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SU M M A R Y

A study was carried out on the fibroblastic 3T3-F442A  preadipocyte cell system to 

investigate the role of the adenylate cyclase signalling system in m odulating their 

adipocyte differentiation. Three areas were investigated:

1) The expression o f  heterotrimeric guanine nucleotide binding protein (G-protein) 

subunits during individual stages of cellular differentiation.

2) The role of cyclic AMP in modulating preadipocyte differentiation.

3) Interactions occurring between the cyclic AM P and M A P kinase signalling cascades 

during the differentiation process.

The differentia tion of 3T3-F442A  preadipocytes  was shown, under serum -free 

conditions, to be divided into at least two stages. The first stage is dependent on the 

presence o f  growth horm one (GH) which prim es cells  to the action of  other 

differentiative agents. The second, maturation, stage involved a combination of insulin, 

EG F and T 3 which acted on GH-primed cells to promote terminal differentiation. 

Terminal differentiation was determined by two criteria; m orphologically  by the 

accum ulation of Oil Red ()-posilive triacylglycerides in the cell cytoplasm  and 

biochemically, by the emergence of the specific activity of an adipocyte-specific enzyme 

marker, a-glycerophosphate dehydrogenase.

A range of specific anti-peptide antisera were generated and used to quantify specific 

changes in the expression of stimulatory- and inhibitory- G-proteins during the two- 

stages of 3T3-F442A preadipocyte differentiation. Stimulatory-G-proteins (Gs) couple 

adenylate cyclase to positive-acting extracellular stimuli, whereas inhibitory-G-proteins 

( G j )  mediate the actions of negative-acting stimuli. Undifferentiated 3T3-F442A 

preadipocyles were found to express detectable levels of the G s a -suhunits ,  G S(X4 2 , 

G Su4 4 i and the Gj a-subunits, Gj2<x and G ^ a in their cell membranes, together with the 

36 kDa P-subunit (G p O  which is subunit common to both G s and G j .  During the GH- 

priming stage of adipocyte differentiation significant increases in protein expression 

were observed for G S(X4 2 , G S(X4 4 . Gj2 (X and Gp3 f„ but not Gj3 U. Increased levels of 

Gsu4 4  and G|i3 f. were sustained during the first two days of maturation and then fell, in 

terminally differentiated cells, to levels observed in undifferentiated 3T3-F442A 

fibroblasts. Levels of Gj2u were also sustained during the initial stages of maturation, 

but then fell, together with G;3 U, to levels significantly lower then those found in 

undifferentia ted  fibroblasts. In contrast, levels o f  G S U 4 4  were m aintained at a 

significantly elevated level in terminally differentiated cells when com pared to 

undifferentiated fibroblasts. Changes in G su subunit expression were also observed in
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non-differentiating control cultures, in the absence of differentiative agents. This G- 

protein may play a role in modulating preadipocyte differentiation. Indeed, treatment of 

cell with cholera toxin, which constitutively activates Gs and adenylate cyclase, 

dramatically inhibited differentiation of 3T3-F442A cells by =90%.

Adenylate cyclase catalyses the formation of the intracellular second messenger cyclic 

A M P which then binds to and activates protein kinase A. Direct activation of adenylate 

cyclase with forskolin (5()jjM) or treatment with the cyclic A M P analogue CPT-cyclic 

A M P (0.25mM) was found to potently inhibit the adipose conversion of 3T3-F442A 

pread ipocy tes  induced with foetal ca lf  serum and insulin (FCS/insulin ; =90%  

inhibition) or with a serum-free hormonally defined medium (DDM; =70% inhibition). 

In contrast, treatment of cells with the cyclic AM P phosphodiesterase inhibitor, IBM X, 

or with low concentrations of CPT-cyclic AMP (10nM) or forskolin (10nM) potentiated 

cellular differentiation induced with FCS/insulin (=80-99% increase) or DDM  (=30- 

40%> increase). Both IBMX and lOnM forskolin induced small and relatively transient 

increases in intracellular cyclic AMP ( = 8  and =3 fold maximal increase), whereas those 

induced by 50pM  forskolin were much larger and more prolonged (=120 fold maximal 

increase). This suggests that the differential effects of cyclic A M P on the adipose 

conversion of 3T3-F442A cells could be attributable to interactions occurring at 

different stages of the differentiation program. Indeed, inclusion of lOnM forskolin or 

IBM X during the GH-priming stage of differentiation synergistically enhanced GH- 

promoted differentiation (=90% and =130% increase, respectively). In contrast, when 

included during the maturation stage, these agents were found to inhibit terminal 

differentiation (=60%' and =70% inhibition, respectively).

A potential mechanism underlying the effects of cyclic AM P on cell growth is through 

functional interplay with the MAP kinase signalling cascade. M AP kinases were 

potently activated in 3T3-F442A preadipocytes by the differentiative factors GH (=5 

fold activation), insulin (=5 fold activation) and EGF (=20 fold activation). Antisense 

depletion of M AP kinase was found to severely retard the differentiation of 3T3-F442A 

cells with serum or DDM  by approxim ately  95%, dem onstrating that adipose 

conversion of these cells displays an overall requirement for MAP kinases. Cyclic AM P 

was found to potentiate GH- (by =4 fold), but not EGF/Ins/T 3 -activated M AP kinase. 

In addition, cyclic A M P alone activates M A P kinase (=2 fold activation). This 

suggested that the cooperaiivity between cyclic AM P and GH could be at the level of 

M A P kinase but M AP kinase was not the site of action of cyclic AM P in inhibiting 

maturation. However, the availability of the inhibitor of M AP kinase activation, 

PD098059, enabled the testing of the MAP kinase requirement during priming and this 

showed a lack of MAP kinase requirement at this stage.
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Literature Review
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1.1) I N T R O D U C T I O N

W hite  adipocytes (fat cells) are a specialised cell type that a llow vertebrates to 

synthesise  and store large amounts o f  metabolic  energy, prim arily  in the form  of 

triglycerides, in times o f  nutritional abundance. In times o f  need, triglycerides are 

hydrolysed to release unesterified fatty acids. The mature adipose cell is characterised 

by a spherical or near-spherical shape with approximately 95% of its volume being 

made up of a single triglyceride droplet (Slavin, 1985). Adipocytes represent between 

one and two thirds of the total number of cells in adipose tissue, the rest are various 

b lood  cells, endothelia l cells, fibroblasts, pericytes and ad ipose  precursor cells 

(preadipocytes) o f  varying degrees o f  differentiation (Geleon et a l , 1989). Adipocyte 

d ifferentiation occurs in late prenatal and early post-natal developm ent in distinct 

anatomical locations. Hypertrophic growth of adipose cells can occur at virtually any 

time in response to marked overfeeding (Ailhaud et al, 1990). This suggests that the 

committal of mesenchymal cells to become preadipocytes, and the further differentiation 

o f  preadipocytes into adipocytes (adipogenesis) is governed, both temporally  and 

spatially, by specific hormonal and nutritional signals.

A complete understanding of adipose tissue development will not be gained until each 

level o f  control is assim ilated  and the signal transduction processes, w hereby  

extracellular stimulation ultimately leads to changes in gene expression associated with 

phenotypic differentiation, are delineated. Because of the central role of the adipose cell 

in pathological disorders of systemic energy balance, most notably obesity, obesity- 

linked diabetes and cachexia (fat and muscle wasting) (Spiegelman and Hotamisigil,

1993), the study of gene control may lead to a better understanding of these disorders 

and reveal possible targets for therapeutic action. In addition, the ability to control 

adipose tissue development would offer the possibility of producing, commercially, 

animals with a higher muscleifat carcass composition.



1.2) F U N C T IO N A L  R O L E S  O F  A D IP O C Y T E S  I N  V IV O

W hite  adipose tissue is found in amphibians, reptiles, birds and m am m als  (Nir et a l , 

1988; Pond, 1978; Pond, 1986) and is the basis o f  an abundant,  diffuse organ 

dedicated to the deposition and mobilisation of triglycerides (lipids) (Pond, 1986). The 

site o f  these specialised functions is the adipocyte cell (Rodbell, 1964).

1 .2 .1 )  L ip id  M e ta b o l i s m

Adipocytes contain an array of stringently regulated enzymes which are responsible for 

the synthesis o f  lipids from carbohydrates and their subsequent hydrolysis (lipolysis) 

(Feller, 1954; Hausberger et al, 1954;). Lipid synthesis (lipogenesis) requires a source 

of  fatty acids and glycero-3-phosphate both o f  which are synthesised from glucose (Fig 

1.1; Vernon, 1992). Fatty acids may also be obtained from triglycerides contained in 

very low density lipoproteins (VLDLs) and chylomicrons in the p lasm a through the 

action of the secreted adipocyte enzyme, lipoprotein lipase (Vernon, 1992). Lipolysis is 

achieved by the action of hormone-sensitive lipase with the eventual production o f  

glycerol and fatty acids. Glycerol is released from the cell whereas a portion of the fatty 

acids are re-esterified (Vernon, 1992).

Lipogenesis and lipolysis are occurring continuously, therefore the net lipid deposition 

or mobilisation depends on the relative rate of both mechanisms. To organise these 

processes of energy storage and release, highly integrated systems have evolved which 

operate at several physiological levels. As for many complex physiological processes 

the brain provides an essential coordinating role (Fig 1.2).

M ost important are the hypothalamic centres that coordinate energy  hom eostasis 

th rough  regu la tion  of food intake (hunger and sa tie ty) ,  ene rgy  expend itu re  

(thermogenesis) and the secretion of hormones that regulate substrate interconversion, 

storage and mobilisation (Hubei, 1979). The hormone which has the m ajor role in 

promoting fat deposition in mammals is insulin which is secreted from (3-cells in the 

pancreas (Vernon, 1992). Insulin stimulates glucose utilisation, prom otes fatty acid 

synthesis and activates acetyl-CoA carboxylase (ACC), a key enzym e of  fatty acid 

synthesis (Vernon, 1992). In mammals lipolysis is stimulated by glucagon (secreted 

form pancreatic a-cells) and catecholamines (from the adrenal medulla and sympathetic 

nerve endings) (Vernon, 1992). Pituitary growth hormone (GH) (Issakson et al, 1985) 

and glucocorticoids (a product of the adrenal cortex) can also antagonise insulin action 

on lipid metabolism by indirect mechanisms (Katzenellenbogen, 1980).
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Fig 1.1) Lipogenesis  and Lipolysis in the Adipocyte
The key features of adipocyte metabolism are the synthesis of triglycerides (lipogenesis) 
and their subsequent hydrolysis (lipolysis). The synthesis of lipids requires a source of 
fatty acids from chylomicron or very low density lipoprotein (VLDL) triglycerides or 
synthesised from glucose by the sequential actions of the glycolytic and biosynthetic 
pathways. Thq startingpoint of lipid synthesis requires glycerol-3-phosphate  which is 
formed mainly by the reduction of dihydroxyacetone phosphate  (DHAP), catalysed by
a - glyero-3 -phosphate dehydrogenase  (8). DHAP is an isomer of glyceraldehyde-3-  
phosphate  (GAP), an intermediate on the glycolytic pathway, and their interconversion 
is catalysed by triose phosphate isomerase  (9). Pyruvate is formed from G A P by the 
sequential actions of phosphoglyceraldehvde dehydrogenase , phosphoglycerate kinase , 
p h o sp h o g ly c e ro m u ta se , enolase  and pyruvate  kinase  (3). The formation o f  ace ty l  
coenzyme A (acets’l CoA ) from pyruvate is catalysed by pyruvate dehydrogenase (4) 
and subsequent incorporation into fatty acids is due to the combined actions o f  fa tty  acid  
syn thase  and acetyl CoA carboxylase  (5). Lipids are synthesised from g lycero -3 -  
phosphate  and fatty acids in multi-sequential reactions catalysed by the triglyceride  
synthase complex (6). Adipocyte triglycerides are hydrolysed by the action of hormone- 
sensitive lipase (7). with the eventual production of glycerol and fatty acids. O ther key 
enzymes in the scheme are indicated; hexokinase (1) and lipoprotein lipase (2)
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Fig 1.2) Major  Components  of  the Body Weight Regulatory  System
The brain, working primarily through hypothalamic centres influences body weight 
through effects on hunger (satiety), integration of key hormones, such as insulin, and 
energy expenditure, including actions to regulate thermogcnesis in brown adipose tissue 
via sympathetic nervous system (SNS) innervation. These combine to determine the 
state of energy storage in adipose cells. The adipocyte plays an active role in the process 
through secretion of a number of secreted products. These include the product of the oh 
gene, which is predicted to regulate hypothalamic function through direct or indirect 
feedback.
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1.2.2) The Ob Gene Product (Leptin)

In addition to being the major site for lipid metabolism  there is now com pelling 

evidence that adipocytes also act as endocrine/secretory cells. For example, adipocytes 

are know n to secrete adipsin and other com ponents  of the alternative com plem ent 

pathway (Choy e tu i ,  1992; Sniderman et al, 1994), angiotensinogen (M cGhee et al,

1993), prostaglandins (D arim ont et al, 1994) and tum our necrosis factor (TNF) a  

(Hotamisligil et. al, 1993). In addition, recent advancements in the field of adipocyte 

d e v e lo p m en t  suggest that adipocytes may play an active role in regulating energy 

homeostasis and body composition by producing a blood-borne factor (leptin) (Ahima 

et al, 1996, Campfield et al, 1995; Halaas et al, 1995; Pellym ounter et al, 1995;). 

Leptin is the product o f  a 4.5 kbp m RN A , the product of the ob  gene, w hich is 

apparently expressed solely in adipose tissue, presumably in adipocytes (Zhang et al,

1994). The predicted protein product is com posed o f  167 amino acids and has no 

homology to other known proteins (Zhang et al, 1994). Leptin is present in the plasma 

o f  normal mice and is absent in the plasma of o b /ob  mice, resulting in profound 

obesity, often accompanied by diabetes and a decrease in energy expenditure (Friedman 

and Leibel, 1992; Halaas et al, 1995). Leptin appears to com pensa te  for these 

homeostatic aberrations in normal mice by increasing energy expenditure, inducing 

weight loss and normalising metabolic parameters such as insulin and glucose levels 

(Halaas et al, 1995; Campfield et al, 1995; Pelleymounter et al, 1995).

The precise mechanisms of  leptin action are not known. The most likely may be a 

direct action on the hypothalamus (Fig 1.2; Lee et al, 1996; Targaglia et al, 1995) and 

neuropeptide Y is a potential mediator of its effects (Stephens et al, 1995; Ahima et al, 

1996). A complementary mechanism may be through a direct action of the protein on 

adipocyte metabolism. Ob  gene expression in cultured fat cells suppresses ACC gene 

expression, fatty acid synthesis and lipid synthesis (Bai et al, 1996).

Recent studies demonstrated that the expression o f  the ob  gene is itself controlled by 

the nutritional status of the animal. Fasting reduces expression, whereas food intake 

increases expression (Frederich et al, 1995; MacDougald et al, 1995b; Saladin et al,

1995), an effect that is accounted for by changes in insulin levels (MacDougald et al, 

1995; Saladin et al, 1995). Glucocorticoids have also been shown to regulate ob  gene 

ex p re ss io n  (D eV os et al, 1995). The expression of the o b  gene is subjec t to 

transcriptional control during preadipocyte differentiation by an important adipocyte 

transcription factor C /E B P a  (MacDougald et al, 1995a). The expression of C /E B P a  

has also been shown to be regulated by hormonal stimulants, such as glucocorticoids 

and insulin (Cao et al, 1991; Yeh et al, 1995). Therefore, the expression of the ob  gene
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is not only influenced by adipocyte transcription factors such as C /E B P a  during 

adipogenesis, but appears to be under hormonal control. The study o f  the signalling 

m echanism s underlying the hormonal control of adipocyte developm ent could enable 

discovery of potent new drugs, capable of not only regulating fat cell num ber in vivo 

but also, by effecting leptin production, exerting systemic effects to combat pathological 

conditions such as obesity and obesity-linked diabetes.
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1.3) A D IP O C Y T E  D E V E L O P M E N T  I N  V IV O

A dipocy tes acqu ire  specialised  functions (section 1.2) during the late stages o f 

em bryonic developm ent to prepare for the post-natal period (C ook and K ozac, 1982; 

Slavin, 1979). Further fat pad developm ent is delayed until shortly  after birth and is 

characterised by expansion of the newly form ed white adipocyte population (Cook and 

K ozac, 1982; Slavin, 1979). These increases in adipose m ass equips the new born with 

additional adipose lipid stores which can then be m obilised during fasting periods.

1.3 .1) E m b r y o n ic  D ev e lo p m en t  o f  A d ip ocy tes

All o f the cell types which form a m ature anim al are derived from  m ulti-potential 

em bryonic stem  cells (W att, 1991). It is generally  accepted that adipose precursor, 

m uscle and cartilage cells arise from totipotent stem  cells o f a m esenchym al origin 

(K onieczny and Em erson, 1984). Activation o f a small num ber o f regulatory genes by 

hypom ethylation appears sufficient to com m it these stem cells to a specific lineage, ie 

either the adipocyte, m yocyte or chondrocyte lineages (Konieczny and Em erson, 1984; 

L assar et al, 1986; Taylor and Jones, 1979). From an em bryological perspective, the 

p rocess o f determ ination  from m ulti-po ten tia l stem  cells leads to the sequential 

form ation of early-m arker expressing preadipocytes (Geloen et al, 1989a; Geloen et al, 

1989b). In the developing em bryo, preadipocytes arise from prim itive organs, a dense 

m ass o f vascularised m esenchym al cells which form s a supporting fram ew ork for 

ad ipogenesis (G eloen et al, 1989a; G eloen et al, 1989b). P rim itive fat lobules are 

form ed at around the second stage o f hum an gestation and these are com posed o f 

densely packed fat cells adjacent to capillaries (Poissonet et al, 1988). In later stages, 

g row th o f ad ipose tissue is m ainly  due to an increase in size o f fat cells and 

condensation and thickening of the m esenchym e, which form s septa am ong fat cell 

clusters (Burdi et al, 1985; Poissonet et al, 1984; Poissonet et al, 1988). In the em bryo 

adipose tissue develops as distinct pads (or depots) which are distributed in a variety of 

locations throughout the body where it remains after birth (Burdi et al, 1985; Poissonet 

et al, 1984; Poissonet et al, 1988; Pond, 1986). The factors determ ining the tim e and 

site o f fat pad developm ent are not known. H ow ever, the distribution of fat depots is 

virtually  the sam e am ongst a wide range of m am m alian species and suggests that 

conserved genetic factors m ay be involved (Pond, 1984). The im portance o f tissue 

vascularisation in primitive fat organs implies that fat depot developm ent will be heavily 

influenced by system ic hormonal and circulatory factors (Poissonet et al, 1988).
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1.3.2) P ostnata l D ev e lo p m en t  o f  A d ip ose  T issue

The accum ulated data from a large num ber o f studies clearly indicate that the cellular 

developm ent that accom panies postnatal adipose tissue expansion involves both cell 

hyperp lasia  and hypertrophy at v irtually  all stages o f life (C ook and K ozac, 1979; 

G reenw ood  and H irsch, 1974; K irkland and G urr, 1979; L em m onier, 1981). The 

hypertrophic aspect o f cell grow th and tissue expansion clearly  relates closely to the 

m etabolic  features of the m ature adipocyte and the balance o f lip id  accretion and 

m obilisation from it (section 1.2). A lthough the lipid filling o f m ature adipocytes is of 

undoubted im portance to the expansion o f adipose tissue, the process o f hyperplastic 

growth has recently received a great deal of attention. The major proliferative capacity in 

adipose tissue is in the interstitial pool of cells which includes preadipocytes (Cook and 

Kozac, 1982). D uring early postnatal grow th, expansion of in terstitial cell types has 

been observed on many occasions to precede the expression o f adipocyte phenotypes 

and adipocyte-specific genes (Cook and Kozac, 1982; Pilgrim , 1971). Thus it appears 

that adipose precursor cells undergo mitoses before terminal differentiation takes place. 

T he pro liferative and d ifferentiative capacity  o f precursor cells is dependent on a 

num ber of factors, including sex, age and localisation of fat depot (Faust and M iller, 

1983; K irkland et al, 1990; Pilgrim , 1971; W ang et al, 1989). For exam ple, preadipose 

cells  from  rat perirenal and ep id idym al fat depots show  vary ing  capacities for 

replication, with perirenal preadipocytes displaying a higher frequency o f proliferation 

and differentiation (Djian et al, 1983; Kirkland et al, 1990; W ang et al, 1989). W hereas 

in hum ans, in ag reem en t w ith c lin ica l observa tions regard ing  ad ipose  tissue 

dev e lo p m en t, p read ipocy tes from  abdom inal fat show  a h igher capac ity  fo r 

differentiation than those of the fem oral depot (H auner and Entenm ann, 1991). Part of 

the explanation  for d ifferent fat depots having differential hyperplastic  capacities 

probably lies at the cell level and further research into the m echanism s of preadipocyte 

proliferation and differentiation will be required to gain further insight.



1.4) CELL CULTURE M ODELS OF ADIPOCYTE DIFFERENTIATION

C ellular m odels, including prim ary cultures o f preadipocytes and established cell lines 

capable of converting to an adipocyte phenotype, have allowed an in vitro approach to 

the study o f preadipocyte differentiation. A m ong the m ost obvious advantages o f in 

vitro studies are:-

1) The ability to control the extracellular environment.

2) T he possib ility  o f s tudy ing  b iochem ical and m orpholog ica l even ts occurring  

throughout the conversion process.

O f particu lar re levance  to stud ies o f endocrine con tro l are the developm ent o f 

ch em ica lly  defined , se rum -free  cu ltu re  m edia w hich suppo rt b iochem ica l and 

m orphological adipocyte differentiation (Ailhaud et ah  1990). W ith the application of 

serum -free culture techniques to an increasing num ber o f cellular m odels, the factors 

that control the proliferation and differentiation of preadipocytes have becom e a little 

c learer (see section 1.7). H ow ever, care m ust be taken in interpreting the cum ulative 

data since the horm onal requirem ents o f d ifferen t ce llu lar m odels can be w idely 

different, particularly when cloned cell lines are com pared with preadipocyte cells in 

prim ary culture, and w hen cultures containing serum  are com pared w ith serum  free 

conditions. For exam ple, fibroblast growth factor (FGF) is essential for growth o f the 

Ob 17 cell line (Gailard et ah  1984), whereas FGF inhibits growth and differentiation of 

rat p readipocytes (D eslex et ah  1987). D iscrepancies such as these are probably 

attributable to in terspecies variation and the fact that isolated cell lines and prim ary 

cultures represent adipocyte precursors o f different stages of developm ent (A ilhaud et 

ah  1990).

M ost clonal preadipocyte cell lines have been established from m ouse em bryonic 

tissues (Doglio et al, 1986; Ailhaud et a I, 1990). The first established adipogenic cell 

line was 3T3-L1 (G reen and M euth, 1974), a clonal subline from a heterogeneous 

population o f the established fibroblast line 3T3. The 3T3 clone was originally isolated 

from the disaggregated cells of late foetuses of Swiss m ice (Green and M euth, 1974). 

The 3T3-F442A  subclone was obtained from the 3T3-L1 line and exhibits an even 

higher susceptibility to adipose conversion (Green and Kehinde, 1976).

Cell lines, despite aneuploid karyotypes, present stable phenotypic properties through a 

large num ber of generations (Green and M euth, 1974). The relevance o f studies on 3T3 

cells lines has been attested by a num ber o f significant observations. Im portantly ,
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subclones are selected on the basis o f good contact inhibition and on inability  to form 

foci indicative o f transform ed cells (G reen and M euth, 1974). P rior to differentiation in 

cell culture 3T3-L1 and 3T3-F442A  preadipocytes are m orphologically  sim ilar to the 

fibroblastic preadipose cells in the strom a o f adipose tissue (G reen and M euth, 1974; 

G reen and Kehinde, 1976). W hen induced to differentiate 3T3 preadipocytes lose their 

fibroblastic character, assum e a rounded appearance and acquire the m orphological and 

b iochem ical ch a rac te ris tic s  o f ad ipocy tes. T he strik ing  change  in ce ll shape is 

independent o f lipid accum ulation and is due to alterations in synthesis and assem bly of 

cytoskeletal proteins (Spiegelm an and F anner, 1982). D etailed e lectron  m icrographic 

studies by N ov ikoff et al  (1980) revealed  that m ature 3T3-L1 ad ipocy tes possess 

virtually all o f the ultrastructural features of adipocytes in situ . Soon after the induction 

o f d ifferen tia tion , cy top lasm ic  trig lyceride-con ta in ing  vacuo les appear. A fter an 

extended period in culture, the vacuoles coalesce and becom e unilocular, causing the 

typical signet ring appearance o f m ature white adipocytes (Green and M euth, 1974).

The cells also acquire virtually all o f the enzym es for cle novo  fatty acid biosynthesis, 

lipogenesis and lipolysis and become responsive to the lipogenic and lipolytic hormones 

(Colm an et al, 1978; Rubin et ah  1978; Spooner et a l , 1979; R eed and Lane, 1980; 

B ernho ler et a l , 1985; C ook et al, 1985; G uest et al, 1990) Indeed , subcutaneous 

injection o f 3T3-F442A  cells into nude, athym ic m ice gives rise to fully vascularised, 

non-m alignant fat pads which are indistinguishable from norm al adipose tissue (Green 

and Kehinde, 1979).

O ther cell lines available for the study o f adipocyte developm ent include Ob 17 and 

O b l771  (D oglio et al, 1986), isolated from obese m ice (genotype ob/ob),  and TA1 

(Chapm an e ta l ,  1984) and 30A5 (K onieczny et al, 1984) isolated from an established 

m ouse fibroblast line treated  with a nucleotide analogue. C ell stra ins that behave 

reproducibly in culture have also been obtained from the strom al fraction o f adipose 

tissue from  a variety  o f species (A ilhaud, 1982). T hese putative p recu rso r cells, 

although diploid, have a lim ited life-span and eventually  enter a period o f senescence 

characterised by increased cell doubling time and ultim ately death. In addition it has 

been suggested  tha t cell stra ins derived  by th is techn ique do not rep resen t a 

hom ogeneous population (A ilhaud, 1982). For these reasons, m ost o f the inform ation 

on adipocyte differentiation to date has been gained from the study o f established cell 

lines, such as 3T3-L1 and 3T3-F442A. However, in order to gain an overall picture of 

the control of adipocyte differentiation, results should be verified betw een a num ber of 

species and cellular m odels, and fat depot-specific aspects should be investigated using 

prim ary cell cultures. A nother im portant approach for verification in a physiological
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context, w hich has been em ployed to a lim ited extent for adipose developm ent, is the 

use o f transgenic anim als (Graves et a l , 1992).
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1.5) THE ADIPOCYTE DEVELOPM ENT PROGRAM

Inform ation  acquired in cell culture studies on adipocyte developm ent has enabled 

investigators to identify key events that are likely to be im portant in this process (Fig

1.3). A s w ith m ost system s o f m am m alian  developm ent, the acqu isition  o f the 

m orphological and biochem ical characteristics of m ature adipocytes requires extensive 

reprogram m ing of gene expression.

The expression o f adipocyte specific genes occurs in d istinct tem poral stages; the 

progress o f d ifferen tia tion  can be m onitored by the p rogressive accum ulation  o f 

individual differentiation-specific phenotypes or m arkers. Early electrophoretic studies 

revealed m ajor quantitative changes in at least 100 protein species (Sidhu, 1979) and 

40%  of soluble adipocyte proteins represent newly synthesised m aterial (Spiegelm an 

and Green, 1980). In virtually every case so far exam ined, new protein synthesis in the 

ad ipocy te  is accom panied  by increases in the related  m RN A  levels (Table 1.1). 

Changes in transcription are an important factor in altered m RNA abundance (Bem holer 

et al, 1985). H ow ever, it seem s likely that other m echanism s, especially  changes in 

m RNA stability, may also be important (Doglio et a l ,  1986).

D uring proliferation, cultured preadipocytes are biochem ically and m orphologically 

ind istingu ishab le  from  fib rob lasts (H iragun, 1985). Since the p ro liferation  and 

differentiation o f cells are thought to be m utually-exclusive processes (Freytag and 

G eddes, 1992), the initiation of differentiation and the expression o f adipocyte specific 

m arkers requires exit from the mitotic cell cycle.

1.5.1) Early  E vents

Eukaryotic cellular growth is known to be regulated at specific points in the cell cycle, 

term ed G1-, S-, G2- and M -phases (Xiong et al, 1991). The two m ajor events com m on 

to all cell cycles are S-phase, when chrom osom es are replicated, and M -phase, when 

the replicated chrom osom es are segregated into two daughter cells (Nurse, 1990). G1 

can also be subdivided into early and late phases (Pardee, 1989). Early G1 cells can 

either em bark on a new cell cycle (late-phase progression) or enter a quiescent, growth 

arrested state (GO-phase) characterised by an unreplicated DNA content and decreased 

m acrom olecular synthesis (Sherr, 1994). Com m itm ent to DNA replication (S-phase 

entry) occurs at a particular restriction point late in G 1 and is dependent on appropriate 

m itogenic stim uli (Pardee, 1989). From in vitro studies, it appears that growth arrest 

during G1 (GO-entry), rather than contact among arrested cells, is necessary to trigger 

p r e a d i p o s e  c e l l s  to  e n t e r  th e  d i f f e r e n t i a t i o n  p r o g r a m

13



GROWTH
ARREST

MITOGENS
(PDGF)

+GH

< 0-

PROLIFERATION
(INSULIN/IGF-I)

Gp ------- 1> MATURE
ADIPOCYTE
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Fig 1.3) H ypothetical M odel o f  3T 3-F 442A  P readipocyte  D ifferentia tion
Initially, cell cycle exit allows cells to enter a state of growth arrest, termed GO. Cells at 
GO are then substrates for GH, whch reversibly induces an anti-m itogenic, primed state 
(Gp). Reversal requires rem oval of GH and addition of m itogens, such as platelet 
derived growth factor (PDGF). Subsequently, insulin, in an irreversible step, promotes 
fat accum ulation. Term inal differentiation is preceeded by lim ited clonal expansion 
under the control of the insulin-like growth factor- (IGF-) I receptor.
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(A ilhaud et al, 1989). C om m itm ent is characterised by the em ergence o f m RN A s for 

the a 2  chain  o f type 2 collagen and LPL (Am ri et al, 1986). In addition, there is an 

increase in selective long chain fatty acid uptake and m RN A  for putative m ediators of 

the transcrip tional effects o f fatty acids (A bum rad et al, 1991; A m ri , 1995). A t this 

stage m itogens, such as p latelet derived grow th facto r (PD G F), can block adipose 

co n v e rs io n  by s tim u la tin g  ce ll-cy c le  re -en try  (C orin  et al, 1990). T h erefo re , 

progression  to the term inal stages o f d ifferen tiation  requires that GO cells becom e 

refractory to the action o f com petence factors for m itogenesis (ie PD G F) (Corin et al,

1990). This is achieved by the induction o f a reversible anti-m itogenic state in growth 

arrested cells by growth horm one (GH) (Corin et al, 1990). GO cells treated with GH 

enter a prim ed state (Gp) in which they become responsive to the prom oters o f term inal 

differentiation.

The m echanism s by which m itogens, such as PD GF, and anti-m itogens, such as GH, 

contro l cell cycle entry and exit are not yet fully understood but probably  involve 

m odulation o f G 1-phase regulators (Sherr, 1994). Key regulators o f G1 progression in 

m am m alian cells include three D-type cyclins (D l, D2 and D3), the expression of which 

is g rea tly  increased  w hen re -en te rin g  S -phase  (rev iew ed  by S herr, 1994). 

N eutralisation of cyclin D in cells m icro-injected with anti-cyclin D antibodies causes 

cell grow th arrest during the G 1-phase (O htsubo and R oberts, 1993). C yclin  D 

expression is suppressed in 3T3-F442A preadipocytes (Tim chenko et al, 1996) treated 

with GH which may contribute to the prim ing action of GH in these cells (Baldin e ta l ,

1993).

1.5.2) L ate  E vents

The process of terminal differentiation is characterised by the induction of late and very 

late m arkers, including  the enzym es responsible for lipogenesis and trig lyceride 

synthesis, which result in the characteristic lipid droplet accum ulation associated with 

full differentiation (Table 1.2). Although the degree and time course o f induction vary 

am ong these enzym es, in general the increase in activity is due to a corresponding 

increase in the synthesis of the respective catalytic subunit (W ise et al, 1984). In 

contrast, synthesis and assem bly o f m ajor cytoskeletal proteins, such as actin  and 

tubulin, decrease as cells change in m orphology (Spiegelman and Fanner, 1982).

The expression o f late and very late m arkers is associated  w ith lim ited  grow th 

resum ption o f primed (Gp), early m arker-expressing cells (K uri-H arcuch and M arsch- 

M oreno, 1983; Schm idt et al, 1987; Zezulak and G reen, 1986). A t least one cell 

doubling has been consistently observed by various investigators using different cell
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lines and different culture m edia, and this process o f clonal am plification o f com m itted 

cells (defined as post-confluent m itoses) is lim ited both in m agnitude and duration 

(A ilhaud et al, 1989; G am ou and Shim izu, 1986; K uri-H arcuch and M arsch-M oreno, 

1983). Clonal expansion o f prim ed preadipose cells appears to be essential for term inal 

differentiation (defined by the em ergence o f GPD H  activity) and is stim ulated by IGF-I 

and/or insulin (active at least in part by binding to the IGF-I receptor) (H auner, 1990; 

Schm idt et a l , 1987; Zezulak and G reen, 1986). These observations m ade in vitro are 

in agreem ent with those m ade in vivo by Pilgrim  (1971) and Cook and K ozac (1982) 

concern ing  the relationships in rodent adipose tissue betw een cell pro liferation  and 

differentiation. As clonal expansion slows the expression o f proteins that give rise to 

the adipocyte phenotype is initiated (Table 1.2). Am ong the first of these proteins to be 

expressed is C /E B P a, a nuclear D N A -binding protein that has been im plicated in the 

coord inate transcriptional activation o f adipose-specific genes (review ed by Vasser- 

C ognet and Lane, 1993; see also section 1.6). In addition, C /E B P a  is anti-m itogenic 

(Tang et al, 1995) and has been im plicated in the term ination o f clonal expansion and 

m aintenance of the terminally differentiated cell (Freytag and Geddes, 1992).
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1.6) TRAN SCR IPTIO N A L CONTROL OF PROTEIN EX PR ESSIO N

DURING PR EA DIPO CY TE D IFFERENTIATION

The prom oters o f m any adipocyte specific genes have now been characterised and it is 

becom ing increasingly  evident that a num ber o f com m on features are im portan t for 

coordinating changes in their transcriptional activity during preadipocyte differentiation. 

Tw o fam ilies o f transcription factors, the C /EB P (C C A A T/enhancer binding protein) 

fam ily and the PPA R (peroxisom e pro lilerator activator receptor) fam ily (A m ri et a l, 

1995; T ontonez et a l , 1994a) are know n to in teract with the prom oter elem ents o f  a 

num ber o f the best characterised adipocyte genes (Tontonez et al, 1995). The tem poral 

and horm onal regulation o f transcriptional regulators, such as C /EB Ps and PPA R s, are 

thought to contribute critically to the coordination o f the adipocyte program  (Fig 1.4).

1.6.1) E xp ress ion  o f  T ranscr ip tion  F actors  D u ring  A d ip ogen es is

Three PPA R genes, P P A R a (Gearing et al, 1994), PPA R 8  (Schm idt et al, 1992) and 

P P A R y  (Tontonez et al, 1994a Zhu et al, 1993) encode d ifferen t m em bers o f the 

superfam ily o f orphan nuclear hormone receptors. PPA Ryl and PPARy2 are two splice 

variants o f the PPA Ry gene which are abundantly expressed in white adipose tissues 

(V idal-Puig et al, 1996; Zhu et al, 1995). Expression o f PPA Ryl m R N A  is detectable 

in the strom al fraction o f the tissue, presum ably in undifferentiated  preadipocytes, 

w hereas both PPA Ryl and PPARy2 are expressed in m ature adipocytes (V idal-Puig et 

al, 1996). PPA Ryl and y2 expression in m urine white adipose tissue is dow n-regulated 

during fasting, w hereas a high-fat diet induces expression (V idal-Puig et al, 1996). 

B oth PPA R y isoform s are induced very early  in several cell cu ltu re  m odels of 

adipogenesis (Amri et al, 1995; Chawla et al, 1994) and ectopic expression of PPA Ryl 

or PPA Ry2 in fibroblasts is sufficient to drive the determ ination o f an adipocyte 

cellu lar lineage (Tontonez et al, 1994b). Taken together, these observations suggest 

that both PPA R yl and PPARy2 m ight play an im portant role in the in itia tion  or 

determ ination of the adipocyte program  in viva. C /E B P a , w hile expressed in m any 

tissues in vivo, is also induced during adipogenesis, albeit later in the tim e-course than 

PPA Ry (Christey et al, 1989). Forced expression o f C /E B P a can trigger differentiation 

in preadipocytes and cause adipogenesis in several fibroblastic cell types (Freytag et al, 

1994). W hen C /E B P a  m RNA is expressed at, or near fat cell levels, it pow erfully  

synerg ises w ith PPA R y to stim ulate ad ipogenesis (T ontonez et al, 1994b). The 

im portant role of C \E B P a in adipogenesis was confirmed in mice in which the C \E B P a 

gene w as d isrup ted  by hom ologous recom bination  (W ang et al, 1995); lipid 

accum ulation was found to be severely retarded in adipose tissue from m utant mice.
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PREADIPOCYTES
Differentiative

Factors

Cell/Cell
Contact

1 Mitoses 
(Clonal Expansion)

C/EBP (delta)

Myc

Fos and Jun

PPAR Isoforms

ADIPOCYTES

C/EBP (beta)

Maturation

C/EBP (alpha)

Transcription Factors

F ig  1 .4) E x p r e s s io n  o f  T r a n s c r ip t io n  F a c to r s  D u r in g  A d ip o c y te  
D e v e lo p m e n t
This schem e is based upon data with 3T3-L1 and 3T3-F442A adipose precursor cells. 
The acquisition of the adipocyte phenotype is thought to be regulated and maintained by 
adipogenic transcription factors such as the CCAAT enhancer binding proteins (C/EBP)
a  and peroxisom e proliferator activator receptor (PPAR) isoform s. The cytoplasm ic 
signals contro lling  the induction o f these transcrip tion factors in d itle ren tia ting  
preadipocytes are initiated by extracellular differentiative factors. The nuclear signal is 
propagated by r/vm.v-acting modulators of transcription, such as c -fos, c-jun , c-mvc and
the C /E B Ps (3 and y, which arc expressed transien tly  during the tim e-course of 
differentiation.
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1.6.2) T r a / is -a c t iv a t io n  o f  A d ip o c y te -sp e c if ic  G en es

In addition to C /E B P a , C /EB P (3 and 8  are suggested to play an im portan t transient 

role in early adipocyte differentiation by relaying the effects o f horm onal stim ulants 

such as g lucocortico ids, GH, insulin and stim ulators o f the cyclic A M P signalling  

pathw ays (Cao et a I, 1991; C larkson et al, 1995; Yeh et al, 1995b ). In fact, it was 

recently  dem onstrated  that C /E B Pp induces PPA R y expression in the preadipocyte, 

subsequently triggering differentiation (Wu et al, 1995). C /EB Pp and 5 are also thought 

to be involved in the rran.v-activation o f the C /E B P a gene (Lane et al, 1996).

A dram atic increase in C /EB PP and 8  early in preadipocyte differentiation is preceded 

by a transient increase in the expression o f several im m ediate-early genes [eg c -fos, c- 

ju n  and c-myc  (Stephens et al, 1992; Stone et al, 1990)]. Hom o- and heterodim ers o f 

c-jun and c -fos were the first proposed regulators o f adipocyte-specific gene expression 

(S p iegelm an  et al, 1988). These protein com plexes w ere found to bind to AP-1 

consensus sequences in the adipocyte-specific fatty acid binding protein (aP2) gene 

thereby reducing transcriptional activity (Spiegelman et al, 1988). Transcription o f c-fos 

and c-jun  is rapidly induced by GH  in both 3T3-F442A  (G urland et al, 1990) and 

O b l771  (B areellini-C ouget et al, 1993) preadipocytes which coincides with the GH- 

induced expression of C /EB PP and 8  (Clarkson et al, 1995). In 3T3-L1 preadipocytes 

both insulin and IGF-I induce expression of c-fos  (W eiland et al, 1991). Furtherm ore, 

c -fos plays an interm ediary role in the modulation of LPL gene expression (Barcellini- 

C ouget et al, 1993). T herefore, it appears that c-fos  and c-jun  m ay relay  specific 

"tem poral cues" from extracellu lar stim uli to adipocyte-specific genes. H ow ever the 

com plex  ro le that c-fos  and c-jun  p lay in con tro lling  gene exp ression  during  

differentiation is, as yet, not com pletely understood.

C-myc  is involved in the regulation o f cellular proliferation (review ed by Kato and 

Dang, 1992) and its induction during preadipocyte differentiation accom panies post- 

confluent m itoses (Christy et al, 1991). Following clonal expansion, c-myc  expression 

decreases concom itant with transcriptional activation of the C /E B P a  gene (Christy et 

al, 1991). The C /E B P a  prom oter contains a consensus c-myc  binding site (Christy et 

al, 1991), that can bind c-m yc in vitro (L egraverend et al, 1993), consequently  the 

induction of C /E B P a  towards the end of clonal expansion m ay involve the binding of 

c -m y c  to its cognate site in the C /E B P a  prom oter. The C /E B P a  prom oter also 

possesses a C /EB P binding site (Christy et al, 1991) that apparently  m ediates trans- 

activation by its own gene product and probably contributes to the m aintenance o f 

steady-state levels of C/EBP in the mature adipocyte (Legraverend et al, 1993; Lin et al, 

1993a).
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In addition to its role in the term ination of clonal expansion, C /E B P a  is know n to be 

involved  in the transcrip tional activation o f a num ber o f ad ipocyte specific  genes. 

Follow ing the expression o f C /E B P a  transcriptional activation o f a large num ber of 

adipocyte genes occur (Table 1.1). M any of these genes, including the ob gene-product 

leptin, are rrans-activated by C /E B P a (Table 1.3). The exact num ber o f genes regulated 

by C /E B P a  during d ifferen tia tion  rem ains unknow n but is estim ated  to be large. 

Sim ilarly, PPA Ry has been implicated in m ediating the expression o f fat-specific genes, 

includ ing  aP2 (T ontonoz et al, 1994a) and phosphoeno lpy ruva te  carboxyk inase  

(Tontonoz et. al, 1995).

