
Applications o f wavelet transforms to the suppression o f coherent 

noise from seismic data in the pre-stack domain.

Submitted for the degree of Ph.D. 

by

Andrew J. Deighan B.Sc. (University of Glasgow), M.Sc. (University of Durham).

Department of Geology and Applied Geology,

University of Glasgow.

© Andrew J. Deighan. August 1997.



ProQuest Number: 11007656

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007656

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



GLASGOW
UBRA-'

was i

GLASGOW
UNIVERSITY
LIBRARY



Abstract
The wavelet transform, a relatively new mathematical technique, allows the analysis 

of non-stationary signals by using basis functions which are compact in time and frequency. 

The variables in the wavelet domain, scale (a frequency range), and translation (a temporal 

increment) can be associated with time-frequency, and so in the wavelet transform we have 

the potential to filter seismic signals in a pseudo time-frequency sense.

The one dimensional discrete multiresolution form of the wavelet transform can be 

effectively used to suppress low frequency coherent noise on seismic shot records. This 

process, achieved by the muting or weighting of coefficients in the wavelet transform 

domain, is demonstrated by suppressing low velocity, low frequency ground roll from land- 

based seismic data, the benefits of which are visible at both the shot and stack stages of the 

seismic processing stream.

The extension of this technique to the suppression of higher frequency coherent 

noise is limited by the octave band splitting of frequency space by the transform. The 

wavelet packet transform, an extension of the wavelet transform, allows a more adaptable 

tiling of the time frequency domain which in turn allows the suppression of noise 

containing high frequencies whilst minimising signal distortion. This technique is 

demonstrated to be effective in suppressing airblast from land based common receiver 

gathers, whilst minimising the distortion of reflected signals.

These filtering techniques can be extended to two dimensions, filtering data in the 

two dimensional wavelet and wavelet packet domains. This technique involves muting the 

transform coefficients in the wavelet/wavelet packet transform space which has four 

variables: temporal translation, offset translation, frequency scale and wavenumber scale.

As for the one-dimensional case the two dimensional wavelet transform suffers from poor 

resolution due to the octave splitting o if-k  space, but when used in combination with a 

velocity based shift such as normal moveout, can be used to filter data with minimal 

distortion to the residual signal. Extending the process to using the two-dimensional 

wavelet packet transform eliminates the shift requirement and leads to more effective 

filtering in the four variable transform space. The wavelet packet filtering technique is
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effective in suppressing low velocity noise from land based seismic records showing visible 

improvement in both the common shot records and resultant stack.

The non-stationary properties of the wavelet transform allows the filtering across 

geophone arrays (that is, the common shot record) by the application of the transform in the 

offset domain. Filtering of the wavelet coefficients, in combination with a linear or 

hyperbolic shift applied before and removed after filtering, allows discrimination against 

linear noise on common shot records associated with first breaks and hyperbolic events on 

common midpoint records such as multiples. The use of a simple muting technique in the 

wavelet domain effectively suppresses these forms of coherent noise. Where the velocity 

contrast between signal and noise is high, noise suppression is possible whilst preserving 

reflector amplitudes. Where the velocity contrast is smaller, weighting of the wavelet 

coefficients (based on transforms of the input signal after translation) allows noise 

suppression whilst preserving the amplitude versus offset relationships of the primary 

signal. This is shown to be effective on synthetic, marine and land based data, with 

improvements observed on common shot records and resultant stacks.

The results of all these wavelet transform based filtering techniques are sensitive to 

the choice of wavelet transform kernel wavelet. The suitability of a kernel wavelet for 

filtering can be related to the frequency spectra of the kernel wavelet. A fast rate of 

frequency amplitude fall-off at the edge of a given scale of basis wavelet minimises 

frequency overlap between neighbouring kernel wavelet scales and so minimises 

contamination by noise associated with aliasing in the filtered signal, a process that is 

inherent in the transform process. A flat amplitude response across the frequency range of a 

given scale also leads to improved filtering results.
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Notation
Let Z and R denote the set of integer and real numbers respectively.

The bar x represents the complex conjugate such that (a + ib) = ( a -  ib) , where the 

symbol i represents the square root of -1.

n

The scalar product (a,b) of two vectors is defined as (a,b} = •
i

The inner product ( /  ,g) of two functions is defined as ( /  ,g) = j  f  (t)g(t)dt.

The modulus of a vector* is symbolised by |* |.

i

( " VThe length, or norm, of a vector ||*|| = •
v  / J

The Fourier transform of a function/is symbolised by /  .

The set of square summable sequences is denoted by L2(/?).

The union of two sets is denoted by U and the intersection of two sets by f | •

The empty set is denoted by {0}.

If the set A is a subset of the set B, then this is denoted by A c z B . 

e represents ‘is a member o f  in set theory.

If two vectors *, y are orthogonal it is denoted by x ± y .

The tensor product of two spaces V0 and is denoted by V0 ® V, and the tensor sum by 

V0®V,.

<=> denotes equivalence.
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1. Introduction

1.1 Introduction

Seismic data are non-stationary, mainly due to localised events such as head 

waves and ground roll which appear at different times on the seismic shot record In 

addition, attenuation of seismic signals, which ideally have a wide frequency band 

width, is a frequency dependent phenomenon.

In seismic data processing the Fourier transform is used extensively to improve 

the quality of seismic data from the initial shot record to the final stacked section. The 

non-stationarity of the signal can degrade the performance of some seismic processing 

techniques such as filtering and deconvolution which rely on Fourier transform 

techniques. To minimise this effect in a conventional processing sequence, spherical 

divergence is applied to seismic shot records, correcting for amplitude variations due to 

attenuation, and time-variant spectral whitening or inverse Q filtering is applied to 

account for frequency attenuation. In deconvolution and filtering multigate processing 

(a form of windowed transform processing) is also used where operators are designed 

over several time gates to account for variations in the frequency of the source signal 

with time. These techniques attempt to fit seismic data to the stationary assumption of 

the Fourier transform and so improve the result of these processing techniques.

The last ten years have seen the emergence of wavelet transforms as an 

extension to the signal processor’s toolbox. Wavelets, in the form of square integrable 

compact, band-limited functions have been present in the literature since early in this 

century in the form of the Haar wavelet (Haar, 1910). In the 1980's wavelet transforms 

were first constructed by Goupillaud, Morlet and Grossman (1985) for geophysical 

processing. The transform was based on a single prototype function and its scales and 

shifts. The concept of scale, a scaling operation dilating or contracting the prototype 

function, replaces the notion of frequency. Orthonormal wavelet bases (stable bases) 

for square integrable and other function spaces were discovered by Meyer (1990), 

Daubechies (1988), Battle (1987, 1988), and Lemarie (1988) amongst others. These 

constructions were formalised by Mallat (1989) andl Meyer (1990) creating wavelet 

expansions called multiresolution analysis.
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In this thesis we investigate applications of the discrete wavelet and wavelet 

packet transforms to the suppression of coherent noise from seismic shot and common 

midpoint (CMP) records. The increasing emphasis on analysis of pre-stack seismic data 

for the detection of hydrocarbons and determination of reservoir properties has placed 

further emphasis on the elimination of noise from seismic traces before the stacking 

process. In other words, it is essential that noise is eliminated from seismic shot records 

and CMP gathers, whilst preserving the amplitudes of the reflection signals. Coherent 

noise contaminates seismic shot and CMP records in a time variant fashion and so the 

wavelet transform presents itself as the ideal tool.

1.2 Wavelet Transforms

The initial development of the wavelet transform concept by Goupillaud, 

Grossman and Morlet (1989) was not followed up by the geophysical community. 

Mathematicians developed and fine tuned the concept and, apart from the early papers 

by Goupillaud, Grossman and Morlet, references on the wavelet transform in the 

geophysical literature before 1992 are very few and far between. The wavelet transform 

has many guises, in that, there are many different formats of wavelet transform many of 

which have impacted on the geophysical community in the last few years. These 

formats can be based into two classes, forward transforms and model building 

transforms.

Forward transforms, such as the continuous wavelet transform, discrete wavelet 

transform and wavelet packet transform, decompose a signal by band-pass filtering the 

signal at different bandwidths. These transforms are classed as forward transforms as 

the processes involve the application of filters to signals, independent of the signal.

That is the filters are related to the kernel wavelet of the transform not to the signal.

The spectral characteristics of the filters are related to the kernel wavelet and its 

dilations, and therefore are not unique, in that there are a multitude of possible kernel 

wavelets. The transform results in a series of wavelet coefficients associated with the 

filtering of the original signal at different bandwidths, frequency locations, and times.

A limiting factor of this technique is that for there to be a stable inverse of the 

transform, the kernel wavelet used in the transform must obey certain conditions.

Namely that the kernel wavelet must be band-limited, have finite energy and a zero 

mean.
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Model building transforms, such as Matching Pursuit (Mallat and Zhang, 1993), 

apply a wavelet transform to a signal by building a model of the signal from a redundant 

database of all possible permutations (translations, dilations and modulations) of a 

kernel wavelet. This process involves performing a fast search through the database for 

the basis wavelet (or atom, as they are referred to) which best matches the input signal 

according to some predefined criteria. This atom is then subtracted from the signal to 

form the model and leave the remainder of the signal, called the residual. The model 

consists of the first basis wavelet and is gradually added to as the searching process is 

performed again, this time, however, on the residual. This process is performed until 

the residual reaches a predefined level and the transform consists of all the atoms 

contained in the model plus the residual. Unlike the forward transforms, the Matching 

Pursuit transform is dependant on the signal and the transform process is very much 

governed by the transform and the choice of first best matching atom. The benefit of 

this transform over the forward transform techniques is that it allows the use of the 

optimum kernel wavelet in terms of time-frequency compactness, whilst still allowing a 

stable inverse.

In this research we deal with the application of the discrete wavelet and wavelet 

packet transforms to seismic data processing with only reviews of applications of model 

based transforms. Previous application of wavelet transforms, to seismic data 

processing are summarised in the next section.

1.3 Previous Work

In recent years there has been an explosion in the number of papers published 

using wavelet transforms in fields outside geophysics, and now a great deal of attention 

is focussed on the wavelet transform in the context of oil exploration, especially in data 

compression.

The wavelet and wavelet packet transforms can give sparse representations of a 

signal, that is, in wavelet space most of the coefficients are zero. The greater the 

dimension of the signal and the transform the greater the percentage of zero coefficients 

due to the increase in coherent signal. This has led to the increasing use of the 

transform in data compression, and lossy data compression (Donoho et al. 1995, Luo 

and Schuster, 1992). Two and three dimensional discrete wavelet transforms in 

combination with Huffman coders can obtain compression ratios of up to 100:1 whilst 

only having a slight effect on the quality of the final stacked section. These wavelet 
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compression techniques are lossy techniques. Once the compression ratio goes above a 

certain ratio, the compression technique leads to loss of some data. Therefore, the trade 

off between compression ratios and data loss must be balanced. The sparsity in the 

wavelet domain has also led to investigations into the effectiveness of applying 

migration algorithms in the wavelet domain (Wu and McMechan, 1995; Dessing, 1995; 

Wang and Pann, 1996). Migration is a process which can be very computer intensive 

and the use of matching pursuit algorithms using databases of Ricker wavelets to 

perform Kirchoff migration have reduced processing time considerably (Wang and 

Pann, 1996). Seismic inversion techniques have also been investigated in wavelet space 

(Bunks et al., 1995; Li and Ulrych, 1995) using wavelet transform multiscale 

techniques. Application of these techniques allow inversion of seismic data obtained 

from complicated earth models.

The use of frequency-time tools for geologic interpretation allows delineation 

and analyses of hierarchical structures, such as sedimentary deposits and for identifying 

geologic cyclicity which can appear on well logs as frequency-modulated signals. 

Discrimination between geological layers by their frequency-time plane patterns and the 

grading of reflections and logging boundaries can be performed by analysis of the 

sharpness of events in the time-frequency plane. Use of the continuous wavelet 

transform for such seismic attribute analysis was discussed by Li and Ulrych (1996) and 

Makarov et al. (1996) who used it to provide such scale-location properties. The use of 

the matching pursuit wavelet transform for analysis of seismic data was discussed by 

Chakraborty and Okaya (1995) and compared to the continuous wavelet transform, 

discrete wavelet transform and the wavelet packet transform. The matching pursuit 

algorithm allowed spectral localisation, with seismic reflections, direct and surface 

waves clearly identifiable. In borehole geophysics Li and Haury (1995) discussed the 

use of the continuous wavelet transform for identifying and analysing scaling problems 

in sonic logs. Grubb and Walden (1997) developed the use of the discrete wavelet 

transform in combination with Daubechies kernel wavelets as an attribute analysis tool 

with which to characterise or classify groups of seismic traces in reservoir studies.

The continuous wavelet transform has also been developed as a tool for zero- 

phasing seismic data and as a zero-phasing quality control tool (Mansar and Rodriguez, 

1994). Interpretation of seismic sections is best performed on zero-phase data and 

seismic data are conventionally converted to zero-phase in the Fourier domain after the 

stacking process. The results of this zero-phasing process are not always satisfactory
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due to the non-stationarity of the signal. The continuous wavelet transform using the 

complex Morlet wavelet (Morlet et al., 1982) can be implemented to analyse the phase 

of events locally. Operators can then be designed to correct any phase deviations.

In the field of noise suppression, Alkemade (1993) developed af-x  

deconvolution technique using the discrete wavelet transform which was demonstrated 

to be effective on real data sets. This used the temporally localised information given 

by the discrete wavelet transform to improve the f-x  deconvolution technique. During 

the process of this thesis research, Faqi et al. (1995) used the non-symmetrical 

Daubechies wavelets and the discrete wavelet transform for filtering seismic data pre 

and post stack in combination with the linear radon transform. They concluded that the 

transform was a useful tool for the removal of localised noise bursts and power line 

interference. We will discuss this work more fully in chapter two where the use of the 

discrete wavelet transform as a pseudo time frequency filter is developed.

Schuster and Sun (1993) used the discrete wavelet transform with symmetrical 

spline wavelets to successfully suppress tube waves from VSP records and extended the 

work to suppressing ground roll on shot records. They used the discrete wavelet 

transform to decompose traces in the offset direction after a linear shift. This allowed 

an effective method of velocity filtering. We will discuss this work more in chapter five 

where it is developed further.

1.4 Summary of Thesis

In investigating applications of wavelet transforms to seismic data processing we

develop and test techniques on synthetic and real data examples where appropriate.

This chapter has briefly introduced the topic of wavelet transforms and reviewed

previous applications of wavelet transforms to seismic processing techniques. In the

next chapter we review the theory behind the one-dimensional wavelet transform and

introduce the wavelet packet transform which can theoretically provide higher

resolution in frequency than the wavelet transform. We also discuss the implementation

of these transforms on discrete signals. In chapter three we develop the use of the

discrete wavelet transform as a time-frequency filtering tool and use it to suppress low-

frequency ground-roll from land-based seismic shot records. This technique suffers

from poor resolution in frequency-time space at higher frequencies and so in chapter

four we extend this filtering technique to the wavelet packet transform. We demonstrate

this technique by suppressing airblast on land-based seismic records and we also discuss 
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limitations associated with this technique. The use of the wavelet and wavelet packet 

transforms can be extended to two dimensions, and we investigate the practicalities of 

extending these techniques in chapter five. Here we apply two-dimensional filters to 

land-based seismic records to suppress ground roll and guided waves and we 

demonstrate the subsequent improvement in stacked section.

Finally, in chapter six, we develop the use of the one-dimensional wavelet 

transform as a local filter, filtering across arrays of geophones/hydrophones. We apply 

this technique to the suppression of guided waves from land based seismic data, swell 

noise from marine data and multiple energy from CMP gathers.
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2. Wavelet Theory

2.1 The Fourier Transform

In this chapter we look at the theory of several types of time frequency 

decomposition to build a basis, so to spe:ak, for the application of some of these 

techniques to the filtering of seismic data. For a more rigorous and mathematical review 

of the theory behind wavelet transforms the reader is directed to the books by 

Daubechies (1992), Vetterli and Kovacevic (1995) and Chui (1992). Reviews of the 

topic are also present in the literature in Jawerth and Sweldens (1994), Alkemade 

(1993), and Strang (1989).

The initial topic of the Fourier transform is an essential starting point in any 

study of wavelet transforms, and we will develop this through windowed Fourier 

transforms to wavelet transforms and wavelet packet transforms.

In the early 19th century, Fourier introduced the use of harmonic trigonometric 

series for the decomposition of signals. The Fourier transform of a signal is defined as 

the inner product of the signal, /  (0 ,  and a basis function ^„(0  :

decomposing the signal into the sum of these basis functions. The inner product 

effectively measures the similarity between the basis function 0(t){t) and the signal

f i t ) .  The basis functions comprise complex trigonometric functions which are 

combined into a complex exponential:

where co is angular frequency and t time. These basis functions have infinite extent in 

time/space and are correspondingly perfectly compact in frequency space. The 

transform results in the signal being decomposed into two spectra; an amplitude 

spectrum and a phase spectrum. The amplitude spectrum represents the frequency 

content of the signal, while the phase spectrum represents the phase relationship 

between each of the harmonic components. The corresponding inverse of the transform 

defined as

(2.1)

</)w(t) = cos(tyr) + /sin(<2U)
(2.2)

(2.3)
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reconstructs the signal from the amplitude and phase spectra which contain ail the 

information required. Any temporal information, indicating signal frequency content 

with time, is contained in the phase spectrum, but can be problematic to extract when 

the signal contains non-harmonic features, that is, when the signal is non-stationary.

When dealing with signals in computers, continuous functions are unobtainable 

and so some form of discretisation is required. Applying the discrete form of the 

Fourier transform on a discrete signal containing A samples (which is therefore band- 

limited from 0 Hz to the nyquist angular frequency conyq Hz) results in the angular

frequency becoming discretised with a sampling rate corresponding to,

2 .0)
A 0) = —^ .  (2.4)

Therefore, in the discrete form, the Fourier transform and the corresponding inverse 

become
N -1  nm

f(m Aco) = ^ f ( n A t ) e  '2* N , (2.5)
n=0

and,

N / - \
1 -  +i2/r—

f(n A t)  = —  X / ( mAco)e N . (2.6)
A _ N/m—  / j

The discrete form of the transform and the corresponding inverse recover the signal 

exactly, i.e.: the transform is orthogonal. The discrete basis functions for this form of 

the Fourier transform have become
m

e ^  , (2.7)

which have infinite extent in time, which leads to the incorporation of any temporal 

information into the phase spectrum, and is therefore, effectively lost. The Fourier 

transform, ideal for analysing stationary signals, may not be the ideal tool for non- 

stationary, as with seismic data.

2.2 The Windowed Fourier Transform

To overcome the limit on temporal information supplied by the Fourier 

transform, the transform can be used in combination with a temporal window which is 

applied to the function before analysis. The window function 6 (t  -  x ) , which has a 

specified time width and amplitude decay at the edges, is used to determine local 

information about the signal around the centre of the time window x . In the windowed
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form, the Fourier transform is applied to the product of the signal, f ( t ) , and the 

complex conjugate of the window function -  x) and so the transform becomes

WFT{co,t) = J t f ( f - r ) / d t . (2.8)

On the right hand side of the integral the order of the multiplication is interchangeable, 

and so the transform can be considered as the inner product of windowed basis function 

i)(t -  r)e~,m and signal f ( t ) . These basis functions can be considered as window 

functions, d(t -  z ) , modulated by an exponential e~'a , and form the basis for the 

windowed Fourier transform. An example of one of these basis functions is shown in 

Figure 2-1.

Time ^
-icot

Figure 2 -1A modulated window basis function fo r the windowed Fourier transform

For practical applications, the continuous transform can be discretised with 

respect to the window functions centre time, 1 , and angular frequency, CO using

t  = n t0 and co -  mcoQ, (2.9)

where t 0 and co0 are the temporal and angular frequency increments. This removes any 

redundancy in the transform and leads to the form
oo

W T „  = \ f ( t n j t ) d t  (2.10)
— OO

which is an inner product between the signal f ( t )  and the discretised modulated 

window basis functions, dmn{t) = d(t - / i r 0)e;'7“w° '. From this discretisation, the 

temporal axis is divided into sections of width z0, while the frequency axis is

subdivided into sections of width p0 = —- .  These widths in the time-frequency domain
2 n

are related in a form similar to the Heisenberg uncertainty relation (Gabor, 1946), such 
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that, if the resolution (the subdivision size) along the time or frequency axes are 

increased there will be a corresponding decrease along the other axis as shown in 

Figure 2-2.

/
A

Figure 2-2 Constant area Heisenberg cells in frequency-time space.

In terms of time and frequency bandwidths, the uncertainty relation defined as

A A ( 2*10

where A, is the time width of the cell, and Af  is the frequency bandwidth. To obtain

optimum resolution in terms of temporal and frequency widths of the modulated 

window function, the inequality expressed in Equation 2.11 becomes an equality of its 

lowest possible value, n . This equality only holds for Gaussian functions

fa
f i t ) = \ i e V K

where the window function bmn(t) becomes

^ ( 0  =

(2 . 12)

V2^Po

- U - n T 0 )~

0 g  2 p 2 im a v (2.13)

This form of the windowed Fourier transform is known as the Gabor transform where 

the width of the window function is determined by p  coupled with t 0. To ensure 

reconstruction of the original signal ?0 < 2 p . This window function leads to the 

subdivision of the time and frequency axes using a Gaussian window. The widths of the 

windows on the two axes are different, the time width being ?0 and the frequency width

CUn .
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2.3 Time-Frequency Tiling

Decomposition using Fourier techniques leads to a tiling of the time-frequency 

plane as shown in Figure 2-3. From this we can see that the Fourier transform lacks any 

temporal information. The stationarity of the Fourier basis leads to the assumption that 

the input data are stationary. When applied to signals that are non-stationary, such as 

seismic signals, this assumption is violated and the Fourier representation can only 

reveal the frequency content of a signal without any indication of the time varying 

properties of the signal.

NYQ

F r e q u e n c y

T i m e ( N - l ) d t

Figure 2-3 Tiling o f frequency-time space by the discrete Fourier transform

The windowed Fourier basis allows a superior tiling of the time-frequency plane 

in terms of time-frequency representation, as shown in Figure 2-4. The drawback of 

this form of transform is the relationship between window size and the signal. Figure 2- 

5 shows two windowed Fourier transforms (window lengths 500 ms and 50 ms 

respectively) of a synthetic seismic trace consisting of three zero phase events 

containing different spectral characteristics; the first has 4-8-30-40 Hz corner 

frequencies, the second 8-12-70-90 Hz and the third 4-6-15-20 Hz. From Figure 2-5a 

(500 ms window) we can see that for a signal with low frequency signal content a wide 

window function gives a satisfactory representation of the signal in the time-frequency 

plane whereas with a narrow window we lose resolution on the temporal axes. The 

opposite is true for a localised high frequency signal, a narrow time window giving the 

best time-frequency representation (Figure 2-5b, 50 ms window). When a signal 

contains both high and low frequency components which are localised in time, the
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windowed Fourier transform fails as the window width on both the temporal and 

frequency axes are fixed.

N YQ

Frequency

Time (N-l)dt

Figure 2-4 Tiling o f frequency-time space by the windowed discrete Fourier transform
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( a )

(b)

Figure 2-5 Windowed Fourier transforms o f the trace shown using (a) a 500 ms and (b) 
a 50 ms window. The horizontal axis is frequency in Hz. and the vertical time in ms. The 
maximum amplitude (grey) is 0 dB from the maximum, the lowest (white) -40 dB from  
the maximum.
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Scale

j= 0

j=1

j= 2

j=3
Time

Figure 2-6 Tiling o f  time-frequency space by the discrete wavelet transform where the 
time-frequency window width adapts with the frequency being analysed. The scale axis 
is analogous to the frequency axis where a low scale corresponds to the highest 

frequency and largest frequency range.

2.4 The Wavelet Transform

Ideally for a signal that contains both high and low frequency time localised 

signals we would want a transform that allows an adjustment to the window length with 

frequency. Grossmann and Morlet (1984) introduced the concept of scaling analysis of 

functions through which the window changes width according to the frequency under 

analysis. This leads to a partitioning of the time-frequency plane as indicated in Figure 

2-6, from which we can see that for low frequencies the temporal window has a large 

width and as the frequency increases the width o f the temporal window decreases.

2.4.1 The Continuous Wavelet Transform

The continuous wavelet transform uses basis functions y/S T (t) called wavelets, 

which are defined as

w‘A t ) = W ^  i2A 4)

where the function y/(t) e L2(R) is called the mother or kernel wavelet. The translation 

parameter x controls the temporal position of the centre o f the basis function (as r0 

does with the windowed Fourier basis) and the parameter s is called the scale
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parameter. The scale of a wavelet defines the temporal width of the basis wavelet, as 

the window length does with Fourier techniques. Figure 2-7 shows a Morlet wavelet 

(Goupillaud et al., 1985, Grossmann and Morlet, 1984) at several scales and translations 

and the corresponding Fourier amplitude spectra in Figure 2-8. Scale is analogous, 

although not directly, to frequency in Fourier analysis; the larger the scale the wider the 

basis wavelet is in time and so the lower the frequency, the narrower the wavelet, the 

smaller the scale and the larger the frequency and bandwidth. Scale more accurately 

corresponds to a frequency range as can be seen from Figure 2-8.

0.3

0 .2

0

-0.1

- 0 .2

- 0.3 0 20 00 10040 60

(a)

0 .2

- 0 .2

-0 .3 0 20 40 GO 80 100

(b)

Figure 2-7 The time representation o f  the Morlet wavelet (a) real and (b) complex 
component with a scale factor s equal to 6 and 9 and at two translations with r equal to 
70 and 30.
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0.6

0 .5

0 .2

0.1

0 0 .5 1 1.5 2 2 .5 3

Figure 2-8 Frequency representation o f  the Morlet wavelet shown in Figure 2.7 
showing dilation o f  the frequency spectrum with scaling

As for the Fourier transform, the wavelet transform is a projection which 

consists of the inner product of the signal / ( t ) with the basis wavelets y/s T( t) ,

W T(s,r) = ( f ( t ) , Wsr(t)).

Substituting for the basis function this leads to the transformation

W T(s,r) = - f  (i w ( - — f t .

