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SUMMARY OF THESIS 

Anti-CD4 induced transplant tolerance in the rat: molecular and 
cellular mechanisms

M o n o c l o n a l  a n t ib o d ie s  (mAb) directed against the C l u s t e r  o f  D if f e r e n t ia t io n  
(CD)4 molecule, expressed on the surface of T helper cells, are a potentially important 
tool for manipulating the in vivo immune response to a tissue or organ allograft. In 
rodent models of organ transplantation, administration of anti-CD4 mAb prolongs 
allograft survival and may even induce permanent transplant tolerance. However, 
clinical application of anti-CD4 mAb requires a better understanding of the molecular 
and cellular mechanisms by which anti-CD4 mAb promotes graft survival. Early 
mechanisms may include CD4 T cell depletion and impairment of residual CD4 T cell 
function by blocking interaction of CD4 with C l a ss  II M a jo r  H is t o c o m p a t ib il it y  
(MHC) antigen or disrupting T cell signalling pathways.

The experiments described in this thesis were undertaken to provide new insight into 
how one particular anti-CD4 mAb, (M e d ic a l  R e s e a r c h  C o u n c il  (MRC) O x f o r d  
U n iv e r s it y  C e l l u l a r  Im m u n o l o g y  U n it  (OX)38), prolongs graft survival in a rat 
model of cardiac transplantation. Initial studies showed that 0X38, a mouse 
Im m u n o g l o b u l in  G (IgG)2a mAb, which binds to the membrane distal domain of rat 
CD4, when given as a brief treatment preoperatively, was able to prolong survival of 
fully allogeneic Lewis (RT11) heterotopic cardiac grafts in DA (R Tla) recipients 
(M ed ia n  G r a ft  S u r v iv a l  T im e  (MST) >100 days). Moreover, recipients bearing 
long-standing heart grafts developed specific tolerance to donor alloantigen since they 
accepted a second donor graft but rejected third party grafts.

Tolerance induction following 0X38 mAb was associated with partial depletion 
(approximately 50%) of peripheral CD4 T cells. Initially, residual CD4 T cells were 
shown on the basis of phenotype, to consist of predominantly R e c e n t  T h y m ic  
E m ig r a n t  (RTE) (CD4+ve CD45RClow Thy-lhlgh), but over several weeks, peripheral 
CD4 T cell numbers recovered to near normal levels. Non-rejecting heart grafts in 
0X38 mAb treated recipients were heavily infiltrated with mononuclear cells, 
including numerous CD4 cells. Analysis of intragraft cytokine m e s s e n g e r  
R ib o n u c l e ic  A c id  (mRNA) transcripts by R e v e r s e  T r a n s c r ip t a s e -P o l y m e r a s e  
C h a in  R e a c t io n  (RT-PCR) revealed the presence of both T h e l pe r  1 (Thl) and T 
h elper  2 (Th2) cytokine mRNA in non-rejecting grafts with a pattern similar to that 
seen during unmodified rejection. Moreover, measurement of alloantibody isotypes in 
0X38 mAb treated animals did not support the view that anti-CD4 induced tolerance 
was attributable to a dominant Th2 cytokine response.

Residual CD4 T cells, following anti-CD4 mAb treatment, remained only transiently (2 
days) coated with 0X38 mAb. Encounter of CD4 T cells with alloantigen whilst they 
were still coated with mAb was not essential for tolerance induction. A small ‘window 
of opportunity’ was detected (up to 4 days following mAb treatment) during which 
cardiac transplantation failed to trigger allograft rejection. CD4+ve T cells obtained 
from 0X38 mAb treated animals during this ‘window of opportunity’, showed altered 
tyrosine phosphorylation of a 36-38 K il o  D a l t o n  (kDa) protein on subsequent 
activation in vitro with immobilised anti-T C e l l  R e c e p t o r  (TCR) mAb when 
compared with anti-TCR activated, untreated CD4 T cells. The altered phosphorylation



pattern of in vivo 0X38 mAb treated cells was similar to that seen in naive CD4 T cells 
activated with anti-TCR after in vitro 0X38 treatment. In addition, the pattern of 
phosphorylation observed in anti-CD4 treated cells was similar to that previously 
described in anergic CD4 T cells, suggesting that 0X38 mAb treated cells may be 
functionally anergic.

An unexpected role for the thymus in 0X38 mAb induced transplantation tolerance 
was identified. Anti-CD4 mAb treated recipients which had undergone thymectomy 
several weeks prior to transplantation, rapidly rejected their heart grafts, despite 0X38 
therapy. This observation suggested that CD4 T cell depletion alone was not, in itself, 
sufficient to prevent allograft rejection and that a product from the thymus was 
necessary. A role for RTE in anti-CD4 mAb induced transplantation tolerance was 
indirectly explored in experiments using immunopurified single positive (CD4+ve 
apTCR+ve) thymocytes and L y m ph  N o d e  C el l s  (LNC). In reconstitution experiments 
using thymectomised anti-CD4 treated animals, adoptive transfer of purified single 
positive thymocytes on days 2 and 4 after heart grafting, restored the ability of 0X38 
mAb to prolong allograft survival in thymectomised animals. Furthermore, in anti- 
TCR proliferation assays, single positive thymocytes were less affected by in vitro 
0X38 mAb treatment than single positive LNC and were found to produce both Thl 
and Th2 cytokine mRNA. A possible interpretation of these findings, is that in this 
experimental model, RTE may be analogous to naive T h e l p e r  0 (ThO) T cells and may 
have an essential role in tolerance induction.

By adding to current understanding of the molecular and cellular mechanisms of anti- 
CD4 induced transplantation tolerance, the above observations may provide a more 
rational basis from which to further develop strategies for using anti-CD4 mAb in 
clinical transplantation.
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Background I

Background to Thesis

I. Introduction

Human organ transplantation has blossomed since the advent of immunosuppressive drug 

therapy in the 1960's. With the increased immunosuppressive efficacy of drugs such as 

Cyclosporin A, introduced in the late 1970's, graft survival figures have shown improvement 

in many clinical trials. However, current immunosuppressive regimes still remain 

immunolologically non-specific, are often toxic, and still do not assure 100% graft survival. 

Over the years, a number of isolated anecdotal case reports have highlighted patients enjoying 

long-term graft survival following transplantation, in the absence of continuing 

immunosuppressive drug therapy. The mechanism underlying this phenomena of graft 

tolerance is the focus of intense debate and current transplantation research. A better 

understanding of the cellular and humoral effector mechanisms involved in graft rejection and 

transplant tolerance should help in achieving the long-term goal of purposeful modulation of 

the immune response with therapies which have increased immunological specificity coupled 

with reduced toxicity and better graft survival.

The principle aim of the work described in this thesis was to study the mechanism of action of 

anti-CD4 mAb pre-treatment, in a rat transplantation model using fully mismatched cardiac 

allografts. The ability of an anti-CD4 mAb (0X38) to perturb CD4 T cell function, prevent 

graft rejection and promote transplant tolerance was investigated. The introduction chapter of 

the thesis concentrates on the molecular basis of CD4 T cell allorecognition, T cell activation, 

anti-CD4 treatment and tolerance induction. Other aspects o f effector cell mechanisms in the 

context of transplantation, notably the role of lymphokines, intracellular signalling pathways 

and the role of naive precursor cells in the induction of tolerance will be addressed in more 

detail in the later chapters.
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II. Abbreviations used in Thesis

Microgram(s)

pi Microlitre(s)

pm Micron(s)

pME 2 -Mercaptoethanol

[Ca2+]j Intracellular Calcium Ions

°C Degrees Centigrade
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Ag Antigen

APC Antigen Presenting Cell

ARAM Antigen Recognition Activation Motif

BSA Bovine Serum Albumin
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cm Centimetre
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C-terminus Carboxy-T erminus
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ER Endoplasmic Reticulum
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FasL Fas Ligand

FCS Foetal Calf Serum
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ml Millilitre(s)
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Chapter 1-1

1. Introduction

1.1 MAJOR HISTOCOMPATIBILITY ANTIGENS (MHC)

1.1.1 Introduction

Throughout recorded history, inquisitive ‘physicians’ have been documented as having 

attempted various kinds of tissue transplantation but, until the later half of this century, these 

attempts inevitably ended in graft failure. In the early 20th century, even after the technical 

difficulties of surgical anastomosis and infection control were, to a large extent, surmounted, 

solid organ transplantation still suffered the same outcome. However, it was only after the 

technical difficulties associated with transplantation were overcome that other mechanisms 

leading to allograft failure were recognised and then studied in more detail.

The suggestion that transplant rejection may be due to “inherited factors” was first 

documented by L Loeb [1,2] at the turn of the century following the work of the geneticists 

CC Little, EE Tyzzer and colleagues. They observed that tumours taken from a strain of 

Japanese waltzing mice were, when transplanted into other mice, accepted by mice of the 

same strain but rejected by F2 generations o f waltzing mice crossed with other mouse strains. 

With considerable foresight, Tyzzer later pointed out in a review of the subject, [3] that the 

“foreignness” or “incompatibility” of the tumour in these transplantation experiments was 

dependent on “the presence of a large number of independently inherited factors”. An 

understanding of the antigenic basis of tumour allograft rejection came over 20 years later 

following work by PA Gorer who demonstrated that tumour transplantation between mice 

strains was governed by antigens present on the donor’s tissues which were absent from the 

recipient’s. [4]. Gorer named this antigen, Antigen II, and showed that it was expressed on
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blood cells and that rejection in allotransplantation experiments was secondary to the 

recipient animals making isoagglutinating antibody responses to Antigen II [5], A decade 

later, GP Snell demonstrated that a complex of dominant genes existed which determined the 

transplantability of tumours and called these the “histocompatibility antigens” [6]. With this 

important discovery, the genetic locus in mice discovered by Gorer then became known as the 

H-2 complex, and further studies by these two men and their colleagues eventually set out the 

important framework on which the development of today’s understanding of transplantation 

histocompatibility antigens has been built.

We now know that each species of animal possesses a MHC that encodes for both Class I 

(recognised by CD8 cytotoxic T cells) and Class II (recognised by CD4 T helper cells) 

antigens. The MHC is composed of a large number of highly polymorphic loci making the 

total number of inheritable antigenic combinations very large. In addition to alloantigens 

encoded by the MHC, each species also has a number of MHC independent alloantigenic loci 

which generally incite weaker alloreactive responses and have been named, collectively, the 

minor histocompatibility antigens. The major and minor histocompatibility antigens together 

are responsible for the cell-mediated and/or humoral response individuals within a species 

mount against grafts from other individuals of the same species and this immunological 

response constitutes allograft rejection.

MHC gene products are integral cell-surface proteins which are found in all higher vertebrates 

and are encoded by a similar genetic region in each species [7,8]. The main function of MHC 

gene products is to act as ‘restriction’ elements for the recognition of foreign antigens. 

Specifically, MHC molecules on the surface of A n t ig e n  P r e se n t in g  C el l s  (APC) bind 

endogenously (Class I MHC) or exogenously (Class II MHC) derived peptide antigens, and 

present the peptides in the context of ‘self MHC’ to cells (T cells) in the immune system. It is
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the ability of MHC to couple with peptide antigen which allows the host’s immunological 

system almost limitless adaptation to a constantly changing environment occupied by 

mutating and novel pathogens [9], and gives the system specificity when recognising ‘normal’ 

self from ‘altered’ self following infection or oncogenic transformation.

1.1.2 Structure and function o f MHC

The T cells responsible for initiating rejection of MHC incompatible grafts recognise and 

respond to intact allogeneic MHC molecules expressed on the surface of donor APC. This 

type of recognition is called direct allorecognition, and it is the high precursor frequency of 

alloreactive T cells for direct recognition which accounts for the exceptional high potency of 

the alloimmune response [10,11,12]. Recipient T cells may also recognise and respond to 

allogeneic MHC molecules which, like nominal protein antigens, have been enzymatically 

degraded, processed and then presented by host APCs in the peptide-binding groove of self 

MHC; this type of recognition is known as indirect allorecognition [13,14,15]. The extent to 

which T cells recognising alloantigens presented by the indirect pathway contribute to graft 

rejection is not clear but is likely to be influenced by several variables such as prior 

sensitisation of the recipient, the type of tissue transplanted, the nature of the MHC disparity, 

and the type of immunosuppressive agent used [16,17,18,19,20]. As already noted, in 

allotransplantation, the most important MHC gene products are Class I and Class II antigens.

Class I MHC molecules are expressed constitutively on the surface of most nucleated cells 

[21]. They are 45 kDa integral membrane g l y c o pr o t e in s  (gp) which comprise a short 

C a r b o x y -te r m in u s  (C-terminus) hydrophilic segment situated in the cytoplasm, a 

hydrophobic section anchoring the protein in the cell membrane, and 3 extra cellular domains,
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( a l ,  a2, and a3). The a3 domain is relatively non-polymorphic and associates non- 

covalently with the non-glycosylated and non-polymorphic 12 kDa polypeptide P2 - 

microglobulin. This domain of Class I MHC also serves as the site of recognition by CD8 

molecules [22,23]. The a l  and a2 hypervariable domains of the Class I molecule form two 

a-helices floored by a p-pleated sheet and this structure constitutes the peptide groove of the 

molecule. Uniformly folded non-polymorphic segments limit the peptide groove at either 

end, imposing physical restrictions on the size of the peptide which can be accommodated; 

Class I MHC bound peptides are between 8 and 10 amino acids in length. The a3 domain 

and p2-microglobulin of Class I MHC both display a folding pattern typical of classical 

Im m u n o g l o b u l in  (Ig) domains.

Class II MHC molecules have a much more restricted tissue distribution than Class I MHC. 

They are expressed constitutively on dendritic cells, B cells and activated macrophages and 

given the presence of appropriate cytokines, can be up-regulated and expressed on most other 

nucleated cell types. Class II MHC molecules are formed by the non-covalent association of 

a 33-34 kDa a-chain and a 28-29 kDa p-chain. Like Class I molecules, each component 

chain has a short hydrophilic cytoplasmic C a r b o x y -T er m in a l  (C-terminal) sequence, a 

hydrophobic membrane anchor, a p-sheet and a-helix domain and a classic Ig domain. The 

two sheet and helix portions of each chain align face to face to form the peptide binding 

groove. In contrast to Class I MHC, the peptide-binding groove is ‘open ended’ and can 

accommodate peptides from 13 to 25 amino acids in length. A non-polymorphic loop in the 

P chain Ig like domain (loop 3 region of p2) is the site of interaction with the CD4 molecule 

[24,25].
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1.1.3 Peptide binding to MHC

The peptides found within the peptide-binding groove of Class I MHC molecules are usually 

endogenously derived from within the cell and result from proteolytic cleavage of self 

proteins or alternately from viral proteins. Conversely, MHC Class II peptides are derived 

mainly from the enzymatic breakdown of exogenous foreign protein and/or cell-surface 

proteins [26]. The fundamental difference between Class I and Class II MHC in peptide 

binding stems from the different route of intracellular trafficking for these proteins following 

their synthesis in the E n d o pl a sm ic  R e t ic u l u m  (ER) [27]. As newly synthesised Class I 

heavy chains are first folded and assembled, they associate non-covalently with p2- 

microglobulin in the ER [26,28]. Concomitantly, cytosolic self proteins are digested by 

multi-subunit proteosomes [29] into 8-10 amino acid peptides and gain access to the ER by 

membrane bound transporters [30]. In the ER the binding of heavy chain, p2 -microglobulin 

and peptide stabilises the complex and with the help of an 88 kDa chaperone protein [31,32], 

the tri-molecular complex is transported to the cell-surface, via the Golgi apparatus, where 

glycosylation occurs. On the other hand, by temporally occupying the peptide groove of 

Class II MHC molecules [33], the invariant chain prevents Class II MHC from binding 

peptide in the ER. The invariant chain by its chaperone effect, also prevents glycosylation of 

Class II MHC molecules at the Golgi [34]. Following synthesis, Class II MHC molecules 

proceed directly from the ER to an acidic membrane bound compartment known as the 

endosome [35,36]. In the endosome, foreign proteins and the invariant chain are degraded by 

a variety of proteases which allows peptide fragments ranging from 13 to 25 amino acids in 

length to associate with Class II MHC [37]. The variation in length of Class II bound 

peptides suggests that the Class II molecule itself may play an active role in antigen selection 

by protecting bound peptide from complete degradation [38] or allowing exposed ends of
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longer peptides to be truncated or trimmed [39]. Once peptides are bound to Class II, the 

resulting complex is stabilised and transported to the cell-surface.

1.2 THE CD4 MOLECULE

1.2.1 CD4 structure and function

The CD4 molecule is a 56 kDa transmembrane protein consisting of 4 Ig like extracellular 

domains, a transmembrane domain and an intracellular C-terminus cytoplasmic portion. The 

two A m in o -t e r m in a l  (N-terminal) domains of the CD4 molecule engage the p chain of 

Class II MHC by contact sites in the C o m pl e m e n t a r it y  D e t e r m in in g  R e g io n s  (CDR)l-like 

and CDR3-like loops of the first domain, and loop 6 of the second domain [40,41]. The 

CD4-Class II MHC p domain interaction may be species specific [42], but has not been 

shown to be affected by Class II polymorphisms. The hydrophilic cytoplasmic domain of 

CD4 associates non-covalently with the 56 K ilo  D a l t o n  L y m ph o c y t e -S pec ific  T y r o sin e  

K in a se  (p56lck) via cysteine-dependent interactions [43,44,45,46,47] and probably confers the 

co-receptor function of CD4 during TCR activation (see below).

1.2.2 CD4 as a co-receptor

By physically associating with the TCR during its interaction with the Class II MHC-Peptide 

complex [48], CD4 acts as a co-receptor and leads to a 10 fold increase in TCR mediated 

lymphocyte activation [49,50,51]. The association of p56lck with the cytoplasmic tail of CD4
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permits the initiation of tyrosine kinase signalling events following TCR-Peptide-Class II 

MHC-CD4 complex engagement and is likely to be responsible for the potentiation of T cell 

activation. The observation that some T cell clones are resistant to anti-CD4 antibody 

dependent inhibition [52,53,54] suggests that the dependency of T cells on CD4 co-receptor 

function may vary depending on the lineage or activation state of the T cell. In particular, 

primed T cells may be less susceptible to anti-CD4 treatment than naive (unprimed) T cells. 

This in vitro observation is consistent with the in vivo finding that the induction of 

transplantation tolerance using anti-CD4 mAb is easier to accomplish in naive animals as 

opposed to alloantigen primed recipients [55].

1.3 ANTIGEN RECOGNITION AND SIGNAL TRANSDUCTION

1.3.1 Structure and function o f  the T cell receptor (TCR)

The TCR is a member of the Ig superfamily and consists of a dimer of non-identical a  and p 

or of y and 8 chains. Each a  and p chain has a short cytoplasmic C-terminal segment, a 

hydrophobic membrane anchor, and a large extracellular domain which resembles the Ig light 

chain. Like the Ig variable region [56], the N-terminal portion of the a  and p chains has also 

evolved hypervariability in loops 2, 3, and 6 forming CDR1, CDR2, and CDR3. The TCR a  

chain CDR1 and CDR2 engage the a  helix of the a l  domain of Class I or Class II MHC [57], 

while the same CDRs on the TCR p chain engage the other a  helix (either a2  domain of 

Class I or the pi domain of Class II). This leaves the central region of the TCR a p  dimer, 

consisting of the two CDR3s, to bind peptide antigen presented in the groove of MHC
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[58,59], The structure of the TCR y8 receptor is probably analogous to that of the aP  TCR 

but this is yet to be confirmed.

Like the Immunoglobulin D receptor on the surface of B cells, the TCR confers T 

lymphocytes with the capacity for antigen specific recognition during an immune response. 

The TCR itself does not have intrinsic signal transduction capabilities and relies instead on its 

association with other cell-surface molecules during T cell triggering and generation of the 

intracellular signals needed for T cell activation. Recent evidence, utilising chimeric TCR 

receptors [60,61,62,63], and TCR mutants [64], has shown that at least 2 molecules which 

intimately associate with TCR, CD3 8 and C, chain subunits, have signal transducing moieties. 

As discussed below, the two molecules responsible for transducing signalling events have 

highly conserved common peptide sequences within their cytoplasmic domains and these 

have been termed A n t ig e n  R ec o g n it io n  A c t iv a t io n  M o tifs  (A R A M s).

1.3.2 CD3 complex

The invariant CD3 molecule comprises an y, 8, and two 8 subunits associated with a C, chain 

existing as either a homo (CQ, or heterodimer (£r| or £y); the homodimer form is the more 

commonly found configuration [65]. Like the aP  TCR complex, the invariant CD3 molecule 

is a transmembrane protein with an Ig like extracellular domain and a hydrophobic membrane 

anchor, but unlike the TCR, which has a short cytoplasmic domain, the CD3 y, 8, and 8 chains 

have large cytoplasmic domains. Each £ chain protein has a small extracellular domain, a 

hydrophobic transmembrane anchor, and a large cytoplasmic domain. As alluded to above, a 

small percentage of TCRs have been shown to be comprised of the invariant molecule 

associated with a heterodimer of C, coupled via an r| chain which is a product of an alternated
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splicing of the C-terminal end of the C, chain [66,67,68] or complexed via the y chain of the 

M u l t i-S u b u n it  H ig h  A ffin it y  Ig E  R e c e p t o r  (FcsRIy) [69]. The y subunit o f FcsRI has 

been shown to share sequence homology with both the cytoplasmic and transmembrane 

anchor region of the C, chain [70]. Receptors containing either Qr\ or Qf can contribute to

and alter TCR function [71,72].

As mentioned above, evidence suggesting the role for £ and s chain involvement in TCR 

mediated signal transduction arises mainly from studies of two separate murine T cell 

hybridoma variants which lack complete or functional ^ chains. The first variant, which lacks 

expression of £ chain [73] was found, when reconstituted using full length £ chain, to regain 

normal TCR expression and function. However, reconstitution using C, chain with truncation 

of the cytoplasmic domain resulted in impaired antigen and superantigen induced 

In t e r l e u k in  (IL)-2 production [74]. Further experiments using this hybridoma with 

chimeric receptors consisting of the extracellular domains of CD4, CD8 or In t e r l e u k in -2 

R e c e p t o r  A lph a  C h a in  (IL-2Ra) fused to the cytoplasmic portion of £ chain which could be 

expressed independently of the other TCR subunits, gave additional support for the role of £ 

chain in TCR signalling. Antibody mediated cross-linking of CD8/^ or IL-2Ra/<^ chimeras or 

gpl20 cross-linking of CD4/<  ̂(as well as CD4/r| and CD4/FcsRIy) chimeras was sufficient to 

activate biochemical and cellular events indistinguishable from those mediated by the wild- 

type multi-subunit receptor complex itself [60,61,62].

The second murine T cell hybridoma studied in this context, was devoid of cytoplasmic £ 

chain but was found to produce IL-2 in response to antigen or superantigen [75]. 

Experiments using this mutant, with a chimeric receptor consisting of the extracellular and 

transmembrane portions of the IL-2Ra chain and the cytoplasmic domain of the CD3e
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subunit (IL-2Ra/e), showed that the CD3e cytoplasmic tail was responsible for the signalling 

events and IL-2 production observed [63].

1.3.3 Antigen recognition activation motifs (ARAMs)

ARAMs are highly conserved protein sequences which are present in a variety of 

haematopoietic cell antigen receptors as well as viral plasma membrane proteins. They are 

thought to represent the structural basis for many forms of signal transduction. For example, 

the cytoplasmic domains of £ chain, CD3e, TCR r\ and FceRIy subunits share a common 

motif consisting of two 7V-TYROSINE-X-X-LEUCINE-C paired sequences separated by six 

to eight amino acids [76]. This ARAM sequence appears in triplicate in the C, chain, as a 

doublet in TCR r\, and as a single copy in CD3s and FcsRiy subunits. Chimeric receptors 

with cytoplasmic tails encompassing as few as 17 amino acids containing the isolated ARAM 

have been shown to be capable of transducing intracellular signals sufficient for the activation 

of the P r o t e i n  T y r o s i n e  K i n a s e  (P T K )  pathway and subsequent TCR-mediated effector 

functions [77,64]. Alteration in either of the two tyrosine residues of the activation motif 

using the IL-2Ra/e chimera results in a marked reduction of receptor function [63]. Loss of 

receptor function was also observed when the C-terminal leucine residue was deleted [64]. 

Thus, it would appear from these studies that the ARAM sequences encoded in the 

cytoplasmic tail of antigen receptor-associated signal transducing molecules such as the ^ 

chain and CD3s subunit plays a critical role in coupling TCR ligation to the P T K  pathway 

and to other effector molecules within the intracellular signalling cascade.
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1.3.4 Protein tyrosine kinases (PTK) and phosphatases (PTPase) introduction

The events which follow TCR ligation with antigen and lead to cytokine production, gene 

upregulation and clonal proliferation have not been fully elucidated. However, some of the 

biochemical changes following TCR ligation with antigen, superantigen, or immobilised 

antibody, as well as the changes following CD3 ligation with immobilised antibody, which 

lead to IL-2 production have been the subject of recent studies. Biochemical and genetic 

evidence implicates at least 3 cytoplasmic PTKs in TCR signal transduction, namely Lck, 

Fyn, and 70 K ilo  D a l t o n  Z e ta  C h a in  A sso c ia t e d  P r o t e in  (ZAP-70). Additionally, the 

CD45 transmembrane P r o t e in  T y r o s in e  P h o s p h a t a s e  (PTPase) has been shown to be 

quintessential in this signalling cascade, suggesting perhaps that TCR activation represents an 

alteration in the dynamic equilibrium between phosphorylated and dephosphorylated 

substrates, as orchestrated by the PTKs and PTPases.

1.3.4.1 CD45 protein tyrosine phosphatase (PTPase)

The CD45 transmembrane protein (initially identified as the leukocyte common antigen) has 

been shown to have PTPase activity and is thought to be critically involved in regulating the 

activation of a number of haematopoietic cells through their antigen receptors. As its name 

implies, CD45 is abundantly expressed on the cell-surface of all leukocytes and exists in 

several different isoforms. All isoforms of CD45 have a membrane anchor and a large 

cytoplasmic domain which is highly conserved and contains a 300 amino acid tandem repeat 

which has considerable homology to the catalytic domain of the cytosolic phosphatase-IB 

[78,79]. Unlike the cytoplasmic tail, the extracellular domain exists in several structurally 

distinct isoforms [80]. This heterogeneity arises because of alternate splicing of the several
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exons which encode the extracellular domain together with variable expression of the 

translated product. The different isoforms of CD45 have been categorised by their molecular 

weights and/or antigenic properties and may correspond to functionally distinct cell types 

[81,82].

The distinct isoforms of CD45 differentially associate with the TCR and its coreceptors, 

giving weight to the idea that the different isoforms may have discrete activation properties. 

The high molecular weight isoform of CD45 has been found to move within the cell 

membrane independently of the TCR complex on naive human [83] and mouse [84] T cells, 

while experiments using cloned activated [84,85] or “memory like” [8 6 ] T cells expressing 

the low molecular weight isoform of CD45 have found that CD45 is associated with the CD4- 

TCR and/or the CD8 -TCR complex. Interestingly, McKnight et. al. [82] have shown that rat 

T cell clones expressing high and low molecular weight CD45 isoforms secrete different 

cytokine profiles and they suggested that these isoforms may represent distinct T effector cell 

populations in the rat, analogous to the murine Thl (which secrete mainly IL-2 and 

In t e r f e r o n -G a m m a  (INF-y)) and Th2 (which secrete IL-4, IL-5, IL-6 , and IL-10) cell types 

[87]. A problem with this interpretation is that the distribution of a particular CD45 isoform 

on the surface of the T cell does not necessarily equate to a maturational end-point of that 

particular cell. For example, naive RTE CD4+ve T cells in the rat express the low molecular 

weight isoform of CD45 but are the precursors of both the high and low molecular weight 

isoforms found on more mature T cells [8 8 ]. Moreover, reconstitution of adult 

thymectomised bone marrow irradiated T cell depleted rats with high molecular weight CD45 

CD4+ve T cells results in T cells which predominantly express the low molecular weight 

CD45 isoform. [89]. In addition, reconstitution of adult congenitally athymic nude rats with 

CD4 lymphocytes expressing one or other of the isoform of CD45 results, after CD4 T cell



Chapter 1-13

repopulation, in lymphocyte populations, many of which express the reciprocal CD45 isoform 

to that of the transferred cells [90]. These results suggest that the two CD4 T cell subsets may 

have a precursor-product relationship depending on the state of antigen experience, 

activation, maturation or stage of cell division.

The earliest demonstration that CD45 might be important in TCR mediated signal 

transduction came from antibody cross linking studies. Interestingly, antibody cross linking 

of CD45 alone during TCR stimulation was found to result in either potentiation or inhibition 

of T cell activation, depending on the type of the anti-CD45 antibody used, or the nature of 

the T cell line examined [91,92,93,94,95]. However, when TCR and CD45 are co-aggregated 

by the use of cross-linking anti-TCR and anti-CD45 antibodies, inhibition of T cell activation 

is consistently observed [96]. This inhibition may occur because some forms of cross linking 

effectively inhibit the antigen receptor oligomerisation necessary for normal TCR function 

[97] but is more likely to occur as a result of antibody mediated alteration of the signalling 

activity of CD45 phosphatase.

Studies using T cell clones deficient in CD45 expression give support to the concept that 

CD45 is a positive regulator of TCR signal function since such clones display abrogation of 

TCR signal transduction. For example, a murine T cell clone lacking cell-surface expression 

of CD45 has been shown to lack the ability to proliferate or produce cytokines in response to 

antigen or anti-TCR antibodies [98]. Interestingly, this same T cell clone was still able to 

respond to exogenous IL-2, indicating that CD45 is required for TCR mediated cellular 

function but is not involved in the downstream signalling events mediated through the IL-2 

receptor. Similarly, cytotoxic T cells which are deficient in CD45 expression are unable to 

lyse target cells and to produce cytokines [99].
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Studies using Jurkat and HPB-ALL CD45 negative mutant cell lines have shown that the 

mutant cells do not undergo tyrosine phosphorylation and phosphatidylinositol hydrolysis, 

and do not increase their influx of intracellular Ca2+ following TCR ligation [100,101]. 

These deficient biochemical responses are restored following transfection of the mutant T cell 

lines with CD45 [100,102,103]. Because induction of tyrosine phosphorylation is one of the 

earliest events following TCR engagement [104,105], the lack of TCR mediated tyrosine 

phosphorylation in CD45 deficient cell lines suggests that during normal TCR induced 

signalling, CD45 is involved at a very proximal site in the signal transduction cascade.

One possible role of CD45 is to regulate the state of tyrosine phosphorylation of the tyrosine 

kinases p56lck and 59 K ilo  D a l t o n  F yn  P r o t e in  T y r o s in e  K in a se  (p59^n), both of which 

associate non-covalently with the TCR complex. Initial analysis of tyrosine phosphorylation 

patterns using CD45 deficient cell lines revealed a slight increase in the tyrosine 

phosphorylation of the lymphocyte specific protein tyrosine kinase p56lck. Peptide mapping 

revealed that p56lck was hyper-phosphorylated on it’s C-terminal tyrosine505 residue, a known 

site of negative regulation for members of the Src family of PTKs [106,107,108,109]. 

