a number
of layers (explicit or not) and anything on the top layer will cover anything on lower
layers (some systems do allow layers to be transparent rather than opaque).

The general sequence is to plot areas first, then lines, then points. Names
would normally be plotted last. A simple approach to assigning layers is used by
the system. Each representation method has a unique layer number associated
with it which is simply found from the knowledge base. If two classes of features
have the same representation method then they would both be assigned the same
level. The order in which they would be plotted would be dependent on the order
the feature class was selected and symbolised. Apart from combinations with
isolated areas (which are always assigned the highest levels for areas), only one
set of area symbols is permitted, so this approach should have few negative
consequences, although it could perhaps result in point symbols being plotted
partially overlapped. The concepts described by Mackaness (1984) could perhaps
be incorporated at a later date to resolve such spatial conflicts.

210

There is one case where the general sequence of areas, then lines, then
points is altered. Lakes are always plotted on a higher level than rivers. This means
that river networks can be complete (i.e. a river segment can be digitised through
lakes), allowing a complete drainage network to be shown without lakes being
shown. This is particularly useful at smaller scales when lakes become too small to
be shown. If lakes are selected, plotting them on top of the rivers covers the
appropriate line segment without recourse to generalisation operators6.

Finally, having assigned levels to all feature classes a list of all the levels
used is constructed, sorted into numerical order (i.e. plotting order) and the list
stored for use by the 'display1 module.

DISPLAY
Having accomplished the preceding steps all slots in the frame are filled, the map
specification is now complete and can be displayed or printed. Theoretically the
process of transferring this specification to a graphical plot on the screen is
relatively simple and generally would not be considered as part of the main expert
system, but rather as a graphical output module. In using PDC Prolog for this
module there are some difficulties that perhaps would not occur with other systems
or languages. There are also some cases where applying the symbol specification
to the data is not trivial, a particular case being in constructing a coloured political
map. This case is dealt with in some detail following the general description of the
operation of this module. It should be noted that the modular construction of the
system would allow alternative display modules to be incorporated for other output
devices.

The Display module is split into two main components. First, the main part
which has largely a 'housekeeping' function and controls the initialisation of the
graphics system, the opening of windows, the sending of messages to the graphics
screen and, when plotting is complete, the closing down of the graphics system. It
contains the procedures which set up the transformation parameters to convert real
world co-ordinates into screen co-ordinates according to the selected map
projection, map scale and display device. Also, the main part loads the metadata
into memory to allow symbolic names for feature classes to be related to the
correct file and feature names in the database.

6 It is noticable that in The Times World Map & Database' that rivers are plotted on top of
the lakes, the default colours being slightly different.

211

The second component of the Display module is the actual plotting
program. It works level by level, converts the symbol specifications into the
appropriate values for the graphics system, reads the data from the database and
plots it on the screen. The main predicate is plotjevel, which is recursive and takes
the form:

plot_level ([Level | Rest]):-
symbolism (F_class, _, s y m b o l s p e c (L e v e l)),

% get feature class for this level from frame
meta_data (F_class, _, _, _, _, _, Coordname, _,

Datafile,Dataname),
% get names and files from metadata file

coord_f ile (Coordname, Coordf ile, _)
% find coordinate file

assert (current_class (F_class)), % store current class
assert (coord_file (Coordfile)), % " " coordfile
assert (data_file (Datafile)), % " " datafile
assert (data_name (Dataname)), % " " data name
representation (F_class, Rep), % get representation type

% from frame
plot_class (F_class, Rep), % call plotting predicate
retractall (_, currentlevel) % remove all names etc.

% before next level
plot_level (Rest). % recursive call to rest of list

There is a separate clause for the plot_class predicate for each of the
representation types, although some of these are very similar. Essentially
plot_class gets the symbol specifications for the features in the current
feature_class from the frame, calls set_symbol to convert the symbolic names for
the graphic variables into appropriate values for the graphics system, then calls the
appropriate plotting routine (plot_points, plotjines, or plot_areas). For feature
classes where there are several features with different symbols, plot_class uses
two clauses and fail to cause backtracking, rather than recursion, e.g.:

plot_class (F_class, "ranked points")
symbolism (F_class, Feature, symbolspec(_,Hue,Light,Sat,

Form_code, Form, Orient, Dim, _)), % from frame
set_symbol (point, Feature, Hue, Light, Sat, Form_code,

Form, Orient, Dim),

212

fail. % forces backtrack to get other Features
% in class

plot_class ("ranked points")s-
plot_points (F_class). % call plotting routines

Set__symbol uses lookup tables to convert the descriptive names for the
graphic variables as stored in the frame into the specific values required for the
Borland Graphics Interface (BGI) built into PDC Prolog, e.g. "blue" = 1, "thick" = 3,
etc. The lookup tables also provide values for the fill_style and fill_pattern variables
used by the BGI to fill areas. As a result of the limitation of the number of colours
available with the BGI (sixteen), although the specification in the frame may be for
a solid light blue colour, the conversion from the lookup table may give a pattern of
a darker blue - in effect a tint. In fact the symbolisation module largely treats solids
and tints the same, as in theory the dots in a tint are below the visual threshold, so
that a tint should appear solid to the map user. Due to the resolution of the screen,
in most cases tints' are made up of perceptible dots or patterns on the screen, but
an attempt is made to kept this to the minimum. In producing maps on other output
media a similar, but different, set of lookup tables would be used.

It is at this stage that complex symbols are split into their component parts.
For example cased roads are stored in terms of a background symbol (the casing)
and a foreground symbol. The BGI values for each symbol are stored in a
database predicate 'setup1, two examples of which, one simple, one compound, are
shown in Figure 8.7.

The first of these examples is a cased line representing a highway by a
wide red line with a thin yellow line superimposed upon it. The second example is
for the light blue colour (a tint of blue) used to fill sea areas. This combination of
variables allows for most relatively simple eventualities to be covered, although
there is a limit to the complexity of individual symbols. The use of a fill colour as
well as a main colour allows areas to be outlined in one colour and filled in another,
or point symbols to be outlined. If this is not required, only the main colour is
specified. The fill style for areas can be solid (value = 0), use the standard BGI
patterns (1 -11), most of which are not suitable for the purposes here because
they are rather coarse, or if set to 12 make use of the fill pattern specified in "fill
pattern". This fill pattern is defined as a list of hexadecimal values which determine
which pixels are switched on or off in an 8x8 pattern cell. A set of suitable patterns

213

for mapping were specifically developed for the system (see appendix C). In the
second example above, the BGI pattern 9 is used, which is a close dot fill.

slot name: e.g. 1 meaning e.g.2 meaning

feature
main draw colour

"highway"
4 red

"seas"
1 blue

line or point style 0 solid line 0 solid line
line pattern 0 no pattern 0 none
width or size 3 3 pixels 1 one pixel
fill colour or 14 yellow 0 none
second line colour

fill style or 0 solid line 9 close_dot_pattern
second line style

fill pattern M N none M M none
second width or size 1 1 pixel wide 0 none
note: line style must be set to 'solid1 and size to 1 pixel for area fills to plot correctly

Figure 8.7
Examples of plotting parameters

A limitation of patterns in the BGI is that only one colour can be used. The
background colour must be the same for the whole screen, and is normally set to
white by MapDesigner. Some graphics systems allow area patterns to be defined
by both a background colour and an overlaid pattern for each polygon, but this is
not possible with the BGI. This does place some limitations on the options for area
colouring, particularly if it is desirable to overlay one feature class by patterns over
another feature class shown by colours.

Example run of MAPDESIGNER
Having described all the stages involved in producing a map with

MapDesigner, a complete run of the system is shown in Figure 8.8 (a - r). This
shows all the menus and output from the system in producing a Relief map of
Nigeria. The associated map frame is shown in Figure 8.9. A Relief map with only a
change in input values from overview to analysis is shown in Figure 8.10. Further
examples of maps of different topics and scales and alternative menus used for
different topics or representation methods are given in Appendix D

214

W D E S I G N F . R

RM w l f * Bipert Syttoa

• OMpater PrvfTM to AM Hip Besig.

Capprifbt: Iw l4 forest _

essages

rntSS Any KEY TO NT HU

-MAPDESIGNER

- - - - - - - - MAIN M E N U - - - - - - - -
Modify or display a preuious nap
Load existing nap design file
Save nap design
Hou Map Designer Uorks
UtiIities
Exit Map Designer (QUIT)

— Messages

Use or t ow keus to s e l e c t , K10 to a c t i v a t e

Figure 8.8 a & b

The Welcome screen and the main menus screen

DESCRIPTION

start m m «r t l t t a far t i l s aap
Alt It tor

nap m \t In*)

General user(s)
Specialist user(s)

Detailed Analysis

essages |'Help H Uhu Ebl quitI i - t i l l t-M tr1n M iju

Figure 8.8 c, d, e & f

The map author, map_title, map_user and map purpose screens

dap duiker : 1
2X

screen
nonochrone plot
colour plot
si ide
ouerliead transparency

Plap Hunker : 1
Tke foilouInf description of the nap has keen recorded

The krief title of the nap is : Nigeria Belief - overview
Nap Author : Dauid
late designed : 1-6-1995
The nap type is : relief
The final output will be to : screen
The purpose of the nap is for : oueruiew
The intended user(s) : author
The level of detail (1-18) is : 4

Figure 8.8 g, h & i

The map topic, output_media and show_description screens

217

Specify La1 8 Long
Specify Coordinates

F u l l e x t en t

-f lcssayes
i t loaded

lo(j33\ n a p \ n i y e r i r t \ d f r i c . d kba

Figure 8.8 j, k & I

The location selection method, select by place and select place supplementary
screens

218

n
1m

1
Calculate from Scale and Location

; i I f I Odd I'd

i i o log'J3\ n a p \ n i g e r i a \ a f r i c a kba

Messages

(Up Ha«bcr : 1

the falloetai layoet n riM te n have Wee set

Lecattoa : Uest loefltede : 2.5
Eest loafltade : 15
Soeth latltade : 3.5
North latldide : 14

PerMt : aidth : 18 ca, Wi|ht : 16.5 ca

Scale 1 : 7588888

Messages

Press space bar to continue

Figure 8.8 m & n

The select format and showjayout screens

219

flap feater : 1

User select

Messages

liWhg Use Arrow Kegs to select d i o i c e ^ F T o t o d n i u a t e T ^ WW-j|||B

I if watt lea to to lacletoi la M | 1

Urya livers
Rajer Heart
Lakes
Lato.fi 11
Iateraatlaaal Bnaiartes
Hala Belief

-Messages

Figure 8.8 o & p

The data selection and show selection screens

220

" ’ ' ' 1 ' H I iKI f I ,'.‘U

Figure 8.8 q & r

The representation screen and a relief map of Nigeria

221

Figure 8.9
The map frame for a relief map of Nigeria

fmap_date(dated(1995,6,15))
fmap_author("df")
fmap_title("Nigeria Relief Overview")
fmap_type("relief")
fmap_purpose("overview")
fmap_user("author")
foutput_media("screen")
flevel_of_detail(4)
fscale(7500000)
fformat(18,16.5)
flat_long(2.5,15,3.5,14)
flimits(277.98731656,388.9402453,1667.9238994,1541.2843966)
fselect_index(9)
fbaseJnfo_list(["Coastline","Seas","Large Rivers","Major

Rivers","Lakes","Lake_fill","International Boundaries","Main Relief"])
fbase_info("Main Relief", 10)
fbase Jnfo ("International Boundaries", 10)
fbaseJnfofLakes", 10)
fbaseJnfo("Large Rivers",9)
fbaseJnfof Major Rivers", 10)
fbase JnfofCoastline", 10)
fthemeJnfoJist([])
frepresentation("Coastline","boundaries - one level")
frepresentation("Seas","isolated areas")
f representation ("Rivers",^"network - branching")
frepresentation("Lakes","boundaries - one level")
frepresentation("LakeJill","isolated areas")
frepresentationfAdministrative Boundaries","boundaries - hierarchy")
frepresentation("Relief","hypsometric layers")
fsymbolism("Coastline","Coastline",

symbolspecfline","blue","dark","low","continuous","",0,"fine",201))
fsymbolism("Seas","Seas",symbolspec("area","cyan","light","low","solid","",0,"",158))
fsymbolism("Rivers","Major Rivers",

symbolspec("line","blue","dark","mid","continuous","",0,"fine",190))

222

fsymbolism("Rivers","Large Rivers",
symbolspec("line">"blue"l"dark"f"mid"l"continuous","",0,"fine"l190))

fsymbolism("Administrative Boundaries","International Boundaries",
symbolspec("line","grey","dark","low","chain","chain",0,"thick",210))

fsymbolism("Lakes","Lakes",
symbolspec("line","blue","dark","mid","continuous","",0,"fine",202))

fsy m bol is m (" Lake_fi II"," Lake_f i II",
symbolspec("area","cyan","light","low","solid","",0,"",191))

fsymbolism("Relief","0-500",
symbolspec("area","green","mid","low","solid","",0,"", 141))

fsymbolism("Relief","500-2000",
symbolspec("area","brown","mid","low","solid","",0,"",141))

fsymbolism("Relief","over 2000",
symbolspec("area","brown","mid","mid","solid","",0,"",141))

223

- - - - - - - - - - - - - - - - - M S C I I f T I O H - - - - - - - - -: I
f t lk t l t f Atcrlptlot of tA otp A t M tt m r t o

A t Irtef title of tA M f It : RifVrU r t llt f

Aofti
l-t-W K

r t l l t fA t top I p It
A t f i t t l o rtp t t i l l I t to

ooolpis

He pwvm of the at? it for : ta tlp it
A t i t f t t l t l tte r(t) : tytcUlltt
A t In t i of A to ll Ct-1§) It : •

W m t lM to A Itc ltM It M f

itfctr Blttrt
Mop Blttrt
A Jtr Blttrt
M in
U M .riii

Rlnr A l i t f
A lt A lit f

f u

Figure 8.9 a, b & c

The show_description and show_selection screens and a relief map of Nigeria

CHAPTER NINE

Colouring the Political Map

To give an example of the advantages of Prolog compared to procedural
languages for solving cartographic problems, a classic situation in cartography is
the colouring of a political map where each country must have a different colour
from it neighbours. It can be proved that four colours are required, although
frequently 5 or 6 are used. A solution for incorporating this type of map into the
system would be to store a feature code for each country which would relate to a
look-up table of colours, much as would be done for a geological map or a land use
map. However, the coding used would be arbitrary and not responsive to changes
in the number of colours used, the level of hierarchy to show, etc. Manually
assigning such codes would also be time consuming and is not true automation of
the problem.

The general description of how to solve this problem, assuming four
colours, is as follows:
Assign colour 1 to zone 1;
For zone x (x = 2 .. n)

assign colour 1 to zone x;
if adjacent to any zone previously assigned the same colour, try the next
colour;
if no clashes proceed to zone x+1 else

if no more colours available for zone x, go back and try next
colour for zone x-1

The sequence of processing and the resulting map is illustrated in Figure 9.1.

In Prolog, with a slight restructuring of the problem, the solution is trivial for
a specific example case. All that is required is two predicates, one which defines
two zones as being adjacent and one which assigns colours to a list of zones:

next(zonel,zone2)
colour([zone_list])

Using the first of these predicates a list of the pairs of possible adjacent colours
can be asserted as facts in working memory (recall that the use of the initial lower
case letter for an object denotes a constant):

225

Z4 Z2

Z5 Z3
Z6

Z7

(a) Map of zones

zones - Z1 . . Z8

colours - C1 . . C4

iteration 1 iteration 2 iteration 3

Z1 1

22 y 2

Z3 y y a

Z4 yya
Z5 X l y 4

Z6 * A yY4 1

Z7 x x x * t X 2
Z8 t XXX 4

(b) colour search process / conflict with adjacent zone,
select next colour

t backtrack to previous zone

(c) final coloured map

Figure 9.1
Automated colour assignement for politcal map

226

next(colourl, colour2)
next(colour1, colour3)
next(colourl, colour4)
next(colour2, colour3)

etc.
In order to colour the map we need only define which regions are adjacent. The
colours are assigned by successively trying to match each region with all those
further down the list of regions to which it is adjacent with an allowable pair of
colours. In this simplified example the eight zones of Figure 9.1a are used and it is
assumed that the adjacencies are known:

colour(Zl,Z2,Z3,Z4,Z5,Z6,Z7,Z8)
next(Zl,Z2 AND next(Zl,Z3) AND
next(Zl,Z4 AND next(Zl,Z5) AND
next(Zl,Z7 AND
next(Z2,Z3 AND next(Z2,Z4) AND
next(Z2,Z8 AND
next(Z3,Z7 AND next(Z3,Z8) AND
next(Z4,Z5 AND next(Z4,Z6) AND
next(Z5,Z6 AND next(Z5,Z7) AND
next(Z6,Z7 AND next(Z6,Z8) AND
next(Z7,Z8 «

Prolog's built in unification and backtracking mechanisms will process this
list until a solution is found. This uses a depth first blind search procedure to find
the solution. All permutations of next(Zx, Zy) included in the rule will be matched
against the colour possibilities until it is possible to assign a valid result for each of
the variables Z1 .. Z8.

There are some limitations to the above approaches, the main one being
that colour one (or the first pair) is always tried first, then colour two, etc. The likely
result of this is that there will be most zones with the first colour on the list and
fewest of the last colour. Ideally there should be approximately the same number of
zones with each colour. One solution to this problem is to arbitrarily assign each
zone an initial colour with approximately the same number of zones being given
each of the colours. The list of zones is then processed to check for conflicts of
colour between adjacent zones. If a conflict is found, the colour of one of the zones
is changed to the next colour on the list, and so on. An alternative approach is to
create a list of the colours allowed and to select the next colour on the list for each

227

new zone to be symbolised. This is achieved by rotating the list, i.e. once a colour
has been used or tried for a zone it is moved to the end of the list. This makes the
list of colours appear to be infinitely long. A check must be made to stop attempting
to assign a colour to the current zone once all colours have been tried and to
cause the system to backtrack to previous zones. This second method has been
adopted.

Further optimisation could take place after all zones have been assigned a
colour. A check could be made on the number of zones in each colour. If there was
a large imbalance, each zone with the dominant colour could be checked to see if it
could be assigned the least used colour, and so on.

In practice it is not a trivial matter to extend the above example to the
general case where any number of regions may be required to be coloured using
any number of colours, although using the list processing and backtracking
capabilities of Prolog makes this easier than with procedural languages. The
solution presented here assumes that the data for the zones is stored in a
topologically structured file and that each of the chains (lines between zones) is
coded with the left and right hand polygons, a fairly common feature of structured
data in GIS and mapping systems such as GIMMS. From the chain file the set of
adjacencies can be asserted into Prolog's working database. Also, rather than
creating a list of adjacent colours that are allowed, the approach adopted allows
any pair of colours to be adjacent, as long as the two colours are different.

In the listing that follows some of the supporting predicates are not fully
listed, but their names indicate the function they perform.

Rather than assigning actual colours, the procedure here is to assign each
zone to a class or group. These classes are then matched to the colours set for
each group in the symbolism module, i.e. in symbolism the only concern was how
many groups (colours) there were to be and their graphic variables, not which
zones were assigned which class or colour. Having assigned each zone to a colour
group, the plotting is carried out in the same way as categorical or choropieth
maps.

/* POLIT4.PRO 5/10/94
/* modularised version of polit.pro
DATABASE - LOCAL

*/
*/

228

wcolour(
SYMBOL,
SYMBOL)

wadjacent(
SYMBOL,
SYMBOL)

wclasses(
INTEGER,
SYMBOLLIST)

PREDICATES
sort_adj acent(

SYMBOL)
get_adj acent(

SYMBOL)
repeatread(

FILE)
get_zones (

SYMBOLLIST)
writecolours

% relates zone name to group
% zone
% class (colour)

% database term for adjacent zones
% left zone
% right zone

% groups to be created
% number of classes
% class (colour) names

% the main predicate
% feature class to be coloured

% gets adjacent zone pairs from
% database and asserts locally

% feature class
% creates file reading loop

% name of coordinate file
% compile list of zones to colour

% saves colour for each zone

sort_adjacent_classes2(% main recursive clause -
% works thru' list of zones

SYMBOLLIST) % list of zone names
nextcolour(% rotates list of colours and

% assigns next colour to current zone
SYMBOL) % current colour

no_clash(% checks for conflict between zones
SYMBOL, % zone 1
SYMBOL) % zone 2

CLAUSES % note: bold used to indicate the start of new clause
sort__adjacent(F_Class)j- % main clause - overall control

get_adjacent(F_class), % get data from database
get_zones(Zones), % make list of zones
findall(Class,fsymbolism(F_class,Class,_),Classes),

% make list of class names
length_of(Classes,Num), % get number of classes

229

assert(wclasses(Num,Classes)),
1, % cut - don't backtrack beyond here
sort_adjacent_classes2(Zones), % call predicate that does

% the work
I,
writecolours, % save the class for each zone
retractall(_,local). % clear the working database

sort_adjacent__classes2([]). % empty list -
% all zones assigned

sort_adjacent_classes2([Zl|Zones]):- % main working clause
% works on zone Zl

retractall(wcolour(start,_)), % clear colours
wclasses(_,[Start|_]), % get first colour
asserta(wcolour(start,Start)),

% save this as starting colour for
% this zone & don't cycle past it

nextcolour(Coll), % rotate list of colours to bring next
% colour to head of list for use if
% backtracks - if no further colours
% go back to previous zone

retractall(wcolour(Zl,_)), % delete any colours already
% set for this zone - essential
% if backtracked beyond this zone
% has no effect on first pass

no_clash(Zl,Coll), % check all zones adjacent to
% this one for conflict
% if fail, go back and try next colour

assertz(wcolour(Zl,Coll)), % no conflicts with this
% zone so save colour for it

sort_adjacent_classes2(Zones). % process rest of zones

n e x t c o l o u r (C o l o u r) % first clause -
% rotates list of colours

wclasses(Num,[Colour|Colours]), % get list of colours
append(Colours,[Colour],New), % move first to last
retractall(wclasses(_,_)), % delete old list
asserta(wclasses(Num,New)). % save new list

230

nextcolour(Colour)

wclasses(_,[Start|_]),
not(wcolour(start,Start)),

nextcolour(Colour).

% called on backtrack
% checks to see if back to start
% colour. If so fails and forces
% backtrack to previous zone
% get start colour
% check not completed rotation
% of list
% rotate list

no_clash(Zone,Colour)
wadjacent(Zone,Z),
wcolour(Z,Colour),

l,

fail.
no__clash (Zone, Colour)

wadjacent(Z,Zone),
wcolour(Z,Colour),
l,
fail.

no_clash(_,_) .

% check for forward clash
% looks for adjacent zone
% succeeds if adjacent zone has same
% colour, else backtrack and look
% for other adjacencies
% cut very important here. If passes
% this, then don't look for other
% clauses for this predicate
% if get here, predicate fails
% as above but reverse order of zones

% succeed - no clashes found
% proceed to next zone

get__adjacent(_) % get adjacency data
kmeta_data(F_class,_,_,_,_,_,_,C o o r d n a m e ,
kcoord_f ile (C o o r d n a m e C o o r d f ile,_),
file_exist(Coordfile), % check to see file found
openread(input,Coordfile), % open file for reading
readdevice(input), % make file input device
repeatread(input), % creates loop on backtrack until end

% of file is reached then fails
readterm(plotdata,chain(_,C o o r d n a m e , R i g h t , L e f t ,),

% read next line
assertz(wadjacent(Right,Left)), % add adjacency to database
fail. % force backtrack to next term

231

get_adjacent(_)
readdevice(keyboard),
closefile(input).

% in coordinate file
% finished reading file

% set input back to keybd
% close coordinate file

repeatread(_).
repeatread(File):-

not(eof(File)),
1 /

repeatread(File)

% first call - always succeeds
% called on backtrack
% succeeds if not end of file
% checks for end of file

% continues file reading loop

get_zones(Zones):-

findall(A,wadjacent(A,_),As),
findall(B,wadj acent(_, B),Bs),
append(As,Bs,Cs),
uniquelist(Cs,Zones).

% compiles unique list of zones
% to be coloured
% get all left hand zones
% get all right hand zones
% add above lists
% remove duplicates

writecolours:-
openwrite(output,"diags.lis"),
writedevice(output),
wcolour(State,Colour),
nl,write(State," ", Colour),
fail,1.

writecolours:-
writedevice(screen),
closefile(output).

An example of the goal passed to this module would be:
sort_adjacent_classes("Administrative areas").

The menus associated with this map topic for selecting the number of
colours and the basic colour scheme are shown in Figures 9.2 a & b. A map of
Nigeria with only politically coloured zones and the sea symbolised is shown in
Figure 9.3 and a map using default values for all slots is illustrated in Figure 9.4.
The frame for this final map is given in Figure 9.5.

232

Select lumber of colours

--------------------------------Messages-------------------------
n niiiinun of four colours is required
H ip systen is currently U n i t e d to the possibilities shoun

Select set of synbols

sstges

Figure 9.2

a) Number of colours selection screen; b) colour set selection screen

233

Figure 9.3

An example of politically coloured zones

Figure 9.3

A political map of Nigeria

234

Figure 9.5
The map frame for a political map of Nigeria

fmap_date(dated(1995,6,15))
fmap_author("df")
fmap_title("Nigeria Political")
fmap_type("political")
fmap_purpose("analysisH)
fmap_user("author")
foutputjnediafscreen")
flevel_of_detail(8)
fscale(7500000)
fformat(18,16.5)
flatJong(2.5,15,3.5,14)
flimits(277.98731656,388.9402453,1667.9238994,1541.2843966)
fselect_index(7)
fbaseJnfo_list(["Coastline","Seas","Lakes","Lake_fill","State Boundaries",

"International Boundaries","Minor Towns","Major Towns","Capitals",
"Highways","Main Highways"])

fbase_ nfo("Highways",7)
fbase_ nfofMain Highways",8)
fbase_ nfofMinor Towns",8)
fbase_ nfof Major Towns",9)
fbase_ nfo("Capitals",10)
fbase_ nfo("State Boundaries",9)
fbase_ nfof International Boundaries", 10)
fbase_ nfo("Lakes",9)
fbase_ nfo("Coastline",10)
ftheme_info_list(["Administrative areas"])
frepresentationfAdministrative areas","unclassed areas - hierarchy")
frepresentation("Coastline","boundaries - one level")
frepresentation("Seas","isolated areas")
frepresentationfLakes","boundaries - one level")
frepresentation("Lake_fill","isolated areas")
frepresentationfAdministrative Boundaries","boundaries - hierarchy")
frepresentationf Settlements",^"ranked points")
frepresentationfRoads","network - link & node")

235

fsymbolismfCoastline","Coastline",
symbolspecfline","blue","dark","low","continuous","",0,"fine",201))

fsymbolismfSeas","Seas",symbolspecfarea","cyan","light","low","solid","",0,"",158))
fsymbolism("Administrative Boundaries","International Boundaries",

symbolspecfline","grey","dark","low","chain","chain",0,"thick", 210))
fsymbolismf Administrative Boundaries","State Boundaries",

symbolspec("line","black","dark","low","chain","chain",0,"fine",210))
fsymbolism(“Administrative areas","groupl",

symbolspec("area","green","light","mid","solid","",0,"",102))
fsymbolism("Administrative areas","group2",

symbolspec("area","yellow","pale","mid","solid","",0,"",102))
fsymbolismfAdministrative areas","group3",

symbolspec("area","orange","light","mid","solid","",0,"", 102))
fsymbolismfAdministrative areas","group4",

symbolspecfarea","red","light","mid","solid","",0,"",102))
fsymbolismfAdministrative areas","group5",

symbolspecfarea","magenta","pale",,,mid","solid",,,",0,"",102))
fsymbolismfLakes","Lakes",

symbolspecfline","blue","dark","low","continuous","",0,"fine",202))
fsymbolism("Lake_fiH","Lake_fiil",

symbolspecfarea","cyan","light","low","solid","",0,"", 191))
fsymbolismfSettlements","Capitals",symbolspecfpoint",

"magenta","dark","mid","geometric","square",0,"medium",251))
fsymbolismfSettlements","Major Towns",

symbolspecfpoint","magenta","dark","mid","geometric","box",0,"small",251))
fsymbolismfSettlements","Minor Towns", symbolspecfpoint",

"magenta","dark","mid","geometric","dot",0,"v_small",251))
fsymbolism("Roads","Main Highways",

symbolspecf line","red","mid","mid","cased","main_highways",0,"thick",223))
fsymbolismfRoads","Highways",

symbolspecfline","red","mid","mid","cased","highways",0,"thick",223))

CHAPTER TEN

Summary and Conclusions

The cartographic expert system would allow the user to specify
scales, projections, colors, symbols and other map elements, but
would make good decisions about defaults for any of these if the user
chose not to specify them. Ideally such a system should even [italics
mine] make an appropriate choice of the type of cartographic
representation . . . Clearly, the development of such a cartographic
expert system is a monumental task. In fact, it may be a problem
which can be effectively addressed only by a multi-investigator team
over a period of several to many years.1

The primary aims of this study have been to examine the application of
Artificial Intelligence to cartographic design and to create a knowledge based
system for producing small scale maps from a database, with minimum intervention
from the system user. As can be seen from the examples in Chapters Eight and
Nine and Appendix D, the system developed can produce a range of satisfactory
maps of different topics at different scales. The user of the system only has to
respond to a small number of simple questions, generally presented in the form of
menus each of which gives sensible and context sensitive default values. No
knowledge of cartographic design is required to produce sensible maps. The maps
produced are responsive to the user's requirements with content and
representation determined largely automatically from the simple user input and the
rules built into the knowledge base. Thus, it can be concluded that the primary
objective has been successfully achieved.

In order to achieve this goal, the map design process has been formally
described, with particular emphasis given to the classification of cartographic
representation methods that are commonly employed. Comprehensive rules for
each stage in the design process and for each representation method have been
developed and set out in the form of a functional specification for cartographic
design expert systems. These rules have then been implemented in an interactive
map design expert system using the Prolog language.

1 Buttenfield & McMaster, 1991; 146

237

Trial runs of the system certainly did lead to some refinement of the
knowledge base in order to match the author's expectation of what should have
resulted, but these adjustments were not of a major nature, and some were to be
expected. For example, some changes were made to the base information scores
in the map_content fact for some map topics as a result of seeing maps on the
screen. Generally, adjustments were to reduce the number of feature classes
included in the maps as some screen displays were rather cluttered. Other
adjustments to map_content reflected a refinement of the scores for more specific
map topics lower down the hierarchy, rather than adopting the values for the higher
'class' of topic. Other similar adjustments occurred elsewhere in the knowledge
base, but, in the author's opinion, overall a high level of success was achieved with
much of the initial rule base.

As mentioned in Chapter Eight, the most problematic area is that of
symbolisation and several attempts at implementing the rules for symbolisation
developed in Chapter Five and Six were necessary to create an operational
system. The basic structure outlined in these earlier chapters was not faulty, rather
it was the translation from descriptive rules to a specific implementation that
caused the difficulties. The rules as presented could be incorporated into other
systems using different development environments.

Apart from these specific conclusions about the system, some broader
observations can be made. From Chapter Three it can be seen that there has been
a great deal of interest in the application of expert systems to cartography in the
last ten years, but apart from a few selective, very narrow systems, few actual
working cartographic expert systems have been described. Most of the literature is
theoretical, discussing the potential (or pitfalls) of expert systems for cartographic
problems, or how systems or knowledge might be structured. Many of the early
writings were over-ambitious about what could easily be achieved and many show
basic ignorance of the knowledge of cartographers and the practice of map design.
Few have actually looked at the practice of cartography as it is carried out, but
have based their suggestions on a restricted range of published literature and
some vague concepts about producing maps. What the this study shows is that if
one moves away from the general notion of designing any kind of map at any scale
to placing some reasonable restrictions on what the system can be expected to
achieve and by further refining the possibilities as the design progresses, then a
solution is possible.

238

Apart from a few systems having very specialised functions, why are there
still no commercial cartographic expert systems? Proper development of expert
systems needs a great deal of time. Academics do not have enough time to devote
to the detailed implementation of the theories, and software developers currently
do not have (or at least do not see) the economic justification to devote the time.
Monmonier reported in 1990 that Intergraph had invested heavily in developing
expert systems for their mapping systems and GIS and had accumulated over
6,500 rules at that time.2 Significantly however, despite this work and the large
amount of published literature on expert systems for map generalisation,
Intergraph's MapGeneralizer product introduced in 1994 does not use an expert
system approach, but adopts Weibel's (1991) concept of 'amplified intelligence'
where the system is seen as a toolbox using various rules with logical defaults built
in, but does not operate in an inference mode. It is important also to note that the
promotional brochure for MapGeneralizer stresses that it is designed for interactive
use by operators with a knowledge of cartographic generalisation. This mirrors
developments in Intelligent Computer Aided Design (ICAD) systems where the aim
is to produce intelligent assistants rather than replace designers.

In discussing the problems of map design, Keates (1982) has stated that
without adequate information to map we do not even have a start. One factor which
has become increasingly evident as this project has progressed is the need for
information about the information. It can equally be contended therefore, that
without adequate metadata it is impossible to consider automating the process.
Many of the decisions about representation faced by the cartographer are solved
by his understanding of the world and the information he has about it. Clearly,
being able to describe this information in clear, unambiguous terms is an essential
basis for developing an automated process, and these processes could extend
beyond map design. Thus, the formal structures for describing information set out
in Chapter Five are considered to be the key to future development of automated
map design systems. Although this knowledge has been captured 'manually' in this
instance, the development of systems for automatically and/or interactively
quantifying this information in a comprehensive manner is an obvious avenue to
pursue in future research.

Buttenfield & Mackaness have stated that "Automating the graphic design
process has received relatively little attention in computer cartography" (1991; 436).

2 Monmonier, M.S. pers comm. 1990.

239

They view this lack of attention to map design as a growing contradiction given the
sophistication of the equipment and processes involved in GIS. They go on to note
that "Research has focused on those aspects of cartography that can be
compartmentalized (symbolization, generalization and text placement)" (1991; 437)
and believe that this isolation of elements from one another has reduced their
usefulness in developing an 'integrated solution' to automated map design. The
current study has concentrated on these broader issues and has solved many
aspects of the design of the small scale maps under investigation. Clearly,
however, the system developed is not yet a comprehensive mapping system. It
does not deal with names; it does not generalise features, the only generalisation
being at the simple level of feature selection; and it does not consider the overall
layout of map components. Although not trivial, these elements can be considered
as extensions to the core of a map design system. What the system does is tackle
the basic composition of the map by determining the location, format and scale of
the map, selecting appropriate classes of information and assigning representation
methods to them. This is then followed by the specification of individual symbols.
The approach of developing this core then extending it is more likely to succeed
than developing the various components independently then trying to fit them
together.

The database linked to the system has been developed specifically for the
system, but it conforms to common practices of structured data suitable for GIS.
One obvious development of the system described here would be to link it with
commercial geographical databases, such as the Digital Chart of the World, or
some of the increasing range of geo-referenced business databases becoming
available on CD ROM. The other obvious route for development is to develop the
system as a 'front end' to a GIS or mapping package. Many GIS do have a 'macro'
language that allows for custom procedures to be added, but it is unlikely that
these will allow the inference procedures built into the Prolog language to be
incorporated, so a different approach to incorporating the knowledge would need to
be taken. Thus, the research reported here could be considered to be just the
beginning of a long term programme of development.

BIBLIOGRAPHY

Addis, T.R. (1985) Designing Knowledge-Based Systems. London: Kogan Page
Limited.

Ahn, J., Freeman, H. (1983) A program for automatic name placement.
Proceedings, AutoCarto Six. pp.426-434.

Akagi, S. (1991) Expert System for Engineering Design Based on Object-Oriented
Knowledge Representation Concept, in Pham, D.T. (ed) Artifical
Intelligence in Design. London: Springer-Verlag. pp.61-100.

Akervall, L., Degerstedt, K., Rystedt, B. (1991) Spatial metada systems at the
National Land Survey of Sweden in: Medyckyj-Scott et al. (eds) Metadata
in the Geosciences, pp. 153-170.

Akman, V., ten Hagen, P., Rogier, J., Veerkamp, P. (1989) Knowledge Engineering
in Design. In Gero, G.S. (ed) Al Methods in Design. Berlin: Springer Verlag
pp. 118-141.

Akman, V., ten Hagen, P.J.W., Tomiyama, T. (1990) A fundamental and theoretical
framework for an intelligent CAD system. Computer-Aided Design. Vol.22,
No.6. pp.352-367.

Aleksander, I. (ed.). (1985) Advanced Digital Information Systems. Englewood
Cliffs: Prentice-Hall Inc.

Alty, J.L., Coombs, M.J. (1984) Expert Systems: Concepts and Examples.
Manchester: The National Computer Centre Ltd.

Anthony, R., Emmerman, P.J. (1986) Spatial Reasoning and Knowledge
Representation. In: Optiz, B. (ed.) Geographic Information Systems in
Government. Hampton, Va.: A Deepak Publishing, pp.795-813.

Arbab, F. (1987) A Paradigm for Intelligent CAD. In: ten Hagen, P.J.W., Tomiyama,
T. (eds.) Intelligent CAD Systems I. Berlin: Springer-Verlag. pp.20-39.

Armstrong, M.P. (1989) Interactive analytical displays for spatial decision support
systems. Proceedings, Autocarto 9. pp. 171-180.

Armstrong, M.P., Bennett, D.A. (1990) A knowledge based object-oriented
approach to cartographic generalisation. Proceedings GIS/LIS'90. pp.48-
57.

Bahill, A.T., Ferrell, W.R. (1986) Teaching an Introductory Course in Expert
Systems. IEEE Expert. Vol.1, No.4. pp.59-63.

Barr, R. (1993) I can't see what you mean. GIS Europe. Vol.2,No.5. pp. 16-17.
Basden, A. (1984) On the Application of Expert Systems. In Coombs, M.J. (ed.),

Developments in Expert Systems. London: Academic Press Inc. (London)
Ltd. pp.59-75.

241

Basoglu, U. (1982) A new approach to automated name placement. Proceedings,
AutoCarto 5. pp. 103-112.

Beard, K., Mackaness, W. (1991) Generalization Operations and Supporting
Structures. Proceedings, AutoCarto 10. pp.29-45.

Beech, G. (ed.). (1986) Interactive Learning on the IBM-PC. Wilmslow: Sigma
Press.

Begg, V. (1984) Developing Expert CAD Systems. London: Kogan Page Ltd.
Berry, D.C., Broadbent, D.E. (1986) Expert Systems and the Man-Machine

Interface. Expert Systems. Vol.3, No.4. pp.228-231.
Bertin, J. (1967) Semiologie Graphique. Paris: Gauthier-Villiers.
Bijl, A. (1987) Strategies for CAD. In: ten Hagen, P.J.W., Tomiyama, T. (eds.)

Intelligent CAD Systems I. Berlin: Springer-Verlag. pp.2-19.
Borland International. (1986) Turbo Prolog Owner's Handbook. Scotts Valley,

Ca.: Borland International, Inc.
Borland International. (1987) Turbo Prolog Toolbox User's Guide and Reference

Manual. Scotts Valley, Ca.: Borland International, Inc.
Borland International. (1988) Turbo Prolog Reference Manual V. 2.0. Scotts

Valley, Ca: Borland International, Inc.
Born, G. (ed.) (1988) Guidelines for Quality Assurance of Expert Systems.

London: Computer Services Association.
Bos, E.S. (1984) Systematic symbol design in cartographic education. ITC Journal,

part 1. pp.20-28.
Bouille, F. (1984a) Architecture of a Geographic Structured Expert System.

Proceedings, International Symposium on Spatial Data Handling, pp.520-
543.

Bouille, F. (1984b) A Structured Expert System for Cartography Based Upon the
HBDS. Proceedings, Auto Carto Six, Volume 2. pp.202-210.

Bouille, F. (1986) Interfacing Cartographic Knowledge Structures and Robotics.
Proceedings, Auto Carto London, pp.563-571.

Bouille, F. (1988) Developing Strategies in GIS by problem-solving methods based
on a structured expert system. Proceedings, Eurocarto Seven, pp.42-50.

Brachman, R.J., Levesque, H.J. (eds). (1985) Readings in Knowledge
Representation. Los Altos: Morgan Kaufmann Publishers, Inc.

Bramer, M.A. (1982) A Survey and Critical Review of Expert Systems Research. In
Michie, D. (ed). Introductory Readings in Expert Systems. New York:
Gordon and Breach Science Publishers, pp.3-29.

Bramer, M.A. (1991) Artificial Intelligence, Knowledge Engineering and the rise of
the Expert System. Professorial Inaugural Lecture, Portsmouth Polytechnic.

242

Bratko, I. (1982) Streamlining the Problem-Solving Processes. In Michie, D. (Ed.).
Introductory Readings in Expert Systems. New York: Gordon and
Breach, Science Publishers, Inc. pp. 177-191.

Breuker, J., Wlelinga, R. (1987) Use of Models in the Interpretation of Verbal Data
In Kidd, A.L. (ed.) Knowledge Aquisition for Expert Systems. New York:
Plenum Press.

Broome, F.R. (1987) Automated Map Inset Determination. Proceedings, AutoCarto

8. pp.466-470.
Brown, A. (1993) Map design for screen displays. Cartographic Journal.

Vol.30,No.2. pp. 129-135.
Bundy, A., et al. (1983) Alvey IKBS Research Theme: Intelligent Front End.

Workshop Report No. 1. London: The Alvey Directorate.
Bundy, A., Byrd, L., Mellish, C.S. (1985) Special-purpose, but domain independent,

inference mechanisms. In Steels, L., Campbell, J.A. (eds). Progress in
Artificial Intelligence. Chichester: Ellis Horwood Limited, pp.93-111.

Butler, R. (1988) The Use of Artificial Intelligence in GIS. Mapping Awareness.
Vol.2, No.3. pp.33-38.

Buttenfield, B.P., Mackaness, W.A. (1991) Visualization. In: Maguire, D.J.,
Goodchild, M.F., Rhind, D.W. (eds) Geographic Information Systems:
Principles and Applications, Vol.1. London: Longman, pp.427-443

Buttenfield, B.P., Mark, D.M. (1991) Expert Systems in Cartographic Design, in:
Taylor, D.R.F. (ed) Geographic Information Systems: the microcomputer
and modern cartography. Oxford: Pergamon Press, pp. 129-150.

Buttenfield, B.P., McMaster, R.B. (eds) (1991) Map Generalization: Making rules
for knowledge representation. Harlow: Longman.

Campbell, W.J., Goettsche, C. (1989) Development of an Intelligent Interface for
Adding Spatial Objects to a Knowledge-Based GIS. Godard Conference on

Space Applications of Artificial Intelligence, pp.239-247.
Cao, X., He, Z., Pan, Y. (1990) Automated design of house-floor layout with

distributed planning. Computer-Aided Design. Vol.22, No.4. pp.213-222.
Central Computer and Telecommunications Agency. (1985) Expert Systems:

Some Guidelines. London: H.M. Treasury.
Chandra, N., Goran, W. (1986) Steps Toward a Knowledge Basd Geographical

Data Analysis System. In: Optiz, B. (ed.) Geographic Information Systems
in Government. Hampton, Va.: A Deepak Publishing, pp.749-764.

Charniak, E., McDermott, D. (1985) Introduction to Artificial Intelligence.
Reading, Mass: Addison-Wesley.

243

Chen, G. (1986) A Rule-Based Approach for Spatial Object Modelling and Task
Management. Proceedings, Auto Carto London, pp.588-597.

Christ, F. (1975) Automatically Symbolized Output of Map Data Compiled and
Selected form a Data Base. NaKaVerm, Series II. No.32. pp.5-15.

Christ, F. (1975) Fully Automated and Semi-Automated Interactive Generalization,
Symbolization and Light Drawing of a Small Scale Topographic Map.
NaKaVerm, Series II. No.33 pp. 19-36.

Chubb, D.W.J. (1986) A Spatial Problem Solver and Its Associated Spatial
Representation. In: Optiz, B. (ed.) Geographic Information Systems in
Government Hampton, Va: A Deepak Publishing, pp.815-836.

Clark, D.W. (1987) Cadastral Overlay: Ontological Accuracy. Proceedings, GIS 87.

pp.666-677
Clark, K.L. (1982) An Introduction to Logic Programming. In Michie, D. (ed).

Introductory Readings in Expert Systems. New York: Gordon and
Breach, Science Publishers, Inc. pp.93-112.

Clark, K.L., McCabe, F.G. (1984) micro-PROLOG: Programming in Logic.
Englewood Cliffs: Prentice Hall International.

Clocksin, W.F., Mellish, C.S. (1981) Programming in PROLOG. Heidelberg:
Springer-Verlag.

Coelho, H. (1985) The Paradigm of Logic Programming in a Civil Engineering
Environment. Computers and Artificial Intelligence. Vol.4, No.2. pp. 115-124

Coelho, H., Cotta, J., Pereira, L. (1980) Howto Solve it with PROLOG. Lisbon:
Ministerio Da Habitacao E Obras Publicas, Laboratorio Nacional De
Engenharia Civil.

Conway, T., Wilson, M. (1988) Psychological Studies of Knowledge
Representation. In: Ringland, G.A., Duce, D.A. (eds.) Approaches to
Knowledge Representation: An Introduction. Letchworth, Herts.:
Research Studies Press Ltd. pp.117-160.

Cook, A.C., Jones, C.B. (1990a) A Prolog Interface to a Cartographic Database for
Name Placement. Proceedings, Fourth International Symposium on Spatial
Data Handling, pp.701-710.

Cook, A.C., Jones, C.B. (1990b) A Prolog Rule-Based System for Cartographic
Name Placement. Computer Graphics Forum 9. pp. 109-126.

Cooly, R.E., Hobbs, M.H.W. (1992) An application of Al to computing class partition
values for thematic maps. Proceedings, 5th International Symposium on

Spatial Data Handling, pp.371-380.
Coombs, M.J. (ed.). (1984) Developments in Expert Systems. London: Academic

Press.

244

Coombs, M.J., Alty, J. (1984) Expert Systems: an alternative paradigm. In:
Coombs, M.J. (ed). Developments in Expert Systems. London: Academic
Press, pp. 135-157.

Couclelis, H. (1986) Artificial Intelligence in Geography: The Shape of Things to
Come. The Professional Geographer. Vol.38, No.1. pp. 1-11.

Cowen, D.J., Ehler, G.B. (1994) Incorporating multiple sources of knowledge in a
spatial decision support system. Proceedings, 6th International Symposium

on Spatial Data Handling, pp.60-72.
Coyne, R. (1990) Logic of design actions. Knowledge-Based Systems. Vol.3,No.4.

pp.242-257.
Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., Gero, J.S. (1988)

Knowledge-Based Design Systems. Reading Mass.: Addison-Wesley
Publishing Company.

Crenhange, M., et al. (1984) EXPRIM: An Expert System to Aid in Progressive
Retrieval from a Pictorial and Descriptive Database. In: New Applications
of Data Bases. London: Academic Press, pp.43-61.

Cromp, R.F. (1990) Knowledge Aquisition Techniques for Spatial Reasoning about
Satellite Imagery. Proceedings, Fourth International Symposium on Spatial
Data Handling, pp.742-751.

Crosley, P. (1985) Creating User Friendly Geographic Information Systems
Through User Friendly System Supports. Proceedings, Auto Carto 7.
pp.133-140.

Crossland, M.D. (1090) Hydrologic - A prototype Geographic Information Expert
System for Examining an Artificial Intelligent Application in a GIS
Environment. Proceedings GIS/US'90. pp.225-233.

Cuadrado, C.Y., Cuadrado, J.L. (1985) Prolog Goes to Work. Byte. August,
pp.151-158.

David, B.T. (1987) Multi-Expert Systems for CAD. In: ten Hagen, P.J.W.,
Tomiyama, T. (eds.) Intelligent CAD Systems I. Berlin: Springer-Verlag.
pp.57-67.

Davis, E. (1986) Representing and Acquiring Geographic Knowledge. London:
Pitman.

Davis, J.R., Nanninga, P.M. (1985) GEOMYCIN: Towards a Geographic Expert
System for Resource Management. Journal of Environmental Management.
Vol.21. pp.377-390.

Davis, R. (ed) (1986) Intelligent Information Systems. Chichester: Ellis Horwood
Limited.

245

De Simone, M. (1986) Automated Structuring and Feature Recognition For Large
Scale Digital Mapping. Proceedings, Auto Carto London, pp.86-95.

DeMers, M.N. (1986) A Knowledge Base Aquisition Strategy for Expert Geographic
Information System Development. In: Optiz, B. (ed.) Geographic
Information Systems in Government Hampton, Va.: A Deepak
Publishing, pp.837-850.

Dietterich, T.G., Ullman, D.G. (1987) FORLOG: A Logic-based Architecture for
Design. In: Gero, J.S. (ed.) Expert Systems in Computer-Aided Design.
Amsterdam: Elsevier Science Publishers, pp.1-17.

Dobson, M. (1984) Effective Color Display for Map Task performance in a
Computer Environment. Proceedings, International Symposium on Spatial
Data Handling, pp.332-348.

Dobson, M. (1984) Human Factors in the Cartographic Design of Real-Time Color
Displays. Proceedings, Auto Carto Six, Volume 1. pp.421-426.

Dodd, T. (1987) Expert Prolog. Systems International. May. pp.51,54.
Doerschler, J.S., Freeman, H. (1989) An expert system for dense-map name

placement. Proceedings, AutoCarto 9. pp.215-224.
Drinnan, C.H. (1986) Line Representation Requirements and Techniques for

Geographic Information Systems. Opitz, B.K. (Ed.) GIS in Government.
Hampton. Va.: A. Deepak Publishing, pp.935-944.

Drummond, J. (1988) Fuzzy sub-set theory applied to environmental planning GIS.
Proceedings, Eurocarto Seven, pp. 11-22.

Duhovnik, J. (1987) Systematic Design in Intelligent CAD Systems. In: ten Hagen,
P.J.W., Tomiyama, T. (eds.) Intelligent CAD Systems I. Berlin: Springer-
Verlag. pp.224-238.

du Sautoy, M. (1995) Do computers threaten the true spirit of mathematics. The

Times. Monday, April 24th, p. 16.
Eager, A. (1989) Expert-system shells. PC Magazine Vol.2(5). pp.54-73.
Earnshaw, R.A. (ed.) (1987) Theoretical Foundations of Computer Graphics

and CAD. Berlin: Springer-Verlag.
Eastman, J.R. (1987) Graphic Syntax and Expert Systems Technical Papers,

ACSM-ASP Annual Convention, pp.87-96.
Ebinger, L.R., Goulette, A.M. (1989) Automated names placement in a non

interactive environment. Proceedings, AutoCarto 9. pp.205-214.
Egenhofer, M.J., Frank, A.U. (1988) Designing Object-Oriented Query Languages

for GIS: Human Interface Aspects. Proceedings, Third International

Symposium on Spatial Data Handling, pp.79-96.

246

Elder, W.E. (1987) Structures as Models in Design and Development. In:
Yoshikawa, H., Warman, E.A. (eds.) Design Theory for CAD. Amsterdam:
Elsevier Science Publishers, pp.33-50.

Elmes, A.E., Cai, G. (1992) Data quality issues in user interface design for a
knowledge-based decision support system. Proceedings, 5th International
Symposium on Spatial Data Handling, pp.303-312.

EnnaJs, R. (1983) Beginning micro-PROLOG. Chichester: Ellis Horwood Ltd.
Essinger, R. (1985) Obtaining maps from geographic information systems - Issues

in the design of the cartographic interface. Unpublished Masters

dissertation, SUNY, Buffalo.
Essinger, R. (1986) The Philosophy and Requirements of Computer-Aided Graphic

Design in Cartography. Proceedings, Auto Carto London, pp. 189-196.
Estes, J.R., Sailer, C., Tinney, L.R. (1986) Applications of Artificial Intelligence

Techniques to Remote Sensing. The Professional Geographer. Vol.38(2)
pp.133-141

Fairchild, D. (1987) The Display of Boundary Information: A Challenge in Map
Design in an Automated Production System. Proceedings, AutoCarto 8.
pp.456-465

Falcidiero, B., Gamboro, C. Singigaglia, P. (1983) Automatic colouring of maps
according to the elevation. Proceedings, AutoCarto Six. pp.426-434.

Fazio, P., Bedard, C., Gowri, K. (1989) Knowledge-based system approach to
building envelope design. Computer-Aided Design. Vol.21, No.8. pp.519-
527.

Fenves, S.J., Baker, N.C. (1987) Spatial and Functional Representation Language
for Structural Design. In: Gero, J.S. (ed.) Expert Systems in Computer-
Aided Design. Amsterdam: Elsevier Science Publishers, pp.511-529.

Fikes, R., Kehler, T. (1985) The role of frame-based representation in reasoning.
Communications of the ACM. Vol.28,No.9. pp.904-920.

Fisher, P.F., Mackaness, W.A. (1987) Are Cartographic Expert Systems Possible?
Proceedings, AutoCarto 8. pp.530-534.

Fisher, P.F., Wilkinson, G.G. (1985) Towards the Knowledge-Based Integration
and Presentation of Remotely Sensed Images and Geographic Data.
Proceedings, Advanced Technology for Monitoring and Processing Global
Environmental Data, pp.51-55.

Forrest, D. (1981) The design and perception of nonumerical point symbols.
Unpublished Masters thesis, Queen's University.

247

Forrest, D. (1990) A Model of Cartographic Design for Expert System Applications.
Proceedings, Fourth International Symposium on Spatial Data Handling.
pp.752-761.

Forrest, D. (1991) Classifying Cartographic Representations for Cartographic
Design Expert Systems. Proceedings, ICA91.

Forrest, D. (1992a) The development of a frame based cartographic design expert
system. Occasional Paper Series No.30. Department of Geography &
Topographic Science, University of Glasgow.

Forrest, D. (1992b) Map Generalization: making rules for knowledge representaion
- a review. Cartographic Journal. Vol.29,no.2. pp. 187-190.

Forrest, D. (1993) Expert systems and cartographic design. Cartographic Journal.

Vol.30,No2. pp. 142-148.
Forrest, D., Pearson, A.W. (1990) Information Sources in Map Design. In: Perkins

& Parry (eds.) Information Sources in Cartography. London: Bowker-
Saur. pp. 168-188

Forrest, D., Pearson, A.W. (1994) Somewhere over the rainbow: map design and
GIS. Proceedings AG 194.

Forsyth, R., Naylor, C. (1985) The Hitch-Hiker's Guide to Artificial Intelligence.
London: Chapman and Hall/Methuen Ltd.

Frank, A.U. (1982) MAPQUERY: Data Base Query Language for Retrieval of
Geometric Data and Their Graphical Representation. Computer Graphics.
Vol. 16, No. 3. pp. 199-207.

Franklin, R.L. (1986) The Exploitation of Digital Data Through Electronic Displays.
Proceedings, Auto Carto London, Vol.2. pp.389-398.

Franklin, R.W., Wu, P.Y.F. (1987) A Polygon Overlay System in Prolog.
Proceedings, AutoCarto 8. pp.97-106.

Freeman, H. (1991) Computer name placement. In: Maguire, D.J., Goodchild, M.F.,
Rhind, D.W. (eds) Geographic Information Systems: Principles and
Applications, Vol. 1. London: Longman pp.445-456

Freeman, H., Ahn, J. (1984) Autonap - An Expert System for Automatic Name
Placement. Proceedings, International Symposium on Spatial Data

Handling, pp.544-569.
Frost, R. (1986) Introduction to Knowledge Based Systems. London: William

Collins Sons & Co. Ltd.
Gahegan, M.N., Roberts, S.A. (1988) An intelligent, object-oriented geographical

information system. International Journal of GIS. Vol.2, No.2. pp. 101-110.
Gairola, A. (1986) An Application of Expert Systems in Design. Proceedings, 2nd

International Expert Systems Conference, pp.517-531.

248

Gardels, K.D. (1987) The Expert Geographic Knowledge System: Applying Logical
Rules to Geographical Information. Proceedings, AutoCarto 8. pp.520-529.

Gero, J.S. (1985) Expert Systems in CAD. Computer Aided Design. Vol 17, No 9.
pp.396-398.

Gero, J.S. (e.d.) (1987) Expert Systems in Computer-Aided Design. Amsterdam:
Elsevier Science Publishers.

Gero, J.S. (e.d.) (1991) Artificial Intelligence in Design. Oxford: Butterworth-
Heinemann Ltd.

Gero, J.S., Coyne, R.D. (1987) Knowledge-based Planning as a Design Paradigm.
In: Yoshikawa, H., Warman, E.A. (eds.) Design Theory for CAD.
Amsterdam: Elsevier Science Publishers, pp.339-373

Giaranto, J., Riley, G. (1989) Expert Systems: Principles and Programming.
Boston: PWS-Kent Publishing Company.

Gibson, A.E. (1987) A Model Describing Options for Parallel Color/Data Structuring.
Technical Papers, ACSM-ASP Annual Convention, pp.97-106.

Gill, G.A., Trigg, A.D. (1988) Enhancements to 'Canvas' to Enable Automatic
Colour Series Selection for VDU Images. Report No.10, NUTIS, Reading.

Gilmartin, P. (1989) Tiling patterns for Chorpleth Maps on medium Resolution
CRT's: An Empirical solution. Proceedings, 13th ICA Conference, pp.459-
481.

Gilmartin, P. (1992) Cartography and Geographic Information Systems. Vol. 19,
No.1. pp.37-47.

Gilmartin, P., Shelton, E. (1989) Choropleth maps on high resolution CRTs: the
effect of number of classes and hue on communication. Cartographies.

Vol.26,No.2. pp.40-52.
Gittins, D. (1986) Querry Language Systems. London: Edward Arnold

(Publishers) Limited.
Glaschnig, J. (1982) PROSPECTOR: an expert system for mineral exploration. In

Michie, D. (ed.) Introductory Readings in Expert Systems. New York:
Gordon and Breach.

Gooding, K., Forrest, D. (1990) An Examination of the Difference between the
Interpretation of Screen Based and Printed Maps. Cartographic Journal.

Vol. 27, No. 1. pp. 15-19.
Goodwin, C.W. (1987) The On-Line Atlas: A GIS for Flight Simulation.

Proceedings, GIS 87 - 2nd International Conference on GIS. pp.678-684.
Gould, J.D. (1968) Visual Factors in the Design of Computer-Controlled CRT

Displays. Human Factors. Vol. 10(4). pp.359-376.

249

Goulette, A.M. (1985) Cartographic Use of Dithered Patterns on 8-Color Computer
Monitors. Proceedings, Auto Carto 7. pp.205-209.

Grabowski, H., Seiler, W. (1985) Techniques, Operations and Models for
Functional and Preliminary Design Phases. In: Yoshikawa, (ed.) Design
and Synthesis. Amsterdam: Elsevier Science Publishers B.V. pp. 17-22.

Graklanoff, G.J. (1985) Expert System Technology Applied to Cartographic
Processes. Proceedings, ACSM/ASP Fall Technical Meeting, pp.613-624

Green, D. (1993) Map output from geographic information and digital information
processing sytems. Cartographic Journal. Vol.30,No.2. pp.91-96.

Grelot, J-P. (1986) Archaic Data Models or Hardware as Concept Killers.
Proceedings, Auto Carto London, pp.572-577.

Groop, R., Smith, (1982) A dot matrix method of portraying mcontinuous statistical
surfaces. American Cartographer. Vol.9,No.2.

Grossler, K. (1993) How to aquire reliable rules and knowledge for map design
expert systems (mapdes)? Proceedings, 16th International Cartographic

Conference, pp. 1150-1159.
Guilfoyle, C. (1987) Inside the Engine. Expert Systems User. February, p.9.
Hammond, P. (1984) micro-PROLOG for Expert Systems. In: Clark and McCabe

(eds.). micro-PROLOG. Englewood-Cliffs: Prentice-Hall International.
pp.294-319.

Harmon, P., King, D. (1985) Expert Systems. New York: John Wiley and Sons,
Inc.

Hayes-Roth, F., Waterman, D.A., Lenat, D.B. (1983) Building Expert Systems.
Reading, Mass.: Addison-Wesley Publishing Company, Inc.

Heivly, C.G. (1986) Using Expert Systems Concepts to Fix USGS Digital
Boundaries. Proceedings, 2nd. International Symposium on Spatial Data

Handling, pp.572-582.
Hirsch, S.A. (1980) An Algorithm for Automatic Name Placement Around Point

Data. Unpublished Masters thesis, State University of New York, Buffalo.
Hirsch, S.A. (1982) An Algorithm for Automatic Name Placement Around Point

Data American Cartographer. Vol.9,No.1. pp.5-19.
Hirsch, S.A., Glick, B.J. (1982) Design issues for an intelligent names processing

system. Proceedings, AutoCarto 5. pp.337-346.
Hootsman, R.M., de Jong, W.M., van der Wei, F.J.M. (1992) Knowledge-supported

generation of meta-information on handling crisp and fuzzy datasets.
Proceedings, 5th International Symposium on Spatial Data Handling.
pp.470-479.

250

Hopkins, L.D., Johnston, D.M. (1990) Locating Spatially Complex Activities with
Symbolic Reasoning: An Object-oriented Approach. Proceedings, Fourth

International Symposium on Spatial Data Handling, pp.762-771.
Horvath, M., Markus, A. (1985) Prototype of a Prolog-based Design Engine. In:

Yoshikawa, (ed.) Design and Synthesis. Amsterdam: Elsevier Science
Publishers B.V. pp.9-12.

Hsu, P., Beard, K. (1990) Deriving semantic knowledge of graphic objects through
scale of measurement and symbol representation. Proceedings,
GIS/LIS'90. pp.789-797.

Hsu, P. (1992) Spatial structure and design process: A step towards an ideal
information system for spatial design and planning. ACSM Technical
Papers, pp. 123-132.

Hua, Y., Gao, J. (1993) The establishment of a thematic map design expert system
PC-mappe. Proceedings, 16th International Cartographic Conference.
pp.943-947.

Hudson, D. (1987) Knowledge Representation Using First Order Predicate
Calculus. Proceedings, ACSM/ASP Annual Convention, pp. 157-166.

Hutzler, E., Spiess, E. (1993) A knowledge-based thematic mapping system - the
other way round. Proceedings, 16th International Cartographic Conference.
pp.329-340.

ICL. (1984) Adviser User Manual. ICL.
Illert, A. (1988) Automatic recognition of texts and symbols in scanned maps.

Proceedings, Eurocarto Seven, pp.32-41.
Irvine, T. (1985) Prolog in Perspective. Systems International. November, pp.88-89.
Ishikawa, H., et al. (1987) Designing A Knowledge-Based Natural Language

Interface. IEEE Expert. Vol.2, No.2. pp.57-71.
ludica, N.R. (1989) Expert Systems for Design: Basic Techniques, in Gero, G.S.

(ed) Al Methods in Design. Heidelberg: Springer Verlag. pp. 107-117.
Jaakkola, O., Sarjakoski, T., Blom, T., Laurema, M. (1990) From Satellite Data to

Thematic Representation - A Knowledge-Based System for Cartographic
Visualisation. Proceedings, Fourth International Symposium on Spatial Data

Handling, pp.711-722.
Jackson, P., Lefrere, P. (1984) On the application of rule-based techniques to the

design of advice-giving systems. In: Coombs (ed). Developments in
Expert Systems. London: Academic Press, pp. 177-200.

James, M. (1984) Artificial Intelligence in Basic. Sevenoakes, Kent: Butterworth
and Co.(Publishers) Ltd.

251

Jankowski, P., Nyerges, T.L. (1989) Design Considerations for MaPKBS - Map
Projection Knowledge-Based System. American Cartographer. Vol. 16,
No.1. pp.85-89.

Jansen, J.J., Puttgen, H.B. (1987) ASDEP: An Expert System for Electric Power
Plant Design. IEEE Expert. Vol.2, No.1. pp.56-65.

Jocob, R.J.K. (1983) Using Formal Specifications in the Design of a Human-
Computer Interface. Communications of the ACM. Vol.26, No.4. pp.259-
264.

Johnson, D.S., Basoglu, U. (1989) The use of Artificial Intelligence in the
automated placement of cartographic names. Proceedings, AutoCarto 9.
pp.225-230.

Jones, C.B., Cook, A.C., McBride, J.E. (1991) Rule-based control of automated
name placement. Proceedings, 15th ICA Conference, pp.675-679.

Jong, W.M. de, Wei, F.J.M. van der, (1990) Embedded Artificial Intelligence and
Spatial Data Handling, Some Presearch and Prototyping Experiences.
Proceedings, Fourth International Symposium on Spatial Data Handling.
pp.723-731.

Kadmon, N. (1972) Automated Selection of Settlements in Map Generalisation.
Cartographic Journal. Vol.9,No.2. pp.93-98.

Kalay, Y.E., Swerdloff, L.M., Harfmann, A.C. (1987) A Knowledge-based
Computable Model of Design. In: Gero, J.S. (ed.) Expert Systems in
Computer-Aided Design. Amsterdam: Elsevier Science Publishers.
pp.203-223.

Karimi, H.A. (1989) Geographic Knowledge Base Management System (GKBMS):
The Future Challenge in Geomatics. Proceedings, Canadian National
Conference on GIS. pp.704-709.

Karimi, H.A., et al. (1987) A Relational Database Model for an AVL System and an
Expert System for Optimal Route Selection. Proceedings, AutoCarto 8.
pp.584-593.

Keates, J.S. (1982) Understanding Maps. Harlow: Longman
Keates, J.S. (1989) Cartographic Design and Production (2nd Edition). Harlow:

Longman.
Keates, J.S. (1989) Expert Systems and Cartographic Design. Unpublished paper,

University of Glasgow.
Keates, J.S. (1989) Neural Networks and Visual Perception. Unpublished paper,

University of Glasgow.

252

Kelsey, R. (1988) Expert Systems as a Preliminary Design Tool for Drinking Water
Supply in Developing Countries. Science, Technology and Development
Vol.6, No.1. pp. 13-20

Kidd, A.L. (ed.) (1987) Knowledge Aquisition For Expert Systems. New York:
Plenum Press.

Kidner, D.B., Jones, C.B. (1994) A deductive object-oriented GIS for handling
multiple representations. Proceedings, 6th International Symposium on

Spatial Data Hnadling. pp.882-900
Kilpalainen, T., Sarjakoski, T. (1993) Knowledge-based methods and multiple

representation as means of on-line generalization. Proceedings, 16th

International Cartographic Conference, pp.211-220.
Kitchen, H. (1986) Expert-ease - Computing with expert knowledge. In: Beach, G.

(ed.) Interactive Learning on the IBM-PC. Wilmslow: Sigma Press.
pp.239-245.

Klahr, P., Waterman, D.A. (1986) Artificial Intelligence: A Rand Perspective. The

Al Magazine. Vol.7, No.2. pp.55-64.
Kocabas, S. (1987) A Handle on Prolog. .EXE Magazine. April pp. 18-25.
Koegel, J.F. (1987) A Theoretical Model for Intelligent CAD In: ten Hagen, P.J.W.,

Tomiyama, T. (eds.) Intelligent CAD Systems I. Berlin: Springer-Verlag.
pp.206-223.

Kolodner, J.L. (1984) Towards an understanding of the role of experience in the
evolution from novice to expert. In: Coombs M.J. (ed.) Developments in
Expert Systems. London: Academic Press, pp.95-116

Kottenstein, T. (1990) Concept and Prototype of a Symbol Reference System for
the Production of Thematic Maps. Proceedings, Fourth International
Symposium on Spatial Data Handling, pp.772-781.

Kowalski, R.A. (1979) Logic for Problem Solving. New York: Elsevier.
Kowalski, R.A. (1985) Logic Programming. Byte. August, pp. 161-177.
Kozai, K. (1987) An Educational Aid to Interpret Aerial Photographs for Coastal

Landforms - An Expert System Approach. Technical papers, ACSM-ASP

Annual Convention, pp.80-86.
Lambird, B.A., Lavine, D., Laveen, L.N. (1984) Distributed Architecture and

Parallel Non-directional Search for Knowledge-Based Cartographic Feature
Extraction Systems. In Coombs, M.J. (Ed.), Developments in Expert
Systems. London: Academic Press. 221

Lambourne, J,J., Sutherland, F.R. (1990) A Vector and Raster Based Mapping Tool
on Micro-Computers. Cartographic Journal. Vol.27, No.1. pp.20-23.

253

Langlotz, C.P., Shortcliff, E.H. (1984) Adapting a Consultation System to Critique
User Plans. In Coombs, M.J. (ed.), Developments in Expert Systems.
London: Academic Press Inc. (London) Ltd. pp.77-94

Langran, G.E., Poiker, T.K. (1986) Integration of Name Selection and Placement.
Proceedings, 2nd. International Symposium on Spatial Data Handling.

pp.50-64
Lansdown, R.J. (1987) Graphics, Design and Artificial Intelligence. Earnshaw, R.J.

Theoretical Foundations of Computer Graphics and CAD. Berlin:
Springer-Verlag. pp. 1153-1174

Lanter, D.P., Surbey, C. (1994) Metadata analysis of GIS data processing: a cae
study. Proceedings, 6th International Symposium on Spatial Data Handling.

pp.314-324.
Laurema, M., Jaakkola, O., Sarjakoski, T., Schylberg, L. (1991) Formalization of

cartographic knowledge using an expert system shell. Reports of the

Finnish Geodetic Institute, Helsinki.
Lawson, B. (1988) How Designers Think: the Design Process Demystified.

London: Butterworth Architecture.
Ledgard, H., Singer, A., Whiteside, J. (1979) Directions in Human Factors for

Interactive Systems. Berlin: Springer-Verlag.
Lee, F., Robinson, G.J. (1993) Development of an automated generalisation

system for large scale topographic maps. Proceedings, GIS Research UK.
pp.36-45.

