

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Thesaurus-Based Methodologies and
Tools for Maintaining Persistent

Application Systems

Dag I. K. Sjoberg

A thesis submitted to the Faculty of Science,
University of Glasgow

for the degree of Doctor of Philosophy
July 1993

Dag I. K. Sjoberg, 1993

ProQuest N um ber: 10992246

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 10992246

Published by ProQuest LLO (2018). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

GLASGOW
UNIVERSITY
LIBRARY

Abstract
The research presented in this thesis establishes thesauri as a viable foundation for
models, methodologies and tools for change management. Most of the research has been
undertaken in a persistent programming environment. Persistent language technology has
enabled the construction of sophisticated and well-integrated change management tools;
tools and applications reside in the same store. At the same time, the research has
enhanced persistent programming environments with models, methodologies and tools
that are crucial to the exploitation of persistent programming in construction and
maintenance of long-lived, data-intensive application systems.

Application programming deals with a very high rate of change to data definitions,
dependent programs and dependent user interfaces. This leads to severe problems in
propagating changes correctly. It is common to find that necessary changes consequent
on some other change have not been made, so that the system is inconsistent and will
eventually fail to operate correctly. This thesis documents the problems by reporting an
industrial experiment that quantified and helped solve such problems. The major
component of the experiment was the HMS thesaurus tool which automatically generates
and updates name and identifier information in all the software written in all the
languages of the application system.

It is demonstrated that a similar thesaurus tool in a persistent programming
environment can serve as a basis for models and methodologies for building and
maintaining large and long-lived application systems. An example is SPASM which is a
set of constraints that should be adhered to in order to prevent deteriorating structure and
improve maintainability.

The EnvMake tool automatically verifies programs according to the SPASM
constraints. It also supports other steps of the introduced construction and maintenance
methodology. In large-scale application development, build management such as
installation, recompilation, relinking and re-execution is time consuming and error-prone
without appropriate tool support. EnvMake automatically tracks down dependencies and
initiates the appropriate actions.

Acknowledgements

First of all I am indebted to my supervisor Malcolm Atkinson for his continuous
guidance, encouragement, enthusiasm and inexhaustible source of ideas. The support,
whatever the issue, is very much appreciated. I am also grateful to my second supervisor
Ray Welland for his advice and support. Malcolm and Ray carefully reviewed this thesis
and made up a superb supervisory team providing, among other things, many stimulating
discussions.

Numerous discussions with Paul Philbrow, Phil Trinder, Joao Lopes, Richard Cooper
and other colleagues at Glasgow have helped the understanding of the issues of this
research. I gratefully acknowledge the patient proof-reading help provided by Anne
Philbrow. I particularly thank Mark Dunlop for his generous and artistic help, at a
moment of crisis, with Figure 1.1.

The St Andrews persistent programming team, led by Ron Morrison, made many
useful comments and influenced the work in several ways. Quintin Cutts and Graham
Kirby provided excellent software for me to reuse. Quintin’s assistance at the early
stages of this research was invaluable.

Thanks also to many people in academia and industry in the UK and Norway who
have contributed to the research presented in this thesis. In particular, the generosity of
Tim King of PSL, in permitting three visits to PSL and 18 months access to project data,
is very much acknowledged.

The extensive financial support by the Research Council of Norway, Division NAVF
in terms of a postgraduate scholarship made this research possible. Some of the work has
been conducted in the context of FIDEi (ESPRIT Basic Research Action 3070) and
FIDE2 (ESPRIT Basic Research Action 6309) research projects.

11

Table of Contents

Chapter 1: Introduction 1
1.1 The Problem of Change..3

1.2 Software Maintenance...4

1.3 Thesauri as Foundation for Change Management Tools.......................... 5

1.4 A Thesaurus Tool in an Industrial Environment..6
1.4.1 Schema Evolution Measurements.. 6

1.5 Thesaurus-Based Tools in Persistent Environments.......................................7
1.5.1 A Persistent Thesaurus Tool.. 9
1.5.2 Models and Methodologies...10
1.5.3 EnvMake - Another Thesaurus-Based Supporting Tool....................10

1.6 Thesis Statement..11
1.7 Thesis Structure..11

Chapter 2: The HMS Thesaurus Tool - An Industrial Experiment 13
2.1 Introduction.. 13

2.1.1 The HMS System...14

2.2 The Thesaurus T ool.. 15
2.2.1 The Meta-Data Relations.. 16

2.2.1.1 The Thesaurus Relation..16
2.2.1.2 The Query_Dictionary Relation.. 19
2.2.1.3 The Versions_Thesaurus Relation.......................................20

2.2.2 The Thesaurus Interface...20
2.2.2.1 Name Usage Information... 21
2.22.2 Schema Evolution - Impact Analysis..................................22
2.2.2.3 Consistency Checks..24
2.2.2.4 Change History... 24

2.2.3 Implementation..25
2.2.4 Evaluation..28

2.2.4.1 Detecting Inconsistencies.. 28
2.2.4.2 Software Reuse... 28
2.2.4.3 Performance.. 29
2.2.4.4 Learning and Understanding.. 29
2.2.4.5 Alternatives to the Tool..30
2.2.4.6 Granularity of Container Types... 31
2.2.4.7 Recording Change.. 31
2.2.4.8 The Tool in an Organisational Context.................... 32

2.3 Quantifying Evolution... 33
2.3.1 Evolution of the HMS Schema...34

111

2.3.2 Consequences of the Schema Evolution... 36
2.3.3 Problems of Measuring Evolution...40
2.3.4 Schema Evolution in Different Application Domains....................... 42

2.4 Summary...43

Chapter 3; Software Evolution and Supporting Tools - A Survey 45
3.1 Introduction.. 45

3.1.1 The Software Development and Maintenance Process.....................45
3.1.1.1 Data Modelling... 48
3.1.1.2 Formal Specifications...48
3.1.1.3 Automatic Documentation..48
3.1.1.4 Reverse Engineering... 48

3.1.2 Change Management - An Aspect of Project Management..............49
3.1.2.1 Software Process Modelling...49

3.1.3 Software Change Management - Focus of this Thesis...................... 50

3.2 Schema and Type Evolution... 51
3.2.1 Consequences on other Parts of Schema.. 52
3.2.2 Consequences on Extensional Data...53

3.2.2.1 Conversion...53
3.2.2.2 Filtering.. 53

3.2.3 Consequences on Application Programs.. 54
3.2.4 Approaches... 54

3.3 Software Configuration and Build Management...55
3.3.1 Source Code Control - SCCS/RCS...55
3.3.2 Build Management..55

3.3.2.1 M ake.. 55
3.3.2.2 Smart Recompilation.. 56

3.3.3 Other Configuration Management Tools...56

3.4 Tools Based on Static Program Analysis...57
3.4.1 Compiler Supporters...57
3.4.2 Data Flow Analysis... 57
3.4.3 Cross-Referencers... 58

3.5 Meta-Databases.. 58
3.5.1 History of Development...58
3.5.2 Standards..59
3.5.3 Features of Meta-Data Systems... 61
3.5.4 Commercially Available Products... 62

3.5.4.1 System Catalogues...62
3.5.4.2 Data Dictionaries...62
3.5.4.3 Repositories... 62

3.6 Support Environments.. 63
3.6.1 Language Independent Support Environments................................... 63
3.6.2 Language Specific Support Environments..64

IV

3.6.2.1 APSE... 64
3.6.2.2 Other Closed Environments...64

3.7 Summary...65

Chapter 4: Enabling Technology 66
4.1 Persistent Programming...66

4.2 Napier88..68
4.2.1 Types..68

4.2.1.1 Type Databases...69
4.2.2 Higher-Order Procedures..69
4.2.3 Environments.. 70

4.2.3.1 Type Checking and Binding... 71
4.2.3.2 Separate Compilation...72
4.2.3.3 Some Napier88 Programs’ Impact on the Persistent

Store.. 73

4.3 The Napier8 8 Programming Environment... 76
4.3.1 The Maps Library... 77

4.4 Napier88 Language Processing Technology.. 77

4.5 Summary...78

Chapter 5: TSIT - A Thesaurus-Based Software Information Tool 79
5.1 Introduction...79

5.2 The Napier88 Thesaurus..80
5.3 Querying the Thesaurus...84

5.4 Registration and Update...85
5.5 Implementation.. 87

5.6 TSIT versus other Tools...88

5.7 Measuring Name and Identifier Usage - A TSIT Experiment.......................90
5.7.1 Scale of Analysis.. 92
5.7.2 Name Frequencies.. 93
5.7.3 K ind... 95
5.7.4 Name Usage and Context...96
5.7.5 Constancy..98
5.7.6 Name Length...100
5.7.7 Use of Type Definitions.. 101

5.7.7.1 Use of Structure Fields and Variant Tags...........................104
5.7.8 Use of Procedures..105

5.7.8.1 Consequences of Change to Procedures.............................106
5.7.8.2 Context of Procedures.. 107
5.7.8.3 Polymorphic and Specialised Procedures...........................108

5.7.9 Measurements Related to Environments... 110
5.7.9.1 Changes to Environments.. I l l

5.8 Summary...113

Chapter 6: Models and Methodologies 115
6.1 Introduction.. 115

6.1.1 Motivation.. 116
6.1.2 Requirements for Models and Methodologies.....................................117

6.2 A Structured Persistent Application System Model - SPASM 118
6.2.1 A Persistent Location Binding Methodology......................................119
6.2.2 Program Categories.. 120
6.2.3 Binding Categories..121

6.3 The SPASM Constraints... 122
6.3.1 Program Categories...125
6.3.2 Type Definitions..125
6.3.3 Declaration and Use...127
6.3.4 Stub Constraints...129
6.3.5 Drop-Clauses... 131
6.3.6 Order of Insert-Programs and Type-Programs....................................131
6.3.7 Structuring and Naming Conventions... 133
6.3.8 Persistent Store..135

6.4 Actions to Conform to the SPASM Constraints..136

6.5 Future Development of a Maintenance Methodology.................................... 138
6.5.1 Modifying Procedure Types...139
6.5.2 Modifying Directories and Environments...142
6.5.3 Modifying Types - Schema Evolution.. 143

6.6 Summary...145

Chapter 7: EnvMake - A Persistent Programming Tool 147
7.1 Introduction.. 147

7.2 Information about Application Structure... 148

7.3 Supporting the SPASM M odel... 151
7.3.1 Checking the SPASM Constraints..152
7.3.2 Flexibility of EnvMake... 154
7.3.3 User Experiences...154

7.4 Build Management...155
7.4.1 Showing Status Information... 156
7.4.2 Compilation... 158
7.4.3 Execution... 160
7.4.4 Installation... 160

7.5 Implementation.. 161
7.5.1 Problems with Ensuring Up-To-Date Information............................. 161
7.5.2 Problems of Naming and Identity...162

7.5.2.1 Returned Environments..163

VI

1.52.2 Environments in other Data Structures................................164
T.5.2.3 Aliases to Environments...165

7.6 Future Development of EnvMake...165

7.7 Summary...167

Chapter 8: Conclusions and Future Work 169
8.1 Summary - Utilisation of Thesauri..169

8.1.1 Quantifying Evolution.. 170
8.1.2 Thesauri in a Strongly Typed Persistent Environment.......................171
8.1.3 Models and Methodologies...173
8.1.4 EnvMake.. 174

8.1.4.1 Structure and Dependency Visualisation............................ 174
8.1.4.2 Supporting Steps of the Construction and Maintenance

Methodology... 174
8.1.4.3 Checking the SPASM Constraints.......................................175
8.1.4.4 Build Management..175

8.2 Future Work - Further Utilisation of Thesauri... 176
8.2.1 Schema Evolution..178
8.2.2 Persistent Software Configuration Management................................ 179
8.2.3 Extensibility of SPASM...180
8.2.4 Automatic Generation of Use-Clauses.. 180
8.2.5 Referencing Environments...181
8.2.6 Hyper-Programming... 182
8.2.7 Further Measurements.. 184

8.3 Finally...185

Appendix A: HMS Execution Log 187

Appendix B: TSIT Measurements 189

Bibliography 194

Index 209

Vll

List of Figures

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:

Building and maintaining application systems.. 8
The main components of the HMS system...15
The Thesaurus relation.. 17
Definitions and uses of names distributed by name_type.......................... 19
The Query_Dictionary relation... 20
The Versions_Thesaums relation... 20
The thesaurus interface.. 21
The thesaurus scripts and programs.. 27
Change history of the relations... 35
Change history of the fields...35
Direct and indirect use of relations and fields... 36
Consequences of the December 1991 HMS schema modification.............38
Extension of the system structure... 42
The software development and maintenance process..................................46
Concepts in software construction and maintenance...................................47
The IRDS levels and pairs...60
The three mappings of a traditional database system..................................67
The only mapping of a persistent system...67
Operations on environments..70
Part of the store after running Progl.N and Prog2.N.................................. 73
Part of the store after running Prog3.N.. 74
Part of the store after running Prog4.N.. 75
Part of the store after running Prog4.N and Prog2.N.................................. 75
Part of the store after running Prog6.N.. 76
Definition of thesaurus entry.. 82
The program writePerson.N...83
Thesaurus definition.. 88
Name frequency... 94
Name usage - total... 96
Name usage - by application.. 97
Proportion of constants in the applications.. 99
A vector program... 100
Distribution of name length.. 101
Distribution of use of type definitions..102

V lll

Figure 5.11: Distribution of use of procedures...106
Figure 6.1 : Relationship between SPASM and the methodology...................................116
Figure 6.2: Binding categories...122
Figure 6.3: ER diagram of programs, bindings and type definitions...............................124
Figure 6.4: A partial order in the set of programs.. 132
Figure 6.5: Linear sequence after topological sorting.. 132
Figure 6.6: Environment structure in persistent store.. 134
Figure 6.7: Strategy 1 ... 140
Figure 6.8: Strategy 2 ... 141
Figure 6.9: Strategy 3 ... 142
Figure 7.1: The EnvMake menu...149
Figure 7.2: Type dependencies...159
Figure 7.3: Environment as result type... 163
Figure 8.1: Thesaurus-based tools... 172
Figure 8.2: More thesaurus-based tools.. 177
Figure 8.3: Methodologies and tools as input to a new language................................... 186

IX

List of Tables

Table 2.1:

Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 3.1:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.9:
Table 5.10:
Table 5.11:
Table 5.12:
Table 5.13:
Table 5.14:
Table 5.15:
Table 5.16:
Table 5.17:
Table 5.18:
Table 5.19:
Table 5.20:
Table 5.21:
Table 5.22:
Table 5.23:
Table 5.24:
Table 5.25:
Table 5.26:

NAME_TYPE distributed by CONTAINER_TYPE and
DEFINITION_USE..18
Excerpt from the Versions_Thesaurus relation...24
Added and deleted relations and fields in the HMS schema........................34
Direct use of relations and fields in the query dictionary............................37
Indirect use of fields in Display Language and Hippo code........................37
Consequences of the December 1991 HMS schema modification.............39
Categories of support environments... 63
The corresponding thesaurus entries for the program writePerson.N.........83
The HMS thesaurus tool versus TSIT... 89
Lines of code... 93
Name occurrences...93
Name use within programs.. 94
Number of times a name is declared within a program (percentages) 95
Distribution of kind...96
Name usage by application.. 97
Distribution of context... 98
Constancy distributed by usage..99
Corresponding thesaurus entries..100
Name length of type and value identifiers.. 101
Statistics on the use of type definitions... 102
Use of structure fields.. 104
Use of variant tags...104
Kind of structure fields.. 105
Kind of variant tags...105
Use of procedures..107
Context of procedures.. 107
Use frequency and number of types instantiated... 109
Specialised procedures... 109
Usage and context of specialised procedures..110
Number of name occurrences related to operations on environments I l l
Programs modifying environments... I l l
Environments modified by a program..112
Programs modifying an environment.. 113

Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 6.7:
Table 6.8:
Table 7.1:
Table 7.2:
Table 7.3:
Table 7.4:
Table 7.5:
Table 7.6:
Table 7.7:
Table 7.8:
Table 8.1:
Table B.l:
Table B.2:
Table B.3:
Table B.4:
Table B.5:

The SPASM constraints... 123
Unused type definitions... 127
Relationship between type identifiers and type names..................................127
Unused value identifiers... 129
Update of procedure variables...130
File naming conventions.. 134
Actions to reconform to constraints that have been violated (continues)136
Actions to reconform to constraints that have been violated (continued).... 137
Impact of adding, renaming or deleting a type definition..............................144
Parameters of the envMake command.. 148
Insert-update dependency table..148
Use-stored dependency tab le ...149
Excerpt from a program-environment matrix...150
Insert-update dependency table..153
Compilation and execution p lan ... 157
Log of compilations and executions.. 157
Declaration of environments..164
Platform improvements.. 186
Frequencies of Kind by Application... 189
Frequencies of Context by Application.. 190
Use of type definitions in value instantiations..191
Environments accessed per program... 192
Programs per environment...193

XI

Chapter 1
Introduction

The research presented in this thesis establishes thesauri as a viable foundation for models,
methodologies and tools for change management. Most of the research has been
undertaken in a persistent programming environment. Persistent language technology has
enabled the construction of sophisticated and well-integrated change management tools;
tools and applications reside in the same store. At the same time, the research has enhanced
persistent programming environments with models, methodologies and tools that are
crucial to the exploitation of persistent programming in construction and maintenance of
long-lived, data-intensive application systems.

The dominant activity of the large-scale software industry is the production of changes
to application systems. Figures describing the maintenance proportion of the total lifetime
expenditure on a software system vary between 50% and 90% [Zelkowitz 1978, Lehman
1981, Putnam 1982, Parikh and Zvegintsov 1983, Chikofsky and Cross 1990]. It has
been reported that the maintenance proportion was 35-40% in 1970, 40-60% in 1980 and
estimated to be 70-80% in 1990 [Pfleeger 1987]. As application systems live longer and
grow in size and complexity, it is likely that this trend will continue. The maintenance
activities have been divided into the following categories [Swanson 1976]:

i) Corrective maintenance (detecting and correcting errors - routine debugging)

ii) Adaptive maintenance (accommodation of changes to the environment - including
hardware and system software)

iii) Perfective maintenance (user requested enhancements, improved documentation,
enhanced performance)

It has been reported that the respective categories count for 17%, 18% and 60% of the total
maintenance activities (4% in other categories) [Lientz et al. 1978]. Within the third

1

CHAPTER 1: INTRODUCTION

category, two thirds were user requested enhancements. This shows that the majority of
changes are not due to errors or other causes that one might believe could be prevented by
better requirements analysis, design and implementation techniques.

One area of system evolution that has been of particular interest recently is changes to
database schemata (schema evolution) [Banerjee et al. 1987, Skarra and Zdonik 1987,
Lemer and Habermann 1990]. Such changes may have serious impact on other parts of the
schema, on extensional data (database objects), on application programs and on user-
interfaces. Versioning, build management (compilation, linking and execution) and
software configuration management are other major areas relevant to system evolution.

One might argue that the software changes could be reduced by more use of
prototyping techniques. Prototyping may enable end-users to express their needs and
requirements more accurately in areas such as screen design and certain aspects of system
behaviour. However, since new requirements, changing environments, bug-fixing, etc.
are encountered after the system has become operational, it is the operational system itself
which has to be changed. The challenge is thus to build large, long-lived, data-intensive
application systems that can be incrementally modified in compliance with changing user
needs. So, reducing the extent of perfective change is not necessarily desirable. It is usual
for people carrying out tasks to recognise improved methods and opportunities.
Application systems are therefore most likely to support people well if they facilitate
change, and allocating resources to at least perfective change should be regarded as
valuable.

The approaches to improving the quality, including maintainability, of software
application systems may be divided into the following categories:

i) new and improved programming languages (Ada, object-oriented programming
languages, persistent programming languages, etc.);

ii) programming guidelines or design principles (e.g. structured programming [Dahl et al.
1972, Jackson 1975] or modularisation [Parnas 1972] where a high degree of
cohesion 1 and a low degree of coupling^ among software components should be
pursued [Constantine and Yourdon 1979]); and

iii) comprehensive programming methodologies and supporting tools.

The research presented in this thesis focuses on the last approach. The research establishes
thesauri as a viable foundation for programming methodologies and supporting tools that
are tailored to manage the problem of change.

 ̂ Cohesion is a measure of the degree to which parts of a program module are closely functionally
related.

 ̂ Coupling is a measure o f the strength of interconnections between modules of a program.

CHAPTER I: INTRODUCTION

1.1 The Problem of Change
In spite of the proportion of maintenance costs presented above, there is a common
misconception that change is something unusual which could be dealt with in an ad hoc
way. The assumption of stability prevails in current teaching and practice concerning
programming, data modelling, database schema construction, etc.

Based on long experience and quantitative studies of several systems, mostly operating
systems, Lehman has proposed five “laws” concerning software evolution [Lehman and
Belady 1985]. The first two follow:

i) A program must continuously undergo change in order to reflect change in its
environment. If not, the program will become less and less useful.

ii) As a large program is continuously changed, its complexity increases, which reflects
deteriorating structure, unless work is done to maintain or reduce it.

As shown in [Lientz et a l 1978], most changes are due to enhancements in functionality,
rather than to bad design, bugs, etc. People do not know in advance or are not able to
accurately express all the desired functionality of a large application system. Only
experience from using the system in an operational environment will enable the needs and
requirements to be properly formulated. The requirements assessment will continuously
change during maintenance, and new requirements may be as demanding as those that
directed the initial construction.

Many factors may influence change in user requirements: change in market,
workforce, skills, economy, legislation, etc. However, this thesis will not discuss the
causes of change any further, nor will it discuss maintenance problems such as
programmer-user communication, programmer effectiveness, etc. [Lientz and Swanson
1981] or other change problems related to project management [Ferraby 1991].

The problem of change is closely related to scale. A whole class of problems only
show up when a system becomes long-lived (typically involving persistent data) and grows
in size, complexity and diversity (variability). Persistent application system or PAS will be
used throughout this thesis as a succinct phrase denoting large-scale, long-lived and data-
intensive application systems that satisfy a complete area of information-processing
requirements, for example, a management information system, a health management
system or a CAD/CAM system. DeRemer and Kron distinguish “programming-in-the-
large” from “programming-in-the-small” and claim that different languages should be used
for the two activities. They propose a “module interconnection language” as one necessity
for supporting “programming-in-the-large” [DeRemer and Kron 1976]. Further ideas for
“programming-in-the-large” (or “mega-programming”) are outlined in [Wiederhold et a l
1992]. Not only languages, but methodologies and tools are also the subject of new and

CHAPTER 1: INTRODUCTION

changed requirements in order to cope with increase in scale. For example, they must
support incremental design, construction and commissioning.

1.2 Software Maintenance
The term software maintenance denotes all changes to the software of an apphcation system
after its first installation in its operational environment. Since software systems do not
physically wear out or break, ̂ software maintenance differs from general maintenance in
that the former is not concerned with rectification to an earlier state. Software does not
change on its own. It is only changed by people (or possibly by other software such as
tools) to adapt to changed requirements, to improve performance or to correct errors.

It is deceptively easy to change software (simple editing), and software is therefore
changed much more frequently than tangible products. However, it is not easy to make
consistent changes; it is easy to cause a mutation but very hard to generate a viable one,
particularly if multiple copies have been shipped, etc. A change in one place may have
unintended effects elsewhere; even minor local changes can have global impact. Included
in the consequences are new errors (the ripple effect). One study found that more than
50% of all errors were due to previous changes [Collofello and Buck 1987].

A challenge is to ensure that all consequential changes are dealt with correctly by
propagation throughout the system and that no unnecessary changes occur, perturbing
working practices and operational software. Long-lived application systems should
therefore be designed with change in mind. Moreover, since “the only constancy is change
itself’, also the organisation should be planned for change [Brooks 1975]. It may be
difficult to persuade software builders and managers to plan for change since it requires
some extra effort during initial construction which may hinder meeting short-term budget
and time goals. The short-term thinking discourages designing for maintenance even
though it is an investment that will more than pay off in the long run.^ Lehman formulates
it this way [Lehman 1980]:

It will, in fact, be suggested that the need for continuing change is intrinsic to the nature of
computer usage. Thus the question raised by the high cost o f maintenance is not exclusively
how to control and reduce the cost by avoiding errors or by detecting them earlier in the
development and usage cycle. The unit cost o f change must initially be made as low as
possible, and its growth, as the system ages, minimised. Programs must be made more
alterable, and the alterability maintained throughout their life-time.

During maintenance work, a significant part of the time is spent on understanding the
existing system. The quality of the software documentation is therefore crucial. However,
most documentation is notoriously poor and virtually always obsolete. The only reliable.

 ̂ A physical copy on any medium may deteriorate.
2 This is also a problem regarding software reuse [Krueger 1992], for example.

CHAPTER 1: INTRODUCTION

up-to-date program information may be the source code itself or information that is
automatically generated from the source code. The next section therefore introduces the
idea of a recording tool that automatically generates and maintains the information that may
be required for change and consequential change propagation.

1.3 Thesauri as Foundation for Change Management Toois
Thesauri containing information about names and their usage in all the software of the
actual application system (possibly including database schemata) will be proposed as a
platform for methodologies and tools that help to solve the problems described in the
previous sections. The term thesaurus generally denotes “a ‘treasury’ or ‘storehouse’ of
knowledge, as a dictionary, encyclopædia, or the like” [Oxford 1961]. In the context of
this thesis, the “knowledge” is information about names and identifiers such as where they
are defined and used, what kinds they are, in which contexts they occur, etc. The term is
not used in the more popular meaning denoting a dictionary of synonyms. Alternative
terms include the commonly used data dictionary and repository, but they have been
avoided due to confusing terminology in the area and to emphasise the distinction between
the thesaurus tools to be introduced and most commercially available data dictionary
(repository) tools.i The thesauri dealt with in this thesis contain name and identifier
information in all the software written in all the languages of a PAS. This includes source
code information about programs in a file system and meta-data information about
extensional data in a database or persistent store. This is in contrast to most conunercially
available tools which focus either on the source code only (source code analysers) or on
database-specific information like database schemata (data dictionaries). A few data
dictionary tools also include source code information, but relationships between names and
identifiers in the software written in the various languages are not recorded automatically.

Names are the focus of attention in this thesis since they are central to system builders’
thinking and thus influence the way software is organised. Meaningful names are
important for problem solving, understanding of semantic structure and retention -
particularly in large and complex application systems [Barnard et a l 1982, Weiser and
Shneiderman 1987]. The meanings attached to names are relatively stable when dealing
with concepts at an abstract level (even though the detailed semantics and interpretation may
vary between people and between contexts). This contrasts with all changes in physical
software implementations. Therefore, there is potential for tools that help manage the
evolution while preserving the use of names.

 ̂ Yet another term, concordance, also denotes a collection of name information but generally has a more
narrow interpretation than thesaurus: “an alphabetical arrangement of the principal words contained in
a book, with citations of the passages in which they occur” [Oxford 1961].

CHAPTER 1: INTRODUCTION

It should be emphasised that from a language processing point of view, names are
uninteresting; names are not kept by the system. Even names denoting types are irrelevant
to language processors. However, names are added in order to make types and other parts
of software meaningful to humans. Appropriate tools in the programming environment
should support people in the naming process.

Names of identifiers used in an application system may refer to real-world objects or
classes of objects modelled by the system (e.g. person), to objects specific to the
implementation (e.g. index) or simply to nothing but the associated location in a memory
(e.g. a counting variable i). A focus on names may encourage people to be more conscious
of what the names are supposed to refer to (though the semantic relation between names
and what they refer to is a classical, largely unresolved problem [Nelson 1992]). Choosing
names carefully would also prevent name ambiguity.

The vision of this research is that automatically generated and updated thesauri, in
addition to serving as a software information repository for application systems builders,
can serve as a viable foundation for change management or maintenance tools. The
following sections describe the work that has been undertaken in order to test and realise
that vision. Two thesaurus tools have been built. The HMS thesaurus tool was developed
for a health management system (HMS) in an industrial (C, C++, X-windows and
relational database) environment [Sjpberg 1991]. Another thesaurus tool was thereafter
built in the context of the strongly typed, persistent programming language Napier88.

1.4 A Thesaurus Tool in an Industrial Environment
The HMS thesaurus tool was developed in an industrial environment in order to identify
and help solve real-world problems of maintenance. All the software is analysed by the
thesaurus tool. This includes programs written in a screen definition language, a
procedural language for defining actions, a query dictionary language and a schema
definition language. The tool stores information about name occurrences, like type and
container, and records dependencies between occurrences in all the software (including
between software written in different languages). An interface provides, among other
things, some consistency checking and impact analysis which localises the effects of
change within the system. The impact analysis of schema changes has proved particularly
useful since software written in all the languages is affected by such changes; doing the
same analysis manually is a very hard task.

1.4.1 Schema Evolution Measurements

Some measurements of system evolution have been reported in the literature [Lientz et a l
1978, Lehman and Belady 1985], but in order to turn computing science into an exact

CHAPTER 1: INTRODUCTION

scienceJ more measurements should be provided. Regarding change management,
measurements are a useful supplement to anecdotal information when, for example,
performing the following tasks:

i) identifying form and extent of various kinds of change;

ii) designing change management methodologies and tools; and

iii) testing the usefulness of such methodologies and tools.

In order to acquire a deeper understanding of the nature of system evolution, measurements
of change in the HMS system were collected over a period of 18 months, both during initial
construction and after the system became operational. The thesaurus tool was enhanced to
monitor the evolution, which was studied in general but changes to the schemata were
emphasised. The extent of schema evolution (e.g. 140% increase in number of relations)
and its consequences confirms the need for supporting tools [Sj0berg 1993]. The method
for, and the results of, these change measurements are one step further in the direction of
quantifying change. The cost and effort in conveying in-depth analyses of real-life,
industrial projects may be one reason for the lack of references to other schema evolution
studies in the literature.

1.5 Thesaurus-Based Tools in Persistent Environments
The basic problems of change are the same whether the environment is an industrial
relational database context with conventional programming languages or an experimental
object-oriented database context with more modern programming languages, etc. The
experiences with the HMS thesaurus tool therefore served as a general basis for further
research in change management. The built-in provision for longevity should enable
persistent programming technology to be a suitable platform for such research.

The major motivation for persistent programming language research is the belief that
such languages will facilitate the construction and maintenance of PASs [Atkinson et al.
1982, Atkinson et al. 1983a]. Persistence was invented more than a decade ago, and
persistent languages such as Napier88 [Morrison et al. 1989a] have proved robust and well
engineered [Sjpberg et al. 1993]. However, to fully benefit from the potential advantages
of persistence in the construction and maintenance of large PASs, suitable programming
methodologies and supporting tools have to be developed. An ultimate goal would be to
integrate all needed tools in a persistent software engineering environment.

 ̂ One can of course question to what extent it is possible to make a science of artificial (i.e., human-
made) systems exact [Lehman 1976].

CHAPTER 1: INTRODUCTION

m

Existing
Application
System
including:
Data model.
Constraints ,
Programs,
Thesaurus...

Figure 1.1: Building and maintaining application systems

CHAPTER 1: INTRODUCTION

There were two reasons for choosing Napier88 as the experimentation language. First, the
features of the language indicated it as suitable for research in change management.
Second, the methodologies and tools to be developed would enhance the programming
environment of Napier88 itself. Napier88 was (and still is) in its infancy as an
implementation language for large-scale applications. For example, guidelines and tools
are still needed to organise the interaction between programs and bindings in the persistent
store.

The model for constructing and maintaining persistent application systems pursued in
this thesis may be illustrated by Figure 1.1. Powerful tools generate application system
increments from a repository of data models, constraints, programs and thesauri. The tools
to be described in this research include cross-referencers, impact analysers, constraint
checking tools, build management tools, etc. Similar tools have been built in other
programming environments, but the research includes several aspects specific to persistent
programming and is also original in other respects (e.g. automatic, incremental collection of
information).

1.5.1 A Persistent Thesaurus Tool

The thesaurus tool built in and for Napier88 collects fine-grained information about names
in the source programs and names denoting bindings in the persistent store. Compared
with the HMS case, it is in one sense simpler to extract the thesaurus information for
Napier88 since only one language needs to be analysed. On the other hand, the kind of
information stored in the thesaurus for Napier88 is more complex in order to capture the
additional information that Napier88 provides, as it is a sophisticated language with a rich,
strong type system including environments, polymorphic procedures, abstract data types,
etc.

A textual interface to the thesaurus was built by the author; a comprehension query
language (enabling recursive queries) and a window-based interface to the thesaurus were
built by others [Sjpberg et al. 1993]. Integrating these interface components was easy due
to the persistent technology.

Eight Napier88 applications were measured in a study conducted with the intention of
identifying how persistent programmers use the constructs of Napier88 and how they
organise their software. The results may be useful for optimisation of language
implementation and for design of methodologies and tools. Measurements of source
programs have been collected for other languages such as FORTRAN [Knuth 1972], PL/1
[Elshoff 1976], APL [Saal and Weiss 1977] and Ada [Agresti and Evanco 1992], but the
measurements to be presented are the first in the context of a persistent programming
language.

CHAPTER 1: INTRODUCTION

1.5.2 Models and Methodologies

The term methodology may be interpreted as “the processes, techniques, or approaches
employed in the solution of a problem or in doing something: a particular procedure or set
of procedures” [Webster 1961 Within the scope of this thesis the “problem” or the
“something” being done is construction and maintenance o f PASs. The terms construction
methodology and maintenance methodology will thus respectively be used to denote a
model for the initial construction of PASs and a model for the maintenance of such
systems. The methodologies should constrain software builders’ software with the
purpose of developing intelligible, correct and efficient application systems that remain
relatively easy to change.

Some components of an overall methodology for persistent programming have already
emerged, for example an architecture for organising an application around persistent L-
value procedures which can be incrementally modified without the need for editing,
recompiling or re-executing the programs containing the callees [Cutts 1993a].
Nevertheless, other guidelines and more complete methodologies are still needed for other
aspects of persistent programming. This thesis contributes new aspects of a construction
and maintenance methodology. This includes the SPASM model which is a set of
constraints to which each suite of application software should adhere in order to ensure
correctness and maintainability. Several of the constraints are based on a categorisation of
programs into five groups according to their semantics. This categorisation, which is done
automatically, is also the basis for build management (see next section).

Both SPASM and the other components of the methodologies are general in that they
are independent of the actual real-world applications being implemented. They are,
however, couched in terms of the programming language (Napier88) even though most of
the principles they encode are apphcable to any database programming environment.

1.5.3 EnvMake - Another Thesaurus-Based Supporting Tool

At present, most Napier88 programmers use Make [Feldman 1979] to help rebuild the
application after change. The programmers have to manually specify compilation and
execution dependencies. Similarly, Make and sometimes Unix™ shell scripts are used to
install software into the persistent store. Nevertheless, a correct installation-order has to be
determined and typed in manually into a Makefile or a script. These problems are
addressed by EnvMake - a tool that automatically infers the necessary dependencies from
the thesaurus and initiates (re)compilation and (re-)execution. If installation is requested,
EnvMake installs components in correct order (if such an order exists)^ into the persistent

 ̂ This differs from what may be the original meaning: "a science or the study of method" [Webster
1961].

 ̂ If components cyclically refer to each other, installation is impossible.

10

CHAPTER 1: INTRODUCTION

Store. EnvMake thus relieves the programmers from the burden of maintaining Makefiles
and scripts.

In addition to replacing the use of Make, EnvMake provides additional functionality
tailored for persistent application development such as checking the SPASM constraints
and presenting information about which programs carry out which operations on which
bindings in the persistent store.

1.6 Thesis Statement

Measurements show that application programming deals with a very high rate of change to data
definitions, dependent programs and dependent user interfaces. This leads to severe problems
propagating changes correctly. It is common to find that necessary changes consequent on some
other change have not been made, so that the system is inconsistent and will eventually fail to
operate correctly.

Methodologies and tools based on thesauri, containing automatically generated information
about programs and data, have been proposed, prototyped and demonstrated. It is argued that
investing in following methodologies and using supporting tools would achieve significant
improvement in application programmer productivity, including the ability to manage change.
It is further demonstrated that such methodologies and tools are pertinent to strongly typed
persistent systems and can be integrated into an effective persistent programming environment.

1.7 Thesis Structure
Chapter 2 describes an industrial experiment conducted with the intention of identifying
problems related to change management and building tools to help solve the problems.
Measurements of the extent of change and change consequences are provided.

Chapter 3 surveys diverse techniques and tools in software engineering with emphasis
on maintenance.

Chapter 4 presents persistent language technology as a platform for the research
described in the subsequent chapters.

Chapter 5 describes how the ideas behind the industrial experiment (Chapter 2) are
further developed in a thesaurus tool built in the context of the strongly typed, persistent
programming language Napier88. The usefulness of the tool is, amongst others,
demonstrated in an explorative study providing a plethora of measurements useful for
language designers, tool builders and application programmers.

Chapter 6 introduces models and methodologies for persistent application construction
and maintenance. As a means to improve correctness and maintainability, the SPASM
model defines a set of constraints to which PASs should adhere. Measurements of eight
Napier88 applications describe to what degree existing software complies with those

11

CHAPTER 1: INTRODUCTION

constraints. The chapter also discusses steps of a construction methodology and actions of
a maintenance methodology that should be carried out, depending on the kind of change.

Chapter 7 presents a tool, EnvMake, which checks the constraints of the SPASM
model and supports the steps of the construction and maintenance methodology. It also
describes how EnvMake features automatic installation, (re)compilation and (re-)execution,
and how it visualises dependencies between identifiers in source programs and bindings in
the persistent store in the form of dependency tables or matrices.

Chapter 8 concludes by emphasising thesauri as a foundation for change management
methodologies and tools. The chapter summarises the achievements of the thesis and
outlines further work also based on thesauri.

12

Chapter 2
The HMS Thesaurus Tool -

An Industrial Experiment

2.1 Introduction
In order to relate the research issues described in this thesis to the “real world”, a large,
industrial database application - a health management system (HMS) - was investigated
in detail. The purpose was twofold: first, to design and implement a tool that should
assist in the current development and maintenance by providing information about the
structure of the system; second, to monitor the evolution of the system and collect change
measurements.

When the investigation started, the scale and complexity of the HMS system
complete with applications indicated that aids to keeping track of the structure of the
system were becoming essential. The thesaurus tool was developed to become such an
aid. Its main component is the thesaurus - a meta-database containing information about
the names and their usage in all the software (including the database schemata^)
constituting the HMS system. On the basis of the thesaurus, the tool helps answer
questions such as:

• Which actions, classes, functions, macros, etc. are defined and where are they used?

• Which fields and relations does this query or update function refer to?

• Which actions are referenced in this Display Language program?

• Does this name already denote an action?

 ̂ There are several schemata in the HMS system - one for each subsystem, e.g. BED BUREAU and
GP.

13

CHAPTER 2: THE HMS THESAURUS TOOL

The thesaurus tool also provides impact analysis, consistency checks and change history
information. Another feature of the tool is that it may serve as a measurement apparatus.
This was demonstrated in an experiment undertaken with the purpose of acquiring a
deeper understanding of the nature of evolution [Sjpberg 1993]. A particular goal was to
quantify the problem of changes to database schemata and necessary change propagation.
The HMS system was observed over a period of 18 months. The study to be reported
illustrates how significantly the schema changed and furthermore that even a small
change to the schema may have major consequences for the rest of the application code.
The measurements confirm the need for methodologies and tools for managing the
consequences of changes to database schemata. The measurements also help identify the
requirements of such methodologies and techniques.

2.1.1 The HMS System

Relational database management systems (RDBMSs) are currently in widespread use in
industry and commerce. The HMS system is one example of an application system
utilising this technology. The system, running on high resolution colour Unix™
workstations, consists of Display Language and Hippo programs [Clifton 1990, England
and Selwyn 1990],^ a query dictionary and a database including the associated schema
(Figure 2.1).

Applications are written as a graph of screens so that a user works via the icons and
fields on screens and navigates to other screens in the graph using “buttons”. The screens
of the user interface are programmed in the Display Language. A Display Language
program contains classes and objects that both represent windows and have attributes that
describe properties of these windows. Objects can be defined within classes and within
other objects. A class can be used as the type of another class or as the type of an object.
It is possible to modify the type of an object by adding attributes or by introducing new
objects within the original object in a form of inheritance hierarchy. So, the class-object
relationship is not exactly the same as the one found in traditional object-oriented
languages. The Display Language is an interpreted language implemented in C and the X
Window System.

The procedural part of the user interface is programmed in the Hippo language. An
action is the main language construct. An action can be global, or it can be local to a
script which in turn may be associated with a main class in a Display Language program.
Hippo is an interpreted language implemented in C.

 ̂ These languages have recently been integrated into the Polyhedra programming environment [PSL
1992].

14

CHAPTER 2: THE HMS THESAURUS TOOL

Display
Language

Hippo

Query
Dictionary

Database

Figure 2.1: The main components o f the HMS system

The query dictionary consists of queries (SQL select) and update functions (SQL insert,
update and delete) which are used by the Display Language and Hippo programs when
operating on the database. Several update functions may be defined in a transaction
(usually to ensure referential integrity after update). The query dictionary concept was
introduced in the HMS architecture to isolate as far as possible the Display Language and
Hippo code from the database. This permits some of the changes to the schema to be
hidden from the application code by rewriting the queries and update functions. These
queries and update functions are referred to by name with named parameters (Hippo
variables) called datums.^ The queries return their results in tables whose columns are
also referred to as datums and which may be traversed or automatically displayed. The
query dictionary is intended to be sufficiently general not only to absorb change that need
not be propagated further, but also to allow different DBMSs to be used and even
different data models. The query dictionary is implemented in the Pro*C™ embedded
SQL language.

The description of the relations, including their fields, constitutes the schema. The
actual DBMS is Oracle™.

2.2 The Thesaurus Tool
The thesaurus tool generates the names and associated information by analysing all the
software and performs subsequent updates of the thesaurus data. A definite requirement
of the thesaurus tool - which has been satisfied - was that the contents of the thesaurus

Plural of datum is data, but HMS uses datums to denote several occurrences of the special HMS
concept datum.

15

CHAPTER 2: THE HMS THESAURUS TOOL

should not need to be manually maintained. Experience shows that this is crucial for the
use of such a tool. The source programs and database schemata are periodically (each
night) scanned to detect and record changes. If there is a need for a more up-to-date
version, a programmer may also initiate a scan. All the executions are carefully logged.^
The scan and update are implemented by using a combination of Unix csh, awk and sed
scripts, one C program and some Oracle commands for loading and unloading thesaurus
data.

An interface consisting of windows with pull-down menus, buttons, etc. is
implemented in the Display Language and Hippo themselves and features the following:

• search, sort and display of name information;

• predefined queries for consistency checks like detecting names defined but not used,
and names used but not defined;

• finding consequences of proposed change; and

• change history in the form of added and deleted thesaurus entries within a user-
specified time interval.

Most of the features of the thesaurus tool are based on cross-reference information also
found in other programming environment tools like source code analysers and data
dictionary tools [Bourne 1979, IBM 1980, DEC 1989, SoftwareAG 1990], except that the
thesaurus tool spans all the languages used to build the whole persistent application
system, its user interfaces and its databases, and thesaurus tool automatically collects the
data in quiescent periods.

2.2.1 The Meta-Data Relations

Like the HMS databases, the thesaurus is a relational database. It consists of three
relations keeping meta-data information. The main one is the Thesaurus relation which
contains information about the names in the HMS system. The Query_Dictionary
relation describes the correspondence between the fields of the relations and the datum
names used in the Display Language and Hippo programs. In order to keep historical
information, with the intention of studying the nature of change, the Versions_Thesaurus
relation was introduced.

2.2.1.1 The Thesaurus Relation

The seven fields of the Thesaurus relation are described in Figure 2.2. The values of
NAME_TYPE correspond to the main constructs of the languages being used. The
DEFINITION_USE field indicates whether the container is the place where the name is
defined or where it is used. The REMARK field holds a comment on the name. The

 ̂ Appendix A shows an excerpt from an execution log.

16

CHAPTER 2: THE HMS THESAURUS TOOL

programmer specifies the comment after a special symbol (##) following the definition of
a name. Only comments on definitions are supported since it proved difficult to find a
handy syntax for giving comments wherever a name can be used.

• SEQ_NO - system-generated key

• NAME - textual form of the identifier

• NAME_TYPE - one of the following codes appropriate to the type of the identifier:
- AN (Action Name)
- AS (Action Script name)
- CN (Class Name)
- DN (Datum Name)
- FN (Field Name)
- FU (Function name)
- QN (Query Name)
- RN (Relation Name)
- SM (Screen Macro name)
- TN (Transaction Name)
- UN (Update function Name)

• CONTAINER - a textual form of where a name is used

• CONTAINER_TYPE - codes appropriate to the type of the CONTAINER value: ̂
- AS (Action Script)
- DL (Display Language program)
- HP (Hippo Program)
- QN (Query)
- QD (Query Dictionary)
- RN (Relation)
- SC (Schema)
- TN (Transaction)
- UN (Update function)

• DEFINITION_USE (D/U) - indicates definition or use of the name

• REMARK - a comment on the name

Figure 2.2: The Thesaurus relation

Determining the container types for the respective definitions and uses is not
straightforward. For example, relations are naturally defined in the schema, but where
are they used? At least indirectly, they are used in all kinds of application programs.
However, they are only used directly in queries and update functions, which therefore
have been chosen as the container types. Similarly, one may think of fields as being
defined in the schema. However, since they are always defined as part of a relation,
relation has become their container type. This also ensures uniqueness of a (field name,
container value) pair. A (field name, “schema") pair would not necessarily have been

 ̂ The reason for the apparently unnatural choice of CONTAINER_TYPE codes in some cases is that
they should match the NAME_TYPE codes where there are correspondences.

17

CHAPTER 2: THE HMS THESAURUS TOOL

unique. The relationships between the NAME_TYPE, CONTAINER_TYPE and
DEFINITION_USE fields are illustrated by Table 2.1. The leftmost column contains the
various name types. The other columns represent the container types. A ‘D’ (‘U’) in a
cell indicates that a name of the given name type can be defined (used) in a container of
the given container type.

NAME_TYPE CONTAINER_TYPE

AS DL HP QN QD RN SC TN UN

AN (Action Name) D ,U U D ,U

AS (Action Script name) D ,U

CN (Class Name) D ,U

DN (Datum Name) U U U D D

FN (Field Name) U D U
FU (Function name) u D ,U

ON (Query Name) u U U D

RN (Relation Name) U D U
SM (Screen Macro name) U

TN (Transaction Name) u U D

UN (Update function Name) u U D D

Table 2.1: NAMEJTYPE distributed by CONTAINERJTYPE and DEFINITIONJJSE

By November 1991, the HMS system comprised about 150,000 lines of source code, but
the thesaurus provides a better measurement of the size: the number of programmer-
introduced names of various types. Figure 2.3 shows the proportion of definitions and
uses for each name type. There are 9152 defined names which are used 15098 times, i.e.,
a total of 24250 name occurrences. These measurements include only unique
occurrences within a container type. That is, if, for example, a datum is referred to
several times within an action, it is registered as only one entry in the thesaurus.
Information about duplicated name occurrences within a container was not considered
necessary for the HMS project. ̂ If several entries for the same name were to be recorded,
then an indication of the place within the container should also be present (e.g. line
number and possibly word number within a file). However, including duplicates would
have increased the volume of the thesaurus by 100%.

Among the container types, duplicates occur only in action scripts, Display Language programs and
Hippo programs.

18

CHAPTER 2: THE HMS THESAURUS TOOL

6 0 0 0 -

5 0 0 0 -
■

(Jz 4 0 0 0 -
LU

O'
LU 3 0 0 0 -
Dd
LU ■

2 0 0 0 -

1000-

0-

m

Use
Definition

DN FN AN CN SM RN QN UN AS FU TN

NAME TYPE

Figure 2.3: Definitions and uses o f names distributed by NAM EJTYPE

The apparently low use of action scripts and update functions should be explained. There
are 168 action scripts that are called in the Hippo code. Another sort of use is that an
action script may be associated with a class having the same name as the script. There
lire 128 such associations. Among the 322 defined update functions, 237 are contained in
transactions and are thus only called implicitly when the associated transaction is called.

Normally, we would expect fewer definitions than uses. Figure 2.3 shows, however,
that actions (AN), datums (DN), functions (FU) and update functions (UN) all have more
definitions than uses. The major reason for this inconsistent state is that the data was
recorded in a very active part of the development. At that stage it is natural to define
names that are not yet referenced in programs.

2.2.1.2 The Query_Dictionary Relation

In order to find the effects of changes to schemata, queries and update functions, the
Query_Dictionary relation was introduced which describes direct correspondences
between fields of the relations and datums used in the Display Language or Hippo
programs (Figure 2.4). This information cannot generally be inferred from the Thesaurus
relation since neither a field nor a datum is globally unique. For example, a field
SURNAME may be the surname of a patient or the surname of a GP. However, a field is
unique within a relation, and a datum is unique within a QDfunctionK

A QDfunction denotes either a query or an update function defined in the query dictionary.

19

CHAPTER 2: THE HMS THESAURUS TOOL

• RELATION

• FIELD

• QDFUNCTION - a name of a query or update function

• DATUM

Figure 2.4: The Query JDictionary relation

2.2.1.3 The Versions_Thesaurus Relation

The Versions_Thesaums relation is like the Thesaurus relation but for two added fields
that specify whether a name has been added or deleted and the date of the incident
(Figure 2.5). A change to the name of a relation, for example, has been registered as one
deletion and one addition. It is generally impossible for a tool to distinguish between a
rename and a deletion followed by an addition without any user provided information. If
the structure of the relation changes as well (fields added, deleted or changed), it is also a
semantic problem to decide whether the same relation has been modified or a new one
has been created.,ation is registered as one deletion and one addition, whereas a change to
the type of a field is not captured in the thesaurus at present.

The fields of the Thesaurus relation

ADD_DELETE (A/D) - specifies whether the name was added or deleted

INTRODUCED - date of addition/deletion

Figure 2.5: The Versions_Thesaurus relation

An entry with a ‘D’ in the ADD_DELETE field will always have a corresponding entry
with the field value ‘A’. The corresponding entry will have a prior INTRODUCED value
and incidentally another system-generated key (SEQ_NO value).

2.2.2 The Thesaurus Interface

The interface of the thesaurus tool provides queries for general name information, impact
analysis and simple consistency checks. An ^Tnformation’" button informs the user about
the structure of the thesaurus relations including the fields and their value sets. The
interface has one window displaying information from the Thesaurus relation and another
window displaying information from the Query_Dictionary relation. The functionality of
the interface is shown in Figure 2.6 which is a sketch of the actual screen (the SEQ_NO

20

CHAPTER!: THE HMS THESAURUS TOOL

and REMARK fields are not included). The real system is implemented using colour-
graphics on high resolution workstations. Some (poor quality) screen dumps showing the
results of various queries are presented in [Sj0berg 1991].

HMS THESAURUS

Information Sorted
Tables

Lookup Change to
Relation

Change
to Field

Change to
QDfunction

Consistency
Check

Name Name_Typ€ Container Cont_Type Def_Use
BedBureauWards QN bb.hip HP u
BEDS DN bb.hip HP u
SlotList QN design,hip HP u
BED_NO DN design.hip HP u
OLD_BED_NO DN design.hip HP u
BedList QN nurse.hip HP u
BED_NO DN nurse.hip HP u
BedList QN nurse.s DL u
BED_NO DN nurse.s DL u

Thesaurus Relation

Relation Field QDfunction Datum
BED BED_NO BedBureauWards BEDS
BED BED_NO BedList BED_NO
BED BED_NO SlotList BED_NO
BED BED_NO SlotList OLD_BED_NO

i

I
Query Dictionary Relation

Figure 2.6: The thesaurus interface

2.2.2.1 Name Usage Information

To be an efficient and reliable programmer on the HMS project, a certain knowledge of
the existing software is essential. In particular, this is a potential problem when a
programmer starts working on the project or has been away for some time.

As shown in Figure 2.6, the main screen contains two tables that display data from
the Thesaurus and Query_Dictionary relations. Two buttons, ''Sorted Tables” and
"Lookup", provide sorted data and lookup of names according to user specified search
criteria. Clicking on the "Sorted Tables” button invokes a pull-down menu from which
the user can select the relation and the fields by which the output should be sorted.
Similarly, the pull-down menu of the "Lookup" button provides the user with the option

21

CHAPTER 2: THE HMS THESAURUS TOOL

of Specifying a (substring of a) name and restricting the output by selecting only
definitions or uses, a specific name type and/or a specific container type.

As mentioned, even though a name may have several occurrences within a container
(a script or program), there is only one entry for the name per container in the Thesaurus
relation. It is the responsibility of the programmer to find all the occurrences within the
container. It should be a trivial task to use the search functions of an editor or browser to
find the exact location of the name occurrences.

2.2.2.2 Schema Evolution - Impact Analysis

As the HMS applications grow, the problem of managing changes to meta-data becomes
increasingly difficult. One important category of meta-data is the database schema, i.e.,
the definitions of the relations and fields. A list of logical changes^ to a relational schema
is:

1) Add a new relation.

2) Rename a relation.

3) Delete a relation.

4) Add a new field to a relation.

5) Rename a field.

6) Change the type of a field.

7) Delete a field from a relation.

Deletion of a relation or field may typically be a consequence of vertically factoring
(splitting) relations. Deletion of a relation may also result from joining two relations into
one.

The traditional answer to coping with schema changes in a relational database is to
interface all software via topic specific views. Changes in the definition of these views
are then made to mask the changes in the application programs. However, many of the
changes are introduced to effect changes in system behaviour, and these changes must be
appropriately propagated rather than masked. Views are not used in HMS since the query
dictionary provides the necessary flexibility and indirection. When a change is made to
the meta-data, it is necessary to identify which queries and which application programs
are potentially affected. The programmer then has to decide where the change should be
propagated and where it should be masked.

Impact analysis (also referred to as “what-if analysis”) helps in determining where a
change should be propagated. If an existing relation or field is to be changed, then an

 ̂ Physical reorganisation is not an issue in this chapter as most RDBMSs absorb such changes
obviating the need to change applications.

22

CHAPTER 2: THE HMS THESAURUS TOOL

impact analysis will inform the places where that relation or field is used. However, there
is no indication of where additions should be propagated. It is of course a semantic
problem to identify such places, but if a field is added, for example, at least one
application program and screen must be changed to collect the new data, and at least one
program must eventually use it.

The thesaurus interface provides three “Change to X” buttons (Figure 2.6) which
execute queries for finding the name occurrences possibly affected by changes to a
relation, field or QDfunction function. Table 2.1 shows that relations (RN) are used in
queries (QN) or update functions (UN) which, in turn, are used in Display Language
programs (DL) and Hippo programs (HP). Consequently, the query executed by the
"Change to Relation” button may be explained as: “If this relation is changed, which
QDfunctions and thereby which Display Language programs and Hippo programs are
then affected?”

The effect of changing a field^ is more complicated to work out. A field (FN) may
be used in several QDfunctions (QN or UN). Since a field is not necessarily globally
unique, the relation of the field has to be specified in order to find the affected
QDfunctions. Via the QDfunctions, field values are transferred to datums used in
Display Language or Hippo programs. Hence, if a field has been changed, the programs
containing the corresponding datums will also be affected. The correspondence between
a field and a datum, which is not always a one-to-one correspondence,^ is described by
the Query_Dictionary relation.

The "Change to Field' button invokes the impact analysis of changing a field. If the
query dictionary table of the interface contains some entries (a result of another query), a
user can select (say) an occurrence of a field name and then press the button. Figure 2.6
shows an example where the field BED_NO of the BED relation has been selected. In the
query dictionary window, all entries having the actual field name are displayed. The
thesaurus window displays all occurrences^ of all datums corresponding to this field and
all queries and update functions containing occurrences of the field. The interface works
similarly for the other “Change to X” buttons.

Not only schema changes, but changes to other categories of software components
may also significantly affect other parts of an application. For example, a change to a
QDfunction will affect the Display Language and Hippo programs that use that
QDfunction. Therefore, included in the interface is also a "Change to QDfunction”

 ̂ The problem discussed concerns changing the definition o f a field, not its value, o f course.
 ̂ A datum may obtain its value as a function of several fields; there are 0.62 datums per field on

average.
 ̂ In this thesis occurrence denotes an occurrence of an identifier - a name of a datum, field, etc., not its

definition or value.