Further experiments using CD45 deficient cell lines also showed Fyn to be hyper- 

phosphorylated on it’s C-terminal tyrosine528 residue, although to a lesser degree than Lck 

[108,109]. Additional credence for the idea that Lck and Fyn, but not Src are the specific in- 

vivo substrates of CD45, is provided by the observation that CD45 is unable to de- 

phosphorylate the C-terminal tyrosine residue of Src in-vivo [108]. Analysis of Lck [109] and 

Fyn [102,109] kinase activity from CD45 positive cells has revealed a two to three fold 

increase in their in-vitro enzymatic activity when compared to CD45 negative cells, although 

this was dependent on the substrate used and specific cell examined [102,106]. Finally, the
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addition of purified CD45 to either Lck or Fyn in-vitro results in de-phosphorylation at the C- 

terminal tyrosine residues and a concomitant increase in kinase activity [1 1 0 , 1 1 1 ].

1.3.4.2 50 kilo dalton Cskprotein tyrosine kinase (p50csk)

The data outlined above suggest that the TCR signalling defect observed in CD45 deficient 

cell lines may be due to lack of dephosphorylation and activation of Lck and Fyn due to 

persistence of phosphorylation at the negative regulatory C-terminal tyrosine residue. A 

protein kinase capable of phosphorylating the C-terminal tyrosine residues of Src [112], Lck 

[113], and Fyn [114] has been identified as Csk PTK. This PTK is structurally similar to the 

Src family of PTK containing a S rc  h o m o l o g y  2 (SH2), S rc  h o m o l o g y  3 (SH3) and a 

kinase domain. However it lacks a myristylation site, an auto-phosphorylation site and a 

negative regulatory C-terminal tyrosine residue [115]. A negative regulatory role for Csk in 

TCR mediated signalling is suggested by experiments showing that a three fold increase in 

expression of Csk in CD45 positive cells resulted in a decrease in tyrosine phosphoprotein 

induction and IL-2 production [116]. Evidence that p50csk has a regulatory role on p59fyn 

enhanced TCR signalling comes from experiments using Jurkat cells expressing a 

constitutively active form of p56lck, in which the regulatory tyrosine at position 505 was 

mutated to phenylalanine and thus could not be inhibited by phosphorylation. In these 

studies, over expression of p50csk leads to attenuation of TCR induced signalling by 

inactivation of p59fyn [117]. Thus, TCR mediated signalling appears to be balanced by events 

which allow the coupling of de-phosphorylation of upstream PTKs with their downstream 

substrates and uncoupling by phosphorylation of regulatory C terminal tyrosine on these 

PTKs by Csk like molecules.
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1.3.4.3 Src and Sykfamily o f  protein tyrosine kinases

Following TCR ligation with antigen or antibody, the PTK pathway is activated and results in 

a cascade of biochemical changes within the T cell, starting with tyrosine phosphorylation of 

a variety of cellular proteins [118,119]. One of the cellular proteins that undergoes rapid 

tyrosine phosphorylation is the yl I s o f o r m  o f  P h o s p h o l i p a s e  C (PLCyl) [120,121,122]. 

Tyrosine phosphorylation of PLCyl leads to an increase in its catalytic activity which in turn 

leads to hydrolysis of p h o s p h a t i d y l i n o s i t o l  4 ,5 - b ip h o s p f ia t e  (PIP2) to I n o s i t o l  1 ,4 ,5 -  

t r i p h o s p h a t e  (IP3) and D i a c y l g l y c e r o l  (DAG) [104,123]. These bi-products act as 

second messengers within the cell and induce further changes such as the mobilisation of 

i n t r a c e l l u l a r  C a 2+ i o n s  ([Ca2+]i) and the activation of P r o t e i n  K i n a s e  C (PKC) 

[124,125].

Three PTK enzymes p56lck , p59fyn, and ZAP-70, all situated in the cytoplasm, have been 

implicated in TCR mediated signalling. P56lck and p59^n are both members of the Src family 

of protein kinases which share six common features. These are as follows, (1) a N-terminal 

myristylated glycine at residue 2  which permits membrane localisation, (2 ) a unique ~80 

amino acid N-terminal region that may dictate specific associations of the kinase, (3) a -60  

amino acid SH3 domain involved in interacting with signalling molecules with prolene rich 

regions, (4) a -100 amino acid SH2 domain that can specifically mediate the recruitment of 

tyrosine phosphoproteins, (5) a C-terminal catalytic domain, (6 ) and a C-terminal regulatory 

tyrosine residue.

In contrast, ZAP-70 belongs to the Syk family of PTKs which contain two tandemly arranged 

SH2 domains and a C-terminal kinase domain; Syk PTKs are not myristylated, do not contain 

SH3 domains and do not contain negative regulatory tyrosine residues at their C-terminal (See 

Figure 1.1 below).
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Figure 1.1 Schematic diagram of the Src and Syk family of Protein Tyrosine Kinases.
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1.3.4.4 P56lck protein tyrosine kinase

P56lck is a 56 kDa lymphoid specific PTK which non-covalently associates with the 

cytoplasmic domain of CD4 and CD8  molecules via cysteine-dependent interactions 

[43,44,45,46,47]. As mentioned earlier, the extracellular domains of CD4 and CD8  bind to 

the non-polymorphic region of Class II and Class I MHC respectively and act to stabilise the 

interaction between the T cell and the APC [126,127]. As well as serving as TCR coreceptors 

through their stabilising functions, CD4 and CD8  molecules, through their association with 

p56lck, provide signal transducing co-receptor function with TCR [128]. Experiments using 

antibody to cross-link CD4 or CD8  to CD3 have found that such cross-linking results in 

enhanced TCR mediated signalling [129,130,131,132]. The significance of CD4 and p56Ick in 

T cell induced signalling has been underscored by studies using a CD4 dependent antigen 

specific murine T cell line which lacks endogenous CD4. Transfection of this cell line with 

CD4 molecules containing mutant cytoplasmic domains, incapable of associating with p56lck, 

results in a non-functional TCR, whereas transfection with normal CD4 molecules, capable of 

associating with p56lck, restores normal TCR mediated PTK signalling [51]. Similar 

experiments using T cells expressing mutant CD8  molecules, incapable of associating with 

p56lck, also results in a non-functional TCR, further highlighting the importance of p56lck in 

CD8  T cell signalling [133].
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Experiments using genetic mutants of p56lck have helped to dissect further the role of p56lck in 

normal T cell signalling. If the mutant Jurkat leukaemic T cell line J C a M 1 . 6 ,  which lacks a 

functional p56lck, is activated via the TCR, it fails to induce tyrosine phosphorylation of 

cellular proteins, to mobilise [ C a 2 + ] j ,  or to express cell-surface activation molecules [134]. 

Reconstitution of the mutant line with wild type murine p56,ck restores normal TCR mediated 

function. Similarly, another mutant, this time an IL-2 dependent cytotoxic T cell line which 

lacks p56lck, is incapable of cytolysis until reconstituted with normal p56lck [135]. 

Interestingly, both of the above mutants have comparable levels of p59^n activity, indicating 

that other members of the src family cannot compensate for isolated p56lck deficiencies and 

that p56lck must act proximally to p59^n and other PTKs in the normal TCR signal 

transduction cascade.

1.3.4.5 FYN protein tyrosine kinase

Fyn is a 59 kDa PTK which is found predominantly in cells of neuronal and haematopoietic 

origin [136,137]. These two tissues display distinct isoforms of Fyn which differ as a result 

of alternate splicing of the several exons which encode the protein [138]. The association of 

Fyn with TCR £ chain was first demonstrated in co-immunoprecipitation experiments [139]. 

The interaction of Fyn with the cytoplasmic domain of ̂  chain appears to be mediated by the 

first 10 amino acids within the unique region of Fyn and at least two regions of the 

cytoplasmic domain of £ each of which encompasses at least one ARAM sequence. The 

evidence for this comes from studies using £ chain with only one ARAM sequence capable of 

interacting with Fyn, which revealed that the two molecules failed to associate [140]. Genetic 

evidence supporting the role of Fyn in TCR mediated signalling comes from a series of
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transgenic experiments. Over-expression of wild type Fyn in the thymus of transgenic mice 

results in thymocytes that show increased levels of tyrosine phosphorylated proteins and are 

hyper-responsive with respect to TCR mediated PTK activity, when compared to thymocytes 

obtained from normal litter mates [141]. In contrast, expression of a mutant Fyn molecule 

with an inactive kinase catalytic site results in abrogation of TCR mediated proliferation and 

mobilisation of [C a 2+]j as compared to normal cells. Mice that lack Fyn as a result of 

homologous recombination have grossly normal thymocyte subsets and normal TCR Vp 

repertoires. Interestingly, these Fyn deficient mice have marked signalling abnormalities in 

the single positive thymocyte population [142,143] but have essentially normal peripheral T 

cell signalling [143], suggesting that Fyn may play a role in the later stages of thymocyte 

development and may not be required for TCR mediated proliferation in peripheral T cells.

1.3.4.6 ZAP-70 protein tyrosine kinase

Zeta-chain associated protein (ZAP-70) is a member of the Syk family of PTKs [144]. ZAP- 

70 is a 70 kDa tyrosine phosphoprotein which, as its name implies, was initially found to be 

associated with the £ chain of TCR following receptor stimulation [69]. More recently 

however, it has been shown to associate also with CD3e subunit in stimulated cells [145,146]. 

The association of ZAP-70 with the £, chain requires activation of the TCR and tyrosine 

phosphorylation of the CD3<  ̂chain and ZAP-70 by p56lck. In experiments using a Jurkat cell 

line deficient in Lck, neither ZAP-70 nor £ chain were found to phosphorylate or to associate 

together when the TCR was stimulated by immobilised cross-linking anti-TCR antibodies 

[147]. In studies using chimeric receptors expressing 2 forms of £ chain, one expressed as 

part of the normal TCR and the other expressed with CD8 , stimulation of TCR results in
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association of ZAP-70 with TCR/<  ̂ but not with CD8 /(̂ . Conversely, stimulation of CD8  

results in association of ZAP-70 with CD8 /<̂  but not TCR/^ [148]. The association of ZAP- 

70 with the £ chain has been shown to be mediated through phosphorylation of ZAP-70 SH2 

domains and £ ARAM sequences [147]. Not surprisingly, the association of ZAP-70 with 

CD3s is dependent on CD3e tyrosine phosphorylation [146,149] and is probably mediated 

through the CD3s ARAM sequence [150]. Exactly how ZAP-70 is involved in the TCR 

signalling cascade is not known. Studies using kinase inactive ZAP-70 constructs have 

reported normal phosphorylation of ZAP-70 and C, chain, with normal association of the two 

molecules but with a marked decrease in cellular tyrosine phosphorylated proteins [147]. 

Thus, it appears that ZAP-70 specifically couples Lck mediated signalling to the TCR multi­

subunit complex and is probably important in mediating signalling to downstream effector 

molecules. (See Figure 1.2 Below)
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Figure 1.2 Schematic representation of the initiating events in TCR activation. 

Adapted from Chan et. al. A nnu Rev Immunol 1994.12:555-92.
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Figure 1.2 characterises the interaction of APC with CD4 T cells. Specifically, the presentation of peptide 

antigen (Ag) with MHC Class II to the aPTCR with subsequent activation of the intracellular signalling 

pathways and generation of active intracellular substrates is illustrated. The association of CD3 with 

TCR, the co-receptor function of the CD4 molecule, and the de-phosphorylation of p56l k and subsequent 

phosphorylation of tyrosine residues on the c and chains of CD3 and ZAP-70 are also depicted.

1.4 ANTI-CD4 TREATMENT AND TOLERANCE

1.4.1 Antibody induced tolerance introduction

Studies using monoclonal antibodies directed against T cell antigens have been shown to 

inhibit T cell proliferation in vitro  [151.152.153,154,155] and to be capable o f  

immunosuppression in vivo by inhibiting the development o f  autoimmune disease 

[156,157,158,159] and by increasing allograft survival [160,161,162,163] in animal models. 

In various rodent transplantation models using vascularised cardiac allografts, different 

systemic anti-CD4 mAb treatment protocols have been employed, some o f  which lead to 

profound depletion o f  CD4 T cells and others which block CD4 T cell function, partially or
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completely spare CD4 T cell numbers. Studies using anti-CD4 in experimental transplant 

models have reported, that anti-CD4 treated animals not only enjoy increased survival of their 

cardiac allografts, compared to control animals, but additionally may develop allospecific 

tolerance when rechallenged with secondary grafts of the same strain as the original donor 

[160,162,164,165,166,167]. The mechanism of action of anti-CD4 mAb treatment in the 

development of transplantation tolerance is however, far from clear.

The first studies in which tolerance to a cardiac allograft was induced using anti-CD4 mAb, 

used anti-CD4 protocols in mice [165] or rats [162] which caused profound and long lasting 

depletion of CD4 T cell, thereby exposed the treated animals to long periods of non-specific 

immunosuppression. Although very useful in establishing models of tolerance, the almost- 

complete depletion of the CD4+ve T cell fraction, made it very difficult to determine how the 

other cell sub-populations and the re-emerging CD4+ve T cells each contributed to the 

transplant tolerance which ensued. More recent protocols of anti-CD4 treatment [164,166] 

have employed short courses of non-depleting or partially depleting anti-CD4 antibodies 

which allow for consistent monitoring of effector cell function without the need for 

experimental calculation and assumption due to the unnatural shifting of cell subsets as a 

result of depletion.

The principle mechanisms which have been proposed to explain peripheral T cell tolerance 

are clonal deletion [168,169,170], immune deviation or polarisation 

[171,172,173,174,175,176], T cell inhibition [177,178,179] and T cell anergy [180,181,182]. 

As indicated above, each individual mechanism probably represents a single facet of the 

multifaceted immune system, which when experimentally exploited, gives a false impression 

of uniqueness. It is the authors belief that transplantation tolerance using fully disparate 

MHC allografts is likely to be non-exclusive and will therefore incorporate some or all of the
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above mechanisms, perhaps working together in an active or even synergistic fashion. A 

unifying explanation for transplantation tolerance must incorporate all of the pieces of the 

‘immunological jig-saw puzzle’, explain the variation observed between experimental 

systems and hopefully predict the immune response when appropriately challenged. The 

potential mechanisms which are responsible for peripheral T cell tolerance are reviewed 

below.

1.4.2 Clonal deletion

Clonal depletion of potentially auto-reactive developing T cells within the thymus is the 

principal mechanism responsible in establishing central tolerance to potential auto-antigens. 

Clonal deletion of peripheral mature T cells, may in principle, also be partly responsible in 

the induction of tolerance following anti-CD4 mAb. In the context of anti-CD4 treatment and 

tolerance, it is believed that antibody treated cells which contact antigen, perhaps particularly 

those with the highest avidity for antigen [183], may receive inappropriate or inadequate 

intracellular signals which ultimately lead to programmed cell death or apoptosis. 

Additionally, one important element of T cell depletion by anti-CD4 antibodies appears to be 

secondary to cross-linking of the CD4 molecules on the cell-surface in the absence of TCR 

engagement and is associated with the up-regulation of Fas antigen [184,185]. The Fas 

antigen is usually only expressed on activated T cells and it is through the binding of Fas to 

its ligand (FasL) that immunoregulation through apoptosis is thought to occur. In this 

context, it is notable that mice which are deficient in either Fas or FasL expression tend to 

develop lymphoproliferative or autoimmune diseases [186].
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Several models of peripheral tolerance secondary to clonal deletion have recently been 

described. Examples include the following. Mice given bacterial superantigens display an 

early and massive T cell proliferative response followed by clonal deletion through apoptosis 

of most, but not all, of their antigen reacting T cells. When the remaining T cell pool of such 

animals are subsequently re-challenged with superantigen, the animals display classical 

immunological tolerance [187]. Another elegant example of peripheral tolerance based on 

clonal elimination was provided by Scully et. al. [188] who transplanted the thymus from a 

B10.BR mouse under the kidney capsule of adult thymectomised CBA/Ca mice which had 

been depleted of CD4+ve and CD8 +ve T cells using depleting anti-CD4 and CD8  antibodies. 

Once these animals had reconstituted their T cell pool in the presence of the new thymus, they 

were challenged with B10.BR skin grafts and were shown to be tolerant to them. However, 

the transplant tolerance observed could be broken if the transplanted mice were reconstituted 

with naive CBA/Ca T cells. Interestingly, reconstitution of unmodified naive CBA/Ca mice 

with tolerant T cells did not confer tolerance to the recipient mice. Likewise, reconstitution 

of CBA/Ca litter mates, which had been T cell depleted and thymectomised, with tolerant T 

cells did not restore graft rejection, so long as donor antigen was present in the system before 

cell transfer. This indicates that the missing cellular component in this experimental model 

was allospecific helper and/or effector cells. However, it is important to emphasise that 

clonal deletion of alloreactive T cells on its own is not the only mechanism, or indeed the 

major mechanism of tolerance induction, since, in many models of transplantation tolerance 

induced by monoclonal antibodies, restoration of allograft rejection is not achieved when 

naive immunocompetent T cells are given to the tolerant recipients [179,181,189].
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1.4.3 Immune deviation/polarisation

There is considerable evidence in the rat which suggests that the maintenance o f peripheral 

tolerance to self antigens in normal animals is mediated by regulatory CD4+ve T cells, via the 

production of cytokines such as IL-4 and IL-10 [190]. Also, Hutchings et. al. [191] found an 

increase of CD4+ve T cells producing these cytokines around the islets of Langerhans of NOD 

mice made resistant to diabetes by the administration of non-depleting anti-CD4 antibodies. 

A similar regulatory mechanism for transplantation tolerance provides an attractive 

explanation for anti-CD4 induced allograft survival. As mentioned above, CD4+ve T cells are 

a heterogeneous population and can be divided into two functionally distinct subsets, Thl and 

Th2, based, to a large extent, on their different cytokine repertoires. Thl cells, through 

release of IL-2, T u m o u r  N ec r o sis  F a c t o r -a l p h a  (TNF-a) and INF-y, are responsible for 

mediating cellular effector responses such as cytotoxicity reactions, delayed type 

hypersensitivity, and B cell help for the production of complement-fixing antibodies. In 

contrast, Th2 cells produce IL-4, IL-5, IL- 6  which provide B cell help for production of 

neutralising IgGl or anti-parasitic IgE antibodies and IL-10 which down regulates Thl cells. 

Thl and Th2 effector cells arise from a T h e l pe r  c o m m o n  p r e c u r s o r  c e l l  (Thp), and 

antigen inexperienced immature CD4+ve T cells are thought to correspond to ThO clones 

which simultaneously secrete low levels of both Thl and Th2 type cytokines. Because 

functionally distinct Thl and Th2 subsets are mutually antagonistic and because each T cell 

subset has an autocrine response to its own pattern of cytokine, as an immune response begins 

to polarise, immature T cells are thought to be recruited towards the dominant response.

Normally a balance exists in vivo between Thl and Th2 responses. Transplant rejection is 

generally associated with a strong Thl immune response. Those advocating immune 

deviation as an explanation for transplantation tolerance, suggest that in the course of
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tolerance induction, the antagonistic Th2 sub-population predominates and is responsible for 

inducing and/or maintaining the tolerant state. Several groups have shown preferential 

expression of IL-4 and/or IL-10 during the induction of tolerance to renal or cardiac allografts 

in rodents using tolerogenic strategies which include using low dose anti-CD4 antibody 

treatment [172,192]. Similarly, some investigators have been able to prevent Class II 

disparate skin graft rejection in mice by the transfer of thymocytes expressing Th2 cytokine 

repertoires [193]. However, it should be emphasised that there are a number of reports of 

tolerance induction occurring in the absence of an obvious Th2 cytokine response. For 

example, mice given rat anti-CD4 mAb to induce tolerance to skin allografts have also been 

shown to be tolerant of the rat anti-CD4 antibody itself; failure to generate a humoral 

response directed against the rat protein suggests that there is not necessarily a global bias 

towards a Th2 response in this model [189]. Also, in a similar skin allograft system but using 

both anti-CD4 and CD8  antibodies, mice which were made tolerant of Kb Class I MHC failed 

to make anti-Kb antibodies. However, such antibodies were found in high titres in untreated 

litter mates allowed to reject their grafts [194], More recently, studies using IL-4 K n o c k o u t  

(KO) mice [195] or neutralising anti-IL-10 antibody [196], have shown that mice can be 

made tolerant to oral ovalbumin in the apparent absence of any IL-4 and/or any detectable 

Th2 cytokine response. From these studies, it is clear that although Thl to Th2 immune 

deviation is an attractive explanation for peripheral tolerance in some experimental models, it 

cannot be invoked uniformly to account for anti-CD4 induced tolerance and therefore other 

potential mechanisms to explain tolerance must also be considered.
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1.4.4 T cell inhibition, suppression and/or immunoregulation

T cell inhibition as a mechanism of immunological tolerance was a popular concept in the 

early 1970s and was originally called suppression. With the failure to clearly define a distinct 

population of ‘suppressor’ T cells, the concept fell out of favour. However, in the last few 

years the concept has been revived because several groups have been able to demonstrate, by 

adoptive transfer, the presence of cells which are capable of modulating the immune response 

in vivo.

One of the best examples of suppression using mAb therapy in a transplantation model is that 

reported by Qin et. al. In 1993 [179]. They used non-depleting anti-CD4 and anti-CD8  

antibodies to induce tolerance to B10.BR multiple minor skin allografts in adult 

thymectomised CBA FI hybrid recipients, obtained after crossing normal CBA mice with 

CBA mice expressing the human CD2 transgene (hCD2+ve). After establishing tolerance, the 

authors tested for T cell suppression by transferring 5 x 107 normal spleen cells from naive 

hCD2've CBA mice back into the tolerant graft recipients. They first showed that if they 

removed the tolerant cells from the recipients at the time of spleen cell transfer, by using anti­

human CD2 antibody, then the skin grafts were be promptly rejected by the transferred 

immunocompetent cells. However, if they waited for at least two weeks after cell transfer 

before deleting the tolerant cells, then the original, and even a second B10.BR skin graft, was 

not rejected, despite the absence of any residual hCD2+ve tolerant cells. This elegant 

experiment demonstrates that the original population of lymphocytes in the tolerant animal 

were capable not only of inhibiting naive T cells, but also that, in time, the naive T cell 

population had itself become tolerant. In describing this phenomena, Waldmann’s group 

coined the term “infectious tolerance”, however, credit must go to Eardley and Gershon who 

first described infectious tolerance in 1975. Eardley and Gershon showed that tolerant cells
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could make naive cells tolerant when mixed together and called this concept “feedback 

suppression” [197]. Waldmann and collegues also showed, using their experimental model, 

that a T cell mixture taken from tolerant and naive animals could be transferred back into new 

secondary recipients who would then also display tolerance to the original antigen; moreover, 

this process could be repeated several times over, transferring transplantation tolerance from 

one new naive recipient to another. There are of course, still several important questions 

which remain unanswered in this experimental model. For example, is infectious tolerance 

one phenomena (i.e. inhibition/suppression) or does infectious tolerance also rely on multiple 

mechanisms? What type of cells are responsible for causing suppression? Do the 

“suppressor cells” actively produce cytokines which suppress other effector cells or are they 

inactive and unresponsive, and merely inhibit by interfering with a developing immune 

response by virtue of their numbers or their ability to consume important cytokines? To 

address these questions further, additional mechanisms must be considered such as T cell 

anergy.

1.4.5 Anergy

The term T cell anergy was coined by Schwartz and colleagues [198]and can be defined as the 

absence of a normal cellular response to antigen (proliferation and production of IL-2 and 

other cytokines) despite the continued presence of the cell capable of recognising the antigen 

(T helper/effector cell) and the antigen itself. Many explanations for T cell anergy have been 

proposed but it is now generally accepted that anergy in CD4+ve T cells is induced when these 

cells encounter antigen and fail to proliferate normally due to the absence of appropriate 

costimulation or cytokines. Anergy is more easily demonstrated within the Thl cell subset
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and it has been suggested that Thl cells are more susceptible than Th2 cells to the induction 

of non-responsiveness. As discussed above, the absence of an appreciable Th2 response in 

many models of Thl transplantation tolerance, suggests that Th2 cells can also be anergised, 

although direct testing for Th2 anergy in these models was not performed. Interestingly 

however, Yssel et. al. [199] showed that it is possible to induce anergy in human allergen 

specific Th2 cells by activating the cells in the absence of professional APC. The induction 

of anergy in this system was accompanied by phenotypic modulation of the cells and altered 

cytokine production upon activation.

As implied above, there has been a plethora of reports describing anergy involving Thl 

responses which date back to the mid 1980s. Jenkins & Schwartz [198] showed that T cell 

clones when stimulated with antigenic peptides bound to Class II MHC on metabolically 

inactive or non-professional APC (lacking normal costimulatory accessory surface molecules) 

did not proliferate and became unresponsive when subsequently re-challenged with antigen 

presented by professional APC. They later showed [200] that murine Thl clones stimulated 

with antigen presented by normal APC in the presence of anti-IL-2 and anti-IL-2 receptor (IL- 

2R) antibodies also became anergic. From these studies, they suggested that the lack of 

accessory molecules for costimulation is not the limiting step in the induction of anergy. 

Instead, they argued that lack of normal IL-2 production and cellular proliferation resulting 

from incomplete costimulatory activity was the critical event.

Quill et. al. [201] showed that MHC Class I restricted T-hybridoma cells could also be 

rendered anergic by using a system of antigen presentation in planar lipid membranes with or 

without Class I molecules. They showed that the T cells became unresponsive if antigen was 

presented by Class I without other accessory molecules, but remained responsive if antigen 

was presented in the lipid membranes directly without Class I. This finding suggests that
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induction of anergy, through lack of accessory costimulation, requires the engagement of the 

T cell receptor in the context of normal self MHC-CD8/CD4 complex.

T cell anergy was implicated in transplantation tolerance by Alters et. al. [182]. This group 

transplanted mouse pancreatic islets of Langerhans from A/J(IEK+ve) donors into 

streptozotocin induced diabetic C57B1/6 (IEK've) recipients under the cover of depleting anti- 

CD4 antibody treatment. They found that the recipients became tolerant of their IE disparate 

grafts, as measured by normoglycaemia for greater than 200 days. Murine TCR Vp gene 

segments which encode reactivity with Class II MHC IE antigen are found in Vp5, Vpl 1 and 

Vpl7 subsets and animals which express IE antigen generate self tolerance by depleting the 

majority of their Vp 5, 11, and 17 T cells from the periphery [202,203,204,205]. Alters et. al. 

found no evidence of Vp 5, 11, or 17 depletion in their model of anti-CD4 induced 

transplantation tolerance. Furthermore, after isolating LNCs with specific Vp subsets from 

their tolerant mice, they showed that the V p ll+ve subset proliferated poorly in response to 

immobilised anti-Vpll antibody, and that proliferation could be partially restored by adding 

exogenous recombinant IL-2. In a combination of mixing experiments using tolerant 

CD4+veV p ll+ve or CD8 +veVpl l +ve cells, the authors could not suppress naive C57B1/6 LNC 

proliferation in response to anti-Vpll antibody. These data suggest that in this particular 

model, anergy rather than clonal deletion or inhibition/suppression was responsible for 

tolerance induction. The presence of anergic cells in anti-CD4 mAb treated recipients bearing 

long-term surviving allografts has also been reported by other groups [181,189], providing 

further support for the hypothesis that anergy of peripheral CD4 T cells may be an important 

mechanism for maintaining the tolerant state.
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1.4.6 Infectious anergy

Interestingly, in all the systems discussed above, tolerance once established appears to be very 

robust and to dominate any further tendency for the immune system to respond to a new 

challenge with the same antigen. In a recent review, Cobbold et. al. [206] have introduced a 

new term, “infectious anergy”, which in part describes tolerance as being both inhibition and 

anergy working together. They have suggested [207,208] that anergic T cells might compete 

with immunocompetent T cells and, by depriving the immunocompetent cells of important 

paracrine proliferative cytokines, cause them to default to the anergic state. There is good in 

vitro data using mixing experiments with anergic and immunocompetent naive cells which 

suggests that competition between these cells for the surface of APC can induce anergy in the 

immunocompetent fraction [209]. It seems likely that competition for the APC cell-surface 

molecules required for costimulation, particularly that of either B7-1 or B7-2 with CD28 

[180] or the recently described costimulatory molecule for Thl cells [210], is involved in the 

induction of infectious anergy. It is notable that blockade of CD28-B7 interaction after 

cardiac alloantigenic challenge, has been shown to induce anergy in the Thl compartment but 

apparently spares the Th2 response [211]. There is a growing body of evidence which 

suggests that B7-2 and B7-1 may provide costimulation with some specificity for Thl and 

Th2 cells respectively [180,212]. This might explain how, if competition for ligand is 

limiting, either Thl or Th2, or both Thl and Th2 responses could be inhibited, depending on 

expression and/or level of competition for each of the ligands involved.

Cobbold et. al. [206] have proposed a model which attempts to unify the different potential 

mechanisms underlying peripheral tolerance to alloantigen. They suggest that a cellular 

collaborative unit may involve competition between non-tolerant naive ThO like cells, anergic 

tolerant Thl or Th2 CD4+ve T cells and non-tolerant CD4+ve and/or CD8 +ve T cells for the
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cell-surface of an APC. In this model, they propose that naive cells encounter antigen and 

produce low levels of Thl and Th2 cytokines. The small amount of IL-4 produced in turn 

stimulates the tolerant T cell pool to expand. During expansion, the tolerant CD4+ve T cells 

secrete INF-y and T r a n s f o r m in g  G r o w t h  F a c t o r -B e t a  (TGF-p) which further increases 

MHC expression and antigen presentation on the surface of the APC without increasing the 

APC’s expression of costimulatory molecules. This implies that it becomes more likely that 

non-tolerant CD4+ve and/or CD8 +ve T cells will contact antigen on the surface of the APC 

without receiving appropriate costimulation, which in-tum implies that they are driven 

towards the anergic state. A central element in this hypothetical model of infectious anergy, 

is the cohort of anergic T cells which are able to proliferate in response to low levels of IL-4 

and are able to secrete INF-y and TGF-p but otherwise have no direct effector cell function. 

The mechanism(s) involved in generating this initial T cell pool is not addressed in their 

model and could occur through any of the above mechanisms listed above.

1.5 AIMS AND OBJECTIVES OF THESIS

Using a full MHC mismatched rat heterotopic cardiac transplantation model, I hope to show 

that MRC 0X38 anti-CD4 mAb treatment therapy can achieve long term tolerance in treated 

recipients. I hope to also show that this treatment therapy is associated with preferential 

depletion of Thl like T effector cells and that transplantation tolerance can be achieved in 

mAb treated recipients without obvious bias to either a Thl or Th2 polarised type response.
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I hope to also show that anti-CD4 mAb treatment has an effect on the residual non-depleted T 

cell pool. To test if  treated cells are functionally capable of initiating allograft rejection, anti- 

CD4 mAb treated animals will be challenged with heart grafts at a time following mAb 

therapy when CD4 T cells are no longer coated with antibody. Additionally, following 0X38 

mAb treatment, residual CD4 T cells will be analysed to determine whether they display 

abrogated intracellular signalling in response to TCR activation. Also, the pattern of 

signalling observed in anti-CD4 mAb treated cells will be compared to the signalling pattern 

described in anergic T cells.

