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Abstract

ABSTRACT

Research over many years has shown that the rate of milk secretion is regulated by 

frequency and completeness of milk removal. The effect of milk removal occurs 

through local mechanisms within each mammary gland, and recent work indicates that 

local control is through feedback inhibition by a novel milk protein termed FIL, 

Feedback Inhibitor of Lactation. Evidence from studies in mammary cell culture 

suggests that FIL controls the rate of milk secretion, mediating the effect of frequency 

and completeness of milk removal, by inhibition of constitutive secretion, which 

involves reversible blockade of mammary membrane trafficking. Due to its effects on 

membrane trafficking, FIL may also regulate mammary differentiation. This may 

provide a mechanistic explanation for the developmental changes associated with 

sustained alterations in milking frequency or efficiency. For example, extended 

frequent milking elicits a significant increase in secretory cell differentiation as 

measured by mRNA abundance and activities of key enzymes involved in milk 

synthesis. However, neither the developmental changes at the level of gene expression 

or the mechanism underpinning these responses has been characterised in detail.

The aim of this project was therefore to investigate whether frequency of milking does 

indeed control expression of key milk protein genes and to investigate the mechanisms 

underpinning the putative regulation of gene expression - specifically, to determine if 

FIL is competent to influence mammary gene expression.

In the first phase of the project, manipulation of milking frequency and concomitant 

changes in the rate of milk secretion were found to be accompanied in the long term, 

but not in the short term, by changes in milk protein mRNA abundance. Treatments 

which did not change milk yield did not affect milk protein gene expression, indicating 

that changes in milk protein gene expression, like changes in milking frequency are 

dependent on effective manipulation of milk removal.

XV



Abstract

To investigate the molecular mechanisms underpinning the increase in milk protein 

mRNA abundance, demonstrated in vivo, goat mammary cells in primary culture were 

treated with milk fractions and FIL to determine if this protein was indeed competent 

to modulate milk protein gene expression. These studies demonstrated that long term 

exposure to FIL decreases milk protein mRNA abundance in vitro, lending further 

credence to the theory that FIL is a regulator of mammary differentiation.

Changes in gene expression in response to FIL, demonstrated in vitro, imply that FIL is 

involved in the developmental response of the gland to frequency of milk removal. 

Since FIL is itself a mammary gene product, it is also possible that FIL is an autocrine 

regulator of its own expression. Therefore, the next phase of this project was to clone 

the gene for FIL, and, if successful investigate the regulation of its gene expression. 

Several strategies were implemented to clone PEL including screening of goat 

mammary cDNA libraries with anti-FIL antibody and with synthetic oligonucleotides 

constructed on the basis of known FIL protein sequence. These strategies were not 

successful. Whether this was due to library composition, antibody specificity or 

excessive redundancy in the predicted nucleotide sequence of caprine FIL remains to 

be determined.

In conclusion, the project has shown that the developmental responses to frequency 

and completeness of milk removal are associated with changes in expression of key 

milk protein genes, and experiments in cell culture suggest these changes may be 

elicited by FIL, as a long term consequence of its effects on mammary membrane 

trafficking.
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Chapter One

REVIEW OF THE LITERATURE

1.1 Introduction

"Lactation is the final phase o f the reproductive cycle o f mammals. In almost all 

species the newborn are dependent on maternal milk during the neonatal period; in 

most the young are dependent for a considerable time. Adequate lactation is 

therefore essential for reproduction and the survival o f the species and, biologically, 

failure to lactate can be just as much a cause o f failure to reproduce as is failure to 

mate or to ovulate." (WHO Technical Report, 1965).

Lactation is an integral part of the reproductive process and the primary role of the 

mammary gland is to produce adequate milk to support the young. The cost to the 

mother may be high - maternal resources are depleted as her reserves are drawn upon 

to support the suckling young. Thus, parent-offspring conflict may arise because the 

long-term interests of each are not identical (Trivers, 1974). Ultimately, the level of 

investment in each lactation is determined by the mother. Her decision to invest (or 

not) is based on her long-term reproductive strategy - if she can have another litter 

quickly she may decide to discontinue investment in the first litter, in order to maximise 

survival of the next. This decision may not be in the interests of the original litter. 

Conversely, if she has only one or two young, produced after a long gestation, she may 

decide to continue investment even at the expense of her own well-being (Peaker, 

1989).
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Chapter One

The overall investment in lactation is controlled by the endocrine system. Not only is 

the amount of milk produced critical in the survival of the neonate - milk composition 

must also be tailored to meet the requirements of the growing young. Milk 

composition differs considerably between species (Jenness & Sloan, 1970), suggesting 

that during evolution the composition of milk has been modified to meet the specific 

needs of the young of each particular species.

1.2 Milk and its components

Milk provides all the nutrients required by the neonate. While the composition of milk 

varies widely between species, the main components are water, the milk proteins, 

lactose and fats (reviewed by Mepham, 1987; Davis et al., 1983). In addition to its 

nutritional role, milk may also play an important role in the transfer of bioactive agents 

from the mother to her young. Such agents may include immunoglobulins (Telemo & 

Hansen, 1996), hormones, or hormonally active substances such as growth factors 

(reviewed by Koldovsky, 1996; Koldovsky & Thornburg, 1987; Peaker & Neville, 

1991) which may have regulatory or protective effects in either mother or young.

1,2.1 Lactose

Lactose is the predominant carbohydrate in the milk of most species. Synthesis of 

lactose takes place in the Golgi apparatus and is catalysed by the enzyme lactose 

synthase. This enzyme is a complex of two proteins - the ubiquitous 

galactosyltransferase and the specifier protein a-lactalbumin. Lactose is secreted along

2
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with other aqueous milk constituents in secretory vesicles, by exocytosis at the apical 

cell membrane. This disaccharide is the major osmole in milk and as such maintains 

milk volume by influencing water influx into the secretory vesicles.

Alpha-lactalbumin is therefore essential for the production of lactose, and thus for 

lactation. Recent studies have demonstrated that a-lactalbumin deficient mice produce 

thick viscous milk containing no lactose (Stinnakre et al., 1994; Stacey et al., 1995). 

Milk volume in these animals is reduced and their young do not survive. This protein is 

therefore an excellent marker for the differentiated state of the mammary gland. The 

synthesis of lactose is reviewed by Kuhn et al. (1983), Leong et al. (1990), Mather & 

Keenan (1983) and Vonderhaar & Ziska (1989).

An important regulator of lactose synthesis in the lactating gland is the availability of 

glucose within the Golgi (Faulkner & Peaker, 1987). In the rat, glucose uptake by the 

mammary cell takes place via a glucose transporter (Madon et al., 1990). The number 

of transporters is proportional to milk yield, and these transporters are regulated by 

prolactin and growth hormone (Fawcett et al., 1991; Hudson et al., 1997). The 

hormonal regulation of mammary glucose uptake by glucose transporter proteins 

provides a possible mechanism for the control of lactose synthesis and thus milk 

production. Another possible mechanism for the control of lactose synthesis exists. A 

whey protein termed FIL (Feedback Inhibitor of Lactation) is competent to decrease 

lactose synthesis in explant culture bioassay (Wilde et al., 1995). Thus, local factors

3
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which are produced by and act on the mammary secretory cell may also regulate the 

rate of lactose synthesis.

An increase in the rate of lactose synthesis around parturition is related to the start of 

copious milk production. Simplistically, the withdrawal of progesterone and increase 

in prolactin levels triggers lactose synthesis (Kuhn, 1969). Indeed, administration of 

progesterone in the rabbit retards the appearance of lactose (Denamur & Delouis, 

1972). The endocrine control of lactation will be discussed further in section 1.4.

1.2.2 Fats

Milk fat is composed of a complex mix of lipid, predominantly triglycerides. Milk fat 

provides the major energy source for the neonate. Milk fat content is extremely 

variable between species ranging form around 1% in the donkey to over 50% in the 

milk of the gray seal. Fatty acids used for synthesis of milk triglycerides arise from 

breakdown of blood lipids or by de novo synthesis within the epithelial cell itself De 

novo synthesis of fatty acids takes place in the cytoplasm and is catalysed by 

acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) (reviewed by Dils, 

1983). Lipid synthesis is induced early in pregnancy and reaches a maximum during 

lactation. Elaboration into triglycerides takes place on the outer surface of the smooth 

endoplasmic reticulum. As triglycerides are formed they aggregate into small lipid 

droplets which fuse, forming large fat droplets, prior to secretion. Once the fat 

droplets reach the apical surface of the cell they bud directly into the milk, enveloped

4
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by a milk lipid globule membrane derived from the apical membrane (reviewed by 

Keenan et al., 1992; Keon etal., 1993).

Acetyl-CoA carboxylase catalyses the first committed step of fatty add synthesis. This 

enzyme exists in both active and inactive forms and its activity depends on the amount 

of enzyme and its activation status. ACC is regulated allosterically by fatty acyl-CoA 

and citrate which respectively inhibit and activate the enzyme’s activity (reviewed by 

Munday & Hardie, 1987). Insulin also plays a key role in the regulation of ACC 

influencing both dephosphorylation, and thus activation of the enzyme (McNeillie & 

Zammit, 1982), and ACC mRNA abundance (Barber et al., 1992a).

In addition to the role of insulin in ACC enzyme activation, prolactin and growth 

hormone are also implicated in the regulation of fatty acid synthesis. Prolactin is 

involved in both the uptake and synthesis of fatty acids by mammary epithelial cells 

(reviewed by Vonderhaar, 1987a). In sheep mammary explants prolactin acts to 

increase both ACC enzyme concentration and activity (Barber et al., 1991). Prolactin is 

also required for the induction of thioesterase n, an enzyme found exclusively in the 

mammary gland, which is required for synthesis of medium chain fatty acids in this 

tissue (Carey & Dils, 1973, Knudsen et al., 1976). Thioesterase II activity is closely 

related to circulating levels of prolactin: enzyme levels increase during gestation, peak 

during lactation and then decrease in parallel with the level of prolactin (Smith & Stem, 

1981). A role for growth hormone (GH) has also been proposed: in the absence of
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prolactin, neutralisation of GH led to reduced synthesis and uptake of fatty acids in rat 

mammary tissue (Barber et al., 1992b).

1.2.3 Milk proteins

The milk proteins can be divided into two groups, the caseins and the milk serum or 

whey proteins. The caseins are the most abundant milk proteins, accounting for 

appproximately 60% of total milk protein, and provide essential amino acids and 

minerals (in the form of calcium phosphate) for the young (Bonsing & Mackinlay, 

1987). The whey proteins include a-lactalbumin, P-lactoglobulin, whey acidic protein, 

immunoglobulins, transferrin and lactoferrin. Of the whey proteins, p-lactoglobulin is 

the principal protein in ruminant milk, while whey acidic protein (WAP) is the major 

protein in the milk of rabbits and rodents, and has recently been identified in pig milk 

(Simpson et al., 1996). The function of WAP and P-lactoglobulin is not known, but P- 

lactoglobulin has structural similarities with retinol binding protein and as such may 

paly a role in the transport of fatty acids and vitamin A (Newcomber et al., 1984) Milk 

protein composition is discussed in detail by Davies et al. (1983) and Mepham (1987).

Milk proteins are synthesised by a mechanism common to all eukaryotic proteins 

(reviewed by Mepham, 1987; Mercier & Gaye, 1983). Proteins which are secreted 

from the cell move sequentially from their site of synthesis in the rough endoplasmic 

reticulum through the Golgi apparatus. From the Golgi, proteins are transported by
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secretory vesicles to the apical surface of the cell and released into the lumen by 

exocytosis (Franke et al., 1976).

Milk protein synthesis is controlled by hormonal regulation of gene transcription, the 

stability of milk protein mRNAs and the rate of translation. Translational, 

transcriptional and post-transcriptional control of the major milk protein genes will be 

discussed in further detail in section 1.3.

1.3 The differentiated function o f the mammary gland

1,3.1 Gland development and differentiation

Development of the mammary gland begins in fetal life, and at birth the gland consists 

of a rudimentary ductal tree (Russo & Russo, 1987). During puberty a branching 

pattern of ductal growth is achieved by lengthening and branching of the existing ducts. 

Proliferation of the actively growing structures, or terminal end buds (TEBs), at the 

tips of the lengthening ducts allows the ductal system to penetrate further into the 

mammary fat pad (Russo & Russo, 1987). The parenchyma of the differentiated 

mammary gland consists of ductal epithelium, alveolar epithelium and myoepithelium 

(Rudland & Hughes, 1989; Streuli et al., 1995). Extensive ductal and lobuloalveolar 

development begins with each pregnancy and culminates with the onset of lactation. 

During pregnancy secretory tissue develops from the branching duct system. There is, 

in addition, extensive proliferation of secretory alveolar cells which fills the mammary 

fat pad with the alveolar tissue required for milk production. Development and
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subsequent differentiation of the gland during pregnancy are dependent on complex 

interactions between a number of systemic hormones and locally produced growth 

factors (reviewed by Topper & Freeman, 1980; Tucker, 1994).

As they differentiate the epithelial cells become polarised: within the alveoli, cells are 

organised as a single layer of cells around a central lumen, into which milk is secreted. 

Alveolar epithelium is only occasionally contacted by myoepithelial cells and is 

separated from surrounding stroma by a specialised basement membrane. This 

basement membrane is laminin-rich and is essential for the differentiated function of the 

cell(Streulie/flr/., 1995).

Epithelial cell differentiation is characterised by cell hypertrophy, accumulation of milk 

protein mRNAs and an increase in lipogenic and other enzymatic activity involved in 

milk synthesis (reviewed by Burgoyne & Wilde, 1994). Differentiation of the gland is a 

sequential process. Milk protein mRNAs are present by mid to late pregnancy but 

copious milk production does not start until parturition. In the mouse, for example, 13- 

casein mRNA is present at mid-pregnancy and increases progressively up to and after 

parturition (Harris et al., 1991). Conversely WAP gene expression increases 

predominantly after the young are bom (Harris et al., 1991; Pittius et al, 1988), while 

ACC and FAS activities rise in the final days of pregnancy and continue to rise until 

peak lactation (Shipman et al., 1987). This sequential induction of epithelial cell
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differentiation suggests that milk protein genes are regulated differentially within the 

secretory cell either by systemic hormones or by local intramammary factors.

Mammary tissue is removed after weaning of the young, in species such as mice and 

rodents to prevent unnecessary milk production. Without the suckling stimulus 

hormone levels, in particular prolactin, decline and milk accumulates within the gland. 

Both these events serve to decrease milk synthesis and secretion. Loss of epithelial 

cells occurs by programmed cell death i.e. apoptosis (Walker et al., 1989; Strange et 

al., 1992). In addition, extracellular matrix-degrading metalloproteinases are expressed 

in the gland during involution (Strange et al., 1992) which are responsible for the 

breakdown of the basement membrane (Talhouk et al., 1991, 1992). The loss of 

epithelial cells and the proteolytic degradation of the basement membrane leads to 

collapse and disintegration of the lobuloalveolar structure of the gland. The extent of 

cell loss during involution varies widely among species (Hurley, 1989). In rodents, the 

gland regresses to a state similar to that of the virgin animal (Walker et al., 1989). Cell 

loss in ruminants is considerably less but also occurs by apoptosis (Quarrie et al., 1996; 

Wilde et al., 1997b).

1.3.2 The role o f the extracellular matrix

In addition to the role of hormones, interactions between mammary epithelial cells and 

the extracellular matrix (ECM) play a vital role in mammary gland development and 

differentiation. The ECM consists of acellular material which connects cells within
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tissues. Epithelial tissues, such as mammary secretory cells, contact a specialised 

ECM, the basement membrane. Lactogenic hormones are not sufficient to stimulate 

the differentiation of mammary cells and full expression of milk protein genes. The 

ECM is also necessary (reviewed by Streuli, 1993). Tissue specific gene expression in 

mammary epithelial cells is therefore dependent on both ECM and hormonal factors.

It is well established that substratum has a dramatic effect on the morphology and 

function of mammary epithelial cells in culture. Simplistically, such cells cultured on 

either plastic or fixed collagen gels do not maintain a differentiated morphology even in 

the presence of lactogenic hormones (Li et al., 1987). Cells cultured in this way lack 

polarisation, the necessary secretory apparatus is underdeveloped, and expresses milk 

protein genes only at very low levels. Culture on floating collagen gels increases the 

expression of (3-casein (Li et al., 1987) but not that of WAP (Chen & Bissell, 1989), 

indicating that differentiation is not complete on this substrata. Expression of WAP is 

only achieved in vitro when cells are cultured on EHS matrix (Chen & Bissell, 1989). 

EHS matrix is a reconstituted basement membrane derived from the Engelbreth- 

Holm- Swarm murine tumour, which contains a number of basement membrane 

components, including collagen type IV, laminin, entactin, fibronectin and 

proteoglycans (Kleinman et al., 1983, 1986). Culture on this substratum allows cells to 

polarise; the cells are columnar and contain abundant rough endoplasmic reticulum, 

Golgi and secretory vesicles (Aggeler et al., 1991).
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The basement membrane cooperates with lactogenic hormones in vitro to activate 

transcription of milk protein genes such as |3-casein (Li et al., 1987, Bar cellos-Hoff et 

al., 1989, Schmidhauser et al., 1990, 1992). The effects of the ECM on epithelial cells 

are mediated by specific receptors on the basal surface of the cell which contacts the 

basal lamina. The basement membrane consists of a number of proteins and 

glycoproteins, the most important of which is laminin (Streuli, 1993). The laminins are 

a family of a(3y heterotrimers which have been shown to influence morphology and 

gene expression in cultured epithelial cells (Bissell et al., 1987; Kubler et al., 1991; Liu 

et al., 1991). Specific receptor molecules termed integrins, are located in the 

basolateral cell membrane, and these molecules are thought to mediate signal 

transduction between the epithelial cell and the basement membrane. A function 

blocking anti-integrin antibody has recently been shown to decrease the ability of 

cultured cells to synthesise (3-casein (Streuli et al., 1991).

Further evidence for a role of the basement membrane in vivo has come from events 

which take place during involution. Following weaning, the basement membrane 

becomes folded (Walker et al., 1989) and is ultimately removed by ECM-degrading 

metalloproteinases (Talhouk et al., 1991, 1992). During involution the expression of 

ECM degrading metalloproteinases such as stromelysin, gelatinase and tissue 

plasminogen activator increases relative to expression of their inhibitors, tissue inhibitor 

of metalloproteinases (TIMP) and plasminogen activator inhibitor (PAI-1). In the 

mouse, the gland returns to a state reminiscent of the virgin gland (Walker et al., 1989;
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Strange et al., 1992) and tissue specific gene expression, such as (3-casein is lost 

(Talhouk et al., 1991). In addition, loss of cell-matrix and cell-cell contact has been 

shown to he associated with the onset of apoptosis (Strange et al., 1992).

Recent studies have demonstrated that interactions with a basement membrane in 

culture protects mammary epithelia from cell death; neither collagen I or plastic 

substrata supports survival (Boudreau et al., 1995; Pullan et al., 1996). The basement 

membrane therefore contains a number of direct signals which are required for the 

differentiation and maintenance of normal mammary epithelial cells (reviewed by 

Ashkenas etal., 1996; Streuli, 1993) .

1.3.3 Regulation o f milk protein gene expression

The rate of milk protein synthesis depends primarily, but not solely, on the abundance 

of milk protein mRNA, which increases during gestation and reaches a peak at mid

lactation. Differential accumulation of milk protein mRNAs depends on increases in 

both transcription rate and transcript half-life (Guyette et a l, 1979).

All milk protein genes sequenced so far have the canonical organisation of all 

eukaryotic genes, consisting of the polyadenylation signal, GT rich region signaling the 

end of transcription, consensus splice junction sequences, CAP site and TATA box 

(reviewed by Mercier & Vilotte, 1993). The activation of these genes depends on a 

variety of 5’ and 3’ regulatory sequences which have however, been only partially
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identified. The current knowledge on regulation of the caseins and whey protein genes 

will be discussed in the following sections.

1.3.3.1 Regulation o f casein gene expression

The caseins are the most abundant milk proteins and are secreted as micelles, large 

macromolecular aggregates (Waugh, 1971). Five caseins have been identified a sr ,  a S2- 

(3-, y- and K-casein, with K-casein important in prevention of precipitation by stabilising 

micelle formation. The calcium sensitive caseins are phosphorylated and, along with k -  

casein, are the primary source of amino acids, phosphate and calcium for the suckling 

young.

Sequence analysis of the casein gene family has revealed that although there has been 

considerable divergence between the members, three structural regions are highly 

conserved. These include the signal peptide, the casein kinase recognition site and 5’ 

non-coding sequences (Blackburn et al., 1982; Hobbs & Rosen, 1982).

Regulation of casein gene expression has been studied primarily in mammary cell 

culture. The synergistic action of the lactogenic hormones, principally glucocorticoid, 

insulin and prolactin and the extracellular matrix on [3-casein gene expression is well 

documented (Eisenstein & Rosen, 1988; Schmidhauser et al., 1990; Schmitt-Ney et al., 

1991).
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The promoter region of the gene encoding (3-casein has binding sites for numerous 

transcription factors which exert both positive and negative effects on (3-casein gene 

expression (Schmitt-Ney et a l, 1991; Welte et a l, 1994). One such factor which is 

essential for prolactin-induced (3-casein gene transcription binds to a conserved 

interferony activation (GAS)-like sequence in the promoter sequence of the gene from 

several species (Schmitt-Ney et a l, 1991). This factor is STAT5 which was initially 

identified as mammary gland factor (MGF). MGF (STAT5)-specific binding has also 

been identified in the upstream region of the bovine a S2-casein gene promoter (Groenen 

et a l, 1992). The discovery of the JAK/STAT pathway has provided insight into the 

previously unknown signaling pathway of prolactin and its role in casein gene 

expression (reviewed by Hynes et a l, 1997).

In addition to the importance of STAT5, other elements may be involved in casein gene 

transcription. Important regulatory elements are located more than 800 bp upstream of 

the bovine (3-casein promoter (Schmidhauser et al., 1990). Further, a unique 160 bp 

enhancer element, termed BCE, lies 1.5 kb upstream of the (3-casein transcription 

initiation site (Schmidhauser et a l, 1992).

1.3.3.2 Regulation o f a-lactalbumin gene expression

Alpha-lactalbumin is essential for the production of lactose and thus milk (Stacey et a l, 

1995: Stinnakre et al, 1994). Expression of the a-lactalbumin gene requires insulin 

and prolactin and is maximal in the presence of glucocorticoid (Qno & Oka, 1980),
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although high levels of glucocorticoid may inhibit a-lactalbumin expression (Funder, 

1989). Progesterone also inhibits a-lactalbumin gene expression and it is the loss of 

progesterone at parturition, along with the increase in prolactin that allows increased 

a-lactalbumin protein synthesis. Indeed in marsupials, prolactin alone is responsible for 

expression of a-lactalbumin (Collet et al., 1992). Studies in transgenic mice have 

indicated that efficient tissue specific expression of bovine (Vilotte et al., 1989) and 

caprine (Soulier et al., 1992) a-lactalbumin genes may be achieved using 0.4 kb of 5’ 

flanking region and 0.34 kb of 3’ flanking region (Soulier et al., 1992; Stinnakre et al., 

1991). Multiple binding sites, including one recognised by nuclear factor-1 have also 

been identified by footprinting analysis of the bovine a-lactalbumin gene (Lubon & 

Hennighausen, 1988).

1.3.3.3 Regulation o f whey acidic protein gene expression

Whey acidic protein (WAP) is expressed in high levels in the lactating mammary glands 

of mice, rats and rabbits (Hennighausen & Sippel, 1982; Hennighausen et al., 1982; 

Hobbs et al., 1982). WAP mRNA accumulates in late pregnancy and by mid-lactation 

is present at levels 1000-fold higher that that seen in early pregnancy. WAP gene 

expression is dependent on synergy between prolactin, glucocorticoid and insulin, cell

cell and cell-matrix interactions. WAP is poorly expressed in culture unless cells are 

present in three-dimensional structures similar to alveoli in vivo (Chen & Bissell, 

1989). Deletion expression analysis using WAP-myc and WAP-CAT reporter systems 

in primary culture suggested that lactogenic hormone response elements are located
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mainly in 2.5 kb of 5’ upstream sequence (Schoenenberger et al., 1990; Doppler et al., 

1991).

1.3.3.4 Regulation o f P-lactoglobulin gene expression

P-lactoglobulin is the major protein in ruminant milk. It is expressed by mid

pregnancy, increases slowly until parturition and then increases rapidly, again reaching 

a peak at mid-lactation (Gaye et al., 1986; Harris et al., 1991). In cultures of ovine 

mammary cells induction of milk protein genes appears less dependent on lactogenic 

hormones than the caseins. Glucocorticoid and insulin in synergy with prolactin are 

only slightly more effective than prolactin alone in inducing p-lactoglobulin gene 

expression (Puissant et al., 1990). In the marsupial, the increase in p-lactoglobulin 

mRNA appears to be dependent on prolactin alone (Collet et al., 1992). CAT assay 

systems have demonstrated that the P-lactoglobulin promoter is sensitive to prolactin 

induced signals: prolactin induced CAT activity can be achieved in Chinese hamster 

ovary cells transfected with reporter gene constructs driven by the p-lactoglobulin 5’ 

flanking region (Lesueur et al., 1990).

The ovine P-lactoglobulin gene contains multiple binding sites within a -406 to -149 5’ 

upstream region which are essential for high-level tissue specific gene expression 

(Wilmut et al., 1990). These include five binding sites specific for nuclear factor-1 and 

three sites recognised by milk protein-binding factor (Vilotte & Soulier, 1992).
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1.4 Endocrine control o f lactation

1.4,1 Prolactin

Prolactin is secreted by the anterior pituitary and exerts a wide range of biological 

effects including its pivotal role in lactation. Prolactin is released in response to 

suckling or milking. Thus, the circulating concentration of the hormone is low during 

most of gestation and increases by greater than an order of magnitude in early 

lactation(Cowie et al., 1980; Vines et al., 1977). The milking induced prolactin surge is 

greatest at peak lactation and its intensity decreases as lactation progresses (Cowie et 

al., 1980). Circulating prolactin levels change in response to season, stage of oestrus 

cycle, pregnancy, lactation, time of day, stress, temperature and energy intake 

(Vonderhaar, 1987a).