23

CHAPTER 2: THE HMS THESAURUS TOOL

button which performs a query that finds all programs using a selected query or update
function and all relations and fields referred to within that query or update function.

2.2.2 3 Consistency Checks

In a large-scale project such as the HMS project, software will be changed continuously.
A high frequency of changes implies a high risk of leaving the application software in an
inconsistent state. One kind of inconsistency is that a name denoting an action, class,
macro, etc. is defined, but not used. Another, more serious kind, is that a name is used,
but not defined. By clicking the "Consistency ChecJd’ button, the results from the check
are displayed on the screen. The results can also be presented in the form of a report.

2 2.2.4 Change History

A second screen of the thesaurus interface displays data from the Versions_Thesaurus
relation. A "Changes Between” button invokes a query that finds all the thesaurus entries
added or deleted within a time interval specified by the user. Table 2.2 shows changes in
the interval from 29/6/90 to 12/10/90.

NAME
NAME
TYPE CONTAINER

CONT
TYPE

DEE
USE INTRODUCED

ADD_
DELETE

change_ward AN diary.hip HP D 29-JUN-90 A
change_ward AN diary.hip HP D 03-AUG-90 D
change_ward AN diary.hip HP D 10-AUG-90 A
other_login AN WardAccess.s DL U 20-JUL-90 A
other_login AN WardAccess.s DL U 03-AUG-90 D
other_login AN WardAccess.s DL U 07-SEP-90 A
AdminMenu AS admin.hip HP D 20-JUL-90 A
AdminMenu AS admin.hip HP D 27-JUL-90 D
AdminMenu AS admin.hip HP D 17-AUG-90 A
AdminMenu CN AdminMenu.s DL D 20-JUL-90 A
AdminMenu CN AdminMenu. s DL D 27-JUL-90 D
AdminMenu CN AdminMenu.s DL D 17-AUG-90 A

TIME_OUT FN TERMINAL RN D 20-JUL-90 A
TIME_OUT FN TERMINAL RN D 27-JUL-90 D
TIME_OUT FN TERMINAL RN D 10-AUG-90 A
verify FU admin.hip HP U 20-JUL-90 A
verify FU admin.hip HP U 27-JUL-90 D
verify FU admin.hip HP U 12-OCT-90 A
TERMINAL RN SCHEMA SC D 20-JUL-90 A
TERMINAL RN SCHEMA SC D 27-JUL-90 D
TERMINAL RN SCHEMA SC D 10-AUG-90 A

Table 2.2: Excerpt from the Versions_The sauras relation

As a curiosity, the table also shows that some names were introduced and then deleted -
and thereafter reintroduced. For example, the relation ‘TERM INAL’ was introduced
20/7/90, deleted 27/7/90 and then reintroduced 10/8/90. The fields of this relation (e.g.
‘TIME_OUT’) will of course follow the same course of events. It might be the case that a

24

CHAPTER 2: THE HMS THESAURUS TOOL

reintroduced name denotes an object with a different structure and/or semantics than the
object denoted by the first introduced name. It is more likely, however, that the “same”
object has been reintroduced after - for some reason - having temporarily been removed
from the application.

By specifying appropriate clauses on the INTRODUCED and ADD_DELETE fields,
one can generate a complete version of the Thesaurus relation that represents the state at
any given time. So, in theory the Thesaurus relation is unnecessary since all its
information can be obtained from Versions_Thesaurus. Using only the
Versions_Thesaurus, however, would be very inconvenient. The implementation of
interfaces and queries would be much more complicated, and the performance would be
drastically impaired.

2.2.3 Implementation

The generation of the names and the subsequent update of the thesaurus are performed by
a combination of C-shell, awk and sed scripts and one C program. The C-shell scripts
use, amongst others, the Unix commands awk, cpp, diff, grep, sed, sort and uniq [Sun
Microsystems 1988a]. The sqlplus and sqlload commands invoke Oracle. A summary of
the use of these commands follows:

• The awk macro language facilitates pattern recognition in text files. The lines and
words of a file are automatically assigned to (an array of) variables. Other
predefined variables contain the file name, number of records, etc. The command
awk also includes a subset of the C programming language (e.g. the prm//* function
which is used to write the names and related information into an appropriate form for
the loader). The awk scripts constitute the main component concerning the search
patterns and rules for finding the names and additional information to be inserted
into the Thesaurus relation. The patterns and the rules depend on the name type,
container type and whether the definition or a use of the name is searched for.

• The Display Language includes C macros and the pre-processor conunands ^define,
#else, #endif, #ifdef, Mfndef dind Mnclude. The code must be expanded before the
detailed name analysis can be performed by the thesaurus tool. This is provided by a
script that calls cpp (C pre-processor).^

• The difference between the current version of the Thesaurus relation and the last
generated data is detected by diff. This delta is used for update of the
Versions_Thesaurus relation (see below).

1 Analysing all files only once proved difficult since they are expanded by cpp each time they are
included in another file. (They should only be analysed when it is their turn in the traversal o f the
directories.) However, cpp includes file name on the output so a special awk script was developed to
exclude all the redundant cases.

25

CHAPTER 2: THE HMS THESAURUS TOOL

• The grep command searches for patterns and is used to reduce the amount of code
before it is handed to the awk scripts.

• The sed scripts are used for automatic string substitution - a means of massaging the
code before it is analysed by the awk scripts.

• To prevent duplicates of names within the same container, the sort and uniq
commands are used.

• The sqlplus command invokes Oracle with scripts containing SQL queries
performing the following tasks:

i) generate the current version of the HMS schemata by querying the system
catalogue;

ii) unload the contents of the thesaurus which is used for comparison (see below);
and

iii) delete old contents of the thesaurus relations.

• The sqlload command provides the loading of the generated data into the database.

• A modified version of the query dictionary parser (a C program) analyses the query
dictionary and generates the data to be inserted into the Thesaurus and
Query_Dictionary relations.

The update of the Thesaurus relation is performed according to the following procedure.
The contents of the current Thesaurus relation are unloaded to a file. The sequence
numbers are deleted, and the file is then compared with the data just generated. A leading
< on a line produced by d ijf indicates that the line is only in the generated data and

should thus be inserted into the Thesaurus relation. A leading ‘>’ on a line produced by
Jijÿ'indicates that the line is only in the Thesaurus relation and should thus be removed.
The Query_Dictionary relation is updated in a similar manner.

The Versions_Thesaurus relation is also updated by using the output from d iff
mentioned above. The new data is inserted with an ‘A’ as the ADD_DELETE value.
Instead of removing the disused names, as is the case with the Thesaurus relation, entries
with a ‘D’ as the ADD DELETE value are inserted.

26

CHAPTER 2: THE HMS THESAURUS TOOL

GENERATION

doBED_BUREAU*
/doGP* - insertThes*

UPDATE

f
-----hippo.sed HT
-----hippo.awk

hippoGen* ----- hippoAction.awk
actionExec*

__ -----hippoFunction.awk

screensGen*
screensMacro.awk DL
screens.sed

 screenscpp.sed

'sqlplus s c l
schema.awk

QDThesaurus.awk

QueryDictionary.awk

QD

unload*
delSeqno.awk

diffAdd.awk

diffPelete.awk

INSERT.ctI

THESAURUS

diffVersions.awk VERSIONS_THESAURUS
VERSIONSTHESAURUS.ctI

unload* QUERY_DICTIONARY
diffAdd.awk
diffDelete.awk
INSERTQD.ctI

Figure 2.7; The thesaurus scripts and programs

Figure 2.7 describes the relationships between the scripts performing the data generation
and the subsequent update of the meta-data relations. The extensions ‘awk’, ‘sed’,
and ‘ctl’ indicate C-shell, awk, sed and sqlloader control scripts, respectively. The upper
part of the figure shows the scripts responsible for the data generation; the rounded boxes
indicate a set of scripts for each of the container types HT, DL, SC and QD. The lower
part shows the scripts responsible for the update.

27

CHAPTER 2: THE HMS THESAURUS TOOL

2.2.4 Evaluation

The usefulness of the tool in the HMS project was evident after short time. For example,
the database administrator used the tool to find all the QDfunctions using the various
relations during a reorganisation of the database. The tool has also been successfully
used for consistency checks and software reuse. This section also discusses other aspects
influencing the success of the tool such as performance, how easy it is to learn and use
the tool, and alternatives to the tool.

2.2.4.1 Detecting Inconsistencies

The thesaurus tool has proved useful in the process of finding bugs and inconsistencies in
the HMS software. A few examples follow:

• Unused actions were found. The most common reason was that existing actions
were replaced with new ones without the progranuners remembering to delete the old
ones.

• A few calls to non-defined actions were found.

• Inconsistent use of the macro commands Mfdef, M fndefm d Mnclude was detected,
e.g. C-shell environment variables not set as appropriate, non-existent files included
(because the file names had been changed in the meantime), etc.

Some of the inconsistencies found by the tool (e.g. calling a non-defined action) might
have been detected at run-time during a test. However, there will always be cases of bugs
not detected in a test (they may occur when the system has been operational for half a
year). In any case, it is advantageous to detect inconsistencies or bugs as early as
possible.

2.2.4 2 Software Reuse

As in every large-scale application development project, one should aim at software
reuse. The extent of reuse depends heavily on the information provided about the
existing software and how the software is documented. As seems to be the case in most
application development projects, in the HMS project there is hardly any written
information available about software suitable for reuse, and the code itself is poorly
documented. In the HMS case, the information is given accidentally and informally
among the programmers. This may work as long as the project is small and there are
only a few programmers, but in order to cope with growth in size and complexity, another
strategy has to be chosen.

It is believed that the thesaurus tool will encourage code reuse. For example, the tool
was helpful for the author in that several classes and screens, reused in the
implementation of thesaurus interface, were detected via the thesaurus data.

2 8

CHAPTER 2: THE HMS THESAURUS TOOL

However, to really benefit from the tool with respect to reuse, it should be extended
with that purpose in mind. For example, one could introduce appropriate conventions for
comments in the REMARK field of the Thesaurus relation. A problem is that
programmers are generally reluctant to make comments. By introducing conventions, it
would be easier for the progranuners to make the comments, and they might become
more informative.

2.2.4.S Performance

The time it takes to generate and update the thesaurus data and the response times of the
queries provided by the interface are two aspects of the thesaurus tool’s performance. By
July 1990 it took about 45 minutes to build the whole thesaurus for the BED BUREAU
and GP applications. Performance is no problem since building is normally done
overnight, and the cost of machine resources, at this stage, is effectively negligible. (The
log in Appendix A shows how long it takes to build the various parts of the thesaurus.)

Some performance tests on the various queries of the interface have been carried out.
There were approximately 4300 records in the Thesaurus relation and 1000 records in the
Query_Dictionary relation at the time of the tests. Among the results were the following:

• The “Lookup” operation, retrieving between 4 and 70 records for various search
strings, used between 5 and 13 seconds.

• The three “Change to X” operations, retrieving between 12 and 20 records, used
between 3 and 15 seconds.

• The “Consistency Check” used between 3 and 31 seconds for the respective name
types.

In general, response times depend of course on the actual computer, the machine load, the
size of the thesaurus, the use of indices, etc. Nevertheless, since the thesaurus tool is not
of the kind that people interact with continuously, the measurements presented above
indicate acceptable response times.

2.2.4.4 Learning and Understanding

The effort needed to become an active user of the thesaurus tool can be divided into two.
First, the user must learn how to invoke the features for sort, look-up, change effects,
consistency checks, etc. This should be relatively straightforward since the interface is
window-based with pull-down menus, buttons, help menus, etc. Second, and harder, is to
understand the underlying model, which is necessary in order to interpret the results.
That is, the user must:

• know the name types and container types

 ̂ This information is provided by the ''Information" button.

29

CHAPTER 2: THE HMS THESAURUS TOOL

• understand the distinction between definition and use of names; and

• understand how the predefined queries for consistency checks, change effects, etc.
operate on the thesaurus data.

The knowledge and understanding mentioned above are directly related to the knowledge
and understanding of the actual application system. That is, if the general understanding
of the system is good, understanding and using the tool should be straightforward - and
correspondingly difficult if the general understanding is poor. If the understanding is
poor, it should be improved in any case. So, acquiring the knowledge needed for using
the thesaurus tool should not be regarded as an unnecessary burden on the software
builder.

2.2.4.S Alternatives to the Tool

There are two principal strategies for solving the problems of finding the place of an
action or a function call, the uses of a macro, the effects of schema change, etc. without
the thesaurus tool. First, it is common that a few people are responsible for some part of
the application, and they may feel they remember the software well enough to answer any
question about the application. This might be possible as long as the application is small
or is in an early phase of the development, but such a strategy is impractical in the long
run.

Second, the system catalogue of the RDBMS and Unix commands like grep can be
used. The system catalogue, however, yields only database specific information such as
schema descriptions; it contains no information related to other parts of the application.
Grep and other Unix commands can be used to search for names in application programs,
but have several limitations compared with the thesaurus tool:

• It may be awkward to do grep on large applications with many (sub)directories.
Experience shows that the risk of neglecting cases is significant.

• Grep cannot be applied to all parts of an application, e.g. not to the database schema.

• Grep may for example return the name of a query (say) 20 times in one Hippo
program. A programmer can, of course, use the sort and uniq commands to remove
duplicates, as does the thesaurus tool, but after all, the operations of the programmer
cannot be as consistent and thorough as the operations of the tool.

• Since grep returns whole lines at a time, a lot of noise - irrelevant data - is included.

• Using grep, etc. programmers have to scan the whole application each time they
need the information. This may take a long time and is inefficient with respect to
programmer effort. In contrast, the thesaurus tool has the information already in its
meta-database. Therefore, obtaining the information by executing predefined queries

30

CHAPTER 2: THE HMS THESAURUS TOOL

on the meta-database takes less time and is more efficient. On the other hand, there
is a small chance of the thesaurus’ meta-data being out of date.

Regarding the consistency check and the impact analysis, their implemented queries are
so complex that they are unlikely to be captured fully by ad hoc use of the grep, uniq, etc.
commands.

2.2.4.6 Granularity of Container Types

It could be questioned whether the software builders would benefit from a finer partition
of container types. For example, actions and classes could be specified as containers.
There is a trade-off, however, between more detailed information and the risk of losing
the overview of the thesaurus. For example, the notation for specifying the container of a
name occurrence would be more complicated. Another consequence is that having a
container type CL (class) should also imply having a container type OB (object).
(Regarded as container types, there is no intrinsic difference between a class and an
object). However, having an OB container type would be inconvenient in two ways.
First, objects may be nested indefinitely (in theory). The reference to an object might
therefore be an arbitrary long list of names. Second, due to the high number of objects
(about 2000 in the BED BUREAU application by June 1990), the risk of losing the
overview of the structure is significant.

2.2.4.7 Recording Change

The present version of the Versions_Thesaurus relation records only additions and
deletions of name occurrences. Changes to the definitions themselves, i.e., the body code
of the screen definitions (classes and objects in the Display Language), actions, functions,
queries and update functions, etc. are not captured. Detecting and informing about such
changes are complicated but would be very useful. One of the major problems of
software development in teams is that one team member changes a definition, and the
first time that another team member finds out about this is when his or her part fails.

A changed definition could be stored with a ‘C’ in the ADD_DELETE field^ of the
Versions_Thesaurus relation and the time for the incident in the INTRODUCED field as
in the add/delete cases. In addition, the tool should ideally record the category of change.
Proposing interesting change categories is not straightforward, but a few examples are: a
new button referred to in an action, a field no longer referred to in an update function, an
added join in a query, etc. An even harder problem is to detect the actual change.
Depending on the requirement of the kind of change that should be provided, there are
several options for presenting the differences between new and old versions:

The field should be renamed accordingly.

31

CHAPTER 2: THE HMS THESAURUS TOOL

i) present differences in the form of textual deltas;

ii) present differences in the form of new, removed or changed statements of the code;
or

iii) present differences in terms of added or removed names within the containers.

The first option could be provided by, for example, applying the Unix commands diff or
comm to the modified and old versions of the definitions of a screen, action, etc.
Alternatively, the thesaurus tool could exploit delta information provided by version
control systems such as RCS (see Section 3.3.1). Finding the semantics of the change
would then be up to the user. With hundreds or thousands of screens, actions, etc. this
would probably be an expensive task. By storing the code in the form of an abstract
syntax tree or a similar structure, more detailed information about the kind of change in
the code could be provided (second option). The first and second options would require
the previous version of the code to be stored in order to produce the deltas and would thus
imply major modifications to the present thesaurus tool.

If change information in terms of additions and deletions of name occurrences within
a container is sufficient (third option), then the current Versions_Thesaurus relation could
be used unchanged. That is, for a given container, information about added or deleted
names of types corresponding to the container type could be provided. For example,
changes to an action script could be measured in terms of added or deleted actions,
datums, functions, queries, transactions or update functions. (Table 2.1 shows the
possible name types for each container type.) If found convenient, the container types
may be refined in order to provide more detailed information (see previous section).

2.2.4.S The Tool In an Organisational Context

When introducing the thesaurus tool into an application development environment, one
should pose the following questions:

• Who should use the tool?

• How should the working process be organised in order to benefit as much as possible
from the tool?

• How should the project management motivate and encourage active use of the tool?

Concerning the consistency check feature, it is particularly important that inexperienced
and immature programmers find bugs and inconsistencies by themselves before the
software is released. The only purpose of the tool should be to improve the quality of the
software; a negative attitude may be created if it is felt that the tool is used for individual
monitoring purposes, such as by the project management.

32

CHAPTER 2: THE HMS THESAURUS TOOL

2.3 Quantifying Evolution

By utilising the Versions_Thesaurus relation of the thesaurus tool, all changes (at present
only additions and deletions) occurring within a given time interval (e.g. last year, month,
week) can be found. The relation can thus provide information about the project
development at different times. Usually, software engineers are too constrained by short
term goals to compile such statistics. One of the advantages of the thesaurus tool is that
all data is generated automatically without the need of any user intervention. In general,
the tool may be a helpful means for studying the behaviour of long-lived database
systems [Atkinson 1990].

One area of system evolution that has been of particular interest recently is changes
to database schemata (schema evolution). The effects of schema changes are divided into
three categories: ̂

i) effects on other parts of the schema;

ii) effects on extensional data; and

iii) effects on application programs.

Typically, there will be many application programs that utilise a type that has been
changed in the schema. These programs may use screen definitions, query definitions,
procedures, etc. It is not difficult to imagine that incompatibilities between a schema
type and the corresponding type assumed by the application programs may have serious
consequences.

Recent work is concentrated in the area of object-oriented databases [Banerjee et al.
1987, Penney and Stein 1987, Skarra and Zdonik 1987, Kim and Chou 1988, Panel 1989,
Lemer and Habermann 1990] where the consequences of changing a type (class) may
lead to more significant changes in the schema itself than in a relational environment, but
the consequences for extensional data and application code may be as serious as in a
relational environment.

The purpose of this section is to present the results of an experiment that was
conducted with the intention of quantifying the evolution of the HMS schema and
quantifying the consequences of such changes on the rest of the application code. The
period for the study started in June 1990 and continued until December 1991. Initially,
the HMS system was analysed every fortnight, but due to repetitive changes to the
development environment and because the author was not present to instantly adapt the
tool to this kind of change, sustaining this frequency proved impossible (Section 2.3.3).
All measurements until November 1990 were in the development period. Field trials
began in November 1990. During the year from November 1990 to November 1991, the

Chapter 3 provides a more detailed discussion.

33

CHAPTER 2: THE HMS THESAURUS TOOL

HMS system development continued with operational use in one hospital beginning in
May 1991.* By December 1991 HMS was running in several hospitals. The project team
grew from six to thirteen people during the period of investigation.

2.3.1 Evolution of the HMS Schema

During the period of study, the number of relations increased from 23 to 55 (139%
increase) and the number of fields increased from 178 to 666 (274%). However, what is
more interesting than this considerable growth in size, is that every relation has been
changed. At the beginning of the development almost all changes were additions. After
the system provided a prototype and later went into production use, there was no
diminution in the number of changes, but the additions and deletions were more nearly in
balance.

Date

Relations Fields

Added Deleted Current Added Deleted Current

22/6/90 23 178
6/7/90 6 0 29 103 0 281
20/7/90 13 0 42 78 0 359
3/8/90 1 -1 42 9 -15 353
17/8/90 18 0 60 97 0 450
Oct-90 3 -23 40 52 -126 376
Nov-90 47 -40 47 528 -376 528
Nov-91 40 -28 59 550 -290 788
Dec-91 20 -24 55 229 -351 666

Total 148 -116 1646 -1158

Table 2.3: Added and deleted relations and fields in the HMS schema

Table 2.3 shows the development for the relations and fields. (A diagrammatic
interpretation is given in Figures 2.8 and 2.9, respectively.) The number of deleted
relations and fields appears as a negative value, so the Current value is the previous
Current value plus the values of the Added and Deleted columns. Added and Deleted
include both fields explicitly added to and deleted from a relation and fields added and
deleted implicitly as a part of an addition or deletion of a relation. Most changes to the
fields are such implicit changes. However, there are a substantial number of explicitly
added and deleted fields as well. For example, of the 20 relations found in both the
November 90 and November 91 schemata, only 4 have unchanged structure (the fields

The operational system concerned the management of in-patient information. Many of the changes
were the result of improvements to this system, changed requirements by government (the minimum
data set) and the development of an out-patients system due for delivery in April 1992.

34

CHAPTER 2: THE HMS THESAURUS TOOL

remained the same). During the period of examination, a total of 148 relations and 1646
fields have been added, whereas respectively 116 and 1158 have been deleted. That is,
there have been 28% (relations) and 42% (fields) more additions than deletions.

o O o
O (J) O

O
CD

o
CD

\
N

cn
00 (T) CO CO

N - \ 00 > > Ü
(\J O N O O o (U
f \] CD CM CO O z z Û H Added

B Deleted

O C urrent

Figure 2.8: Change history o f the relations

o O o(7) O CD O CD o o\ CO CD CD CDCD \ \ 00\ N \ CO \ > >
CM O N o O O
CM CD CM CO t— o z z Q

8 0 0 T

60 0 --

4 0 0 --

200 - -

- 2 0 0 - -

-4 0 0 -L

H Added

B Deleted

Cl C urrent

Figure 2.9: Change history o f the fields

As mentioned, rename of a field or relation and changes to the type* of a field are not
captured by the automatic measurements. However, a visual check on the November 91
and December 91 schemata found that there was only one rename of a relation where the

A very general interpretation of the type concept is here used which includes the field properties
unique, non-nulls, length and representation {integer, char, date, etc.).

35

CHAPTER 2: THE HMS THESAURUS TOOL

relation's structure was unchanged, that 3 relations were vertically factored and that in
one case 2 relations were joined together. The rest were “pure” additions and deletions.
Regarding the fields, there were 18 renamings, 4 changes of unique/non-nulls, 23 changes
of length and 4 changes of representation (3 from character to integer and one vice versa),
i.e., 31 changes of field type. Respectively 31 and 48 fields were explicitly added and
deleted.

In a large-scale project, with many people involved, there will always be different
interests and opinions on how to solve the problems. Changes of the specification,
context and customer generate drastic changes to the project. This was, for example, the
case in the HMS project when the November 90 version replaced the October 90 version.

2.3.2 Consequences of the Schema Evolution

The previous section gives an impression of how significantly the HMS schema changed
during the period of investigation. In order to provide a consistent application system,
such schema changes have to be propagated to the application code. This necessary
change propagation will be discussed in terms of the extent to which programs must be
changed (edited) for each kind of schema change. The modification of the Nov-91
schema into the Dec-91 schema will be used as an example when describing the impact
on the application code. A presentation of the use of the relations and fields in the Nov-
91 version of the HMS system should help one to understand the example.

HMS_PATIENTS
(p a t ie n t jd ,

su rn a m e ,...)

query AdmissionHall =
[se lect

HMS_PATIENTS.surname...]
1 Surnam e }

SCHEMA

Direct use

QUERY DICTIONARY

Indirect use

DISPLAY LANGUAGE

HIPPO

Figure 2.10: Direct and indirect use o f relations and fields

Screens, actions, functions, queries, update functions, etc. are all dependent on the
schema. The references to relations and fields in the screens and actions are all indirect
via the query dictionary. The query dictionary was introduced to absorb change. Its
analogy is a traditional view mechanism, but the query dictionary is more general
supporting update and allowing interfacing to different DBMSs. Schema changes have
direct consequences only for the query dictionary, but in general it is necessary to
propagate these changes to the Display Language and Hippo code. For example, if the

36

CHAPTER 2: THE HMS THESAURUS TOOL

relation HMS_PATIENTS gets a new field, place_of_birth, the actual values must be entered
via a screen (Display Language code). Furthermore, at least one application program
should utilise this new information. Figure 2.10 illustrates the direct and indirect use of
relations and fields. In the example, the query Adm issionH all uses the field
HMS_PATIENTS.surname whose value is assigned the datum Surname which in turn is
used in Display Language and Hippo code.

Measurement Number Min Max Mean Std Sum

Relations 59 0 101 16.9 27.1 997

Fields 788 0 167 6.6 14.2 5181

Fields grouped by Relation 59 0 795 87.8 178.3 5181

Table 2.4: Direct use o f relations and fields in the query dictionary

Table 2.4 describes the direct use of relations and fields in the query dictionary. The first
measurement, “Relations”, shows that among the 59 relations there is at least one that is
never used {Min) and at least one other used 101 times {Max). The average is 16.9
{Mean), and the total number of times a relation name appears in the query dictionary is
997 {Sum). The standard deviation {Std) is high because most of the use is represented by
only a few relations.

Both the “Fields” and “Fields grouped by Relation” measurements describe use of
the fields. The extra information obtained by introducing “Fields grouped by Relation” is
that the field statistics are related to the associated relation. For example, the maximum
value 795 in row of “Fields grouped by Relation” indicates that there is at least one of the
59 relations that has in total 795 occurrences of its fields. An analysis of the raw data
reveals that the fields of 3 relations constitute 45% of the use which implies a high
standard deviation. The maximum number of occurrences for a field is 167; the average
6.6. The total number of field occurrences in the query dictionary is 5181.

Measurement Number Min Max Mean Std Sum

Fields 788 0 193 5.0 14.0 3946

Fields grouped by Relation 59 0 661 66.9 152.5 3946

Table 2.5: Indirect use o f fields in Display Language and Hippo code

Table 2.5 shows the indirect use of fields in the Display Language and Hippo code.
These measures have been obtained by:

37

CHAPTER 2: THE HMS THESAURUS TOOL

i) finding all correspondences between fields and datums in the queries and update
functions,

ii) finding all the queries/update functions • and datums used in the Display Language or
Hippo code, and

iii) joining the results of i) and ii) by query/update function and datum.

The 788 fields are on average used indirectly 5.0 times, whereas the measure for fields
grouped by relation is 66.9 times. The use of a field and all fields of a relation ranges
from 0 to 193 and 0 to 661 occurrences, respectively.

As an illustration of consequences of schema changes, the effect of the modification
of the Nov-91 schema into the Dec-91 schema is now described. Figure 2.11 shows that
more than one third (36%) of all name occurrences had to be deleted. There were only a
few renamings (less than 1%). The consequences of adding relations and fields are
difficult to measure, but the minimum number of necessary additions can be estimated to
about 10% of the number of existing name occurrences (see discussion below).

35.7%

10. 1%
0 .8%

Rename Delete

Figure 2.11: Consequences of the December 1991 HMS schema modification

A more detailed description of the consequences is given in Table 2.6 which contains one
row for each kind of schema modification. (The number in brackets is the number of
occurrences of the named change.) The change consequences are measured in terms of
how many places that need to be edited for the changed relations and fields. A place is a
position in a query or update function where a relation, field or datum name occurs, or

A transaction call is regarded here as a call to all its containing update functions.

38

CHAPTER 2: THE HMS THESAURUS TOOL

where a datum name in a Display Language or Hippo program occurs. ̂ Duplicates have
been removed. That is, the measurements record only one occurrence of a relation, field
or datum name in each container. (In the actual code there are about twice as many
occurrences.) In Table 2.6 Query Dictionary means queries or update functions and DL
or H means Display Language or Hippo programs.

Operation (occurrences)

Query Dictionary DL or H

TotalRelations Fields Datums Datums

Add relation (19) 38 360 360 360 1118
Add field (31) 62 62 62 186
Rename relation (1) 8 8
Rename field (18) 128 128
Delete relation (23) 268 1555 628 1370 3821
Delete field (48) 351 151 156 658

Total (140) 314 2467 1201 1948 5930

Table 2.6: Consequences o f the December 1991 HMS schema modification

For each added field at least one screen (Display Language code) should collect the new
data, and an update function should insert it into the database. Moreover, at least one
Display Language or Hippo program should eventually use the new data which also
implies a new or modified query. To collect and use the fields of an added relation, the
argument above implies that the relation name must be included in an update function
and query as well. So, the names of the 19 added relations in the Dec-91 schema^ must
be inserted into the query dictionary at least 38 times. These relations have 180 fields
implying that a minimum of 360 places for the fields and 360 places for the
corresponding datums must be edited in the query dictionary and at least the same
number of datum names in the Display Language or Hippo code. It is generally
impossible for a tool to detect places affected by additions. Human intervention is
required.

The renaming of the single relation and the 18 fields cause at least 8 and 128 places
to require editing. There is not necessarily any effect on the Display Language or Hippo
code because the name change may be absorbed in the query dictionary. However, if the
intention is that new field names should be propagated to the corresponding datums, then
97 datums in the query dictionary and their 112 uses in the Display Language and Hippo
code would also have to be edited (not shown in Table 2.6).

 ̂ A place could be localised by, for example, a (line number, word number) pair,

 ̂ Table 2.3 shows 20 added relations (not 19) because the single renamed relation is registered as one
deletion and one addition by the thesaurus tool.

39

CHAPTER 2: THE HMS THESAURUS TOOL

An examination of Table 2.4 reveals that removing a relation will on average affect
87.8 field occurrences in the query dictionary. In the best case, no field occurrences will
need to be edited, but 795 in the worst case. The average number of field occurrences of
the 23 actually deleted relations is 67.6, indicating that these relations are used less than
average. The consequences of the deletions, however, are still significant. The deleted
relations cause 268 removals of the relation names and 1555 removals of the names of
their fields. These field names correspond to 628 datums, which have 1370 occurrences
in the Display Language or Hippo code. In summary, the number of places affected by
the deletion of the 23 relations is 3821.

In addition to the changes described above, some new update functions and queries
will generally be needed which may be referenced in the Display Language or Hippo
code. However, the query dictionary may absorb such changes because the same update
functions and queries can operate on new relations and fields with only internal changes.
That is, their references in Display Language and Hippo code may be unchanged. So,
introducing a query dictionary is one means of alleviating the consequences of schema
changes.

This section has described consequences of schema modifications in terms of the
number of changes to places in which names of relations, fields and datums occur. It
should be emphasised that the actual number of changes to the code will be much larger.
For example, if a relation is added, not only will the names of the relation, its fields and
corresponding datums be added (at least twice), but other code segments related to these
items will be added as well.

2.3.3 Problems of Measuring Evolution

The thesaurus tool was installed to measure the changes to the HMS schema and its
consequences over the 18 month period from June 1990 to December 1991. However, in
addition to the changes to the HMS schema and application programs, the system
structure and development environments also changed significantly (mainly to cope with
the growth of the system). The thesaurus tool itself had to be changed correspondingly.^
The kinds of change were:

• Completely new structure and names of directories and change to file name
conventions.

• Changes to the support software (operating system, DBMS, version control systems,
etc.).

1 One year after the initial release of the thesaurus tool, the author was asked by the HMS development
team for a total upgrade of the tool so that it could cope with, and benefit from, the changed
environments.

40

CHAPTER 2: THE HMS THESAURUS TOOL

• Changes to the application programming languages, like modified syntax and
extended run-time library (the query dictionary language. Display Language and
Hippo language were all changed during the period of investigation).

Keeping the continuity of the observations may prove difficult due to such changes. ̂ As
mentioned, they were the reason for the different time intervals shown in Table 2.3.

Anybody attempting to carry out similar experiments or build equivalent tools would
certainly need to cope with changes in the representation and storage organisation of the
software and new versions of programming support software. In the HMS system the
program directories were reorganised without notifying the thesaurus tool. (Figure 2.12
illustrates the scale of change.) This excluded several programs from the analysis for a
short period of time. Another failure was that the program for unloading the thesaurus
data from the database was not recompiled when a new version of Oracle was introduced.
The result was that no data was unloaded. The tool then assumed (wrongly) that the
thesaurus relations were empty, and the subsequent test for change detection was
invalidated. Therefore, thesaurus tools need to be subject to the same change control
mechanisms as the rest of the system under study.

Major changes to the languages used may be unusual in a typical programming
environment. Nevertheless, the HMS application languages are continuously being
developed, and this was experienced as a problem during the implementation of the
thesaurus tool. New constructs, new built-in functions, etc. in the application languages
had to be reflected in the thesaurus analyser. For example, at present, awk scripts test
potential actions and functions against a list of built-in names. All changes have to be
done manually with the risk of being insufficient or not performed at all (at least in a
transitional period). A more sophisticated version of the tool should be driven from the
same data as the parsers of the respective languages, enabling changes to be automatically
reflected in the thesaurus analyser.

Completely automated collection of change data seems impossible. Therefore, in
order to collect reliable measurements of a real-world system, the application
development people on the site must have the time and interest in co-operating with the
experiment. One problem is to convince them that the data collection is worth the
investment. This problem may not be so great if the change measurement and
management tools were closely integrated with the programming environment.

1 In the HMS case, the hardware was at least the same throughout the period of investigation.
Hardware changes may result in yet another category of problems. For example, since the period of
investigation a major part of the work has moved from Unix machines to PCs under Windows 3.

41

CHAPTER 2: THE HMS THESAURUS TOOL

Jun-90: HMS

X I X
Hippo Screens Schema

i / \
*.hip *.s hms.dqp

Dec-91 : HMS

Schema Appi

X X
Appll ... Appin

X l \ X l \ X i \ X l \
Hippo Screens QD Hippo Screens QD Hippo Screens QD Hippo Screens CP

Libi Libn

i 1 1 ir ' 1 ir ' i ir
lip *.s *.c qp *. lip *.s *.d qp *. lip *.s *.c qp *. hip *.s *.c qp

Figure 2.12: Extension of the system structure

2.3.4 Schema Evolution in Different Application Domains

The purpose of collecting change measurements is to identify requirements for
methodologies and tools for maintaining large, long-lived application systems. The
measurements presented in the previous sections were conducted to discover the extent of
change to the schema of a health management system. The results show that, at least in
this application, there were large numbers of changes with considerable consequential
changes to code. However, to acquire more general knowledge about the extent and form
of change, applications systems in various application domains should be measured.

In recent literature on schema evolution, which mostly concerns object-oriented
databases, it is commonly claimed that facilities for schema evolution are more important
in new application areas such as CAD/CAM, CASE design, etc., than in traditional areas
such as payroll, accounting, reservation systems, etc. These claims are generally not
supported by measurements. On the other hand, a study of the evolution of seven
traditional applications (“Sales and payments”, “Property inventory”, etc.) [Marche
1993] ̂ shows that approximately 60% of the entity attributes changed during the period

Marche's study and a summary of the measurements presented in this chapter [Sjpberg 1993], are the
only examples of schema (or data model) evolution measurements found in the literature.

42

CHAPTER 2: THE HMS THESAURUS TOOL

of investigation. The data models ̂ were measured (manually) in a period varying from 6
to 80 months for the respective applications.

In spite of the changes reported in that study, it might be the case that there are fewer
schema changes in traditional application domains than in newer areas. One reason could
of course be that there is less need for change in traditional systems because they are
simpler and their functionality and behaviour better understood. Another reason,
however, could be that the traditional systems are so rigid, and the consequences of
change so enormous, that due to lack of appropriate methods and tools, user requested
change is simply rejected. An example is the Norwegian census database - a CODASYL
network database containing 5 gigabytes of data about 5 million persons. In spite of
changed user needs, the schema has not been changed during the last decade due to
extreme costs - typically measured in units of person-years; any (minor) schema change
would imply database reorganisation and application code modification, the needed work
amounting to at least half a person-year per minor schema change [Glpersen 1993].

2.4 Summary
Research on methodologies and tools for change management should focus on real-world
problems. In accordance with this view, the problems of a health management system
(HMS), currently running in several hospitals in the UK, were investigated in detail.
HMS is implemented as a relational database with application programs written in
different languages tailored for defining and using screens, actions, functions, queries,
update functions, etc. When the system reached a certain size, it was evident that aids in
keeping track of the structure of the system were becoming essential. The thesaurus tool
was therefore developed. The tool is centred around the thesaurus which is a meta
database containing information about names and identifiers defined and used in all the
software including database schemata. For each name occurrence, the thesaurus records
the name type, the container of the occurrence, the container type, whether the occurrence
is a definition or a use, and so forth.

It should be emphasised that the thesaurus spans all the languages used in the HMS
system, which is in contrast to, for example, the system catalogue which only contains
database specific information such as schema descriptions. Hence, the thesaurus tool also
tracks down dependencies across software written in different languages, for example
dependencies between fields used in queries and variables used in screens and actions.
All the thesaurus information is automatically generated, and the thesaurus is regularly
updated (every night).

 ̂ In compliance with Marche’s parlance, data model means in this context a concrete model o f an
application and should thus not be confused with data models such as the relational data model
[Tsichritzis and Lochovsky 1982].

43

CHAPTER 2: THE HMS THESAURUS TOOL

The thesaurus tool has been successfully used in the HMS project. The usefulness is
closely related to scale. So, as the HMS system grows and becomes more complex, with
many new programmers entering the project, the tool is expected to become even more
useful.

The thesaurus tool also contains change history in terms of added and deleted entries.
This information was used in a study conducted with the purpose of quantifying schema
evolution and its impact on the rest of the application. The HMS system was observed
over a period of 18 months. Both the schema changes and their consequences, measured
in terms of potentially affected places in the application code, were significant.

Most of the recent research on schema evolution has focused on object-oriented
databases. Ideas for managing the impact of schema changes on the schema itself (class
hierarchy) and on extensional data (objects) have been implemented. Managing the
consequences for application programs (methods) proves to be a more complex issue.
The results reported in this chapter were based on the use of a relational DBMS and
confirm that change to database schemata is an important issue - independent of the data
model of the actual application - and that change management tools are needed - at least
in the context of advanced and experimental application development such as that
measured here. The extent and sort of change may differ between various application
domains. Others are invited to conduct similar experiments, based on similar technology,
in other environments. Much effort is required, however, to carry out such experiments
and may be one reason for the lack of schema evolution statistics reported in the
literature.

This chapter has discussed the thesaurus tool which was developed due to lack of
appropriate commercial tools. The next chapter surveys existing and proposed software
engineering techniques and tools for use in commerce and industry.

44

Chapter 3
Software Evolution and

Supporting Tools - A Survey

3.1 Introduction
This chapter describes concepts in the field of software engineering with emphasis on
supporting change. State-of-the-art models and tools for change management will be
discussed as a context for the research presented in the subsequent chapters.

3.1.1 The Software Development and Maintenance Process

Software engineering includes models, methodologies, techniques and tools for system
construction and maintenance. The classical model for describing the software
development process is the so-called waterfall model [Royce 1970]. This analysis-
design-implementation-testing model of the software development life cycle, however,
does not comply with the way systems are built in the real world. Obvious inadequacies
are the lack of recognition of the importance of system changes and its description of
system development as a sequential process. The spiral [Boehm 1988] was
introduced to encompass some of the deficiencies of the “waterfall model”. The “spiral
model” adds the notion of risk analysis and allows for iteration of the development tasks.

45

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY

Analysis Design Implementation Testing
Development Development Development Development

& ------ > & ------ > & ------ ^ &
Maintenance Maintenance Maintenance Maintenance

Figure 3.1: The software development and maintenance process

The problem of software maintenance, however, is not explicitly addressed by any of
these models, though it is common to extend the classical model with a separate
maintenance phase after testing [Sommerville 1992, Pressman 1992]. Instead of
representing maintenance as a final phase after testing, each box (phase) in the simplified
model of Figure 3.1 contains elements of both development and maintenance. In
practice, the phases of development are repeated during maintenance. New requirements
must be determined, the existing software application needs re-design and re-coding, new
tests must be undertaken, etc. This complies with the view presented in [Lehman 1980]
that both development and maintenance should be regarded as one process - software
evolution. This does not mean that the software development and software maintenance
life cycles follow the exactly same pattern; at a detailed level the stages and the relative
effort applied to the stages may differ [Chapin 1988]. Nevertheless, a detailed discussion
of the suitability of software process models is not a concern of this thesis. The intention
of this thesis is to describe tools and techniques for managing various kinds of software
change - independent of whether they occur during initial construction or after the
software application has become operational.

The purpose of this introduction is to place, in terms of life cycle phases and levels,
the concepts (processes, tools and tool environments) to be discussed in this chapter. The
emphasised box in Figure 3.1 indicates that implementation aspects will be the focus.
Figure 3.2 presents a more detailed picture. The boxes with thick borders indicate
concepts directly related to the research presented in this thesis. The thin border boxes
represent concepts that are included merely to illustrate the context of the concepts under
consideration. A concept placed in the implementation phase may also be relevant to
other phases (for example, a data dictionary may contain design information). From the
viewpoint of this thesis, however, the concepts are interesting for aspects relevant to
implementation. The figure shows two levels. The lower level describes concepts
pertinent to particular phases, whereas the upper level describes concepts concerned with
the management of the overall software construction and maintenance process.

46

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY

ro M
cn o

O) CT
U L)

(U O)ro (/)

CU {/)

(U (U
(u o)

m (1)

QÛ TO
in 0)c

0) ct: c (U ro
5 O S

m CÛ

q; CO >

O O

Figure 3.2: Concepts in software construction and maintenance

47

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

3.1.1.1 Data Modelling

A data model is characterised by having an inherent structure and a set of techniques and
tools used in the process of designing, constructing and manipulating databases. The data
modelling process produces, among other things, database schema specifications and is
thus closely related to schema management.

3.1.1.2 Formal Specifications

By introducing formal methods and corresponding tools the quality of analysis and
design may be improved [Bjprner 1991]. This may in turn amend the software
implementation in terms of fewer errors and better structure. Consequently, there will be
less need for modification. However, a major part of software change is due to change in
user requirements after system installation (Chapter 1). Work on formal specifications
has also focused on that problem. Determining change effects and necessary change
propagation may be easier if the software is formally specified [Nakagawa and Futatsugi
1991]. Moreover, if a program is automatically generated from a design, the maintenance
process is simplified since only the program specifications need to be manually
maintained [Baxter 1992]. However, a practical realisation of this approach is probably
several years away.

One of the deficiencies of this approach is its ability to cope with the large quantity
of existing code (cf. the problem of “legacy systems” [Brodie 1992]). How should one
formally specify all those systems whose implementations generally are a mixture of code
written in different languages and data stored in various forms?

3.1.1.3 Automatic Documentation

A severe problem in the software application industry is obsolete or missing
documentation. The major reason for this is that documentation is normally not updated
in accordance with modifications to the software. For some sorts of documentation this
problem may be alleviated by tools that provide automatic documentation based on static
analysis of source code. Such tools may typically generate call graphs, control and data
flow charts, cross-reference information, metrics reports, etc. [Ryder 1979, Jandrasics
1981, Meekel and Viala 1988].

3.1.1.4 Reverse Engineering

There is a significant amount of “legacy code” [Brodie 1992] which wiil still be
operational for many years to come. In order to satisfy new requirements, such code is
continuously being modified causing deterioration of its structure [Lehman 1978].
Reverse engineering is one approach to help solve this problem [Bachman 1988]. “By
definition, re-engineering changes the underlying technology of a system without
affecting the functionality” [Colbrook and Smythe 1989]. The idea of reverse

48

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

engineering is to generate an abstract version of a concrete program and then re
implement the abstract version. Since most existing code is written in COBOL, typically
COBOL programs are being re-implemented in COBOL itself or in a more up-to-date
programming language. Even though almost all reverse engineering tools are developed
for COBOL, recent work on restructuring is also reported for other languages [Griswold
and Notkin 1992].

3.1.2 Change Management - An Aspect of Project Management

Project management is an activity at the overall software life cycle level and involves
tasks like scheduling, team management and resource allocation (people, programming
languages, tools, operating systems, hardware, etc.). The administration of changes at
this level is an important part of project management and is commonly referred to as
change management [Humphrey 1989, IBM 1992].i The change process is formalised in
that all change requests are evaluated with respect to the need for the change, the impact
of the change on the project and system, schedule of necessary activities, etc. During the
implementation of a change, information is recorded about who did what when, what is
the status, what remains, etc. IBM's Information/Management product is an example of a
tool providing support for such change management [IBM 1992]:

The Change Management facility helps you coordinate the various tasks your organization
performs to make and test changes in your data processing environment. You can enter data
about changes made to any area of your organization's operations: to software and hardware
components of the operating system or to procedures, publications, and facilities.

Change management tools at this level are thus support systems that record information
and produce corresponding reports.

3.1.2.1 Software Process Modelling

One approach to managing changes is to describe software processes by programs written
in a software process programming language [Osterweil 1987]. A collection of such
programs may constitute a formal model for a particular process typically involving
activities like editing, compilation, change of tools, etc. and objects such as specifi
cations, tools, hardware, etc. It has been argued that given a formal process model,
impact analysis and propagation of necessary consequential changes may be automated
[Sutton et a l 1990, Shepard et a l 1992]. An example is: “What are the consequences of
changing a programming tool?”

The feasibility of describing software processes formally has still to be investigated.
At least, there will be many aspects that can never be captured by such a formalism.

 ̂ Another term, which seems to be used synonymously, is change control [Ferraby 1991, Pressman
1992]. Yet another related term is configuration management which will be discussed in Section 3.3.

49

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

3.1.3 Software Change Management - Focus of this Thesis

The focus of this thesis is methodologies and tools for change management at the
software implementation level. They should support the software builder or maintainer in
the following activities:

• Predicting change consequences (impact analysis)

• Propagating necessary consequential changes

• Detecting inconsistencies after change or preventing them

• Detecting and recording change (necessary for recompilation, etc.)

An issue is to what extent it is possible to automate these activities.
A traditional software application can be viewed at two levels of granularity. At the

coarse granularity, the application is viewed as a collection of files or programs, and
databases. At the fine granularity, the application is viewed as a collection of concepts
like type definitions, variables, values, procedures, statements, etc. depending on the
actual programming language. That is, the contents of the files or programs are
important. This distinction corresponds to the two tiers in the Eclipse Two-Tier Database
[Cartmell and Alderson 1989]. First tier data is objects (files, directories, records, etc.);
second tier data is fine structure objects (sentence in a document, nodes in an abstract
syntax tree, etc.).

At the fine granularity level, a particular kind of change that may have serious
consequences for the rest of the application, is change to type definitions or schema
evolution in a database context. Determining the effect of type or schema changes and
ensuring correct change propagation is a challenging research issue.

Change management at the coarse granularity level involves problems such as
keeping track of which versions of a program can be integrated with which versions of
other programs in order to constitute a valid application (configuration management). A
special case of configuration management is when only the last (i.e., current)
configuration is managed. This is commonly referred to as build management. Re
building typically involves recompilation and relinking; the classical supporting tool is
Make [Feldman 1979]. In order to determine dependencies between programs, the
program contents (fine granularity level) must be investigated. For a programming
language like C, with simple dependency relations between programs, there are several
tools that automatically determine such dependencies. A research issue is how to develop
similar tools in other, more sophisticated programming environments.

A consequence of software changes is that the application system may become
inconsistent. In this thesis consistency means compliance with the rules or constraints of

50

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

a given application independent modelé A constraint could, for example, be that nothing
should be declared without being used. The consistency term should thus not be
confused with application dependent constraints such as those specified in an application
model developed with a data modelling tool [Cooper and Qin 1992]. However, the same
technology may be used to express constraints of both kinds, cf. work in the context of
ADABTPL [Fegaras et al. 1989, Fegaras and Stemple 1991] and TRPL [Sheard 1990].

3.2 Schema and Type Evolution
One of the most chaltenging problems of constructing and maintaining large, long-lived
data-intensive application systems is to cope with all the changes that inevitably will be
imposed on the systems over time. Many large application systems are centred around a
database, and a particular kind of change that may have serious consequences for the rest
of the application systems (Chapter 2) is change to database schemata - schema
evolution.^ User requested enhancements in functionality are a major cause of schema
evolution. Modifications to schemata or type definitions may also be consequent on
merge of database applications. The respective schemata need to be integrated [Batini et
al. 1986] requiring resolution of naming conflicts, removal of duplicates, determining
dependencies between definitions, etc.

At present, schema modifications are often dealt with in an ad hoc way. The
necessary data conversions and program modifications may be expensive due to factors
such as a requirement to shutdown the system, programmer effort, machine resources,
etc.

Research on schema evolution is still in its infancy. Some recent work has been
undertaken in the context of relational systems [McKenzie and Snodgrass 1990, Ariav
1991, Roddick 1992], but the majority has been concentrated in the area of object-
oriented databases [Banerjee et al. 1987, Penney and Stein 1987, Skarra and Zdonik
1987, Kim and Chou 1988, Lieberherr and Holland 1989, Osborn 1989, Panel 1989,
Lemer and Habermann 1990, Casais 1991, Waller 1991, Zicari 1992, Bratsberg 1993,
Monk and Sommerville 1993].

Some parts of the literature give the impression that the problem of meta-data
changes is particular to application areas such as computer-aided design and
manufacturing (CAD/CAM), computer-aided software engineering (CASE), etc.
Moreover, since the database research in this field has concentrated on object-oriented

However, the model will typically depend on the actual programming language or other aspects of the
programming environment.
Schema evolution in traditional databases corresponds to class evolution in object-oriented database
systems, to type evolution in applications developed in strongly typed programming languages and, at
a higher level, to changes to conceptual data models.

51

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

databases, the problems of schema evolution have been associated with object-oriented
technology. For example, in [Banerjee et al. 1987] it is claimed that:

... existing database systems allow only a few types of schema changes: for example, SQL/DS
allows only dynamic creation and deletion of relations (classes) and addition of new columns
(instance variables) in a relation ... the applications they support (conventional record-oriented
business applications) do not require more than a few types of schema changes ...

This is not necessarily true, as was demonstrated by the study described in Chapter 2 and
in [Sjpberg 1993] showing that the kinds and extent of schema changes may be
significant also in areas where relational systems are used.

Nevertheless, it might be the case that the schemata are modified more frequently in
special design support applications than in conventional “record-oriented business
applications” (see discussion in Section 2.3.4). And, since the schema structure of object-
oriented schemata is typically more complex than relational schemata, the consequences
of changing a type (class) in an object-oriented environment may lead to more significant
changes in the schema itself than in a relational environment. However, the
consequences for extensional data and application code, which depend on the volume of
data in the database, the amount of application code based on the schema, etc., may be as
serious as in a relational environment. The effects of schema changes are divided into
three categories:

i) Effects on other parts of the schema

ii) Effects on extensional data (user data stored in the database)

iii) Effects on application programs (including interfaces for data entry, queries, report
generation, etc.)

The respective categories are discussed in the following sections.

3.2.1 Consequences on other Parts of Schema

In a strongly typed world, a change to one type definition may affect other type
definitions in which the former is used. Naming conflicts may occur when new type
definitions are created.

A relational schema offers little support for ensuring consistency; only relationships
between a relation and its fields are captured. For example, an RDBMS does not
normally provide mechanisms for expressing that a field is a foreign key (cf. referential
integrity). A relational schema has a simple structure with poor modelling capabilities,
and the kinds of schema change are correspondingly few (see Section 2.2.2.2 for a list of
logical schema changes). So, hardly any schema change is consequent on other schema
changes (except in cases of naming conflicts). This does not imply, however, that it is
simple to perform schema changes in a relational environment. On the contrary, it means

52

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

that consistency of the extensional data and the application programs must be ensured by
the user almost without any support from the system itself.

In an object-oriented environment, a change in one place in the class hierarchy may
have significant impact on other parts of the hierarchy. A schema change taxonomy is
presented in [Banerjee et a l 1987]. That paper also describes invariants for ensuring
consistency after schema changes and rules for guidance in cases where there is more
than one way to preserve the invariants (rules for solving name conflicts, the rule that the
domain of an instance variable can only be generalised, not specialised, etc.).

3.2.2 Consequences on Extensional Data

The need for evolution is still present after the database has been populated with user
data. Addressing the consequences of schema change on the extensional data is therefore
required. If a type definition is changed, the instances of that type must conform to the
new definition.

3.2.2.1 Conversion

A typical consequential change of schema evolution is database reorganisation [Sockut
and Goldberg 1979]. Ideas for avoiding reorganisation after schema change by
introducing views have been proposed [Tresch and Scholl 1993], but only special cases
of schema change can be accommodated. For example, a view mechanism does not
support augmented information capacity such as adding a new attribute, and it is often not
possible to create new instances of a view.

A conversion strategy can be immediate in that all instances are converted in one
“big bang” when the schema is changed, or it can be lazy in that the instances are changed
only when they are needed (accessed).

3.22.2 Filtering

An alternative to the conversion strategy described above, is a strategy where different
versions of a type definition coexist. Under such a scheme “every instance of the type
remains linked to the version under which it was created” [Skarra and Zdonik 1987]. The
user can specify filters to make type changes transparent [Ahlsen et a l 1983]; that is, old
instances can be viewed as instances of the new type and thus be used in application
programs conforming to the new type. Similarly, new instances can be viewed as old
instances and thus be used in existing application programs.

The usefulness of this strategy still has to be evaluated; there are practical
limitations, particularly in large systems.

53

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

3.2.3 Consequences on Application Programs

The literature reports little research on the impact of schema evolution on the existing
application programs. This is in stark contrast to its significance for application
programmers (Section 2.3.2).

Typically, there will be many application programs that utilise a type that has been
changed in the schema. These programs may use screen definitions, query definitions,
procedures, etc. It should not be difficult to imagine that incompatibilities between a
schema type and the corresponding type assumed by the application programs may have
serious consequences. For example, if a new information carrying capacity is added to
the schema, programs that do not use it should not change. However, at least one
program must be created or changed to collect the data, and all programs that display
closely related data should be considered for amendment to show the new data. This will
in turn propagate to new screen designs and changed working practices.

3.2.4 Approaches

A strategy based on subtyping may support limited forms of evolution [Wegner and
Zdonik 1988]. ̂ It allows for adding attributes to a type (which is a common kind of
change). No change to other types is necessary, and there is no need for conversion since
there are no instances of the new (sub)type. In an object-oriented database system this
strategy may allow code to continue in operation but may reduce the information to
programmers about where consequential changes are necessary in the programs that
should utilise the change.

A combination of strategies based on views (allowing changes for preserving or
reducing the information capacity) and subtyping (allowing changes for augmenting the
information capacity) may cover many kinds of change. However, to the author’s
knowledge no evaluations of such strategies in the context of real-world applications have
been reported. With a plethora of versions of each type (many implementations of the
same conceptual type) there is a risk of creating unmaintainable and inefficient code.

Most of the research on schema evolution has been undertaken in an untyped world.
A major and challenging research issue is to what extent schema evolution and its
consequences can benefit from a strongly typed world that allows for persistent programs
and other kinds of data. This problem is not investigated in depth in this thesis, but
advisory systems have been developed, and the methodologies and tools to be described
establish a framework for further research (Section 8.2.1).

 ̂ An unsolved problem, first identified in [Albano 1983], concerns subtyping in combination with
assignments. A genera] discussion of this problem can be found in [Connor et al. 1991].

54

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

3.3 Software Configuration and Buiid Management
Software configuration management is a discipline for controlling change and managing
software modules that have been subject to change. Configuration management tools
assist in controlling versions of the modules and in building configurations of a system.
A configuration is a collection of all the modules of a system where each module is
represented by exactly one version selected according to a certain criterion (e.g. the latest
version).