I also hope to demonstrate that there is an additional requirement for transplantation tolerance 

induced by MRC 0X38 mAb treatment in this experimental model. I hope to provide 

evidence that anti-CD4 induced transplantation tolerance can only be achieved is there are a 

sufficient number of RTE cells in anti-CD4 mAb treated animals. To provide a basis for the 

role of RTE in this experimental model, single positive CD4+ve thymocytes will be 

characterised in vitro using TCR activation assays and the mRNA cytokine repertoire of these 

cells will analysed by RT-PCR.
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2. Materials and Methods

2.1 ANIMALS

All animals were purchased from Harlan UK.(Harlan UK Ltd. : Shaw's Farm, Blackthorn, 

Bicester, Oxfordshire, UK) and maintained in conventional facilities at the University of 

Glasgow Department of Surgery animal house. Mice used for antibody production were FI 

(DBA/2 X BALB/c) males between 6  and 10 weeks old. Cardiac transplantation recipient 

rats were DA adult males which were between 8  and 12 weeks old at time of transplant. 

Animals used for thymectomy were DA adult males which were between 6  and 8  weeks at 

time of thymectomy. Organ and skin donor rats were all RT11 (Lewis) males which were 

between 8  and 14 weeks of age at time of sacrifice. Third party rats for skin and/or cardiac 

allografting were RT1C (PVG) adult males which were also between 8  and 14 weeks of age at 

time of sacrifice. The animals were fed using standard rodent animal feeds and were cared 

for and used in strict accordance of the Animal Scientific Procedures Act 1986.

2.2 ANTIBODIES USED

2.2.1 Hybridoma production

MRC 0X 38 [213], a mouse anti-rat IgG2a mAb, which is specific for the membrane distal 

domains of the rat CD4 molecule expressed on most rat T lymphocytes as well as some 

macrophages, was used to induce tolerance and for immunoprecipitation of CD4 bound
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p56lck. The hybridoma cell line was kindly provided by Dr. D. Mason (MRC Cellular 

Immunology Unit, Oxford, England).

R73 [214], a mouse IgGl anti-rat mAb specific for the constant determinant of the rat 

apTCR receptor was used for T cell staining and T cell activation experiments. The 

hybridoma cell line was kindly provided the European Collection of Animal Cell Cultures 

(ECACC) (Portondown, Wilkshire, UK).

The hybridomas for both 0X38 and R73 were grown using standard tissue culture techniques 

(see below). When sufficient cell numbers were available, they were injected 

In t r a p e r it o n e a l l y  (IP) into (DBA/2 X BALB/c) FI mice (2 x 106 cells/animal) (Harlan 

Olac) which had been primed 7 days earlier with 0.2mls of pristane injected IP. Seven to 

fourteen days after IP injection of hybridoma cells, 2-5mls of ascitic fluid was harvested from 

each mouse, pooled and allowed to clot. The clotted ascities was then centrifuged in a 

Minifuge GL Centrifuge (Heraeus-Christ Centrifuge : Osterode, Germany) at 200g for 10 

M in u te s  (Min) at room temperature (r.t.). The supemate was saved, further clarified by 

centrifuging at 1500g for 10 Min at r.t. in the same centrifuge and then filtering using 

millipore GS 0.22pm filters (Millipore S. A. : 67120 Molsheim, France) into sterile 50ml 

polypropylene tubes. Ascities samples were stored at -20°C until further purification.

2.2.2 Other antibodies used

MRC OX8  [215], a mouse anti-rat IgGl mAb which binds to rat CD8  expressed on rat T 

cytotoxic/suppressor lymphocytes as well as some rat NK cells and MRC 0X 12 [216] a 

mouse IgG2a mAb which binds to rat Ig k chains, expressed on B-lymphocytes, were used in
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the purification of rat CD4+ve T lymphocytes and thymocytes. These mAb were kindly 

provided by Dr. D. Mason (MRC Cellular Immunology Unit, Sir William Dunn School of 

Pathology, Oxford, England).

As well as R73 (previous page), polyclonal R a b b i t  a n t i - M o u s e  a n t i b o d y  (RaMo) IgG 

(Serotec Ltd.) was used in preparation of anti-TCR coated plates and cytometer tubes (see 

below), but was also used in conjunction with 0X38 in inhibition assays when it was 

employed as a cross-linking second antibody.

RC-20 (Affinity Research Products : Nottingham UK), a construct incorporating the 

hypervariable binding domain of an anti-phosphotyrosine antibody conjugated to H o r s e  

R a d i s h  P e r o x i d a s e  (H R P ) ,  polyclonal rabbit anti-human p56lck and polyclonal rabbit 

anti-human ZAP-70 were both purchased from Santa Cruz Biotechnology (Santa Cruz 

Biotechnology : Santa Cruz, Ca ), and polyclonal goat anti-rabbit HRP (DAKO A/S : 

Dakopatts Produktionsvet 42, P. O. Box 1359, DK-2600, Glostrup, Denmark) were all used 

in Western blotting.

MRC 0X 39 [217], is a mouse IgGl mAb specific for the 50,000 kDa induceable IL-2Ra 

chain which is present on activated rat CD4+ve T cells, MRC 0X 1 [218], a mouse IgGl mAb 

which binds to the rat leukocyte common antigen, MRC 0X 22 [219], mouse IgGl mAb 

which binds to the high molecular weight isoform of the leukocyte common antigen 

(CD45RC antigen) and MRC 0X21 [220], a mouse IgGl mAb specific for the human C3b 

inactivator (which was used as a control antibody) were kindly provided by Dr. D. Mason 

(MRC Cellular Immunology Unit, Sir William Dunn School of Pathology, Oxford, England), 

W3/25 [215], a mouse IgGl mAb which also labels the membrane distal domain o f rat CD4, 

was a kind gift from Dr. E. Bell (Dept of Immunology, Manchester School of Medicine,
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Manchester, UK), EDI [221] (Serotec Ltd) a mouse IgGl mAb which labels most rat tissue 

macrophages, monocytes and dendritic cells were used in immunohistochemical staining of 

cardiac tissue, PBL, LNC, thymocytes, and spleen cells and MRC 0X 7 [88] a mouse IgGl 

mAb which binds to the rat Thy 1.1 antigen expressed by thymocytes and by newly exported 

functionally naive CD4 T cells was used in flow cytometric analysis.

Other antibodies used for fluorescent staining included P h y c o e r y t h r in  (P E )  conjugated 

0X8 and W3/25; F l u o r e s c e in  I s o t h io c y a n a t e  (FITC) conjugated R73, P E  and FITC 

conjugated 0X22, FITC conjugated mouse anti-rat IgM, IgGl, IgG2a, IgG2b, and IgG2c (All 

from Serotec Ltd.), as well as FITC c o n ju g a t e d  p o l y c l o n a l  R a b b it  a n t i- M o u s e  

a n t ib o d y  (RaMo-FITC) (both from DAKO A/S). A summary of the antibodies used in this 

thesis are provided in Table 2.1 below.
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Table 2.1

mAb Species Ig Class Specificity Reference

0X38 Mouse IgG2a Membrane distal domain rat CD4 [213]

R73 Mouse IgGl Rat apTCR [214]

0X8 Mouse IgGl Rat CD8 [215]

0X12 Mouse IgG2a Rat Ig Kappa chain expressed on B cells [216]

0X39 Mouse IgGl Inducible Rat IL-2 Receptor a  chain [217]

0X1 Mouse IgGl Rat leukocyte common antigen [218]

0X22 Mouse IgGl Rat high molecular weight isoform of the 
leukocyte common antigen (CD45RC+ve)

[219]

0X21 Mouse IgGl Human C3b inactivator [220]

W3/25 Mouse IgGl Membrane distal domain rat CD4 [215]

EDI Mouse IgGl Rat macrophages, monocytes and dendritic 
cells

[221]

0X7 Mouse IgGl Rat Thy 1.1 antigen [88]

2.2.3 Prosep-A affinity purification o f  0X38 mAb from mouse ascitic flu id

Ascitic fluid was thawed, diluted 1:2 in l.OM glycine, 0.3M NaCl pH 8.6 buffer, and applied 

to a Protein-A affinity column (PROSEP-A High Capacity Bioprocessing Ltd. : 1 Industrial 

Estate Consett Co, Durham, England) as recommended by the manufacturer. Briefly, aliquots 

of the diluted ascities were added to a 10ml PROSEP-A column which was equilibrated in 

l.OM glycine, 0.15M NaCl pH 8.6 buffer and the bound protein fraction eluted using a pH 6 

to 3 gradient of 0.1 M citrate buffer. All effluents passed through a single wave length in-line
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spectrophotometer (Single Path Monitor UV1, Pharmacia-LKB Biotechnology AB : 

Bjorkgatan. S-75182, Uppsala, Sweden) and peak fractions collected in a Frac-100

Pharmacia fraction collector. See Figure 2.1 below.

Figure 2.1 Affinity purification of 0X38 ascities
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This figure illustrates that as the PROSEP-A column elution buffer pH was reduced, protein (as 

determined by absorption of light at an OPTICAL DLNSITY (O D ) 280rim  wavelength) was eluted and 

collected by fraction from the column.

Pooled peak fractions were dialysed using Visking size 2-18/32" tubing (Medicell 

International Ltd. : 239 Liverpool Road. London) into Phosphate Buffered Saline pH 7.4 

Dulbecco 'A', (PBS) and were stored at -20°C  until use.

2.2.4 Radial immune diffusion (RID) determination o f  antibody concentration

The IgG2a concentration in each o f  the two pooled peaks obtained by PROSEP-A affinity 

purification (described above), were determined by Radial Immune Diffusion assay using a 

commercially available kit (Serotec IgG2a RID Kit, Serotec Ltd.).
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2.3 SODIUM DODYCYL SULFATE POLYACRYLAMIDE GEL 

ELECTROPHORESIS (SDS-PAGE)

The starting ascities, unbound non-absorbed protein fraction from the PROSEP-A column, 

and pooled elution peaks from the same column, as well as TCR-activated CD4 T cell lysates 

or immunoprecipitates were analysed by SDS-PAGE on 10% gels as described by Laemmli,

[222], The Molecular Mass o f  protein bands were determined by running standard protein 

markers on each gel (Gibco BRT : Life Technologies Ltd. P. O. Box 35, Trident House, 

Renfrew Road. Paisley, UK). See Figure 2.2 below.

Figure 2.2 10% SDS-PAGE of affinity purified monoclonal antibodies

S tanda rd  0X 38  R73
I---------------- 1-----I---------------- 1

M W  kDa + 0Mlr ♦PM1- - 0MF. + 0MF pME

As dem onstrated by 10% SDS-PAGE, this figure illustrates the purity of both 0X 38 and R73 mAb. The 

polyacrylamide gel was stained with 1% Coomassie blue dye for 30 Min and de-stained in 10% 

methanol/acetic acid overnight. The single lane on the left shows standard molecular weight protein 

m arkers, while the lanes on the right show 5pg protein samples of affinity purified 0X 38 and R73 run in 

the presence and absence of PME.
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2.4 HETEROTOPIC CARDIAC TRANSPLANTATION

2.4.1 Donor animals

Rat heterotopic cardiac transplantation was performed as described by Ono and Lindsey

[223]. Briefly, using sterile technique and halothane/oxygen inhalation anaesthesia, donor 

animals were heparinised using 100 In t e r n a t io n a l  U n it s  (IU ) Heparin In t r a v e n o u s l y  

(IV ) (Leo Laboratories Ltd. : Princes Risbourgh, Bucks., England) and were exsanguinated. 

Thoracotomy was performed and the heart immediately chilled with topical 4°C normal saline 

and ice. The right and left superior vena cavae, inferior vena cava, and pulmonary venous 

trunk were individually ligated using 6.0 silk ties and transected. All other venous and 

arterial branches, except the pulmonary artery and aorta, were ligated en-mass using a single 

6.0 silk tie. The heart was excised and the donor organ immediately placed in cold (4°C) 

sterile saline until required for transplantation. Cold ischaemic time (i.e. the time in cold 

sterile saline after removal of the heart from the donor until the anastomosis was started in the 

recipient) varied from 5 to 45 Min in total.

2.4.2 Recipient animals

Using sterile technique and halothane/oxygen inhalation anaesthesia, recipient animals had 

laparotomy performed on heated operating plates. The infra-renal abdominal aorta and vena 

cava were identified and isolated. Lumbar vessels were ligated using 8.0 silk ties. Two 

microsurgical vascular occlusion clamps were placed 1.5 cm apart across the aorta and vena 

cava together and arterotomy and venotomy performed. Using standard microsurgical 

techniques, the donor heart aorta and pulmonary artery were anastomosed, in an end to side 

fashion, onto the recipient aorta and vena cava respectively using a continuous 9.0 prolene
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running sutures. Reperfusion of the donor organ occurred on average after a 15 to 25 Min 

warm anastomosis time (i.e. the time from removal of the donor organ from cold saline until 

reperfusion with recipient blood occurred) with the removal of the vascular occlusion clamps. 

The peritoneum-abdominal muscles, and skin were closed separately using a continuous 4.0 

dexon running suture. Overall, donor organ retrieval and recipient transplantation took 

between 30 and 60 Min to perform. Graft function was checked daily by direct abdominal 

palpation of the donor organ.

2.5 ORTHOTOPIC RENAL TRANSPLANTATION

2.5.1 Donor animal

Briefly, using sterile technique and halothane/oxygen inhalation anaesthesia, donor animals 

were heparinised using 100 IU Heparin IV (Leo Laboratories Ltd. : Princes Risbourgh, 

Bucks., England). The left renal vein, artery and ureter were divided and the animal 

exsanguinated. The kidney was perfused with 5 mis of cold (4°C) saline by direct cannulation 

of the renal artery using a 25 gauge needle and 5 ml syringe, and placed directly into the 

recipient for immediate transplantation.

2.5.2 Recipient animals

Using sterile technique and halothane/oxygen inhalation anaesthesia, after opening the 

abdomen using a midline incision, the native left renal vein and artery were isolated and
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occluded using fine vascular clamps and then each was transected distal to the occlusion 

clamp. The left ureter was then divided near the lower pole of the native left kidney which 

was removed so that the donor kidney could be placed in an orthotopic position for 

transplantation. The donor renal artery and vein were anastomosed in an end to end fashion 

using the recipients renal artery and vein respectively using interrupted 10.0 prolene sutures. 

Reperfusion of the donor organ occurred on average after a 15 to 25 Min warm anastomosis 

time (i.e. the time from after perfusion of the donor kidney with cold saline until reperfusion 

with recipient blood occurred) with the removal of the vascular occlusion clamps. The donor 

ureter was then anastomosed to the recipients left ureteric stump using interrupted 10.0 

prolene sutures. The peritoneum-abdominal muscles, and skin were closed separately using a 

continuous 4.0 dexon running suture. Overall, donor organ retrieval and recipient 

transplantation took between 30 and 60 Min to perform. Seven days after transplantation, 

using halothane/oxygen inhalation anaesthesia, through a separate posterior-retroperitoneal 

loin incision, the recipients right kidney was removed after mass ligation of the vascular and 

ureteric pedicle using a single 6.0 silk tie. The muscle and skin wound was closed en-mass 

using a 4.0 dexon running suture. The animals which were left to survive on the transplanted 

kidney alone, were assessed daily for clinical signs of uraemia and were bleed by tail tipping 

at regular intervals for serum creatinine and urea measurements.
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2.6 SKIN GRAFTING

2.6.1 Donor animals

Donor animals were sacrificed so that skin from over the abdominal region which was shaved

of fur and cleaned with 70% ethanol could be obtained for grafting. Once removed, skin

samples were cut into 2 cm patches and were used immediately for grafting.

2.6.2 Recipient animals

On the back between the fore legs (front shoulder region), recipient animals were shaved of 

fur and cleaned with 70% ethanol. Using sterile technique and halothane/oxygen inhalation 

anaesthesia, a 2 cm2 patch of native skin was excised from the prepared area and was replaced 

with a similar sized portion of donor skin. The donor skin was sutured in place along the 

edges, using interrupted 4.0 dexon sutures. Animals were assessed daily for evidence of skin 

graft rejection, which was defined as the day that the skin graft sloughed off completely.

2.7 THYMECTOMY

Thymectomy of R T la (DA) male rats (6 to 8 week old) was performed using sterile technique 

and halothane/oxygen inhalation anaesthesia. Briefly, with the rat prone and the neck 

hyperextended, a 10mm longitudinal skin incision was made over the sternal notch and 

proximal sternum. A 3-5 mm sternotomy was then performed by scissor dissection of the 

manubrium, taking care to avoid the external jugular and brachiocephalic veins. The
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sternotomy was widened using blunt dissection until the thymus was easily visualised with 

the aid of an operating microscope (x 15 magnification). Sharp dissection of the connective 

tissue surrounding the thymic capsule was then performed until the thymus could be removed 

in one piece from the superior mediastinum and delivered through the skin wound. The 

sternotomy and skin wounds were then closed using continuous catgut suture and the rats 

given one to two breaths of positive pressure ventilation to expand their lungs by gently 

blowing through a 2.5 ml syringe barrel which was held over the rats nose and mouth.

2.8 TISSUE CULTURE

All tissue culture work, except centrifugation, was performed using standard tissue culture 

techniques in a Gelaire BSB 40 laminar flow hood (Flow Laboratories Ltd. : Woodcock Hill, 

Harefield Road, Rickmansworth, Herts., England). All centrifugation was performed at 4°C 

for 8 Min at 200g in a Minifuge GL Centrifuge. Washes were performed by addition of 

lOmls medium to resuspended cell pellets, debris was allowed to settle, and suspended cells 

transferred to clean tubes with plastic Pasteur pipettes. Tissue culture medium, unless 

otherwise stated, was R o sw e l l  P a r k  M e m o r ia l  In st it u t e  (RPMI) 1640 with Penicillin (10 

IU/ml), Streptomycin (lOpg/ml), Glutamine (2mM) with or without 10% F o e t a l  C a lf  

S e r u m  (FCS) and/or 2 x 10’5 M 2-Mercaptoethanol (Gibco BRL). Cell cultures were grown 

in 5% CCVair mix at 37°C in a FLOW LABORATORY 210 incubator (Flow Laboratories 

Ltd.).
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2.9 MIXED LYMPHOCYTE REACTION (MLR) ASSAY

2.9.1 Spleen cells (Stimulator and target cells)

Spleens were obtained, using sterile technique, from sacrificed Lewis rats and placed into 

50ml petri dishes containing standard RPMI culture medium (RPMI 1640, with 10 IU/ml 

penicillin, lOpg/ml streptomycin, 2mM glutamine, Gibco BRL) with 10% FCS added. As 

described above, all work except centrifugation and cell irradiation was performed using 

standard tissue culture techniques. Splenocytes were obtained by gently crushing the splenic 

capsule with disposable sterile plastic forceps releasing the cells into the tissue culture 

medium. The cells were triturated free of clumps by using 5ml plastic Pasteur pipettes and 

were then transferred to 10ml conical centrifuge tubes for centrifugation at 200g for 8 Min at 

4°C. The supemate was discarded, the cell pellet resuspended in lOmls of medium, 

transferred to a fresh 10ml conical tube and the centrifugation repeated. Erythrocytes were 

lysed by resuspending the washed cell pellets in 5mls sterile water immediately followed by 

5mls of sterile 0.3M NaCl. Cells were washed a further 3 times by centrifugation and 

resuspended in 5mls medium. The cells were then irradiated, (3000 Rads over 10 Min), 

washed twice by centrifugation and finally resuspended at the desired concentration in 

medium with 10% FCS and 2 x 10"5 M 2-Mercaptoethanol.

C o n c a n a v a l in - A  (Con-A) (Sigma Chemicals Ltd.) transformed splenic blasts were prepared 

using standard tissue culture conditions after adding 50pg sterile Con-A to 2.5 x 107 Lewis 

splenocytes in lOmls RPMI with 10% FCS and incubating for 72 h o u r s  (hr).
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2.9.2 Lymph node cells (LNC : Responder cells)

Cervical and mesenteric lymph nodes were obtained using sterile technique from sacrificed 

DA rats. Peri-lymphatic fat and connective tissue was dissected away from the lymph nodes 

which were then placed in 50ml petri dishes containing culture medium. Using standard 

tissue culture techniques, lymphocytes were obtained by teasing the lymph nodes through a 

sterile stainless steel tea strainer with the rubber end of a 2ml syringe plunger. The cells were 

washed twice by centrifugation (as described above) and were resuspended at the desired 

concentration in medium with 10% FCS and 2 x 10'5 M 2-Mercaptoethanol.

2.9.3 MLR assay

MLR assay were performed in U bottomed 96 well microtitre plates (Nunclon Microwell 

Plates, Nunclon Intermed : Denmark). 0.1ml of irradiated stimulator (1 x 106/ml) and 

responder (0.5 x 106/ml) cells were used per well. Responder and stimulator cells were 

incubated at 37°C in 5% COi/air mix. On days 3, 4, and 5, culture wells were pulsed with 

0.010ml (0.001 mci) of TRK 418 T r it ia t e d -T h y m id in e  (3H-Thymidine) (Amersham 

International Pic. : Lincoln Place, Green End, Aylesbury, Bucks., England). Eighteen hrs 

after pulsing, cells were harvested onto microtitration filter paper (ICN Flow Biomedicals 

Ltd. : Eagle House, Peregrine Business Park, Gomm Road, High Wycombe, Bucks., England) 

using a Microtiter Dynatech Automash II harvester (DYNEX Technologies : Billingshurst, 

West Sussex, England). Filter paper-cell circles were placed into 5ml polypropylene tubes 

and mixed with 3mls Ecoscint A scintillation fluid (National Diagnostics : 1013-1017 

Kennedy Blvd., Manville, N. J., USA). 3H-Thymidine uptake was determined by counting
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samples on a 1209 Rank Beta Liquid Scintillation counter (LKB Wallac : Wallac OY, P. O. 

Box 10, 20101 Turku, Finland).

2.10 OTHER CELL PREPARATION / PURIFICATION

2.10.1 Thymocyte preparation

Thymus glands were obtained using sterile technique from sacrificed DA rats. Peri-thymic 

fat and connective tissue were dissected away from the glands which were placed in 50ml 

petri dishes containing standard culture medium. Using standard tissue culture techniques, 

thymocytes were obtained by teasing the thymic tissue through a sterile stainless steel tea 

strainer as described above. Cells were washed twice by centrifugation and resuspended at 

the desired concentration in Phosphate Buffered Saline (PBS).

2.10.2 Peripheral blood lymphocyte (PBL) enrichment

PBL were obtained using sterile technique by bleeding DA rats, by direct cardiac puncture, 

into syringes pre-loaded with 50 IU of heparin. The heparinised blood was then mixed with 

an equal volume of PBS. Five mis of diluted blood-PBS mix was layered on 5 mis o f percol 

(q = 1.088) and centrifuged at 400g for 20 Min at 22°C. Following centrifugation, PBL were 

harvested from the interface and washed twice by centrifugation at 200g for 8 Min at 4°C in 

PBS and were resuspended at the desired concentration in standard medium or PBS.
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2.10.3 CD4 T cell and thymocyte purification

CD4 +ve T cells were obtained by negative selection using immunomagnetic cell separation. 

Purified LNC and Thymocytes, obtained as outlined above, were resuspended in PBS + 0.2% 

B o v in e  S e r u m  A l b u m in  (BSA) (Ultra Pure, Sigma Chemical Co. : P. O . Box 14508, St. 

Louis, Mo., USA), and 50pl of 0X8 and 0X12 mAb were added per 109 cells. The cells 

were incubated for 30 Min at 4°C and were then triple washed by centrifugation, as described 

above, and resuspended in 1ml of standard medium. The cells were counted using a standard 

haemocytometre, 1ml of goat anti-mouse IgG coated magnetic beads (Biomag, Advanced 

Magnetics Inc. : UK) was added per 108 cells. After incubation for 30 Min at 4°C, the cells 

were pelleted, using a magnetic stand as recommended by the manufacturer. The supemate 

was added to a second portion of Bio Mag beads and the purification process repeated. CD4 

enriched cells were then washed twice by centrifugation, counted and resuspended at the 

desired concentration in either medium or PBS. In subsequent discussion, CD4 enriched 

LNC are referred to as ‘purified CD4 T cells’ whereas CD4 enriched thymocytes are referred 

to as ‘purified CD4 thymocytes’.

The purity of CD4 T cells obtained after negative selection immunomagnetic cell separation 

was routinely checked by double label flow cytometric analysis and a typical result is depicted 

in Figure 2.3 below. Here LNCs were stained directly using anti-apTCR-FITC (y-axis) and 

either anti-CD8-PE (left panels, x-axis) or anti-CD4-PE (right panels, x-axis). Cells were 

stained both before (upper panels) and after (lower panels) negative selection of CD4 T cells. 

In all experiments to be described, the purity of CD4 preparations from LNC and thymocytes 

was always greater than 93 and 80% respectively.
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Figure 2.3 Lymph node cell purity as determined by double label flow cytometry
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Cells were resuspended at 1.4 x 106 / ml in PBS containing 0.2% BSA. The first 10,000 cells were 

analysed using an EPICS XL^analyser (Coulter : Luton, UK), see above for detailed protocol. (A) 0X 8- 

PE vs. R73-FITC before beads. (B) W3/25-PE vs. R73-FITC before beads. (C) OX8-PE vs. R73-FITC 

after beads. (D) W3/25-PE vs. R73-FITC after beads.

2.11 ANTI-TCR ACTIVATION EXPERIMENTS

2.11.1 Preparation o f  culture p lates with a p  TCR mAb fo r  proliferation and cell signalling  

experiments

For proliferation and cell signalling studies, CD4 T cells were activated by cross-linking o f  

a p T C R  in culture plates containing immobilised R73 mAb. Using sterile tissue culture 

techniques, 0.2ml o f  polyclonal RaMo IgG (Serotec Ltd.) diluted to lOpg/ml in 0.1M 

N aH C03  pH 8.2 was added to each well o f  a U 96 Nunclon Microwell Plates (Nunclon
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Intermed) and incubated for 2 hrs at 37°C. The plates were triple washed with excess PBS, 

blotted dry, and 0.2ml of R73 mAb diluted to 5pg/ml in PBS added to each well. The plates 

were then incubated at 4°C until ready to be used. Prior to use, the wells of the plate were 

triple washed with excess PBS and ‘blocked’ by addition to each well of 0.2ml of 1% 

N o r m a l  M o u se  S e r u m  (NMS) diluted in PBS and incubating for 1 hr at 4°C. Finally the 

wells were triple washed with excess PBS and blotted dry ready for addition of CD4 T cells. 

Plates prepared in this way are subsequently referred to as ‘standard TCR plates’.

2.11.2 Preparation o f  tubes with ap  TCR mAb fo r use in Ca2+ signalling experiments

Polystyrene flow cytometer tubes (Coulter) were preincubated with 3mis of 50% ethanol for 1 

hr at 22°C. The ethanol was then removed and the tubes allowed to dry. 2ml of polyclonal 

RaMo IgG (Serotec Ltd.) diluted to lOpg/ml in 0.1 M NaHC0 3  pH 8.2 was added to each tube 

and the tubes incubated for 2 hrs at 37°C. After the tubes had been triple washed with excess 

PBS and blotted dry, 2mls of R73 mAb diluted to 5pg/ml in PBS was added to each tube and 

incubated at 4°C until ready to be used. Prior to use, each tube was triple washed with excess 

PBS and ‘blocked’ by addition of 2ml of 1% NMS diluted in PBS and incubating for 1 hr at 

4°C. Finally, the tubes were triple washed with excess PBS and blotted dry ready for addition 

of CD4 T cells. Flow cytometer tubes prepared in this way are subsequently referred to as 

‘standard TCR coated cytometer tubes’.
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2.11.3 TCR proliferation assays

Purified CD4 T cells (or thymocytes) were prepared at 1 x 106/ml in standard medium with 

10% FCS and 2 x 10'5 M 2-Mercaptoethanol and 0.1 ml added to each well of standard TCR 

plates. For proliferation assays, the plates were incubated at 37°C in 5% C02/air mix. On 

days 2, 3, and 4 of culture, the wells were pulsed with 0.010ml (0.001 mci) of TRK 418 3H- 

Thymidine (Amersham International Pic.). Eighteen hrs after pulsing, cells were harvested 

onto microtitration filter paper (ICN Flow Biomedicals Ltd.) using a Microtiter Dynatech 

Automash II harvester (DYNEX Technologies). Filter paper-cell circles were placed into 5ml 

polypropylene tubes and mixed with 3mls Ecoscint A scintillation fluid (National 

Diagnostics). 3H-Thymidine uptake was determined by counting samples on a 1209 Rank 

Beta Liquid Scintillation counter (LKB Wallac).

2.11.4 TCR cell signalling experiments : Whole cell lysate preparation

Purified CD4 T cells were prepared at 1-2.5 x 107/ml in PBS and 0.1 ml of cells were added 

to each well of standard TCR plates. Plates were incubated for 0, 0.5, 2, 5, and 30 Min at 

22°C. At each time-point, T cell activation was arrested by the addition of 50pl of triple 

concentrated Laemmli S o d iu m  D o d e c y l  S u lfa te  (SDS) Sample Buffer. The samples were 

then transferred to 0.5ml polypropylene microfuge tubes containing 15pl of lOmM Na 

Vanadate, lOOmM Na Fluoride, lOOmM Na Pyrophosphate and boiled for 5 Min. 15pl of 

each sample was then loaded on a 10% polyacrylamide gel as described above.
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2.11.5 TCR cell signalling experiments : Immunoprecipitation

Purified CD4 T cells were prepared at 1-8 x 107/ml in PBS and 0.08ml of cells was added to 

20 j l x 1 of 10 times concentrated lysis buffer which contained 5% NP-40, 0.5M NaCl, 250mM 

Tris pH 8.3, 50mM Na pyrophosphate (Sigma Chemicals), 5mM Na ortho-Vanadate (Sigma 

Chemicals), 50mM Na Fluoride (Sigma Chemicals), lOpg/ml Leupeptin (Sigma Chemicals), 

lOpg/ml Aprotinin (Sigma Chemicals), 20pg/ml Pepstatin A (Sigma Chemicals), 0.8mM 

EDTA, and lOmM p-nitrophenylnitrophosphate (Sigma Chemicals). Ten pi of appropriate 

antibody (diluted to 1 mg/ml in lysis buffer) was then added to each sample which was 

incubated for 30 Min at 4°C. Following incubation, lOpl protein-A Sepharose (Sigma 

Chemicals), pre washed with PBS (at 20mg Protein-A/ml beads) was added and incubated for 

10 Min at 4°C. The samples were pelleted by centrifuging for 5 Min using a MSE Micro 

Centaur microfuge (Fischer Scientific UK : Bishop Meadow Road, Loughborough, UK), the 

supemate removed and the pellet triple washed by resuspending in 0.5ml of lysis buffer and 

recentrifuging as above. The washed pellet was then resuspended in 0.1ml of Laemmli SDS 

sample buffer and boiled for 5 Min. Fifteen pi of each supemate was then loaded on a 10% 

polyacrylamide gel as described above.