Traditionally prolactin has been considered the major hormone involved in the 

maintenance of lactation in rodents, but of little importance in ruminants. The ergot 

alkaloid bromocriptine decreases circulating prolactin and inhibits the post

milking/suckling prolactin surge (Akers et al., 1981; Beck et al., 1979). In lactating 

rats, administration of bromocriptine inhibited lactation: both litter weight gain and 

mammary tissue weight were decreased in these animals (Madon et al., 1986; Flint et 

al., 1992). The detrimental effect of bromocriptine was completely reversed by 

administration of exogenous prolactin. Depletion of prolactin in the period immediately 

prior to parturition inhibits lactation in cattle (Akers et al., 1981) and sheep (Kann & 

Houdebine, 1978). The effect in cows was transient and reversed by exogenous
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prolactin (Akers et al., 1981). In lactating goats and cows, prolactin depletion has a 

much less pronounced effect on milk yield than that seen in rats and mice (Hart, 1973; 

Smith et a l, 1974). Recent studies have however suggested that prolactin is at least as 

important as growth hormone in the maintenance of lactation in the goat (Flint & 

Knight, 1997).

The prolactin receptor is a member of the cytokine receptor superfamily (Bazan, 1990). 

There are two forms of the receptor- a short form and a long form, differing only in 

their cytoplasmic domain. The long form has a cytoplasmic domain of 357-364 amino 

acids (Boutin et al., 1988; Edeiy et al., 1989), while the cytoplasmic domain of the 

short form consists of 57 amino acids (Boutin et al., 1988; Davis & Linzer, 1989). 

Only the long form of the receptor is competent to activate milk protein gene 

transcription (Lesueur et al., 1991). Both short and long form prolactin receptor 

number remains low throughout gestation, rises sharply around parturition and 

continues to increase throughout lactation (Hayden et al., 1979; Jahn et al., 1991).

The prolactin receptor is associated with Janus tyrosine kinase 2 (JAK2) (Argetsinger 

et al., 1993; Lebrun et al., 1994). Receptor dimerisation is induced by ligand 

(prolactin) binding (Findori & Kelly, 1995), activating JAK2 which results in 

phosphorylation of tyrosine residues of STATs (signal transducers and activators of 

transcription). The STATs are cytoplasmic transcription factors which, when 

phosphorylated on tyrosine, activate gene transcription (reviewed by GofiBn & Kelly,
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1997). These transcription factors are important prolactin binding proteins. Seven 

STATs have thus far been identified: 1, 2, 3, 4, 5a, 5b and 6 (Ihle, 1996). Of these 

STAT1, 3 and 5 have been identified as transducer molecules of the prolactin receptor 

(Gouilleux et al., 1994; Dasilva et al., 1996). STAT5 was initially identified as the 

nuclear transcription factor MGF (mammary gland factor) which is involved in 

prolactin mediated transcriptional activation of the (3-casein gene (Gouilleux et al., 

1994; Burdon et al., 1994). MGF or STAT5 is activated by phosphorylation of one 

tyrosine residue on STAT5 by JAK2. Tyrosine phosphorylation of STAT5 converts it 

from a latent factor to one which is able to bind to DNA and activate transcription 

(Groner & Gouilleux, 1995).

Although the JAK/STAT pathway is considered the most important signalling pathway 

for prolactin, other pathways may also be involved. These may include the 

Ras/RafMAPK cascade, IRS-1, PI-3 kinase, PKC or calcium ions (reviewed by Goffin 

& Kelly, 1997).

1.4.2 Growth hormone

Growth hormone is the major galactopoietic hormone in ruminants (Cowie et al., 1980; 

Karg et al., 1972). Serum levels of growth hormone remain low and constant for the 

majority of pregnancy in both rats and cows (Schalch & Reichlen, 1966; Oxender et 

al., 1972) and increase shaiply at parturition (Ingalls et al., 1973).
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Milk secretion in hypophysectomised lactating goats can be maintained by growth 

hormone alone (Cowie et al., 1964) and bovine growth hormone has been shown to be 

a potent stimulator of mammary growth and milk production in dairy cows (reviewed 

by Bauman 1992). Growth hormone causes coordinated changes in protein, fat and 

carbohydrate metabolism in the lactating animal, directing nutrients for use in milk 

synthesis (Bauman & Currie, 1980; Bauman et al., 1985). Growth hormone is 

discussed in detail by Tucker (1994) and Flint & Knight (1997).

Growth hormone has typically been thought of as having little or no role in 

maintenance of lactation in rodents. This view has recently been shown to be 

somewhat simplistic. Neutralisation of growth hormone in the rat using an anti-growth 

hormone antibody reduced milk yield, albeit to a lesser extent than that seen with 

prolactin depletion (Flint et al., 1992). However a combination of both bromocriptine 

treatment and anti-growth hormone almost completely abolished milk secretion 

(Madon et al., 1986; Flint et al., 1992). Growth hormone replacement was only 

partially successful in restoring milk yield to pretreatment levels, however treatment 

with exogenous prolactin fully restored milk yield.

The mechanism by which growth hormone acts on the secretory alveolar cell is not 

understood, since a receptor for growth hormone has not yet been detected in 

mammary tissue (Akers, 1985). Growth hormone is therefore thought to act indirectly 

on the mammary gland via secondary mediators, the insulin-like growth factors (IGFs).
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Insulin-like growth factors are potent mammary mitogens (Winder & Forsyth, 1986) 

and are involved in cellular differentiation (reviewed by Dembinski & Shui, 1987). The 

role of the insulin-like growth factors is discussed in section 1.5.1.

The growth hormone receptor, like the prolactin receptor is a member of the cytokine 

receptor family. The receptor consists of a single chain protein with a transmembrane 

domain. Ligand binding causes dimerisation of the GH receptor which then interacts 

with the JAK kinases which in turn activate STATs (reviewed by Goffin & Kelly, 

1997). Like prolactin, growth hormone can activate STAT5 (Hackett et al., 1995) and 

this activation seems dependent on receptor tyrosine phosphorylation (Sotiropoulos et 

al, 1996).

1.4.3 Steroid hormones - oestrogen and progesterone

During pregnancy, mammary growth is stimulated by complex interactions between 

polypeptide and steroid hormones. The ovarian steroids, oestrogen and progesterone, 

are responsible for stimulation of mammary growth during both puberty and pregnancy 

(Lyons et al., 1958; Nandi, 1958). The oestrogens promote ductal elongation, act to 

increase the number of proliferating cells, while decreasing the time required for cell 

division (Bresciani, 1971; Grahame & Bertalanffy, 1972). Progesterone stimulates 

ductal branching and development of lobuloalveolar tissue in the pregnant animal 

(Nandi, 1958). Lactogenesis is inhibited by progesterone (reviewed by Kuhn, 1977): a
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reduction in plasma progesterone permits induction of milk secretion (Kuhn, 1969). 

The role of the sex steroid hormones is reviewed in detail by Haslam (1987).

1.4.4 Glucocorticoids

Classic endocrine ablation experiments demonstrated the requirement for 

glucocorticoids for lactation. Lyons et al. (1958) demonstrated that only prolactin and 

adrenal steroid were necessary for milk secretion in the endocrinectomized rat. 

Following hypophysectomy in the goat, glucocorticoids, thyroid hormones and growth 

hormone were required, in addition to prolactin to folly restore lactation in these 

animals (Cowie et al., 1964). Serum glucocortocoid remains low throughout 

pregnancy, however prior to parturition the concentration of glucocorticoid increases, 

reaching a maximum at parturition and the initiation of lactogenesis. A role for 

glucocorticoid as a survival factor in mammary epithelial cells has also been proposed 

(Feng et al., 1995). The requirement of glucocorticoids for lactation is described in 

detail by Tucker (1994).

1.5 Growth Factors

The capacity of the mammary gland to produce milk is determined first by systemic 

endocrine factors. However, there is increasing evidence that local milk borne factors, 

produced by the mammary epithelial cell are also involved. Some of these factors are 

discussed below.
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1.5.1 Insulin-like growth factors

The growth promoting action of growth hormone is brought about by secondary 

mediators known as the insulin-like growth factors (IGFs). The insulin-like growth 

factors form part of a family of structurally related proteins which include insulin and 

relaxin. These factors are produced by most tissues within the body, are present in the 

circulation and may be bound to the IGF binding proteins (IGFBPs). Milk contains 

IGF-I and II and at least four of a possible six IGFBPs have been identified in milk 

(reviewed by Prosser, 1996). Additionally bovine mammary cells in vitro have been 

shown to synthesise and secrete four IGFBPs (McGrath et al., 1991). IGF 

concentrations in milk have been shown to be highest pre-partum and early 

post-partum, suggesting they may play a role in development of both the mammary 

gland and the gut of the neonate.

Two classes of IGF receptors have been identified - type I receptors with greatest 

affinity for IGF-I, and type II receptors. The type I receptor is thought to be the major 

receptor involved in the signalling action of both IGF-I and n. IGF receptors have 

been found in the mammary glands of humans (Ellis et al., 1994), sheep (Disenhaus et 

al., 1988), cows and rats (Collier et al., 1989). Many roles have been postulated for 

IGFs in the mammary gland. These include increasing growth, blood flow, milk 

secretion, glucose transport and possibly casein synthesis (reviewed by Prosser, 1996). 

In vitro, both IGF-I and II increase proliferation of mammary epithelial cells (Lnagawa 

et al., 1986; McGrath et al., 1991): since IGF concentration is highest at the time of
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maximal epithelial cell proliferation in the developing gland it is possible that this factor 

plays a role in determining the growth and thus subsequent output of the gland.

IGF-I may act as a survival factor for several cell types, including mammary cells 

(Rodriguez-Tarduchy et al., 1992; Sell et al., 1995). It has recently been demonstrated 

that IGFBP-5 is present in high concentrations in involuting mammary cells (Tonner et 

al., 1996) suggesting that this binding protein may block IGF mediated cell survival. 

Prolactin, which has also been implicated in cell survival decreases IGFBP-5 

production (Travers et al., 1996).

1.5.2 Epidermal growth factor

Epidermal growth factor (EGF) is a small polypeptide mitogen which has been 

identified in the milk of mice (Beardmore & Richards, 1983), rats (Thornburg et al., 

1984) and humans (Cohen & Carpenter, 1975). EGF is synthesised as prepro-EGF 

and is subsequently cleaved to its biologically active form (reviewed by Carpenter & 

Wahl, 1991).

EGF receptor number is high in virgin mice, increases during early pregnancy and then 

decreases during lactation (Edery et al., 1985). The receptor is also present in a similar 

pattern in the bovine (Spitzer & Grosse, 1987; Plaut, 1993) and is expressed in the 

ductal epithelium (Coleman et al., 1988). Binding of EGF to its receptor is dependent
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on synergism between estrogen and progesterone in conditions similar to that seen in 

pregnancy (Sheffield &Yuh, 1988).

EGF stimulates mammary development (Turkington, 1969; Tonelli & Sorof, 1980), in 

particular ductal and lobuloalveolar development (Vonderhaar, 1987b; Coleman et al., 

1988). Full development of the mouse mammary gland during pregnancy, and thus 

subsequent milk production, is dependent on EGF (Okamata & Oka, 1984). These 

observations lend further support to a role for EGF in stimulation of mammary 

epithelial proliferation.

In addition to its role in mammary development in the mother, milk-borne EGF has 

been proposed to play a role in the developing gut of the neonate. EGF receptors have 

been demonstrated in the gastrointestinal tract of developing rodents (Toyoda et al., 

1986; Gallo-Payet et al., 1987). The EGF content of the small intestine in suckling rats 

was high (Schaudies et al., 1990), however mRNA for this growth factor was not 

detected in the intestine or submaxillary glands of suckling rats or mice (Popliker et al., 

1987; Dvorak et al., 1995). Milk-borne EGF may therefore be important in regulation 

of intestinal development in the neonatal rodent (reviewed by Koldovsky, 1996).

1.5.3 Fibroblast growth factors

The fibroblast growth factors (FGFs) are members of a larger family of heparin-binding 

growth factors. Such growth factors may be divided into two subclasses: class I
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anionic mitogens, such as acidic brain FGF, and class II cationic mitogens (including 

basic pituitary FGF). Acidic and basic FGF were purified owing to their strong affinity 

for heparin (Macaig et al., 1984). Consistent with their affinity with heparin the FGFs 

have been localised to, and purified from, basement membranes in a variety of tissues 

(Folkman et al., 1988). Fibroblast growth factors stimulated cellular proliferation in 

vitro in both normal and breast cancer cells (Yang et al., 1980). In addition FGF 

inhibited the production of casein when mammary epithelial cells are grown on collagen 

(Levay-Young et al., 1989). Further studies confirmed that FGF inhibits the 

expression of milk protein genes induced by insulin, glucocorticoids and prolactin (Oka 

et al., 1991). An FGF-like growth factor has been isolated from a human mammary 

tumour (Rowe et al., 1986) raising the possibility that this FGFs are produced by and 

act on the mammary epithelial cell, influencing mammary growth (reviewed by 

Dembinski & Shiu, 1987).

1.5.4 Transforming growth factors

The transforming growth factors (TGFs) may be divided into 3 subclasses: TGF-a, 

TGF-(3 and TGF-y. For the purposes of this section only TGF-a and TGF-(3 will be 

discussed.

1.5.4.1 TGF-a

Transforming growth factor-a is a 50 amino acid polypetide and is similar in size, but 

shares only 30 - 40% homology, with EGF. TGF-a is synthesised as a membrane
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bound precursor and undergoes a number of cleavages to form the active protein 

(Carpenter & Wahl, 1991). TGF-a competes with EGF for the EGF receptor. As both 

TGF-a and EGF bind to the same receptor it is thought that these growth factors have 

similar, possibly identical, functions (Carpenter & Wahl, 1991). TGF-a activity has 

been found in mammary epithelial cells of humans, rats and mice (Liscia et al., 1990; 

Snedeker et al., 1991). Like EGF, TGF-a is a potent mitogen for mammary epithelial 

cells in vitro (Imagawa et al., 1990). Stimulation of lobuloalveolar development in 

whole organ culture by TGF-a was greater than that seen with EGF (Vonderhaar, 

1987b). Over expression of TGF-a in transgenic mice leads to mammary hyperplasia 

and increased susceptibility to cancer (Jhappan et al., 1990; Coffey et al., 1994).

1.5.4.2 TGF-P

The transforming growth factor-(3s (TGF-P) are a family of hormone-like polypeptide 

growth factors which act as inhibitors of mammary cell growth. Three isoforms of 

TGF-P have been identified in mammary tissue - TGF-P 1, P2 and P3. TGF-P is highest 

during pregnancy, decreases during lactation and rises once again in involution 

(Robinson et al., 1991; 1993).

TGF-P exerts growth inhibitory effects on mammary epithelial cells both in vivo and in 

vitro. TGF-p implants in subadult virgin mice reversibly inhibit mammary ductal 

growth but not alveolar development (Silberstein & Daniel, 1987). Over-expression of 

TGF-P in transgenic mice resulted in impaired lobuloalveolar development and milk
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protein production (Jhappan et al., 1993). TGF-P has been shown to inhibit the 

growth of human mammary epithelial cells (Ethier & Van de Velde 1990). The effect 

of TGF-P in mammary development appears to be regulated partially by its effects on 

ECM (Silberstein et al., 1990, 1992). In the mouse the ECM acts a reservoir for 

TGF-Pi which inhibits ductal but not alveolar bud development in the tissue 

(Silberstein et al., 1992). The role of TGF-p in mammary development is reviewed by 

Cunha & Horn (1996), Daniel et al. (1996) and Smith (1996).

In addition to its role in mammary development these growth factors also play a role in 

the suppression of milk synthesis and secretion. TGF-pi suppresses onset of lactation 

and subsequent production of P-casein from mouse mammary explants prepared from 

pregnant mice (Robinson et al., 1993; Sudlow et al., 1994). Protein synthesis and 

secretion was not affected in lactating tissue.

TGF-p exert their effects on mammary development by binding with cell surface 

receptors. Three major TGF-P binding proteins have been identified - types I, II and 

HI. Type I and II receptors are serine kinases and both are required for TGF-P signal 

transduction (Wrana et al., 1994). The type m  receptor is not thought to have 

signalling activity (Wrana et al., 1992).
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1.5.5 Mammary derived growth inhibitor

Mammary derived growth inhibitor (MGDI), a peptide inhibitory factor found in the 

mammary gland, shows a high degree of homology to cardiac fatty acid binding protein 

(Bohmer et al., 1988). MGDI inhibits the proliferation of both normal and transformed 

mammary cell lines in vitro (Bohmer et al., 1985, 1987; Grosse & Langen, 1989) and 

is expressed in the differentiated mammary gland (Kurtz et al., 1990). It has been 

suggested that the function of MGDI is to inhibit cellular proliferation in the 

differentiated gland. In addition, in hypophysectomised rats, induction of 

differentiation by lactogenic hormones increases MDGI mRNA abundance (Kurtz et 

al., 1990). The exact role of MDGI in mammary development remains to be 

determined.

1.5.6 Growth factors in milk

Milk, and especially colostrum, contains high concentrations of a variety of growth 

factors. It is possible that, in addition to their actions within mammary tissue itself 

these factors may therefore play a role in the development of the gut in the neonate 

(Baumrucker & Blum, 1994: Schober et al., 1990; reviewed by Koldovsky, 1996). 

IGF-I and II have been identified in both bovine milk and colostrum (Campbell & 

Baumrucker, 1989; Francis et al., 1988) and EGF activity has been identified in the 

milk of mice (Beardmore & Richards, 1983) and rats (Thornburg et al., 1984). Human 

milk contains a wide variety of growth factors including EGF, IGFs, TGF-a and 

TGF-P (Koldovsky, 1989, 1994, 1995; Koldovsky & Thornburg, 1987).
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1.6 Local regulation o f mammary function

Locally produced growth factors play an important role in the development and 

regulation of mammary function (section 1.5), however, other local mechanisms have 

been implicated in the control of milk secretion. It has been proposed that pre-partum 

mammary secretions contain a locally active inhibitor of milk secretion which must be 

broken down before lactogenesis can be initiated (Linzell & Peaker, 1974), with a 

likely candidate being prostaglandin F2a (PGF2a). Goats synthesise and secrete 

prostaglandin F2a pre-partum, and secretion of PGF2a into the blood ceases a few 

days prior to parturition and is instead secreted into the milk (Maule Walker & Peaker, 

1980). Removal of PGF2a by milking or metabolism of PGF2a is required to initiate 

copious milk secretion (Maule Walker, 1984).

Fatty acid synthesis is feedback inhibited by fatty acyl CoAs. This control mechanism 

could work between suckling or milking. As milk accumulates within the gland, fats 

also accumulate, inhibiting their own synthesis (Heesom et al., 1992). At weaning milk 

accumulates within the gland and milk secretion is rapidly shut down. The rate at which 

synthesis declines is consistent with the theory of accumulation of an inhibitor in milk, 

and indeed rat milk inhibits fatty acid synthesis in vitro (Levy, 1964). FIL, the 

feedback inhibitor of lactation did not inhibit fatty acid synthesis in vitro, however 

coordinate inhibition of both aqueous and non-aqueous milk constituents was observed 

in the gland (Wilde et al., 1995). These observations suggest that two possible local
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mechanisms exist for regulating milk synthesis and secretion within the mammary 

gland.

1.7 Autocrine regulation o f milk secretion

Milk production in the mammary gland is controlled by a balance of systemic and local 

factors. The key galactopoietic hormones in ruminants and non-ruminants are discussed in 

section 1.4. Local factors, produced by the mammary gland, act within the gland to 

regulate the rate of milk secretion. One such factor, and the one under discussion here, is 

F1L, the Feedback Inhibitor of Lactation (reviewed by Wilde & Peaker, 1996; Wilde et al., 

1997a).

1.7.1 Local regulation by milk removal

Acute regulation of milk secretion by milk removal is well documented. More frequent 

milk removal in both cows (Morag, 1973) and in goats increased the rate of milk secretion 

in the more frequently milked gland when thrice daily (Henderson et al., 1983) or hourly 

milking (Linzell & Peaker, 1971), was compared with twice daily milking. This increase in 

milk yield was seen only in the more frequently milked gland. Conversely, both once daily 

milking (Wilde & Knight, 1989) and incomplete milking (Wilde et al., 1989) reduced milk 

yield compared with twice daily milking. This unilateral effect was independent of systemic 

hormones as an increase in the rate of milk secretion was achieved in autotransplanted or 

denervated glands when more frequent milking was applied (Linzell & Peaker, 1971). Milk 

removal was required for milk yield to increase in the denervated gland, as massage of the 

gland without milk removal had no effect on the rate of milk secretion (Linzell & Peaker,
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1971). There were two possible reasons why milk removal was essential The first was the 

physical presence of stored milk. However, the increase in milk yield observed with more 

frequent milking was not associated with relief of pressure within the gland. When an inert 

sucrose solution was introduced into the gland immediately after milking, the rate of milk 

secretion still increased (Fleet & Peaker, 1978; Henderson & Peaker, 1984). This evidence 

supported the suggestion of Linzell & Peaker (1971) that the response to increased milking 

was, therefore, due to more frequent removal of a milk constituent.

In summary, the acute response of milk secretion rate to a change in frequency or 

completeness of milk removal is a local effect, seen only in the manipulated gland(s) and is 

related not to the physical presence (or otherwise) of milk, but to the removal of a milk 

constituent. These observations are compatible with the presence in milk of a chemical 

inhibitor whose removal regulates the rate of milk secretion.

1.7.2 Search for the chemical regulator

Goat milk fractions were tested for the presence of the putative inhibitor of milk secretion 

using mammary tissue explants in culture. Briefly, tissue explants were prepared from 

mid-pregnant rabbits and stimulated with lactogenic hormones to synthesise milk 

components. Milk fractions and, later, individual milk constituents were tested for their 

ability to inhibit casein and lactose synthesis. Initially crude milk fractions were screened; at 

this stage goat's milk was defatted and separated into two fractions - the caseins and the 

whey proteins. Inhibitory activity present in defatted milk was associated with the whey,
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which reversibly inhibited the synthesis of both casein and lactose in explant culture (Wilde 

et al, 1987a). The caseins, the most abundant milk proteins, did not affect synthesis of 

either casein or lactose. Further experimentation with the whey fraction indicated that the 

inhibitory activity was associated with a fraction of Mr 10,000 - 30,000, based on passage 

through or retention by ultrafiltration membranes. Intramammaiy injection of this crude 

whey fraction decreased milk secretion in both rabbits (Wilde et al, 1987a) and lactating 

goats (Wilde et al, 1988). This reduction in milk secretion in vivo confirmed the biological 

activity identified in culture bioassay.

The putative inhibitor of milk secretion was purified from the Mr 10,000 - 30,000 whey 

fraction. This whey fraction was resolved by FPLC anion exchange chromatography 

(Wilde et al, 1995). Eight major protein fractions were identified based on A28o absorbance 

of eluted material, and one fraction, the third to elute, was found to inhibit both casein and 

lactose synthesis to the same extent as the unresolved whey fraction. No other fraction had 

any consistent effect. Additionally, introduction of this purified inhibitor fraction into the 

teat duct of lactating goats decreased milk yield (Wilde et al, 1995). Again, these 

observations in vivo confirmed the biological activity identified in the bioassay system

For protein sequencing, anion exchange-purified inhibitory protein was purified further by 

repeating the anion exchange chromatography. Structural analysis revealed the inhibitor to 

be a small, acidic glycoprotein of Mr 7,600, whose N-temrinal amino add sequence bears 

no resemblance to any milk protein or to any known protein (Wilde et al, 1995). Based on
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its novelty, and its ability to regulate the rate of milk secretion within the mammary gland, 

the inhibitor of milk secretion has been termed FTL, the Feedback Inhibitor of Lactation. 

The Feedback Inhibitor of Lactation has been found in the milk of goats (Wilde et al., 1995) 

and cows (Addey et al., 1991b), and a protein fraction with similar activity has been 

identified in both humans (Prentice et al., 1989) and in a macropod marsupial (Hendry et 

al, 1992).

1.7.3 Autocrine control

FIL is synthesised by the secretory epithelial cells of the mammary gland. Synthesis was 

demonstrated in goat mammary cells cultured on a reconstituted extracellular matrix 

derived from the Engelbreth-Holm- Swarm (EHS) tumour of the mouse. Culture of 

mammary epithelial cells on this substratum allows formation of polarised three dimensional 

structures which are morphologically similar to alveoli in vivo. These three dimensional 

structures, termed mammospheres, synthesise milk proteins and secrete them vectoriaHy 

into a lumen formed within the structure (Barcellos-Hoff et al, 1989). In this culture 

system, FTL was secreted apically, along with other milk constituents, into the 

mammosphere lumen (Wilde et al., 1995). Synthesis of FIL by the cells on which it acts 

suggests that feedback inhibition of milk secretion is an autocrine process.

For FlL's action on the rate of milk secretion to be an autocrine process, a receptor for FIL 

must exist on the apical side of the mammary epithelial cell While such a receptor has not 

yet been isolated, there is increasing evidence that it exists. As discussed previously (section
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1.7.2), injection of FIL via the teat canal decreases the rate of milk secretion (Wilde et al., 

1995). Additionally, auto-immunisation of lactating goats against their own inhibitory 

protein was found to stimulate milk secretion (Wilde et al, 1996). An increase in milk 

secretion was only observed when antibodies against FIL were present in milk, and not 

when they were present in the bloodstream (Wilde et al., 1996). These observations infer 

that FIL acts after secretion and is susceptible to immunoneutralisation only when antibody 

is present in milk.

1.7.4 Influence o f gland anatomy

Differences in gland anatomy affect each gland's susceptibility to autocrine inhibition by 

FIL. Studies have demonstrated that the response to milking frequency is dependent on the 

site of milk storage within the gland: animals which store a large proportion of their milk in 

the alveoli (the site of autocrine inhibition) are more susceptible to autocrine feedback, and 

accordingly show a greater response to more frequent milk removal (Knight et al., 1989). 

Conversely, animals with large cisternal storage are more tolerant of once daily milking and 

less responsive to thrice daily milking (Dewhurst & Knight, 1992). These observations are 

consistent with the theory that FIL acts via the apical surface of the mammary secretory cell 

to regulate the rate of milk secretion (Henderson & Peaker, 1984; Wilde et al., 1995).

1.7.5 FIL's mechanism o f action

The way in which FIL regulates milk synthesis and secretion is as yet unknown, but 

evidence suggests that FTL reduces milk secretion as a direct consequence of inhibition of
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the secretory pathway. Pulse chase experiments in lactating mouse mammary acini 

demonstrated that FIL inhibited secretion of pre-formed [35S] labelled protein (Rennison et 

al., 1993). FIL's inability to inhibit ionomycin-stimulated secretion also suggests that FIL 

acts at an early stage of the secretory process (Rennison et al., 1993). Histological 

examination of cells exposed to FIL also indicated its effects were exerted early in the 

secretory process. Within 1 h of addition of FIL the Golgi apparatus became dispersed 

throughout the cytoplasm; however within 1 - 2 h of removing FIL, cells resumed their 

normal appearance (Rennison et al., 1993). Blockade of the secretory process may in turn 

account for FIL's effect on protein synthesis. It is thought that FIL may act in a manner 

similar to that of the drug Brefeldin A. This fungal drug is a known inhibitor of 

endoplasmic reticulum to Golgi secretory protein transport (Misumi et al., 1986; 

Lippincott-Schwartz et al., 1989) and inhibits both secretion and synthesis of milk protein 

in murine acini culture (Rennison et al., 1993). Due to its effects on membrane trafficking 

FIL may also have longer term effects on hormone receptor number and distribution 

(McKinnon et al., 1988; Bennett et al., 1990), with the result that this protein may also be a 

regulator of epithelial cell differentiation within the tissue. These longer term effects on 

differentiation are discussed in more detail in section 1.7.6.