(2.15)

(2.16)
V i S i  ' v s

For a given kernel wavelet function y/{t)\o  be admissible, it has to follow the following 

conditions (Daubechies, 1992):

• the kernel wavelet y/(t) must have finite energy, i.e.: the wavelet must be 

absolutely integrable and square integrable:

JV (0 < « > , (2.17)

and

J |^ (0 | dt < oo. (2.18)

• the kernel wavelet should be band limited and the low frequency behaviour 

of the Fourier transform sufficiently small around a> = 0:

co
dco <oo (2.19)

This leads to the attainment of the inequality

"r |^(6>)|2
(2.20)
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where \jt (t ) is the Fourier transform of yj (t ). These conditions must be met by the 

kernel wavelet function otherwise reconstruction of the original function from its 

transform is not possible (Daubechies, 1992).

The corresponding inverse of the continuous wavelet transform is given by

from which the reasoning behind the restrictions on the kernel wavelet become obvious.

2.4.2 The Discrete Wavelet Transform

In a basic discrete form, the wavelet transform of a signal would be evaluated for 

every translation step and scale increment determined by the sampling rate. In this form 

the wavelet transform would represent a highly redundant decomposition which would 

require a great deal of computational time. Adequate sampling of scale-translation 

space is required to remove redundancy from the transform and to maximise 

computational efficiency. To achieve this the scaling parameter s can be discretised 

such that s = si ( y e  Z ) and j0 > 1. The variable j  is called the scaling index which in 

combination with the scaling factor, s0, governs the width of the basis function in time. 

This transforms the basis functions to

Discretisation of the translation parameter t , which governs the centre position 

of the basis wavelet in time, can be achieved in several ways. Mallat and Hwang (1992) 

discretised the translation parameter independently of the scale parameter, allowing the 

retention of local or temporal information. This is shown schematically in Figure 2-9. 

This creates a redundant transform where there is a constant number of samples in each 

scale which is of particular interest when estimating the local degree of irregularity of a 

feature, such as in edge detection. An alternative technique reduces the coverage of the 

temporal axis with scale by linking the number of samples to the value of the scaling 

parameter, altering the number of samples per scale (Mallat, 1989). For a wavelet at 

scale si the temporal width of the wavelet is proportional to Sqj , therefore, if the

j  \cW T (s ,r )y /{— ) (2 .2 1 )

(2 .22)

The transform becomes,

(2.23)
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translation parameter can be set such that r  = n r ^ ,  the resultant basis functions will 

become

(0 =
1

- n r n
V Jo

(2.24)

This leads to a sampling of the time-frequency plane as shown in Figure 2-10.

scale  J k 
index  /

in+l

sh ift

O n e sam ple
interval

Figure 2-9 Sampling o f the time-frequency plane by discretising the translation 
parameter independently o f the scaling parameter

scale  4  
index  /

m+1

m + 2

m +3

sh ift

Figure 2-10 Sampling o f the time-frequency plane by discretising the translation 
parameter in combination with the scaling parameter.

Chapter 2: Wavelet Theory Page 18



For stable reconstruction, the operator that maps a function f(t) into wavelet 

coefficients has to be bounded. That is, if the signal f(t) has finite energy then

the sum of the squares of the wavelet coefficients, X (v/m n , / \ |  has to be finite. Also,
nun *

no signal f(t) with ||/|| > 0 (that is, a signal with non-zero energy) should be mapped to 

zero. Therefore, for stable reconstruction, there are upper and lower bounds, called

frame bounds, on the sum of the square of the coefficients, „ , / )  . For a signal
m,tr

with ||/|| > 0, this limits the sum to be a finite, non-zero number. In mathematical 

terms, this is formalised by stating that any family of wavelets, yj , , with some decay
.vn/ir„

in time and frequency, zero mean and for s0 > 1 and z0 > 0, form a frame if there exists 

two constants A > 0 and B < such that

1  i | ( / . ^ J 2 ^ i / f -  ( 2 - 2 5 )
,  =  - o o  f \  —  -CO

where A and B are the frame bounds. For the original signal to be recovered exactly for 

a given discretised set of s and t  the basis functions yt , , A should equal B, forming
s(tn r„

what is called a tight frame (Daubechies, 1992). The value of A (or B) gives an 

indication of the degree of redundancy in the transform, with A = B = 1 indicating no 

redundancy and the wavelet basis constituting an orthonormal basis. If A does not equal 

B yet the remainder of the conditions hold, reconstruction is possible but there is an 

associated error in reconstruction. For s0 = 2 and tQ = 1, wavelets that conform with 

the admissibility conditions (equations 2.17 to 2.19) form an orthonormal basis 

(Daubechies, 1988) and the signal can be reconstructed exactly. A scaling factor of two 

allows fast implementation of the transform on a computer as multiplication by two is a 

simple shift operation on a digital number.

2.4.3 Multiresolution Analysis

The discrete form of the wavelet transform and its implementation were 

introduced by Mallat (1989), using the scale parameter, sJ0 and the translation parameter 

T = n r0sl with s0 = 2 and t0 = 1. The technique of applying the wavelet transform to a 

discrete time series, termed multiresolution analysis, splits a signal into a series of 

subspaces which represent a coarse approximation of the signal and the remaining detail 

signals.
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More formally, a multiresolution analysis of l } ( R )  is defined as a sequence of

embedded closed subspaces V} of l I {R) { j  e Z)

{0} —  c  V , c l / ()c ^  c V 2  czLr(R)  (2.26)

with the following properties (Vetterli and Kovacevic, 1995):

1. U ,sZ^  = L2(« ) . (2.27)

The union of all subspaces should cover the space of square-summable 

sequences. This requires that the combination of the frequency ranges of the 

basis wavelets at every scale should completely cover the frequency space of the

signal from 0 Hz to the Nyquist frequency, leaving no gaps.

2. f ly-6Z^- = {0} (2.28)

The subspaces should not intersect.

3. g ( t ) e V i <=> g ( 2 t ) e V j+l, (2.29)

The embedded subspaces are related by a scaling law which states that if the 

basis function g(t) is a member of a subspace Vs then after dilation by a factor of

two, the scaled basis function is a member of the neighbouring subspace, Vj+l.

4. Each subspace is spanned by integer translates of a single function g(t) such that

g ( t ) e V Q «=> g ( r + l ) e F 0. (2.30)

This states that if the function g(t) is a basis function for the subspace > then 

all translations of the function g(t+n) are basis functions also.

A scaling function (pit) e  is then required such that its integer translates 

{(pit — t ) , t  g  z j  form an orthonormal basis for the space V0. Therefore, from equation 

2.29 we can derive a scaling function 0(2t -  1 )that will form an orthonormal basis for 

the subspace V,. Since the space V0 lies within the space Vj as shown schematically in

Figure 2-11, we can express any function in V0 in terms of the basis functions of Vj. In

particular,

(pit) = ^ a T0{2t -  r) (2.31)
r = - o o

in which ak ,k e Z  , is a square summable sequence (i.e.: is finite). The coefficients aT 

are called filter coefficients and it is often the case that only a finite number of these are 

non-zero. Equation 2.31 is referred to as the dilation equation. Defining
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0 ,r = 2/20 ( 2 ' - r )  (2.32)

then <pS T(t),k e Z  forms an orthonormal basis for the subspace K. , where s , as before, 

is the scale parameter. If we take the difference between subspaces Vv+I and Vs, we can

define a new subspace W<!+[ such that it is the orthogonal complement of Vt+1 in Vs,

Vl+llW m+l (2.33)

where © represents a direct sum. From this it follows that the spaces Ws are 

orthogonal and that

© W . = L2(fl). (2.34)
je Z

Figure 2-11, represents this concept schematically for basis wavelets which are sine 

functions. The sine function is a permissible basis wavelet (Jawerth and Sweldens,

1994) but is not practical due to its very slow decay in time, yet is ideal for illustration 

purposes. The kernel wavelet, yj (t ), is defined as the function that forms the basis of 

the space VK0

y/ST = 2^2y/(2st - t )  . (2.35)

Therefore if \y/{t — r ) , r  e z} form an orthonormal set, then it follows that 

\y /s T, s ,r  e  z }  form an orthonormal basis for l } ( R ) .

Am plitude

f /8  f /4

W ,

f/2

F requ en cy

Figure 2-11 Partitioning o f frequency space by a discrete wavelet transform using a 
sine basis wavelet. The transform partitions frequency space into octave bands, each 
scale i o f basis wavelet spanning an octave subspace and each corresponding 
scaling function spanning the nested subspaces Vt (adapted from Vetterli and Kovacevic,
1995).
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As the wavelet transform is a projection, let us denote the projection of /  on a 

wavelet subspace, Ws as Q J  (Figure 2-12) and P J  the projection o f/o n  the scaling 

subspace Vs . Then from equation 2.33, we have

P J  = p<+if + Q ,*J  • (2-36)

which shows that Q J  represents the detail that needs to be added to get from one level 

of approximation, Ps+J  ,to the next finer approximation, P J  .

Figure 2-12 The wavelet transform is a projection o f the vector P J  onto the wavelet 
space Ws+i giving the vector Qs+J  in the wavelet space and Ps+J  , the coarse 
approximation o f P J .

Since the space WQ is contained within the space Vj, we can express the wavelet 

function in terms of the scaling function at the next higher scale,

V(x)  = ^ b j ( 2 t  -  T) . (2.37)
r = - o o

The multiresolution decomposition takes the coefficients of an approximation to 

the original signal at scale s and decomposes them into

(1) coefficients, cv+1 r of Px+J  , the approximation to the signal at the next coarser scale 

s+  1

(2) coefficients, wv+1 r of Qs+J  = P J  — Ps+J  the detail component.

This process shown diagrammatically in Figure 2-13 can then be repeated on the 

coefficients of the approximation to find the next set of coefficients cs+2mT and wv+2 r

and so on. Therefore, we can see that the multiresolution decomposition breaks down

the original L2(/?) space into a series of orthogonal subspaces at different resolutions. 
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Equation (2.31) defined the filter coefficients which are used in the 

multiresolution decomposition. A wavelet, ip(t) , is orthogonal to the scaling function 

and is defined by

V( t )=  S ( - l ) ' a w_,_r(i>(2f-T) (2.38)
r = - o o

where N, the number of scaling filter coefficients, is an even integer. The sets of

coefficients h = {ar} and g = {(— 1) r /̂jV_,_r} form a pair of quadrature mirror filters.

These quadrature mirror filters (QMF) are a pair of half-band high pass and low pass 

filters which split the data into the smooth part and the detail part. Figure 2-14 shows 

the QMF pairs and associated impulse response for a common basis wavelet.

f .v+l
*■ c.v+l.r

\+1, r

Figure 2-13 Schematic diagram o f the decomposition o f the signal f  into the coarse 
approximation c and the detail signal d.

2.4.4 Transform Implementation

The discrete wavelet transform is implemented using a fast transform (N\og(N) 

operations for a N  sample signal) using the QMFs associated with the basis wavelet. 

The technique is indicated schematically in Figure 2-15 and explained in the following 

text.

Each iteration of the transform step involves the splitting of the input signal into 

two output signals. One signal is filtered by the high-pass half band filter and the other 

by the low pass half band filter producing the projections indicated in equation 2.36. 

The output of the low pass filter gives the smoothed version of the input signal Ps+lf  

and the resulting halving of the Nyquist frequency allows downsampling by two of the 

signal. The output of this step is referred to as scaling coefficients at that scale (scale 0, 

if it is the first iteration). The output of the high pass filter gives the detail signal 

Qx+J  which is the difference between the input signal and the original. This signal is
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also downsampled by two and gives the wavelet coefficients at that scale (scale 0, if  it is 

the first iteration). The same filtering and downsampling process is then applied to the 

scaling coefficients and constitutes the next iteration of the transform. This process is 

applied in a cascaded fashion until only one scaling coefficient remains.

Q

1
I

Q

(a)

(b)

(c)

Figure 2-14 (a) A basis wavelet built from  cubic splines (b) The associated high pass 
and (c) low-pass quadrature mirror filters.
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Seismic HP 
Trace

2 : Downsample by two

Figure 2.-15 Schematic diagram showing the cascade process used in the I-D discrete 
wavelet transform achieved using a pair of quadrature mirror filters HP (High pass half 
hand) and LP (low pass half band) followed by downsampling by two.

*0 C3.0
b 3̂.0
2 W2.0

*3 2̂,1
4 Wl.0

b>
*6 Wl.2
7 DWT W. ,

*8 o* 
;

o

9 W0.l
bo ^0.2

b i W0.3
*12 0̂.4

*13 W0.5
14 W0.6

_I5 _ _W0.7_

Figure 2-16 Transformation o f the input signal by a discrete wavelet transform (DWT). 
Variable tn represents the nth time sample, w( J. a wavelet coefficient at scale i and
translation j  within the scale, and st j a scaling coefficient at scale i and translation j  

within the scale
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A requirement of this process is that the signal length is an integer power of two 

(as for the fast Fourier transform), and is required as a result of the downsampling 

process. The full transformation of a sixteen sample signal leads to a transformation of 

the input signal as represented in Figure 2-16. For our ideal boxcar high/low bandpass 

filters corresponding to a sine basis wavelet this leads to a tiling of the time frequency 

plane shown earlier in Figure 2-11. However, from Figure 2-17 which shows the 

frequency support of a wavelet basis function at two neighbouring scales we can see that 

there is overlap in frequency space between scales and so the boundaries shown in 

Figure 2-6 are fuzzy. This frequency overlap between scales when combined with the 

downsampling in the transform process, leads to a form of aliasing which is accounted 

for in the inverse transform, allowing perfect reconstruction. If, however, the wavelet 

transform coefficients are altered in some way in wavelet space (in filtering, for 

example) then this aliasing may not be fully accounted for and aliased noise may be 

introduced.

\GO MO
Frequency

«j)

Figure 2-17 Daubechies 20 coefficient maximal phase wavelet at two adjoining scales 
in time and frequency space. Overlap o f  the frequency spaces occurs when the wavelet 
deviates from  the boxcar frequency representation o f  the sine wavelet.
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2.4.5 Variation with Translation

Another important consequence of the downsampling process on the discrete 

wavelet transform of a signal, is translational variance. If we take two identical signals, 

shifting one by one sample with respect to the other, and take the discrete wavelet 

transform of the two signals, the resultant transformation of the shifted signal will not be 

the transform of the first shifted by one sample. The transform alters for shifted 

identical signals. The downsampling of frequency space to a coarse grid in the wavelet 

transform leads to the variation of the transform with translation.

2.5 The Wavelet Packet Transform

A simple but powerful extension of the wavelet transform is the wavelet packet 

transform (Coifman et al., 1992). The wavelet packet transform takes the wavelet 

transform further by applying the quadrature mirror filtersh and g to the wavelet 

coefficients as well as the scaling coefficients at each iteration as illustrated in Figure 2-

18. This technique, referred to as the splitting trick, leads to several levels of resolution

in frequency-time, each level being a orthonormal basis. In the z-domain after one 

iteration the basis functions are

H^'(z) = G(z),  and Wl'(z) = H(z) .  (2.39)

At the next level, the basis functions become:

W02 = G(z)G(z2) , W2 = G{z)H(z2),  (2.40)

W2 = H(z)G(z2) , and W2 = H(z )H(z2),  (2.41)

doubling the number of basis functions at each successive level. The wavelet packet 

decomposition is in the form of a linear weighted sum of these basis functions,

x(t) = 'L'L  i  (2.42)
)  V />=-»

where A f p is the wavelet packet coefficient that is the inner product of the signal x(t) 

with the wavelet packet ^ ', , , ( 0  having selected values of the packet scale index/ ,  the 

level index s, and the translation parameter p.

Chapter 2: Wavelet Theory Page 27



Level 1 Level 2

Seismic
Trace

HP

HP
LF

LP HP

LF

|  2 : Downsampling by two

Level N

HP

HP

LF

HP

LP

Wavelet
Packet

Coefficients

Packet Scale 
M-I

Packet Scale 
M-2

Packet Scale 
M-3

Packet Scale 
M-4

Packet Scale 
M-5

Packet Scale 
M-6

Figure 2-18 Schematic diagram showing the cascade process used in the 1-D discrete 
wavelet packet transform achieved using a pair o f quadrature mirror filters HP (High 
pass half band) and LP (low pass half band) followed by downsampling by two. 
Comparing this to Figure 2-15 it is apparent that the wavelet packet transform applies 
the splitting trick to what were the wavelet subspaces.

As a result the wavelet packet transform tiles the time-frequency domain in a 

form shown in Figure 2-19. The wavelet packet transform results in an overcomplete 

expansion of the original signal in that for any signal of length N there are N\og(N) 

wavelet packet coefficients. For a fixed level / the wavelet packets are orthonormal for 

 ̂and p  and so each level represents an orthonormal basis of the input signal. For 

example the second level from Figure 1 corresponds to the basis:

^ = { K K ’K K } , , tZ- <2-43)

Subsets can also be selected across levels to form orthonormal bases such as the wavelet 

basis:

W = {w ll„W l„W l }()sz (2.44)

which is represented by the shaded areas in Figure 2-19. From this array of coefficients 

an orthonormal basis can be selected according to some predetermined criteria such as 

minimum entropy, or minimising the number of non-zero coefficients. This allows 

varied representations of a single function which can be tailored to specific purposes 

such as data compression or time-frequency representation.
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Figure 2-19 Tiling o f time-frequency space by the wavelet packet transform. Each 
successive level leads to a theoretical increase in frequency resolution and a 
corresponding decrease in temporal resolution

As a result, the wavelet packet transform theoretically allows a higher resolution 

in certain areas of frequency space than the wavelet transform. This higher resolution in 

frequency is at the expense of resolution in time but also leads to a more flexible form 

of time-frequency representation. Although, as with the wavelet representation, is not 

exactly true time-frequency (the overlap between basis functions can be larger for 

wavelet packet bases) this representation is a useful tool for displaying the transform.

The wavelet packet transform allows more flexibility in frequency-time 

resolution than the wavelet transform at the expense of the extra processing time 

required for the extra iterations. The wavelet packet transform can be done in-situ like 

the wavelet transform if the transform is given prior information on the basis required. 

Otherwise the transform needs to generate all levels of the wavelet packet transform and 

then select the desired basis from the resulting decomposition. Figure 2-20 shows the 

impulse response for a wavelet packet generated using the same quadrature mirror filters 

used for Figure 2-14.
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Figure 2-20 Impulse response o f a wavelet packet built using the basis wavelet shown in 
Figure 2-14.

2.6 Summary

We have seen that the wavelet transform decomposes a signal in a time-scale 

sense using dilations and translations of a single prototype wavelet. Further 

decomposition of scales of the wavelet transforms leads to the wavelet packet 

decomposition which allows a flexible sampling of the time-frequency plane. These 

techniques can be implemented by fast efficient algorithms on digital signals, allowing 

perfect signal reconstruction for certain basis wavelets.

These time-scale decompositions allow effective analysis of non-stationary 

signals and in the following chapters we investigate the use of these techniques as time- 

scale filters where the scale is analogous to frequency. Chapter three investigates the 

use of wavelet transforms for one-dimensional time-scale filtering of seismic data.
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3. Wavelet Transform Filtering

3.1 Introduction

In this chapter we investigate the use of the discrete wavelet transform as a tool 

for filtering seismic data in the scale-translation domain. Filtering of seismic data in the 

scale-translation domain of the wavelet transform can be thought of as a form of time- 

frequency filtering, in that the transform decomposes time-frequency space. This 

analogy is not exact for several reasons; scale is a frequency range, there is overlap 

between adjacent scales in the frequency domain (as discussed in Chapter 2), the 

translation increment is linked to scale and so is scale dependant. We will investigate 

the effects of these deviations from the time frequency concept in terms of filter 

performance. The discrete wavelet transform is not unique, in that there is an infinite 

choice of possible kernel wavelets that could be used in the decomposition process.

The time-frequency properties of any kernel wavelet used for wavelet decomposition 

will influence the values of the wavelet transform coefficients, thus influencing the 

performance of wavelet transform based filters. We therefore also investigate the 

influence of choice of kernel wavelet on filter performance and determine the principal 

properties that influence filter performance.

We then demonstrate the use of the wavelet transform as a pseudo time- 

frequency filter for the suppression of ground-roll energy from a land-based seismic 

survey. Ground roll contaminates seismic data in a time-varying fashion and so the 

wavelet transform presents itself as the ideal tool. The scale-translation properties of 

the wavelet transform allows filtering of specific time-frequency zones contaminated by 

ground-roll, leaving the remainder of the data unaltered. Although there is not perfect 

signal/noise separation in the wavelet transform domain, filtering in the transform 

domain allows noise suppression whilst minimising deterioration of the signal 

component, as each coefficient represents a limited temporal area. We then proceed to 

demonstrate the effect of scale-translation filtering on subsequent stacks and make 

comparisons with bandpass and f-k  filtering.

3.2 Choice o f Kernel Wavelet

In Chapter 2 we introduced the scalogram representation of the wavelet domain 

Chapter 3: Wavelet Transform Filtering Page 31



to visualise transformed data, dividing frequency-time space into a series of cells known 

as Heisenberg cells. We have seen that the frequency and time support of the basis 

wavelets extends beyond the boundaries of these rectangular cells, the degree of which 

depends on the kernel wavelet used in the decomposition process. The optimal kernel 

wavelet for compactness in both time and frequency is the Gaussian (Chakraborty and 

Okaya, 1995) which, when used as kernel wavelets, are referred to as Gabor atoms. 

Implementing the fast wavelet transform using this kernel wavelet is not possible as it 

does not allow stable reconstruction of the original signal. The non-linear Matching 

Pursuit algorithm (Mallat and Zhang 1993) is required to provide a stable forward and 

inverse transform. Therefore, we limit the study of kernel wavelets to those that are 

permissible in terms of the fast wavelet transform, that is those that satisfy equations 

2.17 to 2.19.

For the purposes of filtering data in the wavelet domain, we must determine the 

zone of influence, in the temporal and frequency domains, of any wavelet coefficient at 

a given scale in the transform domain for any given kernel wavelet. In the temporal 

domain, the zone of influence of the wavelet at a given scale is governed by the 

temporal support of that wavelet. That is, the length in time of the impulse response of 

the wavelet at the given scale. Vetterli and Kovacevic (1995) derived that if a kernel

wavelet ip(t) is compactly supported on the interval \ - n x,n2] then the basis wavelet at

a given scale m and translation n, yjm n{t ) , is supported on the interval

[(-«, + n)2m,(n2 +n)2"']. Therefore, at scale m a wavelet coefficient with translation n 

will influence samples of the signal within the temporal zone:

(-rc, +n)2m < t < (n2+n)2m . (3.1)

Similarly, in the frequency domain, if the support of the kernel wavelet \p(t) is

m̂in
2 m ’ 2"<

Therefore, at scale m, a wavelet coefficient will influence frequency components of the 

original signal within the range

—  < 0Jh < — . (3.2)— o — 2m

These relationships are indicated diagrammatically in Figure 3-1.

[tyniin ,tyniax], at scale m, the support of basis wavelet \j)m n (co) will be

Chapter 3: Wavelet Transform Filtering Page 32



scale A

S O O O O O O O O O jlip O O O O

S+l o o o o/ •  •  'o o

S+2 .................... Jo.... ''mfy™*-

S+3

shift

( a )

scale A

oooooooooooooooo

s+l

s+2

s+3

shift

(b)

Figure 3-1 (a) Region o f wavelet coefficients which will be influenced by the value o f 
the function at to. (b) Region o f influence o f the Fourier component. Adapted from  
Vetterli and Kovacevic, 1995.
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Figure 2.17 demonstrated that the frequency support of a basis wavelet ip (t ) at

two adjoining scales can overlap, this is also true for the optimum, Gabor atoms.

Unless a given kernel wavelet consists of a perfectly compact function in the frequency

domain the support of the kernel wavelet can be subjective. The frequency

at which the amplitude becomes negligible, can be dependant on the signal being 

analysed, and is therefore hard to define. To overcome this problem we define the

support as the frequencies for the ideal basis wavelet in frequency space,

the sine function, keeping in mind that there is frequency overlap between neighbouring 

scales. This overlap in combination with the downsampling process inherent in the fast 

transform process leads to a form of aliasing in the transform domain which is 

accounted for perfectly in reconstruction. If, however, the wavelet coefficients of the 

seismic data are filtered (and so their amplitudes altered), this aliasing may not be 

accounted for fully in reconstruction and may introduce noise associated with the

aliasing process into any filtered signal. Subsequently, the choice of the[<yniin,6;niax]

corresponding to the sine function as the limits of the kernel wavelet support in the 

frequency domain during the filtering process is justifiable if we minimise frequency 

overlap between neighbouring scales.

To do this we must minimise the frequencies outside of the ideal frequency 

support region, and so choose a basis wavelet that has a suitably fast fall off in 

frequency space. Ideally, the wavelet must also have a flat response across the band of 

interest ( ["IT1In»"max ]) as *n the ideal sine function case. Figure 3-2 to Figure 3-4 show

several Daubechies basis wavelets and their corresponding frequency representation at a 

set scale. Marked on the figures are the limits of the Heisenberg cells from the 

scalogram representation. From this we can see that the four coefficient kernel wavelet 

is not suitable for filtering due to frequency amplitude response across the support 

range, which is not constant, and also when compared to the ideal frequency support 

limits indicated on the diagram. For the Daubechies kernel wavelets, as the number of 

coefficients of the associated quadrature mirror filters increases, the smoother the 

wavelets become in time and the sharper the amplitude fall-off in frequency space at 

scale boundaries. This minimises the quantity of energy outwith the main frequency 

band. However, the amplitude response across the frequency range remains curved and 

the extent of the wavelet outside the limits of the Heisenberg cell in time increases.

A repercussion of requiring a flat response and rapid fall-off in frequency space is, that 

the resultant number of quadrature mirror filter coefficients associated with the basis
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wavelet increases with rapidity of the fall-off and so the temporal support of the wavelet 

increases. This in turn increases the number of calculations required in the transform 

process. Subsequently, we must make a trade off between speed of transform and the 

rate of frequency amplitude fall-off.
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Figure 3-2 (a) The time and (b) frequency form o f the four coefficient Daubechies 
wavelet at one scale. The time and frequency limits o f the Heisenberg cell associated 
with this scale are marked on the figure as vertical dark lines.
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Figure 3-3 (a) The time and (b) frequency form o f the twelve coefficient Daubechies 
wavelet at one scale. The time and frequency limits o f the Heisenberg cell associated 
with this scale are marked on the figure as vertical dark lines.
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Figure 3-4 (a) The time and (b) frequency form o f the twenty coefficient Daubechies 
wavelet at one scale. The time and frequency limits o f the Heisenberg cell associated 
with this scale are marked on the figure as vertical dark lines.
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A further requirement of the kernel wavelet is that it should have linear phase, 

i.e.: it should be symmetrical. For operations in the wavelet domain, deviations from 

linear phase will lead to phase distortions in the signal and subsequent shifts of reflected 

events (Chui, 1992). Daubechies (1992) showed that it was impossible for a perfectly 

compact basis wavelet to be symmetrical whilst the associated quadrature mirror filters, 

h and g, were of the same length. However, a subset of the Daubechies wavelets exists 

which have the minimum possible deviation from zero phase. Examples of these 

wavelets are shown in Figure 3-5 and Figure 3-6. From this we can see that the 

frequency support of these wavelets is the same as for the most asymmetrical 

Daubechies wavelets with the same number of coefficients.