2.11.6 TCR cell signalling experiments : Anti-phosphotyrosine and anti-p56lck signalling 

Following activation of purified CD4 T cells using standard TCR plates, proteins lysates and 

immunoprecipitates were separated by 10% SDS-PAGE and transferred to nitrocellulose 

(Hybond, ECL : Amersham, Buckinghamshire, UK) using the Sartoblot (Sartorius Ltd. : 

Blenheim Road, Epson, Surrey, UK) semi-dry blotting method as described by the 

manufacturer. Blotting efficiency was tested by staining pre and post-transfer SDS gels as
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well as post-transfer nitrocellulose paper with coomassie blue stain as shown in Figure 2.4 

below.

Figure 2.4 Blotting efficiency as tested by Coomassie blue staining

SD S G els N itrocellu lose Paper
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• 4 x 105 whole cell lysates run per lane

• Nitrocellulose transfer performed by semi-dry western blotting at 4 mAmp/cm2

• Gels and nitrocellulose stained with 1% Coomassie blue for 30 Min and de-stained in 10% 
methanol/acetic acid overnight

The nitrocellulose transfers were then blocked for lhr at r.t. in affinity wash buffer (0.1M 

Tris-Base, 0.1M NaCl, 0.1% Tween. pH 7.5) containing 5% BSA. To stain for 

phosphotyrosine containing proteins, a 1:2500 dilution o f  RC-20 (Affinity Research Products) 

in affinity wash buffer + 0.5%BSA was incubated at r.t. for lh r or overnight at 4°C. To stain 

for p56kk, a two stage procedure was employed. (1) A 1:1000 dilution o f  anti- p56,Lk 

antibody (Santa Cruz Biotechnology : Santa Cruz, California. USA ) (pre-absorbed with 

NMS) in affinity wash buffer + 0.5%BSA was incubated at r.t. for lhr followed by washing 

twice with affinity wash buffer. (2) Addition o f  a 1:1700 dilution o f  a HRP coupled goat 

anti-rabbit antibody (DAKO A/S) (pre-absorbed with NMS) in affinity wash buffer + 0.5% 

BSA + 5% N o r m a l  G o a t  S e r u m  (NGS) for lhr at r.t.. After staining, blots were washed
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three times in affinity wash buffer and the staining detected by chemoluminescence- 

autoradiography system as described by the manufacturer (Hybond, ECL) using X-OMAT O 

film (Eastman Kodak Co. : Rochester, NY)

2.11.7 TCR cell signalling experiments : Calcium signalling

One ml of purified CD4 T cells at 1 x 107/ml in standard RPMI, (RPMI 1640 with 10 IU/ml 

penicillin, lOpg/ml streptomycin, 2mM glutamine, Gibco BRL) containing 2.5mM of Ca2+ 

(signalling medium) was incubated with 5pM of Fluo-3 (Molecular Probes - Cambridge 

BioScience : Cambridge, UK) dissolved in 25% Pluronic F-127 (Molecular Probes - 

Cambridge BioScience) in Anhydrous DMSO (Sigma Chemicals) for 15 Min at 37°C. The 

cells were then diluted 1:2 using signalling medium and were ready for activation 

experiments using standard TCR coated cytometer tubes as outlined above. All activation 

experiments were performed at r.t. using the EPICS XL®cytometer (Coulter) analysing 

between 600-1000 cells/second. Total Flou-3 florescence was determined by adding 2pM of 

ionomycin (Sigma Chemicals) to each sample.

2.12 IL-2 CYTOKINE ASSAY

Supernates from MLR were assayed for IL-2 by bioassay using the IL-2 dependent cell line 

CTLL (kindly provided by Dr. C. Lawrence University of Glasgow School of Veterinary 

Medicine, Glasgow, UK). Doubling dilutions of supemate were incubated with 5 x 103
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CTLL in U 96 Nunclon Micro well Plates (Nunclon Intermed) for 24 hrs at 37°C. Cells were 

then pulsed with 0.001 mci 3H-Thymidine (Amersham International Pic) and Thymidine 

incorporation measured by counting samples on a 1209 Rank Beta Liquid Scintillation 

counter (LKB Wallac) as outlined above. An IL-2 standard curve was generated for each 

experiment by using recombinant human IL-2 (Galaxo : Geneva, Switzerland).

2.13 IMMUNOHISTOCHEMISTRY

2.13.1 Tissue preparation

Cardiac tissue was snap frozen in liquid nitrogen and cryostat sections of 5 pm were cut at 

-20°C onto gelatinised slides. A range of mAb were used to label tissue sections using an 

indirect immunoperoxidase technique [224]. Briefly, Cryostat sections were rehydrated in 

PBS then incubated with optimal dilutions of mouse mAb directed against rat leukocyte 

subpopulations for 30-60 Min at r.t.. After triple washing in PBS, a peroxidase-conjugated 

polyclonal RaMo-antibody (DAKO A/S) (which was pre-cleared using 10% Normal Rat 

Serum to prevent non-specific binding) was added at 1:40 dilution and incubated at r.t. for 30 

Min. Sections were then triple washed in PBS and then incubated with substrate : 0.6mg/ml 

3,3’-diaminobenzidine tetrahydrochloride (Sigma Chemicals) in PBS with 0.01% H y d r o g e n  

P e r o x id e  (H2O2) for 5 Min at r.t. until the brown reaction product appeared. After further 

washing in PBS, sections were briefly counter stained in Harris’s hematoxylin (BDH Ltd. - 

Merck Ltd. : Lutterworth, Leicester, UK), rinsed in H2O, dehydrated in ethanol, cleared in 

xylene, then mounted in DPX mountant (BDH Ltd. - Merck Ltd.). A portion of each heart
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graft was also fixed in formalin, embedded in paraffin wax, sectioned and stained with 

H e m a t o x y l in  a n d  E o sin  (H & E ).

2.13.2 Morphometric analysis o f  cellular infiltrating cells

The mononuclear cell infiltrate of cardiac tissue was assessed by counting the number of 

positively stained cells per high powered field [400x magnification] using a microscope 

eyepiece graticule bearing a counting grid. Ten consecutive high power fields per section 

were counted and the results represented by the mean +/- S ta n d a r d  D e v ia t io n  (sd) for each 

section.

2.14 FLUORESCENT ACTIVATED FLOW CYTOMETRY

Mesenteric and cervical LNC, PBL, Thymocytes or purified CD4 T cells or purified CD4 

thymocytes were obtained as outlined above and were resuspended in PBS made with 0.2% 

BSA (Ultra Pure, Sigma Chemical Co.). 1 x 106 cells in 0.1ml were incubated for 1 hr at 4°C 

with 0.01ml of purified antibody conjugate (Serotec Ltd) or 0X38 diluted 1:10 with PBS with 

0.2% BSA. Cells were then washed twice by centrifugation and the 0X38 cell pellets 

resuspended in 0.020ml of RaMo IgG (diluted 1:20 in 10% Normal Rat Serum) conjugated 

with FITC (DAKO A/S) and incubated for 30 Min at 4°C. The fluorochrome labelled cells 

were washed a further two times by centrifugation and were finally resuspended in 0.7mls of
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PBS with 0.2% BSA. A total of 10,000 cells were then analysed on a EPICS XL® analyser 

(Coulter).

2.15 ANTIBODY MEDIATED CYTOTOXICITY ASSAYS

Serum taken from transplanted DA recipients was heat inactivated for 30 Min at 56°C and 

tested for alloantigen-specific cytotoxicity using a standard 5ICr-release assay. Briefly, 5Mbq 

51Cr (Amersham) was incubated for 90 Min at 37°C with Lewis (Donor Strain) Con A- 

transformed splenic blast cells. After excess 51Cr was removed from the blasts by 

centrifugation, 1 x 105 target cells in standard RPMI with lOmM Hepes and 5% FCS, were 

added to 50pl of serial diluted test sera in 96 well U-bottomed microtitre plates (Nunclon 

Intermed). The plates were incubated with the sera for 30 Min at 37°C. Then, lOOpl of 

guinea pig complement (Serotec Ltd) was added to each well and the plates incubated for a 

further 60 Min at 37°C. Plates were then centrifuged for 5 Min at 200g at r.t., lOOpl of 

supemate recovered and transferred to separate tubes for counting released 51Cr on a LKB 

Compu-gamma counter (LKB Wallac). Specific 51 Cr release was calculated by the formula: 

Percent specific release = 100 x [(experimental release - spontaneous release) / (Maximum 

release - spontaneous release).
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2.16 ALLOANTIBODY ISOTYPE DETERMINATION

Lewis LNC (1 x 106 cells in 0.1 ml PBS with 0.2% BSA) were incubated with tripling 

dilutions of heat inactivated serum obtained from test and control animals for 30 Min at 4°C. 

Following incubation, the cells were washed twice by centrifugation in PBS with 0.2% BSA 

and cell pellets were resuspended using FITC-conjugated anti-isotype antibody (Serotec Ltd.) 

at the manufacture’s recommended dilution. The target cells were incubated for a further 30 

Min at 4°C, washed twice by centrifugation, resuspended in 0.5mls PBS with 0.2% BSA and 

analysed on a EPICS XL® analyser (Coulter).

2.17 REVERSE TRANSCRIPTASE-POLYMERASE CHAIN REACTION (RT-

PCR)

2.17.1 Ribonucleic Acid (RNA) isolation from cardiac samples

Three hundred to 400 mg of cardiac tissue was homogenised in 3ml of TRIzol (Gibco BRL) 

using a sterile Teflon pestle and glass homogenisation tubes for 1-2 Min at 4°C. The 

homogenised sample was incubated a further 5 Min at 4°C to permit the complete 

dissociation of nucleoprotein complexes. Two ml of the homogenate was added to 0.2ml of 

chloroform and after mixing by vortexing, the preparation was incubated at r.t. for 3 Min. 

The samples were then centrifuged at 12,000g for 15 Min at 4°C using a SIGMA-2K15 

centrifuge (SIGMA-Aldrich Co Ltd. : Fancy Road, Poole, Dorset, UK) to pellet the 

R ib o n u c l e ic  A cid  (RNA). Each RNA pellet was then washed in 1ml of 75% Ethanol and 

re-centrifuged at 7,500g for 5 Min at 4°C. Each pellet was resuspended in 100pl o f D ieth y l
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P y r o c a r b o n a t e  (DEPC) - H2O by repeated trituration of the sample using a micro-pipette 

and was incubated at 60°C for 10 Min. The OD of each sample was determined at both 260 

and 280r|m wavelengths using a Pye Unichem SP8-100 spectrophotometer (Philips Unichem 

: York Street, Cambridge, UK) to calculate, respectively, the quantity of RNA and the relative 

contamination with protein.

2.17.2 RNA isolation using DyNABEADS mRNA direct kit

Purified CD4 T cells or thymocytes (1-5 x 106), from TCR activation experiments were 

pelleted by spinning in the microfiige for 5 Min at r.t. and were either stored at -20°C or used 

immediately for each experiment. 1ml of lysis/binding buffer (lOOmM Tris-HCl, pH 8.0, 

500mM LiCl, lOmM EDTA, 1% LiDS, 5mM D it h io t h r e it o l  (DTT)) was added to each 

pellet and lysis was performed by repeated trituration firstly through a micro pipette followed 

by a 21 gauge stainless steel needle. 0.25ml ofDynabeads® (DYNAL A.S. : Oslo, Norway) 

Oligo (dT)25 were washed into 0.20mls of lysis/binding buffer by magnetic transfer and were 

added to the cell lysates and were annealed for 5 Min at r.t.. The magnetic beads were then 

washed twice using 0.5ml washing buffer (lOmM Tris-HCl, pH 8.0, 0.15M LiCl, ImM 

EDTA) with 0.1% LiDS added and triple washed in 0.5ml washing buffer alone by magnetic 

transfer. The mRNA was then displaced from the magnetic beads by adding 30pl DEPC-H2 O 

and incubating at 65°C for 2 Min.
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2.17.3 Complementary Deoxyribonucleic Acid (cDNA) synthesis

Twenty-four pi of RNA (representing lOpg of total RNA obtained from Cardiac tissue, or 

undiluted mRNA obtained from the Dynabead isolation method) was incubated with 2pl 

(lpg) oligo (dT)i2 -i8 primer (Boehringer-Mannheim UK : Bell Lane, Lewes, East Sussex) at 

70°C for 10 Min then cooled to 4°C for 5 Min. lOpl of 5x reverse transcriptase buffer (Gibco 

BRL), 4pl (lOOmM) DTT, 2pl (lOmM) dNTPs (Boehringer-Mannheim UK) was added and 

incubated at 37°C for 2 Min. Finally 2pl (400U) of Superscript Rnase H Reverse 

Transcriptase (Gibco BRL) was added and c o m pl e m e n t a r y  D e o x y r ib o n u c l e ic  A cid  

(cDNA) synthesised using the Cetus 480 (Perkin-Elmer Ltd. : Maxwell Road, Beaconsfield, 

Bucks, UK) automated temperature cycling machine.

2.17.4 Reverse Transcriptase-Polymerase chain reaction (RT-PCR)

P-Actin, IL-2, IL-5, INF-y, IL-10, IL-13, IL-2Ra and IL-2RP (+) and (-) specific primers were 

obtained from Cruachem (Cruachem Ltd. : Todd Campus, West of Scotland Science Park, 

Acre Road, Glasgow). All primers were used at a final concentration of 0.2pM except P- 

Actin which was used at 0.1 pM. RT-PCR was performed using a Geneamp 9600 (Perkin- 

Elmer Ltd.) automated temperature cycling machine after mixing 0.1 pi (0.5 units) Taq 

polymerase (Gibco BRL), 0.4pl (lOmM) dNTPs (Boehringer-Mannheim UK), 0.75pl 

(50mM) Mg2+ (Gibco BRL) (except when IL-4 primers were used and 1.25 pi (50mM) Mg2+ 

was added instead), 2.5pl lOx PCR buffer (Gibco BRL), 5.0pl (+) and (-) primer mix, 5pl 

cDNA, and DEPC-H2O to make 25pl reaction volume in Rnase free sterile PCR tubes 

(Perkin-Elmer Ltd.). Primer sequences used in RT-PCR are summarised in Table 2.2 below.
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Table 2.2

Cytokine Sequence Reference

P actin sense (+) 5’ ATGCCATCCTGCGTCTGGACCTGGC 3’ Nudel et. al. Nucleic 
Acids Research

P actin antisense (-) 5’ AGC ATTT C GGGT GC AC GAT GG AGGG 3’ 1983.11:1759

IL-2 sense (+) 5’ CATGTACAGCATGCAGCTCGCATCC 3’ M°Knight et. al. 
1mm unogenetics

IL-2 antisense (-) 5’ CC ACC AC AGTT GCTGGCT CAT CAT C 3’ 1989.30:145

INF-y sense (+) 

INF-y antisense (-)

5’ ATGAGTGCTACACGCCGCCTCTTGG 3’ 

5’ G AGTT C ATT G AC AGCTTT GT GCT GG 3’

Dijkema et. al. EMBO 
Journal 1985.4:761

IL-2Ra sense (+) 5’ GTGGGGAGATAAGGTGGACGCAT 3’ Page and Dallman Eur 
J  Immunol

IL-2Ra antisense (-) 5’ GATCGAAAGGAGACAGGCACCC 3’ 1991.21:2133

IL-2RP sense (+) 5’ TACTGGTCCTCGGCTGCTTCTTTG 3’ Page and Dallman Eur 
J  Immunol

IL-2RP antisense (-) 5’ GTGAAAGGCAGCAGAGGTGGGA 3’ 1991.21:2133

IL-4 sense (+) 

IL-4 antisense (-)

5’ TGATGGGTCTCAGCCCCCACCTTGC 3’ 

5’ CTTTCAGTGTTGTGAGCGTGGACTC 3’

McKnight et. al. Eur J  
Immunol 1991.21:1187

IL-10 sense (+) 5’ GT G A AG ACTTT CTTTC A AA 3’ Feng et. al. Biochem 
Biophys Res Commun

IL-10 antisense (-) 5’ T GAT G A AG AT GTC A A ACTC 3’ 1993.192:452

IL-13 sense (+) 5’ CAGGGAGCTTATCGAGGAGC 3’ Lakkis and Cruet
Biochem Biophys Res

IL-13 antisense (-) 5’ A AGTT GCTT GG AGT A ATT G AGC 3’ Commun 1993.197:612

IL-5 sense (+) 

IL-5 antisense (-)

5’ TTCTAACTCTCAGCTGTGTCTGGGC 3’ 

5’ AATGCCCACTCTGTACTCATCACGC 3’

Uberla et. al. Cytokine 
1991.3:72
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3. Effect of 0X38 anti-CD4 monoclonal antibody on the CD4 T cell pool

3.1 INTRODUCTION

Following clinical organ transplantation, currently available anti-rejection treatment regimens 

are immunologically non-selective, need to be given long-term, and are associated with a 

variety of side effects and long-term hazards, such as increased susceptibility to infection and 

malignancy. CD4+ve T cells play a central role in initiating and amplifying the diverse effector 

mechanisms responsible for graft rejection. Adoptive transfer studies using congenitally 

athymic T cell deficient rats have clearly demonstrated that CD4 T cells alone are sufficient to 

initiate rejection of fully allogeneic grafts, whereas CD8 T cells are neither necessary, nor by 

themselves, sufficient to mediate rejection, even in high responder rat strain combinations 

[225,226,227,228,229,230]. In exceptional circumstances, notably mouse skin grafts bearing 

a mutant Class I MHC disparity, CD8 T cells alone appear able to mediate graft rejection 

autonomously, but in most other circumstances CD4 T cells play an essential role, [231]. The 

central role of CD4 T cells in graft rejection can be attributed to their ability to function 

effectively as T helper cells, releasing the necessary cytokines for orchestrating the various 

effector pathways, including cytotoxic T cell-mediated lysis [232,233], delayed type 

hypersensitivity responses [232,234] and B cell activation and humoral immunity [226,230]. 

The CD4 molecule is therefore an obvious target molecule for prevention of graft rejection 

and mAb therapies directed against CD4 T cells provide an attractive tool with which to 

manipulate the alloimmune response with the aim of promoting long-term graft survival.

The use of anti-CD4 mAb to perturb the function of CD4 T cells has been shown to be an 

effective strategy for prolonging the survival of skin and vascularised organ allografts in 

various rodent models of transplantation [160,161,162,163]. Moreover, in some animal
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models, anti-CD4 therapy has been shown to induce a state of permanent and specific 

tolerance, such that treated recipients accept further grafts of the original donor strain but 

promptly reject those from unrelated strains [160,162,164,165,166,167]. Early studies 

employing anti-CD4 mAb used antibody treatment protocols which resulted in profound and 

prolonged depletion of CD4 T cells. More recent studies however, have focused on the use of 

partially depleting or non-depleting anti-CD4 regimes and have shown that complete 

elimination of CD4 T cells is not an essential prerequisite for prolongation of allograft 

survival. Since non-depleting or partially depleting protocols are likely to be associated with 

a considerably shorter period of non-specific immunosuppression than depleting protocols, 

they are likely to be of greater clinical value.

The central aim of this thesis was to investigate the possible mechanisms involved in the 

induction and maintenance of transplantation tolerance resulting from administration of a 

partially depleting pre-operative course of the mouse mAb MRC 0X38 [213] which is 

directed against the rat CD4 molecule. Previous studies using MRC 0X38 have shown that 

transplantation tolerance, which is dependent on the presence in the recipient of an intact 

thymus gland, can be induced in ACI (R Tla) rats receiving Lewis heart allografts [160]. For 

the present studies, the same low responder strain combination was employed in a heterotopic 

cardiac allograft model. In the experiments described in this chapter, the depletion of CD4 T 

cells and their subsets was determined at various time-points following antibody treatment 

and cardiac transplantation and the ability of the residual T cells to proliferate and produce 

IL-2, when re-challenged in vitro with alloantigen, was analysed. To seek evidence for 

polarisation of the alloimmune response to either a Thl or Th2 response, the cytokine mRNA 

profile within rejecting and tolerant heart allografts was assessed using RT-PCR. 

Furthermore, to provide additional information as to whether a dominant Thl or Th2 response
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was evident in the tolerant recipients, the isotype of the alloantibody response was 

determined.

3.2 RESULTS

3.2.1 Protocol fo r  all in vivo pre-treatment o f  animals using MRC 0X38 mAb

For all of the studies in this thesis, unless otherwise stated, the anti-CD4 mAb 0X38 was 

administered IP at a dose of 10 mg/kg on day minus 3, and 2 mg/kg on days minus 2, minus 

1, and 0 (relative to the day of transplant). This treatment protocol of 0X38 mAb was based 

on that found by Shizuru et. al. [162] to promote tolerance of Lewis (RT11) hearts in ACI 

(R Tla) rats. For convenience, this protocol of 0X38 mAb treatment is subsequently referred 

to as the ‘standard protocol’. For all of the studies described in this thesis, 0X38 mAb was 

affinity purified. In addition, unless otherwise stated, all studies were performed in adult 

male DA rats.

3.2.1.1 Pre-treatment o f  DA recipients with MRC 0X38 mAb results in long-term acceptance 

o f Lewis cardiac allografts

An initial study was performed to confirm that the standard treatment protocol of 0X38 was 

able to prolong the survival of Lewis heart grafts in fully allogeneic DA recipients. The 

results are shown in Table 3.1. The control group received MRC 0X21 mAb [220] instead of 

0X38. Although 0X21 is an IgGl mAb whereas 0X38 is an IgG2a subclass mAb, it was
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readily available in the laboratory and it was decided that it would be an acceptable control 

antibody.

Table 3.1

Group M onoclonal Antibody Treatment (mAb)* n Graft Survival (days) MST (days)

1 0X21 (Control Antibody) 7 8 ,9 ,10x2 ,11 ,14x2  10

2 0X 38 7 8,>100 x 6 >100

*mAb was administered by IP injection at a dose o f lOmg/kg (day -3 ) ,  and 2m g/kg (days -2 ,  -1 ,  0). DA  
recipient animals received a Lewis cardiac allograft on day 0. 0X 21  (Control Antibody) is a mouse mAb 
which is directed against human C3b inactivator. Graft rejection was defined as complete cessation of 
ventricular contraction.

As expected, all animals receiving the control mAb, OX21, rejected their cardiac allografts 

rapidly with a MST of 10 days. In contrast, although one animal given anti-CD4 mAb 0X38 

rejected its heart graft promptly at 8 days, the other 6 animals treated with 0X38 showed 

long-term allograft survival and had readily palpable beating allografts for greater than 100 

days following transplant (the duration of the experiment).

3.2.1.2 Following transplantation using 0X38 pre-treatment, DA animals display 

allospecific, but not tissue specific tolerance

To test if  DA animals with long-term Lewis heart allografts after pre-transplant 0X38 

treatment were tolerant to donor alloantigen, four animals with functioning primary cardiac 

allografts at greater than 100 days were challenged with both a PVG (RT1°, third party) and a 

Lewis (RT11, allospecific) skin allograft. In addition, the four animals received a Lewis 

orthotopic renal allograft and underwent contralateral nephrectomy 7 days later, leaving their
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survival dependent on the function of the transplanted kidney. The transplanted animals were 

examined daily and the end point for rejection of the individual skin grafts was taken as the 

day on which complete graft destruction had occurred. Table 3.2 summarises the graft 

survival data from this experiment. It can be seen that all recipients rejected third party PVG 

skin grafts whereas Lewis skin and kidney allografts were accepted indefinitely (>100days). 

However, it is notable that the rejection times of the PVG skin grafts (MST 26 days) are 

longer than might have been expected in a normal DA rat.

Table 3.2

Group Recipient* Strain and type o f 2nd n Graft Survival MST (days)

donor allograft (days)

1 DA* PVG Skin (3rd party) 4 21 ,26x3  26

2 DA* Lewis Skin (Donor Specific) 4 > 1 0 0 x 4  >100

3 DA* Lewis Kidney (Donor Specific) 4 > 1 0 0 x 4  >100

* AH recipients were 0 X 3 8  treated DA rats bearing a long-standing (>100 days) prim ary Lewis cardiac 
allograft.

Sequential serum samples were also obtained from the four transplant recipients following 

renal allograft transplantation to determine urea and creatinine levels as an index of kidney 

allograft function. The results are shown in Figure 3.1.



Chapter 3-68

Figure 3.1 Measurement of renal function of transplanted RT11 (Lewis) kidneys
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It can be seen from Figure 3.1 that, following kidney transplantation, recipients with a long 

standing heart allograft maintained normal renal function, indicating that the kidney grafts did 

not suffer from significant graft rejection. From previous studies in the laboratory it was 

known that unmodified allograft recipients which reject renal allografts usually die o f  gross 

renal failure within 2 days o f  contralateral nephrectomy and develop serum urea levels o f  

greater than 50 mMol/L and creatinine levels o f  greater than 1000 pM/L (Data not shown; 

Personal communication Mr. J Tweedle Dept o f  Surgery, Western Infirmary, Glasgow).
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Taken together, these data indicate that animals with long-term cardiac allograft survival 

following pre-operative 0X38 mAb, display donor specific but not tissue specific tolerance.

3.2.2 Following treatment with 0X38, the mAb, is quickly cleared from the serum

The observation that pre-transplant 0X38 mAb treatment led to long-term impairment of 

allograft rejection, raises the question as to how long the administered mAb persists in treated 

animals. To determine the extent to which administered 0X38 mAb persisted in the serum of 

treated rats, animals given the standard protocol of 0X38 were bled serially from the tail vein 

to obtain serum samples at 2, 18, 48, and 72 hrs after the last injection of anti-CD4 antibody. 

The serum samples were then used to stain normal LNCs in vitro in order to determine 

whether they contained residual 0X38 mAb. Briefly, the serum samples were heat 

inactivated and then incubated neat with DA LNCs for 30 Min at 4 °C. The target cells were 

washed three times by centrifugation and were then incubated with RaMo-FITC and analysed 

by flow cytometry using an EPICS XL® fluorescent cell sorter (Coulter, Luton, UK), to detect 

bound 0X38 mAb. As a negative control, serum from normal DA rats was used and as a 

positive control, a saturating dose of 0X38 mAb was added to the serum from normal DA 

rats. The results of this experiment are shown in Figure 3.2. It can be seen that there is no 

evidence of residual 0X38 mAb in serum samples taken at 72 hrs and that even by 18 hrs, 

only low amounts of residual 0X38 mAb were present which were insufficient to saturate 

CD4 binding sites on the target cells. Thus, 0X38 antibody is rapidly cleared from the serum 

of treated animals.
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Figure 3.2 Ability of serum obtained from 0X38 treated animals to label normal 

CD4 T cells in vitro

□  Control

□  0X38 Treated

Pre-Tx C 2 18 48 72

Time After 0X38 Treatm ent (Hours)

DA LNC target cells were stained with serum which was obtained from animals prior to 0X 38 treatment 

(Pre-Tx) and at times indicated, following the last dose of the standard in vivo anti-CD4 treatment 

protocol.

Control (C) is LNC staining using pre-treatment serum to which a saturating dose of 0X38 had been 

added in vitro .

3.2.3 In-vivo treatment with 0 X 3 8  causes modest levels o f  modulation o f  CD4 molecules 

and the mAh is no longer detected on the surface o f  PBL or LN C by 72 hrs after 

treatment

Having shown that 0 X 38  mAh persists for a relatively short time in the serum o f  treated 

animals, studies were then performed to determine how long 0 X 38  persists on the surface o f  

CD4 T cells in the peripheral blood and lymph nodes o f  anti-CD4 treated animals. In 

addition, evidence for modulation o f  CD4 molecules following 0 X 3 8  treatment was sought. 

Determination o f  cell-surface CD4 expression was measured after sacrificing treated and/or
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transplanted animals (a minimum of four animals in each group) at various time-points and 

analysing fluorochrome labelled cells. Each antibody employed in the analysis was used at a 

saturating concentration pre-determined using PBL and LNCs taken from control untreated 

animals (data not shown).

PBL and LNC were obtained from animals at 2, 48, 72 and 96 hrs after the last injection of 

0X38 mAb. They were then stained in vitro with RaMo-FITC to determine residual 0X38 

labelling. In addition, a saturating amount of 0X38 mAb was added to the cells in vitro and 

they were then stained with RaMo-FITC to provide a measurement of total 0X38 binding 

sites. Figures 3.3 and 3.4 show representative results of single label flow-cytometry analysis 

from this experiment. The figures show labelling of cells from a control untreated animal 

(left panels) and labelling of cells obtained 2 hrs following the last injection of mAb using the 

standard protocol of 0X38 pre-treatment (right panels). Residual (upper panels), and total 

0X38 labelling (lower panels) of PBL and LNC are shown. The horizontal gating in this 

analysis shows the relative % of cells in each area of the profile. The y-axis shows the cell 

count and the x-axis shows the Logio of the FITC signal and is indicative of the intensity of 

the signal. The results illustrated are typical of the results obtained from several other 

experiments.
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Figure 3.3 Residual and total binding of 0X38 to PBL following in vivo anti-CD4 

treatm ent
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Typical single colour fluorescence analysis. Cell number (Count) is depicted on y-axis and the Log10 of 

the FITC fluorescence is depicted on the x-axis. Left panels (A) and (C) are PBL cells from a control 

naive untreated animal whereas the right panels (B) and (D) are PBL cells from a Day 0 (2 hr after last 

treatment) 0X 38 mAb treated animal. Upper panels (A) and (B) show the profiles using FITC- 

conjugated rabbit-anti-mouse antibody alone and the lower panels (C) and (D) depict the cell staining 

when a saturating amount of 0X38 mAb was added exogenously to the cells prior to FITC-RaMo.
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Figure 3.4 Residual and total binding of 0X38 to LNC following in vivo anti-CD4 

treatm ent
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Typical single colour fluorescence analysis. Cell number (Count) is depicted on y-axis and the Log,0 of 

the FITC fluorescence is depicted on the x-axis. Left panels (A) and (C) are LNC from a control naive 

untreated animal whereas the right panels (B) and (D) are LNC from a Day 0 (2 hr after last treatment) 

0X 38 mAb treated animal. Upper panels (A) and (B) show the profiles using FITC-conjugated rabbit- 

anti-mouse antibody alone and the lower panels (C) and (D) depict the cell staining when a saturating 

amount of 0X 38 mAb was added exogenously to the cells prior to FITC-RaMo.

Figure 3.5 shows the in vivo labelling and CD4 molecule modulation following the treatment 

o f  DA recipients with the standard in vivo protocol o f  0 X 3 8  mAb treatment. In this figure, 

the results o f  several flow cytometric analysis are combined and expressed as a bar chart. 