Table  1.3) A d ipocyte -spec if ic  G enes T r a n s - activa ted  by 

C C A A T /E n h an cer  B inding Protein  a  D uring P readipocyte  D ifferentiation

Gene Product Reference

Angiotensinogen Brasier et al, 1990

Fatty Acid binding Protein (aP2) Christy et al, 1989

Steroyl CoA Desaturase Christy et al, 1989

G L U T 4 Kaestner et al, 1990

Phosphoenolpyruvate Carboxykinase Park et al, 1993

Insulin Receptor M cKeon and Pham , 1991

Leptin Hwang et al, 1996

In sum m ary, m any of the m echanism s which regulate adipocyte differentiation are 

beginning to be elucidated. However, a great deal of work is still required to delineate 

the exact roles of individual DNA elem ents and transcription factors. The identification 

o f ad ipocy te-specific  elem ents and the factors which regulate them  is c learly  a 

fundam ental requirem ent for a complete understanding o f the process.
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1.7) HORM ONAL CONTROL OF DIFFERENTIATION

T he process o f cell differentiation is controlled by com m unication betw een individual 

cells or between cells and the extracellular microenvironment- M olecules which m ediate 

this com m unication include the classic diffusible grow th factors that act via  specific 

external receptors to transduce external signals through a cascade o f intracellular events 

(Johnson and V aillancourt, 1994). The precise com bination o f horm ones and growth 

facto rs are not know n and likely to vary am ongst d ifferen t cell types. M ost o f the 

s tu d ies  on the ro le  o f ad ipogen ic  fac to rs (i.e. fac to rs  w hich  p rov ide  a sing le  

d iffe ren tia tiv e  stim u lus) have em ployed  p read ipocy te  ce ll lines (sec tion  1.4). 

Identification o f factors that affect adipocyte d ifferentiation involves the addition of 

various horm ones and pharm acological agents and determ ination  o f the extent o f 

differentiation. This is judged by staining for accum ulated lipid, m easuring activation o f 

lipogenic enzym es, such as oc-glycero-3-phosphate dehydrogenase, or by m easuring 

the expression  o f adipocyte specific genes. Early  studies w ere perform ed on cells 

differentiated  in the presence of serum which m ade interpretation o f results difficult. 

Several laboratories have developed chem ically  defined m edia (G uller et al, 1988; 

H auner 1990; S chm idt et al, 1990) and have im plica ted  G H , g lucoco rtico id s, 

triiodothyronine (T3), cyclic A M P-elevating agents, insulin and IG F-I as possessing 

adipogenic activities.

C learly a great deal of information is required to enable us to understand the m olecular 

m echanism s which allow these factors to control differentiation and perm it the cell to 

assum e the m etabolic functions of a m ature adipocyte. Inevitably, no single signalling 

event or m olecular change can alone account for the differentiation process, but rather 

m any such events will control this com plex process. W hat is apparent is that signal- 

transduction  cascades control transcrip tion of both im m ediate and delayed early- 

response genes which ultim ately leads to coordinated changes in the transcription of 

differentiation associated gene netw orks (Johnson and V aillancourt, 1994). The signal 

transduction cascades controlling these responses often utilise sequential protein-kinase 

reactions such as the protein kinase A cascade (section 1.7.3.3), or those initiated at the 

G H  and insulin  receptors (section 1.7.2.4). A lternatively , som e horm ones in teract 

directly with nuclear receptors containing transcriptional m odulatory dom ains (section

1 .7 .4 ).
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1.7.1) Agents which Signal via N uclear R eceptors

1.7.1 .1)  Tri iodothyronine (Tj)

It has been know n for som e tim e that blood levels o f thyroid horm ones can affect 

adipose tissue developm ent; hyperthyroidism  provokes an increase in the cellularity of 

adipose tissue during developm ent, whereas hypothyroidism  exerts the opposite effect 

(Levacher et al, 1984; Levacher et ah  1985; Picon and Levacher, 1979). In addition, it 

has been suggested that the hyperplasia in white adipose tissue, provoked by thyroid 

horm one, resulted  from an earlier differentiation o f preadipocytes and not from  an 

increased preadipocyte multiplication (Levacher et ah  1984).

Little is known about thyroid hormone action on adipose cell lines. T 3 appears essential 

fo r the  d ifferen tia tion  o f Ob 17 cells in both serum -supplem ented  and serum -free 

conditions (G rim aldi et a l , 1982), where it provokes an increase in lipogenic enzym e 

activ ities (G harbi-Chchi et al, 1983). Conversely, in 3T3-F442A  cells, it appears that 

T 3 does not act as an adipogenic factor by itself, but may rather act in synergy with true 

adipogenic factors (F lores-D elgado et al, 1987). This is the case in cultured porcine 

p readipocytes w here T 3 acts synergistically  with insulin to prom ote differentiation 

(H ausm an, 1989). C onsisten t with its regulatory  role in lipid m etabolism  in vivo  

(Czech et al, 1980; M ariash et al, 1975), T 3 has been shown to act during preadipocyte 

differentiation to induce the expression of m any proteins involved in the regulation o f 

lipid m etabolism , including fatty acid synthase, G PD H , m alic enzym e and the P 3- 

ad renocep tor (F lores-D elgado et al, 1987; Hadri et ah  1996; H ausdorf et al, 1988; 

M oustaid and Sul, 1991). In this respect, T 3 is thought to exert its effects transiently, 

during the early stages o f term inal differentiation, by stim ulating de novo  fatty acid 

synthesis and triglyceride accum ulation (Ailhaud, 1982; Levacher and Picon, 1989;).

1.7.1.2)  Glucocort ico ids

Steroid hormones are able to influence body fat mass by their regulation of metabolism 

in adipocytes. In rats the triglyceride amounts in adipocytes is decreased by injection of 

the synthetic  g lucocortico id  dexam ethasone (DEX; S te in g rim sd o ttir  et al, 1980) 

probably by directly regulating the lipolytic pathway (Lai et al, 1982). Paradoxically, 

g lucocortico ids in chronic excess, such as in C ushing 's syndrom e associated  with 

hyperinsulinem ia, is associated with fat depot-specific increases in fat m ass (Rebuffe- 

Scrive et al, 1985). The role o f glucocorticoids in adipogenesis has received little 

attention, but a small num ber of studies on different preadipocyte cell types have also 

produced conflicting results. DEX addition after confluence and in the presence o f
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insulin  has been show n to increase cellu lar differentiation o f 3T3-L1 preadipocytes 

(Rubin et al, 1978; Schivek and Loftier, 1987) and prim ary cultured adipose precursors 

o f rats (Xu and Bjdrntorp; 1990) and hum ans (Hauner et al, 1989). Inhibitory effects of 

D E X  on term inal d ifferentiation have been reported  on 3T 3-F442A  pread ipocy tes 

(Pairau lt and Lasnier, 1987) and insulin counteracted  the D EX  effects here. From  

studies such as these it is becom ing increasingly  apparent that the d ifferen t results 

ob tained  in vitro  are due to the varying conditions em ployed , nam ely the type o f 

m edium  used, the tim e-point o f DEX addition and the presence o f insu lin  (Xu and 

B jorntorp, 1990). D ifferential effects o f g lucocorticoids on cell-types from  different 

anatom ical locations, both in vivo and in vitro , m ay also explain discrepancies between 

various reports.

1.7.1.3)  Fatty Acids  and  Retinoids

In recent years it has becom e clear that fatty acids and retinoids act through related 

nuclear receptors to directly regulate gene expression (see section 1.7.1.4). A dipose 

tissue represents the m ajor storage organ for trig lyceride in the body (A ngel et al, 

1974). Furtherm ore, studies on rat adipose depots have show n that serum  retinol- 

b inding protein and ce llu la r retino l-b inding  protein  are expressed  at h igh levels, 

strongly suggesting that adipose tissue is also a m ajor tissue for retinol storage (Okino 

et al, 1995). G iven this abundant source o f putative transcrip tional regulators, it is 

likely that these factors should play a predom inant m odulatory  role in the adipose 

conversion  o f p readipocytes in vivo. Indeed, fatty acids and retinoids a t very  low 

concentrations co-operate synergistically  to prom ote the term inal d ifferentiation o f 

O bl771  preadipose cells (Safonova et al, 1994a) and co-regulate 3T3-L1 preadipocyte 

pro liferation , d ifferen tia tion  and survival (C haw la and Lasar, 1994). Fatty  acid 

treatm ent o f preadipocytes induces expression of several genes encoding  proteins 

im plicated in fatty acid m etabolism . These include the adipocyte lipid-binding protein, 

aP2 (D istel et al, 1992), the acyl Co A synthase (Amri et al, 1991), the acetyl Co A 

synthase (Amri et al, 1991) and a recently cloned m em brane protein involved in fatty 

acid binding and transport (Abum rad et al, 1993). S im ilarly , w hereas retinoids are 

ineffective on the expression o f early m arker genes they are extrem ely  effective in 

inducing late m arkers of preadipocyte differentiation (Safonova et al, 1994b).

1.7.1.4)  Nuclear Hormone Receptors

Critical to the signalling of retinoids, fatty acids, thyroid and glucocorticoid horm ones 

is a group o f related nuclear horm one receptors (C orsa-Junica, 1990; Evans, 1988; 

G reen  and C ham bon , 1988). S tudies on the specific  recep to rs  for re tino id s,
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glucocortico id  and thyroid horm ones have revealed that each receptor undergoes a 

structural alteration, or "transform ation", upon horm one binding, which in turn enables 

D N A  binding (C arlstedt-D uke et al, 1982; W rang-O kret, et al, 1984). T ranscriptional 

regulation by active nuclear receptors is m ediated by direct interaction with specific e x ­

acting D N A  sequences, or D N A -protein com plexes, in the prom oter regions o f target 

genes (Evans 1988; Karin et al, 1984).

These sequences, or horm one response elem ents (H REs), function in a position- or 

o rien ta tio n -in d ep en d en t fash ion  and thus behave like tran sc rip tio n a l enhancers 

(C handler et al, 1983). For exam ple, a glucocorticoid response elem ent sequence can 

be found in the aP2 gene o f 3T3-L1 preadipocytes, w hich m ay be responsible for 

transcrip tional induction  by DEX during adipose conversion  (C ook et al, 1988). 

T ypically , H REs have an apparent dyad sym m etry which suggests that they interact 

with receptor dim ers. This is true o f fatty acid-activated nuclear receptors, such as 

PPARy2, which form heterodim eric com plexes with retinoid receptors which can then 

bind corresponding HREs in adipocyte-specific genes (Amri et al, 1995; Tontonez et al, 

1994). D espite our current understanding o f nuclear horm one receptor action, we are 

still far from discerning how m ultiple receptor isoform s in teract to coordinate gene 

netw ork expression during such a complex biological phenom enon as adipogenesis.

1.7.2) Peptide  G row th Factors and H orm ones

1.7.2.1)  Growth Hormone (GH)

Pituitary GH regulates the num ber o f fat cells in both man and anim als. The findings 

that G H -deficient children have less fat cells than normal children, and that horm onal 

replacem ent in these children shifts adipose tissue cellularity towards norm al, indicate 

that GH is im portant for the developm ent of the hum an fat cell com plem ent (W abitsh 

and H einze, 1993). In addition, patients with hypopituitary dw arfism  have a reduced 

n u m b er o f ad ip o se  ce lls , even  though  fat ce ll m ass is la rg e , w h ereas  

hypophysectom ised rats, when adm inistered with GH, develop reduced fat cell mass 

but increased  cellu larity  (L indahl et al, 1991). M oreover, treatm ent of rats with 

antiserum  to rat GH results in a reduction in adipocyte num bers in a depot specific 

m anner (F lin t and G ardner, 1993). A d irec t perm issive  ro le  for G H  in the 

differentiation process has been dem onstrated in Ob 17, lO T1/^ and, under serum  free 

conditions, in 3T3-F442A and 3T3-L1 preadipocyles (Grimaldi et al, 1984; Guller et al, 

1988; M orikawa et al, 1982; Nixon and Green, 1983; Schmidt et al, 1990).
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The exact m echanism  by which GH exerts its adipogenic effects in preadipocytes is far 

from  being  understood . It has been show n that G H  induces a rap id  and transien t 

stim ulation o f c-fos  gene transcription in O bl771  cells (Doglio et al, 1989) and c-fos 

and c-jun  in 3T3-L1 and 3T3-F442A cells (Sum antran et al, 1992). This coincides with 

transcriptional activation o f C/EBP5 and translational activation o f C /EB Pp, which m ay 

contribute to the initiation of the differentiation program  (Clarkson et al, 1995; section 

1.6). H ow ever, part of the GH  effect could be attributed to IG F-I, since G H  has been 

show n to induce IG F-I gene expression  in Ob 1771 (D oglio  et al, 1987) and rat 

preadipocytes (W abitsch et al, 1996) and to increase sensitivity o f 3T3-F442A  cells to 

the action o f IG F-I (Zezulak and G reen, 1986). IG F-I, in turn has been reported  to 

prom ote adipose conversion of clonal cell lines (G uller e ta l ,  1989; Sm ith et al, 1988). 

In rat preadipocytes, G H -induced IGF-I production stim ulates a round of cell division 

during differentiation (W abitsch et al, 1996). This observation is in full agreem ent with 

the dual effector theory o f Green et al (1985) which w as originally devised to explain 

the differentiation of 3T3-F442A  preadipocytes in culture. A ccording to this theory, 

G H  first d irectly  stim ulates adipocyte d ifferen tia tion , then the num ber o f young, 

differentiated cells is increased by limited multiplication (clonal expansion) m ediated by 

the m itotic effects o f IGF-I.

Quite often, the net effect of adding GH to cultures of differentiating preadipocytes is a 

reduc tion  in the p roportion  o f new ly form ed ad ipocy tes and late  m arkers o f 

differentiation (Hausman and M artin, 1989; W abitsch et al, 1996). The inhibitory effect 

o f  GH on preadipocyte d ifferentiation is due to d isturbance o f g lucose  and lipid 

m etabolism  both during the differentiative phase and in the m ature fat cell (Fain et al, 

1985; G oodm an et al, 1990; Schw artz and C arter-Su, 1988; W abitsch et al, 1996). 

Therefore the effect of GH on preadipocyte differentiation appears to be differential. 

GH acts at an early stage to prime preadipocytes and contributes to their expansion by 

inducing local production and secretion of IGF-I. At later stages the actions of GH aim 

generally at reducing the lipid content of adipocytes, thereby lim iting adipose tissue 

size. T he b iphasic  action of GH on ad ipogenesis is certa in ly  not unique. The 

accum ulated evidence from a num ber of sources suggests that EG F (section 1.7.2.3), 

g lucocortico ids (section 1.7.1.2) and cyclic A M P (section 1.7.3.1) m ay also exert 

stage-specific, differential effects.

1.7.2.2)  Insulin

D eveloping adipocytes becam e highly responsive to insulin. The increase in insulin 

responsiveness has been attributed to an increase in insulin receptor num ber (Rubin et 

al, 1978) and to increased expression of proteins involved in m etabolic control which
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serve as an end-point for regulation by insulin eg G L U T 4 and A CC (Park and Kim, 

1991). Insulin is required for the adipocyte differentiation o f 3T3-F442A , 3T3-L1 and 

O b l7  cells (Doglio et al, 1986; Smith et al, 1988; G uller et al, 1988). It is thought not 

to be involved in com m itm ent to differentiate (Steinberg and Brow nstein, 1982), but as 

an enhancer of lipid synthesis in previously com m itted cells, thereby prom oting the 

characteristic  lipid filling o f im m ature adipocytes (Sm ith et al, 1988). In this respect, 

insulin  acts as a positive m odulator in the expression o f late enzym e m arkers involved 

in triglyceride m etabolism, such as phosphoenolpyruvate carboxykinase and a-g lycero- 

3 -p h o sp h a te  d eh y d ro g en ase  (D ani et al, 1986). F u rth e rm o re , in 3 T 3-F 442A  

adipocytes, insulin has been shown to increase the expression o f PPA R yl and y2 and 

regulate the transcription o f C /EBPs (M acD ougald et al, 1995; Puig et al, 1996). This 

raises the intriguing possib ility  that insulin serves to m odulate the activ ity  o f these 

critica l ad ipogenic  transcrip tion  factors during the tim e-course  o f p read ipocy te  

differentiation.

To optim ise adipose conversion in preadipocyte cell system s insulin is often used at 

supraphysiological concentrations where effects may be m ediated via the IG F-I receptor 

(G uller et al, 1988). Furtherm ore, the addition o f IG F-I to preadipocyte  cell lines 

(Schm idt et al, 1990; Smith et al, 1988) and to preadipocytes in prim ary culture (Deslex 

et al, 1987; H ausm an, 1989; N ougues et al, 1993) stim ulates adipogenesis in vitro. It 

has recently  been dem onstrated that rat adipose tissue in vivo abundantly  expresses 

IG F-I in addition to IG F-binding proteins (Peter et al, 1993), which are believed  to 

control IG F bioavailability and thus m odulate IGF action (M cC usker and C lem m ons, 

1992; Shimasaki and Ling, 1992). Therefore, there may exist a subtle interplay between 

the insulin  and IGF-I receptors to m odulate the m axim al expression  o f term inal 

differentiation.

1.7.2.3) Epidermal  Growth Factor (EGF)

The peptide growth factor EG F has been reported as being one of the grow th factors, 

such as PDGF (Fig 1.3; Ringold et al, 1988), to inhibit the entry of preadipocytes into a 

program  o f in vitro d ifferentiation (Corin et al, 1990; Serraro, 1987). M oreover, 

adm inistration of EG F to neonatal rats suppresses body w eight gain and carcass fat 

deposition due to an increase in the num ber of m ature adipocytes (Serrero and M ills,

1991). This is contrary to the finding that EG F is required for the m aintenance o f 3T3- 

F442A  and 3T3-L1 preadipocyte d ifferentiation (G uller et al, 1988; Schm idt et al,

1994) and that elevated EGF levels are a causative factor for adipocyte hypertrophy in 

obese m ice (Kurachi et a I, 1993). These apparent paradoxes can be explained by the 

fact that EG F shows sequential changes in its effects during preadipocyte differentiation
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(A dach i et al, 1994). E G F has been show n to p rom ote  the in su lin -suppo rted  

accum ulation o f triglycerides in prim ed preadipocytes, how ever at an earlier stage EGF 

inhibits the adiposity of preadipocytes by enforcing cell-cycle re-entry (Fig 1.3; Adachi 

et al, 1994). A possib le  explanation  for the poten tia ting  action o f EG F on lipid 

accum ulation  in d ifferen tia ting  p readipocytes is that EG F reduces catecholam ine- 

m ediated lipolysis (Taber et al, 1993).

1.7.2.4)  Growth Hormone (GH) and  Insulin Signall ing Cascades

Given the critical roles o f GH and insulin in prom oting and m aintaining adipogenesis 

(sec tions 1.7.2.1 and 1.7.2.2) it is apparen t that e luc idation  o f their respective  

signalling m echanism s will be critical to understanding the m echanism s o f action o f 

these horm ones. Early transduction events appear to be com m on to both the G H  and 

insulin receptors and involve tyrosine phosphorylation o f several cellu lar proteins, 

including the so-called insulin-receptor substrate (IRS-I) (Anderson, 1992; Souza et al, 

1994; Sun et al, 1991; W hite et al, 1985; W hite et al, 1987). Unlike the insulin receptor 

(K asug et al, 1983), the GH receptor lacks intrinsic tyrosine kinase activity (Leung et  

al, 1987), but instead stim ulates the activity o f JAK-2, a tyrosine kinase that associates 

with the cytoplasm ic dom ain of the activated GH receptor (A rgetsinger et al, 1993). 

Putative substrates for JAK-2 in 3T3-F442A preadipocytes include 91 kD a (Stat 91) 

and 84 kD a com ponents of the ISGF3 transcription factor complex that, when tyrosine 

phosphory lated , m igrate to the nucleus and participate  in the activation o f gene 

transcrip tion  (K ilgour and A nderson, 1994; Sadow ski et al, 1993).T he precise  

consequences of ISGF3 activation by GH in term s of preadipocyte d ifferentiation 

remain to be investigated.

A further point of divergence between the GH and insulin signalling pathw ays is at the 

level of protein kinase C (PKC; Clem ens et al, 1992). Insulin is not thought to activate 

this pathw ay, how ever in Ob 1771 preadipocytes GH has been reported to stim ulate 

d iacylg lycero l (DAG ) production, by m eans o f phosphatidy lcho line breakdow n, 

leading to PKC activation (Catalioto et al, 1990; Catalioto et at, 1992). Activation of the 

PK C pathw ay in O bl771  preadipocytes is thought to contribu te to the adipogenic 

actions of GH in this cell type (Catalioto et al, 1992).The m echanism  by which GH 

stim ulates production o f DAG from phosphatidylcholine is not known, but a pertussis- 

toxin sensitive phospholipase C activity, specific for glycerophospholipids other than 

phosphoinositol, has been im plicated (Catalioto et al, 1990), D ow n-stream  targets of 

G H -activated PKCs may include the m itogen activated protein (M AP) kinase cascade 

(Adam s and Parker, 1991; Anderson 1992) and/or the phosphorylation o f com ponents 

o f the transcriptional and translational m achinery (Boyle et al, 1991; M orley et al,
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1991). T hese effects are likely to result in changes in gene expression  at both the 

transcriptional and translational levels.

R ecen tly  it has em erged that activation o f the M A P kinase cascade  (Fig 1.5), a 

signalling pathw ay used by m itogenic and differentiative agents, is absolutely required 

for the adipose conversion o f 3T3-L1 preadipocytes (Sale et al, 1995). H ere, tyrosine 

phosphorylation o f the receptor, or receptor-associated m olecule (eg JA K -2 or IRS-I), 

d irects the association of transducing m olecules via  phosphotyrosyl-binding dom ains, 

term ed SH 2 and SH3 (Paw son and G ish, 1992). The association o f adap ter proteins, 

such as G rb2, u ltim ately leads to activation o f the sm all G T P-binding  protein Ras 

(Buddy and D ow nw ard, 1993). Ras then triggers a protein kinase cascade, involving 

the sequential activation of two kinases Raf and M EK (Kyriakis e ta l ,  1992), leading to 

activation o f M AP kinase by threonyl- and tyrosyl- phosphorylation (Ray and Sturgill, 

1988). Activated M AP kinase can translocate into the nucleus where it targets a range of
TCFsubstra tes  includ ing  the nuclear transcrip tion  fac to r p62 , h av ing  im portan t

im plications for the regulation of gene expression (Hill and Treism an, 1995). Both GH 

and insulin have been shown to activate the M A P kinase pathw ay (A nderson, 1992; 

Ray and Sturgill, 1988) but the role of these events in the adipogenic actions o f these 

horm ones is not defined. Since M A P-kinases and other elem ents in this pathw ay exist 

in m ultiple isoform s, it will be necessary to clarify which isoform s are targeted by 

which hormone.

O ther considerations, such as time of activation and subcellular localisation, are also 

likely to be im portant (M arshall, 1995). The duration of M AP kinase activation has 

been show n to be a determ ining factor in the decision o f cells to d ifferen tia te  or 

p roliferate (M arshall, 1995); sustained activations provoke nuclear translocation o f 

M A P kinases and cellular differentiation, whereas transient activations stim ulate cell 

cycle  re-entry . The duration o f M AP kinase activation can be m odulated , e ither 

positively  or negatively, by regulatory "cross-talk" with other signalling  pathw ays, 

such as the cyclic AM P cascade (M alarkey e ta l ,  1995; M arsh a ll,1995). G iven the 

im portance o f cyclic AM P in transducing differentiative signals (section 1.7.3.1), it is 

plausible that interactions with crucial growth cascades, such as the GH- and insulin- 

stim ulated M AP kinase pathw ays, could contribute to the effects o f cyclic AM P on 

preadipocyte differentiation.
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Fig 1.5) Im m ediate  Regulation  o f  the M itogen A ctivated  Protein  (M A P)  
K inase C ascade
The seryl/threoyl kinase Ruf is activated by association with the G -protein Ras. Raf 
phosphorylates and activates the dual specificity threonyl/tyrosyl kinase M EK which 
phosphorylates and activates M AP kinases (M APK). Potential sites for regulation by 
phosphatases are also shown.
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1.7.3) C yclic AM P

The actions o f m any horm ones and neurotransm itters are m ediated at the cellular level 

by cyclic  A M P. T he in tracellu lar concen trations o f  cyclic  A M P are regu la ted  by 

ad en y la te  cyc lase  and cyclic  n u c leo tid e  p h o sp h o d ie s te ra ses , en zy m e system s 

responsible for the form ation and destruction o f cyclic A M P (Fig 1.6; G ilm an, 1987). 

Stim ulatory and inhibitory receptors transmit extracellular stim uli via stim ulatory (G.s) or 

inhibitory ( G j )  guanine nucleotide binding proteins (G -proteins) to the catalytic unit of 

adenylate cyclase, which catalyses the form ation o f cyclic A M P from A T P (Vaughan 

and M oss, 1985). Several adenylate  cyclase  iso fo rm s have been id en tified  and 

characterised and it appears that all are m em brane proteins (Bakalayer and Reed, 1990). 

C yclic nucleo tide phosphodiesterases (PD Es) convert cyclic  nucleo tides to their 

respec tive  5' m ononucleo tides and represen t the only  know n pathw ays for the 

destruction and metabolism of cyclic nucleotides. The PD Es com prise a com plex group 

of enzym es, m ultiple forms of which have been isolated from various tissues and cell- 

types (Beavo and Reifsnyder, 1990).

1.7.3.1)  Cyclic AMP-elevating  Agents

(3-adrenoceptors arc integral transm em brane receptors that m ediate the effects o f 

catecholam ines secreted from the adrenal m edulla and postganglionic sym pathetic 

neurones (Lelkow itz, 1976). R eceptor occupancy by catecholam ines a llow s the 13- 

adrenocep tor to couple to the G„ protein com plex  w hich prom otes cyclic  A M P 

production by adenylate cyclase (Fig 1.6). In turn, cyclic AM P exerts a key role in 

processes such as cellu lar grow th, differentiation and adaptations to environm ental 

conditions (Pastan et a l , 1975). These processes are regulated in a tissue- and/or cell- 

specific m anner (Pastan et al, 1975). Thus in white adipose tissue it is well docum ented 

that, essentially through the (3-adrenoceptors, cyclic A M P has pleiotropic effects in the 

control of adipocyte differentiation and metabolism. In white adipose cell lines (Gaillard 

et a l , 1989; Schm idt et al, 1990) or in the prim ary cu lture o f adipose precursors 

(Bjom torp et al, 1980; W iederer and Loftier, 1987), (3-agonists or cyclic A M P are well- 

known triggers of adipose conversion. In vivo, local denervation o f white adipose lead 

to a m arked hyperplasia of adipocyte precursors dem onstrating that catecholam ines 

exert an anti-m itogenic (ie pro-differentiative) influence on early-m arker expressing 

preadipocytes (Cousin et al, 1993).

In addition  to adrenergic regulation, adipose tissue m ay also influence its own 

adiposity through autocrine m echanism s by local production of cyclic A M P-elevating 

agents (Shilabeer et al, 1989). Angiotensin is a locally  produced peptide secreted by
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Fig 1.6) The M am m alian  A denylate  C yc lase/P hosph od iesterase  System .
The actions of many hormones and neurotransmilters are mediated via cyclic AMP. The 
intracellular concentrations of cyclic AM P are regulated by adenylate cyclase and cyclic 
nucleotide phosphodiesterases, enzym es responsible for the form ation and destruction 
o f cyclic AM P, respectively. The adenylate cyclase system  consists o f a series of 
in teracting  proteins which lie predom inantly  in the plane o f cellu lar m em branes. 
Stim ulatory and inhibitory effectors transmit their signals via stimulatory and inhibitory 
receptors coupled to heteroirim eric guanine nucleotide binding (G-) proteins. The 
activation status of adenylate cyclase, which catalyses the form ation of cyclic AM P 
from  ATP, is determ ined by the net actions of stim ulatory- (Gs) and inhibitory- (G ,2 

and G l3 in preadipocyies) G -proteins. Cyclic AM P produces biological effects by 
activating cyclic AM P-dependent protein kinase (PKA) which phosphorylates specific 
substrates involved in the regulation of the biological response.
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ad ipocy tes  w hose exp ression  is regu la ted  nu tritio n a lly  (F red rich  et al, 1992). 

M icrod ia lysis  o f rat ad ipose tissue in vivo  w ith ang io tensin  stim ula tes a specific  

increase in the p roduction  o f the prostag land in  prostacyclin  (A ilhaud et al, 1994). 

Prostacyclin has been show n to be a potent inducer o f intracellular cyclic A M P and free 

in tracellu lar C a2+ in preadipocytes (V assaux et al, 1992; V assaux et al, 1993). These 

tw o signalling  pathw ays synerg ise  to p lay  a card inal ro le in triggering  term inal 

d iffe ren tia tio n  o f p read ip o se  Ob 17 cells , as w ell as m odu la ting  positive ly  the 

d ifferen tia tion  o f rat, hum an and 3T 3-F442A  p read ipocy tes (N egrel et al, 1989). 

A denosine is another sm all m olecule produced in adipose tissue which has been shown 

to po ten tia te  the positive  effect of prostacyclin  on ad ipogenesis in Ob 1771 and rat 

preadipocytes by positively  coupling to adenylate cyclase through a type A 2 adenosine 

recep to r (V assaux et al, 1993). In m ature adipocytes the adipogenic action o f both 

prostacyclin  and adenosine disappears, since adipocytes do not express prostacyclin  

receptors and the adenosine A | receptor em erges , coupled negatively  to adenylate 

cyclase  through G j ,  and the A2 recep tor subtype d isappears (V assaux et al, 1992; 

V assaux et al, 1993). These observations indicate that the d ifferen tia tive  effects o f 

elevated intracellular cyclic AM P and C a2+ m obilisation, prom oted by prostacyclin and 

adenosine, are transient and restricted to the preadipose cell. B rief exposure o f 3T3-L1 

p re a d ip o c y te s  to c y c lic  A M P  p h o s p h o d ie s te ra s e  in h ib i to r s  [su ch  as 

isobu ty lm ethy lxan th ine  (IB M X )] accelerates their ad ipose  conversion  in serum - 

containing or serum -free m edia (Elks and M anganiello , 1988; Schm idt et al, 1990). 

IBM X  can be replaced by cyclic A M P analogues, or activators of adenylate cyclase, 

dem onstrating that the potentiating action of intracellular cyclic AM P on preadipocyte 

differentiation can be dissociated from Ca2+ mobilisation.

1 .7 .3 .2 )  H e te r o t r im e r i c  G u a n ine  N u c l e o t id e - b in d i n g  P r o te in s  (G-  

p r o t e i n s ) .

T he horm onal stim ulation of fatty acid and glycerol release from adipose tissue 

correlates with elevated intracellular cyclic AM P levels and an increase in the activity of 

horm one sensitive lipase (K aw am ura et al, 1981). This characteristic and functionally 

im portant enzym e of adipose tissue controls rates o f lipid m obilisation and is activated 

by phosphorylation on specific serine residues by cyclic AM P-dependent protein kinase 

(K aw am ura et al, 1981). D uring differentiation, 3T3-L1 cells develop catecholam ine- 

sensitive adenylate cyclase activity in parallel w ith increased num bers o f p-receptors 

and increased expression o f the stim ulatory G T P-binding protein G s (Cai and Rosen,

1981). The initial report on this topic dem onstrated a dram atic increase in the levels of 

the 47 kD a and 42 kD a form s of G su, as delected by cholera toxin-catalysed ADP- 

ribosylation (Cai and Rosen, 1981). This observation was confirm ed by subsequent
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studies on the same cells (Watkins et a l , 1982; W atkins et al, 1987) and in 3T3-F442A 

cells (Kilgour and Anderson, 1993). Although the increased expression of the 42 kDa 

G sa isoform is the m ost profound, the specific functions of the 42 kD a or 47 kD a 

isoform are not known and so the significance of this is unclear at present. Exposure of 

non-differentiating 3T3-C2 cells to the same differentiation protocol for 3T3-L1 cells, 

also results in the increased expression of 42 kDa and 47 kDa Gsra isoforms, however, 

without increased responsiveness of adenylate cyclase to lipolytic agents (Watkins et al,

1982). This indicates that changes in G ,(t can not alone account for the m agnitude  of 

increased responsiveness o f  3T3-L1 cells to p-adrenergic agonists. A reduction in 

cellular levels of the alpha subunit o f  the inhibitory GTP-binding protein, G; m ay also 

contribute  (Giershik et al, 1986). However, studies o f  Gi expression have yielded 

some conflicting results. W atkins et al (1987) reported that during differentiation of 

3T3-L1 cells, an increase in the levels of 40 kDa a-subunits  occurred, as detected by 

pertussis toxin-catalysed ADP-ribosylation, whereas Giershik et al (1986) reported a 

significant decrease in the levels of G j (I plus G ()(t detected with an antiserum raised to 

these purified subunits.

The cellular levels of P-suhunits have been reported to both decrease (Giershik et al, 

1986) and increase (Watkins et al, 1982) during differentiation. These discrepancies 

may be explained by the fact that pertussis toxin catalyses the ribosylation o f  Giia, Gj2a, 

G j3« and G„« and is dependent on the dissociative state of  the G-protein. In addition, 

the difficulty in obtaining homogeneous preparations, free of contamination by other G- 

protein subunits, for the raising of specific antisera rendered the interpretation of these 

early data very difficult. However, in a later report Watkins et al (1989), using anti­

peptide antisera, specific for Gj2 u and Gpj and Gp2 , dem onstrated  a decrease  in 

expression of these proteins and corresponding m RNA levels during differentiation of 

3T3-L1 cells.

Although it is clear that extracellular ligands can control adipogenesis by modulating 

adenylate cyclase activity through Gs- or Gj-coupled receptors, it has become apparent 

that these heterotrimeric G-proteins may exert additional regulatory influences on 

preadipocyte differentiation independent of  adenylate cyclase (Wang and M albon, 

1996). Oligodeoxynucleotides in an antisense orientation to the a -subunit  o f  G s were 

shown to accelerate the rate of differentiation of 3T3-L1 cell differentiation induced by 

other agents, as well as acting as inducers themselves (Wang et al, 1992). Conversely, 

constitutive activation o f  G S(X with cholera toxin was found to provoke a blockade of 

differentiation, whereas cyclic AMP-elevating agents were reported, in this instance, to 

have no effect on differentiation (W ang et al, 1992). Increased expression  o f  a 

constitutively active mutant form of G j  ( Q 2 0 5 L - G j 2 u ) ,  whose activity counter-regulates
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G sa, also promotes terminal differentiation of fibroblasts to adipocytes (Su et a l, 1993). 

These data which parallel studies in mouse F9 teratocarcinoma stem cells (Watkins e ta l ,

1992), and studies on the suppression of G, in vivo in transgenic mice (Moxam e ta l ,

1992), highlight a critical role of G-proteins in differentiation and development.

The domain responsible for the repression o f  adipogenesis in the G S(X protein (amino 

acids 146-235) was found to map to a region which was distinct from that which 

facilitated control of adenylate cyclase (Wang et al, 1996a). It is interesting to note that a 

m utan t substituting valine for glycine at position 49 of  G S(I was found to promote 

neuronal PC 12 cell differentiation independently of adenylate cyclase activation (Kabir 

et al, 1993). In addition to adenylate cyclase, M g2+-transport (Birnbaum er et al, 1990; 

Gilman, 1987) and Ca"+ channels (Birnbaumer et al, 1990; Gilman, 1987) have been 

implicated as effector units regulated via Gsa. W hether these, or other effectors which 

have  yet to be d iscovered, m ediated  the negative regulatory  action of G sa on 

preadipocyte differentiation remains to be established. In addition, further investigation 

will be necessary to consolidate adenylate cyclase-independent actions o f  Gsot in light of 

overwhelming evidence supporting cyclic AM P as a regulator of adipogenesis (section

1 .7 .3 .1).

1.7.3.3) The cyclic AMP-dependent Protein Kinase (PKA) Cascade

Cyclic  A M P m ediates its biological effects through a protein serine/threonine 

phosphorylation-dephosphorylation system, composed of a cyclic AM P-dependent 

protein kinase (PKA; Walsh et al, 1968) and a cognate protein phosphatase (Krebs and 

Beavo, 1979). The PKA holoenzyme consists of two identical cyclic A M P binding 

subun its  and two p ro te in -phospho ry la ting  subunits  (Rosen  et al, 1975). The 

phosphorylating, or catalytic (C), subunits are active only when dissociated from the 

holoenzyme complex. Dissociation is promoted by the interaction of cyclic A M P with 

the nucleotide binding regulatory (R) subunits (Brostrom et al, 1970).The degree of 

phosphorylation of substrate proteins can therefore be related to the level of cyclic AM P 

within the cell. In mice there are four R genes (encoding R Ia , Rip, R l l a  and RIIP) and 

two C genes (encoding Cot and Cp) which are expressed in a tissue specific manner 

(M cKnight, 1991). The RIIp isoform is abundant in adipose tissue and brain with 

limited expression elsewhere (McKnight, 1991).

PKA plays a fundamental role in mature adipocytes by mediating the regulation of 

lipolysis by catecholamines (Honnor et al, 1985a; Honnor e ta l ,  1985b). In addition the 

regulation of fatty acid transport (Abumrad eta l ,  1986) and aromatase activity (Evans et 

al, 1970) by hormones is mediated, at least in part, by PKA. These facts, together with
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observa t ions  that cyclic  A M P  posit ive ly  regu la tes  ad ipogenes is  early  in the 

differentia tion program  (section 1.7.3.1), indicate that induction o f  the relevant 

machinery for cyclic A M P signalling is essential to the expression of a differentiated 

adipose phenotype. During the adipocyte conversion of murine TA1 preadipocytes it 

has been shown that regulated increases in the expression of RIIp, and to a lesser extent 

C a  and Rip, precede m orphological differentiation (Kurten et a l , 1988). Moreover, 

transgenic ablation o f  the RIip subunit of protein kinase A leads to morphologically 

lean m ice which display smaller adipocytes than their wild-type counterparts with 

substantially diminished triglyceride stores (Cummings e ta l , 1996). These observations 

indicate that regulated changes in PKA subunit expression, particularly RIip, can have 

a major impact on the developmental program of adipocyte maturation.

The subcellular localisation of PKA is directed through the R-subunit (Sarkar et a l , 

1984) and certain tissues contain up to 75% of either RII isoform in particulate form, 

associated with either the plasma m em brane, cytoskeletal com ponents , secretory 

granules or the nuclear m em brane (Joachim and Schwoch, 1990; ; Nigg et al, 1985;; 

R ubin  et a l , 1972; Salvatori et al, 1972). Fo llow ing  their induction  in TA1 

preadipocytes, PKA subunits are predominantly associated with a reticular cytoplasmic 

structure abutting the nucleus (Kurten e ta l ,  1988). This raises the exciting possibility 

that specific targeting of PKA to nuclear-associated R llp-anchoring  proteins directs 

cyclic AMP-mediated signalling to adipocyte-specific substrates, perhaps modulators of 

adipogenesis per se.

1.7.3.4) Transcriptional Regulation by Cyclic A M P

The transcription of several adipocyte-specific genes, have been shown to be up- 

regulated by cyclic A M P during adipose conversion. These include a -g ly c e ro -3 -  

phosphate dehydrogenase (Bhandari e ta l ,  1991), acetyl-CoA dehydrogenase (ACC; 

Park and Kim, 1991) and fatty acid binding protein (aP2; Yang et al, 1989). The 

regions of the 5' Ranking sequences of the ACC and aP2 genes which are necessary for 

regulation by cyclic AM P have been partially characterised.

ACC gene expression is induced during preadipocyte differentiation by insulin, and 

this requires prior action of cyclic AM P on the gene (Park and Kim, 1991). The DN A 

sequence responsible for cyclic AM P action on ACC induction has been identified as 

one which binds the activator protein (AP)-2 transcription factor (Park and Kim, 1993). 

AP-2 can be phosphorylated by PKA, but this does not affect its binding activity (Park 

and Kim, 1993), i.e. unphosphorylated AP-2 can bind the ACC promoter region as 

well as the phosphorylated form. This suggests that phosphorylation of transcription
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factors by the cyclic A M P-PK A  cascade may m odulate  d ifferen tia tion-dependent 

transcriptional events through mechanisms other than DNA-binding.

The up regulation o f  aP2 gene expression only occurs in confluent, differentiation 

permissive preadipocytes and seems to depend on the presence of  activator protein (AP) 

1 and C /E B P  consensus sequences in the p rom oter  region (Yang et al, 1989). 

Intriguingly , part o f  the action of cyclic A M P on the triggering of  preadipocyte  

differentiation may be the induction of the adipogenic transcription factor C /EB Pp (Yeh 

et al, 1995). M oreover, C /EBPP has been shown in non-preadipocyte cell system s to 

be located in the cytoplasm where it is phosphorylated in response to elevations in 

intracellular cyclic A M P (Metz and Ziff, 1991; Yam amoto e ta l ,  1988). This results in 

increased nuclear translocation and enhanced //v/n.v-activation of target genes (Metz and 

Ziff, 1991; Yam am oto et al, 1988). These observations, together with the fact that 

C /EBP family members form heterodimers with other transcription factors (Vallejo et 

al, 1993) including the CREB (cyclic AM P-response-element-binding protein) family, 

strongly suggest that functional cross-talk with C/EBPs may contribute to the effects of 

cyclic AM P on differentiation-associated transcription.

The transcription factor CREB has been shown in m any cell system s to m ediate 

transcriptional activation by cyclic AMP. Elevated intracellular cyclic A M P leads to 

phosphorylation of CREB by PKA at a key regulatory site (Ser 133; G onzalez  and 

M ontm iny , 1989; Lee et al, 1990; Sheng et al, 1991). This leads to nuclear  

translocation and activation of transcription through the binding of CREB proteins to 

cyclic A M P response e lem ents (CREs) in target genes (H agiw ara et al, 1993). 

Phospho-CREB also interacts with a CREB-binding protein (CBP) which performs as 

a transcriptional co-activator which augments expression of CRE-directed genes and 

may be important for the activation AP-1 dependent promoters (Alias eta l ,  1994; Kwok 

et al, 1994). Curiously, many cyclic AMP-regulated adipocyte-specific genes do not 

contain CRE elements (Flores-Riveros et al, 1993) or contain CRE elements which do 

not contribute to cyclic AM P-responsiveness (Park and Kim, 1993). Therefore, it 

seems that gene-induction by cyclic AM P during preadipocyte differentiation may not 

be mediated solely by CREB. However, given that CREB can cooperate with other 

transcription factors, such as AP-1 and C/EBP, can be phosphorylated by a num ber of 

other protein kinases, including protein kinase C, CaM kinases II and IV, and p90RSK 

(Ginty et a l , 1994; Gonzalez and Montminy, 1989; Sheng et al, 1991; Sun et al, 1994) 

suggests that CR EB may serve to integrate and coordinate divergent s ignalling 

pathways at the transcriptional level. The consequences of such interactions in terms of 

preadipocyte differentiation remain to be investigated.
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In contrast, to its effects on preadipocytes cyclic AM P appears to m odulate  terminal 

differentiation by repressing the expression of a num ber of genes coding for essential 

proteins of the adipocyte, especially lipogenic enzymes (Antras et a l , 1991). Thus, in 

ad ipocytes  cyclic A M P m R N A  levels o f  adipose-specific  m arkers w hich  include 

lipopro te in  lipase (Raynolds et al, 1990; Antras et a l , 1991), fatty  acid synthase 

(Paulauskis and Sul, 1988), a -g lycero -3 -phospha te  dehydrogenase  (D obson et al, 

1987; Antras et al, 1991; Bhandari et al, 1991), G LU T 4 (Kaestner e ta l ,  1991), adipsin 

(Antras et al, 1991) and leptin (Gettys et al, 1996). The m echan ism s involved  in 

transcriptional repression by cyclic AM P are poorly understood, but m ay involve trans­

ud ing  nuclear factors which are distinct from CREB, C/EBPs, AP-1 and AP-2 (Rangan 

e ta l ,  1996).