The Battle-Lemarie family of basis wavelets (Battle, 1987, Lemarie 1988) are 

admissible kernel wavelets which can be designed to have linear phase and suitably fast 

fall-off in frequency space, but are not perfectly compact. In other words, the basis 

wavelets have large temporal support yet have suitably fast decay in time and frequency 

to be a permissible basis (Mallat, 1989). The fast decay in time means that the kernel 

wavelet is represented by a large number of coefficients but in practice can be 

approximated a small number of filter coefficients without introducing large errors into 

the signal. Obviously, the larger the number of coefficients used, the more accurate the 

reconstruction, but the slower the algorithm. This trade off for temporal support is 

similar to the trade off required in the frequency domain.

In terms of a one dimensional wavelet transform using a cubic spline Battle-

Lemarie kernel wavelet (Figure 3-7), twenty four coefficients is sufficient to transform

and reconstruct the trace with an error of 0.5%. From the frequency support of the

wavelets we can see that these wavelets are also suitable in terms of minimising

frequency overlap, when compared to Daubechies wavelets. The quintic spline member

of the Battle-Lemarie family (Figure 3-8) is also a possible kernel wavelet, yet has a

wider temporal support in the time domain. In the frequency domain, the amplitude

fall-off is quicker thus minimising any noise associated with transform aliasing by a

greater degree than for the cubic kernel wavelet. The amplitude response is also flatter.

The wider temporal support results in more coefficients for the filters slowing the

filtering process, and also results in the wavelet extending beyond the limits of the

Heisenberg cell. Forty eight filter coefficients is the minimum number required without

introducing large errors in the transform, inverse transform process. Bi-orthogonal

wavelets (Cohen etaL, 1992), where the quadrature mirror filters h and g have different

lengths, allow perfectly compact wavelets in time with symmetrical properties. Figure

3-9 shows a bi-orthogonal basis wavelet pair and their corresponding frequency 
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supports. This bi-orthogonal wavelet basis is called the Pseudocoiflet basis 

(Daubechies, 1992) as it is the bi-orthogonal basis closest to the orthogonal Coiflet 

basis wavelets. From this figure we can see that the amplitude of the frequency response 

is curved across the frequency band where we would prefer it to be flat and that again, 

the rate of amplitude fall-off in the frequency domain is dependant on the number of 

coefficients in the corresponding filters.
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Figure 3-5 (a) The time and (b) frequency form o f the eight coefficient least asymmetric 
Daubechies wavelet at one scale. The time and frequency limits o f the Heisenberg cell 
associated with this scale are marked on the figure as vertical dark lines.
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Figure 3-6 (a) The time and (b) frequency form o f the twenty coefficient least 
asymmetric Daubechies wavelet at one scale. The time and frequency limits o f the 
Heisenberg cell associated with this scale are marked on the figure as vertical dark 
lines.

Chapter 3: Wavelet Transform Filtering Page 40



Time (ms)

200 600 800 1000 1200 1400 1600 1800
Time (ms)

(a)

Frequency (Hz) 
40 60 80

I

1_______

(b)

Figure 3-7 (a) The time and (b) frequency form o f the cubic spline Battle-Lemarie 
wavelet at one scale. The time and frequency limits o f the Heisenberg cell associated 
with this scale are marked on the figure as vertical dark lines.
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Figure 3-8 (a) The time and (b) frequency form o f the quintic spline Battle-Lemarie 
wavelet at one scale. The time and frequency limits o f the Heisenberg cell associated 
with this scale are marked on the figure as vertical dark lines.
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Figure 3-9 (a) The time and (b) frequency form o f the Pseudocoiflet bi-orthogonal 
synthesis wavelet at one scale. The time and frequency limits o f the Heisenberg cell 
associated with this scale are marked on the figure as vertical dark lines.
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Figure 3-10 (a) The time and (b) frequency form o f the Pseudocoiflet bi-orthogonal 
analysis wavelet at one scale. The time and frequency limits o f the Heisenberg cell 
associated with this scale are marked on the figure as vertical dark lines.
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To investigate the effect of kernel wavelet choice on any filtering process we 

create a model signal by adding the two signals shown in Figure 3-11 to create the 

signal shown in Figure 3-12j. The two signals contain band limit wavelets with 35-45- 

50-60 Hz and 2-4-8-16 Hz corner frequencies. Each signal contains two versions of the 

same signal one of which is zero phase and one minimum phase. The signals have 

relatively good separation in frequency domain as shown in Figure 3-13. The two zero 

phase events have the same arrival time on the trace, as do the two minimum phase 

signals. The purpose of this synthetic signal is to investigate the effect of basis wavelet 

choice on the performance of any filtering operation in the wavelet domain. The 

wavelet transform is used to filter the trace by applying the transform and zeroing out 

the range of scales corresponding to the low frequency signals. All the wavelet 

coefficients at these scales are zeroed, that is, we are not using the temporal properties 

of the wavelet transform, making the process similar to bandpass filtering. This lets us 

evaluate the effect of the frequency support of the basis wavelet on the filtering process.

Time (ms)

100 500 GOO 700 BOO200 300 400 
Time (ms)

Figure 3-11 Two signals consisting o f35-45-50-60 Hz Ormsby wavelet (upper trace) 
with zero and minimum phase and a 2-4-8-16 Hz. Ormsby wavelet (lower trace) with 
zero and minimum phase.

Figure 3-14 shows the scalogram representation of the signal using the Battle- 

Lemarie quintic spline wavelet which, of the basis wavelets shown previously, had the 

least frequency overlap between scales. From this we can see that the signals are well 

separated in the wavelet domain apart from a few coefficients in scale 3 separating the 

main energy areas on the diagram.

The signal has been filtered using the basis wavelets shown in Figure 3-2 to 

Figure 3-10. The resultant traces are shown in Figure 3-12 with the ideal output 

signal. The associated frequency spectra are shown in Figure 3-16 to Figure 3-23. The 

scales equal to and greater than 3 were removed. From this we can see that each of the 

kernel wavelets performed well in removing the low frequency signal from the 

composite signal with all the kernel wavelets apart from the Battle-Lemarie wavelets
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introducing varying degrees of phase shifts. From this we can see that the performance 

of the signal filtering is dependant on the basis wavelet used, with the Battle-Lemarie 

wavelets producing the best results.

Examining the frequency spectra of the signals after filtering with the ideal 

output spectra shown in Figure 3-15 to Figure 3-23 we can see that the different kernel 

wavelets lead to different frequency representations. The Daubechies coefficients with 

fewer coefficients (12 and less) introduce notches into the frequency spectrum which is 

undesirable and may lead to problems in subsequent processing steps. The 20 

coefficient Daubechies wavelets, bi-orthogonal wavelets and the Battle-Lemarie 

wavelets leave smoother spectra. The suppression of the spectral peak corresponding to 

the low frequency signal is maximum for the Battle-Lemarie quintic spline wavelet. 

This filtering performance has been evaluated where we have removed as much of the 

low frequency signal as possible in the wavelet domain, that is the scales that 

correspond to the main frequencies of the low frequency signal and the scale (scale 3) 

where there is a slight overlap in the signals. If, however, we perform the filtering 

process again, retaining scale 3 we can evaluate the performance of the filtering process 

when there is residual energy left from the low frequency signal.

Figure 3-24 shows this in the same manner as Figure 3-12. From this we can 

see that the different kernel wavelets produce different results, with the Battle-Lemarie 

wavelets producing the best results in terms of minimising the residual noise present 

and any phase shifts introduced. This performance must be due to the frequency 

supports and symmetrical properties of these wavelets as temporal properties were not 

used.
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Figure 3-12 Wavelet transform filtering o f a model signal to ascertain the influence o f 
choice o f basis wavelet on the performance o f the filter. Signal (j) is the input signal, 
and signal (a) is the ideal output. The remaining traces are (j) after filtering with (b) 
cubic spline Battle-Lemarie ( c) quintic spline Battle-Lemarie (d) 4 coefficient 
Daubechies (e) 12 coefficient Daubechies (f) 20 coefficient Daubechies (g) 8 coefficient 
least asymmetric Daubechies (h) 20 coefficient least asymmetric Daubechies and (i) bi- 
orthogonal Pseudocoijlet basis wavelets.
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Figure 3-13 Frequency analysis o f the input signal. 
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Figure 3-14 Scalogram o f the wavelet transform o f  the synthetic signal shown in Figure 
3-12. The Battle-Lemarie kernel wavelet was used in the decomposition.
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Figure 3-15 Frequency analysis o f  the ideal filtered signal.
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Figure 3-16 Frequency analysis o f the signal after wavelet transform filtering using the 
cubic spline Battle-Lemarie basis wavelet.
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Figure 3-17 Frequency analysis o f the signal after wavelet transform filtering using the 
quintic spline Battle-Lemarie basis wavelet.
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Figure 3 -/8  Frequency analysis o f the signal after wavelet transform filtering using the 
4 coefficient Daubechies basis wavelet.
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Figure 3-19 Frequency analysis o f the signal after wavelet transform filtering using the 
12 coefficient Daubechies basis wavelet.
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Figure 3-20 Frequency analysis o f the signal after wavelet transform filtering using the 
20 coefficient Daubechies basis wavelet.
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Figure 3-21 Frequency analysis o f the signal after wavelet transform filtering using the 
8 coefficient least asymmetric Daubechies basis wavelet.
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Figure 3-22 Frequency analysis o f the signal after wavelet transform filtering using the 
20 coefficient least asymmetric Daubechies basis wavelet.
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Figure 3-23 Frequency analysis o f the signal after wavelet transform filtering using the 
bi-orthogonal Pseudocoiflet basis wavelet.
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Figure 3-24 Wavelet transform filtering o f a model signal to ascertain the influence o f  
choice o f basis wavelet on the performance o f the filter. One fewer scale has been 
removed than in Figure 3-12. Signal (j) is the input signal, and signal (a) is the ideal 
output. The remaining traces are (j) after filtering with (b) cubic spline Battle-Lemarie
(c) quintic spline Battle-Lemarie (d) 4 coefficient Daubechies (e) 12 coefficient 
Daubechies (f) 20 coefficient Daubechies (g) 8 coefficient least asymmetric Daubechies 
(h) 20 coefficient least asymmetric Daubechies and (i) bi-orthogonal Pseudocoiflet 
basis wavelets.

3.3 Edge Effects

As we discussed in Chapter 2, a requirement of the fast discrete wavelet 

transform is that the signal length must be an integer power of two. Therefore, when 

transforming a signal which is not the appropriate length, it must be padded out.

Simple padding with zeroes is not acceptable as this may introduce a sharp 

discontinuity into an otherwise smooth signal. The discontinuity will have a wide 

bandwidth in frequency space and so will result in wavelet coefficients spanning all 

scales. This is indicated schematically in Figure 3-25. Therefore, to circumvent 

discontinuities, some form of edge handling process is required. This can be 

implemented in two ways: cosine tapering and mirroring of the signal. Cosine tapering 

involves tapering the edge of the trace gradually to zero by multiplying the edges of the 

signal by a cosine taper function of a specified length. Mirroring the data involves 

mirroring the samples about the last sample so that sample (rc+1) is the same as sample 

(/i-1), where n is number of samples in the original unpadded signal. The mirroring 
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process is implemented until the array is an integer power of two in length. These 

processes are also indicated schematically in Figure 3-25.

(:0

S a m p le

S ig n a l Z e ro  pudd inp

D isc o n u n u n y

S ig n a l i M irro r in g-------------► -n--------------

T a p e rin g Z e n )  p ad d in g

Figure 3-25 Padding o f a signal to the next integer power o f two number o f samples by 
(a) simply filling with zeroes, (b) mirroring the data about the last sample and ( c) 
tapering the signal with a cosine taper gradually taking the signal to zero plus filling  
with zeroes.

In addition to signal padding, the transform requires the definition of a edge 

handling technique. The discrete transform is a series of inner products of the signal 

and scaled/translated basis wavelets. When the translation parameter approaches the 

end of the recorded signal there must be a technique for dealing with the multiplications 

required in inner products which overrun the end of the signal. At the edges of the 

signal the transform can be designed to treat the signal as periodic; that is to the 

transform the end of the data appears as:

[ ... /(«-3) f  ( n - 2 )  f ( n - 1) f ( n )  /(0) /(I) . ],

where f(x) is the value of the signal at sample x, and the signal has n samples. Again, 

however, this may lead to the introduction of abrupt discontinuities in signals where 

there is abrupt amplitude differences between the first and last sample, as can be the 

case with seismic data. This would lead to the introduction of edge effects in the 

reconstructed signal, after any subsequent filtering. To minimise edge effects due to 

discontinuities between the beginning and end of a signal the data at the ends of the 

signal can be treated so that there is no discontinuity between the beginning and end of 
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the trace, that is, ramp the values at the end of the trace so that they reach the value of 

the beginning of the trace, so eliminating any discontinuity. This is indicated 

schematically in Figure 3-26.

When filtering seismic data in time, the edge effects may not be considered to be 

a major problem as for seismic data, the edges of the traces may be muted, or not of 

importance. The edge effect will be scale variant in that high scale edge effects will 

contaminate long time periods and low scale edge effects will contaminate smaller time 

periods corresponding to the temporal support of the basis wavelets at a given scale.

This edge-effect problem and the data length limitation can be eliminated using a more 

advanced variation of the algorithm such as the one contained in Taswell and McGill 

(1994).

Wavelet

(a) *

P erio d ic  B o u n d a ry  
C o n d itio n , n o  ram p in g .

(c )  A p e rio d ic  B o u n d a ry  
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}
}
}
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Figure 3-26 (a) A schematic o f the wavelet transform showing the inner product (*) o f 
the basis wavelet at a single scale with a finite length signal. When the inner product 
reaches the end o f the signal the boundary condition is set to treat the signal as (b) 
periodic which due to large amplitude differences can lead to edge effects during any 
subsequent processing. ( c) These effects can be minimised by treating the edges so that 
discontinuities are avoided.

3.4 Time-Scale Representation

As we have seen previously, the one dimensional discrete wavelet transform, 

transforms a signal into a two dimensional space providing a mechanism for analysing 

data at different translations and scales. Higher scales have a more compact basis
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function in time allowing analysis with small translation steps, while lower scales have 

longer basis functions requiring larger translation steps. This leads to the scalogram 

representation (Figure 2.6) of the discrete wavelet where the cell boundaries do not 

fully represent the support of the basis functions in time and but they give an indication 

of the time-frequency extent of the corresponding basis function. This representation is 

dynamic in that it is the same for each kernel wavelet, unlike the temporal and 

frequency support. Figure 3-27 shows the decomposition of a 10-50 Hz chirp signal 

over 1024 samples (2 ms sampling interval) using the kernel wavelet shown in Figure 

3-7. The grey scale indicates the square of amplitude, in decibels of each constituent 

wavelet coefficient at that scale and translation. Note the localisation of the 

decomposition with the high scale (corresponding to low frequencies) dominating the 

early translations of the decomposition and the lowest scale (corresponding to the 

highest frequencies) at the later times.

As mention in Section 2.4.5 a property of the discrete wavelet transform is that 

it is translation variant, meaning that if the input signal is translated by one sample the 

entire transform changes. This is demonstrated in Figure 3-28 which shows the 

wavelet transform for the signal in Figure 3-27 after translation by one sample and in 

Figure 3-29 which shows the difference between the two transforms. From the 

amplitudes on the difference scalogram and the reconstructed trace resulting from 

applying the inverse transform to the difference coefficients, we can see that the 

translational variance affects higher frequencies to a greater degree.
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Figure 3-27 (a) 10-50 Hz linear sweep and (b) the corresponding scalogram  
representation after wavelet transform using a cubic spline Battle-Lemarie basis 
wavelet.
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Figure 3-28 Scalogram representation o f  the signal shown in Figure 3-27 (a) after 
shifting the signal by one sample.
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Figure 3-29 The difference between the two scalogram  representations show’ing the 
translational variance o f  this form  o f  the discrete wavelet transform.

3 . 5  T i m e - F r e q u e n c y  R e s o l u t i o n  C o n s i d e r a t i o n s
From the scalogram  representations shown in the previous section we can see 

that the wavelet transform  has good time resolution at lower scales and good frequency 

resolution at higher scales. Therefore, when using the wavelet transform  to filter a 

signal, considerations m ust be made for these resolutions and the type o f  noise that has 

to be filtered from a signal. The poor time resolution at higher scales leads to a coarse 

time sam pling which w ould make the filtering process sim ilar to Fourier techniques if 

only the highest scales were m odified. This resolution increases as the scales decrease, 

with a corresponding decrease in frequency resolution. W hen filtering coherent noise 

from seism ic records, we usually suppress a frequency range, which would mean that 

the wavelet transform  would suffice. However, we must ensure that the coherent noise 

frequency range and the wavelet transform  scale frequency ranges correspond, thus 

m inim ising any signal that may be lost during the filtering process. This principle is 

dem onstrated in Figure 3-30 to Figure 3-36, which shows the filtering o f  two forms o f 

coherent noise from a signal in the wavelet domain.

Figure 3-30 shows the construction o f  a synthetic signal (c ) from a low 

frequency signal (a) and a higher frequency signal (b). The wavelet transform s o f  these 

signals are shown in Figure 3-31 to Figure 3-33 from which we can see that there is 

signal overlap in the wavelet domain. Rem oving the scales containing frequencies 

above and including 15 FIz (Figure 3-30(d)) and scales containing frequencies above 

and including 25Hz (Figure 3-30(e)) in an attem pt to suppress the higher frequency 

com ponents leads to heavy distortion o f  the original signal. A lternatively if  we filter a
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signal (Figure 3-34( c)) to remove signal which is more localised in the wavelet domain 

we should get less distortion of the remaining signal, when there is signal overlap. This 

is demonstrated in Figure 3-34 in which a signal is built from the two signals Figure 3- 

34(a) and Figure 3-34(b), with their corresponding scalograms shown in Figure 3-35 

to Figure 3-37. The noise which is well localised in the wavelet domain is efficiently 

suppressed minimising the loss of signal information.

The coarse time sampling of the discrete wavelet transform at lower frequencies 

is another property we must consider. This does not seem to be a problem at first, as 

low frequency signals have large temporal widths and high frequency signals low 

temporal widths. However, if the low frequency signal has a temporal position between 

the sampling times of two coefficients then we have to filter a larger portion of the time 

axis than is otherwise necessary. This limitation is built into this form of the transform 

and cannot be overcome without resorting to another form of transform. This will be 

discussed more when we consider the wavelet packet transform as a filtering tool.
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Figure 3-30 Two signals (a) and (b) superposed to form signal (c). (d) shows the signal 
( c) after fdtering with a wavelet transform using a cubic spline Battle-Lemarie basis 
wavelet. Scales centred above and including 15 Hz were muted, (e) shows the signal 
after filtering, muting scales over and including 25 Hz.
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Figure 3-31 Scalogram representation o f  the wavelet transform o f  the signal in Figure 
3-30 (a) showing the span o f  the signal in the wavelet domain.
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Figure 3-32 Scalogram representation o f  the wavelet transform o f  the signal in Figure 
3-30 (b) showing the span o f  the signal in the wavelet domain.
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Figure 3-33 Scalogram representation o f  the wavelet transform o f  the signal in Figure 
3-30(c) showing the span o f  the signal in the wavelet domain.
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Figure 3-34 Two signals (a) and (b) superposed to form  signal (c). (d) shows the signal 
(c) after filtering with a wavelet transform using a cubic spline Battle-Lemarie basis 
wavelet. Scales centred below and including 8 Hz were muted, (e) shows the signal 
after filtering, muting scales below and including 16 Hz.
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Figure 3-35 Scalogram representation o f  the wavelet transform o f  the signal in Figure 
3-34(a) showing the span o f  the signal in the wavelet domain.

Figure 3-36 Scalogram representation o f  the wavelet transform o f  the signal in Figure 
3-3 4(b) showing the span o f  the signal in the wavelet domain.
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Figure 3-37 Scalogram representation o f  the wavelet transform o f  the signal in Figure 
3-34(c) showing the span o f  the signal in the wavelet domain.

3 . 6  G r o u n d  R o l l  S u p p r e s s i o n
Surface waves are a comm on source o f unwanted noise in the seism ic record. 

Seism ic sources generate various types o f surface waves depending on the near-surface 

environm ent and nature and position o f  the source (Dobrin. 1957; Al-Husseini et a l., 

1981). Ground-roll is a surface wave whose vertical com ponent is com posed o f 

dispersive Rayleigh waves whose different frequency com ponents travel at different 

velocities leading to long complex wave trains that change as the length o f  the path 

travelled increases (Beresford-Sm ith and Rango. 1988). This can dom inate near-source 

traces on seismic records. Surface waves are such a problem  in land seism ic acquisition 

that the design o f  acquisition param eters are dom inated by the need to suppress them.

Current processing methods o f elim inating such surface waves from seismic 

records include frequency filtering, windowed frequency filtering, radon and f-k  

filtering. Elim ination o f  the ground-roll through frequency filtering results in the 

filtering o f the entire trace in the tim e-dom ain when ideally, to preserve the frequency 

content o f  reflectors, only the affected areas o f a trace need to be filtered. To overcom e 

this, data can be processed using time windowing and the short-tim e Fourier transform  

(Nawab and Quatieri, 1988). In Chapter 2, it was observed that any windowed 

transform  processing o f  traces requires careful w indow  design, and should ideally be 

tailored for frequency; large time windows for low frequencies and a small w indow for 

higher frequencies. W hen a range o f  frequency values are to be processed, a 

com prom ise is required and the so performance o f  the filter is therefore frequency
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dependant.

Two dimensional techniques, such as f-k  filtering, lead to signal distortion and 

spatial correlation of background noise producing seismic sections of "wormy" 

appearance, especially in gathers with low fold. The design of optimal two dimensional 

filters is non-trivial and their implementation is computationally expensive (Oppenheim 

and Schafer, 1975). Windowing in the time-offset domain followed by f-k  filtering has 

been used as a method to avoid signal deterioration (Beresford-Smith and Rango, 1989) 

yet this method is still computationally expensive and of limited use for low fold of 

coverage surveys. Again, as in the one dimensional case, a compromise has to be 

reached between window design and the filtering parameters. The fundamental element 

of all these techniques is the Fourier transform, which we have seen uses orthogonal 

basis functions which have perfect localisation in frequency but infinite extent in time, 

assuming the signal is stationary (Bracewell, 1986; Chui, 1992).

Faqi et al. (1995) introduced the use of the discrete wavelet transform as a form 

of time-frequency filter to remove locally coherent noise from seismic records. They 

define locally coherent noise is defined as aliased airwaves, high power-line 

interference and severely aliased or scattered surface waves. High power-line 

interference, which appears as a constant single frequency signal superimposed on a 

seismic trace, can be considered as being almost stationary, as the frequency does not 

change with time, and it is present on the entire trace. This would indicate that the 

wavelet transform is not the ideal tool for high power-line interference. It would not 

have the required resolution in frequency space, and is also a local transform in time 

whereas this form of noise is global. Airwaves, which consist of air-coupled Rayleigh 

surface waves are indeed highly spatially aliased due to their low velocity (the speed of 

sound in air) and are problematic to remove from seismic records as a result. However, 

as we have seen, the discrete wavelet transform splits the frequency domain into octaves 

and so will have poor frequency resolution at higher frequencies. Airblast is a source of 

high frequency noise (Mooney and Kaasa, 1962) on seismic sections and so again, it 

would seem that the wavelet transform is ill suited to airblast suppression as it would 

also degrade the data by removing a great deal of reflected signal frequencies as we 

demonstrated in Section 3.5.

In the paper, Faqi et a l  (1995) used the most asymmetric Daubechies 20

coefficient wavelet (Figure 3.6) as the transform kernel wavelet. This may not be the

best choice of wavelet from the criteria determined earlier, but distortions would be

localised. The frequency and time resolution of the discrete wavelet transform is

optimal for filtering at the lower end of the frequency spectrum and so it has been 
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investigated as a tool for the localised suppression of ground roll.

3. 7  Filtering Technique

The main objective of any form of filtering is to remove noise, in this case 

associated with surface waves, from a signal whilst minimising the distortion of the 

signal retained after filtering. Ideally, to filter data without distorting the retained 

signal, we require perfect separation of retained signal and noise in the transform 

domain. Typically, seismic reflection signals are wide-band and ground-roll mainly 

contains low frequencies (Yilmaz, 1987) and so signal separation in the frequency 

domain is not achieved. Therefore, filtering of any signal based on frequency will lead 

to the removal of low frequency content of the signal associated with reflections as well 

as any ground roll. In the case of bandpass filters, based on the Fourier transform, any 

filtering will remove frequencies outwith the band over the whole trace. The aim of 

filtering seismic data with a discrete wavelet transform is to localise the filtering 

process to areas only affected by the ground roll and so minimise the loss of any low 

frequency signal component from the signal. This method of filtering is a form of 

adaptive-window frequency filtering in that this will be a windowed process, only 

filtering the data in specific areas, but unlike windowed Fourier techniques, uses a 

window function that adapts to the frequency of the signal that is being filtered.

Filtering in the wavelet domain can be performed using several techniques. The 

simplest technique involves zeroing wavelet coefficients in the time-scale areas 

corresponding to ground-roll energy in the traces. This would effectively suppress the 

ground-roll in a time-frequency sense. This filtering operation is applied on a trace by 

trace basis, with the wavelet coefficients being zeroed in the appropriate areas for each 

trace. The appropriate coefficients to be filtered can be determined using the effective 

support of the kernel wavelet and Equations 3.1 and 3.3. No tapering of wavelet 

coefficients is required as the compact nature of the basis functions provides a natural 

taper minimising any Gibbs ringing, which can be observed with Fourier based filters. 

Although the filter may be regarded as two dimensional, in that it zeroes coefficients in 

the time-scale space, it is primarily a one dimensional filter in the sense that it is a trace 

by trace operation.

An alternative to simply zeroing the coefficients in the wavelet domain, is to 

apply a weighting to the coefficients. Perfect separation of signal from noise cannot be 

achieved using this technique as there is overlap between signal and noise in the time- 

frequency domain, therefore, to try and preserve the low frequency component of the
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signal, a weighting can be applied to the wavelet coefficients to discriminate against the 

component corresponding to the ground-roll. The main problem with this principle is to 

determine the weight to apply to the coefficients.