1.7.6 Local regulation o f cell differentiation

The local increase in milk yield observed in response to increased milk removal from the 

gland is maintained for as long as frequent milking is applied and is sustained by 

developmental responses in the more frequently milked gland. Ten days of more frequent
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milking elicits a significant increase in secretory cell differentiation as measured by the 

activities of several key enzymes involved in milk synthesis, such as acetyl-CoA carboxylase 

(ACC), fatty add synthase (FAS) and galactosyltransferase (Wilde et al., 1987b). Li 

addition, prolonged frequent milking is accompanied by an increase in the number of 

secretory cells in the more frequently milked gland (Knight et al., 1990; Wilde et al., 

1987b). Conversely, reduced milking frequency or incomplete removal of milk from the 

gland results in a decrease in the degree of secretory cell differentiation, as indicated by 

decreased milk yield and lowered activities of key enzymes involved in milk synthesis 

(Wilde etal., 1989; Wilde & Knight, 1990).

More frequent milking has also been observed to have an effect on mammary gene 

expression. After 23 weeks of more frequent milking, higher activities of two key enzymes, 

FAS and ACC, were associated with an increase in abundance of messenger RNA (mRNA) 

for these proteins, indicating that the effects of more frequent milk removal are exerted at 

the level of gene expression (Travers & Barber, 1993; Wilde et al., 1990). This increase in 

abundance of FAS and ACC mRNA may be due to either an increase in transcription rate 

(Guyette et al., 1979), an increase in mRNA stabilisation (Eisenstein & Rosen, 1989) or a 

combination of both. These changes are hormone dependent, and in particular dependent 

on galactopoietic hormones such as prolactin (Matusik & Rosen, 1978; Teyssot & 

Houdebine, 1980). How these differential changes in gene expression are achieved is not 

clear but one possibility is that this is a consequence of local modulation of the cells' 

sensitivity to circulating hormones by up or down-regulation of cell surface hormone
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receptors (Wilde et al., 1990). Previously, increases in milking frequency have been shown 

to be associated with increases in the number of prolactin receptors in the more frequently 

milked gland (McKinnon et al., 1988). A whey fraction containing FIL has been found to 

down-regulate prolactin receptors in primary cell culture (Bennett et al., 1990), and this 

effect has recently been reproduced using purified FIL protein (Bennett, 1993). Differential 

changes in prolactin sensitivity elicited by FIL may, therefore, be competent to elicit 

unilateral changes in secretory cell differentiation and local modulation of milk protein gene 

expression.

1.8 Aims o f this thesis

The response of the mammary gland to changes in frequency or completeness of milk 

removal is mediated by FIL, the Feedback Inhibitor of Lactation. This milk constituent is 

synthesised by the mammary epithelial cell: once secreted it feeds back on the secretory cell 

to inhibit milk production. Alterations in the frequency and efficiency of milk removal are 

accompanied by changes in the number of prolactin receptors (and perhaps other hormone 

receptors) present in the manipulated gland. Studies in primary cell culture demonstrate 

that FIL may be competent to modulate the cells' sensitivity to circulating prolactin. In view 

of FIL's ability to down-regulate prolactin receptors, it is possible that this protein is a 

regulator of mammary differentiation. An objective of this project was to determine if there 

was indeed a causal link between FIL action and mammary gene expression. This thesis 

attempts to answer two questions: is frequency of milking able to regulate milk protein gene 

expression, and if so, is this effect due to FIL, the autocrine regulator of milk secretion?
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The developmental effects of frequent milking have been characterised incompletely. 

Previous studies have measured only the mRNA abundance and activity of the lipogenic 

enzymes fatty add synthase (FAS) and acetyl-CoA carboxylase (ACC). However FAS, 

ACC and milk protein genes are not necessarily coordinately regulated. Objective one was 

therefore to determine whether an increase in milking frequency is also competent to up- 

regulate milk protein gene expression.

FIL has been characterized by its effects on product secretion. Previous studies indicate 

that FIL modulates the sensitivity of the epithelial cell to circulating hormones. It is 

plausible that FIL may therefore influence gene expression, since this is primarily regulated 

by systemic hormones such as prolactin. No causative link has, however, been established 

between FTL and the developmental changes which accommodate each gland's response to 

a long-term change in milking frequency or effidency. The second objective of this study 

was to determine whether FIL may itself be responsible for the developmental response of 

the gland to alterations in milking frequency.

If FIL is able to regulate mammary cell differentiation in primary cell cultures, it 

nevertheless remains to be determined if the protein's concentration changes in vivo in a 

manner consistent with acute regulation of milk secretion or long term regulation of tissue 

development. A key determinant of FIL concentration in milk is likely to be the level of FIL 

gene expression in mammary tissue, but as yet nothing is known about the gene or its 

regulation. Therefore the third element of the project was to clone the FIL gene in goat
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mammary tissue and measure FIL gene expression in vivo and in primary cell culture. In 

particular we wislied to determine if FIL is coordinately regulated with other milk proteins 

and if, in addition, FIL gene expression is itself under autocrine control.
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2.1 MATERIALS

2.1.1 Chemicals

General laboratory chemicals were supplied by Sigma (Poole, UK), BDH (Poole, UK) 

and Boehringer Mannheim (Lewes, UK) unless otherwise indicated. Restriction and 

modifying enzymes were supplied by Boehringer Mannheim, Gibco BRL (Paisley, UK), 

Pharmacia (St. Albans, UK) and Promega (Southampton, UK).

For procedures involving the manipulation of nucleic acids, all chemicals were 

molecular biology grade, and water was double distilled, deionised molecular biology 

grade from BDH. Cell culture media, serum, trypsin and Versene were purchased from 

Gibco BRL, hormones, trypsin inhibitor and antibiotics were obtained from Sigma. 

Collagenase (Worthington type HI, 151 U/mg) was supplied by Lome Laboratories 

(Reading, UK), hyaluronidase (from ovine testes; 1000 U/mg) was from Boehringer 

Mannheim and Dispase was supplied by Universal Biologicals (London, UK).

Engelbreth-Holm-Swarm tumour raised in mice (Kleinman et al., 1986) was supplied 

by D Blatchford at HRI. The ovine a si-casein cDNA probe was a kind gift from Dr J 

C Mercier, INRA, Jouy-en-Josas, France and the caprine a-lactalbumin and rat 28S 

RNA cDNA probes were provided by Drs M Barber and M Travers at HRI. The ovine 

(3-lactoglobulin cDNA was supplied by Pharmaceutical Proteins Limited (Roslin, UK). 

Bovine a-FIL antibody was provided by F Campbell, HRI.
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2.1.2 Sterilisation o f media and equipment

All equipment and solutions for manipulation of nucleic acids were rendered nuclease 

free by autoclaving at 121°C and 15 psi for 20 min. Equipment and media for cell 

culture were sterilised as above. Media containing thermolabile components, such as 

amino acids, were filter sterilised by passage through a 0.2 pm filter (Gelman Sciences, 

Southampton, UK).

2.1.3 Radiochemicals

[a-32P]dCTP, [y-32P]ATP and [ot-35S]ATP were from NEN Dupont (Stevenage, UK) 

or ICN Flow (Irvine, UK). The activity of samples was determined by Cerenkov 

counting (50% efficiency). L-[35S]methionine (cell labelling grade) was also obtained 

from NEN Dupont.

2.1.4 Animals

British Saanen goats were from the Institute herd and were routinely milked twice daily 

at 0800h and 1600h. Individual gland milk yield and time of milking were recorded. 

Animals were fed 1.5-1.8 kg concentrates daily (Goat mix No. 1, Edinburgh School of 

Agriculture, Edinburgh, UK), with half the ration given at each milking. Hay and 

water were available ad libitum.
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2.2 PREPARATION AND CHARACTERISATION OF RNA

2.2.1 Mammary biopsy

Biopsies of mammary parenchyma were obtained under sodium pentobarbitone 

anaesthesia as described by Knight & Peaker (1984). Tissue was taken from both 

glands of each goat 9 days after parturition (pre-treatment, frequent milking study 

only), and following six weeks of treatment (post-treatment, all groups). Biopsy 

samples were rapidly trimmed to leave only undamaged parenchyma and immediately 

placed in liquid nitrogen. Further tissue samples were obtained under terminal 

anaesthesia.

2.2.2 Isolation o f total RNA

Total RNA was prepared using a modification of the guanidium isothiocyanate/caesium 

chloride method as described by Chirgwin et al. (1979). Briefly, the tissue (typically 

0.5 - 1.0 g) was ground to a fine powder in liquid nitrogen and placed in GIT (50% 

(w/v) guanidium isothiocyanate, 0.05 M Tris-HCl pH 7.5, 0.01 M EDTA pH 7.5, 5% 

(w/v) Sarkosyl (BDH), 1% (v/v) (3-mercaptoethanol). The DNA was sheared by 

sequential passage through 21 and 23 gauge needles, and insoluble calcium phosphate 

was removed from the preparation by centrifugation (3,000g, 20°C, 10 min). The 

supernatant was layered on a 1.2 ml caesium chloride cushion (5.7 M CsCl in 0.1 M 

EDTA, pH 7.5), and centrifuged at 149,000g, 20°C for 18 h. The RNA pellet was 

resuspended in 1 ml of water and extracted with an equal volume of 

chloroform:butanol (4:1 v/v). The organic layer was back-extracted with an equal 

volume of water, the aqueous layers pooled and the RNA precipitated at -20°C, with
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the addition of 0.1 volumes of 3 M sodium acetate pH 6.0 and 2.5 volumes of absolute 

alcohol. RNA was subsequently recovered by centrifugation (12,000g, 4°C, 20 min), 

lyophilised, resuspended in 200 pi water and stored at -70°C. RNA concentration was 

determined spectrophotometrically (1 OD260 = 40pg RNA). An A26o:A28o value in the 

range 1.8 - 2.0 indicated the RNA preparation was free of protein and DNA 

contamination.

2.2.3 Electrophoresis o f RNA

RNA was separated on the basis of size by electrophoresis in a 1.2% (w/v) agarose gel 

containing 2.2 M formaldehyde in MOPS buffer (0.2 M morpholinopropane sulphonic 

acid, 80 mM sodium acetate, 10 mM EDTA pH 7.0) with 0.5 pg/ml ethidium bromide. 

The RNA was resolved for 3 h at approximately 50 volts. Electrophoresed RNA was 

visualised on a short-wave UV transilluminator and photographed using a Polaroid land 

camera and Polaroid type 665 film.

2.2.4Northern blotting

A known concentration of RNA (5-40 pg) was resolved as described in section 2.2.3 

and transferred to nylon membrane (Biotrans, ICN, Irvine, California) by capillary 

blotting in lOx SSC (1.5 M NaCl, 0.15 M sodium citrate, pH 7.0) for a minimum of 12 

h, as described by Davis et al. (1986). Once transfer was complete the RNA was 

bound to the nylon membrane using a UV crosslinker (Spectrolinker, Spectronics 

Corp., New York, USA) according to the manufacturer’s instructions.
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2.2.5 [a-32P] labelling o f double-stranded DNA in the presence o f melted agarose 

DNA was resolved on a low-melting-temperature agarose gel (1% w/v) in Tris-acetate 

electrophoresis buffer (40 mM Tris-HCl, 20 mM sodium acetate, 1 mM EDTA, pH 

7.2). The band of interest was excised, and the DNA labelled with [a-32P] dCTP using 

the Klenow fragment of E. coli DNA polymerase I (Feinberg & Vogelstein, 1984). 

The labelling reaction, comprising 12.5 ng of DNA, 2.5 pi of oligo labelling buffer 

(OLB), 0.5 pi of 10 mg/ml BSA, 12.5 pCi [a-32P]dCTP at 3000 Ci/mmol and 5 units 

of Klenow fragment, was incubated at 22°C for 2.5 - 12 h. OLB contained 250 mM 

Tris-HCl pH 8.0, 25 mM MgCl2, 5 mM p-mercaptoethanol, 2 mM each of dATP, 

dCTP, dGTP and dTTP, 1 M Hepes pH 6.6 and 1 mg/ml hexadeoxyribonucleotides 

(Pharmacia). Unincorporated nucleotides were removed by gel filtration through a 1 

ml column of Sephadex G50 (Pharmacia) in NE (50 mM NaCl, 1 mM EDTA, pH 7.0). 

Probes were labelled to high specific activity, typically lxlO6 counts per ml of 

hybridisation buffer.

2.2.6 Hybridisation conditions

Northern blots were hybridised at 42°C, in standard hybridisation buffer containing 

50% (v/v) formamide, to either a-lactalbumin or a si-casein cDNA probes, labelled as 

described in section 2.2.5. Nylon membranes were incubated in pre-hybridisation 

buffer for a minimum of 4 h. Formamide pre-hybridisation buffer contained 50% (v/v) 

deionised formamide, 5x SSC (prepared from 20x stock: 3 M NaCl, 0.3 M sodium 

citrate, pH 7.0), 0.1% (w/v) SDS, 200 pg/ml denatured salmon sperm DNA, 5x 

Denhardt’s (prepared from a 50x stock containing 1% (w/v) Ficoll (Pharmacia), 1%
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(w/v) polyvinyl pyrrolidone, 1% (w/v) bovine serum albumin) and 0.05% (w/v) 

pyrophosphate tetrasodium salt. The labelled probe was denatured by heating to 100°C 

for 5 miu and hybridised to membrane bound RNA in pre-hybridisation buffer for 16 - 

24 h at 42°C. Membranes were washed in 2x SSC/0.1% SDS (w/v) three times at 

room temperature, followed by a final wash in 0.2x SSC/0.1% (w/v) SDS at 50 - 60°C.

2.2.7 Autoradiography

Nylon membranes were heat-sealed in plastic bags and exposed to X-ray film (Genetic 

Research Instrumentation Ltd.) with intensifying screens at -70°C. Films were 

developed after exposure times of 2 h to 14 days. The resulting autoradiographs were 

scanned using a BioRad Densitometer and ID software (BioRad Laboratories, Herts., 

UK).

2.2.8 DNA assay

The DNA content of samples was assessed by a fluorimetric method as described by 

Labarca & Paigen (1980) using calf thymus DNA (1 mg/ml stock) as the DNA 

standard. Cell lysates were prepared by sonication (Kontes KT50 cell disrupter, setting 

20, 15 s) in DNA assay buffer (2 M NaCl, 0.1 M NaH2P0 4 , pH 7.4) and an appropriate 

volume removed for assay. Test samples were compared with DNA standards within a 

range of 1-10 pg. All assay volumes were made up to 1 ml with DNA assay buffer and 

1 ml fluorimetric reagent was added. The fluorimetric reagent, bisbenzimidazole, was 

prepared as a 1 mg/ml stock in water and diluted to 3 pg/ml with DNA assay buffer 

immediately prior to use. After 20 min at room temperature, fluorescence was
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measured on a Hoeffer TK100 fluorimeter at 50% sensitivity. A typical standard curve 

is shown in figure 2.1.

2.3 PROTEIN PURIFICATION

2.3.1 Preparation o f a Mr 6,000 - 30,000 goat whey fraction

A Mr 6,000 - 30,000 fraction was prepared essentially as described by Wilde et. al 

(1987). 1 litre of goat’s milk was collected at the morning milking and treated with 

protease inhibitors (2g e-amino n-caproic acid and 0.348g phenylmethylsulphonyl 

fluoride in 10 ml ethanol) Milk was defatted by centrifugation (2,200g, 10°C, 10 min) 

and filtration through glass wool. The defatted milk was processed further by 

centrifugation (30,000#, 10°C, 2 h and the clear supernatant constituting the whey 

fraction was filtered through a 0.2 pm filter (Whatman International, Maidstone, UK), 

followed by ultrafiltration with filters with a molecular weight cut-off of Mr 30,000 

(Minitan filtration system, Millipore, Bedford, USA). The filtrate was dialysed against 

water for 24 h at 4°C using dialysis tubing with a nominal molecular weight cut-off of 

Mr 6,000 - 8,000 (Spectrapor, Pierce & Warriner, Chester, UK), lyophilised and stored 

at -20°C.

2.3.2 Isolation o f the feedback inhibitor o f lactation (FIL)

The Mr 6,000 - 30,000 fraction of caprine whey proteins was resolved by anion 

exchange chromatography using a Mono Q HR 10/10 column (FPLC System, 

Pharmacia, Uppsala, Sweden), 10 mM bisTris propane pH 7.0 and a 0 - 1.0 M sodium 

acetate gradient (figure 2.2) as described by Wilde et al. (1995). The protein fraction
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was dialysed against water for 24 h at 4°C, lyophilised and stored at - 20°C. 

Lyophilised FIL was reconstituted in 10 mM Hepes, pH 7.4 and used at a protein 

concentration of 8  pg/ml.

2.3.3 Isolation o f total whey proteins

Goat’s milk was treated with protease inhibitors and defatted as described in section

2.3.1. Defatted milk was centrifuged (30,000g, 20°C, 2 h) and the clear supernatant 

constituting the whey fraction filtered through a 0.2 pm filter (Whatman). The whey 

fraction was dialysed against water for 24 h at 4°C using dialysis tubing with a nominal 

molecular weight cut-off of Mr 6,000 - 8,000 (Spectrapor) lyophilised and stored at 

-20°C. Lyophilised whey was reconstituted in 10 mM Hepes, pH 7.4 and used at a 

protein concentration of 8  pg/ml.

2.3.4 Protein assay

The protein content of samples was assessed as described by Bradford (1976), using 

bovine serum albumin (0. lmg/ml) as the protein standard. Dye binding reactions were 

carried out in microtitration plates, with standards (0 - 8  pg) and unknowns in a final 

volume of 100 pi. 240 pi of fourfold diluted Bradford reagent (BioRad Laboratories 

Ltd) was added to each sample well and colour formation measured at 620 nm. A 

standard curve is shown in figure 2.3.
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2.4 CELL CULTURE

2.4.1 Preparation o f goat mammary epithelial cells

Goat mammary epithelial cells were prepared essentially as described by Hansen & 

Knudsen (1991). Mammary tissue was obtained aseptically from non-lactating, late 

pregnant goats (day 108 of pregnancy). Tissue was immediately placed in Hanks 

balanced salt solution (HBSS), pH 7.4. Connective tissue and fat were removed by 

dissection in a sterile cabinet. Tissue was then cut into pieces with an approximate size 

of 0.5 cm2. Tissue (30g) was then placed in digestion medium, HBSS pH 7.4, 

containing 1.2 mg/ml collagenase, 0.5 mg/ml hyaluronidase, 1 mg/ml glucose, 0.12 

mg/ml penicillin, 0.1 mg/ml kanamycin, 2.5 pg/ml amphotericin B, 5 pg/ml insulin, 1 

pg/ml hydrocortisone, 40 mg/ml bovine serum albumin, lx MEAA (Minimum Essential 

Amino Acid solution, Gibco BRL), 2.5 pg/ml MgSC>4, 2.2 pg/ml CaCl2 and 2 mM L- 

glutamine. Tissue pieces were injected with digestion medium until distended and 

incubated in an orbital incubator ( 1 2 0  rpm) for 2 h at 37°C. Single cells and cell debris 

were removed by centrifugation (80g, 7 min) and discarded. Undigested tissue was 

minced to a pulp with curved scissors and incubated for at least 2  h in digestion 

medium. Cells were subsequently collected by centrifugation (80g, 7 min), and 

undigested tissue removed by filtration through 150 pm nylon mesh. Cells were 

washed in HBSS containing 1 0 0  pg/ml trypsin inhibitor, 20 pg/ml DNAse I, 0.12 

mg/ml penicillin, 0.1 mg/ml kanamycin, 2.5 pg/ml amphotericin B, 1 pg/ml 

hydrocortisone, 5 pg/ml insulin, lx MEAA, 2.5 pg/ml MgS04, 2 . 2  pg/ml CaCl2, 2  mM 

L-glutamine and 5.4 mM Hepes, pH 7.4. Cells were fractionated by Percoll density 

gradient centrifugation to obtain an epithelial cell-rich fraction. This cell fraction was
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cultured on either EHS matrix or plastic as described in sections 2.4.7 and 2.4.8, or 

cryopreserved in foetal calf serum (FCS) containing 10% (v/v) DMSO at a density of 1 

x 1 0 7 cells/ml.

2.4.2 Recovery ofprimary cells from  liquid nitrogen storage

Cells were removed from liquid nitrogen and thawed at 37°C. The cells were 

transferred to a sterile plastic tube and 15 ml of culture medium added, dropwise. Cells 

were harvested by centrifugation (80g, 4°C, 5 min), the supernatant discarded and the 

cell pellet resuspended in culture medium.

2.4.3 Estimation o f cell number

Cell viability was assessed by exclusion of the dye trypan blue (Freshney, 1983) and 

cell number was determined using a Neubauer counting chamber.

2.4.4 Preparation o f culture medium

Culture medium was prepared using Hams F12 and Medium 199 (1:1 v/v). Medium 

contained 2 mM sodium acetate, lOmM Hepes, pH 7.4, 5 pg/ml insulin, 1 pg/ml 

hydrocortisone, 3 |Lig/ml prolactin, 2.5 pg/ml transferrin, 200 units penicillin, 200 pg/ml 

streptomycin and 2.5 pg/ml amphotericin B. Culture medium for cells grown on 

plastic was as above without transferrin and prolactin, but with the addition of 1 0  ng/ml 

epidermal growth factor, horse serum (2 0 %) and FCS (5%).
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2.4.5 Preparation o f cell culture reagents

Cortisol (100 pg/ml) was prepared by dissolving 1 mg of hydrocortisone-21-acetate in 

1 ml of absolute alcohol and diluting to 10 ml with distilled water. Prolactin (100 

|ug/ml) was prepared by dissolving 1 mg of prolactin in 250 fil of 270 mM Hepes, pH

8.0 before dilution to 10 ml with distilled water. Insulin (100 pg/ml) was prepared by 

dissolving 1 mg of insulin in 1 ml of distilled water with the addition of 10 pi of 0.34 M 

NaOH, before dilution to 10 ml with distilled water. Transferrin (1 mg/ml) was 

prepared by dissolving 1 mg of transferrin in 1 ml distilled water and epidermal growth 

factor (10 pg/ml) by dissolving 100 pg of epidermal growth factor in 10 ml of 0.154 M 

NaCL

2.4.6 Cell culture conditions

Cells were cultured in 5% C02/ 95% air at 37°C and 100% humidity.

2.4.7 Cell culture on plastic

Cells were plated at a density of 8  x 105 per 35 mm well in 4 ml of medium Horse 

serum (20%) and FCS (5%) were present throughout. The medium was replaced every 

two days. Cells were recovered first by incubation with Versene (5 min, 37°C), 

followed by treatment with trypsin (1 ml per well) for 5 - 15 min at 37°C. Harvested 

cells were pelleted by centrifugation ( 1 2 ,0 0 0 #, 4°C, 5 min), snap frozen and stored in 

liquid nitrogen. Alternatively, cells were immediately re-plated on EHS matrix (section 

2.4.8).
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2.4.8 Cell culture on EHS matrix

Culture wells (35 mm diameter) were coated with 0.25 ml of ice-cold EHS matrix 

which was allowed to gel at 37°C. Cells were plated at densities of 8  x 1 0 5 or 1.6 x 1 0 6 

cells per well in 4 ml of culture medium. Horse serum (20%) and FCS (5%) were 

initially present in the culture medium to aid cell attachment to the matrix. This 

medium was replaced with serum free medium after 24 h, and changed daily thereafter. 

Cells were recovered by treatment with Dispase (1 ml per well) for 15 min at 37°C. 

Harvested cells were pelleted by centrifugation (12,000g, 4°C, 5 min), snap frozen and 

stored in liquid nitrogen.

Cells were cultured on EHS matrix as described for 6  days. Cultured cells were 

exposed to FIL ( 8  fig/ml), total whey protein ( 8  fig/ml), brefeldin A (5 ng/ml) or 

actinomycin D (2.5 |ig/ml) for the last 4, 24 or 72 h of culture. Exact conditions are 

discussed further in section 4.2.

2.4.9 RNA isolation from cultured cells and northern analysis

Total RNA was prepared from cultured cells using an Ultraspec II total RNA isolation 

kit (Ames Biotech, Witney, UK), according to the manufacturer’s instructions. 

Electrophoresis, northern blotting and hybridisation with a-lactalbumin and a si-casein 

cDNA probes were performed as described previously (sections 2.2.3 - 2.2.7). The rat 

28S RNA and the ovine (3-lactoglobulin cDNA probes were labelled using the Prime-a- 

gene labeling system (Promega) according to manufacturer’s instructions.
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2.4.10 Protein synthesis and secretion in culture

Protein synthesis and secretion were determined after incorporation of L-[35S] 

methionine using a continuous labelling protocol. Cells were incubated with 150 

pCi/ml L-[35S] methionine (cell labelling grade, specific activity >1000 pCi/mmol) for 4 

h on day 6  of culture after various periods of incubation (24 or 72 h) with or without 8  

pg/ml goat FIL or 8  pg/ml total whey protein. Prior to radiolabelling, cells were 

cultured for 1 h in methionine-free Minimal Essential Medium containing hormones as 

discussed in section 2.4.4. After labelling, the culture medium was removed and each 

well was washed twice in Hanks balanced salt solution (HBSS), pH 7.4. Cells were 

then incubated in HBSS containing 2.5 mM EGTA for 2 0  min at 37°C. The EGTA 

extract was removed and cells were recovered by treatment with Dispase ( 1  ml per 

well) for 15 min at 37°C.

2.4.11 Measurement o f [  35S] - labelled protein

Medium samples and EGTA extracts were assayed for incorporation of radiolabel by 

TCA precipitation (Hurley et al., 1994). Cell lysates were prepared by sonication 

(Kontes KT50 cell disrupter, setting 20, 15 s) in DNA assay buffer (2 M NaCl, 0.1 M 

NaH2P04, pH 7.4). Total radiolabel incorporated in cellular protein, proteins secreted 

into medium and EGTA extracts was measured by precipitation at 4°C with 10% (w/v) 

TCA. The precipitate was collected by centrifugation (12,000g, 4°C, 5 min) washed 

twice with 1% (w/v) TCA and dissolved in 200 pi of 50 mM Tris-HCl pH 7.5 for 

counting of radioactivity. The DNA content of the cell lysates was assessed by a 

fluorimetric method as described in section 2 .2 .8 .