In conclusion, it appears that cyclic AM P exerts differential effects on adipocyte 

development, acting both at an early stage to promote preadipocyte differentiation, by 

inducing adipocyte-specific gene expression, and during the terminal stages, limiting fat 

cell hypertrophy by suppressing lipogenic gene expression and promoting lipolysis 

(section 1 .2 ).
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1.8) AIMS OF PROJECT

It is apparent that signal transduction pathways such as the cyclic A M P cascade, and 

those  in it ia ted  at the G H  and insu lin  recep to rs ,  can m odu la te  p read ipocy te  

differentiation depending on the stage of the developmental program at which they are 

activated (section 1.7). Among the consequences of initiating such adipogenic cascades 

will be changes in the expression of adipocyte-specific proteins and critical t ra m -acting 

transcription factors such as the C /EBP isoforms (section 1.6). Therefore, a major 

challenge in developm ental cell biology is to e lucidate the com plex  ne tw ork  o f  

interactions which lead from cell-surface receptors to effect key transcriptional events in 

the nucleus. Furtherm ore , the d iscovery  o f  pivotal "cross-talk" even ts  betw een 

adipogenic signalling pathways will provide a better understanding of the mechanisms 

and consequences of intracellular hormone action.

Recently it has been demonstrated that G s and G, may play an important regulatory role 

during adipogenesis (section 1.7.3.2) and that changes in their expression contribute to 

the development of hormonal responsiveness in the mature adipocyte (section 1.7.3.2). 

Given the functional importance of these proteins it is likely that some of the phenotypic 

changes that occur during preadipocyte differentiation are reflections of alterations to the 

G-protein complement during development. Therefore, "permissive hormones" that can 

increase or decrease the expression of G s and G,, and thereby the stimulation of 

adenylate cyclase, can have a profound effect on the extent of adipose conversion. The 

present project aims to investigate perturbations to the cyclic AM P signalling system in 

the context of preadipose conversion and determine the potential consequences for 

terminal differentiation. The study will therefore cover three main areas:

1) C h an ges  in the E xp ress ion  o f  G u an in e  N u cle o t id e -b in d in g  P rote ins  

D u rin g  the G row th  H o rm o n e -d e p e n d e n t  D if feren tia t io n  o f  3 T 3-F 442A  

C e l l s .

The initial aim of this project is to determine whether changes in G-protein expression 

occur during the two stages of the differentiation program of 3T3-F442A preadipocytes 

(section 1.5); either during the GH-priming stage or the insulin-promoted maturation 

phase. G-protein levels will be assessed using a range of specific anti-peptide antisera. 

This approach will provide a better understanding of the hormonal influences which are 

responsible for the development of catecholamine-sensitive adenylate cyclase in mature 

adipocytes (section 1.5.3) and may provide an insight into stage-specific changes in G- 

protein expression which may underlie key regulatory events in the differentiation 

process. In addition, the use of specific antisera may help to clarify some of the
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contradictory reports on differentiation-dependent changes in G-protein expression in 

other preadipocyte cell systems (section 1.5.3). Finally, the potential o f  the stimulatory- 

and inhibitory-G-proteins to modulate fat cell conversion will be assessed by cholera 

and pertussis toxin intoxication.

2 )  T he  E ffec ts  o f  C y c lic  A M P  on the D if fe r e n t ia t io n  o f  3 T 3 -F 4 4 2 A  

P r e a d ip o c y te s

That Gs and Gj have the potential to modulate adipogenesis (section 1.7.7.2) suggests 

that their m ajor intracellular effector, adenylate cyclase, plays a supportive role in 

m odulating differentiative processes. Indeed, there is much supportive evidence to 

suggest that cyclic AM P can influence preadipocyte differentiation in vivo  and in vitro 

(sections 1.7.3.1 and 1.7.3.3). In light of recent reports that G s and Gj may act through 

adenylate cyclase-independent mechanisms to effect fat cell conversion indicates that a 

critical re-evaluation of the adipogenic potential of cyclic AM P is required. The second 

aspect of this study will be to address this question by defining the roles of cyclic AM P 

in modulating preadipocyte differentiation. Cyclic AMP-elevating agents will be used to 

determ ine  s tage-specific  aspects of  the response o f  differentia ting 3T 3-F442A  

preadipocytes to cyclic AMP, in terms of the ultimate effect on terminal differentiation. 

The use of a serum-free, chemically defined differentiation medium will also reveal 

which permissive hormones cyclic AMP interacts with to determine cellular fate.

3) In teract ion s  B etw een  the C yclic  A M P  and M A P  K inase  Pathw ays:  

E ffect  on the D ifferentia tion  o f  3T 3-F442A  Pread ipocytes

One potential means of cyclic AMP to effect differentiation is to positively or negatively 

regulate obligatory differentiative signal transduction cascades, such as those initiated 

by insulin- and GH-receplor binding (section 1.7.2.4). The M AP kinase cascade has 

been implicated as a transducer of differentiative stimuli in 3T3-L1 preadipocytes 

(section 1.7.2.4). Further work will explore w hether cyclic A M P can effect the 

activation of M A P  kinases through regulatory cross-talk during the prim ing or 

maturation phases of 3T3-F442A adipogenesis. By correlating the effects o f  cyclic 

AM P on M AP kinase activation with stage-specific effects on terminal differentiation, it 

may be possible to assign a putative role for this ubiquitous signalling molecule in the 

control of fat cell development.

41



Chapter Two 

Materials And Methods
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2.1) M ATERIALS

2.1 .1) C hem icals

G eneral laboratory chemicals were obtained from ICN Biom edicals (Oxfordshire, 

U K ), S igm a Chem ical Co. (Poole, UK) or B D H  (Poole, UK). O ther  specialised 

laboratory reagents are listed in Table 2.1. Unless stated otherwise, all water was single 

distilled mains water.

T able  2.1) Specia lised  L ab oratory  R eagents

C h em ica l S o u r c e C ata logue  N u m ber

Acetonitrile (HPLC grade) Sigma 27,071-7

Acrylamide/bis- 

A c ry la m id e  (37.5:1 v/v 

solution)

S e v e rn  B io te c h .  L td . 

(Worcs., UK).

A 3423

A ctivated Charcoal ( 1 0 0 - 

400 mesh)

Sigma C 5260

B is b e n z im id e  (H oechst  

H33258)

Fluka Biochemika (Dorset, 

UK)

14530

B rad fo rd  R eag en t  (dye 

reagent concentrate)

Bio-Rad Ltd (Herts., UK) 500-0006

BSA  (im proved standard 

grade)

Advanced Protein Products 

(West Midlands, UK).

PF-201-47

BSA (fraction V) Siema A 2153

3 ', 5 ' C y c l ic  A M P - 

Dependent Protein Kinase 

(from bovine heart)

Sigma P 5511

C h o le ra  T o x in  (from  

Vibrio cholerae)

Sigma C 3012

Collagenase (type VIII, for 

adipocyte isolation)

Sigma C 2139

CPT-cAMP B o e h r in g e r  M a n n h e im  

(East Sussex, UK)

405 647

DHAP (lithium salt) Sigma D 7137

1, 9 -D id e o x y f o r s k o l in  

(from Coleus forskohlii)

Sigma D 3658
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DM EM  (high glucose) Life Technologies 41965-096

E G F  ( h u m a n ,  

recombinant)

Life Technologies 13247-010

Fetu in  (from  foeta l ca lf  

serum)

Sigma F 2379

F orsko lin  (from  C oleus  

forskohlii)

Sigma F 6 8 8 6

F r e u n d ' s  A d j u v a n t  

(complete)

Life Technologies 15721-012

F r e u n d 's  A d j u v a n t  

(incomplete)

Life Technologies 15720-014

KLH Pierce & W aniner, Chester 

U K

77100

Glutaraldehyde (grade I) Sigma G 7526

H-89 (dihydrochloride) Calbiochem 371963-Q

IBMX (crystalline) Sigma 1 5879

Insulin (cell culture tested) Sigma I 1882

(-)-Isoproterenol 

(hydrochloride form)

Sigma I 6504

L ip o fe c t in  T ransfec tion  

Reagent

Life Technologies 18292-037

M BP (from bovine brain) Sigma M 1891

Medium 199 (with Earle's 

Modified Salts and 1.25g/l 

sodium bicarbonate)

Life Technologies 31153-026

NADH (reduced form) Sigma N 8129

NP-40 (protein grade) Calbiochem 492017

M ix t u r e  H a m 's  F I  2 

Nutrient Mixture

Life Technologies 21765-029

Oil Red 0  (solvent red 27) Sigma 0  9755

PBS Life Technologies 20012-019

PD098059 Calbiochem (Nottingham, 

UK)

513000

P e r tu s s is  to x in  (from  

BordetelJa pertussis)

Life Technologies 13176-011

Phenyl-Sepharose C1-4B P h a r m a c i a  ( M i l t o n  

Keynes, UK)

17-0810-02
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/?p-cAMPS B i o 1 o g ( B r e m e n ,  

G enn any)

B001 (B003-K)

RO-20-1724 Calbiochem 557502

Salmon Sperm DNA Sigma S 3245

T 3 (cell culture tested) Sigma T 5516

Thimerosal Sigma T 5125

T ransferr in  (cell culture  

tested)

Sigma T 1428

T r ie th y la m in e  A c e ta te  

(2.0M solution)

Applied Biosystems 400613

Trifluoroacetic Acid Applied Biosystems 400445

T ry p s in -E D T A  Solu tion  

(containing ().5g/l trypsin 

and 0.2g/l EDTA)

Life Technologies 45300-043

Urea (ultra pure) Sigma U 0631

2 .1 .2 )  R a d io c h e m ic a ls

Radiochemicals were obtained from Amershem International and are listed in table 2.2. 

H- and “P- radioactive counts (cpm) were determ ined using a 1600TR liquid 

scintillation analyser with Opti-fluor scintillation fluid (both from Canbeira Packard).

T able  2.2) R ad ioch em ica ls

R ad io c h e m ic a l S o u r c e C ata logue  N um ber

[8 - 3 H] Adenosine 3', 5'- 

cyclic monophosphate

A m ersham  In te rnationa l 

(Slough, England)

TRK 304

[y.32p] A d e n o s in e  5'- 

triphosphate

Amersham International PB 10132
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2.1.3) Peptides and Recombinant Proteins

The 7-residue synthetic peptide substrate, Kemptide (Kemp et al, 1977), and the 20- 

residue peptide inhibitor of cyclic AM P-dependent protein kinase (PKI; Cheng et al, 

1986) were generously donated by Dr Roger Clegg (Hannah Research Institute, Ayr, 

UK). The amino-acid sequences were as follows:

PKI: T h r-T h r-T yr-A lu -A sp -P h e-Ile-A ly-Ser-G ly-A rg-T h r-G ly-A rg-A rg-A sn -A lu -Ile-H is-A sp  

Kemptide: Leu-A rg-A rg-A lu-Ser-Leu-G ly

Recom binant bovine GH (rbGH) and recom binant p42 M A P kinase, in which the 

lysine at position 52 is mutated to arginine (K52R), were gifts from M onsanto  (St 

L ou is ,  U SA ) and P ro fe sso r  T hom as  W. S tu rg il l  (U n iv ers i ty  o f  V irg in ia ,  

Charlottesville, USA) respectively. Recombinant insulin-like growth fac to r-1 (IGFI)
1 ̂ 5and " 'I-rbG H  were generously provided by Dr Jam es Beattie (H annah Research 

Institute, Ayr, U.K.); rbGH was iodinated to a specific activity of ca. 50 j iC i/ | ig  as 

described previously (Beattie, 1992) using the Iodogen coated tube method (Fraker and 

Speck Jr, 1978).

2 .1 .4 )  O lig o d e o x y n u e le o t id e s

Phosphorothioate oligodeoxynueleotides were a generous gift o f  Drs Elizabeth and 

Graham  Sale (University of Southampton) and were synthesised on a series 391 

au tom ated  D N A  syn thes ise r  (A pplied  B iosys tem s) .  A n tisense  M A P  k inase  

oligonucleotides were designed to complement a 17-base nucleotide sequence unique to 

p42 and p44 M AP kinase (Sale et al, 1995) cDNAs; 5 ’-ATG GCG GCG G C G  GCG 

GC-3', w here  ATG is the initiation codon. In the m ouse this co rresponded  to 

nucleotides 25-41 of p42 M AP kinase (Her et al, 1991) and 1-17 of p44 M A P kinase 

(Pages et al, 1995). The corresponding 17mer antisense probe (antisense EAS 1) and 

control phosphorothioate  o ligonucleotides were synthesised with the fo llowing 

sequences:

EAS 1 5'-GCC GCC GCC GCC GCC AT-3'

Sense 5’-ATG GCG GCG GCG GCG GC-3'

Scrambled 5 ’-CGC GCG CTC GCG CA C CC-3*

2 .1 .5 )  A n t ib o d ie s

The monoclonal antibody to p42 M AP kinase (ERK 2), rabbit antiserum to rbGH and 

rabbit antiserum to the 35 and 36 kDa forms of Gp were generous gifts from Professor
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Ailsa C am pbell  (I.B .L.S, G lasgow , UK), D r D avid  J. F lin t (H annah  Research  

Institute, Ayr, UK ) and P rofessor  G raem e M ill igan  (I.B .L .S , G lasgow , UK) 

respectively. Rabbit polyclonal antibodies to p44 M A P kinase (ERK 1) were raised to a 

synthetic peptide from the rat sequence (residues 325-345) as previously described 

(K ilgour et al, 1996). A nti-m ouse  and an ti-rabbit  IgG horse  radish  peroxidase  

conjugates were obtained from Amersham International pic. (Buckinghamshire, UK) 

and Sigma, respectively. Donkey anti-serum to rabbit IgG (anti rabbit IgG) was from 

the Scottish Antibody Production Unit, (Carluke, UK).

2.1 .6 )  A n im a ls

Female W istar rats were obtained from A.Tuck and Son, Essex, UK. N ew  Zealand- 

breed rabbits were purchased from either Shrubacre Rabbits, Suffolk, U K  or Hyline 

Rabbits, Cheshire, UK. Both diet and tap-water were available ad  libitum.

2.1 .7) Cell L ines

3T3-F442A and 3T3-L1 cells were provided by Dr Howard Green (Harvard Medical 

School) and Dr Steve Baldwin (University of Leeds) respectively.
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2.2) M ETH ODS

2 .2 .1) S tandard  P roced ure  for Cell C u lture

C ells  w ere  m ain ta ined  in D u lbecco 's  M o d if ied  E ag le 's  M ed iu m  (D M E M ) 

supplem ented with 10% (v/v) new born ca lf  serum and glutam ine (2.5mM ). Stocks 

were seeded at a density o f  approximately 1x10 cells/cm" in 75cm" plastic flasks 

(Costar Ltd., Bucks., UK) containing 0.2ml/cm" and grown at 37°C in a humidified 

atmosphere containing 5% CO^.

Cells were subcultured every 4-6 days when they had attained approxim ately  80% 

confluence. The growth m edium  of a 75cm" plastic flask o f  cells was decanted 

asceptically and the monolayer rinsed twice with 12.5ml PBS pre-warm ed to 37°C. 

Trypsin/ED TA  solution ( lm l;  trypsin 5g/l; 500pM  ED TA; 145mM NaCl) was then 

added to the monolayer and incubated at room temperature for 1 - 2  minutes until cells 

detached. The resulting cell suspension was then diluted to seeding density with growth 

medium.

For experiments, 100mm culture dishes (Costar) were inoculated at a density  of 

approximately 1x10 cells/cm" in 0.12ml/cm" growth medium. Alternatively, for some

experiments, cells were seeded at the same cell density onto 30mm, 6 -well culture
*■>

clusters (Costar) containing ().5ml/crrr growth medium.

2.2 .2) Indu ction  o f  D ifferentiation  with FC S and Insu lin

The growth medium of two days post-confluent 3T3-F442A cells was removed and 

replaced by the same volume of DM EM  containing 10% FCS and insulin (5 |ig/ml). 

Cultures were then incubated at 37°C in a humidified atmosphere containing 5% C O 2 . 

Pharmacological agents under test were prepared aseptically and added directly to the 

medium at the initiation of differentiation. After three days the medium was replaced 

with fresh differentiation medium without agents. After a further four days the extent of 

differentiation was assessed. For schematic see Fig 2.1.
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Fig 2.1) Induction of Differentiation with FCS and Insulin

2 Days 3 Days 4 Days
Replenish -  Assess Extent of

Growth to Confluence — ►  Induction of Differentiation — ►  Differentiation ^  Differentiaton
(10% Calf Serum) (10% Foetal Calf Serum+Insulin) Medium (GPDH Assay/Oil

RedO)

2.2 .3)  Indu ction  o f  D ifferentia t ion  under S eru m -F ree  C on d it ion s

The growth medium of confluent cells was removed by aspiration and replaced by a 

defined differentiation medium (DDM; ().12ml/cnT; Guller e ta l ,  1988) after washing 

monolayers three times with phosphate buffered saline (PBS). The DDM  consisted of a 

basal m edium  of F12 Ham 's Nutrient M ixture and D M E M  (2:1 v/v, F12 /D M EM ) 

containing rbGH ( 2nM), insulin (1.8pM), T 3 (O.lng/ml), EG F (50ng/ml), transferrin 

(10|ig/ml), fetuin (50pg/ml), glutamine (2.5mM) and BSA (lm g/m l) . Stock solutions 

of D D M  components were added directly to a premeasured volume of F12/D M EM  and 

sterilised through a disposable sterile filter (0.45|iM, Fischer Scientific, Leicestershire, 

UK). As with d ifferen tia tion  with FC S/insu lin , pharm aco log ica l  agen ts  were 

incorporated  in the DDM  for the first three days o f  differentiation, after which 

m onolayers were washed once with PBS and the m edium  replaced with fresh DDM  

without agents (see Fig 2.2).

Fig 2.2) Induction  o f  D ifferentiation  with D D M

3 Days 4 pays
n I • .  Assess Extent of

Growth to Confluence — ^  Induction of Differentiation — ^  ^  Differentiaton

(10% Calf Serum) (DDM ) Medium (GPDH Assay/Oil
Red 0 )
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2 .2 .4 )  T w o -P h a se  P ro toco l  for C e l lu la r  D if fe r e n t ia t io n  o f  3 T 3 -F 4 4 2 A  

C e l l s .

A serum free, two-phase differentiation protocol was developed to demonstrate the 

GH-dependency of 3T3-F442A preadipocyte differentiation (for further details refer to 

Section 3.2). For these experiments it was necessary to grow cells in the presence of 

ca lf  serum depleted of GH.

2 .2 .4 .1 )  Preparation o f  ca l f  serum depleted o f  G H

Serum GH was neutralised with rabbit antiserum to recom binant bovine GH (anti- 

rbG H ) and im m u n o p re c ip i ta te d  with an t i - ra b b it  IgG . T he  g e n e ra t io n  and 

characterisation of anti-rbGH has been previously described (Beattie et al, 1992). The 

optimal neutralising concentration of anti-GH was determined by a radioligand-binding 

assay. Aliquots of calf serum were incubated overnight with “ I-rbGH (20000 CPM) 

and either pre-im m une rabbit serum or a range o f  anti-rbG H dilutions (Fig 2.3). 

Following incubation samples were treated with anti-rabbit IgG (1:10) for a further 4 

hours at room tem perature and then centrifuged in a 2 .0RS M inifuge  (Heraeus
J °5Sepateck, W est Germany) at 2000gniax for 3()min. The amount of I-rbGH remaining 

in the supernatant was determined by gamma-radiation counting using a Cobra auto- 

gama counter (74% efficiency, LKB., Croydon, UK).

Control samples treated with anti-rabbit IgG alone were found to have no significant 

depletion of '^ I - rb G H . Fig 2.3 demonstrates that optim al depletion of ’^ I - r b G H  

occurred with a 1:1000 dilution of anti-rbGH. The concentration of bovine G H  in one 

batch of calf serum was estimated by radioimmunoassay to be 14.2ng/ml (D.J. Flint, 

personal communication). Assuming that anti-rbGH can bind lm g  of rbGH per ml 

(D.J. Flint, personal communication), then a 1000 fold dilution of anti-GH represents 

an approximate 70 fold excess over serum GH.

2.2 .4 .2) Two-Phase  Differentiat ion Pro tocol

Cells were passaged at least twice, in DM EM  containing 2.5mM glutamine and 10% 

GH-depleted calf serum, prior to use for differentiation studies. Confluent cells were 

washed three times in PBS then primed for 2 days in serum free medium [F12:DMEM 
(2:1)] containing transferrin (lOpg/ml), feluin (50|ig/ml), glutamine (2.5mM) and BSA 

(1 mg/ml)] and GH (2nM). Cultures were then washed, as before, and the medium 

replaced with maturation medium [serum free medium containing insulin (1.8|iM), T 3
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(O.lng/m l) and EG F (50ng/ml)]. The  extent o f  preadipocyte  d ifferen tia tion  was 

assessed after a further 8  days (Fig 2.4).

Growth to C onfluence—

(10% C alf Serum  Treated 
with Anti-GH)

Fig 2.4) T w o-p h ase  D if feren tia t ion  Protoco l

(Priming M edium)

2 D a ^  Replace GH 8D ayS

(M aturation
Medium)

■Treat with GH with Insulin, 
EGF and T3

A ssess Extent o f 
Differentiaton

(GPDH A ssay/O il 
R edO )

2.2.5) Oil Red O Sta in ing

The extent o f  m orphologica l differentia tion in cell cu ltures was determ ined  

histochemically by staining accumulated lipids in terminally differentiated adipocytes. 

Cultures were washed twice with PBS and then fixed for 1 hour in formaldehyde (10% 

v/v in PBS). Fixed cultures were stained with the neutral lipid stain Oil Red O (5|lg/ml 

in isopropanol) for 1 hour and then washed extensively with distilled water. Cells were 

then photographed under Phase Contrast Optics using an O lym pus IM T3 inverted 

microscope.

2.2.6) A ssay o f  oc-G Iyeerophosphate  D e h y d ro g e n a se  A ct iv ity

Cells from one lOOmm or 30mm culture dish were harvested by scraping into 50()}il 

ice-cold ex traction  buffer ( 1 0 0 mm tr ie thanolam ine , Im M  ED TA , 0.1 m M  (3- 

mercaptoethanol, pH 7.5) and then lysed on ice with 8  passages through a 2 6 l/2g 

needle attached to a 1ml disposable syringe. Lysates were then centrifuged (14(X)0gmax, 

4°C) for 10 min in a microluge and the resulting supernatant was removed and stored 

in small aliquots at -20°C until use.

Samples of supernatant were assayed for GPDH activity by the spectrophotometric 

method originally described by Wise and Green (1979). GPDH activity of cell extracts 

was measured at 25°C in a Cecil 5000 series double beam spectrophotometer in a 1ml 

reaction mixture. The basic reaction mixture (lOOmM triethanolamine, pH 7.5, ImM
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EDTA, 0 .12mM  NA DH ) was placed in a cuvette with a 1cm pathlength and set in the 

spectrophotometer. Samples of cell lysate were diluted with extraction buffer to lOOpl 

(l-100 |ig  protein) and added to the cuvette containing the reaction mixture. The reaction 

was then initiated with the addition of dihydroxyacetone phosphate (DHAP) to final 

concentration of 0.2mM. The biochemical nature of the reaction catalysed by G PD H  is:

dihydroxyacetone phosphate+NADH <-> glycerol-3-phosphate+ N A D +

Initiation of the reaction with DH AP results in a decrease in the absorbance at 340nM  

due to the oxidation of NADH to NA D+. The absorbance at 340nM was recorded at 30s 

after initiation and at 30s intervals thereafter.

C alcu la tion :

The enzym e activity  per plate of cell in katals (num ber o f  m oles  of N A D H  

oxidised/second) was calculated from the molar absorption coefficient for N A D H  at 

340nM  (6.3x10'' l m o I ' W ) .

E Q U A T IO N  1
AA340/SCC X 1.0 X 0.5

6.3x10- lx lO 3 0.1

A B C

A. The use of molar absorption coefficient for NADH to calculate the concentration 

change (mol.l [sec !)with the pathlength of the cuvette being 1 cm.

B. Calculation of the amount of NADH oxidised in a 1ml reaction volume in 1 second.

C. Correction for sample volume used and estimation of GPDH activity for one 100mm 

plate.

In accordance with others (Lai et al, 1981) the amount of protein per cell was found to 

be 2.3 fold higher in adipocytes compared to fibroblasts. GPDH activities are therefore 

expressed relative to DNA content rather than the amount of cellular protein.

E Q U A T IO N  2 (Solution from equation D x J_xJlP

|ig of DNA/plate 1.0

A B

A. Calculation of the number of katals of GPDH activity per pg of DNA.
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B. Adjustment to katals per mg of  DN A

2 .2 .7 )  A n t is e n se  P r o to co ls

2 .2 .7 .1 )  Purification o f  Oligonucleot ides

O ligonucleo tides  were purified m anually  on o ligonucleo tide  purif ica tion  (OP) 

cartridges (Applied Biosystems) according to m anufacturers instructions. Additions 

were m ade to colum ns with a 5ml syringe and washes and eluants were collected 

through a 2 6 V2 G needle at a rate o f  1-2 drops per second. Cartridges w ere  flushed 

sequentially with 5ml acetonitrile  and then 5ml of 2 .0M  trie thylam ine  acetate. 

Phosphorothioate oligonucleotides (approximately 20 OD units at 260nM  in deionised 

water) were then loaded onto the cartridge. OP cartridges perform like affinity matrices 

which absorb the trityl group of the trityl-on oligonucleotide. Non-trityl bearing failure 

sequences, by- products and other impurities were washed through with 5ml o f  1.5M 

ammonium hydroxide followed by two washes with 5ml deionised water. The trityl 

group was then removed by mild acid cleavage with 5ml 3% (v/v) trifluoroacetic acid in 

deionised water and the purified detritylated oligonucleotides eluted with 35% (v/v) 

acetonitrile in deionised water. Fractions contained approxim ately 10 O D  units (at 

260nM ) of  o ligonucleo tides  and were dried overn ight in vacuo  on a U nivap 

evaporator. Oligonucleotides were stored dried, in pellet form at -2()°C.

2.2 .7 .2) Oligonucleotide Treatment o f  Cells

Cells were grown to confluence in 22mm dishes containing 10% calf  serum  in 

DM EM . M onolayers were washed three times with 2ml D M EM  and appropriate  

dilutions of oligonucleotides in lOOpl DM EM  were preincubated at room temperature 

for 30 minutes with lOOpl Lipol’ectin. This mixture was added to the cells together with 

a further 200pl of DMEM. The final concentration of oligonucleotides was 5 |iM . Cells 

were incubated for 8  hours at 37°C in the presence of 5% CCX After this time the 

medium containing Lipofectin was removed and the incubation continued for a further 

40 hours using fresh medium containing 109?) heat-treated (55°C for 30 minutes) calf 

serum in the presence or absence of 5|iM  oligonucleotide. After 40 hours the medium 

was rem oved and cells were washed and treated with FCS and exposed  to 

d ifferen tia tion  m edium  in the presence  or absence  o f  o ligonuc leo tide .  The 

differentiation medium was replenished at two day intervals in the presence or absence 

of fresh oligonucleotide.
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2.2.8) Preparation of Cell Membrane Samples

2 .2 .8 .1 )  Preparation o f  Membrane Fractions f r o m  3T3-F442A Cells

Cells were washed once in ice cold PBS then scraped into lysis buffer (50mM  Hepes, 

pH 7.6; 0 .25M  sucrose, 5m M  ED TA; 5mM  EG TA ; Im M  P M S F  and leupeptin  

( l | ig /m l) .  The volume of cell suspension was adjusted to 2ml and then cells were lysed 

in a 15ml tight-fitting Dounce homogeniser (Jencons Scientific Ltd., Leighton Buzzard, 

U.K.) followed by centrifugation in a microfuge (lOOOg, lOmin, 4°C) to remove nuclei 

and unbroken cells. The resulting supernatant was centrifuged at 4°C for 45 min at 

100()()()gmax in an Optima series TLX Tabletop Ultracentrifuge (Beckman-RIIC Ltd., 

Bucks., U.K.) fitted with a T L A -120.2 fixed angle rotor. M em brane pellets were 

resuspended  in 50m M  Hepes, pH 7 .4 / Im M  ED TA  at a concentra tion  o f  2-3mg 

protein/ml. M em brane suspensions were routinely snap-frozen in liquid nitrogen and 

stored at -8 ()°C.

2.2 .8 .2 )  Preparation o f  Crude Membrane Fractions f rom  Rat Adipocytes

Adipocytes were prepared by collagenase digestion of rat parametrial white adipose 

tissue according to the method of  Rodbell (1964) with some modifications. Rats were 

killed by cervical dislocation and parametrial fat pads removed and washed in saline at 

37°C. The fat pads from one rat were finely minced with scissors in 1 ml of M l 99 

medium prewarmed to 37°C then incubated in 10ml (final volume) of M199 containing 

1 mg/ml collagenase and 30mg/ml BSA (fraction V). Incubations were carried out for 1 

hour at 37°C in stoppered flasks shaking at 180 oscillations per minute. The resulting 

cell suspension was then filtered through a nylon mesh (approx. 1 mm in diameter) to 

rem ove undigested material and then washed successively at room temperature with 

40ml o f  M 199 and TES (20mM Tris/HCL, pH 7.4; Im M  EDTA; 0.255M  sucrose). 

Adipocytes , which form a packed, buoyant layer on the wash solutions, were 

resuspended in 3.3ml TES and homogenised at room temperature with 10 strokes in a 

15ml hom ogeniser fitted with a Teflon pestle (Jencons). Hom ogenates were then 

centrifuged at 1 0 0 0 0 0 gmax for 45 min in a pre-cooled (4°C) L7-65 Ultracentrifuge 

(Beckman-RIIC Ltd., Bucks., UK) fitted with a type 80Ti rotor. The resultant pellet 

was d isaggregated  with 8  s trokes in a 10ml Uniform  hom ogen iser  (Jencons). 

M em brane suspensions were then made up to a final volume of 3.5ml in TES and 

subjected to further 45min centrifugation at 1 0 0 0 0 0 gmax. M em brane pellets were 

resuspended in 20mM Tris/HCl, pH 7.4; ImM  EDTA and snap-frozen in liquid N 2 in 

small aliquots and stored at -80°C.
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2 .2 .9 )  P ep tid e  S yn th es is ,  C on ju ga tion  and Im m u n isa tion

I m m u n o g e n  d e c a p e p t id e s  w e re  s y n th e s i s e d  by s ta n d a rd  s o l id - p h a s e  

fluorenylm ethoxycarbonyl chemistry (Barany and Merrifield, 1979) on an Applied 

Biosystems 431A automated peptide synthesiser in the Hannah Research Institute core 

fac ili ty  (Ayr, UK) and determ ined  to be hom ogeneous  by reverse-phase  high- 

performance liquid chromatography as previously described (Beattie and Flint, 1992). 

The sequences were as described in Table 2.3.

T ab le  2.3 A m ino-ac id  Sequences  o f  Synthet ic  P eptides .

Protein Species Amino Acid Sequence1

Gj ](* (residues 159-168) LDRIAQPNYI

Gj2a (residues 160-169) LERIAQSDYI

G i3a (residues 159-168) LDRISQSNYI

Gj]+2u (C-terminal) K N N LK D C G LF

G sfX (C-terminal) RMHLRQYELL

1 S in g le  letter am ino acid code.

Im m unogen peptides were coupled to KLH, as a carrier protein to increase their 

im m unogenicity  and to prevent rapid degradation in the animal. KLH (3.3mg) and 

peptide ( lm g )  were dissolved in 0.1M phosphate buffer (0.1M N a^ P C V N a^ H P C L , 

pH 7.0). Glutaraldehyde was added dropwise over the course o f  1 hour to a final 

concentration of 25mM. This bifunctional reagent couples primarily via amino groups 

(oc-amino group of the peptide and e-amino group of lysine residues). The coupling 

reaction was incubated for 24 hours at room temperature with gentle stirring.

Peptide-conjugate solutions were mixed with an equal volume of Freund's complete 

adjuvant by repeated expulsion through two luer lock syringes (Sherwood Medical, 

Sussex, UK) connected by a three-way plastic stopcock (Rocket of London, London, 

UK). The resulting emulsion was then injected in multiple subdermal sites in New 

Zealand W hite rabbits. Two weeks later each animal received a booster immunisation 

with material prepared identically except that one-hall’ as much peptide and KLH were 

injected in Freund's incomplete adjuvant. Pre-immune sera were collected prior to the 

first injection, and subsequent bleeds were performed weekly beginning 2  weeks after 

the initial booster immunisation. The characterisations of G-protein antisera produced 

by this method are described in Chapter 3.
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2.2.10) Gel E lectrophoresis

2 .2 .1 0 .1 )  Standard  Protocol  f o r  Gel Electrophoresis

The protein mixture from cell extracts was boiled in Laemmli Sample buffer (0.06M  

Tris, pH 6.7; 1.25% (w/v) SDS; 12.5% (w/v) glycerol; 2.5% (v/v) p-mercaptoethanol; 

0 .01%  (w /v) pheno l red) and sub jec ted  to dena tu r ing  SDS p o ly ac ry la m id e  

electrophoresis (SDS-PAGE) in a Protean II x i vertical electrophoresis system (Biorad) 

according to the m ethod of  Laemmli (1970). Sam ples were run on a 120 x 140 x 

1.5mm or 160x 140 x 1.5mm gel slab containing 37.5m M  Tris-HCl, pH 8 .8 , 10% 

(v/v) acrylamide, 0.26% (v/v) bisacrylamide, 0.1% (w/v) SDS. Gels  were run at a 

constant current, 7mA, for 18 hours or 30m A for 4 hours. The com position o f  the 

running buffer was 49.5 mM Tris pH 8.3, 190mM glycine and 3.5m M  SDS. All 

e lectrophoresis procedures were carried out at room temperature using water-fed 

cooling systems.

2 .2 .1 0 .2 )  Urea Gels

Urea gels were used to obtain better resolution of the 40 kDa and 41 kDa isoforms of 

G j .  Proteins were resolved on lbO x 140 x 1.5 mm gels containing 6 M urea, 37.5m M  

Tris, pH 8 .8 , 9% (v/v) acrylamide, 0.26% (v/v) bisacrylamide and 0.1% SDS. A 

constant current of 30mA was applied for 8-9 hours.

2 .2 .10 .3 )  L o w -b i sa c ry la m id e  Gels

The phosphorylation and activation of M AP kinase is accompanied by a decrease in its 

electrophoretic mobility. Reliable separation of phosphorylated and unphosphorylated 

forms of the enzyme required the application of a constant current of 7mA for 18 hours 

to a 120 x l4 0 x  1.5 mm resolving gel containing 37.5mM Tris, pH 8.4, 10% (v/v) 

acrylamide, 0.11% (v/v) bisacrylamide and 0.1% (w/v) SDS.

2 .2 .1 1 )  Im m u n o b lo t t in g

Following electrophoresis proteins were transferred (Towbin et al, 1979), with water-

cooling, to Hybond-C Super nitrocellulose membranes (Amersham International) in a

Transphor electrophoresis-transler unh with power lid (Hoeffer) for 2h at 400m A  in

ice-cold transfer buffer (25mM Tris! 192mM glycine, 20% methanol). To check for
a

efficient transfer and even protein loading of lanes, the proteins adhered to the 

nitrocellulose m em branes were visualised by the non-perm anent stain Ponceau S
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solution (0.5% w/v in 1% acetic acid). The stain was then rem oved by washing the 

m em brane in distilled water several times. The m em brane was then incubated for at 

least 16 hours in Tris- buffered saline (20mM Tris, pH 7.4, 154mM NaCl) containing 

0.1% (v/v) Tween 20 (TBS/Tween) and 3% (w/v) BSA. This was to ensure that active 

sites on the m em brane were blocked against further non-specific interactions. After 

incubation with blocking buffer the membrane was washed for 15min with Tween/TBS 

followed by three successive 5 min washes with Tween/TBS.

Primary antibodies were diluted in TBS/Tween containing 1% (w/v) BSA and 10|!g/ml 

thimerosal and incubated with m em branes for two hours at room tem perature with 

gentle  agitation. Antibody solutions were stored at 4°C. Follow ing  incubation , 

mem branes were washed with TBS/Tween for 15 min, followed by three 5 min rinses, 

with vigorous shaking. HRP-conj ugated secondary antibodies were incubated with the 

m em branes for 1 hour at room tem perature with gentle shaking. The dilutions of 

primary antibodies and corresponding secondary antibodies were as follows:

Table 2.4) D ilutions o f  Prim ary and Secondary  A ntisera .

Primary Antibody Dilution Secondary

Antibody

Dilution

ERK1 1:1(X)() a-rabbit  I g G 1:1 ()()(X)

ERK2 1 : 1  (K)() a -m ouse  I g G 1 : 1  ()()(X)

G j  | +2f t l:l(X)()/( 1:100) a-rabbit I g G l:10(X)0/( 1:1000)

1 : 1  (K)() a-rabbit I g G 1:1()(KX)

G S(X 1:5(X)0 a-rabbit I g G 1:1()()(K)

G S 1:5(X) a-rabbit I g G 1 : 1  (H)(X)
N ote: N um bers in parenthesis refer to the d ilu tions o f  antibodies w hen o - i l i av i s i d i nc  w as used to v isu a lise  
bands (see  text).

Following incubation with secondary antisera membranes were washed with vigorous 

shaking in TBS/Tween for 15 min, followed by three 5 min rinses. Immunoreactive 

bands were visualised by chemiluminescence using the ECL detection reagent. Washed 

m em branes were allowed to drain and then the detection reagent was added to the 

protein-bound side of the membrane. Membranes were incubated with the detection 

reagent for one minute at room temperature. Following incubation the detection reagent 

was removed and excess reagent allowed to drain from the membrane. M embranes
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were then wrapped in SaranWrap (Dow Chemical Co.) and placed, protein side up, in a 

film cassette. ECL-detected  protein bands were visualised by exposing a sheet of 

autoradiography film (X-Omat AR, Kodak).

Alternatively, for some experiments, immunodetection of protein bands was achieved 

colourimetrically. Following exposure to primary and secondary antisera (Table 2.4) 

membranes were incubated with l()mg/ml o -dianisidine  in lOrnM Tris/HCL, pH 7.4. 

Addition of 0.1% (v/v) H 2 0 2 initiated a HRP-catalysed reaction which stained protein 

bands brown.

2 .2 .1 2 )  D e n s i to m e tr y

ECL detected im m unoblo ts  were scanned with a type SI personal densitom eter 

(Molecular Dynam ics Ltd., Kensington, UK) and the optical density (OD) of protein 

bands quan tif ied  using Im a g e Q u a N T ™  im age-ana ly s is  so ftw are  (M olecu la r  

Dynamics).

For ECL quantification to be accurate, it is important that the light produced is in the 

linear range o f  the film. Therefore, control experiments were carried out for each 

antiserum to establish the range of cellular protein concentrations which produced an 

intensity of labelling, following immunoblotting, which was proportional to the OD of 

the protein bands on the exposed film. Increasing concentrations o f  cellular protein 
(0 .5 -1  ()()p g) w ere  applied  to SD S /page  (section  2 .2 .10) and ana lysed  by 

immunoblotting (section 2.2.11). Quantitative data was obtained by densitom eter 

analysis and plots of protein amount against OD were used to gauge the range of 

protein concentrations which fell within the linear range of the film (Table 2.5). When 

ECL detection systems were used care was also taken with the length of exposure so as 

to avoid underexposure or overexposure of the immunoblots.
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Table 2.5) Concentrations of Cellular Protein which are within
the L inear Range o f  the EC L D etection System .

Antiserum Amount of Cellular Protein (|ig)

ERK1 2.5-30

ERK2 2.5-40

Gj]+2 oc 2.5-40

G*„ 5-40

G srt 10-40

G S 5-30

2 .2 .13 )  E n zy m e  A ssays

2 .2 .13 .1 )  Assay o f  Mitogen Activa ted  Protein (MAP) Kinase Activi ty

For assay o f  M A P kinase continent cells from one lOOmm plate were scraped into 

Buffer A (25mM  Tris.HCl pH7.5, 25 m M  NaCl, 40m M  4-nitrophenylphosphate , 

10(iM dithiothreitol, 10% (v/v) ethylene glycol, ImM  sodium orthovanadate, aprotinin 

(2 |ig/ml), leupeptin (2pg/ml), pepstatin A (2fig/ml) and lOOmM PMSF) and lysed by 

shearing through a 2 6 ‘̂ G  needle. The lysates were then centrifuged at 15()()()gmax for 

5 min in a Sorvall centrifuge fitted with an SS34 rotor and supernatants retained. M AP 

kinase was assayed following partial purification of cell lysates by batch absorption to 

phenyl-Sepharose. Cell extracts (0.5ml) were mixed with 150|il (packed volume) of 

phenyl-Sepharose for 5 min on ice. The phenyl-Sepharose was then successively 

washed (0.5ml/wash) with Buffer A (twice) and Buffer A containing 35% (v/v) 

ethylene glycol (twice). M A P kinases, which bind tightly to this matrix (Ray and 

Sturgill, 1987), were eluted with 200fil Buffer A containing 60% (v/v) ethylene glycol 

for 5 minutes. After incubation the suspension was centrifuged in a Beckm an 

microfuge (5 seconds) and the supernatant removed. Samples of supernatant were 

assayed immediately using MBP as a substrate (Anderson, 1992).

Components o f  the assay mixture were mixed in assay tubes at room temperature. 