100% maximum fluorescent intensity refers to the value obtained when normal LNC or PBL 

are labelled with a saturating amount o f  0 X 3 8  mAb followed by RaMo-FITC. Values below 

the 100% level, indicate an increasing degree o f  CD4 molecule modulation from the
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lymphocyte cell-surface. The unfilled portion o f  each bar in this figure, represents the 

residual in vivo labelling with 0X 38 , whereas the filled portion represents additional CD4 

molecules which are labelled when exogenous 0 X 3 8  mAb is added in vitro to the cell 

population (i.e. total CD4 labelling).

Figure 3.5 In vivo labelling and modulation of PBL and LNC CD4 molecules 

following 0X38 treatm ent

100 1

75 -

50 -

25 -

100 -i

50 -

25 -

□  0X 38 + RocMo-FITC

□  RocMo-FITC

PBL

LNC

48 72 96

Time After 0X38 Treatm ent (Hours)

Results are expressed as the mean number (from a minimum of 4 animals in each group) of the % 

maximum fluorescence intensity of PBL and LNC following staining with RaMo-FITC (residual in vivo 

0X38 labelling) or 0X38 then RaMo-FITC (total CD4 binding sites). Open columns represent in vivo 

labelling and fdled columns represent total CD4 binding. A drop down from % 100 Max Fluorescence 

Intensity represents the degree of modulation of CD4 molecules. Control untreated naive animal cells are 

represented by (C) whereas the 0X38 treated animal cells at each point are represented by the time in hrs 

after last injection of mAb. Upper panel are from PBL and lower panel are LNCs.
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Overall, the data from this analysis show that the 0X38 treatment protocol used in these 

studies results in partial modulation of CD4 molecules at 2 hrs post treatment. The CD4 

modulation observed was slightly more pronounced in PBL than in LNC. However, it is 

evident that significant CD4 modulation was no longer detected at 48 hrs after in vivo 

treatment with 0X38 mAb. The data also show that 2 hrs after the last dose of 0X38 mAb, 

CD4 molecules on lymphocytes from PBL were saturated with the 0X38 mAb but only 60% 

of CD4 T cells from LNC had bound 0X38 still detectable on their cell-surface. The loss of 

anti-CD4 mAb from the surface of both PBL and LNC lymphocytes by 72 hrs after the last in 

vivo treatment with 0X38 mAb is consistent with the lack of residual 0X38 mAb in the 

serum of treated animals at this time-point.

3.2.4 0X38 mAb treatment partially depletes both PBL and LNC CD4 T cells

The extent to which 0X38 mAb treatment depleted aPTCR+ve CD4+ve lymphocytes was 

determined by double label Flow Cytometric analysis using directly conjugated fluorochrome 

labelled antibodies against the CD4 and apTCR molecules. In each experiment, several 

internal controls, including labelling for other cell-surface antigens in combination with either 

anti-apTCR or anti-CD4, were included and cells from normal animals which had not 

received 0X38 mAb were also analysed for comparison. In each analysis, therefore, the 

absolute number of double positive (CD4+ve apTCR+ve) cells could be compared to the 

number of CD4+ve or apTCR+ve cells determined indirectly.

To determine the effect of 0X38 treatment on depletion of CD4 T cells, animals were 

sacrificed on days 0, 2, 4, 7, 21 and 100 following 0X38 mAb treatment and/or 

transplantation. Both PBL and LNC were labelled with R73-FITC and 0X38 + RaMo-PE
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(day 0 animals) or W3/25-PE (days 2, 4. 7, 21, 100 animals). The mAb W3/25 labels the rat 

CD4 molecule and competes for the same binding site as 0 X 3 8  mAb [215]. Figure 3.6 

summarises the results o f  this analysis. Each column represents the mean ± SD for a 

minimum o f  4 animals. The results show that on the day o f  transplant (day 0), the CD 4+ve 

a p T C R +' e cell fraction had fallen from 53% to 20% in PBL and from 52% to 27% in LNC. 

By day 4 after transplant, there appeared to be some recovery o f  CD4 T cell numbers in both 

peripheral blood and lymph nodes. Interestingly. CD4 T cell numbers never recovered 

completely, but by day 100, had returned to near pre-operative levels.

Figure 3.6 Residual CD4 T cells in PBL and LNC following 0X38 treatm ent and 

cardiac allograft transplant
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PBL and LNC were double labelled to detect CD4 and apTC R  cells (minimum of 4 animals in each 

group). Results are expressed as the % mean cell number ± SD. Control untreated naive animals cells 

are represented by filled columns (C) whereas the 0X38 treated animals are represented by open 

columns. Upper panel (A) are PBL and lower panel (B) are LNCs.
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3.2.5 The depletion o f  CD4 T cells following 0X38 mAb treatment is more pronounced in 

the CD45RC*ve (MRC O X 2 tigh)  subset than in the CD45RCve (MRC OX22low) subset

Rat CD4 T cells can be subdivided according to their expression of the high molecular 

isoform of the leukocyte common antigen, CD45RC, by their reactivity with the mAb MRC 

0X22 [219]. Although the CD45 molecule is found on the cell-surface of all leukocytes, the 

0X22 determinant is restricted to rat B cells, non-activated CD8 T cells, N a t u r a l  K iller  

(NK) cells, some bone marrow cells, 2% of thymocytes and two-thirds of CD4 T cells [235]. 

Rat leukocytes expressing the high molecular weight isoform of CD45 (CD45RC+ve) labelled 

with 0X22 are typically described as OX22+ve, OX22hlgh or OX22bright, whereas cells 

expressing the low molecular weight isoforms are typically described as OX22've, OX22low or 

OX22dul]. As a result of the profile continuum on flow-cytometric analysis due to differential 

expression of CD45RC antigen and binding of 0X22 mAb, the distinction between the CD4 

T cell subsets is probably best described by the terms high and low. Consequently, CD4 T 

cells labelled with 0X22 in the studies described in this thesis are referred to using the 

nomenclature of OX22hlgh and OX22low. The observation that functional heterogeneity exists 

between the OX22hlgh and OX22low CD4 T cell subsets, namely the ability of the OX22hlgh 

CD4 T cell subset to induce G r a ft  V er su s  H o s t  D ise a se  (GVH) [219] and restore allograft 

rejection and normal T cell effector mechanisms in CD4 T cell deficient nude rats [236], lead 

me to explore the possibility that 0X38 mAb treatment may preferentially affect one, or the 

other o f the CD4 T cell subsets.

To analyse the effect of 0X38 mAb treatment on the two CD4 T cell subsets, peripheral 

blood and LNCs from treated animals were labelled using 0X22 mAb. To exclude the 

possibility of analysis bias, the flow cytometric gates were standardised for each experiment 

and were identical for each cell sample. Figure 3.7 show typical two colour flow cytometric
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profiles obtained after labelling PBL (upper panels) and LNC (lower panels) o f  control (left 

panels) and 0 X 3 8  treated animals (right panels) with the 0 X 2 2  mAb. As an internal control, 

each experiment included labelling the cells for CD4 and apT C R . The number o f  double 

positive cells (CD4+NC a p T C R +ve) was compared with the number o f  C D 4+NL OX22hlgh + l0" 

cells and in each experiment, the percentage o f  cells labelled was found to be very similar, 

indicating that flow cytometric gating and cell staining was uniform for each experiment.

Figure 3.7 Labelling for CD45RC antigen and for CD4 using 2 colour Flow 

Cytometric analysis
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Typical two colour fluorescent analysis using FlTC-conjugated anti-CD45RC y-axis (Log,0 FITC signal) 

and PE-conjugated anti-CD4 x-axis (Log,0 PE signal). Left panels (A) and (C) represent cells from a 

control naive untreated animal whereas the right panels (B) and (D) are from a Day 4 0X38 treated and 

transplanted animal. Upper panels (A) and (B) shows the staining for PBL and the lower panels (C) and 

(D) depict the staining for LNC.
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Figure 3.8 shows the results of several different flow cytometric analysis experiments 

expressed as a bar chart. This figure shows the percentage of CD4+ve OX22hlgh (left panels) 

and CD4+ve OX22low (right panels) obtained after labelling PBL (upper panels) and LNC 

(lower panels) from control and 0X38 treated animals on days 0, 2, 4, 7, 21, and 100 after 

0X38 treatment and/or cardiac allograft transplant. It can bee seen that the depletion of CD4 

lymphocytes following 0X38 treatment was associated with preferential loss of the OX22hlgh 

fraction of CD4+ve T cells. There was almost complete sparing of the OX22low fraction. This 

observation can be interpreted as either preferential depletion of the OX22hlgh subset by 0X38 

mAb, or CD4 depletion associated with isotype switching to the low molecular weight form 

of the residual CD4 T cells.
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Figure 3.8 Preferential depletion of the CD45RC+' c CD4 T cell subset following 

0X 38 treatm ent and cardiac allograft transplant
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Results are expressed as the % mean cell num ber ± SD of PBL and LNC staining double positive for CD4 

and CD45RC(+ve and ve) from a minimum of 4 animals in each group. Control untreated naive animals are 

represented by filled columns (C) whereas the 0X 38  treated animals are represented by open columns. 

Panels (A) and (C) represent the proportion of cells labelling positive for CD4 and CD45RC+ve. Panels 

(B) and (D) represent the proportion of cells which labelled CD4 positive but were CD45RC"ve. Upper 

panels (A) and (B) are from PBL and lower panels (C) and (D) are LNCs.

3.2.6 A bility  o f  LN C  fro m  0 X 3 8  mAb treated graft recipients to proliferate and  produce IL- 

2 in the M LR

Although 0X38 mAb treatment made DA recipients tolerant to a Lewis cardiac allograft, it 

was apparent from the preceding studies that significant numbers of CD4 T cells remained 

after 0X38 treatment, and that T cell depletion was no longer apparent by day 100 after 

transplant. It was therefore of interest to determine the ability of LNC from such 0X38 

treated animals to proliferate and produce IL-2 when restimulated in vitro  with irradiated
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donor strain (i.e. Lewis) stimulator cells in a one way MLR. A feature of MLR which can 

make assays performed on separate days difficult to compare, is that there can be wide 

experiment to experiment variation in the levels of proliferation observed, despite careful 

standardisation of the assay system. Therefore, because MLR experiments were performed 

on several different days, each experiment was “standardised” by including a measurement of 

the proliferation of naive control cells to alloantigen in each assay and designating the 

proliferation observed as 100%. The ability of LNC harvested at different time-points from 

0X38 mAb treated heart graft recipients to proliferate in vitro is shown in Figure 3.9. In the 

figure, the mean proliferation (using a minimum of 4 animal per group), has been divided by 

the control proliferation for that particular experiment and then multiplied by 100 to give a 

value relative to the 100% control value. Supemates from proliferating cells were obtained 

on the day of maximum proliferation and were tested for IL-2 activity using an IL-2 

dependent cell line as described in the Materials and Methods (Section 2.12). To test the 

ability of cells taken from 0X38 treated DA animals to proliferate in vitro in response to 

alloantigen, LNCs were obtained from animals at 2, 4, 7, 21 and 100 days post transplant and 

were challenged in vitro using Lewis irradiated spleen cells. Untreated DA animals bearing a 

rejecting Lewis heart graft were used as a comparison at 2, 4, and 7 days following 

transplantation. Day 0, 0X38 treated and naive untreated untransplanted animal cells were 

also used and have been plotted in the figure. The bar graph in Figure 3.9 shows the peak 

proliferation (day 3 MLR) results, while the line plot shows IL-2 production measured from 

the supemates of the proliferating cells from each sample.

As shown in Figure 3.9, the proliferation of cells from 0X38 treated animals at day 0 is only 

50% that of the naive cells. This reduction in proliferation is in keeping with the observation 

that 0X38 can inhibit LNC proliferation in MLR when added exogenously in vitro since at
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day 0, the CD4 T cells obtained from anti-CD4 treated animals are still coated with mAb. At 

days 4, 7 and 100, 0X38 treated animals show allospecific sensitisation and proliferate more 

than cells obtained from normal animals. Interestingly, the sensitisation which occurred in 

the 0X38 treated animals was not as marked as that observed in untreated animals which 

rejected their allografts where proliferation was two fold greater than that observed in 0X38 

treated heart graft recipients.
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igure 3.9 Mixed lymphocyte proliferation and IL-2 production of LNC from control
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LNC from unmodified DA animals with rejecting Lewis heart grafts are represented by filled boxes and 

columns (Control) whereas responses from LNC taken from the 0X38 treated animals at each point are 

represented by open diamonds and columns (0X38). Results are expressed as mean number from 4 

animals at each of the time-points, of Day 3 LNC proliferation and IL-2 production from an MLR using 

DA responder cells cultured with irradiated Lewis stimulator cells. Cell cultures were pulsed with 3H- 

Thymidine, harvested 18 hrs later onto microtitration filter paper, and analysed using a Beta Liquid 

Scintillation counter. Supemates from proliferating cells were used in an IL-2 bioassay as described in 

the Materials and Methods Section 2.12. The proliferative response of untreated naive control animal 

cells (Day 0) is taken as a proliferation index of 100%. Proliferation results are expressed as a Bar chart 

(Left y-axis) whereas the IL-2 results are expressed as a Line chart (Right y-axis).

When analysing the IL-2 data, it is interesting to note that even when LNC from 0 X 3 8  treated 

animals (on days 4, 7, and 100) proliferated in excess to LNC from normal animals (day 0) 

and control rejecting (day 2) cells, the IL-2 production from the 0 X 3 8  treated animals was
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less than that seen in cells from normal animals and never reached 50% of the peak IL-2 

observed in the control rejecting cells on day 2.

3.2.7 0X38 mAb treated heart graft recipients show a delayed alloantibody response

After observing that LNC from 0X38 mAb treated heart graft recipients displayed differences 

in IL-2 production in the one way MLR when compared with untreated control LNC, further 

evidence for abrogated effector function in anti-CD4 treated recipients was sought. In 

particular, the ability of 0X38 treated and unmodified heart graft recipients to mount a 

cytotoxic alloantibody response was determined as another measure of CD4 T helper cell 

function. Serum samples were obtained from graft recipients on days 0, 4, 7, 21 (0X38 

treated) and 100 (0X38 treated) and tested for the presence of cytotoxic antibody against 

donor strain (Lewis) target cells in a standard complement dependent cytotoxicity assay using 

guinea pig complement as a source of complement. The results are depicted in Figure 3.10 

which shows the cytotoxic antibody titre, expressed as Log2 of the reciprocal dilution of 

serum which gave >50% specific release of 5lCr from the target cells.
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Figure 3.10 Cytotoxic alloantibody response of control rejecting and 0X38 mAb 

treated tolerant animals
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Ser um samples from control rejecting (filled boxes) and 0X38 treated (open boxes) DA recipients of a 

Lewis heart allograft were assessed for cytotoxic alloantibody levels against MC r labelled Lewis Con-A 

blasts. Results shown are mean number ± SD of 4 animals per group. The y-axis represents Log2 of the 

reciprocal dilution of serum and the x-axis is the day follow ing heart transplantation on w hich serum was 

collected.

As expected, cytotoxic antibody levels were initially low in both groups o f  animals. They 

rose to a maximum titre o f  1:64 at day 7 in unmodified recipients bearing rejecting heart 

allografts. The 0 X 3 8  mAb treated graft recipients showed a delayed cytotoxic alloantibody 

response, but by day 100 the levels o f  cytotoxic alloantibody observed were comparable to 

those observed at day 7 in the unmodified graft recipients.

To determine the antibody isotype o f  alloantibody in serum taken from DA recipients o f  

Lewis cardiac allografts, target LNC from normal Lewis rats were incubated with serum 

samples obtained from unmodified and from 0X 38  mAb treated DA rats bearing Lewis 

cardiac allografts. The target cells were then stained with fluorescent conjugated mouse anti-
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IgM, IgG l, IgG2a, IgG2b, or IgG2c antibodies. T h e M f.a n  C h a n n e l . F l u o r e s c e n c e  (MCF) 

was then determined after analysing the fluorochrome labelled target cells. The results o f  this 

antibody isotype analysis are shown in Figure 3.11. It can be seen that at day 7 all isotypes o f  

alloantibody were respectively low in both groups o f  animals, despite the previously noted 

cytotoxic alloantibody found at day 7 in unmodified recipients bearing a rejecting heart 

allograft. By day 21, the 0 X 3 8  treated group showed a rise in the IgM, IgG2b and IgG2c 

alloantibody levels and by day 100, all alloantibody isotypes were increased. In retrospect, it 

would have been interesting to determine both cytotoxic alloantibody and alloantibody 

isotypes in unmodified graft recipients at days 21 and 100, but unfortunately these animals 

were sacrificed after they had rejected their grafts.

Figure 3.1! Class and subclass of alloantibody response in unmodified and 0X38 

mAb treated DA recipients of a Lewis cardiac allograft
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0X 38 treated Days 7, 21, and 100 animals are represented in the second group. The results are the mean 

+ SD of the mean channel fluorescence. (Minimum of 4 animals in each group at each time-point).
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3.2.8 Non-rejecting cardiac allografts in 0X38 mAb treated recipients are heavily 

infiltrated by mononuclear cells

As the humoral effector response appeared intact in 0X38 mAb treated DA recipients bearing 

Lewis cardiac allografts, evidence for impaired cellular infiltration of heart allografts was 

sought. The cellular infiltrates in rejecting cardiac allografts from unmodified recipients and 

from non-rejecting heart allografts in 0X38 treated recipients were assessed by immuno- 

histochemistry to determine the magnitude and phenotype of the graft infiltrate. Cryostat 

sections of heart grafts were stained with a panel of monoclonal antibodies and a quantitative 

assessment of the infiltrate made. Figure 3.12 shows the cellular infiltrate of heart grafts from 

both unmodified and anti-CD4 treated animals at day 7, and of grafts from anti-CD4 treated 

animals at days 21 and 100 after transplantation. Both rejecting and non-rejecting cardiac 

allografts were, by day 7, heavily infiltrated by mononuclear cells. In all heart grafts there 

were large numbers of CD8+ve (0X8), CD4+ve (W3/25) and otpTCR+ve (R73) cells, as well as 

heavy infiltrates of macrophages (EDI) and IL-2 receptor-a (0X39) positive cells. The 

infiltrate in non-rejecting heart grafts from 0X38 treated recipients declined by day 21 and at 

day 100 and only occasional mononuclear cells were present. These were predominately 

ED l+ve macrophages. This data shows that tolerance induction using anti-CD4 mAb does not 

prevent the early infiltration of cardiac allografts by mononuclear cells, even those which are 

CD4 positive. However, with time, the mononuclear cell infiltrate in tolerant allografts 

declines.
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Figure 3.12 Infiltration of Lewis cardiac allografts in control rejecting and 0X38 mAb 

treated DA recipient rats
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Lewis cardiac allografts obtained from DA recipients were assessed for mononuclear cell infiltration by 

immunoperoxidase staining. Cardiac allograft samples from control rejecting Day 7 animals are 

represented in the first group, whereas the 0X38 treated Days 7, 21, and 100 animal allograft samples are 

represented in the second group. The results are expressed as cells per high power field. Heart sections 

from 4 animals in each group were examined and results are depicted as mean + SD.

3.2.9 Rejecting cardiac allografts from  unm odified recipients and tolerant allografts from  

0 X 3 8  mAh treated recipients show sim ilar mRNA cytokine transcripts

As both rejecting and tolerant cardiac allografts were initially heavily infiltrated with 

mononuclear cells, it was therefore o f  interest to assess whether there were differences in the 

cytokines present in rejecting and non-rejecting cardiac allografts. To determine the cytokine 

activity associated with the graft infiltrates, cytokine mRNA transcripts were assessed semi- 

quantitatively in rejecting and non-rejecting hearts using the polymerase chain reaction (RT- 

PCR). Primers specific for IL-2. INF-y, IL-2Ra, IL-2Rp. IL-4, IL-10, IL-13, and IL-5 were
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used (see Materials and Methods Section 2.17 for details). The results obtained for heart 

grafts from both control rejecting and anti-CD4 treated animals on days 2, 4, and 7 after 

transplantation are displayed in Figures 3.13, 3.14, and 3.15 respectively. The results 

obtained for heart grafts from anti-CD4 treated animals at day 21 and day 100 after 

transplantation are shown in Figure 3.16. For each of the time-points after transplantation, 4 

individual cardiac allografts from each experimental group were examined and these are 

labelled (a) to (h) in each of the figures. RT-PCR reactions were stopped at five different 

cycle numbers and the RT-PCR product was analysed after electrophoresis using 1% agarose 

gels which were stained with Ethidium Bromide. The presence of visible PCR product after 

ultra-violet illumination is indicated by a “+“ for each sample. To ensure that an equal 

amount of starting material was used for each comparison, the cDNA from each heart graft 

was analysed at 3 different dilution’s, (1/100, 1/10, and neat) and material at each dilution 

was analysed at 3 different cycle numbers, using the housekeeping gene primer, p-actin. A 

representative Polaroid photographic image of the gels from each experiment and for each 

cytokine have been included in the figures and in each case these were obtained from the 

cardiac allograft which had the most intense staining; it should be pointed out that the 

presence of visible PCR product by naked eye examination of the ultra violet illuminated gel 

(on which the scoring of RT-PCR product was based) did not necessarily equate to visible 

reproduction of the PCR product on the photographic image.

The cytokine profiles of rejecting heart allografts obtained 2 days after transplant from 

unmodified recipients and non-rejecting day 2 heart grafts from 0X38 mAb treated recipients 

are compared in Figures 3.13. It can be seen that there were similar amounts of cytokine 

message in heart grafts from the two experimental groups for all primers used, with exception 

of those for IL-10. Message for IL-10 was present in reduced amount in the heart grafts from
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0X38 treated recipients than grafts from unmodified recipients. Figures 3.14 and 3.15, 

compare day 4 and day 7 rejecting and 0X38 treated non-rejecting cardiac allografts 

respectively and demonstrate that there was no major difference in the level of cytokine 

message between the two experimental groups. The cytokine profiles from day 21 and day 

100 cardiac allografts in the 0X38 treated recipients are depicted in Figure 3.16. This figure 

shows that day 21 and day 100 cytokine profiles are similar to the day 4 and day 7 graft 

profiles, with the exception that increased levels of IL-13 were detected in both the day 21 

and 100 hearts grafts. Additionally, very little cytokine message for IL-10 was detected in the 

day 100 heart allografts obtained from 0X38 mAb treated recipients.
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Figure 3.13 Cytokine PCR from Day 2 rejecting and 0X38 treated cardiac allografts
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Figure 3.14 Cytokine PCR from Day 4 rejecting and 0X38 treated cardiac allografts
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Figure 3.15 Cytokine PCR from Day 7 rejecting and 0X 38 treated cardiac allografts
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Figure 3.16 Cytokine PCR from Days 21 and 100 0X38 treated cardiac allografts
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3.3 DISCUSSION

The initial results described in this chapter confirmed the observation [160] that a brief period 

of treatment with the anti-CD4 mAb, MRC 0X38, at the time of heart transplantation, leads 

to donor specific transplant tolerance in the fully allogeneic Lewis (RT11) to DA (R Tla) rat 

strain combination. In order to gain insight into the possible mechanisms whereby anti-CD4 

mAb could promote graft survival and tolerance induction in this experimental model, a 

detailed phenotypic analysis of the lymphocyte populations of the antibody treated 

transplanted animals was made, followed by an analysis of the cellular and humoral responses 

of the graft recipients to donor strain alloantigens.

The results of the flow cytometric analysis to determine the duration of 0X38 binding to 

residual CD4 T cells and the assessment of CD4 modulation were o f particular interest. 

Following 0X38 treatment, residual CD4 T cells in the blood and lymph nodes remained only 

transiently coated with anti-CD4 mAb and the residual CD4 cells showed no detectable in 

vivo labelling 72 hrs after transplant. The short period of residual CD4 T cell coating with 

mAb contrasts sharply with similar studies in the mouse [167] in which the antibody persisted 

for several weeks. The 0X38 mAb pre-treatment protocol resulted, initially, in partial 

modulation of CD4 molecules from residual cells in both blood and LNC. However the CD4 

modulation observed was short lived and expression of surface CD4 molecules recovered by 

48 hrs in both compartments. Additionally, the anti-CD4 treatment protocol saturated all 

available CD4 molecules on the surface of PBL, but not LNC. These results imply that 

modulation of CD4 from the T cell-surface is unlikely to play a major role in the induction of 

tolerance observed in this experimental model. This finding contrasts with those from 

models of anti-CD4 induced transplantation tolerance in which either non-depleting or 

depleting anti-CD4 protocols were found to cause profound and long lasting modulation of
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CD4 molecules from the T cell-surface [167,237]. The CD4 modulation observed in these 

studies, may, however, not be a critical event in the perturbation of T cell function, but, 

rather, may be one step in a cascade which involves other molecular mechanisms. These may 

include interruption of downstream intracellular signalling events within the T cell resulting 

in T cell inhibition and subsequent tolerance induction.

The number of T cells required to initiate and effect allograft rejection is relatively small, for 

example transfer of 5 x 106 purified T cells is sufficient to cause rejection of fully allogeneic 

kidney allografts in the rat [225]. Consequently, T cell depletion is not likely to be the 

principal mechanism involved in 0X38 mAb induced transplantation tolerance. Analysis of 

CD4 T cell numbers in the peripheral blood and lymph nodes of 0X38 treated animals 

revealed that the mAb treatment produced approximately 50-60% CD4 T cell depletion 

around the time of heart transplantation. CD4 T cell numbers gradually recovered thereafter 

and were near normal by 100 days. Additional results, to be described in Chapter 5, provide 

further support for the view that CD4 T cell depletion is not the sole reason for induction of 

tolerance after 0X38 mAb. These results show that 0X38 mAb treated animals which have 

been thymectomised as adults before anti-CD4 treatment, reject their heart allografts 

promptly with kinetics similar to unmodified control animals.

Interestingly, when the phenotype of the residual CD4 T cells in 0X38 treated animals was 

examined, there was apparent sparing of the CD4+ve OX22low fraction, suggesting preferential 

depletion of the CD4+ve OX22hlgh T cell subset in these animals. It has been suggested that 

the rat OX22hlgh CD4 T cell subset may be equivalent to murine Thl cells because of the 

ability of these cells to initiate GVH [219], provide B cell help in antibody production 

[89,238] and because of the Thl like cytokine profile of OX22hlgh cells in response to 

mitogenic and allogeneic stimulation in vitro [238]. Additionally, Bell and colleagues have
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shown that reconstitution of congenitally athymic RT1C (PVG) nude rats with OX22hlgh CD4 

T cells, obtained from euthymic naive RT1C (PVG) donors, restores normal peripheral T cell 

function to the nude recipients which develop normal GVH responses, allograft rejection and 

thymus-dependent antibody production [236]. In contrast, reconstitution of nude rats with 

OX22low T cells does not restore peripheral T effector cell function.

The apparent preferential depletion of the CD4+ve OX22hlgh T cell subset in the present 

experimental model, is consistent with the recent observations of Stumbles and Mason [239]. 

They found that activation of rat CD4 T cells in vitro, in the presence of a non-depleting anti- 

CD4 antibody (W3/25), led to a preferential Th2 type cytokine response by the CD4 T cells. 

Stumbles and Mason suggested that this was due to preferential inhibition of the Thl CD4 T 

cells by the anti-CD4 mAb. This observation is also consistent with the results of Goedert 

and colleagues [240], who showed that anti-CD4 mAb selectively inhibited the differentiation 

in vitro of Thl like, but not Th2 like, CD4+ve T cells.

Another explanation for the present observation is that after 0X38 mAb treatment, CD45 

isotype switching from the CD4+ve OX22hlgh to the CD4+ve OX22low isoform may have 

occurred. However, as will be seen later, analysis of the CD4+ve OX22low fraction, (discussed 

fully in Chapter 5), revealed that this particular subset was made up predominantly of Thy- 

l +ve T cells. The Thy-1 antigen in the rat is expressed by immature thymocytes and RTE cells 

and it is unlikely, therefore, that isotypic switching may have occurred. Why preferential 

depletion of the CD4+ve OX22hlgh T cell subset should occur after 0X38 mAb treatment is not 

known. One possibility is that this subset of CD4 T cells is more likely to apoptose, either as 

a result of cross linking with bivalent anti-CD4 mAb or after contacting alloantigen whilst 

coated with anti-CD4 mAb. Functional differences between CD4+ve OX22hlgh and CD4+ve 

OX22low cells regarding cytoplasmic expression of protein tyrosine phosphatase (PTPase) and
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their intracellular signalling capabilities have been described [241]. Differential depletion 

may be a result of the differential intracellular signalling capabilities of these cells, because 

alternate intracellular signalling pathways are utilised following CD4 ligation with mAb. If 

so, it is reasonable to speculate that this may lead to differential up-regulation of CD95 (Fas) 

and hence apoptosis in the CD4+ve OX22hlgh T cell subset, but not in the CD4+ve OX22low T 

cells.

Addition of anti-CD4 mAb to rat T cells in vitro prevents them from proliferating to 

allogeneic stimulators and impairs their ability to produce IL-2 [239]. It was of interest, 

therefore, to examine whether LNC from tolerant anti-CD4 treated recipients were able to 

proliferate and produce IL-2 in vitro in a one way MLR. As described, CD4 T cells from 

anti-CD4 treated and transplanted animals showed allospecific sensitisation and proliferated 

to a greater extent than LNC obtained from normal DA rats. However, when the supernatants 

from the proliferating LNC were tested for IL-2 activity, using an IL-2 dependent cell line, 

0X38 mAb treated animals showed less IL-2 activity, compared to samples obtained from 

naive LNC. It should be noted, however, that interpreting measurements of IL-2 production 

in the MLR is potentially problematic. For example, low levels of IL-2 in the supemates may 

be attributable to reduced production of IL-2 by the responding T cell population, but could 

also arise if the responding T cell population consumes the IL-2 after it has been released. 

Another point to note is that in the MLR experiments, an equal number of responder LNC 

was used for each well. Therefore, when cells were obtained from 0X38 treated animals, at 

the early time-points, the fraction of CD4+ve T cells in each MLR well was proportionally less 

than the number of CD4+ve T cells obtained from rejecting control animals. Nevertheless, IL- 

2 production in vitro was still reduced when cells were obtained from tolerant 0X38 treated 

animals 100 days after transplantation where the proportion of CD4+ve cells in LNC was
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similar to that found in control animals. Despite reduced IL-2 production, T cells obtained 

from 0X38 mAb treated tolerant animals responded vigorously in MLR to donor alloantigen. 

This T cell proliferation could, in principle, have been due to a T cell growth factor other than 

IL-2. Unfortunately, after testing for IL-2, there was not sufficient supemate to allow testing 

for other pro-proliferative cytokines, such as IL-4.