53



Chapter Two

2.5 ANTIBODY PREPARATION

2.5.1 Preparation o f bovine a-FIL antibody

Bovine FIL was purified by anion exchange chromatography from a Mr 6,000 - 30,000 

fraction of bovine whey proteins (Addey et al., 1991b). Freeze-dried FIL was 

dissolved in 0.1 M sodium phosphate buffer, pH 6 .8 , and conjugated to bovine albumin 

by incubating equal amounts of the two proteins with glutaraldehyde as described by 

Wilde et al. (1996b), and used to immunise a female New Zealand white rabbit. A 

mixture of Pluronic L121 (ICI Chemicals, Runcorn, Cheshire, UK), squalene and 

Tween 80 (12.5:25:1, v/v) was used as an adjuvant (Wilde et al., 1996b). Two further 

injections at four weekly intervals were used to boost the antibody titre and the rabbit 

was bled 1 0  days - 2  weeks after each immunisation.

2.5.2 Purification o f bovine a-FIL antibody

IgG was isolated from serum by ammonium sulphate precipitation (Harlow & Lane, 

1988). The IgG fraction was purified by affinity chromatography on Protein A agarose 

beads using a modification of the method of Ey et al. (1978), as described by Harlow 

& Lane (1988). Briefly, 2 ml of the IgG fraction was loaded onto a 2 ml column of 

Protein A agarose. Following sequential washes with 20 ml of 100 mM Tris-HCl pH

8.0 and 20 ml of 10 mM Tris-HCl pH 8.0, the purified IgG fraction was eluted from 

the column with 100 mM glycine-HCl, pH 3.0. The eluate was collected in 500 (il 

fractions, each fraction was assayed for protein content (section 2.3.3) and the protein- 

containing fractions were pooled. Purified antibody was stored in aliquots at -20°C.
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2.5.3 SDS-PAGE under reducing conditions

Protein samples were analysed by SDS-polyacrylamide gel electrophoresis using the 

SDS-discontinuous buffer system of Laemmli (1970). 12% (w/v) polyacrylamide slab 

gels were prepared in 37 mM Tris-HCl pH 8 . 8  containing 0.1% (w/v) SDS. Gels were 

polymerised by the addition of 0.05% (w/v) ammonium persulphate and 0.05% (v/v) 

TEMED. Samples were diluted 1:1 with 2x concentrated electrophoresis sample 

buffer (1.25 M Tris-HCl pH 6 .8 , 4% (w/v) SDS, 10% (v/v) glycerol, 10% (v/v) (3- 

mercaptoethanol and 0 .0 0 2 % (w/v) Bromophenol blue) and heated at 100°C for 3 min 

prior to loading on the gel. Electrophoresis was carried out at 35 mA for 1 h in 

running buffer containing 0.25 M Tris-HCl pH 8.2, 1.92 M glycine and 1% (w/v) SDS. 

Proteins were detected by staining gels with Coomassie Blue in 40% (v/v) methanol 

and 10% (v/v) acetic acid, and destained in several changes of 7% (v/v) methanol/ 7% 

(v/v) acetic acid.

2.5.4 Immunoblotting

Immunoblotting was performed as described by Towbin et al. (1979). Protein samples 

were separated by SDS-PAGE and transferred to Immobilon-P nylon membrane 

(Millipore) using a BioRad Trans-blot apparatus. Electrophoretic transfer was carried 

out at constant voltage (100V) for 1 h in transfer buffer containing 25 mM Tris-HCl 

pH 8.3, 192 mM glycine, 2 0 % (v/v) methanol and 0.02% (w/v) SDS. Following 

transfer, free protein binding sites were blocked overnight at 4°C in blocking buffer 

(3% BSA in PBS). The primary antibody (bovine a-FIL) was diluted 1:500 in 

blocking buffer and incubated with the blot for 2  h at room temperature with gentle
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shaking. The blot was washed 5 times (5 min per wash) in PBS. The secondary 

antibody (anti-rabbit IgG alkaline phosphatase conjugate) was diluted 1:7,500 in 

blocking buffer and incubated with the blot for 2  h, again at room temperature with 

gentle shaking. The blot was washed as before, immersed in enzyme substrate, 5- 

bromo-4-chloro-3-indolyl phosphate (BCIP, Gibco BRL) in combination with nitroblue 

tetrazolium (NBT, Gibco BRL) and allowed to develop in the dark until bands were 

visible (approximately 5 min). The reaction was terminated with distilled water washes 

and the filter was air-dried.

2.6 IMMUNOLOGICAL SCREENING

2.6.1 Media

E. coli was grown in LB media containing 1% (w/v) Bacto-tryptone (Oxoid), 0.5% 

(w/v) Bacto-yeast extract (Oxoid) and 1% (w/v) NaCl, adjusted to pH 7.4 with 

NaOH. LB solid media was supplemented with 1.5% (w/v) Bacto-agar (Oxoid), while 

top agar contained 0.7% (w/v) Bacto-agar. SOB contained 2% (w/v) Bacto-tryptone, 

0.5% (w/v) Bacto-yeast extract, 10 mM NaCl and 2.5 mM KC1, and was supplemented 

with 20 mM Mg2+ prior to use. A 2 M stock of Mg2+ was prepared by combining 1 M 

MgS04 and 1 M MgCl2 and sterilised by filtration (Maniatis et al., 1989). SOC, which 

was used for transformation and preparation of competent cells (2.7.3), is SOB with 

the addition of 2 mM glucose (Maniatis et al., 1989). A 2 M glucose stock was 

prepared separately, sterilised by filtration, and added asepticaUy immediately prior to 

use. M9 minimal media for growth of E. coli JM109 was prepared as described by 

Maniatis et al. (1989). M9 minimal media was supplemented with 1.5% (w/v) Bacto-
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agar and after autoclaving, was further supplemented with 0.2% (w/v) glucose, 0.1 

mM CaCl2, 1 mM MgS04 and 10 pg/ml thiamine.

2.6.2 Preparation o f E. coli lysates

100 ml of LB medium was inoculated with strain Y1090 E. coli and incubated at 37°C 

until saturation was achieved. Cells were harvested by centrifugation (5,000g, 4°C 1 0  

min) and resuspended in 3 ml TE (50 mM Tris-HCl, pH 8.0, 10 mM EDTA). The cell 

suspension was freeze-thawed several times and then sonicated (Kontes KT50 cell 

disrupter) on frill power for 6  periods of 2 0  s at 0°C. The extract was centrifuged 

( 1 2 ,0 0 0 g, 4°C, 10 min) and the supernatant was removed and stored at -20°C.

2.6.3 Absorption o f antibody with E. coli lysates

The antibody to be used for immunoscreening was diluted 1:10 with blocking buffer 

(3% BSA in TNT; TNT contained 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% 

(v/v) Tween 20). 25 pi of E. coli lysate was added to each ml of antibody solution and 

incubated at room temperature for 4 h. The absorbed antibody was stored at 4°C, with 

the addition of 0.05% (w/v) sodium azide, until required.

2.6.4 Preparation o f plating bacteria

E. coli strains Y1090 or Y1088 were grown overnight at 37°C in LB medium 

supplemented with 0.2% (w/v) maltose, 10 mM MgS04 and 50 pg/ml ampicillin. On 

the following day, 1 ml of the overnight culture was transferred to 10 ml of fresh LB 

again supplemented with 0.2% (w/v) maltose, 10 mM MgS04 and 50 pg/ml ampicillin.
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The culture was incubated at 37°C until OD550 = 0.5 ± 0.1. Plating bacteria were 

stored at 4°C and used on the day of preparation.

2.6.5 Library preparation

A random primed goat mammary cDNA library was prepared from lactating goat 

poly (A) RNA in Xgtll. The library contained in excess of 106 recombinants with an 

average insert size of 300 base pairs. The library was provided by Dr M Travers, HRI.

2.6.6 Immunoscreening

Library screening for specific antigen-producing clones was carried out essentially as 

described by Young & Davis (1983) with some minor modification. Recombinant 

phage were plated on a lawn of E. coli Y1090. Plates were incubated at 42°C for 3 - 4 

h to allow expression of fusion proteins. A dry nitrocellulose filter previously saturated 

with 10 mM isopropyl-(3-D-thiogalactopyranoside (IPTG) was placed on each plate, 

and plates and filters were incubated at 37°C for 3 - 8  h. The position of the filter was 

marked with a needle, removed, and washed twice in TNT for 10 min. Free protein 

binding sites were blocked by incubation in blocking buffer (3% (w/v) BSA in TNT) 

for a minimum of 1 h at room temperature with gentle shaking. Following the blocking 

step the first antibody (bovine a-FIL) was diluted to a final concentration of 1:500 in 

blocking buffer and incubated, at room temperature, again with gentle agitation, for 2  

h. Filters were washed three times (10 min per wash), first in TNT containing 0.1% 

(w/v) BSA, then in TNT containing 0.1% (w/v) BSA and 0.1% (v/v) Nonidet P40, 

followed by a final wash in TNT containing 0.1% (w/v) BSA. The second antibody
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(anti-rabbit IgG alkaline phosphatase conjugate) was diluted 1:7,500 in blocking buffer 

and incubated with the filters for 1.5 h at room temperature with gentle agitation. 

Following incubation with the second antibody, the filters were washed as before. 

Filters were submerged in enzyme substrate, 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP, Gibco BRL) in combination with nitroblue tetrazolium (NBT, Gibco BRL) and 

colour development was allowed to proceed in the dark (approximately 5 min). The 

reaction was terminated by washing the filters in distilled water and air drying. Possible 

positives were located and removed from the original plates and the recombinants were 

plaque purified by repeating the same screening procedure until all plaques were 

positive.

2.6.7 Selection o f recombinants o f interest

Plaques of interest were picked from agar plates using the wide end of a sterile glass 

pasteur pipette. The plugs of agar were placed in 1 ml of A,-diluent ( 2 0  mM Tris-HCl, 

pH 7.4, 1 0 0  mM NaCl, 1 0  mM MgS04) containing a few drops of chloroform Phage 

were eluted from the plug at 4°C for several hours and cell debris was removed by 

centrifugation (3,000g, room temperature, 10 min).

2.6.8 Preparation o f phage lysates

Phage lysates were prepared as described by Davis et al (1986). Bacteriophage of 

interest were plated at an appropriate dilution in order to obtain individual, well 

isolated plaques. An agar plug containing a single plaque was placed in a 50 ml plastic 

tube containing 1 0  ml of LB supplemented with 10 mM MgS04 200 fil of E. coli
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Y1088 plating cells (prepared as described in section 2.6.2) were added and the 

cultures were incubated at 37°C, with vigorous shaking for 6  -12 h, or until visible lysis 

occurred. After lysis, 100 pi chloroform was added and cultures were incubated at 

37°C with shaking for 2 min. Bacterial debris was removed by centrifugation (3,000g, 

room temperature, 10 min) and the supernatant was removed to a fresh tube. The 

lysates were supplemented with 1 0  mM MgSC>4, titred by serial dilution and plating, 

and stored at 4°C.

2.6.9 Isolation o f DNA from  phage lysates

DNA was prepared from phage lysates as described by Davis et al (1986). 320 pi of 

fresh DNase I (lmg/ml in X diluent) and 10 ml of A, diluent were added to each 1 0  ml 

of lysate, and incubated at room temperature for 15 min. Phage were precipitated by 

addition of 2 ml of 5 M NaCl and 2.2 g of solid polyethylene glycol (PEG) 6000 and 

incubation on ice for 15 min. The phage pellet was recovered by centrifugation 

( 1 2 ,0 0 0 g, 4°C, 1 0  min), resuspended in 300 pi of X diluent and transferred to a 

microcentrifixge tube. Protein was removed from the preparation by extraction with an 

equal volume of chloroform 15 pi of 0.5 M EDTA pH 8.0 and 30 pi of 5 M NaCl 

were added to the aqueous phase and the mixture was extracted with 350 pi of Tris- 

saturated phenol. The phases were separated by centrifugation (12,000g, room 

temperature, 5 min) and the upper aqueous phase was removed to a fresh microtube. 

DNA was precipitated on wet ice by the addition of 875 pi of ethanol. DNA was
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recovered by centrifugation ( 1 2 ,0 0 0 g, 4°C, 5 min) rinsed with 150 pi of 80% (v/v) 

ethanol, dried under vacuum and resuspended in 50 pi of water.

2.6.10 Restriction enzyme digestion

Restriction endonuclease digestion of DNA was carried out according to the 

manufacturer’s instructions. A typical digestion mixture contained 0.1 - 5 pg of DNA, 

1 0  pi of the appropriate lOx buffer (supplied with the restriction enzyme), 1 0  pi of 1 

mg/ml BSA and 0.2 - 10 units of restriction endonuclease in a total volume of 100 pi. 

Digests were incubated at 37°C for 1 - 12 h, depending on the amount of enzyme 

added.

2.6.11 Electrophoresis o f DNA

DNA was separated by electrophoresis through agarose gels containing 0.7% - 1.0% 

(w/v) agarose in TBE buffer (50 mM Tris-HCl, pH 7.5, 50 mM Boric acid, 10 mM 

EDTA) with 0.5 pg/ml ethidium bromide. Electrophoresis was carried out for 2 h in 1 

x TBE at approximately 70 volts. Electrophoresed DNA was visualised on a short

wave UV transilluminator and photographed using a Polaroid land camera and Polaroid 

type 665 film.

2.7 PREPARATION FOR DNA SEQUENCING

2.7.1 Polymerase chain reaction

Amplification reactions were performed using the primers BG1 and BG2 and template 

DNA prepared from phage lysates. The upstream primer, BG1 (5’
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ATATGGGGATTGGTGGCGACGACTCCTGGA 3’) and downstream primer, BG2 

(5’ GACACCAGACCAACTGGTAATGGTAGCGAC 3’) were complementary to 

nucleotide sequences 2969-2998 and 3035-3064 respectively of the (3-galactosidase 

gene of Xgtll. The amplification mixture contained 1 ng of template DNA, 0.2 pM 

each primer, 10 pi of lOx buffer (supplied with the enzyme), 2.5 mM MgCl2 and 2 mM 

of each deoxynucleoside triphosphate, in a total volume of 100 pi The mixture was 

denatured at 95°C for 5 min, and after cooling to 72°C, 2.5 units of Thermus aquaticus 

(Taq) DNA polymerase were added. The reaction mix was overlaid with 100 pi of 

fight mineral oil and amplified using a Crocodile II thermocycler (Appfigene, Durham, 

UK). The thermocycler was programmed for 45 cycles of 30 s at 93°C, 30 s at 55°C 

and 30 s at 72°C, using the fastest possible transition times, followed by a final 10 min 

at 72°C. PCR products were analysed by electrophoresis in 1% (w/v) agarose gels 

containing 0.5 pg/ml ethidium bromide.

2.7.2 Ligation o f amplified DNA into pGEM Sxf

DNA amplified using the polymerase chain reaction was ligated into the pGEM 5zf (+) 

series of phagemid vectors using T4 DNA figase (Kovafic et a l , 1991). The ligation 

mixture, 100 ng of vector, 125 ng of insert DNA, 0.5 pi of lOx ligation buffer, 1 mM 

hexamine cobalt chloride, 0.5 mM ATP, 30 mM KC1 and 5 units of T4 DNA figase, in 

a total volume of 5 pi, was incubated at 14°C for 12 - 24 h. lOx ligation buffer 

contained 250 mM Tris-HCl, pH 7.5, 50 mM MgCU and 5 mM DTT. One pi of the 

reaction mixture was used for electroporation ofE. coli JM109 cells (section 2.7.3).
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2.7.3 Transformation and preparation o f competent cells

Cells were transformed and competent cells prepared as described by Hanahan (1988). 

Frozen JM109 cells were streaked on M9 minimal media plates and grown for 36 h at 

37°C. 50 ml SOB was inoculated with 2-3 JM109 colonies. This culture was

incubated at 37°C, with shaking, for approximately 2 h until OD550 = 0.4 ± 0.1. The 

culture was transferred to a 50 ml plastic tube and chilled on ice for 10 - 15 min. Cells 

were pelleted by centrifugation (3,000#, 4°C, 15 min), and resuspended in 1/3 volume 

(16.6 ml) of TFB. TFB contains 100 mM KC1, 45 mM MnC1.4H20, 10 mM 

CaCl2.2H20, 3 mM HAC0 CI3 and 10 mM K-MES. Following the addition of TFB, 

the cell suspension was incubated on ice for 15 min, cells were collected as before and 

resuspended in 1/12.5 volume (4 ml) of TFB. 140 pi DnD (1 mM DTT, 90% (v/v) 

DMSO, 10 mM potassium acetate, pH 7.5) was added and incubated on ice for 10 min. 

A further aliquot (140 pi) of DnD was added and incubated on ice for 20 min. 200 pi 

of the cell suspension was transferred to a 15 ml plastic tube, and 1 pi of ligation mix 

was added and incubated on ice for 30 min. Cells were subjected to heat shock by 

placing in a 42°C water bath for 90 s. The heat shock was quenched by incubation on 

ice for a minimum of 2 min. 800 pi of SOC was added to the heat-shocked cells and 

the cells incubated at 37°C for 30-60 min. 200 pi of this cell suspension was added to

2.5 ml of top agar containing 50 pg/ml ampicillin, 350 pg/ml X-gal and 140 pg/ml 

IPTG. Plates were incubated overnight at 37°C. Transformed cells grew as white 

plaques, those that were not transformed grew as blue plaques.

63



Chapter Two

2.7.4 Preparation o f plasmid DNA

Plasmid DNA was isolated from transformed cells using a modification of the method 

of Bimboim & Doly (1979). Colonies of interest were grown overnight in 5 ml of LB 

containing 50 pg/ml ampicillin. 5 pi of this bacterial suspension was used to inoculate 

50 ml of LB containing 50 pg/ml ampicillin, and incubated overnight at 37°C. Next 

day, 40 ml of the culture was transferred to a sterile SS34 tube and cells were pelleted 

by centrifugation (8,000g, 4°C, 5 min). The cell pellet was resuspended in 1 ml of 

solution I (50 mM glucose, 25 mM Tris-HCl, pH 8.0, 10 mM EDTA) containing 5 

mg/ml lysozyme and incubated at room temperature for 5 min. 2 ml of freshly 

prepared solution II (1% (w/v) SDS, 0.2 M NaOH) was added and incubated on ice for 

10 min. After addition of 1.5 ml of cold solution HI (3 M potassium acetate:2 M acetic 

acid, pH 4.8 - 5.0) the cell suspension was again incubated on ice for 10 min. Cell 

debris was collected by centrifugation (10,000g 4°C, 30 min) and the supernatant 

transferred to a sterile Corex tube. DNA was precipitated at -70°C with the addition of

2.5 volumes of absolute alcohol. The DNA was recovered by centrifugation (12,000g, 

4°C, 30 min), dried under vacuum, resuspended in 400 pi water and extracted with an 

equal volume of phenol: chloroform:isoamyl alcohol (25:24:1 v/v). The aqueous layer, 

containing DNA, was further extracted with an equal volume of chloroformrisoamyl 

alcohol (24:1 v/v) and precipitated at -70°C with the addition of 0.1 volume of 3 M 

sodium acetate, pH 6.0 and 2 volumes of absolute alcohol. The DNA was recovered 

as before. Contaminating RNA was removed by resuspending the DNA in 100 pi 

water containing 20 pg/ml RNase A and incubating at 37°C for a minimum of 1 h. 

DNA was visualised by electrophoresis on a 1% (w/v) agarose gel in TBE buffer.
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2.7.5 Quantification o f plasmid DNA

Plasmid DNA was quantified by running a known volume of plasmid DNA on a 1% 

(w/v) agarose gel and comparing the ultraviolet fluorescence produced with that from

1 pg of Hind mJECoK I digested X DNA run on the same gel.

2.7.6 Alkali denaturation o f supercoiled plasmid DNA

To prime efficiently double stranded plasmids must be converted to a single-stranded 

form before sequencing is attempted. This is accomplished by alkali denaturation of 

the supercoiled plasmid DNA. 4 pg (supercoiled) plasmid DNA was placed in a total 

volume of 18 pi water. 2 pi of 2 M NaOH, 2 mM EDTA solution was added and 

incubated at room temperature for 5 min. The reaction mix was neutralised by adding

2 pi of 2 M ammonium acetate, pH 4.6. The DNA was precipitated at -70°C by the 

addition of 75pi of absolute alcohol. DNA was recovered by centrifiigation (12,000g, 

4°C, 10 min), washed with 200 pi of cold 70% (v/v) ethanol, dried under vacuum and 

resuspended in 17.5 pi of water, ready for sequencing.

2.7.7 DNA sequencing

DNA was sequenced using the chain termination method of Sanger et a l (1977) with 

the aid of sequencing grade Taq DNA polymerase (Innis et al., 1988). 4 pg of plasmid 

DNA was denatured as described in section 2.7.6 and annealed to either a reverse or 

forward pUC/M13 sequencing primer (Promega). The annealing reaction mix, 17.5 pi 

(4 pg) of alkali denatured plasmid DNA, 5 pi of 5x Taq buffer, 2 pi of extension mix
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and 0.5 pi of 10 pg/ml pUC/M13 primer (reverse or forward), was incubated at 37°C 

for 10 min. 5x Taq buffer was supplied with the enzyme and contained 250 mM Tris- 

HCl, pH 9.0 and 50 mM MgCk. The extension mix contained 7.5 pM each of dGTP, 

dTTP and dCTP. Following the annealing step, 5 pCi [a-35S]ATP was added to the 

annealed primer and template. Five units of sequencing grade Taq were added and the 

reaction mix was incubated at 37°C for 5 min. Following extension/labelling, the 

reaction mix was divided into four aliquots and each aliquot was placed in a microtube 

containing 1 pi of the appropriate nucleotide mix (G, A, T or C) as described in table

2.1. This termination reaction was incubated at 70°C for 15 min, and 4 pi stop 

solution (10 mM NaOH, 95% (v/v) formamide, 0.05% (w/v) Bromophenol blue and 

0.05% (w/v) xylene cyanol) was added. Each sequencing reaction (G, A, T and C) was 

incubated at 80°C immediately prior to loading on the sequencing gel.

6% (w/v) polyacrylamide sequencing gels were prepared in TBE buffer (50 mM Tris- 

HCl, pH 7.5, 50 mM Boric acid, 10 mM EDTA) containing 48% (w/v) urea. Gels were 

polymerised by addition of 0.05% (w/v) ammonium persulphate and 0.05% (v/v) 

TEMED. Electrophoresis was carried out at constant power (50 watts) for 6 h in lx 

TBE buffer. The gels were fixed for 30 min in 10% (v/v) methanol and 10% (v/v) 

acetic acid in water, mounted on 3 MM paper (Whatman) and dried using a BioRad gel 

drier. Autoradiography was performed as described previously (section 2.2.7).
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2.7.8 DNA analysis

Sequence data was compared with known sequences by scanning the EMBL database 

with the Pearson FASTA programme using the SEQNET facility on the Daresbury 

database.

2.7.9 163 base pair probe

Plasmid DNA, prepared as described in section 2.7.4, was digested with the restriction 

enzyme Nco I and electrophoresed on a low melting point agarose (1%, v/v) gel in 

TAE buffer. The band corresponding to the inserted DNA was excised and labelled 

with [a-32P]dCTP as described in section 2.2.5. This cDNA probe was used to identify 

similar recombinants isolated by immunoscreening (section 2.6.4).

2.7.10 Screening a cDNA library with a radiolabelled cDNA probe 

Recombinant phage were plated on a lawn of E, coli Y1090. Plates were incubated for 

12 - 16 h at 37°C. A dry nitrocellulose filter was placed on each plate and its position 

marked with a needle. The filter was removed after 30 s contact with the plate. The 

colonies were lysed by sequential incubations on Whatman 3 MM paper saturated with 

first 0.5 N NaOH and 1.5 M NaCl for 5 min, followed by 0.5 M Tris-HCl, pH 8.0 and

1.5 M NaCl for 10 min, and then 2x SSC for 5 min. Between each incubation the 

filters were blotted on dry 3 MM paper. The DNA was bound to the nitrocellulose 

membrane using a UV crosslinker (Spectrolinker) according to the manufacturer’s 

instructions. Labelling of cDNA probes, hybridisation and autoradiography were 

carried out as described in sections 2.2.5, 2.2.6 and 2.2.7 respectively.
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2.8 LIBRARY CONSTRUCTION

2.8.1 Preparation o f poly (A) RNA

Poly (A) RNA was prepared from total goat mammary RNA using a Promega Poly 

Attract system IV mRNA isolation kit, according to the manufacturer’s instructions.

2.8.2 First strand cDNA synthesis

First strand cDNA was synthesised using MMLV reverse transcriptase and oligo dTn- 

i8 using a modification of the method of Krug & Berger (1987). A known quantity of 

poly (A) RNA (maximum 2 pg) was placed in a sterile microtube and denatured at 

70°C for 2 min. 4 pi of 5x reverse transcriptase buffer, 0.1 M DTT and 5 pi of 100 

pg/ml OdTn-is primer were added to the denatured RNA, and the primer was annealed 

to the RNA at 42°C for 10 min. After the annealing step 1 pi of lOx dNTPs (10 mM 

each dNTP), 10 units of RNAsin, 5-10 pCi [32P]dCTP and 400 units of MMLV reverse 

transcriptase (Gibco BRL) were added in a total volume of 20 pi, and cDNA synthesis 

allowed to progress at 42°C for 1.5 h. 5x reverse transcriptase buffer was provided 

with the enzyme and contained 250 mM Tris-HCl, pH 8.3, 375 mM KC1 and 15 mM 

MgCl2.

2.8.3 Second strand cDNA synthesis

Double stranded cDNA was synthesised using RNase H and DNA polymerase I as 

described by Gubler (1987). The reaction mix contained 19 pi of first strand cDNA,

47.5 pi of 2x second strand buffer, 0.95 pi of 4 mM dNTPs, 0.95 pi of RNase H, 23
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units of DNA polymerase I, 5 units of DNA ligase and 10-15 pCi [32P]dCTP in a total 

volume of 95 pi, and was incubated for 1 h at 12°C, followed by 1 h at 22°C. 2x 

second strand buffer contained 40 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 20 mM 

(NH4)2 S0 4 , 200 mM KC1 and 0.1 mg/ml BSA. The ends of the double stranded cDNA 

were made flush by the addition of 20 units T4 polymerase, and incubation of the 

cDNA at 22°C for a further 30 min. 1 pi of the synthesis reaction was removed to 

assess the efficiency of cDNA synthesis. The double stranded cDNA was precipitated 

with the addition of 2 volumes of absolute alcohol and recovered by centrifugation 

(12,000g, 4°C, 30 min). The cDNA was washed with 100 pi of 80% (v/v) ethanol, 

dried under vacuum and resuspended in 100 pi of water.