3.3.1 Source Code Control - SCCS/RCS

s e e s [Rochkind 1975] and RCS [Tichy 1985] are two classical configuration
management tools which manage multiple versions of text files (typically program
sources). Files are read, compiled and edited according to a check-out/check-in protocol.
For storage efficiency, a change to a file is recorded as a delta. To create the latest
version of a system, SCCS applies all the deltas to the original version. RCS applies such
forward deltas only to branches (which represent variants of a version) but apply reverse
deltas to versions, which gives fast access to the latest versions. Identifying valid
configurations and keeping track of them is up to the user, but support is given in that the
tools automatically generate and manage the version numbers. RCS also allows for
symbolic names, enabling combinations of versions to be described independently of
version numbers.

3.3.2 Build Management

3.3.2.1 Make

One kind of configuration is software modules combined into complete executable
programs. Such configurations are built by compiling and linking modules. Make
[Feldman 1979] is the classical supporting tool. The user describes the files containing
the modules and the dependencies between files in a Makefile. This information together
with some implicit rules (which might be hard to understand) enable Make to re-create
the executable code after a change has been made to the source code.

Make is language independent and general in that it does not only support
compilation and linking - any user-specified commands can be executed on the files
dependent on the ones that have been changed. The general rule is [Feldman 1979]:

To “make” a particular node N, “make” all the nodes on which it depends. If any has been
modified since N was last changed, or if N does not exist, update N.

Creating and maintaining Makefiles may be a cumbersome task; it is up to the user to
continuously infer dependencies and ensure that the referenced files actually exist.
Commonly used languages may have utilities for automatic generation of dependency

55

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

descriptions. For example, makedepend [Brunhoff 1991] for C describes dependencies
between a source program and its “#include” files. Some PC compilation systems keep
track of changes and initiate necessary compilation and linking automatically without the
need for any user-maintained “Makefile”. The THINK C™ product [Symantec 1989] for
the Macintosh, with its Auto-Make facility, is one example.

3.S.2.2 Smart Recompilation

In large application systems, recompilations represent a significant part of the
maintenance costs and may thus be a hindrance for required system evolution. Avoiding
unnecessary recompilations is therefore an important issue. It has been reported that in a
larger Ada application more than half of the compilations were redundant [Adams et al.
1989]. Make is not particularly helpful in avoiding unnecessary recompilations; it is
unlikely that any language independent tool can be smart in that respect.

If a file containing declarations is shared by many programs, any change to that file
typically initiates recompilations of all the programs - whether or not they use a changed
declaration. Tichy [Tichy 1986] has proposed a “smart recompilation” method for
reducing the number of recompilations after a change to such declarations. The
compiler’ŝ symbol table was extended to keep track of finer granularity dependencies
between declarations (type definitions, constants, variables, macros, etc.) in a compilation
context and the items in the compilation units referencing the declarations. The possible
changes in the context are classified. For each kind of change, the dependency
information is used in a test to decide whether recompilation is necessary.

An extension of Tichy’s “smart recompilation” to “smarter recompilation” is
described in [Schwanke and Kaiser 1988]. It is argued that Tichy’s definition of
compilation consistency could be relaxed without the risk of introducing new errors and
thus reduce the turn-around time even further.

A proposal for reducing unnecessary recompilations by analysing the source code,
detecting dependencies and then clustering related declarations, files, etc. is described in
[Schwanke and Platoff 1989].

Also the linking time may be significant in large systems. An incremental linker that
processes only the changed modules is reported in [Quong and Linton 1991]. The linking
time is proportional to the size of a change, rather than to the size of the program. Use-
dependency graphs are used in the implementation.

3.3.3 Other Configuration Management Tools

Many configuration management tools integrate the features of SCCS/RCS and Make and
provide additional functionality. One example is DSEE [Leblang et al. 1985], which

A Pascal compiler was used in a prototype implementation, but the method is generally applicable.

56

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

introduces the notion of configuration thread - a rule-based language for describing
which versions of the source files that should be used to build the application system.
Configuration management may also be incorporated in larger support environments such
as Sun’s NSE™ [Sun Microsystems 1988b]. Other major vendors tike IBM, DEC and
ICL have their own configuration management tools of various kinds. One recent
example is the Vesta system at DEC [Levin et al. 1992] which is tailored for large-scale
configuration management and includes a repository of Vesta objects and a (functional)
programming language for describing configurations.

Several tools have also been developed by minor vendors and academic institutions;
a representative selection of 15 products is described in [Dart 1991].

3.4 Tools Based on Static Program Analysis
This section describes tools supporting software construction and maintenance based on
static program analysis. Such tools range from simple compiler enhancements to tools
centred around internal repositories with sophisticated user interfaces.

3.4.1 Compiler Supporters

Some program analysis tools have been developed to compensate for the poor static
checking by compilers for languages like COBOL, FORTRAN and C. For example,
DAVE [Osterweil and Fosdick 1976] is an old tool developed for FORTRAN. The
FORTRAN Toolkit [Parsys 1993] is a recent, more sophisticated example. LINT
[Ritchie et al. 1978] is the classical tool for C. Such tools check, for example, that all
variables are declared and that the number and type of actual parameters match the formal
parameters. They may also perform checks for unreachable code, unused identifiers,
same name for “different” objects, etc. which are not commonly found in compilers even
for strongly, statically typed languages.

3.4.2 Data Flow Analysis

The tools described above are typically based on data flow analysis which is an analysis
of variable usage in some path through a program [Fosdick and Osterweil 1976]. In
addition to assisting in detecting anomalies and errors, data flow analysis has traditionally
been used for compiler optimisation, but it may also be useful to aspects of software
maintenance such as understanding existing software, impact analysis and verifying
software after changes have been made [Keables et al. 1988].

A particular technique based on data flow analysis, also useful for software
maintenance, is program slicing [Weiser 1982]. A large program is broken down into
smaller pieces containing a set of statements related by their data flow - statements

57

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

without influence on a given variable are stripped from the program. A more
sophisticated scheme for statically breaking down large software applications is reported
in [Gopal et al. 1992]. The software is decomposable along three dimensions (level, type
and aspect), and various aspects of software maintenance can be supported by focusing
on the appropriate decompositions.

3.4.3 Cross-Referencers

Simple cross-referencers generate annotated listings of the names used in a program and
the types of the named objects. Each line declaring a name contains references to its
uses, and each line where a name is used contains a reference to its declaration. Cross-
referencers useful for large application systems have proprietary databases populated with
source code information and provide command or query languages tailored for retrieving
and analysing the static information. The databases are normally updated during
compilation if a parameter is set. An example of a commercially available tool is SCA
[DEC 1989] which is the source code analyser component of DEC’S VAXset suit of
CASE tools. FUSE [DEC 1993], running under OSF/Motif™, is another DEC tool that
provides a sophisticated user interface including coloured call graphs (inconsistencies in
red), different box types for different types of objects, pop-up windows containing the
source text associated with icons on the screen, etc.

3.5 Meta-Databases
This section describes concept usage, standards and products in the field of meta-data
management. A meta-database contains information about the definitions and uses of the
data in an application system. The contents are thus meta-data (data about data).i
Information about the use of data is particularly useful for change management.
Unfortunately, this kind of information is incomplete in most commercially available
products. For example, the relationships between names in the schema, queries and
programs are rarely tracked down. Nevertheless, the area is rapidly growing, and there
are many proposals for sophisticated tools.

3.5.1 History of Development

The term data dictionary emerged in the late sixties [King 1967] and then denoted a
collection of rather simple file and field descriptions. Typically, the information was
similar to what can be derived from the data division of COBOL programs and was
stored in a “computer-held data dictionary file” [King 1969].

1 From the viewpoint of this thesis, programs are data, i.e., information about programs is meta-data.

58

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

In most of the seventies the intention of a data dictionary was still to hold the names
and definitions of data items used in an information processing system. In 1977,
however, the Data Dictionary Systems Working Party of the British Computer Society
[DDSWP 1977] extended the data dictionary concept further to include, amongst others,
the description of the nature of each data item and cross-references to where they were
used.

As time went on, the original data dictionary concept expanded its scope to denote a
tool for storing information throughout the entire life cycle including analysis and design.
This development was also reflected in the terminology. The term repository has been
launched (cf. IBM's Repository Manager [IBM 1990]), and the concept is also referred to
as system encyclopœdia. The American National Standards Institute (ANSI) started work
(in 1980) on a standard in which the term Information Resource Dictionary System

(IRDS) was introduced [ANSI 1988]. ISO [ISO 1990] has also standardised a framework
for IRDS (which does not agree with that of ANSI). A discussion on various data
dictionary standards can be found in [Holloway 1988a].

Another variant of the concept, data dictionary/directory, has also been commonly
used [Uhrowczik 1973, IBM 1980, Allen et al. 1982]. The dictionary component refers
to textual and structural description of data elements, name usage, relationships between
elements, etc.; the directory component refers to physical properties such as the location
of the data, its internal representation, how it can be accessed, etc. However, as DBMSs
have been introduced to achieve physical data independence, the information traditionally
captured by the directory part has become less significant, which is also reflected in that
the directory term is less used today.

3.5.2 Standards

The need for a common framework for describing data dictionaries or repositories
resulted in a set of ISO IRDS standards [Spun* 1988]. A basic component of IRDS is the
four-level model (see description in [Olle and Black 1988]). There are four levels and
three level pairs, each of which consists of a higher level and a lower level. The higher
level describes how information at the lower level can be represented (Figure 3.3).

• The Application Level is concerned with data relevant to end users of an information
system (for example, a patient with name Smith is allocated to bed number 314).

• The IRD Level typically contains database schemata, class definitions in object-
oriented systems or type definitions in strongly typed programming languages. This
layer may also describe which programs, screens, queries, etc. operate on which parts
of the schema.

• The IRD Definition Level describes what kind of information can be held at the IRD
Level. For example, it defines whether “record type”, “object type”, “program”.

59

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

“screen”, etc. are concepts whose instances can be created at the IRD Level. The
type system of a programming language would typically belong to the IRD
Definition Level.

• The Fundamental Level describes the representation of information at the IRD
Definition Level. For example, the IRDS Services Interface standard uses a special
version of a SQL Data Definition Language. An entity-relationship model is another
example.

APPLICATION LEVEL
Application Database

IRD DEFINITION LEVEL
Definition of Information Resource Dictionary

IRD LEVEL
Definition of Application D atabase

FUNDAMENTAL LEVEL
Definition of concepts used to define dictionaries

IRD Definition Level Pair

IRD Level Pair

Application Level Pair

Figure 3.3: The IRDS levels and pairs

Since this model has become an ISO standard [ISO 1990], it is being used by leading tool
vendors such as ICL [Kay 1992]. An example of a relational implementation of IRDS is
described in [Dolk and Kirsch 1987].

The four-level model has also been adopted by the CASE Data Interchange Format
(CDIF) standard [EIA 1991] developed by the Electrical Industries Association in the
United States. CDIF is not a standard for repositories, but defines a standard that will
enable repositories and CASE tools to interchange information in a standard format
[Imber 1991].

Another related standard is Portable Common Tool Environment (PCTE) which is
defined by the European Computer Manufacturers Association [ECMA 1990]. In

60

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

addition to being a vehicle for data exchange, PCTE aims at becoming a coherent
framework for integration of tools from various vendors running on various platforms.
PCTE includes a repository (the Object Management System) and a set of services such
as data and schema management, version and configuration management and inter
process communication.

A comparison of IRDS, CDIF and PCTE from the viewpoint of CASE data
integration can be found in [Thompson 1992].

3.5.3 Features of Meta-Data Systems

Most data dictionary tools have been built for mainframes and thus have an old-fashioned
user interface. Even though several products have versions for PCs or workstations, their
interface capabilities are generally not fully exploited since the vendors strive for a
common interface independent of platform. Another problem is the poor (if any at all)
integration with other CASE tools such as configuration and build management tools.
Rectifying these deficiencies are two of the desiderata of data dictionary users [Holloway
1988b]. Other desiderata, more relevant to this thesis, are automatic update, impact
analysis and extensibility.

A crucial feature of meta-databases is to what extent they are automatically updated.
Experience shows that manually updated information is rarely correct or up-to-date. This
will in turn compromise tools that use the meta-data information as source for producing
cross-reference information, call-graphs, methodology relevant information, etc. At least
with the current technology, there is a trade-off between the spectrum of information
contained in the meta-database and the degree of automatic update.

Information in meta-databases about software components and their relationships
makes impact analysis possible. The quality of the analysis depends on the extent and
granularity of the information. Many data dictionary tools do not support any automatic
extraction of program information; others support COBOL or other “record-oriented”
languages including so-called 4GLs. Some sophisticated products also support more
modem programming languages, but the extracted program information is generally too
coarse to produce satisfactory impact analysis.

It has been advocated that compilers and other static analysers should be tightly
integrated with data dictionaries [Marti 1983]; “...the considerable overhead of populating
a data dictionary during compilation is well worthwhile in computing environments with
hundreds of data elements and a multitude of applications, where each comprises several
thousands lines of code.” Such an integration may enable both more detailed and more
up-to-date information.

Extensibility is the ability to add user defined dictionary types at the IRD definition
level (Figure 3.3). The user may require special types to support particular requirements

61

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

which could range from detailed program information to support for a certain
programming methodology, or even information relevant to requirements analysis and
design. However, supporting extensibility, and at the same time automatic update, is a
research issue of the future.

3.5.4 Commercially Available Products

This section describes briefly some commercially available meta-data systems in each of
the categories system catalogues, data dictionaries and repositories.

3.5.4.1 System Catalogues

The (system) catalogue of relational DBMSs (DB2, INGRES, ORACLE, SQL/DS, etc.)
is a kind of meta-database with a simple structure and a simple interface - it is a
relational database like any other application database. The catalogue contains the
database schema and additional information about indices, users, access privileges, etc.

3.5.4.2 Data Dictionaries

Software AG's Predict [SoftwareAG 1990] is a data dictionary system that includes query
panels to the meta-data, cross-reference information, call-graphs (textual indention) and
simple statistics on references (the number of times a certain field is referred to by
catalogued program, for example). Predict is developed in and for a certain 4GL
(Natural), but it also offers some support for COBOL, PL/1, FORTRAN and Ada.

Another sophisticated data dictionary system is ICL’s DDS [Bourne 1979] which
adheres to the IRDS architecture. There are a plethora of products from other vendors;
some of them are compared in [Holloway 1988b].

3.5.4.3 Repositories

The repository concept - an extension of the data dictionary concept - emphasises the
repository as a vehicle for tool integration. An example is IBM's AD/Cycle which
provides “a framework for developing and maintaining applications throughout the entire
development process” [IBM 1991]. AD/Cycle is a collection of application development
(AD) tools and a platform providing services for the integration of these tools. ̂ The
Repository Manager [IBM 1990] is part of the AD/Cycle framework and provides an
interface to a repository containing information about the data processing environment
and other aspects about the enterprise's organisation, activities and processes. So, the
repository contains information related to all phases of the application development life
cycle which is indeed a significant extension compared with what is currently held in
system catalogues and data dictionaries. The idea is that such data can be further defined.

Several components of the AD/Cycle concepts still have to be realised.

62

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

accessed, manipulated and controlled by tool builders and by other tools of AD/Cycle.
User written tools and other software vendor's tools are also provided with these services
if these tools comply with the standardised interface.

Other major software vendors have proposed sophisticated repository systems such
as DEC’S Cohesion, Hewlett Packard’s Softbench and ICL’s Open Dictionary.

3.6 Support Environments
Many attempts have been made to integrate supporting tools (such as those described in
the previous sections) into software development environments. The variety of tools and
environments makes classification difficult, but one may classify environments according
to whether they are language independent or language specific, and whether they focus
their support on the whole software life cycle or on the programming process. Table 3.1
shows the categories of some environments that will be referred to in the following
sections.

Language Independent Language Specific

Whole Life Cycle Eclipse (IPSE) Arcs, Ada Env (APSE)

VAXset, NSE

Programming Process Unix Interlisp, Smalltalk env.. Trellis env..
Gandalf, Synthesizer Generator

Table 3.1: Categories of support environments

More detailed description and classification can be found in [Dart et al. 1987].

3.6.1 Language Independent Support Environments

The Unix progranuning environment [Dolotta et al. 1978], which is continuously being
extended with new tools, is probably the most well-known language independent
programming environment. DEC’s VAXset and Sun’s NSE are more sophisticated
environments that support other life cycle phases as well.

An Integrated Project Support Environment (IPSE) aims at covering all the phases of
the software life cycle. An IPSE should support in planning and control, provide office
information facilities, be able to adapt to new technologies, etc. The idea behind an IPSE
is that by integrating a large collection of software engineering tools into a common
framework, the benefits should be greater than using the tools as separate units. Tools
should communicate via an object management system (typically implemented on top of
a DBMS), which is in contrast to integration around a file store (as in Unix).

63

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

Eclipse [Bott 1989] is one attempt at implementing an IPSE. The usefulness of
IPSEs has yet to be demonstrated; there are indications that they control the process more
than they support it [Sommerville 1993].

3.6.2 Language Specific Support Environments

Probably the most comprehensive language dependent programming environments are
built, or proposed, around Ada, but many sophisticated programming environments have
also been developed around other languages.

3.6.2.1 APSE

In connection with the development of Ada it was recognised early that in order to build
large, complex and long-lived application systems, there was a need for a common
support environment independent of the language processing environment. In the context
of Ada this was called an Ada Programming Support Environment (APSE), and its
requirements were defined in the Stoneman report [Buxton 1980].^ A description of the
structure of an APSE can also be found in [Sommerville and Morrison 1987].

Arcs [Schefstrdm 1991] is one example of a commercially available instance of an
APSE. Arcs’ vision [Schefstrdm 1991] coincides with the motivation of the research
presented in this thesis:

The finding of a remedy for the frustration we feel when being confronted with a large piece of
software that we want to modify, extend, or otherwise evolve, but cannot since we do not
understand its structure and the possible effects of a change.

Rational's Ada Environment [Archer and Devlin 1986] is another example of an APSE.

3.6.2 2 Other Closed Environments

Interlisp [Teitelman and Masinter 1981] is a tightly integrated Lisp programming
environment that contains tools such as Masterscope and DWIM (Do What I Mean).
Masterscope analyses programs and stores cross-reference information in a database that
can be queried. Masterscope can also invoke the editor on all functions satisfying the
restrictions of a user query. A major component of DWIM is a spelling corrector. On the
basis of contextual information DWIM can in several cases modify erroneous programs
to contain the correct spelling. The variety of programming methodologies and tools
accommodated has made Interlisp rather complex; even for highly motivated and skilled
programmers mastery of all the tools has proved difficult.

The Trellis programming environment [O'Brien et al. 1987] supports object-oriented
programming. Tools in the environment share a common database that is updated by an

1 In fact, the notion of APSE preceded the notion of IPSE (which is basically a language independent
generalisation of APSE).

64

CHAPTER 3: SOFTWARE EVOLUTION AND SUPPORTING TOOLS - A SURVEY__________________

incremental compiler. The database contains source and object code, type checking
information and cross-reference information. Another, well-known object-oriented
programming environment is built around Smalltalk [Goldberg 1984].

Structure-oriented environments such as Gandalf [Habermann and Notkin 1986] and
those generated by the Synthesizer Generator [Reps and Teitelbaum 1989] are another
kind of language specific environments that are centred around a syntax-directed editor.

3.7 Summary
This chapter has presented models and tools intended to support various kinds of software
evolution. Problems of schema evolution and build management have been discussed in
particular, as well as tools such as static analysers, cross-referencers, data dictionaries
(repositories), configuration management systems and support environments. Both
research and commercially available products have been referenced.

The presented survey establishes a conceptual context for the research presented in
Chapters 5, 6 and 7. Chapter 4 establishes the experimental context, which is persistent
language processing technology.

65

Chapter 4
Enabling Technology

4.1 Persistent Programming
This chapter describes the pertinent features of Napier88 that is used for the experiments
described in the subsequent chapters.

DBMSs have proved a useful basis for the organisation and management of large-
scale, data-intensive application systems (e.g. the provision of physical data
independence). The task of application programming, however, has become more
complicated in that the programmer has to relate to a new set of concepts. The data
definition, manipulation and query languages of the DBMSs support programming
paradigms and data types that are normally incompatible with those of the traditional
programming languages. A description of this problem was first published in [Atkinson
1978]. The problem has later been referred to as the “impedance mismatch” [Copeland and
Maier 1984]. Figure 4.1 illustrates that the programmer must understand the set of
mappings between each pair of the components: real world system, programming language
and DBMS (data model).

Persistent programming languages were created to solve the problems mentioned
above [Atkinson et al. 1982, Atkinson et al. 1983a, Atkinson et al. 1983b, Atkinson et al.
1983c]. Persistent progranuning unifies database programming and traditional application
programming. This significantly simplifies the conceptual task of the programmer since
only one mapping is needed - the one between the real world and the constructed system
(Figure 4.2). The target of the persistent language designers was “to provide a totally
integrated envirorunent where the user never has to step outside the progranuning language
for any computational activity” [Atkinson and Morrison 1985].

66

CHAPTER 4: ENABLING TECHNOLOGY

Data Model, DBMS

Real World
System

Programming
Language

Figure 4.1: The three mappings of a traditional database system

Programming ^ ______________________w Real World
Language System

Figure 4.2: The only mapping of a persistent system

Two principles guide the provision of persistence:

i) Persistence Independence
The semantics of a program is not changed by changes in the longevity of the data on
which the program operates.

ii) Persistence Orthogonality
The same facilities for persistence are accorded to data irrespective of the type of that
data.

So, from the viewpoint of a programmer there is no boundary between data in the memory
and data in the persistent store. He or she never has to write code in order to move or
convert data between long and short term storage. In the persistent literature it is frequently
quoted that typically 30% of all code is concerned with transferring data to and from
secondary storage [IBM 1978]. In contrast, in persistent programming languages values of
all types (a procedure, a complex tree structure, an instance of an abstract data type, etc.)
have the same ability to outlive program executions.

67

CHAPTER 4: ENABLING TECHNOLOGY

One orthogonally persistent language [PS-algol 1987] has recently been successfully
used in the implementation of commercial CASE tools [Greenwood et a l 1992]. Research
in persistence is extensively reported [Atkinson and Buneman 1987, Atkinson et a l 1988,
Dearie 1988, Atkinson 1989, Brown 1989, Cooper 1990a, Connor 1991, Atkinson 1992,
Kirby 1993, Cutts 1993a].

4.2 Napier88
Napier88 [Morrison eta l. 1989a] is a strongly typed orthogonally persistent language. It
provides labelled Cartesian product (structures), labelled disjoint sums (variants) and
explicit parametric polymorphism [Cardelli and Wegner 1985]. Existential polymorphism
[Mitchell and Plotkin 1985] is used to implement abstract data types. Napier88 is a store-
based language that combines persistence, higher-order procedures [Atkinson and
Morrison 1985] and L-value and R-value binding [Morrison et a l 1990]. Persistence in
Napier88 is defined by the model of reachability [Atkinson et a l 1983a], that is, an object
will only outlive a program execution if it is reachable from one or more persistent roots.

4.2.1 Types

The Napier88 type system [Morrison et a l 1989b, Dearie et a l 1989] is based on the
notion of types as sets of objects from the value space [Cardelli and Wegner 1985]. These
sets are either built-in base types such as integer, real and string, or they are constructed by
the use of built-in type constructors such as structure and proc.

A type expression may be given a name by declaring a type definition of the form as
follows: 1

[rec] type <identifier> is <type expression>

For example, the definition:

type Person is structure(name, address : string)

introduces Person as a type identifier that can be used later on in the program. Since
Napier88 provides structural type equivalence, any type that is a structure of two string
fields named name and address (either a type definition with another name or a type
specified anonymously) is equivalent to the type Person. This may complicate certain
issues such as determining whether a value conceptually belongs to Person or another type
that happens to have the same structure. A discussion of type equivalence models in the
light of persistent programming can be found elsewhere [Atkinson et al. 1988, Connor
1991].

1 The syntax descriptions in this thesis are generally not complete; consult the manual for a full
grammar description [Morrison e ta l 1989a].

6 8

CHAPTER 4: ENABLING TECHNOLOGY

4 . 2 . 1 . 1 Type Databases

The Napier88 system provides a mechanism for storing pre-compiled type definitions in a
database analogously to the meta-database used with conventional databases to hold
schemata. Programs can be compiled against such a type database. Several type databases
may exist within the same PAS - typically one for each sub-application. A type database is
created or updated by compiling a program that consists only of type definitions. (The
compiler must be invoked with a special command.) There are several advantages of type
databases:

• they reduce the need to recompile type definitions;

• they enable sharing of type definitions; and

• they remove the need to duplicate type definitions and thus reduce the verbosity of
programs.

Most Napier88 installations store the type representations in a PS-algol database, but the
latest Napier88-in-Napier88 compiler [Cutts 1993a] uses Napier88 environments. It
should be emphasised that the provision of type environments is only a convenience in the
compilation process. The types in type environments cannot be accessed and bound to
identifiers from within the language like other bindings. It is still more than an include
facility as found in other programming languages, however, since the types are already
compiled and interconnected with other types in the type graph that they use.

4.2.2 Higher-Order Procedures

In Napier88, as in for example ML [Milner 1984] and Quest [Cardelli 1989b], procedures
are first class values. That is, they have the same civil rights as any other values in the
language to be bound to identifiers, be assigned, be parameters of or returned by
procedures, be elements of structures, variants or vectors, etc. It has been demonstrated
that the combination of first class procedures and orthogonal persistence enables
implementation of abstract data types, modules, separate compilation, views and data
protection [Atkinson and Morrison 1985]. This powerful combination was exploited in the
implementation of the tools described in the subsequent chapters.

Procedures that can take or return other procedures are referred to as higher-order
procedures. In particular, the ability to return procedures may complicate error diagnostics
and the provision of adequate program information based on static analysis. It may be
difficult to determine which procedure activation returned a given procedure. The static
universe of identifiers is different from the dynamic universe of identifiers. Essential to the
understanding of these issues is the notion of procedure closure [Strachey 1967]. The
following description is from [Atkinson and Morrison 1985]:

69

CHAPTER 4: ENABLING TECHNOLOGY

The closure of a procedure includes all the information required to execute the procedure
correctly. It has two parts. The first part is the code to execute the procedure, and the second
part is its environment, which contains the local and free variables of the procedure and is often
implemented by a static chain.

A mechanism for inspecting the closure - the source code and the state bound to it, i.e., the
values of the local and free variables in the closure’s environment - would provide the user
with useful dynamic information. The hyper-programming environment [Kirby 1993]
features such a mechanism (Section 8.2.6). There is a potential problem, however, in that
allowing closure inspection will compromise the encapsulation of the procedure state
(which is essential to the implementation of abstract data types, modules, etc. mentioned
above).

4.2.3 Environments

An environment in a block-structured language is defined as the set of identifiers currently
in a scope. The binding is static, that is, the set can be determined from the source code
alone. Napier88 environments, which are of type env, are a dynamic model of the block-
structured environments [Dearie 1988]. Environments are extensible collections of
bindings, represented as name-type-value-constancy quadruples [Morrison et a l 1990],
used to organise the persistent store. Moreover, environments are themselves first class
values allowing the construction of arbitrary graphs with a root environment yielded by the
built-in procedure PS}

The standard procedure environment returns a new, empty environment. In addition,
there are operations for inserting a binding into an environment, using a binding of an
environment in a program, removing a binding from an environment and checking whether
a binding is contained in an environment.

insert-declaration: in <environment-clause> let <object_init>
use-clause: use <environment-clause> with <signature> in <clause>

L
header body

drop-clause: drop <identifiei> from <environment-clause>
contains-check: <environment-clause> contains <identifier> [: <type_id>]

Figure 4.3: Operations on environments

Most applications organise their persistent store as a hierarchy of environments.

70

CHAPTER 4: ENABLING TECHNOLOGY

A simplified syntax of the respective operations is shown in Figure 4.3. The leading
phrase of each line and use-clause header and body are terms that will be used in the
subsequent text.

4 . 2 . 3 . 1 Type Checking and Binding

The earlier in the software life cycle errors are detected, the less are the costs of correcting
them. In particular, detecting errors during compilation (statically) is preferable to detecting
them during execution (dynamically). The safest approach to avoiding run-time errors is to
perform type checking and binding statically. There is a trade-off between safety and
flexibility, however. From a persistent programming point of view there are several cases
in which it is impractical to perform static binding [Atkinson et a l 1988]:

(i) reuse and distribution of programs;
(ii) selection of databases;
(iii) combination of information from several databases;
(iv) incremental data and program definition.

Hence, persistent languages like Napier88 have been designed with elements of dynamic
binding but without compromising the quality and strictness of the type checking. The
languages adhere to the principle of checking as much as possible as early as practical - for
which Atkinson and Morrison coined the phrase eager checking [Atkinson and Morrison
1986].

In Napier88 the signature of the use-clause header (Figure 4.3) provides the point of
dynamic type checking for incremental binding. In the use-clause body the type checking
of identifiers declared in the signature is static. It is only necessary to specify the bindings
that will actually be used in the program. That is, the signature needs only partially match
the bindings in the environment. Therefore, the environments can be extended with new
bindings without changing the existing programs. Bindings can also be removed safely as
long as they do not occur in any use-clause. If during execution, however, a program
attempts to access a binding not present in the respective environment, the following error
message will occur: “Cannot find (binding) with type: (type expression).”

Insert and drop are the two other environment operations that may cause run-time
errors. If an attempt is made to insert a binding into an environment that already contains a
binding with the same name, the following error message is given: “Attempt to re-declare
(binding) with type: (type expression).” An attempt to drop a binding not present in the
environment results in the following error message: “Cannot drop (binding) it is not

present.”
A binding to a location is referred to as an L-value binding. A binding to the value

contained in a location is referred to as an R value binding. The reason for this naming is
that in a block-structured languages an expression on the left hand side of an assignment
operator is usually evaluated to the location, and an expression on the right hand side or

71

CHAPTER 4: ENABLING TECHNOLOGY

any expression occurring elsewhere is evaluated to the value. In addition to this
conventional left hand side evaluation, the binding to an environment expression in a use-
clause header is also an L-value binding in Napier88.

There are no other languages with an explicit, dynamic environment construct like the
one provided by Napier88. In a language with a static environment construct, e.g. Galileo
[Albano et a l 1985], a program binds and type checks its environments completely at
compile-time. Such a model is less flexible with respect to separate development,
incremental update and dynamic choice of databases. This may be particularly impractical
for large application systems [Atkinson and Buneman 1987, Morrison et a l 1990].

4 . 2 . 3 . 2 Separate Compilation

There are several reasons for organising separate compilation [Atkinson 1993]:

(i) to allow several people to construct parts of a system independently;
(ii) to allow parts of the system under construction or maintenance to be replaced;
(iii) to allow the construction and reuse of common subsystems such as libraries;
(iv) to enable incremental system construction of the form that bas proved beneficial with

databases; and
(v) to economise on computational time compared with re-compiling and re-linking total

systems.

In conventional systems the incremental assembly of meta-data and data are organised
under one regime, and the incremental construction and introduction of programs are
organised via different mechanisms. The incremental program construction mechanism
then involves three parts:

i) a means of identifying the component’s context (schema name and procedures or
abstract data types imported from other program parts);

ii) separate source text translation to some intermediate form; and

iii) linking all of the intermediate form fragments into one whole program (resolving and
replacing the use of external names imported from other compilation fragments).

For safety in a strongly typed system the linking phase should verify that the names are
being used correctly with respect to the type rules. This is a complex task, especially in the
many systems that have general purpose linkers used by a variety of languages. Hence, it
is often not performed or performed incompletely. Although this linking is performed
statically 1 in conventional systems, much of the binding to schemata is resolved and
verified dynamically as the program executes.

In contrast, Napier88 supports incremental construction that may be incrementally
bound, is always fully type checked and uses a uniform model for all aspects of binding. It
depends on the use-clause to identify the context and give enough information for complete

1 There are incremental linking systems that do it dynamically.

72

CHAPTER 4: ENABLING TECHNOLOGY

type checking prior to binding. It depends on environments to hold the existing program
and data to which the new increment binds. The principle of data type completeness
ensures that precisely the same mechanism and notations can be used for all the incremental
binding requirements.

4 . 2 . 3 . 3 Some NapierSS Programs’ Impact on the Persistent Store

The previous sections have stated that NapierSS facilitates incremental application
construction by its environment construct, L-value semantics, separate compilation, etc.
This section will illustrate how the state of part of the persistent store is changed by
executing a few small, but complete, programs. The program examples and diagram
technique are inspired by a lecture note in NapierSS programming [Atkinson 1993]. Other
similar examples can be found elsewhere [Members 1990, Connor 1991]. First a naïve
incremental method is shown. This has deficiencies when code is to be revised. An
incremental method more accommodating to change is then presented.

PSO
root

—square

1+1

—cube

in PS() let square = proc(i: int —> int); i + i IProgl .N - erroneous definition

use PS() w ith square: proc(int -+ int) in !Prog2.N
in PS() let cube = proe(i: int -+ int); square(i) * i

Figure 4.4: Part of the store after running Progl.N and Progl.N"^

Figure 4.4 shows the store after the programs Progl.N and Progl.N have been compiled
and executed. Progl.N inserted the procedure square into the persistent store. (In

Solidly drawn boxes are locations that cannot be updated; solidly drawn vertical bars are values of type
env; the identifiers to the right of them are identifiers in the bindings held in that environment; the
lightly drawn boxes (appearing in Figures 4.7 and 4.8) are L-values (which can be updated), and the
divided diamonds are procedure closures with the bottom part denoting the code and the top part
denoting the computational context; the ellipses are code segments corresponding to procedure bodies;
there may be arrows coming out of the ellipses corresponding to references to procedures or other
boxed data that the procedure bodies use.

73

CHAPTER 4: ENABLING TECHNOLOGY

practice, such a procedure would be inserted into an appropriate environment at a lower
level, but for simplicity in the following examples all bindings are inserted directly into the
top level.) The procedure cube of Progl.N used square in its definition, which is shown in
the figure by the arrow from the ellipse body of cube to the location of square. Both square
and cube are declared as constants which means that their locations are immutable.

We realise that the definition of square was wrong. Before we can insert a corrected
version, the existing square must be dropped. This is performed by ProgS.N. After
ProgS.N has been executed, the state of the store is as shown in Figure 4.5. Note that
cube still uses the old version of square.

—square

PSO
root

1+1

—cube

drop square from PS()
in PS() let square = proc(i: int -+ int); i * i

!Prog3.N
! correct version

Figure 4.5: Part o f the store after running ProgS.N

However, dropping cube and then re-defining it by referring to the new square (as shown
in Prog4.N) will give a correct version. Figure 4.6 shows that after executing Prog4.N
there is no reference to the old square, and thus it will be garbage collected.

The strategy shown above requires ever increasing numbers of programs being
dropped and redefined as cascades of “false” changes ensue from one correction. An
incremental method of programming, which simplifies changing values, creates procedures
as L-values.

74

CHAPTER 4: ENABLING TECHNOLOGY

PSO
root

—square-

— cube-

use PS() w ith square: proc(int int) in !Prog4.N
b eg in

drop cube from PS()
in PS() let cube = proc(i: int —> int); square(i) * i

end

Figure 4.6: Part o f the store after running Prog4.N

Prog5.N is equivalent to Progl.N except that square is declared as a variable, rather than a
constant, implying that its location is mutable. If Prog5.N and then Progl.N were
executed, the store would be as shown in Figure 4.7. The only difference from Figure 4.4
is that square is represented by a lightly drawn box.

—square

1+1

—cube

in PS() let square := proc(i: int int); i + i !Prog5.N - erroneous definition

Figure 4.1: Part o f the store after running Prog4.N and Progl.N

Since square is now bound to its L-value, the contents of the location can be changed by
simply compiling and executing Progô.N (Figure 4.8). Since cube is bound to square’s
location, the change will be directly visible to cube without the need for any recompilation
or re-execution. The closure with body “i-bi” has no references and will thus be garbage
collected.

75

CHAPTER 4: ENABLING TECHNOLOGY

PSO
root

—square

1+1

—cube

use PSQ w ith square: proc(int -> int) in
square := proc(i: int -+ int); i * i

!Prog6.N

Figure 4.8: Part of the store after running Progô.N

The program examples shown are extremely small and simple. In large application systems
it may be very hard to keep track of the structure of the persistent store as programs are
being executed. Supporting methodologies and tools are obviously needed.

4.3 The Napier88 Programming Environment
A NapierSS release includes a standard environment containing commonly used procedures
and other values. In addition, the NapierSS programming environment^ includes a callable
compiler [Cutts 1993a], the WIN window manager [Cutts et al. 1990], browsers [Kirby
and Dearie 1990, Farkas et al. 1992], hyper-programming^ features [Kirby 1993], both
model and schema editors [Qin 1993] and the maps library (Section 4.3.1). Facilities for
copying values between persistent stores have been implemented, and current research aims
at providing NapierSS with concurrent technology for distributed systems [Munro 1993].

NapierSS has proved a robust and stable language platform both for teaching and
research, and the collection of libraries is continuously being extended [Atkinson et al.
1993].

The current NapierSS compilers are running under Unix on Sun SPARCstations; each
persistent store is contained in a (big) Unix file.

This environment should not be confused with the environment construct discussed above.

See Section 8.2.6.

76

CHAPTER 4: ENABLING TECHNOLOGY

4.3.1 The Maps Library

The maps library [Atkinson et al. 1990, Atkinson et al. 1991a, Atkinson et al. 1991b] is
heavily used in the implementation of the tools described in the subsequent chapters. Maps
constitute an add-on bulk type language implemented as a library of polymorphic NapierSS
procedures.

Formally, maps are extensional functions from a domain of any type A to a range of
any type Z. Values of this type constructor denote a stored finite mutable function and may
be considered as a set of tuples. By appropriate parameterisation the map construct is
capable of modelling other bulk types used in other database programming languages such
as INF relations in Pascal-R [Schmidt 1977], NFNF relations in DBPL [Schmidt and
Matthes 1992], sets in P-Pascal [Berman 1991] and sequences in Galileo [Albano et al.
1985]. The operators over maps provide: insertion, update and removal of entries; iteration
and individual access to entries; and an algebra for deriving new maps from existing maps
with a power similar to that of relational query languages or set comprehensions.

4.4 Napier88 Language Processing Technology
The NapierSS-in-NapierSS (NinN) compiler is a procedure in the persistent store that can
be called dynamically and facilitates a particular form of reflection [Maes 1987]. Programs
that operate on the persistent store can be generated and executed at run-time which means
that programs can change their own environment. This ability is referred to as run-time
linguistic reflection [Stemple etal. 1992].

The NinN compiler is built according to the single-pass technique of recursive descent
compiling [Davie and Morrison 1981]. The syntax analyser of productions in the grammar
defining language is provided by corresponding recognition procedures. These procedures
are mutually recursive in compliance with the mutually recursive definition of the language.
Other procedures focus on lexical analysis, type checking, code generation and error
handling. Still, the various components of the current compiler are rather intertwined
making reuse of separate components difficult. Work is in progress, however, to identify
substitutable generation interfaces for syntax analysis, code generation, etc. which will
simplify reuse [Cutts 1993b].

Tools for browsing, hyper-programming, etc. need to determine the names and types
of the bindings in the persistent store. The implementation of the Napier88 browser
includes facilities for scanning the store [Kirby and Dearie 1990]. A first implementation
used linguistic reflection, but owing to unsatisfactory performance the browser was re
implemented using low-level technology [Kirby 1993]. This technology is a collection of
procedures that are not type-safe and are thus not available in standard Napier88; they are
only accessible via a special system-builders’ version of the compiler.

77

CHAPTER 4: ENABUNG TECHNOLOGY

4.5 Summary
NapierSS is an orthogonally persistent programming language that provides a sophisticated
type system, first class (polymorphic) procedures and an environment construct for
organising programs and other data in the persistent store. The language is designed to
facilitate the construction and maintenance of long-lived, data-intensive application
systems. Among other things, application programs can be stored as values within the
store and as such are susceptible to manipulation by change management software. Also,
since several useful libraries exist for NapierSS (e.g. maps) and the language processing
technology has proved robust and powerful, NapierSS was chosen as the experimentation
and implementation language for the methodology and tool research described in the
following chapters.

The persistent technology itself also provides some challenging problems for
methodology and tool construction. NapierSS is still in its infancy as an implementation
language for large-scale applications. For example, guidelines and tools are still needed to
organise the interaction between programs and bindings in the persistent store.

7S

Chapter 5
TSIT - A Thesaurus-Based
Software Information Tool

5.1 Introduction
In order to fully benefit from the features of persistent programming, a programmer
should be assisted by tools that help in keeping track of the structure of the programs and
the persistent store. He or she may want the answers to questions like: Which
environments, types, procedures, etc. exist? In which programs or environments are they
defined or used and in which contexts do they occur? Which programs operate on which
environments? The need for tools providing such information has often been experienced
by persistent programmers, for example when the integrated Thesaurus Application was
built - a multi-author, multi-level project [Sjpberg et a l 1993].

One proposal in this direction is the Thesaurus-based Software Information Tool
(TSIT). In TSIT the ideas and principles behind the HMS thesaurus tool (Chapter 2)
have been further developed. The information provided is different, however, since TSIT
operates in a strongly typed, persistent programming environment, while the HMS
thesaurus tool operates in an untyped, conventional programming environment.

For each application using TSIT there is an associated thesaurus holding the names
bound to NapierSS concepts (type definitions in addition to environments, procedures and
other values). The (meta) data in the thesaurus is generated by the analyser component of
TSIT which scans all the source files and all environments in the persistent store of the
actual application. Each time a name occurrence is encountered, the name and associated
information are stored in the thesaurus. To ensure correctness and consistency, thesaurus

79

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

entries cannot be inserted, modified or removed interactively or by any program that is
not part of TSIT. This is not enforced, but no difficulties with inconsistency (due to
programs that do not comply with TSIT’s consistency expectations) have been
encountered.

As will be demonstrated in this chapter, the thesaurus may form a basis for various
kinds of measurements. The thesaurus also provides an appropriate platform for other
software engineering tools (to be described in Chapters 6 and 7).

5.2 The NapierSS Thesaurus
The heart of TSIT is the thesaurus which is a fine-grained, enhanced cross-reference
database containing information about all user-introduced names occurring in the source
programs of an application and the names of the bindings in the associated persistent
store. There is one thesaurus entry per identifier occurrence (declaration or use). The
information held by a thesaurus entry is as follows:

• Name is a textual form of an identifier in a source program or of a name-type-value-
constancy binding in a persistent store.

• Container indicates whether the entry is contained in an environment or in a file.

• Block depth, block sequence and line number of the identifier occurrences are
meaningful and are recorded if the container is a file.

• Kind is an approximate representation of the type, i.e., base type (integer, real, string,
etc.) or constructed type (structure, variant, (polymorphic) procedure, ADT, etc.).

• Constancy shows whether the identifier was declared constant or variable.

• Usage indicates how the identifier is being used, e.g. declaration or use of a type
identifier, or declaration, left context or right context of a value identifier.

• Context indicates whether the identifier occurs in an environment operation or as a
declaration of a type parameter, procedure parameter, structure field, variant tag, etc.
or as a dereferenced structure field, projected variant, etc.

• Date keeps track of the date and time of when the entry was inserted.

Figure 5.1 shows the kind of data held about a thesaurus entry. Rectangular boxes
represent structures; rounded boxes variants. The container field indicates whether the
name denotes an identifier in a source program contained in a file or a binding in an
environment in a persistent store. The directory path and file name are recorded if the
container is a file. Similarly, the environment name and the path from the persistent root
are recorded if the container is a persistent environment. (As opposed to files, environ
ments can be organised in any structure - not only hierarchies.)

80

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

If the container is a file, the line number of the name occurrence is stored in the
thesaurus together with block depth and block sequence which yield information about
the scope of an identifier. Block depth is the number of nested ‘begin’s (or ‘s), i.e., the
number of encountered ‘begin’s (or ‘{‘s) minus the number of encountered ‘end’s (or
‘}’s). Block sequence is the total number of ‘begin’s (or ‘{‘s) encountered before the
name occurrence.

The kind field is a variant holding information about the type of the associated
identifier if it has a base type or about the applied type constructor (structure, variant,
proc, etc.) if it has a constructed type. In addition, the kind can be Quantifier,
TypeParameter, UnboundQuantifier, etc. (Figure 5.1). A discussion of these concepts
can be found elsewhere [Connor 1991]. (Note that file is a base type of a value that is not
bound to a file in the file system but to an identifier in a NapierSS program. Such values
should therefore not be confused with the files containing the NapierSS programs that
constitute an application.)

The usage field informs whether the name occurs as a declaration or use of a type
identifier, or as a declaration, left context or right context of a value identifier. For each
of these five alternatives the name appears in a collection of variants that are referred to
as context. For example, typeDeclaration is a variant having the context values^
RecursiveTypeDecl and TypeDecl as tags, typeUse has the values ArgUnaryOpType,
ProcQuantifierUse, TypeNameUse, TypeParameterlnTypeDecl and Witness as tags, etc.
The type of all these tags (and the tags of the kind variant) is null (omitted from the figure
for simplicity).

1 The tags of the variants defined in the type Usage are referred to as context values.

SI

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

T hesau ru sE n try

kind :

co nstan t : bool

usage :

d a te : string

"C ontex t"

U sage
Recursive? ypeDecI
TypeDecl

typeDeclaration

typeU se :

valueDeclaration

rightContext :

leftContext

inPS : null

Legend:

I I structure

(] variant

ADTFieldDeref
ArgUnaryOpValue
BindingDropped
ContainsCheck
PrimFunctionCall
StructFieldDeref
VariantProjectDynamic
V ariantProjectStatic
VariantTagRead_______

A ssignm ent
Variantlnject

Kind

envir : env
nam e : string C ontainer pathNam e : string

inEnv : ^ pathNameFile : string
container : — blockDepthNo : int

inFile : -# blockSeqNo : int
lineNo : int

ArgUnaryOpType
ProcQuantifierUse
TypeNameUse
TypeParameterlnTypeDecl
W itness

ADTAlias
Bindinglnserted
ProcParamDecI
RecursiveValueDecI
StructFieldDecI
ValueDecI
VariantAlias
VariantTagDecI
UseClause

any
bool
char
env
file
image
int
null
pic
pixel
real
string
A bstractD ataT ype
Param eterisedT ype
ProcMono
ProcPoly
Quantifier
RecursiveType
Structu re
TypeParam eter
T ypeW ithFreeQuantifier
UnboundQuantifier
UnboundWitness
Variant
V ector
W itnessType

Figure 5.1: Definition o f thesaurus entry

The contents of a thesaurus are best illustrated by an example. The corresponding
thesaurus entries of the program writePerson.N (Figure 5.2) are shown in Table 5.1.
Since these entries are contained in a file (the container variant is inFile), they are
recorded with a file name and line number. ̂ The constant attribute is represented in the
table with a ‘C’ (constant) for true and ‘V’ (variable) for false.

The block depth, block sequence and date information have been omitted from the table for
simplicity.

82

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

type Person is stnicture(name : string; salary : int)

use PS() with lO, Adm : env
use lO with writeString : proc(string);

writeint : proc(int)

in

in

in Adm let writePerson := proc(p : Person)
begin

writeString('"nName: " ++ p(name))
writeString('"nSalary: ")
writelnt(p(salary))

end

Figure 5.2: The program writePerson.N

Name Container L-No Kind Constant Usage Context

Person writePerson.N 1 Structure V typeDeclaration TypeDecl
name writePerson.N 1 string V valueDeclaration StructFieldDecI
salary writePerson.N 1 int V valueDeclaration StructFieldDecI
PS writePerson.N 3 ProcMono c rightContext PrimFunctionCall
lO writePerson.N 3 env V valueDeclaration UseClauseiPS
Adm writePerson.N 3 env V valueDeclaration UseClauserPS
10 writePerson.N 4 env V rightContext ArgUnary OpV alue
writeString writePerson.N 4 ProcMono V valueDeclaration UseClause:IO
writeint writePerson.N 5 ProcMono V valueDeclaration UseClausezIO
Adm writePerson.N 7 env V rightContext ArgUnaryOpValue
writePerson writePerson.N 7 ProcMono V valueDeclaration BindingInserted:Adm
P writePerson.N 7 Structure V valueDeclaration ProcParamDecI
Person writePerson.N 7 Structure V typeUse TypeNameUse
writeString writePerson.N 9 ProcMono V rightContext ArgUnaryOpValue
P writePerson.N 9 Structure V rightContext ArgUnaryOpValue
name writePerson.N 9 string V rightContext StructFieldDeref
writeString writePerson.N 10 ProcMono V rightContext ArgUnaryOpValue
writeint writePerson.N 11 ProcMono V rightContext ArgUnaryOpValue
P writePerson.N 11 Structure V rightContext ArgUnaryOpValue
salary writePerson.N 11 int V rightContext S tructFieldDeref

Table 5.1: The corresponding thesaurus entries for the program writePerson.N

If an identifier occurs in one of the contexts Bindinglnserted, BindingDropped,
UseClause or ContainsCheck, the name of the actual environment is also registered.^ For
pragmatic reasons, the whole environment path has not been included in the current
implementation since the combination of environment name and binding name is always
unique in the analysed applications (but may not necessarily be in the general case).^

The environment name is the one occurring in the <environment-clause> described in Figure 4.3. If
the <environment-clause> is a procedure returning an environment (e.g. PS), then the procedure name
is recorded.

Identification of environments is discussed in Sections 7.5.2 and 8.2.5.

83

CHAPTER 5: TSIT-ATHESAVRUS-BASED SOFTWARE INFORMATION TOOL__________________

5.3 Querying the Thesaurus
Programmers may wish to query the thesaurus for debugging support, help in
understanding the structure of an application, etc. Moreover, it may be beneficial to
determine the effect of changes before actually carrying them out. Such impact analysis
may influence the change plans - the consequences of change could be so extensive that
another solution might be sought. A few examples of queries that can be performed on
the thesaurus are:

Which type definitions, procedures, structures, environments, etc. exist?

Where are they defined and used?

In which contexts do they occur?

Which procedures, structures, etc. does a given program or environment contain?

Which persistent procedures are used in a given procedure?

Which bindings are inserted into or are in a given environment?

Which operations are performed on which environments?

For large PASs the output from the thesaurus queries may be overwhelming. Some
filtering mechanisms are therefore provided. The user can choose to exclude identifiers
exceeding a certain lexical depth, identifiers with length one (e.g. counting variables in
for loops) and contents of standard environments.

As the interface to the thesaurus and the query facilities provided by TSIT are rather
primitive, a need was felt for a more convenient window-based interface with enhanced
query possibilities. Lopes developed the ShTh component [Lopes 1993] by using WIN
[Cutts et al. 1990]. ShTh provides a graphical interface to one or more thesauri and
includes a simple query language, a subset of a generalised relational algebra, for
operations on the thesaurus. Menu-driven facilities help the user to query a thesaurus and
visualise the result of query application. “Select”, “Project” and “Sort” menus are used to
build a query. From an “Actions” menu the user has options to load, close, save, save as,
delete, revert and run queries; it also has undo and quit.

Complex queries (involving recursion), however, cannot be expressed in the standard
TSIT interface or the ShTh interface. To meet this deficiency, another software
component, the ringad comprehension query language, was constructed by Ttinder
[Trinder 1991].

Typical data-intensive applications often use a powerful, usually embedded, query
language for three reasons. First, although interactive query languages, like those
provided by TSIT and ShTh, may be used by naïve users, they lack the computational
power to express some useful queries. A thesaurus query that requires a powerful query
language is procedure explosion. An explosion discovers all of the procedures that are

84

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL___________________

called by a given procedure, and all of the procedures they in turn call, and so forth.
Another thesaurus query requiring power implodes a procedure to find all procedures that
call it, and any procedure that calls the caller, and so forth. ̂ Information about explode
and implode hierarchies (also referred to as call and contain trees) is presented to the user
in a rather primitive way in the current version (only a label describing the level and then
textual information about the procedure). An enhanced interface could visualise the
different call levels by textual indention, as provided by Predict [SoftwareAG 1990], for
example. A more sophisticated interface could be similar to the one provided by FUSE
[DEC 1993] in which procedures and calls are represented as boxes and arrows in a
colour graphical, window-based environment.

Second, a powerful, non-interactive query language can be used for “canned queries”
which are queries or reports that are run regularly end-of-day, end-of-month, etc. Such
queries are stored, i.e., canned, primarily to avoid errors. Storing a query may also aid
efficiency and ensure that the information is always provided in the same format.

Third, many thesaurus users will have a high degree of computing skill and be able
to use a powerful query notation themselves to extract information of interest about their
programs. Incidentally, for any naïve users, the utility queries could easily be packaged
into a menu.

Ringad comprehensions are a general purpose query language. In particular they can
be defined over several different bulk types, e.g. maps, lists, ordered sets and vectors in
NapierSS. Comprehension queries are both powerful and easily optimised [Trinder
1991]. Because the utility queries access thesauri, which are maps, they use procedures
out of the map library.

The experience of integrating the ShTh and comprehension query components with
TSIT, in particular how the project benefited from persistence, is fully described in
[Sjpberg gr a/. 1993].

5.4 Registration and Update
The thesaurus information is generated by a scan of all the registered source files and the
registered parts of the persistent store associated with the actual application system. Each
time a name occurrence is encountered, the name and additional information are inserted
into the thesaurus. TSIT must be informed of the name and location of all the source files
belonging to the application system. At present, TSIT reads a user-created file that
contains the names of the respective directory paths and files. The user can also request
analysis of one program at a time by specifying the path and name of the corresponding

1 Note that because NapierSS procedures are first class values, the list o f called/calling procedures may
not be exact. The tool is nevertheless useful.

85

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

file via an interactive menu. A simple enhancement could be to leave the localisation of
the files to TSIT if the application were structured according to a convention such as that
given as part of a methodology (see Section 6.3.7). If all the ‘.N’ files in a directory and
its subdirectories were part of the application, then TSIT would only need the top level
directory as user input.

The TSIT interface also provides a menu for registering and scanning environments
in the persistent store. TSIT extracts information about all bindings in a registered
environment and recursively traverses all its subenvironments.

The contents of a thesaurus reflect a state of the corresponding application system.
In order to reflect the continuous evolution of such systems, the thesauri must be updated
correspondingly. It is not possible to add, change or remove entries from the thesauri
manually. To ensure correctness and consistency, the contents should rely exclusively on
TSIT. There are two exceptions, however. First, the possibility of removing all the
entries of a given file has proved convenient when files have been included by mistake.
Second, so-called derived-thesauri can be created as a result of querying the automati
cally generated master-thesaurus (simply called thesaurus in this thesis) [Sjpberg et al.
1993].

It is crucial that the thesauius is as up-to-date as practically possible. There are
several strategies for when to initiate an update:

i) Automatic initiation at regular times, e.g. daily at 02:00

ii) Update on user request

iii) Update during compilation

iv) Update during program composition - on edit

The first two strategies are possible in the current implementation of TSIT. Among other
tools that analyse source code - both experimental [Marti 1983] and commercial
[SoftwareAG 1990] - update during compilation is common. Typically, an extended
compiler has a parameter indicating whether or not the program information database
should be updated. In general, this strategy gives the most up-to-date information - if the
user remembers to set the parameter. One might argue that the compiler could always
update the database. In practice, however, the performance would deteriorate, and since
most compilations are due to various kinds of bug-fixing (e.g. correcting typing errors),
programmers will probably not accept the extra performance penalty.

TSIT was built as a tool separate from the compiler since the performance penalty
pertaining to the thesaurus update would make it inconvenient to do the update during
compilation. 1 The reason for the poor performance is that for each identifier occurrence
encountered, an entry is created and inserted into the thesaurus in the persistent store.

 ̂ The separation from the compiler also made the implementation simpler.

86

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

Store operations are expensive at present, but current work aims at improving the
performance [Atkinson 1992].

Poor performance is also a significant reason not to update the thesaurus during
program composition. Another problem is that the code should be tested before
information is extracted and the thesaurus updated. The code should at least be without
compilation errors (a requirement of TSIT). So, the code should be compiled before it is
analysed.

5.5 Implementation
TSIT is implemented in NapierSS. The component of TSIT that processes NapierSS
source programs is based on the NinN compiler [Cutts 1993a]. The lexical and syntax
analysers of the compiler have been adjusted to conform to special information needs of
TSIT. Instead of generating executable code, the TSIT analyser extracts a variety of
information during the analysis and inserts it into the thesaurus.