Initial assessment of mononuclear cell infiltration of the Lewis cardiac allografts obtained 

from unmodified and from anti-CD4 treated DA recipients, showed that grafts from both 

experimental groups were heavily infiltrated with CD8+ve, CD4+ve, ocPTCR+ve and IL-2Ra+ve 

cells and cells of the macrophage lineage with no apparent difference between the 

experimental groups. To determine whether there was evidence for a shift from one type of T 

helper response to another, cardiac allografts were also assessed for the presence of Thl and 

Th2 cytokine message. Intragraft mRNA transcripts for IL-2, INF-y, IL-2Ra, IL-2Rp and IL- 

4 were readily detectable by RT-PCR to a similar extent in both tolerant and rejecting heart 

grafts. The amount of IL-10 message was greater in rejecting heart grafts at day 2 and was 

almost undetectable in tolerant grafts at day 100. At days 2,4 and 7 following transplantation, 

IL-13 levels were detectable to a similar extent in both rejecting and non-rejecting grafts. The 

preliminary cytokine mRNA data, therefore, provided no support for the suggestion that 

transplant tolerance in this particular experimental model was associated with a Thl to Th2 

cytokine shift. A degree of caution is, however, required in interpretation of the cytokine 

mRNA data in terms of the Thl/Th2 paradigm. The presence of mRNA for IL-4, IL-10 and 

IL-13 in rejecting heart allografts does not necessarily equate with the presence of Th2 

CD4+ve T cells, as non-lymphoid cells may, under certain circumstances, also produce IL-10 

[242], and cells of the mast cell and basophil lineage may produce IL-4 [243], Interestingly, 

message for the Th2 cytokine IL-13 was present to a similar extent in both tolerant and
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rejecting animal grafts early on, and appeared to be increased in heart grafts obtained from 

tolerant animals at days 21 and 100. The gene for rat IL-13 has only recently been cloned 

[244] and while human IL-13 shares many of the properties of IL-4, including B cell 

stimulation and Ig isotype switching [245], it is not yet clear to what extent rat B cells 

respond to IL-13.

Split tolerance (i.e. the ability of cells from tolerant animals to respond to donor alloantigen in 

vitro) is well recognised in a variety of experimental models where tolerance is induced by 

various means such as D o n o r  S pe c ific  B l o o d  T r a n s f u s io n  (DST) [246], anti-CD4 

treatment [162], neonatal inoculation of antigen [247,248] and Cyclosporin A treatment 

[249]. A recent report in which non-depleting anti-CD4 treatment was used to prolong 

survival of rat heterotopic cardiac allografts, noted that cells obtained during the induction 

phase of tolerance showed normal proliferation to donor antigen in a one way MLR but cells 

obtained from the long-term tolerant animals showed diminished proliferation in vitro [250]. 

In this experimental system the authors suggested that lack of T cell proliferation in the 

established tolerant state was due to inhibition of CD4 T cell help by the anti-CD4 mAb but 

they failed to explain why this phenomenon took several months to develop. The authors 

suggested that the emergence of stable tolerance was associated with a dominant polarised 

Th2 state and inferred that reduced T cell help was due to diminished IL-2 production.

Dallman et al [251] originally showed that tolerance induction, using a model of DST in rats, 

was associated with reduced IL-2 mRNA transcripts in the grafts of tolerant animals and that 

transplant tolerance in this experimental model could be overcome by the administration of 

exogenous IL-2 at the time of tolerance induction. On the basis of the Thl/Th2 paradigm, it 

seemed reasonable to assume that if tolerance was associated with a diminished Thl 

response, then Th2 cytokines might be enhanced and contribute to tolerance, and several
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groups involved in transplantation research rushed to find the evidence for Th2 dominance 

using a plethora of experimental models. Decreased Thl associated cytokines, with sparing 

of Th2 cytokines, has now been observed in several other transplantation models where organ 

graft survival was observed, including induction therapies using CTLA4-Ig [211] and non­

depleting anti-CD4 monoclonal antibodies [252,253]. Although there is a suspicion that 

immune deviation to a Th2 pattern of response in a model of Thl mediated graft rejection 

may be permissive for long-term engraftment, a Th2 type of alloimmune response may, 

paradoxically, support the development of chronic rejection in the longer term [211]. This 

suggestion is supported by some studies which have utilised immune modulating therapies 

aimed at polarising the alloimmune response towards a Th2 response. While this strategy has 

resulted in prevention of Thl mediated early rejection, grafts were lost in the longer term 

[254,255,256]. This data suggests that simply inhibiting a Thl response and enhancing a Th2 

response, is unlikely to be the panacea for preventing allograft rejection. Additional evidence 

also suggests that a polarised Th2 response does not necessarily confer transplant tolerance in 

some models of transplantation. Interestingly, liver transplantation in the same low responder 

rat strain combination which was utilised for the work in this thesis, (Lewis to DA), results in 

spontaneous tolerance of some allografts, whereas transplantation in the reciprocal high 

responder strain combination, (DA to Lewis), results in prompt rejection. When graft 

infiltrating cells were analysed by semi-quantitative RT-PCR following liver transplantation, 

the immune response in both strain combinations was found to be remarkably similar, the 

only difference being reduced mRNA expression of IL-4 in cells from the low responder 

tolerant group [257]. Moreover, using IL-2 KO mice in a pancreatic islet transplantation 

model, Steiger et. al. [258] were able to demonstrate that IL-2 was not required for allograft 

rejection and that the presence of IL-4 and IL-10 expression in the absence of IL-2 did not 

result in transplant tolerance - all transplants were rejected, albeit in a slower fashion than
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grafts in control animals. A potential problem with this and other cytokine KO mice is, as the 

authors themselves point out, that KO mice are not ‘normal’ animals with a single cytokine 

deficiency. One can imagine that as the immune system in KO animals develops, cells not 

dependent on the missing cytokine for growth or differentiation are positively selected for, 

and that other cytokines whose function overlaps with the missing cytokine, may also play an 

increased role within what is undoubtedly a highly redundant biological system.

In the present studies, the assessment of the alloantibody response in unmodified and anti- 

CD4 treated animals gave further insight into the nature of the T helper response. In the rat, 

on the basis of the selective effects of IL-12 on IgG isotype alloantibody responses, 

alloantibodies of the IgG2b and IgG2c subclass appear to be Thl mediated, and IgGl subclass 

antibodies are of Th2 T helper dependent isotypes [259]. The experiments in this chapter 

revealed a weak cytotoxic alloantibody response which was present in both rejecting and anti- 

CD4 treated tolerant animals. However, in the anti-CD4 treated recipients, the cytotoxic 

antibody response was slower to develop. The alloantibody isotype data confirms that early 

antibody responses in this model are relatively weak with only modest levels of alloantibody 

detected early on. Alloantibody levels were substantially higher in the long-term tolerant 

recipients but there was no evidence for dominance of any particular antibody isotype and 

hence no support, for the suggestion that tolerance in this particular experimental model is 

associated with a Thl to Th2 cytokine shift.

In the context of transplantation rejection and tolerance, the Thl/Th2 paradigm cannot be 

invoked universally to explain whether graft rejection or tolerance will result. A large 

number of studies have been published with contrasting results, some supporting and some 

negating the hypothesis. The apparent discrepancy between the results using different 

experimental systems, is perhaps, not surprising if one considers that the immune system in
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mammals has evolved by developing strategies to match the variation imposed by the 

pathogens it faces. Some experimental models may only exploit one facet of the immune 

response and with such a constraint the response may be skewed in one way or the other. For 

example, if an antigen which only generates a Thl or Th2 response is chosen to challenge the 

immune response and one manipulates the response and induces tolerance, it may not be 

surprising to find an intact opposing Th2 or Thl compartment (which could be interpreted as 

the important mechanism in tolerance induction). In allograft transplantation, it seems clear 

that immune responses dominated by both cell-mediated or humoral effector mechanisms 

may be detrimental to organ graft survival and depending on the species used, the strain 

combination tested, the influence of the immunosuppressive protocol employed and the time 

frame examined, domination of either cell-mediated or humoral effector mechanisms may be 

apparent. It remains to be determined whether manipulating the cytokine repertoire from one 

T helper response to the other will result in long-term allograft survival and tolerance 

induction.

If polarisation from one type of T helper response to another is not the explanation for 

transplantation tolerance then what other mechanism may be responsible? Cobbold et. al. 

[206] and Strom et. al. [260] who recently reviewed the mechanisms of peripheral tolerance 

and the Thl/Th2 paradigm respectively, have implied in their reviews, that the local autocrine 

effect of cytokines on T cell growth and differentiation in the milieu of an immune response 

modified by some form of immunosuppression (e.g. altering cytokine production, reducing 

critical T cell mass, blocking necessary T cell-costimulation and perturbing T cell signalling) 

may have a certain hierarchy and if appropriately manipulated initially away from the 

dominant T helper response responsible for rejection, (i.e. away from a Thl response if Thl 

mechanisms are principally responsible for rejection, or away from a Th2 response if Th2
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mechanisms are dominant) then tolerance may be induced. This understanding allows the 

important point that once “non-rejection” occurs, perhaps with other constraints being met 

and maintained, then tolerance can be generated without the need for polarisation to the 

alternate type of T helper response.
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3.4 KEY POINTS

• Pre-operative anti-CD4 (0X38) treatment results in allospecific (but not tissue 

specific) tolerance in the Lewis to DA model of heterotopic cardiac transplantation.

• Following treatment, anti-CD4 mAb is cleared rapidly from the lymphocyte cell- 

surface of PBL and LNC and is not detectable in the serum at 72 hrs.

• The anti-CD4 treatment protocol employed, results in partial depletion of CD4 T 

cells with preferential sparing of the CD45RC've T cell subset.

• Lymph node cells taken from tolerant animals display ‘split tolerance’ when re­

stimulated in vitro in standard one way MLR (i.e. show allospecific sensitisation) but 

produce reduced amounts of IL-2 compared to normal LNC.

• Alloantibody responses and cellular infiltration in cardiac allografts are similar in 

tolerant and unmodified heart graft recipients.

• RT-PCR analysis of cardiac allografts obtained from tolerant and unmodified graft 

recipients at days 2, 4, 7, 21 and 100 provided no evidence for a Thl to Th2 cytokine 

shift with tolerance.
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4. Effect of 0X38 monoclonal antibody on intracellular signalling events

4.1 INTRODUCTION

Ligation of the a(3T cell receptor with peptide antigen presented in the grove of MHC Class II 

triggers an intracellular signalling response, the nature of which is common to that which is 

seen in other cells of haemopoietic origin following their activation. The signalling response 

involves the activation of PTKs and a cascade of tyrosine phosphorylation of intracellular 

proteins, including components of the antigen receptor itself. During T cell -  APC 

interaction, the membrane glycoprotein CD4 coaggregates with TCR - CD3 - MHC Class II 

complex [48] and enhances antigen mediated activation of Class II MHC restricted T cells 

[49,50,51]. This positive effect of CD4 in the T cell activation process has been attributed to 

its non-covalent association [43,44] with the PTK p56lck, which becomes activated upon CD4 

aggregation [128]. As discussed earlier, activation of p56lck probably involves 

dephosphorylation at the negative regulatory C-terminal tyrosine505 site by CD45 phosphatase 

and auto phosphorylation at the positive regulatory tyrosine394 site. Once activated, p56lck 

potentiates signal transduction by phosphorylating and activating downstream substrates 

including PTKs such as ZAP-70.

An additional means by which CD4 associated p56lck may enhance downstream tyrosine 

protein phosphorylation is through a mechanism unrelated to its tyrosine kinase activity, but 

relying instead on its SH2 sequence [261]. Xu and Littman observed that the SH2 domain of 

p56lck is able to recruit other phosphotyrosine containing signalling molecules or, 

alternatively, protect tyrosine phosphorylated substrate sequences from the action of 

phosphatases, thus complexing and stabilising tyrosine phosphorylated CD3 £ chains, ZAP- 

70, and possibly other molecules, with CD4 and TCR.
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In the recent years significant progress has been made in identifying the T cell proteins which 

serve as targets for p56lck during TCR induced T cell activation. As discussed earlier, several 

components of the CD3 complex, including the c and £ chains [76,146,149,262], 

phospholipase-Cyl (PLCyl) [120,121], and ZAP-70 [144,145,148] undergo rapid tyrosine 

phosphorylation during T cell activation and may recruit and/or phosphorylate other down 

stream effector molecules in the signalling cascade. For example, following activation by 

phosphorylation, activated PLCyl mediates, in turn, the hydrolysis of PIP2 to IP3 and DAG 

[263,264]. The latter molecules are ultimately responsible for increasing the concentration of 

cytoplasmic calcium and activating PKC [265,266]. Other proteins which undergo 

phosphorylation during T cell activation are Vav, a 95 kDa polypeptide which is thought to 

possess guanine nucleotide exchange activity towards low molecular weight G-proteins, 

[267,268,269], She, a 46-52 kDa protein which once phosphorylated may interact with £ 

chain [270] and become involved in recruitment of Grb-mSos complex to the plasma 

membrane [271], and a 36-38 kDa protein [272] which may also complex with Grb2. 

Through their action on the G u a n o sin e  T r ip h o s p h a t e  (GTP) binding protein, p21ras, these 

proteins may have an important regulatory function in TCR mediated activation and 

proliferation although this remains to be fully clarified. Ras proteins cycle between an 

inactive, G u a n o s in e  D ip h o s ph a t e  (GDP) bound state and an active GTP bound form 

[273,274,275]. Hydrolysis of bound GTP is accelerated by G T P a se  A c t iv a t in g  P ro t ein s  

(GAPs) which inactivate ras [276] whereas G u a n in e  N u c l e o t id e  R e l e a s in g  F a c t o r s  

(GRFs) exchange GDP for GTP which activate ras [277]. An elegant series of transfection 

experiments using mutant and wild type p2 1 ras protein genes has underscored the importance 

of p21ras in expansion of effector T cells. In these studies, the expression of a dominant 

negative p21ras protein resulted in suppression of IL-2 gene induction, whereas expression of
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active p21ras resulted in activation of transcriptional factors, such as AP-1, and increased IL-2 

production [278,279]. Although the mechanism and role of p21ras in T cells activation has yet 

to be fully elucidated, activation of p21ras in T cells occurs in both a PKC dependent [280] 

and a PKC independent [281] manner. The PKC independent pathway is the one which 

appears to involve the 36-38 kDa p21ras binding protein [272].

In several studies using a diverse range of T cells, including immortalised human T cell 

clones [282], normal human PBL’s [283] and murine LNC’s [284] treatment with anti-CD4 

mAb has been shown to alter the intracellular signalling cascade which is orchestrated 

through CD4 and p56lck. From these studies, it seemed reasonable to hypothesise that anti- 

CD4 (0X38 mAb) pre-treatment in the rat experimental model which forms the basis of this 

thesis, may also lead to differences in T cell function as a result of altered intracellular 

signalling. This possibility was therefore investigated using an in vitro activation system 

employing immobilised anti-apTCR mAb to activate rat CD4 T cells. Anti-TCR induced 

activation was chosen instead of activation in response to alloantigen because it avoids the 

possibility of introducing additional phosphorylated proteins into the system by the use of 

allogeneic stimulator cells. In the studies performed, attention was focused particularly on 

the 36-38 kDa protein because lack of tyrosine phosphorylation of this protein has been 

shown to correlate with the development of T cell anergy [285,286]. Consequently, the SDS- 

PAGE system used in the experiments described was optimised using 10% gels to maximise 

separation of proteins in the 20 to 70 kDa range. As a result, it was accepted that changes in 

tyrosine phosphorylation of other activation proteins may have been over looked under 

experimental conditions used.
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4.2 RESULTS

4.2.1 Effect o f  anti-CD 4 treatment on the normal T cell intracellular signalling cascade

In principle, anti-CD4 mAb treatment may abrogate T cell activation either by sterically 

interfering with the interaction o f  CD4 on the T cell and MHC Class II on the APC, and/or by 

perturbing the normal T cell signalling cascade. The two mechanisms, which are not 

mutually exclusive, are depicted schematically in Figure 4.1 below.

Figure 4.1 Possible mechanisms whereby anti-CD4 mAb may interfere with T cell 

activation

A) Inhibition of CD4/MHC B) Perturbation of CD4
class II interaction intracellular signalling

A g/M H C  IIAg/.MHC II

CD4

C D 3/T C R C D 3/T C R

PK PK
p56 PLC

IP3 DAG IP3 DAG

The figure illustrates two mechanisms whereby anti-CD4 mAb may interfere with T cell activation

A). Anti-CD4 mAb may by binding to the CD4 molecule, form a physical barrier which interferes with 
the normal interaction of the CD4 molecule with the non-polvmorphic region of the MHC Class II 
molecule;

B). Anti-CD4 mAb may perturbate the normal intracellular signalling mechanisms invoked by CD4 

through its interaction with p56lck or other cytoplasmic kinases.
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4.2.2 Delaying cardiac transplantation until after anti-CD4 mAb has been cleared from  

treated animals still results in prolonged allograft survival

To investigate the possibility that anti-CD4 mAb may perturb T cell signalling and to exclude 

CD4+ve apTCR+ve T cell depletion as an exclusive mechanism for tolerance induction in this 

experimental model, advantage was taken of the finding, discussed earlier in Chapter 3, that 

in 0X38 mAb treated animals, the anti-CD4 mAb is rapidly cleared from the blood of treated 

animals and remains only transiently detectable on the lymphocyte surface. In contrast, 

following 0X38 mAb, the CD4 T cell depletion observed was relatively slow to recover and 

the level of CD4 depletion observed was similar at days 0, 4 and 7 following in vivo 0X38 

treatment. Based on these observations, it was decided to delay heart transplantation from 

day 0 until either day 4 or day 7 following the last dose of 0X38 mAb. Table 4.1 shows the 

heart graft survival data for the different experimental groups.

Table 4.1

Group Day of Transplant (relative to mAb) mAb* n Graft Survival (days) MST (days)

1 0 0X21 7 8,9 ,10x2,11 ,14x2 10

2 0 0X38 7 8 > 1 0 0 x 6 >100

3 +4 0X38 7 8,14,>100 x 5 >100

4 +7 0X38 6 9,12 x 2,18,>100 x 2 15

*mAb was administered by IP injection at a dose of lOmg/kg (day -3 ) , and 2m g/kg (days -2 ,  -1 ,  0). DA  
recipient animals received a Lewis cardiac allograft on days 0, plus 4 and plus 7 relative to last treatment.

Experimental Groups 1 and 2 received anti-CD4 mAb (0X38) according to the standard 

protocol (lOmg/kg on days -3, 2 mg/kg on days -2 , - 1 , and 0 the day of transplant). Group 1 

received a control mAb 0X21 and this group had a MST of 10 days. Group 2 received 0X38
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mAb and, as already noted in Chapter 3, had a MST of greater than 100 days. Groups 3 and 4 

also received 0X38 mAb and were then transplanted with cardiac allografts either 4 or 7 days 

after the last dose of anti-CD4. The MST in Group 3 was >100 days and the MST in Group 4 

was 15 days. Since the level of CD4 T cell depletion after anti-CD4 mAb was similar on 

days 0, 4, and 7 after treatment, but residual labelling of CD4 T cells was no longer detectable 

at day 4, these data are consistent with the idea that anti-CD4 mAb treatment may impart 

some degree of ‘negative’ signalling to the T cell. If so, this process is partially reversed by 

seven days after the last dose of anti-CD4. This observation suggests a ‘window of 

opportunity’ exists (up to day 4), in which to seek evidence for functional and biochemical 

differences in anti-CD4 treated cells at a time when they are no longer coated with anti-CD4 

mAb but before they have regained normal in vivo function.

4.2.3 TCR activation is associated with changes in intracellular tyrosine phosphorylation 

The CD4 molecule is intimately associated with p56lck tyrosine kinase and it was therefore of 

interest to look for evidence of tyrosine phosphorylation following ligation of the apTCR 

using immobilised anti-apTCR mAb. It can be seen from the upper panel of Figure 4.2, 

which shows tyrosine phosphorylation patterns, that the most striking observation was the 

phosphorylation of a 36-38 kDa protein which was most apparent after activation of CD4 T 

cells for a period of 30 seconds. This protein subsequently became partially 

dephosphorylated at the 30 Min time-point. In order to ensure that the differences observed 

in tyrosine phosphorylation, in this and subsequent experiments, were not due to differences 

in the amount of cell lysate loaded on to the sample lanes, the same nitrocellulose blots were 

stripped and re-stained using anti-ZAP 70 and/or anti-p56lck antibodies. The results of
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staining this western blot with anti-ZAP 70 and anti-p56kk antibodies is displayed in the 

lower two panels o f  Figure 4.2. It can be seen in the bottom two panels o f  this figure, that the 

same magnitude o f  staining for p56kk and ZAP-70 was observed for all sample, with 

exception o f  the 30 Min time-point sample, which stained less heavily with both antibodies.

Figure 4.2 TCR activation dependent ty rosine phosphorylation of CD4 T cells

O’ 0.5’ 2’ 5’ 30’ Time TCR Activation

Anti-Phosphotyrosine

Anti-ZAP-70

Anti-p56lck

Immunopurified CD4 ' e T cells were activated in vitro using immobilised anti-aPTCR mAb. Assays were 

quenched by the addition of SDS sample buffer after 0, 0.5, 2, 5 and 30 Min of activation. Cell lysates 

were then analysed by 10% SDS-PAGE and proteins transferred to nitrocellulose paper by western 

blotting. Specific staining of proteins was performed using antibody mediated chemoluminescence and 

autoradiography. The top panel shows the anti-phosphotyrosine staining. The bottom two panels 

represent the anti-ZAP-70 and anti-p56lck staining of the same western blot. The time of activation is 

indicated on the top of the figure for each lane in Min.
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4.2.4 Addition o f  0X38 mAb to CD4 T cells alters the tyrosine phosphorylation pattern o f  

cytoplasmic proteins

To determine the effect of in vitro 0X38 mAb treatment on immunopurified CD4+ve T cells 

using the anti-apTCR activation system described above, purified CD4 T cells were activated 

after pre-treatment with either PBS (Control), 0X38 mAb, or 0X38 which was then cross- 

linked by the addition of RaMo-antibody. It has been observed in previous studies that when 

using anti-CD4 antibodies to inhibit CD4 T cell activation, valence of the anti-CD4 antibody 

is critical and that polyvalent, but not monovalent antibody, inhibited normal intracellular 

signalling pathways [287] and also that IgM was more effective than IgG in inhibiting TCR 

induced activation [154] (and reviewed by Janeway [81]). It was therefore, reasonable to 

assume that cross-linking 0X38 mAb with RaMo-antibody would ensure polyvalent 

attachment and clustering of CD4 molecules on the lymphocyte cell-surface and may lead to 

alteration in T cell activation induced intracellular signalling.

A representative autoradiograph from one experiment is shown in Figure 4.3. The 

autoradiographs obtained in this, and similar experiments, were also analysed using a BioRad 

Gel Doc 1000 soft laser densitometer and image analysis software system. The OD of the 36- 

38 kDa band and p56lck is displayed within brackets for each sample below the lanes of 

Figure 4.3. It can be seen from Figure 4.3 (lower panel), that anti-phosphotyrosine antibody 

chemoluminescence staining revealed a two fold or greater increase in the phosphorylation of 

the 36-38 kDa protein upon activation of control CD4 T cells at the 2 Min time-point, as 

detected by OD. It was notable, however, that there was no appreciable change in the 

phosphorylation of the 36-38 kDa protein upon T cell activation in the presence o f either 

0X38 mAb or 0X38 mAb cross-linked by RaMo-antibody. The top panels of Figure 4.3 

show the staining of anti-p56lck in this experiment using the same western blot. Although the
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density o f  the p56lck bands are three times higher in the control CD4 T cells when compared 

to the 0 X 38  mAb treated samples, the important observation is that the relative amount o f  

p56kk within each experimental group is similar. This indicates that any changes observed in 

the phosphorylation o f  the 36-38 kDa band within a group was not an artefact caused by 

unequal loading o f  lysate in that sample.

Overall, the data from these experiments suggests that in vitro pre-treatment o f  CD 4+' e T cells 

with the anti-CD4 mAb 0 X 3 8  leads to an impairment o f  the normal intracellular signalling 

cascade which occurs following TCR activation. This is evident as a reduction in the 

phosphorylation o f  a 36-38 kDa protein in 0 X 38  mAb treated cells when compared to 

untreated control CD4 T cells.

Figure 4.3 Inhibition of TCR activation-dependent tyrosine phosphory lation in CD4 

T cells by in vitro 0X38 mAb treatm ent

Anti-p56lek

Anti-PT

Control

O' 2’ 30'

(1246) (1255) (1259)

O '
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2' 30'
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   M.........

OX38-XL

(029) (059) (033) (0 0 2 ) (0 0 1 ) (0 0 2 )

0 ’ 2 ’ 3 0 ’ TCR Activation
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<

56k Da

(399) (423) (216) (O.D.)
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36-38kDa
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Immunopurified CD4 ' 1 T cells pre-treated with PBS (Control, left panels) 0X 38 (middle panels), or 

0X38 which was cross-linked using Rabbit anti-Mouse antibody (right panels), were activated using 

immobilised anti-a(3TCR mAb. Assays were quenched by the addition of SDS sample buffer after 0, 2 

and 30 Min of T cell activation. Cell lysates were analysed by 10% SDS-PAGE and proteins transferred 

to nitrocellulose paper by western blotting. Specific staining of proteins was performed using antibody 

mediated chemoluminescence and autoradiography. The lower 3 panels depict the typical tyrosine 

phosphorylation patterns observed using anti-phosphotyrosine antibody staining. The upper 3 panels 

represent staining of the same gel using anti-p56lck antibody. The optical density (O.D.) of the 36-38 kDa 

protein band and p56lck are shown below each lane for each gel.
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4.2.5 Anti-CD4 treatment o f  CD4 T cells is associated with inhibition o f TCR mediated 

activation in vitro

To determine whether the alteration in intracellular signalling brought about by anti-CD4 

mAb treatment correlated with any functional differences in anti-CD4 treated cells, the 

proliferative response of CD4 T cells to immobilised R73 antibody was assessed by 3H- 

Thymidine incorporation at 24 and 48 hrs after T cell activation. Briefly, in the experiment 

shown, CD4 T cells were treated, prior to activation, with PBS (Control), 0X38 mAb or 

0X38 mAb which was cross linked by RaMo-antibody. The CD4 T cells were added to 

culture wells in which anti-apTCR mAb (R73) had been bound to the plate. Cells were then

• 3 • • 3pulsed with H-Thymidine, harvested onto microtitration filter paper and H-Thymidine 

uptake determined by counting samples on a beta liquid scintillation counter. The results of 

this experiment are shown in Figure 4.4. It can be seen that anti-CD4 mAb treatment reduced 

the ability of CD4 T cells to proliferate in response to TCR cross-linking and that inhibition 

was more pronounced when the anti-CD4 mAb was cross-linked on the T cell-surface by 

RaMo-antibody.
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Figure 4.4 Ability of 0X38 to inhibit CD4 LNC activation by immobilised anti-TCR 

antibodies

□ Control
□ 0X38 
HOX38-XL

CD4LNC 
T cells

10000

24 48

Hours After H3-Thymidine

Immunopurified CD4 ve T cells were treated in vitro with PBS (Control, lightly fdled columns), 0X38 

mAb (0X38, open columns), and 0X38 mAb which was then cross-linked using Rabbit anti-Mouse 

antibody (OX38-XL, darker filled columns) and were activated using immobilised anti-a(3TCR mAb. Cell 

cultures were pulsed with H-Thymidine after 24 and 48 hrs, and were harvested 18 hrs later onto 

microtitration filter paper. Thymidine uptake was analysed using a Beta Liquid Scintillation counter. 

The y-axis represents the COUNT P e r  Mini IE (CPM) of iH-Thymidine, and the x-axis shows the time in 

hrs of cell culture.

4.2.6 CD4 T cells obtained from  animals treated with 0 X 3 8  mAh in vivo display signalling  

defects identical to those observed in CD4 T cells treated in vitro with 0X 3 8

Following the observation that in vitro 0 X 38  mAb treatment o f  CD4 T cells leads to altered 

intracellular signalling in these cells, studies were performed on CD4 T cells treated with 

0 X 3 8  mAb using the standard in vivo treatment protocol. Specifically, these studies were 

designed to determine whether the perturbation o f  CD4 T cell function responsible for the 

increased cardiac allograft survival in recipients given a heart allograft 4 days after the last
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dose o f 0X38 mAb, was associated with alteration in the normal biochemical signalling 

cascade. CD4 T cells were obtained from animals at various time-points following the 

standard in vivo 0X38 treatment protocol and then tested in vitro using the same immobilised 

anti-apTCR activation system described above. Figure 4.5 shows the results of one such 

experiment and the results obtained in this experiment were typical of replicate experiments 

performed using the same conditions.

The format of Figure 4.5, is identically to that used previously for Figure 4.3, but the CD4 T 

cells used for this study were obtained from animals treated with 0X38 mAb in vivo and were 

harvested after 0, 4 and 7 days following the last dose of anti-CD4 mAb.

Interestingly, the phosphorylation of the 36-38 kDa protein observed after activation of 

normal CD4 T cells was not observed in CD4 T cells obtained from the animals on day 0 or 

day 4 after 0X38 mAb treatment. However, a marked increase in phosphorylation of this 

protein was apparent after 2 Min of T cell activation in the CD4 T cells obtained from 

animals 7 days after 0X38 mAb treatment (OD 005 compared to 065 at 0 and 2 Min TCR 

activation respectively). It is notable that the difference observed in protein phosphorylation 

could not be accounted for by differences in the quantity of lysate loaded onto the gel. The 

top panel of Figure 4.5 confirms that within each group the OD of the p56lck staining is 

similar for the different lysate samples loaded on the gel.



Chapter 4-118

Figure 4.5

Anti-p56lck

Anti-PT

Immunopurified CD4 ' e T cells were obtained from animals treated with the standard in vivo 0X38 mAb 

protocol. CD4 T cells were obtained on Day 0 (left panels), Day 4 (middle panels) and Day 7 (right 

panels) after 0X38 mAb treatment and were activated using immobilised anti-aPTCR mAb. Assays were 

quenched by the addition of SDS sample buffer after 0, 2 and 30 Min of activation. Cell lysates were 

analysed bv 10% SDS-PAGE and proteins transferred to nitrocellulose paper by western blotting. 

Specific staining of proteins was performed using antibody mediated chemoluminescence and 

autoradiography. The lower 3 panels show the typical tyrosine phosphorylation patterns observed using 

anti-phosphotyrosine antibody staining. The upper 3 panels represent staining of the same gel using anti- 

p56lfk antibody. The optical density (O.D.) of the 36-38 kDa protein band and p56lk are shown below 

each lane.

The data from this experiment suggest that the alteration in intracellular signalling observed 

after in vitro pre-treatment o f  CD4 ne T cells with the mAb 0 X 38  is also observed in CD4 T 

cells from animals treated with 0 X 3 8  in vivo. However, the impairment in CD4 T cell 

signalling after in vivo 0 X 3 8  mAb appears to be transient and/or reversible, as CD4 T cells 

obtained from animals 7 days following the last dose o f  0 X 3 8  mAb have signalling patterns 

identical to those seen in normal CD4 T cells. As noted already, the signalling defect 

observed in the CD4 T cell obtained from in vivo 0 X 3 8  mAb treated recipients correlates 

with a functional impairment in the animals since those transplanted with an allogeneic

Inhibition of TCR activation-dependent tyrosine phosphorylation of CD4 

T cells by in vivo 0X38 mAb treatm ent
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cardiac allograft on day 4 after 0X38 mAb treatment do not reject their heart grafts, whereas 

those transplanted on day 7 following 0X38 are able to mediate heart allograft rejection.