Levine, R.I., Drang, D.E., Edelson, B. (1986) A Comprehensive Guide to Al and
Expert Systems. New York: McGraw-Hill Book Company.

Liang, Q., Shi, Z., Han, P. (1993) An experimental research on color automatically
design. Proceedings, 16th International Cartographic Conference, pp. 1227-
1234.

Liardet, M. (1987a) Prolog Power. Personal Computer World. February pp. 128-
132.

Liardet, M. (1987b) Teach Yourself Prolog. Personal Computer World. March
pp. 158-162.

Liardet, M. (1987c) Teach Yourself Prolog. Personal Computer World. April pp. 152-
158.

Lillywhite, J. (1991) Identifying available spatial metadata: the problem, in:
Medyckyj-Scott et al. (eds) Metadata in the Geosciences, pp.3-11.

Lu, X.Z. (1993) An object-oriented expert system for quantitative cartography.
Proceedings, 16th International Cartographic Conference, pp. 147-149

254

Lundberg, C.G. (1989) Knowledge Aquisition and Expertise Evaluation.
Professional Geographer. Vol.41 (3). pp.272-283.

MacCallum, K.J., Duffy, A., Green, S. (1987) An Intelligent Concept Design
Assistant. In: Yoshikawa, H., Warman, E.A. (eds.) Design Theory for CAD.
Amsterdam: Elsevier Science Publishers, pp.301-317.

MacEachren, A. (1994) Some Truth With Maps: a primer on symbolization and
design. Washington: Association of American Geographers.

Macey, S.M., et al. (1987) Critiquing and Redrawing Maps: Techniques to Enhance
Cartographic Knowledge. Journal of Geography. Vol. 87(5). pp.162-167.

Mackaness, W.A. (1986) Detection and Heuristic Resolution of Spatial Conflicts in
Digital Map Datasets. Unpublished manuscript, Kingston Polytechnic,
Surrey.

Mackaness, W.A. (1994) Issues in resolving visual spatial conflicts in automated
map design. Proceedings, 6th International Symposium on Spatial Data

Handling, pp.325-340.
Mackaness, W.A., Fisher, P.F. (1987) Automatic Recognition and Resolution of

Spatial Conflicts in Cartographic Symbolisation. Proceedings, AutoCarto 8.

pp.709-718.
Mackaness, W.A., Fisher, P.F., Wilkinson, G.G. (1985) The Design of a

Cartographic Expert System. Final Report for the Natural Environment
Research Council.

Mackaness, W.A., Fisher, P.F., Wilkinson, G.G. (1986) Towards a Cartographic
Expert System. Proceedings, Auto Carto London, pp.578-587.

Mackaness, W.A., Scott, D.J. (1987) The Problems of Operationally Defining the
Map Design Process for Cartographic Expert Systems. Research Paper
RR-87-06, School of Geography, Kingston Polytecnic.

Mackinlay, J. (1986) Automating the Design of Graphical Presentations of
Relational Information. ACM Transactions on Graphics. Vol.5, No.2.
pp.110-141.

Maeda, Y., Takeeshige, A., Koguchi, T., Tomiyama, T., Yoshikawa, H. (1985)
Frame Operating System for CAD. In: Yoshikawa, H. (ed.) Design and
Synthesis. Amsterdam: Elsevier Science Publishers B.V. pp. 13-16.

Maggio, R.C. (1987) The Role of Geographic Information Systems in the Expert
System. Proceedings, GIS 87 - 2nd Annual International Conference on

GIS. ASPRS/ACSM pp.685-692.
Maher, M.L., Zhao, F. (1987) Using Experience to Plan the Synthesis of New

Designs. In: Gero, J.S. (ed.) Expert Systems in Computer-Aided Design.
Amsterdam: Elsevier Science Publishers, pp.349-369.

255

Mainguenaud, Portier. (1990) GIS Querry Languages.
Mark, D.M. (1986) Knowledge-Based Approaches for Contour-to-Grid Interpolation.

Proceedings, 2nd. International Symposium on Spatial Data Handling.
pp.225-234.

Mark, D.M., Buttenfield, B.P. (1988) Design Criteria for a Cartographic Expert
System. Proceedings, 8th Intematioanl Workshop on Expert Systems and

Their Application, V.2. pp-413-425
Martinez, A.A. (1989) Automated insetting: An expert component embedded into

the Census Bureau's map production system. Proceedings, AutoCarto 9.
pp. 181-190.

Mason, D.C. et. al. (1986) Knowledge-Based Segmentation of Remotely-Sensed
Images. Proceedings, ISPRS Commision IV. pp.501-510.

Matsyama, T. (1987) A Knowledge-Based Aerial Image Understanding System and
Expert System for Image Understanding. IEEE Transactions on Geoscience

and Remote Sensing. Vol.25, No.3 pp.305-315.
McCrary, S.W. et al. (1090) EXGIS - An Expert System for GIS Selection in Small

Communities. Proceedings GlS/LiS'90. pp.562-572.
McGranahan, M. (1985) Symbol and Background Value Effects in Choropleth Maps

for Color CRT Display. Proceedings ACSM-ASP Fall Technical Meeting.
pp.356-363.

McGranahan, M. (1986a) Interaction of Saturation and Value in Color Choropleth
Maps. Technical Papers, ACSM-ASPRS Annual Convention, pp.76-84.

McGranahan, M. (1986b) Color Selection to Ease Information Retrieval from CRT
Maps. Proceedings, 2nd International Symposium on Spatial Data

Handling, pp.451-458.
McKeown, D.M. (1986) Some Experiences Integrating Spatial Databases with

Knowledge Based Systems. In: Optiz, B. (ed.) Geographic Information
Systems in Government. Hampton, Va.: A Deepak Publishing, pp.765-
774.

McKeown, D.M. (1987) The Role of Artificial Intelligence in the Integration of
Remotely Sensed Data with Geographic Information Systems. IEEE

Transactions on Geoscience and Remote Sensing. Vol.25, No.3. pp.330-
348.

McMaster, R.B., Mark, D.M. (1991) The design of a graphical user interface for
knowledge acquisition in cartographic generalization. Proceedings

GIS/US'91. pp.311-320.

256

Menon, S., Smith, T.R. (1989) A Declarative Spatial Query Processor for
Geographic Information Systems. Photogrammetric Engineering and

Remote Sensing. Vol.55, No.11. pp. 1593-1600.
Merrit, D. (1989) Building Expert Systems in Prolog. New York: Springer-Verlag.
Merry, M.J., Hammond, P. (eds.) (1984) Alvey IKBS Research Theme: Expert

Systems. Workshop Report No. 1. London: The Alvey Directorate.
Michalski, R.S., Davis, J.H., Bisht, V.S., Sinclair, J.B. (1985) Plant/ds: an expert

consulting system. In: Steels, L., Campbell, J.A. (eds). Progress in
Artificial Intelligence. Chichester: Ellis Horwood Limited, pp.257-270.

Michie, D. (ed.). (1979) Expert Systems in the Micro Electronic Age. Edinburgh:
Edinburgh University Press.

Michie, D. (ed.). (1982) Introductory Readings in Expert Systems. New York:
Gordon and Breach.

Middelkoop, H., Miltenburg, J., Mulder, N.J. (1989) Knowledge engineering for
image interpretation and classification: atrial run. ITC Journal. No.1. pp.27-
32.

Miller, D., Morrice, J. (1991) An expert system and GIS approach to predicting
changes in the upland vegetation of Scotland. Proceedings GiS/US'91.

Minsky, M. (ed.). (1968) Semantic Information Processing. Cambridge, Mass.:
The MIT Press.

Mittal, S., Araya, A. (1986) A Knowledge-Based Framework for Design.
Proceedings, AAAI 86. pp.856-865

Monmonier, M.S. (1981) Automated techniques in support of planning for the
National Atlas. American Cartographer. Vol.8,No.2. pp. 161-172.

Monmonier, M.S. (1986) Towards a Practicable Model of Cartographic
Generalisation. Proceedings, Auto Carto London, Vol.2. pp.257-266

Monmonier, M.S. (1990) Graphically Encoded Knowledge Bases for Expert-Guided
Feature Generalization in Cartographic Display Systems. International
Journal of Expert Systems. Vol.3, No.1. pp.65-71.

Monmonier, M.S. (1991) Howto lie with maps. Chicago: University of Chicago
Press.

Montreuil, B. (1990) Requirements for representation of domain knowledge in
intelligent environments for layout design. CAD. Vol.22, No.2. pp.97-108.

Morris, A.J. (1985) Adroit: An Intelligent Aircraft Designer. Proceedings, First
International Expert Systems Conference, pp.333-338.

Morrison, A. (1994) Description of spatial datatypes Unpublished manuscript,
University of Glasgow.

257

Morrison, C.f Forrest, D. (in press) A study of point symbol design for computer
based large scale tourist mapping. Cartographic Journal, forthcoming.

Morrison, J.L. (1974) A Theoretical Framework for Cartographic Generalization with
Emphasis on the Process of Symbolization. International Yearbook of
Cartography. Vol.XIV. pp. 115-127.

Morse, B.W. (1987) Expert Systems Interface to a Geographic Information System.
Proceedings, AutoCarto 8. pp.535-541.

Moss, D.S. (1987) Intelligent Databases. Byte. Vol.12, No.1. pp.97-106.
Mower, J.E. (1986) Name Placement of Point Features Through Constraint

Propagation. Proceedings, 2nd. International Symposium on Spatial Data

Handling, pp.65-73.
Muller, J-C. (1989) Challenges ahead for the mapping profession. Proceedings,

Autocarto 9. pp.675-683.
Muller, J-C. (1990) Rule-Based Generalization: Potentials and Impediments.

Proceedings, Fourth International Symposium on Spatial Data Handling.
pp.317-334.

Muller, J-C. (1991) Generalization of spatial databases In: Maguire, D.J.,
Goodchild, M.F., Rhind, D.W. (eds) Geographic Information Systems:
Principles and Applications, Vol.1. London: Longman pp.457-475

Muller, J-C., Johnson, R.D., Vanzella, L.R. (1986) A Knowledge-Based Approach
for Developing Cartographic Expertise. Proceedings, 2nd. International
Symposium on Spatial Data Handling, pp.557-571.

Muller, J-C., Mouwes, P.J. (1990) Knowledge acquisition and representation for
rule based map generalization. Proceedings GIS/LIS'90. pp.58-67.

Muller, J-C., Peng, W., Wang, Z. (1993) Procedural, logical and neural nets tools
for map generalisation. Proceedings, 16th International Cartographic

Conference, pp. 181-191.
Muller, J-C., Wang, Z. (1990) A Knowledge Based System for Cartographic Symbol

Design. Cartographic Journal. Vol. 27, No.1. pp.24-30.
Mulvenna, M.D., Hughes, J.G. (1993) Applying Knowledge-Based Techniques to

an Object-oriented Geographical Information System. Paper presented at
GIS Research UK

Munakata, T. (1986) Procedurally Oriented Programming Techniques in Prolog.
IEEE Expert. Vol.1, no.2. pp.41-47.

Navin chandra, D. (1992) Innovative design systems, where are we and where do
we go from here? Part I: Design by exploration. The Knowledge

Engineering Review, pp.345-362.
Naylor, C. (1983) Build Your Own Expert System. Bristol: Arrowsmith Ltd.

258

Naylor, C. (1988) Expert? You will be. Your Computer. Aug/Sept pp.60-62.
Naylor, C. (1989) How to talk turkey about expert systems. Honywell Intellect

Vol.1 (1). pp.15-19.
Nee, A.Y.C., Poo, A.N. (1991) Expert CAD Systems for Jigs and Fixtures, in Pham,

D.T. (ed) Artifical Intelligence in Design. London: Springer-Verlag.
pp.343-370.

Newton, S. (1986) A Role for Expert Systems in Building Design. Proceedings, 2nd

International Expert Systems Conference, pp. 175-182
Nickerson, E.G., Freeman, H. (1986) Development of a Rule-Based System for

Automatic Map Generalization. Proceedings, 2nd. International Symposium

on Spatial Data Handling, pp.537-556.
Nicolin, B., Gabler, R. (1987) A Knowledge Based System for the Analysis of Aerial

Images. IEEE Transactions on Geoscience and Remote Sensing. Vol.23,
No.3. pp.317-329.

Nilsson, N.J. (1971) Problem Solving Methods in Artificial Intelligence. New
York: McGraw-Hill.

Noack, W., et al. (1986) Correlation of Synthetic Aperture Radar Data Using a
Knowledge Based Processing System. Proceedings, 2nd International
Expert Systems Conference, pp.221-227.

Norman, D.A. (1983) Design Rules Based on Analysis of Human Error.
Communications of the ACM. Vol.26, No.4. pp.254-258.

Nyerges, T.L., Jankowski, P. (1989) A Knowledge Base for Map Projection
Selection. American Cartographer. Vol. 16, No.2. pp.29-38.

Nystued, J.D. (1984) Comment on "Artificial Intelligence and Its Applicability to
Geographic Problem Solving." Professional Geographer. Vol. 36(3).
pp.358-359.

O'Callaghan, J.F., Robertson, P.K. (1986) Colour Image Display of Geographic
Data Sets Using Uniform Colour Spaces. Proceedings, 2nd International
Symposium on Spatial Data Handling, pp.322-326.

O'Callaghan, J.F., Simons, L.W. (1984) Map Display Techniques for Interactive
Colour Mapping. Proceedings, International Symposium on Spatial Data

Handling, pp.316-319.
Ohsuga, S. (1989) Towards intelligent CAD systems. Computer-Aided Design.

Vol.21, No.5. pp.315-337.
Optiz, B.K. (ed.) (1986) Geographic Information Systems in Government

Hampton, Va.: A Deepak Publishing.
Oxman, R., Gero, J.S. (1987) Using Expert Systems for Design Diagnosis and

Design Synthesis. Expert Systems. Vol.4, No.1. pp.4-15.

259

Palmer, B. (1984) Symbolic Feature Analysis and Expert Systems. Proceedings,
International Symposium on Spatial Data Handling, pp.465-478.

Papadias, D., Kavouras, M. (1994) Acquiring, representing and processing spatial
relations. Proceedings, 6th International Symposium on Spatial Data

Handling, pp.631-645.
Pavilin, C. (1988) Logic in Knowledge Representation. In: Ringland, G.A., Duce,

D.A. (eds.) Approaches to Knowledge Representation: An Introduction.
Letchworth, Herts.: Research Studies Press Ltd. pp. 13-44.

Payne, E.C., McArthur, R.C. (1990) Developing Expert Systems. New York: John
Wiley & Sons, Inc.

Peacegood, G., Wilkinson, G.G., Fisher, P.F. (1986) Knowledge Base
Requirements for Automated Mapping from High Resolution Satellite
Imagery. Proceedings, ISPRS Commision IV. pp.661-667.

Pearl, J. (1984) Heuristics. Reading, Mass.: Addison-Wesley Publishing Company.
Peuquet, D. (1984a) The Application of Artificial Intelligence Techniques to Very

Large Databases. Proceedings, Auto Carto Six, Volume 1. pp.419-420.
Peuquet, D.J. (1984b) Data Structures for Knowledge-Based Geographic

Information Systems. Proceedings, International Symposium on Spatial
Data Handling, pp.372-391.

Peuquet, D.J. (1991) Methods for Structuring Digital Cartographic Data in a
Personal Computer Environment. In Taylor, D.R.F. (ed). Geographic
Information Systems. Oxford: Pergamon Press, pp.67-96.

Pfefferkorn, C. et. al. (1985) ACES: A Cartographic Expert System. Proceedings,
Auto Carto 7. pp.399-407

Pham, D.T. (ed) (1991) Artificial Intelligence in Design. London: Springer-Verlag.
Pham, D.T., de Sam Lazaro, A. (1991) Knowledge-Based Design of Jigs and

Fixtures, in Pham, D.T. (ed) Artifical Intelligence in Design. London:
Springer-Verlag. pp.371-390.

Pham, D.T., Tacgin, E. (1991) Techniques for Intelligent Computer-Aided Design,
in Pham, D.T. (ed) Artifical Intelligence in Design. London: Springer-
Verlag. pp. 5-27.

Pillinger, I., Hartley, P., Strugess, C.E.N., Dean, T.A. (1991) An Intelligent
Knowledge-Based System for the Design of Forging Dies, in Pham, D.T.
(ed) Artifical Intelligence in Design. London: Springer-Verlag. pp.319-342.

Poiker, T.K. (1981) A Knowledge Based System for the Study of Archival
Information. Unpublished paper, Simon Fraser University.

Poiker, T.K., Squirrell, R., Xie, S. (1982) The Use of Computer Science and
Artificial Intelligence in Cartographic Design. Proceedings, Auto Carto V.

260

Pountain, R. (1984) Prolog on Microcomputers. Byte. December, pp.355-362.
Prolog Development Center (1990) PDC Prolog Toolbox, Version 3.20.

Copenhagen: Prolog Development Center.
Prolog Development Center (1992) PDC Prolog Reference Guide, Version 3.3.

Copenhagen: Prolog Development Center.
Prolog Development Center (1992) PDC Prolog User's Guide, Version 3.3.

Copenhagen: Prolog Development Center.
Pullar, D. (1987) Query Language for Spatial Relationships. Proceedings,

ACSM/ASP Annual Convention, pp. 180-192.
Quinlan, J.R. (1982) Semi-Autonomous Aquisition of Pattern-Based Knowledge. In

Michie, D. (ed.), Introductory Readings in Expert Systems. New York:
Gordon and Breach, Science Publishers, Inc. pp. 192-207.

Rabbits, L., Wright, G. (1987) Card Tricks for Smart Players. Expert Systems User.
Vol.2, No.1. pp. 16-19.

Ranzinger, M. (1985) A Data Structure for a Geo-Expert System. International
Yearbook of Cartography. Vol.XXV. pp. 183-188.

Raper, J.F., Bundock, M.S. (1990) GIS user interfaces: A window on the future.
Proceedings, AGI90.

Ratcliffe, W. (1988) A paradox, a paradox. Amstrad Professional Computing.
November, pp.53-55.

Richardson, D.E. (1988) Database considerations for rule-based map feature
selection. ITC Journal. No.2 pp.165-170.

Richardson, D.E. (1989) Rule based generalisation for base map production.
Proceedings, Canadian National Conference on GIS. pp.718-739.

Ringland, G.A. (1988) Structured Object Representation - Schemata and Frames.
In: Ringland, G.A., Duce, D.A. (eds.) Approaches to Knowledge
Representation: An Introduction. Letchworth, Herts.: Research Studies
Press Ltd. pp.81-100.

Ringland, G.A., Duce, D.A. (eds.) (1988) Approaches to Knowledge
Representation: An Introduction. Letchworth, Herts.: Research Studies
Press Ltd.

Rivers, R. (1986) Interactive Learning with Expert 4. In: Beach, G. (ed.) Interactive
Learning on the IBM-PC. Wilmslow: Sigma Press, pp.245-250.

Roberston, P.K. (1988) Choosing Data Representations for the Effective
Visualisation of Spatial Data. Proceedings, Third International Symposium

on Spatial Data Handling, pp.243-252
Robinson, A.H., Sale, R.D. (1969) Elements of Cartography (Third edition). New

York: John Wiley & sons Inc.

261

Robinson, A.H., Sale, R.D., Morrison, J. (1984) Elements of Cartography (Fourth
edition). New York: John Wiley & sons Inc.

Robinson, G., Jackson, M. (1985) Expert Systems in Map Design. Proceedings,
Auto Carto 7. pp.430-439.

Robinson, G.J., Zaltash, A. (1989) Applications of Expert Systems to Topographic
Map Generalisation. Proceedings, AGI89.

Robinson, V.B. (1988) Expert Systems and Geographic Information Systems.
Alberta LRIS Newsletter. Vol.9, No.1. pp.3-6.

Robinson, V.B., Frank, A.U. (1987a) Expert Systems Applied to Problems in
Geographic Information Systems: Introduction, Review and Prospects.
Proceedings, AutoCarto 8. pp.510-519.

Robinson, V.B., Frank, A.U. (1987b) Expert Systems for Geographic Information
Systems. Photogrammetric Engineering and Remote Sensing. Vol.53,
No.10. pp. 1435-1441.

Robinson, V.B., Frank, A.U., Blaze, M.A. (1986) Expert Systems and Geographic
Information Systems: Review and Prospects. Journal of Sun/eying

Engineering. Vol.112, No.2. pp.119-130.
Robinson, V.B., Frank, A.U., Hassan, A.K., (1987) Expert Systems for Geographic

Information Systems. Artificial Intelligence Applications in Natural Resource

Management. Vol.1, No.1. pp.47-57.
Robinson, V.B., Thongs, D., Blaze, M. (1985) Natural Language in Geographic

Data Processing. Proc. Advanced Technology for Moitoring and Processing
Global Environmental Data. Remote Sensing Society/CERMA. pp.67-73.

Robinson, V.B., Thongs, D., Frank, A.U., Blaze, M. (1986) Expert Systems and
Geographic Information Systems: Critical Review and Research Needs. In:
Optiz, B.K. (ed.) Geographic Information Systems in Government
Hampton, Va.: A. Deepak Publishing, pp.

Rosenman, M.A., Coyne, R.D., Gero, J.S. (1987) Expert Systems for Design
Applications. In: Quinlan, J.R. (ed.) Applications of Expert Systems.
Sydney: Turing Institute Press / Addison-Wesley Publishing Co. pp.66-84.

Roubal, J., Poiker, T.K. (1986) Automated Contour Labelling and the Contour Tree
Unpublished paper, Simon Fraser University.

Ruzak Masur, E., Castner, H.W. (1990) Horton's ordering scheme and the
generalisation of river networks. Cartographic Journal. Vol.27,No.2. pp. 104-
112.

Sagalowicz, D. (1984) Development of an Expert System. Expert Systems. Vol. 1/2.
pp.137-141.

262

Samson, L., Poiker, T.K. (1985) Graphic Design with Color Using a Knowledge
Base. Paper presented at the 10th CCA Annual Conference.

Scheepers, C.F. (1989) Vector-based computer graphics in automated map
compilation. Proceedings, AutoCarto 9. pp.724-734.

Schildt, H. (1987) Advanced Turbo Prolog. Berkeley, Ca: Osborne/McGraw-Hill.
Schor, M.l. (1986) Declarative Knowledge Programming: Better than Procedural?

IEEE Expert. Vol.1, No.1. pp.36-43.
Senthil Kumar, A., Nee, A.Y.C., Prombanpong, S. (1992) Expert fixture-deslgn

system for an automated manufacturing environment. Computer Aided

Design. Vol.24,No.6. pp.316-326.
Shneiderman, B. (ed.). (1978) Databases: Improving Usability and

Responsiveness. New York: Academic Press.
Siekierska, E. (1984) Towards an Electonic Atlas. Proceedings, Auto Carto Six,

Volume 2. pp.464-474.
Siekierska, E.M. (1989) Advantages of expert systems with examples of the use of

the "VP.Expert" system for cartographic applications. Proceedings,
Canadian National Conference on GIS. pp.710-717.

Siekierska, E.M., Pulko, S. (1986) Canada's Electronic Atlas. Proceedings, Auto

Carto London, Vol.2. pp.407-417.
Siekierska, E.M., Taylor, D.R.F. (1991) Electronic Atlases. CISM Journal.

Vol.45,No.1. pp. 11-22.
Simons, G.L. (1985) Expert Systems and Micros: Introduction. Manchester: NCC

Publications.
Slocum, T.A. (1988) Developing an Information System for Choropleth Maps.

Proceedings, Third International Symposium on Spatial Data Handling.
pp.293-305.

Smith, T., Peuquet, D., Menon, S., Agarwal, P. (1987) KBGIS-II. A Knowledge-
based geographical information system. International Journal of GIS. Vol.1,
No.2. pp.149-172.

Smith, T.H., Green, T.R.G. (1980) Human Interaction with Computers. London:
Academic Press.

Smith, T.R. (1984) Artificial Intelligence and its Applicability to Geographical
Problem Solving. The Professional Geographer. 36(2). pp. 147-158.

Smith, T.R., Yiang, J.E. (1991) Knowledge-based approaches in GIS. In: Maguire,
D.J., Goodchild, M.F., Rhind, D.W. (eds) Geographic Information
Systems: Principles and Applications, Vol.1. London: Longman pp.413-
425.

263

Stadelmann, M., Lodwick, G.D. (1988) Building a knowledge base for automated
cartographic feature extraction from digital imagery. Proceedings, Eurocarto

Seven, pp.23-31.
Steels, L., Campbell, J.A. (eds) (1985) Progress in Artificial Intelligence.

Chichester: Ellis Horwood Limited.
Stefanovic, P., Vries-Baayens, A. (1984) Classification systems, choropleth maps

and the computer. ITC Journal, part 1. pp.52-57.
Stoms, D. (1987) Reasoning with Uncertainty in Intelligent Geographic Information

Systems. Proceedings, GIS 87. pp.693-700.
Su, B., Zhang, H., Li, H., Zhang, X., Zhang, Y., Zhu, X., Li, J. (1993) A knowledge

base system based on GIS for thematic mapping. Proceedings, 16th

International Cartographic Conference, pp.468-477.
Swinkels, D.A.J., Lock Lee, L., Saunders, M. (1986) Comparison of Four Expert

System Development Packages. Proceedings, 2nd International Expert
Systems Conference, pp. 149-155.

Takala, T. (1987) Theoretical Framework for Computer Aided Inovative Design. In:
Yoshikawa, H., Warman, E.A. (eds.) Design Theory for CAD. Amsterdam:
Elsevier Science Publishers, pp.323-338

Ten Hagen, P.W.J., Tomiyama, T. (eds.) (1987) Intelligent CAD Systems I. Berlin:
Springer-Verlag.

Thalman, N., Claude, Y., Laporte, G., Rousseau, J. (1982) Elect/An Interactive
Graphical System for the Automated Generation of Electoral Maps.
Cartographica. Vol. 19, No.1. pp.28-40.

Tomiyama, T., Ten Hagen, P.J.W. (1987) Organization of Design Knowledge in an
Intelligent CAD Environment. In: Gero, J.S. (ed.) Expert Systems in
Computer-Aided Design. Amsterdam: Elsevier Science Publishers,
pp. 119-147.

Tomiyama, T., Ten Hagen, P.J.W. (1987) The concept of intelligent integrated
interactive CAD systems. Report CS-R8717. Amsterdam: Centre for
Mathematics and Computer Science.

Tomlin, D. (1980) The Map Analysis Package. Yale Uniersity School of Forestry
and Environmental Studies.

Townsend, C. (1987) Mastering Expert Systems with Turbo Prolog. Indionapolis:
Howard W. Sams & Co.

Trigg, A.D., Gill, G.A. (1988) Canvas: A System for Improved Colour Selection for
Classified Imagery and Thematic Maps. ReportNo.7, NUTIS, Reading.

Tullis, T.S. (1981) An Evaluation of Alphanumeric, Graphic, and Color Information
Displays. Human Factors. Vol.23(5). pp.541-550.

264

Ullman, J.D. (1980) Principles of Database Systems. London: Pitman Publishing
Ltd.

Unwin, D. (1981) Introductory Spatial Analysis. London: University Paperbacks.
Uthe, A. (1988) User-Orientated Description and Classification of Geoscientific

Data. Geologisches Jarbruch A 104pp.63-74.
Van Elzakker, C. (1991) Map use research and computer-assisted statistical

cartography. ITC Journal 1991/3 pp. 122-126.
Vicars, D.W., Robinson, G.J. (1986) Generalisation from Large to Medium and

Small Scale Ordnance Survey Maps Using Expert Systems Techniques.
Proceedings, Auto Carto London, Vol.2. pp.267-275.

Wang, F., Newkirk, R. (1988) A Knowledge-Based System for Highway Network
Extraction. IEEE Transactions on Geoscience and Remote Sensing. Vol.26,
No.5. pp.525-531.

Wang, J.Y., Wu, F., Wu, Z. (1993) The research on tools of the cartographic
generalization expert system. Proceedings, 16th International Cartographic

Conference, pp.221-227.
Wang, Z. (1990) A Representation Schema for Cartographic Information.

Proceedings, Fourth International Symposium on Spatial Data Handling.
pp.782-791

Wang, Z. (1992) An Expert System for Cartographic Symbol Design. Unpublished

PhD. dissertation, ITC, The Netherlands.
Wang, Z. (1992) An intelligent interface for application of graphic elements.

Proceedings, 5th International Symposium on Spatial Data Handling.
pp.391-400.

Wang, Z. (1993) Searching for the most suitable cartographic representation in
statistical mapping. Proceedings, 16th International Cartographic

Conference, pp. 137-146.
Wang, Z., Brown, A. (1991) A knowledge-based system for selection of area

colours for maps. Proceedings, 15th ICA Conference, pp.945-949.
Waterman, D.A. (1986) A Guide to Expert Systems. Reading, Mass.: Addison-

Wesley Publishing Company.
Waters, N.M. (1989) Expert systems within a GIS: Knowledge acquisition for spatial

decision support systems. Proceedings, Canadian National Conference on

GIS. pp.740-759.
Waugh, T.C. (1980) A Parameter Driven Language for use in Application Systems.

Harvard papers on GIS, Volume 7.
Waugh, T.C., Carruthers, A.W. (1988) GIMMS Reference Manual, Release 5.

Edinburgh: GIMMS (GIS) Ltd.

265

Weber, H.R. (1985) Meditation on Man-Machine Interfaces or Our Personal Role in
Graphics Dialogue Programming. Computers and Graphics. Vol.9,3.
pp.237-245.

Webster, C. (1990) Rule-based spatial search. International Journal of GIS. Vol.4,
No.3. pp.241-260.

Weibel, R. (1991) Amplified intelligence and rule-based systems, in: Buttenfield,
B.P., McMaster, R.B. (eds) Map Generalization: making rules for
knowledge representation. Harlow: Longman, pp. 172-186.

Weibel, R., Buttenfield, B.P. (1992) Improvement of GIS graphics for analysis and
decision-making. International Journal of GIS. Vol.6,No.3. pp.223-246.

Weiss, S.M., Kulikowski, C.A. (1984) A Practical Guide to Designing Expert
Systems. London: Chapman and Hall Ltd.

White, W.B., Morse, B.W. (1987) Aspenex: an Expert System Interface to a
Geographic Information System for Aspen Management. Artificial
Intelligence Applications in Natural Resource Management. Vol. 1, No. 2.
pp.49-53.

Wilkinson, G.G. (1987) The search problem in automated map design.
Cartographic Journal. Vol.24, No.1. pp.53-55.

Wilkinson, G.G., Fisher, P.F. (1987) Recent Developments in Geo-Information
Systems. Cartographic Journal. Vol.24, No.1. pp.64-70.

Williams, C. (1986) Expert Systems, Knowledge Engineering, and Al Tools - An
Overview. IEEE Expert. Vol. 1, No.4. pp.66-70.

Williams, L.G. (1971) Obtaining Information from Displays with Discrete Elements.
In: Castner, H.W., McGrath G. (eds). Cartographica, Monograph No.2.
pp.29-34.

Wright, G., Rabbits, L. (1987) Card Tricks for Smart Players. Expert Systems User.

February, pp. 16-19.
Wu, J-K, Chen, T., Yang, L. (1989) QPF. A versatile querry language for a

knowledge-based geographical information system. International Journal of
GIS. Vol.3, No.1. pp.51-58.

Yazdani, M. (1989) Shells Versus Toolkits. Expert Systems User. Vol.5, No.1.
pp. 16-19.

Yijiang, Z. (1991) Research and realization of cartographic expert systems.
Proceedings, 15th ICA Conference, pp.455-459.

Yoeli, P.H. (1972) The Logic of Automated Map Lettering. Cartographic Journal.

Vol.9,No.2. pp.99-109.
Yoshikawa, H. Warman, E.A. (eds.) (1987) Design Theory for CAD. Amsterdam:

Elsevier Science Publishers.

266

Zhan, F. (1991) Structuring the knowledge of cartographic symbolization - An
object oriented approach. Proceedings, AutoCarto 10.

Zhang, W., Brooke, G., Kubik, K. (1993) Knowledge representation approach to
cartographic conceptual model formalisation. Proceedings, 16th

International Cartographic Conference, pp. 137-149.
Zhang, W., Li, H., Zhang, X. (1989) Mapgen: An expert system for automatic map

generalization. Proceedings, 13th ICA Conference, Vol.4 pp. 151-157.
Zhang, W., Su, B., Li, H., Zhang, X. (1991) A Knowledge-Based Approach to

Thematic Mapping. Unpublished paper, Wuhan Technical University of
Surveying and Mapping, China

Zhen, T., Wang, J.Y., Lin, A.S. (1993) Knowledge representation and reasoning in
nautical chart design. Proceedings, 16th International Cartographic

Conference, pp.93-102.
Zhu, X. (1994) A Framework for Intelligent Spatial Decision Support Systems.

Proceedings, GIS Research UK. pp.280-285.
Zoraster, S. (1986) Integer Programming Applied to the Map Label Placement

Problem. Cartographica. Vol.23, No.3. pp. 16-27.
Zoraster, S. (1987) Practical Experience with a Map Label Placement Program.

Proceedings, AutoCarto 8. pp.701-708.

APPENDICES

A MapDesigner module listings

B Knowledge base listings

C Other listings

D Example program runs, frames and maps

E File formats for database

F Meta data

G Related publications by author

A - 1

APPENDIX A

Program listing

Global domains, global databases, global predicates
(globdoms.pro) A

Main Program (main.pro) A
Description module (descript.pro) A
Layout Module (lay2.pro) A
Selection Module (select.pro) A
Symbolisation Module (symbol.pro) A

(symrul.pro) A
(level.pro) A

Display Module (display.pro) A
(bgiplot.pro) A
(polit4.pro) A

Modify Module (modify.pro) A
Utilities Module (utils.pro) A

2

11
18

23

31

37

42

61

63

68
80

83

84

A - 2

/★ ★/
/* GLOBDOMS.PRO */
/* */
/* Global domain declarations - include in all modules */
/* includes Toolbox standard domains */
/* includes Database predicate definitions */
/★ ★/
/* D.F. 8 march 1991 */
/* 20/05/93 added setup database */
/* 04/08/93 CHANGE TO GLOBAL DECS */
/* moved some databases to local */
/* 31/08/93 changed several dec's to SYMBOL *//**/
/ * * * * ★ * ★ * /

/* */
/★ FUNCTIONS 6 AUG 1993 */
/* */
/★ Declares global domains and database section */
/* included in all project modules */
/* incorporates other include files - utils, toolbox, etc */
/* GLOBAL PREDICATES are declarations of main modules */
/* */
/* GLOBAL DATABASES */
/* */
/* DATA holds attribute & coordinate data */
/* FRAME knowledge frame for current map */
/* KBASE main knowledge base */
/* KSYMBOLRULES rules on symbolisation for screen maps */
/* META meta data for each feature class */
/* SETUP user setup data (setup.kba) */
/* SCREENS for toolbox screen divers * /
/ * WORK working database */
/* */

GLOBAL DOMAINS
ROW,COL,LEN,ATTR = INTEGER
STRINGLIST = STRING*

% INTEGERLIST = INTEGER* % replaced by CONSTANT referral to
% BGI_ilist 29/8/94

REALLIST = REAL*
SYMBOLLIST = SYMBOL*
DATED = dated(INTEGER,INTEGER,INTEGER)
KEY = cr; esc; break; tab; btab; del; bdel; ctrlbdel; ins;

end; home; fkey(INTEGER); up; down; left; right;
ctrlleft; ctrlright; ctrlend; ctrlhome; pgup; pgdn;
ctrlpgup; ctrlpgdn; char(CHAR); otherspec

FIELD_NAME = SYMBOL
TYPE = int(); str(); real()
SELECTOR = STRING % for treemenu
TREE = tree(STRING,SELECTOR,TREELIST)
TREELIST = TREE*
PAIR = feat(SYMBOL,INTEGER);coord(REAL,REAL);

ints(INTEGER,INTEGER);symbs(SYMBOL,SYMBOL)
PAIRLIST = PAIR*
FILE = INPUT;OUTPUT;DATAFILE

/* symbolspec changed 23/11/93
SYMBOLSPEC = symbolspec(

STRING, % feature (class or sub-class)
SYMBOL, % point,line or area

*/
SYMBOLSPEC

INTEGER,
INTEGER,
INTEGER,

% colour
% form
% dimension

INTEGER) % level
= symbolspec(
SYMBOL, % Type - point,line or area
SYMBOL, % hue
SYMBOL, % lightness
SYMBOL, % saturation
SYMBOL, % form code
SYMBOL, % form
INTEGER, % orientation
SYMBOL, % dimension
INTEGER) % level

SYMBOLSPECLIST = SYMBOLSPEC*
CONSTANTS
INTEGERLIST = BGI_ILIST
/★*★**★★★★★*★★*********★★★★★*★**★★★★★**★★*★*★*★**★★*★★★**★■*•★ + ★/
/* Database for toolbox and utilities */
/ *+ * * * * * * * * * * * * * * * * *+ * * * * * /
GLOBAL DATABASE - SCREENS
/* Database declarations used in SCRHND */

insmode
actfield(FIELD_NAME)
screen(SYMBOL,SCREENS)
value(FIELD_NAME,STRING)
field(FIELD_NAME,TYPE,ROW,COL,LEN)
txtfield(ROW,COL,LEN,STRING)
windowsize(ROW,COL)
notopline

/ * /

/* Database declarations for setup file - "setup.kba" */
/ i t * /

GLOBAL DATABASE - SETUP
/* (type of file, name) */

flname(SYMBOL,STRING)
/* types of file are:

locate & select
>f file with basic location info
for use in determining limits
name of knowledge base of representations

name of knowledge base for symbolisation

kbasefile name
locatefile name
repfile
symbolfile name
plotfile name
metafile name
datapath path

*/

from general to specific media

path to location of data files

/****★*★★★*****★★★**★★*★★**★★***★★★★*★*******************★*★*★/
/* Database declarations for knowledge base */
/ ★ * * ★ * ★ ★ * * ★ * * * * * * * ★ * ★ * ★ * ★ * ★ ★ ★ * * ★ * * ★ * * * * ★ * ★ * * * * * ★ ★ ★ ★ * ★ * * * * * ★ * * + /

A - 4

GLOBAL DATABASE - KBASE
/* GENERAL */
/* rule(name,inlistl,inlist2,answer)*/

krule(SYMBOL,SYMBOLLIST,SYMBOLLIST,SYMBOL)
/* required(context,by,what,probability) context gives qualification

probability -5 to +5 */
krequired(SYMBOL,STRING,STRING,INTEGER)

/* member_of(main class, sub class) relates sub classes to main items
to allow lists to be formed */

kmember_of (STRING, STRING)
/* some lists */
/*base_info base info types*/
/*theme_info thematic info types*/
/♦scales rounded scales*/

klist(SYMBOL,STRINGLIST)
/* map_content(map_type,basic_type, [base info scores],

[thematic info],comment) */
kmap_content (STRING, STRING, INTEGERLIST, STRINGLIST, STRING)

/* DESCRIPTION */
/ *klevel_of _detail (user, purpose, media, value) * /

klevel_of_detail (SYMBOL, SYMBOL, SYMBOL, INTEGER)
/* LAYOUT */
/* scale_range(lower, upper) range of scales handled by system

values set in kbase for flexibility */
determ kscale_range(REAL,REAL,SYMBOL)

/* SELECTION */
/* kbase_select(scale range,level of detail,purpose, min score)

set of rules about minimum score for selection of base info from
known scale, 1 of d and purpose, ie returns score (kselect_index) */

/♦determ kbase_select(SYMBOL,SYMBOL,SYMBOL,INTEGER) */
/ * /
GLOBAL DATABASE - KLOCATE
/* extent(Name,Part_of,east,west,south,north) extent of area in lat & long
* /
kextent(STRING, STRING, REAL,REAL, REAL, REAL) % used for textual description

% of area to be mapped
/*★***★***★***★***★★★★*****★★★*★*★*★***★*★*******★**★**★★**★***★*/
GLOBAL DATABASE - KREPS
/* SYMBOLISATION */
/* subclass(main class, sub class) relates sub classes to main classes

of features for assigning reps */
ksubclass(STRING,STRING)

/* representation_type(number,description)*/

A - 5

krepresentation_type(INTEGER,SYMBOL)
/* rep(context,by,whatprobability) context gives qualification

probability -5 to +5 */
krep(SYMBOL,STRING,STRING,INTEGER)

/* conflict(type, value, value) */
kconflict(SYMBOL,SYMBOL,SYMBOL)

/ * ,

GLOBAL DATABASE - KSYMRULE
ksymbolspec(

STRING,
STRING,
SYMBOLSPEC)

kassociate_with(STRING,
STRING,
SYMBOL,
INTEGER)

% feature class
% feature

% feature 1
% feature 2
% property

% probability
kconvention(STRING,

STRING,
SYMBOL,
SYMBOL,
INTEGER)

% feature_class
% feature
% property
% value

% probability
ksymbolset(

SYMBOL,
SYMBOL,
STRING,
SYMBOLSPECLIST)

ksymbollist(

% sets of defined symbols
% name
% type
% description
% list of values

% list of defined symbol elements
% eg hues, shapes
SYMBOL, % name
SYMBOLLIST) % list of values

kstringlist(
SYMBOL,
STRINGLIST)

/* symbol conflicts */
ksymbol_conflict(

SYMBOL,
INTEGER,
SYMBOL,
INTEGER,
INTEGER)

% lists of names for feature, classes, etc
% name of list

% list of names

% media
% background colour
% type of conflict - PLA
% first variable
% second variable

/* next 2 commented out 23/11/93 for symrule2
/* symbol_spec(media,info_name,relate_to,rep_type,rep_num,

colour_lut,size_lut,form_lut) */
ksymbol_spec(SYMBOL,STRING,STRING,STRING,STRING,SYMBOL,SYMBOL,SYMBOL)

/* lists of pre defined sets of symbols */
ksymbolset(SYMBOL, % output media

INTEGER, % background colour (see constants)
SYMBOL, % name of set

A - 6

INTEGERLIST) % list of codes (constants)
*/

klevel(% places features on levels for plotting
SYMBOL, % feature
SYMBOL, % rep type
INTEGER) % level

/ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ H r * /

/* Database for current run */
/* The basic frame of knowledge representation */
/ * /
GLOBAL DATABASE - FRAME
/* GENERAL */
/* current_map(number) */

determ fcurrent_map(INTEGER)
/* map_date(date) date map designed or modified*/

determ fmap_date(DATED)
/* map_author(name) who made the map*/

determ fmap_author(STRING)
/* map_title(title) a simple title for identification*/

determ fmap_title(STRING)
determ fnotes(STRING)

/* DESCRIPTION */
/* map_class(name) class map type belongs to */

determ fmap_c1ass(STRING)
/* map_type(name) Type of map*/

determ fmap_type(STRING)
/* map purpose(purpose) OVERVIEW, ANALYSIS*/

determ fmap purpose(SYMBOL)
/* map_user(SYMBOL) who is the intended user

AUTHOR, GENERAL USER, KNOWLEDGABLE*/
determ fmap_user(SYMBOL)

/* output_media (media) screen, paper, overhead, slide */
determ foutput_media(SYMBOL)

/* level_of_detail Value between 1 (low) & 10 (high)*/
determ flevel_of_detail(REAL)

/* LAYOUT */
/* scale(rep. fraction) actual scale of map */

determ fscale(REAL)
/* scale_type(code) scalelarge

scalemedium
scalesmall
values set by kscalerange in kbase */

f scale_type(SYMBOL)
/* format (width,height) */

determ fformat(REAL,REAL)
/* lat_long(left, right, bottom top) location in lat long*/

determ flat_long(REAL,REAL,REAL,REAL)
/* limits(left,bottom,right,top) coords in data base system*/

determ flimits(REAL,REAL,REAL,REAL)

/* SELECTION */
/* selection index(value) */

determ fselect_index(INTEGER)
/* base_info_list([list of base info to include]) */

A - 7

determ fbase_info_list(STRINGLIST)
/* base_info(topic,score)*/

fbase_info(STRING,INTEGER)
/* theme_info_list([list of thematic info to include]) */

determ ftheme_info_list(STRINGLIST)
/*SYMBOLISATION */
/* representation(FEATURE,REPNUM)*/

frepresentation(STRING,STRING)
fcategories(STRING, % feature class

STRINGLIST) % list of catagories (or classes)
% to include

fclass_intervals(STRING, % Feature class
REALLIST) % list of class breakes

% (number of classes + 1)
determ fbackground_colour(INTEGER) % colour of background
fsymbolism(STRING, % feature class

STRING, % category or class
SYMBOLSPEC) % symbol

/ * * /
/* META DATA */
/* */

GLOBAL DATABASE - META
% data_description
% one entry per feature_class

kmeta_data(% describes the nature of the spatial data
% and provides links to attributes & coords.

SYMBOL, % feature category
DATED, % date digitised
STRING, % comments on source
SYMBOL, % phenomena discrete - point at map scale

% linear
% specific_area
% continuous_surface

SYMBOL, % spatial data point
% line
% boundary (polys not explicit)
% polygon
% cells

SYMBOL, % attribute level of measurement of spat.
% identical
% feature_coded
% hierarchical_feature_coded
% ordinal
% interval
% ratio_abs
% ratio_den
% external (depends on
% data linked to)

SYMBOL, % nature tangible
% conceptual

SYMBOL, % symbolic name of coordinate file
STRING, % look up table of feature codes, etc.
SYMBOL, % symbolic name of associated datafile
SYMBOL % symbolic name in datafile

A - 8

)

% one entry per coordinate file
kcoord_file(

SYMBOL,
SYMBOL,

DATED,
REALLIST,
REAL,

REAL,

STRING,
STRING
)

klook_up(
SYMBOL,
SYMBOL,
SYMBOL
)

% meta data about coordinate file
% symbolic name for file
% file type
point
line
boundary
polygon
cell
% digitising date

limits of data
% Digitising scale

STRING, % source
SYMBOL, % projection

% sphere (Lat & Long)
% plane
% projection name

SYMBOL, % units
% degrees
% kilometers
% miles
% scale factor
% multiplier of file coords
% to get units

% filename
% comments

% lookup table to relate kbase names to
% names (feature codes) in data file

% Feature class
% name in kbase
% name in data file

kdata_file(
SYMBOL,
SYMBOL,

DATED,
STRING,
SYMBOLLIST,
STRING,
STRING)

% information about data file
% symbolic name of file
% file type

% data - data only
% coord - mixed data & coords

%

% source of data
% names, in order, of variables
% kmeta_data gives properties

% filename
% comments

/*** note ***/
/* the coord_file & data_file given in meta may be the same when

file contains both coords & data.
The system checks for this and only opens one file

*/

GLOBAL DATABASE - PLOTDATA % the database of coordinates and data
node(

INTEGER,
SYMBOL,
INTEGER,

% seq no.
% feature code

% xcoord

chain(

polygon(

INTEGER, % ycoord
SYMBOL, % name
REAL) % value
INTEGER, % seq no
SYMBOL, % feature code
SYMBOL, % right area
SYMBOL, % left area
INTEGER, % npts
INTEGER, % start node
INTEGER, % end node
INTEGERLIST) % coords
INTEGER, % seq no
SYMBOL, % name / feature
INTEGER, % npts
REAL, % area
INTEGER, % x centroid
INTEGER, % y centroid
INTEGERLIST) % coords

data(% currently fixed format
% 3 data values

INTEGER, % seq no
SYMBOL, % name or feature code
REAL, % varl
REAL, % var2
REAL) % var3

/ * *
/ *
/*
/ * ,
GLOBAL DATABASE - WORK
/* knowledge base name */

wkbase_name(SYMBOL)
/ * reselect(flag)

wreselect(SYMBOL)
/* contents(list)

wcontents(STRINGLIST)
/* quit("y" or "n")

wquit(SYMBOL)
% misc lists

wlist(SYMBOL,STRINGLIST)
wintegerlist(SYMBOL,INTEGERLIST)
wreallist(SYMBOL,REALLIST)

% flag from check_symbol to show reason for error
determ wcheck_symbol(SYMBOL)

% symbol elements for determined by rules for features
% got by get_symbols

wsymbolset(STRING, % feature_class
SYMBOL, % code for list type
INTEGERLIST) % list of values

Working database for current run
stores flags, intermediate values, etc.

*/
*/

flag for to relselection*/
list of map contents */

flag for quit */

% number of screen pixels in window, or number of 'dots' available
% in plot window

determ wtotpix(REAL)
non_determ wcolour(

SYMBOL,
% used for unclassed area (polit.pro)

% zone

SYMBOL) % class

* * j
* GLOBAL PREDICATES */
* */

GLOBAL PREDICATES
/* These are called by MAIN or other modules and

represent the major modules and sub modules
All calls within these modules are local
(formerly handled by include statements)
descriptions are to be found locally */

% load_frame % added 01/09/94
description
layout
selection
symbolisation

getsymbols
check_symbol(SYMBOLSPEC,SYMBOLSPECLIST) - (i,i)
assign_levels

screenplot
sort_adjacent_classes(SYMBOL) - (i)

modify
/ * /
/* FOR GRAPHICS TOOLBOX (from gutil.pre) */
include "toolsWgraph.pre"
/ * /
/* UTILITIES ETC REQUIRED BY ALL MODULES */
/★*★★★★★★★★★★★*★★***★**★*****★*★****★* + *★*★*****★*★**★*★*★*■*•*****/
/* Includes moved to individual modules to save code space 27/10/93

only those specifically needed by module included
include "toolsWtpreds.pro"
include "tools\\status.pro"
include "toolsWmenu.pro"
include "toolsWlongmenu.pro"
include "toolsWlineinp.pro"
include "toolsWfilename.pro"
include "utils.pro"
include "toolsWscrhnd.pro"
include "toolsWtree.pro" % now only called by descript

/★★**★★**★**★★********★★★★*****★**★*******★*★*****★**★**★****★/
/* DEFAULT VALUES FOR SCRHND PREDICATES */
/★★★★*** /
CLAUSES

field_action(none).
field_value(Fname,Val) value(Fname,Val),!.
noinput(none).

* /

A - 11

/ * /
/* */
/* MAIN PROGRAM - MAIN.PRO 12 DEC 1989 */
/* */

/* */
/* FUNCTIONS 4 AUG 93 */
/ * */
/ * INTIALISE makes welcome screen */
/ * loads knowledge base */
/ * loads screen driver */
/* CLOSEDOWN closes down screens */
/* saves maps */
/* MAIN presents main menu */
/* gets choice of activity */
/* new_map clears frame & increments map number */
/* design_map calls sequence of predicates to fill */
/* frame */
/* */
/***
/* */
/ * MODIFICATIONS */
/ * */
/ * 01/91 remove declarations to GDOMS */
/ * 08/04/91 change to new database predicates */
/ * 27/07/92 all files now on C: */
/ * 20/05/93 introduced setup file for filenames etc */
/ * 04/08/93 major rewrite into modules - V. 0.3 */
/ * 01/09/94 added load frame */
project "mapdes"
include "globdoms.pro"

include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include "toolsWmenu.pro"

% include "toolsWlongmenu.pro"
include "toolsWlineinp.pro"
include "toolsWfilename .pro"
include "utils.pro"
include "toolsWscrhnd.pro"

% include "toolsWtree.pro" % now only called by descript
/ * /
/* DEFAULT VALUES FOR SCRHND PREDICATES */
/ * /
CLAUSES

field_action(none).
field_value(Fname,Val)value(Fname,Val),I.
noinput(none).

/* Database of maps created in current run */
/ * ★ * * * * ★ * /

DATABASE - KMAPS
/* map(number,title,date,author,

type,purpose,user,output_media,level_of_detail,notes,
left,bottom,right,top,width,height,scale,
content,symbolism) */

kmap(INTEGER,STRING,DATED,STRING,
SYMBOL,SYMBOL,SYMBOL,SYMBOL,INTEGER,STRING,
REAL,REAL,REAL,REAL,REAL,REAL,REAL,
STRINGLIST,STRINGLIST)

/* INITIALISE/******************************
PREDICATES

initialise %
welcome %
load_setup %
check_kbase %
check_kbasel %

(SYMBOL) %
load screens %

*/
* /

sets up windows etc
writes message on screen
loads set up file
finds and test loads kbases
working pred
name of kbase
loads screen driver

CLAUSES
initialise:-

makewindow(l,7,7,"Messages",20,0,4,80),
makewindow(2,31,7,"MAPDESIGNER",0,0,20,80),
write("Please wait ... "),
welcome,
load_setup,1,
check_kbase, !,
load_screens, I.

initialise:-failed("initialise").
welcome

clearwindow,
nl,nl,
write ("
nl,nl,
write("
nl,nl,
write("
nl,nl,
write("
nl,nl,nl,
write("
nl,nl,nl,nl,
write("
makestatus(112,
readchar (_).

Welcome to"),
MAPDESIGNER"),

Map Design Expert System"),
A Computer Program to Aid Map Design

Version 0.4, May 1994”),
Copyright: David Forrest "),

PRESS ANY KEY TO CONTINUE"),

load_setup:-
message("Loading setup information",""),
file_exist("setup.kba"),
message(”set up found, now loading",""),
consult("setup.kba",setup),i,
message("setup loaded","").

load_setup:-
file_exist("setup.kba"),i,
ermessage("Error loading setup.kba",

"Error in knowledge structure"),
fail.

load_setup:-
ermessage("Error loading setup","File setup.kba not found"
fail.

A - 13

check_kbase:-
message("Checking Knowledge Bases ",""),
check_kbasel(kbasefile), 1,
check_kbasel(locatefile),1,
check_kbasel(repfile), 1,
check_kbasel(symbolfile),!.

check_kbasel(kbasefile)
flname(kbasefile,Filename),
file_exist(Filename),
consult(Filename,kbase),1,
message("Knowledge loads ok",kbase),
retractall(_,kbase).

check_kbasel(locatefile)
flname(locatefile,Filename),
file_exist(Filename),
consult(Filename,klocate),1,
message("Knowledge loads ok",klocate),
retractall(_,klocate).

check_kbasel(repfile)
flname(repfile,Filename),
file_exist(Filename),
consult(Filename,kreps),1,
message("Knowledge loads ok",kreps),
retractall(_,kreps).

check_kbasel(symbolfile)
flname(symbolfile,Filename),
file_exist(Filename),
consult(Filename,ksymrule),i,
message("Knowledge loads ok",ksymrule),
retractall(_,ksymrule).

check_kbasel(plotfile)
flname(plotfile,Filename),
file_exist(Filename),
consult(Filename,kplot),!,
message("Knowledge loads ok",kplot),
retractall(_,kplot).

check_kbasel(Kbname):-
flname(Kbname,Filename),
file_exist(Filename),!,
ermessage("Error loading knowledge base",

Kbname),
fail.

check_kbasel(Kbname)
flname(Kbname,Filename),
ermessage("Error loading knowledge base, file not found",
Filename),
fail.

load_screens:-
message("Loading screen driver ",""),
file_exist("screens.scr"),
consult("screens.scr",screens),1,
message("Screen driver loaded","").

load_screens:-
ermessage("Error in screen driver","or 'screens.scr' not found"),
fail.

/* CLOSEDOWN */
/ * /

PREDICATES
closedown
removescreens /* removes data for screen layouts */

% quit /* prompt if user wants to quit
CLAUSES

closedown
clearwindow,nl,nl,nl,nl,nl,
write(" MAP DESIGN EXPERT SYSTEM TERMINATING"),
nl,nl,
write(" We hope you were successful"),
nl,nl,
pause,
status(9),
message("Performing orderly shutdown",""),
shift_screen(nul),
removescreens,
retract(fcurrent_map(_)),

% close files, print diags etc.
save("kmap.dat",kmaps), % save updated map specs

% save details of current map to separate file if required
message("map definitions saved in kmap.dat",""),
save("frame.frm",frame),
message("current frame saved in frame.frm",""),
pause,
clearmessage,
makewindow(1,0,0,"",0,0,25,80).

removescreens:-
retract(screen(_,_)), fail,

removescreens.
/ *****★★*/

/* * /
/ * Main Program */
/* */
/ *****************★***★★*/
/★**★★★★★★★★*★***★*★★**★★****★***★*********★*★★★*★*★★★★★•*■*★**★*/
PREDICATES

mainmenu % main controling menu
mainmenul(INTEGER) % action for above
design_map % calls modules to design map
new_map % initialises new (subsequent) map
utilities % enters utitities menu
storemap % stores map design specs

CLAUSES
mainmenu:- /* repeat menu until get */

repeat, /* request to quit (choice=8) */
shiftwindow(2),
clearwindow,
status(0),
clearmessage,
menu(3,20,7,7,[" Design a new map ",

" Modify or display a previous map ",
” Load existing map design file ",

" Save map design ",
" How Map Designer Works ",

A - 15

" Utilities ",
" Exit Map Designer (QUIT) "],

" MAIN MENU ",1,Choice),
mainmenu1(Choice),
Choice = 7,1.
mainmenu1(0):-i.
mainmenu1(1):-I,new_map.
mainmenul(2):-l,nl,write("facility not yet available"),pause,
mainmenul(3):-1,

% load_frame.
nl,write("facility not yet available"),pause.

mainmenul(4):-!,nl,write("facility not yet available"),pause,
mainmenul(5):-!,nl,write("facility not yet available"),pause,
mainmenul(6):-!,utilities.
mainmenul(7):-l,nl,write(
" Are you sure you want to leave Map Designer? (y/n) "),

readchar(T), T='y'.
% mainmenu = 1

new_map:- /* clear FRAME of old map */
fcurrent_map(N),1,
nl,write(N),
retractall(_,work),
retractall(_,frame),
Newmap = N + 1,
asserta(fcurrent_map(Newmap)), 1,
design_map.

new_map:- /* no old map */
retractall(_,work),i,
retractall(_,frame),
asserta(fcurrent_map(1)),!,
design_map.

design_map /* main clause for designing maps * /
description,1,
layout,!,
selection,1,
symbolisation,!,

getsymbols,!,
screenplot,I,
modify,1,
storemap. / * transfer current values to kmap */

design_map:-
ermessage ("closing down map designer due to failure","").

storemap:-
fcurrent_map(N),i,
fmap_title(Title),!,
fmap_date(Date),i,
fmap_author(Author),!,
fmap_type(Type), i,
fmap_user(User) , \ ,
fmap_purpose(Purpose),!,
foutput_media(Media),!,
flevel_of_detail(Detail),1,
fnotes(Notes),I,
flat_long(West,East,South,North),1,
fformat(W,H),1,
fscale(S), I ,
fbase_info_list(BASE), I,

A - 16

ftheme_info_list(THEME),!,
append(BASE,THEME,ALL),
asserta(kmap(N ,Title,Date,Author,Type,User,Purpose,Media,Detail,Notes,

West,East/South,North,W,H,S,ALL,[])).
storemap:- /* map incomplete */

fcurrent_map(N),1,
assertz(kmap(N,"incomplete",dated(0 , 0 , 0 o,"",

0,0,0,0,0,0,0,[],[])).
/★+**★**★*******★*★★***★*****************★★★***★★★****★***★★*★★★*★*★*★/

/* GOAL SECTION */
/ * /
/ ★ H r * * * * /

goal
initialise,!,
mainmenu,
closedown.

/*★★****★★★★*★*★★★★*★★★★★★*★★★★★★*★★★*****★*★***★*★★★★*★★★★****+★★*★**/

/★***★★**★*★★***★*******★*★★****★★*****★★*★*★*★★★★★***★*****★*★★★★★★★*/
/* UTILITIES SECTION */
/ * ★ * * * * * * ★ * * * * * * ★ * * * * * * ★ * * * * /

PREDICATES
% utilities declared in MAIN

utilmenu
utilmenul(INTEGER)

CLAUSES
utilities

utilmenu.
utilmenu:- /* repeat menu until get */

repeat, /* request to quit (choice=8) */
clearwindow,
status(0),
clearmessage,
menu(3,20,7,7,[" Edit Set Up file ",

" Display or Modify knowledge base ",
" Load a different knowledge base ",

" Load a different database ",
i f t l

/

" Operating System Shell ",
" Exit Utilities "],

" UTILITIES ", 7,Choice),
utilmenul(Choice),
Choice = 7,1.
utilmenul(0):-I.
utilmenul(1):-I,nl,write("facility not yet available"),pause,
utilmenul(2):-l,nl,write("facility not yet available"),pause.
utilmenul(3):-!,nl,write("facility not yet available"),pause.

/* utilmenul(3):-
clearwindow,I,
% get file name from user (menu?)
readfilename(3,10,7,7,"kba","kbase.kba", Newname, existing_file),
retractall(_,kbase), % clear exisiting kbase
flname(kbasefile,Oldkbase),

A - 17

asserta(flname(kbasefile,Newname)),
load_kbase, % load new kbase
retract(flname(kbasefile,Oldkbase)). % remove old kbase name

u t i l m e n u l (3) , % reload default
retractall(_,kbase),
retractall(flname(kbasefile,_)),
assert(flname(kbasefile,"kbase.kba")),
load_kbase.

* /
utilmenul(4) ,nl,write("facility not yet available"),pause,
utilmenul(5) ,nl,write("facility not yet available"),pause,
utilmenul(6):-!,system("",1,_).
utilmenul(7):-1.

/*★★ encj 0f utilities ***/

A - 18

/**
/* 2 DESCRIPTION *//**/
/* */
/* MODIFICATIONS */
/* 27/1/91 major changes to reflect frame */
/* structure */
/* 30/1/91 tree menu added for map type select. */
/* 08/04/91 renamed database predicates used * /
/* 04/08/93 change to modular prog */
/* 24/05/94 moved consult kbase to description */
project "mapdes"
include "globdoms.pro"

include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include "toolsWmenu.pro"
include "toolsWlongmenu.pro"
include "toolsWlineinp.pro"
include "utils.pro"
include "toolsWtree.pro" % now only called by descript

/★★★ tree menu functions used by get map type ***/
/★ see pdc Toolbox pp32-34. */
PREDICATES

collect_tree(STRING,INTEGER,TREE)
nondeterm collect_treel(STRING,INTEGER,TREE)

CLAUSES
treeaction(_,_). %required by treemenu

% predicate declaration in tree.pro
collect_tree(Node,1,tree(Node,Node,[])).

% 1. % cut added 20/10/93 ???
collect_tree(Node,N,tree(Node,Node,Treel))

findall(T,collect_treel(Node,N,T),Treel).
collect_treel(Node,N,Tree)

N1=N—1,
kmap_content(Nodel,Node,_,_,_),
collect_tree(Nodel,Nl,Tree).

/★★★★★★★★*★*★★****★*★**★********★***************★*★★★★*★*★***★**★*★★/
PREDICATES
% description now in globdoms

show_description
get_date
get_author
get_maptitle
get_outputmedia
get_outputmedial(INTEGER)
get_maptype
get_maptypel(SYMBOL)
get_mappurpose
get_mappurposel(INTEGER)
get_mapuser
get_mapuserl(INTEGER)
get_levelofdetail

% get_levelofdetaill(INTEGER)

A - 19

CLAUSES
description:- % check for quit

wquit("y"),1,
retractall(_,kbase),
fail.

description:-
clearmessage,
makewindow(20,30,2,"DESCRIPTION",0,0,20,80),
retractall(_,kbase),
flname(kbasefile,Filename),
consult(Filename,kbase),
I,
get_date,
get_author,
get_maptitle,
get_mapuser,
get_outputmedia,
get_maptype,
get_mappurpose,
get_mapuser,
get_levelofdetail, I,
show_description, I,
retractall(_,kbase),
clearmessage,
removewindow.

show_description:-1,
clearmessage,
fcurrent_map(N),
fmap_date(dated(Year,Month,Day)),
fmap_author(Author),
fmap_title(Title),
fmap_type(Type),
fmap_purpose(Purpose),
fmap_user(User),
foutput_media(Media),
flevel_of_detail(Level),
clearwindow,
write(
write(
nl,nl,
write(
write(
write(
write(
write(
write(
write(
write(
pause.

Map Number : ",N),nl,nl,
The following description of the map has been

The brief title of the map is : ”,
Map Author : ",Author),nl,
Date designed : ",

Day,"-",M o n t h , ,Year),nl,nl,
The map type is : ",Type),
The final output will be to : ",Media)
The purpose of the map is for : ",
The intended user(s) : ",User),
The level of detail (1-10) is :

get_date:- /* Existing date */
fmap_date(dated (_,_,_)), I.

get_date:-!,
date(Year,Month,Day),
asserta(fmap_date(dated(Year,Month,Day))).

get_author:- /* Existing Author */
fmap_author(_),i.

recorded"),
Title),nl,nl,

nl,
,nl,nl,
Purpose),nl,
nl,
Level),nl,nl,

A - 20

get_author:- /* New Author */
status(7),
clearwindow,
fcurrent_map(N),
nl,write(” Map Number : ",N),
nl,nl,nl,
write(" Enter name of Author for this map"), nl,nl,
cursor(10,12),readln(Author),1,
asserta(fmap_author(Author)),
clearwindow,
cursor (1,1),
write("Map Number : ",N),
status(1).

get_author:-1,
ermessage("You must enter an Author",

"It can be initials"),!,
get_author.

get_maptitle:- /* Existing title */
fmap_title(_), ! .

get_maptitle:- /* Enter Title */
status(7),
clearwindow,
fcurrent_map(N),
nl,write(" Map Number : ",N),
nl,nl,nl,
write(" Enter a short name or title for this map"), nl,nl,
write(" This is for reference purposes only "),
cursor(10,12),readln(Title), 1,
asserta(fmap_title(Title)),
clearwindow,
cursor (1,1),
write("Map Number : ",N),
status(1).

get_maptitle:-
ermessage("You must enter a title",

"It can be a single character"),!,
get_maptitle.

get_maptype fmap_type(_),!. /* type determined */
get_maptype % using tree menu

status(2),
makewindow(21,30,2,"Select most appropriate map type",1,0,19,80),
retractall(_,treemenu),
collect_tree("map type",9,Tree),!, % see above for predicate

% tree root starts with "map type" in kmap_content
repeat,
treemenu(right,Tree,Choice,cursor,[]),!/
status(1),
get_maptypel(Choice),
clearmessage,

get_maptypel("map type")
message("you must select a map type",

"more specific types are towards the right of the tree"),
pause,!,
fail.

get_maptypel(Choice)
asserta(fmap_type(Choice)).

get_mapuser

A - 21

fmap_user(_),!.
get_mapuser :-

status(2),
menu (5,20,7,2,[" Map Author",

" General user(s) ",
" Specialist user(s) "],

" Who is the intended map user ? ",1,Choice),
status(1),
get_mapuserl(Choice).

get_mapuserl(0):-
quit,
fail.

get_mapuserl(1) asserta(fmap_user(author)).
get_mapuserl(2):- asserta(fmap_user(general)).
get_mapuserl(3) asserta(fmap_user(specialist)).
get_mappurpose

fmap_purpose(_), 1.
get_mappurpose :-

status(2),
menu (5,20,7,2,[" General Overview ",

" Detailed Analysis "],
" What will the map be used for ? ", 1,Choice),

status(1),
get_mappurposel(Choice).

get_mappurposel(0):—
quit,
fail.

get_mappurposel(1) asserta(fmap_purpose(overview)).
get_mappurposel(2) asserta(fmap_purpose(analysis)).
get_outputmedia:-

foutput_media(_), 1.
get_outputmedia:-

status(2),
menu (5,20,7,2,[" screen ",

" monochrome plot ",
" colour plot ",
" slide ",
" overhead transparency "],

" What is the final output media ? ", 1, Choice),
status(1),
get_outputmedial(Choice).

get_outputmedial(0):-1,
quit,
fail.

get_outputmedial(1) asserta(foutput_media(screen)),1.
get_outputmedial(_) nl,write("facility not available, default is

screen"),
pause,
asserta(foutput_media(screen)).

get_levelofdetail flevel_of_detail(_),!.

get_levelofdetail
fmap_user(User),
fmap_purpose(Purpose),
foutput_media(Media), 1,
klevel_of_detail(User,Purpose,Media,Val),
asserta(flevel_of_detail(Val)).

*** END OF DESCRIPTION ★***/

/ * /

/* 3 LAYOUT */
/ * /

/ * * /
/* MODIFICATIONS */
/ * * /
/* 08/04/91 CHANGE TO NEW DATABASE PREDICATES */
/* 19/04/91 add place name search */
/* 04/08/93 move Klocate database from globdoms */
/* 10.04/94 closedown section to save memory */
project "mapdes"
include "globdoms.pro"

include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include " toolsWrnenu .pro"
include "toolsWlongmenu.pro"
include "toolsWlineinp.pro"
include "utils.pro"
include "toolsWscrhnd.pro"

/ * /

/* DEFAULT VALUES FOR SCRHND PREDICATES */
CLAUSES

field_action(none).
field_value(Fname,Val) value(Fname,Val),i.
noinput(none).