Source frequency attenuation with travel time on seismic records is measured by 

a quantity called the quality factor 0  (Yilmaz, 1987). An infinite 0  means that there is 

no attenuation, and the factor can change in depth and in the lateral direction. If we 

assume a constant 0  (Kjartannson, 1979) we can use this technique to estimate a weight 

to apply to the wavelet coefficients. The 0-value governs the amplitude change of a 

frequency com ponent/on a seismic trace between two times r, and t2 according to:

-—At
A ,(/) = A2( / ) / fi , (3.3)

where A f f )  is the amplitude of the frequency component at /, and A2( f )  is the 

amplitude at t2. The exponential term applies the attenuation to the amplitude 

according to the 0-value, an example of which is shown in Figure 3-38.

Time (seconds)

Frequency (Hz)

Figure 3-38 The attenuation infrequency-time due as modelled by a 0  value o f 100. 
An amplitude equal to one means no attenuation.

Although the Q concept is based on Fourier techniques, if we use a basis 

wavelet that is well localised in the frequency domain (minimise the energy outside the 

Heisenberg cell boundaries), the wavelet transform represents a good approximation to 

a frequency-time distribution. From this we can estimate a 0-value for the seismic 
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signal and by comparison with the wavelet transform of the signal, estimate the 

component of the coefficients to be filtered that represent signal. Figure 3-39 shows a 

three dimensional view of the modulus of the discrete wavelet transform of a seismic 

trace containing ground roll and an estimated 0-value attenuation function for the trace 

We can use the wavelet coefficients from the zone which is not to be filtered (assumed 

to represent the signal only), in combination with the 0-value (to extrapolate the value 

of these coefficients at a lower frequency) to estimate the value of the wavelet 

coefficients to be filtered which correspond to the reflected signal and not the ground 

roll. The zones of the transform which are above the Q-envelope/surface are shown in 

Figure 3-40

This technique will not perform well with a kernel wavelet that is not well 

localised in the frequency domain, such as the 4 coefficient Daubechies wavelet. The 

purpose of this technique is to provide an alternative to muting the coefficients and so 

preserve signal bandwidth during the filtering process. The process is by no means the 

optimum weighting procedure, but gives an indication of whether this is a viable 

process. We will evaluate the performance of this technique in the next section.
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Figure 3-39 Wavelet transform coefficients o f (a) the signal in Figure 3-42 and (b) o f 
the estimated Q value at the same points. Using the weighting filter technique, where 
the coefficients are above the Q surface, and within the area to be filtered, a weighting 
will be applied.
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Figure 3-40 The amplitudes o f the wavelet coefficients above the Q-surface. This is 
generated by taking the Q-value away from the absolute value o f the wavelet transform 
coefficient. The majority o f the energy is in the low frequency areas, which in this case 
correspond to ground roll

3.8 Wavelet Filtering o f Land-Based Seismic Data

The wavelet filtering techniques were tested on shot records from land-based 

seismic data collected from a site near Glasgow. The seismic line was shot to provide a 

three component data set to test the effectiveness of polarisation filtering methods. 

Nineteen, eight ounce gelignite sources at a depth of two meters were shot into 16 

groups of three, 14 Hz tri-phones with one meter spacing, and thirty meters group 

spacing. The three component data were collected using a Geosource MDS-10 with a 

sample interval of 1 ms. No attempt was made to suppress ground-roll in the field 

acquisition. Attempts to suppress the ground-roll with polarisation filtering were 

unsuccessful, and this analysis uses only the vertical component data set. A sample 

shot record is shown in Figure 3-41 and can be seen to be heavily contaminated by 

ground-roll.
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Figure 3-41 A fie ld  record from the Robroyston survey showing heavy contamination 
by ground roll.

Using the time-scale representation, the shot energy can be observed in a 

domain similar to time-frequency. Figure 3-42 shows the time-scale representation of 

trace 12 from the shot record in Figure 3-41. Scale zero represents the basis function, 

containing the highest frequencies, and scale 9 the basis function containing the lowest 

frequencies. The ground-roll is first discernible on this trace at approximately 300 ms. 

We can see from this time-scale representation that the ground-roll energy is 

concentrated in scale 4 and higher scales at times greater than 275 ms.

The filtering of a whole shot-record using the wavelet techniques is illustrated in 

Figure 3-43 where it is assumed that for ground-roll the start time for the zeroing of the 

coefficients increases with offset while the scales to be filtered were kept constant from 

trace to trace.

The result of applying the muting procedure to all the traces in the shot record is 

shown in Figure 3-44. Figure 3-45 shows the result of applying the weighting 

procedure in the wavelet domain to the data. For comparison purposes, a band-pass 

filtered shot record and a f-k  filtered record are shown in Figure 3-47. The f-k  filtered 
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filtered shot record and a. f-k filtered record are shown in F ig u re  3-47. The f-k filtered 

record contains large am plitude artefacts, particularly after 650 m s , which are not 

apparent on the bandpass filtered record.

-400Hz

Mbs_______ 2&e£  42Qb& 500m eoobs_______ Mtu_____________  9Q0ns looom

Figure 3-42 Scalogram representation o f  the wavelet transform o f  trace 12 o f  Figure 
3-41. The decomposition used the Battle-Lemarie cubic spline kernel wavelet.

F igu re  3-46 shows a spectral analysis o f the shot record before and after 

filtering by the wavelet transform  technique. The large am plitude at low frequencies 

due to the ground roll is apparent on F igu re  3-46(a). From F igu re  3-46( c) we can see 

that the shot record filtered by the weighting technique has a wider bandwidth than the 

record filtered by the m uting technique, due to retention o f  lower frequency signals by 

this technique.

The perform ance o f  the f-k filter is effective in rem oving the ground roll but 

produces a shot record o f  wormy appearance, degrading the quality o f the record. This 

can be attributed to the low num ber o f  traces in the record com bined with spatial 

aliasing and is a com m on problem  with the performance o ff-k  filters (Peacock, 1982). 

The band-pass suppresses the ground-roll effectively but, also rem oves the 

corresponding frequencies from reflectors outwith areas affected by the ground-roll and 

so reduces reflector bandwidth unnecessarily. F ig u re  3-44 and F igu re  3-45, the 

wavelet transform  filtered records, show considerable im provem ent particularly for the 

event at -4 0 0 m s and produce com parable results with the bandpass filter in the area 

previously contam inated with ground roll.
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Figure 3-43 Schematic diagram showing technique for filtering shot record using the 
wavelet transform technique.
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Figure 3-46 Spectral analyses o f the common shot records shown in (a) Figure 3-41 (b) 
Figure 3-44 and ( c) Figure 3-45. The suppression o f low frequency ground roll signal 
is apparent in the wavelet transform filtered spectra. The remaining signal has a wider 
bandwidth fo r  the weighted filtered spectra shown in ( c).
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Figure 3-47 (a) Bandpass and (b) f-k filtered versions o f the common shot record 
shown in Figure 3-41. The bandpass filter works well yet suppresses frequencies from  
the entire trace as can be seen from the broadening o f the first break arrival, and the f- 
k filtered section has a wormy appearance due to low fold  and spatial aliasing.

The next stage in testing the effectiveness of the wavelet transform filter was to 

see if any improvement is passed onto a brute stack. After the respective wavelet 

transform/bandpass filter, the processing stream consisted of trace kills, CMP sorting, 

NMO and then stack. No statics were applied to the data. The maximum fold of 

coverage was 16, which was reduced after trace killing for the band-pass filtered data 

set. The brute stacks are shown in Figure 3-48 to

Figure 3-51, whose quality are degraded by the rapid fall off of the fold of coverage. 

The improvement in the stack by simple bandpass filtering is considerable, again 

especially in the areas that were previously affected by ground-roll. The continuity and 

strength of reflections has been improved. Comparing the bandpass stack to those 

filtered by wavelet transform techniques, we can see that there is more energy present in 

the wavelet transform stacks (all stacks are plotted at the same scale). This can be 

attributed to the retention of energy outwith the ground roll area on the shot records 

which is removed by the global bandpass filtering process. This leads to reflector being 

more continuous across the stack, particularly at larger travel times.
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3.9 Conclusions

The wavelet transform provides an efficient method of filtering seismic data in a 

domain similar to time-frequency, preserving frequency content of the seismic trace in 

areas which do not require filtering. The muting of coefficients in the wavelet domain 

has been shown to be effective in removing ground roll from seismic shot records 

whilst minimising the removal of any signal present. The use of a weighting procedure 

in the wavelet domain allows the preservation of frequencies within the area to be 

filtered whilst suppressing the ground roll. When compared to standard Fourier 

frequency filtering techniques the wavelet transform method gives effective results with 

no extra cost in computing time. Limitations associated with this method include the 

coarse nature of the time translation parameter and the fact that an octave may be too 

large a frequency range for filtering, especially at higher scales. To avoid coarse time 

translations other types of wavelet transforms could be used. The performance of the 

filters is dependant on the kernel wavelet used in the transform process, with the Battle- 

Lemarie kernel wavelets producing the best results.

The application of this method for the elimination of other unwanted signals, 

such as airblast, may be possible with variations in transform method such as the 

wavelet packet transform (Coifman et a i, 1989). We investigate this in the next 

chapter.
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Figure 3-48 Brute stack o f the Robroyston survey showing heavy contamination by low 
frequency signals.
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Figure 3-49 Robroyston stack from shot records filtered using the wavelet transform 
filtering technique (muting in wavelet domain). The stack has improved considerably.
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CDP
6

Figure 3-50 Robroyston stack from shot records filtered using the wavelet transform 
filtering technique (weighting in wavelet domain). The stack has also improved 
considerably.
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Figure 3-51 Robroyston stack from shot records which have been bandpass filtered. 
The scale is identical to the previous two figures. The stack is comparable to the 
previous two, yet has less energy present. This reduction in energy could be due to 
energy removed from the record by the filter outside the area contaminated by the 
ground roll.
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4. Wavelet Packet Transform Filtering

4.1 Introduction

In the previous chapter we used the wavelet transform to filter seismic data in 

the translation-scale domain. We demonstrated that this filtering process has limitations 

in terms of time-frequency resolution at scales containing higher frequencies. Therefore 

this technique cannot be used effectively to filter noise centred around high frequencies 

or with high frequency content. To overcome this limitation we must substitute the 

wavelet transform with an alternative transform. As we discussed in chapter 2.5, the 

wavelet packet transform (Coifman et al, 1992) decomposes the octave scales of the 

wavelet transform into more adaptable time frequency cells and would appear to be the 

ideal tool for filtering the forms of noise that the wavelet transform cannot effectively 

filter. The wavelet packet transform is a natural extension of the wavelet transform and, 

in fact, the wavelet transform is a special case of the wavelet packet transform.

In this chapter we investigate the wavelet packet transform and as for the 

wavelet transform we develop it in the context of a pseudo time-frequency filter. 

Theoretically, the wavelet packet transform allows better frequency resolution, but we 

will show that this is at the expense of introducing additional side lobes into the basis 

wavelets frequency spectra that can lead to aliased noise in filtered signals. Due to the 

similarity of the wavelet and wavelet packet transforms, we can draw upon previous 

experience in terms of transform implementation and probable pitfalls. In this chapter 

we extend the investigation of wavelet transform implementation to wavelet packets 

and, as previously, we will look at the influence of basis wavelet on the filtering 

process, limitations of the technique and possible avenues of development of the 

process. We will demonstrate the filtering process by suppressing airblast from seismic 

shot records and evaluate the effectiveness of this technique compared to windowed 

Fourier based techniques and radon transform based techniques.

4.2 Wavelet Packet Representation and Basis Selection

With the wavelet transform, we used the scalogram to represent the wavelet 

transform coefficients. The wavelet packet transform is redundant in that for a N
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sample signal it will return Nlog(N) wavelet packet coefficients from which we will 

select a wavelet packet basis to represent a basis for the original signal. Therefore, 

before the basis selection process we have multiple resolutions of the data in a 

overcomplete representation of the original data (Figure 2-19). Here we use resolution 

in the context of the shape of the Heisenberg cells. After one iteration of the transform 

process we have low frequency and high temporal resolution, whilst after several 

iterations we have higher frequency resolution, with correspondingly lower temporal 

resolution. We can represent a basis for the data with a single level of resolution, or by 

the combination of coefficients across levels of resolution, such as the wavelet 

transform representation shown in Figure 2-19. This process of selecting the basis 

across the levels of resolution is known as best basis selection. When the basis chosen 

consists of a single level of resolution, it is referred to as a best level.

For data compression, the selection of a best basis is fairly straightforward. We 

will select the basis from the wavelet packet coefficients that minimises the number of 

non-zero coefficients representing the data. That is we select the basis that produces the 

best compression ratio whilst minimising signal distortion (Bosman and Reiter, 1993). 

Correspondingly, when we filter a signal using the wavelet packet transform, we want to 

select the basis that leads to the best filtered record. However, what is the best basis to 

select for filtering a given signal? The basis selection techniques for data compression 

may not be well suited for suppressing coherent noise as they concentrate the maximum 

amount of energy into the least number of wavelet packet coefficients. Ideally we want 

to select the basis that leads to the optimum separation of signal and noise in the wavelet 

packet domain. We would then be able to filter noise from a signal, minimising 

distortion of the retained signal.

Rather than concentrating on optimising the best basis selection procedure for 

filtering, in this study we concentrate on evaluating the potential of the wavelet packet 

transform as a tool for filtering. When selecting the basis for filtering a signal, we will 

use a constant level of resolution. We will select the best level from the transform by 

visually inspecting the signal to be filtered at each resolution level of the transform and 

choose the level that best localises the noise. This can be considered as a human 

orientated best basis selection procedure.

At a constant level we have a regular grid of Heisenberg cells in frequency-time. 

We will refer to the rows of cells as ‘packet scales’, with the lowest scale containing the 

lowest frequency (Figure 4-1). This is not scale in the same sense as for the wavelet
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transform where the basis functions were scaled by dilation. The wavelet packet 

transform modulates the basis functions using the associated quadrature mirror filters. 

The best level basis is the one that is most similar to the windowed Fourier transform as 

can be seen by comparing Figure 2.4 to Figure 2.19. Therefore, the logical question to 

ask is why do we not use the windowed Fourier transform to filter signals? The answer 

to this is in several parts.

Time
Q  ^ m a x  ^ i m x

N N
M-l

a  M-2

Packet 
scale 2

1
0

0 1 2  3
Translation —

fs
( M  -  \ ) f N

M

Frequency
2 / „ /

/  M

M

N-l
0

Figure 4-1 Schematic diagram showing the relationship between labelling o f  
Heisenberg cells in the wavelet packet domain at a constant level o f resolution, time and 
frequency, f  N corresponds to the Nyquist frequency and t ^  the signal length in time.

First, the windowed Fourier transform uses a window of fixed length, inside of 

which is a basis of constant frequency. The wavelet packet basis at a constant level uses 

a window function that is almost fixed, but contains a range of frequencies, rather than a 

single frequency. Comparing the two processes at this stage is logical, but when we 

extend the selection of wavelet packet basis to across levels, we use a window function 

which changes in length adapting to the signal, which cannot be done with the 

windowed Fourier transform. We will be evaluating the wavelet packet transform, 

keeping in mind that it may be improved upon by a better basis selection procedure.

This is not to say that the windowed Fourier transform is redundant, but only that it can 

be improved upon by the more adaptable wavelet packet transform.
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Second, the windowed Fourier transform requires the selection of a window 

length. As we demonstrated in chapter 2.2, different window lengths are suitable for 

imaging different frequencies in the frequency-time plane. If we are filtering a signal 

that contains noise with a frequency range (as is the case with seismic signals), then the 

performance of the filter at each frequency will be dependant on window length. The 

wavelet packet transform automatically selects a range of window lengths (Heisenberg 

temporal cell widths) which are dependant on the sample rate of the original signal. For 

example Figure 4-2 shows the wavelet packet transform of a signal at several 

resolutions. With each level, the temporal width of the Heisenberg cell increases and so 

can be considered to be similar to a series of windowed Fourier transforms with window 

widths incrementing by an integer number of sample intervals.

Third, the windowed Fourier transform samples the frequency-time plane more 

densely that the wavelet packet transform, with typical temporal increment of several 

sample intervals. With the wavelet packet transform, the sample density in the time- 

frequency plane is sparser, being dependant of the level of resolution in time-frequency 

space.

When we develop the wavelet packet transform as a tool for time-frequency 

filtering, we will compare and contrast the results with filtering the data with windowed 

Fourier techniques.
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4.3 Choice of Kernel Wavelet

From our investigations into the choice of kernel wavelet with wavelet transform 

filtering, we can state that the choice of kernel wavelet will also influence the 

performance of filters based on the wavelet packet transform. We base this statement 

on the fact that the wavelet transform and the wavelet packet transform are both 

implemented using quadrature mirror filters, as discussed in chapter 2.5. However, as 

the wavelet packet transform involves multiple combinations of the quadrature mirror 

filters (equations 2.39-2.41, chapter 2.5) we must investigate diminishes the influence of 

kernel wavelet choice when using wavelet packets.

Figure 4-3 shows the wavelet transform of a 10-50 Hz chirp signal using a cubic 

spline Battle-Lemarie basis wavelet. Figure 4-4 shows the same signal at several levels 

of resolution using the wavelet packet transform. At the different levels of resolution in 

the wavelet packet transform the chirp signal is clearly identifiable as a diagonal line of 

coefficients (the clarity of which increase with the number of iterations). From this we 

can see that the wavelet packet transform allows more flexible resolution in time- 

frequency at higher frequencies apparently allowing better time-frequency resolution 

than could be achieved with the wavelet transform. However from Figure 4-4c (level 5) 

we can see that as well as localising the chirp signal in time-frequency, the wavelet 

packet transform has introduced some coefficients off the main diagonal of the chirp 

signal. These coefficients represent areas in frequency-time that were not present in the 

original signal and may be artefacts of the transform process.
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Figure 4-3 Scalogram representation (in decibels) o f  the wavelet transform o f  a 10-50 
Hz chirp signal using the Battle-Lemarie cubic spline kernel wavelet.
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Figure 4-4 Wavelet packet transform a 10-50 Hz chirp signal at several resolutions 
using a Battle-Lemarie kernel wavelet. A fter (a) three (h) fou r and (c) five iterations o f  
the transform process.
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Analysis of the frequency spectra of the wavelet packet basis functions (Figure 

4-5) at the resolution level shown in Figure 4-4a explains the source of these side lobes. 

The frequency spectra of the packet scales contain side lobes off the main frequency 

band centred around the Heisenberg cell limits (the boundaries marked on the diagram), 

which vary in amplitude depending on the packet scale of the basis function. During the 

decomposition process, the wavelet packet transform uses these basis functions with 

large side lobes to represent a part of the signal, and so the transform must later 

compensate for these side lobes by introducing a coefficient whose main frequency band 

matches the frequency of the side lobe. This leads to the off diagonal coefficients 

observed in Figure 4-4.

The large side lobes are a result of the splitting trick used in the implementation 

of the wavelet packet transform process. These side lobes are present in the wavelet 

basis as well as the wavelet packet basis as was seen in Figure 3.2, but not to the same 

extent. Amplification of these side lobes occurs when we extend the wavelet transform 

to wavelet packets. Figure 4-6 shows the generation of the side lobes, by comparing the 

spectra of two wavelet packets at adjoining packet scales to the spectrum of the original 

wavelet from which they were split. In the transform process the quadrature mirror 

filters split the wavelet at a given scale into two wavelet packets, one consisting of the 

high frequency portion of the original spectrum, the other the low frequency content.

We can see that the two wavelet packet spectra sum to give the wavelet spectra with the 

side lobe being an imperfection in the splitting process. This imperfection is a result of 

deviations of the quadrature mirror filters from the ideal sine function high/low pass 

filters. As for the wavelet transform, the energy in these side lobes and other energy 

outwith the Heisenberg cell become aliased, a product of the downsampling process in 

the transform. The wavelet packet transform accounts for the aliased energy perfectly in 

the forward-inverse transform process. However if we filter the coefficients in between, 

the inverse transform will not account fully for the aliased energy and we may introduce 

aliased noise centred around the frequency of the filtered wavelet packet side lobes. 

Implementing other seismic processing techniques, such as migration, using the wavelet 

packet transform also suffers from this problem as was identified by Foster and Mosher 

(1994). This aliased noise may manifest itself as residual signal (of the signal that was 

being filtered) in the filtered area. One way of minimising the introduction of this 

aliased noise is to minimise any side lobe energy.
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From the analysis we performed on wavelet transform kernel wavelets, we can 

predict that kernel wavelets with the least amount of side lobe energy will minimise the 

amount of wavelet packet side lobe energy. Figure 4-7 demonstrates this, showing the 

frequency spectra for a wavelet packet basis function for the 20 coefficient least 

asymmetric Daubechies wavelet and the quintic spline Battle-Lemarie kernel wavelet. 

From this it is apparent that the side lobe energy in the quintic spline kernel wavelet is 

considerably less than that contained in the Daubechies wavelet. An extension to this 

premise is that the smoother the wavelet, the smaller the side lobe energy in the 

frequency domain. From this figure we can also note that as for the wavelet transform, 

the quintic spline Battle-Lemarie kernel wavelet has a more desirable (flatter) response 

for filtering over the frequency range of the wavelet packet and a quicker amplitude 

decay at the Heisenberg cell edges.
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Figure 4-7 Frequency spectra o f wavelet packets derived from  (a) the 20 coefficient 
least asymmetric Daubechies and (b) Battle-Lemarie quintic spline kernel wavelet 
showing that the side lobe energy diminishes with smoother kernel wavelets.
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To examine the influence of the side lobe energy on the performance of filters 

we will apply a crude wavelet packet filter to the synthetic signal shown in Figure 4-8. 

As for the wavelet transform we will zero all the coefficients in the range of packet 

scales corresponding to the signal, examining the performance of the filter without using 

the temporal properties of the transform. This will allow us to estimate the effect of 

aliased noise on any filtered signal. Figure 4-8 shows the wavelet packet transform at a 

single level before and after filtering, illustrating the packet scales removed. Figure 4-9 

shows the result of applying this filtering procedure to the signal with several different 

kernel wavelets. The varying degrees of residual signal show the sensitivity of this 

process to the choice of kernel wavelet. From the figure we can see that the amount of 

residual signal due to the aliased energy is minimised by the Battle-Lemarie and 20 

coefficient least asymmetric Daubechies wavelet. As for the wavelet transform, the 

kernel wavelets with fewest coefficients in the associated filters give the poorest 

filtering results.

Figure 4-10 shows the frequency spectra of the synthetic trace before and after 

filtering from which we can see the main frequency band that has been suppressed. We 

can also see that the quintic spline Battle-Lemarie wavelet minimises the peak energy 

left after filtering. The 20-coefficient Daubechies wavelet also performs well but 

introduces notches into the frequency spectrum which may be problematic if the signal 

is to be processed further.

The influence of the kernel wavelets in the wavelet packet transform and the 

wavelet transform are similar, which is not surprising due to the relationship between 

the transforms. We can apply the criteria we developed for selecting a kernel wavelet 

for use with wavelet transform filtering for filtering with the wavelet packet transform. 

The linear phase and flat frequency response properties of the kernel wavelet are 

desirable for wavelet packet filtering, and the minimisation of energy outwith the band 

represented by the Heisenberg cell is a tighter constraint with wavelet packet filtering 

than for wavelet transform filtering due to potentially large side lobe energy. The 

temporal extent of the basis wavelet packets outside the bounds of the Heisenberg cell 

directly corresponds to the smoothness of the wavelets as for the wavelet transform as 

shown in Figure 4-11. Therefore we can state that the criteria for choosing a suitable 

wavelet for filtering with the wavelet packet transform is the same as for selecting a 

kernel wavelet for wavelet transform filtering with the extra constraint on the frequency 

bounds of the signal.
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Figure 4-8 (a) A synthetic signal and the associated wavelet packet transform using a 
Battle-Lemarie cubic spline kernel wavelet (b)The transform after filterin g  showing the 
packet scales rem oved by the filtering process to evaluate the effect o f  a liased energy.
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Figure 4-9 Filtering o f the synthetic signal using various kernel wavelets showing the 
sensitivity o f the filtering process to kernel wavelet choice and so to the kernel wavelet 
side-lobe energy. The following kernel wavelets were used: BLc24- Battle-Lemarie 
cubic spline wavelet with 24 coefficients, BLq48- Battle-Lemarie quintic spline wavelet 
with 48 coefficients, D4- 4 coefficient Daubechies wavelet, D12- 12 coefficient 
Daubechies wavelet, D20- 20 coefficient Daubechies wavelet, D8A- 8 coefficient least 
asymmetric Daubechies wavelet, D20A- 20 coefficient least asymmetric Daubechies 
wavelet.
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(d)

Figure 4-10 Frequency spectra o f selected traces from Figure 4-9 showing the varying 
degrees o f frequency suppression by different kernel wavelets (a) Input signal, output 
signal from the filtering process using the (b) Battle-Lemarie cubic spline wavelet (c) 
the Battle-Lemarie quintic spline wavelet and (d) the 20 coefficient least asymmetric 
Daubechies wavelet.
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Figure 4-11 Temporal support o f wavelet packets at a single level derived from selected 
kernel wavelets showing the variation in temporal support with kernel wavelet. The 
smoother the kernel wavelet in time the greater the extent o f the wavelet packet outside 
the boundaries o f the Heisenberg cell (marked by dashed lines). The wavelet packets 
are derived from (a) the 4 coefficient Daubechies wavelet (b) the 8 coefficient 
Daubechies wavelet (c) the 16 coefficient Daubechies wavelet (d) the 20 coefficient least 
asymmetric Daubechies wavelet (e) the Battle-Lemarie cubic spline wavelet and (f) the 
Battle-Lemarie quintic spline kernel wavelet.

Again, as for the wavelet transform, we must make a trade off between speed of 

the transform and the properties of the kernel wavelet. The smoother the kernel 

wavelet, the more coefficients in the corresponding quadrature mirror filters. This in 

turn leads to extra iterations in the transform process.

4.4 Transform Implementation

As the discrete wavelet packet transform is implemented in the same way as the 

discrete wavelet transform, using quadrature mirror filters as was discussed in chapter 

2.5. The restrictions and rules governing the discrete wavelet transform also apply to 

the discrete wavelet packet transform. That is, the signal length must be an integer 

power of two, and the transform assumes that the data are cyclical. Therefore, the 

techniques we used for implementing the discrete wavelet transform are used for
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implementing the discrete wavelet packet transform. Padding of the signal can be 

performed using zero padding, cosine tapering or signal mirroring. The edge handling 

procedure is the same in that the signal can be treated as if it were periodic, giving exact 

reconstruction, or aperiodic which can introduce an associated error. In the filtering 

examples in this chapter we will use the periodic boundary condition combined whilst 

mirroring the samples about the last sample when signal padding is required.