4.2.7 Analysis o f  CD4 immunoprecipitates fo r evidence o f  dissociation ofp56Ick

A possible mechanism for altered intracellular signalling in 0X38 mAb treated CD4 T cells is 

the dissociation of p56lck from the cytoplasmic tail of the CD4 molecule following anti-CD4 

mAb binding. To determine whether evidence for this could be found in the present 

experimental system, in vitro 0X38 treated CD4 T cells and CD4 T cells from 0X38 treated 

animals were lysed in non-ionic buffer and the CD4 immunoprecipitated using anti-CD4 and 

Staph Protein A. Immunoprecipitates were then analysed by SDS-PAGE -nitrocellulose 

western blotting and were stained directly using anti-p56lck. The results of this experiment 

are depicted in Figure 4.6. The left panel (A) of Figure 4.6, shows the staining pattern of 

CD4 immunoprecipitated p56lck which was observed in cell lysates from CD4 T cells after in 

vitro pre-treatment with PBS, 0X38 and 0X38 cross-linked with RaMo-antibody. It can be 

seen that 0X38 treatment results in only partial dissociation o f p56lck from the CD4 molecule 

and this dissociation is most marked when 0X38 mAb is cross-linked by RaMo-antibody.

When CD4 T cells were obtained from animals on days 0, 4 and 7 following the last dose of 

in vivo anti-CD4 treatment, using the standard 0X38 treatment protocol, and analysed in the 

same fashion as the in vitro 0X38 treated cells, no change in the staining pattern of CD4 

immunoprecipitated p56lck was observed. The results from this experiment are displayed in 

the right panel (B) of Figure 4.6. This latter observation argues against the idea that the 

altered intracellular signalling which occurs after anti-CD4 treatment can be attributed wholly 

to dissociation of p56lck from the CD4 molecule.
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Figure 4.6 CD4 associated p56kk following in vitro and in vivo 0X 38 pre-treatm ent

A C ontrol 0 X 3 8  O X 38-X L B Day 0 Day 4 Day 7

Anti-p56,ck

in vitro 0X38 Treatm ent in vivo 0X38 Treatm ent

Immunopurifled C D 4 'e T cells were obtained from naive untreated animals and pre-treated in vitro with 

PBS (Control, panel A left), 0X38 (0X38 Treated, panel A centre) and 0X 38 which was cross-linked 

using Rabbit anti-IMouse antibody (OX38-XL, panel A right) or were obtained on day 0 (Day 0 panel B 

left), on day 4 (Day 4 panel B centre) and day 7 (Day 7 panel B right) from animals treated with in vivo 

0X 38 mAb (Standard Protocol). CD4 T cells were lysed using non-ionic buffer and immunoprecipitated 

using anti-CD4 antibody and staph protein A sepharose. Immunoprecipitated pellets were solubilised in 

SDS sample buffer and analysed by 10% SDS-PAGE. Proteins were transferred to nitrocellulose paper 

by western blotting and specific staining performed using anti-p56llk antibody mediated 

chemoluminescence and autoradiography.

4.2.8 Effect o f 0 X 3 8  on intracellular Ca~ influx fo llow ing  anti-TCR induced activation

In view o f  the observed differences in the phosphotyrosine labelling pattern o f  CD4 T cells 

after in vitro and in vivo 0 X 38  mAb treatment, it was decided to determine if the same 0 X 38  

mAb therapy also abrogated downstream signalling events, such as influx o f  intracellular 

calcium, which normally follow ligation o f  the apT C R . After TCR activation, the level of  

intracellular Ca2' increases, due to the activation o f  Phospholipase C which cleaves PIP2 to 

produce IP3. The latter molecule mediates Ca“ release from intracellular Ca2+ vesicles and 

initiates an influx o f  Ca2 from the extracellular milieu. This rapid and sustained increase in 

intracellular Ca2 is then thought to influence Ca2+ / calmodulin -dependent events which are 

essential for the production o f  key cytokines such as IL-2 [288,289,290,291].
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To test the integrity of the intracellular signalling pathway distal to the PTKs, changes in 

intracellular Ca2+ were measured indirectly by pre-loading immuno-magnetically enriched 

CD4+ve T cells with the calcium dependent dye Fluo-3. Fluo-3 requires active cell 

metabolism for loading and therefore only labels living cells. CD4 T cells were obtained 

from naive animals and pre-treated in vitro with PBS (Control) or 0X38 mAb. Alternatively, 

CD4 T cells were obtained from animals 4 days after the last dose of 0X38 mAb using the 

standard in vivo treatment protocol. All CD4 T cells were activated in vitro using 

immobilised R73 mAb and continuous assessment of cell fluorescence was performed using 

the flow cytometer. The results of such an experiment are depicted in Figure 4.7. It can be 

seen that there is an increase in Fluo-3 fluorescence with time after TCR activation in Control 

CD4 T cells. However, the increase in fluorescence is abrogated in CD4 T cells after in vitro 

0X38 mAb treatment and in CD4 T cells obtained on Day 4 after in vivo 0X38 mAb 

treatment. After addition of the calcium ionophore, ionomycin, to each of the different cell 

populations, maximum Fluo-3 fluorescence was observed and was equivalent in each of the 

samples. The latter finding confirms that loading of the intracellular dye was comparable in 

the different experimental groups and that lack of fluorescence after activation in the 0X38 

treated T cells was not due, therefore, to absence of Fluo-3 dye. It can be seen from Figure

4.7 that the width of the fluorescent band is slightly broader in the analysis of CD4 T cells 

from anti-CD4 treated animals. This is probably attributable to a slightly higher cell number 

in the sample of this particular experiment.
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Figure 4.7 Inhibition of apTCR-activated calcium-dependent fluorescence by in vitro

and in vivo 0X38 mAb pre-treatm ent
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CD4 T Cells were obtained from naive animals and pre-treated in vitro with PBS (Control, left panel), or 

0X 38 (0X38 Treated, centre panel) or were obtained from animals 4 days after using the standard in 

vivo 0X 38 treatment protocol (Day 4 after in vivo 0X38, right panel). CD4 T cells were activated using 

immobilised R73 mAb while assessing the change in fluorescence of the calcium dependent dye Fluo-3, 

using an EPICS XL Flow cytometer (Coulter, Luton, UK). The y-axis represents the Log,0 of Fluo-3 

fluorescence and the x-axis represents the time in seconds after initiation of TCR activation.

4.3 DISCUSSION

CD4 T cell inhibition by anti-CD4 mAb therapy may be mediated by at least three non­

exclusive mechanisms. Firstly, by binding to the CD4 molecule, the mAb may cause steric 

inhibition o f  the interaction o f  the CD4 molecule with the non-polymorphic region o f  the p 

chain o f  MHC II (Loop 3 p2). Secondly, after binding to the CD4 molecule, the mAb may 

sequester or ‘cap' cell-surface CD4 molecules to a particular region on the cell-surface so that 

association o f  CD4 with MHC Class II - TCR - CD3 is not able to readily occur. Third, by
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binding to CD4 molecule, the anti-CD4 mAb may "‘stimulate’ or ‘inhibit’ the normal 

intracellular signalling mechanism in such a way that once the CD4 - TCR - MHC Class II 

complex is formed, the CD4 T cells are not able to undergo normal activation. This latter 

process has been collectively called “negative signalling”. Previous studies have shown that 

0X38 mAb can inhibit CD4 T cell function both in vivo and in vitro but have not sought 

evidence for negative intracellular signalling.

The results reported in this chapter demonstrate that anti-CD4 mAb inhibits normal CD4 T 

cell function and is associated with an alteration in tyrosine phosphorylation pattern which 

follows apTCR activation. The perturbation of CD4 T cell function caused by CD4 ligation 

with 0X38 mAb, outlasted the physical interaction between antibody and ligand, suggesting 

that the antibody pre-treatment did result in some form of “negative signalling” within the 

CD4 T cell itself. This observation has not previously been reported. Negatively signalled 

CD4 T cells were, when challenged in vivo with alloantigen in the form of a full MHC 

mismatched vascularised cardiac graft, unable to mediate allograft rejection, and when 

challenged in vitro, using immobilised anti-apTCR antibody, failed to phosphorylate the 36- 

38 kDa protein and failed to mobilise intracellular Ca2+ stores. The alteration in intracellular 

signalling could not be attributed to dissociation of p56lck from CD4, as no appreciable 

differences were detected between normal CD4 T cells and anti-CD4 treated CD4 T cells in 

this experimental system.

* Stimulation of p56lck when it is juxtaposed to inappropriate substrate could result in the generation of negative 

signals.
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Following TCR activation, tyrosine phosphorylation of cytoplasmic T cell proteins is a 

necessary prerequisite for induction of IL-2 synthesis [212,292]. Using an activation system 

employing immobilised cross-linked anti-a[3TCR mAb, an increase in the tyrosine 

phosphorylation of a 36-38 kDa protein band over time was observed. Additionally, in cells 

which had been treated with 0X38 mAb, in vitro or in vivo, phosphorylation of this protein 

was inhibited in this experimental system. Other published studies using Thl T cell clones 

[285] or naive LNC [286] have also shown TCR activation-dependent phosphorylation of a 

38 and a 75 kDa T cell protein. Interestingly, in these studies when the Thl clones were 

rendered anergic in vitro or when the normal T cells were made unresponsive to 

superantigens using an in vivo anergy protocol, there was a reduction in the phosphorylation 

of these two proteins following T cell activation. In addition, these studies found that the 

alteration in protein phosphorylation was associated with a concomitant defect in both IL-2 

production and utilisation, suggesting that the two proteins may, in part, be involved in IL-2 

production and/or up-regulation. The defect in tyrosine phosphorylation observed in the 

present studies correlated with a functional defect in CD4 T cells, as demonstrated by 

decreased T cell proliferation in vitro and by lack of cardiac allograft rejection in vivo (when 

transplantation was delayed to day 4 following last 0X38 mAb treatment). Furthermore, the 

anti-CD4 treated T cells displayed additional functional defects consistent with abnormalities 

in IL-2 production. In preliminary experiments, when in vitro or in vivo anti-CD4 treated T 

cells were analysed for TCR activation-dependent calcium mobilisation, the anti-CD4 treated 

T cells did not, in contrast to normal cells, release intracellular calcium freely into the 

cytoplasm.

Active p21ras has been shown to be important in the induction of the IL-2 gene in T cells 

[278,279]. Moreover, as mentioned earlier, the PKC independent p21ras activating pathway
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appears to involve the participation o f a 36-38 kDa protein which phosphorylates following 

TCR activation [272] but which fails to phosphorylate in anergic T cells. It is reasonable to 

suggest that the 36-38 kDa protein which has been the focus of attention in this chapter, may 

be a p21ras activating protein or an early down stream substrate of active p21ras which is 

necessary for normal IL-2 production. Further characterisation of the 36-38 kDa protein is 

necessary to elucidate the relationship between this protein and p21ras. To provide evidence 

for association of the 36-38 kDa protein with p21ras, immunoprecipitation- 

immunochemoluminescence experiments using antibodies raised against these proteins would 

be helpful. Additionally, once the 36-38 kDa protein has been further characterised, 

examination of tyrosine phosphorylation and IL-2 production using CD4 T cells from 36-38 

kDa KO animals would provide further insight into the role and relationship between the 36- 

38 kDa protein with p21ras and with IL-2 production.

One possible mechanism by which anti-CD4 mAb therapy may result in altered intracellular 

signalling events is by modulation of p56lck from the cytoplasmic tail of the CD4 molecule. 

Anti-CD4 mAb treatment has been shown to lead to a reduction in the CD4 bound p56lck 

fraction in Herpes saimiri virus immortalised human T cell clones and to cause a concomitant 

reduction in total p56lck kinase activity [282]. In another study using murine lymph node T 

cells, dissociation of CD4 from p56,ck after anti-CD4 mAb pre-treatment was also noted 

[284]. However the latter study, when comparing anti-CD4 treated and untreated control T 

cells following anti-a(3TCR stimulation, failed to demonstrate any detectable differences in

' Vi  # 9 9
the early tyrosine phosphorylation pattern or Ca mobilisation. A ten fold inhibition of 

D e o x y r ib o n u c l e ic  A cid  (DNA) synthesis in the anti-CD4 treated group was, however 

noted. Both of the above studies suggested that the alteration in T cell activation observed 

after anti-CD4 mAb, was a consequence of dissociation of p56lck from the CD4 molecule,
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thus removing effective kinase activity from the TCR and other downstream targets. 

However, not all studies using protocols which demonstrate altered intracellular signalling 

have been able to show dissociation of p56lck from CD4. For example, a study which 

examined the effect of humanised mouse anti-CD4 antibody on resting and activated human 

CD4 T cells, found qualitative differences between the mAb treated and untreated T cells and 

showed partial modulation of the CD4 molecule associated with reduced tyrosine 

phosphorylation of cytoplasmic proteins following anti-CD4 antibody pre-treatment. 

However, when remaining CD4 molecules were isolated by immunoprecipitation, this study 

found no measurable dissociation of p56lck from CD4 [283]. Interestingly, treatment of CD4 

T cells with phorbol esters and anti-CD3 antibodies [293] and ligation of CD2 in Jurkat cells 

[294] have been shown to provoke dissociation of p56lck from CD4. Treatment with phorbol 

esters, mitogenic lectins, and stimulation via the antigen receptor complex also causes marked 

phosphorylation of p56lck at N-terminal serine residues and this is associated with reduced 

autophosphorylation and p56lck activity [295]. It is also associated with retardation in the 

electrophoretic mobility in SDS-PAGE, increasing the apparent molecular weight of the 

molecule to 59-60 kDa and is likely to change the interactions of p56lck with a subset of its 

regulators, including CD4 itself [296,297], Both of the studies discussed above, showing 

dissociation of p56lck from CD4 following anti-CD4 antibody treatment, found that the p56lck 

which was lost from the pelleted immunoprecipitate was the heavier of a protein doublet 

fraction and the possibility remains that the altered signal transduction and observed 

dissociation may have been due to serine phosphorylation provoked by the anti-CD4 pre­

treatment or some other factor unique to the individual experimental design in these studies. 

In the experiments described in this chapter, immunoprecipitation using non-activated 

immunopurified CD4+ve LNCs treated with anti-CD4, administered either in vivo or in vitro, 

failed to demonstrate appreciable dissociation of p56lck from CD4. A prerequisite for p56lck
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dissociation from CD4 may be modulation of CD4 with subsequent degradation of one or 

both components in the lysosomal compartment of the cell [298]. As 0X38 mAb causes little 

in the way of CD4 modulation, perhaps this pathway of p56lck -  CD4 dissociation is not 

utilised in this experimental model.

Exactly how 0X38 pre-treatment leads to altered tyrosine phosphorylation of cytoplasmic 

proteins in the studies described remains unsolved. The anti-CD4 antibody used in the 

experiments described were all bivalent. One can envisage that potential sequestering of 

p56lck via CD4, away from the natural downstream targets could be responsible for the 

observed results. Further experiments utilising monovalent Fab fragments (which do not lead 

to aggregation of CD4) may help to elucidate this point. Another possible mechanism for the 

observed alteration in intracellular signalling could be that, as a result of 0X38 binding to 

CD4, that dephosphorylation or autophosphorylation of p56lck may occur. There were no 

demonstrable changes in tyrosine phosphorylation as a result of CD4 antibody binding 

observed in the present experimental, but further studies looking specifically phosphorylation 

and dephosphorylation at other amino acid residues such as serine moieties would be helpful.
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4.4 KEY POINTS

• The pre-operative anti-CD4 treatment protocol employed in this study results in a 

‘window of opportunity’ for tolerance induction which is not dependent on the 

physical presence of residual antibody: Allograft survival occurs when animals are 

transplanted early after antibody has been cleared from the cell-surface and serum.

• Activation of CD4 T cells using immobilised anti-TCR antibody results in tyrosine 

phosphorylation of a 36-38 kDa protein band which is inhibited by in vitro 0X38  

treatment.

• Cells taken from animals treated with anti-CD4 in vivo during the “window of 

opportunity” for tolerance induction, also display defective TCR activation induced 

tyrosine phosphorylation of the 36-38 kDa protein band.

• Neither in vitro or in vivo anti-CD4 treatment results in significant dissociation of 

p56lck from CD4 molecules.

• Both in vitro and in vivo anti-CD4 treatment affects normal intracellular calcium 

release from CD4 T cells.
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5. The role of the thymus in anti-CD4 monoclonal antibody induced

tolerance

5.1 INTRODUCTION

The role of the thymus in transplantation rejection is well recognised as congenitally athymic 

T cell deficient animals readily accept a variety of allografts, with no evidence of rejection. 

The importance of the thymus in transplantation tolerance is less well understood. Recently, 

there has been much interest in the concept of inducing transplantation tolerance by injection 

of donor alloantigens directly into the thymus gland. A number of experimental studies using 

adult rats [299,300,301,302,303] have shown convincingly that intrathymic injection of donor 

antigen, in most cases together with some form of systemic immunosuppression, can induce 

tolerance to an organ allograft, underscoring the potential importance of the thymus gland as a 

site for tolerance induction. It should be emphasised that it is far form clear, however, how 

introduction of alloantigen directly into the thymic microenvironment in such studies 

promotes the development of transplant tolerance.

Interestingly, the role of the thymus in transplantation tolerance extends beyond the direct 

inoculation of antigen into the thymic gland itself and the thymus gland has been found to be 

important in several models employing different strategies to induce transplantation tolerance 

in both rodents and larger animals. Of particular relevance to the studies described in this 

thesis, Herbert and Roser [160], using 0X38 mAb pre-treatment in ACI (R Tla) recipient rats 

receiving Lewis (RT11) cardiac allografts found that thymectomy of the recipient animal, 

impaired the induction of tolerance in this experimental model. David Sachs and his 

collegues in Boston U.S.A. [304] using inbred miniature swine in which transplant tolerance 

was induced by treatment of recipient animals with a 12 day course of Cyclosporin A, showed
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that thymectomy prior to transplantation (performed 21 and 42 days before transplant) 

abrogated tolerance induction to Class I MHC disparate renal allografts. Interestingly, if 

thymectomy was performed following renal transplantation it did not affect induction or 

maintenance of tolerance in this model.

The thymus is able, in principle, to directly affect the balance between allograft rejection and 

tolerance, by exporting new T cells to the periphery or by re-education of mature T cells 

which circulate within the medulla of the gland. It is likely that the local thymic environment 

which newly exported or re-educated T cells encounter strongly influences the subsequent 

response of these T cells to alloantigen. In a number of elegant experiments using euthymic 

PVG (RT1C) and congenitally athymic T cell deficient PVG (RT1C) nude rats, Bell and his 

group in Manchester U.K. have studied in detail the maturation of re-circulating single 

positive (CD4+ve CD8’ve apTCR+ve) thymocytes, naive and memory like T cells. 

Interestingly, they have shown that RTE (CD4+ve CD8‘ve cx(3TCR+ve CD45RC've Thy-l+ve) 

when injected into euthymic animals, rapidly lose their Thy-1 antigen and express the 

CD45RC+ve high molecular weight isoform by day 7 [305]. Furthermore, presumably after 

antigen contact, by day 14 up to 30% of the transferred cells were found to have reverted back 

to the CD45RC‘ve low molecular weight isoform, showing that expression of the CD45RC 

isoform in vivo in normal animals is dynamic and correlates to the isotype switching of these 

cells observed in vitro [306]. Additionally, when athymic PVG nude animals are 

reconstituted with CD45RC+ve single positive CD4 T cells taken from naive PVG animals, 

they show complete restoration of peripheral T cell function with normal GVH responses, 

allograft rejection and thymus-dependent antibody responses [236]. Conversely, adoptive 

transfer of the CD45RC've Thy-l've subset does not confer normal T cell responses in nude 

recipients. However, if donor PVG (RT1°) animals are given a DA blood transfusion prior to
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cell harvesting, it is the CD45RC've Thy-l‘ve and not CD45RC+ve subset which is responsible 

for initiating DA allograft rejection in the PVG nude rat. Interestingly, however, if PVG nude 

rats are given a DA allogeneic blood transfusion prior to transplantation and cell transfer, then 

the CD45RC"ve subset is prevented from regaining an alloaggressive capacity in these cell 

transfer experiments. Taken together, this data is consistent with the idea that isotypic 

switching of the leukocyte common CD45RC antigen (probably in both RTE and peripheral 

single positive CD4 T cells) reflects a major functional re-programming of CD4 T cells and 

significantly affects the ability of the T cell to respond to antigen.

In the work presented in this section of the thesis, the role of the thymus gland in anti-CD4

mAb induced tolerance induction was further investigated and some of the possible
¥

mechanisms whereby the thymus may contribute to tolerance were explored. Adult 

thymectomy was performed prior to transplanting DA recipients with Lewis cardiac 

allografts, and the effect of thymectomy on anti-CD4 induced tolerance was examined. The 

ability of prior thymectomy to abrogate the capacity of T cells from tolerant animals to 

adoptively transfer tolerance into secondary recipient animals with unmodified primary Lewis 

cardiac allografts was also explored. After examining the residual CD4 T cell subset 

population following anti-CD4 mAb treatment, as discussed earlier in Chapter 3, the role of 

RTE cells was assessed. RTE were found to be preferentially spared from the depleting 

effects of 0X38 mAb treatment. A possible role for RTE in linking the induction and 

maintenance of tolerance in this experimental model was, therefore, sought by a series of 

adoptive transfer experiments in which thymectomised animals were reconstituted with single 

positive (CD4+ve a(3TCR+ve) thymocytes. Finally, because of the observation that RTE were 

preferentially spared following anti-CD4 mAb treatment in this model, and because studies 

using murine thymocytes has found that such cells secrete a mixed pattern of cytokines when
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stimulated in vitro [307], the ability of 0X38 mAb to inhibit the proliferation and alter the 

cytokine mRNA profile of single positive CD4+ve a(3TCR+ve thymocytes, following in vitro 

activation using immobilised anti-apTCR mAb was examined.

5.2 RESULTS

5.2.1 Adult thymectomy prevents the ability o f  anti-CD4 mAb to induce tolerance to cardiac 

allografts

The effect of adult thymectomy on the ability of 0X38 mAb to induce tolerance to Lewis 

cardiac allografts in DA rats was examined by thymectomising DA animals and then 

transplanting them with a Lewis heart more than 40 days later, under the cover of anti-CD4 

(0X38) therapy. As expected from the studies of Herbert and Roser [160], adult thymectomy 

prevented the induction of transplant tolerance in this experimental model. All, except one of 

eight thymectomised animals, rejected their heart allografts and the kinetics of rejection were 

similar to those observed for control untreated animals. Table 5.1 below summarises the graft 

survival data of these experiments.
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Table 5.1

Group Pre-Transplant Treatm ent mAb* n Graft Survival (days) MST (days)

1 None 0X21 7 8 ,9 ,10x2 ,11 ,14x2  10

2 None 0X38 7 8 ,>100x6 >100

3 Thymectomy >-40  days (before Transplant) 0X38 8 7 x 2,8,11 x 3,23,>100 11

*mAb was administered by IP injection at a dose o f lOmg/kg (day -3 ) , and 2m g/kg (days -2 , -1 ,  0). DA 
recipient animals received a Lewis cardiac allograft on day 0.

The data for first two experimental groups in Table 5.1, showing the heart allograft survival 

times of euthymic animals treated with either 0X38 or control 0X21 mAb, have been 

described earlier and have only been included here for comparison. The MST in group 3 

(Thymectomised animals) receiving 0X38 mAb was only 11 days. The early graft rejection 

observed in this experimental group implies that either the thymus gland itself, or a recently 

emerged product of the thymus have an important role in the induction phase of anti-CD4 

mAb induced tolerance in this particular model.

5.2.2 Adult thymectomy also abrogates the ability to transfer tolerance using splenocytes 

from tolerant donor animals 

Recent studies have demonstrated that in some rodent transplantation models, transplant 

tolerance can be adoptively transferred from long-standing tolerant animals into new 

recipients bearing primary allografts [179]. Typically, such studies transfer spleen cell from 

the tolerant animal into naive syngeneic secondary recipients at the time of transplantation. 

To determine whether T cell suppression could be observed in the present model of anti-CD4
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induced tolerance, 2 x 108 splenocytes from DA animals bearing long-term Lewis cardiac 

allografts after 0X38 treatment, were adoptively transferred into secondary unmodified DA 

recipients. The secondary animals were then challenged with a Lewis heart allograft the day 

following lymphocyte transfer. Table 5.2 (Group 1) shows the graft survival data following 

such an experiment. Four of six euthymic recipient animals receiving syngeneic splenocytes 

from long-term tolerant donors showed long-term graft survival and the MST for the group 

was greater than 100 days. Cells from tolerant 0X38 mAb treated animals which had only 

had their heart allografts in situ for 21 days were, however, unable to induce tolerance when 

transferred to secondary recipients, as shown in Table 5.2 (Group 2). All 6 animals receiving 

spleen cells from 0X38 mAb treated donors 21 days after heart transplant rejected their grafts 

with a MST of only 10 days. Thus, the ability of spleen cells from tolerant animals to transfer 

tolerance to secondary syngeneic recipients is critically dependent on the length of time the 

tolerant animal has had its heart graft in situ. One interpretation of this result is that the 

cardiac allograft itself promotes the emergence of a regulatory T cell population and the 

development of such regulatory T cells therefore increases with time.

Since the thymus appears important in the induction phase of 0X38 mAb induced transplant 

tolerance, it was of interest to determine whether the presence of the thymus gland facilitated 

the ability of adoptively transferred “tolerant lymphocytes” to induce tolerance in the 

secondary recipients. To address this question, recipient DA animals were thymectomised 

more than 40 days prior to their use as secondary recipients of adoptively transferred T cells. 

Splenocytes were then obtained from long-term (greater than 100 days) 0X38 treated DA 

animals and transferred into the thymectomised secondary recipients. The secondary DA 

recipients were then challenged, the following day, with a Lewis cardiac allograft. 

Intriguingly, adult thymectomy was found to abrogate the ability to transfer tolerance in this
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model. Table 5.2 (Group 3) shows the graft survival data for the thymectomised recipients 

receiving cells from tolerant donors and it can be seen that they rejected their cardiac 

allografts with a MST of only 9.5 days.

Table 5.2.

Group Thym ectomy Splenocytes Transferred* n Graft Survival (days) MST (days)

1 None 2 x 108 Cells (Day >100) 6 11,13,>100x4 >100

2 None 2 x 108 Cells (Day 21) 6 10x5,11 10

3 > -40  days 2 x 108 Cells (Day >100) 6 8,9x2,10,11,12 9.5

*Splenocytes were obtained from 0 X 3 8  treated DA rats bearing a long-standing (>100 or 21 days) Lewis 
cardiac allograft. Secondary syngeneic recipient animals were transplanted with Lewis cardiac allografts 
the day after adoptive transfer o f spleen cells.

The above data demonstrates that the thymus gland plays a role in the induction phase of 

0X38 mAb induced transplant tolerance, and in addition, that the thymus gland (or a product 

thereof) facilitates the ability of tolerant lymphocytes to induce tolerance when adoptively 

transferred into syngeneic recipients of an organ allograft.

5.2.3 Effect o f  0X38 mAb on T cell depletion in thymectomised recipients 

In view of the observation that thymectomy abrogated 0X38 mAb induced transplant 

tolerance, it was of interest to determine the effect of 0X38 mAb treatment on the peripheral 

T cell pool of adult thymectomised DA rats. Euthymic and adult thymectomised DA rats 

were treated with 0X38 mAb, using the standard in vivo protocol, and sacrificed following 

treatment and/or transplant. As a first step to investigate the possible mechanism underlying 

the abrogation of tolerance induction by thymectomy, residual LNC and PBL following 0X38
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treatment were analysed by flow cytometry. PBL and LNC from euthymic and 

thymectomised untreated controls, and animals sacrificed 7 days following the standard in 

vivo 0X38 treatment protocol were examined. To assess the role of exposure to alloantigen 

in these groups of animals, LNC and PBL were also obtained from 0X38 treated euthymic 

and thymectomised animals which had been transplanted with a Lewis cardiac allograft 7 

days earlier. As a first step, the cells which stained double positive for CD4 and aPTCR were 

analysed and the results are depicted in Figure 5.1. It can be seen that thymectomy alone 

reduced the percentage of CD4+ve T cells in both PBL and LNC from 53% and 60% 

respectively in euthymic control animals to 8% and 53% respectively in thymectomised 

animals. Interestingly, the presence of a heart allograft did not affect the relative depletion of 

CD4 T cells observed in either euthymic or thymectomised animals 7 days following 0X38 

treatment.
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Figure 5.1 Depletion of CD4 T cells following 0X38 treatm ent and/or transplant in 

euthymic and thymectomised animals
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represented by filled columns (C) whereas the Day 7 0X38 treated and transplanted (7Tx) and Day 7 

0X38 treated (7) animals are represented by open columns. Left panels (A) and (C) show results in 

euthymic animals whereas the right panels (B) and (D) show results in thymectomised animals.

5.2.3.1 The relative depletion o fC D 4 5 R C +ve (M RC OX22hlgh) CD4 T cell subset, is sim ilar in 

euthymic and thym ectom ised animals fo llow ing  0 X 3 8  treatment

To further analyse the effect o f  thymectomy on animals treated with 0X 38  mAb, the CD4 T 

cell subsets were analysed by flow cytometry using MRC 0 X 22  to stain the high molecular 

weight isoform o f  the leukocyte common antigen (CD45RC). To allow a direct comparison, 

both euthymic and thymectomised animals were used in each o f  the analysis performed.
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Figure 5.2 shows that untreated thymectomised animals have substantially lower levels o f  

W 3/25+ve OX22hlgh T cells in PBL than euthymic control animals. The figure also shows that 

the reduction in the W3/25+ve OX22hlgh T cell fraction in the PBL and LNC following pre­

treatment o f  euthymic animals with 0 X 3 8  mAb is mirrored by a similar reduction o f  this cell 

population in thymectomised animals.