Reusing the lexical analyser was straightforward - as opposed to reusing the syntax
analyser. The NinN compiler is one-pass, i.e., the parsing and code generation are inter
twined which means that detecting all program parts concerned with code generation is
difficult. The documentation and some structuring principles alleviated the problem but
were not sufficient for easy modification of the software to the needs of TSIT. In spite of
this problem, the gain of reusing the compiler components was significant - developing
TSIT would have been very much harder without reusing the NinN compiler.

The code for extracting information from the persistent store into the thesaurus was
implemented by directly reusing low-level procedures used in the implementation of the
NapierSS browser. This proved easy due to good documentation [Kirby and Dearie
1990].

The maps library [Atkinson et al. 1990] is heavily used in the implementation of
TSIT. In particular, the predefined map operations enabled rapid development.

The type definition Thesaurus in Figure 5.3 shows that a thesaurus is a structure
containing five fields. The type ThesaurusEntries defines a map of thesaurus entries (the
entries field) where the domain (key) is a system-generated sequence number. (The
range has already been described, see Figure 5.1.) The next number to be used is stored
in the nextSeqNo field. The field registeredFiles denotes a map containing the registered
source files constituting an application. The domain of this map is a concatenation of the
directory path and file name. The range, specified by the FileEntry structure type,
contains information about when a registered program was last compiled and executed.
Section 7.4 discusses the use of that information. The registeredEnvs field is a vector
containing direct references to the registered environments in the persistent store.
Information about the type databases (Section 4.2.1.1) used in the PAS is recorded in

87

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

typeEnvs. Finally, the type Thesauri defines a map containing a collection of thesauri,
each thesaurus indexed by a name.

type ThesaurusEntries is Map[int, ThesaurusEntry]

type Date is stnicture(day, month, year, time string)

type FileEntry is structure(compiled, run : Date)

type FileEntries is Map[string, FileEntry]

type Thesaurus is stnicture(nextSeqNo ; int;
entries : ThesaurusEntries;
registeredFiles : FileEntries;
registeredEnvs : *env;
typeEnvs : *string)

type Thesauri is Map[string. Thesaurus]

Figure 5.3: Thesaurus definition

The TSIT analyser and the queries performed on the thesaurus may be slow for large
applications. Optimisation has not been emphasised in the current version. The
implementation of the TSIT analyser prioritises easy modification over efficiency. For
example, in an optimised version a few procedure calls could be saved for each name
processed. Furthermore, shorter response times for the queries could be provided by
additional data structures such as indices over entry name, file name, etc. and direct
references between definitions and use of identifiers.

5.6 TSIT versus other Tools
Like the HMS thesaurus tool, TSIT records information about all names and identifiers
used in the implementation of the whole application system.^ The two tools are different,
however, since their environments are different. For example, the HMS thesaurus tool
was developed in an industrial, relational database context where four (untyped)
languages were being used. In contrast, the development of TSIT benefited from a
persistent programming context in which all computation and data management are dealt
with within the same (strongly typed) language - NapierSS. Moreover, since NapierSS is
more sophisticated than the HMS languages, the information provided by TSIT is
accordingly more sophisticated than the information provided by the HMS tool. Some of
the differences are summarised in Table 5.2.

Comments are not regarded as part of the code.

88

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Criterion HMS Thesaurus Tool TSIT

context industry research

programming
environment

multi-language (Hippo, Display
Language, query dictionary language,
schema definition language)

one language (NapierSS)

analysis interpretation compilation

type checking untyped, dynamic strong, static and dynamic (stronger
notion of type, user defined types, etc.)

program
containers

files files and environments in the persistent
store

implementation Unix scripts {awk, grep, sed, etc.) and
one C program

modified NapierSS compiler and tailored
NapierSS programs

Table 5.2: The HMS thesaurus tool versus TSIT

It may be worthwhile to briefly compare TSIT with the NapierSS browser [Kirby and
Dearie 1990]. Both tools support the user in understanding the structure of an
application, but their functionality differs. The browser provides ad hoc information
about the contents of the persistent store selected explicitly on each occasion. TSIT also
provides such information, but it is collected automatically. The user queries the
thesaurus rather than browsing the store directly. The TSIT information may not be
completely up-to-date since the contents of the store may have changed since the last
thesaurus update. However, the browser does not provide any information about the
source programs in the file system. (Traditionally, tools like Unix grep and the search
facilities of editors have been used to locate identifiers in source programs.) As has been
described in detail, TSIT can be queried for such selected information. Moreover, the
thesaurus can be the subject of many forms of analyses such as apphcation measurements
(Section 5.7) and automatic consistency checks (Chapter 6).

Modifying compilers to generate dependency information is not a new idea. For
example, DBPLXref [Matthes et al. 1992] is a tool that provides cross-reference
information for applications built in the database programming language DBPL [Schmidt
and Matthes 1992]. DBPLXref is not as comprehensive as TSIT. For example, detailed
information about the context of each identifier occurrence is not provided, and the
DBPLXref designers did not regard information about all local identifiers as interesting.
On the contrary, the intention of TSIT was that the thesaurus information should be
complete. For the purpose of various analyses all name occurrences should be recorded.

The main difference between TSIT and commercial source code analysers [DEC
19S9] and data dictionary tools [Bourne 1979, SoftwareAG 1990] is a consequence of the
mismatch in the underlying technology between programming languages and file

S9

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

systems/DBMSs (Chapter 4). The source code analysers view source programs as closed
units and do not record information about how the programs interact with a file system or
DBMS. The data dictionary tools emphasise database schema and file definition
information. Some data dictionary tools also store source code and cross-reference
information, but do not record dependencies between names in source programs and
names in the schema (e.g. dependencies between variables in a program written in a
language with embedded SQL and a field of a relation). As experienced when building
the HMS thesaurus tool (Chapter 2), recording such information is quite complicated in a
traditional programming environment. In the context of a persistent programming
language like NapierSS, however, it is trivial (as demonstrated by TSIT).

Even though some TSIT information may be more detailed (scope levels, contexts of
identifier occurrences, etc.) and more integrated (source program versus persistent store
information), the commercial data dictionary and repository tools generally have more
extensive information related to the whole software life cycle (information about users,
activities, documents, etc.). TSIT could be extended in that direction, but a problem is
that such information is inserted manually. This is in contrast to the principle behind
TSIT that all information should be generated automatically.

5.7 Measuring Name and Identifier Usage - A TSIT Experiment
As a guidance to research in language design, methodologies and tools for application
development, this section presents measurements showing how programmers use the
constructs of a higher-order persistent language like NapierSS and how they organise
their software. Programmers may also benefit from such measurements.

The thesaurus contents of eight applications written in NapierSS were analysed. The
analysis focuses on the use of names. A name in this context denotes an identifier in a
source program. (Names denoting bindings in the persistent stores were not analysed
since the author did not have access to all the individual persistent stores.) In most cases
an identifier is uniquely denoted by its name. The same name can, however, denote
different identifiers if they appear in different scopes. In those cases there are more
identifiers than names. ̂ All words that are not keywords of the language represent name
occurrences. A name occurrence is simply an occurrence of a name independent of
which identifier it denotes. For example, there are one name, two identifiers and three
name occurrences in the following program:

 ̂ Actually, 13% of the names in the analysed applications denote more than one identifier.

90

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

let counter := 0

begin

let counter := 1

end

counter := 1

Below follow some examples of questions that may be of interest to those designing
tools, compilers and languages:

• How many different names are used?

• How many name occurrences represent value declarations, left contexts and right
contexts, respectively?

• What is the distribution of names with respect to kind (base types or constructed
types)?

• How frequently are type definitions used?

• How frequently are procedures used?

• What is the proportion of constants versus variables?

• How much code is concerned with operations on persistent store?

• How many programs update the contents of an environment?

• How many environments are updated within one program?

• How many declared identifiers are not used in each program? - in each application?

• How many type definitions are not used in each program? - in each application?

• How many bindings are inserted into the persistent store but never used in the
application?

Measurements answering such questions may be useful in several respects. Programmers
may get an overview of their software (e.g. the number of inconsistencies) and thus learn
more about their way of programming. Language designers may wish to know how a
programming language is actually used by programmers. Is the use of language
constructs as expected? For example, the NapierSS language designers might question
why abstract data types are hardly used in the analysed applications.

The main purpose of the name analysis, however, is the provision of measurements
that may support or inspire the development of methodologies and tools for maintenance
of persistent application systems. Measurements of the consequences of various kinds of
change are of particular interest. For example, if the type of a procedure is changed, how
many places in the programs have to be changed? What if a type declaration is changed?
Where and how is persistent data created and modified? Such dependency statistics yield

91

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL___________________

knowledge about consequences of change to various parts of an application system and
thereby also about the extent of necessary change propagation.

Source code information from the following eight applications written in NapierSS
has been collected and analysed:

• Benchmark: Sun engineering database benchmark [Bimie 1991];

• Bibliography: automatic generation of references in a text [Acheampong 1993];

• Comp/TSIT: a combination of a modified version of a NapierSS compiler [Cutts
1993a] and TSIT specific programs;

• EcoSystem: a graphical interface to an ecological database [Barclay et al. 1992];

• ImplADT: two implementations of parameterised abstract data types [Tabkha 1993];

• Map: a language construct for bulk data types [Atkinson et al. 1991a];

• PartsDB: an implementation of the parts explosion problem [Tabkha 1991]; and

• WIN: a persistent window management system [Cutts et al. 1990].

Bibliography and EcoSystem are the only real-world applications and developed by
programmers not part of the “NapierSS community” in the Universities of Glasgow and
St Andrews. Eleven programmers contributed to the application collection. In total,
5132S lines of code with S4501 name occurrences in 367 programs were analysed.

The study presented here is concerned with static aspects only. Similar studies have
been reported for other languages, e.g. FORTRAN [Knuth 1972], PL/1 [Elshoff 1976],
APL [Saal and Weiss 1977] and Ada [Agresti and Evanco 1992]. Also programs written
in persistent programming languages have been analysed by others, but only dynamic
aspects related to performance have been measured [Loboz 1989, Bailey 1989].

5.7.1 Scale of Analysis

Some measurements describing the size of the applications will be presented in order to
give an impression of the scale of the analysis. Traditionally, programmers and project
managers describe the size of their applications in terms of lines of source code. A better
measure for the size may be the number of occurrences of programmer-introduced names
of various kinds. Table 5.3 shows the size of the analysed applications in terms of lines
of code. The applications consist of between 4 and 156 programs which each contains on
average {Mean) 139.9 lines of code. Table 5.4 describes the applications in terms of
name occurrences, where Mean is the average number of name occurrences in the
programs. The number of different names within a program varies from minimum 10
(Comp/TSIT) to maximum 1945 (WIN). The last column contains the number of names
per line, which is a measure for compactness of code, showing that the programs of
ImplADT, Map and PartsDB are about twice as dense as the programs of EcoSys.

92

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Application Programs Mean Min Max Std Sum

Benchmark 29 85.7 29 319 69.0 2484
Bibliography 38 170.8 14 449 109.7 6490
Comp/TSIT 80 104.5 6 427 87.7 8356
EcoSys 24 161.1 16 479 111.5 3867
ImplADT 11 104.2 8 303 85.1 1146
Map 25 193.8 9 541 176.3 4844
PartsDB 4 198.3 140 269 56.9 793
WIN 156 154.2 16 927 147.6 24053

Total 367 139.9 6 927 128.6 51328

Table 5.3: Lines o f code

Application Programs Mean Min Max Sum Name/line

Benchmark 29 118.3 26 1141 3431 1.4
Bibliography 38 285.2 12 856 10838 1.7
Comp/TSIT 80 182.9 10 1141 14626 1.8
EcoSys 24 175.5 12 685 4213 1.1
ImplADT 11 241.1 12 786 2652 2.3
Map 25 379.2 13 1141 9479 2.0
PartsDB 4 429.0 286 645 1716 2.2
WIN 156 240.7 12 1945 37546 1.6

Total 367 230.2 10 1945 84501 1.6

Table 5.4: Name occurrences

5.7.2 Name Frequencies

A frequency analysis was performed on all names used in the applications. For example,
in the Map application there are 641 different names which have 9479 occurrences in
total. The number of occurrences of a given name varies between 1 and 1219. Such
name usage information may encourage people to be more conscious of their choice of
names and thus make programs more readable and understandable.

The histogram of Figure 5.4 shows the frequency of the times a name is used in the
whole application collection, i.e., the number of names occurring once, the number of
names occurring twice, etc. It appears that most names have 2 or 4 occurrences
(respectively 14.3% and 12.4%). Moreover, 10% of the names are used 30 or more
times.

93

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

800 T"

700

600 --

500 - •

400

P 300 4-

N am e O ccurrences

Figure 5.4: Name frequency

Name use within programs is described in Table 5.5. The Names column contains the
number of unique (file name, name) combinations. Mean is the number of times the
same name is used within a program on average and appears to be relatively stable in the
applications (ranging from 3.3 to 5.5). The standard deviation, however, varies
considerably (from 3.3 to 16.4).

Application Names Mean Min Max Std Sum

Benchmark 960 3.6 1 372 16.4 3431
Bibliography 3482 3.1 1 50 3.3 10838
Comp/TSIT 4406 3.3 1 372 9.1 14626
EcoSys 1338 3.1 1 68 4.1 4213
ImplADT 482 5.5 1 120 11.5 2652
Map 1879 5.1 1 372 15.1 9479
PartsDB 437 3.9 1 77 6.5 1716
WIN 9125 4.1 1 205 5.1 37546

Total 22109 3.8 1 372 9.5 84501

Table 5.5: Name use within programs

Table 5.6 shows to what extent names of identifiers are reused within programs, i.e., re
declared in another scope (re-declaration in the same scope is illegal). The table reveals
that between 5.0% (Comp/TSIT) and 23.4% (ImplADT) of the names denote more than
one identifier.' The applications Comp/TSIT, EcoSys, Map and WIN all have names that
denote ten or more different identifiers within the same program.

The proportion of re-declarations is 100% minus the percentage of singular declarations (95.0% in
Comp/TSIT and 76.6% in ImplADT).

94

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Times
Declared

Bench
mark

Biblio
graphy

Comp/
TSIT EcoSys

Impl
ADT Map

Parts
DB WIN

1 91.0 92.7 95.0 88.0 76.6 79.4 84.5 82.2
2 6.8 6.1 3.2 9.8 13.2 12.1 10.1 8.5
3 0.6 0.8 0.9 1.2 5.7 4.1 3.3 4.3
4 1.5 0.2 0.4 0.3 2.3 2.2 0.9 2.7
5 0.1 0.1 0.1 0.1 1.8 1.2 0.9 1.4
6 0.0 0.1 0.2 0.2 0.5 0.2 0.4
7 0.1 0.1 0.1 0.2 0.0 0.1
8 0.1 0.1 0.2 0.0
9 0.0 0.0 0.1 0.0

>= 10 0.2 0.2 0.2 0.1

Table 5.6: Number o f times a name is declared within a program (percentages)

5.7.3 Kind

The values are either of base types or constructed types. Constructed types are created by
use of type constructors. A base type or type constructor is referred to as a kind. The
infinite union of all types is any. Table 5.7 shows the distribution of the name
occurrences with respect to kind. A question-mark indicates an unknown type. For
example, when a binding is dropped from an environment, the type of the binding is not
specified by the programmer. i It appears, among other things, that there are only 375
occurrences of abstract data types. Most occurrences are structures (19108).

The tendency of Table 5.7 is also reflected in the individual applications. Table B.l
in Appendix B shows the distribution of kind by application. Structure is the most
frequent kind in six of the applications, and monomorphic procedure is either the most or
second most frequent kind in another set of six applications. Some kinds vary
significantly among the applications, however, such as unbound quantifier (from 0.1% to
29.1%) and polymorphic procedure (from 0.1% to 10.2%).

The type information could have been extracted from the symbol table of the compiler but has not
been regarded as important in the current analysis.

95

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Kind Freq %

Structure 19108 22.6
ProcMono 16299 19.3
int 12231 14.5
env 10373 12.3
Variant 6029 7.1
UnboundQuantifier 5248 6.2
string 3866 4.6
ProcPoly 1790 2.1
image 1634 1.9
Vector 1617 1.9
bool 1304 1.5
any or ? 1184 1.4

Kind Freq %

TypeParameter 868 1.0
RecursiveType 767 0.9
null 731 0.9
Parameteri sedT ype 417 0.5
ADT 375 0.4
real 294 0.4
file 248 0.3
UnboundWitness 84 0.1
pixel 28 0.0
pic 6 0.0

Total 84501 100.0

Table 5.7: Distribution of kind

5.7.4 Name Usage and Context

The usage attribute defined in ThesaurusEntry (Figure 5.1) divides entries into type
declarations, type uses, value declarations, left contexts and right contexts. Figure 5.5
shows how the entries are distributed among these options. ̂ The pie chart reveals that
declarations, left and right contexts of value identifiers constitute respectively 24.9%,
3.7% and 53.4% of all name occurrences. That is, a value identifier occurs in a right
context about 2.1 times on average and in a left context about 0.2 times, indicating that
identifiers are rarely updated compared with how often their values are accessed. Names
of unbound quantifiers and type parameters constitute a large proportion (40%) of the
type use. These type names are distinct from user-defined types in that they do not have
any declaration - all their occurrences are classified as TypeUse.

O ValueDecI

H TypeDecI

0 LeftC ontext

24.90%

1.00%
3.71%53.37%

1^ TypeUse

S RightContext17.02%

Figure 5.5: Name usage - total

All statistics on the whole application collection are weighted. For example, the weight of WIN
(37564 thesaurus entries) is about four times the weight of Map (9479 entries).

96

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

o
o
LD
(\ J TypeDecI

TypeUse

(\j ValueDecI

o RightContext
LO

LeftC ontext

o

LO

o
I-

ra-a

nj
E
oc<uCÛ

Q.TO
05O

m

Q .
Eou

ou
LU

Q
<Q.
E

Q.TO mQ
■M

TO
CL

C

Figure 5.6: Name usage - by application

Figure 5.6 and Table 5.8 describe the distribution of usage for each application.
RightContext has the largest value for all the applications. Thereafter follow respectively
ValueDecI and TypeUse for half of the applications and vice versa for the other half.

Application Type DecI Type Use Value DecI R-Context L-Context Total

Benchmark 127 1179 798 1270 57 3431
Bibliography 122 1130 2973 5893 720 10838
Comp/TSIT 168 2951 3617 7312 578 14626
EcoSystem 50 818 1137 2039 169 4213
ImplADT 84 870 538 1101 59 2652
Map 116 3357 1899 3824 283 9479
PartsDB 109 537 420 643 7 1716
WIN 73 3541 9655 23015 1262 37546

Total 849 14383 21037 45097 3135 84501

Table 5.8: Name usage by application

97

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

The contexts are special cases of usages (Figure 5.1). Table 5.9 shows that the most
frequent context is as an argument of a unary value operation, which includes: R-values
in assignments, actual procedure parameters, use of environments, etc. Less frequent are,
for example, contexts related to abstract data types (ADTFieldDeref ADTalias and
Witness). Differences and similarities between the applications with respect to context
can be found in Table B.2 in Appendix B.

Context Freq %

ArgUnary OpV alue 36413 43.1
TypeNameUse 11124 13.2
UseClause 7618 9.0
ValueDecI 6726 8.0
StructPieldDeref 5338 6.3
ProcParamDecl 2911 3.4
Assignment 2503 3.0
ArgUnaryOpType 2074 2.5
StructPieldDecl 1693 2.0
Bindinglnserted 1584 1.9
VariantProjectDyn 956 1.1
ProcQuantifierUse 904 1.1
ContainsCbeck 839 1.0

TypeDecI 684 0.9

Context Freq %

Variantlnject 632 0.7
BindingDropped 471 0.6
VariantTagRead 466 0.6
PrimFunctionCall 358 0.4
VariantTagDecl 325 0.4
PameterlnTypeDecl 274 0.3
Recursi veT ypeDecl 165 0.2
V ariantProjectStatic 156 0.2
ADTFieldDeref 100 0.1
Variant Alias 86 0.1
Recursi veValueDecl 62 0.1
ADTalias 32 0.0
Witness 7 0.0
Total 84501 100.0

Table 5.9: Distribution o f context

A “context by kind” table showing the distribution of kind for each context value (and a
similar “kind by context” table) can be found in [Sjpberg 1992].

5.7.5 Constancy

In NapierSS a value identifier is declared as either a constant (the ‘=’ assignment operator
is used) or variable (the ‘:=’ assignment operator is used). This section describes the
distribution of constancy for the value identifiers.^ Table 5.10 shows that 30% are
constants and 70% are variables. There is hardly any difference between constants and
variables with respect to how often they are used (the rightContext row). A constant is by
definition not mutable and therefore cannot occur in a left context.

Type identifiers are immutable and are tbus not included in tbe constancy measurements.

98

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Usage Constant (%) Variable (%) Total (%)

valueDeclaration 6288 (29.9) 14749 (70.1) 21037 (100.0)
rightContext 13392 (29.6) 31705 (70.3) 45097 (100.0)
leftContext 0 (0) 3135 (100.0) 3135 (100.0)
Total 19680 (28.4) 49589 (71.6) 69269 (100.0)

Table 5.10: Constancy distributed by usage

100 j
90 --

80 - -

70 --
60 --
50 --

40 --

30 --

20 - -

10 - -

-V sz 1- ETO a. co (U
E TO V)-c O)oc o E COo
(U .Q o u

CO CO (J ÜJ

Q
<
Q .
E TOQ.

Figure 5.7: Proportion of constants in the applications

Constancy is distributed by application in Figure 5.7 revealing that the proportion of
constants is relatively stable among the applications (perhaps with the exception of
ImplADT).

It may be worthwhile to illustrate the constancy concept with respect to vectors since
it may not be intuitive. In the program example of Figure 5.8 the first line declares a
vector V as a variable and the second line an integer i as a constant. In line three both v
and i appear in a right context^ - implying that also v could have been declared as a
constant. In that case, however, the assignment in line four would have failed. Table
5.11 contains the corresponding thesaurus entries of the program.

So, even though the expression occurs on the left hand side of the assignment operator, the vector
identified by v is not updated; the assignment applies only to the value of one of the vector’s elements.

99

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

let V := vector 1 to 3 of "testl"
let i = 2
v(i) := "test2"
V := vector 1 to 2 of "tesl3"

Figure 5.8: A vector program

Name LineNo Kind Constant Usage

V 1 Vector V valueDeclaration
i 2 int c valueDeclaration
V 3 Vector V rightContext
i 3 int c rightContext
V 4 Vector V leftContext

Table 5.11: Corresponding thesaurus entries

5.7.6 Name Length

The choice of names for identifiers is crucial for the readability of programs. One aspect
of a name is its length. There may be different guidelines for the optimal length. Some
examples follow:

i) Names should generally be long since long names can convey more information than
short ones.

ii) The less frequently an identifier is used, the longer it should be.

iii) The greater the distance between identifiers, the longer they should be. (The dis
tance could for example be measured in terms of number of lines or scope levels.)

iv) What is important is that the name is carefully chosen - which is independent of the
name length (e.g. abbreviations can be very meaningful).

The appropriateness of these guidelines, which are not mutually exclusive, is not an issue
of this thesis. The point is, however, that the thesaurus provides a means for testing the
software against such guidelines. Only the distribution of the name length will be shown
below. Identifiers denoting values in the standard environment are excluded since they
would bias the result. Unbound quantifiers and type parameters have also been excluded
since it is common practice to give them very short names (respectively 80% and 87%
have length one). If two (or more) identifiers have the same name, that name has double
(or more) weight. Figure 5.9 shows that most names have five or six characters. The
average is 8.1 (Table 5.12). The maximum length is 29. (This information was useful
when the screen interface of TSIT was implemented; the name length could be assumed
not to exceed 30 characters.) Moreover, the table reveals that, for example, the ImplADT
programmer has generally chosen names that are less than half the length of the Map
names.

1 0 0

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

1 2 3 4 5 6 7 8 9 1011 1213141516171819202122232425262729

Name Length

Figure 5.9: Distribution o f name length

Application Names Mean Min Max Std

Benchmark 748 8.3 1 26 4.8
Bibliography 2548 8.1 1 24 4.0
Comp/TSIT 3560 7.4 1 26 4.1
EcoSys 1062 8.9 1 21 3.9
ImplADT 598 4.2 I 14 3.1
Map 1812 9.3 1 26 5.6
PartsDB 518 4.8 1 12 2.7
WIN 8426 8.5 1 29 4.6

Total 19272 8.1 1 29 4.6

Table 5.12: Name length o f type and value identifiers

An analysis of the name length distributed by kind showed that procedures have longer
names than other kinds. There was no clear distinction between the other kinds.

5.7.7 Use of Type Definitions

The use of type definitions is illustrated in Figure 5.10.^ A type definition used null times
means that it is never used within the application. There are 208 (33%) such cases among
the 626 different type definitions.^ Moreover, 17% of all type definitions are used once,
6% twice, etc., and 10% are used 30 or more times with two extremes of 504 and 549
times.

A table containing the underlying numbers can be found in [Sjdberg 1992].
In this context a type name in one application is regarded as different from a type name in another
application even though the name, and possibly the type expression, happen to be the same. However,
the applications typically re-declare types defined in other applications such as libraries (Map and
WIN). See also discussion in Section 6.3.2.

101

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

<u~o
<uQ.

(U
E3

250 -r

200 -

150 -

100 - I

50 - I

0- M - l- 1 - r M -l-1 -1 -1 - H l-I-1 -1-

>= 30

1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Times a type definition is used

Figure 5.10: Distribution of use o f type definitions

Application Type Def Mean Min Max Sum Std

Benchmark 125 3.0 0 87 370 8.5
Bibliography 85 8.5 0 74 722 10.9
Comp/TSIT 162 11.8 0 503 1904 47.5
EcoSys 40 18.6 0 177 742 33.0
ImplADT 15 12.4 3 65 186 11.2
Map 116 6.2 0 260 724 24.1
PartsDB 28 7.1 3 66 200 9.3
WIN 55 60.9 1 548 3349 99.5
Total 626 13.1 0 548 8197 40.9

Table 5.13: Statistics on the use of type definitions

Table 5.13 shows how many type definitions are defined in the various applications and
some statistics on their use. The 626 type definitions are on average used 13.1 times.
The average use varies significantly between the applications (from 3.0 in Benchmark to
60.9 in WIN). So, on average for all the applications a renaming of a type identifier will
imply that 13 places must be edited. In the best case only the definition itself needs to be
changed {Min is 0) while 548 places {Max) in the worst case. If the expression of a type
definition is changed, the places of use must be changed depending on the context and
whether or not the type is parameterised. Since type parameters and unbound quantifiers
are not included in this section, there are basically two uses of type identifiers. First, the
context may be TypeNameUse. That is, the type identifier appears in a declaration on the
form <value identifier> : <type identifier> in the signature of a use-clause header or in a
procedure parameter declaration.

102

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

Second, the context may be ArgUnaryOpType. That is, the type identifier is used to
create instances of the type denoted as for example in:

let newPerson ;= Person("Dag", "Glasgow")

These two contexts constitute respectively 25% and 75% of the use of type definitions.
In the former case a change to the type declaration does not affect the code if the type is
not parameterised; only recompilation is necessary. If the type is parameterised,
however, the place of use must be edited if the number of parameters is changed. In the
current sample 26% of all type definitions are parameterised.

In the latter case a change to the type^ denoted by an identifier must be propagated to
all places where the identifier is used to create new instances. For example, if the type
Person is extended with a field for occupation, that field must also be given a value as for
example in:

let newPerson := Person("Dag", "Glasgow", "Student")

Table B.3 in Appendix B shows how many times a type definition is used in value
instantiations. There are 166 different type definitions^ which are used in 2074
instantiations implying that a change to the denoted type will affect 12.5 places on
average. Moreover, 10% are used more than 26 times with three extremes of 130, 166
and 261 times.

Due to structural type equivalence in NapierSS, the thesaurus information about the
use of types may not be complete. That is, instead of the name of a type definition,
anonymous types may be used in value instantiations and other declarations. For
example, in the declaration:

let anotherPerson := struct(name = "Paul"; university = "Glasgow")

the created value has the same type as the created value in the first instantiation of Person
above. If the definition of Person is to be changed, then the declaration of anotherPerson
should probably be changed as well. This illustrates that programmers may be
encouraged to use named types in order to facilitate efficient change propagation.

Being precise, in a language with structural type equivalence types are not changed. When saying that
a type is changed, we mean that the type denoted by a type identifier has been replaced by another
type. For example, in the first declaration of newPerson above the Person identifier denotes a type
that is a structure with two string fields. In the next declaration Person denotes a type that is a
structure with three string fields.

Only 166 of the 626 type names are used in instantiations. The remainder are either used exclusively
in the declarations of other types or not used at all.

103

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

5.7.7.1 Use of Structure Fields and Variant Tags

The use of structure fields and variant tags may be of special interest. If a field of a
structure type is changed, all places where that field is dereferenced must be edited. ̂
Table 5.14 shows the number of field declarations and dereferences. On average 3.2
places are affected, but the applications differ significantly (from 0.8 to 11.0). Table 5.15
is a similar table for variant tags.

Measurement
Bench

mark
Biblio
graphy

Comp/
TSIT EcoSys

Impl
ADT Map

Parts
DB WIN Total

StructFieldDecl 67 440 259 196 175 41 174 341 1693
StructFieldDeref 79 527 915 252 244 450 141 2730 5338

Deref per field 1.2 1.2 3.5 1.3 1.4 11.0 0.8 8.0 3.2

Table 5.14: Use of structure fields

Measurement
Bench

mark
Biblio
graphy

Comp/
TSIT EcoSys

Impl
ADT Map

Parts
DB WIN Total

VariantTagDecl 23 51 70 21 62 17 48 33 325
VariantDeref^ 20 245 431 113 161 213 48 979 2210

Deref per tag 0.9 4.8 6.2 5.4 2.6 12.5 1.0 29.7 6.8

Table 5.15: Use of variant tags

A frequency table (context by kind) presented in [Sjpberg 1992] yields information about
the distribution of kind for each context value. Two extractions. Tables 5.16 and 5.17,
show respectively how many occurrences of structure fields and variant tags that are
procedures, integers, recursive type declarations, etc. For example, most structure fields
are monomorphic procedures or integers, whereas most variant tags are nulls or recursive
type declarations.

This is always the case for deletion and renaming. For change to the type of the field or tag, however,
there are cases where editing may be unnecessary (e.g. if the field or tag appears on the right hand
side of an assignment).
VariantDeref is the union of the context values VariantProjectDyn, Variantlnject, VariantTagRead
and VariantProjectStatic.

104

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Kind Freq %

ProcMono 547 32.3
int 326 19.3
RecursiveTypeDecl 179 10.6
Structure 169 10.0
Variant 156 9.2
string 133 7.9
Vector 69 4.1
bool 56 3.3
TypeParameter 23 1.4
real 15 0.9
image 10 0.6
null 4 0.2
ProcPoly 4 0.2
pixel 1 0.1
env 1 0.1

Total 1693 100.0

Kind Freq %

null 127 39.1
Recursi veT ypeDecl 66 20.3
Structure 64 19.7
TypeParameter 39 12.0
string 12 3.7
image 5 1.5
int 4 1.2
Vector 2 0.6
real 1 0.3
pixel 1 0.3
pic 1 0.3
file 1 0.3
bool 1 0.3
Variant 1 0.3

Total 325 100.0

Table 5.16: Kind o f structure fields Table 5.17; Kind o f variant tags

5.7.8 Use of Procedures

Code is contained in the persistent store in the form of procedures, which are therefore of
particular interest. Their use frequency has been investigated. The histogram of Figure
5.11 shows that using a procedure only once is most common. There is also a relatively
large number of procedures that are declared but never used (times used is 0).^ The
rightmost bar represents 30 or more uses. A table containing the exact numbers [Sj0berg
1992] shows that 10% are used more than 15 times including the maximum of 569 times
(which is the writeString procedure). The average is 8.3; the standard deviation 28.9.

In these measurements a procedure is either monomorphic or polymorphic, and
standard procedures are included.^ Moreover, procedure here means procedure name
and is independent of application. That is, even though two procedures with the same
name are declared differently in different applications, programs or scopes, they are still
counted as one procedure in this context. However, there are very few cases of such
name duplication.

 ̂ Note that the samples include libraries; see also Section 6.3.3.

 ̂ A comparison between standard procedures and user-defined procedures showed that standard
procedures were used more frequently, otherwise the two groups followed the same pattern (the
results are not presented here).

105

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

300 1-

250

200 . .

150 --

>= 30

15

Times Used

Figure 5.11: Distribution of use o f procedures

5.7.8.1 Consequences of Change to Procedures

A procedure can be changed by changing its name, type or value. A change to the value
(body) will normally not require any propagation to other parts of the application [Dearie
1987, Connor 1991, Dearie et al. 1992, Atkinson 1993, Cutts 1993a] (see Chapter 6). So,
in the following text, a change is either a change to the name or to the type of a
procedure. Changing a procedure implies that all places of use must be changed
accordingly. Table 5.18 shows the use of procedures in the applications. Only proce
dures that are both defined and used are included. (Changing an unused procedure does
not have any consequence, of course.) On average between 3.4 (PartsDB) and 9.2
(Comp/TSIT) places have to be edited. The average use seems to be relatively indepen
dent of the number of procedures in the application. The use frequency varies from one
{Min) to between 11 and 204 places {Max).

The argument above should be modified slightly. If a procedure p / is changed
(excluding renaming), it is not necessary to perform any edit if the occurrences of py are

on the right hand side (in right context) of assignments on the form:

Ietp2 ’■ = ? ! { o r \ e i p 2 = P i)

However, such assignments occur only occasionally in the analysed applications. If there
are such cases, however, then the changes must also be propagated to all places where P2

is used. If P2 , in turn, is also used in right contexts of assignments, then there is yet

another level of change propagation, and so on.
Moreover, if the type of a procedure pg is changed, and p j is passed as a parameter to

another procedure p 4 , then the call places do not require change. The declaration of p 4

must be changed, however.

106

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Application Frees Min Max Mean Std Sum

Benchmark 8 1 12 4.0 4.0 32
Bibliography 215 1 77 4.9 9.2 1060
Comp/TSIT 145 1 156 9.2 23.4 1341
EcoSys 101 1 51 3.9 7.8 389
ImplADT 20 1 13 4.2 3.9 84
Map 62 1 44 7.4 11.2 458
PartsDB 14 1 11 3.4 3.5 48
WIN 423 1 204 7.1 13.4 2998

Total 988 1 204 6.5 13.8 6410

Table 5.18: Use o f procedures

S.7.8.2 Context of Procedures

Table 5.19 describes the context in which the procedures are used. Regarding
declarations, 923 are inserted into some environment (in practice that means made
persistent), whereas 1538 are declared local to a program {ValueDecI and
RecursiveValueDecl) and are thus made temporary. The UseClause row (3385) shows
how many times a persistent procedure is brought into the scope of a program. The
context values are dominated by ArgUnaryOpValue which is mostly procedure calls, but
also includes procedure identifiers, not representing calls, occurring on the right hand side
of ‘=’ or ‘:=’ in assignments. PrimFunctionCall denotes calls to the only built-in
procedure PS.

Context Frequency Percentage

ArgUnaryOpV alue 8453 48.4
UseClause 3385 19.4
ValueDecI 1476 8.5
StructFieldDeref 1360 7.8
Bindinglnserted 923 5.3
StructFieldDecl 551 3.2
Assignment 418 2.4
PrimFunctionCall 358 2.1
ProcParamDecl 206 1.2
ContainsCheck 157 0.9
ADTFieldDeref 100 0.6
Recursi veV alueDecl 62 0.4

Total 17449 100.0

Table 5.19: Context o f procedures

107

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

5.7 8.3 Polymorphic and Specialised Procedures

The previous two sections do not distinguish between monomorphic and polymorphic
procedures. This section, however, describes the use of polymorphic procedures and to
what extent they are specialised. Determining the consequences of changing a
polymorphic procedure also involves measuring the use of specialised procedures. The
notion of specialised procedure is best illustrated by an example. Assume that a
polymorphic procedure p is defined as follows:

let p := proc[t](x : t)
b eg in ... end

The procedure is specialised by instantiating it with a type, e.g. integer as in:

let pint := p [in t]

The specialised procedure pint is now an ordinary monomorphic procedure with one
parameter of type integer.

In total, 19.3% of all name occurrences are monomorphic procedures and 2.1% are
polymorphic (Table B .l). There are, however, significant variations between the
applications. For example. Map has 10.7% monomorphic and 10.2% polymorphic
compared with 20.3% monomorphic and 0.2% polymorphic in WIN. Even though nearly
all polymorphic procedures are made persistent, their use is about 30% lower than the use
of monomorphic procedures. One reason for this relatively low use is that most of the
polymorphic procedures in the study are provided by the Map application which does not
use most of them itself. The intention is that the map constructs should be utilised by
other applications. This has only been done to a lesser extent, however, because the Map
implementation has by the time of the study (August 1991) just been released. Another
reason is that polymorphic procedures are used indirectly in specialisations.

Measurements pertaining to polymorphic and specialised procedures are presented
below. Since some of these measurements cannot be obtained from TSIT alone but must
be collected by investigating the source code manually, only three applications have been
measured: Benchmark, Comp/TSIT and Map. Table 5.20 shows how much the
polymorphic procedures are used and how many different types that are used in the
procedure calls. A type in this context means a tuple of actual type parameters: [string],
[int, env], etc. Benchmark has 9 polymorphic procedures which are used 1.1 times on
average. The 20 polymorphic procedures of Comp/TSIT have the largest use frequency
(6.3). In Benchmark the same type is always used, whereas the Map procedures are
instantiated with up to 17 different types. Comp/TSIT has the largest average (2.5) of
different types used per procedure.

108

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Application Poly Procs

Times Used Different Types

Min Max Mean Min Max Mean

Benchmark 9 1 2 1.1 1 1 1.0
Comp/TSIT 20 0 37 6.3 1 10 2.5
Map 112 0 16 4.6 1 17 1.8

Table 5.20: Use frequency and number o f types instantiated

Table 5.21 shows the extent of polymorphic procedure specialisation. The PolyProcs
column contains the number of polymorphic procedures that are specialised. The Spec
Procs colunm shows the number of specialised procedures - ranging from 7 (Benchmark)
to 83 (Map). A comparison with Table 5.20 reveals that respectively 78%, 10% and 16%
of the polymorphic procedures of the three applications are involved in specialisations.

Below the Specialised Procedures heading, Min, Max and Mean denote respectively
the smallest, greatest and average number of specialisations for one polymorphic
procedure. The Different Types column describes the number of different types (a tuple
as described above) that are used in specialisations of one particular polymorphic
procedure. For example, in Comp/TSIT there are on average 6.5 different types that are
used per polymorphic procedure.

Application

Poly

Procs

Spec

Procs

Specialised Procedures Different Types

Min Max Mean Min Max Mean

Benchmark 7 7 1 1 1.0 1 1 1.0
Comp/TSIT 2 13 3 10 6.5 3 10 6.5
Map 18 83 1 32 4.6 1 5 2.2

Table 5.21: Specialised procedures

Table 5.20 indicates that a change to a polymorphic procedure would affect between 1.1
and 6.3 places on average {Times Used, Mean). In addition, for polymorphic procedures
being specialised the changes must also be propagated to the places where the specialised
procedures are used, that is, 3.3, 6.8 and 1.0 places in Benchmark, Comp/TSIT and Map,
respectively (Table 5.22).i In summary, changing a polymorphic procedure used in
specialisations will on average affect 4.4, 50.5 and 9.2 places in the respective
applications.^

In Table 5.22 the context values Bindinglnserted and ValueDecI constitute the number of specialised
procedures, while a use means an occurrence in one of the contexts UseClause or ArgUnary OpValue.
So, the use is calculated by dividing the sum of UseClause and ArgUnary OpValue by the sum of
Bindinglnserted and ValueDecI.
The calculation follows:

average use of polymorphic procedures [1.1, 6.3, 4.6]

109

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Application Usage Context Frequency Percentage

Benchmark V alueDeclaration Bindinglnserted 7 23.3
UseClause 9 30.0

RightContext ArgUnaryOpValue 14 46.7
Benchmark Total 30 100.0

Comp/TSIT V alueDeclaration Bindinglnserted 12 11.8
UseClause 34 33.3
ValueDecI 1 1.0

RightContext ArgUnaryOpValue 55 53.9
Comp/TSIT Total 102 100.0
Map V alueDeclaration ValueDecI 83 49.1

RightContext ArgUnaryOpValue 86 50.9
Map Total 169 100.0

Table 5.22: Usage and context o f specialised procedures

5.7.9 Measurements Related to Environments

A substantial part of NapierSS code is concerned with operations on environments. Table
5.23 shows the number of identifier occurrences in such contexts. The occurrences of the
involved environments themselves are also included (fifth row). It appears that in total
20% of all name occurrences pertain to environments. This proportion may be compared
with corresponding measurements in other programming environments. One example is
the classical figure in the persistent literature that typically 30% of all code in
conventional languages is concerned with transferring data to and from secondary storage
[IBM 1978]. Compared with that figure, using Napier88 seems to reduce the volume of
code related to secondary storage by about one third. ̂

+ (average number of specialised procedures [1.0, 6.5,4.6]
* average use of specialised procedures [3.3, 6.8, 1.0])
= total number of affected places [4.4, 50.5, 9.2]

Being precise, these operations apply to environments in general which do not necessarily have to be
persistent. In practice, however, there are only a very small number of environments that are only
transient (less than 5% in the actual sample of applications).

1 1 0

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Context and
Environments

Bench
mark

Biblio
graphy

Comp/
TSIT EcoSys

Impl
ADT Map

Parts
DB WIN Total

Bindinglnserted 70 31 235 31 42 188 15 972 1584
BindingDropped 0 30 11 31 17 7 0 375 471
UseClause 380 999 1614 463 94 644 65 3359 7618
ContainsCheck 0 30 14 31 0 6 0 758 839
Environments 239 431 602 364 102 409 44 4197 6388

Sum 689 1521 2476 920 255 1254 124 9661 16900

% of Total 20.1 14.0 16.9 21.8 9.6 13.2 7.2 25.7 20.0

Table 5.23: Number o f name occurrences related to operations on environments

There are 3706 name occurrences of environments associated with the 7618 occurrences
in the use-clauses. In total, these 11324 occurrences constitute 13% of all name
occurrences which confirms the need for tools that (partly) automate the process of
specifying use-clauses (Section 8.2.4).

5.7.9.1 Changes to Environments

A problem experienced by Napier88 programmers is the management of bindings in the
persistent store. A change to a program that inserts bindings may have unexpected
consequences for other programs that utilise these bindings. The removal of bindings
may also have serious impact on other parts of the application.

Application Programs
Programs
with Insert

Bindings
Inserted

Per
Program

Programs
with Drop

Bindings
Dropped

Per
Program

Benchmark 29 11 70 6.4 0 0
Bibliography 38 26 31 1.2 25 30 1.2
Comp/TSIT 80 11 235 21.4 9 11 1.2
EcoSys 24 20 31 1.6 20 31 1.6
ImplADT 11 8 42 5.3 3 17 5.7
Map 25 11 188 17.1 3 7 2.3
PartsDB 4 2 15 7.5 0 0
WIN 156 148 972 6.6 147 375 2.6

Total 367 237 1584 6.7 207 471 2.3

Table 5.24: Programs modifying environments

Table 5.24 shows the number of programs inserting or dropping bindings. The Programs
column contains the total number of programs in the respective applications. The
organisation of the applications with respect to the way environments are being operated
on varies significantly. For example, in Comp/TSIT only 14% of programs insert
bindings which is in contrast to the 83% and 95% of EcoSys and WIN. The number of
bindings inserted per program (average of the programs that actually contain insertions)

1 1 1

CHAPTER 5: T S IT -A THESAURUS-BASED SOFTWARE INFORMATION TOOL__________________

also differs considerably - with Bibliography (1.2) and Comp/TSIT (21.4) as the two
extremes.

The problem of installing and modifying a Napier88 application would be simplified
if no program updated more than one environment. How does current practice compare
with such a convention? Table B.4 in Appendix B shows the minimum, maximum and
mean number of different environments modified (Bindinglnserted or BindingDropped)
per program. (The same sort of statistics are also provided for UseClause and
Contains Check.) The table reveals that in Bibliography and EcoSys, a program never
inserts into more than one environment {Max is 1) which is in contrast to, e.g., PartsDB
and WIN in which the average is 3.0 and 2.7, respectively.

Table B.5 in Appendix B shows how many programs operate on each environment.
It appears that bindings are inserted into an environment in 6.4 programs on average.
Bibliography is an extreme case in which the same environment is being inserted into in
26 programs. WIN is another extreme with a maximum of 143 programs and 10.2
programs on average. At the other end of the scale are Map and PartsDB whose
environments only 1.5 and 1.2 programs are being inserted into, on average.

Most of the removals of bindings occur in the same programs as the insertions, but
not always. Table 5.25 shows the number of environments a given program either inserts
into or drops from. Table 5.26 shows the number of programs that inserts into or drops
from a given environment.

Application Programs Min Max Mean Std Sum

Benchmark 11 1 3 1.5 0.7 16
Bibliography 26 1 1 1.0 26
Comp/TSIT 12 1 4 2.3 0.9 27
EcoSys 20 1 1 1.0 20
ImplADT 11 1 3 1.4 0.9 15
Map 12 1 4 1.6 0.9 19
PartsDB 2 1 5 3.0 2.8 6
WIN 148 1 13 2.7 2.3 406

Total 243 1 13 2.2 1.8 535

Table 5.25: Environments modified by a program

Comparing Table 5.25 with Table B.4 reveals that only Comp/TSIT, ImplADT and Map
have programs that drop bindings from an environment without also inserting into the
same environment. (The Programs columns of Table 5.25 have larger values than
Programs columns of Table B.4 for the context Bindinglnserted.) Comparing Table 5.26
with B.5 reveals that for all environments from which bindings are dropped, there are also
bindings being inserted (which is reasonable).

1 1 2

CHAPTER 5: TSIT- A THESAURUS-BASED SOFTWARE INFORMATION TOOL

Application Envs Min Max Mean Std Sum

Benchmark 5 1 6 3.2 1.9 16
Bibliography 1 26 26 26.0 26
Comp/TSIT 9 1 5 3.0 1.7 27
EcoSys 4 2 11 5.0 1.0 20
ImplADT 6 1 3 2.5 0.9 15
Map 11 1 3 1.7 0.8 19
PartsDB 5 1 2 1.2 0.4 6
WIN 40 1 143 10.2 12.0 406

Total 81 1 143 6.6 8.5 535

Table 5.26: Programs modifying an environment

5.8 Summary
The Thesaurus-based Software Information Tool (TSIT) has been built in order to support
program development and maintenance in Napier88. The major component of TSIT is
the thesaurus which holds information about names in the source programs and names
denoting name-type-value-constancy bindings in a persistent store. The thesaurus
contains cross-reference information and detailed information about kinds of identifiers,
contexts of identifier occurrences, etc. The need for tools providing such information has
often been experienced by persistent programmers, for example when TSIT itself was
built. Part of the work was to modify the Napier88 compiler. Modifying such a
relatively large piece of software requires a thorough understanding of its structure. In
the case of the compiler, it was difficult to discover which environments, procedures and
other values were required by which compiler components. Discovering the name of the
program that inserted those values was also difficult, but necessary in order to locate the
source code. In general, the potential success of software reuse depends heavily on the
availability and quality of the information about the existing software. A name-based
dependency graph like the thesaurus is a useful aid in that respect.

All the thesaurus information is automatically generated and inserted into the
persistent store. TSIT itself is also contained in the store.

The TSIT tool was used in a study of the use of names and identifiers in Napier88
programs. A large number of measurements were collected on the basis of thesaurus data
from eight Napier88 applications. Some of the measurements were found interesting and
have been presented in this chapter. i In order to illustrate how system builders use
Napier88 and how they organise their software, the following (amongst others) were
measured:

Chapter 6 and Appendix B also present measurements relevant to the issues of the thesis.

113

CHAPTER 5: TSIT - A THESAURUS-BASED SOFTWARE INFORMATION TOOL___________________

• the distribution of base types and the type constructors provided by Napier88;

• the proportion of uses versus declarations of type identifiers (an indication of the
consequences of changing type definitions);

• the proportion of declarations, left contexts and right contexts of value identifiers;

• the proportion of constants versus variables; and

• the interaction between programs and the persistent store (frequencies of insertion,
use and removal of persistent bindings, the number of environments a program
operates on, the number of programs an environment is being operated on, etc.).

The sample of the study is too small and specific to conclude that some properties are
application dependent and others are programmer dependent. These are examples,
however, of hypotheses that could be tested in a more well-defined experiment based on a
larger, more representative sample of Napier88 applications.

It has been demonstrated that the thesaurus information can be the source of useful
measurements. As will be described in Chapters 6 and 7, the thesaurus information can
also be utilised by methodologies and tools for maintaining large, persistent application
systems. TSIT will therefore, in addition to the basic persistent technology presented in
Chapter 4, serve as enabling technology for the work described in the following two
chapters.

114

Chapter 6
Models and Methodologies

6.1 Introduction
A system development methodology specifies guidelines directing the performance of the
various phases of a system development process including analysis, design,
implementation, testing, etc. A programming methodology, however, focuses only on the
implementation phase. This chapter describes the design of a proposed programming
methodology for construction and maintenance of application systems developed in a
persistent programming language. It also introduces a structured persistent application
system model (SPASM) which specifies an architecture for persistent application systems
(PASs). That is, SPASM defines a set of constraints that are believed to improve the
maintainability of a PAS and which can be both supported and exploited by change
management tools. Hence, SPASM describes criteria of the product (the PAS); the
methodology describes criteria of the development and maintenance process of that
product. SPASM and the methodology mutually support each other (Figure 6.1).
Obtaining a PAS compliant with SPASM is simpler (but is still not guaranteed) if the
methodology is followed during construction and maintenance.

Both the proposed SPASM and the methodology are general in that they are
independent of the actual real-world applications being implemented. ̂ They are,
however, couched in terms of the persistent programming language Napier8 8 even

The constraints of SPASM would typically be included in what are referred to as general integrity
rules o f a database, which constrain the application programs, the types (schema) and the collected
data (database) and their combination [Date 1990]. Specific integrity rules express constraints in the
real-world application; general integrity rules are independent o f a specific application but may
depend on a data model being used (e.g. the relational data model).

115

CHAPTER 6: MODELS AND METHODOLOGIES

though most of the principles they encode are applicable to any persistent programming
environment.

Adhering to the SPASM and methodology may seem awkward for small programs.
Nevertheless, it is an investment that will pay off as the PASs become older and larger.

SPASM

1,
Construction and Maintenance

Methodology
supports
imposes structure on

Figure 6.1: Relationship between SPASM and the methodology

6.1.1 Motivation

Traditionally, no specific application models or programming methodologies were
proposed for languages like COBOL and FORTRAN, though guidelines or design
principles existed. One example is structured programming that implies a top-down
approach to program development, no use of goto statements, etc. [Dahl et al. 1972,
Jackson 1975]. Another example is the principle of modularisation where one should
pursue a high degree of cohesion and a low degree of coupling among software
components [Constantine and Yourdon 1979].

The interaction among components developed in COBOL and FORTRAN was
simple (no program-to-program communication - programs communicated via data files).
However, when Ada emerged with its sophistication (multitasking, etc.), the interaction
became more complex, and there was a need for tools to manage this complexity, cf. the
notion of APSE (Section 3.6.2.1).^ Napier88 is also a sophisticated language that
provides persistence through its ability to operate on environments and was, like Ada,
designed with a specific application domain in mind, namely serving as an
implementation language for large and long-lived application systems. Experience shows
that many untutored novices tend to program in Napier88 in the same style as they
previously used in Pascal, C or whatever is their familiar programming language. Even
worse, direct misuse of powerful language constructs occurs, which leads to very
awkward programs.

 ̂ Ada was purported to be for embedded systems - “where the computer acts as the controlling device
for some larger system” [Sommerville and Morrison 1987].

116

CHAPTER 6: MODELS AND METHODOLOGIES

Programmers who share a common view of how to develop applications in their
environment form a particular programming culture. Such cultures may differ
considerably from group to group even though the programming language is the same.
The rules and conventions of a programming culture implicitly express application
models and programming methodologies adhered to within that culture. The work
described in this chapter explicitly formulates such models and methodologies in the
context of persistent programming. Some aspects represent rules and conventions in a
current Napier8 8 culture and are already adhered to by experienced Napier88
programmers, e.g. the persistent location binding methodology^ [Dearie 1987, Connor
1991, Dearie et al. 1992, Atkinson 1993, Cutts 1993a] in which values (particularly
procedures) are updated incrementally without the need for recompilation or re-execution
of components referencing these values. Other aspects represent novel ideas also
expected to be beneficial for construction and maintenance of PASs.

In addition to supporting development of efficient and consistent PASs, commonly
used and explicitly defined models also:

• assist in teaching persistent programming;

• simplify collaboration;

• simplify maintenance of unknown software; and

• permit supporting tools.

Tools above a certain level of sophistication have underlying models which should be
made explicit. In compliance with this principle this chapter describes the models that
form the basis for the EnvMake tool discussed in Chapter 7.

6.1.2 Requirements for Models and Methodologies

Factors such as programmers, development environments, underlying technology, etc.
influence the potential success of the models and methodologies being introduced.
Success is more likely to be achieved if the following requirements are obeyed:

i) the programmers should find the models and methodologies intelligible and easy to
use;

ii) the models and methodologies should be accompanied by supporting tools;

iii) they should include provision for maintenance; and

iv) there should be a cost/benefit criterion.

 ̂ This is the term used in this thesis, but the methodology is also referred to as an “L-value binding
methodology”, a “stub methodology”, an “incremental construction methodology” and an “application
construction architecture”.

117

CHAPTER 6: MODELS AND METHODOLOGIES

Developing large and long-lived PASs is a complex and time consuming task. The aims
of the models and methodologies are to assist in managing this complexity and increase
the efficiency and reliability of the development. It is crucial that the software engineers
and programmers find it worthwhile to learn and apply the models and methodologies. It
should be easier to fulfil the programmers' tasks by using the models and methodologies;
i.e., they should not hinder normal working practice. Nevertheless, programmers must
understand that they have to invest in setting up and preserving structure if they want an
easier maintenance future.

In order to help achieve the requirement of (i) and to simplify tasks that may be
imposed by the models and methodologies (housekeeping operations, checking
compliance with constraints and conventions, etc.), appropriate supporting tools must be
provided.

Whatever the implementation technology, maintenance is the principal activity for
software engineers responsible for a PAS. Maintenance is required to remedy errors,
improve existing function and adapt the PAS to its changing circumstances and
requirements. The effectiveness of maintenance will be one of the critical factors in
assuring longevity. As opposed to traditional system development methodologies
[DeMarco 1979, Jackson 1983], the proposed models and methodologies should have an
inherent understanding of the nature of evolution in large application systems. Hence,
they should provide adequate means for managing change, including necessary
consequential change.

6.2 A Structured Persistent Application System Model - SPASM
SPASM is a model of a structure for persistent application systems. It is defined in terms
of certain constraints and outlines an architecture for such systems. The consistency of a
PAS is evaluated relative to this model; a PAS is partly consistent if it adheres to only
some of the SPASM constraints. The reasons why each constraint is included will be
explained. These will include the general arguments: simplification of change
management, prevention of potential run-time errors, performance improvements, etc. In
order to find how these constraints comply with current practice, eight Napier88
applications were analysed (see Section 5.7).

SPASM is concerned with identifying and simplifying the relationships between
programs (e.g. source code files) and stored fragments of the PAS (e.g. persistent
environments). It focuses on categorising and organising the operations that modify the
set of persistent bindings between names and values. The relationship between model,
methodology and meta-data will be illustrated; the name information in the thesaurus is
used to formulate and verify the SPASM constraints.

118

CHAPTER 6: MODELS AND METHODOLOGIES

The persistent location binding methodology defines a technique for incremental
development. Except when type change is involved, programs can be changed
independently without the need for recompilation or re-execution of other programs.
This methodology is part of the construction and maintenance methodology - the main
purpose of the persistent location binding methodology is to support maintenance.
SPASM supports this methodology which will therefore be explained before the
presentation of the SPASM constraints. The discussion that follows assumes that a PAS
compliant with SPASM is being constructed. The reader is reminded that other
methodologies would adopt different practices and might still produce viable PASs.