The discrete wavelet packet transform, like the discrete wavelet transform is 

translationally variant. If we translate the input signal by one sample, the discrete 

wavelet packet transform changes. This is an obvious point as the downsampling which 

causes the translational variance is included in both transforms. Therefore, the points 

raised in the previous chapter regarding translational variance apply equally to the 

discrete wavelet packet transform.

4.5 Filtering Methodology

We can use the wavelet packet transform as a time varying filter in the same way 

that we used the wavelet transform. However, if we ignore the side lobe problem 

(assuming we have chosen a kernel wavelet that minimises this), the wavelet packet 

transform allows better time-frequency resolution than the wavelet transform. This will 

allow us to filter noise localised in higher frequency areas. To filter a given signal we 

must specify several parameters that will control the application of this process. Firstly 

we must define the resolution level to decompose the data to in the wavelet packet 

domain. This choice depends on the form of noise that we want to remove and its 

distribution in the wavelet packet domain. We must make the choice of decomposition 

level by inspecting the data in the transform domain and choosing the level that best 

localises the noise in the wavelet packet domain which will subsequently lead to the 

minimum distortion to the retained signal.

After choosing the level of decomposition, we must define the area in the 

wavelet domain that we wish to filter. Again, we determine this by inspection, using 

time-gates and packet scale parameters to filter the data.

As for the wavelet transform, to filter the data in the wavelet packet domain we 

can mute or weight the coefficients. Muting coefficients leads to a form of time- 

frequency mute, and we subsequently lose any signal information contained in the 

muted coefficients. In the weighting procedure, again as for the wavelet transform, we 
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apply a weight based on the Q-value of the signal, as discussed in the previous chapter. 

With the wavelet packet transform at a constant level of resolution we have a regular 

grid of coefficients in a domain similar to frequency-time. The Q-surface for a signal 

can be estimated and used to weight wavelet packet coefficients that have energies 

larger than that expected form the Q-surface in frequency-time. Again, this weighting 

technique is simply one technique that could be used in an attempt to preserve signal 

and suppress noise and is primarily used to demonstrate the potential of the weighting 

process. The technique is based on Fourier techniques and therefore does not use the 

full potential of the wavelet packet transform, but simply illustrates an alternative to 

muting the wavelet packet coefficients.

Figure 4-12 shows a signal containing a localised noise burst between 2800 ms 

and 3200 ms. Figure 4-13 shows a three dimensional view of the absolute amplitudes 

of the corresponding wavelet packet transform at a constant level. The estimated best- 

fit Q-value surface for the signal is shown in Figure 4-14. Figure 4-15 shows the 

absolute amplitudes of the wavelet packet transform that are greater than the Q-value 

surface. From this we can see that at the time of the noise burst, at frequencies of 15 to 

70 Hz the wavelet packet coefficients lie above the estimated Q-surface for the data.

We can also see at earlier times that the wavelet packet coefficients peak above the 

surface. This is due to a combination of the side lobe problem discussed earlier where 

we observe artefacts of higher frequencies that do not represent true time-frequency 

components of the signal and the quality of the best-fit Q-value surface. These will not 

be filtered as the zone to be filtered is specified by a combination of packet scales and 

temporal translations.
Time (ms)

500 1000 1500 2000 2500 3000 3500

35002500 30002000 
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500 15001000

Figure 4-12 A seismic signal containing noise burst between 2800 ms and 3200 ms.
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Figure 4-13 A 3-dimensional representation o f  the wavelet packet transform o f  the 
signal shown in Figure 4-12. The absolute amplitude o f  the coe fficients is p lo tted  
against packet scale and translation.

Figure 4-14 The best fit Q-value surface fo r  the signal shown in Figure 4-12 which we 
will use to weight the wavelet packet coefficients.
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Figure 4-15 The absolute amplitude o f  the component o f  the w avelet packet transform  
shown in Figure 4-13 which lies above the Q-value surface shown in Figure 4-14.

In the zone we want to filter, we m ultiply the wavelet packet coefficients by a 

weight, suppressing them such that the w eighted coefficients lie underneath the Q-value 

surface. The weight is the value that, when m ultiplied by the m axim um  wavelet packet 

coefficient o f  the zone being filtered, gives the value o f  the Q-surface at the centre point 

o f  the Heisenberg cell in frequency-time. We then weight all the coefficients by 

m ultiplying all the coefficients in the filter area by the weight. This effectively lowers 

the wavelet coefficients so that they lie below the Q-value surface. The result o f  this 

process on the transform  is shown in Figure 4-16 and the resultant filtered signal in 

Figure 4-17. From this we can see that the noise burst has been suppressed 

successfully.
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Figure 4-16 The wavelet packet representation shown in Figure 4-13 after filtering  
using the weighting procedure.
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Figure 4-17 The signal shown in Figure 4-12 after filtering using the weighting 
procedure in the wavelet packet domain. The noise hurst has been successfully 
suppressed whilst preserving the bandwidth o f  the signal.
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4.6 Filtering Examples

In the last section we developed the wavelet packet transform as a form of time- 

frequency filter. In this section we apply this filtering technique to the suppression of 

airblast from seismic records.

Airblast, an air-coupled Rayleigh wave, is a result of sound energy coupling with 

the Earth’s surface and is a common feature of land-based seismic records, particularly 

when shooting with surface sources. Evison (1956) showed that when the phase 

velocity of a surface wave is approximately equal to the velocity of airborne sound 

travelling over the surface, then energy transfers across the surface in spite of the great 

disparity in acoustic impedance. The airblast energy transfers to the ground and so 

insulation or burial of geophones is an ineffective method of removing airblast from the 

seismic record (Knapp, 1986). The airblast manifests itself on shot records as an arrival 

with linear moveout equal to the velocity of sound in air. Figure 4-18 shows a common 

receiver gather from a land-based seismic survey with acquired using an explosive 

source. We can see from this figure that the receiver gather contains noise associated 

with airblast. The low velocity of the airblast leads to spatial aliasing of the signal 

which precludes the use off-k  filters for airblast suppression and limits radon transform 

based filters (Yilmaz, 1987).

The use of radon techniques to filter data that is highly spatially aliased can lead 

to end effects which generate linear streaks on radon filtered gathers. Figure 4-19 

shows a synthetic common shot gather containing signal similar to airblast and the 

corresponding linear radon transform. From this we can see that the airblast event is not 

localised in the radon domain. Therefore, for the suppression of airblast, radon 

techniques may lead to the introduction of artefacts into the data (Yilmaz, 1987).

Figure 4-20a shows the linear radon transform of the record shown in Figure 4-18. In 

the radon domain we can see the linear streaks corresponding to the airblast that we saw 

with the synthetic gather. Filtering the record in the radon domain involved muting the 

data to the right of the line marked on Figure 4-20a and inverting the transform. The 

filtered record is shown in Figure 4-20b. From the filtered record we can see that the 

spatially aliased airblast energy remains and the filtered record has a wormy character.

In addition to these limitations, radon transform based techniques are two 

dimensional, filtering seismic gathers, and so lead to the additional problem of dealing 

with dead traces, and are inherently more time consuming to apply. Other airblast
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Figure 4-18 A common receiver gather contaminated by steeply dipping airblast.
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Figure 4-19 (a) A synthetic shot record modelling airblast and (b) the corresponding 
linear radon transform showing the poor localisation o f  this form  o f  noise in the radon 
domain. This is due to the spatial aliasing associated with this form  o f  noise.
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Figure 4-20 (a) The linear radon transform o f  the gather shown in Figure 4-18 where 
the linear signals sim ilar to Figure 4-19 are due to the airblast. (b) The common 
receiver gather after filterin g  using the radon transform where all the signal to the right 
o f  the line in (a) has been muted. The airblast is still present on the record due to poor  
signal noise separation in the radon domain.

attenuation techniques include surgical muting, which is a crude but effective method o f  

rem oving airblast from seismic records but also leads to the removal o f any associated 

signal.

Figure 4-21 shows a com m on receiver gather containing 84 traces with a 30 m

offset increm ent between traces contam inated by airblast. The data were collected using

an explosive source in a transition land-m arine area. Figure 4-22 shows the twenty-

second trace from this com m on receiver gather at several resolutions in the wavelet

packet dom ain. From this we can see that five iterations o f  the transform process gives

acceptable localisation o f  the airblast noise in the wavelet packet domain. Time gates

were selected on the com m on receiver gather to define the translation areas in the

wavelet packet dom ain to filter. Similarly, the packet scales to be filtered were selected

by inspection o f  the wavelet packet transform  best level basis. The 5th to 18th packet

scales were selected for filtering after five iterations o f the wavelet packet transform 
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process. Figure 4-23a shows the result of applying the wavelet packet filter using the 

muting technique in the wavelet packet domain. We can see that the airblast has been 

successfully suppressed, but there is degradation in the reflected signal crossing the 

airblast contaminated area. Figure 4-23b shows the result of filtering after weighting in 

the wavelet packet domain. The Q-value for the signal was estimated from examining 

the wavelet packet transform and comparing it to several Q-value surfaces. We can see 

that the airblast has, again, been successfully suppressed without the degree of signal 

degradation observed with the muting technique. Finally, for comparison purposes, 

Figure 4-23c shows the result of windowed Fourier filtering of the common receiver 

gather to suppress the airblast. The same time gate used for calculating the wavelet 

packet translations to be filtered was used for windowed Fourier filtering. The 

frequency parameters for the filtering process were derived from the frequency limits of 

the Heisenberg cells of the packet scales filtered, allowing for filter tapering. We can 

see that this produces a similar result to the wavelet packet muting technique, with the 

signal degradation being slightly more pronounced. If we were more precise in our 

frequency definition and taper specification for the windowed Fourier filter we could 

match the performance of the wavelet packet muting technique. However, we would be 

unable to match the wavelet packet weighted filter result.
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Figure 4-21 A common receiver gather contaminated by airblast. The offset increment 
between traces is 30 m.
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Figure 4-22 The wavelet packet transform o f  trace 22 from  Figure 4-21 at several 
levels o f  resolution (a) after four, (b) five and (c) six iterations o f  the transform process. 
The airblast noise burst seems most localised in (b).

Chapter 4: Wavelet Packet Transform Filtering Page 110



SE
Q

N
O

 
SE

Q
N

O
 

S
E

Q
N

O

(siu) auj|i

(s tu ) a iu j i

(sut) aiuji

Fi
gu

re
 

4-
23

 
Th

e 
co

m
m

on
 

re
ce

iv
er

 
ga

th
er

 
sh

ow
n 

in 
Fi

gu
re

 
4-

21
 

af
te

r 
fil

te
ri

ng
 

by 
(a

) 
m

ut
in

g 
in 

the
 

w
av

el
et

 p
ac

ke
t 

do
m

ai
n 

(b
)w

ei
gh

tin
g 

in 
the

 
w

av
el

et
 

pa
ck

et
 d

om
ai

n 
an

d 
(c)

 
w

in
do

w
ed

 
Fo

ur
ie

r 
fi

lte
ri

ng
.



4.7 Conclusions

The wavelet packet transform allows a more adaptable tiling of the time 

frequency plane by the modulation of the standard wavelet basis by the associated 

quadrature mirror filters. We have demonstrated that this adaptability is at the expense 

of introducing side lobes into the basis function frequency spectra which could degrade 

the quality of any subsequent filtering process. The size of side lobe energy is related to 

the smoothness of the original kernel wavelet, and through careful choice of kernel 

wavelet we can minimise this effect. We have shown that this adaptability allows the 

wavelet packet transform to be used to filter frequency-time space in the packet scale- 

translation sense allowing the suppression of noise that is localised in frequency time. 

Although perfect separation of signal and noise is not possible using this technique, the 

filtering process minimises any signal losses by localising the filtering process. This 

technique allows filtering of areas in the frequency-time plane that could not be filtered 

effectively using the wavelet transform.

We have shown that through a simple wavelet packet basis selection process, 

satisfactory filtering results can be achieved and so, through possible future 

development of the basis selection procedure, we could improve upon these filtering 

results. Filtering signals using best level bases are effective, but further improvements 

in performance could be achieved if we adapt the basis selection procedure to adapt to 

the form of noise that is to be suppressed in the wavelet packet domain.

The filtering process has been shown to be effective by both muting and 

weighting the wavelet packet coefficients of the signal. The weighting technique based 

on the estimated Q-value for the signal is not the best technique as it is based on Fourier 

rather than wavelet theory. However, it effectively demonstrates that the filtering 

process can be improved by using a weighting rather than a crude muting technique. 

Future work could develop better weighting techniques based on the wavelet packet 

coefficients themselves and relationships between changes of coefficients between 

packet scales and the noise to be suppressed.

In this and the previous chapter, we have looked at filtering seismic data, using 

the one-dimensional wavelet and wavelet packet transforms. These filters are one­

dimensional in terms of the transforms they use and that they are trace by trace 

processes, but two-dimensional in the way that they filter in a two-dimensional

transform domain. In the next chapter we will look at the two-dimensional forms of 
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these transforms and develop these as two dimensional wavelet and wavelet packet 

transform filters which filter a four-dimensional transform space.
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5. Two Dimensional Filtering

5.1 Introduction

A natural extension of filtering seismic signals using one dimensional discrete 

wavelet and wavelet packet transforms is to filter using two dimensional versions of the 

transforms. In the one dimensional case we decompose the temporal axis into frequency 

scales and time translation, and in extending this to two dimensions we additionally 

decompose the offset axis into wavenumber scale and offset translation. Therefore, the 

two dimensional transform potentially allows us to filter seismic data in a frequency- 

time-wavenumber-offset sense. We will refer to this form of filtering as two 

dimensional as it utilises a two dimensional transform event though we will be filtering 

a four dimensional transform space.

Two dimensional filters, such as those based on the two dimensional Fourier 

transform (f-k filters) and the radon transform ( r-p filters), are commonly used in 

seismic processing. The f-k  filter, used for the suppression of ground roll and multiples 

(Yimaz, 1989), utilises the two dimensional Fourier transform which decomposes a 

signal using basis functions that have infinite extent in space and time. Therefore, as for 

one dimensional filters, to implement these filters in a time varying fashion, we must 

use some form of windowed processing. Filters based on radon transforms are also 

commonly used in seismic processing for the suppression of ground roll (Yilmaz, 1989) 

and multiples (Taner, 1980, Verschuur and Berkhout, 1996). The radon transform is not 

perfectly invertible, errors are introduced in the transform-inverse transform process, but 

good reconstruction is possible with a least squares inversion. This is not a major 

limitation and can be considered similar to using a Battle-Lemarie kernel wavelet with 

the discrete wavelet transform, in that there is an associated error in reconstruction.

To investigate the possible uses of two dimensional wavelet transforms for 

filtering seismic data we must investigate how they decompose/-/: and x-t space.

Again, we investigate the influence the choice of basis wavelet on any filtering process.
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5.2 The Two Dimensional Wavelet Transform

In this section we will discuss the two-dimensional discrete wavelet transform 

from the perspective of multiresolution analysis. This is effectively an extension of the 

analysis performed in chapter 2.4 to two dimensions. The two dimensional transform 

can be constructed from two one-dimensional multiresolution analyses. In one­

dimensional multiresolution analysis we divide the space of square integrable functions 

(finite energy signals), l}{R), into closed subspaces V}. We can use this method to 

extend the concept to two-dimensions. If we define a two-dimensional subspace V0 as 

the tensor product of two one-dimensional subspaces (Daubechies, 1992),

V0 = K0®K0 (5.1)

which is spanned by a two-dimensional function in offset-time, F ( x , t ) ,

F(x,t) = f {x)g( t ) \  f , g e V 0 (5.2)

and as for the one-dimensional case the subspaces are related by a scaling law such that

F e  V. <=> F(2Jx,2j t) e V0 (5.3)

then we have a two-dimensional multiresolution ladder in l}{R ) such that

...V2 c V ,  c V 0 c V ,  c V 2... (5.4)

where the subspaces do not intersect and the union of all the subspaces gives l}{R)  

(Daubechies, 1992). This is the two-dimensional equivalent of equation 2-26. Since the 

one-dimensional function § ( t - n ) , n  e Z , constitutes an orthonormal basis for V0, then 

the product functions

(*» 0  ~ ~ n\ )<K* “  n2 )• H\. n2 e Z  (5'5)

constitute an orthonormal basis for V0. Therefore, generalising we find that

= 2~j <&(2~j x -  n},2~j t -  n2), n{, n2 e Z  (5.6)

constitute an orthonormal basis for the two dimensional subspace Vy, where j is the 

scaling index and «,, n2 are the translation parameters for the two dimensions. As for 

the one-dimensional case we define, for each j  e Z , the complement space W . to be 

the orthogonal complement in V o f  V7. Therefore we have

V,._, = vhX ® v M = (Vj @Wj)® (Vj ® Wj )

= Vj ®Vj  ®[(W. ®Vj)@(Vj  ®Wj ) ® ( W j ®W j )]
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= V, © W7. . (5.7)

using equation 2-33. From this we can see that W . consists of three components, with

the orthonormal bases given by i|/y (-*)<)>,,„, (0  for W} ® V j , (j>7 (x)i|t jJh ( t ) for

Vj ® Wj , and \j /  fl| ( jc) \ } / 7 (H (r) for VF; ® Wj . This leads to the definition of three 

wavelets for each scale j,

= <j)(*)y(0

r w )  = V U W O  (5'8)
V 1* (x,t) = y ( x ) y ( t )

where h, v, and d stand for horizontal, vertical and diagonal respectively. This is related 

to the form of the wavelets in x-t space and will be explained further when we analyse 

the decomposition of f-k space by the transform. We will now explain this formation 

more clearly in terms of the quadrature mirror filter implementation of the transform.

5.3 Transform Implementation

The transform is implemented by the half-band low pass and half-band high pass 

quadrature mirror filters used in the one-dimensional transform. One iteration of the 

transform (one pass of the high pass and low pass filters) applies the filters to one 

dimension, say the offset dimension, followed by one iteration of the transform in the 

second (say time) dimension as indicated schematically in Figure 5-1. This leads to an 

x-t and f -k  representation shown in Figure 5-2. The wavelet coefficients are gathered 

into three sectors and the scaling coefficients into a fourth sector. Each of the three 

sectors of wavelet coefficients at the first scale (scale 0) d 0,v, d 0 J and d 0J>, 

corresponds to one of the three basis wavelets 'F 1', x¥ d and derived from the 

original kernel wavelet. The final sector which contains the scaling coefficients is 

passed onto the next iteration of the transform. The transform splits f-k  space into 

octave sectors (which are symmetrical about the frequency axis). Each of the three

M N
zones of wavelet coefficients in the transform representation contains wavelet

coefficients, when the input data are of dimension M xN . These coefficients cover the 

input x-t space in a regular grid, so that in x-t space at the lowest scale the dimension of 

the Heisenberg cell is 2x2 samples. A wavelet coefficient from one sector has the/-/: 

support of the corresponding sector in f-k  space. From the relationship between the f-k

zones and the corresponding basis wavelets at the first scale we can see that the 'F 1' 
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wavelet coefficients will contain more steeply dipping (vertical) energy in the x-t 

domain, that is energy with low wavenumber and low frequencies. The and VT/' 

wavelet coefficients represent diagonally and shallowly dipping (horizontal) energy 

respectively in the x-t domain, from their associated partitions in f-k  space. The regions 

of support of the basis wavelets in x-t and f-k  space (Heisenberg cells) are for 

illustration purposes, and as for the one-dimensional transforms, the boundaries are 

fuzzy depending on the kernel wavelet used in the decomposition. The Heisenberg cells 

in the f-k  domain represent the sine basis function, and in the x-t domain the Haar square 

wave function.

The full transform, as for the one-dimensional transform, is applied in a cascade 

fashion on the remaining scaling coefficients, leading to a partitioning/-^ space shown 

in Figure 5-3. The arrangement of the coefficients in the output matrix is also shown.

As the scale increases, the number of wavelet coefficients at each scale decreases, and 

correspondingly the support of the basis wavelets in x-t increases (doubles) and f-k  

support decreases (halves).

H
G

Input matrix

0  colum ns M

(offset)

Transform Iteration

: Half-band high pass filter  

: Half-band low  pass filter

: scaling coeffic ien ts at scale n

d nH : w avelet coeffic ien ts at sca le  n, basis w avelet T

d"'1 : w avelet coeffic ien ts at sca le  n, basis w avelet H*'1 
d n v : w avelet coeffic ien ts at sca le n, basis w avelet

Output 
Scale 0

offset
translation

columnsrows

Gather columns

rows

columns

column.

o
tim e 

►  translation 

N /2

M /2

offset
translation

0
tim e

translation

N /2

tO,h
M /2

offset
translation

0
tim e

translation

N /2

tO.d
M /2

offset
translation

0 
tim e 

translation  

N /2

r0,v

M /2

Figure 5-1 Schematic diagrams showing how the quadrature mirror filters associated 
with the kernel wavelet are used to decompose a two-dimensional signal in one 
iteration o f the wavelet transform.
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Offset

Input
G ath er

c" : scaling coefficients at scale n

d  : wavelet coefficients at scale 11, direction m
where m equals h, v. or ci.

O ne iteration  o f  
2D  transfo rm

Scale
0

offset translation

(a)

f

Figure 5-2 Partitioning o f  the (a) x-t and (h) f-k  domain by one iteration o f  the 2-D  
discrete wavelet transform. The transform decomposes the x-t domain into three sets o f  
wavelet coefficients corresponding to the three areas o f  f-k  space shown and one set o f  
scaling coefficients that are p assed  on to the next iteration. F-k space is decom posed  
into octave segments.
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offset

time

Gather
C : scaling coefficients at scale n

d n m : wavelet coefficients at scale n, direction m 
where m equals h, v, or d.

2-D Discrete 
Wavelet transform

offset translation

time
translation

(a)

f  *

o'̂3 d°’h d°'h d°’d

d°'v

d Kh d x’h d u

d°’v
d ]’v d x'v

0 k
(b)

Figure 5-3 Partitioning o f  (a) x-t space and (b) f-k  space by the two-dimensional 
wavelet transform showing the partitioning o f the scaling coefficient areas from  the 
previous figure by the cascaded application o f  the transform process.
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W e can see that the three wavelet functions defined in equation 4.9 are derived 

from com binations o f  the quadrature m irror filters used in the one-dim ensional 

transform  applied in the different dim ensions. Exam ples o f  these basis functions for the 

cubic spline Battle-Lem arie kernel quadrature m irror filters are shown in Figure 5-4. 

Figure 5-5 shows a seism ic shot record and the corresponding two dim ensional wavelet 

transform  using these basis wavelets. From this figure and Figure 5-2 to Figure 5-4 

several interesting points arise.

(a) (b) (c)

Figure 5-4 Two-dimensional wavelet basis functions built from cubic spline Battle- 
Lemarie kernel wavelets. The three wavelets are the basis fo r  one scale (n) orientated 
in the (a) vertical direction , d"'v, (b) horizontal direction, d"'h, and (c) diagonal 
direction, d n d .
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Firstly, as we mentioned previously, the partitioning off-k  space by the basis 

wavelets is symmetrical about the frequency axis. It is also symmetrical about the 

wavenumber axis, but this is not typically shown using seismic f-k  plots. This may 

present problems when attempting to filter spatially aliased data where the spatially 

aliased signal lies in one sector in f-k  space, with the mirror sector (from symmetry) 

containing signal we wish to preserve.

Secondly, seismic data tends not to be equidimensional, that is, the number of 

samples in the time domain does not equal the number of samples in the offset domain. 

In the time domain, there are usually thousands of samples, whilst in the offset domain 

there tends to be tens or hundreds of traces. In seismic acquisition, the sampling of the 

seismic wave field is denser in time that in space. The two dimensional discrete wavelet 

transform assumes that the sample interval in time is the same as in space. Therefore, 

when we display the two-dimensional wavelet transform, as in Figure 5-5, we are 

actually showing a distorted view as the offset dimension is undersampled compared to 

the time. This explains why there is very little energy apparent in the d 0 h and d 0 J tiles 

of the transform. If we looked at the input shot record with the perspective of the 

transform, that is with equal spacing of horizontal and vertical samples, the shot record 

would look as if it contained energy dipping almost vertically.

Thirdly, as for the one-dimensional transform, the two dimensional transform 

array lengths need to be an integer power of two in length. Therefore we have to pad 

out the signal in offset and time in the same manner as for the one-dimensional case. 

When implementing the transform process we must define how the edges of the signal 

are handled and how the signal is padded, if this is required. The techniques used for 

the two dimensional transform are identical to those discussed in chapter 3. In Figure 

5-5 the signal has been padded out to the next power of two number traces/samples by 

mirroring the data about the last trace/sample. The transform boundary condition is 

periodic.

Fourthly, the input gather (a matrix of samples) is not equidimensional.

Therefore, the number of scales possible when decomposing one dimension of the 

gather may not be the same as for the other dimension. Therefore, when applying the 

full transform, we cascade the process until the lowest possible scale is reached in the 

dimension with the lowest number of possible scales.

Finally, the representation of the two-dimensional transform shown in Figure 5- 

5 is particularly cumbersome. For the one-dimensional transform we had the scalogram
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which gave an efficient representation of the coefficients and their relationships in 

frequency and time. However with the two dimensional wavelet transform, there are 

four variables, offset scale, temporal scale, temporal translation and offset translation, 

which makes visualisation of the transform difficult. In this work we will use a 

combination of the x-t, f-k  and two dimensional wavelet representations to display, 

analyse and design filters for the data. The coefficients will be displayed as samples in 

two-dimensional wavelet space as shown in Figure 5-3 with each sample for a given 

scale and orientation (horizontal, vertical or diagonal) represents a given area in f-k  

space. In this representation there are two sets of Heisenberg cells, one associated with 

the wavelet coefficient in the x-t domain and another in the f-k  domain. As mentioned 

previously, these boundaries are used to indicate the support of the basis wavelets in 

these two domains and the true supports vary depending on choice of kernel wavelet.

5.4 Kernel Wavelet Selection

Figure 5-6 shows examples of basis wavelets at one scale with different 

orientations and the corresponding/-^: spectra. Superimposed on this diagram are the 

corresponding Heisenberg cells. From this we can see that the boundaries represented 

by the Heisenberg cells are not exact, as for the one-dimensional case. The criteria we 

developed in chapter 3 for selecting a suitable basis wavelet for filtering seismic data 

using the one dimensional transform are equally applicable for the two dimensional 

version. The flat frequency response over the main f-k  support of the basis function and 

fast fall off at scale boundaries are desirable as is symmetry of the kernel wavelet. 