2.8.4 Efficiency o f first and second strand synthesis

1 pi from each of the first and second strand synthesis reactions were reserved to check 

both the percentage of first and second strand cDNA synthesised and the size of the 

cDNA. Unincorporated nucleotides were removed by gel filtration through a 1 ml 

column of Sephadex G50 in NE (50 mM NaCl, ImM EDTA, pH 7.0), and the amount 

of radioactivity incorporated into newly synthesised cDNA was determined by 

Cerenkov counting. The size of cDNA synthesised in the first and second strand 

reactions was assessed by electrophoresis on an alkaline agarose gel (1% w/v) in 

alkaline buffer (60 mM NaOH, 2 mM EDTA). The cDNA was loaded on an equal 

cpm basis and resolved in lx alkaline agarose buffer at approximately 50 volts for 2 h. 

Hind Hl/ECoRI digested X DNA markers were labelled with [a32P]dCTP using the 

Klenow fragment of E. coli DNA polymerase I (Cobianchi & Wilson, 1987), and
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included in the gel in order to assess the size of the synthesised cDNA. Gels were fixed 

for 30 min in 10% (v/v) methanol and 10% (v/v) acetic acid in water, dried and 

exposed to X-ray film as described in section 2.2.7.

2.8.5 Purification o f the double stranded cDNA

Double stranded cDNA was extracted with an equal volume of phenol: chloroform: 

isoamyl alcohol (25:24:1 v/v), and the upper aqueous layer was extracted with an equal 

volume of chloroform:isoamyl alcohol (24:1 v/v). The organic phase was back- 

extracted with 100 pi TE, pH 8.0 and the upper aqueous layer extracted with an equal 

volume of chloroformisoamyl alcohol. The aqueous layers were pooled and the cDNA 

was precipitated by the addition of 2 volumes of absolute alcohol. The cDNA was 

recovered by centrifugation, dried under vacuum and resuspended in 100 pi of ligation 

buffer. Ligation buffer contained 66 mM Tris-HCl, pH 7.6, 1 mM spermidine, 10 mM 

MgCl2, 15 mM DTT and 200 pg/ml BSA. The cDNA was purified by centrifugation 

(400g, room temperature, 2 min) through a S300 spun column (Pharmacia) 

equilibrated with ligation buffer.

2.8.6 Addition o f ECoR l/Not I adaptors

To prepare blunt ended cDNA for insertion into the ECoR I site of Xgtl 1, an ECoR 

I/Not I adaptor was ligated to each end of the cDNA molecule using T4 DNA ligase. 

The blunt-ended cDNA was purified on a spun column as described in section 2.8.5. 

The ligation mix, 100 pi of column effluent, 2.5 pi of ECoR L'Not I adaptors, 1 pi of 

10 mM ATP and 3 pi of T4 DNA ligase, was incubated for 16 h at 12°C. Following
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overnight incubation the T4 DNA ligase was denatured by heating at 65°C for 30 min 

and the ECoR. I-ended cDNAs were phosphorylated using T4 polynucleotide kinase. 

10 pi of 10 mM ATP and 1 pi of T4 polynucleotide kinase were added directly to the 

cDNA and incubated at 37°C for 30 min. The T4 kinase was then inactivated by 

heating to 65 °C for 35 min. The cDNA was extracted with an equal volume of phenol: 

chloroform:isoamyl alcohol (25:24:1 v/v/v). Unligated adaptors were removed from 

the aqueous layer by centrifugation (400g, room temperature, 2 min), through a S300 

spun column equilibrated with STE buffer. STE buffer contained 10 mM Tris-HCl, pH 

7.5, 1 mM EDTA and 150 mM NaCl. The column effluent was precipitated by the 

addition of 2 volumes of absolute alcohol at -70°C, recovered by centrifugation 

(12,000g, 4°C, 30 min), rinsed with 100 pi of 80% (v/v) alcohol, dried under vacuum 

and resuspended in water at a concentration of 10 ng/pl, ready for insertion into a 

A,gtll vector.

2.8.7 Insertion o f cDNA into a Agtll vector

The cDNA was prepared as described above (section 2.8.4), and inserted into a A,gtll 

vector using T4 DNA ligase. Small test reactions were set up to identify the optimal 

conditions for ligation of the cDNA and vector. The ligation reaction contained 0.4 pi 

(200 ng) of A,gtl 1 vector, varying amounts ( 2 -6  ng) of double stranded cDNA, 0.2 pi 

of lOx ligation buffer and 0.2 pi of T4 DNA ligase in a total volume of 2 pi. The 

ligation mixture was incubated for 16 h at 12°C. lOx ligation buffer contained 400 mM 

Tris-HCl, pH 7.5, 100 mM MgCl2, 100 mM DTT, 10 mM ATP and 0.5 mg/ml BSA. 

Following incubation, 1 pi of each ligation mix was placed in a fresh tube, 6 pi of
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Packagene extract (Promega) was added and the reactants were incubated at 22°C for 

2 h. 100 (Ltl of X diluent and 20 pi of chloroform were added to the packaging extract 

and titration of the packaged phage were carried out on LB plates. Appropriate 

dilutions of packaged phage were made (1:1,000 or 1:10,000) in X diluent. 100 pi of 

diluted phage was added to 200 pi of E. coli Y1088 plating bacteria (prepared as 

described in section 2.6.2) and plated in 2.5 ml of top agar containing 50 pg/ml 

ampicillin, 140 pg/ml IPTG and 350 pg/ml X-gal. Plates were incubated overnight at 

37°C and scored for the number of clear plaques (non-recombinant phage) versus the 

number of blue plaques (recombinant phage).

Once optimal conditions had been determined a larger scale ligation reaction was set 

up. The ligation reaction contained 2 pi (1 pg) of Agtll vector, 20 ng of double 

stranded cDNA, 1 pi of lOx ligation buffer and 1 pi of T4 DNA ligase in a total 

volume of 10 pi. The ligation mix was incubated at 12°C for 36 h and then packaged 

using Gigapack packaging extracts (Stratagene, Cambridge, UK) and incubated at 

22°C for 2 h, according to the manufacturer’s instructions. 500 pi of A, diluent and 20 

pi of chloroform were added to the packaging mix and the phage were titred as before.

2.8.8 Analysis o f inserted DNA

The average insert size of the cDNA library was determined by restriction enzyme 

digestion of the phage DNA. Phage lysates were prepared from recombinant phage 

(section 2.6.6), DNA was isolated from these phage lysates (section 2.6.7) and the
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inserted DNA was excised from the A,gtll vector using the restriction enzyme Not I. 

Analysis of the inserted cDNA is discussed in detail in Chapter six.

2.8.9 Amplification o f a cDNA library

Y1088 plating bacteria were prepared as described in section 2.6.2. 105 phage were 

placed in a sterile tube containing 600 pi of E. Coli Y1088 plating bacteria and 

incubated at 37°C for 5 min. 6.5 ml of top agar was added to each tube and the 

contents poured onto a 150 mm agar plate. Plates were incubated at 37°C for 

approximately 6 h until the plaques were approximately 0.5 mm in diameter. The 

plates were overlaid with 12 ml of X diluent and stored at 4°C overnight. Next day, the 

buffer was collected, the plates rinsed with 4 ml X diluent and the buffer pooled, and 

chloroform was added to a final concentration of 5% (v/v). The library was incubated 

at room temperature for 15 min and bacterial debris was removed by centrifugation 

(3,000^, room temperature, 10 min). The upper layer was transferred to a fresh tube 

and chloroform added to a final concentration of 0.5% (v/v). The amplified library was 

stored at 4°C.

2.9 OLIGONUCLEOTIDE SCREENING

2.9.1 Oligonucleotide synthesis

Sense and antisense oligonucleotides were purchased from Pharmacia. 

Oligonucleotides were constructed on the basis of known protein sequence. 

Oligonucleotide sequences are discussed in detail in Chapter six.
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2.9.2 5 ’ end-labelling o f synthetic oligonucleotides

Oligonucleotide probes were labelled to high specific activity (typically 1 x 106 counts 

per ml of hybridisation buffer) with [y-32P]ATP using T4 polynucleotide kinase, as 

described by Cobianchi & Wilson (1987). The kinase reaction mixture, 125 ng of 

oligonucleotide, 1.25 pi of lOx buffer, 37.5 pCi [y-32P]ATP at 3000 Ci/mmol and 5 

units of T4 polynucleotide kinase, in a final volume of 12.5 pi, was incubated at 37°C 

for 30 min. lOx kinase buffer contained 500 mM Tris-HCl pH 7.6, 100 mM MgCl2, 50 

mM DTT, 1 mM spermidine hydrochloride and 1 mM EDTA. Unincorporated 

nucleotides were removed as described in section 2.2.5. Ethanol precipitation of the 

labelled oligonucleotide was carried out prior to hybridisation.

2.9.3 Hybridisation conditions

For hybridisation with oligonucleotide probes, blots were incubated in aqueous pre

hybridisation buffer (6x SSC, 5x Denhardt’s, 0.1% (w/v) SDS, 200 pg/ml denatured 

herring sperm DNA and 0.05% (w/v) pyrophosphate tetrasodium salt), for a minimum 

of 4 h. The precipitated probe was recovered by centrifugation (12,000g, 4°C, 30 min) 

and resuspended in 50 pi of water. Hybridisations were carried out in hybridisation 

buffer (same composition as pre-hybridisation buffer) for 16-24 h at an appropriate 

temperature determined by the nucleotide composition of the probe. Hybridisations 

were performed at 5°C below the minimum value for the thermal melting point of the 

oligonucleotide, Tm, as determined using a Genequant DNA calculator (Pharmacia) 

according to the manufacturer’s instructions. Membranes were washed in 2x 

SSC/0.1% (w/v) SDS three times at room temperature, followed by a final wash in
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0.2x SSC/0.1% (w/v) SDS, at a temperature equal to or greater than the Tm as 

appropriate. Autoradiography was carried out as described previously (section 2.2.7).

2.9.4 Amplification o f cDNA 3 ’ ends (3’ RACE)

First strand cDNA was prepared as described by Frohman (1990). 1 pg of poly (A) 

RNA was denatured at 65°C for 3 min. The denatured RNA was then added to a 

mixture containing 2 pi of lOx reverse transcriptase buffer, 10 units of Rnasin, 0.5 pg 

of dTn-adapter primer and 10 units of MMLV reverse transcriptase in a final volume 

of 20 pi. 10 x reverse transcriptase buffer contained 500 mM Tris-HCl, pH 8.15, 60 

mM MgCl2, 400 mM KC1, 1 mM DTT and 10 mM each dNTP. The cDNA synthesis 

reaction mix was incubated at 42°C for 1 h, and then at 52°C for 30 min. The cDNA 

pool was diluted to 1 ml with TE (10 mM Tris-HCl, pH 7.6, 1 mM EDTA) and stored 

at 4°C until required. Amplification of cDNA 3’ ends was carried out as described by 

Frohman (1990). The amplification mixture contained 5 pi of lOx PCR buffer, 5 pi of 

DMSO, 5 pi of lOx dNTPs (15 mM each dNTP), 30 pi of water, 1 pi of adapter 

primer (25 pmol/pl), 1 pi of gene specific primer (25 pmol/pl) and 1-5 pi of cDNA 

pool. lOx PCR buffer contained 670 mM Tris-HCl, pH 8.8, 67 mM MgCl2, 1.7 mg/ml 

BSA and 166 mM (NFL^SO^ The mixture was denatured at 95°C for 5 min and, after 

cooling to 72°C, 2.5 units of Thermus aquaticus (Taq) DNA polymerase were added. 

The amplification mix was overlaid with 100 pi of fight mineral oil and subjected to 40 

cycles of 40 s at 95°C, 60 s at 55°C, and 3 min at 72°C, using the fastest possible 

transition times and followed by a final 10 min at 72°C. PCR products were extracted 

with an equal volume of phenol:chlorofomrisoamyl alcohol (25:24:1 v/v/v) and
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analysed by electrophoresis in 1% (w/v) agarose gels containing ethidium bromide. 

The nucleotide sequences of the dT^-adapter primer and the adapter primer are as 

described by Frohman (1990), while the sequences of the gene-specific primers are 

discussed in detail in Chapter six.
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3.1 INTRODUCTION

The rate of milk secretion in dairy animals is regulated by mechanisms sensitive to the 

frequency and completeness of milk removal (Wilde & Peaker, 1990; Wilde et al., 

1990). For example, milking one gland of lactating goats thrice instead of twice daily 

stimulated milk secretion unilaterally within hours (Blatchford & Peaker, 1982; Linzell 

& Peaker, 1971). This local increase in milk yield is maintained for as long as frequent 

milking is applied, and is sustained by developmental responses in the frequently milked 

gland. Ten days of frequent milking elicited a significant increase in secretory cell 

differentiation, as measured by the activities of several key enzymes involved in milk 

synthesis (Wilde et al. 1987), and prolonged frequent milking was accompanied by an 

increase in the number of secretory cells in the more frequently milked gland (Knight et 

al. 1990; Wilde et al., 1987). In addition, after 22 weeks of more frequent milking, 

higher activities of two key enzymes, fatty acid synthase (FAS) and acetyl CoA 

carboxylase (ACC), were associated with an increase in abundance of messenger RNA 

(mRNA) for these proteins, indicating that the effects of milking frequency are exerted 

at the level of gene expression (Travers & Barber, 1993; Wilde et al., 1990). We 

wished to determine if frequency or completeness of milk removal also regulates the 

expression of milk protein genes and if so, whether this effect is also mediated by FIL, 

the Feedback Inhibitor of Lactation. To address the first objective lactating goats were 

subjected to frequent milking, infrequent milking, suckling or combinations thereof. 

Northern analysis was used to measure the abundance of mRNAs encoding a si-casein
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(a major milk protein) and a-lactalbumin, a component of lactose synthase and 

therefore a key determinant of milk volume (see section 1.2.1).

3.2 EXPERIMENTAL DESIGN

3.2.1 Manipulation o f milking frequency

Two experiments were performed. In a preliminary study, different milking frequencies 

were applied unilaterally for 9 days in two groups (n = 4, each group) of goats in early 

lactation (Bryson et al., 1993). One group was milked once and twice daily in 

individual glands, the other group twice and thrice. The aim of this study was to 

determine whether the acute effect on milk secretion was independent of or dependent 

on changes in mammary gene expression.

In a second longer-term experiment, three different milking strategies were compared 

with once daily milking over a period of six weeks. The aim of this study was to 

determine whether longer term changes in milking frequency are accompanied hy 

alterations in milk protein gene expression. After parturition, goats were milked twice 

daily at 0800 and 1600 h for a maximum of nine days. This pre-treatment period was 

sufficient to establish a reliable pre-treatment milk yield before switching one gland to 

once daily milking and the contralateral gland to one of the three experimental 

strategies. Following the pre-treatment period, the left gland was milked once daily 

(1600 h) and the right gland milked thrice daily (n = 4), drained continuously (n = 3) or 

suckled by kids (n = 3). In the suckled and drained groups the treatment gland was 

also hand milked once daily to ensure complete emptying of the gland once in each 24
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h period. This allowed estimation of the efficiency of suckling by kids or the extent of 

drainage via the cannula. The treatment regime was carried out on six days out of 

seven.

Day seven, termed the ‘fneasurement” day, was used to determine the milk yield in the 

treated gland. On this day the left gland was milked once daily at 1600 h as usual. All 

treatment glands were milked thrice daily at 1600, 0000 & 0800 h with exogenous 

oxytocin (0.4 IU, Intervet, Cambridge, UK) to ensure complete milk removal. During 

this 24 h period kids were separated from mothers and teat cannulas, where 

appropriate, removed or plugged.

3.2.2 Effects on milk yield

The unilateral effect of changes in milking frequency was determined as a relative milk 

yield quotient (RMYQ) as described by Linzell & Peaker (1971):

RMYQ=(<i2.67)(«7. fa)'1 

where and a2 are the yields of the right gland before and after treatment, and b\ and 

b2 the yield of the left gland in the same two periods. Pre-treatment yields were 

calculated as the average milk yield for the three days prior to treatment, and post 

treatment yields as the average milk yield for the final three days of treatment. An 

RMYQ value >1 indicates an increase in milk yield of the right (test) gland relative to 

that of the left (control) gland. Conversely, an RMYQ value <1 indicates a decrease in 

yield of the test gland relative to that of the control gland.
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3.2.3 Effects on milk protein gene expression

The effect of milking frequency on milk protein gene expression was determined by 

northern blot analysis. Total cellular RNA was isolated from biopsy tissue taken from 

goat mammary glands milked differentially for 9 days or 6 weeks. Alpha-lactalbumin 

and a si-casein mRNA abundance was expressed as the integrated area of the 0.7 kb a- 

lactalbumin mRNA and 1.2 kb a si-casein mRNA, normalised against 28S ribosomal 

RNA, taking into consideration the DNA content of the tissue and the yield of RNA. 

Milk protein gene expression was expressed as units of mRNA abundance per mg 

DNA.

3.3 RESULTS

3.3.1 Short-term study

Pre-treatment milk yields were established during a period (3 days) of bilateral twice 

daily milking at a time of increasing milk yield. Thereafter, milking one gland once daily 

prevented the further increase in milk yield seen in the contralateral twice daily milked 

gland, such that animals milked once and twice daily showed a positive RMYQ of 1.42 

±0.21 (mean ± SEM, n = 4). While milk yield increased in the twice daily milked 

gland, there was no significant increase in the abundance of either a-lactalbumin or a sr  

casein mRNA. Goat B9 (figure 3.1) displayed the largest differential in milk yield 

between the two glands (RMYQ = 1.83) over the treatment period, yet no increase in 

milk protein gene expression was observed.

80



B

3.0 n GOAT B9

2.5 -

co
j*:

2.0 -

1.52
<D

>-

f=  1.0 -

0.5 -

0 J i i i i i i i I l
0 1 2 3 4 5 6 7 8  

Day of T rea tm ent

lx 2x

28S RNA

a-lactalbumin

a srcasem

Figure 3.1 Effect of short-term unilateral once and twice daily milking on milk yield 

(A) and milk protein gene expression (B) in one lactating goat. The right gland was 

milked twice (2x) daily (-•-) while the left gland was milked once (lx) daily (-o ) for 9 

days.



A 2.0 n GOAT JFH3Z

B

1.5 -
XI
u>

1.0 -
X I
a>

>-

0.5 -

0 J

28SRNA

a-lactalbumin

a si-casem

■ i i i i i i i i
0 1 2 3 4 5 6 7 8  

Day of T rea tm ent

2x 3x

m

Figure 3.2 Effect of short-term unilateral twice and thrice daily milking on milk yield 

(A) and milk protein gene expression (B) in one lactating goat. The right gland was 

milked thrice (3x) daily (-o-) while the left gland was milked twice (2x) daily (-•-) for nine 

days.



Chapter Three

In a second group of animals, glands were milked twice or thrice daily following the 

pre-treatment period. The change to twice and thrice daily milking of individual glands 

resulted in an unilateral increase in milk yield in the more frequently milked gland. 

Animals milked twice and thrice daily had a RMYQ value of 1.14 ± 0.03 (mean ± 

SEM, n = 4). Goat JFH3Z, (figure 3.2), with an RMYQ of 1.12 was typical of this 

group, and showed a modest change in milk yield and no change in milk protein gene 

expression. Gross milk composition, including milk protein content, was unaffected in 

both treatment groups. This suggested that in the short term the increase in milk 

output was not dependent upon up-regulation of milk protein gene expression.

3.3.2 Long term study - once versus thrice daily milking

The change from once to thrice daily milking resulted in a unilateral increase in the milk 

yield of the more frequently milked gland (figures 3.3 & 3.4). Animals treated in this 

way showed a positive RMYQ of 1.51 ± 0.24 (mean ± SEM, n = 4). At the start of the 

study, when both glands were milked twice daily, the yield of the right (3x) gland was

104.7 ± 10.7% of that of the left (lx) gland. However by the end of the treatment 

period the yield of the thrice daily milked gland had increased to 158 ± 24.4% of that 

of the once daily milked gland. Individual RMYQ values and pre- and post-treatment 

milk yields are shown in table 3.1.

Northern blot analysis of total RNA isolated from each gland before and after 

treatment (figure 3.5) indicated that six weeks of differential milking produced an 

increase in the abundance of a-lactalbumin mRNA/mg DNA in the thrice daily milked
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Figure 3.3 Effect of unilateral once and thrice daily milking on milk yield. The right 

gland was milked thrice daily (-o-), while the left gland was milked once daily (-•-) for 6 

weeks. Values are the mean ± SEM for 4 animals.



Figure 3.4 Effect of milking frequency on individual gland milk yield in four 

lactating goats. The right gland was milked thrice daily (-o-), while the left gland was 

milked once daily (-•-) for 6 weeks.
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Figure 3.5 Northern analysis of a-lactalbumin mRNA before and after manipulation 

of milking frequency. The right gland was milked thrice daily (3x) and the left gland 

once daily (lx) for 6 weeks. RNA was hybridised with a caprine a-lactalbumin cDNA 

probe before treatment commenced and after the treatment period. Abundance of the 0.7 

kb a-lactalbumin was determined by densitometry (table 3.2).
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gland compared with the once daily milked gland (table 3.2). Indeed, over the six 

week treatment period, three of the four animals (230, 402 and 419) showed increased 

levels of a-lactalbumin mRNA/mg DNA in the thrice daily milked gland compared to 

pre-treatment levels in the same gland, whereas in the contralateral gland, once daily 

milking decreased a-lactalbumin gene expression (table 3.2). In all three animals, the 

increase in milk protein mRNA abundance expressed on a per cell basis (i.e. per mg 

DNA), was the result of a relative increase in the amount of RNA per cell in the test 

gland and an increase in the abundance of a-lactalbumin mRNA per unit cellular RNA 

(results not shown).

Casein gene expression was similarly affected (figure 3.6). Again, an increase in the 

frequency of milk removal led to higher levels of a si-casein mRNA in the thrice daily 

milked gland. As before, the more frequently milked gland of three animals (230, 402 

and 419) showed an increase in a si-casein mRNA abundance during the treatment 

period. Comparison of pre- and post-treatment levels in the once daily milked gland 

indicated a decrease in the abundance of this mRNA, suggesting that once daily milking 

also decreased a si-casein gene expression (table 3.2).

Although there was apparently a decrease in both a-lactalbumin and a si-casein mRNA 

abundance in one animal (431) during the experiment, the levels in the thrice daily 

milked gland at the end of the experiment were markedly higher than in the once daily 

milked gland (table 3.2). In this animal it was not possible to determine pre-treatment
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Figure 3.6 Northern analysis of a si-casein mRNA before and after manipulation of 

milking frequency. The right gland was milked thrice daily (3x) and the left gland once 

daily (lx) for 6 weeks. RNA was hybridised with an ovine a srcasein cDNA probe before 

treatment commenced and after the treatment period. Abundance of the 1.2 kb a si-casein 

mRNA was determined by densitometry (table 3.3).
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DNA content, therefore a value for the abundance of a-lactalbumin and a si-casein 

mRNA could not be obtained.

Milk yield data and highly positive RMYQ values confirm the differential response of 

the two glands to different milking frequencies. The data also suggest a unilateral 

change in milk protein gene expression as a result of milking glands at different 

frequencies.

3.3.3 Suckling versus once daily milking

The comparison between once daily milking and suckling by kids resulted in a 

preferential increase in milk yield in the suckled gland (figures 3.7 & 3.8), shown as a 

positive RMYQ of 1.55 ± 0.16 (mean ± SEM, n = 3). This RMYQ value clearly 

demonstrated a differential effect of the two milking regimens. However, both 

treatments did in fact increase milk yield during the six week treatment period. The 

yield of the suckled glands increased by 196.6 ± 22% over the treatment period, whilst 

the yield of the once daily milked glands increased by 123.6 ± 21.4 %. Individual 

RMYQ values and pre- and post-treatment milk yields are shown in table 3.3.

A differential stimulation of milk yield in the suckled glands was associated with higher 

levels of mRNA for both a-lactalbumin and a si-casein (figure 3.9). Alpha-lactalbumin 

mRNA abundance, expressed on a DNA basis, was 1.3 - 2.5 fold greater in the suckled 

gland than in the once daily milked gland after the treatment period, while the 

abundance of a si-casein mRNA in the suckled gland was greater by 1.4 to 1.8 fold. As
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Figure 3.7 Effect of unilateral suckling on milk yield. The right gland was suckled by 

kids (-o-), while the left gland was milked once daily (-•-) for 6 weeks. Values are the 

mean ± SEM for 3 animals.



Figure 3.8 Individual gland milk yield in goats milked once daily in one gland and 

suckling a kid on the other gland. The right gland was suckled by kids (-o-), while the 

left gland was milked once daily (-•-) for 6 weeks.
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Figure 3.9 Northern analysis of RNA prepared from mammary glands milked once 

daily or suckled for 6 weeks. The right gland was available for suckling (S) by kids while 

the left gland was milked once daily (lx) for 6 weeks. RNA was hybridised with caprine a -  

lactalbumin and ovine a srcasein cDNA probes. Abundance of the 0.7 kb a-lactalbumin 

mRNA and the 1.2 kb a si-casein m RNA was determined by densitometry (table 3.5).
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in those animals subjected to unilateral once and thrice daily milking, the effect on milk 

protein gene expression again appeared to be due to an increase in the amount of RNA 

per cell and higher levels of rr.-lacta1hu.mm and a si-casein mRNA per unit cellular RNA 

(results not shown) in the suckled glands, which together produced a greater 

abundance of milk protein mRNA (table 3.4).

3.3.4 Continuous drainage versus once daily milking

The change to once daily milking and continuous drainage of milk resulted in little 

difference in milk yield between the two glands (figures 3.10 and 3.11). Animals 

treated in this way showed a RMYQ of 0.92 ± 0.35 (mean ± SEM, n = 3), and only 

one animal, 417, showed a positive response in terms of milk yield, with an RMYQ of 

1.32. These results were unexpected as it was anticipated that continuous milk 

removal from the gland would increase milk yield markedly. Experimental difficulties 

experienced with this method of milk removal were probably responsible for the 

negligible effect on milk yield. Individual RMYQ values and pre- and post-treatment 

milk yields are shown in table 3.5.

Continuous drainage did not result in a differential effect on milk protein gene 

expression (figure 3.12). As shown in table 3.6, the continuously drained gland had 

lower levels of a-lactalbumin and a si-casein mRNA/mg DNA than in the once daily 

milked gland, in two of the three animals (414 & 417). In only one goat (422) was 

there an increase in abundance of each mRNA compared with once daily milking.
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Figure 3.10 Effect of unilateral milk drainage or once daily milking on milk yield. The

right gland was drained continuously (-o-), while the left gland was milked once daily (-•-) 

for 6 weeks. Values are the mean ± SEM for 3 animals.