Aliquots of eluant (5|il) from the phenyl Sepharose were added to 20pl of a solution of 

lm g/m l M BP prepared in assay buffer (25mM HEPES, ImM  dithiothreitol, pH 7.5, 

30YC). To start the reaction, 15pl of a solution containing 133|iM ATP, 26.7 mM  

M gC E and 15()|iCi/ml [y-?“P]-ATP was added to the reaction tube and mixed. The 

reaction was incubated for lOmin at 3()°C in a waterbath, and terminated by removing
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30|il  aliquots and spotting the aliquot onto 2 x 2 cm squares o fP81  phosphocellu lose 

paper (Whatman, Kent, UK) which hinds peptide substrates but not [y-^PJ-ATP. After 

10 seconds the square of phosphocellulose paper was dropped into a 500ml beaker 

containing of 180mM phosphoric acid (15ml/reaction). The papers were washed by 

stirring for 5min, after which the acid was discarded. W ashes with phosphoric acid 

were repeated 5 more times. Finally, papers were rinsed once with 95%  ethanol and 

allowed to dry. Dried papers were placed in a minivial with 4ml of scintillant and the 

radioactivity counted. Data were expressed as pmol of  phosphate incorporated into 

M B P min per mg of cell lysate protein.

2 .2 .13 .2 )  Assay o f  M A P  Kinase Kinase (MEK) Activi ty

Cell lysates were prepared as described (section 2.2.13.1). M E K  was assayed by 

measuring the incorporation ol “ Pi into recombinant, catalytically inactive K52R p42 

M A P kinase (Wu et al, 1991a). Samples of cell extract ( 1 0 |il) were incubated at 3()°C 

for 25 min with 0.8|ig o f  the K52R mutant of p42 M A P kinase in 40|il  (total volume) 

of lOrnM Hepes, pH 7.5; 40pM  [y-3“P]-ATP; 15mM M gCl2; Im M  DTT. The reaction 

was stopped by the addition of one fourth volume of Laemmli sample buffer. After 

SDS/10% PAGE and staining the gel with Coomassie blue solution, incorporation of
3°“ P, into K52R was visualised by autoradiography and the radioactivity of excised 

bands determined by liquid scintillation counting. Results were expressed as the 

amount of radioactivity incorporated into K52R (cpm).

2 .2 .1 3 .3 )  Assay  o f  cyc l ic  A M P -d e p e n d e n t  Pro te in  K in ase  Ac t iv i ty  

( P K A )

Cells from one lOOmm plate were scraped in Buffer A containing 0.2% (v/v) NP-40 

detergent, and lysed by shearing as described in the procedure for the assay of M A P 

kinase (section 2.2.13.1). The lysates were then centrifuged at 150()()g for 5 min in a 

Sorvall centrifuge fitted with an SS34 rotor and supernatants retained. Samples of cell 
extract (lOjil) were incubated at 30°C for 10 min with 0.26mM Kemptide (LRRASLG), 

a 7-amino acid substrate for PKA (Kemp et al, 1977), in a buffer containing 75mM  
Tris.HCl, pH 7.5; 15mM M gC l2.4m M  DTT; lOOjiM ATP; 3|aCi/ml [y-32P]-A T P . 

Assays were carried out in the presence or absence of  an 18-residue peptide ligand 

containing the inhibitory domain sequence of a protein inhibitor o f  PK A  (PKI) 

originally described by Cheng et al (1986). PKA activity was calculated as the amount 

of Kemptide phosphorylated in the absence of PKI peptide minus that phosphorylated 

in the presence of PKI. Data were expressed as pmol of phosphate incorporated into 

Kemptide m in *1 mg protein-1.
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2.2.14) DNA Assay

The D N A  content of cellular hom ogenates was determined using the fluorescence 

enhancem ent o f  the fluorochrome bisbenzimide complexed with D N A  (Brunk et al, 

1979). The fluorescence increase produced by the D N A  of cellular hom ogenates was 

com pared  directly  with the f luorescence increase produced by a range o f  D N A  

standards. Reactions were prepared in assay buffer (H)mM  Tris, pH 7.5, lOOmM 

NaCl, lOmM EDTA) and contained either a known am ount of  salmon sperm D N A  

standard  (0 .25-6 .0 |ig /tube)  or an a liquot o f  ce llu lar  hom ogena te  (equivalen t to 

approxim ate ly  l j ig  DN A). Bisbenzim ide was added to each reaction to a final 

concentration of lpg /m l and a final volume of 3ml. Reactions were then incubated for 1 

hour at room temperature. The intensity of fluorescence of standards and samples were 

measured in arbitrary units using a model TKO 100 DNA fluorimeter (Hoefer Scientific 

Instruments Ltd., Newcastle-under-Lyme, UK). All m easurements were performed in 

series using the same dye solution. A standard curve was constructed and the DN A 

content o f  test samples was determined by interpolation.

2 .2 .15 )  P ro te in  A ssay

The protein content of samples was assessed by the method of  Bradford (1976). 

Reactions were prepared in a final volume of lOOpl on microtitration plates (Greiner 

Labortechnik Ltd, Gloustershire, UK) and consisted of either a known am ount of 
bovine serum albumin protein standards (O-H)fig) or an aliquot of sample under test. 

Dye-binding was initiated with the addition of 240pl of fourfold diluted Bradford 

reagent. Coloured complex formation was measured at a wavelength of 62()nM using a 

iEMS microplate reader (Labsytems Ltd., Hants., UK).

2.2 .16) A ssay  o f  In tracellu lar  Cyclic  A M P  C on centra tion

Samples were prepared according to the method described by Farndale et al  (1992). 

Cell monolayers from 1 0 0 mm plates were washed three times with ice cold PBS and 

intracellular cyclic AM P extracted with 1ml ethanol/().5M HC1 overnight at -20°C. 

Extracted samples were evaporated to dryness then reconstituted in l()()|il cyclic AM P 

assay buffer (lOOmM Tris/HCl, pH 7.0, SmM EDTA) and aliquots were assayed for 

cyclic AM P content.

Measurement of cellular cyclic AMP was carried out according to a modified method of 

Brown et al (1971); the assay was based on the competitive binding of [ H]-cyclic
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A M P and sample cyclic A M P to a binding protein (3', 5' cyclic A M P dependent protein 

kinase, Sigma). Reactions were prepared in assay buffer and contained either a known 

amount (0.1-10 pmol) of cyclic A M P standard, an aliquot of sample or assay buffer 

with no additions to a final volume of 3()0|il. In addition, each reaction contained [3H]- 

cyclic A M P (25nCi/tube) and 8 mg binding protein. Reactions were incubated for 4 

hours at 4°C, following which a lOOjil suspension o f  26mg activated charcoal (Sigma) 

in assay buffer containing 2% (w/v) BSA was added to each tube. After centrifugation 

( 1 2 0 0 0 gmax for 2 min at 4°C) in a microfuge, a 2()()jal aliquot of the supernatant was 

taken for determination of radioactivity. Cyclic A M P concentration was determined by 

interpolation from a standard curve and was expressed as pmol per 1 0 6  cells.

2 .2 .17 )  S ta t is t ica l  A n a ly s is

Statistical significance was determined b y  Student's A- test for unpooled samples 

(Samuels, 1989). M eans were determined for test and control samples and used to 

calculate the A statistic (As) using the following formula:

A As = v 1 -v2 y l  =  test sa m p le  m e a n s

S E (yi_y2) y 2  =  con tro l s a m p le  m e a n s

SE(yi.y2 ) = standard error of the 

difference

The standard error of the difference (SE(yi.y2 )) was calculated by the unpooled method 

(Samuels, 1989):

SE(y | . y2 , = V (  (S E 1 )2 + (SE 2 )2)  S E 1 = standard error o f  test

sample

SE2 = standard error of control 

sample

P values were then determined from as by cross-reference to a table of critical values of 

Student's r—distribution (Samuels, 1989). P-values were considered to be significant if 

they were less than a threshold significance level of 2 % (p=0 .()2 ).
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Chapter Three

Changes in the Expression of 
Guanine Nucleotide-binding 
Proteins During the Growth 

Hormone-dependent 
Differentiation of 3T3-F442A 

Preadipocytes

64



3.1) IN T R O D U C T IO N

Signal transduction processes involving heterotrimeric G-proteins play a major role in 

mediating the response o f  cells to external hormonal and growth factor stimuli and it is 

becoming increasingly clear that G-proteins transduce growth-regulatory signals that 

m ed ia te  changes  in ce llu la r  p ro life ra t ion , hype r tro p h y ,  d i f fe ren tia t ion  and 

transformation (Post and Brown, 1996). Some of the most compelling evidence that 

G-proteins can serve as regulators of cell growth comes from studies of G soc and Gia 

in preadipocyte  cell systems. Antisense o ligodeoxynucleotides, which reduce the 

expression o f  the G sa subunit, or overexpression o f  an inactivating m utant o f  G sa 

(Gordeladze et al, 1997) have been shown to accelerate the rate of differentiation of 

3T3-L1 preadipocytes into fat cells (Wang et al, 1992a). Conversely, activation of G sa 

by cholera toxin intoxication blocks the ability of cells to differentiate (W ang et al, 

1992). Conversely, over-expression of a constitutively active mutant form of Gj2a was 

shown to promote terminal differentiation of fibroblasts to adipocytes in vitro (Su et 

al, 1993; Gordeladze et al, 1997) and expression of inactivating Gi2 a mutants abolish 

preadipocyte differentiation (Gordeladze et al, 1997), whereas in vivo, Gj2 u has been 

shown to be crucial for development of fat tissues in neonatal mice (Moxham et al, 

1993; Su et al, 1993). Together these observations highlight a critical role for G- 

proteins in adipocyte development.

Given the functional importance of G-proteins in cell morphogenesis it is likely that 

m any of  the phenotypic changes that occur on differentiation are reflections of 

alterations to the G-protein composition at different stages of development. In this 
respect changes in G s(I/ G i U levels associated with preadipocyte differentiation have 

been reported (Lai et al, 1981; Watkins et al, 1982; Giershik et al, 1986; Watkins et al, 

1987; Huppertz et al, 1993; M cFarlane-Anderson et al, 1993) and these accompany 

the development of catecholamine-sensitive adenylate cyclase activity (Lai et al, 1981; 

see section 1.7.9.1). Adenylate cyclase activity can be regulated by both stimulatory 

(eg glucagon and p-adrenergic) and inhibitory (eg adenosine and prostaglandin) 

receptors which exert their actions through G s and G j  respectively (Gilman, 1987). It 

is well docum ented that adipocyte differentiation is accom panied by increased 

expression of the 42 kDa and 47 kDa forms of G S(X which may contribute to the 

enhanced responsiveness of terminally differentiated adipocytes to lipolytic agents (Lai 

et al, 1981; W atkins et al, 1982; Watkins et al, 1987; Kilgour and Anderson, 1993; 

see section 1.7.9.1). However, studies on the expression of Gi(X subtypes during 

preadipocyte differentiation have produced somewhat contradictory data, perhaps due 

to different detection methods used to assess G-protein expression (see section 3.1.1).
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The traditional method used to identify and quantitate G-proteins, based on the ability 

o f  particu lar bacterial exotoxins to catalyse the transfer o f  [3 2 P ]A D P -r ib o se  o f  

[3 2 P]NA D to the a-subunit of a specific G-protein has several drawbacks (McKenzie, 

1992). For exam ple pertussis toxin, isolated from Bordetella  P er tuss is , has been 

characterised as being able to catalyse the mono-ADP-ribosylation of G l0t (McKenzie, 

1992). Although the substrate for pertussis toxin is defined as the a -subun it  o f  " G i " ,  

it has becom e apparent that a considerable num ber of  pertussis-toxin-sensitive G- 

proteins exist, including G u , G a,  Gi? and G 0  (Jones and Reed, 1987; Lochrie  and 

Simon, 1988). To com pound matters, accurate G-protein quantitation m ay also be 

influenced by secondary factors such as (3-subunit expression (Spiegel, 1992) and the 

expression of cellular ADP-ribosylation factors (Huppertz et al, 1993). Immunological 

probes provide a more specific means of detecting G-proteins (Milligan, 1990) and, in 

recent years, the isolation of complementary DNAs (cDNAs) for many proteins has 

facilitated the generation of antisera base on individual portions of the deduced amino- 

acid sequences (Milligan, 1990). Anti-peptide antisera have been used successfully to 

quantify changes in G-protein expression following the adipose conversion o f  3T3- 

F442A preadipocytes (Kilgour and Anderson, 1993).

Until recently, the use of serum to differentiate preadipocytes has precluded the study 

of G-protein expression during individual stages of the adipogenic program, however 

the d e ve lopm en t of  a serum -free  m edium  capab le  of  supporting  ad ipocy te  

d ifferen tia tion  o f  3T3-F442A  preadipocytes  has suggested  that p read ipocy te  

differentiation may be divided into two distinct stages (Guller et al, 1988; Schmidt et 

al, 1990; Darimont et al, 1994). The differentiation of 3T3-F442A preadipocytes is 

dependent upon the sequential actions of GH and insulin, with other factors exerting a 

modulatory influence (Guller et al, 1988). GH is thought to induce a primed state in 

the preadipocytes (Gp) in which cells acquire increased responsiveness to the growth 

promoting effects of insulin (Morikawa, 1986; Madon et al, 1986). The possibility 

therefore exists that regulated changes in G-protein expression may contribute 

critically to the cellular phenotype during both of these phases of preadipocyte  

differentia tion. Initial studies from our laboratory  have show n that term inal 

differentiation of 3T3-F442A cells under serum-free conditions has been reported to 

correspond with independent changes in the expression o f  G S(X, Gj2 a and Gi?a and 

increased responsiveness of adenylate cyclase to ca techolam ines  (K ilgour and 

Anderson, 1993). The aim of the present work is to extend these studies to determine 

whether distinct changes occur in the G s/ G j  composition of 3T3-F442A cells during 

the different stages of their differentiation., therefore suggesting a role for the cyclic 

AM P signalling system in the control oflhese developmental stages.
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Given the success of previous anti-peptide antisera (Anderson and Kilgour, 1993), 

peptides corresponding to various regions of  the a -subun its  of G s, G u ,  G \2 Gi3 

were utilised to generate sequence-specific  antibodies. These tools subsequently  

permitted an assessment of the influence of differentiation on the levels of expression 

o f  the stimulatory- (Gs) and inhibitory- (Gu, G \2 and Gi3 ) G-protein subunits in 3T3- 

F442A cell membranes during different stages of their development; either early in the 

differentiation process, during the GH priming stage, or later during the insulin- 

dependent maturation stage. In addition, recent evidence has suggested that py-dimers 

are involved in the transmission of growth signals (Faure et al, 1994; Crespo et al, 

1994; Koch et al, 1994). Therefore, the effect of differentiative stimuli on the levels of 

p-subunit expression were also determined during the two phases of 3T3-F442A  

preadipocyte differentiation.
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3.2) EXPERIM ENTAL PROCEDURES

3.2.1) Standard  P roced ure  for Cell C u lture  and D ifferentia tion

3T3-F442A cells were cultured in DM EM  containing 10% calf serum as described in 

Section 2.2.1). Confluent cultures (day 5 after seeding, subsequently referred to as JC 

cells) were washed three times in PBS and incubated for 10 days in a defined medium 

(DDM ) containing GH (2nM), insulin (1.8|iM), T 3 (0.1 ng/ml), EG F (50ng/ml) and 

other factors as described by G uller  et al  (1988). Cells  cu ltured  under these 

conditions, in which at least 80% of the cells exhibited adipocyte m orphology as 

assessed by light microscopy and Oil Red O staining, are subsequently referred to as 

D D M  cells. To assess the role of stimulatory and inhibitory G-proteins in modulating 

preadipocyte differentiation, cholera toxin, which activates G s (McKenzie, 1992), and 

pertussis toxin, which inactivates Gj (McKenzie, 1992) were included in the D D M  for 

the first three days of differentiation. After three days, the medium was replaced with 

fresh DDM  in the absence of toxins and differentiation was assessed 7 days later.

3 .2 .2 )  T w o-p h ase  Protocol for C ellu lar  D ifferentia t ion

For these studies cells were grown to confluence in the presence of 10% calf  serum 

which had previously been depleted of GH (described in section 2.2.4.1). Cells were 

passaged at least twice, in DMEM containing 2.5mM glutamine and 10% GH-depleted 

ca lf  serum (standard GH (-) m edium), prior to use for d ifferentia tion studies. 

Confluent cells were washed three times in PBS then incubated for two days in serum 
free medium [F12:DM EM  (2:1) containing GH (2nM), transferrin (10|ig/ml), fetuin 

(50 |ig /m l) ,  glutamine (2.5mM ) and BSA (1 mg/ml), subsequently  referred to as 

priming medium]. Cultures were then washed as before and the medium replaced with 
maturation medium [serum free medium containing insulin (1.8pM), T 3 (O.lng/ml) 

and EG F (50ng/ml)]. After a further 8  days the extent of differentiation was assessed 

by light microscopy and Oil Red () staining. As a control, parallel cultures were 

maintained at confluence for 10 days in standard GH (-) medium.

3 .2 .3) Peptide  Synthesis ,  C on jugation  and Im m unisation

Decapeptides were provided by Dr James Beattie (Hannah Research Institute, Ayr, 

Scotland) and were assembled stepwise by the Merrifield solid-phase method (Barany 

and Merrifield, 1979) and determined to be homogeneous by HPLC as described in 

section 2.2.9. The amino acid sequences are listed in Table 3.1.

Follow ing  synthesis peptides were stored desiccated at -20°C until required. 

Polyclonal antibodies were raised in rabbits using immunogen-peptides coupled to 

KLH  (see section 2.2.9). P re-im m une sera were collected  just p r io r  to the
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com m encem en t of  the imm unisation schedule which is detailed in section 2.2.9. 

Im m une  and p re-im m une sera were stored in aliquots at -2 0 'C  until used for 

immunoblotting.

T ab le  3.1) A m ino-ac id  Sequences  o f  Im m u n ogen  P eptid es

Protein Species Sequence 1

G iia  (residues 159-168) LDRIAQPNYI

Gi2 a (residues 159-168) LERIAQSDYI

Gi3 a (residues 159-168) LDRISQSNYI

Gji+2 a (C-terminal) K N N L K D C G L F

G sa RMHLRQYELL

^Single letter am ino acid code

3.2 .4) M em b ran e  P reparations

Isolation of rat white adipocytes and preparation of membrane fractions was carried 

out according to the methods described in section 2.2.8 .2. M embrane fractions were 

prepared from 3T3-F442A cells as described in section 2.2.8.1, during growth (pre­

confluence) or at various time-points during their differentiation with the two-phase 

differentiation protocol (Section 3.2.2.2). M embranes were stored at - 8 ()°C until 

required for immunoblotting.

3 .2 .5 )  Im m u n o b lo t t in g

M embrane samples were separated by SDS/PAGE on 10%-acrylamide gels (15cm- 

length  gels for the detection o f  GjU and Gp, 20cm -leng th  gels for G s a ). 

Imm unoblotting was performed essentially as described in section 2.2.11. Briefly, 

proteins were transferred to nitrocellulose and then blocked overnight in 3% BSA. 

Primary antiserum, diluted in 1% BSA, was then added for 2 hours. Primary antisera 

were used at the dilutions described in Table 3.2. After removal of primary antiserum, 

the blot was washed extensively and then incubated with anti-rabbit IgG conjugated to 

H RP (secondary antiserum) at the dilutions indicated in Table 3.2. Immunoreactive 

bands were v isualised with the Enhanced C hem iL um inescence  system  or by 

colourimetric staining (see section 2.2.11). W here indicated the primary antiserum 

was pre-incubated with immunogen peptide (Table 3.1) prior to incubation with the 

immunoblot. This was to confirm the specificity of immunoreactivity.



T able  3.2) D ilu tions o f  Prim ary  and Secondary  A n tisera  for G -protein

I m m u n o b lo t s .

Primary Antibody Dilution Secondary

Antibody

Dilution

Gii+ 2 a 1:1()(K)/(1:100) a-rabb it  IgG 1 : 1 0 0 0 0 / ( 1 : 1 0 0 0 )

Gi3a 1 : 1 0 0 0 a-rabb it  IgG 1 : 1 0 0 0 0

Gsa 1:5000 a-rabbit  IgG 1 : 1 0 0 0 0

Gp 1:500 a-rabbit  IgG 1 : 1 0 0 0 0

N um bers in parenthesis refer to antibody dilutions w hen  the o-d ian sid in e d etection  system  w as used

3.2 .6) G PD H  and DNA Assays and E xpression  o f  Results  

G P D H  activity was measured by the m ethod of W ise and G reen  (1979). In 

accordance  with others (Lai et rv/, 1981), ad ipocy tes  were found to contain  

approximately 2.3 times more protein per cell than in fibroblasts (Table 3.6). GPDH 

activities are therefore expressed relative to DNA content rather than amount o f  cellular 

protein. The DNA content of cellular homogenates was determined fluorimetrically as 

described in Chapter 2. The enzyme activity per plate of cells was expressed as the 

number of moles of NADH oxidised/second (katals)/mgDNA.
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3.3) RESULTS

3 .3 .1) D etect ion  o f  G sa - s u b u n it s  in 3T 3 -F 4 4 2 A  F ib ro b la sts

There  are two m ajor isoforms of G s a -s u b u n i ts  which have d iffe ren t relative 

mobilities on SDS/PAGE, displaying apparent m olecular masses of  42 kD a and 47 

kD a respectively (Mattera et a l , 1986; Robishaw et al, 1986).These two species are 

produced by differential splicing of a com m on m R N A  and differ by the presence 

(long-form) or absence (short form) o f  a fifteen amino-acid (residues 72-86) internal 

peptide (Mattera et al, 1986; Robishaw et al, 1986). Isoforms of G sa also contain an 

arginine residue (Arg 187/188 or 201/202, depending on the splice variant) which is a 

target for ADP-ribosylation by cholera toxin (Gill and M eren, 1978). The  use of 

specific anti-peptide antisera has revealed that both forms o f  G sa are abundantly  

expressed  in white ad ipose tissue of both rats and m ice (B eg in-H eick , 1990; 

G ran n em an  et al, 1990) and are localised to the p lasm a m em brane, G olg i  and 

endosomal fractions of fat cells (Begin-Heick, 1990; Haraguchi and Rodbell, 1990; 
Strassheim et al, 1991). For this study antiserum (anti-Gsa) was generated against the 

carboxy-terminal (RM HLRQY ELL) amino-acid sequence of G sre predicted from the 

cD N A  sequences from several species, including rat and m ouse (Bray et al, 1986; 

M attera  et al, 1986; Robishaw et al, 1986; Jones and Reed, 1987; Cerione et al, 

1988). In agreement with others (Strassheim et al, 1991), rabbit im m une-serum  

identified a doublet, composed of roughly equal quantities of a 42 kDa and a 47 kDa 

protein species, on im m unoblots o f  m em brane samples from rat adipocytes (Fig 

3.1 A). In contrast no reactivity was detectable with pre-immune serum (Fig 3.1 A).

The abundance of G s isoforms was next determined in m em brane fractions of 
confluent murine 3T3-F442A preadipocytes. Anti-Gs(X also revealed two forms of G sa

in immunoblots of 3T3-F442A cell membranes which migrated with the same apparent 

molecular mass as the long- and short-forms in rat adipocytes (Fig 3. IB). 3T3-F442A 

cell membranes were found to contain similar amounts of the long-form of G sa that 
found in rat adipocyte membranes, whereas considerably less of the short form of G sa

(approximately 6 -fold less) was detected in 3T3-F442A membranes when compared to 

rat adipocytes (Fig 3 . IB).

3.3.2) D etection  o f  Gj2 u in  M em branes  from  3T 3-F 442A  Cells.

Gja exists as three closely related isoforms, G ji(X (41 kDa), Gj2 u (40 kDa) and Gi3 re 

(41kDa), which all contain a cysteine residue that is a putative ADP-ribosylation site 

and is the fourth residue from the carboxy-terminus (West et al, 1985). Each of the
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A )

47 k D a >  

42 k D a >

1 2

B )

47 kD a>  

42 kD a>

I

F ig  3 .1) D e te c t io n  o f  42 k D a  a n d  47 k D a  I s o f o r m s  o f  G S(X in R a t  
A d ip o c y te  a n d  3T 3-F442A  Cell M e m b r a n e s
Equal quantities of membrane protein (50pg) from 12 day confluent 3T3-F442A cells 
or rat adipocytes were separated by SDS/PAGE and immunoblotted with pre-immune 
serum or antiserum raised against G S(X (anti-Gs(X) as described in Chapter 2. In panel 
A, rat adipocyte membranes were probed with pre-immune serum (lane 1) or with 
an ti-G s(X (lane 2) at a dilution of 1:5000. In panel B, membranes from 3T3-F442A 
cells (lane 1) and rat adipocytes (lane 2) were probed with anti-Gs(X (1:5000). The 42 
kDa and 47 kDa isoforms of G S(X are indicated with arrow heads. Results  are 
representative of experiments done on two separate occasions.
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three Gia  subtypes is coded for by a distinct m R N A  species which is the product of a 

single gene in a haploid genom e (Bray et a l , 1987; Jones and Reed, 1987). A nti­

peptide antisera have proved capable of discriminating between three isoforms of  G ia  

and have been used to demonstrate that white adipocytes of both rats and mice contain 

G n ,  Gi2 and a -subun its  (Mitchell et al, 1989; Begin-Heick, 1990). To begin to 

identify  the Gia - s u b ty p e s  expressed in 3T3-F442A  cells, rabbit antiserum  was 

generated against a decapeptide corresponding to the C-terminal o f  G n a  and Gi2 a 

(termed Gii+2 «; Table 3.3).

T ab le  3.3) C om p arison  o f  A m in o  Acid  Sequences o f  C arboxy-term in a l  
D ecapeptides  from  G -prote in  a - s u b u n i t s

a - s u b u n i t s S e q u e n c e s 1

Gil and Gi2 K N N L K D C G L F

G i3 K N N LK ECG LY

Gs RMHLRQYELL

^Single acid am ino acid code

Anti-Gii+2 cx recognised a single immunoreactive polypeptide in 3T3-F442A fibroblast 

m em branes  which m igrated with an apparent m olecu lar  mass o f  40 kD a  on 

SD S/PAG E (Fig 3.2A), whereas no immunoreactivity was detected with pre-immune 

serum  (Fig 3.2A). The im m unoreac tive  species co -m ig ra ted  with the m ajor  

im m unoreactive species delected in immunoblots of rat adipocyte m em branes (Fig 

3 .2B ). Rat ad ipocy tes  express  both G j ju and G i2 fX and the m ajor  40  kD a  

imm unoreactive band detected with this antiserum represents a mixture of both of 

these isoforms (Mitchel et al, 1989). The weaker signal detected in 3T3-F442A  

m em branes could be attributable to the presence of lower levels of G n u and/or Gi2 a 

and possibly only one of these isoforms is present. To assess the relative levels of 

G i ia and Gi2 tx present in 3T3-F442A mem branes it was necessary to obtain better 

resolution of these subtypes than that afforded by standard SD S/PA G E conditions. 

Accordingly, G-proteins were resolved by electrophoresis in the presence of 6 M urea 

as described in C hapter 2 . Under these conditions an ti-G ii+ 2 a identif ied  two 

polypeptides in rat adipocyte m embranes which migrated with apparent m olecular 

masses of 41 and 40 kDa (Fig 3.3). These correspond to G jiu and Gi2 (X respectively 

(Mitchel et al, 1989). In the same experiment only a single 40 kDa polypeptide (Gj2a) 

was identified in m em branes from 3T3-F442A fibroblasts or 3T3-F442A  cells
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three Gia  subtypes is coded i'or by a distinct m R N A  species which is the product o f  a 

single gene in a haploid genome (Bray et al, 1987; Jones and Reed, 1987). Anti­

peptide antisera have proved capable of discriminating between three isoforms of G ia  

and have been used to demonstrate that white adipocytes of both rats and mice contain 

Gii, Gi2 and Gi3 a -subun its  (Mitchell et al, 1989; Begin-Heick, 1990). To begin to 

identify  the Gia - su b ty p e s  expressed in 3T3-F442A  cells, rabbit  antiserum  was 

generated against a decapeptide corresponding to the C-terminal o f  G jia  and Gi2 oc 

(termed G n ^ c d  Table 3.3).

T ab le  3.3) C om p arison  o f  A m in o  A cid  Sequences o f  C arboxy-term in a l  
D ecapeptid es  from  G -prote in  a - s u b u n i t s

a - s u b u n i t s S e q u e n c e s 1

Gil and Gi2 K N N LK D C G LF

Gi3 KN N LK ECG LY

Gs RMHLRQYELL

^Single acid am ino acid code

Anti-Gn+2 u recognised a single immunoreactive polypeptide in 3T3-F442A fibroblast 

m em branes  which migrated with an apparent m olecular  m ass of 40 kD a on 

SD S/PAG E (Fig 3.2A), whereas no immunoreactivity was detected with pre-immune 

serum  (Fig 3.2A). The im m unoreac tive  species co-m igra ied  with the m ajor 

im m unoreactive species detected in immunoblots o f  rat adipocyte mem branes (Fig 

3 .2B ). R at ad ipocy tes  express  both G n (X and G j2 a and the m ajor 40 kD a 

im m unoreactive band detected with this antiserum represents a mixture of both of 

these isoforms (Mitchel et al, 1989). The w eaker signal detected in 3T3-F442A  

m em branes could be attributable to the presence of lower levels of G n a and/or Gi2 Cx 

and possibly only one of these isoforms is present. To assess the relative levels of 

G i ia  and Gi2 a present in 3T3-F442A mem branes it was necessary to obtain better 

resolution of these subtypes than that afforded by standard SD S/PA G E conditions. 

Accordingly, G-proteins were resolved by electrophoresis in the presence of 6 M urea 

as described  in C hap ter  2. Under these conditions an ti-G n  +2a identif ied  two 

polypeptides in rat adipocyte m embranes which migrated with apparent molecular 

masses of 41 and 40 kDa (Fig 3.3). These correspond to G n a and Gi2 a respectively 

(Mitchel et al, 1989). In the same experiment only a single 40 kDa polypeptide (Gi2(X) 

was identified in m em branes from 3T3-F442A fibroblasts or 3T3-F442A  cells
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A )

40 k D a >

1 2

B )

40 kD a>

1 2

Fig  3.2) I m m u n o r e a c t iv i t y  o f  A n t i s e r u m  to G j j (X P lu s  G j 2 u G - p r o t e i n s  
in R a t  A d ip o c y te  and  3T3-F442A  Cell M e m b r a n e s
In panel A, 10pg of 3T3-F442A cell membrane protein was separated by SDS/PAGE 

and immunoblotted with pre-immune serum (lane 1) or antiserum which recognises 
both Gjoti and G ltX2 (anti-Giai+2 , lane 2) at a dilution of 1:100 as described in Chapter
2. In panel B, lOpg of membrane protein from 3T3-F442A fibroblasts {lane 1) and rat 
adipocytes {lane 2) were probed with anti-Guxi+2 a t a dilution of 1:100. The single 
im m unoreactive species of 40 kDa is indicated with an arrow-head. Results are 
r e p re s e n ta t iv e  o f  an e x p e r im e n t  rep e a te d  on tw o se p a ra te  occas io n s .
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41 k D a >

40 k D a >

1 2 3

F ig  3.3) A b u n d a n c e  o f  G j j u a n d  G j 2 a M e m b r a n e s  f r o m  3 T 3 -F 4 4 2 A  
Cells a n d  R a t  A d ipocy te s
Equal quantities of membrane protein (5()qg) from confluent 3T3-F442A fibroblasts 

(lane / ) ,  3T3-F442A cells differentiated with FCS/insulin medium (lane 2) or rat 
adipocytes (lane 3) were resolved on \()c/< polyacrylamide gels containing 6M urea as 
described in Chapter 2. Gels were then immunoblotted with anti-Gia i+2  at a dilution of

1:100. The 41 kDa (G, |(1) and 40 kDa (Gj2u) forms of Gj(I are indicated with arrow 
heads. Results are representative of an experiment repeated on two separate occasions.
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differentiated with FCS/insulin  (Fig 3.3). As previously reported (A nderson and 

Kilgour, 1993), the abundance of Gi2 (X was lower in FCS cell m em branes than in 

fibroblasts. Moreover, antisera which specifically recognises only G iia fails to detect 

an immunoreactive band in 3T3-F442A cell membranes (Anderson and Kilgour, 1993; 

Y arw ood , A nderson  and Kilgour, unpublished). Together , these observations  

demonstrate that 3T3-F442A  cells express detectable levels o f  Gj2 a, but not G n a . 

Hence anti-Gii+2 a  antibodies can be used specifically as a probe for Gi2 a  in these 

cells.

3.3.3) D etection  o f  Gj3 a in M em b ra n es  from  3 T 3 -F 4 4 2 A  F ib rob lasts .

In an attempt to raise antiserum specific for Gj3 (X (anti-Gi3a ) rabbits were immunised 

with a decapeptide corresponding to a distinct, internal region (residues 159-168, 

Table 3.4) of the deduced amino acid sequence of  Gj3 a (G oldsm ith  et al, 1987). 

Although the sequences in this region are very similar in all forms of Gj(X (Table 3.4) 

antisera generated against these peptides have been shown to be highly specific for 
individual otj-subtypes (Spiegel, 1990).

T able  3.4) C om parison  o f  D educed  A m ino  Acid Sequences  
C orresp on d in g  to R esidues 159-168 in G j a .

a - s u b u n i t s S e q u e n c e s 1

Gil LDRIAQPNYI

G i2 LERIAQSDYI

Gi3 LDRISQSNYI

* S ingle acid am ino acid code

Antisera from animals challenged with the G i3ix internal decapeptide revealed a 41 kDa 

immunoreactive polypeptide in membrane fractions from 3T3-F442A fibroblasts and 

rat adipocytes which was not apparent when pre-immune serum was used (Fig 3.4). 

To further test whether this protein species corresponded to Gi3 tt immunoblots were 

carried out in the presence of excess am ounts of the synthetic  peptide antigen 

(LDRISQSNYI) used for immunisations (see section 3.2.2). Addition of immunogen- 
peptide was found to block the reactivity of anti-Gi3 U with the 41 kDa polypeptide on 

immunoblots of 3T3-F442A and rat adipocyte membranes. In contrast, a decapeptide 

conform ing  to the sam e internal sequence o f  Gi2 a (Fig 3.5) was found to have a 

relatively small effect on anti-Gi3 tt reactivity. Similarly, a decapeptide corresponding 

to the equivalent region in G n a  (Table 3.4) was unable to block the detection o f  the 41 

kD a polypeptide (Fig 3.6). These results demonstrate the specificity o f  anti-Gj3 a  for
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Gj3 a  and show  that 3T 3-F442A  fibroblasts express this subtype o f  Gj in their cell 

membranes.

Although it is apparent that the anti-Gi3 a  antiserum specifically recognises Gi3 a  in 

3T3-F442A  cells and rat adipocytes this antiserum also cross-reacts with a 39 kD a  

protein species in these two cell types (Fig 3.4). The immuno-reactivity of this protein 

with anti-Gi3 a is also blocked by Gi3 tt peptide antigen (Fig 3.4). W hile  the identity o f  

this protein rem ains to be determined it is unlikely to be Gj2 a, w hich shares a similar 

relative mobility  (Fig 3.2), since the cross-reactivity of anti-Gi3 tt with this protein is
i
1 unaffected by Gi2 rt peptide antigen (Fig 3.5).
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41 kD a>

39 k D a >

1 2  3 4

Fig  3.4) I m m u n o re a c t iv i ty  o f  A n t i s e r u m  to G j3 a w ith  R a t  A d ip o c y te  an d  
3 T 3 -F 4 4 2 A  Cell M e m b r a n e s .
Equal quantities of membrane protein (50pg) from confluent 3T3-F442A fibroblasts 

{lanes 1 and 3) or rat adipocytes {lanes 2 and 4) were separated by SDS/PAGE and 
immunoblotted as described in the legend to Fig 3.1. Antisera used were pre-immune 
{lanes 1 and  2) and anti-G^,* {lanes 3 and 4) at a dilution of 1:1000 as described in 
Chapter 2. Major immunoreactive species of 39 kDa and 41 kDa which were specific 
to immunoblot strips probed with an ti-G ^a are indicated with arrow-heads. Results 
are representative of an experiment repeated on two separate occasions.
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41 k D a >

1 2 3 4 5 6

RA 3 T 3  R A  3 T 3  R A  3 T 3

Gi2cx Gj3tl

Fig  3.5) A ss e s s m e n t  of  the  S p ec if ic i ty  o f  an  A n t i - G o u  A n t i s e r u m  by 
C o m p e t i t io n  w ith  S y n th e t ic  P e p t id e s :  C r o s s - r e a c t iv i ty  o f  A n t i - G ^ a  w i th
G  12 c x  •

Equal quantities of membrane protein (50qg) lrom contluent 3T3-F442A fibroblasts 
{lanes 2, 4 and  6) or rat adipocytes (lanes 1,3 and 5) were separated by SDS/PAGE 
and immunoblotted with anti-G, 3d (1: 1000) as described n the legend to Fig 3.4.

Immunoblot strips in \anes 3 and 4 , and in lanes 5 and  6, contained 50j_tg of synthetic 
peptide included with the first antibody during immunoblotting. Peptides used were 
LERIAQSDYI (lanes 3 and 4), which corresponds to residues 159-168 of G^o^ and 
L D R ISQ SN Y I (lanes 5 and 6) corresponding to residues 159-168 of Gi3a. The 
position of the 41 kDa immunoreactive species (G^u) which was specifically depleted 
in the presence of LD RISQSN YI is indicated with an arrow-head. Results are 
representative of an experiment repeated on two separate occasions.
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4
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5
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F ig  3.6) A sse s sm e n t  of  the  S p e c if ic i ty  o f  an  A n t i -G j 3 a  A n t i s e r u m  by 
C o m p e t i t io n  w ith  S y n th e t ic  P e p t id e s :  C ro s s - r e a c t iv i ty  o f  A n t i -G j 3 U w i th  
G ija*
Equal quantities of membrane protein (5()|ig) from confluent 3T3-F442A fibroblasts 

{lanes 1 and  4) or rat adipocytes (lanes 2,3 and  5) were separated by SDS/PAGE and 
im m unob lo tted  with an t i -G ^ u  (1:1000) as described n the legend to Fig 3.4.

Im m unob lo t  strips in lanes 1 and  2 contained 5()pg o f  the synthetic  peptide 
L D R ISQ SN Y I (residues 159-168 of Gj3a ) along with the primary antibody as 
described in the legend to Fig 3.5. included with the first an tibody during 
immunoblotting. The immunoblot strip in lane 3 was incubate in the presence of the 
decapeptide LD R IA Q PN Y Iw hich  corresponds to residues 159-168 of G iia , The 
position of the 41 kDa im mu noreactive species (G^a) which was specifically depleted 
in the presence of LD RISQSN YI is indicated with an arrow-head. Results are 
representative of an experiment repeated on two separate occasions.
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3.3 .4 )  C h arac ter isa t ion  o f  the T w o -P h a se  Protoco l for 3 T 3 -F 4 4 2 A  Cell 

D if fe r e n t ia t io n .

Preadipocyte differentiation involves a program of multiple developm ental stages 

coordinated by external and genetic modulators (Charnels et al, 1994). The external, 

hormonal factors which control the adipose conversion of 3T3-F442A preadipocytes 

are GH, insulin, EG F and T 3 (Charnels et a l , 1994; Guller et al, 1988). G H  has been 

proposed to act at an early stage of preadipocyte differentiation by inducing the 

expression of early markers of the process (Clarkson et al, 1995; Barcellini-Couget et 

a l,  1993; A shcom  et al, 1992) and sensitis ing  cells  to the  ac tions  o f  o ther 

differentiative factors which then induce terminal differentiation (M orikaw a et al, 

1982; Nixon and Green, 1984; Zezulak and Green, 1986; Guller et al, 1988). In order 

to study the effect o f  differentiative factors on the expression o f  hetero trim eric G- 

proteins during these two phases a two step differentiation protocol was developed in 

which the priming action of GH was clearly observed (Fig 3.7).

Cells were grown to confluence in calf-serum which had been depleted o f  GH (see 

section 2.2.4.1) and then primed for two days in serum-free medium in the presence 

or absence of GH. Following priming, the medium was replaced with fresh medium 

containing the maturation agents, insulin, EGF and T 3 .  The extent of differentiation 

was assessed eight days later. Cells primed with GH were found to adopt the 

m orphological characteristics of adipocytes (Novikoff et al, 1980) in response to 

subsequent exposure  to insulin, EG F and T 3 ,  in that cells becam e rounded and 

accumulated triacylglycerol droplets in their cytoplasm (Fig 3.8A). In contrast, cells 

primed in the absence of GH retained a fibroblastic appearance after treatment with the 

maturation agents (Fig 3.8A). The efficiency of adipose conversion was also assessed 

biochemically by measuring cellular GPDH activity which is a sensitive m arker of 

terminal adipocyte differentiation (Wise and Green, 1979). Following exposure to 

insulin, EG F and T 3 there was a substantial increase in GPD H  activity expressed in 

cells which had been GH-primed whereas no significant increase in GPD H  activity 

was detected in cells primed in the absence of GH (Fig 3.8B ). Cells grown in normal 

serum which had not been depleted of GH and which were subsequently primed in the 

absence of GH differentiated normally (Fig 3.8B), indicating that depletion of calf- 

serum G H  is necessary to observe the priming effect o f  G H  during 3T3-F442A  

preadipocyte differentiation. Together, these observations demonstrate that in 3T3- 

F442A cells pre-exposure to GH is necessary for maturation agents to induce the 

c h a n g e s  in ce ll  p h e n o ty p e  a s s o c i a te d  w ith  f a t - c e l l  c o n v e r s io n .
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Fig  3.8) E ffec t  o f  G H  on the  P r im in g  o f  3T 3-F442A  P re a d ip o c v te s .
Cells were grown to confluence in 10% calf serum which had been depleted of GH. 
At confluence cells were primed in serum-free medium in the presence or absence of 
GH or IGF-I as indicated. After 2 days the priming medium was replaced with 
maturation medium and 8 days later the extent of differentiation was assessed by either 
phase-contrast microscopy (panel A)  or by measuring cellular GPDH activity {panel  
B ). For further details see Section 2.2.4. Alternatively, cells were grown to 
confluence in CS which had not been depleted of GH (CS cells) and were primed in 
the absence of GH (Panel B). Parallel cultures were maintained at confluence for 10 
days (10DC) as a control. GPDH activities are expressed as the number of moles of 
NADH oxidised/second (katals)/mgDNA and are means±S.E.M. for 3 observations. * 
indicates the value differs significantly from 10DC cells; p<0.01.
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Although insulin-like growth factor I (IGF-I) is known to mediate many of the actions 

o f  GH (Ashcom etcil, 1992), the priming action of GH on 3T3-F442A differentiation 

is not due to local production of IGF-I since IGF-I alone was unable to mimic the 

effect (results not shown). Furthermore it has been reported that G H  does not promote 

IGF-I production in 3T3-F442A fibroblasts (Barcellini-Couget et al, 1993). These 

results show that differentiation of 3T3-F442A cells involves at least two distinct 

stages. Exposure to GH is necessary to prime cells to the actions o f  insulin, EG F and 

T 3 which act in the second, maturation phase to promote terminal differentiation.