The SPASM constraints are described in detail in Section 6.3. Categories of
programs and bindings that are referred to in the definitions of the constraints will be
described in the following subsections.

6.2.1 A Persistent Location Binding Methodology

A dummy procedure value, or other types of dummy value denoting an instance of
another type, is referred to as a stub. A stub for a procedure or another type is initially
inserted into a new, persistent location to which other programs can then bind, as an
identifier referring to it is declared in a persistent environment. For each stub a template
program is created that updates the L-value of the location to hold a useful value. ̂
Incremental development is supported in that the template program can be edited and the
location correspondingly updated (but its type does not change) with a new L-value
without the need for editing, recompilation or re-execution of the other programs using
the value.2

It is convenient to include a procedure called uninitialisecP as the body of a
procedure stub (instead of leaving it completely empty). If a procedure is called before it
has been updated, uninitialised gives an error message reporting the name of the
uninitialised procedure.

Experience has shown that adhering to the persistent location binding methodology
is a convenient way of implementing Napier88 applications. To date, almost all stubs in
Napier88 applications are procedures. However, as the usage of this methodology

1 In principle, a useful value could be created initially, but it is inconvenient. For example, when
changing a procedure body, the “in <env_clause> let” part must be removed from the source program
and a use-clause for the procedure must be added. (The original version would still be useful for re-
installation or when changing the procedure type.) In contrast, in the interactive hyper-programming
environment one can change the procedure body directly by editing the source associated with the
procedure (see Section 8.2.6).

2 The stages of this methodology will be explained further in Section 6.5.1.

 ̂ In fact, two dummy values are necessary: uninitialised_void: proc(string) to report premature use of
a procedure that returns no value and uninitialised: proc[Z X](string XX) to report premature
application of a procedure that should return a value of type XX.

119

CHAPTER 6: MODELS AND METHODOLOGIES

increases, one might expect more widespread use of other kinds too. For example,
complex data structures such as symbol tables, tables with geographical information, lists
of images, etc. could also be initially created as stubs. The initial values of base type
variables are not regarded as stubs. If such variables are made persistent, they may
typically be updated in several programs. Hence, the methodology is not feasible for base
type values.

6.2.2 Program Categories

A program in this context is a unit of compilation, typically contained in a single Unix
file.i There are two forms of a program: a source program (identified by the “.N” file
naming convention in Napier88, “.c” in C, etc.) and an executable program (identified by
the “.out” file naming convention).

In order to define and describe the SPASM model and the methodology to be
introduced, it has been found convenient to categorise the programs according to their
semantics. On the criteria of how they operate on the persistent store and where they
define types, programs are divided into the following categories:^

• Type-program - a program whose contents are exclusively type definitions.

• Insert-program - a program that inserts at least one binding into a (normally)
persistent environment but neither updates a persistent location nor drops any
binding.

• Update-program - a program that updates at least one persistent location but neither
inserts nor drops any binding.

• Drop-program - a program that drops at least one binding but neither updates a
persistent location nor inserts any binding.

• Startup-program - a program that uses at least one binding but neither changes the
binding to a persistent location, nor inserts or drops any binding.

A type-program contains the source code for the types in a corresponding type database
(Section 4.2.1.1).

In principle, a program may be represented by several files (e.g. assembled first by a pre-processor,
held in a source code control system like RCS, etc.) or may be extracted from one file. Nonetheless,
the crucial issue in this context is that a file is the unit on which edits are performed when a
programmer is carrying out a step in the task of performing a change.

In a hyper-programming environment (Section 8.2.6), an alternative definition would be
appropriate since source code (linked to values) is contained in the persistent store.

It should be emphasised that when it is mentioned in the text that a binding is inserted, dropped, etc.,
it is meant in a static sense; that is, the source code contains insert-declarations, drop-clauses, etc.
These declarations and clauses could be part of procedures or conditions implying that they are not
necessarily being executed when the program is being executed.

1 2 0

CHAPTER 6: MODELS AND METHODOLOGIES

An insert-program contains insert-declarations which are of three kinds:

i) declaration of environments;

ii) declaration of stubs;

iii) declaration of other values.

The purpose of an update-program is: first, to assign a useful value to a persistent
location that has previously been initialised with a stub; second, to modify that value^ as
the application evolves. In the analysed applications that adhered to the persistent
location binding methodology, the number of update-programs is several times greater
than the number of other programs.^

A startup-program contains at least one use-clause and typically invokes an
interactive menu or any persistent procedure. Its distinguishing feature is that it does not
change any of the bindings in any persistent environment. A PAS must have at least one
startup-program in order to start up an application.

The term application-program will be used to denote any program that is not a type-
program. Naming conventions for files holding programs of the various categories will
be suggested.

6.2.3 Binding Categories

In this context a binding is a name-type-value-constancy quadruple contained in an
environment accessible from a persistent root (Section 4.2.3). An environment is a set of
such bindings and is identified by its name and the path of environments from the root.^
Relative to a given PAS there are three categories of bindings:

• Export binding - a binding that is defined (i.e., occurs in an insert-declaration)
within the PAS with the intention of being used by other PASs. Procedures in
libraries such as the Napier88 standard library, WIN and Maps are typical examples.

• Import binding - a binding that is used (i.e., occurs in at least one use-clause) but not
defined within the PAS. Again, a typical example is procedures of a library.

• Internal binding - a binding that is defined within the PAS but is not an export
binding, i.e., intended for internal use, only.

An import binding of one PAS corresponds to an export binding of another PAS. An
export binding may also be used within the defining PAS itself. By definition only
internal bindings are present in an internal environment. The terms export, import and

One might argue that a value itself cannot be changed; rather, a new value is created in the variable's
location. For simplicity, however, common language usage will be adhered to.

This distribution will of course change if programmers adhere to a convention of four programs per
stub (Section 6.5.1).
There are cases where this is not possible (see Section 7.5.2).

1 2 1

CHAPTER 6: MODELS AND METHODOLOGIES

internal will be used as a prefix to categorise bindings of various kinds such as export
procedure, internal environment, etc.

In Figure 6.2 a box represents a collection of bindings of a certain category. The
example shows that PAS 1 has no import bindings but has produced export bindings that
are used in PAS2 and PAS3. PAS2 has no export bindings. PAS3 has export bindings
but neither PAS 1 nor PAS2 uses them.

PASl

internal

export

PAS2 PASS

internalinternal

importimport

export

Figure 6.2: Binding categories

6.3 The SPASM Constraints
For a given PAS, the SPASM defines the constraints as shown in Table 6.1. The
following sections describe them in detail and provide measurements on how the eight
applications referred to in Section 5.7 comply with these constraints. ̂

It is generally difficult (in some cases hardly possible) and invariably time
consuming to check the constraints manually. So, a corresponding supporting tool is
crucial for the success of the SPASM model. EnvMake is such a tool and is the subject
of Chapter 7.

A violation of a SPASM constraint may be an error, or it may just be an indication of
a situation that might cause problems - especially in the long run. The software
engineering process is improved by adherence to the criteria of SPASM, but sometimes
constraint violation may be necessary. Particularly during the initial development,
inconsistent states will be normal. Nevertheless, programmers will need reminding of the
violation from time to time. Even in the case of violations, the tools should still work
correctly and help in developing viable and maintainable PASs (possibly after
“consulting” programmers). See further discussion in Section 7.3.2.

These applications were analysed after they were released and used for some time. It is likely that the
number of violations would have been greater if the applications had been analysed at various stages
during the initial development. On the other hand, if their programmers had been aware of this
methodology and had had the benefit of tools proposed in Chapter 7, it is likely that the number of
violations at any stage would have been much reduced.

1 2 2

CHAPTER 6: MODELS AND METHODOLOGIES

1 Program categories
A program should belong to exactly one of the five categories (Section 6.2.2).

2 Type definitions
a) All type definitions should be used.
b) All components of a type definition should be used.
c) A type name should be declared only once within a PAS.

3 Declaration and use
a) An internal binding in a use-clause should have exactly one corresponding insert-declaration.
b) An identifier in an insert-declaration of an internal environment should occur in at least one use-

clause.
c) An identifier declared in an application-program (except in insert-declarations) should also be used

(either as L-value or R-value) within that program.
d) If an identifier appears as an L-value in c), then it should also appear as an R-value within that

program if the identifier is temporary. If it is persistent and belongs to an internal environment, it
should also appear as an R-value either within the same program or in another program.

e) If an identifier is declared as variable, it should appear at least once as an L-value._________________

4 Stub constraints
a) A procedure inserted as a variable should always be a stub.
b) For each stub declaration there should be exactly one corresponding update-program.
c) An update-program should update only one persistent location (typically containing a procedure) or a

coherent group of persistent locations contained in the same environment.________________________

5 Drop-clauses
a) Only internal or export bindings should occur in a drop-clause (i.e., import bindings should not be

dropped).
b) A binding should occur in maximum of one drop-clause.
c) A binding in a drop-clause should have exactly one corresponding insert-declaration._______________

6 Order of insert- and type-programs
a) There should be a partial order among the insert-programs, i.e., no loops among the insert-

declarations (Section 6.3.6).
b) There should be a partial order among the type-programs, i.e., no loops among the type definitions.

7 Structuring and naming conventions
a) There should be a one-to-one correspondence between the structure of directories and environments

and between their names.
b) A program should insert, update or drop bindings of only one environment, and the file containing

the program should be stored in the directory corresponding to that environment.
c) A naming scheme for environments, directories and files with programs should be followed (see

Section 6.3.7).___

8 Persistent store ̂
a) A binding in a use-clause should be present in the persistent store (unless something else is indicated

by the programmer).
b) A binding in a drop-clause should be present in the persistent store (unless something else is

indicated by the programmer).
c) A binding present in an internal environment should occur in at least one use-clause.
d) A binding present in an in ternal or export environment should occur in exactly one insert-

declaration.

Table 6.1: The SPASM constraints

 ̂ The constraints described above involve only source code. The constraints in this group concern
relationships between source code and bindings present in the persistent store at the time of analysis.

123

CHAPTER 6: MODELS AND METHODOLOGIES

program

application-program

insert-program

update-
program

drop-program

- fo

sta rtu p -
program

uses

inserts

updates

7K 7K
binding

persisten t
location

rem oves

environm ent

uses

uses

type-
program

defines definition

Legend:

A - o

a3 o

Â3t

An instance of B is associated with null or one instance of A.

An instance of B is associated with exactly one instance of A.

An instance of B is associated with null or m ore instances of A.

An instance of B is associated with one or m ore instances of A.

Figure 6.3: ER diagram of programs, bindings and type definitions

Some of the constraints can be expressed in an Entity-Relationship diagram^ (Figure 6.3)
describing relationships between the type definitions, program categories, persistent
locations, environments and other kinds of binding. The type definition entity denotes
type definitions in type-programs - not those defined locally in application-programs.
The arrow texts should be read from the entity on the left of the relationship to the entity
on the right. The diagram shows, for example, that a persistent location is associated
with exactly one update-program, but one update-program can update several persistent
locations.

This kind of Entity-Relationship diagram is one of many variants of the original definition [Chen
1976].

124

CHAPTER 6: MODELS AND METHODOLOGIES

6.3.1 Program Categories

Since any program should belong to exactly one of the five categories (constraint 1), only
one of the following operations can take place within the same program: declaration of a
binding, drop of a binding and update of a persistent location. The main reason for this
constraint is to simplify formulation and verification of the other constraints. Another
positive effect is that the structure of the actual PAS becomes more intelligible since the
programs are categorised according to what they are doing (their semantics).

Measurements

Half of the analysed applications have insert-declarations and drop-clauses in the same
program. ̂ One of these applications also updates persistent locations in programs that
perform insert and drop. Otherwise constraint 1 is complied with.

6.3.2 Type Definitions

Napier88 has structural type equivalence enabling types to be used anonymously, i.e.,
without any name. Nonetheless, programmers should be encouraged to introduce type
definitions, and those required globally should be collected in type-programs where they
constitute a useful description of a body of data. In a large PAS there may typically be
many type-programs each containing type definitions used in a subsystem.

Unused type definitions and components may confuse maintenance programmers.
The application also becomes unnecessarily large and complex which in turn may impair
performance and maintainability. Therefore, all type definitions should be used within a
PAS (constraint 2a).^ Also all components of a type definition should be used. That is,
the structure fields, variant branches, components of abstract data types, etc. of instances
of the type should be de-referenced at least once (constraint 2b).

Constraint 2c states that a type name should be declared only once. Two or more
type definitions in different application-programs may violate this constraint in two ways.
First, since types may be defined locally in application-programs, then two or more types
might be defined with the same name and type (expression) in the overall application. In
that case they should be replaced by exactly one definition in a type-program. The same
argument applies to equivalent type definitions in different type-programs. Such type
definitions should be replaced by one definition in a type-program at a higher level, i.e.,
the type definitions should be more global.

t The reader is reminded that these applications were written before SPASM was formulated. The
programmers had no supporting tools and had no expectation that their code would be examined.

2 The compiler already checks the inverse - that a type definition is declared either within the program
itself or in an associated type database.

125

CHAPTER 6: MODELS AND METHODOLOGIES

Second, type definitions may have the same name but denote different types. To
avoid confusion they should then be renamed to acquire unique names. ̂

Multiple declarations of type names are confusing, require unnecessary compilation
and are a potential problem with respect to change. Maintaining consistency requires that
all declarations describing the same concept (e.g. Person) must be changed if the
intention is to modify the implementation of the concept (e.g. add a new attribute). It is
difficult to arrange that when several programmers (responsible for several components)
require use of a common type, they each write out equivalent type definitions
(particularly if they are complex). It is even harder to ensure that when the type is
amended, the same amendments are applied in every usage context. One concept should
therefore be represented by only one type definition.

Measurements

Table 6.2 describes the proportion of unused type definitions in the eight analysed
applications. The Programs column contains the number of programs in each
application. Type Programs shows the number of programs that actually include type
definitions. There are significant variations among the applications. The principle of
ImplADT and PartsDB (and partly Bibliography and EcoSystem) seems to be to declare
all types within each program in which they are used, whereas in the other applications,
type-programs are used extensively. The last two columns of the table show respectively
the total number of type definitions and the number of type definitions that are unused.
Only three applications use all type definitions (0 unused types). Benchmark and
Comp/TSIT have many unused type definitions (90 of 127 and 100 of 168, respectively).
The reason is that when parts of other applications are integrated with the one currently
being developed, it is easiest to apply a “maximum approach” with respect to type
declarations. That is, all the type declarations of the other applications are copied into the
new application. In Comp/TSIT the Napier88 compiler types, TSIT specific types and
the Map types are copied. Most of the 100 unused types in Comp/TSIT are part of the
Map types; a few of them are compiler specific types not used in Comp/TSIT. This
indiscriminate copying of types is probably indicative of a requirement for a tool to
collect required items (types or values).

Similar measurements of the proportion of components declared as part of type
definitions but never de-referenced within the applications can also be provided by
analysing the thesaurus contents. The average use of structure fields and variant tags in
the analysed applications is described in Section 5.7.7.1.

 ̂ The inverse - that several names denote the same type - is accepted. A useful by-product o f a tool
checking the second group of constraints could be an alias list of such type names.

126

CHAPTER 6: MODELS AND METHODOLOGIES

Application Programs Type Programs Type Dec! Unused Types

Benchmark 29 4 127 90
Bibliography 38 23 122 7
Comp/TSIT 80 3 168 100
EcoSystem 24 13 50 3
ImplADT 11 8 84 0
Map 25 1 116 0
PartsDB 4 4 109 8
WIN 156 5 73 0
Total 367 61 849 208

Table 6.2: Unused type definitions

In applications where types are defined locally in application-programs - rather than
being collected in type-programs - the study shows that type definitions tend to be re
defined. Table 6.3 contains the number of type identifiers and type names and the ratio
between them. The ratio describes the average number of identifiers per name. Re
definitions do not occur in Map and (practically speaking) not in Benchmark and
Comp/TSIT either, whereas in ImplADT and PartsDB the same type name is declared
respectively 5.6 and 3.9 times on average.

Measurement
Bench
mark

Biblio
graphy

Comp/
TSIT

Eco
Sys

Impl
ADT Map

Parts
DB WIN Total

Type identifiers 127 122 168 50 84 116 109 73 849
Type names 125 85 162 40 15 116 28 55 626

Identifiers per name 1.0 1.4 1.0 1.3 5.6 1.0 3.9 1.3 1.4

Table 6.3: Relationship between type identifiers and type names

6.3.3 Declaration and Use

Constraint 3a ensures the existence of a corresponding insert-program for each of the
internal bindings used within the PAS. The constraint is violated if there is not exactly
one insert-declaration. If there never was any corresponding insert-program or if it has
been removed, re-declaration or declaration at another site as part of a system installation
would be impossible. 1 Hence, after a re-installation the run-time error “Cannot find
(binding) with type: (type expression)” would be given during execution of a use-clause

At present, systems are installed by executing insert- and update-programs (though facilities for
copying values directly between stores have been developed [Munro 1993]). However, it should still
be possible to re-create a persistent system on the basis of the source code (stores may get corrupted,
be remote, be isolated or use different value representations). Furthermore, the source programs serve
as documentation for the declaration and usage of the bindings in the store.

127

CHAPTER 6: MODELS AND METHODOLOGIES

Specifying (binding). Validation of the constraint plus the automation of build manage

ment (see EnvMake in Chapter 7) will prevent this error occurring at PAS run-time.
Several insert-declarations for the same binding may cause confusion and are

unnecessary. During an installation, a binding can only be inserted once (under the
reasonable assumption that no bindings are dropped during an installation). If several
insert-declarations were allowed, there would be a risk of the run-time error indicated by
the message “Attempt to re-declare (binding) with type: (type expression)”.

Any identifier declared in an application-program should also be used within that
program. (An exception is identifiers occurring in insert-declarations.) More specifi
cally, the value of a local (i.e., transient) identifier should be accessed within the program
(an assignment is not sufficient). However, an assignment of a persistent identifier
suffices since its value may be accessed in other programs. Constraints 3b, 3c, 3d and 3e
all aim at preventing identifiers from being declared (in the manner indicated by the
declaration) if they are not used elsewhere in the application. Even though redundant
declarations do not affect the functionality of a program, there are several reasons for
why that situation should be avoided:

• An unused identifier might indicate a logical error somewhere. (The intention might
have been to use the identifier somewhere but due to a programmer error it is not.)

• Unused identifiers might cause confusion when someone tries to understand the
program.

• The programs become unnecessarily verbose.

• For performance reasons - for example, holding unused bindings in the persistent
store impairs the performance.

If an identifier is declared without being used, it is not necessarily a mistake. Typically,
during initial construction programmers may write the declarations of identifiers before
they write the code using those identifiers. In any case, the programmers should be
informed about all unused identifiers.

Measurements

All the analysed applications have at least one corresponding insert-declaration for each
binding occurring in a use-clause. Duplicated insert-declarations are avoided with one
exception. In WIN 27% (180 out of 671) of such declarations were duplicates due to a
style of conditional coding^ in order to prevent run-time errors. This implies verbose and

1 This typically involves writing code that checks whether a binding with a specified name and type is
in the store before it is being used. If the store contains a binding with the matching name but not
matching type, then drop it and insert a new binding with the correct name and type. A new binding
is also inserted if no binding with the matching name is present.

128

CHAPTER 6: MODELS AND METHODOLOGIES

quite clumsy code, but was a way of pursuing safety in the absence of proper
methodologies and supporting tools during the initial development of WIN.

Compliance with constraints 3b and 3d has not been measured, but measurements
concerning constraint 3c are available. Table 6.4 shows that 7.1 per cent of all declared
value identifiers are unused. (Declarations of formal procedure parameters are excluded
since a large number of them are declared in dummy procedures - in compliance with the
persistent location binding methodology - and are thus deliberately not used within the
procedure body.)

Context Total Unused % Unused

UseClause 7618 719 9.4
ValueDecl 6726 302 4.5
Recursive V alueDecl 62 1 1.6

Total 14406 1022 7.1

Table 6.4: Unused value identifiers

Table 6.4 reveals that the majority of unused identifiers are declared in use-clauses.
There are several reasons for why this kind of redundancy occurs:

• Large use-clause specifications are copied indiscriminately from other programs.

• Too many identifiers are declared in the belief that they would be needed later.

• Code using identifiers are removed without the programmer remembering to remove
the corresponding declarations.

The extent of unused identifiers in use-clauses varies significantly among the applications
(ranging from 2.8% to 29%). This range includes the Comp/TSIT application which has
an extremely low value (0.5%), but that was due to the use of the EnvMake feature for
detecting such anomalies (Section 7.3.1). The measured programs were developed by
programmers related to the “Napier88 community”. It is reasonable to assume that real-
world application programmers without tool support would have an even greater
proportion of inconsistent software. In any case, the measurements confirm the need for
tools to detect redundant declarations.

More detailed measurements showing the variations between the applications, the
kind and context of the unused identifiers, etc. can be found in [Sjpberg 1992].

6.3.4 Stub Constraints

The purpose of the stub constraints is to accommodate the persistent location binding
methodology. Emphasis is on procedures even though the methodology can be applied to
all kinds of values (Section 6.2.1).

129

CHAPTER 6: MODELS AND METHODOLOGIES

Constraint 4a ensures that a program creating a variable procedure is separated from
the program filling it with a useful value (the update-program). Incremental update could
have been facilitated even though the insert-program had created the procedure with a
useful value initially, but experience has shown that it is convenient to separate the
creation and update. ̂ If a procedure is not supposed to be updated, then it should be
declared as a constant.

Constraint 4b ensures that there actually exists a corresponding update-program for
each stub. If no update-program were present, then the value would remain dummy. A
dummy procedure, implemented with uninitialised (Section 6.2.1), aborts if it is called.
Moreover, there should be exactly one update-program since managing several update-
programs is error-prone and complicates the application structure unnecessarily.^

Constraint 4c aims at enhancing simplicity and clarity by stating that only one
persistent location should be updated in a program. Finding this corresponding update-
program is easier if the variable and the file have the same name. It may sometimes be
convenient to update a group of closely related persistent locations in the same program
(in which case the naming convention cannot be followed, of course).^

Measurements

Only three of the eight applications insert variable procedures. Table 6.5 shows that a
significant number of variable procedures in WIN do not have a corresponding update-
program. The reason is that the use of stubs was not commonly adhered to at the time
WIN was developed. So, the procedures were assigned “sensible” values when they were
initially inserted into the persistent store.

Application Variable procedures No update More than one

Comp/TSIT 84 16 0
Map 122 3 2
WIN 472 76 8

Table 6.5: Update o f procedure variables

The 16 procedures not being updated in Comp/TSIT were caused by the lack of
knowledge of the compiler application when the author was modifying it to adapt it to the

For example, when changing a procedure body, the “in <env_clause> let” part must be removed from
the source program and a use-clause for the procedure must be added, but the original version would
still be useful for re-installation or when changing the procedure type.

As mentioned, the SPASM constraints apply to a given version o f a PAS. If a programmer wishes
several alternative update-programs, then they should belong to different versions of the PAS.
Some methodologies would insist on exactly one persistent location being updated within an update-
program (Section 6.5.1).

130

CHAPTER 6: MODELS AND METHODOLOGIES

needs of TSIT. Code that updated stubs was removed without removing the
corresponding insert-declarations. This may be common when large suites of software
are modified (particularly other people’s software).

6.3.5 Drop-Clauses

Only internal or export bindings should occur in a drop-clause (constraint 5a). An
imported binding belongs to another PAS (for which it is an export binding). Removal
should thus only be allowed from within that PAS. At present, standard libraries and
other libraries are copied to the programmer’s local persistent store. In future, when
concurrency and distribution are provided [Munro 1993], the system itself should prevent
any attempt at dropping bindings belonging to other PASs.

Constraint 5b is introduced since an application is unnecessarily complex and may
cause confusion if there are several drop-clauses for the same binding. For example, if a
binding has been dropped, detecting the actual drop-program might be difficult.

Constraint 5c helps prevent the run-time error indicated by the message “Cannot
drop (binding) it is not present”. If there is no corresponding insert-declaration for the

binding, it would not be inserted by any of the programs belonging to the actual PAS.

Measurements

Constraint 5b is violated by the WIN application only and is due to its conditional style of
programming mentioned earlier. All the applications comply with constraints 5a and 5c.

6.3.6 Order of Insert-Programs and Type-Programs

The concepts of partial order and topological sorting will be explained on the basis of
[Knuth 1973] which should be consulted for a more detailed description.

In general, a partial order of a set S is a relation between the objects of S which may
be denoted by the symbol The notation x x y means that x precedes y. In our
context we may have T1 ^ T2, where T1 and T2 are type-programs, indicating that T2
depends on T l, i.e., a type definition used in T2 is declared in T l. Another example is
related to the use of bindings. If a program PI inserts a binding used by a program P2,
then PI P2. Figure 6.4 shows a diagram of six programs in a partial order. For
example, the arrow from PI to P2 means that PI ^ P2. The programs are in partial order
since there are no closed loops in the diagram. If, for example, the program PI were
changed to use a binding inserted by P4, an arrow should be drawn from P4 to PI. In that
case PI, P2, P3 and P4 would constitute a loop and thus violate the partial order. The
order is partial since there is no ordering between PI and P6, for example.

131

CHAPTER 6: MODELS AND METHODOLOGIES

P4

Figure 6.4: A partial order in the set o f programs

The process of topological sorting is closely related to partial order [Knuth 1973]:

The problem of topological sorting is to “embed the partial order in a linear order,” i.e., to
arrange the objects into a linear sequence a p a2, s u c h that whenever aj -< we havey <
k. Graphically, this means that the boxes are to be arranged into a line so that all arrows go
towards the right.

P4

Figure 6.5: Linear sequence after topological sorting

A topological sorting is always possible on a partial order. The result is not necessarily
unique - there may be many linear sequences that satisfy the arrangement as described in
the quotation. Figure 6.5 illustrates a linear sequence of the programs of Figure 6.4.

System installation requires that the insert-programs are executed in a correct order.
That is, the bindings used by one insert-program must already have been inserted by
another insert-program before the former can be executed. This is always possible if
there exists a partial order among the insert-programs. If the procedures in the insert-
declarations contain only dummy bodies (in compliance with the persistent location
binding methodology), then all bindings accessed in the insert-programs are
environments (except some standard procedures like date, which may be used in the
creation of an environment, and uninitialised and uninitialised_void, which may be used
in the declaration of a stub).

If neither constraint 1 nor the persistent location binding methodology is adhered to,
then the topological sort is particularly useful when installing large systems since
bindings may be inserted, updated or used anywhere.

132

CHAPTER 6: MODELS AND METHODOLOGIES

Analogously, the compilation order of interdependent type-programs is significant.
A cycle in the use of type definitions could not be processed by the compiler.

There are two issues concerning the partial order:

i) checking that a set of programs has a partial order, and

ii) when possible (see i) discovering any of the linear sequences compliant with the
partial order.

As part of checking all the SPASM constraints, EnvMake checks whether the programs
of a PAS have a partial order (Section 7.3.1). A linear sequence is suggested (if possible)
as an option of an interactive menu of EnvMake (Section 7.2) and as part of EnvMake’s
features for automatic compilation and installation (Sections 7.4.2 and 7.4.4).

Measurements

The applications were not measured for these constraints, but the author experienced
severe difficulties regarding the declaration order during the installation of a modified
version of the NapierSS compiler.

6.3.7 Structuring and Naming Conventions

To organise and manage large and complex PASs, certain structuring and naming
conventions are necessary. Figure 6.6 sketches the structure of environments in the
persistent store for a given PAS. The structure representing current development has a
similar structure under the “Error” environment. This isomorphic structure should also
be reflected in the file directories since file directories and environments should have the
same structure (constraint 7). That is, a root directory should have a corresponding root
environment, and for each subdirectory there should be a corresponding subenvironment,
and so on. To make this correspondence obvious, a good convention is to use the same
name for the respective directories and environments. ̂

The part of a PAS that is in the persistent store and the part that is in the file system
are just different representations of the same system. The purpose of the isomorphic
structure is to make it easy to discover the correspondences and dependencies between
these representations.

 ̂ Similar structuring and naming conventions could also be introduced for test and release directories,
files and environments.

133

CHAPTER 6: MODELS AND METHODOLOGIES

PS()

Error

DevelopingDeveloping

<PAS> <PAS>

<subsys1> <subsys2> ... <subsysn><subsysl > <subsys2> ... <subsysn>

Figure 6.6: Environment structure in persistent store

Files holding NapierSS source programs should have “.N” as suffix. Table 6.6 shows a
proposal for naming conventions for programs of the various categories. The naming
conventions depend on the methodology to be chosen. If a scheme of four programs per
stub is adhered to (Section 6.5.1), the names could respectively be of the form:
(binding)_insert.N, (binding)_update.N, (binding)_drop.N and (binding)_test.N. Yet

another (only slightly different) convention is used in the NapierSS libraries work
[Atkinson et al. 1993]. The important point is that there is a naming scheme - not its
exact form.

Program category Naming convention

type-program (PAS or subsys)_types.N

insert-program 1) (PAS or subsys)_envInsert.N

ii) (PAS or subsys)_stubInsert.N

iii) (PAS or subsys)_dataInsert.N

update-program Generally “anything”_update.N

If only one binding; (binding)_update.N

drop-program (envName)_drop.N

startup-program “anything”startup.N

Table 6.6: File naming conventions

Measurements

Two of the applications adhere to the principle of isomorphism (although not 100%) as
specified by constraint 7a. One does not comply with it at all, whereas the other

134

CHAPTER 6: MODELS AND METHODOLOGIES

applications do it only in part. The “.N” convention is complied with except for three
applications that omit the “.N” in their type-programs. The other conventions are mostly
new proposals not being adhered to by existing applications.

6.3.8 Persistent Store

The last group of constraints concern dynamic issues in that they involve the actual
contents of the persistent store. After system installation all necessary procedure stubs
and other persistent values should have been inserted. The look-up of bindings specified
in use-clauses are performed at run-time. Hence, failing to find bindings in the persistent
store with access path, name, type and constancy as specified in a use-clause will cause a
run-time error when the program is executed. Constraint 8a assists in preventing this
kind of error. If programs are separately developed, violation of this constraint may be
the general case before overall system installation.

The same argument applies to bindings occurring in drop-clauses. Complying with
constraint 8b reduces the chances of attempting to drop a binding not present in the store.

During development and ad hoc programming, unused bindings tend to accumulate
in the persistent store since programmers tend to forget to remove them. Typically, new
versions of bindings are inserted (due to, for example, type changes or changes in
subsystem structure) without the obsolete versions being removed. Constraint 8c ensures
that the persistent store is tidied up in compliance with the current use-clauses in the
source code. Collecting such obsolete bindings may be regarded as a form of garbage
collection where “garbage” is defined in terms of failure to comply with source code,
whereas conventional garbage collectors operate on the persistent store only and define
garbage in terms of unreachability from a persistent root. So, a binding in the store that is
not referred to in the source code should possibly be removed. However, it could be the
case that the source code was changed or a source program deleted by accident. Hence, it
is impossible to automate this process entirely without any user intervention, but a
warning of the case would undoubtedly be useful.

Bindings in the export environments of an application are exempt from constraint 8c
since they are not primarily created with the intention of being used within the
application itself.

Constraint 8d concerns compliance between the contents of the persistent store and
the insert-programs. If a binding, not imported, in the store does not have any
corresponding insert-declaration, then the insert-program must have been changed or
deleted by mistake, or the programmer must have forgotten to drop the binding when the
code was deliberately changed.

135

CHAPTER 6: MODELS AND METHODOLOGIES

6.4 Actions to Conform to the SPASM Constraints
There are an infinite number of kinds of change that may cause violation of the SPASM
constraints (though many violations will not occur if certain methodologies are followed).
For example, constraint 1 would be violated if an insert-declaration is added to a type-,
update-, drop- or startup-program, or if a drop-clause is added to a program that is not a
drop-program, etc. There is no point in attempting to describe a plethora of possible
causes; it suffices that the programmer knows the kind of violation, where it occurs and
the possible actions to rectify the inconsistent states.

For each violation of a SPASM constraint. Table 6.7 describes one or more actions
to be undertaken in order to re-establish conformance with the constraint.

No. Violation Action to resolve the violation

1 1) An insert-declaration or a drop-clause is
contained in an update-program.

Move the insert-declaration or drop-clause to an
(existing or new) insert- or drop-program,
respectively.

ii) An insert-declaration and a drop-clause are
contained in the same program.

Split them - move (say) the insert-declaration to
an (existing or new) insert-program.

2a There exists a type definition that is never
used.

Modify or create a new program that will use
the type definition, or delete tihe type definition.

2b There exists a component of a type definition
that is never used.

Modify or create a new program that will use
the component of the type definition, or delete
the component.

2c i) A type declared with same name and type is
declared more than once.

If the type is declared in a type-program and the
duplicate is in an application-program or in the
type-program of a subsystem, then delete the
duplicates. If the type is declared in more than
one application-program, replace these
definitions with one definition in a type-
program.

ii) The same type name is used to declare
different types.

Inspect the definitions with the intention of
creating unique names.

3a i) A binding o f an internal environment
occurring in a use-clause does not have any
corresponding insert-declaration.

Delete the use-clause if the binding is not used
in the program, or create a corresponding insert-
declaration for the binding in an (existing or
new) insert-program.

ii) A binding o f an internal environment
occurring in a use-clause has more than one
corresponding insert-declaration.

Delete all but one of the insert-declarations.

3b An identifier in an insert-declaration is not
used.

Modify or create a new program that will use it
or delete the declaration.

3c An identifier is declared in a program without
being used within that program.

Delete the declaration or use the identifier.

3d i) A temporary identifier occurs only as an L-
value.

Remove the declaration o f the identifier, or
create an R-value occurrence within the same
program.

ii) A persistent internal identifier occurs only
as an L-value.

Remove the declaration of the identifier, or
create an R-value occurrence in the same or
another program.

3e A variable does not appear as an L-value. Remove the variable or use it as an L-value.

Table 6.7: Actions to reconform to constraints that have been violated (continues)

136

CHAPTER 6: MODELS AND METHODOLOGIES

No. Violation Action to resolve the violation
4a A procedure with “useful” body appears in an

insert-declaration.
Create an update-program for the procedure
where the “useful” body is being assigned the
procedure identifier. Replace the body in the
insert-declaration with an appropriate dummy
one.

4b i) There exists no update-program for a stub. Create a corresponding update-program or
delete the stub.

ii) There exists more than one update-program
for a stub.

Keep one of the update-programs.

4c More than one (major) procedure (possibly in
different environments) are updated in the
same program.

Create a separate update-program for each of
the major procedures with the same name as the
procedure (plus the “.N” suffix). Store the
program file in the directory corresponding to
the environment o f the procedure.

5a There exist more than one drop-clause for the
same binding.

Keep one of the drop-clauses.

5b There exists one or more drop-clauses for an
imported binding.

Delete the drop-clauses.

5c i) A binding o f an internal environment
occurring in a drop-clause does not have any
corresponding insert-declaration.

Delete the drop-clause if the binding is not used
in the program, or create a corresponding insert-
declaration for the binding in an (existing or
new) insert-program.

ii) A binding o f an internal environment
occurring in a drop-clause has more than one
corresponding insert-declaration.

Delete all but one of the insert-declarations.

6a There exists a loop among the type definitions. Inspect the type definitions and resolve the loop.
6b There exists a loop among the insert-

declarations.
Inspect the insert-declarations and resolve the
loop.

7a The directories and environments of the PAS
are not isomorphic.

Create programs for appropriate reorganisation
and renaming in such a way that no information
is lost.

7b i) A program inserts, updates or drops bindings
associated with more than one environment.

Split the program in such a way that the new
programs only operate on one environment.

ii) At least one file containing an insert-,
update- or drop-program is not stored in the
directory that corresponds to the environment
operated on by the program.

Move the file to the appropriate directory.

7c The naming scheme is not fully complied with. Rename accordingly.
8a A binding occurring in a use-clause is not

present in the persistent store.
If the programmer is not certain that the binding
will be inserted, then add a corresponding
insert-declaration to an existing or new insert-
program, or delete the use-clause.

8b A binding occurring in a drop-clause is not
present in the persistent store.

If no program will insert the binding, then
delete the drop-clause.

8c An unused binding is present in an internal
environment.

Add a corresponding use-clause to an existing
or new program, or drop the binding from the
persistent store.

8d i) A binding present in an internal or export
environment does not have any corresponding
insert-declaration.

Create a corresponding insert-declaration, or
drop the binding from the persistent store.

ii) A binding present in an internal or export
environment has more than one corresponding
insert-declaration.

Drop all but one of the insert-declarations.

Table 6.7: Actions to re conform to constraints that have been violated (continued)

137

CHAPTER 6: MODELS AND METHODOLOGIES

6.5 Future Development of a Maintenance Methodology
A persistent maintenance methodology is a model for the process of maintaining PASs.
Programmers inevitably need to maintain a PAS by adding new functionality, improving
performance and correcting errors. New functionality may require new or modified
subsystems and tasks that typically involve adding, removing, renaming or moving files
and directories. In a persistent programming environment similar operations would apply
to programs and other objects in the persistent store. Required changes to the type
definitions or the schema of a PAS may have major impact on other parts of the schema,
on the extensional data and on the application programs (Section 2.3). In a higher-order
persistent language, where programs are typically represented in the form of procedures
in the persistent store, changing the type of a procedure (e.g. adding a parameter) is also a
kind of change that potentially requires extensive consequential change.

A maintenance methodology should provide guidelines for how to carry out various
kinds of maintenance tasks in a safe and efficient way. Adding a subsystem or changing
a collection of type definitions are two examples. The methodology must have an
inherent notion of correctness or consistency; its purpose is to guide software builders
and maintainers to perform all necessary and no unnecessary changes in a consistent way
according to some model of consistency. SPASM (Section 6.3) is an example of such a
model in a persistent progranuning environment.

A problem of designing a programming methodology is to determine its level of
detail. For example, experienced programmers may only need a high-level description of
the actions to be undertaken for a given kind of change, whereas novices may also wish
detailed descriptions. A programming methodology accommodates and makes explicit
knowledge and experiences of sophisticated programmers. The support given by the
methodology to novices and other programmers at various levels of sophistication may
thus compensate for some of their lack of experience. ̂

The problem of details is present, for example, in that a maintenance methodology
should help ensure maintainability by preventing deteriorating structure and
inconsistencies. In the extreme case, the methodology could specify a list of all
conceivable precautions to be taken into account before any change is carried out. For
example: “if a file is to be deleted, check what kind of program it holds; if it is a type-
program, check that none of its type definitions are used in any program; if it is an insert-
program, check, first, that the inserted binding is not used in any other program; second,
that the binding is not present in the store; third, etc. etc.” It is unlikely, and probably
undesirable, that programmers would make all the effort needed to carry out such detailed
checks. Provided inconsistent states can be rectified, it is more efficient to perform a

A methodology could therefore be outlined at different levels for different categories of programmers.

138

CHAPTER 6: MODELS AND METHODOLOGIES

bulk check of the consistency (the SPASM constraints) at certain stages - preferably
automatically by a tool. ̂ For changes with potentially serious consequences (e.g. schema
changes) one may want to indicate a change and perform the check on the state after the
change but before committing the change [Jacobs and Hull 1991, Waller 1991].

The following sections propose an illustrative outline for a maintenance
methodology by describing necessary actions to be carried out when changing the type of
persistent procedures, when adding or removing subsystems or when changing the
schema. The reader is reminded that the outline is a tentative proposal that is as yet
unevaluated and unsupported by tools.

6.5.1 Modifying Procedure Types

Procedures, representing programs in persistent store, are commonly created and
maintained by Napier88 programmers in compliance with the persistent location binding
methodology. As mentioned (Section 6.2.1), any kind of (complex) data value can be the
subject of that methodology and be stored in strongly typed persistent locations.
Incremental update of values in persistent locations is relatively simple as long as the
type and name are unchanged. It suffices to edit, recompile and re-execute the
corresponding update-program; editing, recompiling or re-executing any other program is
unnecessary. In contrast, renaming or changing the type of an existing binding has
greater impact. It involves dropping the old location, creating a new location and
changing and recompiling all the programs that use the binding. For example, a
procedure's type - its signature - can be modified by a change to the number or types of
the formal parameters of the procedure or by a change to its result type.^

Three strategies for how to manage changes to the type of an L-value binding are
presented in respectively Figures 6.7, 6.8 and 6.9. For a given (sub)system, the
“Organisation ” paragraph describes the programs that insert stubs^ and the programs that
insert other bindings. Possible drop-programs are also described. “Transaction” de
scribes the actions necessary to carry out the change.

However, even a detailed precautionary check might be feasible if it is automatically and quickly
performed by a tool.
When in common parlance saying that “a procedure changes its type,” it effectively means in a
strongly typed language that the location containing the procedure is dropped and a new one is
created, which may hold procedures of the new type. So, from the system’s point of view, one
procedure has been deleted and another one has been created. From the programmers point of view,
however, it is the same procedure (identified by the same programmer-introduced name) which has
changed.
A stub declaration creates a persistent location initialised with an L-value binding to a dummy value.

139

CHAPTER 6: MODELS AND METHODOLOGIES

Organisation
i) All insert-declarations are collected in one file (insert. N).
ii) For each stub declaration there is exactly one corresponding update-program. An update-

program, in turn, updates only one persistent location or a coherent group o f persistent
locations contained in the same environment.

Transaction
i) Drop the existing binding by creating, compiling and executing an ad hoc drop-program.
ii) Edit the existing insert-declaration in insert.N to accommodate the new type.
iii) Create an ad hoc insert-program by copying the use-clauses and the newly changed insert-

declaration from insert .N.
iv) Compile and execute the ad hoc program and then delete it.
v) If it is an L-value binding, edit, recompile and re-execute the corresponding update-

program.
vi) Edit, recompile and re-execute all programs that used the old binding.

Evaluation
+ Works for any kind of binding - L-value or R-value.
+ The file insert. N contains all necessary insert-declarations for the (sub)system - this

simplifies installation.
+ Efficient - no unnecessary drop or insertion.
+ Relatively few files in the directory - easy management.

The emphasis on ad hoc programs may lead to errors and inconsistencies (copy wrong
code, etc.) and difficulties in reconstructing the actions.
Unsuitable for automation.

Figure 6.7: Strategy 1

All three strategies can be applied in any persistent language providing first-class
procedures that can be stored in strongly typed persistent locations. At present, Napier88
programmers adhere to either strategy 1 or strategy 2. Except for the update-programs
corresponding to the L-value bindings, there is no difference between L-value and R-
value bindings in strategy 1. Although efficient, the use of ad hoc programs in strategy 1
is error-prone and results in poor documentation; not even source code documents the
actions that have been carried out. Strategy 2 represents a more organised alternative but
is extremely inefficient.

140

CHAPTER 6: MODELS AND METHODOLOGIES

Organisation
i) All insert-declarations of stubs in one file (stublnsert. N); all insert-declarations of

other bindings in another (datalnsert. N).
ii) For each stub declaration there is exactly one corresponding update-program (as strategy

1).
iii) There is a drop-program (stubDrop. N) corresponding to all L-value-bound persistent

locations.

Transaction
i) Drop the existing L-value bindings by executing stubDrop. N.
ii) Edit the existing insert-declaration in stub Insert.N to accommodate the new type.
iii) Insert the new and re-insert the old bindings by compiling and executing

stublnsert .N.̂
v) Edit and recompile the program that updates the changed binding. Re-execute that and all

the other update-programs of the other bindings.
iv) Edit and recompile all programs using the changed binding. Re-execute all programs

using any L-value binding.
vii) Modify (if necessary) the drop statement for the changed binding in stubDrop. N.

Evaluation
+ Having only two insert-programs (stublnsert. N and datalnsert. N) simplifies

installation and bulk insertion.
+ Relatively few files in the directory makes management easy.

Works only for L-value bindings with corresponding update-programs.
Inefficient - many unnecessary drops, insertions and updates, i.e., unnecessary
compilation and execution.
Unsuitable for automation.

Figure 6.8: Strategy 2

Strategy 3 is a new proposal whose potential success depends on corresponding tool
support (a proposal is outlined in Section 7.6). ̂ To illustrate, in the analysed Napier88
applications (Chapter 5) 1015 different bindings^ were inserted in total. Four files per
binding would give a total of 4060 files. Leaving out test programs (since such programs
were not included in the analysis either) there would have been 381 files per application
on average - compared with 46 in the analysed applications. Tools are therefore clearly
needed for program management, automatic program generation and build management
(Section 7.4). Moreover, it would be awkward for the programmer to repeatedly edit the

 ̂ For simplicity of the text, executing a (name).N program should, o f course, be read as executing the
corresponding (name).out program.

2 The current Napier88 libraries [Atkinson et al. 1993] are being implemented according to this
strategy.

 ̂ Bindings are counted as unique (environment name, binding name) combinations.

141

CHAPTER 6: MODELS AND METHODOLOGIES

needed use-clauses for each binding. Such specifications may be generated by future
tools (Section 8.2.4) or could be replaced by “hyper-references” (Section 8.2.6).

Organisation
Four files per binding: (binding)_insert .N, (binding)_update .N,̂
(binding)_drop.N and (binding)_test .N.

Transaction
i) Drop the existing binding by executing (binding)_drop. N.
ii) Edit the insert-declaration in (binding)_insert. N.
iii) Insert the new binding by compiling and executing (binding)_insert. N.
v) If it is an L-value binding, edit, recompile and re-execute (binding)_update. N.
iv) Edit, recompile and re-execute all programs using the changed binding,
vii) Modify and recompile (binding)_drop. N (if necessary).

Evaluation
+ Works for any kind of binding - L-value or R-value.
+ Efficient - no unnecessary drop or insertion.
+ Suitable for automation.

A vast amount of files to be edited and managed; even with appropriate naming
conventions, tool support is crucial.

Figure 6.9: Strategy 3

6.5.2 Modifying Directories and Environments

A (sub)system of a PAS written in a language like Napier88 is represented by a directory
in the file system and a corresponding environment in the persistent store. In addition,
there may be a corresponding error directory and a corresponding error environment. For
each of the modifications accomplished for a directory, similar changes should be
performed on corresponding environments (and vice versa). Any change (addition,
modification or removal) to the tasks of a subsystem will typically be reflected in the files
of the directories and in the contents of the environment corresponding to the subsystem.

For example, if a subsystem has ceased to be used, the corresponding directory
(including its files) should also be removed since unused components make the PAS
unnecessarily large and complex.^ If the directory was not removed, it would require
maintenance like editing the code that uses globaP type definitions that are subsequently

 ̂ There is no (binding)_update. N program if the binding is an R-value.

 ̂ It is assumed that convenient back-up routines are in effect.
 ̂ Global type definitions refer here to those that are defined in the overall PAS or in a subsystem at a

higher level in a possible hierarchy of subsystems.

142

CHAPTER 6: MODELS AND METHODOLOGIES

changed. Leaving inconsistent code around should be avoided even though it is (at least
temporarily) unused. However, before removal a check should be made to verify that
none of the bindings in the corresponding environment are referred to in other
subsystems. If this is the case, either leave the system as it is, or move the insert- and
update-programs operating on these bindings to another subsystem.

If the construction methodology has been strictly followed, no type definitions
should be used in other subsystems.

The environment is dropped by creating and executing a corresponding drop-
program. If there are other references to that environment, however, it will not be
removed from the persistent store. Similarly, values (including L-values) in that
environment will be retained if they are referenced. That is, the environment will not be
accessible via a use-clause of a program any more, but it will be accessible from the
objects already referencing the environment (i.e., no dangling references will occur). So,
if the programmer wishes to remove references to the environment as well, this must be
done explicitly by tailored programs. The thesaurus information (Chapter 5) could give
advice on possible references (e.g. identifying all of the programs using that
environment).

6.5.3 Modifying Types - Schema Evolution

In a language with structural type equivalence, programmer-introduced type identifiers
are just tokens or abbreviations for types introduced for the convenience of the
programmers. In languages where types can be declared in any program (e.g. Napier88),
there is no concept of a schema^ like database schema in database systems, which
necessarily contains all the type definitions used in a (sub)system. Nevertheless,
programmers should be encouraged to collect all the type definitions of a PAS or
subsystem in one file - a type-program (Section 6.2.2). The set of type definitions in
such a file and the corresponding set of types in a type database are two representations of
what will be referred to as a schema.

As stated earlier in Section 3.2, the consequences of schema changes are divided into
three categories:

i) Effects on other parts of the schema

ii) Effects on instances - extensional data

iii) Effects on application programs

The consequences of adding, renaming and deleting a type definition are described in
Table 6.8. Renaming may not be regarded as a basic schema change; it can be viewed as
decomposition of a deletion followed by an addition. The activities to be carried out,
however, are different and much simpler than the combination of the activities for

143

CHAPTER 6: MODELS AND METHODOLOGIES

deletion followed by those for addition. The effect may not be so far reaching since no
structure is modified, but it will still affect all the places where the renamed type is being
used. Renaming will therefore be regarded as a schema change in this context.

Change Action on schema Action on extensional data Action on application code

Add type
definition

Add the new type definition
to the type-program in the
actual (sub)system.

No action is necessary. At least one program should
declare instances of the new
type and at least one program
should use them.^

Rename
type
definition

Replace all occurrences of the
old type name with the new
name in the type-program.

Due to structural type
equivalence existing
instances in the persistent
store can remain unchanged.

Replace all occurrences of
the old type name with the
new name in the application-
programs.

Delete
type
definition

Delete the type definition
from the type-program. If the
type name is used in another
type definition, then that type
definition, in turn, must either
be deleted or changed, and so
on.

In principle, delete existing
instances of this type from
the persistent store.
However, a warning should
be generated (if possible) in
the case instances exist.

Delete all declarations in the
code where the type
definition occurs and all
places where instances of this
type occur.

Table 6.8: Impact o f adding, renaming or deleting a type definition

There are several strategies for tackling the problem of inconsistency between instances
of the old type and the new type definition. Some ideas of approaches in the context of a
strongly typed language have been presented in [Atkinson 1993] (see also Section 3.2).
One should note, however, that in a language with structural type equivalence, the
problem of consistency between type definitions and instances is purely at the conceptual
level - from the modelling point of view. From the language point of view, instances are
bound to types, not to type definitions. However, that does not make the problem less
important. This is discussed further in [Connor et al. 1990].

The intention of this section was not to describe detailed strategies for how to
manage schema or type changes but to present an overview of issues that must be dealt
with in further research in this area (Section 8.2.1). Table 6.8 outlines what kinds of
change and change consequences that must be included in an analysis. A similar table
should be created for changes to a type definition. For each kind of type change (adding
a field, changing the type of a field, delete a field, renaming a variant field, adding a
variant branch, etc.) the consequences for the schema, extensional data and application
code should be analysed.

This is presumably the motivation for the type change in the first place.

144

CHAPTER 6: MODELS AND METHODOLOGIES

6.6 Summary
This chapter has introduced two models applicable to persistent applications systems and
to their construction and maintenance:

• SPASM - a model for the PAS to be built.

• A construction and maintenance methodology - a model for how the PAS should be
constructed and maintained.

SPASM is a model for organising persistent application systems. It defines a set of
constraints concerning definitions and uses of types, operations on persistent objects
(including programs), redundant declarations, unused values, etc. Consistency is defined
relative to this model; i.e., an entirely consistent application is one that complies with all
the constraints of SPASM.

The SPASM constraints are based on the knowledge of experienced Napier88
programmers and should thus be useful to most programmers in most situations. Novices
would particularly benefit from rules for how to organise their persistent applications.
However, some constraints might be undesirable in certain circumstances, and there
might be a need for additional constraints in other circumstances. Some flexibility should
therefore be allowed for when designing tools that support the model. (An analysis of
eight Napier88 applications shows that they comply with most of the constraints.) There
is a trade-off between flexibility and discipline. Software builders may feel that SPASM
constrains their personal programming styles. However, in order to develop complex and
long-lived PASs, with possibly many people involved, it is crucial that commonly agreed
practices and conventions are used. Standardisation may eliminate peculiar programming
styles and may simplify collaboration, maintenance, software reuse, etc. SPASM is an
initial suggestion that needs evaluation through use.

The construction methodology guides the software builders in constructing
applications systems in compliance with SPASM.

As part of the maintenance methodology, strategies for accommodating a method of
programming based on programs bound as L-values to persistent locations have been
outlined. A new strategy was proposed whose potential success relies on appropriate tool
support. The maintenance methodology also includes a classification of type changes
corresponding to schema evolution in database systems. For each kind of change, the
methodology presents a high-level description of the necessary steps to be undertaken in
order to accommodate the change in a consistent way.

One might argue that understanding and adhering to the SPASM model and the
construction and maintenance methodology are a heavy burden to impose on software
engineers and programmers. However, developing and maintaining large and long-lived
PASs are complex tasks, and one has to invest in adapting to suitable working practices

145

CHAPTER 6: MODELS AND METHODOLOGIES

in order to accomplish such tasks. The possibly extra effort required in the short-term
should pay off in the long run.

A significant improvement in the programming process will be achieved if adherence
to models like SPASM is checked automatically by a supporting tool. Similarly,
accompanying tools should actively support, i.e., partly automate, construction and
maintenance activities as defined by the methodologies. Such tools are the subject of the
next chapter.

146

Chapter 7
EnvMake - A Persistent

Programming Tool

7.1 Introduction
The success of the methodology and the SPASM constraints discussed in the previous
chapter depends heavily on supporting tools. This chapter describes EnvMake which is a
proposal for such a tool. It supports application construction and maintenance in
compliance with the persistent location binding methodology (Section 6.2.1). In
particular, it checks whether a PAS adheres to the SPASM constraints.

The methodology described in the previous chapter supports incremental develop
ment. Programs in the persistent store, represented as procedures, can be changed
(provided their types do not change), recompiled and re-executed without the need for
any operations on the dependent programs. If the procedure type is to be changed, then
the dependent programs must be edited, recompiled and re-executed as well. Similarly, if
a program with only type definitions changes, then all dependent programs must be at
least recompiled, usually also edited. Automatic assistance in determining and initiating
the necessary recompilations and re-executions is crucial. Traditionally, Unix program
mers use Make as the supporting tool. All dependencies have to be inferred manually,
however, and any change in the dependency structure requires a programmer to edit the
Makefile correspondingly. EnvMake is a language specific alternative, written in and for
Napier88, that automatically infers the necessary dependencies from the thesaurus infor
mation. Hence, there is no need for any file like the Unix Makefile.

147

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

Dependency tables used by EnvMake in the check of the SPASM constraints and by
the build management features can also be browsed directly by a programmer. The
information obtained is useful for the understanding of the application’s structure -
particularly for large and complex applications.

EnvMake can be run in several modes determined by a parameter after the command
as summarised in the following table.

Command Function Section

envMake Obtain menu giving structural information 7.2
envMake consistency Obtain warnings of SPASM violations 7.3
envMake plan Show compilation and execution plan 7.4.1
envMake compile Perform all necessary recompilations 7.4.2
envMake run Perform all necessary recompilations and re-executions 7.4.3
envMake install Perform all compilations and executions necessary for installation 7.4.4

Table 7.1: Parameters o f the envMake command

7.2 Information about Application Structure
Programmers can already obtain information about dependencies between names used in
an application system through one of the query interfaces of TSIT (Chapter 5). In the
case of dependencies between environment operations and the corresponding bindings,
EnvMake provides two alternative ways of presenting the information; as dependency
tables and as matrices.

INSERT-PROGRAM BIN D IN G UPDATE-PROGRAM

L i b r a r y / K e y C h o o s e L i b _ s t u b . N
L i b r a r y / M a k e D u m i n y L i b _ s t u b . N
L i b r a r y / W r i t e L i b N a m e _ s t u b . N
P e r s o n / F i n d P e r s o n D e p e n d _ s t u b . N
P e r s o n / M a k e D u m m y P e r s o n _ s t u b . N
P e r s o n / W r i t e P e r s o n N a m e _ s t u b . N

L i b r a r y \ K e y C h o o s e L i b
L i b r a r y \ M a k e D u m m y L ib
L i b r a r y \ W r i t e L i b N a m e
P e r s o n \ F i n d P e r s o n D e p e n d
P e r s o n \ M a k e D u n i m y P e r s o n
P e r s o n X W r i t e P e r s o n N a m e

L i b r a r y / K e y C h o o s e L i b . N
L i b r a r y / M a k e D u m m y L i b . N
L i b r a r y / W r i t e L i b N a m e . N

P e r s o n / P e r s o n V a l u e s 2 . N
P e r s o n / P e r s o n V a l u e s l . N

Table 7.2: Insert-update dependency table

Table 7.2 shows some insert-programs, the bindings they insert and the programs that
update those bindings. A means no occurrence. It appears that the binding
“FindPersonDepend” in the “Person” environment is not updated. This indicates a
potential error (the SPASM constraint 4b in Section 6.3 is violated), since the author of
the personnel system used here as an example is expected to follow the persistent location
binding methodology (Section 6.2.1).