Figure 3.11 Individual gland milk yield in goats subjected to once daily milking or 

milk drainage. The right gland was drained continuously (-0 -), while the left gland was 

milked once daily (-•-) for 6 weeks.
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Figure 3.12 Northern analysis of RNA prepared from mammary glands milked once 

daily or drained for 6 weeks. The right gland was drained continuously (D) while the left 

gland was milked once daily (lx) for 6 weeks. RNA was hybridised with caprine a- 

lactalbumin and ovine a srcasein cDNA probes. Abundance of the 0.7 kb a-lactalbumin 

mRNA and the 1.2 kb a si-casein m RNA was determined by densitometry (table 3.7).
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Chapter Three

In this study continuous drainage of the gland was demonstrated to be ineffective and 

in consequence no consistent effect of this method of milk removal on milk yield was 

observed. Similarly no consistent difference in a-lactalbumin and a si-casein gene 

expression was observed between once daily milked and drained glands at the end of 

the experiment. Therefore, local stimulation of mammary gene expression clearly 

depended on effective removal of milk from the gland.

3.4 DISCUSSION

This series of experiments investigated the effects of both short (9 days) and longer 

term (6 weeks) alterations in milking frequency on milk yield and milk protein gene 

expression in the lactating goat mammary gland. The results showed that manipulation 

of milking frequency and concomitant changes in the rate of milk secretion are 

accompanied in the long term, but not in the short term, by changes in milk protein 

gene expression.

Acute regulation of milk secretion by milk removal is well documented. The current 

study confirms that milking one gland of goats more frequently stimulates milk yield 

unilaterally (Henderson et a l , 1983; Wilde & Knight, 1990). Unilateral thrice daily 

milking increased milk yield over and above any change in the yield of the once daily 

milked gland. Early experiments eliminated the possibility that this local effect was due 

to systemic factors (Linzell & Peaker, 1971; Blatchford et a l , 1982), or that it 

reflected changes in gland distension by stored milk (Henderson & Peaker, 1984). 

Instead it has been shown to be due to withdrawal of a milk constituent (Henderson &
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Peaker, 1984) which has been identified as a small milk protein termed FIL or 

Feedback Inhibitor of Lactation (Addey et al, 1991b; Wilde et a l , 1995).

In the present study, there was considerable variation between pre- and post-treatment 

milk yield values and in the response to frequent milking, frequent milk removal or 

suckling. It is possible that these variations were due to differences in gland anatomy 

which affect each gland’s susceptibility to autocrine inhibition by FIL. Previous studies 

have demonstrated that the response to milking frequency depends on the site of milk 

storage within the gland: animals which store a high proportion of their milk in the 

alveoli show a greater response to more frequent milking (Knight et a l , 1989). 

Conversely, animals with large cisternal storage are more tolerant of once daily milking 

and less responsive to thrice daily milking (Dewhurst & Knight, 1992). These 

observations are consistent with the theory that FIL acts via the apical surface of the 

mammary secretory cell to regulate the rate of milk secretion (Henderson & Peaker, 

1984; Wilde etal., 1995).

In contrast to the effect of frequent milking, when milk removal was by catheter 

drainage, yield was not affected. This result was surprising since this method of milk 

removal was expected to increase the rate at which milk was removed from the gland. 

However, catheters do not remove alveolar milk, therefore catheter drainage, in not 

evacuating the alveoli of the gland, may have failed to relieve autocrine inhibition and 

therefore would not be expected to elicit a stimulation of milk secretion (Henderson & 

Peaker, 1987). The effect of catheter drainage on milk yield may also have been due to
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difficulties in maintaining continuous milk removal. The teat cannulas used to facilitate 

this method frequently became blocked or dislodged, leading to discontinuities in the 

rate of milk removal.

When frequent and effective milk removal was maintained for an extended period, as in 

thrice daily milked and suckled glands, it was apparent that the persistent stimulation of 

milk secretion was sustained by changes in milk protein gene expression. As with 

changes in milk yield, effects on a-lactalbumin and a si-casein mRNA were apparent as 

differential responses in the glands subjected to different milking regimes, indicating 

that these changes were elicited locally within each mammary gland. In contrast, when 

manipulation of milk removal was not successful in regulating milk yield, such as in the 

continuously drained glands, milk protein gene expression was not affected. Therefore, 

changes in milk protein gene expression, like changes in milk yield, are dependent on 

effective manipulation of milk removal.

Acute regulation of milk secretion by changes in milking frequency appears to be 

independent of developmental adaptations in the tissue. In the short term, increased 

output of milk proteins was not dependent on an increase in their mRNA abundance 

(this study; Bryson et al., 1993). In contrast, sustained manipulation of milk removal 

regulates mammary differentiation (Wilde et al., 1987): frequent milk removal for 

several weeks elicited significant increases in the activities of several key enzymes 

involved in milk synthesis (Wilde et al., 1987). Increases in the activities of key 

enzymes such as fatty acid synthase (FAS) and acetyl CoA carboxylase (ACC) were
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associated with an increase in mRNA abundance for these proteins (Barber & Travers, 

1993; Wilde et al., 1990). In the present study we have now demonstrated that this 

local regulation of mammary gene expression, illustrated first by the lipogenic enzymes 

FAS and ACC, extends to milk protein genes, as exemplified by the increase in a- 

lactalbumin and a si-casein mRNA abundance.

The increase in the abundance of a-lactalbumin and a si-casein mRNA observed 

following extended periods of more frequent milk removal may be due to either an 

increase in transcription rate, an increase in mRNA stabilisation, or a combination of 

both. In each case these changes are hormone dependent, and are particularly 

dependent on galactopoietic hormones such as prolactin (Matusik & Rosen, 1978; 

Teyssot & Houdebine, 1980). How the differential changes were elucidated in the 

lactating goat is not clear, but one possibility is that this is a consequence of local 

modulation of the cells sensitivity to circulating hormones by up or down regulation of 

cell surface hormone receptors (Wilde et al., 1990). Increases in milking frequency 

have been associated with increases in the number of prolactin receptors in the more 

frequently milked gland (McKinnon et al., 1988). A whey fraction containing FIL has 

been found to down-regulate prolactin receptors in primary cell culture (Bennett et al., 

1990), and this effect has recently been reproduced using purified FIL protein (CN 

Bennett, 1993). Differential changes in prolactin sensitivity elicited by local 

modulation of autocrine feedback may therefore be competent to elicit unilateral 

changes in secretory cell differentiation and local modulation of milk protein gene 

expression.
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Chapter Four

4.1 INTRODUCTION

In chapter three we demonstrated that local changes in milk secretion and mammary 

gene expression are modulated by frequency of milking. Evidence from cell culture and 

in vivo experiments indicates that the acute response is due to feedback inhibition by 

FIL, a secreted milk protein. FIL, or the feedback inhibitor of lactation, is synthesised 

by the mammary epithelial cell and secreted into the alveolar lumen along with other 

milk constituents (Wilde et al, 1995). FIL has been shown to decrease milk 

constituent synthesis in rabbit mammary tissue explants (Wilde et al., 1987; Wilde et 

al, 1995) and in suspensions of lactating murine epithelial cells (Rennison et al., 1993). 

In lactating goats introduction of FIL into the teat duct decreased milk yield (Wilde et 

al., 1988, 1995). Additionally, auto-immunisation of lactating goats against their own 

inhibitory protein was found to stimulate milk secretion and protect against the effect 

of once daily milking (Wilde et al., 1996).

Long term increases in milking frequency are accompanied by developmental responses 

which act to sustain the secretory response and, like the acute response of milk 

secretion, occur locally in the frequently milked gland(s). The response elicited 

depends on the duration of the stimulus. After days to weeks, secretory cell 

differentiation is regulated: thrice instead of twice daily milking of one gland produced 

unilateral increases in key mammary enzyme activity and mRNA abundance (Travers & 

Barber, 1993; Wilde et al., 1987b). In the long term, the same manipulation increased 

mammary cell number (Knight et al., 1990; Wilde et a l, 1987b). Similarly, the
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decrease in cell differentiation in glands milked infrequently or incompletely is 

accompanied by a net decrease in prolactin binding (McKinnon et al., 1988). FIL’s 

effect on membrane trafficking may also influence mammary cell hormone receptors 

and thus cell differentiation, hi short, the protein’s unique mechanism of action raises 

the possibility that it may be able to influence not just the secretory pathway, but also 

cause the developmental adaptations which act to sustain the response of the gland to 

more frequent milk removal. To investigate whether FIL influences mammary gene 

expression it is necessary to have available an in vitro system in which milk protein 

genes are expressed and which responds to known regulators of mammary gene 

expression.

Mammary epithelial cells grown on plastic do not maintain a differentiated morphology 

even in the presence of lactogenic hormones (Li et al., 1987). In contrast, cells on 

floating collagen gels display enhanced milk protein synthesis and secretion in response 

to lactogenic hormones (Emerman et al, 1977, Lee et al., 1984, 1985). Murine cells 

cultured in this way expressed mRNA for (3-casein (Li et al., 1987) but not for whey 

acidic protein (Chen & Bissell, 1989), indicating that differentiation was not complete. 

More complex substrata prepared from whole mammary glands (Wicha et al, 1982; 

Wilde et al., 1984; Blum et al., 1987) allowed greater functional differentiation of 

cultured cells. A more convenient alternative to these was subsequently found to be a 

reconstituted basement membrane matrix derived from the Engelbreth-Holm- Swarm 

tumour. This extract (EHS matrix) contains several basement membrane constituents 

including collagen type IV, laminin, entactin and heparan proteoglycans (Kleinman et
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al, 1983, 1986). The influence of the extracellular matrix is due to a combination of 

these components, the most important of which is laminin (Streuli, 1993). The 

expression of milk proteins is higher on EHS matrix compared with collagen and 

plastic (Li et al., 1987), and WAP is only expressed in EHS culture, suggesting that 

cells cultured on EHS have a greater differentiated function (Chen & Bissell, 1989). In 

addition, mouse mammary cells cultured on EHS form multicellular structures termed 

“mammo spheres” which structurally and functionally resemble alveoli in lactating tissue 

(Aggeler et al, 1991; Barcellos-Hoff et al, 1989; Chen & Bissell, 1987, 1989; Hurley 

et al, 1994; Li et al, 1987). Mammary epithelial cells exist in the differentiated gland 

as a single layer of polarised cells surrounding a lumen. The major milk proteins are 

synthesised in the epithelial cells and secreted into the alveolar lumen under the 

influence of galactopoietic hormones (Topper & Freeman, 1990). Cells recruited into 

mammosphere behave similarly, secreting milk proteins vectorially into a central 

luminal space.

The EHS culture system has been used primarily for the culture of murine mammary 

epithelial cells. Ruminant cell culture has been limited to culture on floating collagen 

gels (Hansen & Knudsen, 1991; Talhouk et al, 1990), and while cells cultured in this 

way synthesise and secrete milk proteins they do not form the polarised structures 

typical of alveoli in vivo, or attain the same degree of differentiated function. 

However, recent studies indicate that goat mammary epithelial cells behave similarly to 

their murine counterparts when cultured on EHS matrix, forming polarised three
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dimensional alveolar-like structures and secreting milk proteins vectorially (LMB 

Finch, personal communication).

In view of their potential advantages in terms of mammary protein gene expression, 

these goat mammosphere cultures were used to investigate if FIL could account for the 

local response of gene expression to milking frequency seen in vivo (chapter three). To 

this end, goat mammary epithelial cells were cultured on EHS matrix in the presence 

and absence of caprine FIL after differentiation of the cells had taken place.

4.2 RESULTS

4.2.1 Mammosphere formation

Cells were plated on EHS matrix as clumps of 10 - 50 cells, while minimising the 

number of single cells. Within 24 h the majority of cells reorganised into small 

multicellular spheres (figure 4.1 A & B) which structurally resemble those assumed by 

murine mammary epithelial cells (Barcellos-Hoff et al., 1989). Where cells clumps 

began to pull the matrix around themselves, distinct patterns or stress lines could be 

seen (figure 4.1 C). These stress lines are characteristic of murine mammary cultures 

on EHS matrix (Neville et al, 1991). By day 3 of culture (figure 4.1 D), the 

multicellular structures were enshrouded in matrix, and by day 6 no individual cells 

were visible and the mammospheres had well-defined edges (figure 4.1 E & F). 

Scanning electron microscopy confirmed that cell clumps became completely 

enshrouded in matrix (figure 4.2). Previous studies demonstrated by 

immunofluorescence that goat mammary epithelial cells cultured in this way secreted
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Fig. 4.1 Morphology of goat mammary epithelial cells cultured on EHS matrix.

A-F, phase contrast light micrographs. A, day 1, bar = 9 pm; B, day 1, bar = 1.4 pm; 

C, day 3, bar = 9 pm; D, day 3, bar = 0.95 pm; E, day 6, bar = 9 pm; F, day 6, bar = 

0.95 pm. Arrows indicate stress lines (C).

,



Fig. 4.2 Morphology of goat mammary epithelial cells cultured on EHS matrix.

Cells were cultured for 7 days and then processed for electron microscopy. Scanning 

electron micrograph of a single mammosphere, bar = 9.25 pm. Micrograph courtesy of 

Drs LMB Finch and KAK Hendry.
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a-lactalbumin and caseins into the alveolar lumen (LMB Finch, personal 

communication).

Plating density was important in optimising cell differentiation. For example RNA 

yield decreased when plating density increased. Protein secretion was similarly affected 

at high cell density (LMB Finch, personal communication). This may reflect a limit to 

mammosphere formation at any matrix concentration.

4.2.2 Milk protein gene expression

Total RNA was isolated from goat mammary epithelial cells grown on EHS matrix 

after 2, 5 and 7 days of culture. RNA was isolated as described in section 2.4.9. 

Northern blot analysis (section 2.2.4) with cDNA probes for the milk protein genes a si- 

casein, P-lactoglobulin (figure 4.3) and a-lactalbumin (results not shown) indicated that 

levels of these genes were low at day 2 and increased to a maximum at day 5 (figure 

4.3). By day 7 of culture abundance of the milk protein mRNAs had decreased 

slightly. Throughout this time course experiment a-lactalbumin was expressed at 

lower levels than a si-casein, reflecting the relative abundance of each mRNA within the 

mammary gland. Cells cultured on plastic did not express mRNA for a si-casein, 0- 

lactoglobulin (figure 4.3) or a-lactalbumin, demonstrating that an extracellular matrix 

is required for functional differentiation (figure 4.3). These results compare favourably 

with those seen in murine epithelial cells. Mouse cells cultured on EHS matrix express 

high levels of the milk protein genes 3-casein (Li et al., 1987), transferrin (Chen & 

Bissell, 1987) and whey acidic protein (Chen & Bissell, 1989). Further, Aggeler et al.
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28SRNA

a si-casein

P-lactoglobulin

Fig. 4.3 Milk protein mRNA levels in cells cultured on EHS matrix (lanes 2 - 4 )  

and on plastic (lane 1). Total RNA was isolated from mammary epithelial cells after 

2, 5 or 7 days in culture. Northern blot analysis indicated levels of the milk protein 

genes a si-casein and (3-lactoglobulin were maximal at day 5.
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(1991), showed that levels of transferrin and (3-casein mRNA remained high through 

day 6 of culture.

4.2.3 Short term effect o f  FIL on mammary gene expression 

Goat mammary epithelial cells were cultured on EHS matrix for 6 days at densities of 8 

x 105 or 1.6 x 106 cells per well Total RNA was isolated from the cultured cells on 

day 6 (section 2.4.9), following 4 h incubation with either 8 pg/ml FIL, 5 pg/ml 

brefeldin A or 2.5 p.g/ml actinomycin D. The drug brefeldin A is known to block 

transport from the ER to the Golgi (Misumi et al., 1986; Lippincott-Schwartz et al, 

1989), while the antibiotic actinomycin D inhibits RNA chain elongation and therefore 

gene transcription (Stryer, 1988). Previous studies (Rennison et a l, 1993) have 

suggested that FIL acts in a similar way to brefeldin A, blocking ER to Golgi transport.

The effect of caprine FIL on milk protein gene expression was determined by northern 

blot analysis. Alpha-lactalbumin and a si-casein mRNA abundance was expressed as the 

integrated area of the 0.7 kb a-lactalbumin mRNA and 1.2 kb a si-casein mRNA, 

normalised against 28S ribosomal RNA. Milk protein gene expression was expressed 

as arbitrary units of mRNA abundance per 10 fig RNA.

In the first experiment cells were cultured at a density of 1.6 x 106 cells per well. 

Northern blot analysis indicated that 4 h exposure to FIL did not decrease the 

abundance of either a-lactalbumin or a si-casein mRNA (figure 4.4 A). Densitometry 

confirmed these observations (table 4.1). Short term exposure to FIL in these
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•  • • a si-casem * i i i
Fig. 4.4 Milk protein mRNA levels in mammary cells cultured on EHS matrix for 

6 days at densities of 1.6 x 106 (A) or 8 x 105 (B) cells per well. Total RNA was 

isolated on day 6 of culture following 4 h incubation with 8 jug/ml FIL, 2.5 jug/ml 

brefeldin A or 2.5 pg/ml actinomycin D. Lane 1 control, 2 actinomycin D, 3 brefeldin 

A, 4 FIL.
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circumstances increased the abundance of a si-casein mRNA by 36%, while a- 

lactalbumin mRNA abundance decreased by 13.3%. In the second experiment, cells 

were grown on EHS matrix at a density of 8 x 105 cells per well. Northern blot 

analysis again indicated that 4 h exposure to FIL did not decrease the abundance of 

either a-lactalbumin or a si-casein mRNA (figure 4.4 B). Densitometry confirmed 

these observations (table 4.1). Under these circumstances 4 h exposure to FIL 

increased the abundance of a-lactalbumin and a si-casein mRNA by 15% and 64% 

respectively. Exposure to actinomycin D had no consistent effect on the abundance of 

either milk protein mRNA (figure 4.4 A & B; table 4.1).

Short-term (4 h) exposure to brefeldin A had no consistent effect on the abundance of 

either a-lactalbumin or a si-casein mRNA (figure 4.4 A & B). Densitometric analysis 

confirmed this observation (table 4.2). Two further experiments also showed no 

consistent effect on milk protein mRNA abundance after 4 h exposure to brefeldin A. 

Treatment of cells with this fungal drug decreased a si-casein and a-lactalbumin mRNA 

abundance (figure 4.7) but increased the abundance of (3-lactoglobulin mRNA (figure

4.8). The results of this series of experiments are summarised in table 4.2.

The increase in a si-casein mRNA abundance in FIL treated cells was unexpected, and 

not shown by other milk proteins. To explore further FDL’s effect on message 

abundance goat mammary epithelial cells were cultured with FIL for longer time 

periods (sections 4.2.4 and 4.2.5).
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Chapter Four

4.2.4 Effect o f FIL on protein synthesis and secretion

Goat mammary epithelial cells cultured on EHS matrix in the presence and absence of 

FIL were labelled with [35S]-methionine to determine their synthetic and secretory 

activity (section 2.4.10.). Total protein synthesis was estimated by incorporation of 

radioactivity into TCA-precipitable protein in cells, culture medium and mammosphere 

lumina (2.4.11). In mammosphere culture, milk proteins are preferentially secreted into 

the lumen, which is a sealed area. EGTA may he used to open intercellular tight 

junctions transiently, allowing collection of lumenal contents. Collection of this 

medium, or EGTA fraction, allowed estimation of total protein secreted by cells in 

culture.

Two experiments were carried out. In the first, goat mammary epithelial cells were 

cultured with 8 (Xg/ml caprine FIL for the last 24 or 72 h of culture. In a second 

experiment cells were exposed to 8 |ug/ml FIL or 8 pg/ml whey protein for the last 72 h 

of culture, or with 5 fig/ml brefeldin A for the final 4 h of culture.

The effects of these treatments on protein synthesis and secretion by mammary 

epithelial cells in culture are shown in figure 4.5. Total protein synthesis and secretion 

after 24 or 72 h exposure to FIL is shown in panel A, while panel B summarises the 

consequence of 72 h exposure to FIL, or 4 h exposure to brefeldin A. No results for 

protein synthesis and secretion after incubation with whey protein are shown due to 

technical difficulties. Total protein synthesis and secretion decreased by 15.1% and 

16.4% respectively after 24 h treatment with FIL. Following 72 h exposure to FIL
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Fig. 4.5 Protein synthesis and secretion in mammary cells cultured on EHS matrix for 6 

days. Cells were labelled with L-[35S] methionine for a 4 h period following 24 or 72 h incubation 

with 8 (ig/ml FIL (A) or following 72 h incubation with 8 pg/ml FIL, 8 pg/ml whey protein or 4 h 

incubation with 5 jug/ml brefeldin A (B). Total protein synthesis and secretion were measured as 

TCA-precipitable radioactivity in cells plus medium and in culture medium respectively. Values 

are the mean ± SEM for three replicate measurements at each time point.
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Chapter Four

protein synthesis fell by 16.4%, while secretion decreased by 18.8% (figure 4.5 A). 

Similarly, in the second experiment, exposure to FIL decreased synthesis and secretion 

by 17.2% and 28.5%, respectively. Brefeldin A treatment was responsible for a 26.4% 

decrease in protein synthesis and a reduction in secretory activity of 20.2% (figure 4.5 

B).

In summary 24 or 72 h exposure to 8 |ug/ml FIL reduced both protein synthesis and 

secretion in goat mammary epithelial cells cultured on EHS matrix. Brefeldin A, in 

decreasing protein synthesis and secretion, affected mammosphere cultures in a manner 

similar to the effect of this fungal drug observed in mouse mammary acini culture 

(Rennison et a l , 1993).

4.2.5 Effect o f FIL on mammary gene expression in long term culture

In this series of experiments goat mammary cells were incubated with 8 (ig/ml caprine 

FIL for extended periods (24 h or 72 h). Total RNA was isolated on day six of culture 

after treatment with FIL. The influence of FIL on gene expression in longer term 

cultures was analysed by northern blot analysis. Once again, a si-casein and a- 

lactalbumin mRNA abundance was expressed as the integrated area of the 0.7 kb a- 

lactalbumin mRNA and the 1.2 kb a si-casein mRNA, normalised against 28S ribosomal 

RNA. Beta-lactoglobulin mRNA abundance was expressed as the integrated area of 

the 0.9 kb (3-lactoglobulin mRNA respectively, normalised against 28S ribosomal 

RNA.
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Three experiments were carried out. In the first, goat mammary epithelial cells were 

cultured with 8 fig/ml caprine FIL for the last 24 or 72 h of culture. In both the second 

and third experiments, cells were cultured with 8 (ig/ml FIL or 8 pg/ml whey protein 

for the last 72 h of culture.

In the first experiment where cells were exposed to FIL for 24 or 72 h, northern blot 

analysis (figure 4.6) indicated that a si-casein and a-lactalbumin gene expression 

decreased following 24 and 72 h incubation with FIL. Densitometric analysis 

confirmed these observations (table 4.3). Alpha-lactalbumin mRNA abundance after 

24 or 72 h exposure to FIL was 31.1% and 51.7% less, respectively, of message 

abundance in untreated cells. Casein gene expression was similarly affected. The 

abundance of a si-casein mRNA decreased by 37.5% compared to untreated cells after 

24 h treatment with FIL, and 72 h treatment decreased abundance by 63.3%.

This initial experiment suggested that FIL influenced milk protein gene expression. In 

a second experiment, goat mammary cells were incubated with 8 fig/ml FIL or 8 (ig/ml 

caprine whey protein for 72 h. Total RNA was isolated on day six of culture following 

these treatments. Seventy-two hours exposure to FIL decreased both a si-casein and a- 

lactalbumin gene expression (figure 4.7). Northern blot analysis also indicated 

treatment with whey decreased expression of these milk protein genes. Densitometry 

confirmed these observations (table 4.2). Exposure to FIL decreased a si-casein mRNA 

abundance by 15.5%, while a-lactalbumin mRNA abundance decreased by 34.1%, 

compared to mRNA abundance in untreated cells. A decrease in mRNA abundance for
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cisi-casein

a-lactalbumin

Fig. 4.6 Milk protein mRNA levels in mammary cells cultured on EHS matrix for 

6 days. Total RNA was isolated on day 6 of culture following 24 or 72 h incubation 

with 8 pg/ml FIL. Lane 1, 72 k FIL; lane 2, 24 h FIL; lane 3, control.
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28SRNA

a si-casein

a-lactalbumin

Fig. 4.7 Milk protein mRNA abundance in mammary cells cultured on EHS 

matrix for 6 days. Total RNA was isolated following 72 h incubation with 8 fig/ml 

FIL or 8 pg/ml total whey protein, or 4 h incubation with 5 pg brefeldin A. Lane 1, 

control; lane 2, 4 h brefeldin A; lane 3, 72 h whey protein; lane 4, 72 h FIL.
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Chapter Four

each protein was observed after treatment with 8 pg/ml whey protein. As FIL is 

present in the whey fraction, it may be competent to alter gene expression, but its 

effects should be less than that of the FIL preparation since it is not present in such 

high concentrations.

In the third experiment experimental conditions were identical to experiment 2, but 

expression of a si-casein and (3-lactoglobulin after treatment with FIL were 

investigated. Northern blot analysis indicated that the abundance of a si-casein and (3- 

lactoglobulin decreased following 72 h incubation with FIL (figure 4.8). Control 

mRNA abundance was apparently low, however after probing with a 28S cDNA probe, 

it was became obvious that there were not equal amounts of RNA in each lane (figure

4.8). Densitometric analysis confirmed these observations (table 4.3). When message 

abundance was corrected for RNA loading, FIL treatment was calculated to have 

decreased a si-casein mRNA abundance by 54.2%, while (3-lactoglobulin mRNA 

abundance fell by 52.4%. Treatment with whey also decreased the abundance of milk 

protein mRNAs in mammosphere culture (figure 4.8).

4.3 DISCUSSION

A cell culture system has been developed for primary culture of goat mammary cells on 

a reconstituted extracellular matrix derived from the EHS murine tumour. Culture of 

mammary epithelial cells on this substrata allows formation of polarised three 

dimensional structures which are morphologically similar to alveoli in vivo. These 

three-dimensional structures, termed mammospheres, synthesise and secrete milk
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P-lactoglobulin

a si-casein

Fig. 4.8 Milk protein mRNA abundance in mammary cells cultured on EHS 

matrix for 6 days. Total RNA was isolated following 72 h incubation with 8 pg FIL 

or 8 pg/ml total whey protein, or 4 h incubation with 5 pg/ml brefeldin A. Lane 1, 

control; lane 2, 4h brefeldin A; lane 3, 72 h whey protein; lane 4, 72 h FIL.
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proteins into a lumen formed within the structure (LMB Finch, personal 

communication).