PREDICATES
% layout Now declared in globdoms

show_layout
% change_layout

get_location
get_locationl(INTEGER)

% change_location
get_place
load_places
get_placel(STRINGLIST)
get_extent(INTEGER,STRING)
get_extentl(STRINGLIST)
get_max_extent(REAL,REAL,REAL,REAL,STRINGLIST,REAL,REAL,REAL,REAL)
get_latlong
get_limits
calc_limits(SYMBOL) % SYMBOL = PROJECTION
get_format
get_format1(INTEGER,REAL,REAL)
check_format(REAL,REAL)
check_format1(STRING)

% change_format
calc_format(REAL,REAL)
get_scale
get_scalel(INTEGER,REAL)
calc_scale(REAL)
check_scale(REAL,REAL)

% change_scale
close_layout % shuts down module retracts local data

CLAUSES

A - 24

layout:- % check for quit
wquit("y"),!,
retractall(_,kbase),
fail.

layout
flname(kbasefile,Filename),
consult(Filename,kbase),
makewindow(30,30,3,"LAYOUT",0,0,20,80),
fcurrent_map(N),
write("Map Number : ",N),
get_location,
get_f ormat,
get_scale,!,
trace(on),
show_layout,
close_layout,
retractall(_,kbase),
clearmessage,
removewindow.

layout:-
failed("layout"),
retractall(_,kbase),
removewi ndow,
fail.

show_layout:-
clearmessage,
flat_long(W,E,S,N),
f format(Width,Height),
fscale(Scale),
nl,nl,nl,
write(" The following layout parameters have been set"),nl,nl,
write(" Location : West longitude : ", W),nl,

", E),nl,
", S) , n l ,
", N),nl,nl,

write(" East longitude
write(" South latitude
write(" North latidude
write(" Format : width : ",Width," cm, height : ",

Height," cm"),nl,nl,
write(" Scale : 1 : ", Scale),I,

/* insert clause to check if this is okay */
pause.

show_layout:-failed("show_layout"),fail.
get_location flimits(_,_,_,_),i.
get_location flat_long(_,_,_,_),!,

calc_limits(_).
get_location /* say how you want to specify it */

status(2),1,
menu(5,20,7,3,[" Name of country/region ",

" Specify Lat & Long ",
" Specify Coordinates "],

" How is location to be defined ? ",1,Choice),
status(1),
get_locationl(Choice).

get_location:-quit,!,fail.
get_location:-!,

ermessage("You must enter values for the map location",""),
pause,
clearmessage,
get_location.

A - 25

get_locationl(0):-quit,1.
get_locationl(1):-get_place.
get_locationl(2):-get_latlong.
get_locationl(3):-get_limits.

/*** BY PLACE NAME - COORD FILE MUST EXIST ***/
get_place:-

load_places, 1,
findall(Place,kextent(Place,"Africa"/_*_/_/_),Places),1,
status(4),
menu_mult(5,20,7,3,Places,
" Select place(s) to be mapped ",[1],Choices),1,
status(1),
list_from_index(Places,Choices,Out),
get_placel(Out),
retractall(_,klocate),
calc_limits(_).

load__places :- % FILENAME FROM SETUP.KBA
% add option to give filename here

message("Loading information from disk", ""),
flname(locatefile,Flname),1,
file_exist(Flname),
consult(Flname,klocate),!,
message("file loaded",Flname).

load_places
flname(locatefile,Flname),
file_exist(Flname),I,
concat("Error in loading ",Flname, Mess),
ermessage(Mess, "Error in knowledge structure"),
fail.

load places:-
ermessage("Error loading: File not found", ""),
fail.

get_placel([]):-!,quit.
get_placel([Country|[]]):-!, % only one selected

status(2),
menu(5,20,7,3,[" Full extent Sub regions "],

"Full extent or region(s)?",1,Choice),
status(1),
get_extent(Choice,Country).

get_placel(C o u n t r i e s) % several countries
get_extentl(Countries).

get_extent(0 , _) ,quit.
get_extent(1,P l a c e) % whole place

kextent(Place,_,W,E,S,N),i,
asserta(flat_long(W,E,S,N)).

g e t _ e x t e n t (2 , P l a c e) % regions
findall(Region,kextent(Regi on,Place,,Regions),!,
status(4),!,
repeat,
menu_mult(5,20,7,3,Regions,
" select places to be mapped ",[],Choices),
list_from_index(Regions,Choices,Out),
status(1),
get_extentl(Out), 1.

get_extentl([]):-!,
ermessage("at this stage you must select somewhere to be mapped",""),

A - 26

fail.
get_extentl([State|[]]):-!, % single state

kextent(State,_,W,E,S,N), 1,
asserta(flat_long(W,E,S,N)).

get_extentl([H|T]):-
kextent(H,_, W, E, S, N),!,
get_max_extent(W ,E,S,N,T,MW,ME,MS,MN),
asserta(flat_long(MW,ME,MS,MN)).

get_max_extent(W,E,S,N,[],W,E,S,N):-1.
get_max_extent(W,E,S,N,[HI|T],MW,ME,MS,MN)

kextent(Hl,_,Wl,El,Sl,Nl),
lesser_of(W,W1,W2),
greater_of(E,El,E2),
lesser_of(S,SI,S2),
greater_of(N,N1,N2),!,
get_max_extent(W2,E2,S2,N2,T,MW,ME,MS,MN).

/*** BY LAT AND LONG ***/
get_latlong

status(5),
shift_screen(latlong), !,
scrhnd(off,Key),
not(Key = esc),
value("west",West),!,
str_real(West,W),
value("east",East), I,
str_real(East,E),
value("north",North),I,
str_real(North,N),
value("south",South), i,
str_real(South,S),
clearwindow,
asserta(flat_long(W,E,S,N)),
calc_limits(_).

/★** b y PROJECTION COORDINATES ***/
get_limits :-

status(5),
shift_screen(limits),1,
scrhnd(off,Key),
not(Key = esc),
value("left",Lefts),
str_real(Lefts,Left),
value("right",Rights),
str_real(Rights,Right),
value("top",Tops),
str_real(Tops,Top),
value("bottom",Bottoms),1,
str_real(Bottoms,Bottom),
clearwindow,
asserta(flimits(Left,Bottom,Right,Top)).

/* CALCULATE COORDS FROM LAT & LONG */
calc_limits("Cyl_Eq_Area")

flat_long(Wlong,Elong,Slat,Nlat),I,
rad_deg(W,Wlong),
rad_deg(E,Elong),
rad_deg(S,Slat),
rad_deg(N,Nlat),
Left = W * 6371,

Right = E * 6371,
Bottom = sin(S) * 6371,
Top = sin(N) * 6371,
asserta(flimits(Left,Bottom,Right,Top)).

calc_limits(_) : -
failed("calc_limits"), fail.

*** FORMAT ★**/
get_format % Format in frame & ok

f format(Width,Height),!,
check_format(Width,Height).

get_format % format supplied, but too large
fformat(_,_),!,
retract(fformat(_,_)), 1,
fail.

get_f ormat : - i,
status(2),
menu(5,20,7,3,[

% get new format
/* Get format */

- 42 * 29 cm",
■ 38 * 25 cm",

21 cm",
18 cm",
15 cm",
12 cm",

29
25
21
18

" Full A3
" A3 with border
" Full A4
" A4 with border
" Full A5
" A5 with border
" Fill Screen",
" Specify own dimensions",
" Calculate from Scale and Location "],

"Select Format - Size of Map",7,Choice),
status(1),
get_format1(Choice,Width,Height),
asserta(fformat(Width,Height)).

get_format 1 (0,_,_) :- quit,fail.
get_format1(1,Width,Height):-

flimits(Left,Bottom,Right,Top),I,
(Right-Left) >= (Top-Bottom),
Width = 42, Height = 29.

get_format1(1,Width,Height):- Width
get_format1(2,Width,Height):-

flimits(Left,Bottom,Right,Top), 1,
(Right-Left) >= (Top-Bottom),
Width = 38, Height = 25.

get_format1(2,Width,Height):- Width
get_format1(3,Width,Height):-

flimits(Left,Bottom,Right,Top),1,
(Right-Left) >= (Top-Bottom),
Width = 29, Height = 21.

get_format1(3,Width,Height):- Width
get_formatl(4,Width,Height):-

flimits(Left,Bottom,Right,Top),I,
(Right-Left) >= (Top-Bottom),
Width = 25, Height = 18.

get_format1(4,Width,Height):- Width
get_formatl(5,Width,Height):-

flimits(Left,Bottom,Right,Top),!,
(Right-Left) >= (Top-Bottom),
Width = 21, Height = 15.

get_format1(5,Width,Height):- Width
get_format1(6,Width,Height):-

flimits(Left,Bottom,Right,Top), !,
(Right-Left) >= (Top-Bottom),
Width = 18, Height = 12.

= 29, Height = 42

= 25, Height = 38

= 21, Height = 29

= 18, Height = 25

= 15, Height = 21

A - 28

get_formatl(6,Width,Height)Width = 12, Height = 18.
get_format1(7,Width,Height) Width = 18, Height = 16.5.
get_format1(8,Width,Height):-

/* check for changestatus */
lineinput_leave(10,5,35,7,7,
str_real(Widths,Width),1,
lineinput_leave(12,5,35,7,7,
str_real(Heights,Height),
removewindow, removewindow .

get_format1(9,Width,Height)
calc_format(Width,Height),I.

get_format1(9, Width,Height):-l,
get_scale,
calc_format(Width,Height).

check_format(_,Hin)
flimits(_,Bottom,_,Top),
fscale(Scale), 1,
Minheight = (Top - Bottom) /
Minheight > Hin,
lineinput(10,5,60,7,7,

" Location too high for format. Adjust Scale? (Y/N) ","Y
check_format1(Ans),I,
fail.

check_format(Win,_)
flimits(Left,_,Right,_),
fscale(Scale), !,
Minwidth = (Right - Left) / (Scale / 10000),
Minwidth > Win,
lineinput(10,5,60,7,7,

" Location too wide for format. Adjust Scale? (Y/N) ","Y
check_format1(Ans).

check_format1("Y"):-I,
calc_scale(Scale),
retract(fscale(_)),
asserta(fscale(Scale)).

check_format1(_):-
message("select new format","").

calc_format(Width,Height)
flimits(Left,Bottom,Right,Top),
fscale(Scale) ,
Width = (Right - Left) / (Scale / 100000),
Height = (Top - Bottom) / (Scale / 100000).

/*** SCALE ***/
get_scale

fscale(Scale),
flimits(_,Bottom,_,Top),
fformat(_,Height), I,
Minheight = (Top - Bottom) / (Scale / 100000),
Minheight > Height,
message("location too large for chosen format and scale,",

"scale being adjusted"),
calc_scale(Scalel),
retract(fscale(_)),
asserta(fscale(Scalel)).

get_scale
fscale(Scale),

"Enter width of map in cm : "
"Enter height of map in cm : "

/♦already got scale*/
/♦get scale first*/

(Scale / 100000),

"",Widths),
" ",Heights),

/Ans),

,Ans),

A - 29

flimits(Left,_,Right,_),
fformat(Width,_),I,
Minwidth = (Right - Left) / (Scale / 100000),
Minwidth > Width,
message("location too large for chosen format and scale,",

"scale being adjusted"),
calc_scale(Scalel),
retract(fscale(_)),
assertz(fscale(Scalel)).

get_scale :-
flimits (_,_,_,_),
fformat(_,_),I,
calc_scale(Scale),
asserta(fscale(Scale)).

get_scale :-
status(2),
menu(5,20,7,3,[" 2 000 000

1: 3 000 000 ",
1: 5 000 000 ",
1: 7 500 000 ",
1: 10 000 000 ",
1: 15 000 000 ",

Calculate from location and format",
'Specify own scale "],

"SCALE",7,Choice),
status(1),
get_scalel(Choice,Scale),
asserta(fscale(Scale)) .

get_scalel(0,_):-quit,fail.
get_scalel(1,Scale):- Scale =
get_scalel(2,Scale):- Scale =
get_scalel(3,S c a l e) S c a l e =
get_scalel(4,S c a l e) S c a l e =
get_scalel(5,S c a l e) S c a l e =

- 1:

2000000 .
3000000 .
5000000 .
7500000 .

 v_ , 10000000 .
get_scalel(6, Scale):- Scale = 15000000 .
get_scalel(7,Scale):- calc_scale(Scale).
get_scalel(8,Scale):-

lineinput(14,5,40,7,7," Enter fractional component of scale
" ",Scales),
str_real(Scales,Scale).

calc_scale(Scale):-
flimits(Left, Bottom, Right, Top),
fformat(Width,Height),!,
51 = (Right - Left) * 100000 / Width,
52 = (Top - Bottom) * 100000 / Height,
lesser_of(SI, S2, S3),
check_scale(S3, S4),
nearest_larger(S4,[2000000,3000000,5000000,7500000,10000000,

15000000],Scale).
calc_scale (0) : - 1,

failed ("calc_scale").
check_scale(Scalein, 2000000):- /* Scale too large */

Scalein < 2000000,!,
message(
" Scale larger than maximun allowed, being adjusted to 1 : 2 000 000

A - 30

check_scale(Scalein, 15000000):- /* Scale too small */
Scalein > 15000000,1,
message(
" Scale smaller than minimum allowed, being adjusted to 1 : 15 000 000",
" Map may be reduced in size").

check_scale(Scalein,Scalein):-!. /* Scale okay */
/★** MODULE CLOSEDOWN ***/
CLAUSES

close_layout:-
retractall(_,klocate).

/*** END OF LAY2.PRO ***/

A - 31

/**/
/* 4 SELECTION */

/ * /

/ * * /
/* PROCESS 24 AUG 93 */
/* 1 - calculate selection index */
/* 2 - get base information, either from user or kbase * /
/ * 3 - get theme information, " */
/* 4 - check for other required info - if user selected */
/* question user about inclusion */
/* 5 - show list of information to be included and confirm */
/ * /
/ * * /
/* 06 Sept 93 added ordering to theme info */
project "mapdes"
include "globdoms.pro”

include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include "tools\\menu.pro"
include "toolsWlongmenu.pro"
include "toolsWlineinp.pro"

% include "toolsWfilename.pro'
include "utils.pro"

% include "toolsWscrhnd.pro"
% include "toolsWtree.pro" % now only called by descript

%now in globdoms
/* calculation of selection index */

/* check index in range 1-10 */

*/

PREDICATES
% selection

calc_select_index(SYMBOL)
check_index(INTEGER,INTEGER)
show_selection
check_selection(SYMBOL)
change_selection
change_selectionl(INTEGER)
get_base /* selection of base info */
get_basel(INTEGER)

/* get_base_types(inputlist, workinglist,outputlist)
for gettingdetailed contents when user selecting

% get_base_types(STRINGLIST,STRINGLIST,STRINGLIST)
% change_base

change_basel(INTEGER)
/* selectlist(input list of scores, min score, input names, output list)

takes list of base info scores for map type and makes list
of those making min score See TP User's Guide p.195
also asserts name and score to frame */
selectlist(INTEGERLIST,INTEGER,STRINGLIST,STRINGLIST)
assert_base_info(STRINGLIST)
remove_base_info(STRINGLIST,STRINGLIST)

% flag inlist working outlist
check_requd(SYMBOL,STRINGLIST,STRINGLIST,STRINGLIST)

% works through inlist calling
% krequired to see if other things
% are required
% extend to take in probabilities

get_theme / * selection of theme info */
get_themel(INTEGERLIST)
order_theme(STRINGLIST,STRINGLIST) % gets user to order theme info
order_theme1(STRINGLIST,STRINGLIST,STRINGLIST)

% change_theme
change_themel(INTEGER)

% check_theme(STRINGLIST,STRINGLIST) /* check for user info */
CLAUSES

selection:- /* check for quit */
wquit("y"),1,
retractall(_,kbase).

selection:- /* map_type already known */
flname(kbasefile,Filename),
consult(Filename,kbase),
status(1),
clearmessage,
makewindow(40,30,4," DATA SELECTION ",0,0,20,80),
fcurrent_map(N),
write("Map Number : ",N),
get_base,
get_theme,!,
show_selection, i,
retractall(_,kbase),
removewindow.

selection:-1,
failed("selection"),
retractall(_,kbase),
removewi ndow,
fail.

calc_select_index(default):-!,
fscale(S),
flevel_of_detail(D),
kscale_range(Max,_,_),
A = ((Max / S) * 10) + ((D - 5) / 2),
B = 11 - trunc(A),
check_index(B,Index),
asserta(fselect_index(Index)).

check_index(In,Out):-
In > 10,!,
Out = 10.

check_index(In,Out):-
In < 1,1,
Out = 1.

check_index(In,In):-!.
show_selection:-

clearwindow,
clearmessage,
status(1),
fcurrent_map(N), 1,
fbase_info_list(Base), !,
ftheme_info_list(Theme), !,
write
(" Information to be included in map ",N),
length_of(Base,Len),
Ht = Len + 1,
makewindow(41,31,20," Base Information ",2,40,Ht,30),
write_a_list(Base),
length_of(Theme,Len2),
Ht2 = Len2 + 3,
makewindow(42,31,20," Theme Information ",2,10,Ht2,30),
nl,write_a_list(Theme),

A - 33

status(1),
lineinput(16,5,28,65,31," Is this okay (y/n) ? ","y", Txt),
removewindow(43,1),
removewindow(41,1),
removewindow(42,1),
shiftwindow(40),
check_selection(Txt).

show_selection:-I,
failed("show selection"),fail.

check_selection("y"):-!.
check_selection("Y");-l.
check_selection(Txt)

frontchar(Txt,' ',Rest),!,
check_selection(Rest).

check_selection(_)
% change_selection.

message("currently cannot be modified",""),
pause.

change_selection:-
clearwindow,
fcurrent_map(Num),
write("Map Number ",Num),
status(2),
menu(5,20,7,4,[" No (more) changes",

" Add some base information",
" Delete some base information ",
" Add theme information",
" Delete theme information"],

"Would you like to",5,Choice),
change_selectionl(Choice),!,
show_selection.

change_selectionl(0):-i,
quit,
fail.

change_selectionl(1):-I.
change_selectionl(2):-1,

change_basel(1).
change_selectionl(3):-1,

change_basel(2).
change_selectionl(4):-1,

change_themel(1) .
change_selectionl(5):-i,

change_themel(2).
/★★* bas e INFORMATION ***/

get_base:-1,
status(2),
menu(5,20,7,4,[" User select ", " Default system selection"],

" How is Base Information to be selected? ", 2,Choice),
status(1),
get_basel(Choice).

get_basel(0):-i,
quit, fail.

get_basel(1) , % user selection
message("currently only auto select available",""),
pause,
get_basel(2).

get_basel(2):-l, % auto selection
calc_select_index(default),I ,
fmap_type(T),
fselect_index(Score),
kmap_content(T, Scores
klist("base_info_types", Names),1,
selectlist(Scores,Score,Names,Out),
check_requd(baseinfo,Out,[],Newbaselist),
asserta(fbase_info_list(Newbaselist)).

/* currently only auto select
get_base_types([],Working,Working).
get_base_types([Feat|T],Workin,Out)

klist(Feat,Type_list),
status(4),
menu_mult(2,20,7,4,Type_list,"Select sub classes",[] ,Choices),I,
list_f rom_index(Type_list,Choices,Out_list),
append(Workin,Out_list,Workout), 1,
get_base_types(T,Workout,Out).

get_base_types([Feat|Tail],Workin,Out)
append(Workin, [Feat], Workout), I ,
get_base_types(Tail, Workout, Out).

change_basel(1) % additional info
klist("base_info_types",Base),
status(4),
menu_mult(5,20,7,4,Base,"Select info to a d d " C h o i c e s), 1,
list_from_index(Base,Choices,New),
fbase_info_list(LI),
append(LI,New,L2),
retract(fbase_info_list(_)),
asserta(fbase_info_list(L2)),
assert_base_info(New).

change_basel(2):- % info deleted
fbase_info_list(LI),
status(4),
menu_mult(5,20,7,4,LI,"Select info to delete",_,Choices),1,
list_from_index(LI,Choices,Out),
retract(fbase_info_list(_)),
asserta(fbase_info_list(Out)),
remove_base_info(Ll,Out).

selectlist([],_,_,[]). % empty list
%nl,write("entered first si clause").

selectlist([H|T],Score,[_|T1],T2):- % discard head
/* if H is < Score then skip over but cut head from list 1*/

H < Score,J,
selectlist(T,Score,T1,T2).

selectlist([H|T],Score,[HI|T1],[HI|T2]):- % keep head
/* else make head of list 2 same as list 1 and assert values */

selectlist(T,Score,T1,T2),
assertz(fbase_info(HI,H)).

assert_base_info([]) .
assert_base_info([Name|Tail])

assertz(fbase_info(Name,10)),
assert_base_info(Tail).

remove_base_info([]/_):-!.
remove_base_info([H|T],New)

A - 35

member(H,New),I,
remove_base_info(T,New).

remove_base_info([H|T], New)
retract(fbase_info(H,_)),I,
remove_base_info(T,New).

check_requd(_,[],Inlist,Outlist), % end of list
uniquelist(Inlist,Outlist). % check only one instance of each

check_requd(Flag,[In|Inlist],Oldlist,Outlist)
findall(Reqd,krequired(Flag,In,Reqd,_),Reqdlist),1,
append(Reqdlist,Inlist,Working), % add anything found to list

% working on to see if it needs
% anything

uniquelist(Working,Newwork), % remove duplicates
append(Oldlist,[In],Newlist), % add item done to output
check_requd(Flag,Newwork,Newlist,Outlist).

/*** THEME INFORMATION ***/
get_theme:- /* no theme info */

fmap_type(Type),
kmap_content(Type,_,_,[],_),!,
asserta(ftheme_info_list([])).

get_theme:- /* well defined map type */
fmap_type(Type), /* - only one set of theme info */
kmap_content(Type,_,_,[Theme|[]],_),I ,
asserta(ftheme_info_list([Theme])).

get_theme:- /* more general definition of map */
fmap_type(Type), /* type - several possible themes */
kmap_content(T y p e , T h e m e s , _) ,i,
status(4),

/* append(Themes,["Author Supplied Information"],Showlist), */
Showlist = Themes,
repeat, % repeat menu if fail

% forces selection or quit
menu_mult(2,20,7,4,Showlist,"Select Thematic Information",[],Choices),!,

/* must check later for new info to be supplied by user. */
get_themel(Choices),
list_from_index(Themes,Choices,Out),
order_theme(Out,Order),
asserta(ftheme_info_list(Order)).

get_themel([0]):-!,
quit.

get_themel([]):-1,
message("No theme information selected","continuing with base map"),
pause. % backcktrack here and force selection ?

get_themel(_) .
order_theme([],[]):-!.
order_theme([Only_one|[]],[Only_one]):-i.
order_theme(In,Ordered):-

menu(5,20,7,4,In,"Which information is most important?",1,Choice),
member_from_index(In,Choice,Member),
remove(Member,In,Rest),
makewindow(44,31,4,"Selected so far",5,5,10,30),
order_themel([Member],Rest,Ordered),
removewindow(44,1).

order_themel(Inlist,[],Inlist):-!. % no more to do
% order_themel(Inlist,[Last|[]],Outlist):-!, % last on list - don't ask

A - 36

% append(Inlist,[Last],Outlist).
order_themel(Inlist,Rest,Outlist)

shiftwindow(Old),
shiftwindow(44),
clearwindow,
write_a_list(Inlist),
shiftwindow(Old),
menu(5,40,7,4,Rest,"Which is next most important?", 1,Choice),
member_from_index(Rest,Choice,Member),
remove(Member,Rest,Working),
append(Inlist,[Member],Newin),
order_themel(Newin,Working,Outlist).

change_themel(_).
/★★* END OF SELECTION ***/

A - 37

/ * /

/ * * /
/* 5 SYMBOLISATION - SYMBOL.PRO */
/ * * /
/* see also symrul.pro + levels.pro */
/ ★ ★ ★ ★ ★ ★ H r * /

/* PROCESS
1 - get list of selected features
2 - order this list in terms of priority for showing feature
3 - work down list assigning representation types

initially assign prefered rep. type
check for clash with reps previously assigned
if clash occurs look for alternative for current
if none backtrack

4 - Assign specific symbols to representations
initially assign preferred symbols/colours
check for clash with previously assigned symbols
if clash occurs look for alternative for current
in none backtrack

5 - Assign symbols to levels
*/

/* */
/* 27/2/91 Intial program */
/* 29/7/92 serious upgrade * /
/* 28/10/92 some reorganisation * /
/* 04/08/93 GO MODULAR * /
/* 24/08/93 some restructuring * /
/* /05/94 add LEVELS to symbolisation * /

project "mapdes"
include "globdoms.pro"

include "toolsWtpreds.pro"
include "tools\\status.pro"
include "toolsWmenu.pro"
include "toolsWlineinp.pro"
include "utils.pro"

j * ★ ★ * ★ * ★ ★ * ★ * ★ * ★ * ★ * ★ * * * ★ * ★ * ★ ★ * ★ ★ * ★ ★ * * * * ■ * • ★ ★ ★ * * * * ★ * * ★ ★ * ★ ★ ■ * • * ★ ★ * I
/*** PROCESS 1 & 2 - ASSEMBLE & ORDER FEATURES ***/
J*★***★★★★★★★*★★*★*★★**★********★**★**★**★★*★******★**★**★* j
PREDICATES

assemble % assembles ordered list of features
% from lists asserted in kbase

assemblel(% reduced detailed base info list
% to main classes

STRINGLIST, % input list
STRINGLIST, % working list
STRINGLIST) % output list

CLAUSES
assemble:-

fbase_info_list(In),
assemblel(In,[],Out),
ftheme_info_list(Theme),
message("got base & theme info",""),
append (Theme,Out,Content s),
asserta(wcontents(Contents)),
clearwindow.

A - 38

assemble!.([],Result,Result)
!. % end of list

assemblel([Hin|Tin],Working,Out)
ksubclass(Main,Hin),
member(Main,Working),1,
assemblel(Tin,Working,Out).

assemblel([Hin|Tin],Working,Out)
ksubclass(Main,Hin),1,
append(Working,[Main],New),
assemblel(Tin,New,Out).

assemblel([Hin|Tin],Working,Out)
append(Working,[Hin],New),1,
assemblel(Tin,New,Out).

- % sub class
% already in list
% no change to working

% sub class, but not on list
% add main to list
- % not sub class
% add to list

/ ★ f t * /

/*** PROCESS 3 - assign representations ***/
I ★ H r * * * J

PREDICATES
% recursive procedure - no tail elimination
% list or tail to be processed
% list of reps assigned so far
% output list of reps
% checks for clash with those aready on list

% if fails causes get_reps to backtrack
% representation
% REPS already assigned
% shows selected reps on screen
% list of representation types

assign_reps(
STRINGLIST,
STRINGLIST,
STRINGLIST)

check_rep(
STRING,
STRINGLIST)

show_reps(
STRINGLIST)

save_reps(
STRINGLIST,
STRINGLIST)

% list of features
% list of assigned representations

list - always succeeds
CLAUSES

assign_reps([],Reps,Reps):-l. % end of
assign_reps([H|T],Reps_so_far,Result)

% foutput media(Media),!, % may incorporate different knowledge
% bases for different media
% currently finds first - assumes
% ordered list.
%

%

%

%

foutput_media(Media),!,
krep("rep_type",H,Rep,_)

check_rep(Rep,Reps_so_far),
%

better to use findall and select best
or offer to user. On backtrack would
to select next onlist
check to see if clash with

existing reps
% if clash go back and look for
% alternative rep for current item,
% then for previous items
% if that fails return to selection

append(Reps_so_far,[Rep],Update), % if okay then append to list
assign_reps(T,Update,Result). % process other contents

check_rep(_,[]):-
i
check_rep(Rep,[H|T]):—

not(kconflict("rep_type",Rep,H)),
1,
not(kconflict("rep_type",H,Rep)),
i• t
check_rep(Rep,T).

/* note that later it may be desirable to add

A - 39

a mechanism to allow exceptions to general rules
for specific combinations of features or by
predetermining how the combination should be
symbolised * /

/ * show results */
show_reps(Replist)

clearwindow,
clearmessage,
status(1),
fcurrent_map(N),!,
wcontents(Contents), 1,
write(" Representations for map H,N),
makewindow(51,31,5," Information ",3,10,15,30),
write_a_list(Contents),
makewindow(52,31,5," Representation ",3,40,15,30),
write_a_list(Replist),
status(8),pause,

% status(7),
% lineinput(16,5,28,65,31," Is this okay (y/n) ? ","y", Txt),

r emovewi ndow,
removewi ndow,
clearwindow.

show_reps(_):-1,
ermessage("fail in show reps",""),
failed("show_reps"),fail.

/* save results */
save_reps([],_):-!. % end of lists - always succeeds
save__reps([HI | Contents], [H2 | Reps])

assertz(frepresentation(HI,H2)),
save_reps(Contents,Reps).

I * * ★ ★ ★ * * * ★ * * * * ★ ★ * • * • * ★ * * ★ * * * ★ ★ * ★ * * * ★ * * * * ★ * * ★ * * ★ * * * * * ★ * I
/*** PROCESS FOUR - ASSIGN SYMBOLS TO CONTENTS ***/
/ * /
% all moved to symrule.pro 27/10/93
j ★ ★ ★ * ★ * ★ ★ ★ ★ ★ ★ * ★ * ★ ★ ★ ★ * * * * * * * * * ★ * ★ ★ * ★ ★ * ★ * * * * ★ * * * * * * * * * j
/*** PROCESS FIVE - ASSIGN LEVELS TO SYMBOLS ***/
j ★★★*★***★★***********★★★★★★*★****★*****★**★*******★I
% all moved to LEVELS.pro 25/05/94
/*** SHOW SYMBOLS ***/
PREDICATES

show_symbols % shows symbols on screen
show_symbolsl(

STRINGLIST) % list of map contents
CLAUSES
% show_symbols.
% should show symbols graphically on the screen !
/* work through list of contents

for each feature class see if symbol for that class
else see if sub classes & get these symbols
need to check if point line or area

*/

show_symbols:-
wcontents(Features),
i

A - 40

show_symbolsl(Features).
show_symbolsl([]):-I.
show_symbolsl([Feature_class|Features])

% single feature in class
fsymbolism(Feature_class,Feature_class,

symbolspec(Type,Hue,Light,Sat,F_c,Form,Orient,Dim,_)),
I,
nl,write(Feature_class,";",Feature_class,";",Type,";",Hue,";",Light,";",

Sat,";",F_c,";",Form,";",Orient,";",Dim),
pause,
nl, 1,
show_symbolsl(Features).

show_symbolsl([Feature_class|_])
% sub classes

fsymbolism(Feature_class,Feature,
symbolspec(Type,Hue,Light,Sat,F_c,Form,Orient,Dim,_)),

nl,write(Feature_class,";",Feature,";",Type,";",Hue,";",Light,";",
Sat,";",F_c,";",Form,";",Orient,";",Dim),

fail. % get next subclass
show_symbolsl([_|Features))

pause,
nl, \,
show_symbolsl(Features).

/ ★ H r * * * * * * * * * * * * * * * * * * /

/* */
/*★* MAIN module from here * /
/ * * /

PREDICATES
% symbolisation now in globdoms
% get_symbols now in globdoms
CLAUSES

symbolisation:-
wquit("y"),I,
retractall(_,kbase),
retractall(_,kreps).

symbolisation:-
status(1),
clearmessage,
makewindow(50,30,5, " SYMBOLISATION ",0,0,20,80),
flname(kbasefile,Filename),
consult(Filename,kbase),
flname(repfile,Fname),
consult(Fname,kreps),
assemble, % PROCESS 1 & 2
wcontents([First|Contents]), % start PROCESS 3

% foutput_media(Media), 1,
message("finished assemble, assigning reps",""),
krep("rep_type",First,Rep,_), % get first rep
assign_reps(Contents,[Rep],Final_reps), % assign representations

% output at this stage is list
% of reps in same order as features

1, % once reps set don't backtrack
message("reps assigned",""),
show_reps (Final_reps),1,
save_reps([First|Contents],Final_reps),1,
message("reps saved",""),
retractall(_,kreps), % having got reps remove rules

A - 41

retractall(_,kbase),
% retractall(wcontents(_)),

message("end of assigning reps",""),
removewindow.

symbolisation:-
nl,write("failed symbolisation - assigning reps - symbol.pro-main"),
pause,
retractall(_,kreps),
retractall(_,kbase),
removewindow(50,1).

/★★* end OF SYMBOLISATION ***/

A - 42

/ * /

/ * * /
/* 5A SYMBOLISATION - ASSIGN SYMBOLS TO REPS */
/* SYMRUL.PRO */
/* */

/* PROCESS
1 - check to see if any symbols already specified
for those remaining
2 - use special rules for features if present
3 - use rules for rep types
4 - call check symbol for clashes
5 - show symbols - currently only textual list of specs

*/
/ * /
/* */
/* — /08/93 initial attempt - failed */
/* — /10/93 second version * /
/ * * /
project "mapdes"
include "globdoms.pro"

include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include "tools\\menu.pro"
include "toolsWlongmenu.pro"
include "toolsWlineinp.pro"
include "utils.pro"
include "symchk2.pro"

/* dummy symbol checks for testing
PREDICATES

check_colour(SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL)

CLAUSES
c h e c k _ c o l o u r (p o i n t , .
c h e c k _ c o l o u r (l i n e , .
c h e c k _ c o l o u r (a r e a , .

* /

PREDICATES
% get_symbols % main calling routine - declared in globdoms.pro

get_symbolsl(STRINGLIST)
get_known(

STRINGLIST,
STRINGLIST,
STRINGLIST)

show_symbols(STRINGLIST)
update_symbols(

STRING,
STRINGLIST,
SYMBOLSPECLIST)

symbol_known(
INTEGER,
STRING,
STRINGLIST,
STRINGLIST)

symbol_knownl(%
STRING, % Feature_class

% find symbols already specified
% either in frame or kbase

% Feature classes - contents
% working list
% list of F_Cs not known

% asserts or retract symbols
% i feature_class
% i features
% i symbol specs

% searches for known symbols
% rule number
% Feature class
% working list of features
% output list of features

% type p,1,a
% hue
% lightness
% saturation

STRINGLIST,
STRINGLIST,
STRINGLIST)

symbol_rule(
INTEGER,
STRING,
STRING,
STRINGLIST,
SYMBOLSPECLIST)
- (i,i,i,o,o)

assign_symbols(
STRINGLIST,
SYMBOLSPECLIST,
SYMBOLSPECLIST,
SYMBOLSPECLIST)

assign_point_colour(
SYMBOLLIST,
SYMBOLLIST,
SYMBOLLIST,
SYMBOL,
SYMBOL,
SYMBOL)

assign_point_forms(
STRINGLIST,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOLLIST,
INTEGER,
SYMBOL,
INTEGER,
SYMBOLSPECLIST,
SYMBOLSPECLIST)

assign_ranked_sizes(
STRINGLIST,
SYMBOLLIST,
SYMBOLSPECLIST,
SYMBOLSPECLIST)

assign_grad_sizes(
STRINGLIST,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
INTEGER,
SYMBOL,
INTEGER,
SYMBOLSPECLIST,
SYMBOLSPECLIST)

assign_grad_sizesl (
STRINGLIST,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,

% Features
% working
% output list of unsymbolised features

% main set of rules for assigning symbols
% rule number
% representation type
% current feature class
% list of subclasses symbolised
% list of symbol specifications
% feature,type,colour,form,size,level

% assigns fully specified symbols to classes
% list of classes to be done
% - stops when list empty
% symbols
% working symbols list
% output symbols

% assigns & checks a single colour
% hues
% lightnesses
% saturations
% hue
% lightness
% saturation

% assigns a series of forms from a list
features

% hue
%

%

%

%

lightness
saturation
form code
list of shapes

% orientation
% size
% layer
% input - start as []
% output list of symbols
% features
% list of sizes (often only 1)
% working - start as all specified
% final list of symbols

% assigns sizes to symbol classes
% - colour & form known

% classes
% hue
% lightness
% saturation
% form code
% form
% orientation
% size - indicates relative size
% required, not absolute size
% level
% workling list
% output symbols

% working clause
% classes
% hue
% lightness
% saturation
% form code

A - 44

SYMBOL,
INTEGER,
SYMBOLLIST,
INTEGER,
SYMBOLSPECLIST,
SYMBOLSPECLIST)

assign_line_colour(
SYMBOLLIST,
SYMBOLLIST,
SYMBOLLIST,
SYMBOL,
SYMBOL,
SYMBOL)

assign_equiv_colours(
SYMBOL,
STRINGLIST,
SYMBOLSPECLIST)

assign_tints(
STRINGLIST,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOLSPECLIST)

assign_tintsl(
STRINGLIST,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOLLIST,

% form
% orientation
% sizes - indicates relative sizes
% required, not absolute size
% level
% workling list
% output symbols

% assigns & checks a single colour
% hues
% lightnesses
% saturations
% hue
% lightness
% saturation

% returns equally appearing symbols
% symbol type - p,l,a

% Groups,
% Groupsymbols

% assigns a set of tints to classes
% list of classes
% hue
% lightness
% saturation
% list of symbols specified

% recursive assignment of tints

SYMBOLSPECLIST, % working list
SYMBOLSPECLIST). % result

get_included(% get base :Items for Feature_class
STRING, % feature_class
STRINGLIST) % features in order of

get_includedl(
STRINGLIST, % possible features
STRINGLIST, % working list
STRINGLIST) % output list

ask_symbolset(
SYMBOL, % Feature_class
SYMBOL, % type of symbol set
SYMBOL) % selected set

ask_categories (% ask user what categories re
STRING, % feature class
STRINGLIST, % list of catagories
STRINGLIST) % categories required

ask_categoriesl(
STRINGLIST, % original categories
STRINGLIST, % alternative
STRINGLIST) % result

ask_classes(% ask user about classes and
STRING, % Feature_class
STRINGLIST) % list of classes

askclassesl(
STRING, % Feature_class
INTEGER, % Choice class type
STRINGLIST, % list of class names
REALLIST) % list of class breaks

ask__bipolar(
STRING, % Feature_class

STRINGLIST)
askbipolarl(

STRING,
INTEGER,
STRINGLIST,
REALLIST)

setclasses(
SYMBOL,
INTEGER,
STRING,
REALLIST)

setclassesl(
REAL,
REAL,
INTEGER,
REALLIST,
REALLIST)

setclasses2(
INTEGER,
REAL,
REALLIST,
REALLIST,
REALLIST)

setclasses3(
REALLIST,
REALLIST,
REALLIST,
REALLIST)

load_data(
SYMBOL,
INTEGER,
REALLIST)

load_datal(REAL)
readval(INTEGER,REAL)
nondeterm repeatread(

% list of class breaks
% Feature_class
% menu choice
% list of class names
% list of class breaks
% code for type
% number of classes
% Feature_class,
% list of class breaks

% set breaks of equal intervals
% Min
% Interval
% Number of classes
% input list of classes
% output list of classes

% set breaks for quantile classes
% number of classes
% number in each class
% ordered list of values
% working list
% returned list of breaks

% set breaks for exploratory classes
% first set of intervals
% second set of intervals
% working list
% output list of breaks

% reads in data values from file
% filename

% position of variable in term
% list of values

FILE)
% check symol clauses moved to symcheck.pro 28/10/93
CLAUSES
/ *

/* MAIN CLAUSES /***,
% before each new reptype retractall all working symbol sets

getsymbols:-
wquit("y"),1.

getsymbols:-
status(1),
clearmessage,
makewindow(50,30,5, ” SYMBOLISATION ”,0,0,20,80),
flname(kbasefile,Filename),
consult(Filename,kbase),
flname(symbolf ile,Fname),
consult(Fname,ksymrule),
wcontents(Contents),
get_known(Contents,[],Rest)
get_symbolsl(Rest),
i
♦ 9

assign_levels,
1/
show_symbols(Contents),
I,

* /

% get contents to be symbolised

A - 46

message("end of symrule",""),pause,
clearmessage,
retractall(_,kbase),
r e t r a c t a l l (w s y m b o l s e t),
retractall(_,ksymrule),
removewindow.

getsymbols:-
ermessage("failed to get symbols", ""),
retractall(_,kbase),
retractall(_,ksymrule),
removewindow(50,1).

get_symbolsl([]):-!. % got symbols for all contents
get_symbolsl([Feature_class|Rest])

frepresentation(Feature_class,Rep),
!, % can only be one rep

% cut forces backtrack to
% previous feature

symbol_rule(_,Rep,Feature_class,Features,Symbols),
update_symbols(Feature_class,Features,Symbols),
get_symbolsl(Rest).

% show_symbols.
% should show symbols graphically on the screen \
/ * work through list of contents

for each feature class see if symbol for that class
else see if sub classes & get these symbols
need to check if point line or area

*/
show_symbols([]):-I.
show_symbols([Feature_class|FCs]):-

% single feature in class
fsymbolism(Feature_class,Feature_class,

symbolspec(Type,Hue,Light,Sat,F_c,Form,Orient,Dim,Lev)),
1 /
nl,write(Feature_class,";",Feature_class,";",Type,";",Hue,";",Light, " ;",

Sat, "; " , F _ c F o r m , " ;", Orient, " ; " , Dim, " ; " , Lev) ,
pause,
show_symbols(FCs).

show_symbols([Feature_class|_]):- % sub classes
fsymbolism(Feature_class,Feature,

symbolspec(Type,Hue,Light,Sat,F_c,Form,Orient,Dim,Lev)),
nl,write(Feature_class,";",Feature,";",Type,";",Hue,";",Light,"; " ,

Sat,";",F_c,";",Form,";",Orient,”;",Dim,";",Lev),
fail. % get next subclass

show_symbols([_|FCs])
pause,
1 >
show_symbols(FCs).

show_symbols(_):-
ermessage("failed in show_symbols","").

update_symbols(_,_,[]):-1. % empty list - done.
update_symbols(Feature_class,[Feature|Rest],[Symbol|Symbols]) :-

% normal case - assert new set of symb
assertz(fsymbolism(Feature_class,Feature,Symbol)),i,
update_symbols(Feature_class,Rest,Symbols).

update_symbols(Feature_class,_,_)% alternative on backtrack
% retract previous set of symb & fail

retractall(fsymbolism(Feature_class,_,_)),

A - 47

fail.
/ * /
/*** SYMBOLISATION RULES ***//**/
/*** CHECK FOR SYMBOL ALREADY SPECIFIED * * * /

get_known([],In,In):-l.
get_known([Feature_class|Rest],In,Out)

symbol_known(_,Feature_class,[],Fs), % last var is list of those
% unknown in a class with some
% known should do something

1, % symbols in class known
nl,write_a_list(Fs),
get_known(Rest,In,Out).

get_known([Feature_class|Rest],In,Out)
% none known in class

append(In,[Feature_class],Work),
get_known(Rest,Work,Out).

% only 1 in class
symbol_known(001,Feature_class,[],[]):-

% class already symbolised
message("rule 001",Feature_class),
fsymbolism(Feature_class,Feature_class,_),
1 .

symbol_known(002,Feature_class,[],[]):-
% symbol in kbase (rare)

message("rule 002",Feature_class),
ksymbolspec(Feature_class,Feature_class,Symbol),
check_symbol(Feature_class,Symbol),
1/
assertz(fsymbolism(Feature_class,Feature_class,Symbol)).

% SUB CLASSES
/ *

symbol_known(003,Feature_class,[],[]):-
% sub class symbolised
% if one done then assume all

%nl, write("entered s_k 003"),
get_included(Feature_class,[Feature|_]),
fsymbolism(Feature_class,Feature,_),
! .

*/
symbol_known(004,Feature_class,_,Out):-

% sub class in kbase
% if one there assume all Mi

get_included(Feature_class,[Feature|Features]),
ksymbolspec(Feature_class,Feature,_),
I,
symbol_knownl(Feature_class,[Feature|Features],[],Out).

symbol_knownl(_,[],Out,Out).
symbol_knownl(Feature_class,[Feature|Features],Working,Unknown)

ksymbolspec(Feature_class,Feature,Symbolspec),
I r

assertz(fsymbolism(Feature_class,Feature,Symbolspec)),
symbol_knownl(Feature_class,Features,Working,Unknown).

symbol_knownl(Feature_class,[Feature|Features],Working,Out):-
% symbol for feature not known or clash

append(Working,[Feature],Newwork),

A - 48

symbol_knownl(Feature_class,Features,Newwork,Out).
symbol_rule(90,_,Feature_class, [Feature_class], [Symbol])

% look for associations with
% symbolised features

kassociate_with(Feature_class,Other,symbol,_),
fsymbolism(Other,_,Symbol),
! .

symbol_rule(91,_,Feature_class,[Feature_class],[Symbol])
% look for associations with
% symbolised features

kassociate_with(Other,Feature_class,symbol,_),
fsymbolism(Other,_,Symbol),
1 .

% SETTLEMENTS
symbol_rule(105,"ranked points","Settlements",Features,Symbols)

get_included("Settlements",Features),
findall(Hue,kconvention("Settlements",_,hue,Hue,_),Hues),
assign_line_colour(Hues,[dark],[mid],

Hue,Lightness,Saturation),
ksymbollist("Settlements",Shapes),
1 /
as sign_point_forms(Features,Hue,Lightness,Saturation,

geometric,Shapes,0,small,0,[],Working),
assign_ranked_sizes(Features,[medium,small,v_small],Working,Symbols).

% ROADS
symbol_rule(106,"network - link & node","Roads",Features,Symbols):-

get_included("Roads",Features),
1,
findall(Hue,kconvention("Roads",_,hue,Hue,_),Hues),
assign_line_colour(Hues,[mid],[mid],

Hue,Lightness,Saturation),
assign_symbols(Features,
[symbolspec(line,Hue,Lightness,Saturation,cased,main_highways,

0,thick,0),
symbolspec(line,Hue,Lightness,Saturation,cased,highways,0,

thick,0),
symbolspec(line,Hue,Lightness,Saturation,cased,other_roads,0,

thin,0)],
[],Symbols).

% CONTOURS
symbol_rule(107,"isolines","Relief",["c200","c500" , "clOOO","c2000"],

[Symbol,Symbol,Symbol,Symbol]):-
fbase_info("Minor Relief",_),
11
ksymbolspec("Relief","contours",Symbol),
1 .

symbol_rule(108,"isolines","Relief",["c500","c2000"],
[Symbol,Symbol]):-

fbase_info("Main Relief",_),
I
• /

ksymbolspec("Relief","contours",Symbol),
i

symbol_rule(109,"isolated areas","Relief",[],[]):-
% should be able to overprint pattern, but not in BGI
!,
message("current system cannot overprint",

"relief omitted from map"),pause.
/*** POINTS **★/

A - 49

symbol_rule(01101,"dot distribution - individuals",Feature_class,
[Feature_class],
[symbolspec(point,Hue,Lightness,Saturation,geometric,dot,0,small,0)]):-
ksymbollist(point_colours,Hues),
I /
assign_point_colour(Hues,[dark],[mid],Hue,Lightness,Saturation),
1.

symbol_rule(02101,"categorised points",Feature_class,Categories,Symbols)
klist(Feature_class,Categories),
length_of(Categories,0,Number),
ksymbollist(geometric_points,Shapes),

% check for specific look up table
% or ask user as alternatives

length_of(Shapes,0,Num),
Num >= Number, % can be done with single colour
1/
ksymbollist(point_colours,Hues),
I I
assign_point_colour(Hues,[dark],[mid],Hue,Lightness,Saturation),
11

% assign_point_size(_, small), % should compute coverage
i
• /

assign_point_forms(Categories,Hue,Lightness,Saturation,
geometric,Shapes,0,small,0,[],Symbols).

symbol_rule(02101,"categorised points",Feature_class,Categories,Symbols)
% long list of features -
% needs more than 1 colour

klist(Feature_class,Categories),
length_of(Categories,0,Number),
ksymbollist(geometric_points,Shapes),

% check for specific look up table
% or ask user as alternatives

length_of(Shapes,0,Num),
% more symbols than shapes
% use more than 1 colour

/* can be solved by splitting into groups matching no of shapes
assign new colour to each group (remove hue form list when used)
currently not implemented */
message("to many points categories for current implementation",
" not symbolised"),
pause.

symbol_rule(03101,"ranked points",Feature_class,Features,Symbols)
% only instance of this is settlements
klist(Feature_class,Allfeats),
ask_categories(Feature_class,Allfeats,Features),
ksymbollist(ranked_points,Shapes),

% Hues = [red,magenta,black,yellow], % get from kbase?
assign_point_colour([red,magenta,black,yellow],[dark],[mid],

Hue,Lightness,Saturation),
1/
assign_point_f orms (Features,Hue,Lightness,Saturation,

geometric,Shapes,0,small,0,[],Working),
assign_ranked_sizes(Features,[medium,small,v_small],Working,Symbols).

symbol_rule(04101,"proportional - classed",Feature_class,
Classes,Symbols)

assign_point_colour([red,magenta,green,purple,yellow,blue,grey],
[mid],[high],Hue,Lightness,Saturation),

A - 50

I,
Form_type = geometric,
Shape = dot,
ask_classes(Feature_class,Classes),
assign_grad_sizes(Classes,Hue,Lightness,Saturation,Form_type,Shape,

0,medium,0,[],Symbols).
% could later ask relative size of symbols required rather than set at med
/*** LINES ***/

symbol_rule(11101,"boundaries - one level",Feature_class,[Feature_class],
[symbolspec(line,Hue,Lightness,Saturation,continuous,"",0,
medium,0)]):-

% important base info
fbase_info(Feature_class,Priority),
Priority >= 8,
11
ksymbollist(line_colours,Hues),
I /
assign_line_colour(Hues,[dark],[mid],Hue,Lightness,Saturation).

symbol_rule(11102,"boundaries - one level",Feature_class,[Feature_class],
[symbolspec(line,Hue,Lightness,Saturation,continuous,"",0,
medium,0)]):-

% less important base info
fbase_info(Feature_class,_),
I
• 9

ksymbollist(line_colours,Hues),
I,
assign_line_colour(Hues,[mid,dark],[low,mid],

Hue,Lightness,Saturation).
symbol_rule(11103,"boundaries - one level",Feature_class,[Feature_class],

[symbolspec(line,Hue,Lightness,Saturation, continuous,"",0,
thick,0)]):-

% theme info
ksymbollist(line_colours,Hues),
I Iassign_line_colour(Hues,[dark],[high],Hue,Lightness,Saturation).

symbol_rule(11201,"boundaries - hierarchy",Feature_class,
[] # []) * -message("boundaries - hierarchy : still to be programmed",

Feature_class),
pause,fail.

symbol_rule(12101,"network - link & node",Feature_class,
[Feature_class],[]):-

message("network - link & node",
"still to be programmed"),

pause, fail.
symbol_rule(12201,"network - branching",Feature_class,

[Feature_class],[]):-
message("network - branching",

"still to be programmed"),
pause, fail.

symbol_rule(13101,"isolines",Feature_class,[Feature_class],[]):-
message("isolines",

"still to be programmed"),
pause, fail.

A - 51

/*** AREAS ***/
symbol_rule(22101,"unclassed areas - one level",Feature_class,Groups,

Symbols):-
clearwindow,
status(0),
makewindow(54,31,5,Feature_class,3,5,15,70),
message(" a minimum of four colours is required ",
" the system is currently limited to the possibilities shown"),
menu(5,20,5,7,[" 4"," 5"," 6"],

" Select number of colours ",2,Choice),
Num = Choice +3,
str_int(N,Num),
concat("group_names",N,Name),
kstringlist(Name,Groups),
I,
removewindow(54,1),
clearmessage,
assign_equiv_colours(Feature_class,Groups,Symbols).

symbol_rule(22201,"unclassed areas - hierarchy",
"Administrative areas",Features,Symbols):-

% for now assume only States to be coloured - pass to one level
I,
symbol_rule(_, "unclassed areas - one level","Administrative areas",

Features,Symbols).
symbol_rule(22202,"unclassed areas - hierarchy",Feature_class,[],[])

% check what level required & pass middle or lower to 22101
concat(Feature_class," unclassed areas - hierarchy",Outstring),
message(Outstring,

"still to be programmed"),
pause, fail.

symbol_rule(23101,"categorical - one level",Feature_class,
[Feature_class],[]):-

message("categorical - one level",
"still to be programmed"),

pause, fail.
symbol_rule(23201,"categorical - hierarchy",Feature_class,

[Feature_class],[]):—
message("categorical - hierarchy",

"still to be programmed"),
pause, fail.

symbol_rule(24101,"graded series - unipolar",Feature_class,
Classes,Symbols)

message("graded series - unipolar",""),
ask_classes(Feature_class,Classes),
kconvention("graded series - unipolar",_,hue,Hue,_),

/* simple solution for now. should really ask user if wants
single hue or part spectral,
suggest single hue for < 5
part spectral for >= 5
findall kconventions and rank.
*/
assign_tints(Classes,Hue,dark,high,Symbols),
1.

symbol_rule(2 4201,"graded series - bipolar",Feature_class,

A - 52

[Feature_class],[]):-
message("graded series - bipolar",

"still to be programmed"),
pause, fail.

symbol_rule(25101,"layers - unipolar",Feature_class,
[Feature_class],[]):-

message("layers - unipolar",
"still to be programmed"),

pause, fail.
symbol_rule(25201,"layers - bipolar",Feature_class,

[Feature_class],[]):-
message("layers - bipolar",

"still to be programmed"),
pause, fail.

symbol_rule(26101,"hypsometric layers",_,
["0-200","200-500","500-1000","1000-2000","over 2000"],

Symbols):-
fbase_info("Minor Relief",_),
1/
ksymbolset(minor_relief_layers, _ , Symbols),
I .

symbol_rule(26102,"hypsometric layers
["0-500","500-2000","over 2000"],Symbols):-

fbase_info("Main Relief",_),
1 /
ksymbolset(main_relief_layers,_,_,Symbols),
I .

% dummy rule for testing
symbol_rule(000,_,Feature_class,[Feature_class],

[symbolspec(type,hue,light,sat,code,form,0,dim,0)]):-!.
/*** ASSIGNING GRAPHIC VARIABLES ***/
% all of these should include some element of asking user

assign_point_colour([Huel|_],[LI|_],[SI|_],Huel,Ll,Sl):-
check_colour(point,Huel,LI,SI),
1. % huel ok

assign_point_colour([_|Hrest],Lrest,Srest,Hue,L,S):-
% only check & change hue for now

assign_point_colour(Hrest,Lrest,Srest,Hue,L,S).
assign_point_forms([] Symbols, Symbols) :-! .
assign_point_forms([_|Fs],Hue,Lightness,Saturation,

Form_type,[S1|Shapes],Orientation,Size,Layer,
Insymbols,Outsymbols):-

i• r

append(Insymbols,[symbolspec(point,Hue,Lightness,Saturation,
Form_type,S1,Orientation,Si ze,Layer)],Working),

assign_point_forms(Fs,Hue,Lightness,Saturation,Form_type,Shapes,
Orientation,Size,Layer,Working,Outsymbols).

assign_ranked_sizes([],_,Symbols,Symbols):-
1. % all done

assign_ranked_sizes([_|Fs],[SI|Ss],
[symbolspec(Type,Hue,Light,Sat,Ft,F,0,_,Lay)|Insymb],
[symbolspec(Type,Hue,Light,Sat,Ft,F,0,SI,Lay)|Outsymb]):-

A - 53

assign_ranked_sizes(Fs,Ss,Insymb,Outsymb).
assign_grad_sizes (Classes, Hue, Lightness, Saturation, Form_type, Shape,

0,_,Lev,[],Symbols)
length_of(Classes,Num),
str_int(No,Num),
concat("graduated",No,Key),
ksymbollist(Key,Sizes),
I /
assign_grad_sizesl(Classes,Hue,Lightness,Saturation,

Form_type,Shape,0,Sizes,Lev,[],Symbols).
assign_grad_sizesl([] Symbols,Symbols) .
assign_grad_sizesl([_| Classes],Hue,Lightness, Saturation,Form_type,

Shape,Orientation,[Sizel|Sizes],Lev,Insymbols,Outsymbols)
append(Insymbols,[symbolspec(point,Hue,Lightness,Saturation,

Form_type,Shape,Orientation, Sizel,Lev)],Worksymbols),
assign_grad_sizesl (Classes, Hue, Lightness, Saturation, Form_type, Shape,

0,Sizes,Lev,Worksymbols,Outsymbols).
assign_line_colour([Huel|_],[LI|],[SI|],Huel,LI,SI)

check_colour(line,Huel,LI,SI),
I. % huel ok

assign_line_colour([_|Hrest],Lrest,Srest,Hue,L ,S) : -
% only check & change hue for now

assign_line_colour(Hrest,Lrest,Srest,Hue,L,S).
assign_equiv_colours(Feature_class,Features,Symbols):-

I I
ask_symbolset(Feature_class,equiv_area_colours,Set),
ksymbolset(equiv_area_colours,Set,_,Symbollist),
11assign_symbols(Features,Symbollist,[],Symbols).

assign_equiv_colours(point,Features,Symbols):-
I,ksymbolset(equiv_point_colours,Symbollist),
assign_symbols(Features,Symbollist,[],Symbols).

assign_equiv_colours(line,Features,Symbols)
I,
ksymbolset(equiv_line_colours,Symbollist),
assign_symbols(Features,Symbollist,[],Symbols) .

assign_tints(Classes,Hue,Light,Sat,Symbols)
length_of(Classes,Num),
str_int(Chr,Num),
concat("choro_tints",Chr,Name),
ksymbollist(Name,Tints),!,
assign_tintsl(Classes,Hue,Light,Sat,Tints,[],Symbols).

assign_tintsl([] , _ , Symbols,Symbols):-!.
assign_tintsl([Class|Rest],Hue,Light,Sat, [T11Ts],Working,Symbols)

append(Working,[symbolspec(Class,Hue,Light,Sat,tint,Tl,0,"",0)],
Newwork),

I /
assign_tintsl(Rest,Hue,Light,Sat,Ts,Newwork,Symbols).

assign_symbols([],_,Symbols,Symbols). % all features done
assign_symbols(_,[],So_far,So_far)

1/
ermessage("insufficient symbols in set",

A - 54

"some features not symbolised").
assign_symbols([_|Features],[Symbol|Symbollist],

Insymbols,Outsymbols)
check_symbol(Symbol), % if ok continue, else next symbol
!,
append(Insymbols,[Symbol],Working), % add symbol to list
assign_symbols(Features,Symbollist,Working,Outsymbols).% next feature

assign_symbols(Features,[_|Symbollist],Insymbols,Outsymbols)
% after check_symbol fail - try next symbol

assign_symbols(Features,Symbollist,Insymbols,Outsymbols).

/*★* get various lists or values ***/
get_included(Feature_class,Features)% get base items for class

% from frame
findall(Feature,kmember_of(Feature_class,Feature),List),
get_includedl(List,[],Features).

get_includedl([],Features,Features) .
get_includedl([First|Rest],In,Out)

fbase_info_list(List),
member(First,List),
I /
append(In,[First],Work),
get_includedl(Rest,Work,Out).

/* get_includedl([_|Rest],I n , O u t) % this is the general case
get_includedl(Rest,In,Out). % it can be replaced by that below

*/ % as always have higher level items
get_includedl(_,In,In) . % ie stop when item not included

/*** ASK VARIOUS THINGS OF THE USER ***/
ask_symbolset(Feature_class,Type,Set) % choose a set of symbols

findall(Name,ksymbolset(Type,Name,_,_),Names),
% find all sets for type

clearwindow,
status(O),
clearmessage,
makewindow(54,31,5,Feature_class,3,5,15,70),
menu(5,20,5,7,Names,
" Select set of symbols ",1,Choice),
member_from_index(Names,Choice,Set),
i• 9

removewindow(54,1).
ask_symbolset(Feature_class,

ermessage("failed in ask_symbolset",Feature_class),
removewindow(54,1).

ask_categories(Feature_class,_,Required)% check to see if in frame
fcategories(Feature_class,Required),!.

ask_categories(Feature_class,Categories,Required):-
clearwindow,
write(" Feature class : ",Feature_class),
append(["All"],Categories,All),
status(4),!,
longmenu_mult(5,20,15,7,5,All," Which categories are requred ",[1],

Choices),
list_from_index(All,Choices,Out),
ask_categories1(Categories,Out,Required),
assert(fcategories(Feature_class,Required)). % add to frame

A - 55

ask_categoriesl(_,[]#[]):-I,quit.
ask_categoriesl(Categories,Out,Categories):-

member("All",Out),!.
ask_categoriesl(_,Out,Out).
ask_classes(Feature_class,Classes)s- % check if in frame

fcategories(Feature_class,Classes),!.
ask_classes(Feature_class,Classes):-

% findall types of classes for rep
clearwindow,
status(0),
clearmessage,
makewindow(54,31,5,Feature_class,3,5,15,70),
menu(5,20,5,7,[" No classes - continuous ",

" Exploratory classes ",
" Equal intervals ",

" Quantile ",
" Nested ",
" User specified "],

" Select type of class intervals ",2,Choice),
askclassesl(Feature_class,Choice,Classes,Intervals),
I rassert(fclass_intervals(Feature_class,Intervals)),
message ("finished seting classes","next feature"),
removewindow(54,1).

ask_classes(Feature_class,[]):- % check if in frame
ermessage("failed in ask_classes",Feature_class),
removewindow(54,1).

askclassesl(_,0,[]»[]):-!,quit.
askclassesl(_,1,[continuous],[]):-!,

message("continous symbolisation currently not available",
"choose another option"),

fail.
askclassesl(Feature_class,2,Classes,Intervals):- % exploratory

I#clearwindow,
status(0),
clearmessage,
menu(5,20,5,7,[" 2"," 3"," 4"," 5”,” 6"," 7"," 8"],

" Select number of exploratory classes ", 4,Choice),
Num = Choice + 1,
str_int(C,Num),
concat("class_names",C,Name),
kstringlist(Name,Classes),
I r

setclasses(exploratory,Num,Feature_class,Intervals).
askclassesl(Feature_class,3,Classes,Intervals):- % equal intervals

I /
clearwindow,
status(0),
clearmessage,

/ C O A C *7 r « O H II O II II 4 II II r t(II c II M *7 II M O •• 1menu(5,20,5,7,[2 , 3 , 4 , 5 , o , 7 , °J/
" Select number of equal classes ",4,Choice),

Num = Choice + 1,
str_int(C,Num),
concat("class_names",C,Name),
kstringlist(Name,Classes),
I,

A - 56

setclasses(equal,Num,Feature_class,Intervals).
askclassesl(Feature_class,4,C l a s s e s , I n t e r v a l s) % quantile

clearwindow,
status(0),
clearmessage,
menu(5,20,5,7,[" 2"," 3H," 4H," 5"," 6"," 7"," 8"],

" Select number of quantile classes ",4,Choice),
Num = Choice + 1,
str_int(C,Num),
concat("class_names",C,Name),
kstringlist(Name,Classes),
1/
setclasses(quantile,Num,Feature_class,Intervals).

askclassesl(Feature_class,5,C l a s s e s , I n t e r v a l s) % nested
I r

clearwindow,
status(0),
clearmessage,
menu(5,20,5,7,[" 2",

" 4",
" 8 "] ,

" Select number of nested classes ", 2,Choice),
str_int(C,Choice),
concat("class_names",C,Name),
kstringlist(Name,Classes),
I r

Num = Choice + 50,
askclassesl(Feature_class,Num,_,Intervals).

askclassesl(Feature_class,51,Classes,Intervals)
I /
kstringlist("class_names2"/Classes),
setclasses(nested,2,Feature_class,Intervals).

askclassesl(Feature_class,52,Classes,Intervals)
1/
kstringlist("class_names4",Classes),
1/
setclasses(nested,4,Feature_class,Intervals).

askclassesl(Feature_class,53,Classes,Intervals):-
I /

kstringlist("class_names8"/Classes),
1,
setclasses(nested,8,Feature_class,Intervals).

askclassesl(Feature_class,_,[]/ I n t e r v a l s) % user set or anything else
% NEEDS TO BE WRITTEN - replace null list by user names or from kstringlist

i
• /

setclasses(user,5,Feature_class,Intervals).
ask_bipolar(Feature_class,Classes):-

% findall types of classes for rep
clearwindow,
status(0),
clearmessage,
makewindow(55,31,5,Feature_class,3,5,15,70),
menu(2,20,5,7,[" No classes - continuous ",

" Equal intervals ",
" Quantile ",

" Nested ",
" Std Deviations",

A - 57

" User specified "],
" Select type of class intervals ",2,Choice),

askbipolarl(Feature_class,Choice,Classes,Intervals),
assertz(fclass_intervals(Feature_class,Intervals)),
removewindow(55,1).

askbipolarl(_,0,_,_):-!,quit.
askbipolarl(_,1,[continuous],_):-!,

message("continous symbolisation currently not available",
"choose another option"),

fail.
askbipolarl(Feature_class,2,C l a s s e s , I n t e r v a l s) % equal intervals

I ,
clearwindow,
status(0),
clearmessage,
message("If odd number of classes, mid class will be neutral",
" If even number of classes, mid point between central classes"),

/ c o A C ”7 r ” O " •• o n « , 1 1 n r II n r n n o n n O " 1menu(5,20,5,7,[2 , 3 , 4 , 5 , 6 , 7 , 8] /
" Select number of equal classes ", 4,Choice),

clearmessage,
Num = Choice + 1,
str_int(C,Num),
concat("class_names",C,Name),
kstringlist(Name,Classes),
setclasses(equal,Num,Feature_class,Intervals).

askbipolarl(Feature_class,3,C l a s s e s , I n t e r v a l s) % quantile
1/
clearwindow,
status(0),
clearmessage,
message("If odd number of classes, mid class will be neutral",

" If even number of classes, mid point between central classes"),
/ C O A C *7 r N A •• •• It •• A •• H r H M c M ** M M O •* 1menu(5,20,5,7,[2 , 3 , 4 , 5 / 6 , 7 , 8],

" Select number of quantile classes ", 4,Choice),
clearmessage,
Num = Choice + 1,
str_int(C,Num),
concat("class_names",C,Name),
kstringlist(Name,Classes),
setclasses(quantile,Num,Feature_class,Intervals).

askbipolarl(Feature_class,4,C l a s s e s , I n t e r v a l s) % nested
I• 9

clearwindow,
status(0),
clearmessage,
message(" neutral point between central classes",""),
menu(5,20,5,7,[" 2",

" 4 ",
" 8 "],

" Select number of nested classes ",2,Choice),
clearmessage,
str_int(C,Choice),
concat("class_names",C,Name),
kstringlist(Name,Classes),
Num = Choice + 40,
askbipolarl(Feature_class,Num,_,Intervals).

askbipolarl(Feature_class,41,_,Intervals):-
1,
setclasses(nested,2,Feature_class,Intervals).

askbipolarl(Feature_class,42,_,Intervals):-

A - 58

1 /
setclasses(nested,4,Feature_class,Intervals).

askbipolarl(Feature_class,43,_,Intervals)
I r

setclasses(nested,8,Feature_class,Intervals).
askbipolarl(Feature_class,_,Classes,Intervals):—% user set or anything else

% NEEDS TO BE WRITTEN - get neutral point or class, then pos & neg
I I
setclasses(user,5,Feature_class,Intervals),
length_of(Intervals,Num),
N=Num - 1,
str_int(C,N),
concat("class_names",C,Name),
kstringlist(Name,Classes).