148

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

USE-PROGRAM BIN D IN G STORED

P e r s o n / M o d i f y P e r s o n . N P e r s o n \ F i n d P e r s o n D e p e n d P e r s o n X F i n d P e r s o n D e p e n d
P e r s o n / M o d i f y P e r s o n . N P e r s o n X G e t I n s t a n c e P e r s o n
P e r s o n / M o d i f y P e r s o n . N P e r s o n X K e y C h o o s e P e r s o n P e r s o n X K e y C h o o s e P e r s o n
P e r s o n / M o d i f y P e r s o n . N P e r s o n X M o d i f y P e r s o n P e r s o n X M o d i f y P e r s o n
P e r s o n / M o d i f y P e r s o n . N P e r s o n X P e r s o n K e y P e r s o n X P e r s o n K e y
P e r s o n / P e r s o n V a l u e s 2 .N P e r s o n X D u p l i c a t e P e r s o n P e r s o n X D u p l i c a t e P e r s o n
P e r s o n / P e r s o n V a l u e s 2 .N P e r s o n X S h o w P e r s o n P e r s o n X S h o w P e r s o n
P e r s o n / P e r s o n V a l u e s 2 .N P e r s o n X S h o w P e r s o n s P e r s o n X S h o w P e r s o n s

P e r s o n X W r i t e P e r s o n N a m e

Table 7.3: Use-stored dependency table

* *

* * * ENVMAKE * * *

H e l p

W r i t e p r o g r a m n a m e s w i t h c a t e g o r y

W r i t e i n s e r t - p r o g r a m s w i t h b i n d i n g s
W r i t e u p d a t e - p r o g r a m s w i t h b i n d i n g s
W r i t e d r o p - p r o g r a m s w i t h b i n d i n g s
W r i t e s t a r t u p - p r o g r a m s w i t h b i n d i n g s
W r i t e s t o r e d b i n d i n g s

H

A

I
U
D
S
P

I P
lU
ID
I S
UU
U I
US
DU
DS
TT

PE
EP

PS
TE

S I
T I

W r i t e i n s e r t / u p d a t e d e p e n d e n c y t a b l e
W r i t e i n s e r t / u s e d e p e n d e n c y t a b l e
W r i t e i n s e r t / d r o p d e p e n d e n c y t a b l e
W r i t e i n s e r t / s t o r e d d e p e n d e n c y t a b l e
W r i t e u p d a t e / u s e d e p e n d e n c y t a b l e
W r i t e u s e / i n s e r t d e p e n d e n c y t a b l e
W r i t e u s e / s t o r e d d e p e n d e n c y t a b l e
W r i t e d r o p / u s e d e p e n d e n c y t a b l e
W r i t e d r o p / s t o r e d d e p e n d e n c y t a b l e
W r i t e t y p e _ d e f / t y p e _ u s e d e p e n d e n c y t a b l e

W r i t e p r o g / e n v / b i n d i n g m a t r i x
W r i t e e n v / p r o g / b i n d i n g m a t r i x

W r i t e p r o g r a m s t a t u s
W r i t e t y p e d a t a b a s e s

T o p o l o g i c a l s o r t - i n s e r t - p r o g r a m s
T o p o l o g i c a l s o r t - t y p e - p r o g r a m s

* E - E x i t (B a c k t o NPE m a i n m e n u) *

* *

Figure 7.1: The EnvMake menu

Table 7.3 is another kind of dependency table. It shows the bindings (second column)
occurring in the use-clauses of the programs in the first column. The third column shows
the corresponding bindings that are actually in the persistent store (at the time of the last

149

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

thesaurus update). A in each of the two leftmost columns indicates that no program
is using the binding found in the store (in this case “WritePersonName” in the “Person”
environment). This is a violation of the SPASM constraint 8c. According to Table 6.7,
“WritePersonName” should either be used in some program or be dropped from the
persistent store.

As shown in the menu of Figure 7.1, EnvMake offers several kinds of dependency
tables. EnvMake can also visualise dependency information in the form of matrices
showing which operations are performed on which bindings in which programs. Table
7.4 shows the names of the bindings inserted, used or dropped in two programs. The
table is an excerpt from the full table generated as a result of selecting the “PE” option in
the EnvMake menu. A similar table sorted by environments rather than programs is
generated when selecting the “EP” option.

PROGRAM ENVIRONMENT INSERTED USED DROPPED

D r o p C o m p a n y . N C o m p a n y _ O r g E D IT IO N S E D I T IO N S
L I B R A R IE S L I B R A R IE S
PERSONS PERSONS
PRODUCTS PRODUCTS
PROJECTS PROJECTS
TASKS TASKS
TEAMS TEAMS
VER SIO N S V ER SIO N S

PS U s e r
U s e r C o m p a n y _ O r g

D e l e t e P e r s o n . N C o m p a n y _ O r g PERSONS
PROJECTS

* TEAMS
G l a s g o w L i b r a r i e s L i s t s
1 0 w r i t e S t r i n g
L i s t s c o n s

h d
l _ e m p t y
l _ i s u _ a p p e n d
t l

PS G l a s g o w L i b r a r i e s
* 1 0
* U s e r

P e r s o n D e l e t e P e r s o n
D e l e t e P e r s o n R e f e r e n c *
D u p l i c a t e P e r s o n
K e y C h o o s e P e r s o n
M a k e D u m m y P r o j e c t

U s e r C o m p a n y _ O r g
P e r s o n

N u m b e r o f e n t r i e s : 3 9 9

Table 7.4: Excerpt from a program-environment matrix

150

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

The information returned may be massive for large applications. The matrix of Table 7.4
originally had 399 entries, for example. Programmers have three options for restricting
the output. They can select:

• kind of binding (procedure, structure, etc.);i

• a particular program, environment or binding by specifying a (sub)string; or

• bindings in internal environments only (i.e., excluding the standard libraries and
other libraries).

The kind of the bindings and other information have deliberately been omitted from the
tables and matrices to suppress details that would have obscured the overall structure.
Programmers are advised to use the TSIT interfaces to obtain additional information.

The “TI” and “SI” options of the menu in Figure 7.1 initiate topological sorting on
the programs. The names of the programs and bindings involved in a possible cycle will
be printed. This issue is discussed further in Section 7.3.

The “PS” option writes the names, the time of the last compilation and the time of
the last execution of all the programs registered with a given application. The “TE”
option provides information about which type databases are being used in the application.
These two options concern build management and will be discussed in Section 7.4.

In order to enable installation (see Section 7.4.4), there must exist a partial order
among the insert-programs so that a binding inserted by one program can be executed
before the program using that binding. In particular, an environment must be created
before it can be populated. Similarly, to enable compilation, there must exist a partial
order among type-programs. Determining an order among dependent type-programs may
be a non-trivial task if there are several type-programs with dependencies between them
(see Section 7.4.2). The “SI” and “TI” options of the EnvMake menu suggest a linear
sequence compliant with the partial order if possible. If a loop exists, the name of the
programs constituting the loop and the involved bindings (type definitions) are presented
to the programmer in a table.

7.3 Supporting the SPASM Model
A feature of EnvMake is that it checks the SPASM constraints (Table 6.1) in the context
of Napier88. The following sections discuss how the constraints are checked, how rigid
the tool is and some programmer experiences.

One should note that consistency checking based on static analysis may not be
complete for all kinds of program. In particular, some programs may apply a hidden
operation, e.g. they execute a procedure variable or parameter defined elsewhere, or

 ̂ See Section 5.2.

151

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

operations may occur within conditional constructs. Nevertheless, structurally obscure
programs that invalidate checks may arise negligibly often (Section 7.5.2), and even for
these programs tools like EnvMake may be useful. See further discussion in Section
7.5.2.

7.3.1 Checking the SPASM Constraints

The thesaurus information collected by TSIT enables EnvMake to automatically check
the SPASM constraints. 1 Invoking EnvMake with the c o n s i s t e n c y parameter initiates
a check of all the SPASM constraints. In the case of violation, EnvMake gives a warning
and indicates the source of the violation. Only a warning is given since a violation is not
necessarily an error but may be an anomaly indicating a situation that is liable to errors.
If any program has been changed after the last thesaurus update, EnvMake warns that the
program should be analysed with TSIT to ensure up-to-date consistency analysis (Section
7.5.1). The checks of most of the SPASM constraints are briefly described below.

Program Categories

EnvMake keeps track of the category of a program and gives a warning if it detects a
program belonging to more than one of the categories. For example, a program with both
an insert-declaration and a drop-clause would be categorised as both an insert-program
and a drop-program. Programs violating this requirement are listed together with the
name of their assigned categories.

Type Definitions

EnvMake writes a list of all type definitions and components of type definitions that are
not used in any program. In the case of several type definitions with the same name,
EnvMake informs about all the places in which these type definitions are used.

Declaration and Use

An insert/use dependency table similar to those described in Section 7.2 (Tables 7.2 and
7.3) forms the basis for the check of constraints 3a and 3b. Entries in the table corre
sponding to a violation are presented to the programmer (see analogous example in “Stub
Constraints” below). EnvMake writes a list of all identifiers declared but not used, as
specified in the constraints 3c, 3d and 3e.

Information about the binding categories (Section 6.2.3) must be provided by the programmers in the
current implementation. The default is that all bindings are regarded as internal (except those in the
standard library). Some of the constraints would have been too restrictive if libraries and other
exported or imported bindings were regarded as internal, and corresponding violation messages would
have been felt inappropriate. Constraint 5a (Section 6.3) is meaningless without the categorisation.

152

CHAPTER 7: ENVMAKE - A PERSISTENT PROGRAMMING TOOL

Stub Constraints

EnvMake writes the names of variable procedures not declared as stubs (constraint 4a).
In the case of attempting to update a stub in more than one program (constraint 4b),
EnvMake writes a table informing the name of the binding and the names of the
corresponding insert- and update-programs. Table 7.5 shows an example where two
bindings are updated twice. Table 7.2 in Section 7.2 already showed an example of
violation of constraint 4b in which a procedure was never updated.

CHECKING CONSTRAINT 4 B : MORE THAN ONE UPDATE PROGRAM

IN SE R T PROGRAM B IN D IN G UPDATE-PROGRAM

P e r s o n / D e l e t e P e r s o n _ s t u b . N
P e r s o n / D e l e t e P e r s o n _ s t u b . N
P e r s o n / D e l e t e P e r s o n R e f _ s t u b . N
P e r s o n / D e l e t e P e r s o n R e f _ s t u b . N

P e r s o n / D e l e t e P e r s o n
P e r s o n / D e l e t e P e r s o n
P e r s o n / D e l e t e P e r s o n R e f
P e r s o n / D e l e t e P e r s o n R e f

L i b r a r y / D e l e t e L i b r a r y . N
P e r s o n / D e l e t e P e r s o n . N
L i b r a r y / D e l e t e L i b r a r y . N
P e r s o n / D e l e t e P e r s o n . N

N u m b e r o f e n t r i e s : 4

Table 7.5: Insert-update dependency table

Drop-Clauses

The constraints involving drop-clauses are checked by using insert/drop dependency
tables, and the results are presented in a form similar to Table 7.5.

Ordering of insert- and Type-Programs

The check for partial order among the insert-programs and among the type-programs
gives an error message if no such order exists and in that case presents a table of the
programs in the loop and the bindings or type definitions involved.

Structuring and Naming Conventions

Discrepancies from the structuring conventions are reported as a list of the names of the
directories with no corresponding environments (and vice versa). Names of environ
ments, directories and files not following the naming scheme are also listed.

Persistent Store

The checks of the constraints in the eighth group detect inconsistencies between the
source code and the actual contents of the persistent store. The use/stored table in Section
7.2 (Table 7.3) showed one example of an inconsistency (violating constraint 8c). The
insert/stored and drop/stored dependency tables are also used to check the constraints in
this group. If EnvMake has detected bindings in the store that are not used in any
program, a future option of the tool could be that it (reflexively) generates and executes a
corresponding drop-program upon user request. The user must be consulted because it
could be the case that the binding would be used in some program under development.

153

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

7.3.2 Flexibility of EnvMake

The principle of EnvMake of giving warnings when violations of the SPASM constraints
have been detected, can be compared with the way modem grammar checkers work (e.g.
the checker in Microsoft™ Word Version 5.0). They check the text against some internal
mles and give a warning if the text is not compliant with those mles. Then it is up to the
programmer to resolve the problem: leave the text as it is or modify it (suggestions are
usually provided).

EnvMake features optional selection of the constraints; programmers may “switch
o ff’ the check of individual constraints (cf. grammar checkers in which you can ignore
rules). For example, a programmer may know that certain constraints will not be adhered
to during a certain period of the development (typically during initial construction) and
may wish to avoid the noise of unnecessary inconsistency messages.

Even though EnvMake supports and encourages the use of a certain programming
methodology, it does not restrict its use to only systems that have been constructed in
accordance with the methodology. Most of the constraints are useful whatever the
methodology. For example, old software can be registered with EnvMake and make use
of the facilities provided. Moreover, EnvMake does not fall over if violations are
detected; it informs the programmer about the kind and source of violation and then
checks the next constraint.

7.3.3 User Experiences

Parts of EnvMake have been successfully used. The implemented checks of the SPASM
constraints were applied to Napier88 programs developed by seven programmers. Some
of the experiences are described below.

• People claimed that the analysis increased their general understanding of their
software.

• EnvMake assisted in providing a consistent naming structure; several had forgotten
which names they had been using.

• The checks of unused identifiers stopped people from copying large segments of use-
declarations from other programs without selecting only those needed. One person
would still continue to do “bulk” copying: this was the simplest way, he said, and it
was of no concern that some declarations were unused.

• One person had two cases in which two different programs updated the L-value of
the same procedure in the persistent store and was very pleased to be informed about
this error (see Table 7.5).

• People asked for new reports and were curious about the quality of their software
compared with other people’s software.

154

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

• Cases were discovered in which variables were declared in the store with stubs and
then updated and used within the same program, without being used in any other
program. Also other cases were detected in which global variables could be replaced
by local variables.

• The various checks were useful for the author during the development of TSIT since
a large piece of software developed by others had to be modified (the NinN
compiler). For example, detecting procedure parameters not used within the
procedure body enabled simplification of the procedure interface. ̂

The experiences described above indicates that EnvMake is useful. Nevertheless, a
thorough experiment of studying the effect of using EnvMake (and TSIT) is being
planned (Section 8.2.7). In additional to anecdotal information such as that described
above, the extent to which programmers change their behaviour will be studied by
comparing measurements of their software collected by TSIT before and after they adopt
EnvMake. New requirements of EnvMake will also be an issue of such a study.

7.4 Build Management
A major feature of EnvMake is its support for build management (Section 3.3.2). In this
context build management includes recompilation, re-execution (in compliance with the
persistent location binding methodology) and installation of a release of a PAS. In
particular, the following tasks must be carried out:

• All new and all changed programs should be compiled.

• When type-programs are compiled, the corresponding type databases should be
updated accordingly.

• If a type-program is changed, all dependent programs should be compiled. The type-
program must be compiled before the dependent programs. In particular, type-
programs must be compiled in a correct order if there are dependencies among them.

• Programs that update persistent locations should be re-executed after change.

• Installation must be performed in a correct order, including all insert-programs
before update-programs.

At present, these tasks are either performed in an ad hoc way or by use of Unix
Makefiles. Programmers must infer dependencies and maintain Makefiles manually.
EnvMake does not have any notion of “EnvMakefile” like Makefile in Make. All the
necessary information is automatically inferred from the thesaurus and the internal data

 ̂ Unfortunately, TSIT and EnvMake could be applied to themselves only at the end of their
development - when they were being improved and tidied up - since they did not exist before they
were developed, of course.

155

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

structures (e.g. dependency tables) of EnvMake. There are many advantages of such
automation, and in particular it simplifies problems of change management as described
in [Schwanke and Platoff 1989]:

Many projects have a “catch-all” file of widely-used declarations. Maintainers are unwilling to
create a new file to contain a new declaration, because of the nuisance of changing Makefiles,
notifying the configuration management team, and so on.

A Makefile can also be regarded as a form of documentation of dependencies within the
application. However, the kind of information that can be read from Makefiles can be
obtained via the interactive EnvMake menu (Figure 7.1) or by querying the thesaurus
directly (Section 5.3). The build management tasks of EnvMake are invoked by the
e n v M a k e command with a parameter corresponding to the actual task:i

• e n v M a k e p l a n

• e n v M a k e c o m p i l e

• e n v M a k e r u n

• e n v M a k e i n s t a l l

These tasks are discussed separately in the following sections.

7.4.1 Showing Status Information

Applying one of the parameters c o m p i l e , r u n or i n s t a l l to the e n v M a k e command
may initiate compilations. EnvMake determines the programs to be compiled and the
order. Invoking EnvMake with the r u n or i n s t a l l parameter may initiate executions,
and EnvMake determines a corresponding execution plan. This information, together
with the times for the last compilation or execution, is written as a table on the screen
before the actual compilation and execution. The corresponding program categories are
also specified. A presentation of such a plan without actually performing any compila
tion or execution is provided by the e n v M a k e p l a n command.

Table 7.6 shows an example from the implementation of EnvMake application itself.
It appears that EnvMake Jypes.N is the first program to be compiled. Type-programs are
never executed so there are no corresponding entries in the two Execution columns.
There are two rows with missing entries in the Compilation colunms showing that there is
no need for recompilation. Nevertheless, the corresponding executable versions
{dependTable.out and envMakeMainMenu.out) should be executed. The program
installGen.N appears with the value “00/00/00 00:00” for the last compilation indicating

 ̂ The current EnvMake implementation assumes that there is only one PAS in a given persistent store.
A more sophisticated version should allow several PASs, and EnvMake would have to provide a
mechanism for indicating the PAS being the subject of the task.

156

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

that this is a new program. Drop-programs and startup-programs are never automatically
executed in the current version of EnvMake.

C o m p i l a t i o n E x e c u t i o n C a t e g o r y

S o u r c e p r o g r a m L a s t c o m p i l a t i o n E x e c u t a b l e p r o g r a m L a s t e x e c u t e d

E n v M a k e _ t y p e s . N 2 1 / 0 8 / 9 2 2 1 : 3 5
s t u b l n s e r t . N 2 1 / 0 8 / 9 2 2 1 : 3 9
b i n d i n g M a p s . N 2 1 / 0 8 / 9 2 2 2 : 3 5
c r e a t e M a t r i x . N 2 2 / 0 8 / 9 2 0 9 : 3 5

i n s t a l l G e n . N 0 0 / 0 0 / 0 0 0 0 : 0 0
L V a l u e U p d a t e . N 2 1 / 0 8 / 9 2 2 1 : 3 7
d r o p . N 2 1 / 0 8 / 9 2 2 1 : 3 9
c a l l l n s t a l l G e n . N 2 1 / 0 8 / 9 2 2 2 : 5 5

b i n d i n g M a p s . o u t 2 1 / 0 8 / 9 2
c r e a t e M a t r i x . o u t 2 2 / 0 8 / 9 2
d e p e n d T a b l e . o u t 2 2 / 0 8 / 9 2
e n v M a k e M a i n M e n u . o u t 2 2 / 0 8 / 9 2
i n s t a l l G e n . o u t 0 0 / 0 0 / 0 0
L V a l u e U p d a t e . o u t 2 1 / 0 8 / 9 2

t y p e - p r o g
i n s e r t - p r o g

2 2 : 3 7 u p d a t e - p r o g
0 9 : 3 5 u p d a t e - p r o g
0 9 : 3 6 u p d a t e - p r o g
0 9 : 4 0 u p d a t e - p r o g
00
21

00
3 9

u p d a t e - p r o g
u p d a t e - p r o g
d r o p - p r o g
s t a r t u p - p r o g

Table 7.6: Compilation and execution plan

During compilation and execution, the name of the actual program and possible error
messages are written to the screen. A log summarises the course of events as illustrated
in Table 7.7 which shows that createMatrix.N failed compilation. The “.out” version was
therefore not executed.

C o m p i l a t i o n E x e c u t i o n C a t e g o r y

S o u r c e p r o g r a m C o m p i l e d E x e c u t a b l e p r o g r a m E x e c u t e d

E n v M a k e _ t y p e s . N 2 3 / 0 8 /9 2 0 8: 3 5 t y p e - p r o g
s t u b l n s e r t . N 2 3 / 0 8 /9 2 0 9 : 1 9 i n s e r t - p r o g
b i n d i n g M a p s . N 2 3 / 0 8 /9 2 0 9 : 2 5 b i n d i n g M a p s . o u t 2 3 / 0 8 / 9 2 0 9 : 3 0 u p d a t e - p r o g
c r e a t e M a t r i x . N E r r o r ! c r e a t e M a t r i x . o u t N o e x e c u t i o n u p d a t e - p r o g

d e p e n d T a b l e . o u t 2 3 / 0 8 / 9 2 0 9 : 3 6 u p d a t e - p r o g
e n v M a k e M a i n M e n u . o u t 2 3 / 0 8 / 9 2 0 9 : 4 0 u p d a t e - p r o g

i n s t a l l G e n . N 2 3 / 0 8 /9 2 0 9 : 3 5 i n s t a l l G e n . o u t 2 3 / 0 8 /9 2 1 0 . 3 9 u p d a t e - p r o g
L V a l u e U p d a t e . N 2 3 / 0 8 /9 2 0 9 : 3 7 L V a l u e U p d a t e . o u t 2 3 / 0 8 /9 2 1 0 . 4 2 u p d a t e - p r o g
d r o p . N 2 3 / 0 8 /9 2 0 9: 3 9 d r o p - p r o g
c a l l l n s t a l l G e n . N 2 3 / 0 8 /9 2 0 9 : 4 0 s t a r t u p - p r o g

Table 7.7: Log of compilations and executions

The kind of status information described above is a significant improvement compared
with what, e.g., Make provides - which is nothing. The present version of EnvMake
offers only a textual interface for input and output. Later versions could provide a more
sophisticated user interface with a separate log window displaying a table similar to that
of Table 7.7 but with the time information and messages inserted into the Compiled and
Executed columns as the compilation and execution proceed. Colours could also be used
- error messages in red, etc.

157

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

7.4.2 Compilation

Invoking EnvMake with one of the parameters co m p ile , r u n and i n s t a l l , causes
every new or changed program to be (re)compiled4 In addition, programs that depend on
modified type-programs will also be recompiled. If no type-programs have been
changed, the order of compilation is not significant. If a type-program has been modi
fied, however, the collection of dependent programs (which may include other type-
programs) must be determined. Type-programs must precede the dependent programs in
the compilation order. If compilation of a type-program fails, EnvMake will not initiate
compilation of the (unchanged) dependent programs since those compilations would also
fail or be based on obsolete versions of the type definitions.

There are two problems concerned with “the collection of dependent programs” of a
type-program. First, it is to define the semantics of dependency in this context; second, it
is to detect the actual programs. A simple rule of dependency is: all programs in a PAS
or a subsystem are dependent on all the type-programs in that PAS or subsystem.^ That
is, if a type-program is changed, then all programs are recompiled to ensure that no
program refers to old type definitions.^ Applying this rule causes many programs to be
recompiled unnecessarily. This very simple way of defining dependency is mainly due to
the lack of appropriate tools for determining the collection of dependent programs
according to a more refined definition.^

Probably the most obvious and correct way of defining type dependency is to regard
a program as dependent on the specific type definitions that it uses. So, if a type
definition (say) T is used in a program (say) p ro g l.N , then p r o g l.N is said to be
dependent on T. In order to preserve consistency, a removal of or change to T requires
progl.N to be changed accordingly (if necessary) and thereafter recompiled. In the
current EnvMake implementation, however, no test has been implemented in order to
detect a change to a specific type definition (though such a test could be implemented by
appropriate type graph comparison algorithms [Connor 1991]).^ Nonetheless, the type-
program containing the changed type definition will be detected as changed by the
conventional timestamping technique. Therefore, as a compromise for implementation
reasons, changes are recorded at the granularity of type-programs rather than the level of

 ̂ Changes are detected by the timestamping technique, as in Make.

 ̂ This seems to be the commonly practised rule.

 ̂ Some implementations of type processing will make type changes available to programs that use the
types indirectly without the need for reprocessing these programs (e.g. relational databases that use
type names as keys).

This problem of the coarse level of dependencies between a compilation context and the compilation
units is described more generally in [Tichy 1986] (see Section 3.3.2.2).

 ̂ In the implementation of a tool described in [Tichy 1986], changes to declarations are detected by
comparing their identifiers and their respective abstract syntax trees.

158

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

type definitions. Hence, the type dependencies shown in Figure 7.2 indicate that at least
one type definition in the program at the arrow tail is used in the program at the arrow
head. For example, progl.N and Bjtypes.N depend on Ajtypes.N implying that EnvMake
would initiate a recompilation of progl.N and B Jypes.N diiitv any change to A Jypes.N.

A_types.N

C_types.NB_types.N

D_types.N

progS.NprogZ.Nprogi .N

Figure 7.2: Type dependencies

In larger PASs it is common to have several type-programs, each of which covers a sub
system. For example, the WIN system [Cutts et al. 1990] has five type-programs; one in
each of the subsystems “system”, “lineBditor”, “windowEditor”, “editors” and
“managers”. By compiling with the n p s command instead of the standard npc, the type
definitions are inserted into a type database in the persistent store. Programs can be
compiled later on against the definitions in such type databases (Section 4.2.1.1).
EnvMake chooses the n p s command when it compiles type-programs, ensuring that the
corresponding type databases are up-to-date. Moreover, EnvMake automatically com
piles against these type databases whenever it compiles a program within the corre
sponding subsystem.

As mentioned above, a type-program must be compiled before its dependent
programs. The order is determined by the topological sort (Section 6.3.6). A change to a
type definition does not only imply that the dependent programs need to be recompiled -
they also generally need to be edited. Hence, these programs will be detected as changed
by the timestamping algorithm and thus be subject of recompilation in any case.
However, there are still at least two reasons for applying the type dependency rule

159

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

discussed above. First, there are cases in which programs do not need editing but still
need recompilation. i Second, if the dependent programs need editing, but this has not
been done for some reasons, recompilation ensures that type inconsistencies are detected
at an early stage rather than later at run-time (e.g. in use-clauses).

Avoiding unnecessary recompilations is not a new problem (Section 3.3.2.2). It
could be argued that the significant increase in machine power would make this problem
redundant. However, the compilation time may still be considerable, and the size of
application systems is continuously increasing, so the desire to avoid total recompilation
after minor changes will undoubtedly continue. As explained above, EnvMake alleviates
this problem by recompiling only changed programs and those that depend on them.

7.4.3 Execution

When the e n v M a k e command is invoked with the r u n parameter, it is first checked for
necessary compilations according to the process described in the previous section.
Thereafter, EnvMake starts execution of update-programs that have been recently
compiled. The order of execution is not significant. Keeping track of which programs
that are update-programs and when they should be executed is time consuming and error-
prone without appropriate tool support.

One may question when programs of the other categories are executed since they are
not executed when e n v M a k e r u n is requested. As mentioned, type-programs are never
executed. Insert-programs are executed as part of a system installation (next section) and
maintenance (including type evolution). Startup-programs typically call persistent
procedures to initiate a particular task or invoke the menu of an interactive application.
These programs are executed on user request only. Drop-programs are normally created
and executed ad hoc but could be automatically generated and executed by a more
sophisticated version of EnvMake (Section 7.6).

7.4.4 Installation

When installing bindings into a persistent store, the installation-order is significant. That
is, a binding must be inserted before it can be used. For example, an environment must
be created before it can be populated, a location must be created for a procedure before its
L-value can be updated, etc.^ EnvMake provides automatic installation. When the files

For example, if a type definition of kind variant has been extended with a new branch, programs that
should not reference this new branch do not need to be changed. For type equivalence purposes,
however, they need to be recompiled. (There exist languages, for example Machiavelli [Ohori et al.
1989], where a partial match suffices, and for such languages recompilation would be unnecessary.)

The author experienced difficulties when installing a relatively large piece of software developed by
others (a modified version of the NinN compiler). The original Makefiles could not be used since

160

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

of a PAS have been stored in the respective directories of the file system, the necessary
installation into the persistent store is provided by e n v M a k e i n s t a l l which performs
the following tasks:

i) compilation of type-programs (in topologically sorted order)

ii) compilation of other programs (in any order)

iii) execution of insert-programs (in topologically sorted order)

iv) execution of update-programs (in any order)

The type-programs are compiled (by the n p s command) in a topologically sorted order.
Then the rest of the programs are compiled (if needed) in any order. Only insert- and
update-programs are executed in an installation.

7.5 Implementation
EnvMake is implemented in Napier88, and Maps [Atkinson et al. 1990] are heavily used.
The tool is tightly integrated with TSIT (Chapter 5). All the internal data structures of
EnvMake containing information about dependencies, program categories, timestamps,
etc. are based on the thesaurus information. The internal EnvMake information is
updated immediately after the TSIT program analysis and subsequent thesaurus update.
The actual update of timestamp information is managed by EnvMake itself,i but the files
being operated on are those registered with TSIT (Section 5.4). Hence, any addition,
deletion or renaming of a file belonging to the actual PAS must be registered with TSIT
before the change becomes visible in EnvMake.

In the current implementation the type databases are given the same names as the
names of the PASs or subsystems, which can be extracted from the files holding the
corresponding type-programs: (PAS or subsys)_types.N.

7.5.1 Problems with Ensuring Up-To-Date Information

A potential problem pertains to EnvMake’s build management feature of automatic
program executions. Only programs of certain categories (insert-programs and update-
programs) should be executed, and the order is significant (insert-programs before other
programs, etc.). The order is determined on the basis of the thesaurus information, which
provides the input to the topological sorting algorithm. If EnvMake has detected a file as
being changed after inspecting the timestamp information, it might be the case that the
change concerns code relating to insert, update or use of bindings which in turn may

they had not been updated in accordance with the changes to the code. The installation-order was
eventually determined by trial-and-error.

 ̂ The time information provided by the Unix file system is used to detect when a file was last changed.

161

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

affect the execution order. Theoretically, a program may also have changed its category
(e.g. from startup-program to update-program) indicating that the program now should be
automatically executed. ̂ Such changes will not be detected before the next TSIT analysis
and thesaurus update. Therefore, the strictly correct sequence of EnvMake’s tasks would
be as follows:

1) Inspect time stamps of the registered files.

2) Compile all new or changed programs.

3) If no compilation errors, let TSIT analyse the new or changed programs and update
the thesaurus correspondingly.

4) Update dependency tables and program category information.

5) Perform topological sort.

6) Execute the programs according to the (possibly new) order.

A significant overhead is caused by the third step. So, due to performance reasons, that
step is sacrificed (implying that also the fourth step is ignored since the thesaurus
information is unchanged). This is reasonable since in practice very few changes affect
the execution order, and change of program category is extremely rare. If the thesaurus is
updated (say) every night, the analysed information is still relatively up-to-date.
However, if a programmer knows that he or she changed code pertaining to insert, update
or use of bindings, then a thesaurus update should be requested promptly.

Another problem pertains to the compilation order of type-programs which is
determined on the basis of dependencies among type definitions. These dependencies
can be inferred from the thesaurus information. This is too late, however, since the
programs must already be fed into TSIT in a topologically sorted order. Like the
compiler, TSIT must first analyse the program containing certain type definitions before
it can analyse the programs that use these type definitions. To solve the problem,
EnvMake is enhanced with a special procedure that analyses type-programs (EnvMake
detects if they really are type-programs) with the only purpose of determining the order
among them. A two-pass analyser does the job. In the first pass all the type definitions
are found; in the second pass all the uses are found. A type dependency table is then
generated which is taken as input by the topological sorting algorithm.

7.5.2 Problems of Naming and Identity

The current EnvMake implementation is name-based only. The SPASM constraints are
checked under the assumption that environments are uniquely identified by their names

 ̂ Programmers should be encouraged not to change categories. Such an undisciplined practice makes
maintenance difficult, particularly in large projects with many people involved (see Section 6.6).

162

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

and by paths of named environments from a persistent root if such paths exist. If there
are no paths, an environment is assumed to be identified by its name only. It is also
assumed that a given environment has only one name. The dependency tables (Section
7.2) on which the build management features of EnvMake are based, rely on these
assumptions. Problems may occur in the following three cases:

i) Environments are returned by procedures.

ii) Vectors, structures, variants, procedures, etc. have environments as elements, fields,
branches, parameters, etc.

iii) Different identifiers denote the same environment.

The misleading warnings that might be given in these cases can be compared to grammar
checkers that suggest changes in complex but entirely correct sentences. ̂

7.5.2.1 Returned Environments

If a procedure returns an environment such as mk_env in pl.N^ in Figure 7.3, then the
environment name used within the procedure body {e in that example) generally differs
from the name of the identifier being assigned that environment in a call to the procedure
{list in p2.N).

Pl.N
use PS() with lib : env;

date : proc(> string);
environment : proc(> env) in

in lib let mk_env = proc(> env)
begin

let e = environmentO
in e let created = date()
e

end

p 2.N
use PS() with lib : env in
use lib with mk_env : proc(-> env) in
in lib let list = mk_env()

p 3 .N
use PS() with lib : env in
use lib with lists : env in
use lists with created : string in {...}

Figure 7.3: Environment as result type

1 The suggestion does not necessarily concern the fact that the sentence is complex, but the sentence is
too complex for the grammar checker to parse it correctly.
This is an example from a real application (the maps library).

163

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

Moreover, there is no path associated with the environment in the procedure body. For
example, checking that the binding created inserted into e is ever used is impossible since
the binding is identified as e\created when it is inserted and as PS()\lib\lisAcreated if it is
used as an element in the list environment (p3.N).

EnvMake would in this case report that e \crea ted was unused and
PS()\lib\list\created was undeclared, so EnvMake would issue unnecessary warnings.
Probably what would happen, however, is that a programmer would use TSIT to find all
occurrences of created and would then resolve the problem.

Except for four standard procedures, there are only two procedures in the eight
analysed applications that return environments, which indicates the problem is not that
severe.

7.S.2.2 Environments in other Data Structures

As shown in Table 5.11, if an element of a vector is accessed, only the vector name is
registered in the thesaurus. This is reasonable since a vector element does not have a
name but is identified by an index. If a structure, variant or procedure has environments
as fields, branches or parameters, then the environments are “identified” by the name of
the field, branch or parameter in addition to the name of the associated structure, variant
or procedure. However, this does not ensure globally unique naming and may com
promise the quality of the EnvMake support. Nevertheless, in most cases the names are
unique within an application.

env Bindinglnserted 372
env ProcParamDecl 103
env StructFieldDecl 1
env ValueDecl 388

env Total 864

Table 7.8: Declaration o f environments^

Among the 864 declarations^ of environments in the analysed applications, there are 103
cases where environments are procedure parameters, one case with an environment as a
structure field and no cases where environments are variant branches or vector elements
(Table 7.8). There are 372 cases in which environments are declared directly^ into other
environments (usually persistent), and 388 cases in which they are declared directly but
not into other environments.

 ̂ This is an excerpt from a large table in [Sj0berg 1992].

 ̂ Use-clause declarations are excluded.
 ̂ That is, not as part of another structure (except environments).

164

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

7.5.2.S Aliases to Environments

A potential problem occurs if several identifiers in a program or in the persistent store
denote the same environment. For example, in the following code a variable x is declared
in the environment e l. Then el is being assigned to another environment e2, so that el
and e2 denote the same environment. Finally, x occurs in a use-clause of e2.

in e l le tx := 2

e2 := e l

use e2 with x : int in ...

EnvMake would at present claim (incorrectly) that the variable x in the environment el
(identified as el\x) is not used and that x in e2 (identified as e2\x) is not declared. To
solve this problem, some kinds of alias list could be constructed by sophisticated source
code analysis in a future version of EnvMake or TSIT.i Also, since the thesaurus itself is
located in the persistent store, it could be enhanced in that its entries could contain
references to the bindings themselves (rather than only containing their names).^ This
might enable the thesaurus to store information about different identifiers referring to the
same environment, and thus a list of aliases could be constructed for each environment.
EnvMake could in turn use this information to improve the quality of its analyses. The
need for such alias lists, however, does not seem especially pressing. There are only
three assignments involving environments (0.1% of all assignments) in the analysed
applications.

7.6 Future Development of EnvMake
The SPASM constraint that all programs should belong to exactly one of the five
categories described in Section 6.2.2 makes individual programs easier to understand
(and thus to write, update, manage, etc.). On the other hand, there will be many more
programs, which leads to it being potentially harder to comprehend the total system.
Supporting tools for program management (automatic generation, compilation and
execution) are therefore essential.

This section describes a tentative proposal (i.e., no implementation and no
evaluation) for how EnvMake can be enhanced to offer support for the persistent location
binding methodology when also the type of a location is changed (not only the contents).
For example, if a procedure type is changed, the same location cannot be used any more.
It is necessary to drop the old location and create a new location with a new procedure.

Figure 6.9 in Section 6.5.1 summarises the necessary steps to be carried out in
compliance with a certain strategy involving four files per binding. The steps presented

 ̂ Hyper-programming (Section 8.2.6) may finesse this problem.
 ̂ See also Section 8.2.5.

165

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

below are compliant with that strategy. For each step the perpetrator is indicated
(EnvMake or the programmer). So, if the type of a binding is to be changed, the
following steps should be carried out:

1) EnvMake drops the existing location by executing the program in (binding)_drop.N.

2) EnvMake removes the old (binding)_insert.N.

3) User edits (binding)_update.N, and EnvMake infers the new type by analysing that

program.!

4) On the basis of the information obtained in step (3), EnvMake generates a new
(binding)_insert.N with a stub. If the binding to be created is a procedure, then the

stub includes a call to the uninitialised or uninitialised_void procedure (for security
and debugging purposes)^ depending on whether or not the procedure returns a
result. Then EnvMake compiles and executes (binding)_insert.N.

5) EnvMake recompiles and re-executes (binding)_update.N.

6) EnvMake presents information about all the programs that use the binding,
indicating which must be edited by the programmer. EnvMake (re)compiles and re
executes as required.

If a new binding is to be created from scratch, steps (1), (2) and (6) should be ignored.
EnvMake can also be enhanced to support other aspects of construction and

maintenance, such as organising directories and environments. For example, assume that
a programmer manually creates the root directory of a PAS and (recursively) all
subdirectories.^ The path of the root directory could then be passed to EnvMake which in
turn could construct a matching hierarchy of environments in the corresponding (PAS)

environment (or vice versa). In this way EnvMake would ensure isomorphism both in
structure and naming (cf. SPASM constraint 7a).

A whole class of tools that would enhance the EnvMake programming environment
can be envisaged; some examples follow.

• EnvMake could automatically generate use-clauses.

• EnvMake could optimise programs to convert use paths into hyper-references and do
the inverse to prepare code for shipment.

• EnvMake could reflexively generate, compile and execute programs that fetch
remote libraries when they are used the first time.

! Alternatively, the programmer specifies the environment path, name and the new type interactively in
a dialogue with EnvMake.

 ̂ See Section 6.2.1.

 ̂ A possible enhancement is that the programmer specifies all the directories in a shorthand notation or
in a dialogue and leaves the actual creation to EnvMake.

166

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

• EnvMake could store annotations in environments to improve presentation and to
support various forms of automation.

The first two proposals are discussed further in Section 8.2.

7.7 Summary
This chapter has described a tool called EnvMake which supports application
construction and maintenance in a persistent progranuning environment. Even though
the EnvMake has been developed in the context of Napier88, the principles behind the
tool apply to all persistent programming languages providing higher-order procedures
and L-value binding to persistent locations.

EnvMake has been tailored to support the programming methodology and the
SPASM model described in the previous chapter. For each violation of a SPASM
constraint, EnvMake produces a warning message and an indication of the source of the
violation. It is then the responsibility of the programmer to rectify the inconsistent state.
(An enhanced version of EnvMake could often offer a solution.) Several of the SPASM
constraints prevent situations liable to provoke run-time errors. The corresponding
EnvMake checks are performed at “EnvMake-time” (which is between compile-time and
run-time)! and, as such, comply with the principle of “eager checking” [Atkinson et a l
1988], i.e., performing as much as possible of the checking as early as possible.

As part of the persistent location binding methodology, some programs should only
be recompiled after change, some should also be re-executed (those that update code in
the persistent store), programs with type definitions should update the corresponding type
databases when they are compiled, etc. Traditionally, programmers have carried out
these tasks manually, or they have created and manually maintained Unix Makefiles for
the tasks. Both these strategies are tedious and error-prone, especially for large PAS s.
On the basis of the thesaurus contents, EnvMake infers which programs should be
recompiled, which ones should also be re-executed, etc. This information, together with
timestamp information about the last change and compilation of a program, enables
EnvMake to automatically perform all the needed recompilations and re-executions.

The build management features of EnvMake support incremental update of programs
stored in persistent locations as long as the types of the locations are unchanged. At the
end of this chapter, it was proposed how EnvMake could automate most of the tasks
needed to change the location type as well.

Automatic build management tools have also been developed in other progranuning
environments, mostly for C (e.g. THINK C™ for the Macintosh [Symantec 1989]).

! EnvMake is based on the thesaurus information which in turn is extracted from source programs after
they have been checked for compilation errors (Section 5.4),

167

CHAPTER 7: ENVM AKE-A PERSISTENT PROGRAMMING TOOL

However, persistent programming environments are generally more sophisticated in that
they include issues that were traditionally dealt with by the operating system or DBMS,
so they require correspondingly more sophisticated build management tools, such as
EnvMake.

EnvMake imposes a certain view on the programming process. There is a trade-off
between support and flexibility. The more a programmer complies with the model of
EnvMake, the more assistance EnvMake provides. The conventions and constraints
imposed by EnvMake should not be regarded as a hindrance. On the contrary, they
encourage the use of the persistent store in a disciplined way and assist in providing a
common model for construction and maintenance of PASs in a community of software
builders.

168

Chapter 8
Conclusions and Future Work

One of the most challenging problems of building and maintaining large, long-lived data-
intensive application systems is to cope with all the changes that inevitably will be
imposed on the systems over time. The motivation for the research presented in this
thesis is to simplify and aid the process of changing such systems by providing
supporting models, methodologies and tools. The thesis has demonstrated that
automatically generated thesauri prove a suitable basis for achievements in that direction.

It is sometimes argued that change is a consequence of poor design or erroneous
implementation. Naturally, some changes arise from these causes, and improved
techniques for reducing them are valid research. However, the major cause of change is
perceived to be user initiated, and the thesis takes the view that it is important to facilitate
such change so that the people using a persistent application system are not discouraged
from innovation.

Most of the research was conducted in the context of the strongly typed, persistent
programming language Napier88. The ideas behind the introduced SPASM model, the
methodologies and the EnvMake tool, however, are independent of Napier88 and can
thus be applied to any persistent or database programming environment (e.g. persistent
object-oriented systems) in which programs and other data reside in a persistent store.

8.1 Summary - Utilisation of Thesauri
The basis for the work presented in this thesis is automatically created and maintained
thesauri which contain extensive information about all names used in the implementa
tions of persistent application systems. Our understanding of a system is closely related

169

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

to the use of names. Names are chosen as a focus on the assumption that most of the time
they will be used consistently by people throughout the life of a system.

8.1.1 Quantifying Evolution

It is commonly known that there is a significant number of changes going on in the
application software industry, but the kind and scale of various forms of change should
now be quantified. This thesis has introduced a research direction concerning the
problem of quantifying schema evolution. A relational database application, a health
management system, was studied in depth during an 18 month period. The study reveals
that schema changes are significant both in the development period and after the system
has become operational. The main results were:

• Number of relations: 139% increase.

• Number of fields: 274% increase.

• Every relation was changed.

• 35% more additions than deletions.

The consequences of the schema changes on the application programs have also been
measured. The results confirm the need for change management tools.

The study reported has wider applicability than just to traditional database systems.
The data descriptions and consequently dependent data (including programs) of all
persistent application systems will inevitably have to be changed in order to reflect the
changing user needs. That is, schema evolution in traditional databases corresponds to
class evolution in object-oriented database systems, to type evolution in applications
developed in strongly typed, persistent programming languages (e.g. Napier88) and, at a
higher level, to changes to application models described in the framework of conceptual
data models (e.g. the Entity-Relationship model).

The measurements were obtained by the HMS thesaurus tool which analyses the
database schemata and application programs. The tool spans all the languages used to
build the whole persistent application system, its user interfaces and its databases.
Information about programmer-introduced names denoting relations, fields, screens,
actions, queries, update functions, etc. is extracted and inserted into the thesaurus.
Changes to the set of occurrences of these names are also recorded. In particular, the tool
provides information about how many screens, actions, queries, etc. may be affected by a
potential schema change and can thus be used to estimate the costs of this change. Some
of the statistics presented and the thesaurus’ raw data reveal possibilities concerning
optimisation strategies.

170

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

We have only been able to find one report on similar measurements [Marche 1993].
In that case, change ! was measured at the data modelling level. Also this study confirms
the significant extent of change. In general, change statistics from other projects should
be collected, enabling systems in various application domains to be compared in a larger,
more representative study.

The causes of change may also vary from system to system.^ These causes,
however, are another research issue and are regarded as irrelevant in our context. The
key point is that our measurements of a real, industrial system confirm that designers of
tools for the management of large, long-lived systems involving databases must address
the problem of changes to schemata. The traditional view of first defining a (fixed)
schema and thereafter developing the dependent application programs has proved
inappropriate.

8.1.2 Thesauri in a Strongly Typed Persistent Environment

Persistent languages potentially support construction and maintenance of long-lived,
data-intensive, application systems. To exploit the benefits of persistence, however, sup
porting models, methodologies and tools must be developed. Automatically generated
thesauri are a suitable platform for such development.

The Thesaurus-based Software Information Tool (TSIT), based on the same ideas as
the HMS thesaurus tool, was implemented for and in the strongly typed persistent
language Napier88. The heart of TSIT is the thesaurus which keeps track of identifiers of
all kinds used in the application. Information such as type, container, context,
declaration/use, etc. is recorded for each identifier occurrence. TSIT provides impact
analysis (consequences of change) and a simple query interface (Figure 8.1). TSIT can
also be used as a tool to generate measurements of various kinds. In particular, to support
the arguments of the thesis, eight Napier88 applications were measured in detail. In total,
51328 lines of code with 84501 name occurrences in 367 programs were analysed. The
measurements comprise the use of names, the use of various language constructs, the
extent of inconsistencies, how programs interact with environments in the persistent store
and other programming issues. Some specific measurements were undertaken in
response to questions about language usage from language designers at the University of
St Andrews.

! No measurements on consequences of change were reported.
2 In the HMS case considerable investment (much in excess of coding costs) went into design and

planning. Changes were still encountered due to changing organisational needs, changing regulations
and the addition of major new subsystems.

171

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Consistency
Checkers

Methodology
Supporters

Window-based
Interface

Recursive
Queries

Build
Managers

Impact
Analysers

Cross
Referencers

Measurement
Tools

Thesaurus

Enhanced Interface

EnvMake

TSIT

Figure 8.1: Thesaurus-based tools

Models and methodologies for persistent software development are still in their infancy,
but there are already many activities that are suitable for automation or that would benefit
from supporting tools. One example of such a tool is EnvMake which also utilises the
thesaurus information (Figure 8.1).

In general, the use of persistence has made it easy to build programs and applications
working on top of the thesaurus. Two examples are the enhanced interfaces to the
thesaurus - a sophisticated query language [Trinder 1991] and a window-based, menu-
driven interface [Sjpberg et at. 1993].

The detailed information about application programs and data provided by the
thesaurus, and its user interfaces, enable software builders and maintainers to explore and
extract information of particular interest. By investing in creating tailored interfaces, they
can study evolution and other problems of application construction and maintenance from
their specific points of view.

172

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

8.1.3 Models and Methodologies

Comparing file-based program construction methodologies with those based on persistent
stores, we observe that in the persistent store case all possible data structures and their
types are accommodated and preserved when data is stored for later use or passed
between programs. Typically, file-based program construction has little support from the
type system and perforce loses structural information as data is mapped to a sequence of
bytes. Although persistence leads to more sophisticated interfaces between program parts
using arbitrary modules, we believe it will ultimately yield benefits because of the
significant structural information that is conveyed between programs. Thesaurus tools
will be better able to infer dependencies and verify model constraints by analysis of this
richer structural information. However, to fully benefit from the new technology,
comprehensive programming methodologies are needed.

This thesis takes a further step in that direction; it has introduced a construction and
maintenance methodology together with a structured persistent application system model
(SPASM) that specifies an architecture for application systems developed in Napier88.
SPASM defines a set of constraints with which each suite of application software should
comply. At the time of writing, there are 24 constraints like the following: “a binding
inserted into the store, not intended for export, should be used somewhere within the
application”, “all type definitions should be used within the application”, “there should be
exactly one program updating a procedure (or some other kinds of value) bound to a
persistent location initialised with a stub”, etc. A violation of a constraint could be a
logical error, or it may just indicate a situation that might eventually cause problems.
Inconsistent states will be the normal case, particularly during the initial development.
Programmers may find it helpful to be able to request that certain subsets of these
inconsistencies be enumerated.

Both SPASM and the methodology are general in that they are independent of the
applications being implemented. They are, however, couched in terms of the program
ming language (Napier88) even though most of the principles they encode are applicable
to any persistent or database programming environment.

Methodologies and constraints could be felt as a burden by some programmers since
they may already have adopted their own more or less good programming style.
Nevertheless, in the business of large-scale software application development, with
typically many people on the same project, it is crucial that people work in a disciplined
way. Models and methodologies should be perceived as supportive rather than restrictive
if they are based on well-founded principles and the common experiences of several
programmers. The availability of supporting tools may, however, influence the choice of
methodologies. Some approaches may be very convenient if there are corresponding

173

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

tools but infeasible if there are not. The next section describes EnvMake - an example of
such a tool.

8.1.4 EnvMake

EnvMake is a thesaurus-based tool that supports persistent programmers in the process of
creating and maintaining large application systems. The provision of persistence,
enabling applications and tools to be contained in the same store and implemented in the
same language, creates new possibilities for enhanced and more integrated CASE tools.
EnvMake is a demonstration of what such tools could be like.

There are many tools available to support application development using file-based
code, e.g. RCS, Make, awk, grep, etc. Analogous tools are required to operate on code in
persistent stores. Potentially these tools can be superior to those operating on byte-stream
files because a persistent store is coherent, transactional, structured and typed. Programs
are no longer large discrete units; instead they are smaller and typically extract and use
subprograms from the persistent store. Under this model libraries are potentially easy to
use, and large applications can be constructed incrementally. Code reuse could also be
simplified with suitable tools.

The information required by EnvMake is generated automatically. Most of the
needed information is obtained directly from the thesaurus, but EnvMake also holds some
internal data structures, e.g. for keeping track of time stamps required for determining
necessary recompilation and re-execution. The present features of EnvMake include
visualisation of structures and dependencies of an application, methodology support,
checking model adherence and incremental build management.

8.1.4.1 Structure and Dependency Visualisation

EnvMake provides programmers and other parts of EnvMake itself (the SPASM checking
and build management components, see below) with a table showing dependencies
between programs that insert a binding and those that update the binding - a so-called
“insert/update dependency table”. There are similar dependency tables for insert/use,
update/use, drop/stored, etc. Another form of visualisation is matrices showing which
programs perform which operations on which environments in the persistent store.

8.1.4.2 Supporting Steps of the Construction and Maintenance Methodology

EnvMake has been designed to support a strategy for implementing the persistent
location binding methodology. EnvMake automatically generates the programs that
insert or drop a binding. The user only needs to create or edit the program that updates
the location with a meaningful value. In addition, if the type of the binding changes, the
user must change the programs using the binding. These programs are indicated by
EnvMake.

174

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

EnvMake also assists in other aspects of construction and maintenance such as
organising the structure of environments in the persistent store and directories in the file
system. EnvMake ensures isomorphism and adherence to naming conventions by
actively taking part in the creation and maintenance of files and environments.

8.1.4.3 Checking the SPASM Constraints

The compiler of a programming language already performs many forms of consistency
checks within a program such as type checking, ensuring declaration and unique naming
of identifiers, etc. EnvMake is concerned with complementary checks such as those
between programs and those between programs and bindings in the persistent store.
Being specific, EnvMake checks the 24 SPASM constraints. ̂

Several of the constraints are based on a categorisation of programs according to
their semantics. On the criteria of how they operate on the persistent store and where
types are defined the programs are divided into the following categories:

• Type-program - a program whose contents are exclusively type definitions.

• Insert-program - a program that inserts at least one binding but neither updates a
persistent location nor drops any binding.

• Update-program - a program that updates at least one persistent location but neither
inserts nor drops any binding.

• Drop-program - a program that drops at least one binding but neither updates a
persistent location nor inserts any binding.

• Startup-program - a program that uses at least one binding but neither updates a
persistent location, inserts nor drops any binding.

This categorisation, which is done automatically by EnvMake, is also the basis for the
build management features described below.

8.1.4.4 Buiid Management

At present, many Napier88 programmers use Make to install software and to help rebuild
applications after change. When using Make, the programmers have to manually work
out the order of installing components into the persistent store. This may be a difficult
task for non-trivial applications. A component must be inserted into the store before it
can be used by another component. EnvMake determines the correct installation order by
topological sorting and initiates execution of the respective insert-programs.

Moreover, when using Make, the programmers also have to manually specify
compilation and execution dependencies such as the following:

 ̂ At the time of writing, some of the checks still have to be implemented.

175

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

• if a type-program is changed, all dependent programs should be compiled;

• all type-programs must be compiled before other (dependent) programs;

• type-programs must be compiled in correct order if there are dependencies among
them;

• the type database associated with a type-program should be updated;

• a binding must be inserted before it is referred to in another insert-program (e.g. an
environment must be inserted before it is populated).

EnvMake automatically infers the necessary dependencies from the thesaurus and
initiates (re)compilation and (re-)execution. Hence, there is no notion of an
(Env)Makefile which has to be created and maintained manually.

8.2 Future Work - Further Utilisation of Thesauri
The idea of a central repository as a vehicle for tool integration is currently being pursued
by several software vendors. IBM’s AD/Cycle [IBM 1991] is a collection of application
development tools and a platform providing services for the integration of these tools.
The Repository Manager [IBM 1990] is part of the AD/Cycle framework and provides an
interface to a repository containing information utilised by the other tools. DEC, ICL and
other companies have similar proposals.

This thesis has demonstrated that the fine-grained, name-based thesauri successfully
serve as information repositories for several tools. The provision of persistence enables
the thesauri, as well as the tools, to be contained and integrated in the persistent store like
any other values. It should be emphasised that because the thesauri are in the same store,
the thesaurus can be automatically constructed and updated with guarantees of
consistency with the data that they describe.

At present, the whole thesaurus is updated regularly or on user request. An
incremental update can be requested through an interactive interface. Updating the whole
thesaurus is inefficient since generally only a fraction of the associated PAS has changed.
This problem will be exacerbated as the PASs become larger. The current feature for
incremental update does not ensure up-to-date information as it relies on the programmer
remembering to analyse the changed programs. When improved hardware is available
(Section 8.3), the performance cost of updating the thesaurus during compilation may be
affordable. Integrating the thesaurus with the compiler should enable incremental update
and ensure up-to-date information.

176

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Version and
Configuration
Managers

Data Modelling
Tools

Diagram
Generators

Program
Generators

Enhanced
Measurements
Tools

Consistency
Checkers

Methodology
Supporters

Recursive
Queries

Window-based
Interface

Impact
Analysers

Cross
Referencers

Measurement
Tools

Schema
Managers

Thesaurus

Enhanced Interface

EnvMake

Build
Managers

TSIT

() Existing tools

() Future tools

Figure 8.2: More thesaurus-based tools

Several programming support tools, such as EnvMake, have already been built on top of
the thesaurus kernel, and various others are expected to follow (Figure 8.2). The work
described is thus a step towards a Persistent Software Engineering Environment.