3.3 .5 )  C h an ges  in G -p r o te in  C o n te n t  in 3 T 3 -F 4 4 2 A  C ell  M e m b r a n e s  

D u rin g  C on fluence  and D ifferentia tion .

A num ber of studies have suggested that G-protein a -subunits  play a crucial role in 

modulating fat cell development (Wang et al, 1992; W atkins et al, 1992; M oxham et 

al, 1993; Su et al, 1993) and that alterations in G-protein expression occur during 

preadipocyte differentiation (Lai et al, 1981; Watkins et al, 1982; Giershik et al, 1986; 

W atkins et al, 1987; Anderson and Kilgour, 1993; Huppertz et al, 1993). Having 

demonstrated that the differentiation of 3T3-F442A preadipocytes can be divided into a 
priming and maturation stage (section 3.3.3.1), the levels of G sfX, Gia and Gp were 

next de term ined  in 3T 3-F442A  cell m em branes, during these two phases o f  

preadipocyte  differentiation. A com parison was made between 3T3-F442A  cells 

treated with the two-phase differentiation protocol and non-differentiating control 

cultures which were grown to confluence in 10% CS and maintained at confluence in 

10% CS for a further 10 days. As noted in Fig 3.8, by day 10 approximately 90% of 

GH-primed 3T3-F442A cells have differentiated into adipocytes whereas virtually no 

10-day confluent cells differentiate.

To determine whether changes in the expression of G S(X occur during the time-course 

of differentiation, a specific antiserum, which cross-reacts with the 42 kDa and 47 kDa 

forms o f  G sa (section 3.1.3.1), was used to measure changes in the levels o f  these 

proteins in m em branes o f  3T3-F442A cells at different stages o f  their adipose 

conversion. Immunoblot analysis demonstrated that profound changes occurred in the 

levels of both the 42 kDa and the 47 kDa isoforms of  G SIX (G S(X4 2  and G S{X4 7 ) during 

the two phase differentiation process (Fig 3.9A). No significant difference was 

detected in the levels of either G slx subunit when m em branes from sub-confluent, 

proliferating cells were compared to those from confluent cells. However, following 
confluence the levels of both G S(X subunits began to increase significantly. Maximal 

levels of G stX4 7  were delected in cell membranes at the end of the 2 day priming stage 

and persisted for at least the first two days of the maturation stage then declined,
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Fig  3 .9 )  E x p r e s s io n  o f  G s,i42 a n d  G slt47 in 3 T 3 -F 4 4 2 A  M e m b r a n e s  
D u r in g  D i f f e r e n t ia t io n  by the  T w o  P h a se  D i f fe r e n t ia t io n  P ro to co l .
Equal quantities o f  membrane protein (lOfig) extracted from 3T3-F442A cells during 
the various stages of  their adipose conversion were subject to SD S/H AU h an 
immunoblotting with specific anti-GsU antibodies (panel A). Membrane samples weie 
prepared from pre-confluent, proliferating (lane 7), just confluent cells {lane -),.cells  
primed for 2 days in the presence of GH (lane 3), cells exposed to matuiationi medium 
for 2 days (lane 4) or from mature adipocytes (lane 5). The 4_ kDa and 47 kDa lorms 
o f  G ,(X are indicated  with arrow-heads. Panel B dem onstra tes  the changes in 
d e n s i to m e tr ic  va lues  (arb itrary  units) t o r G s(x42 and G s« 47 ob ta ined  tr  
immunoblots. Just conHuent cells are denoted day 0, whereas ce Is in the pioli 
phase (G) and mature adipocytes are represented as being one day pie-confluent an  ̂
ten day post-confluent respectively. Immunoblots were repeated on thiec scpara e 
occasions and densitometric units are expressed as means±S.E.M loi thice sepa c 
observations * ** and *** indicates that the value dilters signi 1 icanlly liom those 
obtained from just confluent (day 0) cells; p<(>.<>2, P<(U)1 and P<().(H) 1, respectively.



reaching levels approaching those found in JC membranes by day 10 of differentiation 

(ie in m ature adipocytes). In comparison to the levels detected in JC m em branes, 

levels o f  G s a 4 2  were significantly increased by the end o f  the 2  day prim ing stage 

(2.4±0.29 fold increase, p<0.()2) and continued to rise, resulting in a final 7.18±0.08 

fold, p<0.01) increase by the end of the differentiation process (day 10). However, 

similar changes in G s*i2 and G * ^  levels were apparent in parallel cultures maintained 

in grow th m edium  for 10 days following confluence  (Fig 3.10), a lthough these 

cultures displayed no increase in G PD H  activity and none o f  the m orphological 

changes associated with the differentiation process.

Im m unoblots analysis of cell m embranes with antiserum specific for G aa  (section

3.3) showed that there was no significant change in the expression of  this subunit 

when pre-confluence proliferating cells were compared to confluent cultures (day 0 , 

Fig 3.11). There was, however, a significant 1.51±0.06 fold (p<0.01, n=3) increase 

in Gi2a, relative to JC cells, following the two-day priming phase. These levels were 

sustained for at least the first 2  days of the maturation phase, after which the levels of 

G i2 « declined dramatically to fall below those found in JC cells by the end o f  the 

differentiation period (0.15±C).01 fold decrease, p<().()01, n=3). The amount of G,3 a 

in cell m em branes  did not fluc tuate  s ign if ican tly  during  the two stages o f  

differentiation (Fig 3.12). However, the amount of Gj3(1 in terminally differentiated 

adipocytes were found to be slightly lower than in JC fibroblasts (0.40±0.04, p<0.05, 

n=3). The changes in the levels of Gi2a and Gi3 a which occurred at different stages of 

the differentiation process appear to be specifically regulated by the differentiative 

agents present (GH, insulin, EGF and T 3 ) as such changes were not observed in lOdc 

cells, in the absence of morphological change.(Fig 3.12).

G-protein a -subun its  are believed to be anchored in the plasma m em brane as a 

heterotrimer with (J- and y- subunits (Sternweiss, 1986). The y-subunits of G-proteins 

in 3T3-F442A cells were not probed in this study. The steady-state levels of the (3- 

subunit were, however, analysed using a pan-reactive antiserum which recognises the 

P 3 5 - and p 3r.“ isoforms, as previously described (Strassheim  et a l , 1991). This 

antiserum recognises the 35 kDa and 36 kDa forms of the P-subunit in mem branes 

prepared from rat adipocytes (Fig 3 .13A). How ever, only the p 3 fi-subtype was 

detectable in m embranes of 3T3-F442A adipocytes (Fig 3.13A). The levels of Gp3 6  

were not found to change significantly when membranes from pre-confluent cells were 

compared to confluent cells. However, levels of P3 6  were appreciably increased by a 

factor of 2.62±0.28 (p<().()5, n=3) by the end of the priming phase and by a further 

1 .60±0.11 fold (p<().()5, n=3) during the first two days of m aturation. Levels  

declined during the final stages of maturation until the amount of Gp3 (, detectable in
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Fig 3.10) Expression of G s U 4 2  and GS(X4 7  in Membranes  During the 
Maintenance of 3T3-F442A Preadipocytes at Confluence.
Equal quantities of membrane protein (lO pg) extracted from 3T3-F442A  cells 
m aintained at confluence in growth medium were subject to SD S/PA G E and 
immunoblotting with specific anti-Gsu antibodies {panel A) as described in the legend 
to figure 3.10). Samples were taken from just conHuent cells (lane 1) and at days 2 
{lane 2), 4 {lane 3) and 10 of confluence (lane 4). The 42 kDa and 47 kDa forms of 
G S(X are indicated with arrow -heads. Panel  B dem onstra tes  the changes in 
densitometric values (arbitrary units) for G S(I4 2  and G S(X4 7  obtained from G-protein 
immunoblots. Just conHuent cells are denoted day 0. Immunoblots were repeated on 
three separate occasions and densitometric units are expressed as means±S.E.M. * 
and ** indicates that the value differs significantly from those obtained from just 
conHuent (day 0) cells; pcO.Ol and p<().()()!, respectively.
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F ig  3 .11)  E x p r e s s io n  o f  C; i l l 2  a n d  G ju j  in 3 T 3 - F 4 4 2 A  M e m b r a n e s  
D u r in g  D i f f e r e n t ia t io n .

E q u a l  q u a n t i t i e s  o f  m e m b r a n e  p r o t e i n  ( l O f t g )  f r o m  3 T 3 - F 4 4 2 A  c e l l s  d u r i n g  
p i o  d e l a t i o n  (lone / ) ,  a t  c o n f l u e n c e  ( lane 2 ) ,  a l t e r  p r i m i n g  f o r  2  d a y s  {lane .?), d u r i n g  
m a t u i a t i o n  {lane 4) o r  t r o m  m a t u r e  a d i p o c y t e s  {lane 5) w e r e  s e p a r a t e d  b y  S D S / P A G E  
a n d  i m m u n o b l o t t e d  w i t h  s p e c i f i c  a n t i s e r a  to  G iu2 a n d  G i(x3 (panel A)  a s  d e s c r i b e d  in

S e c t i o n  2  2 . 1 E T h e  a - s u b u n i t s  o f  G , ,  a n d  G i2 a r e  i n d i c a t e d  w i t h  a r r o w - h e a d s .

( m - b i t r a r l  ICfX!alL>cJ o n  l , i r c c  SL' P a r a l c  t e n s i o n s  a n d  d e n s i t o m e t r i c  v a l u e s
( a  t i a i y  u n i t s )  o b t a i n e d  at  e a c h  s t a g e  o l  d i l t e r e n t i a t i o n  f r o m  i m m u n o b l o t s  a r e  s h o w n

a n , arC e x p r c s s c d  a s  m e a n s ± S -E -M- E)1‘ 3 o b s e r v a t i o n s .  S i g n i f i c a n t  
d i l l u c n c e s  w i t h  r e s p e c t  to  j u s t  c o n H u e n t  ( d a y  ().) c e l l s  a r e  i n d i c a t e d ;  *,  **  a n d  * * *
(p<0.05, p < 0 . 0 1  and p<().()01 respectively).
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Fig 3.12) Expression of  GjU 2 and G j i n  Membranes from 3T3-F442A  
Preadipocvtes During their Maintenance at Confluence.
Equal quantities of  membrane protein (lOpg) from just confluent  3T3-F442A cells 
{Jane / ) ,  and al days 2 (lane 2), 4 (lane 3) and 10 {lane 4) of confluence were 
separated by SDS/PAGE and immunoblot ted with specific antisera to G 1(I2 and G 1U3

{panel A)  as described in the legend to Fig 3.11). The cx-subunits of G,i and G ,2 are 
indicated with arrow-heads. Densitometric values (arbitrary units) were obtained from 
immunoblots ol G I(X2 and G l(̂  and are shown in pane! B. Immunoblots were repeated 
on three separate occasions and densitometric units are expressed as means±S.E.M. 
for 3 observations.
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f i g  3 .13 )  E x p r e s s io n  of G (3 3 * in 3 T 3 -F 4 4 2 A  M e m b r a n e s  D u r i n g  
D i f f e r e n t i a t i o n .

Equal quant it ies  ol membrane  protein ( l ( )pg)  from 3 T 3 _F442A cells during 
proliferation {lane J), al confluence {lane 2), alter priming for 2 days {lane 3 ), during 
maturation {lane 4) or lrom mature adipocytes {lane 5) or from rat adipocytes {lane 6) 
were separated by SDS/PAGE and immunohlotted with antisera which recognises the 
35 kDa and 36 kDa lorms ol G \\{panel A). The two forms of  Gp are indicated with 
a r iow-heads.  Immunoblo ts  were repeated on three separate  occas ions and 
densitometric values (arbitrary units) obtained at each stage of differentiation from 
immunoblots  are shown in panel  B and are expressed as means+S.E.M. for 3 
observations. Significant differences with respect to just conHuent (day 0) cells are 
indicated; * and ** (p<().()5 and p<0.01 respectively).
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3T3-F442A adipocyte mem branes was similar to that found in JC m em branes (Fig 

3.13B). As with Gj2 <x and Gj3 ,x the regulated changes in G ^r, expression  during 

differentiation were probably influenced by the differentiative factors present since 

levels of Gp?^ did not change in cells maintained at confluence in growth medium 

(lOdc; Fig 3.14).

3 .3 .6 )  C h a n g e s  in G -p r o te in  S u b u n it  E x p r e s s io n  P er  C ell D u r in g  

D ifferen tia t ion  and C on fluence .

During differentiation 3T3-F442A cells alter their size and, as a consequence, the 

yield of m em brane protein/cell varies at different developmental stages (Table 3.5). 

H ence, the densitom etric  values obtained  from G -protein  im m unoblo ts  were 

transformed into values indicating expression per cell. Figure 3.15A demonstrates that 

on a per cell basis the expression of G , (X4 2  increased following priming and during 

m atu ra tion  by 143.6±29.5%  (p<0.02, n=3) and 242 .3± 29 .5%  (pcO.Ol, n=3) 

respectively, and was further elevated towards the end of the maturation phase by a 

substantia l 1551±7.8%  (pcO.OOl, n=3). In addition, the levels o f  G S(X4 7  also 

increased fo llow ing  prim ing (207±43.8%  increase; pcO.Ol, n=3) and during 

maturation (242.5±52.9% increase; pcO.Ol, n=3) and were maintained at an elevated 

level in terminally differentiated cells (149.4±19.5; pcO.Ol, n=3). Similar changes in 

G s « 4 2  and G s(X4 7  expression were also observed in control cultures maintained at 

confluence (Fig. 3.15B). These results demonstrate that increases in G slX4 2 and G S(X4 7  

expression can occur independently  of the m orphological changes initiated by 

differentiative factors.

Significant increases in Gj2(X expression per cell were also detected following priming 

and during the early stages of  maturation (51.3±5.9%, pcO.Ol, n=3 and 65.9±9.8%, 

pcO.Ol, n=3 respectively; Fig 3.16). Elevations in G,3 (X were also apparent at these 

time-points, however these values were not significant. Towards the end of maturation 

the am ount of Gj2 (X and Gj3(X per cell declined substantially to levels which were 

significantly below those found in JC fibroblasts (36.8±1.5% , pcO.Ol, n=3 and 

27.5±4.0%, pc().()5, n=3 decrease, respectively). As there was no apparent change in 

the expression of either Gj2(X or Gj3(X during confluence (results not shown), it appears 

that G i2(x and Gi3 txare subject to differential regulation during the different stages of 

3T3-F442A cell differentiation. During GH-priming and maturation, cells receive 

signals to specifically increase levels of Gj2(X, whereas terminally differentiated cells 

concomitantly decrease expression of both G 1(X-subtypes.



W hen normalised to cell number, the pattern of Gp3 6  expression during differentiation 

was sim ilar to that obtained for Gi2 a, in that levels were significantly  elevated 

fo llow ing  prim ing and during m aturation (by 161.6±47.7% , p<().()5, n=3 and 

319.4±29.0% , pcO.Ol, n=3). Unlike Gi2 a. the relative amount o f  G ^  in terminally 

differentiated cells was significantly greater than those found in JC cells (Fig 3.16). In 

contrast, there was no appreciable change in the expression of Gp3 6  in cells maintained 

at confluence in growth medium (results not shown). These results suggest that the 

expression of Gp3 (, is influenced by hormonal regulation during the two phases of 

3T3-F442A cell differentiation. During GH-priming cells receive signals to increase 

the expression of Gp3 fv Levels are further increased during maturation and then fall in 

terminally differentiated cells to those observed in GH-primed cells.

3 .3 .7 )  E f f e c t  o f  P e r t u s s i s  and  C h o le r a  I n t o x ic a t io n  on  th e  

D ifferen tia t io n  o f  3T 3-F 442A  P read ip ocytes .

That G-protein levels are elevated in the crucial priming phase of 3T3-F442A cell 

differentiation suggests a potential regulatory role for these proteins in modulating fat­

cell conversion. To determ ine w hether G -pro te ins can influence preadipocyte  

differentiation the effects of bacterial exotoxins, namely cholera toxin (C.Tox) and 

pertussis toxin (P.Tox), on 3T3-F442A cell differentiation were investigated. C.Tox 

catalyzes the ADP-rihosylation of G S(X thereby reducing this protein's GTPase activity 

(Cassel and Selinger, 1977). In cell systems this results in constitutive activation of 

adenylate cyclase and a corresponding increase in intracellular cyclic AM P (McKenzie,

1992). Treatment of 3T3-F442A preadipocytes with C.Tox dramatically reduced the 

extent of cellular differentiation in the presence of DDM (by 67.8±1.1%, p<().()01, 

n=3) as assessed by GPDH activity (Fig 3.17). P.Tox catalyzes the ADP-ribosylation 

of Girt with the result the a(3y heterotrimer is maintained in an inactive conformation 

(Buns et al, 1983; Kuruse et al, 1988). Treatment of cells with P.Tox lead to a much 

smaller 12.4±1.1% (p<().() 1, n=3) but never the less significant inhibitory effect on 

differentiation (Fig 3.17).



T ab le  3.5) P aram eters  o f  Cell G row th D u ring  the T w o Phases  o f  3T3-  
F 442A  Cell D if feren tia t ion .
3T3-F442A cells were grown to confluence in GH-deleted calf-serum as described in 
the legend to Fig 4.2). Upon attaining confluence cells were induced to differentiate 
w ith  the tw o-phase  d iffe ren tia tion  pro toco l as described  in Section  2.2.4. 
Alternatively, control cultures were maintained at confluence for the duration of the 
differentiation process. At the indicated stages of  cell development the number of cells 
on a 100mm petri dish was assessed with a haemocytometer and the amount of protein 
in cell-homogenates was determined by the dye-binding assay o f  Bradford (1976). 
Results are representative of a single experiment repeated on three separate occasions.

Stage of 
Cell Growth

Cells/
Plate

Protein/ 
10° Cells 

(mg)

Days at 
Confluence

Cells/
Plate

Protein/ 
106 Cells 

(mg)
Proliferation 8.1x10" 0.26 - - -

Just
Confluent 1.0x10° 0.26

Just
Confluent 1.0x10° 0.26

2d Priming 1.0x10° 0.26 2d 1.0x10*’ 0.26
2d

Maturation 1.8x10° 0.27 4d 1.0x10° 0.26

Mature
Adipocyte 2.1x10° 0.60 lOd 1.2x10° 0.28
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3.4) D ISC U S SIO N

Specificity of signalling from seven-helix serpentine receptors is determined in part by 

the selectivity displayed by these receptors for coupling to specific mem bers of the 

highly hom ologous heterotrimeric G-protein family. An added degree o f  specificity 

may be the result of differential localisation and regulated expression of particular G- 

protein subunits. Some phenotypic changes that occur on differentiation are likely to 

be reflections of changes in the expression of com ponents  of signal transduction 

pathways, including receptors, G-proteins and effectors. Therefore, levels o f  some of  

the G-protein constituents of the preadipocyte cell-line, 3T3-F442A, were measured 

before and after exposure to agents that induced phenotypic changes associated with 

differentiation.

The expression of G s, Gj2 and G 13 was dem onstrated  in m em branes from 3T3- 

F442A fibroblasts by immunoblotting with specific anti-peptide antibodies generated 
against G-protein a-subunits. 3T3-F442A cells were found not to express detectable 

levels of G jiu . Consequently, anti-Gji+2(Xi tin antiserum which recognises both G iia 

and Gi2 (X can be used specifically as a probe for Gj2(x in this cell type.

The 3T3-F442A cell system was shown here and in previous studies to display a 

strict requirement for GH as a differentiating signal (Fig 3.8; M orikawa et al, 1982; 

N ixon and G reen, 1984; Guller  et al, 1988). This is wholly consistent with a 

s tim ula to ry  effect o f  GH on the adipose convers ion  of several o ther clonal 

preadipocyte cell lines, such as 3T3-L1 (Hauner and Loffler, 1986), o b i 771 and 

o b l7 U T  (Doglio et al, 1986). GH acts on confluent, growth arrested cells to produce 

primed (Gp) cells. Gp-cells are in a differentiation permissive condition; i.e. they 

become sensitive to the differentiating activities of insulin, EGF and T ? (Guller et al,

1988). These agents then promote maturation of Gp-cells by stimulating a limited 

increase in cell number (Table 3.5) and the induction of adipose-specific phenotypes 

such as cell rounding, fat accumulation and increased lipogenic enzyme activity (Fig 

3.8).

Because of the selective reactivities of a range of antipeptide antisera (see Section 3.1) 

it was possib le  to distinguish between differentiation induced changes in the 

expression o f  G S(X, the 36 kDa p -subun it  and the closely related Gj2 (X and Gj3 a 

subtypes during the two phases of 3T3-F442A cell differentiation (changes are 

summarised in table 3.6). Dramatic changes in the expression of the 42 kDa and 47 

kDa forms of G S(X in cell m em branes were also apparent during differentiation. 

However, since these changes were also observed in membranes from control cultures

w



T able  3.6) C h anges  in the E xpression  o f  G -prote in  S ub units  D uring  the  
A d ip o cy te  D if feren tia t ion  o f  3T 3-F 442A  P read ip ocy tes
The change in G-protein subunit expression during individual stages of 3T3-F442A 
cell differentiation is shown relative to its expression in undifferentiated, just confluent 
cells. The m agnitude and direction of change is indicated, + (increase), ++ (large 
increase), - (decrease) and = (no change).

Stage  o f  A d ip o c y te  C o n v er s io n

G-protein Subunit 2d GH-primed 2d Maturation Mature Adipocyte

G scx42 + + ++

G s«47 + + +

Gia2 + + -

Gj(x3 = = -

G|i36 + + ++ ++
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in the absence  o f  phenotypic  change (Fig 3 .10B), it was conc luded  that the 

expression of G s(1 is not influenced by differentiative hormones in 3T3-F442A cells. 

In contrast, the relative abundance of G j 2 a , G i 3 a a n d  G p  did appear to be subject to 

hormonal regulation either during the GH-priming phase or during maturation with 

insulin, EGF and T 3. Priming of 3T3-F442A cells with GH lead to a selective increase 

in the 36 kD a form of G p  and G j 2 u ,  whereas G i 3 a  levels were unchanged. Although 

there are m any exam ples of agonist-stimulated alterations in G-protein expression 

(Milligan and Green, 1991), the results of this study demonstrate the first example of a 

GH-mediated increase in G j 2 u  and G p  expression. GH has been reported previously to 

specifically down-regulate G ^*  in rat adipocyte membranes, which m ay contribute to 

the chronic  lipolytic effects of this horm one in vivo  (Doris et a l , 1994). This 

substantial difference between the two models provides evidence that the mechanisms 

involved in the differentiation-promoting actions of GH are not necessarily the same as 

those involved in the regulation of metabolism. In addition, 3T3-F442A cells have a 

distinct advantage as an experimental system in that they provide a convenient model 

for the study of such early events in the preadipocyte differentiation program.

The increases in Gj2u and Gp during priming were sustained into the maturation phase 

and then, together with G j3a, levels of these G-proteins declined in terminally 

differentiated adipocytes. This is consistent with previously reported decreases in Gja 

protein (Giershik et ah 1986; Huppertz et ah  1993;) and m RNA (Uehara et al, 1994), 
and in Gp protein (Giershik et ah 1986) during the insulin-induced differentiation of 

3T3-L1 preadipocytes. However, no initial increase in Gi2 u and Gp was reported in 

3T3-L1 cells. This is possibly attributable to differences between the two cell-types 

(3T3-L1 versus  3T3-F442A). Although GH is a potentiating factor for 3T3-L1 cell 

differentiation, it does not appear to be required for the terminal differentiation of these 

cells (H auner and Lbffler, 1986). As a consequence, the changes in G-protein 

expression which occur during the differentiation of 3T3-L1 cells are probably 

synonymous with changes during the insulin-responsive, maturation phase of 3T3- 

F442A differentiation. Due to the multi-component nature of the maturation media for 

3T3-L1 (Schmidt et ah  1990) and 3T3-F442A (vide in fra ) preadipocytes, further 

investiga tion  will be necessary  to determ ine which factor(s) are specifically  

responsib le  for the changes in G j 2 u ,  G j 3(X and Gp in the term inal stages of 

differentiation.

Further study will also be required to determine whether the changes in G-protein 

expression during differentiation are regulated at the level of transcription, translation 

or both. Despite the very large number of studies which have set out to document 

changes in G-protein m RNA or protein levels, there have been surprisingly few
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investigations into the transcriptional regulation of G-protein expression. During the 

d ifferen tia tion  of  polarised renal cells (H oltzm an et al, 1993), increased G i2 tt 

expression appears to require a m em ber o f  the C C A A T  box family of DN A binding 

proteins (K inane et a1, 1993), whereas C C A A T  boxes do not contribute  to the 

transcriptional activity o f  the G,3 U gene (Holtzm an et al, 1993). M em bers  o f  the 

C C A A T  box family of  transcription factors include the C C A A T  enhancer binding 

proteins (C/EBPs; reviewed by Johnson and M cKnight, 1989). In 3T3-F442A cells, 

conclusive evidence has shown that C/EBP family members can regulate preadipocyte 

differentiation (Umek et al, 1991; Freytag and Geddes, 1992; Freytag et al, 1994; Lin 

and Lane, 1994). It is therefore extrem ely  tem pting to speculate  that hormonal 

regulation o f  one or more m em bers of the C /E B P  family could contribute to the 

selective changes in Gj2 (X protein expression during the differentiation of 3T3-F442A 

preadipocytes.

The stimulus for the specific increases in G S(X4 2  and G S(X4 7  observed in confluent 

cultures and differentiating cells is not known (Fig 3.9), but may be attributable to 

autocrine/paracrine mechanisms. An interesting aspect of the changes in the abundance 

of long- and short- forms of G S{X during differentiation and confluence is that they 

were not synchronous; i.e. dramatic increases in G S(X4 2  occurred in term inally  

differentiated cells whereas the levels of G S(X4 7  were not effected substantially (Fig 

3.15). As these proteins are splice-varianls of a single gene-product (Robishaw et al, 
1986; Mattera et al, 1986) this implies that G S(X4 2  protein levels may be subject to post- 

tra n sc r i p t i o n a 1 reg u 1 a t i o n .

The importance of temporal G-protein a-subunil expression during differentiation has 

been convincingly demonstrated in lower eukaryotes (Firtel et al, 1989; Hardwiger 

and Firtel, 1992) and studies in vitro and in vivo have implicated a-subunits as being 

important for the development of fat in mice (Moxham et al, 1993; Su et al, 1993; 

G orde ladze  et al, 1997). In support of this, in the present study P.Tox-induced 

inactivation of G, (Ui, 1984) early in the differentiation of 3T3-F442A preadipocytes 

was found to exert an inhibitory influence on terminal differentiation. It has recently 

been dem onstrated  in vivo that Gj2 <x is a positive regulator o f  insulin receptor 

signalling and that loss of Gj2 tx in transgenic animals impairs the cardinal responses to 

insulin, namely glucose-transporter activity and recruitment, counterregulation of 

l ipolysis and activation of glycogen synthase (M oxham  and M albon, 1996). 

Moreover, expression of a constitutively active form of G ^ u  in transgenic mice was 

found to mimic insulin action in adipose tissue (Chen et al, 1997). It is interesting to 

note that before the fall in G iu-subunit expression in terminally differentiated cells that 

there is an initial rise in the expression of G j2 (X during the insu lin-dependent
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maturation phase (Fig 3.13). This suggests that during this phase of the differentiation 

process that inhibitory G-proteins may play a prominent regulatory role, perhaps as 

positive-regulators of the insulin-stimulated differentiation signal. If this were the case 

then the anti-adipogenic action of chronic P.Tox treatment on the adipose conversion 

o f  3T3-F442A preadipocytes could be partially explained by an inhibitory affect on 

insulin-promoted effects during the maturation phase of their differentiation.

In addition C.Tox, which constitutively activates G su (Gill and Meren, 1978), was 

found to severely retard differentiation of 3T3-F442A  cells in D D M , which is 

consistent with previous reports of a negative modulatory effect o f  G stx during the 

adipocyte differentiation of 3T3-L1 fibroblasts (Wang et al, 1992; Gordeladze et al, 

1997). In addition to their effects on G-protein activities, long-term  exposure of 

cellular systems to P.Tox and C.Tox can lead to selective down-regulation of target a -  

subunits (Chang and Bourne, 1989; Milligan et al, 1989; Klinz and Costa, 1990). 

Chronic P.Tox treatment has also been reported to induce down-regulation of [3- 

subunits in vivo in 3T3-L1 cells (Watkins et al, 1989). Thus, while the results in this 

s tudy  h igh ligh t the functional im portance  of G -pro te ins  in m ain ta in ing  the 

differentiation of preadipocytes, the complex response of  cells to chronic toxin 

treatm ent m akes interpretation of results in terms of potential effector system s 

extremely difficult. This study does, however, demonstrate that G-proteins may be 
important for preadipocyte differentiation and that a -  and P-subunits levels are altered 

in a stage-dependent manner. This implies that sequential alterations to G-protein 

levels may be important for efficient fat cell conversion. In light of this, caution should 

be observed in interpreting the results of transfection studies which have used 
activating- or inactivating-mutants of G-protein a -su b u n i ts  (W ang et al, 1992; 

Gordeladze et al, 1997) since enforced expression of these mutant proteins will disrupt 

the temporal regulation of G-protein expression during fat cell developm ent with 

unpredictable effects.

W hat role, if any, would temporal alterations in the abundance of cellular G-proteins 

play in determining the cellular phenotype of the differentiating preadipocyte? One 

potential consequence would be the altered coupling of extracellular stimuli to 

intracellular effector systems. G i(X).t were initially characterised for their ability to 

inhibit adenylate cyclase (Taussig et al, 1993) and have been implicated in Golgi 

function (Maltese and Rohishaw, 1990) and shown to activate p21 ;<<' (Ras) and the 

M AP kinase and p70Sf,K growth-regulatory pathways (Winitz et al, 1993; Wilson et al, 

1996) as well as K+ channels (Yalani et al, 1988). G su is stimulatory to adenylate 

cyclase and can modulate a host of intracellular effectors by activating cyclic AMP-
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S(>Kdependent protein kinase (PKA), including the M A P kinase and p70‘ ’ cascades 

(Withers et al, 1996, Yarwood et al, 1996; Graves and Lawrence, 1996). GpY-subunits 

can also m odulate  the activities of intracellular effector units, including som e K+ 

channels (Clapham and Neer, 1993; Logothetis et al, 1987), forms 2 and 3 of PLCp 

(Rhee et al, 1989), certain adenylate cyclase isoforms (Tang and Gilman, 1991) and 

appear to be involved in the activation of M A P kinase by Gj-linked receptors (Alblas et 

al, 1993; Crespo et al, 1994; Faure et al, 1994; Koch et al, 1994; T horburn  and 

Thorburn, 1994). Since the ability to interact with the adenylate cyclase and M A P 

kinase pathways appears to be a feature com m on to G s, Gj and Gpy, it is likely that 

disregulation of these major signal transduction cascades may underlie the effects of 

P.Tox and C.Tox on the differentiation of 3T3-F442A preadipocytes.

Previous studies have suggested that cyclic A M P is a signalling m olecule which 

contributes to the triggering of adipose conversion of adipogenic cell lines (Russel and 

Ho. 1976; Gaillard et a l , 1989; Schmidt et al, 1990) as well as that of adipogenic cell 

l im a  (Bjbrntorp et al, 1980; W ierderer and Loftier, 1980). H ow ever cyclic A M P 

appears to play a dual role in modulating adipose differentiation since prolonged 

exposure  of 3T3-F442A preadipocytes to cyclic AM P-elevating agents prevents 

terminal differentiation (Spiegelman and Green, 1981). This results in a down- 

regulation of m RNA expression for some adipocyte-specific products, including fatty- 

acid synthase (Paulausikis and Sul, 1988), a -g lycero -3 -phosphate  dehydrogenase  

(Dobson et al, 1987) and lipoprotein lipase (Raynolds et al, 1990). This suggests the 

existence of a generic control mechanism which switches lipogenic and lipolytic states 

in an orderly biochemical fashion. Indeed, it is well documented that adipocyte 

differentiation is accompanied by a coincident increase in the expression of the 42kDa 

and 47kDa forms of G sa and decreased expression of Gj,x isoforms, which may 

contribute to increased intracellular concentrations of cyclic AM P and enhanced 

responsiveness of terminally differentiated adipocytes to lipolytic agents (Kilgour and 

Anderson, 1993). It appears, therefore, that large increases in intracellular cyclic AM P 

induced by chronic C.Tox exposure in the present study would exert an inhibitory 

effect on this late stage of differentiation. It is also possible that the elevations in G ltx- 

subunit expression which were observed during the maturation phase of 3T3-F442A 

preadipocyte differentiation could, by limiting the activation of adenylate cyclase, 

prevent the action lipolytic agents thereby allowing lipid accumulation and terminal 

adipocyte differentiation. In addition to the dynamic changes in heteroirimeric G- 

protein expression during the late stages of preadipocyte differentiation, the present 

study demonstrates an “on-dependent'’ increase in Gj2(X and Gpr, during the essential 

G H -priming phase and a significant increase in G N(X42 which also occurred, in the 

absence of differentiative stimuli, in cultures which were maintained at confluence (Fig
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3.13). This  suggest that regulation of adenyla te  cyclase  activ ity  early  in the 

differentiation program could also he critical for determining cellular fate. It is 

therefore apparent that the role of heterotrimeric G-proteins in controlling preadipocyte 

differentiation is complex and requires further clarification in terms of the cyclic AM P 

signalling system.
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3.5) C O N C L U SIO N S

In this study, specific anti-peptide antisera were used to identify differentiation- 

induced changes in the concentrations of G-protein a -  and (3-subunits in 3T3-F442A 

cells. It is c lear  that not all G -pro te ins  respond  equa lly  to the  induction o f  

differentiation and unique responses occur even amongst m embers of the same family. 

The crucial G H -prim ing  stage o f  3T3-F442A  differentia tion w itnessed  specific 

increases in G stX4 2 , Gi2 a and G ^ .  Further increases were observed during the initial 

stages o f  maturation culminating in dramatic increases in G sot42  and a more m odest 

increase in G SQt4 7  expression occurring in terminally differentiated cells. In contrast, 

levels of Gj2 u> G,3 (X declined in mature adipocytes. The importance of  G-proteins in 

the maintenance of the differentiated state was demonstrated with bacterial toxins. This 

suggests that the regulated changes in G-protein expression occurring during 3T3- 

F442A cell differentiation may contribute to changes in cellular phenotype. Further 

studies will be needed to clarify the functional properties that specific changes in G- 

protein levels impart to the differentiating cell.
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Chapter Four

The Effects of Cyclic AMP on the 
Differentiation of 

3T3-F442A Preadipocytes
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4.1) IN TR O D U C TIO N

The results from Chapter 3 demonstrate that changes occur in the cellular levels of 

individual G-protein isoforms at various stages of 3T3-F442A  fat-cell conversion. 

Specific increases in the expression of G S(I, Gj2« and Gp, during the essential GH- 

prim ing phase o f  differentiation and increases in G S(I in confluent cultures, where 

morphological conversion was negligible, provide indications as to the importance of 

G-proteins in modulating adipogenesis. Further evidence for a regulatory role for G- 

p ro te ins  in this process was obtained by using cho lera  toxin  (C .Tox), w hich 

constitutively activates G s (Gill and Meren, 1978), and pertussis toxin (P.Tox), which 

inactiva tes certain G -pro te ins, including m em bers  of  the Gj fam ily  (Ui, 1984). 

Treatment with P.Tox proved to be slightly inhibitory to adipose conversion, whereas 

C.Tox provoked a dramatic blockade of differentiation. It is clear that treatment o f  cells 

with these toxins will lead to changes in adenylate cyclase activity (Gill and Meren, 

1978; Ui, 1984) resulting in perturbations to intracellular cyclic AM P concentrations. In 

addition, changes in the level of G-protein expression probably contribute to the 

changes in acute hormonal regulation o f  adenylate cyclase which are characteristic of 

adipocyte developm ent (Rubin et al, 1978; Lai et al, 1981; Kilgour and Anderson,

1993). W ith these considerations in mind it appears that modulation o f  intracellular 

cyclic AM P concentrations may play a functional role in determining the cellular fate of 

differentiating preadipocytes.

A large number of studies have demonstrated the functional significance of cyclic AM P 

in the modulation of cell growth (Table 4.1). Several hormones which are known to 

activate adenylate cyclase through G s-coupled receptors (eg thyrotropin) are mitogenic 

in cell types in which cyclic AM P production appears to be a physiological mediator of 

cell proliferation (Dumont et ah  1989). Moreover, constitutively active mutants of G sa 

have been identified in pituitary adenomas (Landis et ah  1989) and in autonomously 

functioning thyroid tumours (Lyons et ah 1990), the oncogenicity of which is thought 

to be mediated by continuous cyclic AM P formation (Valler et al, 1987; Gaiddon et al,

1994). However, a positive mitogenic effect of cyclic AM P is not evident in certain cell 

types and anti-mitogenic effects are observed in others (Table 4.1). Indeed, cyclic AM P 

can even promote reversion to the normal phenotype of certain transformed cells 

(Pastan et ah 1975). Therefore, it appears that the effects of cyclic AM P on proliferation 

are complex and depend very much on the cellular context.

In addition to its role as a mitogenic effector, cyclic AM P has been shown to promote 

the differentiation of certain cell types. Most notably, cyclic A M P stimulates the 

formation of specialised functions in thyroid cells (Lamny et ah 1987), melanocytes
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Table 4.1) Mitogenic and Anti-mitogenic Effects o f  Cyclic AM P-

elevating Agents.

C e ll S y stem Stim ulan t E ffect O n Proliferation

R at Parotid A cinar C e lls P-adrenergic +

Rat H ep atocytes G lucagon/p-adrenergic +

Rat B row n A d ip ocytes P-adrcnergic +

Rat Pancreatic P -cc lls G lu cose +

M urine M am m ary E p ith elia l 
C e lls

P G E b +

Im m ature R at S erto li C e lls F S H C +

S w is s  3T 3  F ib rob lasts In su lin+ C h olera  toxin +

D o g  T hyroid  E pithelia l T SH +

R at Atrial Sm ooth  M u sc le  
C e lls

P G E b -

H um an F oresk in  F ibrob lasts F orsk o lin -

N e o p la stic  H um an B C e lls F orsk o lin -

T ransform ed F ibroblasts 8B r-cA M P a -

Transform ed N1H -3T3  
F ib rob lasts

C o n stitu tiv ely -a ctiv e  G sa
-

Adapted from B lo m h o ff  cl a l  (19X7). Boynton and Whitfield (19X3). Cannon cl al  (1996) .  Chen and Iyengar  
(1 994) .  Heldin et al  (19X9). Hordijk cl a l  (1994).  N ilsson  and Olsson (19X4). Rabinovitch cl a l  (1980),  
Roger cl  a l  (19X3) and Rozengurt cl a l  (19X3).
JXBr-cAM P refers to the cell  permeable analogues o f  cyc l ic  A M P  X-Bromo-cyclic AMP.  
hPGE refers to protaglandin E l .
1 FSII refers to fo llic le  stimulating hormone.
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(Angler et al, 1995), neuronal cell lines (Frodin et al, 1994; Hoffman et al, 1994) and 

cultured brown adipocytes (Cannon et al, 1996). The effects of cyclic A M P on the 

differentiation of white preadipocytes are som ew hat controversial (Table 4.2). The 

cellular model in which the effects of cyclic AM P have been most extensively studied is 

the differentiation of the murine 3T3-L1 preadipocyte cell line (Russell and Ho, 1976; 

E lks  and M angan ie llo , 1985; Schm idt et al, 1990; W ang  et al, 1992). R a ther  

confusingly, in this cell type positive (Elks and M anganiello, 1985; Russell and Ho, 

1976; Schmidt et al, 1990) and neutral (Wang et al, 1992) effects of  cyclic AMP-raising 

agents have been reported. Indeed, in different studies differential effects o f  the same 

agent (lO pM  forskolin) on 3T3-L1 differentiation have even been reported (Schmidt et 

al,  1990; W ang et al, 1992). Further inconsistencies have arisen from studies on 

p r im ary  cu ltu res  o f  rat p read ipocy tes  (Table  4.2). O ne po ten tia l  reason  for 

inconsistencies such as these is that different culture conditions were used in different 

studies. For example, in one study forskolin was shown, under serum-free conditions, 

to potentiate the differentiation of 3T3-L1 preadipocytes (Schmidt et al, 1990), whereas 

another study performed in the presence of serum forskolin had very little effect on 

3T3-L1 differentiation (Wang et al, 1992).

Only two studies have been carried out on the effects of cyclic A M P on 3T3-F442A 

adipogenesis and these have also produced conflicting observations (Spiegelman and 

Green, 1981; Negrel et al, 1989). Spiegelman and Green (1981) reported that long-term 

incubations with high concentrations of a cyclic A M P analogue, or a cyclic A M P 

analogue in combination with a phosphodiesterase inhibitor, severely attenuated foetal 

calf  serum-induced 3T3-F442A differentiation by compromising production of mRNA 

for lipogenic enzymes. These effects appeared to be specific to the later stages of 

adipose conversion as similar results were obtained when cyclic A M P levels were 

raised in cells which had already undergone terminal differentiation (Spiegelman and 

G reen , 1981). M oreover, the reduction in late-stage lipogenic enzym e synthesis 

induced by cyclic AM P was independent of differentiation-dependent morphological 

changes, again indicating a stage-specific effect of cyclic AM P (Spiegelman and Green, 

1981). In contrast, in a different study short-term  exposure  at the onset of 

differentiation to the cyclic AMP-elevating agent prostacyclin (prostaglandin I2) was 

found to promote the terminal differentiation of 3T3-F442A cells maintained under 

serum-free conditions, however the effect of prostacyclin on cyclic AM P accumulation 

in 3T3-F442A cells was not investigated in this study (Negrel et al, 1989). Even so, 

prostacyclin has been shown to elevate intracellular cyclic AM P levels in Ob 1771 

preadipocytes as well as dramatically enhancing their differentiation (Negrel et al,

1989). Together these observations suggest that long-term exposure to cyclic AM P 

inhibits differentiation of 3T3-F442A preadipocytes by effecting late-stage events,
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w hereas  short-term  exposure , at the beginning of d ifferentiation, m ay poten tia te  

differentiation.

In order to clarify the influence of cyclic AM P on preadipocyte differentiation a detailed 

study was earned out using 3T3-F442A preadipocytes. Multiple agents which influence 

intracellular cyclic AM P levels were used in an attempt to obtain information regarding 

the effects of differing magnitude and duration of elevations in intracellular cyclic AMP. 