/ * * *
/*

SETTING CLASS INTERVALS * * * /
need to read data from database
often need to sort data
class type

*/
include "sort.pro"

No classes - continuous
Exploratory classes "
Equal intervals ",
Quantile ",
Nested ",
User specified "],

% tree sort routine
PREDICATES

get_data(
SYMBOL,

REALLIST)
read data from database

% feature_class
list of values

CLAUSES
setclasses(exploratory,Num,Feature_class,Intervals)% exploratory classes

% exploratory classes use the mean of the breaks from
% quantile and equal interval classes
setclasses(equal,Num,Feature_class,Intsl),
setclasses(quantile,Num,Feature_class,Ints2),
I,
setclasses3(Intsl,Ints2,[],Intervals).

setclasses(equal,Num,Feature_class,Intervals)% equal interval classes
get_data(Feature_class,Values),
1 r

% get max and min values from database
maxinlist(Values,Max),
mininlist(Values,Min),
Interval = (Max - Min) / Num,
setclassesl(Min,Interval,Num,[Min],C),
append(C,[Max],Intervals),
retractall(wreallist(Feature_class,_)),
retractall(_,meta).

setclasses(quantile,Num,Feature_class,Intervals)% for testing set all to
% equal interval classes

get_data(Feature_class,Values),
1, % get max and min values from database
maxinlist(Values,Max),
mininlist(Values,Min),
length_of(Values, Tot),
No_in_class = Tot / Num,
sort(Values,Ordered),

A - 59

setclasses2(Num,No_in_class,Ordered,[],C), % get class breaks
append([Min],C,C2), % add max & min values
append(C2,[Max],Intervals),
retractall(wreallist(Feature_class,_)),
retractall(_,meta).

setclasses(_,Num,Feature_class,Intervals)% for testing set all others
% to equal interval classes

message("chosen class type not available", "equal intervals selected"),
pause,
setclasses(equal,Num,Feature_class,Intervals).

s e t c l a s s e s l 1,I n , I n) . % get eq int class breaks
setclassesl(Min,Interval,Num,In,Out):-

Next = Min + Interval,
append(In,[Next],Working),
Numl = Num - 1,1,
setclassesl(Next,Interval,Numl,Working,Out).

setclasses2(1 , _ , _ , I n , I n) . % last or 1 class
setclasses2(Num,No_in_class,Ordered,In,Out)% get quantile class breaks

New = Num - 1,
Pos = trunc(New * No_in_class),
Posl = Pos - 1,
member_f rom_index(Ordered,Pos,Val),
member_from_index(Ordered,Posl,Vail),
Break = (Val + Vail) / 2,
append([Break],In,Work),
1,
setclasses2(New,No_in_class,Ordered,Work,Out).

setclasses3([],_,Intervals,Intervals). % calcs means for exploratory
setclasses3([HI|Intsl],[H2|Ints2],Inlist,Intervals):-

Break = (HI + H2) / 2,
append (Inlist,[Break],Worklist),
setclasses3(Intsl,Ints2,Worklist,Intervals).

get_data(Feature_class,Values):-
flname(metafile,Filename),
consult(Filename,meta),
kmeta_data(Feature_class,_,_,_,_,_,_,_,_, Datafile, Dataname),
kdata_file(Datafile,Vars,Flname,_),
listposition(Vars,Dataname,0,Pos),
load_data(Flname,Pos,Values),
1,
retractall(_,meta),
message("data loaded","").

load_data(Flname,Num,_)
assert(wreallist(work,[])),
openread(input,Flname),
readdevice(input),
repeatread(input),
readval(Num,Val),
message("reading data",""),
load_datal(Val),
fail,1.

load_data(_,_,Values)
readdevice(keyboard),

closefile(input),
wreallist(work,Values),
I /
retractall(wreallist(work,_)).

load_datal(Val):-
I,
wreallist(work,In),
1 /
append(In,[Val],Out),
retractall(wreallist(work,_)),
assert(wreallist(work,Out)).

readval(1,Val)s-
readterm(plotdata,data(Val,_,_,_,_

readval(2,Val):-
readterm(plotdata,data(_,Val,).*/

readval(3,Val);-
readterm(plotdata,data(_,_,Val,_,_

readval(4,Val):-
readterm(plotdata,data(_,_,_,Val,_

readval(5,Val):-
readterm(plotdata,d a t a V a l

readval(6,Val):-
r e a d t e r m (p l o t d a t a , n o d e V a l)).

repeatread(_).
repeatread(File):-not(eof(File)),!,repeatread(File).
calc_no_in_window(_,Number):-

% get data for feature class & do point in polygon to determin number
% for now settle on total number of points in dataset

Number = 200.
/ * * * * * * * * * * * * * * * * * * * ,

/* END OF SYMRUL.PRO
/ * * * * * * * * * * * * * * * * * * * ,

/
*/

A - 61

/ * /

/* */
/* 5B LEVELS - levels.pro */
/* */
/★★★★★★★★★★★★★★★*****★**★★★★★★★★*•★★★★★★★★*★***★★★★*★★******★**/
/* PROCESS

1 - get list of symbolised features
2 - work down list assigning levels

*/

/* */
/* 20/4/94 Intial program */
/* */

project "mapdes"
include "globdoms.pro"

include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include "toolsWmenu.pro"
include "toolsWlineinp.pro"
include "utils.pro"

/* GLOBAL DATABASE - WORK % PREDICATES USED
% wintegerlist(levels,sorted_list) % ORDERED LIST OF DISPLAY LEVELS
*/
/★★★★*★★***★★********★******★★****★*******★****★★*★★**★★★★**•★*★/
/*** SORT ***/
/*** Turbo Prolog 3.3 user guide p.254 - nb error ***/
/*** TP 3.2 UG p.492 - correct version ***/
/*** modified by D.F. to go low > high **★/
/*** note - also eliminates duplicate values ★*★/
DOMAINS
% INTEGERLIST = INTEGER*

INTTREE = reference t(VAL/INTTREE,INTTREE)
VAL = INTEGER

PREDICATES
sort(INTEGERLIST, % inlist

INTEGERLIST) % sorted list
insert(INTEGER,INTTREE)
instree(INTEGERLIST,INTTREE)
treemembers(INTEGER,INTTREE)

CLAUSES
insert(Val,t(Val,_,_)) .
insert(Val,t(Vail,Tree,_)) Val>Vall,1,insert(Val,Tree).
insert(Val,t(_,_,Tree)) insert(Val,Tree).
instree([],_).
instree([H|T],Tree):-

insert(H,Tree),
instree(T,Tree).

treemembers(_,T) free(T),!,fail.
treemembers(X,t(_,_,R)) treemembers(X,R).
treemembers(X,t(Refstr,_,_)) X=Refstr.
treemembers(X,t(_,L,_)) treemembers(X,L).
sort(Lin,Lout)

instree(Lin,Tree),

A - 62

findall(X,treemembers(X,Tree),Lout).
/*** SET LEVELS ***/
PREDICATES
% assign_levels declared in globdoms

set_levels
set_levelsl(SYMBOL)
update_level(

SYMBOL,
SYMBOL,
INTEGER)

sort_levels
CLAUSES

set_levels
message("processing levels - please wait",""),
fsymbolism(_,Feat, s y m b o l s p e c 0)),
set_levelsl(Feat),
fail.

set_levels
!,clearmessage.

set_levelsl(Feat):-!,
fsymbolism(Feat_class,Feat,_),1,
frepresentation(Feat_class,Rep),1,
klevel(Feat_class,Rep,Level),!,
update_level(Feat_class,Feat,Level).

update_level(Feat_class,Feat,Level):-
retract(fsymbolism(Feat_class,Feat,symbolspec(A,B,C,D,E,F,G,H,_))), 1,
assertz(fsymbolism(Feat_class,Feat,symbolspec(A,B,C,D,E,F,G,H,Level))).

sort_levels:-
findall(Level,

f s y m b o l i s m (_ , _ , s y m b o l s p e c L e v e l)),Levels),
I,sort(Levels,Levellist),
I fassert(wintegerlist(levels,Levellist)).

sort_levels:-
ermessage("failed in sort_levels","").

assign_levels:-
set_levels,!,
sort_levels.

assign_levels:-
ermessage("failure in levels","").

/*** END OF LEVELS ★ * * I

A - 63

/*,
/ *
/«n
/*

*/
/*

DISPLAY */

D.F. October 1993 main package
know both representation type and symbol for each class and
levels sorted into plotting order

PROCESS
- draw features in order

some (few) special rules for reps (? and features)
mostly general rules for type

*/
project "mapdes"
include "globdoms.pro”
% call graphics routines and constants

include "BGlconst.pre"
% include "tools\\graph.pre”

include "toolsWtpreds.pro”
include "toolsWgraph.pro"
include "toolsWstatus .pro"
include "tools\\menu.pro"
include "toolsWlineinp.pro'
include "utils.pro"

% custom version moved to \map
% moved to globdoms

CONSTANTS
bgi_path = "..Wbgi1
display_window = 60
plot_window
key_window
gstatus_win
gmess_win
map_window

DATABASE - DISPLAYMOD
wproj ection(SYMBOL)
wscale_factor(REAL)

DATABASE - LOOKUP
kcolour_table(

SYMBOL ,
SYMBOL,
SYMBOL,
SYMBOL,
INTEGER,
INTEGER,
SYMBOL).

= 61
= 62
= 63
= 64
= 65

% text window for display module
% main graphics window for map
% includes title & border
% window for legend, etc
% window for graphics status line
% window for graphics messages
% window for plotting map
% no border or title

kpattern (
SYMBOL,
INTEGERLIST)

kline_colour (
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
INTEGER).

% conversiopn from descriptive to BGI colours
% for area fill

% symbolic name for colour
% hue
% lightness
% saturation ?? brightness?
% colour number
% fill style
% fill pattern - name

% look up table for pattern definitions
% pattern name
% 8 element list describing pattern

% conversion from descriptive to
% BGI line colours

% symbolic name for colour
% hue
% lightness
% saturation ?? brightness?
% colour number

kline_form(% conversion from descriptive to BGI val

A - 64

SYMBOL,
SYMBOL,
INTEGER,
INTEGER)

kline_width(
SYMBOL,
INTEGER)

kpoint_form(
SYMBOL,
SYMBOL,
INTEGER)

kpoint_size(
SYMBOL,
INTEGER)

klookup(
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL)

% form code
% form
% form value
% form style if value = 4 (user)

% conversion from descriptive to BGI value
% width code
% value

% conversion from descriptive to BGI
% form code
% form
% BGI form value

% conversion from descriptive to BGI value
% size code
% BGI value (rad in pixels)

% general purpose lookup values
% feature / name
% input 1
% input 2
% output 1
% output 2

CLAUSES % for global graphics predicates
maxviewport:-

getmaxx(MaxX),
getmaxy(MaxY),
setviewport(0,0,MaxX,MaxY,clip).

/*** Basic device handling *★*/
PREDICATES

setgraphics % sets up graphics device
closegraphics % closes graphics device
gstatus % status line in graphics

(STRING) % message to display
gpause % pause until keypressed
gf 10 % pause until F10 pressed
gmessage (STRING) % writes a message above status

CLAUSES
setgraphics:-

message("initialising graphics",""),
initgraph(vga,vgahi,_,_,bgi_path),
settextstyle(default_font,horiz_dir,1).

closegraphics
closegraph(),
makewindow(display_window,30,6," DISPLAY ”,0,0,20,80),
clearmessage,
status(1).

gstatus(Message)
shift_gwindow(Last),
shift_gwindow(gstatus_win),
clear_gwindow,
getcolor(Current),
setcolor(1),
settextjustify(1,1),
outtextxy(320,6,Message),
setcolor(Current),
shift_gwindow(Last).

gmessage(Message)

A - 65

shift_gwindow(Last),
shift_gwindow(gmess_win),
clear_gwindow,
getcolor(Current),
setcolor(1),
settextjustify(1,1),
outtextxy(320,6,Message),
setcolor(Current),
shift_gwindow(Last).

gpause:-
gstatus(" Press any key to continue "),
readdevice(Old),
readdevice(keyboard),
repeat,
readkey(_),I,
readdevice(Old).

gf10:-
gstatus(" Press F10 to continue "),
readdevice(Old),
readdevice(keyboard),
repeat,
readkey(fkey(10)),I,
readdevice(Old).

/★**★*★***★** GRAPHICS SCALING TEST ****************/
PREDICATES

world_to_virtual(
REAL,
REAL,
INTEGER,
INTEGER)

set windows

check_ratio(
% INTEGER,
% INTEGER,
% INTEGER,
% INTEGER,

REAL)
CLAUSES
/ *

w o r l d _ t o _ v i r t u a l (L o n g , L a t , X , Y _) % first clause
% find projection and transform accordingly - simple transform for now
% assumes all lat & long E & N - ie possitive
% input in units defined by meta data
% output in integer plot coords at scale to suit plotting

wprojection(sphere),
wscale_factor(Factor),
flat_long(Minlong,_,_,Maxlat),I,
XX = Long + 0.0001 - Minlong,
X = round(XX * Factor),
YY = Maxlat + 0.0001 - Lat,
Y_ = round(YY * Factor).

world_to_virtual(Long,Lat,X,Y_):-

% converts from projection coordinates to
% integer values with origin in top left.

% Long
% Lat
% X
% Y_

% sets map window to appropriate size
% depending on shape of area, & sets scale
% for plotting

% checks width/height ratio & opens window
% top
% left
% bottom
% right
% ratio

A - 66

% default if nothing set
% used for flimits
% find projection and transform accordingly - simple transform for now
% assumes all lat & long E & N - ie possitive
% input in dd.dd, ie degrees and decimal parts
% output dddd ie integer plot coords in hundredths of degrees

flat_long(Minlong,Maxlat),I,
XX = Long + 0.0001 - Minlong,
X = round(XX * 100),
YY = Maxlat + 0.0001 - Lat,
Y_ = round(YY * 100).

*/
world_to_virtual(Long,Lat,X,Y):-

X = round(Long * 100),
Y = round(Lat * 100).

set_windows:-
fmap_title(Title),
setpalette(15,0), % make colour 15 black
setpalette(0,63), % make background colour (0) white
setpalette(4,36), % improve red
setpalette(12,38), % improve orange
setbkcolor(63),
make_gwindow(plot_window,113,8,Title,0,0,455,482),
make_gwindow(gmess_win,113,0,"",456,0,12,640),
make_gwindow(gstatus_win,113,0,"",468,0,12,640),
gstatus(" processing layout - please wait "),
flat_long(Minlong,Maxlong,Minlat,Maxlat),
world_to_virtual(Minlong,Minlat,VLeft,VBottom) ,
world_to_virtual(Maxlong,Maxlat,VRight,VTop),
VRatio = (VRight - VLeft) / (VTop - VBottom),
check_ratio(VRatio),i,

gmessage ("windows set"),
make_scale(map_window,VLeft,VRight,VBottom,Vtop).

check_ratio(Ratio)
Ratio > 1.085, 1,
window_(plot_window,_,L,_,R,_,_),1,
W = R - L,
Height = round(W / Ratio),
make_gwindow(map_window,8,0,"",12,1,Height,480) .

check_ratio(Ratio)
Ratio <= 1.085,
window_(plot_window,_,_,_,_,B,Bot), I ,
H = B - Bot,
Width = round(H * Ratio),
make_gwindow(map_window,8,0,"",12,1,442,Width) .

/ H r * ' * * * * * * * * * * /

/* */
/* MAP PLOTTING SECTION */
/★ * /
/ ★ H r * * * * * * * * * * * * * * * * * * /

include "bgiplot.pro" % actual plotting routines
% for each rep type

PREDICATES
draw_map

CLAUSES
draw_map:-

wintegerlist(levels,Levels),
file_exist("kmeta.kba"),

A - 67

retractall(_,kbase),
retractall(_,ksymrule),
retractall(_,klocate),
retractall(_,kreps),
retractall(_,meta),
consult("kmeta.kba",meta),
consult("lookup.kba",lookup),
plot_level(Levels),
1 /
retractall(lookup),
retractall(_,meta).

draw_map:-
retractall(_,lookup),
retractall(_,meta),
closefile(input),
closefile(datafile),
gmessage("failure in drawmap"),
gpause.

/ ***★*★******★***★★★/
/* */
/* MAIN SECTION */
/* */

PREDICATES
% screenplot now in globdoms
CLAUSES

screenplot
wquit("y"),!.

screenplot
status(1),
clearmessage,
makewindow(60,30,6," DISPLAY ”,0,0,20,80),
setgraphics,
set_windows,i,
draw_map,I,
gmessage("map plotting finished"),
gf 10,
1 /
closegraphics,
retractall(_,displaymod),
status(1),
clearmessage,
message("graphics completed",""),pause.

screenplot
closegraphics,
retractall(_,displaymod),
status(1),
clearmessage,
makewindow(60,30,6," DISPLAY ”,0,0,20,80),
message("failure in graphics",""),pause.

/*** END OF DISPLAY ***/

A - 68

/**★ BGIPLOT.PRO * * * /
/ * /

% include file for displaying map data on screen
/*

plot_level ([Levels]) main routine - works on ordered list
of levels - proper tail recursive routine
for each level

get feature class & rep
get meta data
get database file name(s)
set up scaling
call plotting routine for feature class &/or rep type
clear working values

plot_class(Feature_class,Rep_type)
for each feature in class:

get symbolisation
translate to BGI settings
assert values in database
fail (go to next)

for each entity in database
set BGI settings for feature
plot entity
fail (go to next)

*/
/* an alternative method for plotting complex symbols would be to have

two (or more) sets of plotting parameters in database and to fail
back into subsequent parts - ie order of assertion of wsetup important,
wsetup could have less terms in this case.

*/

%DOMAINS moved to globdoms
% file = input
/*
DATABASE - PLOTDATA moved to globdoms 19/9/94

node(integer,symbol,integer,integer,symbol,real)
chain(integer,symbol,symbol,symbol,integer,integer, integer,integerlist)
polygon(integer,symbol,integer,real,real,real,integerlist)

*/

DATABASE - CURRENTLEVEL
% working database for current level

wcurrent_class(SYMBOL) % current feature class
wcoord_file(SYMBOL) % symbolic name of coordinate file
wdata_file(SYMBOL) % symbolic name of data file
wdata_name(SYMBOL) % name of feature class in data file
wlook_up(% relate kbase name to dbase name

SYMBOL, % name in kbase
SYMBOL) % name in dbase

wdata_position(INTEGER) % position of feature class in data file
wsetup(% parameters for plotting feature

SYMBOL, % feature
INTEGER, % main draw colour
INTEGER, % line or point style
INTEGER, % line pattern
INTEGER, % line width or point size
INTEGER, % fill colour or second colour
INTEGER, % fill style or second style
INTEGERLIST, % fill pattern

A - 69

INTEGER)
wcomplex (

SYMBOL,
INTEGER)

% second width or size
% feature

% 1 or 0 - flag for complex (2 part) symbols
PREDICATES

plot_level(
INTEGERLIST)

check_class(
/*

* /

% main processing pred - recursive
% sorted list of levels to plot

% checks feature class & rep type
% for correct meta data

there are few occasions where this arises - that more than one
set of meta data is required - the most obvious eg is relief where
both line & poly data are possible.
note: plotting points from area data doesn't need change.

SYMBOL,
SYMBOL)

check_file(
SYMBOL,

SYMBOL)
set_work_lookup(

SYMBOLLIST)
get position(

INTEGER)
plot_class(

SYMBOL,
SYMBOL)

plot_zones (
SYMBOL)

plot_zone (
SYMBOL)

plot_lines (
SYMBOL)

plot_line
plot_linel(

INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGERLIST)

% F_class input
% returned F_class

% checks to see if data exists
% key to file type
% meta
% coord
% data
% look_up
% f_class

% asserts lookup names of features
% in WORK - recursive

% gets postion of variable in datafile
% column in database
% processes each feature class

% feature_class
% representation type

% controls access to area files
% type of feature)

% reads and plots a zone
% type of feature

% controls access to line files
% Feature_class

% reads & plots a line
% plots background or foreground of line
% 1 = backgroung, 2 = foreground
% LC,
% LS,

% LP,
% LW,

% Coords),
plot_points (

SYMBOL)
plot_point (INTEGER)
set_symbol(

%

SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
INTEGER,
SYMBOL)

setfill (

% controls access to point files
% type of feature

% data position & type
% converts from descriptive values to BGI vals

asserted into wsetup
% type - point, line, area
% Feature
% Hue
% lightness
% saturation
% form
% form code
% orientation
% dimension

% sets fill style or pattern for areas

A - 70

INTEGER,
INTEGER,
INTEGERLIST)

draw_chain (
INTEGERLIST)

/*** non determ predicate
nondeterm repeatread(

FILE)
readval(

INTEGER,
REAL)

feat_look_up(
SYMBOL,
SYMBOL)

value_to_class (
REAL,
SYMBOL)

value_to_classl (
REAL,
REALLIST,
SYMBOLLIST,
SYMBOL)

* * * /

% colour
% style - bgi standard patterns
% user patterns - style = 12

% recursively calls draw_line for complex line
% coords

% repeat loop until end of file
% redirects input to datafile & gets value

% position of Var in file
% value of variable

% converts from database feature code
% to feature name in knowledge base

% database feature code
% knowledgebase feature name

% converts data value to class for symbol
% i value

% o class
% i value
% i interval list
% i class names

% o class
CLAUSES

plot_level([]) :- 1. % end of list
plot_level([Level|Rest]):- % main version of clause

fsymbolism(F_class,_, s y m b o l s p e c L e v e l)),
% should only be one class / level

gmessage(F_class),gpause,
check_file(meta,F_class),
check_file(coord,F_class),
check_file(data,F_class),
check_file(look_up,F_class),
/ * * *

should also get projection and scale factor and set up transformation
this is omitted for now as all data conforms to test format

*/
assert(wcurrent_class(F_class)),
frepresentation(F_class,Rep),
1/
plot_class(F_class,Rep),
retractall(_,currentlevel),
retractall(klook_up(_,_,_)),
closefile(input),
closefile(datafile),
1/
plot_level(Rest).

plot_level([Level|Rest]):-
1 /

f s y m b o l i s m (F _ c l a s s , _ , s y m b o l s p e c L e v e l)),
retractall(_,currentlevel),
closefile(input), % may not be closed due to failure
closefile(datafile), % so confirm
concat(" failed to find data for ", F_class, Message),
gmessage(Message),
11
plot_level(Rest).

% should already be closed
% but confirm

% clause to catch failures

check_class("Relief","Contours")

% if F_class is relief & rep type isolines
% then change class to contours

% in future this could be handled by lookup in meta file
fsymbolism("Relief ",_, symbolspec(l i n e ,),
! .

check_class(F_class,F_class). % else continue
check_file(meta,F_class)

check_class(F_class,Class),
kmeta_data(Class, _ , ,
1.

check_file(meta,F_class)
I ,
concat("no meta data for ",F_class,Mess),
gmessage(Mess),gpause,
fail.

check_file(coord,F_class)
check_class(F_class,Class),
k m e t a _ d a t a (C l a s s , C o o r d n a m e , ,
k c o o r d _ f i l e (C o o r d n a m e , C o o r d f i l e , _) ,
file_exist(Coordfile),
I,
assert(wcoord_file(Coordfile)).

check_file(coord,F_class)
I ,
concat("coordinate file not found for ",F_class,Mess),
gmessage(Mess),gpause,
fail.

c h e c k _ f i l e (d a t a , F _ c l a s s) % no separate data
check_class(F_class,Class),
k m e t a _ d a t a (C l a s s , ” " ,Dataname),
11assert(wdata_name(Dataname)) .

c h e c k _ f i l e (d a t a , F _ c l a s s) % no separate data
check_class(F_class,Class),
kmeta_data(Class, C o o r d n a m e D a t a n a m e),
kmeta_data(Class,_,_,_,_,_,_,_,Coordname, Dataname) ,
I r

kcoord_f ile (Coordname, Coordf ile,_) ,
1 /
file_exist(Coordfile),
assert(wcoord_file(Coordfile)),
assert(wdata_file(Coordfile)),
assert(wdata_name(Dataname)) .

check_file(look_up,F_class)% no look up table
check_class(F_class,Class),
k m e t a _ d a t a (C l a s s , " " ,_,_),
i #

check_file(look_up,F_class)% look up table exists
check_class(F_class,Class),
k m e t a _ d a t a (C l a s s , _ , L _ f i l e , _,_),
file_exist(L_file),
1/
consult(L_file,meta),
findall(Feature,fsymbolism(F_class,Feature,_),Features),
set_work_lookup(Features),
retractall(klook_up(_,_,_)).

check_file(look_up,F_class)
I ,
concat("look_up file not found for ",F_class,Mess),
gmessage(Mess),gpause,

A - 72

fail.
check_file(data/F_class)

check_class(F_class,Class),
kmeta_data(Class, _ , _ , _ , _ , _ , _ , Datafile, Dataname),
k d a t a _ f i l e (D a t a f i l e , F i l e n a m e , _),
file_exist(Filename),
assert(wdata_file(Filename)),
assert(wdata_name(Dataname)),
get_position(Position),
assert(wdata_jposition(Position)).

check_file(data,F_class)
I /
concat("data file not found for ",F_class,Mess),
gmessage(Mess),gpause,
fail.

set_work_lookup([]):-!•
set_work_lookup([Feature|Rest]):-

klook_up(Feature,Code),
J /
assert(wlook_up(Feature,Code)),
set_work_lookup(Rest).

get_position(0)
wdata_name(""), 1 .

get_position(Pos)
wdata_file(Datafilename),

%gmessage(Datafilename),gpause,
kdata_file(_,Vars,Datafilename,_),
wdata_name(Name),
i ,
listposition(Vars,Name,0,Pos).

/ * /

/★★* PLOTTING of r e p r e s e n t a t i o n t yp e s ***/
/★** POINT CLASSES ***/

plot_class(_,"dot distribution - individuals"):-
1 r

gmessage("plotting for dot distribution - individuals not written yet"),
gpause.

plot_class(_,"dot distribution - groups")
I,
gmessage("plotting for dot distribution - groups not written yet"),
gpause.

plot_class(_,"categorised points")
gmessage("plotting for categorised points not written yet"),
gpause.

plot_class(F_class,"ranked points")
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,O,D,_)),
set_symbol(point,Feature,H,L,S,FC,F,0,D),
fail,I. % set symbol for other features

plot_class(_,"ranked points")
plot_points(f_codes),I.

plot_class(F_class,"proportional - classed"):-
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
set_symbol(point,Feature,H,L,S,FC,F,0,D),
fail,!. % set symbol for other features

A - 73

plot_class(_,"proportional - classed")
I,plot_points(values),!.

plot_class(_,"proportional - graduated"):-
1/

% plot larger before smaller
gmessage("plotting for proportional - graduated not written yet"),
gpause.

plot_class(_,"proportional - bi-polar"):-
l f

% plot larger before smaller
gmessage("plotting for proportional - bi-polar not written yet"),
gpause.

plot_class(_,"multivariable - fixed size"):-
l f
gmessage("plotting for multivariable - fixed size not written yet"),
gpause.

plot_class(_,"multivariable - classed"):-
I /

% plot larger before smaller
gmessage("plotting for multivariable - classed not written yet"),
gpause.

plot_class(_,"multivariable - graduated"):-
I /

% plot larger before smaller
gmessage("plotting for multivariable - graduated not written yet"),
gpause.

plot_class(_,"spot values")
If
gmessage("plotting for spot values not written yet"),
gpause.

plot_class(_,"irregular value network")
If
gmessage("plotting for irregular value network not written yet"),
gpause.

plot_class(_,"grid surface values"):-
I f
gmessage("plotting for grid surface values not written yet"),
gpause.

/ * * * LINE CLASSES ***/
plot_class(F_class,"boundaries - one level"):-

fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
If
set_symbol(line,Feature,H,L,S,FC,F,0,D),
If
plot_lines(F_class).

plot_class(F_class,"boundaries - hierarchy"):-
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
set_symbol(line,Feature,H,L,S,FC,F,0,D),
fail,1. % set symbol for other features

plot_class(F_class,"boundaries - hierarchy"):-
plot_lines(F_class),!.

plot_class(F_class,"network - link & node"):-
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
set_symbol(line,Feature,H,L,S,FC,F,0,D),
fail,!. % set symbol for other features

plot_class(F_class,"network - link & node"):-
plot_lines(F_class),1.

A - 74

plot_class(F_class,"network - branching"):-
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,O,D,_)),
set_symbol(line,Feature,H,L,S,FC,F,0,D),
fail,1. % set symbol for other features

plot_class(F_class,"network - branching")s-
plot_lines(F_class),I.

plot_class(F_class,"isolines")
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
set_symbol(line,Feature,H,L,S,FC,F,0,D),
plot_lines(F_class),1.

plot_class(_,"flowlines")s-
l »
gmessage("plotting for flowlines not written yet"),
gpause.

plot_class(_,"misc. tangible lines")
1 /
gmessage("plotting for misc. tangible lines not written yet"),
gpause.

/★** AREA CLASSES ***/
plot_class(F_class,"isolated areas")

fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
J r

set_symbol(area,Feature,H,L,S,FC,F,0,D),
1/
plot_zones(f_code).

plot_class(F_class,"unclassed areas - one level"):-
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,O,D,_)),
set_symbol(area,Feature,H,L,S,FC,F,0,D),
fail,1.

plot_class(F_class,"unclassed areas - one level"):-
sort_adjacent_classes(F_class),
plot_zones(work),
1/
retractall(wcolour(_,_)).

plot_class(F_class,"unclassed areas - hierarchy")s-
1 f
plot_class(F_class,"unclassed areas - one level").

plot_class(_,"categorical - one level"):-
I f
gmessage("plotting for categorical - one level not written yet"),
gpause.

plot_class(_,"categorical - hierarchy"):-
if
gmessage("plotting for categorical - hierarchy not written yet"),
gpause.

plot_class(F_class,"graded series - unipolar"):-
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
set_symbol(area,Feature,H,L,S,FC,F,0,D),
fail,i.

plot_class(_,"graded series - unipolar"):-
plot_zones(values),I.

plot_class(_,"graded series - bipolar"):-
I
• /

gmessage("plotting for graded series - bipolar not written yet"),
gpause.

plot_class(_,"graded series - bivariate"):-
I f
gmessage("plotting for graded series - bivariate not written yet"),
gpause.

plot_class(F_class,"layers - uniploar"):-

A - 75

fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
set_symbol(area,Feature,H,L,S,FC,F,0,D),
fail,I.//

plot_class(_,"layers - uniploar"):-
plot_zones(values),!.

plot_class(_,"layers - bipolar")
gmessage("plotting for layers - bipolar not written yet"),
gpause.

plot_class(F_class,"hypsometric layers")
fsymbolism(F_class,Feature,symbolspec(_,H,L,S,FC,F,0,D,_)),
set_symbol(area,Feature,H,L,S,FC,F,0,D),
fail,1.

plot_class(_,"hypsometric layers")
plot_zones(f_code),!.

/*** SET UP SYMBOLS FOR PLOTTING **/
set_symbol(area,Feature,H,L,S,solid,_,_,_)

kcolour_table(_,H,L,S,Col_no,Fill_style,Fill_pattern),
I /
kpattern(Fill_pattern,FP),1,
assert(wsetup(Feature,Col_no,solid_line,0,norm_width,

Col_no,Fill_style,FP,0)).
set_symbol(area,Feature,H,_,_,tint,Percent,_,_):-

kline_colour(_,H,_,_,Col_no),
kpattern(Percent,Fill_pattern),
! I
assert(wsetup(Feature,Col_no,solid_line,0,norm_width,

Col_no,12,Fill_pattern,0)).
set_symbol(line,Feature,H,_,_,cased,FC,_,D)

klookup(cased,FC,H,H1,H2),
kline_colour(_,Hl,_,_,Col_for),
kline_colour(_,H 2 C o l _ b k) ,

% kline_form(cased,FC,Fval,_), % should use lookup for form
kline_form(cased,_,Fval,_), % default to solid for now
kline_width(D,Dval),
Dval2 =1, % should compute but use fine line
i ,
assert(wsetup(Feature,Col_for,Fval,0,Dval2,Col_bk,0,[],Dval)).

s e t _ s y m b o l (l i n e , c a s e d , F C , _ , _) :-
concat("unable to find lookup value for cased line - ",

FC, Mess),
1 r

gmessage(Mess),gpause.
set_symbol(line,Feature,H,L,_,complex,FC,_,D)

kline_colour(_,H,L,_,Col_no),
kline_form(complex,FC,Fval,_),
kline_width(D,Dval),
I♦ /
assert(wsetup(Feature,Col_no,Fval,0,Dval,0,0,[],0)).

set_symbol(line,Feature,H,L ,_,FC, D):-
kline_colour(_,H,L,_,Col_no),
kline_form(FC,_,Fval,_),
kline_width(D,Dval),
i• /
assert(wsetup(Feature,Col_no,Fval,0,Dval,0,0,[],0)).

set_symbol(point,Feature,H,L,_,geometric,F,_,D):-
kline_colour(_,H,L,_,Col_no),
kpoint_form(geometric,F,Val),
kpoint_size(D,Size),
1,

A - 76

assert(wsetup(Feature,Col_no,Val,0,Size,0,0,[],0)).
set_symbol(_, Feature

concat("cannot set symbol for ", Feature,Message),
gmessage(Message),gpause,
assert(wsetup(Feature,7,0,0,norm_width,0,0,[],0)).

/*** plot AREAS * * * /
plot_zones(Type):-

wcoord_file(Filename),
readdevice(Old),
openread(input,Filename),
readdevice(input),
plot_zone(Type),
I r

readdevice(Old),
closefile(input),
closefile(datafile).

plot_zone(f_code):-
repeatread(input),
readterm(plotdata,polygon(_,Fcode,Coords)),
feat_look_up(Fcode,Feature),
wsetup(Feature,LC,LS,LP,LW,FC,FS,FP,_),
setcolor(LC),
setlinestyle(LS,LP,LW),
setfill(FC,FS,FP),
draw_poly(Coords),
fail.

plot_zone(values)
wdata_file(Datafilename),
openread(datafile,Datafilename),
wdata_position(Pos),
repeatread(input),
readterm(plotdata,polygon(_ , Coords)),
readval(Pos,Val),
value_to_class(Val,Feature),
wsetup(Feature,LC,LS,LP,LW,FC,FS,FP,_),
setcolor(LC),
setlinestyle(LS,LP,LW),
setfill(FC,FS,FP),
draw_poly(Coords),
fail.

p l o t _ z o n e (w o r k) % uses values asserted into database WORK
repeatread(input),
readterm(plotdata,polygon(_,N a m e , C o o r d s)),
wcolour(Name,Group),
wsetup(Group,LC,LS,LP,LW,FC,FS,FP,_),
setcolor(LC),
setlinestyle(LS,LP,LW),
setfill(FC,FS,FP),
draw_poly(Coords),
fail.

plot_zone(_).
setfill(FC,12,F P) % 12 = user pattern

i• 9

setfillpattern(FP,FC).
setfill(FC,FS,_)

1/
setfillstyle(FS,FC).

/*** p lo t LINES ***/

A - 77

plot_lines(_)
wcoord_file(Filename),
I >
readdevice(Old),
openread(input/Filename),
readdevice(input),
plot_line,
readdevice(Old),
closefile(input).

plot_line:-
repeatread(input),
r e a d t e r m (p l o t d a t a / c h a i n (_ / F e a t u r e , C o o r d s)),
wsetup(Feature,LC,LS,LP,LW,C2,S2, W2),
plot_linel(1,C2,S2,$FFFF,W2,Coords), % plot background
plot_linel(2,LC,LS,LP,LW,Coords), % plot foreground
fail.

plot_line.
plot_linel(1, 0, 0,_, 0,_) : -1 .
plot_linel(1,C2,S2,P2,W2,Coords)

setcolor(C2),
setlinestyle(S2,P2,W2),
draw_chain(Coords).

plot_linel(2,LC,0,LP,LW,Coords):-
I ,
setcolor(LC),
setlinestyle(0,LP,LW),
draw_chain(Coords).

plot_line1(2,LC,LS,LP,LW,Coords):-
setcolor(LC),
setlinestyle(LS,LP,LW),
draw_chain(Coords).

draw_chain([|[|[]]])s—I.
draw_chain([XI|[Y1j[X2|[Y2|Rest]]]]):-

draw_line(XI,Y1,X2,Y2),!,
draw_chain([X2,Y2|Rest]).

% no background
% background part

% solid line - normal

% patterned line - clear
% background first

/*** p lo t POINTS ***/
plot_points(f_codes):-

wcoord_file(Filename),
1 /
readdevice(Old),
openread(input,Filename),
readdevice(input),
plot_point(-2),
I r
readdevice(Old),
closefile(input).

plot_points(values):-
wcoord_file(Filename),
wdata_file(Filename),
I I
readdevice(Old),
openread(input,Filename),
readdevice(input),
plot_point(-6),
1/

% coords & feature codes in same file

% coords & data in same file

A - 78

readdevice(Old),
closefile(input).

p l o t _ p o i n t s (_) % coords & data in different files
wcoord_file(Filename),
wdata_f ile(Datafile),
readdevice(Old),
openread(input/Filename),
openread(datafile/Datafile),
wdata_position(Pos),
readdevice(input),
plot__point (Pos),
11
readdevice(Old),
closefile(input),
closefile(datafile).

plot_point(-2):- % use feature codes from point file
repeatread(input),
readterm(plotdata,node(_,Feature,X,Y,_,_)),
wsetup(Feature,Col,Form,_,Size, ,
setfillstyle(solid_fill,Col),
setlinestyle(solid_line,0,norm_width),
setcolor(Col),
draw_point(X,Y,Size,Form),
fail,!.

plot_point(-6):- % use values from point file
repeatread(input),
readterm(plotdata,node(_,_,X,Y,_,Val)),
value_to_class(Val,Feature),
wsetup(Feature,Col,Form,_,S i z e , /
setfillstyle(solid_fill,Col),
setlinestyle(solid_line,0,thick_width),
setcolor(Col),
draw_point(X,Y,Size,Form),
fail,!.

plot_point(2):- % use feature codes data file
% with coords from polygon file

repeatread(input),
readterm(plotdata,node(_,Feature,X,Y,_,_)),
wsetup(Feature,Col,Form,_,Size,_,_,_,_),
setfillstyle(solid_fill,Col),
setlinestyle(solid_line,0,norm_width),
setcolor(Col),
draw_point(X,Y,Size,Form),
fail,1.

plot__point (Num) % use values from data file
% with coords from polygon file

Num >= 3,
repeatread(input),
readterm(plotdata,polygon(_,_,_,_,X,Y,_)),
readval(Num,Val),
value_to_class(Val,Feature),
wsetup(Feature,Col,Form,_,S i z e , /
setfillstyle(solid_fill,Col),
setlinestyle(solid_line,0,norm_width),
setcolor(Col),
draw_point(X,Y,Size,Form),
fail,!.

plot_point(_) % on end of coord file

A - 79

repeatread(_).
repeatread(File):-not(eof(File)),I,repeatread(File).
readval(1,Val):-

readdevice(Old),
readdevice(datafile),
readterm(plotdata,data(Val,) ,
readdevice(Old).

readval(3,Val):-
readdevice(Old),
readdevice(datafile),
readterm(plotdata,data(_,_,Val,_,_)),
readdevice(Old).

readval(4,Val):-
readdevice(Old),
readdevice(datafile),
readterm(plotdata,data(_,_,_,Val,_)),
readdevice(Old).

readval(5,Val):-
readdevice(Old),
readdevice(datafile),
readterm(plotdata,data(_,Val)),
readdevice(Old).

feat_look_up(Fcode,Feature)% lookup value exists
wlook_up(Feature,Fcode),
I .

feat_look_up(Feature,Feature). % no lookup - try database Fcode
value_to_class(Val,Class)

wcurrent_class(F_class),
fclass_intervals(F_class,[_|Ints]),
I fClasses = [classl,class2,class3,class4,class5,class6,class7,

class8,class9,classlO],
value_to_classl(Val,Ints,Classes,Class).

value_to_classl(_,[],_,classO)
gmessage("value out of class ranges"),gpause.

value_to_classl(Val,[I1|],[Cl|_J,C1)
Val <= II,i.

value_to_classl(Val,[_|Ints],[_|Classes],Class)
value_to_classl(Val,Ints,Classes,Class).

A - 80

/ * /

/★ */
/* POLIT4.PRO 5/10/94 */
/* */
/ * /

/* modularised version of polit.pro */
/* */
/* D.F. 30/9/94 */
I *★★*★★★**★★★*****★***★**★*★**★★*★***★****★******★★***★*★******★*/
/* */
/* FUNCTIONS */
/* */
/* global predicate sort_adjacent_zones(F_class) */
/* reads in .arc file with left & right labels */
/* asserts these temporarily & assigns each zone */
/* a class different from each neighbour */
/* */
/* currently 'hard wired' filename */
/* */

project "mapdes"
include "Globdoms.pro"
include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include "toolsWmenu.pro"
include "toolsWlineinp.pro"
include "utils.pro"

CONSTANTS

DATABASE - LOCAL
/* in global work

*/
wadjacent(

SYMBOL,
SYMBOL)

wclasses(

PREDICATES
% sort_adjacent_classes(% declared in globdoms
% SYMBOL) % feature class

get_adjacent(% gets adjacent zones from d
% and asserts locally

SYMBOL) % feature class
repeatread (FILE)
get_zones(% compile list of zone

SYMBOLLIST)
assign_initial_colours(%

SYMBOLLIST,
SYMBOLLIST)

writecolours
changecolour(SYMBOL,

SYMBOL)
sort_adjacent_classes2(

A - 81

SYMBOLLIST)
nextcolour(

SYMBOL)
no_clash(

SYMBOL,
SYMBOL)

CLAUSES
sort_adjacent_classes(F_Class):-

retractall(wcolour (_,_)),
gstatus("getting zones - please wait"),
get_adjacent(F_class),
get_zones(Zones),
findall(Class,fsymbolism(F_class,Class,_),Classes),
length_of(Classes,Num),
assert(wclasses(Num,Classes)),
1,
gstatus("assigning symbols to zones - please wait"),
sort_adjacent_classes2(Zones),
I ,
writecolours,
retractall(_,local).

sort_adjacent_classes2([])i ,
sort_adjacent_classes2([Z1|Zones]):-

retractall(wcolour(start,_)),
wclasses(_,[Start|_]),
asserta(wcolour(start,Start)),
nextcolour(Coll),
retractall(wcolour(Zl,_)),
no_clash(Zl,Coll),
assertz(wcolour(Z1,Coll)),
sort_adjacent_classes2(Zones).

nextcolour(Colour)
wclasses(Num,[Colour|Colours]),
append(Colours,[Colour],New),
retractall(wclasses(_,_)),
asserta(wclasses(Num,New)).

nextcolour(Colour)
wclasses(_,[Start|_]),
not(wcolour(start,Start)),
nextcolour(Colour).

no_clash(Zone,Colour):-
wadj acent(Zone,Z),
wcolour(Z,Colour),
I,
fail.

no_clash(Zone,Colour)
wadj acent(Z,Zone),
wcolour(Z,Colour),
1/
fail.

no_clash(_,_). % succeed - proceed to next zone

changecolour(Zone,Class) % increase colour
wclasses(Max,Classes),

listposition(Classes,Class,0,Pos),
Pos < Max, % not last on list
PI = Pos + 1,
I,list_from_index(Classes,[PI],[Cl|_]),
retractall(wcolour(Zone,_)),
assertz(wcolour(Zone,Cl)).

c h a n g e c o l o u r (Z o n e , _) % set colour back to 1
wclasses(_,[Class|_]),
retractall(wcolour(Zone,_)),
assertz(wcolour(Zone,Class)).

get_adjacent(_)
Filename = "c:\\prolog33\\map\\nigeria\\adminbnd.arc",
file_exist(Filename),
openread(input,Filename),
readdevice(input),
repeatread(input),
readterm(plotdata,chain(_,"State Boundaries",Right,Left,
assertz(wadjacent(Right,Left)),
fail.

get_adjacent(_)
readdevice(keyboard),

%write("got data"),nl,readkey(_),
closefile(input).

repeatread(_).
repeatread(File):-not(eof(File)),i,repeatread(File).
get_zones(Zones):-

findall(A,wadjacent(A,_),As),
findall(B,wadjacent(_,B),Bs),
append(As,Bs,Cs),
uniquelist(Cs,Zones).

assign_initial_colours([],_):-I•
assign_initial_colours([First|Rest],[G1|Others])

assertz(wcolour(First,Gl)),
append([Gl],Others,Update),
assign_initial_colours(Rest,Update).

writecolours:-
openwrite(output,"diags.lis"),
writedevice(output),
wcolour(State,Colour),
nl,write(State," ", Colour),
fail,1.

writecolours:-
writedevice(screen),
closefile(output).

A - 83

/ * /
/* 7 MODIFY */
/ * /

project "mapdes"
include "globdoms.pro"

include "toolsWtpreds.pro"
include "toolsWstatus.pro"
include "toolsWmenu.pro"
include "toolsWlineinp.pro"
include "utils.pro"

PREDICATES
% modify now in globdoms
CLAUSES

modify
wquit("y"), 1 .

modify
status(1),
clearmessage,
makewindow(40,30,7, " MODIFY ",0,0,20,80),
pause,
removewindow.

A - 84

/ * /

/* UTILITIES */
/* included by call in GLOBDOMS.PRO */
/ * * /
/* by D.F. unless other source given */
/ * * /
/* 06/08/93 many non globally required predicates */
/* moved to local modules */
/★*★*★***★*★★★*★★*★**★★★★**★★*****★★**★+***★*★★★★★★★★★★*★★★★★★/

/*** working with LISTS ***/
PREDICATES

member(integer,integerlist) /* checks if variable is a member */
member(real,reallist) /* of a list */
member(symbol,symbollist) /* Turbo manual p.48 */
member(string,stringlist)
member(symbolspec,symbolspeclist)
append(integerlist,integerlist,integerlist) /*append one list to another*/
append(symbollist,symbollist,symbollist) /* Turbo manual p.49 */
append(stringlist,stringlist,stringlist)
append(reallist,reallist,reallist)
append(symbolspeclist,symbolspeclist,symbolspeclist)

% list result
length_of(INTEGERLIST,INTEGER) % get length of list
length_of(STRINGLIST,INTEGER) % calls 3 arity version with 0 to start
length_of(SYMBOLLIST,INTEGER)
length_of(REALLIST,INTEGER)

% list working result
length_of(INTEGERLIST,INTEGER,INTEGER) % get length of list
length_of(STRINGLIST,INTEGER,INTEGER) % 3.20 UG p.180
length_of(SYMBOLLIST,INTEGER,INTEGER)
length_of(REALLIST,INTEGER,INTEGER)
remove(integer,integerlist,integerlist) /‘remove item from a list */
remove(symbol,symbollist,symbollist)
remove(string,stringlist,stringlist)
remove(real,reallist,reallist)

% uniquelist(Inlist, Outlist)
uniquelist(stringlist,stringlist)
uniquelist(symbollist,symbollist)

/* replace(Old,New,Oldlist,Newlist)
replace(string,string,stringlist,stringlist)
replace(SYMBOL,SYMBOL,SYMBOLLIST,SYMBOLLIST)
replacel(string,string,stringlist,stringlist,stringlist)
replacel(SYMBOL,SYMBOL,SYMBOLLIST,SYMBOLLIST,SYMBOLLIST)
member_from_index(stringlist,integer,string)
member_from_index(SYMBOLLIST,INTEGER,SYMBOL)
member_from_index(REALLIST,INTEGER,REAL)
member_from_index(INTEGERLIST,INTEGER,INTEGER)

/* list_from_index(Inlist,Numlist,Outlist) makes outlist from numbered */
list_from_index(stringlist,integerlist,stringlist)
list_from_index(SYMBOLLIST,INTEGERLIST,SYMBOLLIST)
list_from_indexl(stringlist,integerlist,stringlist,stringlist)
1i st_from_index1(SYMBOLLIST,INTEGERLIST,SYMBOLLIST,SYMBOLLIST)

% checks to see that a value
% only appears one in a list
replaces a member of a list */

A - 85

maxinlist(INTEGERLIST,INTEGER)
maxinlist(REALLIST,REAL)
maxinlist(INTEGERLIST,INTEGER,INTEGER)
maxinlist(REALLIST,REAL,REAL)
mininlist(INTEGERLIST,INTEGER)
mininlist(REALLIST,REAL)
mininlist(INTEGERLIST,INTEGER,INTEGER)
mininlist(REALLIST,REAL,REAL)
listposition(% returns position of value on list

SYMBOLLIST, % input list of values
SYMBOL, % value to be found
INTEGER, % working count
INTEGER) % position (O=not on list)

listposition(STRINGLIST,STRING,INTEGER,INTEGER)
listpositionjINTEGERLIST,INTEGER,INTEGER,INTEGER)
listposition(REALLIST,REAL,INTEGER,INTEGER)

/★*★ MISC * * * /
/ * greater_of(X, Y, Ans) returns Ans as greater of X or Y */

greater_of(real,real,real)
/* nearest_larger (X,list,Ans) Ans = first no in ordered list

larger than X */
nearest_larger(real,reallist,real)

/* lesser_of(inl,in2,ans) ans = smaller number */
lesser_of(real,real,real)

/★** READING AND WRITING ***/
write_a_list(integerlist)
write_a_list(symbollist)
write_a_list(reallist)
write_a_list(stringlist)

CLAUSES
member(X,[X
member(X,[_ 1.Tail]) member(X,Tail).
append([],List2,List2):-l.
append([X|L1],List2,[X|L3]) append (Ll,List2,L3).
length_of(List,Result)

length_of(List,0,Result).
length_of([],Result , R e s u l t) .
length_of([_|T],Counter,Result)

Newcounter=Counter+l,
1,
length_of(T,Newcounter,Result).

remove(_,[],[]):-!.
r e m o v e (V a r , I n l i s t , I n l i s t) % var not member of list - error?

not(member(Var,Inlist)),!. % not neccessary but may be useful
% could send a message back

remove(Var,[Var|Inlist],I n l i s t) . % var at head of list
remove(Var,[_|T],Outlist)

remove(Var,T,Outlist).
uniquelist([],[]):-!.

A - 86

uniquelist([In|Inlist],O u t l i s t) % on list - remove
member(In,Inlist),I,
uniquelist(Inlist,Outlist).

uniquelist([In|Inlist],[In|Outlist]):- % not on list
uniquelist(Inlist,Outlist).

replace(Old,New,[Old|T],Newlist),
append([New],T,Newlist).

replace(Old,New,[H|T],Newlist)s-
append([],[H],Hlist),1,
replacel(Old,New,T,Hlist,Newlist).

replacel(Old,New,[Old|T],Hlist,Newlist),
append(Hlist,[New],L1),
append(LI,T,Newlist).

replacel(Old,New,[H|T],Hlist,Newlist)
append(Hlist,[H],Hlistl),I,
replacel(Old,New,T,Hlist1,Newlist).

member_from_index([H _],1,H)s-!.
member_from_index([_ T],Index,Ans)

N = Index - 1,1,
member_from_index(T,N,Ans).

list_from_index(_,[],[]):-!.
list_from_index(Inlist,[H|T],Outlist)

list_from_indexl(Inlist,[H|T],Outlist,_).
list_from_indexl(Inlist,[H|T],Outlist,Worklist):-

member_from_index(Inlist,H,Ans),
list_from_index(Inlist,T,Worklist),I,
append(Worklist,[Ans],Outlist).

maxinlist([],0):-1.
maxinlist([H|Inlist],Max):-

maxinlist(Inlist,H,Max).
maxinlist([],Inmax,Inmax):-1.
maxinlist([H|Inlist],Inmax,Outmax)

greater_of(H,Inmax,Newmax),I,
maxinlist(Inlist,Newmax,Outmax).

mininlist([],0):-1.
mininlist([H|Inlist],Min)

mininlist(Inlist,H,Min).
mininlist([],I n m i n , I n m i n) .
mininlist([H|Inlist],Inmin,Outmin)

lesser_of(H,Inmin,Newmin),!,
mininlist(Inlist,Newmin,Outmin).

listposition([] 0) ; —
1,fail.

listposition([Val|_],Val,Count,Pos)
I r

Pos = Count + 1.
listposition([_|T],Val,Count,Pos):-

Newcount = Count + 1,
I,
listposition(T,Val,Newcount,Pos).

greater_of(X,Y,X)X >= Y, !.

A - 87

greater_of(_,Y,Y).
nearest_larger (X,[H
nearest_larger (X,[_

_],H) X <= H, 1. % list is ordered low - hi
T],Ans) nearest_larger (X,T,Ans).

lesser_of(X,Y,Y)X >= Y, !.
lesser_of(X,_,X).
write_a_list([]):-!.
write_a_list([H j T]) :-

write(H),nl,1,write_a_list(T).
/*** SCREEN OUTPUT ETC ***/
PREDICATES

message(string,string) /* writes a message in window 1 */
clearmessage /* clears message window */
ermessage(string,string) /* beeps and writes message */
quit /* ask if want to quit */
pause /* wait for space bar to be pressed*/
status(integer) /* changes status line to numbered

message */
CLAUSES

message(Stringl,String2):-
shiftwindow(Old),
shiftwindow(1),
clearwindow,
write(Stringl),nl,write(String2),
shiftwindow(Old).

clearmessage:-
shiftwindow(Old),
shiftwindow(1),
clearwindow,
shiftwindow(Old).

ermessage(Stringl,String2):-!,
beep,
shiftwindow(Old),
shiftwindow(1),
clearwindow,
write(Stringl),nl,write(String2),
pause,
shiftwindow(Old).

quit
changestatus(Old),
status(1),
lineinput(3,10,55,15,15,

" Do you want to quit the current activity? (y/n) ","N",Ch),
changestatus(Old),
Ch = "y",
asserta(wquit("y")).

pause:-
% stops processing and waits for space bar to be pressed

status(Old),!,
repeat,
status(3),
readchar(C), C = '
clearmessage, % clears any messages after pause

A - 88

status(Old).
/* STATUS LINES */
/* 0 for use with main menu when quit not available) */

status(O) 1,changestatus(
"Fl:Help Use arrow keys to select, F10 to activate").
/* 1 simple instruction on screen */

status(l) 1,changestatus(
"Fl:Help
ESC:quit"

) •/* 2 single item menu */
status(2) I,changestatus(

"FltHelp F3:Why Use arrow keys to select choice, F10 to activate.
ESC:quit"

) •/* 3 Pause */
status(3) :- 1,changestatus(

" Press space bar to continue ").
/* 4 Multiple choices from menu */

status(4) :- 1,changestatus(
"Fl:Help F3:Why Use RETURN key to select choices, F10 when finished.
ESC:quit"

) */* 5 Data Input */
status(5) :- I,changestatus(

"FI:Help F3: Why? Enter values, press F10 when finished
ESC:quit"
) •/* 6 Request, menu available */

status(6) :- I,changestatus(
"Fl:Help F2: Menu F3:Why?
ESC:quit"
) •/* 7 General when no menu available */

status(7) :- I,changestatus(
"FI:Help F3:Why?
ESC:quit"
) •/* 8 Answer (solution) on screen */

status(8) :- I,changestatus(
"FI:Help F4:How? Press SPACE BAR to continue ESC:quit"
) •/* 9 Wait */

status(9) :- !,changestatus(
PLEASE WAIT "

)•
/*★*★*★★'*'**★***★****★*★**★**★*★****★***★*★★**********★******★★/
/* MISC. OPERATIONS */
/★★***★★*********★★*★****★**★★★*★★★**★**★*★******★**★★**★****★/
PREDICATES

file_exist(STRING)
failed(STRING)
rad_deg(REAL,REAL) % converts from rad to degrees

% storemap moved to main /* store current map specs to KMAPS */
% load_places moved to lay2
CLAUSES

file_exist(File):-

existfile(File),I.
file_exist(File)

concat(File/ " was not found", Outstring),
ermessage("File Error: the file ",Outstring)

failed(Where):-
concat("Failed due to unresolved ", Where,
ermessage(Outstring,""),
fail.

rad_deg(Rad,Deg):-
bound(Deg),1,
Pi = 3.141592653,
Rad = (Pi * Deg) / 180.

rad_deg(Deg,Deg):-
failed ("rad_deg : Deg not bound"),I.

Outstring),

APPENDIX B

Knowledge base listings

Setup.kba

Main knowledge base - kbase.kba

Cartographic representation knowledge base
kreps.kba

Symbolisation knowledge base - ksymrule.kba

B - 2

Setup.kba

flname("kbasefile", "c:\\prolog33\\map\\kbase.kba")
flname("locatefile","c:\\prolog33\\map\\nigeria\\africa.kba")
flname("reptile","c:\\prolog33\\map\\kreps.kba")
flname("symbolfile","c:\\prolog33\\map\\ksymrule.kba")
flname("metafile","c:\\prolog33\\map\\kmeta.kba")

B - 3

Main knowledge base - kbasefile = "kbase.kba'

krequired
krequired
krequired
krequired
krequired
krequired
krequired
krequired
krequired
krequired
krequired
krequired
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
kmember_of
klist ("base

Rivers",

baseinfo","Other Rivers ","Large Rivers",5)
baseinfo","Large Rivers","Major Rivers",5)
baseinfo","Major Rivers","Lakes",5)
baseinfo","Lakes","Lake_fill",5)
baseinfo","Coastline","Seas",3)
baseinfo","State Boundaries","International Boundaries",5)
baseinfo","Tertiary Boundaries","State Boundaries",5)
baseinfo","Minor Towns","Major Towns",3)
baseinfo","Major Towns","Capitals",3)
baseinfo","Other Roads","Highways",5)
baseinfo","Highways","Main Highways",5)
baseinfo","Minor Relief","Main Relief",5)
"Rivers","Maj or Rivers")
"Rivers","Large Rivers")
"Rivers","Other Rivers")
"Administrative Boundaries","International Boundaries")
"Administrative Boundaries","State Boundaries")
"Administrative Boundaries","Tertiary Boundaries")
"Settlements","Capitals")
"Settlements","Major Towns")
"Settlements","Minor Towns")
"Relief","Main Relief")
"Relief","Minor Relief")
"Roads","Main Highways")
"Roads","Highways")
"Roads","Other Roads")
"theme info","Administrative Areas")

"Urban population")
"Rural population")
"Total population")
"Population density")
"Population change")
"Industrial locations")
"Agriculture")
"Geology")
"Soils")
"Vegetation")
"Precipitation")
"Temperature")
["Coastline","Major Rivers","Large Rivers","Other

'Lakes","International Boundaries","State Boundaries","Tertiary
Boundaries","Capitals","Major Towns","Minor Towns","Urban Areas ","Main
Highways","Highways","Other Roads","Railways","Main Relief","Minor Relief"])

klist("base_info_list",["Coastline","Rivers","Lakes","Administrative
Boundaries","Settlements","Roads","Railways","Relief"])

klist("theme_info_types", ["Administrative
areas","Agriculture","Geology","Industrial locations","Population
change","Population density","Precipitation", "Rural
population","Soils","Temperature","Total population","Urban
population","Vegetation"])

klist("Administrative areas",["Countries","States"])
klist("Agriculture",["Desert","Non-intensive Livestock Farming","Subsistence

Farming","Commercial Farming","Irrigated Areas","Forest","Unproductive
Land"])

klist("Geology",["Recent sediments","Sedimentary rocks","Extrusive igneous
rocks","Intrusive igneous rocks","Metamorphic rocks"])

klist("Industrial locations",["thermal power","hydro
power","textiles","cement","chemicals","paper","textiles"])

"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
"theme_info"
_info_types"

B - 4

klist("Population",["Total Population","Population Density","Population
Change"])

klist("Soils",["Leached red tropical soils","Iron rich savana soils","Rich
brown tropical soils","Tropical black earths","Brown sub-arid
soils","Immature soils","Recent alluvium","Raw mineral
soils","Andosols","Sailine soils"])

klist("Vegetation",["Aquatic grassland swamp","Tropical wooded steppe","Grass
savanna","Mixed woodland","Tropical savanna woodland","Forest-savanna
mosaic","Tropical rain forest","Swamp forest","Mangrove swamp"])

kmap_content("basic","map
type", [10,0,0,0,8,10,0,0,10,0,0,0,0,0,0,0,0,0],[], "baseinfo")

kmap_content("cultural","map
type",[10,6,3,0,8,10,8,6,10,9,8,6,9,7,5,6,2,0],["Administrative
areas","Agriculture","Industrial locations","Population change","Population
density","Rural population","Total population","Urban
population"],"baseinfo")

kmap_content("physical","map
type",[10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,5],["Geology","Precipitation","
Soils","Temperature","Vegetation"],"baseinfo")

kmap_content("outline","basic",[10,6,3,0,8,10,6,1,5,3,2,2,4,2,0,2,2,0],[],"bas
einfo")

kmap_content("topographic","basic", [10,10,8,6,10,10,8,6,10,8,6,6,10,8,4,8,10,6
], [],"baseinfo")

kmap_content("political","cultural", [10,6,3,0,9,10,9,6,10,9,8,6,8,7,5,6,2,0], [
"Administrative areas"],"baseinfo")

kmap_content("population","cultural", [10,6,3,0,8,10,9,7,10,9,8,6,9, 7, 5,6,2,0] ,
["Population change","Population density","Rural population","Total
population","Urban population"],"baseinfo")

kmap_content("economic", "cultural", [10,6,3,0,8,10,8,6,10,9,8,6,9,7,5,6,2,0], ["
Agriculture","Industrial locations"],"baseinfo")

kmap_content("settlements","cultural",[10,6,3,0,8,10,9,6,10,10,9,8,10,7,5,8,4,
0], [],"baseinfo")

kmap_content("urban","population",[10,6,3,0,8,10,9,6,5,4,2,3,9,7,5,6,2,0],["Ur
ban population"],"baseinfo")

kmap_content("rural","population",[10,6,3,0,8,10,9,8,10,9,8,6,9,7,5,6,2,0],["R
ural population"],"baseinfo")

kmap_content("industries","economic",[10,6,3,0,8,10,8,6,10,9,8,6,9,7,5,6,2,0],
["Industrial locations"],"baseinfo")

kmap_content("agriculture","economic", [10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,5
],["Agriculture"],"baseinfo")

kmap_content("communications","economic",[10,6,3,0,10,10,8,6,10,9,8,6,9,7,5,6,
2,0], [],"baseinfo")

kmap_content("relief","physical",[10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,10,8],[]
,"baseinfo")

kmap_content("land_cover","physical",[10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,5]
, ["Agriculture","Geology","Soils","Vegetation"],"baseinfo")

kmap_content("climate","physical", [10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,5], ["
Precipitation","Temperature"],"baseinfo")

kmap_content("soils","land_cover", [10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,5], ["
Soils"],"baseinfo")

kmap_content("vegetation","land_cover",[10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,
5],["Vegetation"],"baseinfo")

kmap_content("geology","land_cover", [10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,5],
["Geology"],"baseinfo")

kmap_content("precipitation","climate",[10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,
5],["Precipitation"],"baseinfo")

kmap_content("temperature","climate",[10,10,9,7,10,10,6,1,5,3,1,2,4,2,0,2,8,5]
, ["Temperature"],"baseinfo")

klevel_of_detail("author","overview","screen",4)
klevel_of_detail("author","analysis","screen",8)
klevel_of_detail("general","overview","screen",2)

B - 5

klevel_of_detail("general","analysis","screen",6)
klevel_of_detail("specialist","overview","screen",4)
klevel_of_detail("specialist","analysis","screen", 8)
kscale_range(2000000, 15000000, "")

Cartographic representation knowledge base - repfile = "kreps.kba"

ksubclass("Rivers","Major Rivers")
ksubclass("Rivers","Large Rivers")
ksubclass("Rivers","Other Rivers")
ksubclass("Administrative Boundaries","International Boundaries")
ksubclass("Administrative Boundaries","State Boundaries")
ksubclass("Administrative Boundaries","Tertiary Boundaries")
ksubclass("Settlements","Capitals")
ksubclass("Settlements","Maj or Towns")
ksubclass("Settlements","Minor Towns")
ksubclass("Relief","Main Relief")
ksubclass("Relief","Minor Relief")
ksubclass("Roads","Main Highways")
ksubclass("Roads","Highways")
ksubclass("Roads","Other Roads")
krepresentation_type(11,"dot distribution - individuals")
krepresentation_type(12,"dot distribution - groups")
krepresentation_type(21,"categorised points")
krepresentation_type(31,"ranked points")
krepresentation_type(41,"proportional - classed")
krepresentation_type(42,"proportional - graduated")
krepresentation_type(43,"proportional - bi-polar")
krepresentation_type(51,"multivariable - fixed size")
krepresentation_type(52,"multivariable - classed")
krepresentation_type(53,"multivariable - graduated")
krepresentation_type(61,"spot values")
krepresentation_type(62,"irregular value network")
krepresentation_type(63,"grid surface values")
krepresentation_type(111,"boundaries - one level")
krepresentation_type(112,"boundaries - hierarchy")
krepresentation_type(121,"network - link & node")
krepresentation_type(122,"network - branching")
krepresentation_type(131,"isolines")
krepresentation_type(141,"flowlines")
krepresentation_type(151,"misc. tangible lines")
krepresentation_type(211,"isolated areas")
krepresentation_type(221,"unclassed areas - one level")
krepresentation_type(222,"unclassed areas - hierarchy")
krepresentation_type(231,"categorical - one level")
krepresentation_type(232, "categorical - hierarchy")
krepresentation_type(241,"graded series - unipolar")
krepresentation_type(242,"graded series - bipolar")
krepresentation_type(243, "graded series - bivariate")
krepresentation_type(251,"layers - uniploar")
krepresentation_type(252,"layers - bipolar")
krepresentation_type(261,"hypsometric layers")
krep("rep_type","Coastline","boundaries - one level",5)
krep("rep_type","Seas","isolated areas",5)
krep("rep_type","Rivers","network - branching",5)
krep("rep_type","Lakes","boundaries - one level",5)
krep("rep_type","Lake_fill","isolated areas",5)
krep("rep__type","Administrative Boundaries","boundaries - hierarchy"
krep("rep_type","Settlements","ranked points",5)
krep("rep_type","Urban Areas","isolated areas", 5)
krep("rep_type","Roads","network - link & node", 5)
krep("rep_type","Railways","network - link & node",5)
krep("rep_type","Relief","hypsometric layers",3)
krep("rep_type","Relief","isolines",2)
krep("rep_type","Relief","isolated areas",1)
krep("rep_type","Countries","unclassed areas - one level",5)

B - 7

krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep
krep

"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'
"rep_type'

repkconflict
groups"

kconflict
kconflict

network
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict

level")
kconflict

hierarch
kconflict
kconflict
kconflict
kconflict

Administrative areas","unclassed areas - hierarchy", 5)
Agriculture","categorical - one level",5)
Geology","categorical - one level",5)
Soils","categorical - one level",5)
Vegetation","categorical - one level",5)
Total population","proportional - classed",4)
Total population","proportional - graduated",3)
Population density","graded series - unipolar",4)
Population density","graded series - bipolar",2)
Population change","graded series - bipolar",5)
Urban population","proportional - classed",4)
Urban population","proportional - graduated",3)
Rural population","graded series - unipolar",4)
Rural population","graded series - bipolar",2)
Industrial locations","categorised points",5)
Precipitation","layers - unipolar",4)
Precipitation","layers - bipolar",3)
Precipitation","isolines", 1)
Temperature","layers - bipolar",4)
Temperature","layers - unipolar",3)
Temperature","isolines", 1)

type","dot distribution - individuals","dot distribution -
'rep
'rep
)
rep
rep
rep
rep_
rep
rep
rep
rep_
rep_
rep_
rep_
rep_
rep
rep_
rep_
rep_
rep_
rep
rep
rep_
rep_
rep_
rep_
rep
rep_
rep_
rep_
rep_

rep
T ") “

rep_
rep_
rep_
rep

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

type
type
type
_type

"dot distribution - individuals","spot values")
"dot distribution - individuals","irregular value
"dot distribution - individuals","grid surface values")
"dot distribution - groups","spot values")
"dot distribution - groups","irregular value network")
"dot distribution - groups","grid surface values")
"proportional - classed","proportional - classed")
"proportional - classed","proportional - graduated")
"proportional - classed","proportional - bipolar")
"proportional - classed","multivariate - fixed size")
"proportional - classed","multivariate - classed")
"proportional - classed","multivariate - graduated")
"proportional - graduated","proportional - graduated")
"proportional - graduated","proportional - bipolar")
"proportional - graduated","multivariate - fixed size")
"proportional - graduated","multivariate - classed")
"proportional - graduated","multivariate - graduated")
"proportional - bipolar","proportional - bipolar")
"multivariate - fixed size","multivariate - fixed size")

fixed size","multivariate - classed")
fixed size","multivariate - graduated")
classed","multivariate - classed")
classed","multivariate - graduated")
graduated","multivariate - graduated")

"spot values","irregular value network")
"spot values","grid surface values")
"irregular value network","irregular value network")
"irregular value network","grid surface values")
"grid surface values","grid surface values")
"unclassed areas - one level","unclassed areas - one

"unclassed areas - one level","unclassed areas -

"multivariate
"multivariate
"multivariate
"multivariate
"multivariate

"unclassed areas
"unclassed areas
"unclassed areas
"unclassed areas

one level","categorical - one level")
one level","categorical - hierarchy")
one level","graded series - unipolar")
one level","graded series - bipolar")

B - 8

kconflict("rep_type",
bivariate")

kconflict
kconflict
kconflict
kconflict

hierarchy"
kconflict
kconflict
kconflict
kconflict
kconflict

bivariate")
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict
kconflict

rep
rep
rep
rep

rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep
rep

type
type
.type
type

type
type
type
type
type

.type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
.type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

unclassed areas - one level","graded series -

unclassed areas
unclassed areas
unclassed areas
unclassed areas
unclassed areas
unclassed areas
unclassed areas
unclassed areas
unclassed areas

one level"
one level"
one level"
hierarchy"

hierarchy"
hierarchy"
hierarchy"
hierarchy"
hierarchy"

unclassed areas
unclassed areas
unclassed areas
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
categorical -
graded series
graded series
graded
graded
graded
graded
graded
graded
graded
graded
graded
graded
graded
graded
graded
layers
layers
layers
layers
layers

series
series
series
series
series
series
series
series
series
series
series
series
series

hierarchy"
hierarchy"
hierarchy"

one level"
one level"
one level"
one level"
one level"
one level"
one level"
one level"
hierarchy"
hierarchy"
hierarchy"
hierarchy"
hierarchy"
hierarchy"
hierarchy"
- unipolar
- unipolar
- unipolar
- unipolar
- unipolar
- unipolar
- bipolar"
- bipolar"
- bipolar"
- bipolar"
- bipolar"
- bivariate
- bivariate
- bivariate

"layers - unipolar")
"layers - bipolar")
"hypsometric layers")
"unclassed areas -
"categorical - one level")
"categorical - hierarchy")
"graded series - unipolar")
"graded series - bipolar")
"graded series -
"layers - unipolar")
"layers - bipolar")
"hypsometric layers")

one level")
hierarchy")
- unipolar")
- bipolar")
- bivariate")

bivariate
unipolar","layers
unipolar", "layers
unipolar","hypsometric layers")
bipolar","layers - bipolar")
bipolar","hypsometric layers")

categorical -
categorical -
graded series
graded series
graded series
layers - unipolar")
layers - bipolar")
hypsometric layers")
categorical - hierarchy")
graded series - unipolar")
graded series - bipolar")
graded series - bivariate")
layers - unipolar")
layers - bipolar")
hypsometric layers")
"graded series - unipolar")
"graded series - bipolar")
"graded series - bivariate")
"layers - unipolar")
"layers - bipolar")
"hypsometric layers")
graded series - bipolar")
graded series - bivariate")
layers - unipolar")
layers - bipolar")
hypsometric layers")
,"graded series - bivariate")
,"layers - unipolar")
,"layers - bipolar")
,"hypsometric layers")
- unipolar")
- bipolar")

hypsometric layers","hypsometric layers")