EHS matrix is a laminin-rich substratum A series of experiments have demonstrated 

that enhanced gene expression on this substratum is the result of laminin-integrin 

mediated influences on specific milk protein gene promoter regions (Streuli et al., 

1995). Previous studies have shown that murine mammary epithelial cells grown on 

EHS matrix express high levels of the milk protein genes (3-casein (Li et al., 1987), 

transferrin (Chen & Bissell, 1987) and whey acidic protein (Chen & Bissell, 1989). 

Further, murine cells cultured on EHS matrix secrete proteins vectoriafiy. Caseins are 

secreted preferentially into the lumen while transferrin is secreted both apicaUy and 

basally (Barcellos-Hoff et al., 1989; Seely & Aggeler, 1991). Murine mammary 

epithelial cells require a complex substratum to achieve a fully differentiated state, as 

illustrated by the studies of Li et al. (1987) and Chen & Bissell (1989) which showed 

that murine cells cultured on EHS matrix exhibited a greater degree of differentiation 

than those grown on either collagen or plastic. Induction of milk protein gene 

expression in murine cells cultured on EHS takes place contemporaneously with 

reorganisation of the cells to form mammospheres (Aggeler et al., 1991).

The current study demonstrates that goat mammary epithelial cells behave similarly to 

their murine counterparts when cultured on EHS matrix, and express mRNA for the 

milk protein genes a-lactalbumin, (3-lactoglobulin and a si-casein. In comparison, goat 

mammary epithelial cells grown on plastic do not express mRNA for these milk protein
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genes, suggesting that caprine mammary epithelial cells also require a complex 

substratum to achieve a fully differentiated state. Formation of mammospheres by goat 

mammary epithelial cells was accompanied by milk protein gene expression (this study) 

and synthesis and secretion of milk protein (LMB Finch, personal communication). 

While the cells reorganised into small multicellular spheres, low levels of gene 

expression were observed, but by days 5 - 6 of culture when the mammospheres were 

fully formed and enshrouded in matrix, the cells contained high levels of milk protein 

mRNA.

Development of this culture system, and confirmation that cells cultured in this way 

express milk protein genes, has allowed investigation of the factors which direct 

mammary epithelial cell growth and differentiation, and in particular the role of the 

feedback inhibitor of lactation (FIL) in the regulation of milk protein synthesis and 

secretion.

The inhibitory role of FIL has been studied extensively both in vivo (Wilde et al., 1988, 

1995) and in vitro (Wilde et a l , 1987, 1989, 1995). Evidence so far suggests that FIL 

reduces milk yield as a consequence of inhibition of milk secretion, however the exact 

role of FIL in this scheme is not yet known. It has been shown that FIL acts on an early 

stage of the secretory process, blocking transport from the ER to the Golgi in a similar 

way to the drug brefeldin A. Disruption of transport from the ER also results in 

inhibition of translation, suggesting that accumulation of protein within the ER is able 

to directly block protein synthesis (Kuznetsov et al., 1992). Such an interpretation
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would explain FILs effects on both protein synthesis and secretion. Short-term 

exposure (4 h) of lactating mouse mammary acini to 8 pg/ml FIL has been shown to 

inhibit milk protein synthesis and secretion and to disrupt the trans Golgi network, an 

effect also seen with short-term exposure to brefeldin A (Rennison et al, 1993). In the 

present study, short-term exposure (4 h) of goat mammary epithelial cells on EHS 

matrix to either 8 pg/ml FIL or 5 pg/ml brefeldin A has no effect on milk protein gene 

expression. However, 4 h incubation with 5 pg/ml brefeldin A was previously shown 

to decrease protein synthesis and secretion in mammary acini culture (Rennison et al, 

1993). Short-term exposure to brefeldin A also reduced protein synthesis and 

secretion in goat mammosphere cultures (this study), in a manner similar to that 

observed in mouse mammary acini culture. The ability of brefeldin A, a known 

regulator of the secretory pathway (Misumi et a l, 1986; Lippincott-Schwartz et al, 

1989) to inhibit milk protein secretion without affecting mRNA abundance also 

suggests that the response is not dependent on up- or down-regulation of milk protein 

gene expression. This suggests the inhibition of milk protein synthesis and secretion is 

independent of milk protein gene expression at least in the short-term.

That, in this study, FIL had no effect on milk protein gene expression in the short term, 

could have been due to the inability of FIL to reach an apically located receptor. 

Injection of FIL via the teat canal decreases the rate of milk secretion (Wilde et al, 

1995). Additionally, auto-immunisation of lactating goats against their own inhibitory 

protein was found to stimulate milk secretion (Wilde et a l, 1996b). An increase in 

milk secretion was only observed when present in milk but not when present in the
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bloodstream (Wilde et al., 1996b). Therefore FIL exerts its effects after it is secreted 

into milk. For FIL’s action on the rate of milk secretion to be an autocrine process, a 

receptor for FIL must exist on the apical side of the mammary epithelial cell. While 

such a receptor has not yet been isolated, there is increasing evidence that such a 

receptor exists.

Experiments in primary culture of mammary epithelial cells suggest that the putative 

receptor for FIL is found on the apical surface of the luminal epithelial cell. Protein 

synthesis and secretion in mammary epithelial cells from lactating mice were inhibited 

by caprine FIL when the cells were cultured in suspension as acini (Rennison et al., 

1993). However in mouse mammary epithelial cells cultured as mammospheres FIL 

had negligible effect on protein synthesis and secretion (Blatchford & Wilde, 

unpublished observations). Adjacent cells in mammosphere culture form tight 

intercellular junctions such that proteins in culture medium are excluded from the 

lumen of the mammosphere. The apparent insensitivity of mammosphere cultures 

indicates lack of access to an apical receptor. When FIL was allowed access to the 

luminal space by transiently opening intercellular tight junctions, protein secretion was 

inhibited as in acini cultures (Wilde et al., 1996a; Wilde & Peaker, 1996). In the 

present study mammosphere integrity (estimated by the percentage luminal secretion) 

was less than that of intact murine mammospheres but greater than that of those with 

leaky intercellular junctions, suggesting that FIL should have had some access to its 

receptor (Wilde & Blatchford, unpublished observations). Therefore, lack of effect on

103



Chapter Four

milk protein mRNA in the short term suggests that this is not required for inhibition of 

protein secretion.

Inhibition of protein synthesis and secretion after longer exposure of mammosphere 

cultures to FIL indicates that, with time, FIL did indeed gain access to its site of action 

on the apical cell membrane. As already indicated, this may have been because 

mammospheres were incompletely formed: the proportion of protein secreted apically 

was lower than in well-formed mouse mammosphere cultures (DR Blatchford, personal 

communication). Also, with time FIL may reach the lumen of the mammosphere by 

transcytosis, or by a paracellular route: studies in mouse mammospheres suggest that 

there is transient opening of intercellular junctions and redistribution of proteins 

between lumina and culture medium over extended periods (Hurley et al., 1994). 

Whatever its route of access, this series of experiments demonstrate that long term 

exposure of goat mammospheres to FIL inhibits milk protein gene expression.

The mechanism behind these effects is unknown. However, the regulation of secretory 

cell differentiation by FIL may involve local modulation of the secretory cells’ 

sensitivity to circulating hormones (Wilde et al., 1990). Down-regulation of prolactin 

receptors in rodents inhibits milk protein gene expression (Eisenstein & Rosen, 1988), 

and expression of the major milk protein genes is regulated by prolactin at the level of 

transcription and mRNA stability (Guyette et al., 1979). The role of prolactin is less 

clear in ruminants, although prolactin depletion in lactating goats does reduce milk 

yield (Knight et al., 1990). However, FIL’s modulation of mammary hormone
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receptors is unlikely to be limited to prolactin - autocrine feedback may well down- 

regulate receptors for other galactopoietic hormones and so down-regulate milk 

protein gene expression. Implicit in this scheme is that FIL may regulate its own 

expression and secretion. Elucidation of these interdependent events requires that the 

gene for FIL be identified and characterised. Chapters five and six therefore centre on 

attempts to clone FIL.
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5.1 INTRODUCTION

Milk secretion is under the control of a locally acting feedback inhibitor of lactation 

(FIL). The way in which FIL regulates milk synthesis and secretion is as yet unknown, 

but evidence so far suggests that it reduces milk yield as a direct consequence of 

inhibition of the secretory pathway (Rennison et al., 1993). Inhibition of the secretory 

pathway in turn inhibits synthesis of milk constituents. As a probable consequence of 

its effect on membrane trafficking, FIL may also have longer term effects on hormone 

receptor distribution and number (McKinnon et al., 1998; Bennett et a l , 1990). 

Therefore, FIL is also a potential regulator of epithelial cell differentiation within the 

tissue. This is consistent with the sequential effects of milk removal on mammary 

function (Wilde et al., 1987b). Changes in the frequency of milk removal regulates 

milk secretion acutely and this altered rate of milk secretion is sustained by changes in 

cell differentiation and, ultimately, modulation of secretory cell number (Knight et al., 

1990; Wilde et al., 1990). We wished to investigate whether FIL’s milk concentration 

is regulated in a manner consistent with involvement in these sequential responses in 

vivo. Cloning the gene for FIL is crucial to the understanding of the control of FIL’s 

milk concentration and the regulation of FIL gene expression by FIL itself.

Study of eukaryotic gene structure and expression relies on the availability of cloned 

genes as probes. Isolation of complementary DNA (cDNA) clones for milk protein 

genes allows analysis of developmental or tissue-specific gene expression, while 

isolation of genomic clones may reveal important non-transcribed regions which are
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not represented by cDNA clones. In addition, sequence analysis may identify regions 

of homology and possible regulatory elements common to other milk protein genes. 

Advances in molecular biology have made possible the identification of genomic and 

cDNA clones for a variety of milk protein genes, thereby providing the tools for 

detailed study of mammary gene expression and its regulation (reviewed by Mercier & 

Vilotte, 1993; Groenen & van der Poel, 1994).

DNA cloning has four essential stages: generation of DNA fragments; ligation of the 

DNA fragments into a vector; introduction of the vector into a host cell; selection of 

clones of interest.

The choice of library or screening method depends very much on the nature of the gene 

to be cloned. Isolation of eukaryotic genes usually involves construction of a cDNA 

library which represents the mRNA population of a particular tissue or cell type. The 

abundance of a specific cDNA clone within a library is proportional to the abundance 

of that particular mRNA within the entire mRNA population. Isolation of cDNA 

clones for rare mRNAs necessitates the construction of cDNA libraries containing 105 

to 107 recombinants. The high efficiency and reproducibility of in vitro packaging of X 

vectors is ideal for obtaining large numbers of cDNA clones. The two X vectors most 

commonly used for library construction are XgtlO and A,gtl 1 (reviewed by Huynh et 

al, 1988).
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Cloned sequences of interest can be selected from recombinant DNA libraries by 

screening the library with synthetic oligonucleotide probes, antibody probes or cDNA 

probes representing differentially expressed genes. Libraries constructed in A,gtlO may 

be screened with nucleic acid probes, while those constructed in A.gtl 1 may be 

screened with either nucleic acid or antibody probes. FIL has not been cloned in any 

other species and the protein had proved difficult to sequence when cloning was first 

attempted. However it was possible to purify FIL in amounts sufficient to produce 

anti-FIL antibodies. Consequently, initial attempts to clone FIL were based on 

immunological screening of a goat cDNA library constructed in the bacteriophage 

vector Agtll.

This chapter describes the screening of a lactating goat mammary cDNA library with an 

antibody raised against the bovine Feedback Inhibitor of Lactation (FIL), with the aim 

of identifying cDNA encoding goat FIL.

5.2 RESULTS

5.2.1 Suitability o f a-bovine FIL antibody for immunoscreening 

The ideal antibody for use in immunological screening should be polyclonal, have 

absolute specificity for the protein of interest, have a high titre and belong to the IgG 

class of immunoglobulins (Maniatis et al., 1989).

Antibodies raised to caprine FIL were found to cross-react with other goat whey 

proteins (Wilde et al., 1995). Therefore the antiserum used in the present study was
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raised against the bovine feedback inhibitor of lactation, a protein in cow’s milk which 

has similar inhibitory activity to caprine FIL. The bovine protein, like its caprine 

counterpart, was identified by its ability to inhibit reversibly both casein and lactose 

synthesis in lactating rabbit mammary explants (Addey et al., 1991b). Bovine FIL was 

purified by anion exchange chromatography from a Mr 6,000 - 30,000 fraction of 

bovine whey proteins as described by Addey et al. (1991b), and was collected as the 

second resolved fraction (figure 5.1). A polyclonal antiserum was produced as 

described in section 2.5.1.

As mentioned previously, antibodies for immunoscreening should have absolute 

specificity for the protein of interest. The specificity of the antiserum used in this study 

was determined by Western blotting. Caprine FIL was purified by anion-exchange 

chromatography from a Mr 6,000 - 30,000 fraction of caprine whey proteins (section

2.3.2), yielding a single whey protein of Mr 7,600. Under reducing conditions on SDS- 

PAGE this protein migrates with an apparent Mr of 66,000 (figure 5.2) a phenomenon 

attributable to its oligosaccharide content (Wilde et al., 1995). Western blotting with 

the a-bovine FIL antibody detected a single protein band with apparent Mr 66,000 in 

immunoblots of unfractionated whey (figure 5.2).

Another important consideration is whether the antibody recognises the deglycosylated 

form of the protein. Proteins expressed in E. Coli will not be glycosylated. Wilde et 

al. (1995) showed that deglycosylated FIL migrated on SDS-PAGE with an Mr of

7,000 (an apparent Mr consistent with its elution during gel filtration) and that the
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Figure 5.1 Resolution of a Mr 6,000 - 30,000 bovine whey fraction. The bovine whey 

fraction was resolved by anion exchange chromatography, using a Mono Q HR 10/10 

column (FPLC System, Pharmacia), 10 mM imidazole, pH 7.0 and a 0-1.0 M sodium 

chloride gradient. Bovine FIL was collected as the second resolved fraction (2).
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Figure 5.2 Detection of FIL using a specific polyclonal antiserum. Antiserum was 

raised in the rabbit against a protein with similar inhibitory activity to goat FIL purified from 

bovine milk. Lane 1, SDS PAGE of caprine whey proteins; lane 2, SDS PAGE of a Mr

6,000 - 30,000 fraction of caprine whey proteins; lane 3, anion-exchange purified caprine 

FIL; lane 4, immunoblot detection of inhibitory protein in a Mr 6,000 - 30,000 fraction of 

caprine whey proteins.
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antibody recognised a single protein species of this size. From these observations it 

was concluded that the antibody is specific for the polypeptide and not the 

oligosaccharide moiety of the protein.

Preparations of IgG generally give lower backgrounds than whole sera, therefore the 

IgG fraction of the a-bovine FIL antiserum was isolated by ammonium sulphate 

precipitation and purified by affinity chromatography on Protein A agarose (section

2.5.2). Antibodies recognising coliform proteins are found in many polyclonal antisera 

preparations, and these were removed from the a-bovine FIL antibody prior to 

screening by immunoabsorption of the antibody with an E. colt extract made by freeze 

thawing and sonication (sections 2.6.2 & 2.6.3).

It is important that the antibody recognises FIL when the protein is spotted onto 

nitrocellulose since the recognition of protein in this form is the basic principle of 

immunological screening. The a-bovine FIL antibody was capable of recognising as 

little as 200 pg of both native and denatured FIL in an area equivalent to that occupied 

by a single bacterial plaque (figure 5.3).

5.2,2 Immunoscreening

a-FIL IgG was used to screen a random primed cDNA library prepared from lactating 

goat mammary poly (A) RNA in Xgtll (section 2.6.5). Immunoscreening was carried 

out as described in section 2.6.6. In libraries constructed in A-gtll the cloned sequence 

is fused to the carboxy terminus of the P-galactosidase gene of A,gtll. Fusion of the
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Figure 5.3 Antibody recognition of FIL on nitrocellulose. Varying amounts of anion- 

exchange purified caprine FIL were spotted onto Immobilon P nylon membrane in an area 

equivalent to that occupied by a bacterial plaque. FIL was detected by immunoblotting 

using a specific polyclonal antiserum A - native protein, B - denatured protein. Lane 1, 50 

pg; lane 2, 100 pg; lane 3, 200 pg; lane 4, 500 pg; lane 5, 1 ng FIL.
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cloned sequence to the [3-galactosidase gene both stabilises and ensures high expression 

of the fusion protein.

The library was grown on a lawn of E. coli Y1090 cells. Once a large number of 

infected cells surrounded each plaque (after 3-4 h), lacZ directed gene expression was 

induced by placing a nitrocellulose filter soaked with isopropyl- l-thio-|3-D-galactoside 

over the plate. Protein released from the lytically infected cells was immobilised on the 

nitrocellulose filters, and bound antibodies were detected by incubation with a-FIL 

IgG, followed by incubation with an appropriate anti-IgG conjugated to alkaline 

phosphatase. Following addition of the alkaline phosphatase substrate plaques which 

expressed a fusion protein recognised by a-FIL IgG were identified as a purple colour 

on the nitrocellulose filter.

In an initial screen of 105 recombinants, 11 immunoreactive clones were identified, six 

of which remained immunoreactive in subsequent plaque purifications. Phage DNA 

was isolated from these immunoreactive clones as described in sections 2.6.8 - 2.6.9. 

Restriction enzyme digestion of the phage DNA was carried out to establish the 

presence of inserted DNA. The enzyme ECoR I recognises the ECoR I site within the 

synthetic adaptors used to ligate the cDNA and the X g tll  vector, allowing inserted 

DNA to be separated from phage DNA. Digestion of the phage DNA with ECoR I 

confirmed that each of the 6 immunoreactive clones contained foreign DNA (figure 

5.4). Two of these clones, J1(3A) and J2(8B), were selected and the phage DNA was 

analysed.

i l l
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Figure 5.4 Restriction enzyme digest of phage DNA. Digestion with the restriction 

enzyme E C o R  I confirmed the presence of inserted DNA. Lanes 1-6, E C o R  I digested 

DNA from 6 phage lysates; lane 7, X DNA digested with H in d  III.
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During analysis of the immunoreactive clones from the first immunoscreening 

experiment a further screening experiment was carried out. Again a total of 105 

recombinants were screened, 19 immunoreactive clones were identified, and of these 8 

remained immunoreactive in subsequent plaque purifications.

5.2.3 Preparation o f  DNA fo r sequencing

The amount of DNA released from phage lysates was insufficient for sequencing. 

Therefore, the cloned DNA was amplified by the polymerase chain reaction (section 

2.7.1) using the primers BG1 and BG2 which were complementary to nucleotides 

2969-2998 and 3035-3064 of the P-galactosidase gene of A,gtll. Use of these primers 

allowed amplification of the cloned DNA sequence only. Amplified J1(3A) and J2(8B) 

are shown in figure 5.5. Following amplification, each PCR product was cloned 

directly into the Xcm I site of the modified pGEM 5zf (+) series of phagemid vectors 

using T4 DNA ligase, as described in section 2.7.2. The recombinant vector was 

introduced into E. coli strain JM109 by transformation of the host cells (section 2.7.3). 

Cells were transformed successfully with the vector containing J1(3A), however 

transformation with J2(8B) was unsuccessful. Digestion of plasmid DNA with Nco I 

allowed analysis of the foreign DNA In the modified pGEM 5zf (+) vector utilised, a 

Nco I site flanks each end of DNA inserted at the Xcm I site. Plasmid DNA was 

prepared (section 2.7.4) from six randomly chosen transformed colonies, and as shown 

in figure 5.6, five clones contained a single insert, while one clone (lane 5), which did 

not, was discarded. The inserts in the remaining 5 clones appeared to be of a similar
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Figure 5.5 Amplification of DNA using the polymerase chain reaction. Lane 1, pAT 

153 digested with H in d  III; lane 2, amplified J1(3A); lane 3, amplified J2(8B).
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Figure 5.6 Restriction enzyme digest of plasmid DNA. Plasmid DNA prepared from 

clone J1(3A)2 was digested with the restriction enzyme N c o  I to confirm the presence of 

inserted DNA. Lane 1, A, DNA digested with H in d  III; lanes 2-7, plasmid DNA digested 

with N c o  I.
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size, and one of these clones, designated J1(3A)2 was sequenced as described in 

sections 2.7.6 - 2.7.7.

5.2.4 Sequence analysis

The nucleotide sequence of clone J1(3A)2 is presented in figures 5.7 and 5.8. The 

cloned DNA consisted of 163 base pairs. The sequence information was analysed by 

scanning the EMBL database using FASTA, and analysis revealed the sequenced 

cDNA was similar to ribosomal RNA genes from a variety of species. Figure 5.9 

compares the nucleotide sequence of the J1(3A)2 clone with the nucleotide sequence 

of Xenopus Laevis 28S ribosomal RNA gene. J1(3A)2 exhibited 81.6% homology to 

the Xenopus Laevis 28S ribosomal RNA gene in 163 base pairs of overlap. This result 

was rather unexpected, as the antibody appeared to be recognising a protein whose 

sequence is not found in nature. The remaining immunoreactive clones were analysed 

as described below (section 5.2.5).

5.2.5 Analysis o f  other possible positives

As described above, the identity of the sequenced DNA was rather unexpected. In 

order to discover whether all clones identified by the antibody were similar to the 

sequenced clone, a cDNA probe was prepared from the sequenced DNA (section 

2.7.9). Following digestion with the restriction enzyme Nco I, DNA was 

electrophoresed on a low melting point agarose gel and the band corresponding to the 

cloned DNA was excised (figure 5.10). The cDNA probe was then labelled with [a- 

32P]dCTP (section 2.2.5). The immunoreactive clones identified by immunoscreening

113



%

Ik

Figure 5.7 Dideoxy chain termination sequencing of DNA. A - forward reaction, B - 

reverse reaction. Lane 1, C; lane 2, T; lane 3, A; lane 4, G.
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5’ GGGTGGGTCTTCCCGTACCGGCACATGTCCGCGGACCAACCGCGGGGCGGGGATT

3’ CCCACCCAGAAGGGCATGGCCGTGTACAGGCGCCTGGTTGGCGCCCCGCCCCTAA

CAGGAC GC T GGGC TCTTCCTGTT CAC T C GC GT TAC T GAGGGAATAC C T GGT TAGT 

G T C C T G C GAC C C GAGAAGGACAAG T GAGC GCAAT GAC T C C C T TAT GGAC C AAT CA

TTCTTTTCCTCCGCTGACTTAATATGCTTAAATTCAGCGGGTCGCGCCTCACC 3’ 

AAGAAAAGGAGGC GAC T GAAT T AT ACGAAT T TAAGT C GC C C AGC GC GGAGT GG 5’

Figure 5.8 Nucleotide sequence of clone identified by immunoscreening
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Figure 5.9 Nucleotide sequence comparison. Comparison of the nucleotide sequence of 

clone J1(3A)2 with the nucleotide sequence of Xenopus laevis 28S RNA, showing region of 

highest homology. The underlined sequence corresponds to that of clone J1(3A)2.
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Figure 5.10 cDNA probe preparation. DNA was digested with the restriction enzyme 

N c o  I and resolved on a low melting point gel. Lane 1, X  DNA digested with H in d  HI, 

lanes 2-5, N c o  I digested DNA. The bands marked ^  were excised and used as a cDNA 

probe.
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were plated at low density and screened for homology with the 163 base pair probe as 

described in section 2.7.10. This probe hybridised to all the immunoreactive clones 

identified by the antibody. These results suggest that all the possible positives were 

related, and that the antibody recognised the same epitope throughout the screening 

process. Therefore the sequence described in section 5.2.4 was not erroneous.

5.3 DISCUSSION

Many milk proteins, including a number of caprine milk protein genes, have been 

cloned successfully (for review see Groenen & van der Poel, 1994). For example, 

caprine pre a-lactalbumin cDNA was isolated by screening a cDNA library with an 

oligonucleotide probe based on the amino acid sequence of a portion of the goat 

protein (Kumagai et a l, 1987), and the caprine (3-casein gene was cloned using a 

mouse p-casein cDNA probe to screen a genomic library (Roberts et al., 1992). The 

strategy for cloning a particular gene depends primarily on the information available 

about the gene or its gene product.

The feedback inhibitor of lactation has been identified in the milk of goats (Wilde et a l . 

1995) and cows (Addey et a l, 1991b); and a protein fraction with similar activity has 

been identified in both humans (Prentice et a l, 1989) and in a macropod marsupial 

(Hendry et a l, 1992). However, the gene for FIL has not been cloned from any 

species, therefore it was not possible to isolate the caprine gene using a cDNA probe 

derived from a previously cloned FIL gene. Further, little protein sequence was 

available for FIL when this study began, therefore library screening with synthetic
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oligonucleotides constructed on the basis of protein sequence was not initially an 

option.

Consequently, attempts to clone the gene for FIL centred on immunological screening. 

While protein sequence information was limited, it was possible to purify both the 

caprine and bovine proteins (Addey et a l , 1991b; Wilde et a l , 1995), and this led to 

the prospect of antibody production. Antisera raised to caprine FIL cross reacted with 

other caprine whey proteins, however, the antiserum raised to bovine FIL was found to 

be specific for the caprine protein (Wilde et a l , 1995 & this study).

Several genes have been successfully cloned using antibodies to screen both genomic 

and cDNA libraries. The first reported results were those of Young and Davis (1983b) 

who isolated yeast RNA polymerase II subunit encoding genes using a polyclonal 

antibody directed against purified yeast RNA polymerase n. Other examples include 

the cloning of firefly luciferase (de Wet et a l , 1985), brain glutamate decarboxylase 

(Kaufman et a l , 1986) and thyrotropin-releasing hormone precursor (Lechan et a l , 

1986).

Clones J1(3A) and J2(8B) showed the strongest signals with the antibody. Subsequent 

sequencing of one of these clones, J1(3A), and DNA sequence analysis revealed 

striking homology to ribosomal RNA genes from a variety of species. Clearly this result 

was unexpected, but further investigation revealed that all the clones identified in this 

study were related to the same sequence. Clone J2(8B) was not sequenced as the
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vector containing this clone was not successfully introduced into an E. Coli host. 

Transformation is an extremely inefficient process, no matter how carefully the process 

is carried out, and generally only 0.01% of the plasmid molecules are transported into 

the host cell. That E. Coli was not transformed with J2(8B) was not unusual, and, in 

any case when this recombinant was screened with a cDNA probe derived from clone 

Jl, both these clones were found to be related.