However, with the two dimensional transform and seismic signals there is an added 

constraint when we extend the filtering process to two dimensions.

Seismic data typically has wide dynamic range, that is the amplitude range of 

signals in a common shot record can be particularly large, especially from trace to trace. 

When we selected the Battle-Lemarie kernel wavelets as the most suitable kernel 

wavelet for one dimensional filtering, we assumed that the error in reconstruction 

associated with these kernel wavelets (which depended on the number of coefficients 

used) was of minor consequence compared to the benefits gained from the other 

properties of this wavelet. However, when using these kernel wavelets in the two- 

dimensional transform, where there can be large trace to trace amplitude variations, this 

error in reconstruction is more significant.
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Wavelet transforms have been developed mainly in the image processing 

community which deal with digital images whose samples normally have a range of 

values from 0 to 255. Therefore this problem of reconstruction error does not create a 

problem when transforming one or two dimensional images. For seismic data, the one­

dimensional case, we typically used twenty four Battle Lemarie cubic spline coefficients 

and forty eight quintic spline coefficients to apply the transform. In two dimensions this 

would not be acceptable for a typical shot record, unless some form of gain and/or trace 

equalisation had been previously applied to the shot record. For a shot record, with no 

gain applied and large trace to trace amplitude variations, one-hundred and twenty four 

coefficients are typically required for the quintic spline wavelet to produce an acceptable 

reconstruction with minimal error. When comparing this to the Daubechies wavelets 

which will exactly reconstruct without any need to expand the number of kernel wavelet 

coefficients, we can observe that using Battle Lemarie wavelets will increase any 

processing time considerably. In terms of processing cost, the 20 coefficient 

Daubechies wavelet will apply the transform process in one-sixth of the time taken by 

the quintic spline Battle-Lemarie wavelet with 124 coefficients.

Figure 5-7 shows the 2-D reconstruction error manifesting itself on a common shot 

record using the 24 coefficient Battle-Lemarie cubic spline wavelet and how this is 

minimised by using a greater number of coefficients. Rather than increase the number 

of coefficients we use, we can apply a gain function to the traces before transformation, 

which can later be removed after reconstruction. This gain can be in the form of an 

AGC. The application and removal of the gain to the data is far less time consuming 

than the use of the extra coefficients and so, this leads to a reduction in processing time. 

When filtering signals use two-dimensional wavelet transforms, we will use this 

technique rather than increasing the number of coefficients used. This means that when 

comparing the basis wavelets, the extra cost in using the Battle-Lemarie wavelets is the 

two additional gain application/removal steps. This gain technique is also commonly 

used in seismic processing streams when filtering data usingf-k  filters where the data 

contains large amplitude variations.
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5 . 5  Filtering with the Two-Dimensional Wavelet 

Transform

The two-dimensional wavelet transform potentially allows the filtering of 

seismic data in the four dimensions of the transform space. Analysing a given signal in 

the two dimensional wavelet domain, we can select coefficients that can be muted out 

and the inverse transform applied. The poor representation of the two-dimensional 

transform means that it is difficult to visualise the coefficients to be filtered for a given 

signal at higher scales. However, with the added knowledge of the range of the 

corresponding Heisenberg cells in x-t and f-k  space we can specify the coefficients to be 

removed. This process is shown in Figure 5-8 to Figure 5-10. Figure 5-8 shows a 

simple synthetic signal containing four reflected events, a refracted event, and three low 

velocity, low frequency events, described in Table 5-1. Figure 5-9 shows the two 

dimensional wavelet transform of the gather using the cubic spline Battle-Lemarie 

kernel wavelet. We can see that the majority of the low velocity signal is contained in 

the vertical basis wavelet sector of scales 0-2, whilst reflected and refracted signals are 

contained in these and other scales. This is as expected when we look at the 

corresponding/-^ regions for these sectors. On the transform display, within the 

wavelet coefficient sectors that contain the low velocity signal, we have selected areas 

(between the crosses on each trace) to mute the signal in an attempt to suppress the low 

velocity signals. We do not mute the entire sector, only the portion of the wavelet 

coefficients that contain low velocity signal. This localises the filter in time and offset. 

Figure 5-10 shows the gather after filtering in the wavelet domain and the application of 

the inverse transform. We can see that apart from some edge effects associated with the 

filtering process, the low velocity signals have been successfully suppressed.

E v en t V e lo c ity  (m /s ) W a v e le t

R efra cto r 4 5 0 0 5 0  H z R ic k e r  w a v e le t

R e flec to r  1 3 5 0 0 3 0  H z  R ic k e r  w a v e le t
R e fle c to r  2 3 7 0 0 3 0  H z  R ic k e r  w a v e le t

R e fle c to r  3 4 5 0 0 3 0  H z R ic k e r  w a v e le t
R e fle c to r  4 5 5 0 0 3 0  H z  R ic k e r  w a v e le t
L ow  v e lo c ity  1 1 6 0 0 4 - 6 - 1 5 - 3 5  H z  c o r n e r  f r e q u e n c ie s

L ow  v e lo c ity  2 1 0 0 0 4 - 6 - 1 5 - 2 0  H z  c o r n e r  f r e q u e n c ie s

L ow  v e lo c ity  3 6 0 0 4 - 6 - 1 5 - 2 0  H z c o r n e r  f r e q u e n c ie s

Table 5-1 Velocities and seismic wavelet frequiencies used to form the synthetic shot 
gather shown in Figure 5-8.
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Figure 5-8 A synthetic shot gather containing fou r reflected events, one refracted event 
and three low velocity, low frequency events which we will attem pt to suppress using the 
two dimensional wavelet transform.

Chapter 5: Two Dimensional Filtering Page 128



Figure 5-9 The two dimensional discrete wavelet transform o f Figure 5-9 using the 
cubic spline Battle Lemarie kernel wavelet. The record has been padded  by m irroring  
the signal about the last sample in the offset and time domains. Large wavelet 
coeff icients due to wrap around effects can be seen clearly at the right hand side o f the 
transform display.
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Figure 5-10 The shot record shown in Figure 5-8 after filtering using the two 
dimensional discrete wavelet transform. The low velocity signal has been successfully 
suppressed apart from  the residual edge effects associated with the filtering process.

In seismic processing, two-dimensional filtering techniques are principally used

for the suppression of low velocity noise from seismic common shot records. The

appearance of low velocity noise in thef-k  domain is shown schematically in F igu re  5-

11 where we have also superimposed the partitioning of the domain by the two-

dimensional wavelet transform. In the previous synthetic example we had good

separation of the reflections and refractions from the low velocity signal in f-k  space. In

field data, this degree of signal and noise separation is unlikely and so the octave

splitting of f-k  space by the two-dimensional discrete wavelet transform may be too

coarse for suppression of low velocity noise without seriously deteriorating the signal

we wish to preserve, particularly at lower frequencies. This problem is demonstrated in

F ig u re  5-12 to F igu re  5-14. F igu re  5-12 shows a common shot record contaminated

by ground roll and the corresponding/-/: spectrum after the application of an AGC to

enhance weak signals. The record was acquired using an explosive source and clusters

of geophones at each recording station with a 3 metre receiver group interval. F ig u re  5-

13 shows the two-dimensional wavelet transform of the record using the cubic spline 
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Battle-Lemarie kernel wavelet, from which we can see the areas to be filtered in the 

wavelet domain in an attempt to suppress the ground roll. The resultant filtered record 

is shown in Figure 5-14, from which we can see that some ground roll remains. In 

addition, the areas that have been filtered have a wormy appearance, a result of signal as 

well as noise being removed, leaving distorted signal behind. Using alternative kernel 

wavelets does not improve on this result. The poor filtering performance is a direct 

result of too coarse a sampling in f-k  space by the two dimensional wavelet transform. 

To circumvent this coarse sampling problem we must apply a shift to the data, moving 

the signal away from the noise in f-k  space. To do this we will apply a normal moveout 

to the signal before filtering, which we will subsequently remove after filtering.

The use of a normal moveout (NMO) corresponding to reflected energy before 

filtering rotates reflected energy towards the frequency axis. Ground roll energy is also 

rotated, but not to the same extent. The purpose of the moveout is to rotate the reflected 

energy and ground roll into separate Heisenberg cells in f-k  space so that when we have 

energy overlap in the wavelet domain, any filtering process minimises distortion of the 

primary reflectors. This result of this process is shown in Figure 5-15. A constant 

velocity NMO has been applied to the signal in the common shot domain before the 

wavelet transformation process and removed after the inverse transform. As before, the 

filter was designed by the selection of filter zones in the wavelet domain. The result of 

this filtering process is a great improvement from the previous filtered record, with more 

noise removed, more reflected signal apparent and less worminess on the filtered record.

Rather than apply a normal moveout, we would like to use a technique that 

decomposes f-k  space into smaller Heisenberg cells in the area we wish to filter.

Although this would lead to correspondingly larger wavelets in the x-t domain, we 

would like a decomposition that allows more flexibility in terms of f-k  and x-t support of 

the basis wavelets. Therefore, we will extend the use of the two-dimensional filtering 

process to the wavelet packet transform in two dimensions. As for the one-dimensional 

transform the wavelet packet transform theoretically allows higher resolution in f-k  

space in areas where the wavelet transform has poor f-k  resolution and in general allows 

a more flexible representation in the frequency-wavenumber-offset-time domain.
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Offset

First break 
energy

Reflected
energy

Ground roll

(a)

First break 
energy

0 k

(b)

Figure 5-11 The typical positioning o f signal and noise in (a) the x-t domain and (b) the 
f-k  domain and comparing the partition o f the f-k  domain by the 2-D wavelet transform. 
The octave band splitting may be too coarse a partitioning o f the f-k  domain fo r  filtering 
at lower frequencies and wavenumbers.
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5.6 Wavelet Packets in Two-Dimensions

As for the wavelet transform, the wavelet packet transform in two dimensions is 

a direct extension of the one-dimensional application. In one-dimension, the transform 

applies the quadrature mirror filters to the wavelet coefficients as well as the scaling 

coefficients at each iteration of the transform. In two dimensions, the same process is 

applied, with the exception that it is applied in two dimensions. One iteration of the 

wavelet packet transform in two dimensions leads to the same partitioning of x-t and f-k  

space shown in Figure 5-2. The second iteration applies the quadrature mirror filters to 

the sectors containing both the wavelet coefficients and the scaling coefficients in both 

dimensions leading to the partitioning of x-t and f-k  space as shown schematically in 

Figure 5-16. Each successive iteration splits a sector of coefficients into four smaller 

sectors.

Therefore, after one iteration we have four basis wavelet packets (identical to the 

three basis wavelets plus the scaling function) which in the z-domain are

Wq (z, ,z2) = G(z, ) G ( z 2 )

Wll(zi,z2) = G(zl)H(z2) 

Wl(zi ,z2) = H(z l)G(z2)
(5.9)

W,'(z,,z2) = H(z i)H(z2) 

where we use the quadrature mirror filters H(z) and G(z), and where z, and z2 represent 

the z-domain for offset and time respectively. After two iterations we have sixteen basis 

wavelet packets

W ? ( z „ z 2 ) =  G ( z , ) f f ( z 2 ) G ( z , 2 ) G ( z 22 )
W,2(z,,z2) =  G ( z , ) t f ( z 2 ) G ( z , 2 ) f f ( z 22 )
W 62( z „ z 2 )  =  G ( z , ) f f ( z 2 ) / / ( z , 2 ) G ( z 22 )

W 2( z v z 2)  =  G ( z , ) H ( z 2 ) H ( z 2 ) H ( z 22 )

Wf2( z „ z 2 ) =  t f ( z , ) / / ( z 2 ) G ( z , 2 ) G ( z 22 )
W ^ ( z , , z 2 ) =  f f ( z , ) / / ( z 2 ) G ( z , 2 ) f f ( z 22 )
Hf4(zp z2) = H ( Zi ) H ( . z2 ) H ( z 2 ) G ( z22 ) ’

^ 2,(z ,,z 2) =  H ( z , ) H ( z2 ) H ( z 2 ) H ( z22 )

These basis wavelet packets correspond to the areas of x-t and f -k  space shown in 

Figure 5-16. The packet scales are indexed on both axis, with the sum of the axes 

labels giving the index of the wavelet packet scale. Again as for the wavelet transform,

WJ, (z ,,z2) =  G (z,)G (z2)G (z,2)G (z2 

W 2( z v z 2 ) =  G (z,)G (z2)G (z,2) / / ( z 2 

W2(zi,z2) = G(zi)G(z2) H ( z 2)G(z2 

W 2(z,,z2) = G ( z i ) G ( z 2 ) H ( z 2 ) H ( z 2

W 2( z „ z 2 ) = H  (z, )G(z2 ) G { z 2 ) G ( z 2 

W 2( Zi , z 2 ) = H(Zl)G(z2) G U 2) H ( z 2 

W 2(zl,z2) = m z l)G(z2) H ( z 2) G ( z 2 

W 2( z v z 2 ) =  H ( z , ) G ( z 2 ) H ( z 2) H ( z 2

(5.10)
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Figure 5-16 Partitioning o f the (a) f-k  domain after two iterations o f the wavelet packet 
transform process and (b) the wavelet packet coefficients are organised into sectors as 
fo r  the wavelet transform with each sector o f wavelet packet coefficients tiling the input 
x-t space such that at the resolution shown, the Heisenberg cells in x-t space will be 4x4 
samples in size. Each sector o f coefficients is associated with a corresponding mirror 
pair o f sectors in f-k  space.
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the sectors in f-k  space are symmetrical about the frequency axis such that the two 

shaded areas in Figure 5-16 are represented by one wavelet packet. After each iteration 

the number of basis functions is squared and the two-dimensional wavelet packet 

decomposition is in the form of a linear weighted sum of these basis functions,

where A sf is the wavelet packet coefficient, that is the double inner product of the 

signal f(x,t) with the two dimensional wavelet packet Wf (t ) , having selected values

of the level index/, the packet scale index s (number of iterations) and the offset and 

time translation parameters p and q. After each iteration we have a constant level of 

resolution each of which, as for the one-dimensional transform, represent a basis for the 

original signal. Again, as for the one-dimensional case, bases can be selected across 

levels of resolution. This is performed by a best basis selection procedure.

So as for the one-dimensional wavelet packet transform we have a more 

adaptable tiling of the f -k and x-t domain, and in filtering we will select the best level 

that localises the noise in the wavelet packet domain. When we investigated possible 

kernel wavelets to use in the wavelet packet decomposition in one-dimension, we stated 

that we must minimise any aliased noise introduced by a given kernel wavelet by 

minimising the side lobe energy in the associated frequency spectrum. Figure 5-17 

shows the x-t andf -k  wavelet packet impulse response for three kernel wavelets, the 

four coefficient Daubechies wavelet, the least asymmetric 20 coefficient Daubechies 

wavelet and the quintic spline Battle-Lemarie wavelet. From this we can see that the 

side lobe energy off the main f -k support is present in two dimensions and as for the 

one-dimensional case, is minimised by the spline wavelet. This, however, leads to a 

corresponding increase in the x-t support of the wavelet. From section 5.4, we saw that 

to achieve a good reconstruction of the input signal using the Battle-Lemarie quintic 

spline wavelets (that minimise the side-lobe energy) we need to substantially increase 

the number of coefficients in the associated quadrature mirror filters. So again we have 

a quandary between optimising the speed of the filter or optimising the performance of 

the filter. Again, we can use the application of a gain function to minimise this 

problem. However, even with the gain function the quintic spline wavelet still has 

greater than twice the coefficients of the 20 coefficient Daubechies wavelet and so will 

take twice as long in the transform process. Therefore when examining the filtering

(5.11)
/  ,v / ) = - o o  q = .
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process we will use two different kernel wavelets, one to optimise speed, the 20 

coefficient least asymmetric Daubechies kernel wavelet and the other to optimise filter 

performance, the quintic spline Battle-Lemarie kernel wavelet, and we will compare the 

results at the filtered shot record level.

5 . 7  Wavelet Packet Transform Filtering

Figure 5-18 shows the two dimensional wavelet packet transform of the 

common shot record shown in Figure 5-12(a) after four iterations of the transform 

process. Again, as for all the transform processes discussed before we have defined a 

edge handling and array padding technique. We can see from this figure that the 

representation of the two dimensional discrete wavelet packet transform is even more 

cumbersome than for the wavelet transform. The partitioning of the original wavelet 

coefficients into smaller and smaller groups means that we soon find it difficult to 

associate coefficients with particular signals, a process that was fairly straightforward in 

the one-dimensional case. Therefore, when filtering in the two-dimensional wavelet 

packet domain we select regions in the wavelet packet domain in association with the 

associated zones of the signal in f -k  space as we did for two dimensional wavelet 

transform filtering.

This selection procedure is not the optimum technique as we are not using fully 

the information that the wavelet packet coefficients could give us. However, until we 

can develop an efficient method of representing the four-dimensional wavelet packet 

transform space, this technique allows us to specify areas in the wavelet packet domain 

to filter.

As for the two-dimensional wavelet transform filtering we filter by muting the 

selected area in the transform domain, and invert the transform step. Figure 5-19 shows 

the result of this filtering process on the shot record we transformed previously, and the 

corresponding/^ spectrum. From this Figure we can see that the wavelet packet 

transform processing has provided the best filtered shot record so far, with reflectors 

becoming apparent below 3 seconds at short offsets. There is some residual noise left 

after the filtering process, especially at shallow depths, which could possibly be 

removed in the future if we can develop a better technique for picking the coefficients to 

be filtered. Figure 5-20 shows the difference section for the filtered record, where we
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can see the noise removed by the filtering process. From this figure we can also see that 

there also seems to be very little signal removed.

Figure 5-21 shows the result of the filtering process using the least asymmetric 

20 coefficient Daubechies wavelet. From this we can see that the filter has not 

performed as well in suppressing the low velocity noise with this kernel wavelet. The 

filtering parameters were identical to before, telling us that the differences in 

performance are due to the x-t and f-k form of the kernel wavelet. When we alter the 

filter zones in the wavelet packet domain to improve the resultant filtered section we do 

not observe a significant improvement in the filtered section. This must be partly due 

to the crude technique of selecting the wavelet packet coefficients to be filtered. 

However, from this we can state that the selection of kernel wavelet influences the 

performance of the wavelet packet filtering process.
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AOFFSET

5 0 0 - —500

1 0 0 0 - —  1000

1500 - —  1500

2000  — —2000

2500 - —  2500

3000 - —3000

3500 - —3500

4000 —4000

4500  - —  4500

5000 - —5000

5500 - —5500

Figure 5-20 Difference section between the raw shot record  shown in Figure 5 -12(a) 
and the two dimensional wavelet packet filte red  record shown in Figure 5 -19(a). The 
transform used the quintic spline Battle-Lemarie kernel wavelet.
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Figure 5-21 The common shot record shown in Figure 5-12(a) after filterin g  using a 
two dimensional wavelet packet transform. The 20 coefficient least asym m etric  
Daubechies kernel wavelet was used in the filtering process.

5 .8  A m p l i t u d e  C o n s i d e r a t i o n s
In the filtering processes considered in this chapter, the amplitude o f  reflected 

signals will be preserved if  we have perfect signal-noise separation in the wavelet or 

wavelet packet domain, as with most filtering procedures. However, in most cases this 

is unlikely and therefore, the degree o f  amplitude distortion will depend on the degree o f  

signal-noise overlap. When there is signal-noise overlap in the wavelet domain, a 

suitable weighting o f  the wavelet or wavelet packet coefficients may provide better 

amplitude preservation than the muting process. With the improvement that a simple 

weighting procedure brings in one-dimensional filtering, weighting procedures in the

. *

- 5 0 0

K1000

—  1 5 0 0

- 2 0 0 0

- 2 5 0 0
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— 3 5 0 0
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two-dimensional wavelet domains are an avenue that should be investigated in the 

future, especially those based on information provided by the coefficients themselves.

5.9 Spatial Aliasing

A common problem with applying any two-dimensional filter to suppress low 

velocity signals from seismic gathers is spatial aliasing. As we mentioned earlier, the 

spatial axis is undersampled compared to the temporal axis. This undersampling leads 

to the aliasing of low velocity signals such that in f -k space, the signals are wrapped 

round from the positive wavenumber quadrant to the negative one. In extreme cases this 

can lead to overlap of signal and noise as shown schematically in Figure 5-22. When 

using wavelet or wavelet packet transforms to filter seismic signals we have the 

additional problem that in/-/: space, the basis wavelets at any given scale or packet scale 

are symmetrical about the frequency axis. However, with the wavelet and wavelet 

packet transforms, we have additional time and offset variables present so the aliasing 

problem will only arise if the spatially aliased data overlaps with signal in f -k  and x-t 

space.

To study the effects of spatial aliasing on the performance of wavelet based 

filters we filter a common shot record, Figure 5-23(a), after several degrees of trace 

decimation. The shot record was acquired using an explosive source into geophone 

clusters with a 3 metre group interval. After trace decimation, the shot record has 12 

metres (Figure 5-24(a)) and 24 metres (Figure 5-25(a)) receiver group spacing. The 

increasing degree of spatial aliasing is apparent in the accompanying/-/: plots (Figure 5- 

23(b) to Figure 5-25(b)). The records were filtered with two dimensional wavelet 

packet filters using quintic spline Battle-Lemarie basis wavelets. The result of the 

filtering process on the shot records are shown in Figure 5-23(c) to Figure 5-25(c).

From these figures we can see the increasing degree of spatial aliasing leads to an 

increase in the degree of ‘worminess’ of the filtered record at short offsets. This is due 

to the filtering process being unable to separate the reflected signal from the low 

velocity noise due to increasing spatial aliasing. Another limitation associated with 

increased spatial aliasing is the corresponding decrease in the number of traces per 

gather. As the number of traces per gather decreases, so the number of scales in the 

offset domain decreases. This in turn decreases the resolution of the filter as it becomes 

more difficult to separate signal from noise in the limited number of scales.
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Figure 5-22 Schematic diagram showing the wrap around o f low velocity noise in the f-  
k domain caused by spatial aliasing.
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5.10 Filtering Influence on the Stack

To evaluate the benefit of the filtering process on the stack, we have filtered a 

series of common shot records and taken the processing sequence through to a brute 

stack to see if the improvement observed at the common shot level is seen on the 

stacked section.

Figure 5-26 shows a common shot record from a land-based seismic survey 

acquired in Northern Ireland. The data were acquired using a source array consisting of 

three Failing Vibroseis trucks with 12.5 m spacing generating six linear sweeps of 10-80 

Hz per shot point. The geophones were deployed in linear arrays of 12 geophones with 

1.25 m spacing and 15 m group interval. The survey area overlay a sequence of basalt 

layers near the surface which has lead to poor data quality, with the dominance of 

ground roll, guided waves and other coherent noise such as converted waves on the shot 

record as can be seen from Figure 5-26. From this survey we processed a sequence of 

57 shot records to determine the effect of two dimensional wavelet packet filtering on 

the quality of the final stack.

Each shot record was filtered using the wavelet packet transform process 

described in previous sections. The quintic spline Battle-Lemarie kernel wavelet was 

used in the decomposition process. The data were padded out to the next power of two 

by mirroring the data about the last sample/trace, and the periodic boundary condition 

was used in the transform process. Figure 5-27 shows the result of the filtering process 

on the shot record shown in Figure 5-26. We can see that the coherent noise has been 

suppressed considerably. Figure 5-28 shows the brute stack obtained form the raw shot 

records. The stack is contaminated by steeply dipping noise which at earlier times 

disrupts the continuity of reflectors, and at later times obscures reflectors. Figure 5-29 

shows the stack of the filtered shot records from which we can see that there is 

considerable improvement in data quality. The shallow reflectors are more continuous, 

and reflections appear stronger at later times due to the suppression of noise. Figure 5- 

33 and Figure 5-30 show the stacks after the application of an AGC to enhance weaker 

reflectors. We can see that at later travel times, reflection energy is more coherent and 

the steeply dipping noise has been attenuated. For the two stacked sections the 

processing stream was identical and is shown schematically in Figure 5-32. As the 

processing sequences for the two brute stack sections are identical we have not taken
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full advantage of the filtering result, and the corresponding improvement the filtered 

records would give in static solutions and velocity picks. However, comparing the 

records does show that without these subsequent improvements, improvement in the 

quality of the stacked section is easily apparent.

Figure 5-31 shows the difference section between the two stacks. From this we 

can see the noise removed from the stack and we can also observe that at earlier travel 

times, some reflected energy has been removed also. This is a result of poor signal 

noise separation in the wavelet packet domain and of poor filter design. The poor filter 

design results from using a mute in the wavelet packet domain rather than weighting the 

wavelet packet coefficients which, when we do not have good signal noise separation, 

may reduce the amount of reflection signal removed.
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Figure 5-26 A common shot record from  a seismic survey shot over basalt in Northern 
Ireland. The shot record is contaminated by steeply dipping coherent noise, a 
combination o f ground roll, guided waves and mode conversions.
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Figure 5-27 The shot record in Figure 5-27 after filtering using a two dimensional 
wavelet packet transform based filter. Comparing the figures we can see that the 
steeply dipping noise has been successfully suppressed.
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Figure 5-28 The brute stack o f  the line containing the shot record shown in Figure 5-26 
with the corresponding trace fo ld  (TR FOLD). The processing sequence is shown in 
Figure 5-32.
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Figure 5-29 The brute stack o f  the seismic line shown in Figure 5-28 where the shots 
have been filtered using a two dimensional w avelet packet transform based filter. The 
processing sequence is shown in Figure 5-32.
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Figure 5-30 The brute stack after the application o f  a 500 ms AG C to enhance weak 
reflectors.
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Figure 5-31 The filtered  stack after the application o f  a 500 ms A G C  to enhance weak  
reflectors.
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Figure 5-32 Processing flow fo r  the Northern Ireland stacked section. The wavelet 
packet transform filtering procedure was inserted after elevation statics.
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Figure 5-33 The difference section betM’een the brute stacks with and without the 
application o f  the wavelet packet based filter.

5 .1 1  C o n c l u s i o n s
By the extension o f  the discrete wavelet and wavelet packet filtering techniques 

to two dimensions we have shown that we can successfully suppress coherent noise 

from seismic records. The use o f  these transforms allows filtering in a time-frequency- 

wavenumber-offset sense, by the analogy o f  the scales and packet scales to frequency 

and wavenumber.