B - 9

Symbolisation knowledge base - symbolfile = "ksymrule.kba"

ksymbolspec("Coastline","Coastline",symbolspec("line","blue","dark","low","con
tinuous","", 0,"fine",0))

ksymbolspec("Coastline","Coastline",symbolspec("line","black","dark","low","co
ntinuous","", 0,"fine",0))

ksymbolspec("Seas","Seas",symbolspec("area","cyan","light","low","solid","",0,
0))

ksymbolspec("Seas","Seas",symbolspec("area","blue","light","low","solid","",0,
M,,,0))

ksymbolspec("Seas","Seas",symbolspec("area","grey","light","low","solid","",0,
,,M,0))

ksymbolspec("Administrative Boundaries","International
Boundaries",symbolspec("line","grey","dark","low","chain", "chain",0,"thick",
0))

ksymbolspec("Administrative Boundaries","International
Boundaries",symbolspec("line","grey","light","low","chain","chain",0,"thick"
, 0))

ksymbolspec("Administrative Boundaries","International
Boundaries",symbolspec("line","red","mid","mid","chain", "chain",0,"thick",0)
)

ksymbolspec("Administrative Boundaries","State
Boundaries",symbolspec("line","black","dark","low","chain","chain",0,"fine",
0))

ksymbolspec("Administrative Boundaries","State
Boundaries",symbolspec("line","grey","dark","low", "chain","chain",0,"fine",0
))

ksymbolspec("Administrative Boundaries","State
Boundaries",symbolspec("line","grey","light","low","chain","chain",0,"fine",
0))

ksymbolspec("Administrative Boundaries","Tertiary
Boundaries",symbolspec("line","grey","dark","low","dotted","dotted",0,"fine"
, 0))

ksymbolspec("Administrative Boundaries","Tertiary
Boundaries",symbolspec("line", "grey", "light","low", "dotted","dotted",0,"fine
", 0))

ksymbolspec("Rivers","Maj or
Rivers",symbolspec("line","blue","dark","mid","continuous","",0,"fine",0))

ksymbolspec("Rivers","Major
Rivers",symbolspec("line","black","dark","low","continuous","",0,"fine",0))

ksymbolspec("Rivers","Large
Rivers",symbolspec("line","blue","dark","mid","continuous","",0,"fine",0))

ksymbolspec("Rivers","Large
Rivers",symbolspec("line","black","dark","low","continuous","",0,"fine",0))

ksymbolspec("Rivers","Other
Rivers",symbolspec("line","blue","dark","mid","continuous","",0,"fine",0))

ksymbolspec("Rivers","Other
Rivers",symbolspec("line","black","dark","low","continuous","",0,"fine",0))

ksymbolspec("Railways","Railways",symbolspec("line", "grey", "dark","low","conti
nuous","",0,"medium",0))

ksymbolspec("Railways","Railways",symbolspec("line","black","dark","low","cont
inuous","",0,"medium", 0))

ksymbolspec("Relief","contours",symbolspec("line","brown","mid","low","continu
ous","",0,"fine",0))

kassociate_with("Seas","Lake_fill","symbol",8)
kassociate_with("Coastline","Rivers","hue",8)
kassociate_with("Coastline","Seas","hue",8)
kassociate_with("Coastline","Lakes","symbol",7)
kassociate_with("Lakes","Rivers","hue",10)
kassociate_with("Lakes","Rivers","symbol",8)
kassociate with("Lake fill","Lakes","hue",9)

kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(

Boundaries
kconvention(

Boundaries
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(
kconvention(

Seas",
Seas",
Seas",
Seas",
Seas",
Coastline

II II 11r
ii it it/it 11 11r
II VI II f
it vv it

hue","blue", 9)
hue","cyan", 8)
hue","white", 7)
hue","grey",6)
lightness","light",

hue","blue",9)
:)

11 fill 111

)

"", "1
II II 111

Lake_fill","","hue","blue",9)
Lake_fill","","hue","cyan",8)
Lake_fill","","hue","white",7)
Lake_fill","","hue", "grey",6)
Lake_fill","","lightness","light",
Lake_fill","","lightness","mid",6)
Rivers","","hue","blue",9)
Rivers","","lightness","dark",7)
Rivers","","form","continuous", 10)
Lakes","","hue","blue",9)
Lakes"," ","lightness","dark",7)
Lakes","","form","continuous",10)
Administrative Boundaries","","form","chain",8)
Administrative Boundaries", "", "form","dash",6)
Administrative Boundaries", "", "hue", "red", 8)
Administrative Boundaries","","hue","black",7)
Administrative Boundaries","","hue","grey",6)
Administrative Boundaries","International
’,"dimension", "thick", 8)
Administrative Boundaries","State
',"dimension", "fine", 9)
Urban areas","","hue","red",8)

hue","grey",7)
hue","yellow", 6)

"Capitals","form","square", 9)
"Major Towns","form","dot", 9)
"Major Towns","form","box",6)
"Minor Towns","form","circle",9)
"Minor Towns","form", "dot", 7)
"Capitals","dimension","medium", 9)
"Major Towns","dimension","small",
"Minor Towns","dimension","v_small
"","hue","magenta", 9)
"","hue","red", 8)
"","hue","black", 7)
"","hue","yellow", 6)

Roads","","form","continuous", 10)
Roads","","hue","red", 8)
Roads","","hue","yellow", 7)
Roads","","hue", "grey", 6)
Railways","","hue","black", 10)
Railways","","hue", "grey", 8)
Railways","","form","continuous",10)
Relief", "Contours","hue", "brown",8)
Population","","hue","magenta",9)
Population","","hue","red",8)
Population", "Total", "form1
Population","Density", "form'
graded series - unipolar",
graded series - unipolar",
graded series - unipolar",
graded series - unipolar",
graded series - unipolar",
graded series - unipolar",

Urban areas"
Urban areas"
Settlements"
Settlements"
settlements"
Settlements"
Settlements"
Settlements"
Settlements"
Settlements"
Settlements"
Settlements"
Settlements"
Settlements"

"circle", 8)
tint",10)
hue","green",8)

","hue","magenta", 7
","hue","purple", 7)

hue","red",6)
hue","blue",5)
hue","black", 4)

VI VI

II II

II IIf
IV VI

r
VI II

B - 11

ksymbolset("equiv_area_colours", "mid
tones","",[symbolspec("area","green","mid","low","solid","",0,"",0),symbolsp
ec ("area","cyan","mid","low","solid", "", 0, "", 0) , symbolspec("area","brown","m
id","low","solid","",0,"",0),symbolspec("area","orange","light","low","solid
","",0,"",0),symbolspec("area","magenta","mid","low","solid","",0,"",0),symb
olspec("area","red","light","low","solid","", 0, "",0) , symbolspec("area","blue
","mid","mid","solid","",0,"",0),symbolspec("area","grey","light","low","sol
id","",0,"",0)])

ksymbolset("equiv_area_colours","light
tones","",[symbolspec("area","green","light","mid","solid","",0,"",0),symbol
spec("area","yellow","pale","mid","solid","",0,"",0) , symbolspec("area","oran
ge","light","mid","solid","",0,"",0),symbolspec("area","red","light","mid","
solid","",0,"",0),symbolspec("area","magenta","pale","mid","solid","",0,"",0
),symbolspec("area","cyan","pale","mid", "solid", "", 0, "", 0) , symbolspec("area"
,"blue","light","mid","solid",”", 0,"",0),symbolspec("area","grey","light","1
ow","solid","",0,"",0)])

ksymbolset("equiv_area_colours","light, bright
colours","",[symbolspec("area","green","light","high","solid","",0,"",0),sym
bolspec("area","cyan","light","high","solid","",0,"", 0),symbolspec("area","y
ellow","light", "high", "solid", "", 0, "", 0) , symbolspec("area","orange","light",
"mid","solid","",0,"",0),symbolspec("area","red","mid","high","solid","",0,"
", 0),symbolspec("area","magenta","mid","high", "solid", "", 0,"", 0),symbolspec(
"area","blue","mid","high","solid","",0,"",0)])

ksymbolset(" m i n o r _ r e l i e f _ l a y e r s " l a n d tone colours for
relief", [symbolspec("area","green", "mid", "mid", "solid", "", 0, "",0),symbolspec
("area","green","light","mid","solid","",0,"",0) , symbolspec("area","orange",
"light","mid","solid","",0,"",0),symbolspec("area","brown","mid","low","soli
d","",0,"",0),symbolspec("area", "brown","mid", "mid", "solid","", 0,"",0)])

ksymbolset(" m a i n _ r e l i e f _ l a y e r s " l a n d tone colours for simple
relief", [symbolspec("area","green","mid","low","solid", "",0,"",0),symbolspec
("area","brown","mid","low","solid","",0,"",0),symbolspec("area","brown","mi
d","mid", "solid", "", 0, "", 0)])

ksymbollist("point_colours", ["red","magenta","green","blue", "brown","black"])
ksymbollist("line_colours",["black","red","green","magenta"])
ksymbollist("point_forms",["geometric^points","complex_points","pictorial_poin

ts","subdivided"])
ksymbollist("line_forms", ["continuous","broken_line", "cased_line","complex_lin

e"])
ksymbollist("area_forms",["solid","tint","pattern"])
ksymbollist("geometric_points",["square","dot","box","circle","cross","plus"])
ksymbollist("Settlements",["square","box","dot","circle"])
ksymbollist("ranked_points",["square","box","dot","circle"])
ksymbollist("broken_lines",["dotted","chain","dashed"])
ksymbollist("graduated2",["grad2","grad4"])
ksymbollist("graduated2",["gradl","grad3"])
ksymbollist("graduated2", ["grad3","grad5"])
ksymbollist("graduated3",["gradl","grad3","grad5"])
ksymbollist("graduated3",["grad2","grad4","grad6"])
ksymbollist("graduated3", ["grad3","grad5","grad7"])
ksymbollist("graduated4",["gradl","grad3","grad5","grad7"])
ksymbollist("graduated4", ["gradl","grad2","grad3","grad4"])
ksymbollist("graduated4",["grad2","grad4","grad6","grad8"])
ksymbollist("graduated5", ["gradl","grad2","grad3","grad4", "grad5"])
ksymbollist("graduated5",["gradO","gradl","grad2","grad3","grad4"])
ksymbollist("graduated5",["gradl","grad3","grad5","grad7","grad9"])
ksymbollist("graduated6", ["gradl","grad2","grad3","grad4", "grad5","grad6"])
ksymbollist("graduated6", ["gradO","gradl", "grad2", "grad3", "grad4", "grad5"])
ksymbollist("graduated7",["gradl","grad2","grad3","grad4","grad5","grad6","gra

d7 "])
ksymbollist("graduated8",["gradl","grad2","grad3","grad4","grad5","grad6","gra

d7","grad8"])

B - 12

ksymbollist("graduated9", ["gradl","grad2","grad3", "grad4",
d7","grad8","grad9"])

ksymbollist("graduatedlO",["gradO","gradl","grad2","grad3'
ad6","grad7","grad8","grad9"])

'grad5","grad6","gra
"grad4","grad5", "gr

"t3","t5"])
"t3","t5","t7"])
"t3", "t5", "t7","solid"])
"t2","t3","t5","t7","solid"])
"t2","t3","t4","t5","t7","solid"])
"t2","t3","t4","t5","t6","t8","solid"])
"tl","t2","t3","t4","t5","t6","t7","t8","solid"])
"classl","class2"])
"classl","class2","class3"])
"classl","class2","class3","class4"])
"classl","class2","class3","class4","class5"])
"classl","class2","class3","class4","class5","clas
"classl","class2","class3","class4","class5","clas

"classl","class2","class3","class4","class5", "clas

'group2","group3","group4'

ksymbollist("choro_tints2",
ksymbollist("choro_tints3",
ksymbollist("choro_tints4",
ksymbollist("choro_tints5",
ksymbollist("choro_tints6",
ksymbollist("choro_tints7",
ksymbollist("choro_tints8",
kstringlist("class_names2",
kstringlist("class_names3",
kstringlist("class_names4",
kstringlist("class_names5",
kstringlist("class_names6",

s6"])
kstringlist("class_names7",

s6","class7"])
kstringlist("class_names8",

s6","class7","class8"])
kstringlist("class_names9",["classl","class2","class3","class4","class5","clas

s6","class7","class8","class9"])
kstringlist("class_nameslO",["classl","class2","class3","class4","class5","cla

ss6","class7","class8","class9","classlO"])
kstringlist("group_names2",["groupl","group2"])
kstringlist("group_names3",["groupl","group2","group3"])
kstringlist("group_names4",["groupl","group2","group3","group4"])
kstringlist("group_names5",["groupl","group2","group3","group4","group5"])
kstringlist("group_names6",["groupl","group2","group3","group4","group5","grou

p6"])
kstringlist("group_names7",["groupl

p6","group7"])
kstringlist("group_names8",["groupl","group2","group3","group4

p6","group7","group8"])
kstringlist("group_names9",["groupl","group2","group3","group4","group5","grou

p6","group7","group8","group9"])
kstringlist("group_nameslO", ["groupl","group2","group3","group4","group5","gro

up 6"
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel
klevel

group5","grou
group5","grou

'group7","group8","group9","grouplO"])
","unclassed areas - one level",100)
Countries","unclassed areas - one level",101)
","unclassed areas - hierarchy",100)
Administrative areas","unclassed areas - hierarchy",102)
","categorical - one level",110)
Agriculture","categorical - one level",111)
Geology","categorical - one level",111)
Soils","categorical - one level",111)
Vegetation","categorical - one level",111)
","graded series - unipolar",120)
","graded series - bipolar", 120)
","graded series - bipolar",120)
Population density","graded series - unipolar",121)
Population density","graded series - bipolar",121)
Population change","graded series - bipolar",121)
Rural population","graded series - unipolar",121)
Rural population","graded series - bipolar",121)
","layers - unipolar",130)
","layers - bipolar",130)
Precipitation","layers - unipolar", 131)
Precipitation","layers - bipolar", 131)
Temperature","layers - bipolar",131)

B - 13

klevel("Temperature","layers - unipolar",131)
klevel("Relief","hypsometric layers ", 141)
klevel("","isolated areas",150)
klevel("Relief","isolated areas",151)
klevel("Urban Areas","isolated areas",152)
klevel("Seas","isolated areas", 158)
klevel("Rivers","network - branching", 190)
klevel("Lake_fill","isolated areas",191)
klevel("","boundaries - one level",200)
klevel("Coastline","boundaries - one level",201)
klevel("Lakes","boundaries - one level",202)
klevel("Relief","isolines",204)
klevel("Administrative Boundaries ","boundaries - hierarchy",210)
klevel("Administrative Boundaries","boundaries - hierarchy",210)
klevel("","network - link & node",220)
klevel("Railways","network - link & node",221)
klevel("Road casings","network - link & node",222)
klevel("Roads","network - link & node",223)
klevel ("", "isolines.", 231)
klevel("Precipitation","isolines",231)
klevel("Temperature","isolines",231)
klevel("","proportional - classed",240)
klevel("","proportional - graduated",240)
klevel("Total population","proportional - classed",241)
klevel("Total population","proportional - graduated",241)
klevel("Urban population","proportional - classed",242)
klevel("Urban population","proportional - graduated",242)
klevel("","ranked points",251)
klevel("Settlements","ranked points",251)
klevel("","categorised points",260)
klevel("Industrial locations","categorised points",261)

APPENDIX C

Other listings

1. Lookup.pro - look-up table for converting from symbol specifications to BGI
values for plotting

DOMAINS
integerlist = integer*
/*

CONSTANTS % declared in BGI.pre & Graph.pre

% Colors for setpalette and setallpalette
black = 0 /* dark colors */
blue = 1
green = 2
cyan = 3
red = 4
magenta = 5
brown = 6
lightgray 7
darkgray = 8 /* Light colors */
lightblue = 9
lightgreen = 10
lightcyan = 11
lightred = 12
lightmagenta = 13
yellow = 14
white = 15

% Line styles for get/setlinestyle
solidjine = 0
dottedjine = 1
centerjine = 2
dashedjine = 3
userbitjine = 4 /* User defined line style */

% Line widths for get/setlinestyle
norm_width = 1
thick_width = 3

% Fill styles for get/setfillstyle
empty_fill = 0 /* Fills area in background color */
solid_fill = 1 /* Fills area in solid fill color */
line_fill = 2 /* — fill */
ltslash_fill = 3 /* III fill */
slash_fill = 4 /* III fill with thick lines */
bkslash_fill = 5 /* \\\ fill with thick lines */
ltbkslash_fill = 6 /* \\\ fill */
hatch_fill = 7 /* Light hatch fill */
xhatch_fill = 8 /* Heavy cross hatch fill */
interleave_fill = 9 /* Interleaving line fill */
wid e_d ot_f i 11 = 10 /* Widely spaced dot fill */
close_dot_fill = 11 /* Closely spaced dot fill */
user fill = 12 /* User defined fill */

% point symbols for toolbox draw_point - size specified in pixels
plot_pix = 0 % Single pixel
plot_circle = 1 % Empty circle
plot_dot = 2 % Filled circle

C - 3

plot_box = 3 % Empty rectangle
plot_fill = 4 % Filled rectangle
plot_plus = 5 % Plus (+) symbol
plot_cross = 6 % Cross (x) symbol

* /

r SYMBOLISATION LOOK UP TABLES 7

r
HUE

magenta
red
yellow
green
cyan
blue
black
grey
brown
orange
purple

LIGHTNESS
pale
light
mid
dark

SATURATION
low
mid
high

FORM - AREAS
solid
tint
pattern

- LINES
continuous
dotted
dashed
chain
cased
complex

- POINTS FORM_CODE
geometric - circle

dot
square
box
cross
plus
% star

combined
pictorial
subdivided

ORIENTATION

C - 4

- angle of rotation of point symbols or area patterns
DIMENSION

- LINES
fine
medium
thick

- POINTS
pixel
v_small
small
medium
large,
vjarge

DATABASE - LOOKUP

kcolour_table(

SYMBOL,
SYMBOL,
SYMBOL,
SYMBOL,
INTEGER,
INTEGER,
SYMBOL).

% conversion from descriptive to BGI colours
% for area fill

% symbolic name for colour
% hue
% lightness
% saturation ?? brightness?
% colour number
% fill style
% fill pattern - name

kpattem (% look up table for pattern definitions
SYMBOL, % pattern name
INTEGERLIST) % 8 element list describing pattern

kline_colour(% conversion from descriptive to
% BGI line colours

SYMBOL, % symbolic name for colour
SYMBOL, % hue
SYMBOL, % lightness
SYMBOL, % saturation ?? brightness?
INTEGER). % colour number

kline_form(% conversion from descriptive to BGI val
SYMBOL, % form code
SYMBOL, % form
INTEGER, % form value
INTEGER) % form style if value = 4 (user)

kline_width(% conversion from descriptive to BGI value
SYMBOL, % width code
INTEGER) % value

kpoint_form(% conversion from descriptive to BGI
SYMBOL, % form code
SYMBOL, % form

C - 5

INTEGER) % BGI form value

kpoint_size(% conversion from descriptive to BGI value
SYMBOL, % size code
INTEGER) % BGI value (rad in pixels)

klookup(% general purpose lookup values
SYMBOL, % feature / name
SYMBOL, % input 1
SYMBOL, % input 2
SYMBOL, % output 1
SYMBOL) % output 2

CLAUSES

% Assumptions made for this colour set:

% 0 background replaced by EGA 63-white
% 4 red replaced by EGA 36 - true red
% 12 lightred replaced by EGA 38 - orange
% 15 white replaced by EGA 0 - black

kcolour_table(black,
kcolour_table(blue,
kcolour_table(blue,

% kcolour_table(blue,
kcolour_table(blue,
kcolour_table(blue,
kcolour_table(blue,
kcolour_table(blue,
kcolour_table(blue,
kcolour_table(blue,
kcolour_table(blue,
kcolour_table(blue,

% kcolour_table(blue,
% kcolour_table(green,
% kcolour_table(green,

kcolour_table(green,
kcolour_table(green,

% kcolour_table(green,
kcolour_table(green,
kcolour_table(green,
kcolour_table(green,
kcolour_table(green,
kcolour_table(green,

% kcolour_table(green,
% kcolour_table(cyan,
% kcolour_table(cyan,

kcolour_table(cyan,
kcolour_table(cyan,

% kcolour_table(cyan,
kcolour_table(cyan,
kcolour_table(cyan,

black,dark,low,
blue, dark, low,
blue, dark, mid,
blue, dark, high
blue, mid, low,
blue, mid, mid,
blue, mid, high,
blue, light, low,
blue, light, mid,
blue, light, high,
blue, pale, low,
blue, pale, mid,
blue, pale, high,
green, dark, low,
green, dark, mid
green, mid, low,
green, mid, mid,
green, mid, high,
green, light, low,
green, light, mid,
green, light, high,
green, pale, low,
green, pale, mid,
green, pale, high,
cyan, dark, low,
cyan, dark, mid
cyan, mid, low,
cyan, mid, mid,
cyan, mid, high,
cyan, light, low,
cyan, light, mid,

15.1,""). % BGI white
1.12,"gray75").
1.1,""). %blue

1.12,"gray50").
9.12,"gray75").
9.1,""). %lightblue
1.12,"gray25").
9.12,"gray75").
9.1,"").
9il2,"gray25").
9.12,"gray50").
11,9,"").

2.12,"gray75").
2.1,""). %green

2.12,"gray50").
10.12,"gray75").
10.1,""). % lightgreen
10.12,"gray25").
10.9,"gray50").
10.9,"").

3.12,"gray75").
3,1,"")-

3.12,"gray25").
3,9,"gray50").

C - 6

cyan,
cyan,
cyan,
cyan,
red,
red,
red,
red,
red,
red,
red,
red,
red,
red,

light, high,
pale, high,

kcolour_table(cyan,
% kcolour_table(cyan,

kcolour_table(cyan,
kcolour_table(cyan,

% kcolour_table(red,
% kcolour_table(red,
% kcolour_table(red,

kcolour_table(red,
kcolour_table(red,
kcolour_table(red,
kcolour_table(red,
kcolour_table(red,
kcolour_table(red,

% kcolour_table(red,
kcolour_table(magenta,
kcolour_table(magenta,

% kcolour_table(magenta, magenta,dark,
kcolour_table(magenta, magenta,mid,
kcolour_table(magenta,
kcolour_table(magenta,
kcolour_table(magenta,
kcolour_table(magenta,
kcolour_table(magenta,
kcolour_table(magenta,
kcolour_table(magenta,

pale,
pale,
dark,
dark,
mid,
mid,
mid,
light, low,
light, mid,
light, high,
pale, mid,
pale, high,

low,

mid,
high,
low,
mid,
low,
mid,
high,

magenta,dark,
magenta,dark, mid,

high,
low,
mid,
high,

magenta,mid,
magenta,mid,
magenta,light, low,
magenta,light, mid,
magenta,light, high,
magenta,pale, low,
magenta,pale, mid,

%
%
%
%
%
%
%

kcolour_table(magenta, magenta,pale, high,
kcolour_table(purple,
kcolour_table(purple,
kcolour_table(purple,
kcolour_table(purple,
kcolour_table(brown,
kcolour_table(brown,

kcolour_table(brown,
kcolour_table(brown,

% kcolour_table(brown,
kcolour_table(brown,
kcolour_table(brown,

% kcolour_table(brown,
kcolour_table(brown,

% kcolour_table(brown,
kcolour_table(lightgray,
kcolour_table(darkgray,
kcolour_table(lightblue,
kcolour_table(lightgreen,
kcolour_table(lightcyan,

% kcolour_table(lightred,

purple,dark, low,
purple,dark, mid,
purple,mid, low,
purple,mid, mid,
brown, dark, low,
brown, dark, mid,
brown, mid, low,
brown, mid, mid,
brown, mid, high,
brown, light, low,
brown, light, mid,
brown, light, high,
brown, pale, mid,
brown, pale, high,
grey, mid, low,
grey, dark, low,
blue, light, mid,
green, light, high,
cyan, light, high,
red, mid, high,

% kcolour_table(yellow,
% kcolour_table(yellow,
% kcolour_table(yellow,
% kcolour_table(yellow,
% kcolour_table(yellow,
% kcolour_table(yellow,

yellow, dark,
yellow, dark,
yellow, mid,
yellow, mid,
yellow, mid,
yellow, light,

low,
mid,
low,
mid,
high,

low,

11.1,""). % lightcyan
11,12,"").
11.12,"gray50").
11.12,"gray75").
4.1,""). % red

4.12,"gray75").
4.1,""). % red 36
4.12,"gray50").
4.12,"gray50").
4.12,"gray25”).
4.11,"").
4.11,"").
5.1,"gray75").
5.1,""). % magenta
5.1,"").
5il2,"gray50").
5.12,"gray75").
13.1,""). % lightmagenta
5.12,"gray25").
13.12,"gray75").
13.1,"").
13.12,"gray25").
13.12,"gray50").
13.9,"").
5.1,"").
5.1,""). % magenta
5.9,"").
5.9,"").

kcolour_table(lightmagenta, magenta,light,high,

6,12,"gray75").
6,1,""). % brown

6,12,"gray25").
6,12,"gray50").

6,11,"").

7,1,""). % lightgray
8,1,""). % darkgrey
9,1,""). % lightblue
10,1,""). % lightgreen
11,1,""). % lightcyan
12,1,""). % lightred
13,1,""). % lightmagenta

14,9,"").

C - 7

kcolour_table(yellow, yellow, light, mid,
kcolour_table(yellow, yellow, light, high,
kcolour_table(yellow, yellow, pale, low,
kcolour_table(yellow, yellow, pale, mid,
kcolour_table(yellow, yellow, pale, high,
kcolour_table(white, white, pale, high,
kcolour_table(white, white, light, high,
kcolour_table(grey, grey, dark, low,

% kcolour_table(grey, grey, dark, mid
kcolour_table(grey, grey, mid, low,

% kcolour_table(grey, grey, mid, mid,
% kcolour_table(grey, grey, mid, high,

kcolour_table(grey, grey, light, low,
% kcolour_table(grey, grey, light, mid,
% kcolour_table(grey, grey, light, high,

kcolour_table(grey, grey, pale, low,
% kcolour_table(grey, grey, pale, high,
% kcolour_table(,dark, low,
% kcolour_table(,dark, mid,
% kcolour_table(orange, orange, mid, low,

kcolour_table(orange, orange, mid, mid,
% kcolour_table(orange, orange, mid, high,

kcolour_table(orange, orange, light, low,
kcolour_table(orange, orange, light, mid,

% kcolour_table(orange, orange, light, high,
kcolour_table(orange, orange, pale, low,
kcolour_table(orange, orange, pale, mid,

% kcolour_table(orange, orange, pale, high,

14.12,"gray75").
14.1,"").% yellow
14.12,"gray25").
14.12,"gray50").
14.12,"gray75").
0,1,""). % white
0,1,"").
8.1,""). % darkgrey

8,12,"gray50").

7,1,""). %lightgray

7,12,"gray50").

12,1,"").
12,1,""). % orange 12

12,9,"").
12J2,"gray75").

12.12,"gray25").
12.12,"gray50").

kpattem ("",□).
kpattem(t1, [$00, $80, $00, $08, $00, $80, $00, $08]).
kpattem (t2, [$00, $88, $00, $22, $00, $88, $00, $22]).
kpattem (t3, [$00, $AA, $00, $55, $00, $AA, $00, $55]).
kpattem (t4, [$AA, $11, $AA, $44, $AA, $11, $AA, $44]).
kpattem(t5, [$AA, $55, $AA, $55, $AA, $55, $AA, $55]).
kpattem (t6, [$AA, $FF, $55, $FF, $AA, $FF, $55, $FF]).
kpattem(t7, [$FF, $BB, $FF, $EE, $FF, $BB, $FF, $EE]).
kpattem (t8, [$FF, $7F, $FF, $F7, $FF, $7F, $FF, $F7]).
kpattem(solid, [$FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF]).

kpattem(gray06, [$00, $80, $00, $08, $00, $80, $00, $08]).
kpattern(gray12, [$00, $88, $00, $22, $00, $88, $00, $22]).
kpattem(gray25, [$88, $22, $88, $22, $88, $22, $88, $22]).
kpattem(gray37, [$AA, $11, $AA, $44, $AA, $11, $AA, $44]).
kpattern(gray50, [$AA, $55, $AA, $55, $AA, $55, $AA, $55]).
kpattern(gray75, [$AA, $FF, $55, $FF, $AA, $FF, $55, $FF]).
kpattem (gray88, [$FF, $BB, $FF, $EE, $FF, $BB, $FF, $EE]).
kpattem(gray94, [$FF, $7F, $FF, $F7, $FF, $7F, $FF, $F7]).
kpattem(graylOO, [$FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF]).
kpattern(finehatch75, [$AA, $FF, $AA, $FF, $AA, $FF, $AA, $FF]).
kpattem (pattem37, [$88, $11, $88, $33, $88, $11, $88, $33]).
kpattem(pattem75, [$EE, $BB, $DD, $77, $EE, $BB, $DD, $77]).

C - 8

kpattern(pattem25, [$00, $AA, $00, $55, $00, $AA, $00, $55]).
kpattern(diag25, [$88, $44, $22, $11 ,$88, $44, $22, $11]).

%

kline_colour(black, black, dark, low, 15). % black
kline_colour(black, black, I I M

J 15).
kline_colour(dark_blue, blue, dark, mid, 1)- % blue
kline_colour(blue, blue, mid, high, 9). % lightblue
kline_colour(blue, blue, l l l l

J 1)-
kline_colour(light_blue, blue, light, high, 11). % lightcyan
kline_colour(green, green, mid, low, 2). % green
kline_colour(green, green, l l l l

J 2).
kline_colour(light_green, green, light, high, 10). % lightgreen
kline_colour(dark_cyan, cyan, mid, low, 3). % cyan
kline_colour(cyan, cyan, light, high, 11). % lightcyan
kline_colour(cyan, cyan, m i

5 11).
kline_colour(red, red, mid, mid, 4). % red 36
kline_colour(red, red, m i

j 4).
kline_colour(purple, purple, dark, mid, 5). % magenta
kline_colour(purple, magenta,dark, mid, 5).
kline_colour(purple, purple,"", m i

i 5).
kline_colour(magenta, magenta,mid, high, 13). % lightmagenta
kline_colour(magenta, magenta,"", n i l

9 13).
kline_colour(brown, brown, mid, low, 6). % brown
kline_colour(brown, brown,"", n i t

i 6).
kline_colour(orange, orange, mid, mid, 12). % orange
kline_colour(orange, orange,"", n n

9 12).
kline_colour(yellow, yellow, light, high, 14). % yellow
kline_colour(yellow, yellow,"", n n

9 14).
kline_colour(light_grey, grey, light, low, 7). % lightgray
kline_colour(grey, grey, "", n n

9 7).
kline_colour(dark_grey, grey, dark, low, 8). % darkgray
kline_colour(dark_grey, grey, mid, low, 8).
kline_colour(white, white, pale, low, 0). % white
kline_colour(white, white, light, low, 0).
kline_colour(white, white, "", 1111

9 0).
kline_colour(

kline_form(continuous, 0 , 0).
kline_form(dotted, I I I ! A

9 ■ J 0).
kline_form(dashed, 3, 0).
kline_form(chain, 2 , 0).
kline_form(cased, 0 , 0).
kline_form(complex, 4, 0).

ine_width(fine, 1).
ine_width(thin, 1).
ine_width(medium, 3).
ine_width(thick, 3).
ine_width(wide, 3).

kpoint_form(geometric, pixel,
kpoint_form(geometric, circle,

0).
1). % unfilled

C - 9

kpoint_form(geometric, dot, 2).
kpoint_form(geometric, box, 3). % unfilled
kpoint_form(geometric, square, 4). % filled
kpoint_form(geometric, plus, 5).
kpoint_form(geometric, cross, 6).

kpoint_size(pixel, 0).
kpoint_size(v_small, 2).
kpoint_size(small, 3).
kpoint_size(medium, 4).
kpoint_size(large, 5).
kpoint_size(v ja rg e , 6).
kpoint_size(gradO, 1).
kpoint_size(grad 1, 3).
kpoint_size(grad2, 6).
kpoint_size(grad3, 9).
kpoint_size(grad4, 12).
kpoint_size(grad5, 15).
kpoint_size(grad6, 18).
kpoint_size(grad7, 21).
kpoint_size(grad8, 24).
kpoint_size(grad9, 27).

klookup(cased, main_highways,red, yellow, red).
klookup(cased, highways, red, red, red).
klookup(cased, other_roads, red, red, red). % thin
klookup(cased, main_highways,yellow, red, yellow).
klookup(cased, highways, yellow, yellow, yellow).
klookup(cased, other_roads, yellow, yellow, yellow). % thin
klookup(cased, main_highways,grey, red, grey).
klookup(cased, highways, grey, yellow, grey).
klookup(cased, other_roads, grey, grey, grey). % thin

GOAL
saveflookup.kba", lookup).

APPENDIX D

Sample map frames and output

All the maps illustrated here are the direct output from the system using the values

in the accompanying frame

1. Nigeria topographic

The topographic map produced with default parameters.

2. Nigeria topographic

The only difference in input to the above is the selection of 'specialist user1

and 'anlysis' for map_purpose. As can be seen, more detail is shown.

3. S.E. Nigeria topographic

Using the same input as example 1, except for the location. The resulting

larger scale automatically includes more detail.

4. Nigeria population density

5. Nigeria total population

6. Nigeria rural population

D - 2

1. Nigeria topographic
The topographic map produced with default parameters.

fmap_date(dated(1995,6,15))
fmap_author("df")
fmap_title("Nigeria Topographic")
fmap_type("topographic")
f map_pu rposefoverview")
fmap_user("general")
foutput_media("screen")
flevel_of_detail(2)
fscale(7500000)
fformat(18,16.5)
flat_long(2.5,15,3.5,14)
flimits(277.98731656,388.9402453,1667.9238994,1541.2843966)
fselect_index(10)
fbase_info_list(["Coastline","Seas","Major Rivers","Lakes","Lake_fill","International
Boundaries","Capitals","Main Highways","Main Relief"])
fbase_info("Main Relief", 10)
fbase_info("Main Highways", 10)
fbase_info("Capitals",10)
fbase_info("lnternational Boundaries", 10)
fbase_info("Lakes", 10)
fbase_info("Major Rivers",10)
fbase_info("Coastline", 10)
ftheme_info_list(D)
frepresentation("Coastline","boundaries - one level")
frepresentation("Seas","isolated areas")
frepresentation("Rivers","network - branching")
frepresentation("Lakes","boundaries - one level")
frepresentation("Lake_fill","isolated areas")
frepresentation("Administrative Boundaries","boundaries - hierarchy")
frepresentation("Settlements","ranked points")
frepresentation("Roads","network - link & node")
frepresentation("Relief","hypsometric layers")
fsymbolism("Coastline","Coastline",symbolspec("line","blue","dark","low","continuou
s","",0,"fine",201))
fsymbolism("Seas","Seas",symbolspecfarea","cyan","light","low","solid","",0,"",158))
fsymbolism("Rivers","Major
Rivers",symbolspecfline","blue","dark","mid","continuous","",0,"fine",190))
fsymbolism("Administrative Boundaries","International
Boundaries",symbolspec("line","grey","dark","low","chain","chain",0 ,"thick",210))
fsymbolism("Lakes","Lakes",symbolspecfline","blue","dark","mid","continuous","",0,
"fine",202))
fsymbolism("Lake_fiir,,"Lake_fiH",symbolspec("area","cyan","light","low","solid","",0,"
",191))
fsymbolism("Settlements","Capitals",symbolspec("point","magenta","dark","mid","ge
ometric","square",0 ,"medium",251))
fsymbolism("Roads","Main
Highways",symbolspec("line","red","mid","mid","cased","main_highways",0,"thick",2
23))
fsymbolism("Relief","0-
500",symbolspec("area","green","mid","low","solid","",0,"",141))

D - 3

fsymbolism("Relief","500-
2000",symbolspecfarea","brown","mid","low","solid","",0,"",141))
fsymbolism("Re!ief","over
2000",symbolspecfarea","brown","mid","mid","solid","",0,"", 141))

D - 4

2. Nigeria topographic
The only difference in input to the previous example is the selection of 'specialist

user1 and 'anlysis' for map_purpose. As can be seen, more detail is shown.

fmap_date(dated(1995,6,15))
fmap_author("df")
fmap_title("Nigeria T opographic")
fmap_type("topographic")
fmap_purpose("analysis")
fmap_user("specialist")
foutput_media("screen")
flevel_of_detail(8)
fscale(7500000)
fformat(18,16.5)
f lat_long(2.5,15,3.5,14)
flimits(277.98731656,388.9402453,1667.9238994,1541.2843966)
fselect_index(7)
fbase_info_list(["Coastline","Seas","Large Rivers","Major
Rivers","Lakes","Lake_fill","State Boundaries","International Boundaries","Major
Towns","Capitals","Highways","Main Highways","Railways","Main Relief"])
fbase_info("Main Relief", 10)
fbase_info("Railways",8)
fbase_info("Highways",8)
fbase_info("Main Highways", 10)
fbase_info("Major Towns",8)
fbase _info("Capitals", 10)
fbase_info("State Boundaries",8)
fbase_info("International Boundaries", 10)
fbase_info("Lakes", 10)
fbase_info("Large Rivers",8)
fbase_info("Major Rivers", 10)
fbase_info("Coastline",10)
fthemeJnfoJist(Q)
frepresentation("Coastline","boundaries - one level")
frepresentation("Seas","isolated areas")
frepresentation("Rivers","network - branching")
frepresentation("Lakes","boundaries - one level")
frepresentation("Lake_fill","isolated areas")
frepresentation("Administrative Boundaries","boundaries - hierarchy")
f representation ("Settlements",^"ranked points")
frepresentation("Roads","network - link & node")
frepresentation("Railways","network - link & node")
frepresentation("Relief","hypsometric layers")
fsymbolism("Coastline","Coastline",symbolspecfline","blue","dark","low","continuou
s","",0,"fine",201))
fsymbolism("Seas","Seas",symbolspec("area","cyan","light","low","solid","",0,"", 158))
fsymbolism("Rivers","Major
Rivers",symbolspec("line","blue","dark","mid","continuous","",0,"fine",190))
fsymbolism("Rivers","Large
Rivers",symbolspec("line","blue","dark","mid","continuous","",0,"fine",190))

D - 5

fsymbolism("Administrative Boundaries","International
Boundaries",symbolspecfline","grey","dark","low","chain","chain",0,"thick",210))
fsymbolism("Administrative Boundaries","State
Boundaries",symbolspecfline","black","dark","low","chain","chain",0 ,"fine",210))
fsymbolismfRailways","Railways",symbolspecfline","grey","dark","low","continuous
","",0,"medium",221))
fsymbolismfLakes","Lakes",symbolspecfline","blue","dark","mid","continuous","",0,
"fine",202))
fsymbolism("Lake_fill","Lake_fill",symbolspecfarea","cyan","light","low","solid","",0,"
",191))
fsymbolismfSettlements","Capitals",symbolspecfpoint","magenta","dark","mid","ge
ometric","square",0,"medium",251))
fsymbolismf Settlements","Major
Towns",symbolspecfpoint","magenta","dark","mid","geometric","box",0,"small",251)
)
fsymbolism("Roads","Main
Highways",symbolspecfline","red","mid","mid","cased","main_highways",0,"thick",2
23))
fsymbolismfRoads","Highways",symbolspecfline","red","mid","mid","cased","highw
ays",0 ,"thick",223))
fsymbolism("Relief","0-
500",symbolspecfarea","green","mid","low","solid","",0,"",141))
fsymbolism("Relief","500-
2000",symbolspecfarea","brown","mid","low","solid","",0,"",141))
fsymbolismf Relief","over
2000",symbolspecfarea","brown","mid","mid","solid","",0,"", 141))

D - 6

3. S.E. Nigeria topographic
Using the same input as example 1, except for the location. The resulting larger

scale automatically includes more detail.

fmap_date(dated(1995,6,15))
fmap_author("df")
fmap_title("S.E. Nigeria Topographic")
fmap_type("topographic")
fmap_purpose("overview")
fmap_user("author")
foutput_media("screen")
flevel_of_detail(4)
fscale(3000000)
fformat(18,16.5)
flat_long(4.9,9.5,4.2,7.5)
flimits(544.85514046,466.60055381,1056.3518029,831.58237048)
fselect_index(5)
fbase_info_list(["Coastline","Seas","Other Rivers","Large Rivers","Major
Rivers","Lakes","Lake_fill","Tertiary Boundaries","State Boundaries","International
Boundaries","Minor T owns","Major T owns","Capitals","Urban
Areas","Highways","Main Highways","Railways","Minor Relief","Main Relief"])
fbase_ nfo("Minor Relief",6)
fbase_ nfo("Main Relief", 10)
fbase_ nfo("Railways",8)
fbase_ nfo("Highways",8)
fbase_ nfo("Main Highways", 10)
fbase_ nfo("Urban Areas",6)
fbase_ nfo("Minor Towns",6)
fbase_ nfofM ajor Towns",8)
fbase_ nfo(Capitals", 10)
fbase_ nfofTertiary Boundaries",6)
fbase_ nfo("State Boundaries",8)
fbase_ nfoflntemational Boundaries", 10)
fbase_ nfo("Lakes",10)
fbase_ nfo(Other Rivers",6)
fbase_ nfo("Large Rivers",8)
fbase_ nfofM ajor Rivers", 10)
fbase_ nfo("Coastline",10)
fthemeJnfoJist(Q)
frepresentation("Coastline","boundaries - one level")
frepresentation("Seas","isolated areas")
f representation ("Rivers",^"network - branching")
frepresentationfLakes","boundaries - one level")
frepresentation("Lake_fill","isolated areas")
frepresentation("Administrative Boundaries","boundaries - hierarchy")
frepresentation ("Settlements", "ranked points")
frepresentationfUrban Areas","isolated areas")
frepresentation("Roads","network - link & node")
frepresentation("Railways","network - link & node")
frepresentation ("Relief", "hypsometric layers")

D - 7

fsymbolismfCoastline","Coastline",symbolspecfline","blue","dark","low","continuou
s","",0,"fine",201))
fsymbolismfSeas","Seas",symbolspecfarea","cyan","light","low","solid","",0,"",158))
fsymbolismf Rivers","Major
Rivers",symbolspec("line","blue","dark","mid","continuous","",0,"fine",190))
fsymbolism("Rivers","Large
Rivers",symbolspec("line","blue","dark","mid","continuous","",0,"fine",190))
fsymbolism("Rivers","Other
Rivers",symbolspecfline","blue","dark","mid","continuous","",0,"fine",190))
fsymbolismfAdministrative Boundaries","International
Boundaries",symbolspecfline","grey","dark","low","chain","chain",0,"thick",210))
fsymbolismfAdministrative Boundaries","State
Boundaries",symbolspecfline","black","dark","low","chain","chain",0 ,"fine",210))
fsymbolismfAdministrative Boundaries","Tertiary
Boundaries",symbolspecfline","grey","dark","low","dotted","dotted",0,"fine",210))
fsymbolismf Railways","Railways",symbolspec("line","grey","dark","low","continuous
","",0,"medium",221))
fsymbolismf Lakes","Lakes",symbolspecfline","blue","dark","mid","continuous","",0,
"fine",202))
fsymbolism("Lake_fill","Lake_fill",symbolspecfarea","cyan","light","low","solid","",0,"
",191))
fsymbolismf Settlements","Capitals",symbolspecfpoint","magenta","dark","mid","ge
ometric","square",0 ,"medium",251))
fsymbolismfSettlements","Major
Towns",symbolspecfpoint","magenta","dark","mid","geometric","box",0 ,"small",251)
)
fsymbolismf Settlements","Minor
Towns",symbolspec("point","magenta","dark","mid","geometric","dot",0,"v_smaH",25
1))
fsymbolismfUrban Areas","Urban
Areas",symbolspecf type","hue","light","sat","code","form",0 ,"dim",152))
fsymbolism("Roads","Main
Highways",symbolspecfline","red","mid","mid","cased","main_highways",0,"thick",2
23))
fsymbolismfRoads","Highways",symbolspecfline","red","mid","mid","cased","highw
ays",0,"thick",223))
fsymbolism("Relief","0-
200",symbolspecfarea","green","mid","mid","solid","",0,"",141))
fsymbolism("Relief","200-
500",symbolspecfarea","green","light","mid","solid","",0,"",141))
fsymbolism("Relief","500-
1000",symbolspecfarea","orange","light","mid","solid","",0,"",141))
fsymbolismf Relief","1000-
2000",symbolspecfarea","brown","mid","low","solid","",0,"", 141))
fsymbolismfRelief'7'over
2000",symbolspecfarea","brown","mid","mid","solid","",0,"",141))

D - 8

p l o t t l o g r l n i m d

Figures D.1, D.2, D.3

Overview topographic map, analysis topographic map, larger scale topographic
map.

D - 9

4. Nigeria population density

fmap_date(dated(1995,6,15))
fmap_author("df")
fmap_title("Nigeria Population Density")
fmap_type("population")
fmap_purpose("overview")
fmap_user("author")
foutput_media("screen")
flevel_of_detail(4)
fscale(7500000)
fformat(18,16.5)
flat_long(2.5,15,3.5,14)
flimits(277.98731656,388.9402453,1667.9238994,1541.2843966)
fselect_index(9)
fbase_info_list(["Coastline","Seas","State Boundaries","International
Boundaries","Major Towns","Capitals","Main Highways"])
fbase_info("Main Highways",9)
fbase_info("Major Towns",9)
fbase_info("Capitals",10)
fbase_info("State Boundaries",9)
fbase_info("lnternational Boundaries", 10)
fbase_info("Coastline",10)
ftheme_info_list(["Population density"])
frepresentationfPopulation density","graded series - unipolar")
frepresentationfCoastline","boundaries - one level")
frepresentationfSeas","isolated areas")
frepresentationf Administrative Boundaries","boundaries - hierarchy")
frepresentation ("Settlements","ranked points")
frepresentation("Roads","network - link & node")
fclass_intervals("Population density",[22,60.55,105.6,164.4,228.45,370])
fsymbolismfCoastline","Coastline",symbolspecfline","blue","dark","low","continuou
s","",0,"fine",201))
fsymbolismfSeas","Seas",symbolspecfarea","cyan","light","low","solid","",0,"", 158))
fsymbolismfAdministrative Boundaries","International
Boundaries",symbolspecfline","grey","dark","low","chain","chain",0 ,"thick",210))
fsymbolismfAdministrative Boundaries","State
Boundaries",symbolspecfline","black","dark","low","chain","chain",0,"fine",210))
fsymbolismf Population
density","classl",symbolspecfclassl","green","dark","high","tint","t2",0,"",121))
fsymbolismfPopulation
density","class2",symbolspecfclass2","green","dark","high","tint","t3",0,"",121))
fsymbolismfPopulation
density","class3",symbolspecfclass3","green","dark","high","tint","t5",0,"", 121))
fsymbolismfPopulation
density","class4",symbolspecfclass4","green","dark","high","tint","t7",0,"",121))
fsymbolismfPopulation
density","class5",symbolspecfclass5","green","dark","high","tint","solid",0,"",121))
fsymbolismfSettlements","Capitals",symbolspecfpoint","magenta","dark","mid","ge
ometric","square",0 ,"medium",251))
fsymbolismfSettlements",^"Major
Towns",symbolspecfpoint","magenta","dark","mid","geometric","box",0 ,"small",251)
)

D - 10

fsymbolism("Roads","Main
Highways"Jsymbolspec("line","red","mid","mid","cased","main_highways",0,"thick",2
23))

D- 1 1

5. Nigeria total population

fmap_date(dated(1995,6,15))
fmap_author("")
fmap_title("Nigeria population")
fmap_type("population")
fmap_purpose("overview")
fmap_user("general")
foutput_media("screen")
flevel_of_detail(2)
fscale(7500000)
fformat(18,16.5)
flat_long(2.5,15,3.5,14)
flimits(277.98731656,388.9402453,1667.9238994,1541.2843966)
fselect_index(10)
fbase_info_list(["Coastline","Seas","International Boundaries","Capitals"])
fbase_info("Capitals",10)
fbase_info("lntemational Boundaries", 10)
fb a s e jn fo f Coastline", 10)
fthemejnfo_list(["Total population"])
frepresentationf Total population","proportional - classed")
frepresentationfCoastline","boundaries - one level")
frepresentationf Seas","isolated areas")
frepresentationfAdministrative Boundaries","boundaries - hierarchy")
f representation ("Settlements","ranked points")
fclass_intervals("T otal
population",[200000,1320000,2440000,3560000,4680000,5800000])
fsymbolismf Coastline","Coastline",symbolspecf line","blue","dark","low","continuou
s","",0,"fine",201))
fsymbolism("Seas","Seas",symbolspec("area","cyan","light","low","solid","",0,"", 158))
fsymbolismf Administrative Boundaries","International
Boundaries",symbolspec("line","grey","dark","low","chain","chain",0,"thick",210))
fsymbolismfTotal
population","class1",symbolspec("point","red","mid","high","geometric","dot",0 ,"grad
1",241))
fsymbolismfTotal
population","class2",symbolspec("point","red","mid","high","geometric","dot",0,"grad
2",241))
fsymbolismfTotal
population","class3",symbolspec("point","red","mid","high","geometric","dot",0 ,"grad
3",241))
fsymbolismfTotal
population","class4",symbolspecfpoint","red","mid","high","geometric","dot",0 ,"grad
4",241))
fsymbolismfTotal
population","class5",symbolspecf point","red","mid","high","geometric","dot",0,"grad
5",241))
fsymbolismfSettlements","Capitals",symbolspecfpoint","magenta","dark","mid","ge
ometric","square",0 ,"medium",251))

D -12

6. Nigeria rural population

fmap_date(dated(1995,6,15))
fmap_author("df")
fmap_title("Nigeria - rural population")
fmap_type("rural")
fmap_purpose("analysis")
fmap_user("author")
foutput_med iafscreen")
flevel_of_detail(8)
fscale(7500000)
fformat(18,16.5)
flat_long(2.5,15,3.5,14)
flimits(277.98731656,388.9402453,1667.9238994,1541.2843966)
fselect_index(7)
fbase_info_list(["Coastline","Seas","Lakes","Lake_fill","Tertiary Boundaries","State
Boundaries","International Boundaries","Minor Towns","Major
Towns","Capitals","Highways","Main Highways"])
fbase_info("Highways",7)
fbase_info(Main Highways",9)
fbase_info("Minor Towns",8)
fbase_info("Major Towns",9)
fbaseJnfofCapitals", 10)
fbase_info("Tertiary Boundaries",8)
fbase_info("State Boundaries",9)
fbasejnfoflntem ational Boundaries", 10)
fbase_info("Lakes",8)
fbase_info("Coastline",10)
ftheme_info_list(["Rural population"])
f representation ("Rural population","graded series - unipolar")
f representation ("Coastline","boundaries - one level")
frepresentationfSeas”,"isolated areas")
frepresentationf Lakes","boundaries - one level")
frepresentationf Lake_fill","isolated areas")
frepresentationfAdministrative Boundaries","boundaries - hierarchy")
f representation ("Settlements","ranked points")
frepresentationf Roads","network - link & node")
fc lassjntervalsf Rural population",[18,21,34,50.5,65,112,290])
fsymbolismf Coastline","Coastline",symbolspecfline","blue","dark","low","continuou
s","",0,"fine",201))
fsymbolismfSeas","Seas",symbolspecf area","cyan","light","low","solid","",0,"", 158))
fsymbolismf Administrative Boundaries","International
Boundaries",symbolspecf line","grey","dark","low","chain","chain",0 ,"thick",210))
fsymbolismfAdministrative Boundaries","State
Boundaries",symbolspecfline","black","dark","low","chain","chain",0 ,"fine",210))
fsymbolismfAdministrative Boundaries","Tertiary
Boundaries",symbolspecf line","grey","dark","low","dotted","dotted",0,"fine",210))
fsymbolismfRural
population","class1",symbolspec("class1","green","dark","high","tint","t2",0,"",121))
fsymbolismfRural
population","class2",symbolspecfclass2","green","dark","high","tint","t3",0,H", 121))
fsymbolismfRural
population","class3",symbolspec("class3","green","dark","high","tint","t4",0,"",121))

D - 13

fsymbolismfRural
population","class4",symbolspecfclass4","green","dark","high","tint","t5",0,"",121))
fsymbolismfRural
population","class5",symbolspecfclass5","green”,"dark","high","tint",Ht7M,0,,,n,121))
fsymbolismfRural
population","class6",symbolspecfclass6","green","dark","high","tint","solid",0,"", 121)
)
fsymbolismfLakes","Lakes",symbolspecf line","blue","dark","low","continuous","",0,"
fine",202))
fsymbolismfLake_fill","Lake_fiH",symbolspecf area","cyan","light","low","solid","",0,"
",191))
fsymbolismfSettlements","Capitals",symbolspecf point","magenta","dark","mid","ge
ometric","square",0 ,"medium",251))
fsymbolismfSettlements","Major
Towns",symbolspecfpoint","magenta","dark","mid","geometric","box",0 ,"small",251)
)
fsymbolismfSettlements","Minor
Towns",symbolspecfpoint","magenta","dark","mid","geometric","dot",0,"v_small",25
1))
fsymbolism("Roads","Main
Highways",symbolspecfline","red","mid","mid","cased","main_highways",0,"thick",2
23))
fsymbolismfRoads","Highways",symbolspecfline","red","mid","mid","cased","highw
ays",0 ,"thick",223))

Figures D.4, D.5, D.6

Population density map, Total population map, Rural population density map.

APPENDIX E
File Formats

1. Polygons

polygon
seq no name npts area xcent ycent [coords]
integer string integer real integer integer integerlist

long lat [long,lat,]
sq.units ddd.dd ddd.dd

1 "Bauchi" 68 14699 743 234 [664,324,
667,642,

664,3241
notes: coords MUST close back on start point
e.g.

polygon(l,"Bauchi",68,14669,743,634,[664,324,667,642,. . . ,664,324]).

2. Lines

chain
seq_no featcode rightpol

or name
left -pol npts stnode endnode [coords]

integer string string string integer integer integer integerlist
[long,lat,]

1 "statebnd" "Bauchi" "Bende!" 13 33 34 [664,324,
667,642,

483,247]
eg-
complete specification:

chain(l,"state_bnd","Bauchi",Bender,23,33,34,[664,324,667,642,. . . ,483,247]).
area chain:

chain(l,"","Bauchi",Bendel",23,0,0,[664,324,667,642,.. . ,483,247]).
network chain:

chain(l,"major_road","","",23,33,34,[664,324,667,642, • • • ,483,247]).
other lines:

chain(l,"fault_line","",",23,0,0,[664,324,667,642,. . . ,483,247]).

3. Points

node
seq no feat code xcoord ycoord name value
integer string integer integer string real

long lat
ddd.dd ddd.dd

1 "State" 532 1310 "Sokoto" 148000

e.g. - settlement - f_c = National, State,Major,Minor, value = population
node(1,"State",532,1310,"Sokoto", 148000).

4. Attributes (point attributes or polygon attributes)

feature class
seq no name xcoord ycoord value 1 value 2 • • • value n
integer string integer integer real

long lat
ddd.dd ddd.dd

1 "Sokoto" 532 1310 148000
notes: each feature class will have its own declaration depending on number & type of
attributes

attributes may be string, real, or integer.
for polygons to be shaded names must exactly match those in polygon file.

e.g.
v l = population, v_2 = males, v_3 = females, v_4 = unemployed, etc.
state(1 ,Sokoto,532,1310,148000,70000,78000,5000).

F -1

APPENDIX F

Metadata for database information
(see Chapter 7, page 170)

Feature class metadata
kmeta_data("Coastline",dated(0,0,1993),"Collins Atlas",

"linear","line","identical","tangible","Coastline",

kmeta_data("Administrative Boundaries",dated(0,0,1993),"Collins Atlas",

"linear","line","hierarchical_feature_coded","tangible",

"Administrative Boundaries","","","")

kmeta_data("Administrative areas",dated(0,0,1993),"Collins Atlas",

"specific_area","polygon","identical","tangible","Administrative areas","","","")

kmeta_data("Seas",dated(0,0,1993),"Collins Atlas",

"specific_area","polygon","identical","tangible","Seas",

kmeta_data("Settlements",dated(0,0,93),"Collins Atlas",

"discrete","point","hierarchical_feature_coded","tangible","Settlements",
tiiî

kmeta_data("Urban population",dated(0,0,1993),"Collins Atlas",

"discrete","point","ratio_abs","tangible",

"Settlements",""/’Settlements","population")

kmeta_data("Total population",dated(0,0,94),"World Factbook",

"discrete","polygon","ratio_abs","tangible",

"Administrative areas",""."State population","total")

kmeta_data("Population density",dated(0,0,94),"World Factbook",

"discrete","polygon","ratio_den","tangible",

"Administrative areas",""."State population","density")

kmeta_data("Rural population",dated(0,0,94),"World Factbook",

"discrete","polygon","ratio_abs","tangible",

"Administrative areas",""."State population","rural density")

kmeta_data(”Railways",dated(0,0,1993),"Collins Atlas",

"linear","line","hierarchical_feature_coded","tangible",

"Communication routes",

kmeta_data(”Roads",dated(0,0,1993),"Collins Atlas",

"linear","line","hierarchical_feature_coded","tangible",

"Communication routes","","","")

kmeta_data("Rivers",dated(0,0,1993),"Collins Atlas",

"linear","line","hierarchical_feature_coded","tangible","Rivers","","","")

F - 2

kmeta_data("Lakes",dated(0,0,1993),"Collins Atlas",
"linear","line","identical","tangible","Lakes",

kmeta_data("Lake_fill",dated(0,0,1993),"Collins Atlas",
"specific_area","polygon","identical","tangible","Lake_fill",

kmeta_data("Contours",dated(0,0,1993),"Collins Atlas",
"surface","line","identical","conceptual","Contours",

kmeta_data("Relief",dated(0,0,1993),"Collins Atlas",
"surface","area","ratio","conceptual",
"Relief","c:\\prolog33\\map\\nigeria\\nigrel.lut","","")

Coordinate file meta data
kcoonj_file(''Coastline”>”line",dated(0,0,1993),[2,3,15,15],5000000,

"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigcoast.arc","")

kcoord_file("Administrative Boundaries","line",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\adminbnd.arc","")

kcoord_file("Administrative areas","polygon",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigstate.por,"")

kcoord_file("Seas","polygon",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigsea.pol","")

kcoord_file("Settlements","point",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigtowns.nod","")

kcoord_file("Communication routes","line",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigroad.arc","")

kcoord_file("Rivers","line",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigriver.arc","")

kcoord_file("Lakes","line",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\niglakes.arc","")

kcoord_file("Lake_fillH,"polygon",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\niglakes.pol","")

kcoord_file("Contours","line",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigcont.arc","")

kcoord_file("Relief","polygon",dated(0,0,1993),[2,3,15,15],5000000,
"Collins Atlas","sphere","degrees",0.01,
"c:\\prolog33\\map\\nigeria\\nigrel.pol","")

Data file metadata
kdata_file("Settlements","coord",dated(0,0,1993),"Collins Atlas",

["seq_no","feat_code","xcoord","ycoord","name","population"],
"C:\\pro!og33\\map\\nigeria\\nigtowns.nod","")

kdata_file("State population","data",dated(0,0,1994),"World Factbook",
["seq_no","State name","rural density","total","density"],
"c:\\prolog33\\map\\nigeria\\nigstate.val","")

APPENDIX G

Related publications by author

Forrest, D. and Pearson, A.W. (1990) Information Sources in Map Design. In Parry
and Perkins (Eds.) Information Sources in Cartography. London: Bowker-
Saur,.

Forrest, D. (1990) "A model of map design for expert systems applications."
Proceedings, Fourth International Symposium on Spatial Data Handling, ,

pp.752-761.

Forrest, D. (1991) "Expert Systems for Cartographic Design and Production." SUC
Bulletin, Vol.24, No.2, pp. 21-27.

Forrest, D. (1991) "A Classification of Map and Symbol Types and Rules for Their
Display for Cartographic Expert Systems Applications." Proceedings, 15th
International Cartographic Conference. , pp. 450-454.

Forrest, D. (1992) The Development of a Frame Based Cartographic Design Expert
System. Occasional Papers, No.30. Department of Geography and
Topographic Science, University of Glasgow.

Review of: Buttenfield B.P., Mark, D.M. (1991) Map Generalization: Making Rules
for Knowledge Representation, by In: Cartographic Journal Vol. 29, No 2,
1992, pp.187-190.

Forrest, D. (1993) "Expert Systems and Cartographic Design". The Cartographic
Journal. Vol.30, No.2, pp.143-148.

Forrest, D., Pearson, A.W. (1994) "Somewhere over the rainbow." Proc. AGI94.
Paper 5.3

wmm

c/l

- ^ u n a . 73 77 c 73 so — u -73 so ;. -j -3 -a c ^ • 73 -
^2 = m . . a - j 0 o - = = 3 3 < u l 3 0 o 2 ' u 0 £ : r i 75 c = E - 5 ° u ^ — 15 d 13 = .£— — 2? p 2 1. — c 2'>-=:(Û :^:223‘S.'/,-= ";5 2 3 \~: •- „, 2 > . u .3,73 3 J2
i r ! l “ H s i § P i - § ! i l ! s i s g g j u f l » 1 ? I l l s i— -̂ - -D •— o •— 3 •—> -̂v ^ -3 > "> « ,~7 £ O '•« 3 '» — — —T “ — — CT' -1 U 3 .7

■ 5 . - = c > C . C . ^ - 3 2 ,3 ' 0 £ i i) 3 0 S c - ■= C e ' «> = ' J O 2 r - X 2 - S

| 1 ! § » I j § ' i | r ! - . E § J J | 2' I s | 3 j E 11 jj J | i o f ^ l
O 3 c l 3 2-; c'g ° | J u 2 a'o ! g * °-_ cT = £ ~! ■= .*> 2 = !r 1/3 ^ ̂ ».T? H5 - -= _ SS *- 2C 3 s '77 x> ~ o ir £• —L- S 73 o- •■- V) 5 -- f u T 3 ‘g ^'*-•0 ^ 0 5? -T —x u. co -- S3 ^ ̂ rt> .2i <u . ^ S > c w a o ^ 3 ^ o C ‘2 o 2 = :-£• = *> = . H u 7 3 - *5 9* w ^ o £ "* £ -5 ■-* ■ ^ t 3 .2 ' * - > ? = o c S ^ c c “ 2
| . i - i i | i : 2 j . ^ £ 2 b ^ s | § - s s = t i . s . o ^ 2 a - s § g- -
»Ss".s. S ^ 3 S . ! 2 l ; L = “ Si='2 s “ § 2 i 8.1 .3 § 2 - * *

u 73 _J-
<£Z
O ”E

3 O
73 T3 ■A
c •—*
03 > .3
cn 0
3 c Q.

\ o ■— _>N
' u <L>

O — 3
.O SO
— '3 uZ
1) V2 T f

0 r -
— ON

c Cc
0 _o

c
0 01) A1) ‘0
L.

c
3

7; 21. c ' « t I r ? w o ,.£3 -J • = ^ r* ^ c L > ~ r? e O d 3 i)
£ ' o | ^ 2 ° E a s g i 5 3 2 . 2 I u § > | r . a > » 1 ^ ^ .2 2 | i^ i - T3-’ Q. iz iu 3^>> .2 3 -C .2; -t; JS -3 E — c w ^ 3: ■£ •“ cj . 3uT3(u3 (u03
o Q * = S u | ’g ^ - s , S i 2 ^ | | « S ? S IS o -o > * c . Q . eg -33 a 'o'.2 | c i

1 N i l 1 1 | 2 l i = : l ! l ^ l ^ l l “ ~ l l ' i I I I i l l H i i I
5 o g | 2 « J Sg ^> o . 2 ^ m g J - S g g l a g *

— E o • - & 2 ts « c « ? so-o < * - Q . c « 2 i l U u , ' U :« i r : ^ i> g- a. a . w *3 -0 jo _ — ^ r2« 5 ° x “ 5 5 s j ; 5 Z? O ' £ <-> r \ J Z w '3T = Ji >/-> u •.= c 3 3 _ w O • - - « a £ u,
^ u 73 U ® w 3 ’-> ^ E •= 73 O '£3— — j~ P ' 3 3̂ 29 ‘o ’ ^ o C P ° - 3 — O " ^ 2— u _ - ? S x E u i i t : ? u M ? l s c u a a"n ^ 2 ^ 2 ^ 0 0 = ^ 3 _ , q. ^ 3 ' 1- w -2 .2 'E o § ^ u ̂ s c :ir̂ 2 s « c 3 5 ^
a - g ■=«- - a g ! u * .c s £ * §*=3 «
Z % u . i ° 2 E : r ^ ^ i | i | 2 2 = < ^ 1 1 ; : * a - g s c s | j r g g | - 5 - =_e J£ .3 o O ^ o n. — O . e ^ c - i 3 ^ —* — 2 3 u^ U C W .ii, _ 3 —•wCL'J*i—*r- U3 ™ *y — u -i C r^Gr- 5/3 ^>3e u i — flTD.- -.2 - C c - ^ o - a yi ^ = a-^j="a,3^ Sz “ «s s -; <u Q ^ c -vs >,= 3 °

- ; « S a - 2 § S | | S I s l o - a - 2 2 ^sS* « § o « f ' 1.1 §.
•=» ■§ 5 = §*2 S E - i S ^ - ^ . o S o . g l ^ l f « . 3 § > > 5 - §.€-2 -|*'-g Sol « 3o 3 ■*- ctj 2 13 « u c^ -Tt : - ^ u ^ o i S ^ c ^ s - s ^ . H , 0 2 c 3 w o = -nu U.OOCVJ ,o ' 2 c S o (Uu «j-^73ldOj> > a = J 0 3 ^ ? O « " m.2, c.^ 8 ^ t l ' 5 c =™ 5 1) ̂ (U o— 'Si n w Coo rv*2 <L) .£ :0 ^ CO O
a S » | S ^ S , D-'0 s s » - - l u - = = l . s ffi:5 0 ': : c “ '5 “ S ^ ” * a *■ 5 l s iS° .»>u' S5 l ‘= S S “ ' g<;- 2 S - g | P i - E » - g g - i J g “ -S = = - o 3 u 5g ' = S 8 „ S 3 = SS
S f 2 o . S . S r S a § . i g a H a Sbm c.2 2 g 3 Q. 6 E E & = 5 3 5 - § 2 2

l | l =1.1 i i i S a S i . I S . S i l l l l
m J o “ >-2 S - ‘= 'iTS |:f = i “ -= S-l IT1;

o M« U C c £7 ̂— — J=c'^ o^O- a ‘cJO o isl-s': c ^ ^ o S - E e O - o a ^ ^ - u c =E w tl O ^ U c ^u<d3Cs4 j ' - | i !
*. o h i ^ ^ lrft y ^ C - ^ e ®O - ^ a >, c - £ q,S*E o ^ o ; a 7 3 2 » S g a J

S 1 S= | S S s i S > g i s | a ^ f 1 ^ 1 ^< £ _ 2 2 e --£* o U o ^ ^ g u a - q. 2 ^ - 3 ^
| l i M i l l i f - ^ H s ^ l-s J s'-i! I
5 S ' S l - S - l I p c o ; i « § r * S
H 8.0*3 S §>2 • -.gg^ « | i - 1 ^ *3 ~
< ‘o I'S^i.S S o-- o = £ g E o|.£

■> ~ "o o flj r"L ^ o c/5 o ^ ^ -s ^ ^J 2 c 2 0 C C — S — g ^ D ^ ^ r - U< _ o t B '* S S u s - M M ^ J J o f i - g
_. •— < ; r O O W 5 f ! 1E ’«nu* ' 3 £

f - i Q % u 'E - W) C 2 ^ W c C D X S « Js 3 • - 73 Q.<*- O£ 2 2 S E = U § g - ^ ^.ag.8 3 .^3tS « j c 2 s
^ C liC U D - ^ y , 33 5 i l ■ " t -■ •> 73 _c * e oo ® H

3 & te 1 I s l t l P
w C/5 W W ^ ^ . E P - ° S § . « . «

4 \ OC r " .— ' ^ e C - ^ U —* 0 ? > O u - : , u o ~ ^ " aiQ P - 2 J—n j s •“ w 3 c i- O e —f ^ o _ —* ^ "3 .2P.2 on ”o -'-v o ->> u (T - o c c

r f . U ■- C VJ •- 5 ?3 w -r <N O C U.O ?3 2 * t 2 C J M ' - a

Q* 9 ■§ -o | o ̂o f*' ̂-g g 2 3 S •- - g o ̂ - 5 §
iH > 2 a i f f i t s 5 5 = s-gs ! - . |s 5 j .&.‘- s< ~ £ ' . 2 ' ~ s > 3 | i 0 0 g J ^ a j ' 3 S "3 £ z '3 g a:

2 £ S=.3 = 5,S-^ £ S l u S 3 S ^ 2 l 2

_3
3 .

— ~ va
y

“ s b

V? =
y .2

C ~ A
~ £ .y X

= 73
y 3
3 3

— • - c .

y~ x £•—— a/l 3 —

7| • — 71 u
y : ± ,

g £

o*7" X - — -»CN
2 v. ■*. s o

so 3
3

— Q..Va
3 U '— A

.73 <U
CJ • — 3 r - - ±

o
CL.

3

y
3 3

3 ?
so 5
o —
— o
SO ,'J
3 y

3
'A ,W

c c

2 §
w X

3 71
o c S

y c l

* "I
x 8

y 3

-3 CL

3 . 2 £Z- 3= O —. u-

1 1 » ?3 •**

S e
= .3 SO
•2 * § ==

* o =
X O
=3 O 3 ^

. g y
73 X

£ o .£
13 7 —

3
3

_3
a
X
y

3

E
y
X

3

E

y __

3 i

73
E c

3 3

y E .2
va o g

5 ° 3 y "3 - - ■- •— -2 -= - d 3 - •= *- * =
y 2
y —

y x
- y ^ E ■ - ~ »*2 *

5 « . 3 r « S

| 2
’3 3

^ >

i !
U
O arr 3

O

va
y ^
y 3
a •va — 3 ■“

7- "3o y
7

.2 *
U i y 3 7
> a

y 3 C

2 2 ■—

73 3y o
3 'A

2 3

I ^y 73
va 3

3
A ,
— ' - U ,
O 3

• • = U
y ^’o’ 17,

SC
aoN

y 3
y 3
’X * O y
a^ -v
a £g r -
3 ov

so y y .'
•= ~ -2 E
* y 2 °*
2 y E --/1

“ 73 ^ -y;
 ̂ va • —j i s ?

3 b- y •w y 3
5 - ’° '■=

a . E

7

0
A
2 y

y 3
X

“ - 7 - 7-7 y y .3

.0 3 o £ «
•a a ^ ^ -
3 M-1
y

Aa 53 a g* 3
W —— 3

— • y
3
O £Sa
■7 3 yi u.