Figure 5.2 Depletion of the CD45RC ' 1 CD4 T cell subset following 0X 38 treatm ent 

and/or transplant in euthymic and thymectomised animals
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animals are represented by filled columns (C) whereas the Day 7 0X 38 treated and transplanted (7Tx) 

and Day 7 0X 38 treated (7) animals are represented by open columns. Left panels (A) and (C) show 

results in euthymic animals whereas the right panels (B) and (D) show results in adult thymectomised 

rats. Upper panels (A) and (B) are from PBL and lower panels (C) and (D) are LNCs.
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5.23.2 There is no sparing o f the CD4+ve OX22low T cell fraction following anti-CD4 mAb 

treatment in thymectomised animals 

Next, the reciprocal CD4 T cell subset, namely CD4 cells displaying the low molecular 

weight isoform of the leukocyte common antigen, OX22low, were analysed by flow cytometry 

and the results are depicted in Figure 5.3. This figure shows that untreated thymectomised 

animals have far fewer CD4+ve OX22,0W T cells in their PBL than do euthymic animals (3% 

vs. 21% respectively). The data presented in this figure also confirms the previously noted 

observation (Chapter 3 Figure 3.8) that 0X38 treatment does not appear to cause significant 

depletion of the CD4+ve OX22low T cell subset in euthymic animals. In contrast to euthymic 

animals, however, there was no sparing of the CD4+ve OX22low T cells subset in 

thymectomised animals. In both PBL or LNC of thymectomised animals, there was greater 

than 50% depletion of CD4+ve OX22low T cells following 0X38 treatment. To confirm that 

complete thymectomy had been undertaken, and to ascertain the proportion of RTE cells in 

this experimental model, cells were also stained with the antibody to Thy-1 antigen [88], a 

transient marker of naive RTE [305] and of thymocytes in the rat. Interestingly, when the 

CD4+ve OX22low T cells were counter stained with mAb to Thy-1, it could be seen that the 

majority of such cells in euthymic animals were Thy-1 positive (i.e. residual cells were mostly 

RTE). These cells could not, therefore, have been OX22hlgh cells which had reverted back to 

the OX22low phenotype. Cells obtained from the thymectomised animals showed no staining 

with anti-Thy-1 mAb, thereby confirming the completeness of thymectomy in these animals.
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Figure 5.3 Depletion of the CD45RC ' 1 CD4 T cell subset following 0X 38 mAb 

treatm ent and/or transplant in euthymic and thymectomised animals
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in each group. The closed columns represent the percentage of W3/25 ve OX221"" cells whereas the open 

columns represent the proportion of these which are also Thy-1 ve. Untreated control animals are 

represented as (C) whereas the Day 7 0X38 treated and transplanted and Day 7 0X 38 treated only 

animals are represented as (7Tx) and (7) respectively. Left panels (A) and (C) show results for euthymic 

animals whereas the right panels (B) and (D) show results for adult thymectomised rats. Upper panels 

(A) and (B) are PBL and lower panels (C) and (D) are LNCs.

5.2.4 The tim ing o f  thymectomy influences tolerance induction using 0 X 5 8  mAb 

Because it takes several days for RTE to become functionally mature and lose their 

expression o f  the Thy-1 antigen [305], the timing o f  thymectomy relative to heart 

transplantation was altered to test, indirectly, whether residual RTE were able, in the absence
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of the thymus gland itself, to facilitate induction of transplant tolerance with 0X38 mAb. 

Thymectomy was performed on days minus 3 and plus 7 relative to cardiac transplantation. 

All animals received 0X38 mAb according to the standard in vivo treatment protocol. The 

results of these experiments are displayed in Table 5.3.

Table 5.3.

Group Timing o f Thym ectom y (relative to Tx) mAb* n Graft Survival (days) MST (days)

1 None 0X 38 7 8 > 1 0 0 x 6 >100

2 > -40 days 0X 38 8 7x2 , 8 , 11  x 3,23,>100 11

3 day -3 0X 38 6 28,>100 x 5 >100

4 day +7 0 X 38 6 > 1 0 0 x 6 >100

*mAb was administered by IP injection at lOmg/kg (day -3 ) , and 2mg/kg (days -2 ,  -1 ,  0). DA recipient 
animals received a Lewis cardiac allograft on day 0.

For comparison, groups 1 and 2 which have already been described earlier (Table 5.1) have 

been included in the Table 5.3. It can be seen from the table that delaying thymectomy to the 

peri-operative period, (day minus 3 and day plus 7 relative to transplant), confers protection 

against the allograft rejection observed when anti-CD4 mAb was given to animals which had 

been thymectomised >40 days before transplantation. These results suggest a role for naive, 

RTE in anti-CD4 induced tolerance induction and indicate that the presence of an intact 

thymus gland is not, therefore, and essential requirement for 0X38 mAb induced transplant 

tolerance.
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5.2.5 Purification o f CD4 single positive thymocytes using negative immuno-magnetic 

beading was monitored by flow  cytometry

Following the demonstration that peri-operative thymectomy in anti-CD4 treated animals did 

not abrogate tolerance induction, and in view of the large numbers of naive thymocytes found 

in the peripheral blood and lymph nodes of 0X38 treated rats, it was decided to determine the 

role of single positive otpTCR+ve CD4+ve thymocytes in tolerance induction, using a series of 

reconstitution experiments and in vitro cell assays.

For these experiments, whole thymus glands were obtained from 6-8 week old adult DA 

donors and thymocytes prepared as described in the Materials and Methods Section 2.10.1. 

Briefly, single positive apTCR+ve CD4+ve thymocytes were fractionated by negative selection 

using anti-CD8 (0X8) mAb and magnetic conjugated Goat-anti-Mouse beads. The purity of 

the fractionated thymocytes was assessed by flow cytometry and the results are depicted in 

Figures 5.4 and 5.5.

The top panel of Figure 5.4 shows the Logio signal for Rabbit-anti-Mouse-FITC (RaMo- 

FITC) verses cell Count, after the addition of 0X8, before and after cell separation using 

magnetic beads. The lower two panels of Figure 5.4 show typical double label flow 

cytometric analysis using anti-CD4 (W3/25-FITC) and anti-CD8 (OX8-PE) antibodies, before 

and after the cell separation. It can be seen that 93% of unseparated rat thymocytes stain 

double positive for CD4 and CD8 (Figure 5.4 panel B). After negative selection, 92% of the 

separated cells express CD4 and only 1% are CD8 positive (Figure 5.4 panel C). It can also 

be seen from Figure 5.4 (panel A), that following cell separation, no cells stained positive 

with RaMo-antibody. This suggests that most 0X8 positive cells have been removed during 

the cell separation process.
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Figure 5.5, the format of which is similar to Figure 5.4, shows typical double label flow 

cytometric profiles of thymocytes before and after immunomagnetic cell separation, except 

that antibodies directed against the rat apTCR (R73) and CD4 (W3/25) and CD8 (0X8) 

molecules were used to stain the separated cells. These profiles confirm that before 

enrichment, the majority of thymocytes wereapTCR've CD4+ve CD8+ve (double positive-TCR 

negative) and following enrichment were 84% single positive apTCR+ve CD4+ve. The 

remaining cell fractions comprised 2-3% single positive apTCR+ve CD8+ve and 8-13% 

W3/25've R73’ve (double negative) cells. These double negative cells were not characterised 

and may represent thymic epithelial and or stromal cells.
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Figure 5.4 Single and two colour flow cytometric analysis of thymocytes before and 

after 0X 8 mAb depletion
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Upper panel (A) shows the single colour fluorescence of thymocytes using FITC-conjugated rabbit-anti- 

mouse after 0 X 8  treatment before and after magnetic cell separation. Single colour fluorescent analysis 

results expressed as count on the y-axis and Log10 of the FITC signal on the x-axis. Middle panel (B) and 

lower panel (C) shows two colour fluorescent analysis of thymocytes using FITC-W3/25 and PE-OX8 

before and after magnetic cell separation respectively. Two colour fluorescent analysis results expressed 

as Log,0 of the FITC signal on the y-axis and Log,0 of the PE signal on the x-axis.
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Figure 5.5 Flow cytometry of thymocytes before and after cell separation using 

negative selection immuno-magnetic beading
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Two colour fluorescent analysis with results expressed as Log10 of the FITC signal on the y-axis and Log|0 

of the PE signal on the x-axis. Left panels (A) and (C) represent analysis of thymocytes after staining 

using FITC-conjugated anti-TCR (y-axis) and PE-conjugated anti-CD8 (x-axis). Right panels (B) and (D) 

depict fluorescent analysis using FITC-conjugated anti-TCR (y-axis) and PE-conjugated anti-CD4 (x- 

axis). Upper panels (A) and (B) shows results when staining before magnetic cell separation whereas the 

lower panels (C) and (D) show the staining after thymocyte separation.

5 .2 .5 .1 Reconstitution o f  adult thym ectom ised 0 X 3 8  treated animals with CD4 single  

positive thymocytes results in prolongation o f  cardiac allograft survival

Single positive CD4 thymocytes purified as described above, were utilised for adoptive 

transfer studies to reconstitute thymectomised anti-CD4 treated DA recipients receiving a
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Lewis cardiac allograft. The CD4 thymocytes were also used in anti-apTCR activation 

assays in vitro, to determine their cytokine repertoire after activation. Table 5.4 shows the 

results obtained after reconstitution of adult thymectomised (>40 days before transplant) anti- 

CD4 treated rats which were given 2-3 x 107 single positive apTCR+ve CD4+ve enriched 

thymocytes on day 2 and day 4 following heart transplantation. The CD4 reconstituted 

thymectomised animals (Group 3), showed prolongation of cardiac allografts survival, when 

compared to the thymectomised but non-reconstituted anti-CD4 treated animals (Group 2). 

The MST of these two groups was 81 and 11 days respectively.

Table 5.4.

Group Thymectom y SP Thym ocytes mAb* n Graft Survival (days) MST (days)

1 None None 0X38 7 8 ,>100x6 >100

2 >-40 days None 0X38 8 7 x 2,8,11 x 3,23,>100 11

3 >-40  days 2-3 x l O7 0X38 6 18,62 x 2,>100 x 3 81

*mAb was administered by IP injection at a dose o f lOmg/kg (day -3 ) , and 2m g/kg (days -2 ,  -1 ,  0). DA 
recipient animals received a Lewis cardiac allograft on day 0. Single positive thym ocytes were given by 
IV injection on days plus 2 and plus 4 relative to transplant.

5.2.5.2 Thymocytes appear resistant to inhibition by 0X38 treatment in vitro and display a 

ThO like cytokine message pattern when stimulated using immobilised anti-TCR mAb

The above data suggests that the absence, in thymectomised animals, of RTE may abrogate 

the ability of 0X38 anti-CD4 mAb to promote transplantation tolerance. The evidence for 

this comes from the observation that in euthymic animals given 0X38 treatment, these cells 

appear to be preferentially spared in contrast to mature CD4+ve T cells, and from 

reconstitution experiments where, in thymectomised recipients, adoptively transferred CD4
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single positive thymocytes confer tolerance. To investigate the effect of 0X38 on CD4 

thymocyte function, the ability of the mAb to inhibit proliferation of CD4+ve ocpTCR+ve 

enriched thymocytes in vitro in response to activation using immobilised anti-TCR was 

assessed. The cytokine repertoire of the thymocytes in response to TCR stimulation in the 

presence and absence of 0X38 mAb was also determined.

Figure 5.6 (upper panel) shows the incorporation of 3H-Thymidine by CD4 thymocytes after 

24 and 48 hrs of culture in the presence of bound anti-apTCR mAb. For comparison, the 

proliferation of CD4 LNC (lower panel), which has been described earlier (Chapter 4 Figure 

4.4) is also shown. In the experiment illustrated, CD4 thymocytes and LNC were treated, 

prior to activation with PBS (Control), 0X38 mAb or 0X38 mAb which was cross linked by 

RaMo-antibody. The cells were added to culture wells in which anti-apTCR mAb (R73) had 

been bound. Cells were then pulsed with 3H-Thymidine, harvested onto microtitration filter 

paper and 3H-Thymidine uptake determined by counting samples on a beta liquid scintillation 

counter. It can be seen from Figure 5.6 that single positive LNCs are far more susceptible to 

inhibition by 0X38 mAb than are single positive CD4 thymocytes. Moreover, this difference 

between CD4 thymocytes and LNC is even more pronounced if the 0X38 mAb was cross- 

linked using RaMo-antibody.
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Figure 5.6 Inhibition of anti-TCR induced proliferation of single positive CD4+Nt 

TCR+' e thymocytes and LNC by 0X38 mAb
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Immunopurified single positive CD4+ve aP T C R +ve thymocytes (upper panel) or CD4 ve T cells (lower 

panel) were treated in vitro using PBS (Control, lightly fdled columns), 0X 38 (0X38, open columns), and 

0X 38 which was cross-linked using Rabbit anti-Mouse antibody (OX38-XL, darker filled columns) and 

were activated using immobilised anti-a(5TCR mAb. Cell cultures were pulsed with 3H-Thymidine at 24 

and 48 hrs, harvested 18 hrs later onto microtitration filter paper, and analysed using a Beta Liquid 

Scintillation counter. The y-axis represents the cpm whereas the x-axis shows the time in hours when the 

cells were pulsed with 3H-Thymidine.

Following TCR activation, thymocyte cell pellets were analysed for cytokine message by RT- 

PCR. Briefly, tissue culture plates were centrifuged at 200 x g for 8 Min and supernatants
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removed so that mRNA could be harvested directly from the cell pellets. Each cell pellet was 

lysed as described in the Materials and Methods (Section 2.17.2) and mRNA extracted using 

Dynabead Oligo (dT)2 5  (DYNAL A.S. Oslo, Norway) direct mRNA kit. Following cDNA 

transcription of mRNA, RT-PCR was performed using primers specific for rat IL-2, INF-y, 

IL-4 and IL-10 cytokines. Figure 5.7 shows Polaroid photographic images obtained after 

stopping each RT-PCR reaction at five different cycle numbers and analysing the RT-PCR 

products by electrophoresis on 1% agarose gels and staining with Ethidium Bromide. The 

RT-PCR results show that anti-TCR activated thymocytes express high levels of both Thl 

(IL-2 and INF-y) and Th2 (IL-4 and IL-10) cytokines and that pre-treatment with 0X38 did 

not preferentially skew this pattern towards either a dominant Thl or Th2 response, 

irrespective of whether the 0X38 antibody was cross-linked or not. The results also show 

that, in keeping with the modest inhibiting effect of 0X38 on thymocyte proliferation, there 

was a small reduction in the cytokine message.
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Figure 5.7 Effect of 0X38 mAb pre-treatm ent on thymocyte cytokine message as 

determined by RT-PCR

Control 0X38 OX38-XL

24 27 30 33 36 24 27 30 33 36 24 27 30 33 36 cycle no.

29 32 35 38 41 29 32 35 38 41 29 32 35 38 41 cycle no.

< ^ 3 7 7  bp

34 37 40 43 46 34 37 40 43 46 34 37 40 43 46 cycle no.

^ - 3 7 2  bp

Immunopurified single positive CD4ne ocPTCR+ve thymocytes pre treated with PBS (Control), 0X38 

(0X38) and 0X38 which was cross-linked using Rabbit anti-IMouse antibody (OX38-XL), were activated 

using immobilised anti-aPTCR antibody. RNA was extracted from the activated cell pellets and RT-PCR 

performed using IL-2, INF-y, IL-4, and IL-10 specific primers. The cycle number for each cytokine are 

show n on the top of each figure and the size in base pairs (bp) shown on the right.

5.3 DISCUSSION

The immuno-regulatory mechanisms involved in the development o f  transplantation tolerance 

can be divided into two phases, namely the induction phase and the maintenance phase o f  

tolerance. During the induction phase, the tolerant state appears somewhat precarious and
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depending on the model employed, can be ‘broken’ by, for example, the administration of 

exogenous cytokines [182,251,308], by depleting CD4+ve [250,308] T cells or by temporarily 

removing alloantigen from the host animal [308]. Conversely, the maintenance phase of 

tolerance appears to be far more robust and is usually resistant to attempts at reversal by 

exogenous administration o f IL-2 or even injection of alloreactive lymphocytes. It is only 

during the maintenance phase of transplant tolerance that cells from tolerant animals are able, 

on adoptive transfer, to confer tolerance to new unmodified recipients [250,308,309], 

(“Infectious Tolerance”).

In the model of anti-CD4 induced tolerance utilised in this thesis, the induction phase of 

transplant tolerance was shown to be thymus dependent; thymectomised animals rejected 

their allografts with a MST of 11 days. This finding was of interest because it underscored 

two important issues concerning the mechanism responsible for tolerance in this experimental 

model. First; because CD4 T cell depletion following 0X38 treatment was no greater in 

euthymic than in thymectomised animals, (which promptly reject their cardiac allografts in 

the presence of 0X38 mAb treatment), it demonstrates that CD4 T cell depletion is unlikely 

to be responsible for tolerance in this model although, of course, CD4 T cell depletion may 

play an important contributory role. Second; because thymectomised, anti-CD4 treated 

animals reject their allografts with kinetics similar to unmodified animals, it indicates that 

residual T cells following 0X38 treatment are sufficient in number and function to initiate 

graft rejection. The results described in this chapter of the thesis also suggest that induction 

of transplant tolerance by 0X38 mAb requires additional events over and above ‘negative 

signalling’ of CD4 T cells. If ‘negative signalling’ occurs, it is clearly reversible.

Following partial depletion of peripheral CD4 T cells with 0X38 mAb, CD4 T cell numbers 

gradually recover and by day 100 following transplantation, T cell numbers have returned to
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near normal. Similarly, in T cell reconstitution experiments using congenitally athymic 

animals, adoptive transfer of mature thoracic duct isolated CD4 and CD8 T cells leads, over 

time, to the expansion of the transferred cells to levels comparable to those found in euthymic 

animals [310]. This underscores the point that the peripheral T cell pool is under strict 

homeostatic regulation, although the mechanisms responsible are not clear.

Following 0X38 treatment, CD4 depletion was far more marked in thymectomised than in 

euthymic animals. It is possible that the pressure to re-expand the peripheral CD4 T cell pool 

following 0X38 induced depletion, imposed on thymectomised anti-CD4 treated animals, is 

sufficient to overcome the ‘inhibitory’ effect of anti-CD4 treatment on residual T cells. Such 

a mechanism is unlikely, however, if one takes into consideration the survival data obtained 

when comparing 0X38 treated animals which were thymectomised on days >minus 40, 

minus 3 or plus 7 relative to transplantation. Altering the timing of thymectomy resulted in 

allograft survival in the two groups of animals undergoing delayed thymectomy groups (days 

minus 3 and plus 7 relative to transplant), and these animals are presumably comparable to 

the early thymectomised (day >minus 40 relative to transplant) anti-CD4 treated animals in 

terms of the pressure on the residual peripheral CD4 T cell pool to proliferate. Although T 

cell depletion was not formally measured and compared in these 3 groups of transplanted 

recipients, it is unlikely that the CD4 depletion observed in the group which had thymectomy 

>40 days before transplant would be significantly different to the other 2 experimental 

groups, with the exception that Thy-l+ve RTE would be absent at the time of transplant in the 

former group.

The thymus has a key role in producing all the apT  cell lineages. During maturation these 

cells develop in a stepwise fashion and are not complete until the single positive CD4+ve or 

CD8+ve stages are reached [311]. The thymus is also critical in the selection of T cells prior to
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exportation to the periphery in that developing thymocytes with TCR which recognise self 

antigens are deleted. It is easy to imagine that following transplantation, foreign antigens 

derived from transplanted organs, either in the form of intact donor cells or antigenic donor 

MHC peptides, could become entrapped within the recipient’s thymus gland, and as both 

CD45RC+ve and RC‘ve CD4+ve T cell subsets are known to re-circulate through the thymus 

[312], re-education of these circulating cells in response to donor antigen could occur and 

result in depletion or anergy of donor reactive clones. This model of tolerance has been 

termed central tolerance and has been shown to be important in several experimental systems, 

including tolerance induction in the rat [313]. Cutler and Bell induced tolerance in euthymic 

neonatal rats by injection of fully allogeneic bone marrow cells from athymic T cell deficient 

nude rats. Adult recipient animals were found to be chimeric, expressing the MHC and 

allotype marker of the donor strain, and accepted donor-specific skin allografts. Thymocytes 

were also shown to be chimeric but failed to respond in vitro to alloantigens of the donor- 

specific haplotype. Additionally, adoptive transfer of peripheral T cells from the tolerant 

euthymic adult animals to T cell deficient nude recipients bearing skin allografts of the same 

donor-specific haplotype, failed to initiate graft rejection in the nude recipients. This data 

suggests that clonal deletion, induced centrally within the thymus was responsible. As 

discussed earlier, thymectomy performed 3 days prior to introduction of graft alloantigen, 

resulted in long-term acceptance of cardiac allografts in the 0X38 mAb treated animals. 

Thus, altering the timing of *thymectomy and removing the thymus gland immediately prior

* All thymectomies were performed using microscopic magnification as described in the Materials and Methods

Section 2.7 and as previously published [314]. After completion of these studies, all thymectomised animals 

were sacrificed and examined by post mortem and none were found to have evidence of incomplete thymectomy.
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to transplantation still allowed 0X38 mAb induced tolerance. Consequently, central 

tolerance as an exclusive mechanism responsible for thymus dependent 0X38 mAb induced 

tolerance in this model can be discounted.

The observation that 0X38 treated recipients bearing a cardiac allograft, displayed marked 

depletion of functionally mature CD4+ve T cells, combined with preferentially sparing of 

RTE, was somewhat surprising. However, preliminary experiments performed in this 

laboratory by Dr. E Bolton, using CD4 enriched LNCs, has found that following 0X38 

treatment, there is a high degree of apoptosis (data not shown). Similar experiments using 

CD4 enriched thymocytes may reveal that thymocytes are less susceptible to anti-CD4 

activation induced apoptosis thus explaining the apparent sparing of RTE in this experimental 

model.

Taken together, these findings suggest a possible role for thymocytes or RTE, as opposed to 

thymic tissue, in 0X38 mAb induced transplant tolerance. Reconstitution of thymectomised 

anti-CD4 treated animals with CD4+ve T cell enriched thymocytes could re-establish 

transplant tolerance. However, the adoptive transfer results must be viewed with some 

caution. Negative selection of CD4 single positive T thymocytes by immuno-magnetic 

negative beading resulted in cell purities of only 84% single positive CD4+ve apTCR+ve cells, 

as measured by flow cytometric analysis. The majority of the ‘contaminating’ cells were 

CD8, CD4 and apTCR negative and may therefore, represent thymic epithelial and/or APCs. 

These cells could theoretically form satellite thymic elements following transfer although this 

seems somewhat unlikely. However, for this reason, future reconstitution experiments should 

include depletion with anti-MHC Class II antibody to minimise this risk and help clarify the 

importance of RTE cells in this system.
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Why should RTE contribute to 0X38 induced transplantation tolerance in the rat? One 

possibility is that RTE may behave as regulatory, or suppressor T cells. It was shown in this 

chapter that purified CD4+ve thymocytes were less susceptible to inhibition by 0X38 mAb 

than CD4+ve lymphocytes when activated using immobilised anti-TCR antibody. 

Additionally, anti-CD4 treated and activated thymocytes were found to produce both Thl and 

Th2 cytokine message, as detected by RT-PCR. This result is comparable with murine 

studies, using single positive (CD4+ve) thymocytes, which were found to secrete a broader 

range of lymphokines than peripheral lymphocytes, including interleukins 4, 5, and 10 andy- 

interferon [307]. Anti-CD4 treated or untreated RTE cells could aggregate to form a T cell 

cluster and, by producing a mixture of cytokines, create a local micro environment which 

favours tolerance and which suppresses potentially alloreactive mature CD4 T cells, in a 

fashion analogous to that proposed by Waldmann’s group. These, workers suggest that naive 

ThO cells aggregate at a cell cluster and produce low levels of IL-2 with moderate secretion of 

IL-4 and INF-y. They propose that this particular combination of cytokines promotes anergy 

in the mature CD4 T cell population, and they have coined the phrase “infectious tolerance” 

to describe it [206].

Another explanation as to why RTE may be important in anti-CD4 induced tolerance, is that 

they (perhaps with or without alloreactive CD8 T cells which on their own are incapable of 

initiating graft rejection) may compete with alloreactive CD4 T cells for locally produced 

growth factors and or costimulatory molecules expressed on the cell-surface of APCs. 

Consequently, the CD4 T cells may be deprived of either appropriate pro-proliferative 

lymphokines and/or second signal costimulation. 0X38 treated alloreactive CD4 T cells 

which would otherwise have been capable of overcoming ‘negative signalling’ and initiating
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graft rejection, may then proceed to a tolerant state and in turn, result in a ‘feedback loop’, 

helping to perpetuate further tolerance induction in other emerging T cells.

The importance of the thymus and/or RTE in adoptive transfer studies where adoptively 

transferred thymectomised animals were found to reject their grafts with kinetics similar to 

control animals was not investigated further here. The role of the thymus in these 

experiments may be a result of any or all of the mechanisms discussed above working either 

independently or together. Further clarification of this complex system will require much 

more experimental work.
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5.4 KEY POINTS

• Adult thymectomy >40 days prior to 0X 38 mAb treatment negates the effectiveness 

of anti-CD4 to induce tolerance to a cardiac allograft and abolishes the ability to 

confer “infectious” tolerance in adoptive transfer studies.

• Thymectomised animals have less circulating CD4 lymphocytes but display the same 

magnitude of CD4 T cell depletion as euthymic treated animals following 0X38  

mAb treatment.

• In thymectomised anti-CD4 mAb treated animals, there is no evidence for 

preferential depletion of the CD45RC+ve T cell subset, and in this respect, they 

contrast with euthymic 0X 38 mAb treated rats.

• Thymectomy on the day of first anti-CD4 treatment (day minus 3 relative to 

transplant), and reconstitution of adult thymectomised anti-CD4 mAb treated 

animals with purified single positive CD4+ve thymocytes results in long-term 

allograft survival, suggesting a role for RTE and not the presence of intact thymic 

tissue in tolerance induction.

• Single positive CD4+ve thymocytes proliferate well in response to immobilised anti- 

TCR stimulation, irrespective of in vitro 0X38 pre-treatment, and produce both Thl 

and Th2 cytokines as measured by RT-PCR.
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6. Final Discussion

Despite many advances in immunosuppression therapy, such as the combined use of 

Azathioprine and Prednisolone in the 1960’s [315], the introduction of Cyclosporin A in the 

late 1970’s [316] and the development and use of newer agents inhibiting T cell activation 

and proliferation such as Tacrolimus [317,318,319], Rapamycin [318,319] and 

Mycophenolate Mophetil [320], in most centres, recipients of first cadaveric renal allografts 

still only display 3 year graft survival rates of 70% [321].

The use of mAb therapy in clinical transplantation, notably the mouse mAb OKT3, (directed 

against the conformational epitope formed between CD3s and either CD36 or CD3y) [322], is 

often effective in reversing acute rejection episodes [323,324,325], but does not induce 

transplantation tolerance. Similarly, other mAb treatments, such as anti-CD4, which 

successfully induce transplantation tolerance in rodents, fail, when applied to human 

transplantation to produce transplant tolerance. One reason why mAb which induce 

transplantation tolerance in rodents are less effective in humans, may be because there are 

differences in the tissue distribution of MHC antigens between the two species. In particular, 

Class II MHC antigens are not expressed constitutively on the vascular endothelium in 

rodents [326,327], whereas in humans, Class II MHC antigens are constitutively found on 

vascular endothelium [328]. Nevertheless, understanding the mechanism of action o f mAb 

induced transplantation tolerance in animal models, such as the one described in this study, 

combined with a better understanding of the physiological differences between the species, 

may lead to more effective application of immunosuppressive therapy in human 

transplantation. Ultimately, this understanding, may help achieve the goal of inducing
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allograft tolerance in the clinic without the need for continuous administration of non-specific 

anti-rejection agents.

The results described in this thesis show that a brief pre-operative course of anti-CD4 mAb, 

(MRC 0X38), leads to donor specific transplant tolerance in the Lewis to DA rat strain 

combination. Transplantation tolerance was associated with partial (50%) depletion o f CD4 

T lymphocytes, with preferential sparing of RTE (CD4+ve CD45RC've Thy-lhlgh). The 

cytokine RT-PCR data obtained from tolerant and rejecting cardiac allografts and the 

alloantibody responses of transplanted animals, did not suggest that tolerance achieved with 

0X38 mAb in this particular experimental model could be explained by a shift from a 

‘detrimental’ Thl to a ‘beneficial’ Th2 type of cytokine response. Anti-CD4 mAb was found 

to influence the residual non-depleted CD4 T cell pool, since cells displayed altered 

intracellular signalling in response to apTCR activation and the alteration observed was 

similar to the signalling defects described previously in anergic T cells [285,286].

The role o f the thymus gland in transplantation tolerance in this experimental model was also 

assessed. Anti-CD4 induced transplantation tolerance and adoptive transfer of tolerance from 

long-term tolerant animals to untreated thymectomised recipient animals were both found to 

be thymus dependent. A possible role for RTE in 0X38 mAb induced tolerance was 

indirectly explored by studies using single positive (CD4+ve oc(3TCR+ve) thymocytes and LNC. 

In reconstitution experiments using thymectomised anti-CD4 treated animals, adoptive 

transfer of single positive thymocytes, restored the ability of 0X38 mAb to prolong allograft 

survival in thymectomised animals. Furthermore, using apTCR proliferation assays, single 

positive thymocytes were found to be less affected by anti-CD4 mAb in vitro than single 

positive LNC and thymocytes still produced both Thl and Th2 cytokine mRNA upon 

activation.
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These data suggest that in the Lewis to DA heterotopic cardiac transplantation model, 0X38 

mAb may preferentially deplete T effector cells capable of initiating allograft rejection and 

render the residual T cell pool transiently incapable of normal activation and in a state which 

may favour anergy induction. RTE may provide the key for lasting tolerance induction in this 

experimental model by producing both Thl and Th2 cytokines when in contact with 

alloantigen. One may speculate that, like the model proposed by Cobbold and collegues 

[206], a cellular collaborative unit may involve competition for the cell-surface of an APC 

between 0X38 mAb treated RTE, 0X38 mAb treated Thl or Th2 CD4+ve T cells and/or 

CD8+ve T cells. In the absence of high levels of IL-2, the RTE, by producing low levels of IL- 

4, may induce the anti-CD4 treated allo-specific mature CD4+ve T cells to become anergic. 

Furthermore, when IL-2 levels are reduced, secretion of INF-y and TGF-p may further 

increase MHC expression and antigen presentation on the surface of the APC, without 

increasing expression of costimulatory molecules. This would make it more likely that 

CD4+ve T cells which had ‘recovered’ from anti-CD4 mAb treatment and/or CD8+ve T cells, 

would encounter antigen on the surface of an APC but fail to receive appropriate 

costimulation, driving them towards the anergic state. One can postulate that, if by 

thymectomy, RTE are removed from this system, then mature CD4+ve T cells which had 

‘recovered’ from anti-CD4 treatment may be the principle cytokine producers at the cell- 

surface of an APC. After antigen contact, these cells could produce high levels of IL-2 in 

conjunction with other cytokines and could initiate allograft rejection. Clearly, this scenario 

entails a considerable degree of speculation, but does provide a possible explanation for the 

observations made in this thesis.

Further studies to ascertain both the qualitative and quantitative nature of cytokine secretion 

by RTE, coupled with a better understanding of the influence of the RTE cytokine profile on
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mature CD4 T cells, are needed to determine the role of RTE in 0X38 mAb induced 

transplantation tolerance. Such data may then provide a rational basis from which to devise 

strategies for manipulating human T cell responses following transplantation. Use for 

example of appropriate anti-CD4 mAb, may allow a ‘favourable’ cytokine profile to be 

produced by cells contacting alloantigen, and lead to lasting tolerance, without the need for 

long-term immunosuppression.
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