The wavelet transform decomposes f -k  space into a series o f  octave segments, 

which we have shown may be too coarse a decomposition due to the positioning o f  

seismic signals and noise in thq f-k domain. We have shown that to make the two- 

dimensional wavelet transform effective as a filter, the addition o f  a shifting step (in this 

case a normal moveout) applied before and removed after the filtering process improves 

filter performance. The shifting moves the noise and signal into separate areas o f  f-k 

space which results in the performance improvement.
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filter performance. The shifting moves the noise and signal into separate areas off-k  

space which results in the performance improvement.

The extension of the filtering process to wavelet packets improves the resolution 

of the filtering in the f-k  domain, but correspondingly decreases the resolution in the x-t 

domain by increasing the effective support of basis wavelet in offset-time. However, we 

have shown that using wavelet packets eliminates the need for the shifting process but 

with a corresponding increase in the transform time due to the extra iterations in the 

transform.

In both the wavelet and wavelet packet based filtering processes, the simple 

muting of coefficients in the transform domain effectively suppresses the coherent noise 

but, as we have shown, this can lead to the removal of signal as well as noise from 

seismic records, particularly at lower travel times. This is due to poor signal and noise 

separation in the transform domain. The addition of a weighting technique, which was 

successful in one-dimensional filtering processes, may lead to improved amplitude 

preservation.

We have shown that the choice of kernel wavelet is important in two- 

dimensional wavelet and wavelet packet transforms. The large trace to trace dynamic 

range of seismic data requires that a larger number of quadrature mirror filter 

coefficients need to be used for good signal reconstruction when using basis wavelets 

that are not perfectly compact, such as the Battle-Lemarie kernel wavelets. This can 

lead to a considerable increase in processing time compared to using perfectly compact 

kernel wavelets in the transform process. This increase in processing time can be 

avoided by the application of a gain function before filtering which can be subsequently 

removed after the filtering process.

In this chapter we have shown that two-dimensional wavelet based transforms 

can be used effectively to filter seismic records. In the next chapter, we investigate the 

use of wavelet transforms to filter seismic data by the application of the transform in the 

offset domain.
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6. Velocity Filtering

6.1 Velocity Filtering of Seismic Data

Filtering of coherent noise from seismic data based on velocity has been a 

fundamental technique in seismic data processing for many years. These processes are 

used to discriminate against energy modes, such as ground roll or guided waves, that 

have a lower seismic velocity than primary seismic reflections on conventional shot and 

CMP records. Several different techniques are based on this principle which can be 

classified into global and local filtering techniques.

Global filtering techniques, such as those based on thef-k  and T-p transforms, 

use the separation of signal from noise in the transform domain to discriminate against 

noise. In these techniques a shot or CMP record (a 2-D array in offset-time) is 

transformed into the appropriate domain and filters designed by the selection of 

appropriate zones in transform space.

Local filtering techniques such as the delay and sum array filter (Dudgeon,

1977) are designed to maximise the degree of attenuation of undesired coherent energy 

and to minimise signal distortion caused by filtering. Most local techniques are applied 

across sensor arrays (that is in the offset domain of a shot/CMP record), after linear data 

shifting according to velocity, and amplitude scaling in an attempt to remove undesired 

signals travelling across arrays such as downgoing signals on VSP data or surface 

waves.

Lichmann and Northwood (1997) discuss the benefits and accompanying pitfalls 

associated with these techniques and their application. Local techniques design filters 

which have a small number of filter coefficients are speedy to implement, while global 

filters are easier to design, especially if there is clear signal and noise separation in the 

appropriate domain. Global filters which are applied to entire data arrays are difficult to 

vary in time whereas local filters, which are applied across an array in the offset domain, 

can be easily applied in a time varying fashion. Due to the amplitude scaling required in 

local filtering techniques, these methods tend not to be amplitude preserving whilst 

global filters preserve the relative amplitude of the data to a greater degree. The 

resolution and dynamic range of global techniques is dependent on the number of
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sensors in the array and the number of time samples, unlike local techniques which can 

be implemented even when there are only a few sensors in the array.

A common problem associated with f-k  filtering is that high resolution velocity 

notch filters cannot be designed effectively as they lead to the introduction of Gibbs 

oscillations into the filtered record. The amplitude of Gibbs oscillations, governed by 

the length of the pass-to-reject transition band in f-k  space, can be minimised by 

increasing this ratio, leading to a corresponding reduction in resolution of the filter. 

Lichman and Northwood (1997) introduced a technique of high resolution velocity 

filtering based on Fourier techniques which does not introduce Gibbs oscillations and 

demonstrated its use for the suppression of ground roll, tube waves and multiples from 

seismic records. This technique involves the design of the filter in f-k  space as an 

infinite continuous function which has the property of becoming a short discrete 

function in the x-t domain after the inverse Fourier transform. The short filter in the 

time domain has the same properties as the infinite function in the f-k  domain. When 

combined with a linear data shift before transform these techniques can be used to 

discriminate against coherent events with relatively faster velocities compared to the 

primary reflected signal where the separation of events in transform space is more 

subtle.

The introduction of a hyperbolic shift rather than a linear shift allows hyperbolic 

velocity filtering which can be used for multiple suppression, a technique that is 

commonly used in combination with f-k  filters. Multiple suppression is an important 

part of the seismic processing stream and current techniques are based on the distinct 

moveout of multiples when compared to primaries. The removal of multiple energy 

from the shot record is desirable for several reasons; to minimise multiple energy in the 

stack, to improve the quality of AVO analysis, and to allow the application of pre-stack 

migration which incorrectly treats multiples as primaries, leading to degradation of the 

final stack. The level of multiple suppression, measured as the improvement of 

primary-to-multiple amplitude ratio depends on the ability of the chosen transform to 

map the primaries and multiples to separate regions in the respective domain. This, in 

turn, depends on the moveout difference between the primaries and the multiples. The 

improvement in primary-to-multiple amplitude on traces prestack is not the only goal. 

The techniques must also preserve the amplitude of the primary amplitudes which can 

have fundamental importance in AVO interpretation.
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Schuster and Sun (1993) introduced a technique of velocity filtering based the 

discrete wavelet transform and demonstrated its ability to suppress guided waves on 

VSP records and ground roll on land based seismic shot records. In this chapter, this 

local filtering technique has been developed further and adapted for the suppression of 

noise associated with direct arrivals and guided waves in land based seismic data and 

multiples from marine seismic data, investigating the effects of the technique on the 

stack and relative amplitudes of the data

6.2 Filter Methodology

As an illustration of Schuster and Sun’s methodology consider the synthetic 

CMP gather shown in Figure 6-la. The record consists of three events, one minimum 

phase linear event and two zero phase hyperbolic reflected events. The linear event has 

2-4-12-16 Hz corner frequencies and a velocity of 3,000 ft/s. The reflected events 

consists of Ricker wavelets with 30 Hz centre frequency and velocities of 7,000 ft/s and 

1 1,000 ft/s. The amplitude ratio of linear event to hyperbolic events is 4:1. The gather 

consists of 96 traces with a 30 ft trace spacing. Filtering of the seismic record to 

suppress linear events using Schuster and Sun’s technique involves five steps:

1) the application of a linear moveout corresponding to the velocity of the linear 

event aligning the signal to a constant arrival time.

2) apply a discrete wavelet transform in the shifted offset domain at each sample.

3) zero the wavelet and scaling coefficients at the lowest scales.

4) apply the corresponding inverse discrete wavelet transform.

5) apply an inverse linear moveout to the data, restoring the data to its original 

position.

Schuster and Sun state that only a partial wavelet transform need be applied in 

the shifted offset domain, decomposing to the 3rd scale (for a record of 96 traces) and 

the remaining scaling coefficients muted. Figure 6-lb shows the synthetic CMP record 

after filtering using this technique. From this figure it is apparent that the technique has 

successfully suppressed the constant velocity event whilst retaining the character of the 

hyperbolic events.
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Figure 6-1 A synthetic CMP gather containing two hyperbolic and one linear event used 
to study the wavelet transform filtering technique o f Schuster and Sun (1993) (a) before 

filtering and (b) after filtering.

The application of the this technique as a velocity filter is illustrated by the f-k  

spectra of the record before and after filtering as shown in F igure  6-2. After filtering, 

the energy in f-k  space aligned along a band about the velocity of the linear moveout has 

been suppressed. The degree of suppression in this band is related to the amount of 

energy muted in the wavelet domain as well as the basis wavelet used in the 

decomposition. The signal is removed along the specified velocity and the filter slopes 

off with increasing/decreasing velocity in a similar fashion to the fall-off in frequency 

amplitude when filtering in time. The smaller the secondary lobes and the larger the 

slope of the scaling function in frequency space of the basis the faster the fall-off of the 

velocity filter in f-k  space. This is indicated schematically in F igu re  6-3. The width of 

the filtered band is determined by the amount of energy removed in the wavelet domain. 

The fewer iterations in the transform step the wider the band.
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Figure 6-2 F-k spectra o f  Figure 6-1 (a) before and (b) after filtering using the wavelet 
transform technique. The spectrum has been suppressed along the velocity filtered.
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Figure 6-3 Schematic diagram showing the suppression o f energy in f-k  space by the 
wavelet transform filtering technique. The f-k  spectrum is attenuated along the line o f  
maximum suppression. The suppression depends on the kernel wavelet used and which 
coefficients are zeroed in the wavelet domain.

In this study, spline biorthogonal kernel wavelets (Chui, 1992) were used in the 

transform process. This was found through trial and error to give the best results in 

terms of filtering and amplitude preservation which are discussed in the next section.

6.3 Amplitude Considerations

The next step in ascertaining the effectiveness of the filter is to examine how the 

filter has affected the amplitudes of the hyperbolic reflected arrivals. To analyse the 

effect on amplitudes, a NMO corresponding to the hyperbolic event velocities was 

applied to the data and the event amplitude plotted against offset. Figure 6-4a shows 

the amplitude of the 1000 ms hyperbolic event of Figure 6-1 before and after filtering. 

The large variations in the pre-filter amplitude at offsets less than 1700 ft are due to 

energy from the linear event superimposed on the hyperbolic event. Comparing the 

post-filter amplitude to the ideal amplitude response of 1 at all offsets, we can see that 

the linear event has been effectively suppressed whilst preserving the original reflector 

amplitude. Figure 6-4b shows more closely the post-filter amplitude in comparison 

with the ideal result of the synthetic gather without linear noise. Apart from relatively 

large amplitude variations at the edges of the signal, the amplitude of the event is 

distorted only very slightly, the maximum difference being approximately 1% of the 

ideal output. The distortion varies with offset yet no systematic

Chapter 6: Velocity Filtering Page 168



(a)
1000 m s  r e f l e c to r

4
B e fo re  filtering  
A fte r  filtering3

2
1
0

2
3

■4
o
CO

o
CO

o
CO

o
CO

o
CO

o
CO

o
CO

o
CO

(b)
1000 m s  r e f l e c to r

A fte r  filtering  
- Id e a l output

51 .05

O f fs e t  (ft)

1600 m s  r e f l e c to r2.5
B e fo re  filtering  
A fte r  filtering

0.5

o
CO

o
CO

o
CO

o
CO

o
CO

o
CO

o
CO

o
CO

o
CO

O f fse t  (ft)

1.2
1.15

1.1
1.05

1
0.95

0.9

0.85

0.8

(d)
1600 m s  r e f l e c to r

A fte r filtering  

• Ideal output

O f fse t  (ft)

Figure 6-4 AVO relationships before and after filtering: 1000 ms reflector (a) before 
and after filtering, (b) after filtering compared to the ideal output: 1600 ms reflector (c) 
before and after filtering, (d) after filtering compared to the ideal output.
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trends are introduced into the data, which may mimic AVO effects. Figure 6-4c and d 

show the corresponding graphs of amplitude versus offset for the reflector at the 1600 

ms arrival time in Figure 6-1. For this signal we see less amplitude distortion than for 

the 1000 ms reflector.

To minimise distortion, the wavelet decomposition can be applied to a greater 

degree than the third scale, before removing the remaining scaling coefficients. Figure 

6-5 shows the amplitude of the 1000 ms and 1600 ms reflector after transforming to the 

6th scale followed by muting of the remaining scaling coefficients. The distortion has 

been considerably reduced.

6.4 Amplitude Considerations and Faster Velocities

The model considered in the previous section can be considered to be simplistic 

in that there is perfect separation of the signal and noise in the f-k  domain (Figure 6-2). 

Ideally with any global or local velocity filtering technique we should be able to get 

near perfect amplitude recovery of the reflection signal when there is minimal signal 

overlap in f-k  space. In terms of 2-D Fourier analysis, any hyperbolic signal can be 

considered as the sum of a series of dipping linear events in x-t space with decreasing 

velocity as indicated schematically in Figure 6-6. Suppressing any linear event using 

this technique will result in the removal of one of the constituent components of the 

hyperbolic signal if there is signal overlap in f-k  space. Extending this technique to the 

removal of linear events with faster velocities, for example in the case of guided waves 

or noise associated with first break energy, the amplitude of this energy overlap in f-k  

space will be more significant and larger amplitude distortions introduced. This is 

demonstrated in Figure 6-7 and Figure 6-8. Figure 6-7 shows a synthetic seismic 

record containing two zero-phase hyperbolic reflected events with velocities of 7500 ft/s 

and 11,000 ft/s and one linear event with a velocity of 15,000 ft/s and the corresponding 

f-k  decomposition (the trace spacing, number of traces, and event frequencies are 

identical to the previous model). From the f-k  spectrum we can see that there is 

considerable signal/noise overlap. Figure 6-8 shows the CMP gather and corresponding 

f-k  spectrum after filtering using Schuster and Sun’s third scale criteria. The large area 

of f-k  space about the linear event velocity which has been removed leads to severe 

distortion of the
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filtered in the wavelet domain after the application o f the transform to a higher 
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Figure 6-6 Schematic diagram showing a reflector o f velocity VH as the sum o f a series 
o f linear events with velocities V0 to V4 with increasing dip (decreasing velocity).
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Figure 6-^ A synthetic CMP gather containing a linear event with faster velocity 
approaching reflectors tangentially and the corresponding f-k  spectrum showing signal 
overlap in f-k space.
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Figure 6-8 The synthetic CMP gather from Figure 6-7 after filtering using Schuster and  
Sun 's criteria with the corresponding f-k spectrum.

reflected signals. To maximise the resolution o f  the filter, and so minimise reflected 

signal distortion, the transform can be applied to the largest possible scale (the tenth 

scale for a 1024 sample vector) and the remaining scaling coefficients muted. F igure  6- 

9 shows the record and corresponding f-k representation after filtering using this 

m aximum  resolution criteria. Although some signal deterioration is still apparent, the 

character o f  the reflectors have been more faithfully retained than previously and the 

linear event suppressed.

Analysing this result more carefully. F igu re  6-10a  shows the amplitude versus 

offset relationship for the 650 ms reflector before and after filtering. Comparing the 

filtered amplitude compared to the ideal output, we can see the amplitude distortions (up 

to 35% o f  the ideal amplitude) at offsets greater than 1000 ft. F igu re  6-10b shows the 

AVO relationships for the 1000 ms reflector and from this we can see that, the distortion 

is less pronounced ( -8 %  o f  the ideal amplitude), and is concentrated mostly the signal 

edges. Distortions at large offsets for shallow reflectors may not be a major concern as 

these may be muted during NM O due to stretching o f  the seismic wavelet, and in AVO 

analysis due to large incident angles. Nevertheless, these amplitude distortions indicate
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that a more robust technique for filtering the wavelet coefficients is required, the simple 

muting of coefficients is too simple.

In cases of signal and noise overlap in f-k  space a weighting must be applied to 

the coefficients rather than muting. This weighting must retain the information in the 

scaling coefficients corresponding to the reflected event and discriminate against the 

information corresponding to the linear event. The problem to be addressed is how can 

we derive the correct weighting?

As discussed in Chapter 2.4.5 the discrete wavelet transform is translation 

invariant due to the downsampling process inherent in the transform. This 

downsampling process leads to differences between wavelet transforms of identical 

signals translated by one sample as shown schematically in Figure 6-11. Taking the 

wavelet transform of a signal scale by scale, where one scale of the transform contains 

two signals which overlap in frequency space, the variation in wavelet transform 

coefficients with signal translation resulting from downsampling will be minimised for 

the lowest frequency component of the scale, as amplitude changes with time are 

slower. Yet for the higher frequency components, the variation with translation will be 

more pronounced. To determine the component of a wavelet transform coefficient 

corresponding to these lower frequencies of a we can calculate the mean o f the values o f 

the scaling coefficient for wavelet transforms o f the input signal at all translations. For 

a signal with a very low frequency component, such as the aligned linear events we are 

processing, the translations should have minimal effect on the value of the transform 

corresponding to this component. The higher frequency components will vary due to 

the translation. The scaling coefficient left when the wavelet transform has been applied 

fully, contains the very low frequency signal and some higher frequencies related to the 

hyperbolic signal. Calculating the mean of this coefficient at all translations of input 

signal will give an estimate of the low frequency component which can then be 

subtracted leaving an approximation to the remaining components.
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Figure 6-9 CMP gather from Figure 6-7 after filterin g  using the maximum resolution  
criteria with the corresponding f-k  spectrum. The reflector signals have been retained to 
a greater extent than in Figure 6-8.
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Figure 6-10 Amplitude versus offset relationship fo r  the (a) 650 ms and (b) 1000 ms 
reflector before, after filtering and compared with the ideal output.
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Figure 6-11 A schematic explanation o f how the downsampling process in the discrete 
wavelet transform results in differences in transform when identical signals are offset 
by one sample.

Figure 6-12 shows the CMP gather and corresponding/-/: spectrum after 

filtering using the weighting technique described previously. Figure 6-13 shows the 

effect on reflector amplitudes. The resulting amplitude distortions have been reduced 

considerably. A drawback of this technique, however, is that the wavelet transform has 

to be applied multiple times to each shifted time sample, increasing the processing time 

of the filter. Alternatively, the fast algorithm described by Beylkin (1992) can be used, 

which when applied to a signal calculates the value of the wavelet transform of a signal 

at all translations. This would reduce computational times considerably. The design of 

these filters is subsequently governed by the choice between speed of processing and 

amplitude preservation. In seismic records where there is signal overlap in f-k  space, the 

slower weighting procedure is required to prevent distortion of amplitudes. Where the 

signal to noise moveout difference is large, and so there is good separation in thcf-k  

domain, filtering can be performed by muting at a suitable scale in the wavelet domain. 

This is also the case where amplitude preservation is not the overriding factor. This 

filtering technique is effectively a local filter and so can be implemented in a time 

varying fashion, adapting to the nature of the noise at specific times.
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6 . 5  F i l t e r i n g  E x a m p l e s :  R e a l  D a t a
The performance o f  filters has so far been tested only on synthetic data. The next 

step in performance evaluation is to apply the filters to real seismic data.

Figure 6-14 shows two typical shot records from a land-based seismic survey 

shot over the Longannet coalfield in Eastern Central Scotland (data courtesy o f  IMCL). 

The survey was shot using an explosive source into ninety receiver stations o f  six 

geophones deployed in a linear array . The group spacing was 12m and shot spacing 

was 15m. The first record was shot with end on geometry and the second with a split- 

spread geometry. The shot records have been muted to remove any signal that will not 

contribute to the stack, that is, data that had greater than 30% N M O  stretch was muted. 

The filtering technique relies on trace to trace continuity o f  events and so elevation and 

m aximum  power autostatics based on the brute stack have been applied to the shot 

records before filtering.

Relative O ffset (f t)  Wavenumber (1 /ft)
1000  2000  -  0.01 0 0.01. . I........... I...................I......... I...........I ■

Figure 6-12 The synthetic CMP gather from Figure 6-7 after filtering using the 
weighting procedure and the corresponding f-k  spectrum. The reflector signal has been 
preserved  more accurately.
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Figure 6-13 Comparison o f the AVO relationships after filtering using the weighting 
and muting techniques with the optimum ideal output. The weighting procedure 
minimises any distortions resulting form the filtering process.
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Figure 6-14 Two shot records (a) end-on and (h) split-spread from a survey over the 
Longannet coalfield. A 500 ms AGC has been applied to enhance reflectors. The 
records are heavily contaminated by linear noise.

From inspection of the shot records it is apparent that there is a great deal of 

linear noise present in the record, especially at 0-800 ms and 1300-2000 ms intercept 

times Figure 6-14a and 0-800 ms on Figure 6-14b. The moveout difference between 

the linear noise and the target reflection events was large, allowing the mute filtering of 

scaling coefficients in the wavelet domain after decomposition to the fifth scale. The 

filtered records are shown in Figure 6-15 where an improvement in the shot records can 

be clearly observed. Figure 6-16 shows difference sections for these shots at the same 

scale. In both records, reflections between 600-900 ms have been enhanced and the 

continuity of deeper reflections improved. From the filtered records we can see that the 

velocity of the target reflectors (now more apparent) seems fast enough to justify the 

muting of coefficients rather than weighting and so no redesigning of the filter was 

required.
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Figure 6 - / 5  Shot records shown in Figure 6-14 after filtering using the wavelet 
transform technique. A 500 ms AGC has been applied to enhance reflectors. The 
filtering consisted o f  muting coefficients in the wavelet domain.

Figure 6-17 shows brute stacks of the corresponding seismic line before and 

after filtering using the wavelet transform technique. Continuity of deeper reflections 

(below 1300 ms) has been improved and the continuity of reflections above 600 ms has 

also been improved. Figure 6-18 shows the difference section for the two stacks. The 

linear noise removed from the sections is apparent. Some shallow reflection energy is 

also apparent in the difference section (above 400 ms), indicating that reflected energy 

was removed by the muting process in the wavelet domain. This would indicate that the 

weighting process is required at earlier travel times. Nevertheless, we can conclude that 

this is a powerful technique for suppressing linear noise from seismic records. The two 

stacked sections were processed using the same processing flow, apart from the wavelet 

transform filter. The filtering technique will further improve stacked sections by 

subsequent improvements in velocity analysis and static solutions for any data set.
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(a) (b)

Figure 6 - /6  Difference sections between Figure 6-14 and Figure 6-15 showing the 
linear noise removed from  the shot records. The scaling o f  these records is the same as 
fo r  the previous Figures.
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Figure 6 - / 7  Brute stacks o f the seismic line over the Longannet coalfield (a) without
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Figure 6-18 Difference section between Figure 6-17 (a) and (b) showing the noise 
removed from the stack by the filtering process.

- 5 0

6 . 6  S w e l l  N o i s e  S u p p r e s s i o n
A  f u r t h e r  a p p l i c a t i o n  o f  t h i s  t e c h n i q u e  is t h e  s u p p r e s s i o n  o f  s w e l l  n o i s e  f r o m  

m a r i n e  c o m m o n  s h o t  r e c o r d s .  S w e l l  n o i s e  a p p e a r s  o n  s h o t  r e c o r d s  w h e n  s e a  c o n d i t i o n s  

d e t e r i o r a t e  a n d  w a v e  a c t i o n  m a n i f e s t s  i t s e l f  o n  s h o t  r e c o r d s .  T h e  h y d r o p h o n e s ,  w h i c h  

u n d e r  c a l m  c o n d i t i o n s  w o u l d  b e  a t  a  c o n s t a n t  d e p t h  w i t h  r e s p e c t  t o  t h e  s e a  s u r f a c e ,  

d e t e c t  c h a n g e s  in p r e s s u r e  d u e  t o  w a v e  a c t i o n  w h i c h  c h a n g e  t h e  e f f e c t i v e  d e p t h  o f  t h e  

h y d r o p h o n e .  T h i s  c h a n g e  in d e p t h  l e a d s  t o  a  c o r r e s p o n d i n g  c h a n g e  in  p r e s s u r e  w h i c h  is 

d e t e c t e d  b y  t h e  h y d r o p h o n e .  T h e  f r e q u e n c y  a n d  a m p l i t u d e  o f  t h i s  p r e s s u r e  c h a n g e  d u e  

t o  t h e  w a v e  a c t i o n  is  d e p e n d a n t  o n  w a v e  s p e e d ,  a m p l i t u d e ,  a n g l e  o f  i n c i d e n c e  w i t h  

r e p e c t  t o  t h e  h y d r o p h o n e  s t r e a m e r ,  a n d  w a v e l e n g t h .  T h i s  i s  i n d i c a t e d  s c h e m a t i c a l l y  in 

F ig u re  6-19. O n  a  c o m m o n  s h o t  g a t h e r ,  t h i s  p r e s s u r e  c h a n g e  w i l l  a p p e a r  a s  a  l i n e a r  

s e i s m i c  e v e n t  a s  it t r a v e l s  a c r o s s  t h e  s t r e a m e r  ( a s s u m i n g  t h a t  t h e r e  is n o  s t r e a m e r  

f e a t h e r i n g ) .  T h e r e f o r e  w e  c a n  c o n s i d e r  s w e l l  n o i s e  t o  b e  t h e  s u p e r p o s i t i o n  o f  l i n e a r  

e v e n t s  o n  a  s h o t  r e c o r d  w h i c h  is a l s o  r e p r e s e n t e d  s c h e m a t i c a l l y  in F ig u re  6-19.

F igu re  6-20 s h o w s  a  m a r i n e  c o m m o n  s h o t  r e c o r d  c o n t a m i n a t e d  b y  s w e l l  n o i s e  

f r o m  w h i c h  t h e  s u p e r p o s i t i o n  o f  l i n e a r  e v e n t s  is a p p a r e n t .  T h i s  is a l s o  d e m o n s t r a t e d  in
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Figure 6-21 which shows the linear events on the record m ore clearly after low pass and 

high pass filtering. Figure 6-22 shows the record after rem oval o f som e of the linear 

events, and an im provem ent in the shot record is apparent. The quality of the shot 

record is still degraded by the presence of very steeply dipping linear events which are 

very highly spatially aliased. These highly spatially aliased events, after linear m oveout, 

leave a signal with very few samples in the offset direction. Therefore, to rem ove these 

events the wavelet transform  technique must be adapted to  handle signals with very few 

sam ples and any subsequent amplitude effects investigated. This work is planned for 

future developm ents. The initial removal o f a subset of the linear events has shown that 

the technique is viable, the next stage in developm ent is the adaption o f the technique to 

the harder task o f removing the highly spatially aliased noise.