3 3
• 2 ^

y 73
« 3o 13

3
O

y c

1* =

y y

y

y a
— V

3 -3 V3A VJ 73<*- 7 Co .-r • -* 5 V3 V5v i 3
3 . 3o V3 3 3

= O

y 3

■ * 1 1

2 ^ ^
8 E -d
P « -a

CLwr3w Onc vO
0 ONC Q cO Ona OnX)O£ w ai

o
u. y
y tc

E-|
3 iS

“* o
aoO
■ = 73
| i
8 i

3

a 73
<4-1 O

. 2 Q . y 3
y y
— so
'C O
y s

3
y y

3 yW O

2 o

1 o
-a 3
c 3S
58 yA Ay

y avj CL
■s * 3
—' y
GO so
ON O
C - ou.

• o
3 g
^ y

y E
y u i

£ o •*-
» * * y

. A
A 3
3
O

75 *y)“O * *yi
0 x>u* - 0 0Q-i y;'j EPr3>s .c U
jj * 71 v: /. 'J r»C«U 'j > C

-3. X
y y

A o
E u.

y va
y y
-7 va
o jg

y y
3 -> y

r 3

y

y 3 3 -1 _y 3 3 —

- — ’7? 3 7

D 3

73 ~u
<2 y
o -

y
73 j=

O. eg 3
3 _ v
O 3

3 O

y■ mm Lm
r a
y
CL W
o £
u '—
a c
y • “

" a y
3 va

£3 3

y u
-3 .O

CL-2

g .2 E
a y «

y va
3s >N O va

u y3 50 73 73
3 ^
7= *

2? y

va —
7 O
y ■-
o. 3
3 c
a
7 73
O 3
va 3
X -u
y 2

3
va

o |
o £ ca —

• i l
y —
‘3 3

y ao

■9 732 c• — 3
A 1/3A C
so o3 —
•— y

y
« *o

.s ^
rt 2y
u y
s 73
y 3

-3 3

=
y - .2 <3 3 y '—'
u y- va 7 va

J y - §
- ^ c ' 0
£ 5 v , .«
■^Vj .2 2

7 y O .7 3 A
y y 7-

-3 'u 3 O
£ u

2r — va y

- < 3 'o ^
I I £ - S |

• 3 - v 3 c O

u 3 3 O - E. ^ 30 ° 3
~ * £ y y7 3 y o

>a.3
J3 >
73 7
y a
J3 _
a• — r*7
IS
a w

3 L=

- va C 5
?2 y 3 « 2̂
y -2,-c 3 <
5 2 so I) .2
> a = ° "£

•3 y a 5*
y -3 a .£ 2

v3 — 3 > SO

u o S 'So2

- „ -3 3
a - P 3 y

2 3 .2 73 72
3 3 O 3 A

y
so
SO
3

” 3 . 3 3 va
2 C 3 SO C ; « S J

3 va
3 y 3 - •“

3 r 1
sc

y
y 3 -
•0 -2 c-
o -- o7 va
a o £

0

r -8 37 Z “ y

$ 2 2 3
y O so 3
3 ^ 0 “
3 £ y »,
u so_r

= I j 1

>a ^
= 3
g o

1.1
y

73 7 y 373 .
3 73

1 i

3 so 3
.3 3 3
3 —

^ 3 Ĉ
r- - f 0

«« ao

a £ » ,y — »
2 y «
3 3 c
y 3̂ y

XI O 3
7 O

>% a 7,
3 _

i 2 = i ^ ! E c
— A Z3 3 3 53 va <r-
= ' y y g ■ “ y
3 y > y s o^ 3 5 3—• fj -/5 ■“
3 y ^ 73

7tf .£ o
~3 3 _o y

y 3 a s o
■3 - • y

s'.HJ
E £

y
x y
y x
y —

x 3

*- ^ 7 - 5 3
S ^ £ 3 £O = t 2 -

> A . 3 7
« 8 £ 3 y £

= E x 3

3 3
— >%

3 x
0 X
3 ‘x
3 uE X

®b 2 x3 7 x
o a Z
7 3 Q■7 X —
O _ A

'IX 3 7y u —
r y 3
y > O
va O y

y s o ’x a x 3 « y h "3 - o
x 3 3 o c - 3 . 7 > > j z y 7 jj -
~ y y 3 ^ v a j £ yJ0 7 - a o . ^c s 2 o. . • c ^ ' ^ S y x ^ O c - 1- .2 3 2 E i: > -2 8 o o _ 3o -2 3 ^ ^ = = > £ ^ ^ w 00« o g x o ^ ^ - - o a - - ^ y v , - g S

n P v ^ o y T s s o y — - - s ^ x w ~ — B — s y a 7 y x y y £ ^ y £ - - ^ ° 3 yva y 3 •" NO « y JJ 7 3^3 -/3 X .. u - - si 7 ^ .-3 G c a *s S u i T 3 X h 7 v 3 - 7 .
2 - 2 , o ’2 —i y i £ s o ' X ' E 7 ' ^ c eg y > > so / •- > E 3 - y ^ 3 ^ o : 3 “ : J o . £ ^ x 4)fc_^-3

= | : . > • - 2I l l - i s - s a i = i"! I ” ! 5 s i
-2 s^-a 8 l ' i ~ 2 f § g-§^3-5 5 : - i S ' s » § 3 ‘S E-S s | 'b -^ 3 .J'g r2= 's »
g s 5 S j ; - g a .=>2. l ’’ E 0 S - ! :i: -S - § =•! ’ S ^ S u J J

y x ^ g y X O V i s a s i y ^ s o y T ^ y ' ^ g - r - j x
E X y y ^ C v a r ^ y ^ o a x g x c X c - — O — y

3 > X a ~fiX w u y . 3 o c c g - - = 3 y u i 3 -O '7 £ _ r “ 30 3 c /3w t /)_ c s •— _ es > y 7 o c
« “ 3 o • - 3 v a X ^ 3 S Si X -2 • jj"2 — = C y « X E
0 13^ - ' O a - ^ y v a - S ^ ° 73 s 3 0 0 ^ « §

x - S h a 3 = - a 2 ° c Z i s x x S o - N j - y
s . 3 t . 2 2 = ^ g « s - s y = 3

. y b o ^ v a x a ^ a c y ^ o “ C £ - 5 « 2
• I „ . s . a i j a | g i s z 8 §aSI;2 ! | : f i ^ ls.i.Si-g s-gf.i
x x y X y S J 2 - 3 r ; _ ' 3 X _ y o s x g y ^ 3 X 7 — — O 3 a u c 3 m X ' - s s Q x C —

- > • c v i r ^ * j . 3 . 5 s c f s s — r u y c N t - u . w Q . y y ^ , - — b ^ 3 3 - >-J ' i : 3 c3
> s E ^ > y ' - £ > u o c r y 3 y w x y y y o o .2*x y — y o 7 ^ S . E ^ ^ X j - y — g c
x . 2 7 a y -3 va P 2 ’£ £ -a a y so-a y 0 x g)'> o ■— 3” 00 "2 — 5* o . <c«^-2 y £

M j a i j 1. 0 aoy 00.S 0 <i3 3 3 2 y E ’Za 2 03 ^ b "" c ^ « 2 E yj so-a £•£
3C/5' S ^ ^ | 2 S . g « y § v 5 ^ 0 = r . 8 | . £ y g ®

3 U 2 - -7 O 0 3 -3 a ^ X . - _ p x c .11 L. 3 SO va 7 7 -a -7* _

X

3 Xrrt

1/5 c „ £ y E ■£ E 22 X) ^ a; n ^ j?
a x ^ ’3 x M : = 'J o - 3 x

79

3
u*

y y
— u X

y 3 C3 _ 3
> y 3
y L_ Ua
•va 3 y

• =
7 a 7 va

0a CS o £

3 va
S3 5>%

3
3

va va CB X
y O E y>

" yu, oX O
>

a X " 3 3
3 y y * —7 u va

£ y a 7 > a - ^ - E S * 9
3 g 3 x • - 2 E

- 6 ? ® . 3 5 S 8
3 > S - | I 3 5 5

3 £ £ 60 X
o n x y x

va O X 3
3 y C • — 3

£ 3 x .22 y y
r4v o 2 j . vaG t c a g
n • X ail qj , . 3 £ L

_ , y C . v ^ ^ c - y
O 7 . - — a - 0 S X - X 3 0 — 7

2 0 3 S"y 7 y c 3a — 3-rc
y 3 y y 2 " - r 5 0-3 a - . S o _ 3 - y
3 y = S 3 0 ^ y S y O > » 5 - X x . a

3 5 '-2 X uC 5 7 , 5 -7 X 7 oO 3 t . 7
y o — 7 ^ 2 ■— x ^ x c o 7 7 qva ° 3 J2-X 3 x 15 y £ . 5 ° 3 y ~
" 1 7 5 y _ 3 va 7 X .3 o ” 5 c

y y ' u =" a o

a . 5 3 ■£ £ .5 x £ a 5? S >5 W
2 i s O x - S

- va - va f7-
y y c y O y 3

£ 3 § £ > a 3 3
y 3 x . 2 7 X y^ y - 7 O va -
y . ^ > 3 ^ 3^ — va y -J >3 g X va

y

3
' u y
3 X
> 7

| E X y ■£ clx -
y 7 ' x7 3 0
3 >

va SO - 7
y 3 3 > -r y 3

:=! y

_ x > y — X
a o g ,7 a -

> X — 2 - r
u . 5 ± ; y s o ^
3 « y | y >

X •— C/5** U A .
3 - 0 O 3

0 7 C X a o
5 X - c/5 - 7

E ■ §^ x J 2
3

X >
3

a . 2 O X O va 7
. 7 X 0 X 7
I t U - I 1) u
W S C 5

X " > ^ x
"a .5 va - £
3 X 7- £ 3
p a 3 . ^

2 3 7 x= sb.SP § 3> va X 3
^ y y O va
y — X y va

£ «* . y x g

y ® a S x 7 x
*> y H - ■& 9 3

3 y

! § ? —
u . 33 2
3 >
3 7
y 3

" va 3
y

XX X
w

<.i

u c . S P s y
° * o — J ? _3 - 3 „ < XE c y «- 5 5 y 3 -

V)

_ v - « .2: yG ’■< »j (ij
y SO y 3 y c
3 X w 7 3~ y 2* y y .
- i ^ as - C t . „ ,

y y
y y ^

X X va
— y

a5>-n

_ y x

3 *
' 7 X3 y >

7 3 _ w

3 3X E
J g

> , | u y

y — 7 7 7 7
3 a 9 va * - 33 3 s 2 2 3 X
3 y y c ’S | S

y _ 3

7 3
y x
va

3 O

y

x x y — ” *
3 3 C 7^ E ^ 3 5 ^— x — x x a- o y a y .. _ _3 X 3 ^ 7 va g CX 3 E 3 .3 ■ o e a -3

> 3 * > a 3 7 £ - E—3 3 SO 7 X 7 £ 7 >C - ^ C ^ c y ^ O v a•— y -3 x x a y

__ X

_ b va t s O O
y -va y ^
r» ^

« * ° 3 § £ _
U. , T C C

c

- 7 ^'3 3 ^ - 3 3
2 3 5 X R - ^ w '37 j £ 3 y - y ^ 7
c ^ ^ E ' - y ^ y x
y v a e g j O *3o -5

c 2 3 >N 7 -E JO £M 2 y .£ c

t/’ y 2 ^ x £ _ g y ^

2 E a - 5. 3 r :i i !
y 3 X

> % •— _
_ 3 = * X • y

y c a u P
y a 3 9 y7 7 a «-3 3

3 -x 5 x ”c _
- . X y - n E va x x x y X _

2 ^ | a g 2--~ a l 3 =-- {> i l
s3 %-l ! l s-sls^U ;|-s

X 7
3 -3 u - 3 .N £
O X O Z y

va
y _
y a
y a

3-1 §
3 3 C O

= : g u
° 7 3 y

O 7

7 7 © *- £ 3
3 y ^ 5 y 3 y ~ ■

7 7 7c y >>£ •va 7 va

^ y
y va 3y x x

£ . 1 2 K.-I =
SO y y
E 3 33 va y
2P E «va y 57y

y x
y 73
a - o

JS

= ^ X

x - l x g

y y X X X

y

O X £ 3 xX y w

3 Vl7 y 3O E ova va o *x3 3 va • 7
E CBy 7

XXva E o 3
O S3 3X o c —
E £ y va5»* y

7

£ _yva o XUiy 3 3y .2X yu X ‘ 7

o y CL >
uo X O y
yyc

_>,
"c5
7

aX
A

Xa3Um3 y 3 00
U,7 3 #o < 7

y % a O a 3"y
0yva3 7 3

>7 v a y y > 7 - i 3 7 3 Q ' 7 y .va a y — - 7 >, 7 va -3 - • va - -n va -n 7 7 -~ *7 7 .3 7 X X 5 * X y y v a O ’3 - 7 > - ^ N o x y X as CTipr 3 ^ 3 y 3 y va g® 0 — J2v» y — 7 > £ 3 >» 3 — qq J ^ O O 3 f l f - O 30 3 0 - ^ ^ 3 3 ^ 3 W) O
•= . = 3 | E i - s 6 c 5 ■“ . s 2 - * S 2 5 . | s c £ 2 * | 2 A 5 „ i , - .2 . | |
SR S - - e I | ‘2 ’ I S g 3 = § i I - i s -u* £ t\ £ i i ^ S Q -i2 O ^ ^ o 30 an 5 ^2 c s S s * 8 = a g.« s S s ^ . f g-c1 S | o S » 5 » = | es.s 5 I g- 2 Si'S
"S S S-J.2 g 6 5 s j g l o J « 3. - S ' s | 1a Q S i ! . a ^ g i £ s 8 « E
■|S “ ■ - i - s l l l * -S 5“̂ = - 1 -S. Jf - I s 5 « 7 ? -g ^ S (S = S Z = i B S ^

S | | £ | t l l 2- I Jg -S -g S i- - I s
^ I i - = f - § l ! | 3 | | |
2 1 I § l s 3 2 i ° | = | 1 , j s - ^ S i | | 3 2 £ | a ' r !3 c ' S S t I f ?
v? ^ 2 c . i : ^ c § ^ y _ 3 E - ^ > -7 y v a y h * ^ y _ ^ 2J _ g y v , x 7 g * <2 x • £

■S l - § f | ? p i ^ “ f * g . 5 ! S « 4 c 8 x f g « . ± f l |

va •“ W 7 X 5 > % C n 7 3 y c = a) •> y v a ^ c — ^ y c 7 _ y y v 3 J L 7 7
g'S g>i e'-e S S'= g i 8 = < ' ’ = l £ = S g .u - =- § 3 ^ 2 o ~ H | l
2 | '5 .S 'j8 I S | ! 2 8 * 8 3 .2 0 ! S >-Z S J S 2 ^ S-g S | |7 = “7 x c x 2 y a — 3 >, - ^ - ^ x S E v a S r - g * — c s a < 3 X ^ o o y . ±
° s 2 a s 2 s 1 ^ S ’S | ^ I = s -3-8 8 1 1 1 “ I s I S ? s . ! * 3 - 1 * f § 2

S ? a ? l = ; s 1 I S S s l l a - 2 » i = | - “ i l s ^ | 7 a i 2 I S I Syrop ^ o 7 c d 3 y y .5 £ ^ 7 ^ x 3 £ Z S . c 2 - 3 -;53 c 2 ^ 8 P r ^ ^ ' -3 3 va 7 o c _ ~y2rtz x „y 7 u - y n a P Ja ■— y 2 3 :a- - ^ o \ 3 r ^ ^ 3 ..E y y — **“ x y Cu’3 3 ̂ u m f S S o g / x j o E a j C y ^ u o ^ ^ i j O i ^ a o o X„vaa7 X 0 7 -va 2 c « i a ^ o e i - ^ S M ^ y ^ g E ' O u * 3 3 w ^ a y3 va 7 g.-O X a E ^ - r a ^ T v Va ^ . 3 ON pa X X ^ ‘va 3 r E ^5 ON X y X 3 -j- y £ 77 .2 a 2 o 3 * e v a X c .5 rg, y - 0 - r ; 7 T7 X y - u « 7 v a L J > 7« 3 w _ C > v y fi« ^ 7y - 3 y £ x E l 3 9 - 2 3 -c l S3 3 w £ > a 3 o - . w w i= 7 5 3 0 x « S y
^ r - w o ® ^ ^ P CL ^ n ^ ^ r * *3T « n (J v— v O «*J C U 2 v— s O * C * C Cl * ^
5 vT ’̂ 2 ^ ^ - > C->^ E u'?5 ‘ 2 ^ P ' P X ^ ^ -C " 30̂ ** CO (U

— , ~ - p c w c / > * - i ^ n 2 k ^ - r j u * C P ^ b v - r - j C - C c fli 00 c . 5 r s - c _ c

- - s o | § ^ S l » | 3 ^ c | ' s . | s | 2 t f l H ^ = 3 7 o | S ; ^ r i 7
-s § ! oP ia-3 cs § § * 2 - 3 5 2 S.a = ^ 2 & ! ! = • » § & s - 5 ° ! s" = S> =so 3 *3 -- — . 3 •> y s 3 2 - £ 3 > x ^ x 3 5 1 -c ^o-x xv ’ — S = : ? 5;y o ct r

2 U ^ 3 £ X 3 x y X o p x ■ - o ® P x 2 3 y 7 y . - y a ^ ,-s y y ,3 ^ o n va 0 J2 5 * C x 3
3 a . ■■3 y . 3 y . - 3 . 3 o y v a C J 3 - = y - v a - - t S y - 0 2 7 X — X 3 — 3 7 - ^ y 3 o a a os x-5 n •- - a 5- c ^ l- y S- ' - E y y 3 0!i3x 2 - ' - 2 ? 3- i 3Oc w | 2 3 2 -g g y ^

3 a S 3 3 y X s o a * a E - E y [£ a 3 0 7 3 y 7i ' S — s c o ^ E ^ Q S y X -3 — ^ x ? 9 * y 3 - -y a O c ^-7 7 c y « o y X 7 ; a y i 3 - N J x - 5 X y Sj p . - - x w . 3 y — — > v

— E w CJ •- a x ‘a — E i . E o E s u S v i E 3 s f f s u O C o U ^ ^ c . E j S E S x

- - U 'J
Z . J w —
■u> ^ ^

*j
S) —

'■■5 2

- j j
c c vi ^ v

5 I f - S i

3 * o

2 c y
2 o -22-CZ ;/D CJ
2 .E ■“
3

X —
- * -A i« M fi
. 2 3 D

x i P: o <

<D
y 2

2 §
3

x —
« 3

2 ^ £
>5y

Cl X
■ ■ /IC C
3 3 UX X c

S O X Xr- >-i —
. 3 y
y P —

X O 3

C 3 V)
c y oW X X

^ X 3 ^ w Xa \ M ^ V3 ^r- 4) u. - 1 — e —

_ «>* «* ~ •» /] _IM w— £ 3 — x X <-> a
5 - x = — t : ^ c °
L. 3 y — y 73

^ *T 3 O

3 31/5 "0
tj c

X o —*
o *

=o y

0 0 :
y :

* 3 3

2-3 I
■ - 5 ^
£ — 5
3 E —

"3 y) 3— -5 .X=3 3 Z
J — _ y x y u • - -* X

^ ̂ ̂i c"j c

u
p

’p
3
X
y

in
■30
05

•x — ̂ ’
J =

■ ^ '■ 3y

3 P P— -/ i
73 73 C

00 P»H-i
c 3 o

’S . x c

3 M'-• _Q 3 ~ OO—1 y
30 „. 73 ;r-y y x

X 73 73w 73 73
O .2 JH 2 y y

73 — m
*3 x ON
>
U! X ■- ■■
y y

Ui 3
p y O

•— > 73
7373 0 a
3 y S2

———yy
u—
0

y
5

p 73
0 >n

00
73 05
y y
3
cr

Ui
3 —

y 3
Ui yX

c—
y O

LO
in
05 ^— ro
w p~
3 —*

L4 W
U u,
3 y

2 3

X X
ON C
— ca

S 3

S ’S
Cu ^
P c . 5 ^

x i
3 3 O

U. ~
8 * CL y

73 4)
4) ~£ ^a.-- 29
§ c 2
— £ w
o ^ <73 1) 3J

’ 2 ^ — 05

0 ^
(J ^

3 *
Zu
u 3—i
, «3

C
—. 4)

so;
C\ flj
C^V 3

c °
o C

•X o
C3 X
c ^

E |
S i
3 3
■a

o
c ~ a ‘—

Ĉ3 0 D t) —
- • s >»

a .
a .
s

o - - ^X o O. ;
c w C30 3
O C

c — oX * C CJ
c3

fm V)
E u o
o c ■■/'
3 - «
u 2 *3 0 — 3

^ E

« | 3

e -0« E ,
X X • — 73• V3V5 D

a 2

3 4)X 3
3 "3

1“ 2 E 3
■a &

X 3r 4)
^ o

. 0)

O C
X —
E c 3 .273 w

C3 O u.
U

X

C 4> S

O H 73
c

x ^ y ^ m .c73 -
4) _

• ° O c
<D ^ 3

X 4) V3
- ^ U
73 U C
Q . 3 -X sj U -

J 6 - S
O
o

• - dj
c X o 2

X 3
3 y4) «*-

S ca

E o

13 73
e : g - - 5 u u
O x 3— x -a
C Q. C
2 ^ 3
qS -3 OS cn x

x
a . x
^ C/D
U C
ao o
O a
y x
®* 3

£ B
X

x y
y >

. a -3
_§ 8
X u*

y xrv ^

X - 3
V3

> -c

- =? ^ 2 3 ^
2 0 y
g . > , 5
E-° «
O T3 «
o y

V l _ X
O i- t-

y 34) 73 —
7) 1) 3
3 X C

4)—
2 2
^ C3 'Si
c r w

2 ^

5 "2

I ?
3 Ou i y >
c •*-
y c
00

3

- s3 .2
“ 3
3 . £
- x
O £
i * “£ y

« XU “
O
£ E
*- 2o «£:

x ^ c -x 'x yy .2 - = - x
S ^ .2 5 v5

O - V> X x . = *3

— 2 ~

^ “ ' i = H - i

Q. X
£ 2 X

— 73 I—
O y

— c 3
3 y _

y I *

c
o x 2
2 3 “
"" X >3X 18 x E

3

X
w

OS

jT'o T
X \0

Cs
73 —«
3 w

-S d
3 ° 35 ^

y
- c

C c
O 3

X cu

y x
00 3I- 73
3 y

x ^X 3
- E
y

2 =
y O
73 X
^ 2
d . cy

« >•>
J= ^ x
■— 73 J8> •— y> — x
c c ^
y y <n

•=C S ^
o ~ 23 —nT U® i - V3y — y
3 y 3
. > y
y '7 3 ^00 3 _ i - y X
3 x C

y 3
y E /-s
1 I s
O 8 2

•x x y
33 —

2 3 S3

■=r- --
C* V5 u _
CL ^
g-3

yx c
y

2 E
x y y

C 73 J2
C 73
73 .C

5 o

X S3
X y

73
C . =
3 '35

73

c =
.2 y
3 "£.1 a
-2 y E oo
3 ^

2 S
3
O u.
y y
y 2
= i :
o
y «

ca
y = y2 o

1 3 y C/5
x C y
3 1 '3

1 ^ 3

" 2 ^ 0
8 I I

X 73
0 ^

0 1
i2 3
3 r.

73 .2
y —
y 3

>» ^ 3 - X L_ 3 — —

< y x y x r 173 X 73 X { j

y .2

s I
y -Z
£ 3
O c73 X

y
0 0
0 0
3
x
y

S O
E 'J i
— E

y
S -o
y O

£ cL

u
s

JS
■©

>>
y73
3

y

y
t:

73 X cz
. — 75

le
rs

U y
y
3

X > Ui
J u 0 r>

V5 >5 u
op

s *—
X U.

3i •n
so

'oh
_y

ca
s-/

05
c.w - 3 M

d

V5
y

^5

r-
c
p
0

*u

'— ^ u
VD 0 y

00 3

1 -73
y

X

CL O

.E yCJ
CL 73 U

u.
3

3
O OSi
—

r~* —/ y CJ
y 73 0 MM
u_ y X
C y l. rm
r- CL y V
0 73

3 X

3
y

X
y
X

y
X

0

V5
”E. 3 73
CL 0 .mm
3 73 3 ca

E i>
y 73 Q-

lZ
3
y _p O.

ca

X ^ s ^ x

E x - “02 ® 3; u.
30 ^ E 2
- 2 2 5
y C OOX

C £ y
2 73 <—

~ X
— c

y o o
3 x •£
3 y y
> 1-

y
x

o y
y > £E y —

73 2
10 in ' y
_ 0 0 y
o 0 \ c
— ^ y

* 1
X 3

3 r T

y l-
Z . H

c
X 0
3 C

5 o

OO _ y
C c <*-

=3 I a
a Q y
2 x s y c y
3 o y

X Q.X 3 73

3 y C
y 73 3
73 y C C

2 2 x £
y o . x .. o
3 2 2 x >

- 0 0
.= o

3 =0

C
eo
■—
A

#s

■ 3
u
y
3
y

CJ

= o
3 _
y —

’2 E 3 Q
CQ |

d 13 o y

y o y 73

X 3
y xc*
c
3
c

.. . yw — 73 f

3 * . 2
£ y

.£ x
y

£ <
c •

S B .a :JJ _3
X —
2 . 2
o . _
> » x
c ^3
E x
. . y

■ - E
j ? y

. £ ^
E x
y c

_ ^ 3
0 2 y — £

5 - 2 3

y a - a !_■ 3 y
y c ><

x c x
- y

£ e
3

y X
733 £
y O

e ' ‘T3 c
1 3 -2

y C y
- .2 y
2

y y x
£ 0 0 y
3 oo y
_ 3 3
5 ^ S3

. 2 ttJ y
3 •
n c .2

x x 2

c
£

c i
!r! 73

3 3
y a

x 73
X 73
a , 3

E x
y

CL

1 2
c 3
y “ ’

X u
— 3
y y
u y

X O <—
y _

x .x

= *
o C

X . 0
y —

"E ^
3 y
y 73

■y O 00

y y
y 3

S3 X

X 3
C O '
3 y

y y 3

O y
y c x

X y— L_
3 3
N

I ‘iy _.
c a y ~

c
3
y
_, O

_ _y

£ " 3

o y73 t-

•*« ^
73 2
3 X
E XIx
C 3
^ c
O 3

X —
73 o
73 Cy

x
y
>
o

1 .2 x

S I J
3

c - £
2 0 — <+-
3

£ y
E
o

3 I 5 » S s> , x 0 . a . 2 y

2 2g
y o
c y cy X 3
0 0 - ^

c ^ x
0 « f73 0 0 -O

”2 _3

> °
* g “ a — o ■£ c

3 0 3 3 - -
00 I- 3
3 y n
X c - -
y y 3

0 0 1-
x yt— y e

3 x y
c - 60
.2 0 O

3 - 2
• - y 2 a . — —
-jp y c

x —rv u “ • u3 3 y
r O 0 _

•2 § y

2 3 =
y _ t O

y <—
x 0
Q . 73
3 y
So Q .
2 £Ui 3
3 X

c j y c
«*- .273 O — 73 3

> C .N
cn.2 3

y x
X c
« yo a.
— y 2 S3

73 — -0
.2 3 C

£ 3

0 0 ^ —
y 3 .2

73

2 a
y
3- C
O -3
- £

x
E 2ro 3
y E

o
c
y xiUi X
3 00

= 1
2 <0

X „
^ c73 >
3 >

■*+ m z ^ - rg -'J
C ^ x E .y c— — ^ x

. — y L«| a .
3

y X

X S3

3 . 2

3 o C
s S o

9 * d c
E o y

^ j a 3

0 ' ^ - 2
■2 £ x
3 0 3
x. y u<

x « yx 2?s3
E ■= '2
o E “

U x d

f— y
y £

- £ - u X o
3 ^
a . y

„ 0 0
X 3
y ? y

y y
c 2 C

• 2 O M — y
? P5 . 2 — 0 X 73X y ^
2 x £
c y 2
y j - x

o

X ^Uw" EZ
u -
.E x .
x 5
.2 c8
x —'

0 0 SS
C u.

X ^

o
75 S.*— xi-rt -u

3 X , o
•— ' y
73 /I
C X -
0 5 ■"CJ ^ C

5 ■£73.— y y
C/5 .>

° • CX y
- 1 xy

0 X CL
3 C P
P 2 o
X 73 y

y O

43 3
X ^ "3
S*
u X y
Oo 3 3
O X i?
t : o c l
ss d y
U ° * x

> ,r ~ o

3 cu, “ y
00 rO
o y 5

£ I 3
x cn x

O _y £
I - c . 0

i5 s ^
£ 3 *
3 y O
p . x
y 0 10

■5 X 0

3 _y y
3 x

£ 73 3

3 x y
E x x
y £ 0

§ 2
x 3
'> E
x ̂
= 3

^ 5o .2
£ 3
o .E

S-Ey
£ 2
o i

2 2 3
3 X

£ 3 3 73

>s
p
3

y c
3

00 3 •- w'.E 2
- E l x73 £ 73
y o yx • — x y
y g a £73 £ —

y c

.75 x ̂
•£ 3 o

P (N X
P S ; J
3 ^ C i t

x
v5 p •
a \ o 3

P-° I
8 3 !

y ,0
oop:3 y

P X 3 —
— _ — y

3 £y .x
^ £
CL y
3

y •—
c
3 c
Z .2
8 . S
E 2

y > 1

y ^y
2 & Cl 3

2 S
£ y
.2 -
c p
o —

'̂ ■3
«xy 3 V5 X

x y
tu. ig
o 3 - 3 -

73 7C
o 2CL SC
Ui —
3 x

y y

P X
o y

3 3 X

-P CL

CJVD 2
-C

3
«
Im
-2

/5
c

.-a ca 0

D c
3

d 0
-T 0 M

**3 w
— ca

u V
ca aX)*3

u cz
Si > .a

3
Q ..—
a = 3 jw

. «» 3) E x
x y ‘X x
2 3 Q - _x y u- S3

^ « 2 >

| | | u
O ’E O u
30 S3 X
2 = — 33 - < Jy .£
•— X X 3
o .- y 0
73 ^ ^ x
y 2 2 y
.-3 3 3 - 2
y jz y yyj — ’— jp

^ S3 -
^ s "^ ca

£ 7? o
- I U- _
3 O P
3 £ .2
S y y
x c jj
^ ^ y 0 y 73 4, 00
^ g y
00.5 x
p 3 —
y -o c

■° U - c
73 O J2 7—n
o C CT>

1 § S
3 i w
d . 2 s
y 73 3

x — x
3 SO 3
-p 3\ y

iT £ X
3 y

/) F

y5 •0

s u 0
y

73 3 71
3 2

>5
cn

— j-. — _ oo O

M '/5

3 uJ «
a tL
-J 3

"a oh.- 2 P Ui U.

£ y — _

3
y O t5 ~^ ■= >5 OO

.= a Cfl c
2 .p y 2 "73 : m ' 3
£ x x 3 “ ^
71 —' >

= y Z u x
5 Z

p
o
o

p y

CL 71 0
3 y Op 71P x
. 0 y

X
71 SO
y X
0 SO p
EL
0

'73
y

X

3

y
73>.

2 £ 2 0
3 P y
y u O p

'y ~ "y x
a. - w 5
- - p 3
. V) Q y—V

5 .9 - I £
-2 - 5 2 2
O 0 3 ~-
.u .2 a =r
3 3 ^ y

—* x 2
so y p £

. 2 U 3 2
S3 2
3 • £ 3 3
£ y 5 x

x —
P y 73
3 .a y 3
,- •— e yP 3 X
< 3 x .is

.£ so Q3

oOZ. 'X
" (J 3

y a
H 3
in y-
oo y
ON c
— y

- X

5 S
Q .b
w X

n u £ y2 oo x >3 c 3 y
x Z — S3

3 y .y *

2 « * 3 C 73 X
x y Q -£
p 2 y 'z = -2 x £

so
p
o
E
3

X
y

^ <N J- r-. y
o-c^ X

E

y
x

2 ■= *> y >

x
y
73
P
50

y
x
y .u
3

s
OS
X
Os

O 3

u U = o
£ 7i ' 5 ^

5 >>2
2 x x

y an 13 X y C L X
> P 3 2 3 3 0
y -E — y '7* t v x

7 X X —
^ -r 73 - J- 2 y

>» <-> so
o

— o

a o

- E £

y 371 P
3 P
2 3
p . 2

S3 - P o
3 P

• y y
P 71 >
z ,J y 2 x x
73 _ y
>■*.2 x

y .3 o

- 1 8

•“ so S3 -0 0
y p -P
U C u

•3 y
13 >* Eo 3 . 5
o . E ^

3
x y
2 3
x u
y —i
y 3
— 3 —
p a
o y
•x y
3 y

X a
3 p
z £CL o
y Z

ca
U 3
p y
O ’X
'X 3
3 s

• ^ x O X
Z 3

£ -
O S3£ x y

. y Q<

x y y

>—7 3 X

sa
>»
ca

* u
©
a

.£
13
ftC

E - p 5 3 c"

■5 £ p 2P' P
> p y .p 3
y c l y w
x “ 3 y

- X. ~ 2 r'1-
X =? 3 y X
X .0 X ^ CL

> u. 1:8
I = i a So

■ = 5 , 0 0 - 23 i— u. i .
CL 3

y
y

x
y > 8
u u 3

o i 5
> 5 — 73

c l x
3 3 3 3 3 33 73 —
c r y w 3 y

X p -x
p -0 —
3 P u-
^ y °
X — " 3

3 -p 3

y
x

a Xy 73
> . 3

3 U*y £
y 2 y p

x
y73
3
y
y
p

2 o
50 CL
Z y
CmJS
y —

y p 71
X ■- CL
— 71 3
£ = E

5 £ o

O y
£

O X

> 1
yy p

_0 0 Um

O y
■£ 73 "y

u
3 3 lb.
y 0

y p

£
p
0

—
X
0 V)

730 y
73 Ui

*— CL
■— y
y 3 la ^

J o y
2 3 x

j 2 »
§ - 3 -=u i?
p y -x
“ O -I.

a. p
y>5 -a x y

•> r\ r__

y
y ~y —
P <u.
3 0

x y
’X cSO 3
~ si .jo

"£ - £ ^
U g N
y Z oo
a y O'73 X •

00 £
2 £
y y
y p

VD— o . -
S 2 I
2 f s
s ’P —
c/D O yj yj • —
u U M
C L X
y a Z y ^
- 3 £
•X G - X

2 2 |
• -S 3 3
x y 2
a. q —*
3 -X S3

£ y•5/3 — .*•

-7i x y x p
p x y F S3
> — 3 3 0
£ X t3>5 0 7;
y 3 3
£ 71 y - y y

I - 3 3
^ '5J
'J 3 uC/J -JJ

2 g C
so Z
O £ 73

o so "a.
-P u

SO

y 2
y .y

3 x
£ y

2 3 y
3 71U • —
X ^
y z:
CL 3 .
3 > 1- 0 y

f .2 "£
3 73 o
2 &

’.Spy y

y x
r - _p x

3 x

_>5X 2 p
o 71 y

x — 2

."2 y
’ 3 ■£

X of) 71 P
n ‘X
— Op y
£ y
3 2

— 0 r>
>><£ p
71 2

x £
" 3 O y
p x x
3 = - • •— H <4m2 3 O
y 'y x '
e :x . £ ,

X y E

Z -
2 ^ 3
^ ^ ^
y o 3

£ Z 3
X v 2
C-l 75

> ? - 3’
1 - 5 2
• r £ y

■2 > 5 E
^ 3
3 X 0

-£ '= y x ^
£ > > H O y

Ui 1—
C L X

-■ 3
7) 73 P P

1 3 2 =
X E a. y

c .p
3

>5 - y P
3 P

3 «y .—
y3 . 3
y

y
| 2
W QJ (m v
i u o

C I §
H I5 ^ y '— Um

S3 CL
> "y Z ■ o y £ '
3 cl 0
Q. 71 > —

O
>5

X
X X

p X w
y

X
y y 3 —*
0

3
‘S
3
a

O
X
sO

<u.
0

py
L. E

3
O 0

0 u.
X
_y

yy
X
•b.

y
3

<
X

’3 X Oy Ui
y P w

3
u>

CL
X .O X
y 3 73 P

x 3 3
0

O
y
73

• — P
op

y >%*71p
0

Ui
CLX y

3 X
3

y
Ui

lb.
‘w lb.

n
X _P 3
0 3 _y
3

£

3
Ui
Ui
y

y
X CL

E
y X 3

ib.
O

p
3

X
y

3 h x -'i’P > iX >%y y p ' 71—- p u p y p 3 7 1 0 * y - u 71 71 a • ^ , • — 7—. 1 71 •■— 71 3
3 3 f J O ^ r i . j 3 £ g O u g s u c x 2 p Z > r 3 P P Z ' ~ ' y x i ; y ' 3 ' O y O y

I I n S U U o J 5 “ 1 C 3 ' S j I 3 Q i f " 5 | . s S 3 s - g - I - i - 2 5 “ g l 5

i l l « s - S ^ - 3 i - S S “ l : o I I l l ^ - s 3 >s | l s | r 3 a x g i l s a
O O * !/5 i) *r* ^ m O 73 w j — m q ^ ,P ^ o ^ ^ 3 Cl ^ 3 aj *** i j ZS Cl* yj O

3 p ^ - l 3 | - f 3 J ^ > 50 0 2 | 2 | = s - 3 = 5 . 1 2 2 ^ r ^ j € S
- y C L - y y O o ^ . . - ^ y Q . R ’3 3 X ^ . C . 2 - *S Z 5 P u = W a P D O °

■3 1 y 3 ^ ^ o > ^ §a y - 8 - : s s-3
CL
y
3

X
u

X

O t g x T j j - y ^ - ^ X y - t c ^ s h u • 5 O 0 Z - p £ y - ^ - z - £ y « x = y - § y r i

N « i | | s i i i iN s M l I 1 : l i '= l | l |g | - - i
s C l " . « - S § 3 | S i S i i " i | 1 M | = i # l s ' 2 | l i * ! S ^ fe:i 5 - 8 3
| . 5 “ 5 « ; 5 S f l i * = • § , - ° « 1 - 'S '3 e ^ u 3 o 5 5 2 ” - | - S o « . “ a S - j j • & J
2 = 5 - § 3 ! i « 2 S » 1 . 2 = 0 g > 1 f = ° « . 3 5 2 » u o = a ; . S u s = c u j o i
cl p .E3 a. 2 o X 3 o P x 2 5 0 E 2 l- >5 os > y t i „ o « s h ti - p j? a _ o o| ‘o « ^ ^ 8 t - | ^ o : s “ »g'5 ! l | -a j C ’ 5 - 0^3 = | ^ | | 1 g s S t *

y ah S*’> d . 2 £ . 2 Z « o y x 0 -- y ' - ' 5 i 7i ^ Q 2 2 c 2 ^ s i 3 ' z £ u ' ' Z 7) ^ y
d- . £ 2 S 3 1 - ” 0 - “ S u S, > 1 - =- 2i 3 5 S : 3 S o a' j l :: i i J. “ J i = - 3 S . =
1 1 8? “ ■’» « § 5 ■§ § - ^ s . | s ; a s l ^ s | 1 i t z ° x s a £ I t - i s §

s i ■2 s i “ M l i I 8 s S f ! 3 5 s » - ? f ! §•2 2 \ » s s eS-a 3 | 3 - l i l s ^ a s - S s s J o « o o
3 = T 3 C i S y u X ' 3 S ' = ^ y fa O ^ ^ Z ' X X 0' 3 - - ^ ^ u. u « ■= - c . «

so 3
71 0 P P t-
y 3 18 -p 3

£ 2 * 6 x 3 say 3 71 . o71 0 w *u r >e “ ' ti y u3 y y X o
2 x ®S a.2 - f 2 S £ -■§ .2 ‘0 -g :| 8 •- 2 ^ .a c 5 .1xS;^xtt3 ^ 5 3 > - 5 : - S o

l i l f s l g ! 1 1 i U l p K i l = i l 1 l § 3 |

1 1 1 I l i j l l a s i r s l f ^ l f
“' p j £ — —1 3 y u Tl u ^ 0 •> O s x y y > • X y . P q .-— <! O y 3 y ^ - ^ x p — - J x

y - = o i j 7 i U l o 2 P > ' 7 i Q ^ '—1 7) £ = ^ p X U g g x > ' £ ' 2 £ - 7 i ! 0 u - i = Z o 3 - _- x £ y L , 3 o x - 2 u „ y p -x ^ = a y Z dn c --Z F p cl y 3 3 = 3 = y y —
0 7i p X 3 y 2 '5 CL3 0 y r O 3 7i a. in ? JJ— 2 o3 c OC §)— ' Z y - 0 X CQ > X 0

J z - - o p 2 d £ y x — z 00 r* 2 a.t^ ^ r_ y p̂ x x z p _ y y 0 3
— x y u — 3 Z . y 71 - os ^ y y os r - u — p x d ^ z y p y y ^ ^ 0 0 ^y X y O O 0 p X >5p y « 3 X X — 3 D — • - , p y t- - > 3 — —* P 3u y P y T i . P O — 71 O 50 s_̂ c a X x ^ y Z - ^ ^ O X C L P T i X O O O X

- v "sn (^ j . * j m* ̂ mm ; j r rz \ __ w mm Um U mm , p:- i r - u “ ̂ g 3 ifl y - J .j 3 -o 75 ^
■ • " ■ ' - . = a — 71 O 50 s_^ 3 X X 5 _ ^ y Z u 5 X C - ^ — (/)

Ui P
y £ 3 OX y £

<u. X £ y3
0 73 3 X
0 71

71
0

0 y Ui

2 X
0 3

P

' a.
3
b.

E

£
_y
X

0 3 71 3
0 _o >5 3
y 73

0 3
3 y 3 >

v - - 5 x - y ^ r * y 2 s s a p y ' X u . a s - 3 S £ £ « ^ a 5 • = - f s . S £ c
g a. « 5 " “ i N Z, p 3 £
J o x y £ •— 7i 5 - , c f so

? ^ o s £■» 5 I S J 8.1 I 5 S' 2 o ■= | J Q.J 1 1
" -j -- -5* « 2 O o "= I*- 3 >v2 5 ^ £ "i P J I o y -2 .5 £ *2
i ~ l . i l s 1 1 1 ! ^ n - r ^ . i s S s 5 a a = - = | i v 2 ® M ^ i.2 5=5 s: * J - S - s< 3-8 a §:»'= S5?-'^5-a “■§ a ^ •= 1 .a | a. „ a

5 = 3 3 = y s = 5 : = > .a ^ a ? a i s s s s i m i i i > y - 3 3 = |
i l | £ ^ 1 » ^ l o l o 5"|« M^S3 - 3 C C ^ J 13 ° l 3 l x j l | x - £ 3
-7, ^ * - A 2 ^ 1 . § - 1 ^ 2 2 ^ « = 3 ^ l R 2 a I z J = « “ : p u

M g

*J •yj

op ‘3>
"%
CJ

•—
V5

“1■ >%
yDUm "a*
U ca .'—

a£)
O

vT ^ i

^ !
— - -

0 ■
■a y

CL
' ca CL

X a ■ £ d. <0 y ao £.x Z 3 3 £ p x p « 0 0 — 2 Z S“ i i U n -< •“ u « • — m mm m mv m Li q 5S m <?j / j ^ k- 00***- t/s ca ax ' — w z j w _c ^ —
3 - ^ 2 t 5 z - ^ 1 o <n E 5 l i a a o « ^ o 3 ** 3 x> u y O ‘C 2 5 p 0 0 • - £ .y £ 3
Z ^ 3 “ 5 0 % x 2 > y 2 .a 00 M o >s - c rC '/> p • « « y a S - z - 0 P 3 * - o O Z

I l f ̂ | = | = |loE I i l l H i I ! i . i t l l H l
g== £ 6
| g 2 S r = ~ 0
3 3 ~ Z y 59 0 5b o x J2 « 2 - a,— '“ o ^ ^ m £ u f 2 v = 5; a .2 J! . 71

X “ p - 2 e ' 3 ^ , J o r = ^ ^ “ c u u ^ C « w i ' 9 | i s i £ . : ^ a 2 p ^

1 ^ - J x S r « o ^ ' = S . ^ - o ^
S 8 S'! |S I h ga^-g s 1 g| 1-8 .a of'15'S; =“ | a .̂1 -8 -11! sy y ^ 7, 3 q 4 - - i ^ = - a 3 3 o ^ z l i aar * - 7 , 2 . y i i 2 § o —
“ 3 2 3 .> = i = 1 »■ „ • = § “ 5 ? 8 a - i - a - ° - ^ 2 2 g o U “ = 3 " , £ . n § 8 H “ - = o 5 g -
s | . H 3 - i 1 1 l l | 5 £ § € - - 1 ^ , - 0 | = s a . 1 . | | - g - * > 3 | s =3- | * S

_ . _ .J 41 75 _ 0 P — C L.P “ H b i !
b . y > , - „ ■ ' 2 2 3 S p !3 t , y X - . i « o o > 5 — 3 2 • - -

£ — - .j 2 x “ o .£ ^ y
— P Z > I - 71 X X C8 ^ X

- •*. S s ® 2 ̂ s i l l 8 5 2

00 C O
0 '3 O

3'Z
y - -3

0y Um
0 X a.

p u
r j
>

O
>< “
y 73

O 5
y E ■“S.
_> y Um"dLm

X ca0 —* O ■O.0 1— cu.
O

' X
3
03

£ ?3
u

wC/3

i > - ' P - - ~ ^ y . p p £_ — .i'-P r- *S "-> £ X -X o P ~ y— y '= •- ■— o « « Z x .2 '— ‘3 y 3
- ° - "* « —

£ §\'5 “ y u to h 58 so— <u y 2lb -~ £ £ .-a £ o H u - = - i 7i p a
5 y y - £ ^ < y E "5. : 0 3

x £ 7i —— O — u.
= t o ■" °y a. y w > sj y cl
WSbi5«£

2 - S x £

i c = " 2 ^ 3) Z p f o w 2 ^ 2 " = ' ? o « “ 2 - 0 y N 5 ‘Sbx
^ - 3 ^ C o ? o c § ° = o S x y « f l i 2 £ 3 3 £ g X - ^ > - z ^
Z - J • 7? Q x P X 2 - r 3 y -5? X P — Q. E s y « a* ^ >

so y

y Os P

y 00=0 ^ x « y ~ 71
y £ y ® cl2 y
F -P A - ^ P P

x u l ^ i 3 2 i i s . S ' S S a s u . S - ^ 5 c c a 3 -3 0“ = S3
it : y / - - T i o P y S S , , S - F O « O c u 5 j ; 8 7 5 “ . S o ' Nu y -
I I sE e “ U 5 H i | i | 18 l l - N I i o f C . ! 2 5 i | S | f s f

l J S s = a 2 f i -?oS I I s S i “ s = = a» s-j

00 /3Uc w (N
* N r-U ON
3

cca.2*1 5̂
CJ

r; ’3
33

-a
3 J

Cu ° 2 =c Z >n

^ 5 5 3 2 s S 5 : § ' 5 i ! S 5 ^ s s » e ^ s .0 x - = n « 3 „ _y n — S3 0 0 -2 O.p c ? 3 rp i3 3 O 73 y >X y > 5 X x ^ - v Z CL 7, o - - y X p —
-c-3 -* p u ^ Z -Ê 71 p ■£ -- 5 y c c l ^ x 73 O y a 3 sor̂ - • - 2 p y 0 71 cP X P O 0 ̂ £ PtJ 0 u at^ - 0 " O y 5 ~ u-°s3 u-:/iyr«-3 s y p 2 y a p o o 7J 2 o o u ^ o x . — 's £ 2P x ?- -/» ■— £ Z m_ 3 _ y ^ — ®s — .—

s cS3 S!; 'S S i - g r | i § Z 5 l f 2 , 0- i3 l3 = g--i 5 . ? ; . ^ = = =
1 8 1 | | » | | . 2 * 5 s ^ - g £ 3 | S ' g . c 1 - 3 . 3 = a ^ S a. - S ! o g = : s

” S §'§ = * = 8>2 | s 2 - i S.3 2 1 o-g-s'g 5 =£ « | o ^ - . g s t 8 :
a w O' 5 0 y y y y - p . P X - p w 3 Vk-o w S y o 2 I- — > G £ x _ P 71 0 b. P'X X F b. O

s^SI.5 i S 111 | = as g- ° 8a 1.3 s e-S 1 u S-I-I.I = s §c I^J
s « w S S ^ - S a i l C ' H . ^ - a S ^ E ^ S . I I g - 3 ^ J 1 U • & § g > s = 5 “ -3 a » f . g =

| a a - s 3 . 5 ' i 2 = ss s s « < 3 a = u § I s s ^ l g = s - | 5-S 2 .2 a - | § - £2.2-3 2 ' f l c S § § <°'a '5 2 s-3 8 3 J.-.2-U »•= ^-, 3 £-3 3 ! ? z « » £ g
— I r t C Z o x i ^ y w - p ' Z X - —' o y £ y y 2 y y O D , i - y 71 -n '" 5 r :3 p y J0 e x 372 3 . 3 y 2 > y p o y f O u - P x 3 _ ^ a y > y o o Z 7 i P ^ 0 1*- 3 a = £ = ^ s C x c ^3 - ^ ^ y £ £ ^ ^ . ^ ^ c 5 a o = £ : S . o j 2 i o O ^ - 2 u - & 0 « 2 S. o’
- « 2? f l P Z « M O Q : “i ^ 1) F > a l : , ' " ^ U X U F -IT ^ ^ - a 3 y ■ £ >1 £ i © -2?0 P-

5 | S | | s s s | « g £ 5 1 2 | | ! t j ! s - ^ s ! f ̂ ^ l - l
S - 3 > i ^ 8 ^ | 5 § E 2 ^ a | g - i 2 ^ > . i ‘ „ ! - i ^ t 2 - §.■&! 3 i s 1 I | f 2
„ 2 £ c 3 a * , a y y ■ 0 c 3 2 5! u - 1: x - y c o . c s ^ f 3
y y Q . y C y o — X 1~ 7 3 £ Z > P ° S 3 0 « 8 — x . £ y > 3 - r y o y ^ y £ > 2 3

j g “ * « U b . O . X > , p — *— y v l J i P y y b - X C £ - u 0 - y - p •— X O Q . y - — . P ^ S > P
— E C2 - o« 2 £ 2P ' y i i b p ?! . H 3 = 3 o . . i l ' : 5^ - y u y ^ : f - . .-1 F x o — - j . _. ■— — - . ^ t i

yx
c p — ' q. y w) n f l .-— ^ y p a x p ^ S b X o o y p z x c . = u — y_c n P
i h S 5 a - S ^ z 8 . S 1 1 g - 1 f S ^ « § I y 2 § I 2 . g - 1 ? 1 1 - '^ . 2 o - ^

.0 >

c UmC Q-
5 £-M ̂

2 y0C/5c X
y

b—
y£13w 1) p0 — ’-S3 00 71- O y•yjs ̂0 yX .a*

m ■- ’pM 71 pwN 3 "yc ^ J X y

3 '£x E^ = o | | ^ = ;§E) 3 ^ 8 I - U 3 i ^ ' 3y ° £ p E . a j 3 3 O ^ . :/3r ^ 0 aoS 3 X P 0 ^ > — U 3 J j P jjq .1 . -73
- P ^ X O - y — C33 x ^ s 2 - E E, 3 y 3 ^ O P : 8 y y . ;/>y 2 . ' -) d u 2 = ~ -

3 0 . - i l y i - n a , ' ' 3 ^ 3 _ = - r i o . 7> X P ^ 0 y 1/3 Q . ^ '— — " ”£ 3 y 3 “ y •“* - -U - ^ — - 2 X . _ y _ Ti , Q , g ^ £ < P X ^ 71 g . y q . = ~ P = £
x .9 3 z -r 'y •-£ 1C 3 ^ Z? x - o £ X X 2 “ “ ^ p 'z 3 Z JS ~ 3 X £ z X s1 Q. 3 •■= = y 3 I § I - .2 ■= = I 3 1 ■= ! Z Z 5; 5 g.-a y z £ 3 y ?
y X X - y y X 3 Z 3 y X 2 2 3 UJ ^ O £ P ± £ “ 3 ^ ? j £ = f

c oTZ -> •j ca

u i -

f M
— x y
C — CL

= I y

u a i
sh = >

u - 30 % O P 2 U ‘5 S3
^ • - Xy * 2

X y -

S3 X -y 3 7373 ..73 -03y O 3 O X

30 3
3 2 S3

• 0 X y

I c "5
U t
§ ? §
P X X

V5VuS<uu

as

C i IkP ̂ S3 '“k

C 5̂fl 55 *
rr >n dj£ u ^

m v) z5’/) 'M~ *j cu. '-n
- 2? u .

> §<a.SU »s

c > =3o ^ u •p • • u2 "Z F -3 > a a ^ Q5
— 3/I «C

< d3 UJa J Z.~2u _3

'a.'-* - -2=53SO 3 Ono U. 3
U | >
3 ^u 3 *c s: ci) o aE * S3 < <

u

*a ■-
a a "2 5
ca“O a c c
ra u— cy

5 £
'3 0 L2-2 ou C 32 * 5-
■= 2 i= 7= B . a a. c*>**r 2 "3O jj) 2

2 2 7 H
! 321
2 "ob CL u
a. 3 O.JJ

. o X
1 * «
M —} -X'S a .2 »i « 3

§ ««« -§ £? = s: u a 0 3.2•g £ >
<

:>
- c* £
~ ! oE
“J * *u C ^ .
*J 3 -C -£ §-.E-g o
J 3 AM2? £ §- = u p 2 « 3 s aoJ=
= 8 a £

< <

s- u

3 =s p:

3

„ o• <N O

f t .

ty

3 >

3
SO

- u "s. a0 .2. |S
n 2 g»0.2, a Q. <Ua a.u -3 — h-

E o ■a . -a -C1m U- — J3
a o a.<u o

3 3 —

Su u

c 3
: « 2 c >,S O ̂ S

ON I

ON rs
. o w

as 7 - i

a 10 USi -S CL »

23 “■§
a- £ - 8

< ca

/y O'
no^ 2 a

£< d.̂ Q. • —

-12 aj o
'•?— * = ' «C N y^ > 3 Eca ^ &
CQ 00

O o C 2 3 O ^0..>13
-a '-> - 2

2 - ?
v "3

= (bi‘ .3
ca 0

n J g CO ^ 2

■S z| j « | 3

.£ 3 so cy w ̂ doca: 2 2 2
-3 j** '7i

2 ̂ > v.
a * = g^ ^ ZD 7 - ̂

§* : < tz00 J

•M-0 Z s '+* a c s:^ ca »d >
| O .2 -a S 3
^ S 3 ̂ « u 2
S,a> > 5 .^ z 2 ts
3 ■ .= y - t o

00 •: a
2 -E “
■r 3 a

i
^1.2 3

» S b i L v> " 2 F z
a o 5 .-= 0 E a. „

OX) 5■3- a a — ^ ^S’ SbŜ 9 -

>> s ' £ ’/5 ^ 30 2
§•3 2 1v o ̂w< 71 v> <*- «
_ C *■ CJ -
i ca V s

CJ —

2 71 3SO I 3 o O' 3 — 30
1 Ha 0 3 a. . yi .7,

a., a > :£S03
“ Fs

- > ^ c r

3 o

•cPC a 2 2 o
■5! 5 ^ g 5

5- .2 ^ f“ Z >
^ - d y

a 2v? -LJ Z
X .fi

UJ c

0 0 s\)
o 50

2 3 P - ^
£ 5 ? ^

; 3 a
3 5 i

O . . S ® > 2 c , C
7 ^ =
o oo :■£ - * - 1 x _ t: J*. "5
”^ rr ^ c c c ^ c 5
,-L D =fl-p 3 y ^ y g*C y Z Z £-<r F 0
“• ca -~ o y . 2 . 2

CQ CQ CQ CQ CQ

M 7 k M M
5 Q SI ^

o
^ S . £ -.
5 - j2 2

o 3 2 2
! 5 o

■ 2 . 2 ^
D

U

>»
c as

= 309° 19 .E —

y c 3 c
.a "o 5 2
OQ CQ CQ

UJ -F 2
LS ^ 3
y' a IJ
S 2 y
^ s c
oE s

Z ' 1 ^ 3

l o S a
2 p 0" y

>■ 5 ^ -9,5 o • - a .

CQ U

y 1 a. 2 .
X — .

UJ .

O 6
- z

y -fi *T* a

Z X 3
d _ - i " :

• 5S
-» o £o

- >

U

= 2
- 5?
I I
3 G

u

y .
CL —
> . 75

1 b—i
X X Oy

pv y
y N

X 73

P . j
>5 O

P X

y P 5
30 j8 73
ao y x

O X

y
y
P

_ y
y f

3 z § •■ =

ca * -
£ "O

o71 3
< u

30 jg
P
12 p
2 y
p u

* 2 5 g. c3 0
x y

2 y y

' 5 . 5 * 5
y x
3 0 .0
30 y

o S3
•— 73 •—

X P P

« 2 | p p 8
v - - s ; — — .

P

x
o

y
E ,
E 5
8 - ^
y ^

0 y 23

F o Q. p0 X b b . . ^ ,

... - ca o
y y 0 * -
Cl X 3 —
x .5 £ ^
y F E y

cl ca x
S3 i0

y
p
y - w ac ^ c*̂ c
0 Q - ^ o \ ca
2 2 „ - 2

— S3
3U '^

cn

e y 73 1:
y
y
p

X
p
y

xi_
y
>
o

X
p
p

3 2 s3

■ ! . < »
® ■ Iy y 3n -bb 73

> 1 73
<0 w P
O 71

y
x

y y 71 —
a « u u
> 1 c l x z— 71 — >
£ S 3 «» g

| s i s
^ x y— J in

•3J 3
a y y to
S3 •£ y
3 2 ” ca ^ £ <u

a . aC
2 O g - -

2La 1 |
3 3 p 2

> 9, 3 e ^ a o 3
y ^ « i >
p p c ^

o o

P -o
OQ p

p
75 u- CL y

1 B
c ^
o X

p
>1 p

_y y
> . >% X

0 ^ 2
p y 3
£ § • o
P X ' XI— 71j - 0 0
ao p ^2

y p ’3
1- - r .5
x y E
O j i o

z ftr< N
j 8 m

“ y t O '

3 y3 71
P 3

. 2 x 73

O ' o M g
d p 3 y

3 . 0 a

p
p xy

c
3 S X

P P
P y y

O 73 0 u ■ —• “
so y >r0 b, .0

• - y .x
r3 X

y

x X Z 3 5 b -2 -2

y
>
y y X rE
> 3 - 30y y

w
Z y 3
P C L X

CQ > i c
71 > - 3
«» P °
- > >-.X 'Z

^ X 3 w y y a.3 P
> x Ci. y o y w p u y

On
y
E
p «

o B
w <
30

3 P
t *
y y
71 —
y X
Ui p
CL y

p
3

<2
ya

CL.5X —
y 3

x

p x

>1 O

y
- X 71 C L --X 1— <11 >— r?

> 1 =

7 3 / i D

X> _
^ ca

5 P x
x P
y E

-2 yu ^1
s .-a

^ -C
S; o
0 . 3

X ^
— X
O p
— p

— o
0 X
-° E
X l—
y t 5
2 y
1 E

j= |2p c
y

30 73
3 y

y
CL

30.
P

£ ■ 1 3
s i S

O

71 >, > , >s

X y g - °
> 2 E x
o 71 y
5 . y
73" ,-

§ *

y
xu
y

ap
y x

p
30
oy
y

y

71
73 - 0 33 73 O .—

30.2 cl.2 <-
■0 _ u 3

y
x
p
py _ _ O CL 30
P

73 3
O O
CLX
u-l P

3 «- X♦U iT! —

o x
X
p
p
p
o

— ̂ 3
P 00 **“
£ £: x
y El S3
c C 3
c ^ y y ECLx 88
x 3 ^

y b—
■£ S3yO 71 _- S.2 S

p X 1

c 3
y 3 f -
a . | 3 a t =

M y X

c ^
y 3
£ .12
y p
p y

x
y

y w E

i lCL o
X

> 3 < .2
X 73
p y
P 3J
73

o
£
CL
3

X
y
y
CL
73

‘5 E '£
S S - S 5 S 0

C

1 1
o ■*-

X X
/ I 3
p 88

73 F
•”" 73

3 y y
x .Sp E "S

c x
o p

>* > 30
y . 2 ^ o 3
73 F u. Ui

■r y .2 CL y
p

P 3

8 - 8
=

3 O o
30 - —y x

y >% ■"
O 71

7 L -
> C b 4 2O 71 Xo- - a E
3 45 — I !u 3 £ u
o go. 2
e E s S S
73 p p 3 y- t „ 71 o

y
x
CL
PUi
30
o

y o

y y
x CZ

y — my y
, - so ^ X r .

p y ’ 321 Ji
73 p p ^

y y
— X

t : o

I f
E p

1—1 y
p

p
y tT y
£ ' i lS3 c
p P y

y 73
oo p

o
oo
ON
w -2 --
'71y <N X
5^30 P
O y1' y
Z C E

c
o•■4

u &
E =

■3 u

p ®
o ®

x U

x 732 o
CL
P

E
E 30
„ p

3 = y £

y
x

— y • -

* 0 . £ y
3 J- X

y 2
8 - S

p <12

u. 3
71 aj

oo cl y• — tSiSi
y x

JZ
w cao .2

y
y x

S. §>1
S i

^ 2 S3
x 3
P y «
3 x —
a P..X
8 S *

X 5P b-
e 2 y

P P
- y y

y
y _

- o 3 3 ̂
Q. y CL y
P 73 b- > *■>
“ .X _ ^

^ 5

y
x

y x
73 ^
Ip X S3 X

^ y yp _
a -x

o
s

• X
73 ofl

2 O . l o
73 X

73 y 0
y S3 >

&S P *
.2 CL y
73 P 4> 3 £ 3

1)^ U
C O O
Um U
t) G D
L. .2P ̂ M .
3 73 y X M

^ -C 3̂W T M U

0)

00 00 c c •-
5 2
E ey .3

74

71 f l .2 >

— — 4> Ml N 0
"O 2 Q.-2

a so.a

Q. a£

3 tj 2 a .2 J V t O. —30 TT
0 ' 3 '

O z ZZ* ^— ■“b 30 “' ™ « ̂ *s ib-«
- “• -f ic aO u • ̂ UJ u?■71 ^ -b --. = _i - .un ?2?Ud 3 ^ 0

3 P U 8
r\i Ll

v ! t 22 G

5 rr *0

a.
CL

: —1
— j

* a
■y ^ Fi £ *> i p a x >,
£ c -5 - y ® - .» ^ SJ 2 *>. 3 ~ !>v M U ‘̂-~ 5 > .2 3 .as 3 cm S' e o £-: 5) >.- F 3 c-> > _: cl 3 >* ..*- O >* X -u sa 1 _ ~ :3 ̂u.5 -2 Tt uLr̂ ?s -rv *3 > -1

^ rj ^ — *̂ SCVk L a m>, 3 :a ̂*1 cj
a. 55 = - 2 ^ ^ 13 o u - a V o -3

r • o So-a r'3 ! / , oo 2 5 3 » S 5 12 = =k 3 .= -s: U

I a g- I 9 * | = S = g | s

3 i ^ l 53 I I ' M - j ^ o i §l
» a ‘J 2 -£ 2 a = 3 5 .2 ~ t , * a

o s l s i l M ^ M I o i * 3 j > I U l i H J f *: i s i p - i ^ s f 1 i g | | = > p i l l ” 1: <J w 'o' • ̂ ^ ~ d. 3 = x > §* S 2 5) ;,2.i:3t3 <o .
f „ i i n 3 - t n < s 3 s ^2 2 3 C ^ *-» “ fl J (J . ~ C X 'J X I Z h, ?c S» • 2 « -1 r f >1 u ,15 -f- ^ ^ -X "“s ■- On w

o 5 -—- ., sc ■ • in ■—- c .—. a< cb 0 - . -j ■ gb.0"
> in ■- 3> - ‘ x - s ^ i; ^ S -r 25 — Z -r ^ t- j^a. f-»

— briM 71 >0 . t -3 t 25 OO 2 5- . 30 . cl • -X
"2 «i « S .2 §• . 2 < 2 g - 2 ^ 2 2 2 w ^ - ' B 1- * -a -> - as s r g

«« H - 5 < | < r' . d ^ O

3 ±0 36-a “ 5 cc3 -- 3". i l b ’ J - . ’ .-. . I JS'I.S '*S . gb .
’5 — i 2 fT a O 5 ' yi a -71 . 71 U ‘71 7) (71 71 2 ^ 4 > - 0 ~ 4 ; u. u r» - £
S . ; s « e S EJ i i« s j i - 2 a 2 2 2 2 2 _ 2 § ^ a c -u 3 U i d .-̂ 2
fiso c - ^ — Jq -g*^ -> d 4.) « <u ^ <u ^ ^ . r ^ ca <u o

LS iS LS US ^ US 04 X X X

=1

o X

^ tv — ©0
I 0

-S 3 t S. - i- i ^ « -C « = - ^ -c S3 .S = 0' u a u**• C ~ “• M “• 3 3 L̂“ o “• •— X>••a -5 ^ 2 o ^ 2 3 < V) “ F. ^ ^ c ^
u, b- 5. a 71 a o c: rp -4: - *5; . S« 5 a . c . a . 0.-= 2 5 - 3 g ■ g a ^ 2 a 0 <u c? .2 J 5 3 _“ 3
3 | a | | a | fs ^ I -2 J < 1 | 3 - | J | | _ y
5f. ̂ ^ cl 5 " 3 2 - ^ 3 t j 3 ' w - r t '-> ^ b< C m . > s x c % -3 > o *a JJ . - ^ fe E "5 < § y -r 's 2 5 r3 r3 r3 O - -j ■- d -3

5 « 1, F c - c - S S C -a 8 ^ 3 “•* U ̂° S i o.«n £ £ d ^3a s i 8 c l -2? 5. a F 2 . ^ 2 ° ^ o L i ? B 3ic u 2-?! ̂ = x p
.a S' .3 o . g . 2 3 . 3 3 | .E 5 o o b £ 2 £ 0 !•■= >. 2 e .2 L ’ E c ! - S . *
- X C a o c ■= .= a ^ - £ > ^ U ‘C 2 "SS o >i <S ^ 5 ■= 2? -m d w l . 0 - j* q . ^ 0 . w

^ E £ ss ■= ^ 2 ^ ^ * E § <N _ X ^ vn =P^ 2 5 ^" 00 rrj o ’j* < - 2 58 . o c ' ^ > ^ > r E ^ 04 v, d

I f •< la = ss H 1 ‘ I J 1 i i ! Ji.1.8 ?■? 1<3 1-5 4S ^fsf* « s ■* « j* : s. a 1 a 1 i=zis L'* 3<7 i i p 1 1 5 * -
?A u ^ q C S E ^ ~ w o Cl m W C — ? r n tTvi *J ^ 2 — ■— z> C > _j

' * ^ " ■§ < t 1 f ® •*- I -5s ^ j= ^ ^ 4- .a — > - § ■ 5>"^ C ^ 5 ^ ■ —5 _ 4 S g - E ^ - S i 5 X ^ -= .a S3 , E 2 ^ g - i I 5. ' f ^ * *

I S c. a ^ . E S « 5 2 S. | £ d * ^ ^ 0 a - a g- i g ;2 5 ^ . S i a 1 ^ ~ g > = a a. H a 5

a t N S d § R o ? i g (i , i ? ■§ § ■ a <--5Jn u £ ^ ^ . 5 i Z 8 3 31 J = "5 S |
w — Q Q.£— 2 <t 5 u > 1,1 o J D 9 S - * Z " a i 2 30 ^ ^ P ^ C 4>U £ -2 *“ -~ ■ "3 c 2

2 lU “ •“ _ _ 4i a q ' " t 5 K o * " so ‘ S i ® • — b 7 i 3 i 3 = s > r™ c y ?t — a “* >1 •— o2 ■£ x - .S ■ ?« o. 2 . 2 . g x u-b M e j - _ 3 7, 2 o y . - -*- c . 2 s = X _ .. 2 ^ - .__ , 4 _ so.Z n i i <
x-u g * r

■* U a
y

as 1

J - a d ! d ^ l - y -S p ^ A ^ -x I J d . § | ^ " | g - ^ . a— Bc/i— 2 ^ ~o — ? 2 2 . 13 g a* a.kj sa §• ^ 9 ~~ X 00 tT̂ r a-. = 3 .a m 3 X » t3
x | u | | x S ^ | | d S 1 I C i a ^ a l d J = ^ = «

■ S < 3, .^S ji'O 'S ^c J ; > 3^ I ' SC "3 “ So * J-g S '§i “ ” (3 5 i J = 3 1 I u ?