Furthermore, the ability to divide differentiation of the cells into two discrete stages, 

using a two-phase differentiation protocol which employs defined media, as described 

in C hapter 3, has permitted an investigation o f  the effects o f  cyclic A M P at these 

different stages.
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Table 4.2) Effects o f  Agents which Raise Intracellular Cyclic AM P on
P r e a d ip o c y te  D if feren tia t io n .

C e ll T y p e A gent
E ffect 011 

D ifferentiation

C ulture
C o n d itio n s

A sse ssm e n t o f  
D ifferentiation

References

P ertussis toxin
(P .T o x ) (O .ln g /tn l +

C holera toxin A g en ts present
Rat (C .T o x ) (O .ln g /m l) + in G PD H

Preadipocyte differentiation A c tiv ity Shinohara
P .T o x  ( l( )n g /m l)+ m edium  for 9 e t  al,

d b cA M P  (5 in M ) - days. (19 9 1 )

F orsk o lin
(0 .5 |iM )+ P .T o x -

(l()n g /m l)

IB M X  (5(X)pM ) + A g en ts present L ipid
Rat in the A ccu m ulation Bjom torp

Preadipocyte P G E j (2 fig /in l) + differentiation & L ipop rotein e t  al,
m edium  for 12 L ipase (1980)

C .T ox  ( l()n g /in l) + days. A ctiv ity

Rat PG I2 (2 0 0 iiM ) + A g en ts present
Preadipocyte in the

differentiation G P D H N egrel et
H um an m edium  3 days A c tiv ity al,  (1 9 8 9 )

Preadipocyte P G b  (2()()nM ) + out o f  12.

P G I2  (lO O ing/m l) N E A gen ts present
in Lipid R u sse ll

3T 3-L 1 db cA M P  (l.O m M ) N E differentiation A ccum ulation and Ho,
m edium  4  days (1976)

IB M X  (5(X)[iM) + out o f  6.

C .T ox  ( l()n g /in l) _

N E A gen ts present
3T3-L1 F orskolin  ( 10pM ) in the Lipid W ang et

N E differentiation A ccu m u lation al,  (1 9 9 2 )
P .T ox  ( l()n g /m l) m edium  2 days

N E out o f  7.
d b cA M P  (lm M )

IB M X  (l(X )pM ) + A gen ts present G PD H
in A c tiv ity

3T 3-L 1 R O  2 0 -1 7 2 4 + differentiation E lks and
(lO p M ) m edium  3 days Lipid M anganiel

out o f  10. A ccum ulation lo, (1 9 8 5 )
C ilostiun ide

(0 .3 |iM ) N E

IB M X  (5(X)|iM ) + A gen ts present
in the G P D H Schm idt

3T 3-L 1 F orsko lin  (I fiM ) + differentiation A c tiv ity e t  al,
m edium  4  days (1990)

F orskolin  (1 0 |iM ) + out o f  8.

db cA M P  ( lm M ) +

I l l



3 T 3 -F 4 4 2 A

d b cA M P  ( lm M )

dbcA M P
(0 .5 m M )+

T h eo p h y llin e
(0 .5 m M )

Isoproterenol
( l j iM )+

T h eop h y llin e
(0 .5 in M )

-

A g en ts present 
in the  

differentiation  
m edium  for 7 

days.

L ipid
A ccu m u lation

S p ieg e l­
m an and 

G reen, 
(1 9 8 1 )

3 T 3 -F 4 4 2 A P G b  (2()()nM ) +
A gent present 

in the 
differentiation  

m edium  3 days  
out o f  12.

G P D H
A c tiv ity

N eg re l et  
al,  (1 9 8 9 )

TA1 F orskolin  (3 p M ) +

A gent present 
in the 

differentiation  
m edium  for 4  

(Ttys.

L ipid
A ccu m ulation

K urten et  
al,  

(19 8 8 )

TA1

F orskolin
(0 .5 |iM )+ d b c A M P

(5m M )

P. T ox  (0 . In g /m l) +

A gen ts present 
in the 

differentiation  
m edium  for 2 
d ays out o f  6.

G PD H
A c tiv ity

Shinohara
and

M urata,
(19 9 2 )

O h 1771

P( il2  (2()()nM )

Isoproterenol
( l | iM )

F orskolin  ( lp M )

KBr-cAM P
(0 .5 m M )

+

+

+

+

A g en ts present 
in the 

differentiation  
m edium  3 days  

out o f  12.

G PD H
A ctiv ity V assaux et  

a l , (  1992)

S T  13

T heoph ylline
(lO m M )

E pinephrine
(1 0 |iM )

+ A gent present 
in the 

differentiation  
m edium  lor  14 

days.

L ipid
A ccu m ulation

H iragun et  
al,  (1 9 8 0 )

Abbreviat ions:  I ’Ci E 2 and l ’CiI2. prostaglandins E2 and I2 respectively .  +. - or NE. increase, decrease  or no 
effect.
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4.2) EXPER IM ENTA L PR O C ED UR ES

4.2 .1) S tandard  P roced ure  for Cell C u lture  and D ifferentia tion

3T3-F442A  fibroblasts were grown to confluence in D M E M  containing 10% calf  

serum as described in section 2.2.1. Confluent cultures were induced to differentiate by 

replacing the growth medium with either D M EM  containing 10% foetal calf serum and 

5}ig/ml insulin (FCS/insulin; section 2.2.2) or with a defined differentiation medium 

(DDM ) consisting of 2:1 (v/v) F12/DM EM  containing GH (2nM), insulin (1.8|iM), T 3 

(0 .Ing/m l), EG F (50ng/ml) and other factors as described in section 2.2.3 and by 

Guller et al (1988). The cyclic AMP-elevating agents under test were included in the 

FCS/insulin or DDM  media for the first three days of differentiation, following which 

cells were treated with fresh media, without agents, and the extent of differentiation was 

assessed after a further 3 days (FCS/insulin) or 7 days (DDM ). T he  extent of 

differentiation was assessed both qualitatively, by Oil Red O staining, and quantitatively 

by measuring cellular GPDH activity. For further details see section 2.2.5 and 2.2.6.

4.2 .2 )  T w o-p h ase  P rotocol for C ellu lar  D ifferen tia t ion

For these studies cells were grown to confluence in the presence of 10% calf serum 

depleted of GH (described in section 2.2.4.1). Briefly, this was prepared by incubating 

ca lf  serum with anti-rbGH (1:1000 dilution) for 24 hours at room temperature. 

Antiserum to rabbit IgG was then added to a final dilution o f  1:10. After 4 hours the 

precipitate was pelleted by centrifugation at 3000g for 30 minutes and the supernatant 

(GH depleted calf-serum) carefully removed. Cells were passaged at least twice, in 

DM EM  containing 2.5mM glutamine and 10% GH-depleted calf serum, prior to use for 

differentiation studies. Confluent cells were washed three times in PBS then incubated 

for 2 days in serum free medium [F12:DMEM (2:1) containing transferrin (10|i/ml), 

fetuin (50pg/m l), glutamine (2.5mM ) and BSA (1 mg/ml)] along with the other 

additions indicated in legends. Cultures were then washed, as before, and the medium 

replaced with maturation medium [serum free medium containing insulin (1.8|lM), T 3 

(0.Ing/ml) and EGF (50ng/ml)l along with the agents under test. After 2 days the drugs 

were removed and the extent of differentiation was measured after a further 6 days.

4 .2 .3) Oil Red O S ta in ing , G P D H , DN A and C yclic  A M P  A ssays  and  

E xp ress ion  o f  R esults

Qualitative assessment of differentiation was determined by staining neutral lipids 

accumulated in terminally differentiated cells with Oil Red O (see section 2.2.5). Cells 

were then photographed under Phase Contrast Optics (x24 magnification) using an
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inverted microscope. G PD H  activity was m easured spectrophotom etrically  (section 

2.2.5). G PD H  activities were expressed relative to cellular D N A  content to correct for 

differentiation-associated increases in cellular protein (Lai et al, 1981; Kilgour and 

A nderson , 1993). The D N A  content o f  ce llu lar  hom ogena tes  w as  de term ined  

fluorometrically as described section 2.2.14. The enzyme activity per plate o f  cells was 

expressed as the number of moles of NADH oxidised/second (katals)/mg DNA.

M easurem en t  o f  cellu lar  cyclic A M P concentration was carried out essentially  

according to the competitive binding protein m ethod of Brown et al  (1971) and is 

described fully in section 2.2.16.
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4.3) RESULTS

4.3.1)  Ef fec ts  o f  Agents  which  Elevate  In trace l lu lar  Cycl ic  A M P  Levels  

on Lip id  A c c u m u la t io n  D u ring  Di f ferentia t ion  o f  3 T 3 - F 4 4 2 A  Cells  with  

Foeta l  C a l f  Serum  and Insul in (F CS/ insu l in ) .

In order to study the effects of cyclic AM P on 3T3-F442A preadipocyte differentiation, 

multiple agents were used which share the common ability to elevate intracellular cyclic 

A M P levels (Fig 4.1).The effects of  agents were assessed initially on differentiation 

induced by FCS/insulin differentiation medium and the extent of cellular differentiation 

was determined qualitatively, by Oil Red O staining, and quantitatively, by measuring 

the cellular activity of the lipogenic enzyme GPDH which is a sensitive marker of the 

adipocyte phenotype (Smas and Sul, 1995). To assess the ability of cyclic A M P to 

m odulate the differentiation o f  3T3-F442A cells a range of agents were used which 

raise intracellular cyclic AM P by different mechanisms (Fig 4.1). These were forskolin, 

which directly activates adenylate cyclase, cholera toxin, which constitutively activates 

G S(X, a cell permeable cyclic AM P analogue, CPT-cA M P, and IBMX, which inhibits 

cyclic AM P phosphodiesterases (Fig 4.1).

Confluent cell cultures were induced to differentiate in the presence of FCS/insulin and 

the cyclic AM P-elevating agents included for the first three days. The extent of  

differentiation was qualitatively assessed by light m icroscopy six days after the 

initiation o f  differentiation. Following exposure to the FCS/insulin  m edium  cells 

acquired a larger and more rounded m orphology (Fig 4.2A) characteristic  of  the 

adipocyte phenotype (Slavin, 1972). Differentiated cells also developed numerous, 

large cytosolic lipid spheres as revealed by Oil red () staining (Fig 4.2A). Addition of 

forskolin (5()|iM) severely attenuated tiiacylglyceride accumulation (Fig 4.2C) whereas 

dideoxyforskolin (5()|iM), a homologue of forskolin which does not activate adenylate 

cyclase, had no effect on the extent of lipid accumulation (Fig 4.2D). In contrast, 

inclusion of IBMX (500|iM) in the FCS/insulin medium visibly enhanced the extent of 

lipid filling (Fig 4.2B). GPDH activity was undetectable in undifferentiated fibroblasts 

and rose to 7 .80±0.52 nanokata ls /m g D N A  (pcO.OOl, n=5) after exposure  to 

FCS/insulin for seven days. Inclusion of IBMX in the FCS/insulin medium (Fig 4.3) 

clearly increased GPDH enzyme activity relative to control cells by 99±17% (pcO.OOl, 

n=5). Interestingly the compound forskolin exerted different modulatory influences 

upon the d ifferentiation process depending on the concentration  to w hich the 

preadipocytes were exposed. Hence 50pM  forskolin markedly inhibited GPDH activity 

by 90.90±3.20%  (p<0.001, n=4) while 10nM forskolin significantly increased this 

activity by 94±13%  (pcO.OOl, n=5). Dideoxyforskolin had no significant effect on
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Fig 4.1) Sites of  Action o f  Cycl ic  A M P-e levat in g  Agents
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F ig  4 .2 )  E f f e c t  o f  A g e n t s  w h ic h  E l e v a t e  C y c l ic  A M P  on  L ip id  
A c c u m u la t io n  D u r in g  D i f f e r e n t ia t io n  o f  3 T 3 -F 4 4 2 A  C e l ls  w i th  F o e ta l  
C a l f  S e r u m  a n d  In su l in  (F C S / in su l in ) .
Confluent cultures were induced to differentiate by replacing the growth medium with 
FCS/insulin medium in the presence of (A) diluent, B) 5()()|iM IBMX, (C) 50 |iM  
forskolin or (D) 5()pM dideoxyforskolin. After 3 days these agents were removed from 
the differentiation medium and alter a further 7 days cells were stained with Oil Red O 
and photographed.
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G PD H  activity. To confirm that the effects o f  IBM X and forskolin on differentiation 

were attributable to elevated intracellular cyclic A M P levels, the effects of two other 

cyclic AM P-elevating agents, cholera toxin and CPT-cA M P, were investigated. Both 

cholera toxin and C P T -cA M P reduced the G PD H  activity of differentiated cells by 

9 1 .03± 1 .41%  (pcO.OOl, n=5) and 92± 1%  (pcO.OOl, n=5) respec tive ly ,  w hen 

included for the first three days of differentiation (Fig 4.3). A possible explanation for 

these results is that small increases in intracellular cyclic A M P levels, as would be 

expected to occur in the presence of IBMX or lOnM forskolin, promote differentiation, 

while the larger and more sustained increases in intracellular cyclic A M P levels, which 

are achieved  with 50 |iM  forskolin  C P T -cA M P  and cho lera  toxin, inh ib it  the 

differentiation process.

To investigate further the effects of different intracellular cyclic A M P concentrations, 

cells were incubated with the FCS/insulin differentiation medium in the presence of 

various concentrations of forskolin or CPT-cAM P. As shown in Fig 4.4), both of these 

compounds exhibited striking differential dose-dependent effects upon differentiation. 

Low concentrations of forskolin and CPT-cA M P promoted differentiation, as assessed 

by G P D H  activity, with the maximal effect occurring al around InM  forskolin 

(122±11% increase, pcO.OOl, n=7) and lOnM CPT-cA M P (78±19% increase, pcO.Ol, 

n=7). Exposure of cells to increasing concentrations of these compounds resulted in a 

loss of effectiveness upon differentiation which occurred at between lOOnM and 200nM 

forskolin and lOOnM and lpM  CPT-cAM P. Subsequently, higher concentrations of 

these two agents markedly inhibited the differentiation process.

5.3.2)  Effects  o f  Agents  which Elevate Cycl ic  A M P  on Di fferent iat ion of  

Cells with a Defined Differentiat ion M ediu m  (DDM )

The effects of elevated intracellular cyclic AM P levels on the cellular differentiation of 

3T 3-F442A  preadipocytes  with FCS/insulin  appears to be two-fold , with low 

concentrations of cyclic AMP promoting the process and high concentrations enforcing 

an inhibitory influence. However, the complex nature of serum impedes a systematic 

analysis of  interactions occurring between cyclic AM P and individual adipogenic 

factors. Further studies were therefore carried out to assess the effects of cyclic AM P 

under defined conditions, in the absence of serum. Confluent cultures were treated with 

DDM  for 10 days with cyclic AMP-elevating agents present for the first three days of 

differentiation. As with FCS/insulin, the DD M  promoted the formation of clusters of 

rounded, enlarged cells from the fibroblast monolayer (Fig 4.5A). As shown in figure 

4.5, cholera toxin (l()ng/ml), forskolin (5()pM) and CPT-cA M P (0.25mM) inhibited 

the formation of fat-cell clusters, whereas IBMX (5(X)pM) and a lower concentration of
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F ig  4 .3 )  E f f e c t  o f  A g e n ts  w h ic h  E l e v a t e  C y c l i c  A M P  on a -  
G lycerop hosphate  Dehydrogenase  (G P D H )  Activ ity o f  3T 3-F 442A  Cells  
Differentia ted  with FCS/insul in.
Cells were induced to differentiate in FCS/insulin medium in the presence of diluent 
(control), 50()(_iM IBMX, 10nM forskolin, l()ng/ml cholera toxin (C-TOX), 0.25M  
CPT-cA M P, 50pM  forskolin or 5()|iM dideoxyforskolin (Dideoxy). After 3 days the 
test agents were removed from the differentiation medium and after a further 7 days the 
extent of differentiation was assessed by measuring the GPDH activity of cell extracts 
as described in Materials and Methods. The GPDH activity obtained in differentiated 
cultures which were exposed to diluent alone was 7.80±0.52 nanokatals/mg D N A  
(n=5) and all values are expressed as a percentage of this activity. Results are means ±  
S.E.M. for 4 to 5 observations. *,** indicates that the value differs significantly from 
control values; pcO.Ol, pcO.OOl respectively.
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Fig 4.4) Effects o f  Various Concentrations  o f  Forskol in and C P T - c A M P  
on the Dif ferentiat ion o f  3T3-F442A Cells with FC S/insul in .
Confluent cultures were induced to differentiate with FCS/insulin in the presence of the 
indicated concentrations of A) forskolin or B) CPT-cAMP. After 3 days the drugs were 
removed from the differentiation medium and 7 days later GPDH activities were 
measured. Activities are expressed as a percentage of those obtained from differentiated 
cultures which were exposed to diluent alone (7.80±0.52 nanokatals/mgDNA, n=5). 
Results  are m eans ±  S.E.M . for 7 observations. *, ** indicates the value is 
significantly different from that for diluent treated cells (control cells); p< 0 .0 1 , 
pcO.OOl. Broken lines denoted the range of GPDH values obtained from control cells.
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F ig  4 .5 )  E f f e c t  o f  A g e n t s  w h ic h  E l e v a t e  C y c l ic  A M P  o n  th e  
D i f fe r e n t ia t io n  o f  3T 3-F 442A  Cells  U n d e r  D efined  C o n d i t io n s .
Confluent 3T3-F442A cells were incubated in DDM (defined differentiation medium) 
along with (A) diluent, (B) 5()()pM IBMX, (C) 5()pM dideoxyforskolin, (D) 5()|iM 
forskolin, (E) l()ng/ml cholera toxin and (F) 0.25mM  CPT-cAM P. After 3 days the 
agents were removed from the DDM and 7 days later cells were stained with Oil Red O 
and photographed as described in section 2.2.5.
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forskolin (lOnM) enhanced the number of fat cells formed. Hence qualitatively similar 

effects of these agents are observed when cells are differentiated in either FCS/insulin 

(Fig 4.2) or under defined conditions in DDM.

Inclusion of cyclic AM P elevating agents in the DDM  induced changes in expression of 

G PD H  activity which paralleled their effects on the morphology of differentiated cells 

(Fig 4.6). The G PD H  activity of cells differentiated with D D M  was 3 .66±0.41%  

(p<().()01, n=9) nanokata ls /m g DNA. C holera  toxin (l()ng/m l) and C P T -cA M P  

(0 .25m M ) decreased the GPDH activity o f  differentiated cells by 64±1%  (pcO.OOl, 

n= 8 ) and 73±4%  (pcO.OOl, n=7) respectively. W hile 5()()pM IBM X  increased GPD H  

activity by 37±12%  (pcO.Ol, n=9). As before (Fig 4.4) different concentrations of  

forskolin exerted differential effects upon preadipocyte differentiation. lOnM Forskolin 

was found to significantly  increase G P D H  activity, relative to control cells, by 

47.±11%  (pcO.Ol, n=9), whereas 5()pM forskolin attenuated the G PD H  activity in 

terminally differentiated cells by 67 .76±1.11% (pcO.OOl, n= 8 ).

The dose effects of forskolin and CPT-cA M P when cells were differentiated in DDM  

(Fig 4.7) were similar to those observed when differentiation was induced with 

FCS/insulin (Fig 4.4). Under DDM conditions the maximal increases in GPDH activity 

were observed in the presence of around lOnM forskolin (42±12% increase, pcO.Ol, 

n=7) and lOnM C PT-cA M P (31±9% increase, pcO.Ol, n=7). M aximal inhibition of 

G P D H  activity occurred at around 5()pM forskolin (95±1.5% inhibition, pcO.OOl, 

n=5) and 20()pM CPT-cA M P (52±20% inhibition, pcO.Ol, n=7). For both o f  these 

agents there existed a range of concentrations where no effect on differentiation was 

observed. Thus, concentrations of forskolin between lOOnM and 500nM , and CPT- 

cA M P between 4pM  and 30pM , had no discernible impact on G PD H  activity. This 

presumably reflects the net effect of stimulatory and inhibitory influences evoked by 

raising intracellular cyclic AM P levels. If these results are taken together, it appears that 

the differentiation of  3T3-F442A cells in the presence of serum, or under serum-free, 

chemically defined conditions, displays a strict inverse dose-responsive relationship to 

e levations  in in tracellu lar  cyclic AM P concentrations. Low concen tra tions  of 

intracellular cyclic AM P appear to be able to enhance stim ulatory influences on 

preadipocyte differentiation, whereas high concentrations induce negative regulatory 

constraints. Therefore, in order to aid interpretation o f  the observed effects it is 

important to consider the magnitude of intracellular cyclic AM P production induced in 

response to exposure to the test agents. A further consideration is the duration of cyclic 

A M P production  which will have consequences  in terms o f  the stage o f  the 

differentiation process which is being influenced.
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Fig 4.6)  Effects  o f  Agents  which Elevate Cyclic A M P  on G P D H  Activity  
of  Cel ls  Differentiated with DDM.
Confluent cultures were induced to differentiate by replacing the growth medium with 
DDM  medium along with the agents indicated (as described in the legend to Fig 5.3) or 
with diluent (control). After 3 days the test agents were removed and after a further 3 
days G P D H  activity was m easured. Results are m eans ±  S.E.M . for 5 to 9 
observations. The GPDH activity obtained in cultures induced to differentiate with 
DDM  alone was 3.66±<).41 nanokatals/mg DNA (n=9) and all values are expressed as a 
percentage of this activity. *, ** indicate the value differs significantly from that for 
cells differentiated in the absence of test agents. pcO.Ol, pcO.OOl.
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Fig  4.7) Dose Effects  o f  Forskol in and C P T -cA M P  on Differentiat ion o f  
3T 3-F 442A  Cells in a Defined Differentiat ion Mediu m.
Confluent cultures were induced to differentiate with DDM  medium in the presence of 
the indicated concentrations of A) forskolin or B) CPT-cAMP. After 3 days the drugs 
were removed and after a further three days GPDH activities were assessed. The 
G P D H  activity obtained in cultures induced to differentiate with DDM medium alone 
was 3.9± 1.1 nanokatals/mg DNA (n=7) and all values are expressed as a percentage of 
this activity. Results are means ±  S.E.M. for 4-7 observations. *, ** indicates the value 
is significantly different from that for cells differentiated in DDM  medium alone; 
pcO.Ol, pcO.OOl.
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F i g  4 .8 )  E f f e c t  o f  F o r s k o l in  and  I B M X  on the  I n t r a c e l l u l a r  
Concentration  of  Cyclic AMP.
Confluent 3T3-F442A cells were incubated for the indicated times in culture medium 
containing A) forskolin (10nM or 50jaM) or B) IBMX (500|iM). Intracellular cyclic 
A M P was then extracted and the concentration measured as described in section 2.2.16. 
Data are presented as means ± S.E.M. for 4 to 8  observations and are expressed as the 
fold increase in intracellular cyclic AMP relative to cells incubated with diluent alone. 
Significant differences with respect to control are indicated; * (p<0.02), ** (pcO.Ol) 
and *** (pcO.OOl).
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4.3.3 )  Ef fec t  o f  Forskol in  and IB M X  on the Intrace l lu lar  C on centra t ion  

o f  Cyc l ic  A M P

In order to investigate these possibilities further the effect o f  the various compounds 

on intracellular cyclic A M P levels was addressed. IBM X (5()()}iM) induced a relatively 

transient increase in intracellular cyclic AM P (Fig 4.8B), with maximal levels achieved 

after 2 hours incubation with the agent (approximately 7.8±0.5 fold increase relative to 

control, pcO.OOl, n=12). Levels returned to those detected in control cells after 12 

hours exposure to IBMX. Similarly, lOnM forskolin induced a small and comparatively 

transient increase in intracellular cyclic A M P (Fig 4.8A) with a m aximal 3.0±0.7 fold 

increase (pcO.Ol, n= 6 ) achieved after 30 minutes incubation and a return to basal levels 

by 5 hours. In contrast, 50pM  forskolin provoked a strikingly large and sustained 

increase in intracellular cyclic A M P (Fig 4.8A), with a m axim al 119.6±14.2 fold 

increase (pcO.OOl, n= 8 ) achieved after 1 hour. Elevated cyclic A M P concentrations 

were detectable even after 48 hours stimulation with 50 |iM  forskolin (2.1±0.2 fold 

increase, pcO.Ol, n=5). Hence the large and sustained increases in intracellular cyclic 

A M P  concen tra tions  achieved  with 50pM  forskolin  are capab le  of inhibiting 

preadipocyte differentiation whereas the smaller and more transient increases induced 

by lOnM forskolin and IBMX promote this process.

4 .3.4)  Ef fec t  o f  E levat ing  Intrace l lu lar  C yc l ic  A M P  Levels  D u r in g  the  

P r i m i n g  a n d  M a t u r a t i o n  S t a g e s  o f  3 T 3 - F 4 4 2 A  P r e a d i p o c y t e  

D if fe r e n t ia t io n

The effects of transient increases in cyclic AM P will be confined to a discrete stage of 

the differentiation process, whereas larger, sustained elevations have the potential to 

effect multiple stages of development. In previous experiments cyclic AMP-elevating 

agents which potentiated differentiation (10nM forskolin and 5()()|iM IBM X) were 

included in the differentiation media at the onset of the process (Figs 4.3 and 4.6). 

Therefore, the transient increase in intracellular cyclic AM P elicited by these agents 

must have been exerting its effects at an early stage of the differentiation program. As 

demonstrated in Chapter 4 the differentiation of  3T3-F442A preadipocytes can be 

divided into at least two stages. GH acts at an early stage of the differentiation process 

and primes 3T3-F442A cells to the actions of  insulin, EG F and T 3 (m aturation 

medium), which then induce terminal differentiation. In order to study the effects of 

cyclic  A M P on these two distinct stages, the tw o-phase  protocol for ce llu lar  

differentiation (described in section 2.2.4.2) was employed. The effects of  the (3- 

adrenoreceptor agonist isoproterenol (10pM) were also examined during the two phases 

of differentiation. As discussed in the previous chapter, alterations in heterotrimeric G-
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prcotein and adrenoreceptor expression during priming and maturation will contribute to 

cedlular responsiveness to adrenergic stimulation. Treatment of cells with isoproterenol 

at these d istinct stages will de term ine to what extent (3-adrenergic s tim u la tion  

comtributes to the regulation of preadipocyte differentiation. To assess the effects of 

cy 'd ic  AM P and (3-adrenergic stimulation on the priming stage lOnM forskolin, IBM X 

or isoproterenol were included in the priming medium for two-days, following which 

cedis were washed and the medium was replaced with m aturation m edium  in the 

absence  of agents. Differentiation was then assessed 8  days later. For studies on the 

setcond phase of differentiation, cells were primed for two days with G H  and then the 

m edium  was replaced with maturation medium containing lOnM forskolin, IB M X  or 

isoproterenol. After a further two days this medium was rem oved and replaced with 

fresh  maturation medium in the absence of agents. The extent o f  differentiation was 

assessed  6  days later. During the two day priming phase if included alone, in the 

absence  o f  GH, lOnM forskolin, IBMX or isoproterenol, were observed to induce a 

v e ry  small, but not significant, increase in terminal differentiation as assessed by 

G P D H  activity (Table 4.3). Significantly, each of  these agents strongly enhanced the 

ability of GH to promote differentiation by 91.0±21.1% (pcO.Ol, n=9), 133.9±37.3% 

(pcO.Ol, n= 6 ) and 76.3±7.2% (pcO.OOl, n=3) respectively (Table 4.3). In contrast to 

thus effect the same agents, namely lOnM forskolin, 500pM  IBM X and isoproterenol, 

significantly inhibited terminal differentiation when they were included during the initial 

tw o days of the maturation phase (Table 4.4). In this circumstance, GPDH activity was 

inhibited by 59 .8 il2 .19?  (pcO.Ol, n= 6 ), 71.9±9.5% (pcO.OOl, n= 6 ) and 78.918.0%  

(pcO.OOl, n=3), respectively. Inclusion of 50|iM  forskolin also inhibited differentiation 

b y  73 .7±6.2%  (pcO.OOl, n= 6 ) when added to cells  at the m atura tion  phase. 

Assessment o f  the effects of 5()pM forskolin specifically on the priming stage was not 

practical as this high concentration produced an elevation in cyclic A M P levels which 

persisted into the maturation stage (Fig 4.8A). From Fig 4.8) it is clear that the addition 

of lOnM forskolin or IBMX to preadipocytes at the beginning of the priming phase, 

and the continued presence throughout this phase, would result in relatively transient 

increases in cyclic A M P levels which would be lost by com m encem en t o f  the 

maturation phase (48 hours after initial addition of the agents). In contrast the addition 

o f  5()}iM forskolin to cells at com m encem ent of the priming phase would result in 

around a 2 fold elevation in intracellular cyclic AMP levels 48 hours later, at the start of 

the  maturation phase. Hence, the effects of 5()gM forskolin on the priming phase 

cannot be dissociated from effects on the subsequent maturation phase.

Intriguingly, isoproterenol did not induce significant elevations in intracellular cyclic 

A M P  during priming or maturation (results not shown). This is consistent with 

previous observations in 3T3-L1 (Rubin et ah  1977) and 3T3-F442A (Kilgourand
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Table  4.3)  Ef fect  o f  Forskol in ,  I B M X  and Isoproterenol  on the P r im ing  
o f  3 T 3 - F 4 4 2 A  P r e a d ip o c y te s .
Cells were grown in 10% calf serum which had been depleted of GH. At confluence the 
growth m edium  was rem oved and cells were prim ed for two days in serum  free  
m edium  in the presence or absence of 2nM  G H  along with the agents indicated. This 
w as then replaced with m aturation medium and 8  days later G P D H  activity was 
m easured. For further details see section 2.2.4.2. The  G P D H  activity obtained in 
cultures primed in the absence of GH was 0.04±0.28 nanokatals/mgDNA (n=9) and all 
values are expressed as the relative increase (fold) in this activity. Results are m eans ±  
S.E.M. with the num ber of observations in parenthesis. *, ** indicate the value differs 
significantly from that for cells primed with GH alone; p<0.01, p<0.()01 respectively.

Fold  i n c r e a s e  in G P D H  activ i ty

S t a g e A d d i t i o n s G H - G H  +

P r i m i n g 1 8 6 . 2 ± 7 . 5  (n=5)

lOnM Forskol in 9 .8±5 .4  (n= 9)** 1 6 4 . 7 ± 1 8 . 2 *  ( n = 9 )

I s o p r o te r e n o l 12 .7± 7 .7  (n=3)** 1 5 2 . 0 ± 6 . 2 * * ( n = 3 )

5 0 0 p M  IBM X 1 3 .0± 5 .2  ( n = 3 ) ~ 2 0 1 . 7 ± 3 2 . 2 *  ( n = 6 )
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T a b l e  4 .4 )  E f f e c t  o f  F o r s k o l in ,  I B M X  and I s o p r o t e r e n o l  on  the  
M a tu ra t io n  o f  3T 3-F 442A  Preadipocyte s .
Cells were grown to confluence as described in the legend to Table 4.3) then primed for 
2 days in serum free medium containing 2nM GH. After 2 days this was replaced with 
maturation medium and the agents indicated. Drugs were removed from the maturation 
medium after 2 days and 6  days later GPDH activity was measured. The GPD H  activity 
obtained in cultures induced to differentiate with this protocol in the absence o f  drugs 
was 3.88±1.06 nanokatals/mgDNA (n= 6 ) and all values are expressed as the relative 
change  (fold) in this activity. Results  are m eans ±  S .E.M . for the n u m b er  of 
observations in parenthesis. *, ** indicate the value differs from  that for cells 
differentiated in the absence o f  additions, pcO.Ol, pcO.OOl respectively.

A d d i t i o n Fold Change  in 

G P D H  Act iv ity

lOnM Forskol in 0 . 4 0 ± 0 . 12* ( 6 )

50fiM Forskol in 0 . 2 6 ± 0 . 0 6 * * ( 6 )

10pM  Isoproterenol 0 . 2 1 ± 0 . 0 8 * * ( 6 )

5 0 0 p M  IBM X 0 . 2 8 ± 0 . 0 9 * * ( 6 )



T ab le  4.5)  Ef fec t  o f  E le v a t in g  C yc l ic  A M P  with Forsko l in ,  I B M X  and  
I soprotereno l  D u r in g  P r im in g  and M a tu ra t io n  on the D N A  C o n te n t  o f  
3 T 3 - F 4 4 2 A  P r e a d ip o c y te s .
Cells were grown to confluence as described in the legend to Table 4.3). At confluence 
the growth m edium  was rem oved and cells were primed for 2  days in serum free 
m edium  in the presence of 2nM GH. After 2 days this was replaced with maturation 
medium and the amount o f cellular D N A  was measured fluorometrically 8  days later as 
described in section 2.2.14. Drugs were included either during the 2 day priming stage, 
along with GH, or alternatively for the first 2 days of the maturation stage, as indicated. 
D N A  values are expressed as the am ount (pg) o f  D N A  extracted from one 100mm 
petri-dish. Results are means±S.E.M . for 6  observations.

DN A Content  (pg )

D r u g s  Inc lu ded During . . .

A d d i t io n P r i m i n g Maturation

D i lu e n t 1 5 . 3 ± 3 . 5 1 7 . 5 ± 2 . 2

SOOpM IB M X 1 3 . 3 ± 1 .8 1 8 . 2 ± 3 . 2

lOnM Forsko l in 1 6 . 0 ± 2 . 1 1 6 . 3 ± 3 . 3

5 0 p M  Forsko l in 1 2 . 4 ± 2 . 1 1 5 . 2 ± 4 . 0
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Anderson, 1993) preadipocytes and implies that the effects of isoproterenol in this 

study are attributable to mechanisms distinct from those utilised by cyclic AMP.

One o f  the effects o f  cyclic A M P on cell growth is to act as a positive- or negative- 

regulator of  cellular proliferation (Table 4.1). Given that the num ber o f  cells increases 

during the maturation phase of 3T3-F442A differentiation (Table 3.2) part of the actions 

o f  cyclic  A M P on preadipocyte differentiation m ay be to enhance  or inh ib it  this 

expansion phase. To clarify this, cyclic A M P levels were elevated during either the 

priming and maturation phases and DNA content, a direct m easurement o f  cell number, 

was measured in terminally differentiated cultures. The results presented in Table 4.5) 

demonstrate that elevation of cyclic AM P with IBM X or with 10nM or 5()|iM forskolin, 

during priming or maturation, had no significant effect on the num ber of terminally 

differentiated cells. This suggests that the positive and negative effects of cyclic A M P 

on the differentiation of 3T3-F442A preadipocytes are achieved through modulation of 

phenotypic differentiation and not by increasing the number of terminally differentiated 

adipocyte cells.
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4.4) D IS C U S S IO N

It is well established that cyclic AM P exerts a range of effects upon cell growth 

depending on the cell type being studied (Rozengurt et al, 1986; Dum ont et al, 1989; 

Frodin et al, 1994; Englaro et al, 1995).To study the effects of cyclic A M P on the 

differentiation of 3T3-F442A preadipocytes multiple agents were employed which raise 

in tracellu lar  cyclic A M P levels by different m echan ism s (Fig 4.1). In 3T3-L1 

preadipocytes  an accelerating effect of cyclic A M P on adipose convers ion  was 

suggested originally by Russel and Ho (1976), and later by Elks and M anganiello  

(1985), on the basis o f  studies using synthetic phosphodiesterase inhibitors such as 

IBM X. In rat preadipocytes Bjbmtorp et al (1980) described a small, but significant, 

effect o f  IBM X  on differentiation, whereas Gaillard et al (1989) reported a more 

substantial enhancement of O b l7  cell differentiation by this inhibitor. In the present 

study, IBM X very effectively promoted the expression of a late m arker o f  adipose 

conversion of 3T3-F442A cells, namely GPDH. This effect was observed when cells 

were induced to differentiate with foetal calf serum and insulin (Figs 4.2 and 4.3) or 

under defined serum free conditions (Figs 4.5 and 4.6).

Tw o major pharmacological effects of IBM X are inhibition o f  cyclic nucleotide 

phosphodiesterases and inhibition of interaction of adenosine with its receptor (Elks and 

Manganiello, 1985). In this study the effects of IBMX were mimicked with specific 

activation of adenylate cyclase by low concentrations of the diterpene forskolin (lOnM) 

and by a lipophilic cyclic AM P analogue, namely CPT-cA M P (Fig 4.4 and 4.7). This 

suggests that the effect of IBMX is due to its ability to elevate cellular cyclic A M P 

concentrations, by inhibition of cyclic AM P phosphodiesterase activity.

In contrast to the stimulatory effects of 10nM forskolin and IBMX, high concentrations 

of forskolin (5()pM) potently inhibited the differentiation of 3T3-F442A cells induced 

by FC S/insulin  (Figs 4.2 and 4.3) or D D M  (Figs 4.5 and 4.6). A lthough the 

physiological consequences of forskolin treatment are, in general, thought to be 

mediated by increases in intracellular cyclic AMP, a number of cyclic AMP-independent 

events have been reported (Laurenza et al, 1989). For example, forskolin has been 

found to com plete ly  inhibit glucose transport in adipocyte p lasm a m em branes 

(EC«io=24()nM) by direct in terac tion  with a transporte r  (Joost et al, 1988). 

Consequently , the anti-differentiation effects of 5()pM forskolin could be due to 

inhibition of glucose-uptake for oxidative phosphorylation or preventing deposition of 

glucose into lipid. However, a number of observations indicate that the principal effects 

of 5()|iM forskolin on 3T3-F442A differentiation are primarily attributable to elevation 

of intracellular cyclic AMP. Firstly, the inability of an inactive analogue of forskolin,



1,9-dideoxyforskolin, to reproduce a forskolin like elTect (Figs 4.3 and 4.5). This  

analogue has also been shown to completely inhibit glucose transport in rat adipocytes, 

bu t does not stimulate adenylate cyclase even at lOOfiM (Joost et a l , 1988). Secondly, 

the effect of 5()|iM forskolin was mimicked by a high concentration of CPT-cA M P and 

by cholera toxin (Figs 4.3 and 4.5).

The inhibitory effect of cholera toxin on 3T3-F442A differentiation is in com plete  

accordance with the work of W ang et al (1992) who also demonstrated that cholera 

toxin exerted a blockade on 3T3-L1 preadipocyte differentiation. In addition, antisense 

oligodeoxynucleotides to G S(X were shown to accelerate 3T3-L1 differentiation (W ang 

et al, 1992). These authors conclude that these effects were independent of an adenylate 

cyclase-mediated increase in cyclic AM P levels. This was based on the observation that 

l()p.M forskolin had no effect on differentiation as assessed by qualitative Oil Red O 

staining. This is perhaps somewhat of a paradox since elevated cyclic A M P levels, 

induced by cyclic AM P phosphodiesterase inhibitors, have been shown to potently  

enhance 3T3-L1 differentiation as assessed quantitatively by GPDH activity (Elks and 

Manganiello, 1985; Schmidt et al 1990). Furthermore, the results in the present study 

are consistent with at least part of the inhibitory actions of cholera toxin on 3T3-F442A 

cell differentiation being mediated by cyclic AMP. This, together with the observations 

o f  Elks and M anganie llo  (1985) and Schm idt et al  (1990), suggests that the 

conclusions made by W ang et al  on the functional role of G S(X in p readipocyte  

differentiation should be carefully reevaluated in terms of a more sensitive m arker of 

terminal differentiation, such as GPDH activity.

Interestingly, the present results indicated that small, transient increases in intracellular 

cyclic AM P, as induced by IBMX and lOnM forskolin (Fig 4.8), early in the 3T3- 

F442A differentiation process, promote terminal differentiation, while larger, more 

sustained increases, as induced by 50pM  forskolin (Fig 4.8), inhibit the process. Thus, 

it seems that a discrete cyclic AM P signal, temporally localised to the initial stages of 

differentiation, exerts a potentiating influence, but a continued and prolonged cyclic 

AM P signal interferes with full expression of the fatty phenotype by exerting effects at a 

later stage.

Interestingly, elevations in intracellular cyclic AM P have also been shown to potentiate 

terminal differentiation of Ob 1771 preadipocytes (Gaillard et al, 1989). In the present 

study transient elevation of cyclic AMP, with 10nM forskolin and IBM X, during the 

priming phase of 3T3-F442A cellular differentiation synergistically enhanced the ability 

of GH to promote terminal differentiation (Table 4.3). Since GH is also a critical 

requirement for the differentiation of Ob 1771 cells (Doglio et al, 1987), it is tempting to
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speculate that part ol’ the adipogenic actions of  cyclic A M P in this cell type are 

attributable to a similar interaction.

The molecular mechanisms used by GH to promote differentiation are not known, but 

are likely to involve the induction of genes which are early markers o f  this process. GH 

has been shown to induce the expression of lipoprotein lipase (Bacellini-Couget et al, 

1993) and the transcription factors c-fos, c-jun (Sumantran et al, 1992), and C/EBP p 

and 8  (Clarkson et al, 1995). Cyclic AM P has also been shown to be a direct inducer of 

C /EBP p and 8  in mouse cortical astrocytes (Cardinaeux and Magistretti, 1996) and of 

C /E B P P  gene expression in 3T3-L1 preadipocytes (Yeh et al, 1995). C /EB PP and 

C / E B P 8  have been shown to play an essential, early pivotal role in the adipose 

convers ion  o f  3T3-L1 cells (Yeh et al, 1995), it would therefore  be extrem ely  

interesting to investigate to what extent GH and cyclic A M P cooperate in the induction 

of these "adipogenic" transcription factors.

A  potential mechanism hy which GH could induce changes in protein expression is 

through activation of growth regulatory signalling pathways such as the M A P kinase 

(Marshall, 1995) and p7()S6K/p85sr,K (Kozma and Thom as, 1994) cascades. Studies 

using the pheochrom ocytom a cell line, PC 12, have shown that the transmission o f  

signals to M AP kinase, mediated by sequential activation of Ras, R af and M EK  , may 

serve to transduce differentiative signals (Noda et al, 1985; W ood et al, 1993; Cowley 

et al, 1994; Marshall, 1995; Pang et al, 1995). Recent studies have suggested that 

activation of this pathway may also be a requirement for preadipocyte differentiation. 

Transfection of 3T3-L1 preadipocyles with R af or Ras (Porras et al, 1994) induces 

partial adipogenesis and a complete blockade is induced when cellular levels of M AP 

kinase are specifically depleted with antisense oligodeoxynucleotides (Sale et al, 1995). 

Since GH has been shown to activate M AP kinases in 3T3-F442A  preadipocytes 

(Anderson, 1993) this could be a potential pathway underlying the adipogenic actions 

GH. In addition, a number of studies have suggested that part of the effects of cyclic 

A M P on cell growth may be mediated by regulatory "cross-talk" with the M AP kinase 

cascade (Graves and Lawrence, 1996). Consequently, it is possible that the potentiating 

action of cyclic AM P on the GH-priming of 3T3-F442A adipogenesis may be due to 

interactions between the GH and cyclic AM P pathways, perhaps at the level of M A P 

kinase.