V V V V V  V V  V V
H ytirop lin

E q u iv a len t In

A" V v
r j  V  V  H y iln ip lm n cs

V

(a)

O lls c t

T im e

(b)
Figure 6-19 Scematic diagram showing (a) the generation of swell noise on marine 
records caused by changes in hydrophone depth due to waves on the sea surface and (b) 
the resultant pressure wave then manifests itself on seismic records as a linear event, 
the velocity of which is dependant on the angle of incidence of the wavefront.
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Figure 6-20 A common shot record from  a marine survey contaminated by swell noise 
which obscures most reflected signals.
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Figure 6-21 Figure 6-20 after (a) a low pass filter and (b) a high pass filter showing 
that the swell noise is the superposition o f several sets o f linear noise, which in (a) are 
gently dipping and in (b) are very steeply dipping and so very highly spatially aliased.
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Figure 6-22 Figure 6-20 after filtering with the wavelet transform linear velocity filte r  
to suppress some o f the swell noise. The gently dipping noise has been suppressed. The 
removal o f the steeply dipping noise will need further investigation.

6 .  7  H y p e r b o l i c  F i l t e r i n g  o f  S e
S u p p r e s s i o n

In t h i s  s e c t i o n  t h e  w a v e l e t  t r a n s f o r m  t e c h n i q u e  h a s  b e e n  a d a p t e d  by  r e p l a c i n g  t h e  

l i n e a r  m o v e o u t  w i t h  a  n o r m a l  m o v e o u t .  T h i s  t e c h n i q u e  h a s  a p p l i c a t i o n s  in t h e  

s u p p r e s s i o n  o f  m u l t i p l e s  f r o m  C M P  r e c o r d s .  T h e  m o d i f i e d  t e c h n i q u e  w i l l  b e  e v a l u a t e d  

o n  a  s y n t h e t i c  m o d e l  (F igu re  6-23), t a k e n  f r o m  A l v a r e z  a n d  L a r n e r  ( 1 9 9 6 ) ,  a n d  w i l l  

a l s o  b e  e v a l u a t e d  o n  m a r i n e  d a t a  a t  t h e  C M P  s t a g e  a n d  t h e  r e s u l t a n t  s t a c k  a n a l y s e d .
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Figure 6-23 The synthetic model used fo r  evaluating multiple suppression technique, 
taken from  Alvarez, and Lam er (1996). The velocities are given in Table 6-1.

A l v a r e z  a n d  L a r n e r  ( 1 9 9 6 )  c o m p a r e d  t h e  s u p p r e s s i o n  o f  m u l t i p l e s  u s i n g  t h e  f-k  

t r a n s f o r m  to  t h e  r a d o n  ( x -p) t r a n s f o r m  a p p r o a c h  o f  H a m p s o n  ( 1 9 8 6 ) ,  a n d  a  h y b r i d  

a p p r o a c h  t h a t  c o m b i n e s  H a m p s o n ’s  m e t h o d  w i t h  a  v a r i a n t  o f  t h e  s t a t i s t i c a l  m e t h o d  o f  

H a r l a n  et al. ( 1 9 8 4 )  w h i c h  d i s c r i m i n a t e s  b e t w e e n  f o c u s e d  e n e r g y  a n d  d e f o c u s e d  e n e r g y  

in t h e  x -p d o m a i n .  T h e  r e s u l t s  o f  t h i s  s t u d y  w i l l  b e  c o m p a r e d  t o  t h e  r e s u l t s  p u b l i s h e d  in 

A l v a r e z  a n d  L a r n e r ’s  e x t e n d e d  a b s t r a c t .  T h e  m o d e l  c o n s i s t s  o f  f o u r  p r i m a r y  e v e n t s  a n d  

f o u r  m u l t i p l e  e v e n t s .  T w o  o f  t h e  m u l t i p l e s  a r e  c o i n c i d e n t  w i t h  t h e  p r i m a r i e s  a n d  t h e  

o t h e r  t w o  a r e  n o t .  T h e  f o r m e r  a r e  i n t e n d e d  t o  s h o w  c o n t a m i n a t i o n  b y  r e s i d u a l  m u l t i p l e s  

a n d  t h e  l a t t e r  t o  s h o w  d i s t o r t i o n  o f  p r i m a r y  a f t e r  a t t e m p t s  a t  m u l t i p l e  s u p p r e s s i o n .  T h e  

a m p l i t u d e  o f  r e f l e c t i o n  w i t h  o f f s e t  w i l l  b e  v a r i e d  t o  f o r m  t h r e e  m o d e l s .  T h e  f i r s t  w i l l  

h a v e  a  p r i m a r y  t o  m u l t i p l e  a m p l i t u d e  r a t i o  o f  4 : 1 .  T h e  s e c o n d  m o d e l  w i l l  h a v e  a  

p r i m a r y  t o  m u l t i p l e  r a t i o  o f  1:1 a n d  t h e  f i na l  m o d e l  w i l l  b e  t h e  s a m e  a s  t h e  s e c o n d  w i t h  

t h e  a d d i t i o n  o f  a  l i n e a r  d e c r e a s e  in a m p l i t u d e  w i t h  o f f s e t  s u c h  t h a t  t h e  f a r  t r a c e  h a s  h a l f  

t h e  a m p l i t u d e  o f  t h e  n e a r  t r a c e .  T h e  r m s  s t a c k i n g  v e l o c i t i e s  f o r  t h e  e v e n t s  a r e  g i v e n  in 

T able 6-1. T h e  g a t h e r  c o n s i s t s  o f  1 00  t r a c e s  w i t h  3 0  m  t r a c e  s p a c i n g .  T h e  p r i m a r y  a n d
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m ultiple events consist of Ormsby wavelets with 8-12-50-70 Hz corner frequencies. 

These param eters were kept constant for each model.

Time (ms) Velocity

(m/s)

Am plitude 

M odel 1

Am plitude 

M odel 2

Am plitude 

M odel 3

R eflector 1 1000 4000 400 100 100-50

M ultip le 1 1000 2800 100 100 100-50

R eflector 2 1900 5000 400 100 100-50

M ultiple 2 2000 3400 100 100 100-50

R eflector 3 2500 5000 400 100 100-50

M ultiple 3 2500 2800 100 100 100-50

R eflector 4 3000 5000 400 100 100-50

M ultiple 4 3100 2800 100 100 i 00-50

Table 6-1 Parameters for the synthetic CMP models used in study of multiple 
suppression.

Extending the linear filtering technique to the suppression o f m ultiples sim ply 

replaces the linear m oveout with a normal m oveout which is used to flatten the m ultiple 

arrivals. These are then suppressed by applying the wavelet transform  filtering 

technique, and an inverse NM O applied to restore the data. Com pared to the first linear 

m odel, the m oveout difference between any m ultiple and prim ary arrival is very small 

and so simple muting o f coefficients in the wavelet domain will not be sufficient, 

therefore, weighting will be necessary. When this technique is used for m ultiple 

suppression, the problem  of distortion o f reflectors observed at larger offsets with the 

linear filtering will occur at near offsets where it is essential to preserve the am plitudes 

of the prim ary events.

The synthetic gather for model one, after the application o f NM O to flatten 

prim aries, is shown in Figure 6-24a. The gather was initially filtered by applying a 

NM O corresponding to the m ultiple rms velocities, applying the wavelet transform  in 

the shifted offset direction and weighting the scaling coefficient. The transform  was 

then inverted and the NM O removed. The result o f the filtering process is shown in 

Figure 6-24b where we can see that, apart from some residual energy at large offsets, 

the lower three m ultiples have been suppressed effectively, while at the shallow est 

reflector a large amount o f multiple energy remains. This energy is due to NM O stretch
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associated  with flattening of the multiples. Figure 6-25 shows the shallow est reflector 

after the application of the NM O and it is apparent that the time width o f the event 

increases with offset. W here the m ultiple event has aligned the event perfectly (that is 

w here the amplitude is consistent across the traces i.e.: at the peak am plitude) the 

filtering technique has worked effectively, yet, where the data is not perfectly aligned 

due to seism ic wavelet stretching, m ultiple energy has been retained. To m inim ise this 

residual energy problem for the first reflector, the scaling coefficient and lowest scale o f 

the w avelet transform  for the data was muted for the first multiple. The residual energy 

for the other multiples is minimal and will be effectively suppressed by the stacking 

process and so the weighting process was applied to suppress the rem aining three 

m ultiples. Figure 6-26 shows the result of this filter. From this we can see that the 

rem ainder o f the multiple energy has been reduced considerably.

Figure 6-27 and Figure 6-28 show the synthetic gathers after NM O for m odels 

two and three and the corresponding result of the filtering process. For m odels two and 

three the filtering parameters were the same as for model one. From this we can see 

that, for these models, the m ultiple suppression technique was successful.
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Figure 6-24 The synthetic gather from  Figure 6-23 after fa) NMO corresponding to the 
primary velocity function and (h) filtering by the wavelet transform technique follow ed  
by NMO.
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Figure 6-25 Reflector /  at a larger scale showing stretch o f the multiple seismic wavelet 
with offset caused by the application o f the NMO.
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Figure 6-26 The synthetic gather shown in Figure 6-23 after filtering in the wavelet 
domain by a combination o f muting (reflector 1) and weighting (reflectors 2-4) in the 
wavelet domain.
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Figure 6-27 Model 2 synthetic CMP gather (a) before and (b) after filtering using the 
wavelet transform process. The filtering parameters are the same as in Figure 6-26.
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Figure 6-28 Model 3 synthetic CMP gather (a) before and (b) after filtering using the 
wavelet transform process. The filtering parameters are the same as in Figure 6-26.

6 . 8  M u l t i p l e  S u p p r e s s i o n :  A m p l i t u d e
T o  c o m p a r e  q u a n t i t a t i v e l y  t h e  e f f e c t s  o f  t h e  f i l t e r  o n  t h e  a m p l i t u d e s  o f  t h e  

p r i m a r y  e v e n t s ,  t h e  a m p l i t u d e  v a r i a t i o n  w i t h  o f f s e t  o f  e a c h  r e f l e c t o r  b e f o r e  a n d  a f t e r  

f i l t e r i n g  h a s  b e e n  p l o t t e d  f o r  m o d e l  o n e  (F igure  6-29) w i t h  t h e  i d e a l  o u t p u t  w h i c h  is t h e  

p r i m a r y  r e f l e c t o r s  w i t h  n o  m u l t i p l e s .  F r o m  th i s  d i a g r a m  w e  c a n  s e e  t h a t  t h e  a m p l i t u d e  

is p r e s e r v e d  w i t h i n  7 2 %  o f  t h e  i d e a l  o u t p u t  a t  o f f s e t s  l e s s  t h a n  1 0 0 0  m ,  a n d  w i t h i n  9 9 %  

a t  g r e a t e r  o f f s e t s .  C o m p a r i n g  F igu re  6-29 t o  F ig u re  6-30 w h i c h  s h o w s  t h e  A  V O  e f f e c t s  

f r o m  t h e  s t u d y  b y  A l v a r e z  a n d  L a r n e r  ( 1 9 9 6 )  w e  c a n  s e e  t h a t  t h e  t e c h n i q u e  p r o d u c e s  

b e t t e r  r e s u l t s  t h a n  t h e  f-k  a n d  H a m p s o n  t e c h n i q u e s  a n d  r e s u l t s  c o m p a r a b l e  w i t h  t h e  

h y b r i d  t e c h n i q u e  a t  s h o r t  o f f s e t s  ( <  1 0 0 0 m ) .  A t  l a r g e r  o f f s e t s  ( >  1 0 0 0  m )  t h e  r e s u l t  o f  

t h e  w a v e l e t  t r a n s f o r m  p r o c e s s  is s u p e r i o r ,  g i v i n g  f a r  l e s s  d i s t o r t i o n  t h a n  a n y  o f  t h e  

t e c h n i q u e s .
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Figure 6-31 and Figure 6-32 shows the AVO results for the rem aining two 

m odels. From model two we see that the results are sim ilar to those obtained with 

model one indicating that the primary to m ultiple am plitude ratio is not im portant when 

considering amplitude preservation at short offsets. For model three we see that the 

am plitudes are preserved to within approxim ately 80% of the original am plitude. This 

perform ance is not as good as for the previous models but, is to be expected when we 

consider that the weighting technique used was designed to discrim inate against events 

which have reasonably consistent trace to trace am plitude. To improve the perform ance 

o f the filter on the third model, an alternative weighting technique would be required. 

W hen applying this technique to real data, there will be very little prior AVO 

knowledge and so a weighting technique must be developed that calculates weights 

based on the data alone, elim inating the constant trace to trace am plitude assum ption 

about the data. This would lead to a more adaptive weighting procedure.
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Figure 6 -29  A VO  relationships fo r  the reflectors in m odel 1, showing the orig in a l
signal, the f ilte re d  output and the idea l output fo r  (a) reflec tor I, (b) reflec tor  2, (c  )
reflector 3, and (d) reflector 4.
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Figure 6-30 AVO relationships for the reflectors in model I for other multiple 
suppression techniques, taken from Alvarez and Lamer (1996). (a) Reflector 1(b) 
reflector 2, ( c) reflector 3 and (d) reflector 4. The thin dotted line is the original 
unfiltered amplitude, the thick dotted line, the output from f-k multiple suppression, the 
solid grey line, the output from Hampson’s technique and the dotted grey line the output 
from the hybrid technique. The solid black line is the ideal output
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F igure 6-31 AVO  relationships before and after w avele t transform  m ultiple suppression
f o r  m odel 2 (a) reflector 1, (b) reflector 2, (c ) reflector 3, and (d) reflector 4.
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6.9 Multiple Suppression: Influence on the Quality o f 

the Stack

One of the primary goals of multiple suppression is im provem ent o f the stack. 

Figure 6-33 shows stacked traces for the model 1 CM P before and after filtering, and 

w ithout any m ultiple energy. From this figure we can see that the technique is effective 

in reducing m ultiple energy in the stack. To quantitatively analyse the observed 

im provem ent, the ratio o f peak to trough am plitudes of prim ary to m ultiple energy were 

analysed and com pared with other techniques. The ratio calculated was the m axim um  

prim ary peak-trough am plitude divided by the m axim um  m ultiple peak-trough 

am plitude. W here the m ultiples and prim aries were at the sam e time the m ultiple ratio 

was calculated after subtraction o f the ideal prim ary (the stacked trace o f prim aries 

only). This analysis is shown in Table 6-2. From  this table we can conclude that in 

terms o f stacked signal improvement, the technique perform s as well as the hybrid 

technique, and gives better results than thef-k and Ham pson techniques.
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Figure 6-33 Stacked synthetics for model J showing the unfiltered stacked trace as trace 
1, the filtered trace as trace 2 and the ideal output trace as trace 3, for (a) reflector 1 
(b) reflector 2 (c) reflector 3 (d) reflector 4.
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M odel f-k Hampson Hybrid W avelet

1 1.0 5.5 10.2 18.5, 18.3, 26 .3 ,47 .2  (27.6)

2 4.3 18.0 40.0 19.9, 18.0, 25.8, 19.7 (20.8)

3 0.85 3.9 4.4 3 6 .4 ,9 .9 ,3 1 .0 , 10.5 (21.95)

Table 6-2 Table comparing the ratio of maximum primary peak-trough to maximum 
multiple peak-trough amplitudes for various multiple suppression techniques. The 
wavelet technique shows the improvement for each reflector and the mean in brackets. 
The values for the other techniques is the mean.

6.10 Multiple suppression: Examples

The wavelet transform  multiple suppression technique was evaluated on a deep 

water m arine seismic data set from the Porcupine Basin. Figure 6-34a shows a typical 

CM P gather from this seismic line. The data has been pre-processed with a band-pass 

filter to rem ove low frequency swell and cable noise. The gather is highly contam inated 

by m ultiples which can be seen from the gather and a semblance analysis o f the gather 

shown in Figure 6-35a. The CM P gather was filtered using the wavelet transform  

technique the output o f which is shown in Figure 6-34b with the corresponding 

difference section shown in Figure 6-36. A sem blance analysis if the filtered gather is 

shown in Figure 6-35b. From these figures we can see that the m ultiples have been 

successfully suppressed and the primaries preserved. There is some residual m ultiple 

energy left at large offsets as was seen with the synthetic examples. W hen 

im plem enting the filter on this data set an AGC was applied before filtering and 

rem oved after filtering. Only very simple pre-processing had been applied to the data 

without the amplitude preserving steps normally associated with seismic data (Resnick, 

1993) therefore the AGC was applied to m inim ise large trace to trace amplitude 

variations for coherent events.
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Figure 6-35 Semblance analyses corresponding to Figure 5.29(a) and (b) showing the 
suppression o f  the multiple velocity field.
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Figure 6-36 Difference section between Figures 5.23(a) and (b) showing the multiple 
fie ld  which has been removed.

F igu re  6-37a a n d  F ig u re  6-37c s h o w  a  p o r t i o n  o f  t h e  b r u t e  s t a c k  b e f o r e  a n d  

a f t e r  m u l t i p l e  s u p p r e s s i o n .  A p a r t  f r o m  t h e  w a v e l e t  t r a n s f o r m  f i l t e r ,  t h e  s t a c k e d  s e c t i o n s  

w e r e  p r o c e s s e d  w i t h  i d e n t i c a l  s t r e a m s .  F ig u re  6-37b s h o w s  t h e  d i f f e r e n c e  b e t w e e n  t h e  

t w o  s t a c k e d  s e c t i o n s  a t  t h e  s a m e  s c a l e .  F r o m  t h e s e  f i g u r e s  w e  c a n  s e e  t h a t  a 

c o n s i d e r a b l e  a m o u n t  o f  m u l t i p l e  e n e r g y  h a s  b e e n  r e m o v e d  f r o m  t h e  o r i g i n a l  s t a c k .

F r o m  t h e  f i g u r e  w e  c a n  s e e  t h a t  r e f l e c t o r s  a t  1 6 5 0  m s  a n d  2 7 5 0  m s  w h i c h  p r e v i o u s l y  

c o n t a i n e d  m u l t i p l e  e n e r g y  a r e  n o w  m o r e  c l e a r l y  d e f i n e d  o n  t h e  f i l t e r e d  s e c t i o n .

6.11 Conclusions

W e  h a v e  s e e n  t h a t  t h e  a b i l i t y  o f  t h e  d i s c r e t e  w a v e l e t  t r a n s f o r m  to  f i l t e r  n o n -  

s t a t i o n a r y  d a t a  c a n  b e  u s e d  a s  a  p o w e r f u l  p r o c e s s i n g  t e c h n i q u e  f o r  t h e  s u p p r e s s i o n  o f  

c o h e r e n t  l i n e a r  a n d  h y p e r b o l i c  e n e r g y  f r o m  s e i s m i c  d a t a .  W i t h  t h e  u s e  o f  a  s i m p l e  

w e i g h t i n g  p r o c e s s  t h e  a m p l i t u d e  o f  p r i m a r y  r e f l e c t e d  e v e n t s  c a n  b e  p r e s e r v e d  d u r i n g  

l i n e a r  f i l t e r i n g  a n d  m i n i m i s e d  d u r i n g  h y p e r b o l i c  f i l t e r i n g .  D u e  t o  N M O  s t r e t c h ,  t h e
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perform ance of the technique for m ultiple suppression seems to be more effective for 

m ultiples with sm aller residual moveout. This is also a problem with other m ultiple 

techniques. Further lim itations include dead channels which m ust be interpolated and 

the presence o f large trace to trace statics. As with other techniques, this filtering 

process is lim ited by knowledge of the velocity function. If the velocity function is 

known within acceptable errors, 2-10% (Schneider, 1971) the filtering process is an 

effective tool. The more accurately the velocity field is known, the better the 

perform ance o f the filter.

Further study of the relationship of the wavelet transform  when applied across 

gathers may reveal a m ore robust weighting technique that will preserve am plitudes to a 

greater degree in hyperbolic filtering and m inim ise the effects of N M O  stretch. To 

further improve the wavelet transform  technique and to produce the corresponding 

im provem ent on real data the wavelet transform  technique m ust be m odified to adapt to 

AV O changes in time as observed in the data. The choice of basis wavelet used in the 

transform  is also crucial, as was discussed in Chapter 3.
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7. Conclusions

7.1 Discussion

The primary aim of this thesis was to evaluate the potential of the discrete 

wavelet transform as a potential tool for filtering seismic data. In chapter three we have 

shown that in one dimension, the multiresolution form of the discrete wavelet transform 

can be used effectively to suppress low frequency noise from seismic records in a time 

varying fashion. The simple process of muting coefficients in the wavelet domain 

works effectively to suppress ground roll from common shot records. However, we 

have demonstrated that in the wavelet domain, we do not always have perfect 

signal/noise separation, and so there is an associated loss of signal when we use this 

muting technique. By the development of a simple weighting procedure based on the Q- 

value of a seismic signal (which can be estimated from the signal and the corresponding 

wavelet transform coefficients), we have shown that it is possible to filter the signals in 

the wavelet domain, preserving more faithfully the bandwidth of the reflected signal.

For higher frequency noise contamination, we have shown in chapter four that 

the discrete wavelet transform does not perform well, due to the octave band splitting of 

the frequency domain inherent in the transform process. Replacing the discrete wavelet 

transform with the discrete wavelet packet transform allows a more flexible tiling of the 

time-frequency domain and so allows filtering of higher frequency noise whilst 

minimising any degradation of reflected signals. Again, we have shown that a simple 

muting technique in the wavelet packet domain effectively suppresses higher frequency 

noise such as airblast, while weighting of the coefficients allows noise suppression, 

preserving the bandwidth of reflected signals more faithfully. A drawback of this 

technique is that more transform iterations are required than for the wavelet transform, 

and that the transform produces a redundant representation in the transform domain.

In chapter five, we have shown that the filtering processes and results in one

dimension can be extended to two dimensions where we filter a four variable transform

space. These filters are analogous to time-offset varying/-#: filters. We demonstrated

that the discrete wavelet transform in two dimensions suffers from poor resolution in/-#

space and to be effective for filtering, an additional shift is required to move the data in

f-k space to areas that are covered with higher resolution by the transform. The wavelet 
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packet transform  circum vents this problem, with the added cost o f extra transform  

iterations. Using real data we showed that the simple m uting o f wavelet packet 

coefficients effectively suppressed low velocity noise from com m on shot records, 

leading to im provem ent in the shot records and subsequent stack.

In chapter six, by applying the one-dimensional discrete wavelet transform  in the 

offset direction, we successfully suppressed linear and hyperbolic coherent noise from  

seism ic records. Using prior knowledge of the corresponding velocity function for the 

linear and hyperbolic events in comm on shot records and com m on m idpoint records, we 

used linear and hyperbolic m oveout to flatten seismic events, which we then suppressed 

by using the wavelet transform  to filter the data across traces. This was an exam ple of 

using the non-stationarity properties o f the wavelet transform  to filter data. W e 

dem onstrated on field data that this technique could be used effectively to suppress 

noise from both field records and stack. By testing the technique on synthetic data we 

showed that for high velocity contrasts, primary reflector am plitudes were preserved, 

and by the design o f a weighting technique based on wavelet transform s o f shifted 

versions o f the input trace, we could preserve primary reflector am plitudes w here the 

velocity contrast was low. W e have demonstrated that these techniques were show n to 

produce results com parable to current multiple suppression techniques.

Throughout the developm ent o f these processing techniques we have 

investigated how the choice o f kernel wavelet in the transform  process affects the 

perform ance o f the filters. By analysis of these results and the frequency and tem poral 

form s o f the kernel wavelets we have developed criteria which helps assess the 

suitability o f a kernel wavelet for filtering. The important properties are the flatness of 

the frequency spectrum  across scales and the rate of fall-off in frequency am plitude at 

scale boundaries. These properties are of particular im portance in w avelet packets 

where the frequency support o f the wavelet packets is o f m ore im portance. Sym m etry 

o f the kernel wavelet is desirable if perfect signal/noise separation is unobtainable, but is 

not o f such im portance if the noise can be isolated in the w avelet/w avelet packet 

dom ain. In two dim ensions we have the added requirem ent o f  tem poral support which 

for certain kernel wavelets can lead to errors in the transform -inverse transform  process. 

W e have shown that the application o f a gain function before filtering which is 

subsequently rem oved after filtering, minimises this effect.

Throughout this work we have investigated possible techniques o f using the 

discrete w avelet and wavelet packet transform  to filter seism ic data. For these
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techniques to be viable, they must provide filtering techniques and results that are at 

least com parable with current filtering techniques in terms o f perform ance and 

processing speed.

7 . 2  Future work

The work in this thesis has developed throughout the course o f the research. The 

techniques developed will, hopefully, continue to develop in the future and are in no 

way com plete. The work has successfully ascertained whether the discrete w avelet 

transform  is a viable filtering tool, and in som e parts has developed the techniques 

further. It is impossible to fully develop these techniques within the scope o f this thesis 

but it could be useful as a springboard for further developm ent.

As an example, the weighting techniques developed in this w ork were used to 

determ ine whether weighting would be a viable alternative to m uting the transform  

coefficients. The technique used, based on the Q-value o f the seism ic signal, in our 

opinion is not the best choice o f technique as it is based on Fourier theory. A technique 

which would be far more satisfactory would be a weighting technique based on 

inform ation extracted from the wavelet/w avelet packet coefficients them selves. This 

w ould m axim ise the information given by the transform . However, the Q based 

technique served a purpose in that it showed us that a weighting w ould be effective and 

therefore we can predict that a wavelet coefficient based technique will provide better 

results. Developm ent of weighting techniques in all the filtering processes covered in 

this thesis will lead to im proved results.

In using the wavelet packet transform  for the filtering of seism ic data, we have 

barely scratched the surface. In using a constant level o f decom position we have 

neglected the potential information that the data at other levels o f resolution provides.

W e have dem onstrated that it can be used as an effective tool for filtering, but further 

developm ent o f this technique m ust use a best basis selection procedure that m axim ises 

the inform ation obtained from all levels o f resolution. D evelopm ent o f a suitable best 

basis selection for filtering would probably involve an entire thesis o f work, but would 

m axim ise the information provided by the transform  and optim ise any filtering results.

In ascertaining the criteria to assess the potential o f a kernel wavelet for filtering,

we looked at several wavelets. For the w avelet transform , and therefore the w avelet

packet transform , there is an infinite num ber o f possible kernel w avelets to choose from 
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that satisfy the necessary conditions. Obviously it is impossible to exam ine every 

possible wavelet, but approaching the problem  from the opposite direction, developing a 

wavelet specifically for optim um  filtering perform ance, is a realisable goal.

In this work we have concentrated on the suppression of noise from  the pre-stack 

dom ain. This work can easily be extended to the post-stack dom ain, but, as m ore and 

m ore em phasis is being placed in pre-stack dom ain in terms of seismic attributes and 

derived reservoir information, the greatest potential is probably in the pre-stack dom ain. 

In addition, three-dim ensional seismic is now a standard acquisition technique, the 

extension o f these filters from one and two dim ensional filters to three-dim ensional 

filters could be advantageous.
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