H U I l i ^ d g t l | | l 5. | y r r « 1 - 5 3 ! l• r —jc r- 5 u t ^ s m c u ^ o„H ^ ~ u r r i3 u a a a ? >,1̂ c - 5 ,^j£
-O r. Vi u o o a n f f S S a ^ c o v ' i ' «*” ^22c-^ G a> ^ c G C C2 -= r̂ < G ^

i I l l g S r<aa 2 l i ! u s »fj§ I i“- =
■ S S - t t ' T d | u | _ u | . | ^ £ E | s l < 3 i c | | | | , 2 | | . | - ? f 3 | s - r ^ S . i < 3 ‘S2S' :U=-25SS;Z|s
9 1 7 g ' j d N S ^ ji C) “ >2 -a ■*- 3° ..•x:0 --2w ^ z ~ - C: $■=> Hi “̂ .il—. 3 U^:rb>c .'Z.— '^ J

u ^ ^ j s - S S ^ S t a a c c a i i , t l ° 2 J T a / ■ 2 = 2 | , w ' ^ ~ ^ 3 ^ n 3 w i : 2H u 2 4 ^ - J c c ^ S-2„- • a ' < | :9Ew 3

£ _ 5 _ v5-§ J- ^ 5 s £ 3 - 5

3 5 z: -j 'zb £Z vr -> ^ y, ^ ^ -3 y ̂ : v J -J > — ^

Oun x.
O

- 1S“ -• = ?;' 2 u l o - ' s »a-S|i0 5aSr?5 „‘ S3 S->1 S‘ i ^ , * | 2 i= 15-^= 5 |u S J Q =~ , g ,- J-_2| 3 |0 «j,_.̂ ..| §_ 5— Li “* Z ““ .CS -i X- = 3̂ u- . — C J C x C nO —
3 -a ao 2 > § L g Z ' i *3 O <3 ■« - e .£ X u o g Q y ^ y y § c O -g X jg iP 3 =: 5 >j > =

.u X X X X X O X Q Z G G Z Q i i l t i l x x x x Z

Sia«îWi»«wi0>WWM̂UtfSC

n -X
"" 15
■£ *

' ? H3 r-~
. 3 r ~ 1 3\

= | « 7
2 i os

^ i =u. 30
>2 f'1.2
u a. 3
3 s- 3

.2" -

jc • o
a ic 2 Z jny r~ - o < m .a . <n . — p7Mb — , C30 . 00 X >»(
t CLr'~ 2 5/1O' g o i > b-— — r \

75

(N
X * - S -3 . u ■ —

> . s ay O nOS Z
>11/1 ■—._ , ^ , 'c n i r i s '3 sj’H /> a d M = y -X X

= > 2 d 3 o t j a i < C p b ^ > 3 3 ^
• i l - y ' O - y - 3 2« F

< , 5 a n = . h
■g | j 3 j | -;SP3 = tT ™ -̂̂ = _^X — b_ y . y . 3 r' Iti i - X x 3 C F. r-
d ex 3 .? 3 -x a - 2 G y z > Z §.U. 03
-i 3 l .2 g ^ - 2 ^
“is °i |
t j ' X :/j ^ c/> ^ -0 *tT a. .-2 Q. §J Q. ^ -c .a >

~ Ci0 *_x H r x j * t2 “ • ©

S -ss^is*- *8 !a. eu a. a. a.

71 I 33 t'' .3
=0(1 y

'X CL.

r o x -3
%i-si f
5 :8 > x 8
y i 9 C - b COSl^-2 ■ • 9 ? ;2 - ;

X 71 U X . T .3
^ Z028 k3 'O>•3 3

2-3 <3 = a . g
3 3 . S*

2 - §■ S-s, 9 0..3 |
^ - *■-»»

t J 1
oO

: iislll'x- y s /1.3 -- c -2 - a 3
o..= 3 S 2 x
•5 . s i ! 3 =o C — -. “• 0b L - » —i 7i

S . ^ ’S S
£ S w | 21 ® —

- r ^ . w >: c j . s . t o - L, : . -ES 1“
" ' ^ 3 2 ■ =o u x - 7i — —> g y x n — o . 5 a•2 2 i2 y xfN C • i ' a a u a ^ y a7 04 OS OS

y o
X >i y-

U.O

'S.a.3
■> z

a.— jgoo y
29 -a

M i r
4Z;■ sj c x
3. 2 S ob
2 = 5 ' = 5 -5 a£
3 2 3 -y
§ i Q #
F S y X a y b-y y c ^ E a u -x; 3 y -3
' • t j ' r O y X ̂ 3 y X OS 5£
S.| S r
» 5 l a2 a Q .

£ w 2 g-j

2 > 2 U . SpM 8 . 2 > a* « u
U 3 S U H

£ <£

<9 — t?

!2> n

73

O“C ao
^ 5

j s '£
U 2
73

2 p g ; u<7 1 “"Tl 31 - 31

CL —
| x
y —; X 3 2 >5 ̂
I I

3 \Q Q.
X I M
2^ £
3 Q.X
7, 0-0

f > §19 X c— 0 3a > O o ” e
=0 ~S0 goo
I N I1 =o y x f OM y
a- F d

^ o
04

71 - *

a -p
3 a
c g 2 £
a 2

3 -2
a 2 3 C
< E
x !>

y = 5 =
Z < > <
* * 96 .5 s . S =I a ai a

. — a . 5

• ■ ■ s s - s o :

^ 3 . 5X 11 <
< | < 5

o X

S 3 S ,> |

=; 3.
' • 3
, C

S 3. =b
£■ 3. o

LJ

- I 1.3 U b̂.2 spoi
3 . a >oB. b. 31
f a x

$ <3 'C

3- ^ 04

< i y

C,"5 ^

X
CQ

o .2?
C 71- y < S3

x
e

» a 0 i
X

• U

c
CL » .2 S > m 3

71y

y .i Z 71
. . 90
3 3
3 0 0
3 d

5 zL 3
,=b c

2 3

= <S3 =s-y §.§
-O ̂̂ -

c
5- i ^ iJi ty

G ^
• • 00
- * 2

■ 3 W —:
? 2. y y

x i., > 'X' y 2 3o so . 3 1 3 — - 2•c; 3 co >. a • 2
y 0 x so j> ^ ;g,y a . 3 q b" cl "?o' ° ,y "5 3. ' yb. >*• x x a — x:
o . 0 F : 0 ^
^ 3 fd 0 . ^ 0
« i y _ ^ S ' x c

1 5 3 r ■ I ,o 2 vj
e " X c ' o 0 3 0•71 B 71
3 ’b . -

'£ 5 15o 3 o 'b04 04

< y

£»
8 2
5 3.3 a 3 ̂

OS

71 < C ^ <N . y
I C 3 _

O O -0 3

?<•-=<S3 J y <

X o So
X CO o
; s a

oL.CL

5 F-

d 2- Z 3

&3 - 3 CL 3 - 304 04 o04
=*1 s-x ̂̂3os

XX ifCK - 0 0 .O' . a w rs "
w <?i y Sr u ~

. - p 2 ■ y<r w 3 C - ® -s: «• ̂■r'X 3.0.• ® ̂ X y s •OQ - bQ M fej-a-2-2, • 3 o -M* ca U T £5 U fb| ̂y >13.0 ̂ > 3
OS 04 C/3 CO CO

=0 X

^ .y X. o'
X b .lS =n 5-̂ §•
• <-> —1 3 --

X U ^ ̂ -S'— VD — wrj w/IO> g. ON — O.
. >3 . u. 0* —u. C5 u y -y F y a."r —-3 2 3 -3 a 2 o>1 CL l > SCO V3 CO C/3

i 2 "K so b. 71 y .2 CL-*1 S! - a C ^ C -QJ-X C/3 9 0 Q . _ l ' X - 3 ' X • y 71a S 2 b?5-£ 3 o.yj=3c xx̂ 3° 3 yx n 3 —̂o 2 X 2 £-3^>0 O o bj o CJ u rvSu ̂ 7> ̂ ̂ 12 e ® *s0 ̂ O •» -« y» 3J£ -o 2 Co x U c J2 s- ^ s *G “2 3 3 2 -3 ^ ^ a a E n > ,© © 3 . >m u 'SiZ o ut? 2 . m cas u 3q.2 xi C u ̂ c2 »• . a x’cr-9"* O J- x . ̂ gjq o o 2 Q }j i o y a j 5 3 ̂i v. *̂0 3 ̂o >» 2 o uiw — G cx o Pa 5̂ - o l r- ̂ c rm — flNO!j m jO w u. r2 ®P S m i3 u rn U N -C L. w
O u

e 2 -g 5 J2J.O 3 2U i a u S£ <C « ^x - .§ o £ o S ’§-O3!? 3 7i 0 b 5 CJ so a>* Q?b. S.C unnnSO "3 2 O.CO
^?y''0 3 0 « o <0 ■= J Q. -5̂ 3 8,5 -3. 0 iSri! X ̂ X a -X 2s 1 _ a'flj/ “ -3 a u u 2? ri2 cm Uri'C u u ,. XC- — S 3F « y-x-'if != 3 ci 3.- CL yx J2 x a ci -c — o. y L y .2 ex y71 — i9 Si_3 o_a c.y < ui 9 ? — O C — r a 3 5 X u ̂u
0

CL —
3 fb

§ 21 £ =£ • ̂ y 1-3 8 I a *11 2 -2ox 1 .y o g;| & f 1 1 iJ 51 =oS§;, I |a |.r I || d |i(̂ !| «̂ “gc3 I -3 | I
ca «S!2 C ® *" *7 y ^ O U -M- fli CL.9 *-f — ^ gj (■<■) c 2 ■»>* C w 2* S
5 c l - £ = 0 - o t p Z j) 0 1 o . . S 3 « “ > • - Z j a < 9 o . . _ > d w § - 3 a = ■ = > • § c

•7 i — 5 Ss a ^ i c < i t- ^ b- ■- — u x w a x y 2> F <n ° o. x H a 3 -2 o2 w -5 -3 90 £ * <5 * _L a «<-c2 ^ ^ = 5 Q. 0 ^ g I u^7,2.a c | 3 >3ŝ? >j a in ^ ^ e Q © «•* ^ ■fl © 5* 5? 4J 2 ^ ©■ a 55 2 ^ ff qq ca 3 Ta CZkS -|. i s = d . l > | S 7 i S > , 1 - g . s B £ S i S s | = - S s l s i -g 1. 1 § s s §
S.^-'2 | (3 - d a = ! - S 8 S 4 < I t i s : . 8 s = | _ i l a ^ s c o t » 1 ; 'S.7-SS
f t s I = - . a £ ! | | 7 ~ | ? z « S f ^ g % ' i « “; R ® l 1 s t 5 b e g ! i
£ 3 'S' 2 ._; To^Ob-O.'4* y g - o^5* J -L . S3 ri ^ - g Q . S J. a c E « s 9 t! d " t S 0 *

i HI It >:§s II Jill “ ll-'rl̂ § § 1| ! iS4 l7£̂ |§Q.-S 2 13 S's a > — y ̂as — 3 >,w 3 ,y y _Q 0 — 5- q.(N 2 y 2 •- ̂o F 0 .0 - t i l , (S g c
71 ! 9 2 - c 3 o5 8 . 5 ^ 3 w - 5 ^ t > ** . -2 s S g ̂̂ y 3 o.— t a S b-, - 5 aQ 3 ̂ . . i§ .2
f i l i a l s 5 > l l | g °.-Z3 1 “ i | = “R I" |̂-g»§| rlj|s s.= |
Isl5l=f i°, m l fill ti .11x11 1=1=11
fstilii 11 iiifi if it ii tiiii|iu |ii| i|ii| }{i jgoi
< ^ o | i > a i j » | | u | | j s | | s t l
£!s0j3w *1 = «.S! ciSÂ uililisa isaSlg &$*■ Sfilll2l,S'Sl-S ^§2 o|K SeJ . 1 §-?-sS-?3 S'S =2 j ; - ulŝ |P l fS-ŝaOoSl grr„g jsicjSpo-g « a ai ̂ u §•-; =-S-J°2B. sa-'i5-“ĝ :| 5 = 932 =2 dS-2 Ŝt< Sbg §..2 •sM* X 3.2̂ 71- ̂ •nSwOy = 2 Ĉ̂c2' ̂ ua..-2
^ 5 ^ 2 o 2 c i c i ‘̂ ^ " ^ c S 3 - " 3 ^ ^ —i ^ £ ,J ? m 3 "3 ̂ ^ t* w w ‘o •- C 1 ̂ e a y a Ĉ" 5 3G 6 f l i 0 o ^ » - ^ ^ ! 9 © - UJ ^ ~ ? “ 1 r 1 ‘31 n ̂ rt« 1 r;i iiiiiiMiii irî |I<j ̂ 1111| s-i =î cii Hi n
2 2 S S S S S S S S S 2 S S S S S S z z O O O C c ! £ f l i

UJ
>
3
g
a&'UJ

O
CJ
3

■o
ou
a
a3

>>u
3u
Oar-«c
<u
co

U

zo
C /3

0$UI
CQ0Q*
z1o

C C C 5^ 4J -3 .2 •'. C. >» A :/3— so- V ja - 3 2 5* ̂«*c/3 "3 — ̂ s- — ^ Cl* O

o c 2,E3)S- = 3 .£ ,y — ̂ u ̂ ̂ ■ y « - . ■
u W '/i i/i C3 i i ■ - — 1“ i J 'J ” J w i i v —i i JO 1) ^ e 3 C _Q r r • c — r * C 3 '̂ - = L> ■/:1--u 2 :y E - o = - ^ jg i- 3 cl.— d _u - — - ac y a

= j j i : U3 ” S 5 o>=- «)Q.« = = y
•S a «-« S-g 2 o-S r r f l l - M § > - s .3 " - g M s
« ^ .H J:S b S ;-5 ? -f l §,§ : s - 5 S u ^ l i i -2aS

<u a5 C A >> -y3 Q
Q — -n ^ CL— l> T3

J=E— -C4)i2l-,'JT3S •
- o S ■= ”° c u ^ 3̂ •- U-• \ . y* ' ̂ 3 — • r* r« '_r̂ u r *y-JCa 3 O 'C f 3 * U 5 J2 C3 TJ2 , , i i g*- a- „ £ a ,;c 2 73 = .2 .2
d p 2 - 72 "a •£ p _-2 oa2 cl-2 g o Q

^ .- (u C O o c ^ iS U "O — 3 3 S .5 Q. to « -u u o /C? c _a a. n Cc .5 -T3 5j a

G
> ac

zc
3 CJ 13

a G
a. V75

£ G 1) c u
m

a
>

3
■3 ■5 U—1

O
1/3 a

<—
ZC
oc
cv

Cj ip
p

ro -C O

a

<U■J3
2
a
cj

O u
> i.c ’
CJ 3
3 J3

a D 1/
c ys

•/1
<

S "a a X3 U* >%W
a1—

CJ
■3

>
u V3 3

U
0>
>

a

_ a § . a .2 5 -1 ~ 3* £ ,_• a ~ o

3- - 2 0 2 ao-Sb ̂ = -3 >. ̂ .* ̂ — OCl j» 4J </J 4>
0 £ ai ,7° ̂ U IS STo „ S',« g ^ .2 O £ « -g

£ 8-s a §• S ^ 2 a s ^ < 8 5

•3=cavZ r̂?»c?, y§n»2S .'r'0(J'Oiuu ■ ^

C/3 C/3

0 ~ -5 c ' ? c = L O S S J 2 2 , -a
5 / I i ^ § g s -? a .§* - s s fs p 1
3 ; ? s i u = 3 - 5 | s s g : o - A ' s J . - ! su t= ̂ u -c E i l. vo ̂— o « rr

■ — ^ " 3 2 - vi (j u . 5 o u -a. o • ,̂ . > -sc U
1 -; s |= | = | | :.-^la:&1a~-

? I H i ^ I I S J “: “ ! S >s?'f - ‘ | f f
3 1 ■s 8 S | i | I 3 s ^ i l - s ' s l l 1 °u. ^ 3 o — 2 5 ^ c « o ̂ 8 « - s 3) ^ *-* ;3 ^ ̂ _ c 5* cj 3̂.2 ̂ >- 5 u. 2C -. SJ C C <W 2 o S > !• 5 Z SO ..5 S, G o S*^3 - s « 33 o 5 u 5 'o - Q.-*: c m -a w •— u -s
0 - c ^ a 1 c 2 sr j - u ;« !3‘3c''§e3Ji-c-S5' .*»■; 7 u M c ̂ q ® i?; B <u5£ "o'u"q.:/,§h5 u’CJiC5 Srii.i 1 « ^ - aa fl5: = g-S-o 3 «1 »»
2P-3 i - 5 § "g.2 cu .y -q S m-3 j S 2■ cr -3 -3 ~ -»S « C/ca — 0«t?C3 css
1 a -3 sL« S J s. ^ 2 .0 O '= 2 a 5i .s = 2 S>r« . J2 ̂

.a^- 2 ^s* i. | 1 J 5 S'.s^tS-g 2.^3
■3-1 gs| rl M M H §"•=•§ si 41“

S»s A- 3 7 5 fc5? -S 3> 3 « » ̂g 3,g «°.s a.s.
§ 1 § S | " I ' S - S ^ ? ~ £ l | ! :S '°1'S'S 5^

i i a E i i g . l l s 0 £ 5 ! ^ s S c .s M s - lg ,^f c e o . * « » « o « - ' O a > , s- -= a S y 5 - 3 «>•■= - •5 = 2 , ' > ‘ - “ • " c I - a ffl « S "a. no - . 2 2 S Sj 5 3 .2P'3 . t5 -—^3 n a. y « * « 5 .3* o u ■— -fa 5 o \o h a C-*-2 '— ^ -2 2
^^O -sS'^O* *S ,2 ^ 2 9 O f ̂ n £ r i> * :^ v io O ^ O ^ sp= < ̂ Z Tf g jj --^oU'Ouu • ?t sS 2 r s«-̂ ^- r> -i* ^ no 3 4) ̂ n ^ rfl (N — D /-“v U ^ OS - ̂ •C>J?3i ,n S ̂ . .y a > So - iioo » . « cn -n . - .r ^ , j g .a n 5 3'so'ai< . •- q > . 7 c £T) '5 -rr - . o',--i-~ -§ 'S ^c'M£u: iS 3P ^ i P 5°- - -3 2 2 â » o * 5 - g S; 0-3 o 3 _. g J 1 vg -a ̂^

t: « «r £:
sCf 103 E o' —i. a n ■.S. | ̂ ̂ 22 — o. — ”3);
C|

■ 3 = 1 H ' -

1 3 - i * 3 2 aJ2 ,̂ 3 U, - 2 -5T

{fl D j ^ 2
* 2 T ^ y> — us us — o

0 3 ; " I S S = - - * a
■s a - a s
1 s..?-s * a
. 3 2 = • ! I
i j - g 2 3
0 y . f : .la:
J -9 j S I 1
& ■ * o f -3 -
C 3 « & -3e 75 J "q a_ O oc
1
o „

y

i ~ > 2? 3
t -3 o S 3

S 2 j 3.!a o s ■* „
1 [2 2 S -250 O ^
8 * £ 1 1 “ a. -*■ = ■-

* 8

° “ <= S -®
o .2? 1 « 3o
B Q
H 2nA 4
" 2 is ̂w Iw
3 o
2* O 3
n S t a o —u „ „ i --

3 3j ?

» c | S 3a j < 3 a -

§ £
a.5 = 2 . ,

&Jg J S

i*s’Ji Q
w Q .£

. 1 1 3
i f B l S

o o * * 3- *

L. -3 u ra a- V C = 2

a. £ u.2P“ 2 ?^■-•^4 '» u* C W -3 ^
S - 13 y o

"3 - = v» S^ _ yj ;rj <C O 5

3 « ! - ..1 £
2 us § 5 i 2S cj t>

- >
'o §>'S S 11/5 c O o rJ? 32 o w n = — ̂ _.2 "3 2 5j a a- — 5, 3 i i a a r!s o. S u ^y 3 c s- c
3 = 3■n E j« O 1-

5 -L V5
>» o

u
c C

£ 8 . - 2 _ . - x _ 5 a.

0 — -2 •/) 2 ic c
H 3 2-15 2 8 ° '■$ 2 *
5 a 2 g E f t a 5 2 „g- C So 2 y a. e
2 o 9 f l » 2 - - !«•?00 j
o

30

2SO ooS* y a •= ^ »> » i

BJaifljll-S
l“ u i 2 u = ^ a u c
o S o i i ^ o S f l u 2 a 2 . a .c•“* C d_i a> ?? U Q. ^ rM •w

o 73

u a.
c ea . y

2 o n h q . S » - I * S

2 12 •qon!9 C ?
a J a . -
s i gJ— H M 2
^ o >>* .. tt >

>1 oU nS 1 * 1 § u 5
_ 2 -a js3 c ao o a.
| 8 . 2

„ o * ° * a. y y

a >»** 30 ■= .a I
^ 50 2 S 2 C il 3
1 « o = 53 ° = - u> (8 O 51 - 3

ou •33

1 -
“ • 8w 3
> 1

c £ -2

• 2 ^ 8
— 0* O

ou*Se9
g a. 2 2

S !3 -C

w oo.= = .
° "S =

* a Bn §*'?? 2 ». §•’

J 3 s a 2 g 2 S 2 - 2 §• =

“ s»'a > -g - s u 5 “ = 3
?« v s ^

I s 1 ? 11 M I
3 . 2 »» u . 2 2

‘ Ti. S j?, S ««
•3 JJ 1 « J j ■§ - .2 3 a S
is “ "3 "" Sa. „ c o
u S .S ’S .= -

QA 25 H ̂71 ^
8 -3 J s j 2

*§.3 » g .o .a ^ l l .3 I s
2 2 « S « i g = S-SQA J) M« CS T 1 • m* R 2 b« 3
“ -S ? 3 4J ̂ •= a 801 «

50 X

- IS 'S a #.2 u
S ' S ^ J i G T3 2 ‘̂ > —5 " > ■ 3 b c , S h ; c , tj s » rf .5 o —
b § 2 3 is * o 9 SL —

o u b c o « = t y> «(C>» 3 » . ?-•>
a 3 ««jj "3 a-;s S' o l a

-° S' S S a ~ 2-.2 -is a.« M — g E S S .? 3
§ • 3 * 2

“ • Sb
o

= a. g
o
aA

2 s « * E .2 « C „• 3 2 2
s c - 3 3 ^ : = s1 >.aeS« u o>i«5'", y, 5

fi ' l | I
« s y 3 „ a

5 . « u- 3 a 5° a _o — -5t3̂

s.| =
2 > . y J J a « s g - i p | - * . S S
3 5 ^ - " > ° « a . c S s A y

 ̂3 -a I 1 52 o - ^5 S | g c . 2 ^ a i ? " E.2H c

j g S ^ a i a S j i i
“ 5 U 2 r ^ J ■— ^ a = 2 =£ o3Z'e-3 u O .3 “ 3
-C A .5 — £ , -= '/J = =0“ 5 :8 O — U - C;„iJ » s = w , -=u r, j o 2 2.2
c ^ — S y ‘ -a
3 ■£ o u a.-a -VI >. — u = /?
« 13 = - a a > . v, a

o § ' = J = 5 « = - c
“ - a 2 «i 2 « a ,2_ g u . P o a -s a.^ P e a 5Ji
§ | 3 . 2 1 5 a » ? 2 i . - 2

g -3 1 £ f “ J

y a. aI tJ) >. J2 « „

Ba?!»a<<lN
S.'S'3 8 |
8*8 8 8 a l S
e S 1 5 § 1 m _ * s . a a 2 _

'K I » 2 j l « . a 1vi '"* a .js a
- - -- -■ e^ -3 g S •" a.IS 3

, s 8 B 8 . g a a . s
y a p o c* > a ^

- a O a .-15 o o js

& -o o c '" “*O " » v» - C Q 3 0 v> . ,

S it l l lHt- 2 .5 o CTn
O j = S S S „ w -2, S 0 a 2 y 2 J

C y) U« ^ £rt ̂ Q ^ ^
q 3 °-g*S.2y-3g ».*s

cq o S b g g o o c ^ j • -

ll.a S 8 3--S 9 8 - 8

2 v> o _ y jc t 3 •*•
g 3 . & 1 3 S 5 . 2

a .2 E « 2
« = u JJ a
y §* >, 2 3
y Si V> y ^

“ u C «-2 q
p I g:'qs

. « 3 8 . -
1 - s g i ^
2 b »• .2 -a
5/8 <J O CL--H

l ^ 5 '

o
. v T f i
^ 1 - 8 - s s

i - £ 2 -§| g o. *
- ■ S a g sra v2 *d" °* « 2 v2 y 8^ §■

B C <m .2 r- T38.2° «o S

BO »> •
i J g ' y - S l
o S 5 ^ §
2 ̂ a J s
1 - 8 . S > .g

l= -lll,p̂ hA

§ • 8 § P S S

C3 Z
3 0
M S

— - j
s : ^

as <
O u
H H
0 ! «J
< >»
(J c«

Cs< H
O *W U]
-J 0 .
W X
Q Wis

-s y .8*1 g. so y 32 v> o o
a y >.—1222 o _

-= . £ :sJ § 15Q| §s
S.S ̂
Q °* fc

U

aa

2 5 S. a - 2 «
3 e C y ~S • = S r g
a. S3 ^ - 2 b ’5 . 2 2
E g * y 3 -= =

■r* £? -5 ■" > »•
c ^ 5 - 1 ^ 2 o

3 1= -

js -3= v, -o 3 y "3

^ | S 2 3 i "S 1 1 "8 2.y ~ — 35 iS c to o
g i a l S —
2 c B O w r » q q = 0§ « ^ s"“ 2* i -H E y
B « "• « J? s § a >2 -s
S 2 . 2 ^ < b S , « j „<2 -3 « a o S S>x -g
W o n 3 2 > .■ O 5 .2 T - a

a *T3 “i . —
S so— >
8 ..S -S 2 £*

e I ^^ a, E _
- s » o c ° o | S » .«
s - . S e . 2 P s S ’a „ “ -o

a, o. a 3 =" o a
9 < g i | | 5 . a >

a. 5 8 S ts

q £ S -8 u <3 3 “ ^3 S — ’S ° ^ 3 c 3f ° S 3 i , « 3 2 . M C

13 I l l ' l l i f ^ s 1
^ . § S 3 3 ” 3 g a S ES=SI 1̂ 1 SI I S - "•— » f c < 3 w o 2 * . . 8 n
•| € ° “ =.8 8 §1.a S'S.

8.1 l “ f - ! §'s« 5 " V 2 -5 S. S3 „ "S C
o a . 2 j o 2 2 S 5 5 ' 3

S A S f l S s ’ o S ^ ' S ^ S - | 5 » S 3 « ia a
- 8 0 .-0 O 5 - - °• a ° y

s y q?

)) 3 i 2
a

H i JJ 2 S0-3

e ° «■ 5 r o 2^ T-»

. = s
v, 8.
^ >>

a . o a c 2T3 ^ *S „ ̂2 _ o 5 S' 12 ̂ u o
£ H . H 2 £ I E j 3 ,

Zo
H
U
U
Q
O
OS
HZ

i - f -3 «a > >» S "3 ̂-o
a . « ■? 2 2 «* i S “ * c v» c -3>. H >»'3 9 5
■̂3 !*> 8 S - 9 « s 3 = »I i i-MlgS § a a S °<i 8 § 3 bs »« 5. . c S

« o > * 3 2 - 1
3 - S s « l a §•
abv« o y a g.O -°rf!,88Xw &})T C2 i K O O

n i l ' s ' 3
_ -3° 2

cI
>. oi§l-si l i siagllaJ § O I « 5.1?

- “ 3 s a y 1 3 - a ^ : « g
8 f I 3 |s . l

••3 S 4> 5 Oft ® 25 a 4>
5 3 i . l 'a 8 s>» S..S ^ >- -S

?9 O ^ ai «o ' ?

t s | i l - 2 *
i S a c ! S 1
a I 1:-a » «-g
0 , S « a 8 s ,

S 8 -n -g y
1 ^ 2 =

S - q j = ^ y q 3 o ^C — A t- 3y O.J3 a..5 sj
= 1

1■ 3»ata
i l l I^ a _ EW) M

aS'-® »
3 < 3 -s e

S .5 3 « 5

a
■a
M
VCA * O
l l
Q i
1*1
>» a

*3 I
a .3
•S'*

4
s i
a i
1(5

O

UOVI
8
o

J 3 5 2 50= ? - s f i S2
d 3.5 0.2

° S ~3 a. o >>
=5 3 2 -a *gu g s 3 a. g•* £ § a 73 2 U2 g I ° -3 « 9
so-3 -yj 5 oa.* — £*.c 3

« s a ?- . s j, ° .S5 o13

o S.3 o u |
■5 2-8 c

O — —

8. S'vi -s a q*
- S>= H 5 -

_ o.

§ 3
b § 23 * a "* -a 0
1 5 .a g § ■s 8: S'*2 -a § “ *
y 1 2
A 2 M

a * -
| jj s .a 3 ^ §
3 g -if-f
1 “ | 1 1-a z

i 8. i a % o S 73 .2 *
q = EL a « £*3 Q '*» 2 3 >o a 3 o <= c *
■S ■B "3 — .2 <2 g

"5 « S y
c 5$ y -- m y >, a.J4 j= u >.
.g x? <« a-a m
« S ”3 S-fi § «.s =1 s I g»| -s
It, S v> "> o s J

§ S' o M o 2 5 S - 5 3 - S P

§
h -3

2 .2 y -a a'-> .q *■* u
3 a "2 - ft. S5

1) 3 w ,
8 2 s a s •90 3 S “
2 1 S 'S ^
q, # K Uh v>

u y ~ o■£■=1.2 -J-S
W D

1 1 l l O £

» 2 y ^ " 5

^ = : - s
" a .; Xi q -. a d y“ a — "33 h 3 - J 3 vs ^ O o 3 “ GA .. O u ' ̂ S -£ W
j? - - y 1 <+* v-,
2 u « u o ^

i M 2 ^
= i a .a„ 2 S 3 -2 «is 8 s .2 *°1 8 y « i a &
1 1 -058 3 .2 1 .3 a 1
‘y-q a. J y 2
S . a 3 - . * j i| .s.sl'sf 5
y 3 t3 a. n 5
> — 5̂ -Jr* 'C — 23 c j » y „ 1■« <2 = y y - a =^-S^-§ii
^ y S c8 • " p >* - , 5 o ^

S' 2^2-

C 3 Oa X3 3
q, ca —

u-3 -a
Sg 8.
3 3 Q.P CJ o 3

i js & 1 4 s .

3 ^ 1 ^ 2 -
M H."S-2 S’!
d - 2 c i s o
" e -S j* g J* c
y —■ _ •« a . b
■S P 3 =3 —

a l l9«— ca ca

a.

^ l l a i s §

a s-i a J §

<j o 2 ^

1
qj c^
1 3-
o ^ ^■£ '-i3 -rj ° ̂ i> — o

5 n “

S'a > 33 T.y * c H rs510 ^y - = i*3 ̂"v5 7; rt;y -8 a 2
2 5 y3 ,S.S ^■3 lwJ -s 3 °T3 y ca __

=
2 3 js i as sH ^

3 ^ Jo 3

u y 5 O u •§ S
-s -s ^ ■« a § s
r- P «a a* P . 0 — n ai3 SI U “ O G

, s | | "2 5
S c q § §; 3
s . ^ | £ V C W U•fi •“ to 3

H a l l
! ? l l

y ca >> y q u o

*— a £- ca .a —

y •q 2 ja -a 2so y C . 3 “3 ■“
* 2 q « o e v! — 3 y y Js o U ca >. 00

-J I “ i 3 3- S
cd . 5 q ^

■a J i g 8 =

8 « lx JJ 3 ̂
I -8 I « l-a
I *3-1 * ^y 3 ca rt* y •a 3 633*1 5J5
o

(Q vS.2 o c* Cj
? - !

o
I IA y 3

2 - ' y ° B ~ c
o -2 -I J

js . o 3 5 c JCO u* iO 2 O ua ^ 5 a§ 731 8 c §
* - .2 y S at k.
; S' ^ -s --0 •- a
a o - S S’ e■ . - i i : i i

1 o o >» 5 y
■ -S -H _ "a.

«2 « i - s
• s j i i i s - i
o 3 a «a y

£ 3 a §-2 § 1
H 2 s-o a a % a 1-s 2

B
w

CQ
U
C/3
Cb
o
a
umm
O

u

a.-q y -2^3
•3 I 1-3 s -̂gc s to — y

■3 ■s.’S
oo ca

5 | | S 3 ".= b T3 a 3

2 y y
2 •

0 •-
.3 > * H -

V)
, q y I 1 ! '
I f

a. S y ‘
a 0 ■=

e j=

y ° 5 5

, 2 y o
2P y g

2 « -
M - O O '2
>*■3 -fc v, -8

3 3 «
t; ■§ J8 8 &
“ • x w oS ° * 3 73
" * « i l

^ 4 !73 00 y S.
y S a. gs s a «-s
§* A -3 3 -3
h* A O n

C -
•3 2

1 •- 1 -c 1 * ■a I
_ y g .2 a, u
ca ao u, S vA *» ISg - S S . 2 S . 2 -2 o 55 2a 00 oao a "3 y 3 2 *
s y Us > C - y 9
u g -3 a — “P y. b. ». o a q 3 w

a c vs
ss« ‘"-8 1 -a 2
2 13 y w no y 2
c S ’S M- a g -5

<2 — w > o ®

■ i l s y l 5 !-S' a o s s
l J ! | | | * s

S ! "8 —

a - - y •£ -2 _o .60— 2 -S f? 3 ̂
55 - S u o „
J j 2 3 is vs y y^ -s 3 «2 3

v, fs a - c*
^ - .0 y o

U b o > -a3 r s a ft

• Ica a =» a
S a l s g

u -a -c op y
* " „ u Z

o -S
3 .§ I 2 Ob'3 « -a

“ I S-l ‘\Z i c

§ 2 s "I 5 §

wi -p qs G
' i i l i n t j
■8 a » 3 - 2

2 °2 E 2 0 o 73S S | 2^ 8<*4 (J do Cm cd CO

I S S i . 2 g l « u i s -£-3
I & 9 S' H ^ y y 2 8.
1 ^ ^ I 3 o I I > .8
£ » . S a E - 2 ^ y a » c § ' l

- s §•'2 1 3 S * l i ^ ,=

§5 2 § o I i 1 - 8 3 2> 1 0 -c -n f l j| 3 ft
2 > .y i2

fi a , g a j J » oc y 6o« o?f£ a^S^j.a
, § 1 -S g»r S 1 5 - ^ '5 2 B
s - i i - 3 « -9 -g a s
S l i ! 8 . f : l 3 i H Z

3 1 .*8 S - » 3 I
- . - S3 S o = 5 5 5 3

o -a 1 ^ 2 I '3

§ 2 - « 7 3 3 -^ | L a a s a »s *" g
S 2 -fi 1:5 » 1 73 4 3 a " °5ftOo^-oS25-5a,c«(=-

2 3 81 . h E 5 » - E a H
MS o *+* 0 |) 2 o u t ! u O o

Oa 3

3 £

4 . 1 4 4 1 -^= ! f
u 2 v i _ s a g - s J : g)l 8) o g— -3 S -3 . c e:-aT3 2 . S >< a
" a ' a S i o o ” ‘ 3 ^ | 0 ‘3w

a 2 i i : S S | U g | |
c' » u y M o-3 2 E 2 u 0 - ’5y 3 i I 5 „ -2 - 8'

V]
CA
Cd
U
O
X
X

CA
a
a
Id

VI -- 00 3 ̂ C w *5
•a y 2* ■

^ X y r<t_ a. 5 E -
S q a 8 yq -q =« a y
O i2 b a c

a i 2 .2 2

I t

5 -1

u o
y cJJ ,3
8 .=
O .2

- 1J3 ft
1 2 ■a

2 ~VI -:a _>>

1 < l
= >.«

•1.12 q m u 2* ft y a 3 ft
5> 5
111

I ”9 .2

c » 3> 1 8 i ... — so

a. y« ft y .£ £ 11

S' £ "a 2 .22 y 3 ■= 3
_>* y a ft

_ Q. C ,,
•J ft ft V)U . = U u^ § “ B3 .a y _ y g 12 — c
■2 C | ̂ «8 3 w>.2 S-.S 8£ 2ft s 2 ‘ -
so w cd >» O S DB l l M 51
30 O.'ft „•3.2 - .2 ■g
1 ^ 2 .a §
■s--a.s|CJ ft* — *0I .Ss va c 3
H <a i f
e © ^ ^§|5^y
2* 3 8 » 1 -

o 2 » e9-1.2
■g-S~ S
O O 3 OQo Qa 2 Ga. o, ooft fte U vs2 a ft a *0 0 0 « S ft 2- S “ *5 o 2 g.

S 3 3 * 8 2 g «CU !'C <*5 -tf
vj c 2

u cvj O cj O
td *3 .-a w

■° 2 S-A51 E “ 8-^73 aa a • - a
oo— 8 a. 55 S< 59
■as;sa'g.1-2
« 2 »o— a. a o jo a, y
1 M l
l j l . 2
« § -qT3
O'3 —
§3.= §ftp '3
-a .S oh s « ">

> O y
p o -5 s
i l nJ - *O .2 ̂

cj
— V9

3 OS * 8 J-
o u l 8 § Sa S 2

O CU G U . .
5 2 |3 5 3 5 ‘L,3 J q oq — vj q so5 ̂s 55 £ C __— mjl

5 3 .3— * •£ — y >*— 2 -a 3 2 2 IS 8y a* a ■- 2 a. a.■= = § - 2 a 5/1. * c u y •£
■3

x 3 -6 y J~
>u^ = 8^ o o
- 1 3 | >>
1 1 ^ 1 1 b 3
<«*, cd -d 2 25 Ĵ2 ? u c S ^

S.2 fi u .2 a * — o S 3 1-y y 2 <3 ■“ C o> * y .2 - H —oo 4j e «5 rq
C O M 3 • ?

*•9 “I 5 13a, >1 2 s o
2 2 M n

ft 3 " yed cd o ?s
B S " ° u J
a £ “ 2 ft .2 -2 2 « 5 y S-l^3 f -5 & “* 73
<2 j- 8.2 ‘5b ,£22hE

s 8.2 8.59 O 8
i : I i " a -j e
31 o y a a Sg l ’S'S 8 | >.

| 2.1 2 0 %
y -1 — u £ - 73■o ̂ ft G H c
3 I 3 -% 2 a§ a. y - a 2 o
y | T3 2 -2 g e
■S 3 1 - | u 2
= y ju u J 12 3
l l . 3 - 2 | - =

i a N l ^ isr 2 a .'a <2
B . a * l 2 3 .2
U, y 00 J2

8 -2 ^ a » 8
1 ' * £ 2

>> 3 3 -3 -A 2 a. 3 ,d y T? a 2 .y
c y y a a j g S - ' A S - q y o 1’ -32 0 •= ft 2 3 - - - * 2 ' - 3 a3 .3 -S y a - C , J 3 C ri

a 2 .y

3 S * > *3 1
I - 1 - I -Ol — 4^-0

: .H ?
&* o ^ 3 o

"2 5 u 5 - - .D 3 ’■* vi — ^/-• q .-- u — 3 u w
3 7 5 £ ft ft _y y
O A . y — ^ y ' f t u
y .3 a ■>. £ "3 3 3

S ^ ^ f t g.

I - = i =
W oa c

cd _ .. „ i - C 1y a. -- 5
•- 8 , 2 y ^ 2
■S ft 3 A ft ft ̂ft o 3̂ .2 2 o
9 a 3 53 O* “ U3 s y 2

i e « J A * Z
2 y a 8 . 59 o H « O «

^ a g S S S S G ■a .2 3 .S a. o 00
b £ 3 <2 ” * 2*— O' “ H - a* 3C

a — s y 2
p P

a.-a'•q y x o a a g 1 y 3 a.̂ a. ft
• g £ S - a » ■ *.3 >>-= * yft x> — _ ft

3 . 2 a S | ^

I N fsa. ft y t« 2?-3
1 S u 2 -3 U y ^ .2 a. a.

-a 2 ft a S o
... ** a .-3 5! 3 2 u

t ^ J i mc* fi — ad oO G —r cj o 3<

2 | I S i l 3 §•§ I f I f f
o a ..2 £ 73 £ ft

O a o'

.2 13 I 2 3 1 3
3 -g -8 1 s ® 8
1 3 1 1 - 2 *3 “ 13 ^ =* 2 ft r> ~ t ; 3 3 — 00— ft y 3 a - a -a ft
3 y y y in - q

^ s - l l g -1 8 2
2 :3 ^ a s 2 i > > P
_ c a o ft 5
£ y a’ 2 J5 3 -£.2 y o a a. a. .3 25 • - o ft y y
2 3 = a ft y >
a - f t f t y i 5 j s o
E * c i 2 -° - 1<2 f y **
• 2 S - 2 y o 2 ° - ,

e s fjs ft3 y yft 3 y A y
 3 y

Z i S = f " _ ,
0 y B y ^
3 y ^ ! s 3 -2q 5 9 a y »»3 0 f t 3 ^ - Q c a*
8 - o - 8 . 2 3 | w

» ! . § - 3 . 8 . 3
a l °°-S g - l ! |

•* = y

1 c 1 2 3 o3 O O _ — - -

M 2 - 1 1 2 § 8 1

• 2 s S's * 1 C b
8 ^ u | 2 = = 6

.S : - 8 § 1 3 3
3 y O a. > o

S s ^ S l s J i l

| f t | i ' 2 ' 3J .3 l
►** .2 e 3 ’5 J*

| » 3 a 8 8 l |
C ’ E J y U J Q . 3 a

9

y y a a y -5 -a y -3— a a- 2
2 a '2 ^

3 a §1 -
S1^ |a
1 1 ‘3 y 3
a < a, >»,q
STh. O «d ao c
© - -n o1) 3 O —ca) S. > 003* U G 3d .

1 ° O y ' i 2
- 3

2 ^ 7 3 « 1 i *03 3 ja
a . s i

a a s I

y 3 « ft >
1 1 a . S 17> _ ft ..

y >n oo a o, y 3
3 3 3 0 2 -5 2 ft a -3 >̂ £ ft
o 'S 3 a 3 3 0
3 =• 1 I * s -s
A l i n ' s
3 3 u y £ 2 -
| S l | ^ i

**»\U— .2 o o .
q 8 3 > S 3 S

SL S S S 1 S 1
2 i l . . 8 " a

J2 3 JZ ° 0m q J cd ^ a ■“-s a § | £ J 1
- S J - 8 q y - g
S ' ^ . S 2 0 J5 “ a
3 2 a a o- bis -2 f3 :s
P A a ' f t r i i 3 3

a | S 1 “ * ft J* 8

5. 2 3 41_ 3 - g 1 1 | 8,5̂ y o 1-* q cj ^
S 1 13 ^ ’I f t ^ B S a 2 — -2-51 |sa 3 g ■*= 3
3 y a, .x -3 ft^ ^ ^ C l) -J) . _3 y £ 1 3 50
< 2 *•!

. S S | = - 5 0
U - 3 ^ Z3

53
1? 5■= a , o A 2 S

3 2 y ‘So S*'ft ^— — Ui «J — l i
3 d C ■o TJ o

^ W U*’ C —y a = 3 5
1 3 y 3 8

a - -B 2 2c a 3 i ft

Cu d .q u

— -a o .3 a a a-^ > A “ M ft -g>» J P u C ft
u<§ ^ 3 v)

■ S * 2 3 1 S
? ta P X va

^ m — va
> O y U A
O G SO - O

| - a ' g . S . ^ g «•3 al,.. 0 >< ft 3
25 ft - - y 8 M y ft > a a
s i I * 5 3 !

4 * 1 l i t
4 1 $ 4 1
q* 2 3 y
g - - x2 3 3 ,2

.. O 3
2 1 - ° 8 1

> §

1 Q« — ^ —-q 5a cj U
8, 3 eo .! .2 o
P 6O 3 a _

o S Jj j s
us a. « y y a.P q x ■£ y 2- =* a

f ' Z 1 S B o

M U o o_£- ft a a y y ft so3 a a ..
•« S -* q y

y 3 25
5 o . a J

>5 ® 1 -2
“ -2 g -a y a. S y
- B S _ 3 *3 c » - • o
a - T ? § •

3 3 2
8 1 a— cj
=2 —. 5*
' 5 o “

1 * 1 S a
= P ^ i
3 3 g

J l N - 5
00 3 _ «

* 1*2 S3cd V*.S .-q >%cd ^
3 1 o &-a 73 a= >.
3 a . - "*
u 3 a a a _ — ft — o _ a

I l i a
2 | | §
G — -3•2 1 v ̂
2 *> 2

.2 =• 5 -
y 1 § J

Gl

o
U

ft a"u -3 > 3

73-1 1
S3
• § 5
1 1 “ C73 ft
ft —£ 3y sft o1 y

,
Z CD
3 *
<
S
Xou. z
u

a

a *•< cl
flQ £1

ft A
o .2 •a —

s cd d ,s w
•2 ■q E -= "c

a ac3 y
A > U u

IE —

.2 §
* T.> ft £ c

J3 o

P“ ft
JU 64

s-aft o

>»ft yft 00
U ft
d *

JS
u» - 60 >

“ 3

c .2 O .= '3 yft.2 Ais y
’«> •“ ft n _ft °
7j

■a .2
3 a.

"3 003 52 « o • - a 2 73>,.* o £ - 3- = y 2 - ■r 2 . 335 ij O O C> 8 _ y oft ’—i “~ u ft —
ft ft A C

5 * 1 -S 1 8
N i l ^j=>

*T3 u
2 53

.2 a
y =o ft §*u;
53 « S 5-

>» a

-alt

o E =c-s

o e X S a - 2 o 2 'S •a a y ‘S i2 o

q* 2 2 y a a- b
- .8 ! b « rf'gUS S S
5-S.| a I S | Q| “
| 3 § 2 2 1-i • 3 !^ o^ft-Ogjg^:"
' z l Z S 73 .2 S J .3
l - 2 ° o 8 i > 5 3.* 3 M q 2 » 2L 71
M f S S j p s

° “ 93 I . I l f 2

— 2 v» .2

E .2

i-J i i *>§13 :5
5 0 2 ^ u i ! 8-2^■ a g S I ■§ § S - O

E * - - - S

3S. I &a£ i2 .£ 1 b
c
(5

8 •-2 y
•s Sft £

■a -3

902
.2

£ uooy y'S. >

3 1

J 77

” 3 J
>; g00 JJ ft .—.o £ 3 o
s i l lO h U «

- . f t y >s y a;
00 o -5 3 -2 ° ft -es ro a ® s | a ? : g ■gJS- § i a - l

^ § I s : g f t » sC b ^ 3 3 3 « ^ l) f ".2? I l <* -° 138 £ |2 ft 'oft y * 8 £ * 8 - . S j i l S-o | . | 3.s~ |-S a | | S.
f l f l l j : *><22
y f t S g >

J S JS a 1 „ ..
— s s G'3

3 3=sl 2 i l - y* U'S s-s .

b l -S =) § '5 -2^ -O L-.*= 2 ?5 -5 2 3 4 ! | 2 , i2 5 2 -w2 c 3 a2- 2 ^ 0 0 us U O
y w 2 0 C O M ! 3 « a !*

4 r y E 3 ! i 4
J u t s S S a a S A O

1 £ & ®*«S ft'S a 3 3
o l A . Z f a . - 2 a S - •§ o -a 75 A

° G — - S o > y
A ft U T) uO — ̂ CO Cd *“*

O r S * a « 60

.2 _ O

O . O $ 8 HI•SC y -a g o -5 1 Cd O 5 Cd . C 4\
a ’= 2 -g | 2 y* is 1
8 ? > §• 8 « _S 'c § ! i n 4 2S.A., 2* a. p — a 5 sy c ^ q- y ̂ 2 •-A . « O f t A 3 f t ^ j 3 f t

o 60 y y. 30 3 - O ~ O« .2 .5 _ cS 5 G5 o _O 0 cd ^ d—&A Cd
o £

8 60
£ A.a. o y TJ 3 *S — ftA. 3 gSi13 i°o S y S I - I us t?c y o y 8 Io eo E cla 3 S y ^
s-2 s a"s 2
& « £ £ • £ .
>. e a '3 '5 §
"5 9-1 « £3 o 3 g y £ y y TJ q. 5 -a
I * * a g § q*3. > 9 %
- 1 3 S o 2

J ° 1 < S I
3 8 2 . p

J 3

s 1 P N i -

>i o "u y >i-2
« x > e i - q - S 3 £ ^ i 5
2 ' 5 ' 3 | B e ,3 g ‘ c S j :

5 l 4 i « # 4 o- S 3 j?J’ 3-5 g.2’ y
4 i 2 1 a i d

a S s § “ S I a . s i-S^-S-i § 8 | o '3 ̂ 2
. “ 3 u l i S g P b

•s • s . l ' .s - f t s s j v S «o s
I s l 8-2-° l . l > 8 “q. U s S V) > ̂ 2 <*ME * . 2 a n 4 ^ °
“ S s i 8 9 •- * °

r . “ -3 ' v - 2 * ' u ° 5 b
£ § 2 Q--3 a.x2 o. £ 9
§ t a 8 . » g a l g > ,-2

' B - ° c> % « ft

T3 -s 3 -s -3 8 1 S J? § -20 n a S c .£ a, y ft2^ S - 9 S'S 5
S 8 i 3M ̂ c 2 u* w cdQ-oOoo^O 9 u jc > uO K vs > 35 t)iS ° ̂- 3 C fro ^ ̂ ■"* tt*o « 73 'S.-f - y ~ -a

« y c 3 -2 ■= f3

ftk .52
_>» a

.0 „ “
P

s -. *A ft 3 ft C ^
£

A -
3 -A x
O* ft y a
K ~± y a c ft A -C

_ a . >.P —
r~ O

&

3 > 90 f t O .1 “ • §

a l ?
c

o o _
i s ; a a

.2 £
V)

5 « . 5o a 3 0 5 “ a S -C a* Q-*S s 28 >s V5 5
ft £ £ 1 b l ' £ -S •= S

1 §
y

2 y £

S c .2 0
13
E >»I i 2 's a

•S M
-6

I I

•3
E c
y y

* -
c0so-c

•2 2 > S

-y ^ 60

auu v>
cT g

0 o
■£ 2

ca w
s C 6«w 2 o 75 O > cd v)2-^-5

1 | c.S 5
O 8 lg*73O o 3 30 .c « c 5

1 - 2 d aft 3 y
3 -2 c cr £
* ’5 - - S.w ft ft
g* ̂ p ft *
i l l 2*01 q ^
« ■— >» 2 U? ft■ = > . £ «
A O _G — y,. C 3 O j C 9
3 -§3 ̂
l l 3 > 160 *5 S
y — .60 8 y ft ̂X5 -S' *
a E O 2

>».■

S3i - b .s p l y
73 y § - ■*
c a IS 1 1 vo

q m jfl w3 3 - • s . -C _ •5
1 - 2 73

ya- ft
y y a A !S C ft

13 00 -fta -a -S1 y y 3 ft ft
ft ^ U A-
3 a -a ^

Z
w
u

2 2 A au ^
‘S. ‘ft •"

9
2 ftg S % B -2 M

^ .2 „ -S f |
*3 s . s ' 5 g , |
3 E 50-73 2 .3y 9 .§ 9 5

€ 3 1 ‘i J
^ O S O O -J
E z — - « 59 _. ft y >
i ' M g S l '
t = 1 - 2 s l ' s l l * 2 a 1>< ft a o

90-c — —3c -2 §• 8 § i
.a » l 3 2 ■§ «
S „ ??.52 3^ e y a - . .

ao*5

o m c jC .2 o .5
5 “ a « 3 9 : A- 2 | p go 9
0 — 3 ft ,0 .s
3 = > 2 — g* ^
3 y 'S -3 a 2 cC ft O ft 3c ft y ft „ — 2•3 -a 3 a ft 73 ft3 c -* ft y y b

y - a =0

H ! U
A JJ Xa -3 y

- C
c 1 o

' 5 ^ 2

s ^= ao a
‘ s .y3 -3

•S §
I ao
o -S
£ c 2* a c

1 I2 os
& >>
s -°

00‘C
A S'■3
■35

l i
Gl
u.

C/5
J
Ca
2
>
C/5

b] 3
o 5•<C c to. «a ti3 a.
ca a

■a -5
E 2u ^
.= 3

I c
p *E o
£ ■*<** n
2 T3 ^
'■§31 = s «

_ m a -3_ y 3
^ SA ^
a >.,2
• M . - 0

a £
5 .1CO
u a
2 °

■3.2
5*"a.u>
3
i*

£ § • « O S - "
w 3 2

- i~ o

1 1
§ a Q. w

c y.2 £ 2 u * 3
C ^

g ^Q. O
jl> . 3

U

a «=

- c

00 u

71 20 w> C 3 «

■= = a 5 o o ?
3 Q > OO OO

1 !£ ? H St> ,2 * cL ̂ c
04 i2 ‘t c ^ c u

SgZ- §<’ JJ-® A cj ja

Q s. - 2: « fl< O vi g
u - 3 p «

U d«

S MS -3 U» PS» 3.3 8 a . o s 1
C C BA B tfl f i ̂ O9 *^ 3 > ,3 3 2 2 a .S'

y a | ■§2 5 SflS
2

C/5z
o
H<E-i
Zto]
C/5
to]
03
0.to]
06
u

a c /5

8 3
* i< s
y >

C /5
OJ C-,_u z
a C

H a

o
y
•S

s
o

3
u3

1s
5 * 85 aQ*
. a

> a
§ o
2 »
" 73 o o•■* V]
00 a, c a 3 B
5 *5u a
a 2

i ' L
9 2 ."2 3J2 T3 a
5 g S s -8 uOs’S u C/5 C

O

« o al 2

S

”a c
3 O Cv» ■— o

» f 3 | - =
,S = 'S 3
a-S -a Ia -a .2

e 5 a ^(O ^ _2 Hvs S 3 u ^ o —. 5 c Q. o

>*

•ao o
,S S3

s io a■J> u
- 2
i-3 ̂Ok OV5 CO —a
I aP o
m 2

S

'a

*coCO
13
a
2

t) ’C .4/
3.18 * 3 2 T 3 2 c c

« 5
y
O a
2
>
Vi
u

! <

2 2a o “ 1 yG <3 .S — ‘S

*T3e«Ow
bbto9u >*COCOw■g>0 ■B
3 abG03 CO0 "tf120y *s 30 G

-=■3
= .22 3<*< y
0 a• La
■3 J
"Sty g*
1) 2
3 2
3 2
a -O

H>
o

c
8

5

1
2

« .5c —
S 5

JJ
B

CJ

*_o
u.

1C3
2
0

1
3
3o
8

u

O
o
3o

*3

O J3
2 5
& »o
E 0O S

J3 .2
U a
S '>S 3
J3 ̂ 3

u

a
2
><
V5
< sia y)
5 <

§*
S

28a
3a.

S
I
I-C

U

“a,a
£
x:
a

CQ O

—I a

5* a
I Q
4 s'u a
a V

o
O

I §,0 u

T3U
C

Ol
O

I

EXPERT SYSTEMS FOR CARTOGRAPHIC DESIGN AND PRODUCTION
David Forrest

I f the number of publications using the terms in their title is any indication, then in the last few years
there has been considerable interest shown in the application of artificial intelligence and expert systems
to cartography. Most are theoretical considerations of what can and might be done, or what can’t, and
while a few do report actual working examples, these are all of fairly limited scope or sophistication. A
small number ofpublications try to deal with the general problem of map design, or significant portions
of it, but more are concerned with specific aspects of map design and production, such as line
simplification, name placement, or symbol selection. This paper introduces the basic concepts of
artificial intelligence and expert systems and examines what needs to be done to apply them to
cartography.

INTRODUCTION
In the last twenty years or so there have been a great

number of programs created to produce maps using a com
puter1. Most of the commonly available programs are for
producing small scale statistical maps, however more re
cently there has been a significantly increased interest in
Geographic Information Systems for producing a wider
variety of maps at a broader range of scales2. The continual
drop in hardware prices has brought the possibility of
computer mapping to a wider audience, particularly with
the increased power of micro-computers now available.

The increase in the availability of computer mapping
capabilities has lead to a great increase in map authors and
the number of maps being produced, but does not however
appear to have lead to more widespread knowledge of
cartographic design theory. The large number of poorly
designed maps one sees that have been produced by com
puter mapping systems indicates that there is a general lack
of knowledge of how to design maps. These poorly de
signed maps are not the fault of the computer programs.
Most programs do have the capability of producing well
designed maps when used by someone knowledgeable in
map design; rather, the problem lies with system users who
are not skilled in cartographic design and who would prob
ably never produce a map by conventional means, but
would contract a cartographer to produce it.

It is unlikely that the general level of cartographic
education of most computer map authors will be greatly
increased, therefore cartographers must strive to make the
programs used by naive map authors better able to produce
reasonably well designed maps, or at least maps which do
not break the most fundamental rules of map design.

The area of computer science devoted to producing
programs that appear to respond intelligently to varied
situations is Artificial Intelligence (AI). More specifically,
an Expert System is a program which includes knowledge
of how an expert solves a problem. It is essentially a
program which includes a codified form of the rules that an
expert uses to solve a problem, thus a cartographic design

David Forrest is currently Senior Lecturer, Department of Geo
graphy, Portsmouth Polytechnic. From 1st September: Lecturer
in Cartography, Department of Geography and Topographic
Science, University of Glasgow, Glasgow G12 8QQ.

expert system would include the rules a cartographer uses
when designing a map.

A long term goal would be to have a cartographic
design expert system that could design any map at any scale,
but current literature on expert systems suggests that at this
time practical expert systems should be limited to narrow
domains, ie. the problem area must defined within quite
narrow margins. Some cartographic expert systems are
currently under development. These have tended to
concentrate on elements of the map or map design, eg name
placement, line generalisation, solution of spatial conflicts,
and while all these problems will have to be solved in any
realistic production system, there would seem to be a need
for the application of expert system techniques to more
general design issues such as data selection, choosing an
appropriate method of portraying a data set in map context,
and generally trying to prevent the author from making poor
design decisions when making the map.

ARTIFICIAL INTELLIGENCE
Artificial Intelligence is a branch of computer science

involved in studying mental faculties and reproducing them
through the use of computational models. The use of the
word ’intelligence’ may in fact be misleading as the term
tends to be used to refer to individuals with above average
creativity or cleverness, whereas most problems in Artifi
cial Intelligence-arise in attempting to recreate the mental
capability of ‘ordinary people’. A I is concerned with the
general behaviour that goes along with intelligence; it is not
limited to one particular method of producing ‘ intel
ligence’ , and the methods used may not be the same as
people use (Chamiak & McDermott, 1985; 7).

The ultimate goal of A I is to produce human-like
intelligence in a non-human machine. Whether or not this
is achievable does not reduce the importance of developing
programs that take us towards that goal. The divisions of
AI research can be seen as the elements to be solved in
producing such a machine. While there is no universal
agreement on the subdivisions of AI, the major groupings
are Expert Systems, Natural Language Processing, Pattern
Recognition and Robotics. Other common sub-headings
are Computer Vision and Machine Learning, although the
former of these is frequently encompassed by Pattern Rec
ognition and the latter is really an essential component of
any system which claims to have artificial intelligence.

SUC BULLETIN Vol 24 No 2 21

While the general aim of A I research has not changed
over its twenty-odd year history, that is to produce programs
that can in some way ‘think’, there has been a shift in
emphasis from trying to find general methods for solving a
broad range of problems to that of solving very specific
problems with very highly specialised programs.

Intelligence
The idea of intelligence is not concerned solely with

what can be done, but also how it is done (i.e. the style or
manner). The idea of intelligence is not concerned solely
with what can be done, but also how it is done (i.e. the style
or manner). Rather than rejecting a problem totally, or
‘crashing’, an intelligent system should degrade gracefully
and provide a solution even if this is less reliable or com
plete (the user should be informed of this). Problems should
be solved using insight and understanding rather than blind
mechanical execution of rules and inference procedures
should be used to answer ‘what if..’ type of questions, or to
make predictions. Where conflicting options are possible,
rather than using pre-assigned priority measures, the rea
sons for the conflict should be analyzed and the
consequences of alternative choices should be considered.

There is a very thin division between programs that are
clever and those that show artificial intelligence. Indeed,
"... it is possible that there is no such thing as an intelligent
program - just clever programs that become increasingly
clever" (James, 1984; 116). It has been shown that by
applying some simple rules one can give an impression of
intelligence that would convince an innocent onlooker, but
deeper investigation will ultimately reveal the lack of ’in
telligence’ of such systems.

Problem Solving
All branches of A I rely upon problem solving, to which

there are two elements: Representation and Search. All of
the approaches to problem solving require some sort of
search for a solution. Conducting these searches as effi
ciently as possible is one of the aims of AI. However, before
a search process can begin, the problem must be ‘set up’,
or, in other words, a representation of the problem must be
formulated.

Usually one applauds a human problem solver not for
conducting a fast and orderly search through all solu
tion possibilities, but for looking at the problem in such
a clever way that the solution seems elegantly simple.

(Nilsson, 1971; 8)
There will often be alternative representations for the

same problem, but unfortunately AI research is still directed
at producing a generalised automatic method for the skilful
formulation of problem representation.

Representation
The ‘language’ produced or operated upon during

problem solving is known as the Internal Representation.
This representation is, to some extent at least, an abstrac
tion. The same representation may be embodied in a variety
of different data structures, to make different operations
efficient. It is normally assumed that it is easy to translate
from one internal representation to another, and certainly

easier than translation to and from external representations
(i.e. questions and answers in English).

The internal representation is used by an AI program
in the following way:

• When a program gets a statement, it translates it
into an internal representation and stores it away.

• When it gets a question, it translates it into an
internal representation as well.

• It uses the internal representation of the question
to fetch statements from its memory.

• It translates the answer back into English.
(Chamiak & McDermott, 1985; 11)

While this may seem more complex than simply stor
ing the English, it is in fact more how people do things, in
that we tend to remember the ‘gist’ of what we are told, long
after we have forgotten the exact words. Specific knowl
edge representation methods for expert systems are beyond
the scope of this article.

Search
AI programs work by searching the internal repre

sentation of knowledge for a solution, often referred to as a
goal or ‘the goal state’. In human intelligence we can see
the parallel to this as being a specific response to solve a
particular problem. Our reactions to certain situations may
appear to be automatic, but are the result of all our thought
processes being directed to achieve a certain ‘goal’ . We
don’t do things because we think, we think because we have
things to do.

Typically the internal representation of a problem can
be expressed as a tree structure or graph. This graph repre
sents a structured series of nodes, each with an associated
state descriptor. A solution is obtained by applying oper
ators to these state descriptions until the ‘goal state’ is
obtained (Nilsson, 1972). In the graph theory search pro
cess there are a number of ways in which the search can
proceed. Basically these include ‘blind search’ procedures
which always follow a predetermined pattern or ’best first’
procedures which assess the path most likely to lead to the
solution. I f a system is to appear intelligent then intuitively
this latter method is preferable. When a search proceeds
down a blind alley, it must ‘backtrack’ to try an alternative
route. Applications of the search problem to cartography
have been discussed by Wilkinson (1987).

EXPERT SYSTEMS
Artificial intelligence may be described as the transfer

of intelligence to machines. Expert systems deal with a
small area of expertise that can be converted from human
to artificial intelligence. Put simply, an expert system is a
computer program which, by using facts and rules about a
domain (problem), simulates the decision making process
normally carried out by a human expert They differ from
conventional ‘algorithmic’ programs in both structure and
operation.

22 SUC BULLETIN Vol 24 No 2

It may seem that any computer program that solves a
problem may be termed an expert system, but there are
numerous points which distinguish an expert system from
a conventional program, for example:

1. There is continuous interaction with the user, who
conducts a dialogue with the system, and leaves with an
answer or conclusion.
2. The system weighs up the likelihoods, explores alter
natives and follows a course of reasoning which
depends on the user’s replies. Whole areas of investiga
tion may be initiated or discarded as a consequence.
3. Uncertain or incomplete evidence is accepted and
used.
4. The system elaborates on and explains why questions
are asked, and describes how conclusions are reached.
5. Only significant questions are asked, and questions
related to a particular topic are grouped together.
In a conventional program the user follows a rigorously

defined series of steps to meet the requirements of the
program exactly. In an expert system, the interaction is
flexible and should emphasise the requirements of the user.

The Role of Expert Systems
An obvious question to ask is why there is a need for

expert systems, rather than rely on human expertise. Ac
cording to Basden (1984;61) the benefits lie in: greater
reliability (will not forget factors); increased consistency
(same importance given to factors); increased accessibility;
the ability to arrive at a faster solution or try a greater
number of alternatives in the time available; the easier
duplication of expertise (less training). In the case of de
sign, increased consistency also implies repeatability,
something not always achieved in manual processes. It
should also be easier to document and afford artificial
expertise, and it is more permanent (Waterman 1986; 12).
Expert systems are especially appropriate where there is no
efficient algorithmic solution. "Such cases are called ill-
structured problems..." (Giarranto & Riley, 1989; 20), this
typically being true of design problems.

There are of course disadvantages to expert systems,
hence there is good reason not to eliminate human experts,
but to supplement them. Human experts are creative and
adaptive and although expert systems can gain through
experience, they are not as flexible as humans.

EXPERT SYSTEM STRUCTURE
Although some of the superficial differences between

expert systems and conventional programs have been dis
cussed, it is perhaps in the underlying, internal structure that
the differences are most apparent. The simplest model of
an expert system consists of three main parts. These are the
knowledge base, the inference mechanism or inference
engine, and the user interface. Clearly an expert system fa-
producing maps must also access a database of relevant
data. It is the structural difference whereby the knowledge
relating to the problem to be solved is separated from the
inference mechanism that differentiates expert systems
from conventional programs.

The term user interface is self explanatory, referring to
the part of the system that communicates with the user. The

skill, experience and judgement of one or more human
experts is stored in the knowledge base. This can be viewed
as a model of the experts’ reasoning leading to one or more
conclusions. The term knowledge is used by A I scientists
to refer to the information a program needs before it can
behave intelligently (Waterman, 1986; 16). This informa
tion generally takes the form of facts and rules about a
particular topic a domain, although there a number of
knowledge representation methods currendy in use.

The inference engine is the component of the system
which controls the order in which the knowledge base is
used, generates new facts from existing rules and known
facts, and is generally seen as the central module in an
expert system. Expert systems work by relating the con
tents of the knowledge base to the information supplied by
the user’s answers to questions formulated by the system.
The system infers the most appropriate action in any par
ticular situation, either giving its solution, or asking further
questions.

Heuristics
A traditional program is a list of instructions for giving

a sure solution to a problem, or reporting that no solution
exists. This is known as an algorithm. I f one examines the
way in which humans solve problems then one sees that
very often an algorithm is not used, but a lose collection of
‘rules of thumb’ that seem to work are followed (James,
1984; 10). While these rules often do not guarantee a solu
tion, they make it more likely that you will get closer to one.
Such rules of thumb are termed ‘heuristics’ . M a e explicit
ly, heuristics are: "... criteria, methods a principles f a
deciding which among several alternative courses of action
promises to be the most effective in order to achieve some
goal. They represent compromises between two require
ments: the need to make such criteria simple and, at the
same time, the desire to see them discriminate correctly
between good and bad choices" (Pearl, 1984; 3). Further
more, when heuristics do produce a solution, it can take far
less time than an algorithm would take for the same prob
lem.

Heuristics are important in true expert systems because
they are used'to guide the search for a solution, ie they
determine the best route to follow towards the desired
result

EXPERT SYSTEMS FOR WHOM?
Expert System can be used by a wide range of people

for a variety of purposes. The major groups of users are
likely to be experts themselves, practitioners4, students and
those with nof experience in the field.

Experts will use expert systems in a decision support
role, using them along with other decision support systems
to confirm their decisions, or to act as intelligent checklists.
The expert system may be used like an intelligent assistant
and as more intelligence is added to it, it acts more and more
like an expert. Also, although currently it does not appear
likely that ES will replace the human specialist, they will
reduce the number of trivial enquiries, thus allow the spe
cialist to devote more time to less trivial problems.

SUC BULLETIN Vol 24 No 2 23

Some expert systems will no doubt be used by novices,
but there is some feeling that this will be less widespread
than was at first thought. Most fields of study have their
own special words or ‘jargon’ or apply special meaning to
ordinary words that a novice might be dangerously unaware
of (Basden, 1984; 64). Practitioners on the other hand will
be familiar with the jargon of their domain. According to
Basden it is also likely that expert systems for practitioners
will be more cost effective than for novices.

Expert systems have much to offer in education be
cause of the nature of expert systems generally and their
capability to explain their reasoning. Students, like practi
tioners, will have some awareness of the ‘jargon’ and will
be able to use expert systems in example cases, or to test
their own hypotheses.

A final group who will likely make use of expert
systems are specialists or experts in one particular domain
wishing to apply their knowledge in a related field, or to
make use of a system to process their information. For
example, a geologist using a cartographic expert system to
map his data. He has specialist knowledge about the geo
logy of the area, but not the cartographic knowledge to
produce the map. This use of expert systems receives little
coverage in the literature. Perhaps the need for such sys
tems for producing maps has something to do with how
many potential map authors and developers of mapping
systems view cartography. Most Computer Aided Design
(CAD) systems are directed at assisting designers, not at
making it easier for non designers to produce designs.
Many computer mapping systems are intended for non
cartographers to make maps.

As Robinson and Jackson state (1986; 431)
Probably the user most at risk is the one who produces
maps or other graphical output for his own use or for
limited circulation. ... the user, in designing his output,
will often use an interactive graphic facility and there
fore he needs to optimise the information appearing on
the screen appropriate to his particular expertise.
... [also] the final product may appear on a totally differ
ent medium, e.g. paper, which leads to further problems.

EXPERT SYSTEMS FOR CARTOGRAPHY
There are large areas of cartographic design where

expert systems currently have little to offer. For example,
designing a topographic series is an event that takes place
relatively rarely and the design adopted is likely to be used
for many years, perhaps with some modifications through
experience, changing requirements, or new production
methods. Each series has to take into account many factors,
many of which will not be the same as the topographic series
required for a different country or different scale. The time
scale for producing the design is likely to be relatively long
and there will be opportunities to consult acknowledged
experts and experienced map users.

Similarly, the design of products such as hydrographic
and aeronautical charts has evolved to a highly refined state
and there are international agreements on many aspects of
the design of such products.