The synthetic p-adrenoceptor agonist isoproterenol (10pM ) mimicked the effects of 

forskolin (10nM) and IBMX on GH-priming. This is consistent with the findings of 

V assaux  et al (1992) who dem onstrated  that isoproterenol enhanced  Ob 1771 

differentiation by 2 fold and rat preadipocyte differentiation by approximately 1.5 fold;
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this was accompanied by an approximate 20 fold increase in intracellular cyclic AMP. 

How ever, isoproterenol does not elevate cyclic A M P levels in 3T3-F442A fibroblasts 

(A n d e rso n  and K ilgour,  1993) or ac tiva te  PK A  (this au tho r , unp u b lish ed  

observations). Accordingly isoproterenol should induce some additional intracellular 

event(s), independent of activation of adenylate cyclase, which are able to act in concert 

w ith  the GH  s ignalling  pa thw ay to poten tia te  d iffe ren tia tion . T he  effec ts  o f  

isoproterenol on differentiation are likely be mediated by pi-adrenergic receptors as this 

is the predom inant subtype in 3T3-F442A fibroblasts (Feve et al, 1991) whereas the 

p redom inan t isoform in differentiated cells is the P 3 -subtype (Feve et a l , 1994). 

A lthough P-adrenergic receptors are typically thought to activate G s, these receptors 

have also been shown to interact with Gj in a variety of cells and reconstituted systems 

(Assano et al, 1984; Rubenstein et al, 1991).

In contrast to their priming actions during the initiation of differentiation, cyclic A M P 

and p-adrenergic stimulation were found to be inhibitory during the terminal stages of 

the process (Table 4.4). Spiegelman and Green (1981) reported that agents which 

increase intracellular cyclic AM P levels inhibit lipid accumulation and the expression of 

several lipogenic enzymes in 3T3-F442A cells. In their study the cyclic AMP-elevating 

agents were either present throughout the entire differentiation period or added 6  days 

after the induction of differentiation. Antras et al (1991) also dem onstrated  that 

isoproterenol and cyclic AMP-elevating agents evoked transcriptional down-regulation 

o f  genes encoding lipogenic enzymes in mature 3T3-F442A adipocytes. Hence these 

inhibitory effects are consistent with the inhibitory effect o f  cyclic A M P observed 

during the maturation period in the present study.

Insulin and EGF are essential components of the medium used to promote the second 

phase of differentiation whereas T 3 exerts only a modulatory influence (Guller et al, 

1988). The molecular mechanisms underlying the effects of EGF and insulin are not 

known but each induce strong activations of M AP kinases in 3T3-F442A cells (chapter 

5) which are essential for preadipocyte differentiation (Sale et al, 1995). In many cell 

types the biological effects of cyclic AM P appear to be mediated in part by changes in 

the activities of intermediate steps of transduction pathways utilised by insulin and 

growth factors (Graves and Lawrence Jr., 1996). For example, in certain fibroblastic 

cell lines (Burgering et al, 1993; Hordi jk et al, 1994) and rat adipocytes (Sevetson et al,

1993) cyclic AM P inhibits the M AP kinase cascade and this correlates with antagonistic 

effects of cyclic AM P on growth factor-induced mitogenesis and insulin-mediated 

effects on metabolism respectively. Therefore, in defining mechanisms by which cyclic
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A M P attenuates the transduction of diflerentiative signals by insulin and EGF, the effect 

of cyclic A M P on the activation of M AP kinases should be assessed.
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4.5)  C O N C L U S I O N S

This study demonstrates that increases in cyclic A M P levels exert differential effects 

upon the differentiation of 3T3-F442A preadipocytes which depend upon the stage of 

the differentiation process at which the levels are raised. During the early stages of the 

process cyclic A M P synergistically promotes differentiation in the presence o f  GH. 

Subsequently  cyclic  A M P inhibits differentiation at the m aturation stage. These 

observations may go some way in helping to explain some the apparently contradictory 

findings presented in Table 4.2). The molecular m echanisms involved remains to be 

elucidated but are likely to involve either the direct modulation of gene expression by 

the cyclic nucleotide or modulation of the signal transduction pathways utilised by G H 

and by insulin and EGF.
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Chapter Five

Interactions Between The Cyclic 
AMP and MAP Kinase Pathways 
Effect On The Differentiation Of 

3T3-F442A Preadipocytes.
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5.1) INTR OD U CTIO N

The results from Chapter 4 demonstrate that cyclic AM P can exert differential effects 

on the cellular differentiation of preadipocyte 3T3-F442A cells. These reciprocal 

actions appear to he dependent on the stage of differentiation at which levels are 

raised. D uring the initial prim ing stage of differentiation cyclic  A M P interacts 

synergistically with GH to potentiate differentiation, whereas in the later, insulin- 

induced m aturation phase cyclic A M P behaves as a potent inh ib itor of  terminal 

differentiation. H ow  cyclic A M P can elicit such radically different responses in 

differentiating preadipocyles is not known. However, because the cellular-response to 

cyclic A M P is stage-specific, this suggests that the composition o f  the extracellular 

hormonal milieu may be a detenuining factor. It is therefore conceivable that cyclic 

A M P could be modulating the cellular response to particular adipogenic hormones by 

opposing or enhancing specific intracellular signals generated at their receptors. A 

complete understanding of the mechanisms of adipogenic hormone-receptor binding 

will be necessary  to determine the consequences of such regulatory  cross-talk. 

Nevertheless, in recent years our appreciation o f  the intracellular events involved in 

growth and differentiation factor signalling has improved substantially.

C om m itm ent to progress through the cell cycle or to arrest in G| fo llow ed by 

differentiation is thought to involve changes in gene expression induced by growth 

and differentiation factors (MacDougald and Lane, 1995). Stimulation o f  cell growth, 

through G-protein-coupled serpentine receptors or through receptor-coupled tyrosine 

kinases, involves activation of al least two distinct protein kinase cascades. The first to 

be discovered involves the erk gene products p42 and p44 M AP kinase (Her et al, 

1991; Pages et al, 1995) which are activated simultaneously in response to signals 

transmitted sequentially through p21r,,\  p74 r‘l1 and p45m<'k (Marshall, 1995). Recently, 

m em bers of the cytokine receptor superfamily, such as the GH receptor, have also 

been shown to feed into the M AP kinase pathway (Winston and Hunter, 1995). Once 

activated p42/p44 M AP kinase can be translocated to the nucleus (Chen et al, 1992;

Lenormont et al, 1993) and directly phosphorylates transcription factors, including
TCFp62 and ATF-2 (Davis, 1993). In addition, a number of cytosolic substrates for 

M A P kinases have been identified, including M A PK A P kinase 1, phospholipase A 2, 

and Slat 1 (Sturgill et al, 19SS; Lin et al, 1993b; Lin et al, 1994; Wen eta l ,  1995).

Although it is clear that the M AP kinases play a pivotal role in milogenesis (Pages et 

al, 1993), accumulated data from several sources has suggested that the M AP kinase 

cascade is also a transducer of differentiative signals. Different m em bers of the 

cascade have been implicated in the cellular differentiation of a diverse range of cell
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types; including thym ocytes  (Alherola-Ila  et a l , 1995; C rom pton  et a l , 1996), 

pheochrom ocy tom a (PC 12) cells (Qui and Green, 1992; Pang et al, 1995) and 

Drosophilla  photoreceptors (O'Neil et al, 1994). The most compelling evidence for the 

involvement of the M A P kinase pathway in cellular differentiation has come from the 

use o f  dom inan t  negative  in terfering  m uta tions  o f  M E K  w hich  inh ib it  the 

differentiation of  T-cells  (Alherola-Ila et al, 1995) and PC12 cells (Cowley et al,

1994). A possible involvement of the M AP kinase pathway in the control of adipocyte 

developm ent was initially suggested by the observation that dom inant inhibitory 

mutants of Ras block differentiation of 3T3-L1 fibroblasts to adipocytes (Benito et al, 

1991). How ever, ev idence  suggests that Ras is an upstream activator m ultiple 

pathways (Lowry and Willumsen, 1993). A more direct, anti-sense approach has been 

used recently to demonstrate an obligatory requirement for p42 and p44 M A P kinases 

for the terminal differentiation of 3T3-L1 preadipocytes (Sale et al, 1995).

Although cyclic AMP, induces an activation of M AP kinase in neuronal PC 12 cells 

this is not sufficient to differentiate these cells (Frodin et al, 1994). This appears to be 

due to the transient nature of the cyclic AMP-stimulation which is not sufficient to 

induce translocation of M A P kinase to the nucleus (Yao et al, 1995). In contrast, 

differentiation induced by nerve growth factor (NGF) is characterised by prolonged 

activation and nuclear translocation of M AP kinase (Traverse et al, 1992; Nguyen et 

al, 1993). Still, cyclic AM P acts synergistically  with N G F to potentiate  PC 12 

differentiation (Yao et al, 1995). Therefore, it appears that there exists a threshold 

duration and magnitude of MAP kinase activation which must be achieved before a cell 

is committed to a pathway of differentiation. Indeed, EGF, which induces a transient 

activation of M AP kinase and proliferation in PC 12 cells, can be converted into a 

differentiation agent by synergistic interaction with cyclic AMP (Yao et al, 1995). This 

differentiation was associated with sustained activation and nuclear localisation of 

M A P kinase (Yao et al, 1995). Thus, cyclic AM P may serve to augment cellular 

differentiation by enhancing activation of signalling pathways by differentiative 

agents.

To try and understand the molecular mechanisms underlying the effects o f  cyclic 

A M P on differentiation of 3T3-F442A cells presented in Chapter 4 a study was 

undertaken to determine if the differential effects of cyclic AMP in preadipocytes were 

attributable to functional interplay with the M AP kinase cascade. This required that the 

requirement for M AP kinases in transducing stage-specific differentiative signals be 

assessed. This involved cellular depletion of p42 and p44 MAP kinases with antisense 

oligodeoxynucleotides and the use of a recently discovered chemical inhibitor of MAP 

kinase activation. The ability of cyclic AM P to activate M AP kinases, or enhance the
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signal propagated hy other adipogenic agents, was assessed immunologically and by a 

specific phospho-transferase assay.
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5.2) EXPERIM ENTAL PROCEDURES

5.2.1)  Standard  Procedure  for Cell Culture  and Di fferent iat ion

3T3-F442A  cells were grown to confluence in D M EM  containing 10% calf  serum. 

C o nf luen t  cu ltu res  were induced  to d ifferen tia te  with a chem ica l ly  defined 

differentiation medium (DDM) or with foetal calf serum and insulin (FCS/insulin) as 

described in sections 2.2.2 and 2.2.3.

5 .2.2)  T w o -p h a s e  D i f ferent ia t io n  Protocol

For certain experiments cells were grown to confluence in the presence of 10% calf 

serum depleted of GH. This was prepared as described in Chapter 2. Cells were 

passaged at least twice in DMEM containing 2.5mM glutamine and 10% GH-depleted 

calf serum, prior to use for differentiation studies. Confluent cells were washed three 

times in PBS then incubated for 2 days in serum free medium [F12:DM EM  (2:1)] 

containing transferrin (10pg/m l), fetuin (50pg/ml). glutamine (2.5mM ) and BSA 

(lm g/m l)]  along with the other additions indicated in figure legends. Cultures were 

then washed, as before, and the medium replaced with maturation medium [serum free 

medium containing insulin (l.XpM), T^ (O.lng/ml) and EGF (50ng/ml)]. The extent 

o f  differentiation was measured al ter a further 8  days.

5.2.3)  O ligodeoxynuc leo t id e  T r ea tm ent  o f  Cel ls

The design, synthesis and purification of phosphorothioate oligodeoxynucleotides 

has been described previously (Sale et aL 1995). Cells were grown in 22mm dishes 

and were treated with o ligodeoxynucleotides having just attained confluence. 

M onolayers were washed three times with 2ml DM EM  and appropriate dilutions of 

oligodeoxynucleotides in l(K)pl DMEM were preincubated al room temperature for 30 

minutes with lOOpl Lipofeclin (Life Technologies). This mixture was added to the 

cells with a further 2()()pl DMEM. The final concentration of oligodeoxynucleotides 

was 5|iM. Cells were incubated for 8  hours at 37°C in the presence of 5% CCX After 

this time the medium containing Lipofeclin was removed and the incubation continued 

for a further 40 hours using fresh medium containing 1 0 % heat-treated calf  serum 

containing 5|iM oligonucleotide. After 40 hours the medium was removed and cells 

were washed and treated with DDM or FCS/insulin differentiation media as described 

in section 5.2.1). The differentiation medium, containing fresh oligodeoxynucleotide, 

was replenished at two day intervals. For further details refer to figure 5.1.
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Fig  5.1)  Protocol  for Oligodeoxynuc leot id e  T r ea tm ent  and S u b s e q u e n t  
D ifferentia t ion  o f  3T3-F442A Cells.
C onfluen t  3T3-F442A  cells were treated for 8  hours with a com bina tion  o f  
o ligodeoxynucleotide (oligo) and the transfection reagent Lipofectin  in D M EM . 
Following this the medium was replaced with medium containing fresh oligo and 10% 
heat inactivated calf serum. This second incubation was continued for 40 hours and 
then the levels of cellular M AP kinase were determined by im m unoblotting  as 
described  in section 2.2.11. Parallel cultures were challenged  with a defined 
differentiation medium (DDM) or medium containing foetal calf serum and insulin 
(FCS/insulin) and the extent of differentiation was assessed 10 days later. During the 
differentiation period the medium and oligo under test were replenished at two day 
intervals.
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5.2.4) M A P Kinase Assay

Cells were scraped in Buffer A [25mM Tris.HCl pH 7.5, 25m M  NaCl, 40m M  p- 

nitrophenylphosphate, 10pM dithiothreitol, 10% (v/v) ethylene glycol, Im M  sodium 

orthovanadate,j 100|iM PMSF, leupeptin (2|jg/ml), pepstatin A (2pg/ml) and aprotinin 

(2|ig/ml)] and lysed by shearing through a 2 6 V2 G needle. The lysates were then 

c e n tr ifu g e d  (140()0gmax, 5min). M A P kinase  was assayed fo llow ing  partial 

purification of cell lysates by batch absorption to phenyl-Sepharose, as described 

previously  (A nderson et a l ,  1991). Briefly, cell extracts were m ixed with 150|il 

phenyl-Sepharose for 5 min. The Sepharose was then washed, in a step-wise fashion, 

with buffers containing increasing concentrations of ethylene glycol. M A P kinases, 

which bind tightly to this matrix (Ray and Sturgill, 1991), were eluted with buffer 

containing 609?; ethylene glycol and assayed using myelin basic protein as a substrate 

(Anderson, 1992).

5.2.5)  Assay  o f  Cycl ic  A M P -d e p e n d e n t  Protein Kinase

PK A activity of cell lysates was assayed by m easuring the phosphorylation of 

kemptide (0.26mM) at 30°C for 10 minutes in a buffer containing 75mM  Tris, pH 7.5; 

15mM MgCH; 4mM  DTT; 100pM ATP; 3fiCi/ml [y-3 ‘P]ATP in the presence or 

absence of PKI (5 |iM ). PKA activity was calculated as the am ount of kemptide 

phosphorylated in the absence of PKI peptide minus that phosphorylated in the 

presence of PKI. For further details see section 2.2.13.3.

5.2.6)  Im m unoblo t t ing  of  p 4 2 MAI K/ p 4 4 M A 1  K

Cells were lysed in Buffer B (25mM Hepes pH7.5, 2.5mM EDTA, 0.2% NP-40, 

50mM  sodium chloride, 50mM sodium fluoride, 30mM sodium pyrophosphate, 10% 

glycerol, Im M  sodium orthovanadate, 400pM  PM SF and 2pg/ml each of leupeptin, 

pepstatin A and aprotinin), clarified by centrifugation ( 14000gmax, lOmin) and 

denatured by adding 0.25 volumes of 5X concentrated sample buffer. Equal quantities 

of lysate  protein  (5 0 p g )  were run on 109? p o lyac ry lam ide  gels (30:0 .32 

acrylamide:bis-acrylamide) overnight with a constant current o f  7mA. Following 

transfer to nitrocellulose (2 hours al 400mA), immunoblots were blocked with 3% 

BSA and probed with anti-MAP kinase antibodies (1:1000; see section 2.2.11) for 3 

hours followed by horse radish peroxidase-conjugated anti IgG (1:10000) for 45 

minutes. Immunoreactive bands were detected using the ECL (Amersham) system. 

For some experiments the activation status of MAP kinase was determined using this 

imm unoblotting system. In common with many proteins, the phosphorylation and 

activation of MAP kinase is accompanied by a decrease in its electrophoretic mobility
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on SD S-polyacry lam ide  gels (Leevcrs and M arshall, 1992). Activation of M A P 

kinases  was character ised  by the appearance  o f  s low er m igra ting  form s on 

immunoblots.

5.2.7)  G P D H  and DN A Assays

G PD H  activity was measured by the method of W ise and Green (1979) and activities 

were expressed relative to DNA content. The DN A content of cellular homogenates 

was determined fluorimetrically (Brunk et al, 1979). The GPDH enzym e activity per 

plate of cells was expressed as the num ber of m oles o f  N A D H  oxidised/second 

(katals)/mgDNA.
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5.3) RESULTS

In an attempt to understand the molecular basis for the effects of  cyclic A M P on the 

differentiation of 3T3-F442A cells (Chapter 4) antisense depletion of cellular p42 and 

p44 M A P kinase was used to detenuine whether the M A P kinase pathway plays a 

functional role in m odulating fat cell differentiation. The design of M A P kinase 

antisense oligodeoxynucleotides (antisense EAS1) and control oligodeoxynucleotides, 

and the development of the protocol for their usage, was first described by Sale et al, 

1995. Antisense EAS1 was designed to com plement a 17-base nucleotide sequence 

unique to p42 and p44 M AP kinases. In the mouse this corresponds to nucleotides 25- 

41 of the p42 M AP kinase cDN A (Her et al, 1991) and 1-17 of the p44 M A P kinase 

cD N A  (Pages et al, 1995). These sequences encompass the first 17-bases of the 5'- 

flanking regions of the M AP kinase genes and includes the ATG initiation codon (Fig

5.2). Control oligodeoxynucleotides were also synthesised in either a sense or random 

(scrambled) orientation.

Cultures of 3T3-F442A cells that had just attained confluence were treated for 48 

hours with 5 |iM  antisense phosphorothioate o ligodeoxynucleotide EAS1 in the 

presence of 10% heat inactivated calf serum. The transfection agent Lipofectin was 

present during the first 8  hours of the incubation. Following treatment, the levels of 

cellular M AP kinase were determined using two different specific antibodies to the 42 

and 44 kDa forms of M A P kinase (termed p42MAI K and p44MAIK, respectively). 

Antisense EAS1 caused a dramatic depiction of cellular p44MAIK (approximately 90%) 

w hen com pared  to cells treated with the transfection agent alone (Fig 5.3A). 

Preliminary studies showed that Lipofectin treatment alone did not affect cellular levels 

of M A P kinases. The p42 isoform of M AP kinase exhibited exquisite sensitivity to 

depletion with antisense EAS1 as levels of the protein were undetectable even with 

lo n g  e x p o s u re s  o f  the im m u n o b lo t .  I n c u b a t io n  o f  ce l ls  w ith  5 |iM  

oligodeoxynucleotide in a scrambled or sense orientation did not have a significant 

effect on the expression of p42N1AIK or p44MAFK thereby indicating that the antisense 

depletion induced by EAS1 was specific. The effect of antisense EAS 1 on other major 

cellular proteins was assessed qualitatively by staining polyacrylam ide gels with 

Coomassie blue. The general banding pattern of proteins extracted from cells treated 

with antisense EAS1 was very similar to that observed in cells treated with control 

oligodeoxynucleotides of with transfection agent alone. However, a small increase in 

the expression of a protein species of around 85kDa was consistently observed in 

EAS 1-treated cells (Fig 5.3B).
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A n t i s e n s e  EAS1

- 1 0  +1 +10  +20
M ou se  e r k l

F i g  5 . 2 )  D e s i g n  o f  A n t i s e n s e  E A S 1  P h o s p h o r o t h i o a t e  
O l i g o d e o x y n u c l e o t i d e s
Antisense EAS1 was designed to complement, in an antisense orientation, the first 17 
bases of the mouse p44 and p42 MAP kinase genes (erks 1 and 2, respectively). This 
region is identical and unique to both erk genes and encompasses the ATG initiation 
codon (indicated as a hoxed form in the diagram). Regions of complementary are 
indicated with broken lines.
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A) p42MA1>K >

p44M APk >

B )

p85 >

aptE

L I P O F E C T I N  + +
S C R A M B L E D  - +
E A S  1 
S E N S E

F ig  5.3) E f fe c t  o f  A n t i s e n s e  EA S1 on  the  E x p r e s s io n  o f  C e l lu l a r  
M ito g e n  A c t iv a te d  P ro te in  K in ases  (M A P  K inases) .
Just confluent cultures of 3T3-F442A cells were treated with antisense EAS1 (5pM), 
scrambled (5pM) or sense (5pM) oligodeoxynucleotides for 48 hours with Lipofectin 
present for the first 8  hours. The level of cellular MAP kinase was then assessed by 
immunoblotting equal quantities of protein (M)jjji) with specific antibodies to the 42 
and 44 kDa M AP kinases (p42MAI K and p44MA ; Fig 5.3A) as described in section
5.2.5). Alternatively, samples of cell extract were subjected to SDS-PAGE and stained 
with Coomassie brilliant blue (Fig 5.3B). Results are representative o f  experiments 
carried out on at least three separate occasions.
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H aving  determined that antisense EAS1 selectively and thoroughly  depletes the 

expression of  p42MA1K and p44MArK proteins the role of these proteins in transducing 

differentiative signals by FCS/insulin was evaluated. Approximately 90% of the cells 

treated with transfection agent alone underwent adipose conversion under the influence 

of  FCS/insulin as estimated by Oil red O staining (Fig 5.4). The G P D H  activity in 

these cells was determined to be 7.6±0.3 (n=5) nanokatals/m gD NA . Incubation of 

cells  with 5 p M  antisense EAS1 caused a dram atic  reduction in the ex ten t of 

d ifferentia tion as judged  by lipid accum ulation (Fig 5.4) and a corresponding  

reduction in GPD H  activity (approximately 95%  reduction; Table 5.1). Incubation 

with 5jiM sense or scrambled oligodeoxynucleotides did not significantly effect lipid 

accumulation or GPDH activity of differentiated cells (Fig 5.4; Table 5.1). Therefore, 

an tisense  o ligodeoxynucleo tides  to M A P kinase  act specifica lly  to inhibit the 

transmission of differentiative stimuli induced by FCS/insulin in 3T3-F442A cells.

To further confirm that the M AP kinase proteins are involved in the transduction of 

signals by adipogenic factors the effect of antisense EAS1 on the differentiation of 

3T3-F442A cells under serum-free conditions was investigated. Cells were pretreated 

with o ligodeoxynucleotides for 48 hours as described (Fig 5.2), following which 

differentiation was induced with the hormonally  defined differentiation medium 

(DDM ) in the continued presence o f  oligodeoxynucleotides. Under these conditions 

the G PDH activity of differentiated cultures, which were treated with Lipofectin in the 

absence of oligodeoxynucleotide, rose to 3.()±().4 nanokata ls /m gD N A  (n=3). As 

observed for the FCS/insulin  differentiation protocol antisense EAS1 m arkedly 

inhibited differentiation induced by the DDM  producing a qualita tively  similar 

reduction in expressed GPDH activity (approximately 99%; Table  5.1) whereas 

scrambled and sense oligodeoxynucleotides were without significant effect (Table

5.1). Together these observations demonstrate that p42 and p44 M A P kinases are 

required for the adipose conversion of 3T3-F442A preadipocytes.

Having shown an absolute requirement for M AP kinases in the differentiation process 

further studies were undertaken to define the role of these kinases in the modulation of 

differentiation by cyclic AMP. The results from Chapter 3 demonstrate that the 

differentiation of 3T3-F442A cells can be divided into two stages, the first phase 

requires GH and the later, maturation stage requires insulin, EG F and T 3. It was 

demonstrated in Chapter 4 that cyclic AM P acts synergistically with GH to promote 

priming of 3T3-F442A cells to differentiate. In contrast, during the maturation phase 

cyclic A M P is inhibitory. As previously reported (Anderson, 1992) GH activates 

M AP kinases approximately 5 fold in these cells (Table 5.2). It is well established in 

the literature that insulin and EGF, via their tyrosine kinase receptors, activate M AP
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C O N T R O L  S C R A M B L E D  A N T IS E N S E  S E N S E

Fig  5.4) E ffec t  o f  A n t ise n se  D e p le t io n  o f  C e l lu la r  M A P  K in a se  on  the  
D i f fe r e n t ia t io n  of 3T 3-F442A  Cells w ith  F oe ta l  C a l f  S e ru m  a n d  In su l in  
(F C S / in su l in )  o r  D efined  D i f fe re n t ia t io n  M e d iu m  (D D M ).
Cells were grown to confluence and treated with antisense EAS1, sense or scrambled 
oligodeoxynucleotides as described in the legend it) Fig 5.3). Alternatively, control 
cultures were treated with Lipofectin but no oligodeoxynucleotides. Cells were then 
transferred to FCS/insulin in the continued presence of oligonucleotides as described 
in section 5.2.3. After 10 days cells were stained with Oil red () (see section 2.2.5).
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Tab le  5.1)  Effect  o f  Antisense Deple t ion  o f  Cel lu lar M A P  Kinase  on the  
Dif ferent ia t ion of  3T3-F442A  Cells with Foetal  C a l f  Serum  and Insul in  
(FCS/ insul in)  or Def ined Different iat ion M e d iu m  (D D M )
Cells were grown to confluence and treated with antisense EAS1, sense or scrambled 
oligodeoxynucleotides as described in section 5.2. Alternatively, control cultures were 
treated with Lipofectin but no oligodeoxynucleotides. Cells were then transferred to 
FCS/insulin or DDM  in the continued presence oligodeoxynucleotides (section 5.2). 
After 10 days cells were harvested and processed for the assay of GPDH activity. The 
GPDH activities when cultures were exposed to FCS/insulin or DDM  medium alone 
were 7.6±0.3 (n=5) and 3.0±0.4 (n=3) nanokatals/mgDNA respectively. All values 
are expressed as a percentage of these activities. Results are m eans±S.E.M . for 3 
(DDM ) or 5 (FCS/insulin) observations. ** indicates the values are significantly 
different from those for cells differentiated in the absence of oligodeoxynucleotides; 
pcO.OOl.

G PD H  Activity (Percentage  o f  Control )

Treatment F C S / i n s u l i n D D M

5|iM Scrambled 97.63±3.55% (n=5) 10X.33±12.0% (n=3)

5pM  Antisense 4.74±0.929f ** 

(n=5)

(M)5±0.06% ** 

(n=3)

5pM  Sense 98.55±2.769?.- (n=5) 1 ()5± 11.3% (n=3)
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T a b le  5.2)  Ef fec t  o f  G H , Insul in ,  E G F  and T 3  on the Act iva t ion  o f  
M A P  kinase  in 3T 3-F 442A  Cells.
Serum starved cells were incubated lor 10 minutes with GH (2nM), insulin (1.8flM), 
T3 (l(X)pg/ml) or EG F (lng/ml). Following stimulation cells were lysed and cytosolic 
extracts were processed for the assay of M A P kinase as described in section 2.2.13.1. 
Data are expressed as the relative increase (fold) in M A P kinase activity induced by 
each agent above that measured in unstimulated cells and are means±S.E.M. with the 
n u m b er  o f  observa tions  in parenthesis. ** ind ica tes  the values  w hich  d iffer  
significantly from values obtained when cells were incubated in the absence of agents;
p < 0 .0 0 1 .

Treatment Fold Increase in M A P  
kinase  Act ivity

- l.()±().l (n=5)

G H 5.4±0.5 ** (n=4)

Insulin 5.0±0.9 ** (n=4)

EG F 21.2±2.5 ** (n=3)

T3 l.()±().l (n=5)



kinases (reviewed by Fanil et a l , 1993). In 3T3-F442A preadipocytes there is a small 

activation by insulin (Table 5.2) and, consistent with the literature (Anderson, 1992), 

a potent activation by EGF (Tabic 5.2).

Recently a num ber of studies have demonstrated that the effect o f  cyclic A M P on

M A P kinase activation varies, depending on the cell system studied (Angler et a l ,

1996; Graves and Lawrence, 1996; M cKenzie and Poussegur, 1996; Saswati et al,

1996). Therefore, in 3T3-F442A cells it was necessary to establish the effect of cyclic

A M P alone and in combination with other agents to examine if it correlated with the

effects on differentiation. Initially, the d iterpene forskolin was used to elevate

intracellular cyclic A M P and M AP kinase activation status was determ ined by

immunoblotting cell extracts with an antibody which specifically recognises p42MAPK 
M aPKand p44 . In com m on with a num ber o f  proteins which are activated by

phosphorylation, activation of M AP kinase results in a retardation of its mobility in 

SD S-PAG E gels (Leevers and Marshall, 1992). The appearance of the more slowly 

migrating forms of phospho-M A P kinase is taken to represent activation o f  the 

enzyme. Fig 5.6 shows that alter 5 minutes stimulation 5()|iM forskolin, which caused 

a maximal 90±9 (n=5) fold elevation of intracellular cyclic A M P levels (Fig 4.7A), 

induced an activation of p42MAI K (Fig 5.5A), as assessed by mobility shift. However, 

the degree to which M AP kinase is activated by forskolin appears to be relatively 

small. Anderson (1992) reported that the level to which M AP kinase can be activated 

by GH is sensitive to the incubation period o f  cells in serum-free medium. To test 

whether this is the case with forskolin, cells were incubated in serum-free medium for 

various times and the ability of forskolin to activate M AP kinase was determined. 

Little or no stimulation of p42N1AI K phosphorylation was observed in cells serum- 

starved for only 5 hours (Fig 5.6 A). Optimal responses were observed when cells 

were serum-starved between 18 and 48 hours (Fig 5.6A). Assessment of p44MAPK 

activation by forskolin after an overnight (18 hours) incubation in serum-free medium 

revealed a relative degree of activation similar to p42MAI K (Fig 5.6B). The resolution 

of the hyper-phosphorylated form of p44MA1K was not as distinct as with p42MAPK, 

therefore further studies were carried out on the p42 isolbrm on cells which had been 

subjected to at least 18 hours serum deprivation. The activation of p42MAPK with 

forskolin was found to be transient, with the maximal effect occurring at around 5 

minutes after the addition of forskolin (Fig 5.6). The transient nature of M A P kinase 

activation by forskolin is very similar to that observed with other factors which are 

adipogenic in 3T3-F442A cells (Anderson, 1992).

Although forskolin elevates cyclic AMP levels by direct interaction with adenylate 

cyclase a number of non-specific effects of this drug have been reported (Laurenza et
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Fig  5.5) T im e -c o u rs e  o f  M A P K inase  A c t iv a t io n  by 5 0 | iM  F o r s k o l in  in 
3 T 3 -F 4 4 2 A  C e lls .
3T3-F442A  cells were serum starved for 18 hours then incubated with 5()jiM 
forskolin for the indicated times. Cells were then lysed and equal quantities of protein 
(50fig) were immunoblolted with a specific monoclonal antibody to p42‘ ' as 
d e sc r ib ed  in sec tion  2.2.11. The n o n -p h o sp h o ry la te d  ( lo w er  band) and 
phosphorylated (upper hand) forms of the enzyme are indicated by arrows. Results are 
representative of an experiment carried out on two separate occasions.
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Fig  5.6) C o m p a r i s o n  o f  S h o r t -  a n d  L o n g - te r m  S e r u m  D e p r iv a t io n  on 
S u b s e q u e n t  S t im u la t io n  o f  M A P  K inase  by 50 |iM  fo rsk o l in .
Cells were incubated in the absence of serum for the indicated times prior to the 
addition of 5()(JM forskolin (FSKN) or diluent (CNTRL) for 5 minutes. Cytosolic 
extracts were then prepared and 50pg of protein immunoblotted with specific antisera 
to A) p42MA1 K or B) p44MAI K as described in section 2.2.11. The non-phosphorylated 
(lower band) and phosphorylated (upper hand) forms of the enzyme are indicated by 
arrows.
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A) 3 T 3 -F 4 4 2 A

. - M A P K  ^p p 4 2  > 

p42 >

C N T R L  IB MX FSK N  C P T  R O

B) 3T 3 -L 1

a ~  M A l’K ^p p 4 2  >

p4
-,MAI*K >

C N T R L  IB MX FSK N  C P T RO

Fig 5.7) E ffe c t  o f  A gen ts  w hich  E lev a te  I n t r a c e l lu la r  cyclic  A M P  on the  
A c t iv a t io n  o f  M A P  K inase  in 3T 3-F442A  Cells an d  3T 3-L 1  Cells.
Serum starved 3T3-F442A cells (A) or 3T3-L1 cells (B) were incubated for 5 minutes 
in the presence of diluent (CNTRL), 5(K)pM IBMX, 5()pM forskolin (FSKN), ImM 
CPT-cyclic  AM P (CPT) or l()pM RO-201724 (RO). Activation of p42MA1K was 
detected by immunoblotting as described in the legend to Fig 5.3).
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al, 1989). To confirm that the effects of forskolin on M AP kinase were mediated via 

cyclic A M P a range of agents were tested which elevate intracellular cyclic AM P by 

different mechanisms. The cell permeable analogue CPT-cA M P and the cyclic A M P 

phosphodiesterase inhibitors IBMX and Ro-201724 each induced the shift in p42MAPK 

m obility  indicative of M A P kinase activation (Fig 5.7). Further experim ents were 

carried out to exam ine whether cyclic A M P is a positive effector o f  M A P kinase 

activation in the related 3T3-L1 preadipocyte cell line. All agents tested were found to 

provoke a comparable degree of activation of p42MAPK in 3T3-L1 cells to that induced 

in 3T3-F442A  cells (Fig 5.7). The relative potencies of agents at elevating M A P 

kinase activity were as follows:

3T 3-F442A : C PT-cA M P>Forskolin>IB M X >R o-201724 

3T3-L1: CPT-cA M P>Ro201724>Forskolin=IBM X

Thus, it appears that the phosphodiesterase inhibitor Ro-201724 is comparatively 

more effective at activating M AP kinase in 3T3-L1 cells than in 3T3-F442A cells.

Full enzymatic activation of MAP kinases requires dual phosphorylation on Thr-183 

and Thr-185 (Anderson et al, 1990). To confirm that the observed increases in M AP 

kinase phosphorylation induced by cyclic AM P reflected an increase in M A P kinase 

enzyme activity, the phosphotransferase activity was measured in phenyl Sepharose- 

purified cell extracts using MBP, a selective substrate of M AP kinase. M AP kinases 

bind tightly to phenyl Sepharose and represent the major kinase activity eluted from 

this matrix with 60% ethylene glycol (Ray and Sturgill, 1987). Table 5.3) shows that 

after 5 m inutes s tim ulation IBM X, forskolin, C P T -cA M P  and R o-201724  all 

increased cellular MAP kinase activity in both 3T3-F442A and 3T3-L1 preadipocytes, 

above the level observed in unstimulated cells. The relative degree of activation 

induced by each agent was comparable in each cell type and correlated well with the 

relative amount of phospho-M AP kinase detected by gel shift (Fig 5.7). Inclusion of 

PKI in the assay at a concentration (5pM ) which completely inhibits forskolin- 

stimulated PKA activity measured in cell lysates, did not cause a significant reduction 

in forskolin-stimulaied MBP-kinase activity (Table 5.3), indicating that PK A is not 

responsible for the phosphorylation of M BP observed in response to elevation of 

intracellular cyclic AMP levels.

Although the vast majority of cellular responses to cyclic AM P are mediated via 

activation of PKA, there are a few notable exceptions (Piper et al, 1993; DiFrancesco 

and Tortora, 1991). To determine whether a relationship exists between the activation 

of PKA and M AP kinase by cyclic AMP in 3T3-F442A cells, PKA and M AP kinase
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Table  5.3)  Effect  o f  Agents  which Elevate  Intrace l lu lar  cyc l ic  A M P  on  
M A P  Kinase  Activity in 3T3-F442A Cells  and 3T3-L1 Cel ls.
Serum starved 3T3-F442A cells and 3T3-L1 cells were incubated for 5 minutes with 
various cyclic AM P-elevating agents as indicated. Following incubation, cells were 
lysed and cytosolic extracts were processed for the assay of M A P kinase as described 
in section 2.2.13.1. For some experiments a specific inhibitor of PK A (indicated PKI) 
was included during the assay o f  M A P kinase. Data are expressed as the relative 
increase (fold) in M A P kinase activity induced by each agent above that measured in 
uns tim ula ted  cells and are m eans±S.E .M . with the num ber of  observations in 
parenthesis. * indicates the values which differ significantly from control values;
p<0 .01 .

Fold increase in M AP kinase Activity

Treatment 3T3-F442A 3T3-L1

5()()pM IBMX 1.40± 0 .15 (n=3)* 1.40±0.02 (n=3)*

50pM  Forskolin 1.94±0.09 (n=3)* 1.40±0.05 (n=3)*

5()|iM Forskolin+5pM 

PKI ].87±().()5 (n=3)*

ImM  CPT-cAMP 2 .36± 0 .11 (n=3)* 2.80±0.23 (n=3)*

lOfjM RO-201724 1.16±0.06 (n=3)* 1.91 ±0.07 (n=3)*



activities were measured following stimulation of cells with a range of  forskolin 

concentrations. Results demonstrated broadly overlapping dose-dependent activations 

of both PKA and M A P kinase (Fig 5.8). Half maximal activation (EC5 0 ) o f  both PKA 

and M A P kinase was observed at around 5()pM and maximal stimulation of both 

kinases occurred at around lOOpM forskolin. However, PK A appeared to be more 

sensitive than M A P kinase to forskolin; the lowest dose of forskolin observed to 

e levate PK A  activity significantly was l | iM , whereas the lowest dose o f  forskolin 

observed to activate M AP kinase significantly was 10pM.

Further evidence that the effects of forskolin on M A P kinase were mediated via the 

activation o f  PK A was obtained by the use of two chemical inhibitors. H89 is a 

protein kinase inhibitor which shows a high degree of selectivity for PKA over other 

protein k inases (Chijiwa, 1990). (/?p)-cAMPS inhibits the activation of PK A by 

binding to the regulatory subunit and preventing dissociation of the catalytic subunit 

(Dostmann, 1995; Gjertsen et ah 1995). Fig 5.9 shows that preincubation with both
M  A P K .H89 and (/?p)-cAM PS blocked the retardation in p42‘ m obility  induced by 

forskolin. Together, the results presented in Figs 5.8 and 5.9 strongly suggest that the 

activation of M AP kinase by cyclic AMP is mediated by PKA.

T he  only know n m echanism  for the activation M A P kinase is v ia  d irec t 

phosphorylation on the regulatory threonine and tyrosine residues by the dua l­

specificity kinase MEK. To lest whether cyclic AM P induced activation o f  M EK in 

3T3-F442A cells, the kinase activity of MEK was measured following treatment of 

cells with forskolin. A catalylically inactive recombinant version of p42 M AP kinase 

(K52R), in which Lys 52 is mutated to Arg, was used as a specific substrate for 

M EK. Fig 5.10A) shows that treatment of cells with forskolin for 5 min resulted in 

M EK activation. After 10 min of forskolin treatment the activity of M EK had returned 

to basal levels. Thus the activation of MEK by forskolin is temporally compatible with 

the activation of M AP kinase (Fig 5.6) suggesting that M EK is responsible for the 

activation of M AP kinase by forskolin. To test this further a recently discovered 

specific inhibitor of MEK activation, PD098059 (Alessi et ah 1995), was employed. 

Preincubation of cells with PD098059 completely blocked the activation of M AP 

kinase by forskolin (Fig 5.1 OB). The inhibitor also blocked activation of M AP kinase 

by GH. In accordance with others (Alessi et ah  1995), the activation of M A P kinase 

by EG F was largely unaffected by PD098059. These results confirm that the 

activation of M AP kinase by cyclic AMP requires the activation of MEK. Moreover, 

since PD098059 is known to preferentially inhibit the activation of the M EK isoform, 

MEK1 (Alessi et ah  1995) these results suggest that the activation of M AP kinase by 

cyclic AM P in 3T3-F442A preadipocytes involves prior activation of MEK1.
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F ig  5.8)  D o s e - d e p e n d e n t  S t im u la t ion  o f  M A P  K inase  and P ro te in  
K inase  A (PKA) by Forskol in.
3T3-F442A  cells were serum starved and then incubated with the indicated  
concentrations of forskolin for 5 min. Cell extracts were prepared and assayed for 
M A P kinase and PKA activities as described in section 2.2.13.3. Data are expressed 
as the fold increase in enzyme activity relative to unstimulated cells and are expressed 
as mean±S.E.M. for triplicate samples. *, ** indicate the value differs significantly 
from control cells; p<0.01, pcO.OOl.
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, -MAl 'K ^p p 4 2  > 

p42  >

D M  SO  + - - -
H - 8 9  + - +
( / ? p ) - c A M P S  - - + +
F o r s k o l i n  - - + + - +

Fig 5.9) E ffec t  o f  H -89  an d  (7?p)-cA M PS on the  A c t iv a t io n  M A P  k in a se  
by C yclic  A M P .
Serum starved cells were preincubated for 10 minutes with either H89 (30pM ) or 
(/?p)-cAMPS (Im M ) and then stimulated for 5 min with 5()|iM forskolin or diluent 
(DMSO). Cell extracts were prepared and the activation of p42MAf K was assessed by 
e le c tro p h o re t ic  m ob il i ty  shift as d esc r ib ed  in the legend  to Fig 5.3.
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\1APKp p 4 2
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C n tr l Fskn G H E G F

Fig  5 .10) C yclic  A M P  In d u c e s  M E K  A c t iv a t io n  in 3 T 3-F 442A  cells.
Serum starved cells were stimulated with 50(-tM forskolin for the indicated times. Cell
extracts were then prepared and assayed for MEK activity as described in section
2.2.13.2. The position of the phosphorylated recom binant catalytically  inactive 

mapkp42 used as the substrate is indicated and the radioactivity (cpm) incorporated 
was 183 (control), 305 (5 min), 202 (10 min) and 218 (15 min). Serum starved cells 
were incubated with 50pM  PD098059 (PD) for 90 minutes followed by stimulation 
with 50uM  forskolin (5 min), lOnM EGF (5 min) or lOnM GH (10 min). Activation

MAPK * • . .of p42‘ ' was determined by electrophoretic mobility shift as described in the legend 
to Fig 5.3.
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W ork in our laboratory has shown that PKC mediates the activation of M A P kinases 

by G H , but not by EG F in 3T3-F442A cells (M acKenzie et al, 1997). G iven that 

interactions can occur between the cyclic AM P and PKC signalling systems it may be 

interesting to assess the role of PKC in the activation of M AP kinases by cyclic AMP. 