Proposals for future work on schema management (schema evolution), configuration
management, some sort of automatic program generation and further measurements are
described in the following sections. Figure 8.2 also shows other examples of tools that
could benefit from the thesaurus information:

177

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

• Version management: A thesaurus reflects the state of an application in a certain
state. If an application has several versions of its software, then there should be one
thesaurus for each version.

• Data modelling: A thesaurus could also store information about names related to
data modelling [Cooper 1990b, Cooper and Qin 1992]. It could record dependencies
between concepts used at the data modelling level and the corresponding
implementation at the (low level) programming language level. Ultimately, the
thesaurus tool could collect and correlate information from all phases of the software
life cycle. It is still crucial, however, that all the information is automatically
generated (the tool could operate on design structures, for example) and that the
generation is decoupled from the use of other tools.

• Diagram generation: The structure of the application programs and persistent store
could be visualised in terms of Entity-Relationship diagrams or diagrams of other
kinds generated automatically from the thesaurus information.

8.2.1 Schema Evolution

The problem of schema evolution, now identified as a major research issue, arises in any
system capable of supporting PASs and is independent of the supported data model.
However, Napier88 has a sophisticated type system (as opposed to relational systems, for
example) making it a suitable language in which to experiment with strategies for
planning and implementing incremental schema change.

Types provide a way of controlling evolution, by partially verifying programs at each stage.
Since typechecking is mechanical, one can guarantee, for a well designed language, that certain
classes of errors cannot arise during execution, hence giving a minimal degree of confidence
after change. This elimination of entire classes of errors is also very helpful in identifying those
problems which cannot be detected during typechecking. [Cardelli 1989a]

Some typing schemes to accommodate schema change in Napier88 have already been
proposed [Atkinson 1993]. The challenge is to ensure that all consequential changes are
dealt with by propagation throughout the system and that no unnecessary changes occur
perturbing working practices and operational software. For example, if a new
information carrying capacity is added to the schema, programs that do not use it should
not change. However, at least one program must be created or changed to collect the
data, and all programs that display closely related data should be considered for
amendment to show the new data. This will in turn propagate to new screen designs and
changed working practices. The semantic difficulties concerning addition require human
intervention. It is thus impossible to completely automate the consequences of addition
which is the most common kind of change (followed by deletion) according to the HMS
measurements. Renaming does not occur so frequently and may be absorbed by

178

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

organising the software appropriately (though a model for automatic renaming should be
relatively simple). In contrast, a model for automatic deletion is conceivable.

TSIT is already an advisory system that returns a list of potential places where the
change should be propagated. A more comprehensive analysis including cost estimation
of various schema changes is proposed.

Napier88 has structural type equivalence which makes it hard to find all instances of
a certain type compared with a language with name equivalence. In languages with name
equivalence the type of a value is associated with a certain type declaration, whereas in
structural equivalence the type is represented as a graph independent of any type
declaration. By using the thesaurus information, one can easily find the definition of a
type identifier and all the declarations in which it is being used. However, in any
declaration the type can be applied anonymously without using a name for it (although
this may be awkward for the programmer if the type is complex).

In the recent Napier88-in-Napier88 compiler [Cutts 1993a] type graphs are stored in
environments in the persistent store. Hence, to overcome the problem of structural type
equivalence, one possibility would be to let the thesaurus store unique hyper-references^
(returned by the compiler's type checker) to the type graphs in the persistent store.
Extending the thesaurus to contain type information as well would enable various forms
of type comparison. Automatic detection of type change might then be possible.

Although changing a procedure type is not a schema change in Napier88 (as opposed
to object-oriented systems with procedures or methods defined within a class definition),
it is a form of change with potentially serious consequences. For example, all programs
calling the actual procedure must be edited. One question is to what extent it is possible
to automate or support correct change propagation to all dependent programs.

In addition to tools, also languages should be designed to support evolution.
Language design should be influenced by the need to recognise dependencies. As an
illustration, consider projection of variants. Programmers may want an alternative to the
project statement that terminates complete requiring all the branches to be processed. If
a branch has been added to the variant type, but the programs that use the type have not
been changed accordingly, the compiler should give an error message.

8.2.2 Persistent Software Configuration Management

Most software configuration management tools operate independently of data dictionary
tools [Holloway 1988b]. One of the problems is that a data dictionary holds fine
granularity information, whereas common software configuration management tools
operate at the coarse level of files. In a persistent programming environment, code
resides in the persistent store in the form of procedures. A candidate for grain size could

See hyper-programming, Section 8.2.6.

179

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

thus be the procedure. There is, however, no intrinsic difference between procedures and
values of other kinds in a persistent environment. An alternative level could therefore be
the level of the values that are dealt with in the persistent location binding methodology -
typically procedures and complex data structures (a table of geographical information, a
list of images, etc.). The challenge is to find a level that gives extensive support, but at
the same time is intellectually manageable and does not lead to excess overhead and poor
performance [Feldman 1991].

8.2.3 Extensibility of SPASM

The default SPASM constraints, which are checked by EnvMake, may not be adequate or
sufficient in all cases. Hence, an enhancement of EnvMake would be to facilitate
additional user-defined constraints. One approach to providing such an extensibility
would be to allow the user to specify constraints in some kind of formal language.
Automatic generation of corresponding Napier88 code for checking the constraints,
however, may prove difficult. Alternatively, EnvMake could include a toolkit that
supports users in creating the constraint checking code themselves. Extensions in this
direction might benefit from work by Stemple and Sheard [Stemple 1989, Sheard and
Stemple 1989, Sheard 1991]. Future work should also take into consideration
experiences with languages and tools supporting constraint specification such as CCEL
[Meyers et al. 1993] for C++ and AdaPIC [Wolf et al. 1989] and PLEIADES [Tarr and
Clarke 1993] developed in the context of Ada.

8.2.4 Automatic Generation of Use-Clauses

Declaring persistent bindings in the scope of a program (use-clauses) is the dominant
operation pertinent to environments. This is a tedious task that may impair programming
efficiency - particularly for large applications with complex type expressions and deeply
nested environments. Recent measurements indicate that use-clauses occupy around 13%
of all code (Section 5.7.9). Furthermore, from experience the use-clauses of a new
program are often created by copying use-clauses from other programs. This may result
in many unused bindings (Section 6.3.3) and thus confusing, verbose and inefficient
programs. A use-clause represents a view of an environment (a partial specification of
the environment's contents), but the precision in the view identification is lost if the view
contains unused bindings as well. Hence, programmers may benefit from tools that
support the process of specifying use-clauses.

By utilising the thesaurus information, EnvMake could be enhanced to become such
a tool. The design could be as follows.^ If a potential binding name is passed to Env-

 ̂ At present, the thesaurus does not provide sufficiently detailed type information for constructed types
but could do in the near future.

180

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Make, EnvMake notices whether the name appears in a standard library, local library or
elsewhere in the PAS. EnvMake starts searching for a binding with that name in the root
environment and then searches downwards, or a search path could be specified by the
programmer. If a binding with a matching name is found, EnvMake requests the pro
grammer for acceptance or rejection. If acceptance, EnvMake generates the environment
path, the name, constancy and type of the binding. If rejection, the search continues until
the correct one is found.^ If there is no matching occurrence (i.e., the binding to be used
is not yet in the persistent store) a warning is given, and the programmer has to complete
the use-clause.

There are basically two approaches to how and when EnvMake could generate use-
clauses. One approach could be interactive in that every time a programmer needs to
declare a binding into the scope of a program, he or she invokes EnvMake with a binding
name as parameter and requests a corresponding use-clause template.

Another, probably more convenient, approach would be that the programmer first
writes the program without the use-clauses and then requests EnvMake to scan the code
and, if possible, to generate the necessary use-clauses for all used identifiers that do not
have a corresponding declaration within the program.

As part of program evolution, identifiers denoting persistent bindings may be added
to and removed from a program. Hence, if the program has changed, EnvMake should
re-generate all the needed use-clauses. In order to simplify the implementation of such a
feature, the use-clauses may be constrained to occur all together in the beginning of the
program (which complies with the convention already adhered to by most Napier88
programmers).

In a hyper-programming context, the same extension of EnvMake could replace the
unsatisfied references by hyper-references directly to the library routines. Given the
technology being developed by Munro [Munro 1993], this self-same extension of
EnvMake could copy missing library functions from a definitive library store into the
intended persistent store. Both of these extensions automate a tedious programming
chore and make use of the store and program construction more efficient.

8.2.5 Referencing Environments

The current thesauri identify environments by storing their names. This approach may
lead to problems when environments are returned by procedures, when they are elements
of vectors, fields of structures, branches of variants, parameters of procedures, etc. or
when different identifiers denote the same environment (Section 7.5.2). An alternative

 ̂ Alternatively, EnvMake could present a list with all matching bindings from which the programmer
could select the right one or search exhaustively, and if there were one match, use it. Ambiguity
could also be resolved by the programmer specifying search order.

181

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

way of identifying environments, that may help solve these problems, is to store direct
references to them, i.e., values of type env (cf. hyper-references described in the next
section). All persistent environments of a PAS should be registered in the thesaurus with
direct references. ̂ Other occurrences of environments (in use-clauses, drop-clauses,
insert-declarations, assignments, etc.) could then be compared with the registered
environments by simple equality tests. However, several problems of this approach must
be addressed by future research, for example:

i) The environments must exist and be accessible at the time of the analysis. There
might be cases where programmers want to perform analyses before the
environments have been created. Moreover, since Napier88 at the time of writing
does not provide distribution, analysing other people’s software (Section 5.7) would
be difficult.

ii) The performance would be impaired in some cases and improved in others. For
example, if the name of an environment occurs in a use-clause, it is faster to store the
(textual) name during the source code analysis than to create a reference to the
corresponding environment in the persistent store.

iii) A reference from the thesaurus to the environment would prevent it from being
garbage collected even if there were no references from the application programs.

iv) How should the identity of an environment be conveyed to a thesaurus user, if not by
its name? For example. Table 5.1 shows that the environment name is indicated
after the context attribute of an identifier occurrence (e.g. “UseClause: 10”). In a
hyper-programming environment, the name “IQ” could be replaced with a “button”
that could be clicked to access the environment. Presenting extensive information
this way may be impractical; printing the information may be infeasible.

8.2.6 Hyper-Programming

The notion of persistent hyper-programming has been introduced in the context of
Napier88 [Kirby et a l 1992, Kirby 1993]. A hyper-program can directly reference the
values and variables in the persistent store over which the program will work. The
motivation behind hyper-programming is to provide an integrated programming
environment that will support the software engineering process in a better way than is the
case in conventional (including persistent) programming environments. It is stated that
the advantages of hyper-programming over conventional programming include the
following [Kirby 1992]:

 ̂ Actually, the current thesaurus definition (Figure 5.1) allows for registering environments with direct
references, but this option has not yet been used.

182

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

... it allows procedure values to be represented at a source code level; it supports a wider range
of binding mechanisms; it allows earlier and more sophisticated type checking; it allows more
succinct program representations; and it supports abstract views of source programs.

The flexibility and the interactive nature of the gesture-based hyper-programming
environment [Farkas et a l 1992] may result in a vast number of references or links and
thus a persistent store that is intellectually unmanageable. To alleviate this problem and
to facilitate other software engineering needs, a hyper-world model has been proposed as
a means to impose structure on hyper-programs [Kirby 1993]:

The hyper-world model offers the programmer a loose coupling mechanism to application
spaces or hyper-worlds. Each hyper-world contains the program components and data used by
an application, and a schema that describes their relationships. Each hyper-programming
system will also have to support additional facilities for ‘programming in the large’, that is,
building large applications from smaller components.

From one viewpoint hyper-programming is conceptually simpler than conventional
persistent programming since files and directories are no longer needed. (In hyper
programming the source of a program is also contained in the persistent store.) From
another viewpoint, however, it may be conceptually more complex to manage the new
notion of link, the more flexible binding mechanisms, the possible hyper-world construct,
etc. which add to all the existing constructs of conventional Napier88. In any case, to
exploit and benefit from the new technology, there is a need for supporting
methodologies and tools. The experience reported in this thesis of developing
methodologies and tools for conventional persistent programming will be useful in that
respect.

Most of the constraints of the SPASM model are directly applicable to hyper
programming: “all type definitions and their components should be used”, “bindings
inserted into the persistent store should be used in at least one program”,̂ etc. Other
constraints may be adapted to the new concepts. For example, “a type name should be
declared only once within a PAS” could be changed to “a type name should be declared
only once within a hyper-world”. (If a type definition with the same name and type
expression is defined in two hyper-worlds at the same level,^ then they should be
replaced by one type definition in the enclosing hyper-world at the next level up.)
Constraints that are particular to hyper-programming or to the hyper-world model should
be added (e.g. constraints on the sort of links allowable within a hyper-world and on those
between hyper-worlds).

Methodologies supporting incremental program construction may be simpler in
hyper-programming. For example, in contrast to the persistent location binding

 ̂ This should hold unless the bindings are deliberately created for external use such as library
components (Section 6.2.3).

 ̂ A hierarchical structure of hyper-worlds is assumed here.

183

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

methodology (Section 6.2.1), creating locations with dummy values (stubs) are no longer
necessary 1 - a useful value can be created initially in a convenient way.

An example of something that may be conceptually more complicated is the choice
between composition-time, compile-time and run-time binding and checking. This extra
flexibility may cause confusion for (at least novice) programmers if not accompanied by
methodologies or guidelines indicating when to choose the various alternatives.

Conscious naming and naming conventions are essential for the understanding of
software. This issue may be challenged in hyper-programming where significant values
are “named” by being located and hence do not have a textual name. In the gesture-based
programming environment, a button can represent a link and can be named as a sort of
comment insignificant for compilation and execution. As happens with most forms of
documentation that is not enforced, programmers may tend to ignore or “forget” to write
the link names. If such names exist, however, they could be entered into the thesaurus.
Tools could insist on names being used. In general, tools like TSIT and EnvMake in
conventional Napier88 should be tailored for and benefit from the new hyper
programming technology. In addition to the traditional user names, the thesaurus must be
extended to also contain non-textual “names” in the form of “hyper-identities”.
Analogously to the dependency information provided by current EnvMake, a similar tool
should analyse the reference structure in hyper-programming. Build management
involving automatic compilation and execution after change is another task.

The suitability of hyper-programming has yet to be demonstrated. Supporting
methodologies and tools are crucial for its success. Future research will investigate
whether the hyper-programming environment facilitates sophisticated methodologies and
tools in a better way than do conventional (persistent) programming environments.

8.2.7 Further Measurements

In order to turn computing science into a more exact science, more measurements should
be obtained provided they are relevant. Claimed problems and proposed solutions should
be quantified. Identifying what is interesting to measure and carrying out experiments
yielding reliable results, however, are a non-trivial task (cf. the difficulties reported in
Section 2.3.3). For example, many human properties that are crucial for change
management in large-scale application systems (people’s efficiency, skill in management,
ability to communicate, etc.) are difficult to measure. We are certain, however, that much
more than is the case at present could and should be measured in software engineering in
particular and in computing science in general. The thesis is a step in that direction, and
further work will also reflect this attitude.

 ̂ There is one exception, however; dummy locations are needed for mutually recursive procedures.

184

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

The HMS system was studied in detail and change statistics were collected by
regular measurements [Sjpberg 1993]. By collecting measurements from other systems
one might be able to identify properties related to change consequences that are indepen
dent of application area, data model and implemented system. Which properties remain
constant? For example, in the HMS project the times a field was used appeared to be
relatively constant; it varied between 5 and 6 times - independent of the application size
and the stage of the development. The number of fields per relation, however, increased
with the number of relations. Moreover, one could investigate if there is a relatively
fixed ratio between schema changes and consequences for the rest of the system.

As a supplement to anecdotal description of user experiences, attempts should be
made to quantify the potential benefits of new and enhanced methodologies and tools.
This may be achieved by measuring people's software before and after the methodologies
have been adhered to and the supporting tools applied.

To conclude, more information about the extent and kind of change would be useful
for further research on change management. In addition to collecting change statistics
ourselves, for example by recording differences between versions of the thesaurus for
various Napier88 applications, we may also start collecting measurements provided by
others [Marche 1993]. All results could eventually be compared in a bigger study on the
nature of change.

8.3 Finally
The work described in this thesis concerns maintenance of large-scale, data-intensive
application systems. A persistent programming environment has been enhanced with
models, methodologies and supporting tools. At first sight application development
appears more complicated in a persistent programming language context than in a
traditional context. The reason is that issues that earlier were dealt with by the operating
system or DBMS, and not made explicit, are now dealt with within the programming
language itself. Methodologies and tools are needed whatever the programming
environment.

Hopefully, further experimentation will suggest a new, higher-level programming
language that approaches the level of conceptual modelling and thus would be more
understandable to humans. Such a language should be designed with the purpose of
supporting change, and it would benefit from generating strongly typed, persistent code
such as Napier88 programs. This vision complies with classical programming language
development where a programming language at level n enhanced with methodologies and
tools at the same level n eventually may result in a programming language at level n A- 1
(Figure 8.3).

185

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Task Task

<----------------0
Methodology <----------------^

Tool Language

support
impose structure

Figure 8.3: Methodologies and tools as input to a new language

Holt [Holt 1993] has identified significant steady growth in the performance of certain
components (processes, stores, networks, etc.) supporting computing. For example, his
predictions for computers by the end of the decade are given in Table 8.1.

Platform Feature Improvement/Y ear 1993 2001

Desktop Performance +50% 50 X
Memory +55% 8 MB 256 MB
Disc +45% 80 MB 3 GB

Departmental Performance +60% 40 X
Memory +50% 128 MB 8 GB
Disc +50% 30 GB 750 GB

Corporate Performance +50% 30 X
Memory +50% 10 GB 250 GB
Disc +50% 500 GB 15 TB

Table 8.1: Platform improvements

The improvements, however, are not uniform; for example, the speed of transfer between
stores improves about one tenth of the increase in store size or processing speed. This
may encourage wider use of persistent languages.

A more important mismatch in the rate of improvement lies in our capacity to build
and maintain PASs. The improved and cheaper hardware will encourage the production
of even larger and more sophisticated PASs. However, our intellectual capacity is not
improving at a measurable rate.

The work of this thesis will therefore become ever more relevant. The improved
computational power will make use of the proposed tools more economic. The use of
tools of this nature for managing change will prove essential as a means of coping with
the new scale of systems with current intellectual capacities.

186

Appendix A:
HMS Execution Log

The following excerpt from the execution log shows the number of names of the various
name types that were generated on 4 July 1990 for the HMS, BED BUREAU application.
The whole generation took about 50 minutes. This was, however, during working hours
on a rather loaded machine. Normally, the generation starts at 02:00 and then takes less
than 30 minutes.

BED BUREAU W ed J u l 0 4 1 0 : 5 1 : 4 2 WETDST 1 9 9 0 :

G e n e r a t i n g fr o m h i p p o # # # # # # # # # # # # # # #
c d / u s r / h m s / t e s t / h i p p o
c p / u s e r s / d a g / h m s / s c r i p t s / h i p p o G e n / u s r / h m s / t e s t / h i p p o
h ip p o G e n *
F i n d i n g D EFIN ITIO N S o f a c t i o n s , a c t i o n s c r i p t s , a n d f u n c t i o n s , a n d
USES o f a c t i o n s c r i p t s , d a tu m s , q u e r i e s , a n d u p d a t e f u n c t i o n s
Name c o u n t fr o m t h i s s c a n :

8 2 1 8 2 1 2 6 5 1 6 / u s e r s / d a g / h m s / s c r i p t s / h i p p o . s q l
F i n d i n g USES o f a c t i o n s (h a n d l e r s) - t h e c a l l s , . .
Name c o u n t a f t e r a d d i n g t h e a c t i o n c a l l s :

9 2 9 9 2 9 3 0 2 3 8 / u s e r s / d a g / h m s / s c r i p t s / h i p p o . s q l
F i n d i n g USES o f f u n c t i o n s - t h e c a l l s . . .
Name c o u n t a f t e r a d d i n g t h e f u n c t i o n c a l l s :

9 6 2 9 6 2 3 1 2 5 6 / u s e r s / d a g / h m s / s c r i p t s / h i p p o . s q l

S e c o n d L e v e l , h ip p o # # # # # # # # # # # # # # # # #
F i n d i n g DEFIN ITIO N S o f a c t i o n s , a c t i o n s c r i p t s , a n d f u n c t i o n s , a n d
USES o f a c t i o n s c r i p t s , d a tu m s , q u e r i e s , a n d u p d a t e f u n c t i o n s . . .
Name c o u n t a f t e r a d d i n g t h e f i r s t p a r t o f t h e s e c o n d l e v e l :

9 6 2 9 6 2 3 1 2 5 6 / u s e r s / d a g / h m s / s c r i p t s / h i p p o . s q l
F i n d i n g USES o f a c t i o n s (h a n d l e r s) - t h e c a l l s . . .
Nam e c o u n t a f t e r a d d in g t h e a c t i o n c a l l s , s e c o n d l e v e l :

9 6 2 9 6 2 3 1 2 5 6 / u s e r s / d a g / h m s / s c r i p t s / h i p p o . s q l
F i n d i n g USES o f f u n c t i o n s - t h e c a l l s . . .
T o t a l n u m b er o f r e c o r d s g e n e r a t e d fr o m t h e h i p p o f i l e s :

9 6 2 9 6 2 3 1 2 5 6 / u s e r s / d a g / h m s / s c r i p t s / h i p p o . s q l
rm h ip p o G e n *

G e n e r a t i n g fr o m s c r e e n s # # # # # # # # # # # # # #
T im e : W ed J u l 0 4 1 1 : 0 4 : 0 8 WETDST 1 9 9 0
c d / u s r / h m s / t e s t / s c r e e n s
c p / u s e r s / d a g / h m s / s c r i p t s / s c r e e n s G e n / u s r / h m s / t e s t / s c r e e n s
s c r e e n s G e n *
A l l t h e m a c r o DEFIN ITIO N S a n d USES (c a l l s) :

7 4 7 4 2 3 3 1 / u s e r s / d a g / h m s / s c r i p t s / s c r e e n s . s q l
F i n d i n g t h e D EFIN ITIO N S o f c l a s s e s a n d USES o f a c t i o n s , c l a s s e s , d a tu m s , a n d q u e r i e s
T h e t o t a l n u m b er o f r e c o r d s g e n e r a t e d fr o m t h e D i s p l a y L a n g u a g e p r o g r a m s :

1 0 9 0 1 0 9 0 3 5 3 6 0 / u s e r s / d a g / h m s / s c r i p t s / s c r e e n s . s q l
rm s c r e e n s G e n *
G e t t i n g t h e DEFIN ITIO N S o f t h e r e l a t i o n s a n d f i e l d s f r o m t h e s c h e m a

S Q L * P lu s : V e r s i o n 3 . 0 . 6 . 1 . 1 - P r o d u c t i o n o n Wed J u l 4 1 1 : 2 7 : 3 7 1 9 9 0
C o p y r i g h t (c) O r a c l e C o r p o r a t i o n 1 9 7 9 , 1 9 8 8 . A l l r i g h t s r e s e r v e d .
C o n n e c t e d t o : ORACLE RDBMS V 6 . 0 . 2 6 . 9 . 1 , t r a n s a c t i o n p r o c e s s i n g o p t i o n - P r o d u c t i o n
SQL> SQL> D i s c o n n e c t e d fr o m ORACLE RDBMS V 6 . 0 . 2 6 . 9 . 1 , t r a n s a c t i o n p r o c e s s i n g o p t i o n
- P r o d u c t i o n
T h e t o t a l n u m b er o f r e c o r d s a n d f i e l d s :

3 3 3 3 3 3 1 1 0 3 4 s c h e m a . s q l

G e n e r a t i n g fr o m t h e Q u e r y D i c t i o n a r y (d d f i l e) . . # # # # # # #
T im e : W ed J u l 0 4 1 1 : 2 8 : 1 3 WETDST 1 9 9 0

187

APPENDIX A: HMS EXECUTION LOG

T h e t o t a l n u m b er o f r e c o r d s g e n e r a t e d fr o m t h e Q u e r y D i c t i o n a r y :
2 3 0 7 2 5 0 9 8 1 0 8 3 Q D T h e s a u r u s . s q l

T h e t o t a l n u m b er o f r e c o r d s t h a t w i l l b e i n t h e Q u e r y _ D i c t i o n a r y r e l a t i o n :
1 0 2 6 1 0 2 6 4 5 0 2 0 Q u e r y D i c t i o n a r y . s q l

A s o r t e d f i l e o f a l l t h e g e n e r a t e d d a t a f o r t h e T h e s a u r u s r e l a t i o n : I n s e r t . s q l
T h e t o t a l n u m b er o f r e c o r d s g e n e r a t e d :

4 6 9 2 4 8 9 4 1 5 8 7 3 3 I n s e r t . s q l
A p p e n d t o a s e p a r a t e s e q u e n t i a l f i l e : # # # # # # # # # # # # #
C o m p a r is o n s , c r e a t i o n s o f d e l t a s a n d u p d a t e o f t h e r e l a t i o n s . # #
T im e : Wed J u l 0 4 1 1 : 2 9 : 5 6 WETDST 1 9 9 0
U n lo a d t h e THESAURUS r e l a t i o n t o t h e THESAURUS. d a t f i l e
C o n n e c t e d
* * * * * * * * * * E x e c u t i n g
s e l e c t * f r o m THESAURUS
* * * * * * * * * * E x e c u t e d

T im e : Wed J u l 0 4 1 1 : 3 6 : 0 0 WETDST 1 9 9 0
T h e n u m b er o f r e c o r d s i n t h e a c t u a l T h e s a u r u s r e l a t i o n :

4 5 5 1 4 7 5 1 1 7 5 6 8 9 THESAURUS. d a t
T h e n u m b er o f r e c o r d s t o b e i n s e r t e d :

1 5 6 1 5 8 5 2 6 7 IN S E R T .d a t
T h e n u m b er o f r e c o r d s t o b e d e l e t e d :

17 2 2 1 2 3 8 3 D E L .s q l
E x e c u t e t h e d e l e t i o n s . . .

S Q L * P lu s : V e r s i o n 3 . 0 . 6 . 1 . 1 - P r o d u c t i o n o n Wed J u l 4 1 1 : 3 7 : 2 7 1 9 9 0
C o p y r ig h t (c) O r a c l e C o r p o r a t i o n 1 9 7 9 , 1 9 8 8 . A l l r i g h t s r e s e r v e d .
C o n n e c t e d t o : ORACLE RDBMS V 6 . 0 . 2 6 . 9 . 1 , t r a n s a c t i o n p r o c e s s i n g o p t i o n - P r o d u c t i o n
SQL> SQL> D i s c o n n e c t e d fr o m ORACLE RDBMS V 6 . 0 . 2 6 . 9 . 1 , t r a n s a c t i o n p r o c e s s i n g o p t i o n
- P r o d u c t i o n
L o a d in g t h e d a t a i n t o t h e T h e s a u r u s r e l a t i o n . . .
S Q L * L o a d e r : V e r s i o n 1 . 0 . 1 8 - P r o d u c t i o n o n Wed J u l 4 1 1 : 3 8 : 1 7 1 9 9 0
C o p y r ig h t (c) O r a c l e C o r p o r a t i o n 1 9 7 9 , 1 9 8 8 . A l l r i g h t s r e s e r v e d .
C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 4 4
C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 1 3 2
C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 1 5 6
T h e n u m b er o f r e c o r d s t o b e i n s e r t e d i n t o t h e V e r s i o n s _ T h e s a u r u s r e l a t i o n :

1 7 3 1 7 5 7 9 2 4 VERSIO NS_TH ESAU RUS.dat
L o a d in g t h e d a t a i n t o t h e V e r s i o n s _ T h e s a u r u s r e l a t i o n . . .
S Q L * L o a d er: V e r s i o n 1 . 0 . 1 8 - P r o d u c t i o n o n Wed J u l 4 1 1 : 3 8 : 3 0 1 9 9 0
C o p y r ig h t (c) O r a c l e C o r p o r a t i o n 1 9 7 9 , 1 9 8 8 . A l l r i g h t s r e s e r v e d .

C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 33
C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 99
C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 1 6 5
C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 1 7 3
T im e : Wed J u l 0 4 1 1 : 3 8 : 5 6 WETDST 1 9 9 0
U n lo a d t h e QUERY_DICTIONARY r e l a t i o n t o t h e Q UERY_DICTIONARY.dat f i l e
C o n n e c t e d
* * * * * * * * * * E x e c u t i n g
s e l e c t * f r o m QUERY_DICTIONARY
* * * * * * * * * * E x e c u t e d

T im e : Wed J u l 0 4 1 1 : 3 9 : 2 4 WETDST 1 9 9 0
T h e n u m b er o f r e c o r d s i n t h e a c t u a l Q u e r y _ D i c t i o n a r y r e l a t i o n :

1 0 0 9 1 0 0 9 4 4 3 1 5 D IC T IO N A R Y .dat
T h e n u m b er o f r e c o r d s t o b e i n s e r t e d i n t o Q u e r y _ D i c t i o n a r y r e l a t i o n :

2 5 2 5 1 1 8 5 IN SE R T Q D .dat
T h e n u m b er o f r e c o r d s t o b e d e l e t e d fr o m t h e Q u e r y _ D i c t i o n a r y r e l a t i o n :

8 8 8 1 1 7 6 D E L Q D .sq l
E x e c u t e t h e d e l e t i o n s . . .

S Q L * P lu s : V e r s i o n 3 . 0 . 6 . 1 . 1 - P r o d u c t i o n o n Wed J u l 4 1 1 : 3 9 : 3 2 1 9 9 0
C o p y r ig h t (c) O r a c l e C o r p o r a t i o n 1 9 7 9 , 1 9 8 8 . A l l r i g h t s r e s e r v e d .
C o n n e c t e d t o : ORACLE RDBMS V 6 . 0 . 2 6 . 9 . 1 , t r a n s a c t i o n p r o c e s s i n g o p t i o n - P r o d u c t i o n
SQL> SQL> D i s c o n n e c t e d fr o m ORACLE RDBMS V 6 . 0 . 2 6 . 9 . 1 , t r a n s a c t i o n p r o c e s s i n g o p t i o n
- P r o d u c t i o n
L o a d in g t h e d a t a i n t o t h e Q u e r y _ D i c t i o n a r y r e l a t i o n . . .
S Q L * L o a d e r : V e r s i o n 1 . 0 . 1 8 - P r o d u c t i o n o n Wed J u l 4 1 1 : 3 9 : 5 9 1 9 9 0
C o p y r i g h t (c) O r a c l e C o r p o r a t i o n 1 9 7 9 , 1 9 8 8 . A l l r i g h t s r e s e r v e d .
C om m it p o i n t r e a c h e d - l o g i c a l r e c o r d c o u n t 2 5

F i n i s h e d : Wed J u l 0 4 1 1 : 4 0 : 0 3 WETDST 1 9 9 0

188

Appendix B: TSIT Measurements

Kind
B ench
-m ark

B ib l io
graphy

C o m p /
T SIT

E co-
S y s

Im p l-
A D T M ap

P arts-
D B W in T ota l

Structure 514 1983 4373 1140 532 1561 644 8361 19108
(15.0) (18.3) (29.9) (27.1) (20.1) (16.5) (37.5) (22.3) (22.6)

ProcMono 679 2358 3475 902 96 1012 171 7606 16299
(19.8) (21.8) (23.8) (21.4) (3.6) (10.7) (10.0) (20.3) (19.3)

int 469 1674 779 444 278 1004 123 7460 12231
(13.7) (15.5) (5.3) (10.5) (10.5) (10.6) (7.2) (19.9) (14.5)

env 411 816 1055 608 147 616 83 6637 10373
(12.0) (7.5) (7.2) (14.4) (5.5) (6.5) (4.8) (17.7) (12.3)

Variant 191 669 1259 157 351 540 98 2764 6029
(5.6) (6.2) (8.6) (3.7) (13.2) (5.7) (5.7) (7.4) (7.1)

UnboundQuantifier 672 269 858 4 458 2759 78 150 5248
(19.6) (2.5) (5.9) (0.1) (17.3) (29.1) (4.6) (0.4) (6.2)

string 120 1305 1575 158 0 166 30 512 3866
(3.5) (12.0) (10.8) (3.8) (0) (1.8) (1.8) (1.4) (4.6)

ProcPoly 127 179 208 4 207 964 45 56 1790
(3.7) (1.7) (1.4) (0.1) (7.8) (10.2) (2.6) (0.2) (2.1)

image 0 415 13 102 0 0 0 1104 1634
(0) (3.8) (0.1) (2.4) (0) (0) (0) (2.9) (1.9)

Vector 45 428 98 226 67 362 14 377 1617
(1.3) (4.0) (0.7) (5.4) (2.5) (3.8) (0.8) (1) (1.9)

bool 8 237 283 92 26 176 4 478 1304
(0.2) (2.2) (1.9) (2.2) (1.0) (1.9) (0.2) (1.3) (1.5)

any or ? 0 96 60 32 17 13 6 960 1184
(0) (0.9) (0.4) (0.8) (0.6) (0.1) (0.4) (2.6) (1.4)

TypeParameter 102 46 139 28 247 102 176 28 868
(3.0) (0.4) (1.0) (9.3) (1.0) (1.1) (10.3) (0.7) (1.0)

RecursiveType 61 127 101 87 54 35 164 138 767
(1.8) (1.2) (0.7) (2.1) (2.0) (0.4) (9.6) (0.4) (0.9)

null 14 91 203 61 58 32 21 251 731
(0.4) (0.8) (1.4) (1.5) (2.2) (0.3) (1.2) (0.7) (0.9)

ParameterisedType 18 12 57 6 114 128 59 23 417
(0.5) (0.1) (0.4) (0.1) (4.3) (1.4) (3.4) (0.1) (0.5)

ADT 0 15 0 126 0 0 0 234 375
(0) (0.1) (0) (3.0) (0) (0) (0) (0.6) (0.4)

real 0 0 45 4 0 0 0 245 294
(0) (0) (0.3) (0.1) (0) (0) (0) (0.7) (0.4)

file 0 92 31 6 0 9 0 110 248
(0) (0.9) (0.2) (0.1) (0) (0.1) (0) (0.3) (0.3)

Unb-Witness 0 26 0 26 0 0 0 32 84
(0) (0.2) (0) (0.6) (0) (0) (0) (0.1) (0.1)

pixel 0 0 9 0 0 0 0 19 28
(0) (0) (0.1) (0) (0) (0) (0) (0.1) (0.0)

pic 0 0 5 0 0 0 0 1 6
(0) (0) (0.0) (0) (0) (0) (0) (0) (0.0)

Total 3431
(100.0)

10838
(100.0)

14626
(100.0)

4213
(100.0)

2652
(100.0)

9479
(100.0)

1716
(100.0)

37546
(100.0)

84501
(100.0)

Table B.l: Frequencies o f Kind by Application^

The table is sorted by the frequencies in the Total column. The cells contain number of occurrences
and the (column) percentage is given in parentheses.

189

APPENDIX B: TSIT MEASUREMENTS

B ench B ib l io C om p / E co- Im p l- P arts-
C o n tex t -m ark graphy T SIT S y s A D T M ap DB W IN T ota l
ArgUnaryOpV alue 1153 5089 5995 1638 683 3187 450 18218 36413

(33.6) (47.0) (41.0) (38.9) (25.8) (33.6) (26.2) (48.5) (43.1)
TypeNameUse 916 817 2425 383 707 2977 425 2474 11124

(26.7) (7.5) (16.6) (9.1) (26.7) (31.4) (24.8) (6.6) (13.2)
UseClause 380 999 1614 463 94 644 65 3359 7618

(11.1) (9.2) (11.0) (11.0) (3.5) (6.8) (3.8) (8.9) (9.0)
ValueDecl 154 1154 916 336 78 470 83 3535 6726

(4.5) (10.6) (6.3) (8.0) (2.9) (5.0) (4.8) (9.4) (8.0)
StructFieldDeref 79 527 915 252 244 450 141 2730 5338

(2.3) (4.9) (6.3) (6.0) (9.2) (4.7) (8.2) (7.3) (6.3)
ProcParamDecl 100 284 478 70 87 513 33 1346 2911

(2.9) (2.6) (3.3) (1.7) (3.3) (5.4) (1.9) (3.6) (3.4
Assignment 49 658 441 78 43 218 5 1011 2503

(1.4) (6.1) (3.0) (1.9) (1.6) (2.3) (0.3) (2.7) (3.01)
ArgUnaryOpType 25 189 224 424 30 111 35 1036 2074

(0.7) (1.7) (1.5) (10.1) (1.1) (1.2) (2.0) (2.8) (2.5)
StructFieldDecl 67 440 259 196 175 41 174 341 1693

(2.0) (4.1) (1.8) (4.7) (6.6) (0.4) (10.1) (0.9) (2.0)
Bindinglnserted 70 31 235 31 42 188 15 972 1584

(2.0) (0.3) (1.6) (0.7) (1.6) (2.0) (0.9) (2.6) (1.9)
VariantProjectDyn 8 136 174 16 126 37 36 423 956

(0.2) (1.3) (1.2) (0.4) (4.8) (0.4) (2.1) (1.1) (1.1
ProcQuantifierUse 206 110 260 2 49 237 18 22 904

(6.0) (1.0) (1.8) (0.0) (1.8) (2.5) (1.0) (0.1) (1.1)
ContainsCheck 30 14 31 6 758 839

(0.3) (0.1) (0.7) (0.1) (2.0) (1.0)
TypeDecl 111 103 144 43 60 108 57 58 684

(3.2) (1.0) (1.0) (1.0) (2.3) (1.1) (3.3) (0.2) (0.9)
Variantlnject 8 62 137 91 16 65 2 251 632

(0.2) (0.6) (0.9) (2.2) (0.6) (0.7) (0.1) (0.7) (0.7)
BindingDropped 30 11 31 17 7 375 471

(0.3) (0.1) (0.7) (0.6) (0.1) (1.0) (0.6)
VariantTagRead 4 46 80 5 19 34 10 268 466

(0.1) (0.4) (0.5) (0.1) (0.7) (0.4) (0.6) (0.7) (0.6)
PrimFunctionCall 26 34 83 20 12 26 6 151 358

(0.8) (0.3) (0.6) (0.5) (0.5) (0.3) (0.3) (0.4) (0.4)
VariantTagDecl 23 51 70 21 62 17 48 33 325

(0.7) (0.5) (0.5) (0.5) (2.3) (0.2) (2.8) (0.1) (0.4)
PameterlnTypeDecl 32 11 42 7 84 32 59 7 274

(0.9) (0.1) (0.3) (0.2) (3.2) (0.3) (3.4) (0.0) (0.3)
RecursiveTypeDecl 16 19 24 7 24 8 52 15 165

(0.5) (0.2) (0.2) (0.2) (0.9) (0.1) (3.0) (0.0) (0.2)
V ariantProjectStatic 1 40 1 77 37 156

(0.0) (0.3) (0.0) (0.8) (0.1) (0.2)
ADTFieldDeref 45 55 100

(1.1) (0.1) (0.1
VariantAlias 2 27 2 26 29 86

(0.0) (0.2) (0.0) (0.3) (0.1) (0.1)
Recursi veV alueDecl 4 12 18 1 2 25 62

(0.1) (0.1) (0.1) (0.0) (0.1) (0.1) (0.1)
ADTalias 17 15 32

(0.4) (0.0) (0.0)
Witness 3 2 2 7

(0.0) (0.0) (0.0) (0.0)
Total 3431 10838 14626 4213 2652 9479 1716 37546 84501

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)

Table B.2: Frequencies o f Context by Application

190

APPENDIX B: TSIT MEASUREMENTS

#U sed Freq % C um Cum% #U sed Freq % C um Cum%

1 38 22.9 38 22.9 24 1 0.6 148 89.2
2 26 15.6 64 38.5 26 1 0.6 149 89.8
3 19 11.4 83 50.0 27 1 0.6 150 90.4
4 11 6.6 94 56.6 34 1 0.6 151 91.0
5 9 5.4 103 62.0 35 1 0.6 152 91.6
6 14 8.4 117 70.5 37 1 0.6 153 92.2
7 1 0.6 118 71.1 38 1 0.6 154 92.8
8 5 3.0 123 74.1 40 1 0.6 155 93.4
9 6 3.6 129 77.7 47 1 0.6 156 94.0

11 3 1.8 132 79.5 51 1.2 158 95.2
12 1 0.6 133 80.1 52 1 0.6 159 95.8
13 2 1.2 135 81.3 64 1 0.6 160 96.4
14 2 1.2 137 82.5 73 1 0.6 161 97.0
16 1 0.6 138 83.1 93 1 0.6 162 97.6
17 3 1.8 141 84.9 108 1 0.6 163 98.2
19 1 0.6 142 85.5 130 1 0.6 164 98.8
20 1 0.6 143 86.1 166 1 0.6 165 99.4
22 1 0.6 144 86.7 261 1 0.6 166 100.0
23 3 1.8 147 88.6

Table B.3: Use o f type definitions in value instantiations

The #Used column indicates the number of times a type definition is used. The Freq
column contains the number of different type definitions that are used the number of times
indicated by the #Used column. For example, the second row shows that there are 26 type
definitions (15.6% of all type definitions) that are used exactly twice.

191

APPENDIX B: TSIT MEASUREMENTS

C o n tex t A p p lica tio n Program s M in M ax M ean Std S u m

Bindinglnserted Benchmark 11 1 3 1.5 0.7 16
Bibliography 26 1 1 1.0 26
Comp/TSIT 11 1 4 1.7 0.9 19
EcoSys 20 1 1 1.0 20
ImplADT 8 1 3 1.5 0.9 12
Map 11 1 4 1.5 0.9 16
PartsDB 2 1 5 3.0 2.8 6
WIN 148 1 13 2.7 2.3 406
Total 237 1 13 2.2 1.8 521

BindingDropped Bibliography 25 1 1 1.0 25
Comp/TSIT 9 1 2 1.1 0.3 10
EcoSys 20 1 1 1.0 20
ImplADT 3 1 1 1.0 3
Map 3 1 3 2.0 1.0 6
WIN 147 1 3 2.5 1.2 371

Total 207 1 3 2.1 0.9 435
UseClause Benchmark 26 3 8 6.2 1.4 162

Bibliography 33 1 19 10.2 4.3 336
Comp/TSIT 76 2 12 7.2 2.4 544
EcoSys 20 4 20 11.5 6.7 230
ImplADT 11 2 5 3.4 1.0 37
Map 24 1 11 7.3 3.0 174
PartsDB 4 3 9 6.0 2.4 24
WIN 151 4 23 9.7 4.7 1468
Total 345 1 23 8.6 3.9 2975

ContainsCheck Bibliography 25 1 1 1.0 25
Comp/TSIT 10 1 2 1.1 0.3 11
EcoSys 20 1 1 1.0 20
Map 3 1 2 1.7 0.6 5
WIN 148 1 3 2.5 1.2 375
Total 206 1 3 2.1 0.9 436

Table BA: Environments accessed per program^

The Programs column contains the number of programs involving identifiers occurring in
the respective contexts. Sum is the number of unique (program name, environment name)
pairs.

 ̂ Applications without identifiers in the respective contexts are omitted from the table.

192

APPENDIX B: TSIT MEASUREMENTS

C o n tex t A p p lica tio n E n vs M in M ax M ean Std S u m

Bindinglnserted Benchmark 5 1 6 3.2 1.9 16
Bibliography 1 26 26 26.0 26
Comp/TSIT 9 1 5 2.1 1.7 19
EcoSys 4 2 11 5.0 1.0 20
ImplADT 6 1 3 2.0 0.9 12
Map 11 1 3 1.5 0.8 16
PartsDB 5 1 2 1.2 0.4 6
WIN 40 1 143 10.2 12.0 406

Total 81 1 143 6.4 8.5 521

BindingDropped Bibliography 1 25 25 25.0 25
Comp/TSIT 4 1 4 2.5 1.7 10
EcoSys 4 2 11 5.0 1.0 20
ImplADT 1 3 3 3.0 3
Map 3 2 2 2.0 6
WIN 16 1 142 23.2 16.7 371

Total 29 1 142 15.0 12.5 435

UseClause Benchmark 14 1 26 11.6 6.5 162
Bibhography 26 1 33 12.9 10.2 336
Comp/TSIT 30 1 75 18.1 15.2 544
EcoSys 32 1 20 7.2 3.5 230
ImplADT 9 1 6 4.1 1.9 37
Map 18 1 24 9.7 6.2 174
PartsDB 10 1 4 2.4 1.1 24
WIN 49 1 151 30.0 31.2 1468

Total 188 1 151 15.8 17.7 2975

ContainsCheck Bibhography 1 25 25 25.0 25
Comp/TSIT 5 1 4 2.2 1.6 11
EcoSys 4 11 5.0 1.0 20
Map 4 1 2 1.3 0.5 5
WIN 18 1 142 20.8 16.2 375

Total 32 1 142 13.6 12.1 436

Table B.5: Programs per environment

193

Bibliography
[Acheampong 1993] Acheampong, L, Persistent Programming Language Support for

Information (Bibliographic) Retrieval., MSc thesis in preparation. Computing
Science Department, University of Glasgow, 1993.

[Adams et al. 1989] Adams, R., Weinert, A. and Tichy, W., “Software Change Dynamics
or Half of all Ada Compilations are Redundant”, European Software Engineering
Conference, 1989.

[Agresti and Evanco 1992] Agresti, W.W. and Evanco, W.M., “Projecting Software
Defects from Analyzing Ada Designs”, IEEE Transactions on Software Engineering,
Vol. SE-18, No. 11, pp. 988-997, November 1992.

[Ahlsen et a l 1983] Ahlsén, M., Bjômerstedt, A., Britts, S., Hultén, C. and Soderlund, L.,
“Making Type Changes Transparent”, Proceedings o f IEEE Workshop on Languages
for Automation, Chicago, pp. 110-117, IEEE Computer Society Press, November
1983.

[Albano 1983] Albano, A., “Type Hierarchies and Semantic Data Models”, ACM
SIGPLANNotices, Vol. 18, No. 6, pp. 178-186, 1983.

[Albano et a l 1985] Albano, A., Cardelli, L. and Orsini, R., “Galileo: A Strongly Typed,
Interactive Conceptual Language”, ACM Transactions on Database Systems, Vol.
10, No. 2, pp. 23(1-260, June 1985.

[Allen et a l 1982] Allen, F.W., Loomis, M.E.S. and Mannino, M.V., “The Integrated
Dictionary/Directory System”, ACM Computing Surveys, Vol. 14, No. 2, pp. 245-
286, June 1982.

[ANSI 1988] ANSI X3.138-1988 Information Resource Dictionary System (IRDS),
October 1988.

[Archer and Devlin 1986] Archer, J.E. and Devlin, M.T., “Rational's Experience using
Ada for Very Large Systems”, Proceedings First International Conference on Ada
Applications for the NASA Space Station, 1986.

[Ariav 1991] Ariav, G., “Temporally Oriented Data Definitions: Managing Schema
Evolution in Temporally Oriented Databases”, Data and Knowledge Engineering,
Vol. 6, No. 6, pp. 451-467, October 1991.

[Atkinson 1978] Atkinson, M.P., “Programming Languages and Databases”, Proceedings
Fourth International Conference on Very Large Data Bases (Berlin, West Germany,
I3th-I5th September 1978), S.B. Yao (editor), pp. 408-419, IEEE and ACM, 1978.

[Atkinson 1989] Atkinson, M.P., “Questioning Persistent Types”, Proceedings o f Second
International Workshop on Database Programming Languages (Salishan Lodge,
Oregon, June 1989), Hull, R., Morrison, M. and Stemple, D. (editors), pp. 2-24,
Morgan Kaufmann Publishers, San Mateo, CA, 1989.

[Atkinson 1990] Atkinson, M.P., “The Principles and Problems of Database Research”,
Proceedings o f the 1990 Glasgow Database Workshop, Cooper, R., Stewart, A. and
Trinder, P. (editors), pp. 1-12, Technical Report CSC 90/R16, Computing Science
Department, University of Glasgow, March 1990.

[Atkinson 1992] Atkinson, M.P., “Persistent Foundations for Scalable Multi-Paradigmal
Systems”, Invited paper. Distributed Object Management (Edmonton, Alberta,

194

BIBLIOGRAPHY

Canada, 18th-21st August 1992), Ozsu, M.T., Dayal, U., and Valduriez, P. (editors),
Morgan Kaufmann, 1992.

[Atkinson 1993] Atkinson, M.P., Lecture Notes in Napier88 Programming, Computing
Science Department, University of Glasgow, 1993.

[Atkinson and Buneman 1987] Atkinson, M.P. and Buneman, O.P., “Types and
Persistence in Database Programming Languages”, ACM Computing Surveys, Vol.
19, No. 2, pp. 105-190, 1987.

[Atkinson and Morrison 1985] Atkinson, M.P. and Morrison, R., “Procedures as
Persistent Data Objects”, ACM Transactions on Programming Languages and
Systems, Vol. 7, No. 4, pp. 539-559, 1985.

[Atkinson and Morrison 1986] Atkinson, M.P. and Morrison, R., “Integrated Persistent
Programming Systems”, Proceedings o f the Nineteenth Annual Hawaii International
Conference on System Sciences, pp. 842-854, January 1986.

[Atkinson etal. 1982] Atkinson, M.P., Chisholm, K.J. and Cockshott, W.P., “PS-algol:
An Algol with a Persistent Heap”, ACM SIGPLAN Notices, Vol. 17, No. 7, pp. 24-
31, July 1982.

[Atkinson etal. 1983a] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. and
Morrison, R., “An Approach to Persistent Programming”, The Computer Journal,
Vol. 26, No. 4, pp. 360-365, November 1983.

[Atkinson etal. 1983b] Atkinson, M.P., Chisholm, K.J. and Cockshott, W.P., “CMS - A
Chunk Management System”, Software - Practice and Experience, Vol. 13, No. 3,
pp. 273-285, March 1983.

[Atkinson et al. 1983c] Atkinson, M.P., Chisholm, K.J., Cockshott, W.P. and Marshall,
R.M., “Algorithms for a Persistent Heap”, Software - Practice and Experience, Vol.
13, No. 3, pp. 259-272, March 1983.

[Atkinson et al. 1988] Atkinson, M.P., Buneman, O.P. and Morrison, R., “Binding and
Type Checking in Database Programming Languages”, The Computer Journal, Vol.
31, No. 2, pp. 99-109, 1988.

[Atkinson etal. 1990] Atkinson, M.P., Richard, P. and Trinder, P.W., “Bulk Types for
Large Scale Programming”, In Next Generation Information System Technology:
Proceedings o f the First International East/West Database Workshop (Kiev, USSR,
9th-12th October 1990), Schmidt, J.W. and Stogny, A.A. (editors), pp. 228-250,
Lecture Notes in Computer Science 504, Springer-Verlag, 1991.

[Atkinson et al. 1991a] Atkinson, M.P., Lecluse, C., Philbrow, P. and Richard, P.,
“Design Issues in a Map Language”, Proceedings o f the Third International
Workshop on Database Programming Language (Nafplion, Greece, 27th-30th
August 1991), Kanellakis, P. and Schmidt, J.W. (editors), pp. 20-32, Morgan
Kaufmann Publishers, San Mateo, CA, 1991.

[Atkinson et al. 1991b] Atkinson, M.P., Lecluse, C., Philbrow, P.C., and Richard, P.,
“Maps as Bulk Types for Data Base Programming Languages”, Proceedings o f the
Annual Esprit Conference, pp. 731-757, 1991.

[Atkinson et al. 1993] Atkinson, M.P., Bailey, P.J., Jackson, N. and Philbrow, P.C.,
Napier88 Libraries, Technical report in preparation, ESPRIT Basic Research Action,
Project Number 6309 - FIDE, 1993.

[Bachman 1988] Bachman, C., “A CASE for Reverse Engineering”, Datamation, Vol.
34, No. 13, pp. 49-56, July 1988.

[Bailey 1989] Bailey, P.J., “Performance Evaluation in a Persistent Object System”, In
Persistent Object Stores (Proceedings o f the Third International Workshop, lOth-

195

BIBLIOGRAPHY

13th January 1989, Newcastle, New South Wales, Australia), Rosenberg, J. and
Koch, D. (editors), pp. 289-299, Springer-Verlag and British Computer Society,
1989.

[Banerjee et al. 1987] Banerjee, J., Kim, W., Kim, H.-J. and Korth, H.F., “Semantics and
Implementation of Schema Evolution in Object-Oriented Databases”, Proceedings of
the ACM SIGMOD 1987 Conference on the Management o f Data (San Francisco,
CA, 27th-29thMay 1987), pp. 311-322, 1987.

[Barclay etal. 1992] Barclay, P.J., Fraser, C.M. and Kennedy, I B, “Using a Persistent
System to Construct a Customised Interface to a Ecological Database”, International
Workshop on Interfaces to Databases (Glasgow, Ist-3rd, July 1992), Cooper, R.L.
(editor), pp. 225-243, Workshops in Computer Science, Springer-Verlag, June 1993.

[Barnard et al. 1982] Barnard, P., Hammond, N.V., MacLean, A. and Morton, J.,
“Learning and Remembering Interactive Commands”, Proceedings o f Conference on
Human Factors in Computer Systems, ACM Washington, CD, 1982.

[Batini et al. 1986] Batini, C., Lenzerini, M and Navathe, S.B., “A Comparative Analysis
of Methodologies for Database Schema Integration”, ACM Computing Surveys, Vol.
18, No. 4, pp. 323-364, April 1986.

[Baxter 1992] Baxter, I.D., “Design Maintenance Systems”, Communications o f the
ACM, Vol. 35, No. 4, pp. 73-89, April 1992.

[Berman 1991] Berman, S., P-Pascal: A Data-Oriented Persistent Programming
Language, Department of Computer Science, University of Cape Town, August
1991.

[Bimie 1991] Bimie, A., Sun Engineering Database Benchmark, 2nd Annual FIDE
Review Meeting, Computing Science Department, University of Glasgow,
September, 1991.

[Bj0mer 1991] Bjpmer, D., “Formal Methods in Software Development - Requirements
for a CASE”, In Software Development Environments and CASE Technology,
European Symposium (Germany, June 1991), Endres, A, and Weber, H. (editors),
pp. 178-210, Lecture Notes in Computer Science 509, Springer-Verlag, 1991.

[Boehm 1988] Boehm, B.W., “A Spiral Model of Software Development and
Enhancement”, IEEE Computer, Vol. 21, No. 5, May 1988.

[Bott 1989] Bott, F. (editor), ECLIPSE: An Integrated Project Support Environment, lEE
Computing Series 14, Peter Peregrinus, 1989.

[Bourne 1979] Bourne, T.J., “The Data Dictionary System in Analysis and Design”, ICL
Technical Journal, Vol. 1, No. 3, pp. 292-298, November 1979.

[Bratsberg 1993] Bratsberg, S.E., Evolution and Integration of Classes in Object-Oriented
Databases, PhD thesis. The Norwegian Institute of Technology, University of
Trondheim, Norway, June 1993.

[Brodie 1992] Brodie, M., “The Promise of Distributed Computing and the Challenges of
Legacy Systems”, Invited paper, Tenth British National Conference on Databases
(Aberdeen, Scotland, 6th-8th July), Gray, P.M.D. and Lucas, R.J. (editors), pp. 1-28,
Lecture Notes in Computer Science 618, Springer-Verlag, 1992.

[Brooks 1975] Brooks, F.P., The Mythical Man-Month, Addison Wesley, 1975.

[Brown 1989] Brown, A.L., Persistent Object Stores, PhD thesis. Department of
Mathematical and Computational Sciences, University of St Andrews, 1989.

[Brunhoff 1991] Brunhoff, T., Makedepend Manual Page, Tektronix, Inc. and MIT
Project Athena, University of New Mexico, April 1991.

196

BIBLIOGRAPHY

[Buxton 1980] Buxton, J.N., Requirements for Ada Programming Support Environments
- “Stoneman”, Technical Report, US Department of Defence, Washington DC, 1980.