In these cases expert systems will have many more
benefits in production rather that design, particularly in

many aspects of compilation where smaller scale maps have
to be derived from larger scale (digital) source data. Many
of the systems currently under development address these
needs, such as those for line simplification, name place
ment, etc. Other likely areas of application for expert
systems include the selection of soundings for hydrographic
charts, contour interpolation, contour labelling, selective
omission of minor tributaries in river networks, etc.

The two situations where expert systems do have much
to offer map design are (a) where the map is likely to be a
‘one off’ design and is wanted quickly and (b) where the
map author is not an experienced cartographer and cannot
‘imagine’ what the final design will look like. In many
cases both of these circumstances will apply.

A broad overview of possible applications of expert
systems to "cartographic processes" is provided by Gran-
klanoff (1985). He also tries to assess quantitatively the
suitability of expert systems for various mapping tasks.
Each of 17 mapping tasks from geodetic control to printing
were assessed for their suitability by eight mapping experts
using standard criteria. Although a very limited study,
several tasks relating to design feature near the top of the
list for suitability, including generalisation and symbolisa-
tion, and feature selection and placement (Table I).

Table I

S U IT A B IL IT Y OF TASK FOR APPLYING EXPERT
SYSTEMS

Rank Task Name
1 Source Evaluation
2 Source Selection & Compilation Planning
3 Generalization and Symbolization
4 Feature Selection and Placement
5 Stereo Photogrammetric Plotting
6 Typesetting & Type Placement
7 Geodetic Control Identification

8 Color Separation Proofing
9 Overlay Proofing
10 Analytical Triangulation
11 Mensuration
12 Distribution & Shipping
13 Inventory & Stockage Control
14 Press Printing
15 Engraving (Scribing)
16 Plate Making
17 Negative Preparation

After Granklanoff, 1985, p.621

Robinson and Jackson (1986) also identify a number
of broad areas of cartography and digital mapping where
expert systems could be of benefit Their list includes: Ma
nual and Automated Map Design; Digital Data-base/User
Interface; Cartographic Education and Training; Spatial
Data Error-train Analysis; Data Capture and Storage Stand

24 SUC BULLETIN Vol 24 No 2

ards; Data Format and Transfer Standards; and Replacing
Cartographers. This is a very wide ranging list encompas
sing most areas of cartography, although they see the last
entry on the list as being impractical for several reasons, not
the least being the need for cartographers to provide their
knowledge and monitor the achievements of automated
systems!

BUILDING CARTOGRAPHIC DESIGN EX
PERT SYSTEMS

Cartographic design, like most design problems, is
characterised as being an unstructured problem. In order to
create a cartographic design expert system the first step
should be to formalise the map design process, but like
many other areas of design this has yet to be done. If this
can be achieved then what initially appears to be an uncom-
putable problem can be at least partially solved if it is
properly divided up.

This lack of formalism has not prevented cartographers
from designing maps. Evidence in the form of published
maps indicates that the practice of cartography is well
known, even if the cartographers concerned have not started
from a theoretical analysis of what they are doing5.

Interest has been shown in formalising the map design
process, although this is very limited when compared to say
architectural design. Eastman (1987) attempted to develop
a "graphic syntax" for map design directed at expert systems
applications, but failed to relate this directly to the actual
process of designing maps. Mackaness and Scott (1987)
attempted to define map design for expert systems. Aspects
considered extend well beyond what might be considered
the design process and discuss geographical knowledge and
spatial cognition. They concluded that there is a wide range
of aspects related to map design that need to be researched
before any reasonable attempt can be made to automate the
process, although they dismiss the notion of using expert
systems to produce derived maps as ’simple’, and concen
trate on the processes involved in making the ’original’
map. Forrest (1990,1991) has also proposed a formalised
map design process, in part based upon the relationship
between the phenomena to be mapped, the data available,
and the possibilities for representation.

The pessimistic view expressed by Mackaness and
Scott and by many cartographers when expert systems are
proposed seems to stem from a lack of understanding of
both the map design process and expert systems. The
apparent lack of written rules for cartographic design only
causes concern if one considers the extreme range of possi
bilities for map types and map scales. Once the scale range,
location, subject and purpose have been established, the
options are greatly reduced and there are many examples of
what can be done. That is, by moving from some vague
notion of map design to the design of a specific map the
problem becomes potentially solvable.

Thus, before attempdng to develop a working system
an attempt must be made to formalise the map design
process. This should be based upon an understanding of the
information to be mapped and the processes involved in
producing a map. Once such a model has been established

- and there may be several viable alternative models -
progress can be made by codifying relevant cartographic
practice. This may initially be in the form of verbal descrip
tions of the rules, conventions and processes required and
then more formally in an appropriate structure to form an
experts system’s knowledge base.

CONCLUSION
Apart from a few very specialised aspects of design

why are there still no cartographic expert systems? Proper
development of expert systems needs a great deal of time,
with substantive working systems often being quoted in 10s
of man years. Academics don’t have enough time and
software developers currently don’t have the economic
justification to devote the time. Apparently, according to
Mari: Monmonier in 1990, Intergraph have invested in
expert systems for GIS and currently have over assembled
6,500 rules.

Many of the expert systems that have been proposed
for Computer Aided Cartographic Design have been inher
ently impractical. More than one has suggested that a single
system will be capable of producing all manner of maps
from large scale plans to world inventory maps, hydro-
graphic charts to multivariate statistical maps, etc. This
may come in time, but current thinking on expert systems
is to limit the problem to ‘narrow domains.’ It is evident
however that as long as expectations are realistic, artificial
intelligence and expert systems do have much to offer
cartography.

NOTES
1. Numerous terms have been used to describe maps pro
duced with the aid of computers: computer cartography,
computer mapping, computer assisted cartography, digital
mapping, automation, etc. Here we are examining the
design and production of maps for display on computer
monitors (VDUs) or output on small format plotters and
printer/plotters. The term Computer Aided Cartographic
Design (cf. Computer Aided Design) will be used to refer
to computers being used for the design and display of maps,
whereas Computer Mapping will be used to refer to the
broader use of computers in map making.
2. A Geographic Information System (GIS) should in
clude a database of geographic information, tools for
analyzing this data and the capability of mapping the re
sults. The third part of such a system could usefully apply
Computer Aided Cartographic Design.
3. The Map Author is one who conceives the map and
prepares any special topic data. He may then proceed to
carry out the design and production, or pass this on to the
Cartographer. The System User is the user of a Computer
Mapping system. He may be the Map Author and/or the
Cartographer. The Map User may or may not be the Map
Author or System User. The map’s intended audience and
purpose will have an influence on its design and production.
4. A practitioner is one who has some experience in a
domain, but does not have the deep specialist understanding
of an expert
5. Keates, J.S. 1990 - pers. comm.

SUC BULLETIN Vol 24 No 2 25

References
Basden, A. (1984) On the Application of Expert Systems.

In Coombs, M J. (ed.), Developments in Expert Sys
tems. London: Academic Press Inc. (London) Ltd. pp.
59-75.

Chamiak, E., McDermott, D. (1985) Introduction to Arti
ficial Intelligence. Reading, MA.: Addison Wesley
Publishing Company.

Eastman, JR. (1987) Graphic Syntax and Expert Systems
Technical Papers, ACSM-ASP Annual Convention, pp.
87-96.

Forrest, D. (1990) A Model of Cartographic Design for
Expert System Applications. Proceedings, Fourth In
ternational Symposium on Spatial Data Handling, pp.
752-761.

Forrest, D. (1991) Classifying Cartographic Repre
sentations for Cartographic Design Expert Systems.
Proceedings, ICA91.

GiarrantoJ., Riley, G. (1989) Expert Systems: Principles
and Programming. Boston: PWS-Kent Publishing
Company.

Graklanoff, G J. (1985) Expert System Technology Applied
to Cartographic Processes. Proceedings, ACSM/ASP
Fall Technical Meeting, pp. 613-624

James, M. (1984) Artificial Intelligence in Basic. Seve-
noakes, Kent: Butterworth and Co.(Publishers) Ltd.

Mackaness, W.A., Scott, D J. (1987) The Problems of Oper
ationally Defining the Map Design Process for
Cartographic Expert Systems. Research Paper RR-87-
06, School of Geography, Kingston Polytechnic.

Nilsson, NJ. (1971) Problem Solving Methods in Artificial
Intelligence. New York: McGraw-Hill.

Pearl, J. (1984) Heuristics. Reading, Mass.: Addison-Wes
ley Publishing Company.

Robinson, G., Jackson, M . (1986) Expert Systems in Map
Design. Proceedings, Auto Carto 7. pp. 430-439.

Waterman, D.A. (1986) A Guide to Expert Systems. Read
ing, Mass.: Addison-Wesley Publishing Company.

Wilkinson, G.G. (1987) The search problem in automated
map design. Cartographic Journal Vol.24, N o.l. pp.
53-55.

Selected Bibliography on Cartographic Expert
Systems
Bouille, F. (1984) Architecture of a Geographic Structured

Expert System. Proceedings, International Symposium
on Spatial Data Handling, pp. 520-543.

Bouille, F. (1984) A Structured Expert System for Carto
graphy Based Upon the HBDS. Proceedings, Auto
Carto Six, Volume 2. pp. 202-210.

Bouille, F. (1986) Interfacing Cartographic Knowledge
Structures and Robotics. Proceedings, Auto Carto Lon
don. pp. 563-571.

Bouille, F. (1988) Developing Strategies in GIS by prob
lem-solving methods based on a structured expert
system. Proceedings, Eurocarto Seven, pp. 42-50.

Broome, FJR. (1987) Automated Map Inset Determination.
Proceedings, AutoCarto 8. pp. 466-470.

Chen, G. (1986) A Rule-Based Approach for Spatial Object
Modelling and Task Management. Proceedings, Auto
Carto London, pp. 588-597.

Cook, A.C., Jones, C.B. (1990) A Prolog Interface to a
Cartographic Database for Name Placement. Proceed
ings, Fourth International Symposium on Spatial Data
Handling, pp. 701-710.

Cook, A.C., Jones, C.B. (1990) A Prolog Rule-Based Sys
tem for Cartographic Name Placement. Computer
Graphics Forum 9 pp. 109-126.

Essinger, R. (1986) The Philosophy and Requirements of
Computer-Aided Graphic Design in Cartography. Pro
ceedings, Auto Carto London. pp. 189-196.

Fairchild, D. (1987) The Display of Boundary Information:
A Challenge in Map Design in an Automated Production
System. Proceedings, AutoCarto 8. pp. 456-465

Fisher, P.F., Mackaness, W.A. (1987) Are Cartographic
Expert Systems Possible? Proceedings, AutoCarto 8.
pp. 530-534.

Frank, A.U. (1982) MAPQUERY: Data Base Query Lan
guage for Retrieval of Geometric Data and Their
Graphical Representation. Computer Graphics.
Vol.l6,No.3. pp. 199-207.

Heivly, C.G. (1986) Using Expert Systems Concepts to Fix
USGS Digital Boundaries. Proceedings, 2nd. Interna
tional Symposium on Spatial Data Handling, pp.
572-582.

Illert, A. (1988) Automatic recognition of texts and symbols
in scanned maps. Proceedings, Eurocarto Seven, pp.
32-41.

Jaakkola, O., Saijakoski, T., Blom, T., Laurema, M. (1990)
From Satellite Data to Thematic Representation - A
Knowledge-Based System for Cartographic Visualisa
tion. Proceedings, Fourth International Symposium
on Spatial Data Handling, pp. 711-720.

Jankowski, P., Nyerges, T l . (1989) Design Considerations
for MaPKBS - Map Projection Knowledge-Based Sys
tem. American Cartographer Vol.16, N o.l. pp. 85-89.

Jong, W.M. de, Wei, FJ.M. van der, (1990) Embedded
Artificial Intelligence and Spatial Data Handling, Some
Research and Prototyping Experiences. Proceedings,
Fourth International Symposium on Spatial Data Hand
ling. pp. 723-731.-

Keates, J.S. (1989) Expert Systems and Cartographic De
sign. Unpublished paper, University of Glasgow.
‘(Read to SC Summer School, Portsmouth 1990)

Kottenstein, T. (1990) Concept and Prototype of a Symbol
Reference System for the Production of Thematic Maps.
Proceedings, Fourth International Symposium on Spa
tial Data Handling, pp. 772-781.

Mackaness, W.A. (1986) Detection and Heuristic Resolu
tion of Spatial Conflicts in Digital Map Datasets.
Unpublished manuscript, Kingston Polytechnic, Sur
rey.

26 SUC BULLETIN Vol 24 No 2

Mackaness, W.A., Fisher, P.F. (1987) Automatic Recogni
tion and Resolution of Spatial Conflicts in Cartographic
Symbolisation. Proceedings, AutoCarto 8. pp. 709-718.

Mackaness, W.A., Fisher, P.F., Wilkinson, G.G. (1985) The
Design of a Cartographic Expert System. Final Report
for the Natural Environment Research Council

Mackaness, W.A., Fisher, P.F., Wilkinson, G.G. (1986) To
wards a Cartographic Expert System. Proceedings,
Auto Carto London. pp. 578-587.

Maggio, R.C. (1987) The Role of Geographic Information
Systems in the Expert System. Proceedings, GIS 87 -
2nd Annual International Conference on GIS.
ASPRS/ACSM pp. 685-692.

Mark, D .M . (1986) Knowledge-Based Approaches for
Contour-to-Grid Interpolation. Proceedings, 2nd. In
ternational Symposium on Spatial Data Handling, pp.
225-234.

Monmonier, M.S. (1986) Towards a Practicable Model of
Cartographic Generalisation. Proceedings, Auto Carto
London, Vol.2. pp. 257-266

Muller, J-C. (1990) Rule-Based Generalization: Potentials
and Impediments. Proceedings, Fourth International
Symposium on Spatial Data Handling, pp. 317-334.

Muller, J-C., Johnson, R.D., Vanzella, L.R. (1986) A
Knowledge-Based Approach for Developing Carto
graphic Expertise. Proceedings, 2nd. International
Symposium on Spatial Data Handling, pp. 557-571.

Muller, J-C., Zeshen, W. (1990) A Knowledge Based Sys
tem for Cartographic Symbol Design. Cartographic
Journal. Vol.27,No.l. pp. 24-30.

Nickerson, E.G., Freeman, H. (1986) Development of a
Rule-Based System for Automatic Map Generalization.
Proceedings, 2nd. International Symposium on Spatial
Data Handling, pp. 537-556.

Nyerges, TJL., Jankowski, P. (1989) A Knowledge Base for
Map Projection Selection. American Cartographer.
Vol. 16, No.2. pp. 29-38.

O’Callaghan, J.F., Robertson, P.K. (1986) Colour Image
Display of Geographic Data Sets Using Uniform Colour
Spaces. Proceedings, 2nd International Symposium on
Spatial Data Handling, pp. 322-326.

Palmer, B. (1984) Symbolic Feature Analysis and Expert
Systems. Proceedings, International Symposium on
Spatial Data Handling, pp. 465-478.

Pfefferkom, C. et. al. (1985) ACES: A Cartographic Expert
System. Proceedings, Auto Carto 7. pp. 399-407

Poiker, T.K., Squirrell, R., Xie, S. (1982) The Use of Com
puter Science and Artificial Intelligence in Cartographic
Design. Proceedings, Auto Carto V.

Roberston, P.K. (1988) Choosing Data Representations for
the Effective Visualisation of Spatial Data. Proceed
ings, Third International Symposium on Spatial Data
Handling, pp. 243-252

Robinson, G.J., Zaltash, A. (1989) Applications of Expert
Systems to Topographic Map Generalisation. Proceed
ings, AGI89.

Roubal, J., Poiker, T.K. (1986) Automated Contour Label
ling and the Contour Tree. Unpublished paper, Simon
Fraser University.

Samson, L., Poiker, T.K. (1985) Graphic Design with Color
Using a Knowledge Base. Paper presented at the 10th
CCA Annual Conference.

Trigg, A.D., Gill, G.A. (1988) Canvas: A System for Im
proved Colour Selection for Classified Imagery and
Thematic Maps. Report No. 7, N U TIS , Reading.

Vicars, D.W., Robinson, GJ. (1986) Generalisation from
Large to Medium and Small Scale Ordnance Survey
Maps Using Expert Systems Techniques. Proceedings,
Auto Carto London, Vol.2. pp. 267-275.

Wilkinson, G.G., Fisher, RF. (1987) Recent Developments
in Geo-Information Systems. Cartographic Journal
Vol.24, N o.l. pp. 64-70.

Zeshen, W. (1990) A Representation Schema for Carto
graphic In fo rm ation . Proceedings, Fourth
International Symposium on Spatial Data Handling.
pp. 782-791

Zoraster, S. (1987) Practical Experience with a Map Label
Placement Program. Proceedings, AutoCarto 8. pp.
701-708.

A n n o u n cem en t

I5PR5
International Society for
Ph o togra m me try and Remote Sensing

Congress XVII
August 2-14, 1992
Convention Center
Washington, D.C.

Paper Presentations
International Exhibition

Technical Tours
Social Events

Concurrent Meetings:
ASPRS/ACSM
IGC/IUSM

For Information Contact:

XVII ISPRS
Congress Secretariat
P.O. Box 7147
Reston, VA 22091
USA

Telefax: (703) 543-5585
Telex: 160443 UGSS UT
Telephone: (703) 646-5110

SUC BULLETIN Vol 24 No 2 27

cn
-1
O
ca
5
> •
C/3

H
Z
>■»oa.

E « Srt u
CO p S
u 5 ^
E ?• -o
“ 'S R.1,5 c §-
U ■'■ c> <u 2
« Z “
n & £• w K ----

.E "•3 c
0 ^ - 2

° §■
^ £ T3
< o U

c X

c g •= -p 5 g
o c

8 £
5
•O

5̂ CO
V? C C
• - o wO co co
* * q> o
O t c .

r \ P P

<; re x
O

<o cq> X
h c

o £

< u

Lp £

t£ I I

e: £»
U S

CSo

O Vi
x a

c K

i- o
O V
2 73
x °
« *»
> Cl
« C
E ££ rt
c £
~ c
“ o
.= Ol ^
"S <g 12
0 * 0
H -a bra W C

8

l l S

C
X
E
>%
GC

__ CJ

<U reF 3CC V5
» 360 W

c c
■5 #C

cj ^ rere c 8- O —

o
c *c
o 3

*C .2■P T3

I- C- '5
M y a.

■5
i s 'g
I * £
E.3. co
£ CO

I S I
. 1 § '£
C *ri *"
3 ^ - 0

£?
Ot/s l> c/s ,2

c 3
U o

1 1
a. u
82 u

S 8

> aes
a) .
E fc
CO ^

c re
*- u
TJ *
qj q.
re ^
u £
60 U

E 2
>% *3

cc *

•tS «£

1 1

o S
^ re "re
v O u c •C £ N C

"> "« C
"■= r -o c
r C U £■
5 . 2 £

K C . L t

00 U

s ' S
' E E
c/T c
o p « •S t
"O u

op K '5j
o e p £

'6I ' S
ob g. “

■ S C O .
re OC tnS O U V

■= •= o t >*

C t)
C ..2

</: *o

<D O

E O

C ^ I) K (j
^ w tr. c

•j O X ”£ re
S i c U E Ui
1) on 3 — >K' .s
« £ re « « g

& . '§ ^
4> T3 T3 o >,u c C C T5 x>

•“ OOX) C =
~ TV C ri

00 £
"re — "5b

»5 2 5 E
41 2 2 ■*

"C 5 y c

- <

.= CL
« E .
u •— VI

= > , .H
— -O1 is
5 £ t j

•= S g c . « S

i . E>> vCO -—
CO

>. >vX) v;

■g.2 >
■5.' =
E 00

v

re C
E B

I «re u
4J Z

ic: u
X re 2
<r. .2

■g ■=
O O

W A! P

S i c
z IS

CQ re X3

l- a; o —

U

Q- Cl4j ^
CC u
.E c
— .ep
O. "i/i
« S i
tv o

O w

>■,

£■ "c ~

So ""3 Pi £ - 0 o
TD£ ? - — o

La S i >> O "OL G 7 J ffl
G Z_ — Cc T -5 5

•■2 c = 3 -a>• ^ W
« p js c . r

o E = = =e c _ _

l " r S ^
O

S E i g ' S ■S«= 2 I s
u c« u

3 c
■s? Ec 4>
0 .. -O

C T3 C U
£ ~> re ■= C cO jX “ X ; 1/O = = tr-

• - >

u .E DO
£ <« ^
£ u
« £vi 0 0

« Z .

t i
P CL
b T)

d g E
,52 CO t)
c E X!
5) £ £^ “ n.
«-> u «•,

"° ■£ ^

c 5

c.

o £- js l.
re u

. b -5
re c
Q. <—

-E S

u C C. > •£
-2 Ti a.

bx) >>
C ^

2 B § £
CO X (J ‘z.
C U . «

“ a n :
^ O CLt-
^ V
u- >
1) O
Q. *0

2 O

p flJ re
C ~ r£

60 O

s i ^
oj

S *D
>V ^CO _
o rc
X CO
w C
u- O

*5r t- qj C Yt
w ^ c C •= ti
= ^ C C ^ &■o o w ^ P.9 0
« eS

.9
^ S
n. .£ re zz
u s

r -
U
<
ac
t -
5/3 .1 -a; qj
^ r3 w q> w- 0 cc
*< H r e x 0 * 0 u

£ xco ^ Q,
e -p e
C- ob
fe •? o S v

to o 'tr *o «o> w
£ b 0 2 g 'S.

.« ^ « 8 * i 1
•o & 8 .sp g
•o U “ « u 5
c w v i >-, re 'S
re w 3 — _re

- cL .9 re .£ P
— re C J2 _ &
c E f « "S s

E o b 'E c “
>% ^3 ^ 3 p
M t) O > £
re J= 2 c « E
K “ _ s ^ Kre q . j? q> re

S ? 6 | 5 » ̂ «£ re
q>

a> .5 ao

c x c *0 re v - -= e-i - s I s
.1 £ .0 I 5 1 B
C o h: £ O c-
°" « Si U & o £
g - 5 O C 8 . 2P K a) w. CJ Xi
> re ,_ u. c l — ~
1 r O P X 2 - U -g ̂«*- P 3 Z
■° 3 5 -a u = re
— os O U ■= TS

*E 'S u -3 c _.2 V re 3 Q. C ^3 J K C B 'C L

c? £ re "O “ c rea w s? g | 5 g
^ c ° "O “ E R J2 O i g t= g- g
•g ’S — 3 *- <L>2 re id .O 2 — p • -3
x> c p ^ £ °
* £ « « a e - isa 8. 2 s p - g-

.2 £ re "s *5 &>x ^ « j= S. 8 c
o - o f? c q> q>
2 M S = o " MS? g. o -2 S3 g «2 £ j= re -O ■£ ■£
u » e S c c S
s o o fi s l e
0 i §:£ S T :

wZ X
O O* G* •• “v:S 0 - JJ* re J5 «

« k S > « I : c c x i

3 = 3 sX O .£ 3

M 3 C C
— c" u 3S — cl £
(3 U «■n > "o t: u K ij

L- 9 .£ P .
° £ S H a
{£ ^ t: — o

c CJF x -a
£ •“ u

q> c E ■£

E w c w E
3 - ° « w c
= c » >: =
p J2 2 u <—

X) C p ■£ c
c= "2 J9 . >>

1 ^ ^ p So
p „ * t?. a

•— “ ^ re y u g k g
- ‘C C « qj

■ ? a i j 5 £2 ^ re l- v_
■= p O c O

E “ .£ u 2?

v ^ 3 o •=ws U S w —
u — o -
a. o p x o

■g o P S) O.
5 f £ J E

£ I ̂ = =U. E o O re

*0 c J= T3 ju eo £0 u o o b c c
*- x £ ■£ = 55^ p O. « =

“ —
V

S *= 2
>4

E re T> E | £ p

^ Ss - C I E
T) 3 ^ C •D C —

r u t :
F f= ">

.2 -a
K .2
2 b: a u J5- p "2 re c-

JJ g- re E 45

f - ^ l .= JJ
c = ■•= 2 c? s £ f £

^ u q>
v

q;

C e

D re
E x

D. to re 3
E u

& ^ > C c
£ £ >l £ O

J5 ̂q> c. re *U
3 2

X qj
O' _ qj t-

D ^ f~ . ** O.
. v y - 9 q>
= - ̂ s *E ̂C 60 C C- ®

3 3: p x E- .2
£ 7 -a re bc c >
£ t c x • -
S- . 9 C .se *
K 2 a. s - , ^

E «
Z S re
O € t -
H wc o

0/ "T
f“ E r e 2 p g t) i /
Z c — ~ b x — -
“ o >
C/3 x re
U o.

COZC u - c
{X o o
W p *s
OS 00 S

U

w a. p x
q> —

•c .Ecj — *rCO q,; C—

C C
re q>

u g cu g x- q> 5 "D - ^
f x o q>

= O F o g u

^ q) -
E s & < s *-
os

re re TJ
- c = 1 5 5

^ -x u «n ax) c 3 qj “

u ■£ I S | -S ^^ C r”, O •= P ~
qj w -gE JJ U P W - - C - _

K ■& o ' S U I " S £ s
^ 1- 2 « n ' 0 o r ~ C

X cfl L- C Pu re o b Sc< S 5 u o S3

re *io I - -^ - a .
C e r e

c? v
" . 8 8

x .2

v. .3 o

o w>*S ®c ® oo x a"

roS2 x

re ̂ 3

i r . . gc re •«
e g o
•s E :
c C E
C o «

x x p
TO CL

P C X '*- rs a \

•c •= S 2o’"re b uc x c o
a n c K
S- B => *re re —'_ 4)c cc ■ 50re ~ re q>
W > X p ■ £

— E cc re S
0D C S V
« .£ I 5 re re g. 5u x

.E C o ^

^ •• 95 5
‘ E "J5 *3c o 3 F
o CL «« —
S g . - c ere rj
q> p ~ «)x> C U ^
O oc h ~ w c 3 ^co •— - C
q> x4)5* w — —CO C — w

v p
e c

* -2 - q> y =5 re f' *" -V c
E 4>
q> -f-

H c c S

o *©

00 2

C -o *S _• -o <3 V 2

^ 55 x -a .b £ M p “CO CJ CO
•S *®
T3 OJD

8 l— t in _re .S' b C
O u
C o

® 79
„ c re

“ £ 2 •c o «
a *o

i &
5* §
e z

S & w - i ■=

o
«J v,
* £
«= 8 c fc.

X CL

•c ■o
p t> 0

o u w <«
c/s 2

_ C
O U

° X PP e t —c .b re c re

I tP C/5

b 73
P >,
P CL

t - i!?* 27

p C u
S -C « «

re °
« J>re
w- u4) co

1 - 2
CL re

* 1
o .2

S =

p U 1_
i

r2 c re 4>
<l> >

*+« c
<4m O
O O
co O
O X

X f -

re q> re 4)

CO 1)
X E
CO •>
'C ^ c t>
u q> re <5 re re _

x 00 - re
CJ

* re
u~ o
© CO

X X "
re £ £

t> o
« ’S

3flj 60u re
c o

* i
— ore 4)
.£ - °
"O co
te re
C j =

X* *>

s §
u . x

x K
.ts u

w o .h «
X fo
S o
OO H
O 3

W> c P
E u-
c ©

5 * 8
D

qj O
re
U q>

re c c O
O X

x re

-2 £ x

9 *cCl c;
i * E

E .b
“ K “ U

o

o
p X

•- .5 = p

> «
U _

U X

£ g
2 f

V c00 c
3 C re co

o x ^ ,S2 •-
•«» CO
.3 O
•P 3

s £ •£ e^ qj re

£ TO 1
S .E
° E

o

« ^
60q> £

q>
■S'sq> re

c «
c -X

^ 5

o “ — o
u

^ O 75 X

c l h

- I_ i_ *3
X TO > TO O .2

TO «
T3 3OO
« .5co X OJ co

•E x

c q>
u ■£ rea. x

i s
® E
§ -£ x>
re ^ q> D

u— re
O X

re
q> ^
S .3— a.

- v
re *o
CO “

X

re -7: c x q) co
E cc g.
D C

X X
X __

5 '5
^ -

q>

ceo 45
Cl, G

* i S"

.1 ^ 5 =73 o

to b c

£ H S

CM £

« g3
t :

*" TO

J O
x Q w re

*n

u

E x x x
> , re x «
“ x 00 xl_ c c
c = y 3
Z o - ° o
C - ° -3

00

b
P CQ

i i
c <

E o

I*
CQ

c/: p
13 >-J“ TO

«£
>-
C«
<
CQ
CC
<

u

TO —O =
X C cU p p
he TO CJ
D. .2 TO
c = v.

.3 cr^
to 4 > ^
• ^ E

8- E I
E S U

73
■8 C w
■ b X K

o E C
CQ >, X

p -

p x
TO p

To c:

PQ re X

C
"c >»

.2 o

P E

8 2c <0
c 00

X V
u >

r, ® t u
p £ b. W- u es 00 •£ o
U ii 3 x

U

E TO U TOz > >
X TO J; TO

D 3 U

£ y E y
« i E g

X c X e

1 •£ t - E
-® ? TO 5
e E E u

X X = X- - p C p
x x ’3 .3 -3

J ! !
«j 2 u E

q k a .2
•® 3

■= 3 . 2 X
” s L £

c JO
3 o

E c ^ E cr * !® 2: re
c. x «3
c *’ '"

■8 p
X re

c
X C TO
U .3 D

C TJ
>1

£. V! E
c « O

® c "5
•= .£ x
■c 5 E
TO C >>
> TO “
u > p

U ■ £

S.-3S•3 CL >

re ~

o

60 L-

J E -

• I s
£ “ .• - U- OC
Ol ® ciKS c w

■O .£ 3Qj . ‘3 0
I- 3 TO '3

•cTO X
> TO

a c j c

C X
C l C
*3 Cl

(2 c CC 4)

•3 E
C re

^ re
cJ u
E S
3 §■ co re

bb
c

D.
> 1E .5 U

U

W3
J
O
ca
S
><
CO
u
U
<
b.
at
D
(A

X cn

X
CC

•3 CL b CL
5 £

i I
£ -=
co ’*— 4)

. £ E CO
60

I s —
u

re 60 co
— >> •=:
^ -c •£. - Q .

• ° re -E
Jo te 3 t i

g p X
3 3
to cl e
£ E o

c u. U p
"3 ce *®

■8 .5 2
S c §
QJ O 0
QJ X P.« E y

CQ re x

fc £ *c■3 60 3
C/D y w
Ci g - Qn Jim

U

Tab
le

2
RE

LA
TI

ON
SH

IP
 B

ET
WE

EN

PH
EN

OM
EN

A,
 D

AT
A

AND

RE
PR

ES
EN

TA
TI

ON

i t ; -
a. c£ «S

o fc

U — ^
j c 5

c- C

<
©„cc U c ©

U
<

hj d
<N ©u d_ <N —- —

u s ^ rt - ts
2 2 < cc

•5 o > E E -S 5 >E ? H I § E § £
O u - 3 k - i - O k - cc o .5 c o c o .5

co z:
U

u

5 —• ce sc.E = > >
E % S fc

© O O — <N —■ — O N N O -

K K S
K E e K K £ & -g ~ -5 -a ©
■j= -j= -j= = -j= .E .E S- & & R R

or c
cc *cc

E .£
-§ i§

i: «oE t>
C k-

c zr
cj c>

'C

<N _

*o > 1) ^
O --I I
1> tJSc
</5
cc co

€> >> Ox n a: e ^ *s- fe g •t) cn .2
0 3 —.

O - hr
fl) _o S3 to

c 3
P- o»— fll

C ^ c
’«= c .h ec •— 10c ^ >*8 ts «
u u - *“ o £
”5 <- w
• 3 C u _
■5 — O
> v> —o ^ F S t- £

C O y V ©
O T3 “ -.3 C

V) 3
ITS C

« *2
o •=
.3 * 0

“ •00 =
J= o
.© 3 to •’”

- «
•O X3

1 O

C o S ■£ o a
3 > o CB t) #
C3l " ° en3 S -JE E -o H<u o

, .0 .y D

w >.5.JI
a t

vi © O
c 2 - •3 © ~

t o 05 K pc 2

£ .E
« E oEor C >% ^
D.

■s £
1- ?! X 2

« 3.3 O
7; S J= .E
E O
c .3
fc |

X) ~

1 - 8 = s
3 2 ■E 3c i3 O

— 13
 V. Cn. ee ecJi E «■s ^ b(5 £ c” <— OJ_ c &0 c w>

v. H ■o O K O T33 </>© C «
3 - g . &■^ r!

60 "O60 c fe r w £
60 .X
. r o
0 S

w "O c aC or 2 ok 3 £ — 1;
<u E 2 y -.2 u E « «-> W) _ t o

S •©

& c

53 js *o Z ,u

O o O 3 -S; £ 3 = — o ‘3<- ■a F
0 3 ^ 00 t:>. u —
5 £ o

w U«^ -E ^*60 3 E■S .a E_ C 3 C 5 o x> c. =£ .E c >, **
V. X sr.

§§-=
•8 & * U — od . a ^ai X ^
fe u ^ ' ̂ o o £ -£ >C Q.-0 •3 c 5 u =I l f '
o — y^ "rr

. £ £ ■ £ “Q.O OQ- u X > 4> 0>

c _c £o *5 •£ *o £

S£ c «Z 2 ro o
2 " I sO 3 ««- o o

&W2 < O.

«*- 2 O a _*o —
O £ E•© c— fN 3 . —.y ■o— 4J I— 0-0.0 o. o

•£ -o © c 4> _
3 ?! 3 tu - C JJ ic/3 3 .3S ^ Scc c© *38 S >^ r?.0 <r2 y _

C u * 0
cc 3 ^ P -2 lis g s

« M S3^ «*T2 u

O
’O -i >“S P c
c J ■>
„ at/r u 3x ^ CCt> w W.

THE DEVELOPMENT OF A FRAME BASED

CARTOGRAPHIC DESIGN EXPERT SYSTEM.

ABSTRACT

The continual drop in price and enhancement in performance of computer

hardware has brought the possibility of computer mapping to a wider audience. This

increase in the availability of computer mapping capabilities has lead to a rise in the

number of potential map authors, but does not however appear to have lead to more

widespread knowledge of cartographic design theory. As it is unlikely that the general

level of cartographic education of most computer map authors will be greatly

increased, cartographers must strive to make the programs used by naive map authors

better able to produce reasonably well designed maps, or at least maps which do not

break the most fundamental rules of map design. To enable such a system to be

developed the basic map design process must be formalised. This is seen as a
preamble to developing specific rules which are incorporated into a prototype

cartographic design expert system. The system is written in PROLOG with an
inference engine designed specifically for map design problems. It uses frames as the

main method of knowledge representation. Several of these frames are illustrated.

INTRODUCTION
In the last twenty years or so there have been a great number of programs

created to produce maps using a computer.1 Most of the commonly available
programs are for producing small scale statistical maps, however more recently there
has been a significantly increased interest in Geographic Information Systems for
producing a wider variety of maps at a broader range of scales. The continual drop
in hardware prices has brought the possibility of computer mapping to a wider
audience, particularly with the increased power of micro-computers now available.

The increase in the availability of computer mapping capabilities has lead to a
great increase in map authors2 and the number of maps being produced, but does not
however appear to have lead to more widespread knowledge of cartographic design
theory. The large number of poorly designed maps created by map authors using
computer systems to produce their own maps indicates that there is a Jack of
knowledge of how to design maps. These poorly designed maps are not the fault of
the computer programs. Most programs do have the capability of producing well
designed maps when used by someone knowledgeable in map design. The problem
lies with authors who are not skilled in cartographic design and who would probably
never produce a map by conventional means, but would contract a cartographer to
produce it.

It is unlikely that the general level of cartographic education of most computer
map authors can be greatly increased, nor than computer map design can be limited
to those with cartographic training, therefore cartographers must strive to make the
programs used by non cartographers better able to produce reasonably well designed
maps, or at least maps which do not break the most fundamental rules of map design.
The area of computer science devoted to producing programs that include knowledge
of how an expert solves a problem is that of Expert Systems. An Expert System is
essentially a program which includes a codified form of the rules that an expert uses
to solve a problem, thus a cartographic design expert system would include the rules
a cartographer uses when designing a map.

A long term goal would be to have a cartographic design expert system that
could design any map at any scale, but current literature on expert systems suggests
that at this time practical expert systems should be limited to narrow domains, ie. the
problem area must be well defined within quite narrow margins. Several cartographic
expert systems are currently under development. These have tended to concentrate
on elements of the map or map design, eg name placement, line generalisation,
solution of spatial conflicts, and while all these problems will have to be solved in any
realistic production system, there would seem to be a need for the application of expert
system techniques to more general design issues such as who the intended user is,
why the map is required, what its intended use is, where it is to show, what information

1 Numerous terms have been used to describe maps produced with the aid of computers: computer
cartography, computer mapping, computer assisted cartography, digital mapping, automation, etc. In the current
study the term Computer Aided Cartography (cf. Computer Aided Design) will be used to refer to computers
being used for the design and display of maps, whereas Computer Mapping will be used to refer to the broader
use of computers in map making.

The M ap Author is one who conceives the map and prepares the data. He may then proceed to carry
out the design and production, or pass this on to the Cartographer. The M ap User is the intended audience
of the map. This may or may not include the Map Author. The System User is the user of a Computer
Mapping system. He may be the Map Author, the Cartographer, or the Map User.

3

is required, how to represent the information in map context, and generally trying to
prevent the author from making poor design decisions when making the map.

Several papers on cartographic design expert systems seem to assume that
the process starts with the symbolisation of the map information. Clearly an
examination of the map design process shows that this comes relatively late in total
process. The system described here commences with questions about the nature of
the map and its intended purpose, establishing a background to the map. Discussions
with cartographers have indicated that this could go further, or perhaps even back a
step to question the map author as to why he wants a map in the first place and what
he expects it to achieve. While this approach may be desirable, until we have much
more sophisticated natural language interpreters it is unlikely that this will be
achievable in any realistic sense with a flexible form of dialogue.

CHOICE OF SUBJECT
As stated in the introduction, current wisdom on developing practical expert

systems suggest that relatively well defined narrow domains should be chosen. They
should be applied to subjects where there are human experts who regularly perform
the task better than most other people. "Designing an expert system to add single
digit numbers is silly, because almost everyone does this well. On the other hand,
designing an expert system to predict the stock market is doomed to failure as no
human expert does this consistently well (Bahill & Ferrell, 1986; 50). Most expert
systems have been developed for well structured problems which can be easily
formalised. Design problems have proved especially difficult in this context and design
has been characterised as an ill-structured problem, " ... i.e. one which is difficult to
formalize and difficult to solve, especially with man made problem solvers" (Begg,
1984; 45).

In the initial stages of development, success will most likely be achieved if the
expectations of what a system will produce are kept within limited bounds. Keates
(1990) identifies three main ways in which maps are designed: accidental design;
imitative design; and creative design. If the system is capable of the second of these
and helps to prevent poor examples of the first, then it must be judged as being
successful.

In order to create a cartographic design expert system the first step must be
to formalise the map design process, but like many other areas of design this has yet
to be done. If this can be achieved then what initially appears to be an uncomputable
problem can be at least partially solved if it is properly divided up.

In identifying a narrow domain within cartographic design there are two limiting
factors to be considerd, map type and scale. If the map types which can be produced
are limited to a single type or small group of related types, e.g. geological maps, or
climatic maps, then specific rules for these maps at a wide range of scales could be
developed. If a broader range of map types is desired, then to develop a practicable
system the range of map scales considered must be limited. This limitation on scales
is imposed due to problems of generalisation, many aspects of which have still to be
automated satisfactorily.

Thus, to formalise the cartographic design process the type of maps and an
appropriate scale range to be examined must be defined. The map types selected

4

for this project are those of individual countries, parts of countries or groups of small
countries found in regional atlases, such as those used for secondary education. An
example would be the home country and regional maps in products like "A Senior
Secondary Atlas for Nigeria" by Collins-Longman (1983). This type of atlas, while
being in part a general world reference atlas, includes a number of maps devoted to
a variety of special topics of the home country and surrounding region. Similar maps
are also found in textbooks and atlases about specific countries and regions.

Scale for these maps typically ranges from about 1:2000000 (1 : 2 million) to
1:15000000 (1:15 million). The format of this type of product is also appropriate
given the hardware limitations of most micro computer systems. These atlases are
typically A4 size (about 30 x 20 cm) or smaller, therefore maps larger than A3 size do
not have to be considered. A common size for computer monitor displays is around
30 cm wide by 20 cm high. Thus, maps intended for hard copy output up to this size
can be shown true to scale on the display; an A4 upright image would be shown at
about 75% of its true size and an A3 downright image at about 50% of its true size.
Other factors have to be taken into account, but it is at least practical to consider
displaying these maps on typical monitors, and also to produce hard copy on inexpen
sive printers and plotters. Designing maps specifically for slides and overhead
projection foils would be obvious extensions. For the prototype system however, only
maps displayed on the computer monitor will be considered in detail.

In addition to small scale topographic maps, the type of atlas mentioned have
a wide range of special topic maps, such as relief maps, land use, communication,
climate, etc, which include point, line and area data in both numerical and non-
numerical form, thus rules will be required to deal with most types of information found
on maps. It is intended that a database containing base data and special topic data
will be part of the system. This will allow a variety of maps to be produced. Apart from
this database, the map author must also be able to add special topic information for
the system to be of more general use. The system must be capable of interacting with
the author to allow him to describe the nature of the phenomena to be mapped and
the information available.

The remainder of this paper falls into three sections. The first is a
consideration of information for mapping and its representation; the second details the
basic map design process and how it may be automated; and the third outlines the
protitype sytem and illustrates some of the frames used for knowledge representation.
In some cases broad generalities are stated. These are not intended to be specific
solutions to all situations that may occur in cartographic design, but descriptions of
some of the problems that may face the proposed system and their possible solution.
This is seen as a preamble to developing specific rules as the system develops.

PHENOMENA, DATA AND REPRESENTATION
There are four aspects to be considered here: the nature of the phenomena

being mapped; the locational data available about the phenomena; the measurement
of the characteristics of the phenomena; and its possible cartographic representations.

Many of the writings on cartographic design expert systems immediately launch
into the problems of symbolising the information. However, in a proper analysis of the
map design process one must first of all establish some basic facts about the
information to be mapped. Arguably, one should go even further back in the process

5

and examine the reasons why the map is to be made in the first place, its intended
user or uses and many other factors. Apart from a few very basic questions this is
beyond the scope of the present study, however a full consideration of the nature of
information which is to be mapped is appropriate.

Characteristics of Phenomena
Most cartographic texts consider three basic categories of phenomenon: points;

lines and areas. To this, several add surfaces or volumes. Strictly speaking temporal
variation and movement should also be considered, but generally these will be omitted
from this study. Although this is an apparently simple classification of the myriad
possible phenomena, it is worth examining the four main classes in more detail.
Fundamentally, however the most important distinction is between continuous
phenomena and discontinuous phenomena and this should ideally be reflected in their
representation.

A phenomenon distributed at points appears intuitively simple with each
occurrence being denoted by a set of coordinates. However, very few features
actually occur at a point in the strictest sense of the term. Normally what we are
considering are discrete features of some finite size, which are discontinuous in their
coverage and which we deem to be points given the scale of the map. For example
a factory can cover some considerable number of square meters on the ground. On
a large scale plan it is be represented as an area enclosed by its walls, but on small
scale maps it may well be shown by a point symbol representing the existence of the
factory or by a symbol representing the value of its output. Another classic example
of this is the treatment of towns and cities on small scale maps. Clearly these spread
over some considerable extent, but for mapping purposes we can consider them to be
distributed at points.

Many discrete phenomena are seldom considered as occurring at points, such
as population. "Generally they are not fixed in location, and can only be recorded as
being present at or within a location at a given time." (Keates, 1989; 205) Rarely do
we have data on individuals. Normally they are enumerated by some area and may
be represented by area or point symbols depending upon map scale, purpose and
design.

Linear phenomena by their very nature must be continuous, (in space if not in
time) although often what we consider to be linear features are actually zones of
transition between two surfaces, such as the coastline, and indeed most ’natural’
boundaries are of this type. They may also be tangible features on the ground such
as fences or walls, but again our treatment of many features will depend upon map
scale, e.g. a road at large scale may be depicted by two bounding kerbs representing
its physical extent, whereas at small scale it is its importance as a line of
communication that is mapped.

Phenomena occurring within specific areas may be present continuously over
the whole surface, such as geology, soils, etc., or may be discontinuous, such as
lakes, built-up area, etc. Effectively the latter type is a subdivision of the first type
where we have a binary division of the surface, rather than a more numerous set of
classes and sub-classes.

6

Surfaces refer those phenomena which are continuouse and vary quantitatively,
in space, the topographic surface being the obvious example. Some phenomena vary
continuously both spatially and temporally, such as much climatic information.
Precipitation, while not continuous, may also conveniently be grouped here (Keates,
1989; 205) as we are normally dealing with averages over time. Variables such as
temperature and pressure if considered at some specific level, e.g. ground level may
also be treated similarly.

For clarity, the terms discrete, linear, specific area(s) and continuous surface
will be used subsequently to describe the distribution of phenomena to distinguish
them from data or symbol types.

Relationship Between Phenomena and Locational Data
Before one can commence to design a map one must have data to map. This

data will in some way, although not necessarily simply, relate to a phenomenon or
phenomena which has in some way been measured or sampled. While a
phenomenon may be distributed at discrete locations, along lines, contained in specific
areas, or vary continuously over a surface, spatial data can only exist in the form of
points, lines, or areas. Areas must either be defined by their outlines, which implies
there must be line data, or as some regular tessellation of the surface (e.g. grid cell
data). Area boundaries may be the actual outline of the phenomena, or some imposed
(often arbitrary) boundary.

To use the computer data structure analogy, these are 0-dimensional, 1-
dimensional or 2-dimensional data. Despite this seemingly simple classification of
phenomena and data, frequently the data available about a phenomenon has not been
collected for the purpose of mapping and may not reflect the actual distribution of it.
This situation may also be compounded by the available data being of a secondary
nature, having been preprocessed for a variety of reasons.

While there is an unlimited number of phenomena that may be mapped we can
identify a small number of frequently recurring combinations of distributions of
phenomena and the spatial data available about them. These are illustrated in Table
1, from which 8 primary combinations emerge:
1. Discrete units, specific (point) location data
2. Discrete units, data aggregated by bounded area
3. Discrete units, data aggregated by cells
4. Linear phenomenon, with line data
5. Specific areas, outline data
6. Specific areas, cell data
7. Continuous surface, data sampled at points
8. Continuous surface, data sampled along lines.

In addition to these primary combinations, there are several possible secondary
or derived distributions. Frequently information about specific areas is attributed to a
single point within the zone, usually its centroid. Any set of numerical point data may
have isolines produced from it, thus we may have discrete units aggregated by specific
areas, data attributed to a point within each unit, and isarithms interpolated from these.
Other such complex permutations are possible, but there may be occasions when the
map author may only know the nature of the phenomenon and the form of data
available, but not how the data has been derived.

7
Table 1

RELATIONSHIP BETWEEN PHENOMENA AND LOCATIONAL DATA

Frequently Occurring Combinations.

Data 0 1 2 2
Dimension Bounded Tessellation

Phenomena |
i
I

Discrete |
Units j

i

1 2 1 or 2 1

I
Linear |

I
1

I
Specific |
Areas |

i

2 1 1

I
Continuous |
Surface j

1 1 or 2

1 - primary data
2 - secondary or derived data

Level of Measurement
In addition to the locational characteristics of the information we can also

classify its attributes. When information is gathered, measurement is the process of
assigning a class or value to the observation. This attribute of a feature may be either
numerical or not. It can also be seen that nonnumerical attributes can either be simply
describing differences in kind or types of features, or can indicate ranks or hierarchies
of features. This characteristic of information is known as its level of measurement
(Robinson et al., 1984). The conventional classes are nominal, where there is a
change in type or kind, ordinal where there is a ranking of the data, and interval/ratio
where some numerical value has been measured or calculated and the range of
possible values is continuous. Knowledge of the level of measurement together with
the nature of the phenomenon and the spatial data type will allow one or more carto
graphic representations to be assigned to the information.

Cartographic Representation
Despite the wide range of phenomena that may be mapped, there is a limited

number of cartographic representations available. Table 2 outlines these. Frequently
it will be possible to depict a data set by more than one of these methods, although
once the purpose of the map has been determined and the other information to be
included has been decided, the choice is often limited. Where there remains a choice,
the map author may decide which representation to use or accept the default option.

Table 3 illustrates the relationships between phenomena, data, level of
measurement and cartographic representation.

Table 2
8

CARTOGRAPHIC REPRESENTATIONS

POINT SYMBOLS

OA Dot Distribution. All points have same symbol,
a represents occurances of discrete individuals
b represents some fixed quantity grouped for each dot

OB Categorised. A range of features depicted by a set of point symbols of
visually equal importance.

OC Ranked. Some ordinal ranking is implied by the range of symbols used.

OD Proportional (graduated). Symbols scaled according to some value or
in fixed classes. May represent points, areas considered as points at map
scale or areas represented at point location (usuallly zone centroid)

a classed unipolar distribution
b unclassed unipolar distributions
c bipolar distribution

OE Multivariate Quantitative. Symbol scaled to some value or fixed. May
represent points, areas considered as points at map scale, or areas
(usually by zone centroid),

a Fixed size
b Proportional

OF Spot values. Series of point locations with values. May have regular or
irregular distribution,

a sparce locations, e.g. spot heights
b dense irregularly spaced, e.g. soundings, triangluar irregular network
c regularly spaced, e.g. grid digital terrain model.

LINE SYMBOLS

1A Boundaries. Can represent:
natural boundaries (often zone of change)
actual ground feature (often man made)
intangible (no real existance on the ground)

a equivalence implied by symbols.
b hierarchy implied by line gauges or styles - typical of political/administative

boundaries.

Table 2 contd.
9

1B Networks.
a network structure, e.g. roads. Hierarchy may be implied by symbols
b Tree structure (branching) hierarchical networks e.g. river systems.

1C Isolines (contours). Line of known or assumed numerical value. Divides
surface into zones between two values.

1D Flow lines. Can be in form of network, or independant routes/movement

1F Unstructured line symbols. Miscellaneous, non network, often isolated
and/or discontinuous line symbols not included in 1A or 1B (e.g. fences,
walls, geological faults, etc.)

AREA SYMBOLS - each zone homogenious; changes occur at zone boundaries.

2A Isolated areas. Binary division of surface - special case of 2C.

2B Unclassed, e.g. ’Politcal’ map - simplified case of 2C.
a single level, all symbols visually equivalent
b hierarchy of symbols e.g. Country/state/county

2C Categorical. (Chorochromatic, colour patch, or mosaic map) Data feature
coded, e.g. Land use, vegetation, geology,

a uniform
b hierarchical (i.e. sub-classes)

2D Graded series. Two possibilities for boundaries, but treatment of
symbolisation the same:

Choropleth Delimited zones with numerical values - boundaries
usually imposed on distribution (normally administrative, could be
grid)
Dasymetric Delimeted zones with numerical values - boundaries
derived from distribution,

a unipolar variation of symbols
b bipolar variation of symbols
c bivariate symbolisation (not Dasymetric)

2E Layer colours, (e.g. hypsometric colours)
a unipolar variation of symbols
b bipolar variation (e.g. temperature zones)

2F Cartograms. Areas scaled by a variable, not true extent.

Table 2 contd.
10

SURFACE SYMBOLS - differ from areas in that continuous variation is
represented.

3A Shading, (e.g. hill shading)

3B Block Diagrams. (2 1/2 D views) (Arguably not a true map - non
orthogonal)

a continuous
b stepped

3C 3D Surface Model, (cannot be displayed in this form - really an internal
representation in a computer or a physical model, however the
visuallisation of the 3D surface could be considered in this class)

It is planned to develop a separate expert system to classify information the
user may wish to add to the database. This would take the form of a relatively simple
classification type of expert system, which could run independently or as a sub-system
of the main package.

THE DESIGN PROCESS
The general procedure for designing a map follows the route of: Compose;

Compile; Symbol specification; Display; Adjust. A similar route can be followed with
computer aided cartography, and indeed it is logical that an expert system follow a
similar route to a Cartographic expert. The stages to be followed are: Description;
Layout; Data Selection; Symbolisation; Display; Modify. These are described in more
detail below.

Description
In this step the aim is for the user to describe to the system some basic

information about the map he requires.

First then, the user must inform the system of the type of map to be produced.
Immediately, a distinction can be made between topographic or ’general purpose’
maps and special topic maps. A topographic map ideally shows all information with
the same level of importance, i.e. no one aspect of the map should dominate, although
in practice cultural information tends to dominate on most topographic maps, and in
any good design there should in any case be several ’visual levels’. For a special
topic map, the special topic information normally will be the dominant part of the
graphic image with the base information providing context and orientation for the map
user. Thus, the system will have to know what type of map is required at an early
stage.

The system will ’know’ about a definitive number of map types that can be
produced from the information in its database, however the user may not be familiar

Table 3
11

RELATIONSHIP BETWEEN PHENOMENA, DATA AND REPRESENTATION

Phenomenon Locational Level of Possible
Distribution Data Measurement Representation

Dimension Methods

discrete 0 nominal OB.OA

discrete 0 ordinal OC

discrete 0 interval 0D,[1C,2E]

discrete 1 ord/int 1C,2E

discrete 2 ord/int 2D,0D,[0A,1C,2E]

linear 1 nominal 1 A,1 B

linear 1 ord/int 1B,1D

specific
areas

0 interval 0D,[1C,2E]

specific
areas

2 nominal 1 A,2A,2B,2C

specific
areas

2 ord/int 2D,0D,[1C,2E]

continuous
surface

0 interval 0F,[1C,2E]

continuous
surface

1 interval 1C,2E

notes. 2 dimensional data is in the form of boundaries (outlines)
[] - requires further processing or additional information.

with such titles and may require help in defining what he wants. He may indeed
require a map that the system does ’know ’ about, but refer to it by a different title.
From the author’s description of the information to be included in the map the system
should be able to determine the type of map required. The user’s name for this may
be added to the knowledge base for future reference.

If a topographic map is required then the system will be able to exercise almost
total control over the map design as all the information will be contained in the system
data base and the system ’knows’ about this type of map. If a special topic map is
required, more information will be needed from the user, particularly if the main

12

information to be mapped is not included in the system data base. In this event the
user will have to describe the phenomena to be mapped, the data available, and
supply the necessary spatial and/or non spatial data.

The purpose for which the map is to be used is also important in determining
what must or may be included in the map, the level of detail which may be required
and hence the scale that will be required to show the desired detail. As the system
is specifically limited to producing small scale maps in a particular scale range, there
are obviously limits on the intended use of the output. Clearly maps at these scales
are not intended for detailed measurement, but more for providing general information
about an area or an overview of specific distributions in an area.

The level of detail required on the map will influence the amount of information
selected and also the level of generalisation used. It is closely related to the map
purpose and to the scale of the map, scale probably being the most important limiting
factor in the amount of detail that can be shown.

The intended user of the output should also be considered at this stage. The
map author can also be the map user, but the map may be being produced for a wider
audience. If the author is also the intended user then one can normally assume some
familiarity with the location or information being portrayed. If the map is intended for
a wider audience they may or may not be knowledgeable about the area or subject.
If the map is intended for a naive audience it may be desirable to make the map
simpler than for an expert audience. This will reflect on both the content of the map
and the level of detail at which each element is shown.

Layout
The factors to be decided at this stage are the actual geographical area to be

mapped; the format of the output; and the scale of the output. A decision on the first
of these and one other will determine the third. The level of detail determined above
may influence the choice of scale. Some backtracking may be required if it is not
possible to show the desired area in the available format at a scale commensurate
with the topic or the level of detail requested.

Location. As a general point, the map author will know within reasonable limits the
area to be mapped, although the size and shape of the area of primary interest and
the purpose of the map may influence how much of the surrounding area should be
included. It is unlikely that the system will be of much assistance in determining this,
although an interim plot of the area may help the author.

Format. If the map is only to be displayed on a CRT display then the format will most
likely be the maximum size allowed on the display. If hard copy is required this will
be limited by size of printer or plotter to be used, but may also be limited by other
factors, such as the page size of a publication. If the map is for reproduction the
author may have fixed criteria. If the author needs help at this stage then some basic
rules of appearance can be used, such as ratio of sides etc, and selection of portrait
or landscape position depending on shape of area.

Scale. The general principle with atlas maps is to use the maximum scale possible
(to the nearest round figure) within the given format, thus this will normally be
calculated by the system based upon the size of the area and the format. It is

13

possible that the user will require the map to be of a certain scale (if one of a series
perhaps), thus once scale and location have been specified the required format can
be calculated. Scale is a topic that is frequently misunderstood by map authors and
users, particularly at the small scales used here so it is likely that the system will have
to provide a considerable amount of explanation.

Marginal Information. The proposed system will not at this time make any attempt
to design the layout of marginal information such as titles, legends, etc. Reserving
space for this will influence the scale or format of the map, but will be the authors
responsibility. Future developments could include assessment of the outline of the
map area, the amount of legend space required, etc., and the suggestion of
possibilities to the map author. Initially the title, scale and legend will be placed
outside the map neat line, with the title and scale across the top of the map and the
legend on the right hand side, if shown.

Data Selection
The information to be included in a given map will depend upon the type of

map, the scale, and the level of detail required. Table 4 lists the information to be
included in the system database. Space does not permit a fuller description of this
data.

Topographic Maps. If a topographic map is required then, as all the information will
be contained in the system database and the system will be ’familiar’ with this type of
map, the system will be able to exercise almost total control over the selection and
representation aspects of design. All the information described as ’basic information’
in Table 4 would normally be included, although the user could be given the choice of
a ’physical’ type map which includes hypsometric tints or a ’political’ type map which
has coloured administrative zones. The level of detail at which each of feature is
depicted will however depend upon the scale, the purpose and the specified level of
detail of the map.

Special Topic Maps. If a special topic map is being produced, more information will
be needed from the user, particularly if the main information to be mapped is not
included in the system data base. Maps whose topic is one of those listed as
supplementary information in Table 4, while requiring more user input than topographic
maps, will require considerably less than for special topic information supplied wholly
by the map author. The basic cartographic representations of the information in Table
2 will be known to the system, as well as what base information is normally included
in a map of the selected topic (i.e. there will be information about this in the knowledge
base).

If information to be mapped is not in the database the user would be prompted
to describe the phenomenon and the data he has available at this stage. This can in
fact be seen as a separate task to the design aspects of the system and fits the model
of a classification expert system.

While perhaps to be avoided for reasons of simplicity, it is possible that a map
author will require a map showing more than one special topic. (The use of bivariate
mapping of statistical/census information is not included in this discussion.) The map
may for example show both temperature and precipitation. As there are strict limits
on the number of continuous phenomena that can be shown by area symbolism -

14
Table 4

Proposed Database Contents.

BASIC INFORMATION

Political/Administrative Boundaries - International and internal (2 levels if
available). These will be used with separate census data file for statistical
maps.

Coastline - similar level in hierarchy as International boundaries. Should be
able to be shown at two levels of generalisation.

Drainage - network classified with at least 3 levels.

Lakes - large lakes (say greater than 2mm2 at the largest map scale). Must be
linked with drainage network.

Railways - one level.

Roads - classified as highways/motorways, major roads, other roads.

Settlements - (administrative definition) database would contain classification
based on simple hierarchy, e.g. National capital, State capitals, other cities
and important towns, giving 4 levels of hierarchy.
Ideally settlements would be chosen from a separate database with a
variety of factors, e.g. population, political status, remoteness, etc., with
a ranking calculated from these. Cutoff point determined by scale
initially. User could specify number of settlements to be included, or
selection criteria based on facts in database and system make choice.
Different default parameters could be specified for different map types.
Number of categories dependent on scale, number of settlements to be
included and map type.

Contours - frequently shown on atlas maps with non uniform interval, as basis of
layer colours. Database should include all contours based upon minimum
interval appropriate for region. Actual intervals used selected
automatically depending upon scale. Area symbolisation may be included
depending on the type of map.

SUPPLEMENTARY INFORMATION
(Information frequently used for special topic maps in regional atlases)

Geology, Soils, Land Use, Land Cover (Vegetation), Annual Precipitation,
Average Temperature.
Census data, including population etc. (to be used with administrative boundaries
above)

15

probably two at most, one being shown by area colours and the other by area patterns
- the user will have to prioritise the phenomena to be depicted, and may have to opt
for line or point symbols to depict some continuous phenomena. For example, a map
could show annual precipitation by layer tints and January and July isotherms by two
sets of lines.

Base Information for Special Topic Maps. In designing a special topic map one
must have an appropriate base map on which to display the information. There are
two common approaches to this. The first is to take a topographic map and reduce
it to a background image, often by printing it in grey. This will mean that much
superfluous information will be included and also that some essential information may
be obscure.

The second approach is to design the base specifically for the map. This
involves selecting the appropriate information from the topographic base and
symbolising it to compliment the special topic information. This should result in a
better solution.

Frequently little consideration appears to be given to the level of detail of the
base image when compared to the special topic representation. For example, a map
with a very detailed coastline showing very generalised climatic information can
mislead the user into thinking the special topic information is as detailed as the
topographic information. Thus, some attempt must be made to have commensurate
levels of detail for different elements of the map. This may involve simplifying the base
information to reflect more closely the detail or accuracy of the special topic inform
ation.

Map complexity. Although the level of detail, map purpose and scale together will
provide some indication of how much information should be included in the map, some
problems will only emerge after the data has been (provisionally) selected. For
example if a coverage of areas is to be included the system must check to see that
the polygons are large enough to be perceived. If not, a more generalised
representation must be used. Similar tests can be done on total length of line and
number and average spacing of point symbols. Although this is not a true measure
of complexity as it doesn’t take distribution into account, it provides an initial indication
to the system that the map may be too detailed.

Interaction of representations. It is generally not possible to show many sets of area
symbolisation. Some areas may have to be implied by their boundaries. Problems
of spatial conflicts have been deal with in some detail by Mackaness (1986) and
solutions developed therein could be incorporated. Generally, and whenever possible,
problems should be avoided by not selecting too many data sets.

Generalisation. This creates many problems in map design, particularly as scale
decreases. There have been several studies on expert systems applied to map
generalisation and it is beyond the scope of this study to incorporate all the
possibilities. Given that the range of scales available to the system is limited,
generalisation can be resolved partly by selection and, where appropriate, by having
two sets of linear data or coding linear data so that it can be produced at two levels
of generalisation, determined by scale and level of detail required.

16

Symbolisation
Having made an initial selection of the information to be included in the map

(which may have to be modified once the map has been displayed) each element of
the map will have to be given a symbol specification. The actual details of this will
vary quite considerably depending on the phenomena being mapped, the scale, etc.,
however the first step is to assign the cartographic representation to be used (Table
2). Each of the data sets to be included in the data base may be assigned one or
more possible representation based upon the nature of the phenomena, the locational
data and its level of measurement as discussed above.

This is only the first step in specifying the symbols. Once the type of
representation is known, specific symbols will have to be assigned to the information.
In some cases this will be trivial, such as specifying colour and gauge of rivers. In
other cases considerable effort will be required to select the most appropriate set of
point symbols or area colour scheme, for example. Rules for the representation and
for the data set will be used to narrow the choice, but inevitably user choice will play
a major role here, or at least in approving defaults or choices suggested by the sytem.

Display
Having determined the information to be included and its graphical

representation the map can be displayed on the screen. This is largely a procedural
task for the system, although, due to the nature of computer graphics and some of the
representation methods, consideration will have to be given to the order in which items
are drawn. Generally speaking area symbols will be produced first followed by lines,
then points. Text, although currently excluded, would be added last. More
sophisticated measures will be required in many cases for hard copy output, in
particular the masking of underlying symbolisation so that subsequent features are
visible.

Modify
It would be ambitious to suppose that the first attempt at designing the map will

be exactly what the user requires, thus the system must be able to interact with the
user to modify any of the decisions previously made. Any modifications requested
would of course have to be processed through the knowledge base, and the user
notified of any knock on effects that may occur. The system will store parameters for
completed designs so that it is possible to backtrack should the modification not result
in an improved map.

The biggest difficulty here however, is in assessing what good design is, as this
is largely subjective and attempts to quantify this (e.g. Mackaness et al., 1986) bear
little resemblance to the user’s perceptual response. It is also arguable that the
intended user of a cartographic design expert system is unlikely to be able to pinpoint
what the design problems are far less quantify them, therefor modifications are more
likely to affect what is shown, rather than how it is shown. This is an area requiring
considerable additional research.

PROTOTYPE EXPERT SYSTEM
In order to test the model of cartographic design and the rules formulated, a

prototype map design expert system has been developed. The system is written in
PDC Prolog (formerly Turbo Prolog). The use of existing shells was investigated, but

17

deemed to be impractical due to the nature of the problem and its graphical
requirements. This view is supported by others developing Intelligent CAD and map
design systems (e.g. Ditterich & Ullman, 1987, Muller & Zeshen, 1990)

PDC Prolog is a ’typed’ Prolog compiler Which has the advantage of many built
in graphics predicates allowing relatively easy development of graphics programs
without the need to interface to other languages or systems. A major disadvantage
is the limitation that only facts may be asserted into the knowledge base at run time.
This makes it harder (but not impossible) for new rules, either inferred by the system
or supplied by the user, to be added.

The inference method used is a predominantly forward chaining mechanism,
i.e. it is a data driven solution, where rules are matched against facts to establish new
facts. Backward chaining using hypothesis testing is used at some points, mainly to
establish if a default value is the most appropriate. An overall backward chaining
approach has been attempted for map design (e.g. Muller & Zeshen, 1990), but in the
author’s opinion the lack of adequate evaluation procedures for assessing map design
makes this approach less desirable.

Frames are used as the main knowledge representation method. These are
particularly appropriate for problems where we can identify a number of stereotypes,
in this case relatively small number of basic map types and representation methods.
Each of the blanks or ’slots’ in the frame must be filled in order. This is achieved by
a procedure or procedures being associated with each slot which may, for example,
ask the user to answer a question, or refer to other frames (Giarranto & Riley, 1989).
The resulting system has hierarchical structure where the topmost frames represent
generalities and the lower ones are customised for more specific instances. Frame
based systems have been identified as being particularly appropriate representations
of objects in the design process (Landsdow, 1988; 1162).

Examples of the MAP frame are given in Figure 1. The generic frame (Fig. 1 a)
indicates the slots to be filled, the kind of information that will fill them and the
procedures that are used to fill them, or that come into operation when the value in the
slot is altered. A frame from the second level of the hierarchy is illustrated in Fig. 1b.
There are three possible frames at this level, for ’basic’, cultural and physical maps.
At the third level of the hierarchy frames represent individual map types, examples
being illustrated in Fig. 1c & d. Space does not allow the members of lists or details
the procedures to be shown in these diagrams. The fourth and most detailed level of
frames are individual map designs, which have all slots filled.

There is also a series of cartographic representation frames. Each of these
contains slots for the parameters specifying the symbols in enough detail for them to
be drawn. These slots are filled by default values, procedures, or by reference to look
up tables containing colour sequences, point symbols, line patterns, etc.

CONCLUSION
The main aim of the cartographic design expert system discussed here is to

prevent fundamental rules of map design being broken. No attempt is made to
develop a creative design tool, rather the emphasis is on imitating the design of
existing maps that are effective in solving the problems associated with mapping

18

various types of information. The formalisation of the rules of cartographic design is
the critical step. Their incorporation into a frame based expert systems allows
relatively similar maps to be produced with minimum effort, but the system is flexible
enough to create a wide range of map types and to allow the user to interact with the
design process to create the effect he wishes.

References

Bahill, A.T., Ferrell, W.R. (1986) "Teaching an Introductory Course in Expert
Systems." IEEE Expert Vol.1. No.4, pp.59-63.

Begg, V. (1984) Developing Expert CAD Systems. London: Kogan Page Ltd.
Bertin, J. (1967) Semiology Graphique. Paris: Gauthier-Villars.
Ditterich, T.G., Ullman, D.G. (1987) "FORLOG: a logic based architecture for design."

In Gero, J.S. (ed.) Expert Systems in Computer Aided Design. Amsterdam:
Elsevier Science Publishers B.V., pp.1-24.

Forrest, D., Pearson, A.W. (1990) "Information Sources in Map Design" In Parry and
Perkins (eds.) Information Sources in Cartography. London: Butterworth.

Giarranto, J., Riley, G. (1989) Expert System: Principles and Programming. Boston:
PWS-Kent Publishing Company.

Keates, J.S. (1989) Cartographic Design and Production (2nd Edition). London:
Longman.

Keates, J.S. (1990) "Cartographic Design and Expert Systems" Unpublished paper,
Glasgow University.

Landsdow, J. (1988) "Graphics, Design and Artificial Intelligence." In: Earnshaw, R.A.
(ed.) Theoretical Foundations of Computer Graphics and CAD. Berlin:
Springer-Verlag.

Mackaness, W. (1986) "Detection and Heuristic Resolution of Spatial Conflicts in
Digital Map Datasets." Unpublished report, Kingston Polytechnic.

Mackaness, W., Fisher, P., Wilkinson, G. (1986) "Towards a Cartographic Expert
System." Proc. Auto Carto London Vol. 1, pp.578-587.

Muller, J-C., Zeshen, W. (1990) A Knowledge-Based System for Cartographic Symbol
Design. Cartographic Journal Vol.27, No.1, pp.24-30.

Samson, L, Poiker, T.K. (1985) "Graphic Design with Color using a Knowledge Base."
Paper presented at the 10th C.C.A. Annual Conference.

Robinson, A., Sale, R., Morrison, J., Muehrcke, P. (1984) Elements of Cartography
(5th Edition). New York: Wiley.