To investigate whether cyclic A M P might feed into the M A P kinase cascade by 

activating PKC the effect of overnight incubation of 3T3-F442A cells with the phorbol 

ester 12-myristate 13-acetate (PMA) was examined. Pretreatment with PM A abolished 

the ability of PM A  to induce an activation-dependent gel shift in p42MAPK confirming 

the efficiency o f  PKC down-regulation (Fig 5.11). In contrast, down-regulation of  

PKC did not inhibit the ability of forskolin to induce phosphorylation of p42MAPK(Fig 

5.11). These findings suggest that cyclic AM P activates M AP kinase independently of 

stimulation of a PMA-sensitive PKC in 3T3-F442A cells.

Results so far have demonstrated that cyclic AM P evokes a PKA-mediated activation 

of M A P kinase in 3T3-F442A preadipocytes. The activation is transient and much 

smaller than those elicited by oilier differentiative agents (Table 5.2). Therefore, it 

seems unlikely that such a small and transient activation of M AP kinase could alone 

account for the potentiating action of cyclic AM P during the priming stage of 3T3- 

F442A preadipocyte differentiation (Chapter 4). Given that many of the biological 

effects o f  cyclic A M P on cell growth correlate  with m odulation of grow th or 

differentiative factor-induced M AP kinase activity (Table 5.2), it was necessary to 

study the interactive effect of cyclic AMP with other differentiative hormones.

As previously shown in Table 5.2, 5()pM forskolin induced a small but significant 

increase in M AP kinase activity in phenyl Sepharose-purified cell extracts. GH evoked 

a more substantial activation of M AP kinase (Table 5.3). Preincubation with forskolin 

was found to potentiate the GH-activated MAP kinase (Table 5.4). T ? did not stimulate 

a s ign ificant activation of M AP kinase, which is consistent with the current 

understanding that the signalling mechanism for T t, is independent of intracellular 

phosphorylation events (see the Signalling  section in Chapter 1). Forskolin had very 

little effect on the activation of M AP kinase by insulin, EGF or T^ in isolation or the 

three agents in combination. Individually insulin and EG F evoked a significant 

activation of M AP kinase (Table 5.4). When cells were stimulated with a combination 

of insulin, EG F and Ti this also elicited an activation of M AP kinase which was 

com parable to that when cells were stimulated with EG F alone (Table 5.4). This 

observation is in accordance with the data presented in Fig 5.10 in which EGF alone 

could induce phosphorylation of the total cellular pool of MAP kinase. Interestingly, 

although cyclic AM P docs not inhibit the activation of M AP kinases by EG F or 

insulin, it does inhibit their activation by PMA (29.9±2.6% reduction; p<0.01; n=3).
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Table 5.4) Effect  o f  Cycl ic  A M P  on the Abil i ty  o f  Insul in,  E G F  and T 3 
to Activate  M A P  kinase in 3T3-F442A Cells.
Serum starved cells were incubated for 10 minutes with forskolin (50pM ) and then 
stimulated with either GH (2nM), insulin (1.8}iM), T 3 (lOOpg/ml) or EG F (lng /m l)  
for 10 minutes. Alternatively, cells were incubated for 10 minutes with a combination 
of insulin (1 .8 |iM ),T3 (lOOpg/ml) and EG F ( lng /m l).  Following stimulation cells 
were lysed and cytosolic extracts were processed for the assay of M A P kinase as 
described in section 2.2.13.1. Data are expressed as the relative increase (fold) in 
M A P kinase activity induced by each agent above that measured in unstimulated cells 
and are means±S.E.M. with the number of observations in parenthesis. * indicates the 
values which differ significantly from values obtained when cells were incubated in 
the absence of forskolin; p<0.01.

Fold increase in MAP kinase Activity

Treatment -Forskolin +Forskolin

- 1.0±0.1 (5) 1.9±0.1*(3)

GH 5.4±0.5 (4) 9 .6±0.8*(3)

Insulin 5.0±0.9 (4) 7 .4± 1 .4 (5)

EGF 21.2±2.5 (3) 23.3±3.5(3)

T, 1,0 ± 0 .1 (5) 1.6±0.4 (3)

EGF/Insulin/T3 20.9±1.9 (3) 20.7± 1.3 (3)

164



A )

p p 4 2 MA1 K > 
p 42MA1K >

Cntrl Fsk PMA

B )
p p 4 2 MA1'K > 

p 4 2 MAI K >

Cntrl Fsk PMA

Fig 5.11) E ffec t  o f  D o w n -re g u la t io n  of P K C  on th e  A c t iv a t io n  o f  M A P  
K in ase  by Cyclic  A M P .
Cells were depleted of cellular PKC hy pretreatment with 16pM  PMA for 16 hours 
(Anderson et al, 1991). One hour before stimulations the PMA was removed by two 
washes with PBS. Cells were then exposed to 5()pM forskolin for 5 minutes or lOnM 
PM A for 10 minutes. Activation of p42N1AlK was determined by electrophoretic  
mobility shift as described in the legend to Fig 5 . 1). Panel A) are representative of 
cells which have been incubated with diluent (DMSO) alone for 16 hours, whereas 
panel B) represent cells which have been subjected to chronic PMA treatment.
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As yet the significance of this is unknown. These data demonstrate that the interactive 

effects o f  cyclic A M P on M AP kinase activation do not account for its effects on the 

m aturation stage of 3T3-F442A cellular differentiation. However, cyclic A M P does 

potentiate GH-activated M A P kinase and this does correlate with a potentiating effect 

o f cyclic AM P during the priming stage of 3T3-F442A cellular differentiation (Chapter 

4). To investigate this further it was necessary to determ ine at w hich stage of 

differentiation M A P kinases are required. These crucial experiments were not carried 

out earlier due to the unavailability of an agent which could act specifically on the 

priming stage of differentiation to inhibit M AP kinase activation. However, at a later 

stage a specific inhibitor of M A P kinase activation, PD098059 (Alessi et al, 1995), 

became available and this was then employed.

The difficulty of restricting antisense depletion of M AP kinase specifically to the 

priming phase precludes the use of antisense EAS1 during this stage of differentiation. 

The MEK-inhibitor PD( 198059 can act specifically to inhibit GH-activated M AP kinase 

during priming and will not exert an effect in the maturation phase as this compound is 

unable to inhibit the degree of M AP kinase-activation induced by the combined effect 

of agents in the maturation medium (Figs 5.10; Alessi et al 1995). To validate this 

study a control experiment was carried out to confirm the continuing efficiency of the 

PD098059 inhibitor during the 48 hour incubation period of GH priming. Incubation 

of cells in the presence of PD098059 during the two-day priming period completely 

blocked the acute activation of MAP kinase by GH and by GH and lOnM forskolin 

(results not shown). This demonstrates that PD( 198059 is still effective after a 48 hour 

period and will therefore be continually effective in inhibiting the activation of M AP 

kinase by GH and cyclic AM P during the whole prim ing phase. Inclusion of 

PD098059 in the priming medium failed to inhibit the ability of GH to prime cells and, 

moreover, failed to inhibit potentiation of GH-priming by KlnM forskolin (Fig 5.12).

These results suggest that although MAP kinases are an essential requirement for 

differentiation (Table 5.1), they appear not to be essential for the transduction o f  a 

priming signal by GH. In addition, the site of synergy between cyclic AM P and GH 

which underlies the potentiation of 3T3-F442A differentiation is not at the level of 

M A P kinase. Given that they are not involved during the early stage of the process, 

M A P kinase must be required for the positive coupling of maturation signals initiated 

by insulin/EGF and T 3 .
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F ig  5.12) E ffec t  o f  P D 098059  on th e  P r im in g  o f  3 T 3 -F 4 4 2 A  Cells  to 
D i f f e r e n t i a t e .
A) Cells were grown to confluence in GH-depleted calf serum as described in section 
2.2.4. At confluence the medium was removed and cells were then primed for 2 days 
in serum-free medium along with the additions indicated. This was then replaced with 
maturation medium and 8 days later GPDH activity was measured. Results are 
means±S.E.M. for 3 observations. *, ** indicates the value is significantly different 
from that obtained in cells primed with no additions; pcO.Ol, pcO.OOl. The 
potentiation of GH-evoked GPDH activity by lOnM forskolin was also significant
(*p<0.01).
B) Cells were incubated in serum-free medium either with or without PD098059 as 
indicated. After 48 hours cells were acutely stimulated with 2nM GH (lOmin), lOnM 
EGF (lOmin) or a combination of 2nM GH and lOnM forskolin (lOmin). Activation 
of p42MAPK was then determined by electrophoretic mobility shift as described in the 
legend to Fig 5.3.
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5.4) D IS C U S S IO N

The aim of the initial part of this study was to determine to what extent 3T3-F442A 

adipocyte differentiation was dependent on M A P kinases. To this end, expression of 

cellular p42MAPK and p44MAPK was specifically suppressed by treatment of cells for 48 

hours with a phosphorothioale oligodeoxynucleotide probe, antisense EAS1. This 

antisense probe was originally designed for use in 3T3-L1 cells where it was found to 

efficiently  and effectively reduce expression of p44MAPK and, to a lesser degree, 

p 4 2 MApK presum ab]y by inhibiting synthesis o f  new M A P kinases, thus preventing 

protein-tumover (Sale et al, 1995). Treatment of 3T3-F442A cells with 5 |iM  antisense 

EAS1 caused a dramatic reduction in the expression of both p42MAPK and p44MAPK to 

near undetectable levels in immunoblots (Fig 5.3A). Cells subjected to this treatment 

w ere  v iable  and exhibited  apparently  normal phenotypes . T here  are several 

m echan ism s  proposed  by which an tisense  o ligonucleo tide  m ay  inh ib it  gene 

expression. These include prevention of new protein synthesis by translational arrest, 

promotion of RNA degradation by an RNase H-dependent mechanism, inhibition of 

m RNA maturation by masking sequences required for the formation of a spliceosome, 

inhibition of RNA transport out of the nucleus, inhibition of gene transcription by 

forming a triple helix structure, or other unidentified mechanisms (Stein and Cohen, 

1988; Zon, 1988; Dolnick, 1990). Since antisense oligonucleotides bind to the target 

m RNA or pre-mRNA through normal Watson-Crick base pairing, there is the potential 

for interaction with other, non-specific, gene-targets which contain complementary, or 

semi-complementary, sequences to the antisense probe.

Tw o points of evidence were obtained that the action of depleting EAS was specific. 

Firstly, the expression of M A P kinase was not significantly effected by sense or 

scrambled phosphorothioale oligodeoxynucleotides (Fig 5.3A). Secondly, the banding 

pattern of Coom assie blue-stained proteins was generally unaffected by antisense 

EAS1 treatment (Fig 5.3B). A small increase in the expression of an =85kDa species 

was observed in antisense EAS1 treated cells, whereas no change was observed in 

cells treated with control oligodeoxynucleotides. That this is an effect specific to cells 

in which M AP kinases have been depleted suggests that these kinase may regulate the 

expression of the 85kDa protein. Whether or not this protein is involved in modulation 

of 3T3-F442A preadipocyte differentiation remains to be determined.

T reatm ent of 3T3-F442A fibroblasts with 5pM  of antisense EAS1 completely 

inhibited differentiation induced by FCS and insulin as assessed by two markers of 

terminal differentiation (Table 5.1; Fig 5.4). This agrees with Sale et al (1995) who 

found that EAS1 blocked the differentiation of 3T3-L1 preadipocytes with FCS. Since
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FCS contains a multitude of growth factors, each with the potential to influence 

differentiation, these studies fail to address which agents are primarily responsible for 

eliciting the necessary activation of M AP kinase. The development of a hormonally 

defined medium capable of supporting differentiation allowed an examination of the 

role individual factors played in the process. The results in Table 5.1 indicate that the 

differentiation o f  cells induced with a com bination  of GH, insulin, EG F  and T 3 

displays an absolute requirement for M AP kinase, since antisense depletion of M A P 

kinases severely impaired differentiation. This effect was specific as incubation with 

control oligodeoxynucleotides had no significant effect on the extent of differentiation 

(Table 5.1). Although the precise mechanism involved is unknown, it is concluded 

that M A P kinase is required for the transduction of differentiative signals induced by 

serum components.

M A P kinases do not appear to be necessary for the transmission of a priming signal 

by GH. This is based on the observation that PD098059, a specific inhibitor of the 

M AP kinase cascade (Alessi et al, 1995), does not inhibit the priming effect of GH in 

3T3-F442A cells (Fig 5.12). Therefore, the combination of antisense and PD098059 

results concludes that M AP kinases are required for m aturation of 3T3-F442A  

preadipocytes. Although M AP kinases do not appear to be required for GH priming 

under the conditions used, they may be required when lower concentrations of GH are 

used. This is based on the premise that high concentrations of GH will trigger multiple 

pathw ays to initiate the priming response in cells by recruiting m any signalling 

m olecules to JAK2 (see the S ig n a ll in g  section in Chapter 1). At subm axim al 

concentrations of GH, when fewer signalling molecules associate with JAK2, then the 

M AP kinase cascade may be required to produce a significant priming signal.

That M A P kinases are not involved in GH-priming, suggests that the potentiating 

action of cyclic AM P during the priming phase of 3T3-F442A  preadipocyte  

differentiation does not involve the MAP kinase pathway. This is contrary to a number 

o f  other studies which have suggested that the Ras-MAP kinase pathway may control 

differentiation in cells which use cyclic AMP as a differentiative signal (Johnson and 

Vailancourt, 1994). In these cell systems, however, components of the M A P kinase 

pathway appear to he essential requirements for the transduction of  an initiating 

differentiative signal. For example, studies using the pheochrom ocytom a cell line, 

PC12, have shown that oncogenic Ras and Raf can trigger neuronal differentiation 

(Noda el al, 1985; Wood et al, 1993) Additionally, transfection of PC12 cells with 

dominant negative MEK, or preincubation with the MEK-inhibitor PD098059, blocks 

neurite outgrowth triggered by nerve growth factor (NGF; Cowley et al, 1994;Pang et 

al, 1995), whereas conslilutively active mutants accelerate the process (Cowley et al,
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1994). In the PC 12 cell system cyclic AM P activates M A P kinase and potentiates 

M A P kinase activation by dilTerentiative agents such as N G F (Frodin et al, 1994; 

Young et al, 1994; Yao et al, 1996). This is consistent with the synergistic interaction 

between NGF and cyclic AM P on the promotion of PC 12 differentiation (Frodin et al, 

1994; Young et al, 1994; Yao et al, 1996). Since the synergistic effect o f  cyclic A M P 

and GH in the potentiation of 3T3-F442A cells does not appear to require interaction at 

the level of M AP kinase, then other molecular interaction/s must be involved.

As discussed in chapter 4, the m olecular m echanism s used by G H  to promote 

differentiation are likely to involve the induction of early markers of the process, such 

as C /EBP p and 5 (Clarkson et al, 1995), which have themselves been shown to 

enhance adipogenesis (Yeh et al, 1995). The activation of M A P kinase by GH  is 

thought to involve Ras, Raf and the intracellular tyrosine kinase JAK2 (Sotiropolous 

et al, 1994; Winston and Hunter, 1995). JAK2 can also phosphorylate and activate a 

family of transcription factors called ,Stats (signal transducers and activators of 

transcription) 1 , 3 and 5 which can bind to specific sequences in GH-inducible genes 

(Campbell et al, 1995; Smit et al, 1995; Han et al, 1996; Silva et al, 1996). One such 

gene is c-fox which contains .v/.v-inducihle elements which interact with Stats and are 

thought to contribute to the rapid activation of the gene by GH (Campbell et al, 1995;. 

Smit et al, 1995). A number of observations implicate c -fas as playing a regulatory 

role in the adipogenic program. Firstly, GH activates c -fos  transcription rapidly 

(Gurland et al, 1990) prior to the induction of C/EBPs p and 5 (Clarkson et al, 1995). 

Secondly, the c -fos gene-product forms a nucleoprotein complex in the regulatory 

region of the differentiation-specific aP2 gene (Distel et al, 1988). Given that c -fos is 

also induced in many cell types, including preadipocytes, by cyclic AM P (Gaskins et 

al, 1989) it is possible that cooperalivity between cyclic AMP and GH at the level of c- 

fo s  transcription may have a potentiating effect on preadipocyte differentiation. Since 

transcriptional regulation by cyclic AM P is often governed by the CREB transcription 

factor (see section 1.7.3.4), it would be extremely interesting to investigate whether 

Stat-CREB interactions contribute to the potentiating action of cyclic AM P on GH- 

promoted preadipocyte differentiation.

One of the actions of GH in promotion of preadipocyte differentiation is thought to be 

the production of an anti-mitogenic state in proliferating cells which primes them to the 

actions of other hormones (Tang et al, 1995). An obligate step for the mitogen- 

stimulated passage of cells through the G l-S  phase of the cell cycle is the induction of 

the nuclear protein cyclin D (Baldin et al, 1993). Correspondingly, the antimitogenic 

effects of GH in prcadipocytes is thought to be mediated partially by the suppression 

of cyclin D expression (Tang et al, 1995). Cyclin D expression is also blocked
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following exposure to cyclic AM P of certain fibroblastic cell-lines in which cyclic 

A M P is anti-mitogenic (McKenzie and Poussegur, 1996). Perhaps the effects of cyclic 

A M P on GH-m ediated priming could be attributable to cooperativity at the level of 

cyclin D expression. In a similar vein, another mechanism by which GH could cause 

growth arrest in proliferating preadipocytes is by increasing the expression inhibitors
WAF1o f  cell proliferation, such as the cyclin-dependent kinase inhibitor p 2 1  which is 

induced in a S tatl dependent m anner (Chin et al, 1996; Timchenko et al, 1996). This 

area requires further investigation but could provide another potential site o f  synergy 

between the GH and cyclic AMP pathways.

In sharp contrast to its effects in the priming phase cyclic A M P potently inhibited 

terminal differentiation of 3T3-F442A preadipocytes. EG F and insulin are essential 

components of the medium used to promote this second phase whereas T 3 exerts only 

a modulatory influence (Guller et al, 1988). The molecular mechanisms underlying the 

effects of  EGF and insulin are not known but each induces M A P kinase activation, 

though to differing degrees (Table 5.2). M A P kinases must be essential for the 

maturation phase of differentiation, since they are not a requirement for priming (Fig 

5.12) but are required for differentiation p e r  se (Table 5.1). However, the inhibitory 

effect of cyclic AM P on maturation was not mirrored by an inhibition of M AP kinase 

activity as stimulated by insulin, EGF and T 3 (Table 5.3). There are a num ber of 

examples where the effects of cyclic AM P on cell growth are dissociated from the 

activation or inhibition of the M AP kinase pathway (Withers et al, 1995; McKenzie 

and Pouyssegur, 1996). For example, M AP kinases display neutral responsiveness in 

both Swiss 3T3 fibroblasts, where cyclic AM P is milogenic (Withers et al, 1995), and 

in C C L39 fibroblasts, in which cyclic AM P is anti-m itogenic  (M cK enzie  and 

Pouyssegur, 1996). The intracellular targets which allow cyclic A M P to modulate cell 

growth in these eell-types are not known. However, in Swiss 3T3 cells cyclic AMP-
S6Kstim ulated cell division was shown to correlate with the activation p70‘ , an

important transducer of proliferative signals (Withers et al, 1995). A specific inhibitor 

of p7()SfK/p85SfK, rapamycin, was found to inhibit the differentiation of 3T3-F442A 

cells (Yarwood, Kilgour and Anderson, unpublished observations), suggesting that 

the p7()sr,K/p85Sr>K is also important for the transmission of the differentiative signal by 

insulin, EGF and T 3 . Therefore, interaction with the p7()S6K/p 8 5 S6K cascade may 

contribute to the inhibitory effects of cyclic AM P during the maturation phase of 3T3- 

F442A cellular differentiation. Whether or not such interactions occur remains to be 

determined.

Although the effects of cyclic AM P on 3T3-F442A adipose conversion do not 

involve the M AP kinase cascade, a range of pharmacological agents which share the
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com m on ability to elevate intracellular cyclic A M P were found to evoke a small 

activation of M A P kinase in both 3T3-L1 and 3T3-F442A preadipocytes in a PKA- 

dependent m anner (Fig 5.9; Table 5.2).Therefore, these cell systems could provide a 

conven ien t  system  for the study o f  the m olecu lar  basis o f  M A P  k inase /P K A  

interactions.

Although PKA is known to mediate many of the biological responses of cells to cyclic 

AM P, PKA-independent events have been reported (DiFrancesco and Tortora, 1991; 

Piper et al, 1993). However, in 3T3-F442A cells the EC 50 and maximal doses for the 

activation of M A P kinase and PKA by forskolin are equivalent (Fig 5.8). In addition, 

two selective inhibitors of PKA, H-89 and (7?p)-cAMPS, which act via different 

mechanisms, were found to block the ability of forskolin to activate M AP kinase (Fig 

5.8. Taken together, these results indicate that PKA mediates the activation of M A P 

kinase by cyclic AMP.

Figure 5.8 shows that low doses of forskolin (around lp M )  activate PK A  but not 

M A P kinase suggesting that there exists a threshold level of PKA activation that must 

be achieved before activation of M AP kinase can occur. Additionally, the degree to 

which M A P kinase is activated in response to cyclic AM P is transient and relatively 

small when compared to growth/differentiation factors such as EG F and GH and the 

phorbol ester PMA (Table 5.4; unpublished observations). This is not the case in other 

cyclic A M P responsive cell types. In PC 12 cells (Frodin et a !, 1994; Young et al, 

1994) and ovarian granulosa cells (Saswati et al, 1996) cyclic A M P was shown to 

produce an activation of M AP kinase which was equivalent in m agnitude to that 

evoked by TPA. These observations indicate that the cyclic AM P-stim ulated M A P 

kinase pathway in 3T3-F442A cells is under stringent negative-regulatory influences.

An involvement of protein kinase C in the activation of M AP kinases by certain 

agonists has been postulated (Rossomando et al, 1992; Burgering and Bos, 1995; 

Mitchell et al, 1994; Sim et al, 1995). However, phorbol ester-sensitive isoforms of 

PKC are unlikely to mediate the activation of M AP kinase by cyclic AM P since their 

cellular depletion by chronic PM A treatment had no effect on M AP kinase activation 

by forskolin (Fig 5.1 1).

The activation of MEK occurs through direct phosphorylation by the serine/threonine 

protein kinases Raf-1 (Huang et <7 / , 1993; Avruch et al, 1994) and B-Raf (Jaiswal et 

al, 1994). However, Raf-1 is unlikely to mediate the positive effects of cyclic AM P on 

M EK  and M A P kinase reported in Fig 5.10, since phosphorylation by PKA at Ser 43 

inhibits Raf-1 function and impairs MAP kinase activity in fibroblasts (Wu et al, 1993;
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C ook and M cCormick, 1993). However, in P C I 2 cells where cyclic A M P has been 

dem onstrated  to be an activator of M AP kinase (Frodin et al, 1994; Young et al, 

1994), M EK  is activated by B-Raf and not Raf-1 (Jaiswal et ah  1994; M oodie et al, 

1994). Intriguingly, B -R af activity is not inhibited by cyclic A M P in PC 12 cells 

maintained in serum-containing medium, (Erhardl et al, 1995). In light of this, it will 

be important to determine the expression pattern o f  Raf isoforms in 3T3-F442A cells 

and determine whether PKA can phosphorylate and/or inhibit R af  activation. Other 

putative M E K  activators, other than the Raf isoforms, have also been partially 

characterised (Blank et al, 1996), but their responsiveness to cyclic A M P remains to 

be detenuined.

As well as exerting positive effects on components upstream of M EK, cyclic A M P 

could also relieve negative constraint on the M A P kinase pathway at one or more 

points. For example, although phosphatases which regulate the dephosphorylation and 

hence inactivation o f  kinases such as M EK and Raf are incompletely characterised, 

inhibition of a protein phosphatase by PKA-mediated phosphorylation could result in 

M A P kinase activation. Indeed, inhibition of PP2A with the tumour promoter okadaic 

acid, or with the small T  antigen of simian virus 40, can lead to M AP kinase activation 

(Haystead et al, 1990; Sontag et ah 1993). Although initial studies indicate that PP2A 

contributes to the inactivation of cyclic AMP-stimulated M A P kinase in 3T3-F442A 

cells (Yarwood, Anderson and Kilgour, unpublished observations), these further 

considerations remain to be addressed. In addition, this study did not address the 

contribution of protein tyrosine kinases to PKA mediated signal to M AP kinases. This 

may be an important area o f  investigation as tyrosine phosphorylation o f  Raf, by 

kinases such as pp60sr\  is critical for activation (Dent et al, 1995).

173



5.5) C O N C L U S IO N S

T ransien t increases in cyclic A M P levels exert differential e ffects  upon the 

differentiation of 3T3-F442A  preadipocytes which depend upon the stage o f  the 

differentiation process at which levels are raised (Chapter 4). The results from the 

present study demonstrate an overall requirem ent for M A P kinase in serum -free 

d ifferen tia tion  conditions. Cyclic A M P was found to potentia te  GH -, but not 

E G F /In s /T 3 -activated M AP kinase. In addition, cyclic A M P alone activates M A P 

kinase. This suggested that the cooperativity between cyclic AM P and GH could be at 

the level of M A P kinase but M AP kinase was not the site of action of cyclic AM P in 

inhibiting maturation. However, the availability of the M EK inhibitor, PD098059, 

enabled the testing of the M AP kinase requirement during priming and this showed a 

lack of M AP kinase requirement al this stage.
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G EN ER AL DISCUSSION

The results from the present study demonstrate that stage-specific alterations in the 

expression of heterotrimeric G-protein subunits accompany the adipose conversion of 

3T3-F442A  preadipocytes (chapter 2). The crucial GH -priming stage o f  3T3-F442A 

differentiation witnessed specific increases in G iSa4 2 » Gj2 a  and Gp3 6 . Further increases 

were observed during the initial stages of insulin-supported maturation culminating in 

dram atic increases in G s u 4 2 occurring in terminally differentiated cells. In contrast, 

levels o f  G;2 a, Gi3 tx declined in mature adipocytes. Tw o conclusions can be drawn 

from these observations. First, it is clear that not all G-proteins respond equally to the 

induction o f  differentiation, and unique responses occur even among m em bers of the 

same family. Second, it is apparent that the onset of individual stages o f  preadipocyte 

differentiation can lead to varied ratios of G-protein a -  and (3-subunits which will 

contr ibu te  to the selectivity of receptor coupling to specific signal transduction 

processes. Hence some of the phenotypic changes which occur on differentiation are 

likely to be reflections of these changes in G-protein expression.

There is increasing evidence that G-proteins contribute to the control of complex 

biological phenomena such as cellular differentiation. For example, the development of 

nerve growth cones and primitive endoderm in mice have been reported to be under the 

control of pertussis toxin-sensitive G-proteins (Strittmater et al, 1990; W atkins et al, 
1990) and G,2 (x has been implicated in the control of preadipocyle differentiation (Su et 

al, 1993; Gordeladze et al, 1997) and fat development in mice (Moxham et al, 1993). In 

support of this the present study demonstrates that pertussis toxin-induced inactivation 

o f  Gi in 3T3-F442A  preadipocytes inhibited their adipocyte  d ifferentia tion in 

hormonally defined differentiation medium (Fig 3.16). Although the exact mechanisms 

underlying the potentiating action of Gj on preadipocyte differentiation have not been 

addressed in this or other studies, it ispossiblethat interaction with the p70sr’K/p85S6K 

and p42/p44 M AP kinase signalling pathways will be critical to its action. This is based 

on observations that GjU has been shown to activate these pathways (Winitz et al, 

1993; Wilson et al, 1996) in, what appears to be, a Gpy-dependent manner (Alblas et al, 

1993; Crespo et al, 1994; Fame et al, 1994; Koch et al, 1994; Thorburn and Thorburn,

1994). In triguingly , a link between d ifferen tia tion-dependent a lterations in Gi 

expression and activation of M AP kinases has recently been proposed to contribute to 

the control o f  morphogen induced leratocarcinoma stem-cell progression (Gao and 

M albon, 1996). In this respect the present study dem onstrates  that the relative 

expression of Gj2u, and G|J appear to be maximal during the insulin-supported 

maturation stage of 3T3-F442A preadipocyte differentiation (Fig 3.15) when the MAP 

kinase (see Chapter 5) and p7()Sf,K/pX 5Sf,K (Yarw ood, A nderson and Kilgour,
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unpublished observations) pathways are required tor the transmission o f  differentiative 

stimuli. It is likely that duiing this stage of preadipocyte differentiation Gi2 a  contributes 

to the promotion of differentiation by facilitating signal propagation from the insulin 

receptor, since this G-protein subunit is known to be a positive regulator o f  insulin 

action in viva  (Moxham and Malbon, 1996; Chen et al, 1997).

In addition to the positive-acting role of Gi-isoforms in differentiation, this study also 

shows that cyclic A M P and the (3-adrenergic agonist isoproterenol act synergistically 

with GH early in the differentiation program to potentiate preadipocyte differentiation 

(see chapter 4). This demonstrates that G S(X, by activating adenylate cyclase, can serve 

as a positive regulator o f  fat cell formation. During the later insu lin-prom oted  

maturation phase cyclic AM P is inhibitory to the process. While it has been postulated 

for som e time that cyclic  A M P plays a dual role in m odula ting  the adipose 

differentiative potential of preadipocytes (Antras et al, 1991) this is the first occasion 

that the temporal aspects of this bifunctional role of cyclic AM P has been demonstrated 

in the same preadipocyle cell system. The importance of G S(X in controlling fat cell 

development has been demonstrated clearly in the 3T3-L1 preadipocyte cell system in 

which antisense depletion of G S(X has been shown to potentiate differentiation (Wang et 

al, 1992). Moreover, an inactivating mutant of G S(X has also been shown to enhance 

3T3-L1 adipose conversion (Gordeladze et al ,1997). These observations demonstrate 
that G S(X exerts an inhibitory influence on 3T3-L1 cellular differentiation, which is in 

agreement with the inhibitory role of cyclic AM P on the later stages of 3T3-F442A 

preadipocytes reported in this study. W hereas it is generally accepted that prolonged 

exposure to cyclic AM P prevents terminal adipocyte differentiation by causing a 

decrease in the expression of lipogenic enzym es (Spiegelman and Green, 1981; 

Bhandari and Miller, 1985) the authors concluded that the inhibitory role of G slx in 

3T3-L1 differentiation is independent of adenylate cyclase activation despite the fact that 

under the differentiation conditions used in their study cyclic A M P has been shown to 

be a powerful positive regulator of 3T3-L1 adipogenesis (Schmidt et al, 1990). 

Therefore, care should be taken in interpreting the results of gain-of- and loss-of- 

function studies on the role of G-proteins in controlling preadipocyte differentiation. 

The results from the present study indicate both a positive and negative regulatory role 

for G S(X in the adipose conversion of adipogenic 3T3-F442A preadipocytes in what is 

clearly a cyclic AMP-mediated process. There is, however, a suggestion that G sa may 

play an inhibitory role during preadipocyle differentiation in a cyclic AMP-independent 

manner based on observations using chimeric constructs of G su which were expressed 

stably in 3T3-L1 cells to define the region controlling adipogenesis (Wang et al, 1996). 

This study revealed that the G S(X protein contains a adipogenic-repression region (amino 

acids 146-220) which is spatially distinct from those regions which map for control of
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adeny la te  cyclase  (W ang et al, 1996). Clearly  further w ork should address the 

mechanistic aspects of the obviously complex role of G sU in modulating preadipocyte 

differentiation.

The current investigation examined whether interaction with the M A P kinase growth- 

regulatory cascade contributed to the biphasic action of cyclic A M P on preadipocyte 

differentiation. Results demonstrated an overall requirement for M A P kinase in serum- 

free differentiation conditions. Cyclic AM P was found to potentiate GH-activated M AP 

kinase, but did not affect the degree of M A P kinase activation induced by the agents 

w hich promote m aturation of 3T3-F442A preadipocytes (insulin, EG F and T 3 ). In 

addition, cyclic AM P alone activates M AP kinase. This suggested that the cooperativity 

between cyclic AM P and GH could be at the level of M A P kinase but M AP kinase was 

not the site of action of cyclic AM P in inhibiting maturation. However, the availability 

of the M EK  inhibitor, PD( 198059, enabled the testing of the M A P kinase requirement 

during priming and this showed a lack of M AP kinase requirement at this stage. This 

suggests  that M A P kinases are required during the later m aturation  stage o f  

differentiation. If  M AP kinases are required for the insulin-promoted maturation phase
fctT-s

of preadipocyte differentiation, and not during GH priming,^raises the question as to 

what is the down-stream target of M AP kinase action at this stage. Once activated 

p42/p44 M A P kinase can be translocated to the nucleus (Chen et al, 1992; Lenormont et
TCFal , 1993) and directly phosphorylates transcription factors, including p62 and ATF-2 

(Davis, 1993). In addition, a num ber of cytosolic substrates for M A P kinases have 

been identified, including members of the p90RSK family, phospholipase A2, and Stat 1 

(Sturgill et a l , 1988; Lin et a l , 1993b; Lin et a l , 1994; W en et a l , 1995; Xing et a l , 

1996). It is worth noting that GH induces a transient activation of  M A P kinase, 

whereas that induced by the maturation agents is much larger and sustained (Yarwood, 

K ilgour and Anderson, unpublished observations). Prolonged activation of M AP 

kinase is associated with nuclear translocation (Traverse et a l , 1992; Nguyen et al, 

1993), therefore it is likely that MAP kinases activated during the maturation phase 

undergo nuclear translocation and activate transcription factors by phosphorylation. 

Intriguingly, it has recently been demonstrated that the adipogenic transcription factor 

PPARy undergoes M AP kinase-mediated serine phosphorylation (ser 122) in response 

to insulin (Hu et al, 1996). Given that M AP kinase activation and PPARy are required 

for the completion of the adipogenic program, it will be interesting assess whether this 

insulin-induced serine phosphorylation is important for modulating preadipocyte 

differentiation.

Activation of the M AP kinase cascade (see chapter 5) and the p7()sr,K cascade 

(Yarwood, Kilgour and Anderson, unpublished observations) do not appear to be
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necessary for GH to prime 3T3-F442A preadipocytes for a program of differentiation. 

However, antisense oligodeoxynucleotides which specifically deplete the GH-receptor- 

associated tyrosine kinase JAK2 are inhibitory to 3T3-F442A differentiation (N.G. 

A nderson , unpublished  observation). This  suggests  that o ther  JA K 2-m ed ia ted  

signalling events are responsible for the priming action o f  GH. Following binding o f  

G H , recep to r  d im erisa tion  leads  to the ac tiva tion  o f  JA K 2  w hich  ty rosine  

phosphoryla tes  and activates latent cytoplasmic transcription factors term ed Stats 

(signal transducers and activators of transcription) 1, 3 and 5 (Han et al, 1996; Smit et 

al, 1996). Tyrosyl-phosphorylated Stats bind to the .v/.v-inducible element of  the c-fos 

prom oter and other genes. Current evidence suggest that these response elements bind 

Statl and Stat3 homodimers as well as Stat 1/Stat3 heterodimers, all of which appear to 

be formed in response to GH (Granowski et al, 1994; M eyer et al, 1994; Campbell et 

al, 1995; Granowski et al, 1995). Following GH-treatment of 3T3-F442A cells c -fos 

induction precedes the induction of C/EBPs (3 and 6  and it has been postulated that c- 

fos  contributes to the f / Y / m - a c l i v a t i o n  of these important adipogenic transcription factors 

(Clarkson et al, 1995). It appears, therefore, that activation of the JAK/Stat signalling 

pathw ay by GH has the potential to directly initiate a program o f  preadipocyte 

differentiation by inducing the "tertiary messenger" c -fos and early markers of adipose 

conversion.

Interaction between the cyclic AM P/PK A pathways and the JAK/Stat cascade may 

underlie the potentiating action of cyclic A M P on GH-priming reported in the present 

study (see chapter 4). Maximal activation of Stats 1 and 3 requires both tyrosine and 

serine phosphorylation (Wen et al, 1995). Therefore, it could be envisaged that 

increased serine kinase activity triggered through cyclic AM P elevation, Ras-M AP 

kinase activation or protein kinase C activation has the potential to affect transcriptional 

activation of adipogenic transcription factors by increasing the transcriptional-activating 

abilities of  Stats. In this respect GH stimulates phosphorylation o f  Stats 1, 3 and 5 on 

serine, threonine and tyrosine residues in viva in a manner that either enhances (Stats 1 

and 3) or substantially alters (Stat 5) the binding of each Stat to its cognate DNA 

elem ent (Ran et al, 1996). The serine phosphorylation of GH-activated Stats could 

result from the activation of the M AP kinase cascade, the p70S6K cascade and/or the 

PKC cascade which are all known to be activated by GH (McKenzie et al, 1997; vide 

infra). The synergistic potentiation of 3T3-F442A preadipocyte differentiation by cyclic 

A M P which occurs during G H -prim ing  could therefore be contribu ted  to by 

potentiation of GH-activated M AP kinase (see chapter 5), resulting in increased Stat 

activation. It is unlikely that increased Stat activation results from a cyclic AMP-induced 

potentiation of GH-activated PKC and/or p7()S6K as cyclic AM P was not found to 

potentiate  GH -signalling through these pathways in 3T3-F442A  cells (Yarwood,
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Kilgour and Anderson, unpublished observations). Therefore, future study should be 

directed towards determining which GH-activated Stats are important for 3T3-F442A 

preadipocyte differentiation and to determine whether the cyclic A M P  potentiation of 

GH-activated M AP kinase increases Stat-mediated transcriptional activation.

Another potential site of synergy between the cyclic A M P and GH signalling cascades 

is at the level o f  C /EB Pp which is required and sufficient to initiate the adipogenic 

program (Yeh et al, 1995). Increases in intracellular cyclic A M P levels stimulated by 

IB M X treatment have been shown to be a direct inducer of C /EB Pp expression in 3T3- 

L1 pread ipocy tes  (Yeh et a l , 1995). In addition, G H -trea tm en t  o f  3T 3-F442A  

preadipocytes has also been shown to increase expression of C /EB Pp (Clarkson et a l ,

1995). It is therefore likely that the combined effect of GH-treatment and elevated cyclic 

A M P levels leads to optimal C /EBPP expression during the priming phase of  3T3- 

F442A differentiation, thereby potentiating adipose conversion. Interestingly, it has 

been demonstrated in hepatocytes and neuroblastoma cells that optimal transcriptional 

activation of certain cytokine-responsive genes requires the binding of both Stats and 

C/EBPs to the gene promoter region (Symes et al, 1995; Kardula and Travis, 1996). 

Such cooperativity  may underlie the synergistie action of  GH and cyclic AM P on 

preadipocyte  differentiation by optimising expression of differentiation-dependent 

genes.

Recent observations in a rat insulinoma cell line have demonstrated that impaired 

cyclic AMP-dependent phosphorylation renders CREB (cyclic AM P response-element- 

binding-protein) a repressor of C/EBPP-induced transcription (Vallejo et al, 1995). 

This suggests that phosphorylation and activation of CREB is important for correct 

functioning of C/EBPp and implies that GH-induced C/EBPp activation in 3T3-F442A 

preadipocytes may be optimised by cyclic AM P-m ediated CREB phosphorylation. 
Given the critical role of C/EBPP in modulating preadipocyte differentiation (Yeh et al,

1996), increases in CREB activation therefore have the potential to modulate the extent 

of terminal differentiation. A signalling pathway has been elucidated whereby growth 

and differentiation factors activate CREB (Xing et al, 1996; Sato et al, 1997). Growth 

factor-stimulated CREB phosphorylation at serine 133 is mediated by the Ras-M AP 

kinase pathway (Xing et al, 1996). M AP kinase activates a m em ber of  the p90RSK 

family which, in turn, phosphorylales and activates CREB (Xing et al, 1996). In the 

present s tudy cyclic AM P potentiated G H -activated  M A P kinase and terminal 

differentiation o f  3T3-F442A preadipocytes (see chapters 4 and 5). This may lead to 

increased CREB activation through MAP kinase-mediated activation of p90RSK, thereby 

leading to increased activation of adipocyte-specific genes by cooperativity  with 

C /EB Pp.
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FU T U R E  INV ESTIGA TIO NS

Future study aimed at elucidating the potentiating and inhibitory actions of cyclic AM P 

on the adipose conversion of 3T3-F442A preadipocytes should focus on the synergistic 

in terac tions  between the cyclic A M P and GH signalling cascades and inhibitory 

in terac tions  occurring between the cyclic A M P and insulin pathw ays. Particular 

attention should be paid to determining whether cooperativity between the cyclic AM P 

and these adipogenic pathways occurs at the level of transcription factor activation or 

induction, particularly those transcription factors which are known to be activated or 

induced by cyclic A M P (CREB and C/EBPs), insulin (C/EBPs) and GH (Stats and 

C/EBPs). It is already well established that the C /EBP family of transcription factors 

are extremely important for controlling adipogenesis, however the importance of Stats 

and CREB in the modulation of preadipocyte differentiation remains to be determined. 

The requirement for these transcription factors can be determined by specific depletion 

with antisense oligodeoxynucleotides which can be designed so as to deplete individual 

m em bers of the same transcription factor family. The combined effect o f  cyclic AM P 

and GH on the expression of CREB, C /EB P and Stat proteins can be determined 

im m unolog ically , by W estern  blotting, or, indirectly, by m easuring the cellu lar 

abundance of m RNA s for each transcription factor. The activation status of individual 

transcription factors can be determined by electrophoretic mobility shift assay (EMSA; 

Ausubel, 1993).

A further m easure of the activation status of transcription factors is the degree of 

nuclear translocation induced by extracellular stimulation. In this respect the degree of 

nuclear accumulation of adipogenic transcription factors in response to GH, cyclic 

A M P and/or insulin stimulation should be assessed by subcellular fractionation and 

confocal imaging (see for example Metz and Ziff, 1991; Kilgour and Anderson, 1994; 

King and Delaney, 1994).

As the activation status of  transcription factors can be m odulated  directly by 

phosphorylation (Hunter and Karin, 1992), the level of phosphate incorporation into 

C /EBPs, Stats and CREB should be assessed in response to insulin and GH in the 

presence or absence of cyclic AMP. This can be achieved immunologically, in the case 

of CREB, since a commercial antiserum which specifically recognises phospho-CREB 

has recently been made available. The phosphorylation status of C /EBPs has been 

determined by gel retardation assay in a manner similar to that used to detect phospho- 

M A P kinases (see Chapter 5), whereas phosphorylation of Stats has been detected by
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phosphotyrosine-specific antisera and by phospho-peptide mapping (Wen et al, 1995; 

Smit et al, 1996).
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