[Cardelli 1989a] Cardelli, L., Typeful Programming, Digital Systems Research Center
Report 45, Digital Equipment Corporation, Systems Research Centre, Palo Alto, CA,
USA, May 1989.

[Cardelli 1989b] Cardelli, L., The Quest Language and System (Tracking Draft), Digital
Equipment Corporation, Systems Research Center, Palo Alto, CA, USA, August
1989.

[Cardelli and Wegner 1985] Cardelli, L. and Wegner, P., “On Understanding Types, Data
Abstraction, and Polymorphism”, ACM Computing Surveys, Vol. 17, No. 4, pp. 471-
522, December 1985.

[Cartmell and Alderson 1989] Cartmell, J. and Alderson, A., “The Eclipse Two-Tier
Database”, In ECLIPSE: An Integrated Project Support Environment, Bott, E.
(editor), pp. 39-67, lEE Computing Series 14, 1989.

[Casais 1991] Casais, E., Managing Evolution in Object Oriented Environments: An
Algorithmic Approach, PhD thesis. Faculté des sciences économiques et sociales.
University of Geneva, 1991.

[Chapin 1988] Chapin, N., “Software Maintenance Life Cycle”, Proceedings Conference
on Software Maintenance (Phoenix, AR, USA, 24th-27th October 1988), pp. 6-13,
IEEE Computer Society Press, 1988.

[Chen 1976] Chen, P.P., “The Entity-Relationship Model - Toward a Unified View of
Data”, ACM Transactions on Database Systems, Vol. 1, No. 1, pp. 9-36, 1976.

[Chikofsky and Cross 1990] Chikofsky and Cross, “Reverse Engineering and Design
Recovery: A Taxonomy”, IEEE Software, January 1990.

[Clifton 1990] Clifton, N., Display Language Documentation, October 1990.

[Colbrook and Smythe 1989] Colbrook, A. and Smythe, C., “The Retrospective
Introduction of Abstraction in Software”, Proceedings o f Conference on Software
Maintenance (Miami, EL, USA, I6th-19th October 1989), pp. 166-173, IEEE
Computer Society Press, Los Alamitos, CA, 1989.

[Collofello and Buck 1987] Collofello, J.S. and Buck, J.J., “Software Quality Assurance
for Maintenance”, IEEE Software, pp. 46-51, September 1987.

[Connor 1991] Connor, R.C.H, Types and Polymorphism in Persistent Programming
Systems, PhD thesis. Department of Mathematical and Computational Sciences,
University of St Andrews, 1991.

[Connor et al. 1990] Connor, R.C.H., Brown, A.L., Cutts, Q.I., Dearie, A., Morrison, R.
and Rosenberg, J., “Type Equivalence Checking in Persistent Object Systems”,
Proceedings o f the Fourth International Workshop on Persistent Object Systems,
Their Design, Implementation and Use (Martha's Vineyard, USA, September 1990),
Dearie, A., Shaw, G.M. and Zdonik, S.B. (editors), pp. 154-167, Morgan Kaufmann
Publishers, San Mateo, CA, 1990.

[Connor et al. 1991] Connor, R.C.H., McNally, D. and Morrison, R., “Subtyping and
Assignment in Database Programming Languages”, Proceedings o f the Third
International Workshop on Database Programming Languages (Nafplion, Greece,
27th-30th August 1991), Kanellakis, P. and Schmidt, J.W. (editors), pp. 363-382,
Morgan Kaufmann Publishers, San Mateo, CA, 1991.

[Constantine and Yourdon 1979] Constantine, L.L. and Yourdon, E., Structured Design,
Englewood Cliffs, N.J. Prentice-Hall, 1979.

197

BIBLIOGRAPHY

[Cooper 1990a] Cooper, R.L., On the Utilisation of Persistent Programming
Environments, PhD thesis. Department of Computing Science, University of
Glasgow, 1990.

[Cooper 1990b] R.L. Cooper, “Configurable Data Modelling Systems”, Proceedings of
the Ninth International Conference on the Entity Relationship Approach {Lausanne,
Switzerland, 8th-I0th October 1990), pp. 35-52, 1990.

[Cooper and Qin 1992] Cooper, R.L. and Qin, Z., “A Graphical Data Modelling Program
with Constraint Specification and Management”, Tenth British National Conference
on Databases (Aberdeen, Scotland, 6th-8th July), Gray, P.M.D. and Lucas, R.J.
(editors), pp. 192-208, Lecture Notes in Computer Science 618, Springer-Verlag,
1992.

[Copeland and Maier 1984] Copeland, G. and Maier, D., “Making Smalltalk a Database
System”, Proceedings o f the ACM SIGMOD 1984 Conference on the Management o f
Data (Boston, Mass., I8th-2Ist June), ACM SIGMOD Record, Vol. 14, No. 2, pp.
316-325, June 1984.

[Cutts 1993a] Cutts, Q.I., Delivering the Benefits of Persistence to System Construction
and Execution, PhD thesis. Department of Mathematical and Computational
Sciences, University of St Andrews, 1993.

[Cutts 1993b] Cutts, Q.I., Private Communication, 1993.

[Cutts et al. 1990] Cutts, Q.I., Dearie, A. and Kirby, G.N.C., WIN Programmers' Manual,
Research Report CS/90/17, University of St Andrews, 1990.

[Dahl etal. 1972] Dahl, O.J., Dijkstra, E.W. and Hoare, C A R., Structured
Programming, A.P.I.C. Studies in Data Processing No. 8, Academic Press, New
York, 1972.

[Dart 1991] Dart, S., “Concepts in Configuration Management Systems”, Proceedings
Third International Workshop on Software Configuration Management (Trondheim,
Norway, I2th-14th June I99I), pp. 1-18, 1991.

[Dart etal. 1987] Dart, S.A., Ellison, R.J., Feiler, P.H. and Habermann, A.N., “Software
Development Environments”, IEEE Computer, Vol. 20, No. 11, pp. 18-28,
November 1987.

[Date 1990] Date, C.J., An Introduction to Database Systems, Volume 1, Fifth edition,
Addison Wesley, 1990.

[Davie and Morrison 1981] Davie, A.J.T. and Morrison, R., Recursive Descent
Compiling, Ellis Horwood Publishers, 1981.

[DDSWP 1977] Data Dictionary Systems Working Party, Report British Computer
Society, March 1977.

[Dearie 1987] Dearie, A., “Constructing Compilers in a Persistent Environment”,
Proceedings o f the Second International Workshop on Persistent Object Systems:
Their Design, Implementation and Use (Appin, Scotland, 25th-28th August 1987),
Research Report PPRR-44-87, Universities of Glasgow and St Andrews, 1987.

[Dearie 1988] Dearie, A., On the Construction of Persistent Programming Environments,
PhD thesis. Department of Mathematical and Computation^ Sciences, University of
St Andrews, 1988.

[Dearie et al. 1989] Dearie, A., Connor, R., Brown, A.L. and Morrison, R., “Napier88 -
A Database Programming Language?”, Proceedings o f Second International
Workshop on Database Programming Languages (Salishan Lodge, Oregon, June
1989), Hull, R., Morrison, M. and Stemple, D. (editors), pp. 179-195, 1989.

198

BIBLIOGRAPHY

[Dearie et a l 1992] Dearie, A., Cutts, Q. and Connor, R., An Application Architecture
using Type-Safe Incremental Linking, Technical Report FIDE/92/56, ESPRIT Basic
Research Action, Project Number 6309 - FIDE, 1992.

[DEC 1989] VAX Language-Sensitive Editor and VAX Source Code Analyzer User
Manual, AA-PAJLA-TK, Digital Equipment Corporation, 1989.

[DEC 1993] DEC FUSE Handbook, AA-PF4TA-TE, Digital Equipment Corporation,
1993.

[DeMarco 1979] DeMarco, T., Structured Analysis and System Specification, Englewood
Cliffs, N.J. Prentice-Hall, 1979.

[DeRemer and Kron 1976] DeRemer, F. and Kron, H.H., “Programming-in-the-Large
versus Programming-in-the-Small”, IEEE Transactions on Software Engineering,
Vol. SE-2, No. 2, pp. 80-86, June 1976.

[Dolk and Kirsch 1987] Dolk, D R. and Kirsch, R.A., “A Relational Information
Resource Dictionary System”, Communications o f the ACM, Vol. 30, No. 1, pp. 48-
61, January 1987.

[Dolotta et a l 1978] Dolotta, T.A., Haight, R.C., Mashev, J R., “The Programmer’s
Workbench”, Bell Systems Technical Journal, Vol. 57, No. 6, pp. 2177-2200, 1978.

[ECMA 1990] European Computer Manufacturers' Association (ECMA), Technical
Report ECMA-149, December 1990.

[EIA 1991] CDIF - Framework for Modeling and Extensibility, EIA-PN2387, July 1991.

[Elshoff 1976] Elshoff, J.L., “An Analysis of some Commercial PL/1 Programs”, IEEE
Transactions on Software Engineering, Vol. SE-2, No. 2, pp. 113-120, June 1976.

[England and Selwyn 1990] England, A. and Selwyn, B., Hippo Language Guide,
Perihelion Software Ltd., November 1990.

[Farkas et a l 1992] Farkas, A., Dearie, A., Kirby, G.N.C., Cutts, Q.I., Morrison, R. and
Connor, R.C.H., Persistent Program Construction through Browsing and User
Gesture with some Typing, Technical Report FIDE/92/52, ESPRIT Basic Research
Action, Project Number 6309 - FIDE, 1992.

[Fegaras and Stemple 1991] Fegaras, L. and Stemple, D., “Using Type Transformation in
Database System Implementation”, Proceedings of the Third International Workshop
on Database Programming Language (Nafplion, Greece, 27th-30th August 1991),
Kanellakis, P. and Schmidt, J.W. (editors), pp. 337-356, Morgan Kaufmann
Publishers, San Mateo, CA, 1991.

[Fegaras et a l 1989] Fegaras, L., Sheard, T. and Stemple, D., “The ADABTPL Type
System”, Proceedings o f Second International Workshop on Database Programming
languages (Salishan Lodge, Oregon, June 1989), Hull, R., Morrison, M. and
Stemple, D. (editors), pp. 207-218, 1989.

[Feldman 1979] Feldman, S.I., “Make - A Program for Maintaining Computer
Programs”, Software - Practice and Experience, Vol. 9, No. 4, pp. 255-265, April
1979.

[Feldman 1991] Feldman, S.I., “Software Configuration Management: Past Uses and
Future Challenge”, Proceedings o f Third European Software Engineering
Conference (Milan, Italy, October 1991), Lamsweerde A. van and Fugetta A.
(editors), pp. 1-6, Lecture Notes in Computer Science 550, Springer-Verlag, 1991.

[Ferraby 1991] Ferraby, L., Change Control During Computer Systems Development,
Prentice-Hall (UK), 1991.

199

BIBLIOGRAPHY

[Fosdick and Osterweil 1976] Fosdick, L.D. and Osterweil, L.J., “Data Flow Analysis in
Software Reliability”, ACM Computing Surveys, Vol. 8, No. 3, pp. 305-330, 1976.

[Gl0ersen 1993] Gl0ersen, R., Private Communication, Statistics Norway, Oslo, Norway,
April 1993.

[Goldberg 1984] Goldberg, A., Smalltalk-80: The Interactive Programming Environment,
Addison Wesley, 1984.

[Gopal et al. 1992] Gopal, R., Prasad, R. and Gopal, R., “Supporting System
Maintenance with Automatic Decomposition Schemes”, Proceedings o f the Twenty-
Fifth Hawaii International Conference on System Sciences, pp. 507-516, January
1992.

[Greenwood et al. 1992] Greenwood, R.M., Guy, M R. and Robinson, D.J.K., “The Use
of a Persistent Language in the Implementation of a Process Support System”, ICL
Technical Journal, Vol. 8, No. 1, pp. 108-130, May 1992.

[Griswold and Notkin 1992] Griswold, W.G. and Notkin, D., “Computer-Aided vs.
Manual Program Restructuring”, ACM Software Engineering Notes, Vol. 17, No. 1,
pp. 3 3 ^1 , January 1992.

[Habermann and Notkin 1986] Habermann, A.V. and Notkin, D., “Gandalf: Software
Development Environments”, IEEE Transactions on Software Engineering, Vol. SE-
12, No. 2, pp. 1117-1127, December 1986.

[Holloway 1988a] Holloway, S., The Future o f Data Dictionaries, DATABASE 88 (19th-
20th May 1988, Open University, Milton Keynes), Gower Technical, The British
Computer Society Database Specialist Group, 1988.

[Holloway 1988b] Holloway, S., “Reporting from Data Dictionaries”, In The Future o f
Data Dictionaries, DATABASE 88 (19th-20th May 1988, Open University, Milton
Keynes), Holloway, S. (editor), pp. 69-92, Gower Technical, The British Computer
Society Database Specialist Group, 1988.

[Holt 1993] Holt, N., High Technology Trends, Seminar, The 1993 IT Summit, 22th-
24th June, Glasgow, 1993.

[Humphrey 1989] Managing the Software Process, SEI Series, Addison-Wesley, 1989.

[IBM 1978] IBM Internal Report on the Contents of a Sample of Programs Surveyed,
IBM Research Centre San Jose, California, 1978.

[IBM 1980] DB/DC Data Dictionary General Information Manual, GH20-9104-3, IBM,
1980.

[IBM 1990] Repository Manager/MVS, General Information, GC26-4608-1, IBM, 1990.

[IBM 1991] IBM SAA AD/Cycle Concepts, GC26-4531-01, IBM, 1991.

[IBM 1992] The Information Management Library: Problem, Change, and Configuration
Management, User's Guide, SC34-4328-00, IBM, March 1992.

[Imber 1991] Imber, M., “The CASE Data Interchange Format (CDIF) Standards”, In
Software Engineering Environments: Vol. 3, Long, F. (editor), pp. 457-474, Ellis
Horwood Limited, Chichester, England, 1991.

[ISO 1990] ISO/IEC 10027: Information Resource Dictionary System (IRDS)
Framework, 1990.

[Jackson 1975] Jackson, M.A., Principles o f Program Design, A.P.I.C. Studies in Data
Processing No. 12, Academic Press, London, 1975.

200

BIBLIOGRAPHY

[Jackson 1983] Jackson, M., System Development, Englewood Cliffs, N.J. Prentice-Hall,
1983.

[Jacobs and Hull 1991] Jacobs, D. and Hull, R., “Database Programming with Delayed
Updates”, Proceedings o f the Third International Workshop on Database
Programming Language (Nafplion, Greece, 27th-30th August 1991), Kanellakis, P.
and Schmidt, J.W. (editors), pp. 416-428, Morgan Kaufmann Publishers, San Mateo,
CA, 1991.

[Jandrasics 1981] Jandrasics, G. “SOFTDOC - A System for Automated Software
Analysis and Documentation”, Proceedings ACM Workshop on Software Quality
Assurance, April 1981.

[Kay 1992] Kay, M.H., “The Architecture of an Open Dictionary”, ICL Technical
Journal, Vol. 8, No. 1, pp. 85-107, May 1992.

[Keables et al. 1988] Keables, J., Roberson, K. and von Mayrhauser, A., “Data Flow
Analysis and its Application to Software Maintenance”, Proceedings Conference on
Software Maintenance (Phoenix, AR, USA, 24th-27th October 1988), pp. 335-347,
IEEE Computer Society Press, 1988.

[Kim and Chou 1988] Kim, W. and Chou, H.T., “Versions of Schema for Object-
Oriented Databases”, Proceedings o f Fourteenth Conference on Very Large
Databases, Los Angeles, 1988.

[King 1967] King, P.J.H., “Some Comments on Systematics”, The Computer Journal,
Vol. 10, pp. 116-118, 1967.

[King 1969] King, P.J.H., “System Analysis Documentation: Computer-Aided Data
Dictionary Definition”, The Computer Journal, Vol. 12, No. 1, pp. 6-9, 1969.

[Kirby 1993] Kirby, G.N.C., Reflection and Hyper-Programming in Persistent
Programming Systems, PhD thesis, Department of Mathematical and Computational
Sciences, University of St Andrews, 1993.

[Kirby and Dearie 1990] Kirby, G.N.C. and Dearie, A., An Adaptive Graphical Browser
for Napier88, Research Report CS/90/16, Department of Mathematical and
Computational Sciences, University of St Andrews, 1990.

[Kirby et al. 1992] Kirby, G., Connor, R., Cutts, Q., Dearie, A., Farkas, A. and Morrison,
R., “Persistent Hyper-Programs”, Proceedings Fifth International Workshop on
Persistent Object Systems. Design, Implementation and Use (San Miniato, Italy, Is t-
4th September 1992), Albano, A. and Morrison, R. (editors), pp. 86-106, Springer-
Verlag in collaboration with the British Computer Society, 1992.

[Knuth 1972] Knuth, D.E., “An Empirical Study of FORTRAN Programs”, Software -
Practice and Experience, Vol. 1, No. 2, pp. 105-133, April-June 1971.

[Knuth 1973] Knuth, D.E., Fundamental Algorithms, Vol. 1, In series The Art o f
Computer Programming, Addison-Wesley, January 1973.

[Krueger 1992] Krueger, C.W., “Software Reuse”, ACM Computing Surveys, Vol. 24,
No. 2, pp. 131-183, June 1992.

[Leblang et al. 1985] Leblang, D.B., Chase, R.P. and McLean, G.D., “The DOMAIN
Software Engineering Environment for Large Scale Software Development Efforts”,
First Conference on Computer Workstations, pp. 266-280, IEEE, November 1985.

[Lehman 1976] Lehman, M.M., “Human Thought and Action as an Ingredient of System
Behaviour”, In Encyclopœdia o f Ignorance, Duncan, R. and Weston-Smith, M.
(editors), pp. 347-354, Pergamon Press, Oxford, 1976. (Reprinted in [Lehman and
Belady 1985], pp. 237-246.)

201

BIBLIOGRAPHY

[Lehman 1978] Lehman, M.M., “Laws of Program Evolution - Rules and Tools for
Programming Management”, Proceedings oflnfotech State o f the Art Conference:
Why Software Projects Fail, Pergamon Press, pp. 11.1-11.25, April 1978. (Reprinted
in [Lehman and Belady 1985], pp. 247-274.)

[Lehman 1980] Lehman, M.M., “Programs, Life Cycles and Laws of Software
Evolution”, Proceedings o f the IEEE Special Issue on Software Engineering, Vol.
68, No. 9, pp. 1060-1076, September 1980.

[Lehman 1981] Lehman, M.M., “Programming Productivity - A Life Cycle Concept”,
Proceedings CompCon 81, IEEE Catalogue No. 81CH-1702-0, pp. 232-241,
September 1981.

[Lehman and Belady 1985] Lehman, M.M. and Belady, L., Program Evolution,
Processes o f Software Change, A.P.I.C. Studies in Data Processing No. 27,
Academic Press, London, 1985.

[Lemer and Habermann 1990] Lemer, B.S. and Habermann, A.N., “Beyond Schema
Evolution to Database Reorganisation”, Proceedings o f the Conference on Object-
Oriented Programming Systems, Languages and Applications, pp. 67-76, October
1990.

[Levin et al. 1992] Levin, R., McJones, P.R., Ayers, R.M., Brown, M.R., Chiu, S.Y.,
Ellis, J.R. and Hanna, C.B., Precise Configuration and Construction of Large
Software Systems using Vesta (Working Draft), Digital Equipment Corporation,
Systems Research Center, Palo Alto, CA, USA, August 1992.

[Lieberherr and Holland 1989] Lieberherr. K.J. and Holland, I.M., “Tools for Preventive
Software Maintenance”, Proceedings o f Conference on Software Maintenance
(Miami, FL, USA, 16th-19th October 1989), pp. 2-13, IEEE Computer Society
Press, Los Alamitos, CA, 1989.

[Lientz and Swanson 1981] Lientz, B.P. and Swanson, E.B., “Problems in Application
Software Maintenance”, Communications o f the ACM, Vol. 24, No. 11, pp. 764-769,
November 1981.

[Lientz et al. 1978] Lientz, B.P., Swanson, E.B. and Tompkins, G.E., “Characteristics of
Application Software Maintenance”, Communications o f the ACM, Vol. 21, No. 6,
pp. 466-471, June 1978.

[Loboz 1989] Loboz, Z., “Monitoring Execution of PS-algol Programs”, In Persistent
Object Stores (Proceedings o f the Third International Workshop, 10th-13th January
1989, Newcastle, New South Wales, Australia), Rosenberg, J. and Koch, D. (editors),
Springer-Verlag and British Computer Society, pp. 279-288, 1989.

[Lopes 1993] Lopes, J.C., ShTh - Show Thesaurus User Interface, Technical report in
preparation. Computing Science Department, University of Glasgow, 1993.

[Maes 1987] Maes, P., “Concepts and Experiments in Computational Reflection”,
Proceedings o f the Conference on Object-Oriented Programming Systems,
Languages and Applications (Orlando, FL, 4th-8th October 1987), 1987.

[Marche 1993] Marche, S., “Measuring the Stability of Data Models”, European Journal
on Information Systems, Vol. 2, No. 1, pp. 37-47, 1993.

[Marti 1983] Marti, R.W., “Integrating Database and Program Descriptions using an ER-
Data Dictionary”, In Database Techniques for Professional Workstations, ^hnder,
C.A. (editor), pp. 119-140, ETH, Zurich, September 1983.

[Matthes et al. 1992] Matthes, P., Rudloff, A., Schmidt, J.W. and Subieta, K., The
Database Programming Language DBPL User and System Manual, Teclmical Report
FIDE/92/47, ESPRIT Basic Research Action, Project Number 3070 - FIDE, 1992.

202

BIBLIOGRAPHY

[McKenzie and Snodgrass 1990] McKenzie, E. and Snodgrass, R., “Schema Evolution
and the Relation^ Algebra”, Information Systems, Vol. 15, No. 2, pp. 207-232,
1990.

[Meekel and Viala 1988] Meekel, J. and Viala, M., “LOGISCOPE: A Tool for
Maintenance”, Proceedings o f Conference on Software Maintenance (Phoenix, AR,
USA, 24th-27th October 1988), pp. 328-334, IEEE Computer Society Press, Los
Alamitos, CA, 1988.

[Members 1990] Members of the FIDE types club with Atkinson, M.P. and Richard, P. as
editors. Types for Large Scale Systems, Club Report of Meeting in Pisa, 5th-6th
July, 1990, Technical Report FIDE/90/1, ESPRIT Basic Research Action, Project
Number 3070 - FIDE, October 1990.

[Meyers et al. 1993] Meyers, S., Duby, C.K. and Reiss, S.P., “Constraining the Structure
and Style of Object-Oriented Programs”, Proceedings o f the First Workshop on
Principles and Practice o f Constraint Programming (PPCP93), April 1993. Also
available as Brown University Computer Science Department Technical Report CS-
93-12, April 1993.

[Milner 1984] Milner, R., “A Proposal for Standard ML”, Proceedings o f the 1984 ACM
Symposium on Lisp and Functional Programming (Austin, Texas, August 1984), pp.
184-197, ACM, New York, 1984.

[Mitchell and Plotkin 1985] Mitchell, J.C. and Plotkin, G.D., “Abstract Types Have
Existential Types”, Proceedings o f the Twelfth ACM Symposium on Principles o f
Programming Languages, pp. 37-51, New Orleans, January 1985.

[Monk and Sommerville 1993] Monk, S. and Sommerville, I., “Schema Evolution in
OODBs Using Class Versioning”, SIGMOD Record, Vol. 22, No. 3, pp. 16-22,
September 1993.

[Morrison et al. 1989a] Morrison, R., Brown, F., Connor, R. and Dearie, A., The
Napier88 Reference Manual, Research Report PPRR-77-89, Universities of Glasgow
and St Andrews, 1989.

[Morrison et al. 1989b] Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearie,
A. and Atkinson, M.P., “The Napier Type System”, In Persistent Object Stores
(Proceedings o f the Third International Workshop, I0th-I3th January 1989,
Newcastle, New South Wales, Australia), Rosenberg, J. and Koch, D. (editors),
Springer-Verlag and British Computer Society, pp. 3-18, 1989.

[Morrison et al. 1990] Morrison, R., Brown, A.L., Dearie, A. and Atkinson, M.P., “On
the Classification of Binding Mechanisms”, Information Processing Letters, Vol. 34,
No. 1, pp. 51-55, February 1990.

[Munro 1993] Munro, D., On the Integration of Persistence, Concurrency and
Distribution, PhD thesis in preparation. Department of Mathematici and
Computational Sciences, University of St Andrews, 1993.

[Nakagawa and Futatsugi 1991] Nakagawa, A.T. and Futatsugi, K., “Propagating
Changes in Algebraic Specifications”, Software Engineering Journal, Vol. 6, No. 6,
pp. 476-486, November 1991.

[Nelson 1992] Nelson, R.J, Naming and Reference, In series The Problems o f Philosophy,
Routledge, London 1992.

[O'Brien et al. 1987] O'Brien, P.D., Halbert, D C. and Kilian, M.F., “The Trellis
Programming Environment”, Proceedings o f the Conference on Object-Oriented
Programming Systems, Languages and Applications (Orlando, FL, 4th-8th October
1987), pp. 91-102, 1987.

203

BIBLIOGRAPHY

[Ohori e ta l 1989] Ohori, A., Buneman, O.P. andBreazu-Tannen, V., “Database
Programming in Machiavelli - a Polymorphic Language with Static Type Inference”,
Proceedings o f the ACM SIGMOD 1989 Conference on the Management o f Data
(Portland, Oregon, 31st May - 2nd June), SIGMOD Record, Vol. 18, No. 2, pp.
424-433, June 1989.

[Olle and Black 1988] Olle, W. and Black, M., “Data Levels in IRDS”, In The Future of
Data Dictionaries, DATABASE 88 (19th-20th May 1988, Open University, Milton
Keynes), Holloway, S. (editor), pp. 3 1 ^8 , Gower Technical, The British Computer
Society Database Specialist Group, 1988.

[Osborn 1989] Osborn, S.L., “The Role of Polymorphism in Schema Evolution in an
Object-Oriented Database”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 1, No. 3, pp. 310-317, September 1989.

[Osterweil 1987] Osterweil, L.J., “Software Processes are Software Too”, Proceedings of
the Ninth International Conference on Software Engineering, March 1987.

[Osterweil and Fosdick 1976] Osterweil, L.J. and Fosdick, L.D., “DAVE - A Validation,
Error Detection and Documentation System for FORTRAN Programs”, Software -
Practice and Experience, Vol. 6, No. 4, pp. 473-486, 1976.

[Oxford 1961] The Oxford English Dictionary, Oxford University Press, London, 1961.

[Panel 1989] Panel on Schema Evolution and Version Management, Object-Oriented
Database Workshop in OOPSLA'88, SIGMOD Record, Vol. 18, No. 3, pp. 90-95,
September 1989.

[Parikh and Zvegintsov 1983] Parikh and Zvegintsov, “The World of Software
Maintenance”, Tutorial on Software Maintenance, Parikh and Zvegintsov (editors).
Computer Society Press, Los Alamitos, CA, 1983.

[Pamas 1972] Pamas, D.L., “On the Criteria to be Used in Decomposing Systems into
Modules”, Communications o f the ACM, Vol. 15, No. 12, pp. 1053-1058, December
1972.

[Parsys 1993] FTK - A Fortran Toolkit, Parsys, 1993. (See article in Engineering
Computing Newsletter SERC, Rutherford Appleton Laboratory, Vol. 44, pp. 2-3,
May 1993.)

[Penney and Stein 1987] Penney, D.J. and J. Stein, “Class Modification in the GemStone
Object-Oriented DBMS”, Proceedings o f the Conference on Object-Oriented
Programming Systems, Languages and Applications, pp. 111-117, October 1987.

[Pfleeger 1987] Pfleeger, S.L., Software Engineering - The Production o f Quality
Software, Macmillan, 1987.

[Pressman 1992] Pressman, R.S., Software Engineering - A Practitioner's Approach,
Third edition, McGraw-Hill, 1992.

[PS-algol 1987] PS-algol Reference Manual, Fourth edition. Research Report PPRR-12-
87, Universities of Glasgow and St Andrews, 1987.

[PSL 1992] Polyhedral Application Generation Environment, Version 1.0 (Beta 4)
Release, Perihelion Software Ltd., December 1992.

[Putnam 1982] Putnam, L.H., “Software Cost Estimating and Life Cycle Control”, IEEE
Catalog, 1982.

[Qin 1993] Qin, Z., Second Year Report, Computing Science Department, University of
Glasgow, 1992.

204

BIBLIOGRAPHY

[Quong and Linton 1991] R.W. Quong and M.A. Linton, “Linking Programs
Incrementally”, ACM Transactions on Programming Languages and Systems^N o\.
13, No. 1, pp. 1-20, January 1991.

[Reps and Teitelbaum 1989] Reps T. W. and Teitelbaum T., The Synthesizer Generator:
A System for Constructing Language-Based Editors, In series Texts and Monographs
in Computer Science, Springer-Verlag, 1989.

[Ritchie et a l 1978] Ritchie, D.M., Johnson, S.C., Lesk, M.E. and Kemighan, B.W., “The
C Programming Language”, Bell Systems Technical Journal, Vol. 57, No. 6, pp.
1991-2020, 1978.

[Rochkind 1975] Rochkind, M.J., “The Source Code Control System”, IEEE
Transactions on Software Engineering, Vol. SE-1, No. 4, pp. 364-370, December
1975.

[Roddick 1992] Roddick, J.F., “SQL/SE - A Query Language Extension for Databases
Supporting Schema Evolution”, SIGMOD Record, Vol. 21, No. 3, pp. 10-16,
September 1992.

[Royce 1970] Royce, W.W., “Managing the Development of Large Software Systems”,
Proceedings o f IEEE WESCON, August 1970.

[Ryder 1979] Ryder, B.C., “Constructing the Call Graph of a Program”, IEEE
Transactions on Software Engineering, Vol. SE-5, No. 3, pp. 216-226, 1979.

[Saal and Weiss 1977] Saal, H.J. and Weiss, Z., “An Empirical Study of APL Programs”,
Computer Languages, Vol. 2, No. 3, pp. 47-60, 1977.

[Schefstrdm 1991] Schefstrdm, D., “The Arcs Experience”, Proceedings o f Third
European Software Engineering Conference (Milan, Italy, October 1991),
Lamsweerde A. van and Fugetta A. (editors), pp. 443-464, Lecture Notes in
Computer Science 550, Springer-Verlag, 1991.

[Schmidt 1977] Schmidt, J.W., “Some High Level Language Constructs for Data of Type
Relation”, ACM Transactions on Database Systems, Vol. 2, No. 3, pp. 247-261,
September 1977.

[Schmidt and Matthes 1992] Schmidt, J.W. and Matthes, F., The Database Programming
Language DBPL Rationale and Report, Technical Report FIDE/92/46, ESPRIT
Basic Research Action, Project Number 3070 - FIDE, 1992.

[Schwanke and Kaiser 1988] Schwanke, R.W. and Kaiser, G.E., “Smarter
Recompilation”, ACM Transactions on Programming Languages and Systems, Vol.
10, No. 4, pp. 627-632, October 1988.

[Schwanke and Platoff 1989] Schwanke, R.W. and Platoff, M.A., “Cross References are
Features”, Proceedings Second International Workshop on Software Configuration
Management (Princeton, New Jersey, November 1989), Published as Software
Engineering Notices, pp. 86-95, 1989.

[Sheard 1990] Sheard, T., A User's Guide to TRPL: a Compile-Time Reflective
Programming Language, Dept, of Mathematics and Computer Science, Amherst
College, An&erst, Ma 01002, USA, September 1990.

[Sheard 1991] Sheard, T., “Automatic Generation and Use of Abstract Structure
Operators”, ACM Transactions on Programming Languages and Systems, Vol. 13,
No. 4, pp. 531-557, 1991.

[Sheard and Stemple 1989] Sheard, T. and Stemple, D., “Automatic Verification of
Database Transaction Safety”, ACM Transactions on Database Systems, Vol. 14, No.
3, pp. 322-368, September 1989.

205

BIBLIOGRAPHY

[Shepard et a l 1992] Shepard, T., Sibbald, S. and Wortley, C., “A Visual Software
Process Language”, Communications o f the ACM, Vol. 35, No. 4, pp. 37-44, April
1992.

[Sj0berg 1991] Sj0berg, D., The Thesaurus - A Tool for Meta Data Management,
Technical Report FIDE/91/6, ESPRIT Basic Research Action, Project Number 3070
- FIDE, February 1991.

[Sj0berg 1992] Sj0berg, D., Measuring Name and Identifier Usage in Napier88
Applications, Technical Report FIDE/92/37, ESPRIT Basic Research Action, Project
Number 3070 - FIDE, 1992.

[Sj0berg 1993] Sj0berg, D., “Quantifying Schema Evolution”, Information and Software
Technology, Vol. 35, No. 1, pp. 35-44, January 1993.

[Sj0berg et a l 1993] Sj0berg, D., Atkinson, M.P., Lopes, J. and Trinder, P., “Building an
Integrated Persistent Application”, Fourth International Workshop on Database
Programming Languages (30th August - 1st September, Manhattan, New York City,
USA), Springer-Verlag, 1993.

[Skarra and Zdonik 1987] Skarra, A.H. and Zdonik, S B., “Type Evolution in an Object-
Oriented Database”, In Research Directions in Object-Oriented Programming,
Shriver, B.S. and Wegner, P. (editors), pp. 393-415, MITP, Cambridge, MA,
Computer Systems, 1987.

[Sockut and Goldberg 1979] Sockut, G.H. and Goldberg, R.P., “Database Reorganization
- Principles and Practice”, ACM Computing Surveys, Vol. 11, No. 4, pp. 371-395,
December 1979.

[SoftwareAG 1990] The Predict Reference Manual Version 3.1, PRD-311-030, Software
AG, Germany, 1990.

[Sommerville 1992] Sommerville, I., Software Engineering, Fourth edition, Addison
Wesley, 1992.

[Sommerville 1993] Sommerville, I., Cooperative Systems Engineering, Seminar,
University of Glasgow, March 1993.

[Sommerville and Morrison 1987] Sommerville. I. and Morrison, R., Software
Development with Ada, Wo\dngham: Addison-Wesley, 1986.

[Spurr 1988] Spurr, K., “Introduction to the ISO IRDS Standards”, In The Future o f Data
Dictionaries, DATABASE 88 (I9th-20th May 1988, Open University, Milton
Keynes), Holloway, S. (editor), pp. 7-18, Gower Technical, The British Computer
Society Database Specialist Group, 1988.

[Stemple 1989] Stemple, D., “Exploiting the Potential of Persistent Object Stores”, In
Persistent Object Stores (Proceedings o f the Third International Workshop, 10th-
I3th January 1989, Newcastle, New South Wales, Australia), Rosenberg, J. and
Koch, D. (editors), pp. 45-55, Springer-Verlag and British Computer Society, 1989.

[Stemple e ta l 1992] Stemple, D., Stanton, R.B., Sheard, T., Philbrow, P.C., Morrison,
R., Kirby, G.N.C., Fegaras, L., Cooper, R.L., Connor, R.C.H., Atkinson, M.P. and
Alagic, S., Type-Safe Linguistic Reflection: A Generator Technology, Technical
Report FIDE/92/49, ESPRIT Basic Research Action, Project Number 3070 - FIDE,
1992.

[Strachey 1967] Strachey, C., Fundamental Concepts in Programming Languages,
Oxford University Press, Oxford, 1967.

[Sun Microsystems 1988a] The Sun Operating System Release 4.1, Sun Microsystems,
October 1988.

206

BIBLIOGRAPHY

[Sun Microsystems 1988b] Introduction to the NSE™, Part No: 800-2362-10 (Draft 7
March 1988), Sun Microsystems, 1988.

[Sutton e ta l 1990] Sutton, S.M., Heimbigner, D. and Osterweil, L.J., “Language
Constructs for Managing Change in Process-Centered Environments”, Proceedings
of the Fourth ACM SIGSOFT Symposium on Software Development Environments,
pp. 206-217, December 1990.

[Swanson 1976] Swanson, E.B., “The Dimension of Maintenance”, Proceedings o f the
Second International Conference on Software Engineering, pp. 492-497, October
1976.

[Symantec 1989] THINK C™ User’s Manual, Symantec Corporation, 1989.

[Tabkha 1991] Tabkha, I., “An Implementation of the Parts Explosion Problem”, Second
Annual FIDE Review Meeting, Computing Science Department, University of
Glasgow, September 1991.

[Tabkha 1993] Tabkha, I., Two Implementations of Parameterised Abstract Data Types,
Technical report in preparation. University of Glasgow, 1993.

[Tarr and Clarke 1993] Tarr, P. and Clarke, L.A., “PLEIADES: An Object Management
System for Software Engineering Environments”, to appear in ACM SIGSOFT '93:
Proceedings o f the Symposium o f the Foundations o f Software Engineering, Los
Angeles, CA, December 1993. Also available as University of Massachusetts,
Amherst, Computer Science Department CMPSCI Technical Report 93-64, July
1993.

[Teitelman and Masinter 1981] Teitelman, W. and Masinter, L., “The Interlisp
Programming Environment”, IEEE Computer, Vol. 14, No. 4, pp. 25-33, April 1981.

[Thompson 1992] Thompson, A.K., “CASE Data Integration: The Emerging
International Standards”, ICL Technical Journal, Vol. 8, No. 1, pp. 54-66, May
1992.

[Tichy 1985] Tichy, W.F., “RCS - A System for Version Control”, Software - Practice
and Experience, Vol. 15, No. 7, pp. 637-654, July 1985.

[Tichy 1986] Tichy, W., “Smart Recompilation”, ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 3, pp. 273-291, July 1986.

[Tresch and Scholl 1993] Tresch, M. and Scholl, M.H., “Schema Transformation without
Database Reorganisation”, SIGMOD Record, Vol. 22, No. 1, pp. 21-27, March
1993.

[Trinder 1991] Trinder, P.W., “Comprehensions, a Query Notation for DBPLs”,
Proceedings o f the Third International Workshop on Database Programming
Language (Nafplion, Greece, 27th-30th August 1991), Kanellakis, P. and Schmidt,
J.W. (editors), pp. 55-70, Morgan Kaufmann Publishers, San Mateo, CA, 1991.

[Tsichritzis and Lochovsky 1982] Tsichritzis, D.C. and Lochovsky, F.H., Data Models,
Englewood Cliffs, N.J. Prentice-Hall, 1982.

[Uhrowczik 1973] Uhrowczik, P.P., “Data Dictionary/Directories”, IBM Systems Journal,
Vol. 12, No. 4, pp. 332-350, 1973.

[Waller 1991] Waller, E., “Schema Updates and Consistency”, Proceedings o f the
International Conference on Deductive and Object-Oriented Databases (DOOD)
(Munich, Germany, 16th-18th December 1991), pp. 167-188, Lecture Notes in
Computer Science 566, Springer-Verlag, 1991.

207

BIBLIOGRAPHY

[Webster 1961] Webster's Third New International Dictionary o f the English Language
Unabridged, editor in chief P.B. Gove and the Merriam-Webster editorial staff, G. &
C. Merriam Co., G. Bell & Sons Ltd., London, 1961.

[Wegner and Zdonik 1988] Wegner, P. and Zdonik, S.B., “Inheritance as an Incremental
Modification Mechanism or What Like Is and Isn't Like”, Proceedings o f the
European Conference on Object-Oriented Programming (Oslo, 15th-I7th August
1988), Gjessing, S. and Nygaard, K. (editors), pp. 55-77, Lecture Notes in Computer
Science 322, Springer-Verlag, 1988.

[Weiser 1982] Weiser, M., “Programmers Use Slices When Debugging”,
Communications o f the ACM, Vol. 25, No. 7, pp. 446-452, July 1982.

[Weiser and Shneiderman 1987] Weiser, M. and Shneiderman, B., “Human Factors of
Computer Programming”, In Handbook o f Human Factors, Salvendy, G. (editor),
pp. 1398-1415, John Wiley & Sons, 1987.

[Wiederhold et al. 1992] Wiederhold, G., Wegner, P. and Ceri, S., “Toward
Megaprogramming”, Communications o f the ACM, Vol. 35, No. 11, pp. 89-99,
November 1992.

[Wolf et al. 1989] Wolf, A.L., Clarke, L A. and Wileden, J.C., “The AdaPIC Tool Set:
Supporting Interface Control and Analysis Throughout the Software Development
Process”, IEEE Transactions on Software Engineering, Vol. SE-15, No. 3, pp. 250-
263, March 1989.

[Zelkowitz 1978] Zelkowitz, M.V., “Perspectives on Software Engineering”, ACM
Computing Surveys, Vol. 10, No. 2, pp. 197-216, June 1978.

[Zicari 1992] Zicari, R., “A Framework for Schema Updates in an Object-Oriented
Databases System”, In Building an Object-Oriented Database System: The Story o f
O2 , Bancilhon, F., Delobel, C. and Kanellakis, P. (editors), pp. 146-182, Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

208

Index
Acheampong (1993) 92
AD/Cycle 62
Ada 116, 180
Adams et al. (1989) 56
AdaPIC 180
Agresti and Evanco (1992) 9, 92
Ahlsen et al. (1983) 53
Albano (1983) 54
Albano et al. (1985) 72,77
Allen et al. (1982) 59
ANSI (1988) 59
application model 51, 117
application-program 121
APSE 64, 116
Archer and Devlin (1986) 64
Arcs 64
Ariav (1991) 51
Atkinson (1978) 66
Atkinson (1989) 68
Atkinson (1990) 33
Atkinson (1992) 68, 87
Atkinson (1993) 72-73, 106, 117, 144, 178
Atkinson and Buneman (1987) 68,72
Atkinson and Morrison (1985) 66, 68-69
Atkinson and Morrison (1986) 71
Atkinson et al. (1982) 7, 66
Atkinson et al. (1983a) 7, 66, 68
Atkinson et al. (1983b) 66
Atkinson et al. (1983c) 66
Atkinson etal. (1988) 68, 71,167
Atkinson et al. (1990) 77, 87, 161
Atkinson et al. (1991a) 77, 92
Atkinson et al. (1991b) 77
Atkinson etal. (1993) 76, 134, 141
awk 25

Bachman (1988) 48
Bailey (1989) 92
Banerjee et al. (1987) 2, 33, 51-52, 53
Barclay etal. (1992) 92
Barnard etal. (1982) 5
Batini et al. (1986) 51
Baxter (1992) 48
Berman (1991) 77
binding 71

categories 121-122
export 121
import 121

internal 121
L-value 71, 74, 119, 140
R-value 71
unused 180

Bimie (1991) 92
Bj0mer (1991) 48
block

depth 80
sequence 80

Boehm (1988) 45
Bott (1989) 64
Bourne (1979) 16, 62, 89
Bratsberg (1993) 51
Brodie (1992) 48
Brooks(1975)4
Brown (1989) 68
Bmnhoff (1991) 56
build management 155
Buxton (1980) 64

C 14, 56-57
C++ 180
call-graphs 61
Cardelli (1989a) 178
Cardelli (1989b) 69
Cardelli and Wegner (1985) 68
Cartmell and Alderson (1989) 50
Casais (1991) 51
CCEL 180
CDIF 60
change

causes 2-3,169, 171
control 49
history 24, 31
management 5,49-50
measurements 7
process 49
propagation 4, 23, 36, 106, 179

measurements 109
schema (see schema evolution)

Chapin (1988) 46
Chen (1976) 124
Chikofsky and Cross (1990) 1
class evolution 51
Clifton (1990) 14
closure (see procedure)
COBOL 57, 116
cohesion 2

209

INDEX

Colbrook and Smythe (1989) 48
Collofello and Buck (1987) 4
compilation (see also EnvMake)

separate 72
smart 56, 160
support 57

comprehension query language 84
configuration management 55, 179
Connor (1991) 68, 73,81, 106, 117, 158
Connor et al. (1990) 144
Connor et a/. (1991) 54
consistency 50 (see also SPASM)
consistency checking 24
Constantine and Yourdon (1979) 2, 116
constraints 10, 118, 173 (see also SPASM)

specification 180
violation 152

context 80
conversion 53
Cooper (1990a) 68
Cooper (1990b) 178
Cooper and Qin (1992) 51,178
Copeland and Maier (1984) 66
coupling 2
cpp 25
crane 8
cross-referencers 58, 61
Cutts (1993a) 10, 69, 76, 87, 92, 106,

117,179
Cutts (1993b) 77
Cutts etal. (1990) 76, 84, 92, 159

Dahl g/oZ. (1972) 2, 116
Dart (1991) 57
Dart et al. (1987) 63
Data Dictionary Systems Working Party 59
data dictionary 5, 58, 61-62
data dictionary tools 89, 179
data flow analysis 57
data modelling 48, 178
database

programming 66
reorganisation 22, 53

Date (1990) 116
datum 15
Davie and Morrison (1981) 77
DBPL 77, 89
DBPLXref89
DDS 62
Dearie (1987) 106, 117
Dearie (1988) 68, 70
Dearie et al. (1989) 68
Dearie etal. (1992) 106, 117

DEC (1989) 16, 58, 89
DEC (1993) 58, 85
declaration and use 18-19, 24, 127, 152
DeMarco (1979) 118
dependency 56, 89 (see also EnvMake)
DeRemer and Kron (1976) 3
diff25
Display Language 14
documentation 4

automatic 48
Dolk and Kirsch (1987) 60
Dolotta et al. (1978) 63
drop-clause 131
drop-program 120
DSEE 56

Eclipse 64
ECMA (1990) 60
EIA (1991) 60
Elshoff (1976) 9, 92
England and Selwyn (1990) 14
Entity-Relationship diagram 124
environments (Napier88) 70, 73

aliases 165
assignments 165
contains-check 70
drop-clause 70
identification 162
insert-declaration 70
modification 142
references to 181
returned 163
use-clause 70

EnvMake 10, 147, 166
application structure 148
build management 155
compilation 158, 161
dependency matrix 150
dependency table 148
execution 160-161
experiences 154
flexibility 154, 168
implementation 161
installation 160
menu 149
ordering 153
performance 162
plan 157
status information 156
up-to-date information 161

evolution 46
laws of 3
schema (see schema evolution)

210

INDEX

execution 160
order 162

experimentation 185
explode 85

Farkas et al. (1992) 76, 183
Fegaras and Stemple (1991) 51
Fegaras etal. (1989) 51
Feldman (1979) 10, 50, 55
Feldman (1991) 180
Ferraby (1991) 3,49
formal specifications 48
FORTRAN 57, 116
Fosdick and Osterweil (1976) 57
FUSE 58, 85

Galileo 72, 77
Gandalf 65
Gl0ersen (1993) 43
Goldberg (1984) 65
Gopal et al. (1992) 58
granularity 31, 50, 138, 158
Greenwood et al. (1992) 68
grep 25, 89
Griswold and Notkin (1992) 49

Habermann and Notkin (1986) 65
Hippo language 14
HMS

execution log 187
system 14

Holloway (1988a) 59
Holloway (1988b) 61-62, 179
Holt (1993) 186
Humphrey (1989) 49
hyper-programming 76, 181-183

button 184
constraints 183
gesture-based 183
naming 184

hyper-references 142, 166, 179, 181
hyper-world 183

IBM (1978) 67, 110
IBM (1980) 16, 59
IBM (1990) 59, 62, 176
IBM (1991) 62, 176
IBM (1992) 49
identifier 90

information 5
identity 162
Imber (1991) 60
impact analysis 23

impedance mismatch 66
implode 85
incremental construction 72
insert-program 120-121
installation 160
integrity rules 116
intellectual capacity 180,186
Interlisp 64
IPSE 63
IRDS 59
ISO (1990) 59-60

Jackson (1975) 2, 116
Jackson (1983) 118
Jacobs and Hull (1991) 139
Jandrasics (1981) 48

K ay(1992) 60
Keables etal. (1988) 57
Kim and Chou (1988) 33,51
kind 80
King (1967) 58
King (1969) 58
Kirby (1993) 68, 70, 76-77, 183
Kirby (1993) 182
Kirby and Dearie (1990) 76-77, 87, 89
Kirby etal.{\992) 182
Knuth (1972) 9, 92
Knuth (1973) 131-132
Krueger(1992)4

L-values (see binding)
language designer 91
Leblang et al. (1985) 56
Lehman (1976) 7
Lehman (1978) 48
Lehman (1980) 4,46
Lehman (1981) 1
Lehman and Belady (1985) 3, 6
Lemer and Habermann (1990) 2, 33, 51
level of detail (see granularity)
Levin et al. (1992) 57
Lieberherr and Holland (1989) 51
Lientz and Swanson (1981) 3
Lientz etal. (1978) 1, 3, 6
life cycle 46
link 184 (see also hyper-references)
Loboz(1989) 92
Lopes(1993) 84

Machiavelli 160
Maes (1987) 77
maintenance 4, 118

211

INDEX

adaptive 1
corrective 1
methodology 10, 138
perfective 1
phase 46
proportion 1

Make 55, 147
makedepend 56
Makefile 55,147, 155
maps 77, 85, 87
Marche (1993) 42, 171, 185
Marti (1983) 61, 86
Matthes et ah (1992) 89
McKenzie and Snodgrass (1990) 51
measurements 6, 184-185

Ada 92
APL92
constancy 98-99
context 98, 190
declaration and use 128
environments 110-111, 164, 192, 193
FORTRAN 92
kind 95,189
lines of code 93
name length 100-101
name use 94
persistent programming languages 92
PL/1 92
procedures 105-106

context 107
polymorphic 108-109
specialised 108-109

program categories 125
size 92
structure fields 104
transfer secondary storage 110
type definitions 101-103, 126, 191
usage 96
use-clauses 129
variant tags 104

Meekel and Viala (1988) 48
mega-programming 3
Members (1990) 73
meta-data 58
meta-database 58
methodology 10, 138, 185 (see also

maintenance, SPASM)
programming 115
system development 115, 118

Meyers et ah (1993) 180
Milner (1984) 69
mismatch 89
Mitchell and Plotkin (1985) 68

Monk and Sommerville (1993) 51
Morrison et ah (1989a) 7, 68
Morrison et ah (4989b) 68
Morrison et ah (4990) 68, 70, 72
Munro (1993) 76, 127, 131, 181

Nakagawa and Futatsugi (1991)48
name 80, 90 (see also measurements)

information 5
meaning 5
occurrence 90

naming 162
convention 133-134

Napier88 9, 68, 73
browser 87, 89
language processing technology 77
libraries 141
programming environment 76
type system 68

Napier88-in-Napier88 compiler 69, 77,
87,179

Nelson (1992) 6
NinN (see Napier88-in-Napier88)

O'Brien et ah (1987) 64
Ohovietah (1989) 160
d i e and Black (1988) 59
Osborn(1989)51
Osterweil (1987) 49
Osterweil and Fosdick (1976) 57
Oxford (1961) 5

P-Pascal 77
Panel (1989) 33,51
Parikh and Zvegintsov (1983) 1
Pamas (1972) 2
Parsys (1993) 57
partial order 131-132
PAS 3
Pascal-R 77
PCTE 60
Penney and Stein (1987) 33, 51
performance 86

trends 186
persistence

independence 67
orthogonality 67
reachability 68
research 68

Persistent Application System (see PAS)
persistent location binding methodology

117,119,180
persistent programming 7, 66

212

INDEX

environments 177, 185
persistent store 73, 153, 174
Pfleeger (1987) 1
PLEIADES 180
Polyhedra 14
polymophism (see procedures)
Predict 62, 85
Pressman (1992) 46,49
procedure

change 139, 142, 165
closure 69, 70, 75
higher-order 69,138
polymorphic 68, 77 (see also

measurements)
program categories 120, 152,162
program management 165
program slicing 57
programming

culture 117
languages 185
process 63,146, 168

programming-in-the-large 3
project management 49
prototyping 2
PS-algol (1987) 68
Putnam (1982) 1

Qin (1993) 76
query dictionary 15, 19, 36
Quong and Linton (1991) 56

RCS 55
recompilation (see compilation)
reflection 77
Repository Manager 59, 62
repository 59, 62, 176
Reps and Teitelbaum (1989) 65
reuse 4, 87
reverse engineering 48
Ringad comprehensions 85
ripple effect 4
Ritchie et al. (1978) 57
Rochkind (1975) 55
Roddick (1992) 51
Royce (1970) 45
Ryder (1979) 48

Saal and Weiss (1977) 9, 92
scale 3,44
scanning environments 86
s e e s 55
Schefstrom (1991) 64
schema

change (see schema evolution)
in Napier88 143

schema evolution 42, 139, 143, 178
categories 22
consequences 33, 36, 38, 52, 144
filtering 53
object-oriented databases 51
quantification 7, 34-35,43, 171

problems 40
research 51, 54

Schmidt (1977) 77
Schmidt and Matthes (1992) 77, 89
Schwanke and Kaiser (1988) 56
Schwanke and Platoff (1989) 56, 156
sed 25
Sheard (1990) 51
Sheard(1991) 180
Sheard and Stemple (1989) 180
Shepard et al. (1992) 49
ShTh 84
Sjdberg (1991) 6,21
Sjpberg (1992) 98, 101, 104-105, 129, 164
Sjpberg (1993) 7, 14, 52, 185
Sjpberg etal. (1993) 7, 9, 79, 85-86, 172
Skarra and Zdonik (1987) 2, 33, 51, 53
Smalltalk 65
Sockut and Goldberg (1979) 53
software

development process 45
evolution (see evolution)
life cycle 45,49, 59, 63, 90
process modelling 49

SoftwareAG (1990) 16, 62, 85-86, 89
Sommerville (1992) 46
Sommerville (1993) 64
Sommerville and Morrison (1987) 64, 116
source code analysers 89
SPASM 10, 115, 118, 165

checking 151-152
constraints 122-124, 136, 180
extensibility 180
partial order 133
persistent store 135
violation 154, 167

spiral model 45
Spurr (1988) 59
SQL 15, 26, 90
Startup-program 120-121
static program analysis 57
Stemple (1989) 180
Stemple etal. (1992) 77
Stoneman report 64
Strachey (1967) 69

213

INDEX

Structure-oriented environments 65
structured programming 116
structuring conventions 133
stub methodology (see persistent location

binding methodology)
stubs 119, 129, 153
subtyping 54
Sun i^crosystems (1988a) 25
Sun Microsystems (1988b) 57
support environment

language independent 63
language specific 64

supporting tools 2,7, 45 (see also thesaurus
tools, EnvMake)

Sutton etal. (1990) 49
Swanson (1976) 1
Symantec (1989) 56, 167
Synthesizer Generator 65
system catalogue 62

Tabkha(1991) 92
Tabkha(1993)92
Tarr and Clarke (1993) 180
Teitelman and Masinter (1981) 64
thesaurus (definition) 5
thesaurus tools

comparison 88
HMS 6, 13,15

implementation 25
Query_Dictionary relation 19
thesaurus interface 20
Thesaurus relation 16
Versions_Thesaurus relation

20,31
Napier88 9, 80

definition 82, 87
entries 83
implementation 87
registration 85
thesaurus interface 84
thesaurus kernel 177
thesaurus-based tools 172, 177
update 86

THINK C 56
Thompson (1992) 61
Tichy (1985) 55

Tichy (1986) 56, 158
timestamping 158, 161
topological sorting 131-132
transaction 15
Trellis programming environment 64
Tresch and Scholl (1993) 53
Trinder (1991) 84-85, 172
Tsichritzis and Lochovsky (1982) 43
TSrr 79, 161 (see also thesaurus tools:

Napier88)
type 68

checking 71
database 69, 159
definitions 68, 125, 143, 152, 158
dependency 158-159
equivalence 68, 103, 125, 143, 179
evolution 51 (see also schema

evolution)
identifier 68
system 60, 68, 173, 178

type-program 120, 159

Uhrowczik (1973) 59
update functions 15
update-program 120-121
usage 80
use-clauses (see also environments)

automatic generation 180-181

VAXset 58
version management 178
views 22, 36, 53
visualisation 150, 178

Waller (1991) 51, 139
waterfall model 45
Webster (1961) 10
Wegner and Zdonik (1988) 54
Weiser (1982) 57
Weiser and Shneiderman (1987) 5
Wiederhold etal. (1992) 3
WIN 76, 84, 92
Wolf gr a/. (1989) 180

Zelkowitz (1978) 1
Zicari (1992) 51

UNrVERSITY
I.KRARY

214