Subsequent screening of all other positive clones identified by immunological screening 

revealed that all were false positives. Similar problems have been encountered by 

others using this method. Boutin et al (1988) experienced problems when using 

antibodies to isolate cDNA for the rat prolactin receptor. All clones identified by both 

monoclonal and polyclonal antibodies against the rat prolactin receptor were found to 

be false positives, despite the apparent specificity of their antiserum for the prolactin 

receptor. No explanation was offered for this result. Cowell & Hurst (1992) reported 

difficulty using immunoscreening to clone several transcription factors. In this case, 

failure of immunoscreening was ascribed to the presence of a minor but extremely 

antigenic contaminant in highly purified transcription factor preparations. This minor 

contaminant generated a strong immunogenic response even when present in 

undetectable amounts. Clearly, this confirmed the intuitive prediction that antibody 

specificity is a key factor in the success, or otherwise, of any immunoscreening 

approach.
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It is conceivable that processing of FIL for antiseram production, or the nature of the 

immunoscreening process may have contributed to the detection of false positives, and 

conversely, the failure to detect true positive clones encoding FIL sequences. 

Although experiments have indicated that FIL is still recognised by the antibody after 

deglycosylation (Wilde et al., 1995), an absence of carbohydrate moieties on the 

recombinant protein may mean that many epitopes present may not be recognised by 

the polyclonal antiserum. Also, FIL is a small protein of Mr 7,600, and as such may 

have only a small number of antigenic determinants. Even minor contamination with a 

larger, more antigenic protein may produce a more complex and potentially higher 

affinity immune response. It is also possible that bovine albumin to which FIL was 

conjugated may contain a minor antigenic contaminant. However, it should be 

emphasised that immunoblotting confirmed the specificity of the antibody for its 

intended target before library screening was attempted, indicating that cDNA encoding 

FIL, if expressed in A,gtl 1, should have been identified by this approach.

The library used in this study was a random primed goat mammary cDNA library 

constructed in A,gtl 1. Use of random primed libraries is advantageous when the 

message size of a protein is unknown. While FIL has been shown to be a small protein 

of Mr 7,600 it does not necessarily follow that the gene for FIL will also be small. First 

strand synthesis is primed with random oligonucleotide primers which hybridise at 

random sites along the mRNA template. Random priming ensures equal representation 

of all sequences in the mRNA population, and that all regions of a protein encoded by a 

particular mRNA are expressed in the library. However, random primed cDNA
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libraries may contain 75% ribosomal sequences since ribosomal RNA can account for 

as much as three quarters of the total RNA within the cell. This problem may be 

circumvented by priming first strand synthesis with an oligo dT primer. This primer 

hybridises to the 3’ terminal poly (A) sequence of the mRNA template and cDNA 

synthesis proceeds from a determined site on the template rather than at random sites 

throughout it. Therefore, oligo dT primed cDNA libraries contain no ribosomal 

sequences.

The quality of the cDNA library is also important when considering immunoscreening. 

The library used in this series of experiments had an average insert size of 300 base 

pairs, due at least in part, to the inefficiency of the size separation stage during library 

preparation. Consequently, only small fusion proteins were expressed, and it is 

possible that the antigenic portion of FIL was not represented, allowing identification 

of an antigenically similar but unrelated protein expressed in the library.

In conclusion, this chapter has demonstrated some of the problems associated with 

immunoscreening, and that it is unwise to rely on a single method for identifying a 

gene. Since the a-FIL antibody appears to recognise a ribosomal sequence expressed in 

the random primed library, it was decided to construct and screen an oligo dT primed 

goat mammary cDNA library in a further attempt to isolate cDNA for caprine FIL. 

Screening such a library would circumvent the problems experienced with 

immunoscreening.
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6.1 INTRODUCTION

As discussed in chapter five, cloning the gene for the feedback inhibitor of lactation 

(FIL) is crucial to the understanding of the control of FIL’s milk concentration and the 

regulation of FIL gene expression. As the immunoscreening method was unsuccessful, 

this chapter describes further strategies which were implemented in an attempt to clone 

the gene for FIL.

Three strategies were attempted concurrently. As one approach, a new goat mammary 

cDNA library was constructed. Secondly, oligonucleotides were designed for use in 

library screening. Thirdly, a polymerase chain reaction-based procedure was also 

attempted in order to identify cDNA for FIL.

Library construction

Library screening using an antibody specific for FIL was unsuccessful as the antibody 

recognised a ribosomal sequence expressed in the random primed cDNA library used in 

this procedure. This problem may be circumvented by priming first strand synthesis 

with an oligo dT primer. This primer hybridises to the 3’ terminal poly (A) sequence of 

the mRNA template, and cDNA synthesis proceeds from a determined site on the 

template rather than at random sites throughout it. Therefore oligo dT primed libraries 

contain no ribosomal sequences.

119



Chapter Six

Design o f oligonucleotide probes

In addition to the identification of genes using antibodies raised to their gene products, 

several other approaches may be used. Genes of interest may be identified not only by 

antibody probes but also by the use of synthetic oligonucleotide probes or cDNA 

probes representing differentially expressed genes. Antibody screening has so far 

proved unsuccessful, and, as the gene for FIL has not yet been cloned in any other 

species, a cDNA probe for FIL was not available. The use of synthetic oligonucleotide 

probes, designed on the basis of known protein sequence has achieved identification of 

several genes for proteins whose partial amino acid sequence is known. Genes cloned 

in this way include bovine trypsin inhibitor (Anderson & Kingston, 1983) and caprine 

pre a-lactalbumin (Kumagai et al., 1987).

There are three types of oligonucleotide probes commonly used - single 

oligonucleotides of defined sequence, pools of short highly degenerate 

oligonucleotides, and longer oligonucleotides of lesser degeneracy. The use of longer, 

less degenerate oligonucleotides, or guessmers, is the method of choice when sufficient 

protein sequence - usually 10 or more amino acids - is available for their design. 

Guessmers are synthetic oligonucleotides which range in size from 30 -70 nucleotides 

and contain only a subset of all possible codons at each position. Most amino acids are 

coded for by codons which differ only in the third nucleotide position, therefore at least 

two of the three nucleotides are guaranteed to match their target perfectly. The 

detrimental effect of any mismatch is outweighed by the increased stability of hybrids 

formed by longer oligonucleotides (Binnie, 1991). Lathe (1985) calculated that a
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probe would have 76% homology to its target sequence even if all codon choices were 

made on a random basis. It follows, therefore, that if codon utilisation in the species of 

interest is taken into consideration, the homology of the probe will increase further, 

making it more specific.

When cloning was first attempted, little sequence data was available, and so only 

immunoscreening was possible. However, further protein sequencing attempts yielded 

a consensus sequence for the N-terminal portion of the FIL protein (Wilde et al., 1995; 

see figure 6.1). Searching of Swissprot and OWL databases with this amino acid 

sequence revealed no homology with other milk proteins or with any other known 

protein. Knowledge of this partial protein sequence allowed construction of guessmers 

for use in a variety of protocols aimed at cloning the gene for caprine FIL.

PCR Screening

Synthetic oligonucleotides constructed from the FBL consensus sequence were also 

used in the RACE protocol. RACE, or rapid amplification of cDNA ends, is a 

polymerase chain reaction-based technique which facilitates the cloning of full length 5’ 

and 3’ cDNAs after a partial amino acid sequence has been obtained. It is a technique 

which lends itself to screening when only N-terminal sequence is available; the first 

primer can be designed from the partial N-terminal sequence, while the second primer 

can be an oligo dT sequence binding the poly (A) region of the mRNA of interest.
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Figure 6.1 Partial amino acid sequence of FIL. N-terminal analysis of the inhibitory 

protein produced a consensus sequence consisting of 12 amino adds. Searching of 

Swissprot and OWL databases revealed no homology with any known protein.
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6.2 RESULTS

6.2.1 Designing the optimal oligonucleotide

There are two crucial considerations when designing synthetic oligonucleotide probes 

(reviewed by Binnie, 1991). The sequence of each oligonucleotide must be designed in 

order that it has the highest chance of binding its target sequence, and the temperature 

and conditions in which hybridisations are performed must be calculated to maximise 

hybridisation specificity. Hybridisation conditions are discussed in detail in section 

6.2.5.

6.2.2 Codon usage in the goat

Codon usage in the goat was investigated using the coding sequences of five caprine 

milk protein genes, (3-casein (Roberts et al., 1992), a S2-casein (Bouniol, 1993), pre a- 

lactalbumin (Kumagai et al, 1987), K-casein (Coll et al., 1993) and J3-lactoglobulin 

(Folch et al., 1993). Frequency of use of each possible codon for each amino acid is 

represented in table 6.1, with the frequency of use being expressed as a percentage of 

the total appearance of that amino acid.

6.2.3 Codon choice

The sequences of synthetic oligonucleotides JMB 1 - 4 are shown in figure 6.2 JMB 1 

and 3 are oriented in the sense direction, while JMB 2 and 4 are antisense versions of 

JMB 1 and 3, respectively. Two distinct oligonucleotides were synthesised in each 

orientation to minimise the impact of serine (position 8) which displayed no particular 

codon bias. Sense oriented oligonucleotides were constructed for use in 3’ RACE
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Amino Acid Codon a-lac P-cas a^-cas K-cas P-lac

Ala (A) GCT 14 12.5 36 16.5 15
GCC 57 50 45 39 65
GCA 29 37.5 19 39 5
GCG 0 0 0 5.5 15

Arg(R) CGT 0 0 0 20 0
CGC 0 0 14 0 0
CGA 0 0 0 0 0
CGG 0 0 0 0 33
AGA 0 100 57 40 33
AGG 100 0 29 40 33

Asn (N) AAT 43 50 73 57 0
AAC 57 50 27 43 100

Glu (E) GAA 50 53 63 55 0
GAG 50 47 37 45 100

Gly(G) GGT 33 40 50 50 0
GGC 17 0 50 0 83
GGA 50 40 0 50 0
GGG 0 20 0 0 17

Leu (L) TTA 6 0 0 15 0
TTG 23 0 12.5 15 7.5
CTT 6 35 0 7.5 7.5
CTC 23 19 37.5 7.5 18
CTA 6 4 12.5 15 0
CTG 36 42 37.5 38 67

Phe (F) TTT 33 43 44 57 0
TTC 67 57 56 43 100

Pro (P) CCT 100 53 15 27 12.5
CCC 0 31 46 0 62.5
CCA 0 12.5 31 68 12.5
CCG 0 3.5 8 5 12.5

Ser (S) TCT 25 33 21.5 8 0
TCC 25 13 28.5 31 33
TCA 12.5 7 21.5 15 0
TCG 0 0 0 0 0
AGT 25 14 21.5 46 33
AGC 12.5 33 7 0 33

Table 6.1 Codon usage in the goat. The relative frequencies of use of each codon are 
expressed as a percentage of all the codons coding for a particular amino acid.



J M B 1

5’ GCC CCT CCT TTT GAG AGA AAC AGT CCT GGT 3’

J M B  2

3’ CGG GGA GGA AAA CTC TCT TTG TCA GGA CCA 5’

J M B  3

5’ GCC CCT CCT TTT GAG AGA AAC TCC CCT GGT 3’

J M B 4

3’ CGG GGA GGA AAA CTC TCT TTG AGG GGA CCA 5’

Figure 6.2 Synthetic oligonucleotides constructed on the basis of known protein 

sequence. JMB 1 and 3 are oriented in the sense direction (5’ - 3’), while JMB 2 and 4 are 

oriented in the antisense direction (3’ - 5’).
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(section 6.2.6) while those in the antisense direction were constructed for use in 

northern blotting and library screening (section 6.2.5).

Codon choice was influenced by several important parameters. Since different 

mammalian tissues display different patterns of codon usage, codon utilisation in genes 

coding for other caprine milk proteins was taken into consideration (section 6.2.2). 

The sequence CpG is under-represented in mammalian DNA (Bird, 1980), therefore 

where a combination of codons generated this sequence, one codon was replaced with 

the next most commonly used. Additionally when there was no strong preference for 

any particular codon, those ending in T were picked.

6.2.4 Library construction

An oligo dT primed goat mammary library was constructed as described in section 2.8. 

A brief scheme is presented below. Total RNA was isolated from lactating goat 

mammary tissue as described in section 2.2.2. Messenger RNA (mRNA) was obtained 

from total RNA using a Poly Attract mRNA isolation system (section 2.8.1). Virtually 

all eukaryotic mRNAs have 3’ poly (A) sequences allowing isolation of mRNA from 

total RNA by virtue of the mRNA’s ability to bind oligo dT. First strand cDNA was 

synthesised following a modification of the method of Krug & Berger (1987) using 

MMLV reverse transcriptase and oligo dT (section 2.8.2). Double stranded cDNA 

was subsequently synthesised using RNAse H and DNA polymerase I, as described by 

Gubler (1987; see section 2.8.3). Following purification by phenol:chloroform 

extraction, the double stranded molecule was further purified, on the basis of size, by

123



Chapter Six

centrifugation through a S300 spun column (section 2.8.5). Blunt ended cDNA was 

prepared for insertion into A,gtl 1 by addition of ECoR I/Not I adaptors (section 2.8.6). 

Excess adaptors were removed by centrifugation through a spun column as before 

(section 2.8.5), and the cDNA was inserted into a Xgtll vector as described in section 

2.8.7.

Several specific problems were encountered during library construction. First strand 

synthesis was generally successful. However second strand synthesis was inefficient, 

resulting in double stranded molecules that may have contained gaps or traces of 

mRNA. First and second strand synthesis were repeated many times to try to solve this 

problem. In addition the final library contained both shorter and fewer inserts than 

desired. Size separation using S300 spun columns was repeated to try to remove small 

fragments from the library, but this was only partially successful. The small average 

insert size was probably due to inefficiency of second strand synthesis. The 

constructed library, though not without its problems, was amplified ready for screening 

with either oligonucleotide probes or PCR products from 3 ’ RACE.

6.2.5 Hybridisation with synthetic oligonucleotide probes

Oligonucleotides JMB 2 and JMB 4 were labelled at the 5’ end with [y-32P]ATP using 

T4 polynucleotide kinase as described in section 2.8.2. Hybridisations were carried out 

as described in section 2.8.3, using northern blots of the RNA used for library 

construction. The choice of hybridisation temperature is crucial to the success of 

oligonucleotide probes - the temperature must be high enough to avoid non-specific
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binding, but low enough to maximise the probability of specific binding. Hybridisation 

with synthetic oligonucleotides is generally carried out at temperatures 5 - 100 C below 

the calculated melting temperature (Tm) of a perfect hybrid. The Tm of each oligo was 

determined using a Genequant calculator (Pharmacia) according to manufacturer’s 

instructions. The Tm of JMB 2 was calculated as 75.8 ° C and that of JMB 4 as 77.8 0 

C. The maximum possible mismatch was also calculated, assuming that all choices of 

degenerate codons were incorrect. Both oligonucleotides had a percentage mismatch 

of 13 %. 1 ° C was subtracted from the calculated Tm for each 1% of mismatch; the 

resultant Tm should be that of a maximally mismatched hybrid formed between the 

guessmer and its target sequence. In practise the actual Tm should be higher than this 

worst case scenario, since even some randomly chosen codons could in fact be correct, 

however it is best to hybridise at a temperature lower than the estimated Tm to avoid 

missing the clone of interest.

Prior to library screening, a set of trial experiments were performed in which a series of 

northern hybridisations were carried out with varying Tm and washing conditions in 

order to optimise hybridisation conditions. Trial hybridisations were performed with 

two identical blots containing the same RNA as was used for library construction. 

Each blot was treated stepwise but asynchronously, such that loss of signal with any 

temperature increment could be corrected by a smaller increment with the second blot. 

Accordingly, hybridisation in aqueous buffer (section 2.9.3) was started at 50 ° C for 

each guessmer. After hybridisation, each hlot was washed using 5 ° C increments in 

washing temperature, starting with the same conditions of temperature and ionic
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strength as the hybridisation buffer. Hybridisation was repeated using the same 

hybridisation conditions but washing blots at conditions of higher stringency - i.e. at 

higher ionic strengths (section 2.9.3).

A similar procedure was carried out for hybridisation in formamide hybridisation 

buffer. This hybridisation buffer (section 2.2.4) contains 50% formamide. Each 

percent of formamide present in a hybridisation buffer is equivalent to a temperature 

increase of 0.5 ° C, therefore hybridisation in this buffer should be carried out 25 ° C 

lower than hybridisation in aqueous buffer. Each oligonucleotide was therefore 

hybridised in this buffer at 25 0 C. Washing conditions were as described previously.

Despite performing a number of northern hybridisations, no binding of either JMB 2 or 

4 to RNA used for library construction was observed. Since no sequences 

complementary to either oligonucleotide probe were found it was decided not to screen 

the oligo dT primed library with either probe at this time.

6.2.6 r  RACE

3’ RACE was performed as described in section 2.9.4. RACE generates cDNAs using 

the polymerase chain reaction to amplify copies of the region between a single point in 

the transcript and the 3’ or 5’ end. The sequences of the adapter primer and the oligo 

dT - adapter primer are shown in figure 6.3. No PCR products were obtained using 

either primer JMB 1 or 3.
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dTn-adapter primer

5’ GAC TCG AGT CGA CAT CGA TTT TTT TTT TTT TTT TT 3’ 

Adapter primer

5’ GAC TCG AGT CGA CAT CG 3’

Figure 6.3 Synthetic oligonucleotide primers for 3’ RACE.
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6.3 DISCUSSION

Attempts to clone the gene for caprine FIL were unsuccessful. This chapter highlights 

some of the problems experienced in the cloning of genes in general, and demonstrates 

that despite the use of a number of cloning strategies, success does not necessarily 

follow.

Guessmers were first used to identify bovine trypsin inhibitor (Anderson & Kingston, 

1983), human insulin-like growth factor I (Ullrich et al., 1984) and human factor IX 

(Jaye et a l , 1983). Many other genes have been identified by this method (reviewed by 

Maniatis, 1989) but there is as yet no report of a milk protein gene being isolated in 

this fashion.

Prior to library screening, a set of trial experiments were performed in which a series of 

northern hybridisations were carried out under different washing conditions and 

degrees of stringency. No sequences complementary to either oligonucleotide probe 

were observed in hybridisations with RNA used for library construction. It was 

therefore unlikely that any complementary sequences would be identified during library 

screening. This strategy was discounted at this stage.

In 3’ RACE a short stretch of sequence from an exon must be known. From this 

region a gene specific primer oriented in the 3’ direction is designed, providing 

specificity to the amplification step. RNA is reverse transcribed using a primer which 

consists of oligo dT (17 residues) attached to a unique 17 base “adapter” primer.
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Amplification then takes place using the adapter primer, which binds to the cDNA at 

the 3’ end, and the gene-specific primer (either JMB 1 or 3). RACE may have 

suffered from the same limitations experienced with oligonucleotide screening. The 

degeneracy of the primers designed for use in 3’ RACE may also have been too high 

for any match to occur. The results obtained during trial northern hybridisations 

(section 6.2.5), where neither oligonucleotide bound to RNA, suggest that this was 

indeed the case. On the other hand, only one set of conditions was used for RACE, 

and while these conditions have been used successfully to clone other genes (Frohman 

et a l, 1988), they may not have been optimal for the current study.

These results suggest that the degeneracy of the oligonucleotides was too high for any 

match to occur. The codons chosen for each amino acid may not have been correct 

especially since there was a high proportion of amino acids in the partial protein 

sequence with four or six codons coding for the amino acid; for example alanine, 

glycine and proline with four codons, and serine and arginine with six possible codon 

choices.

Caprine FIL has proved hard to purify in a form suitable for protein sequencing, and 

the protein sequence published by Wilde et al. (1995) is a consensus sequence from 

several sequence attempts. An error in identifying even a single amino acid, combined 

with the high degree of codon degeneracy, could together have prevented identification 

of complementary sequences in PCR and library screening.
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Structural analysis of FIL and cloning of the FIL gene is currently concentrating on the 

bovine form of the protein. The bovine protein has proved easier to purify and work is 

currently ongoing towards cloning the gene from this animal. If bovine FIL is 

identified a cDNA probe derived from this may facilitate identification of the gene for 

caprine FIL.
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7.1 SUMMARY AND DISCUSSION

This study has increased knowledge of the role of FIL in the regulation of milk protein 

synthesis and secretion by showing first, that frequency or completeness of milk removal 

regulates the expression of milk protein genes and, secondly that this effect is mediated by 

FIL.

Previous evidence for regulation of mammary differentiation by milking frequency rested on 

measurements of lipogenic mRNA abundance and activity (Travers & Barba:, 1993; Wilde 

et al., 1987b). In extending these observations to two key milk protein genes, a- 

liictalbumin and a si-casein, we have confirmed that autocrine regulation is exerted on 

aqueous and non-aqueous milk constituents, i.e. that the developmental response is indeed 

one of cellular differentiation for secretory function. One of the milk constituents studied, 

alpha-lactalbumin, is an essential component of lactose synthase, the rate-limiting enzyme 

involved in the synthesis of lactose and therefore an important determinant of milk volume 

(Stacey et al., 1995). Thus, as the rate of milk secretion increases in response to more 

frequent milk removal, milk composition remains unaltered. This suggests that individual 

milk constituents are indeed regulated coordinately.

A number of technical problems were experienced in the studies in vivo. For example, the 

response of individual animals to unilateral frequent milking, suckling or drainage was 

highly variable, making statistical analysis difficult. The problem could, of course, have 

been alleviated by use of a greater number of animals but this option was not available.
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Analysis was also complicated by longitudinal changes in gene expression with stage of 

lactation. Consequently, a response to manipulation of milk removal was sometimes 

apparent as an accelerated or an impaired developmental response in the test gland, and not 

necessarily as a significant difference between glands after manipulation (Travers & Barber 

1993; Wilde et a l, 1987b; Wilde et al., 1990). In one case, the experiment was also 

confounded by practical problems. The response of the gland to continuous milk removal 

(drainage) was inconsistent. The catheters inserted in the gland frequently became 

dislodged or blocked, leading to discontinuities in the rate of milk removal Additionally, 

catheter milking removes only cisternal milk and therefore fails to relieve autocrine 

inhibition (Henderson & Peaker, 1987). Alveolar milk was removed only once daily when 

the gland was milked out using oxytocin. This treatment may be considered a negative 

control - it confirms that effective manipulation of milk removal is absolutely essential for 

changes in both milk yield and milk protein gene expression.

Experiments in chapter four provided the first direct link between FIL and regulation of 

gene expression. The EHS culture system provides a convenient means of studying and 

manipulating milk protein gene expression. Murine mammary epithelial cells cultured on 

EHS matrix show a greater differentiated function than those cultured on either plastic or 

collagen. In EHS culture, murine mammary cells express high levels of several milk protein 

genes: (3-casein (Li et aL, 1987), whey acidic protein (Chen & Bissell, 1989) and transferrin 

(Chen & Bissell, 1987). The current study demonstrates that caprine mammary epithelial 

cells, like their murine counterparts, express high levels of milk protein genes when cultured 

on EHS matrix, making this system appear ideal for investigation of FIL's effects on gene
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expression. However, recent evidence from primary culture of mammary epithelial cells 

indicates that the receptor for FIL is located on the apical surface of the secretory cell 

(Blatchford & Wilde, unpublished observations). Therefore if lumen formation is 

successfiil, FIL introduced in the culture media will be unable to reach its apically located 

receptor. That gene expression was not affected following short-term (4 hour) exposure to 

FIL may have been due to the protein's inability to reach this receptor. The reduction in 

milk protein gene mRNA abundance seen in cultures exposed to FIL for extended periods 

(72 hours) suggest that with time FIL did indeed gain access to its site of action. 

Alternatively, FIL may have gained access to the luminal space before the formation of tight 

intercellular junctions.

That FIL is competent in mammosphere cell culture to decrease milk protein gene 

expression suggests that FIL regulates mammary differentiation. More frequent removal of 

milk, and thus more frequent removal of FIL from the gland may therefore be expected to 

increase milk protein mRNA abundance. As was demonstrated in chapter 3, this is indeed 

the case.

A variety of standard methods were attempted in order to clone the gene for the inhibitory 

protein. That none was successfiil could stem from a fundamental technical problem - for 

example the purity of the FIL protein which was sequenced and used for antibody 

production. However, immunoblotting confirmed the specificity of the anti-FIL antibody 

prior to library screening, suggesting that cDNA for FIL, if present, should have been 

identified using this approach (Wilde et al., 1995 & this study). Alternatively lack of
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success in cloning may arise from a series of unrelated factors. It is possible, due to 

problems with the random primed library, that the antigenic portion of FIL was not 

represented. In addition the identification of a protein antigenically similar but unrelated in 

structure or function to the protein of interest has been experienced by other researchers 

(Boutin et a l, 1988; Cowell & Hurst 1992). Lack of success with 3' RACE was most 

likely due to the degeneracy of the oligonucleotides used. The goat displayed no strong 

codon bias, making construction of guessmers difficult (chapter six).

The bovine form of the protein has proved easier to purify and work is currently ongoing to 

clone the gene from this animal. If the gene for the bovine feedback inhibitor of lactation is 

identified, a cDNA probe derived from this may facilitate identification of the caprine form 

of the gene. Indeed, identification and characterisation of the bovine form will allow many 

of the questions asked in this thesis to be answered, in particular how FIL's milk 

concentration is controlled, and how FIL expression is regulated by FIL itself

Access to a recombinant gene is also an essential step in the production of recombinant 

protein. It is possible that recombinant protein production may be achieved in either a 

prokaryotic or eukaryotic system; however this will depend on whether FIL is active in 

unglycosylated form The availability of a bioactive recombinant protein would obviate 

many of the practical restraints which have thus far prevented elucidation of FIL's 

physiological significance and detailed examination of the molecular mechanism of 

autocrine control
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Autocrine control of milk production by FIL provides a plausible explanation for the 

matching of milk supply with demand. However, feedback control of milk secretion by FIL 

cannot act in isolation - it must be integrated with the endocrine control of lactation. 

Therefore, while focusing on the local autocrine regulation of milk secretion, it must be 

remembered that this mechanism is likely to be primarily a tactical device for matching 

supply of milk with demand, and that it operates within the strategic limits set by the 

endocrine system.

The dynamic nature of the mammary gland allows it to adapt to the demands placed on it by 

the suckled offspring or in dairy animals, by the milking regimen. This offers potential for 

controlling lactation in order to improve animal productivity and welfare. For example, 

identification of the gene for FIL, the feedback inhibitor of lactation, and elucidation of its 

role in milk secretion may allow milk secretion to be controlled by means other than those 

which led to the discovery of this protein, i.e. by frequency of milking. The ability to inhibit 

dramatically or switch off lactation by FIL treatment may in addition offer an adjunct to dry 

cow therapy - it may allow lactation to be switched off without mammary distension and the 

resultant discomfort this causes the animal Accumulation of milk within the gland at drying 

off plays a major contribution to the incidence of mastitis in the dairy cow - a disease which 

costs the dairy industry millions of pounds annually.
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