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Abstract

This thesis describes several abstract interpretations of polymorphic functions. In 
all the interpretations, information about any instance of a polymorphic function is 
obtained from that of the smallest, thus avoiding the computation of the instance 
directly. This is useful in the case of recursive functions, because it avoids the ex
pensive computation of finding fixed points of functionals corresponding to complex 
instances.

We define an explicitly typed polymorphic language with the Hindley-Milner type 
system to illustrate our ideas, and provide two semantics of polymorphism that relate 
separate instances of any polymorphic function. The choice of which semantics to 
use depends on the particular program analysis we want to study.

For studying strictness analysis and binding-time analysis, we introduce a semantics 
based on embedding-closure pairs. We see how the abstract function of the smallest 
instance of a polymorphic function is used in building an approximation to that of 
any instance. Furthermore, we extend the language to include lists, and describe 
both strictness analysis and binding-time analysis of lists. Thus, this work extends 
previous work by others, on analyses of polymorphic first-order functions and also 
of monomorphic higher-order functions, to polymorphic higher-order functions.

In relating distinct instances of a polymorphic function, the approximate abstract 
function is expressed as the greatest lower bound of a set of functions. This may 
not be very cheap to compute. However, there are often ways of obtaining the same 
result by considering a smaller set of functions. Another issue concerns how close the 
approximations axe to the exact values. In the first-order case, it is shown that the 
approximate values coincide with the exact values. In general this is not the case, 
but experimental results on strictness analysis indicate that good approximations 
are obtained.

Embedding-projection pairs are used to provide a semantics that is convenient for 
termination analysis of polymorphic functions. We show that the abstract inter
pretation of an instance can be approximated by the least upper bound of a set of 
functions that are built from that of the smallest.



Preface

The main results of the thesis deal with obtaining information about any instance 
of a polymorphic function from that of the smallest . In Chapter 1 we describe 
the problem and discuss related work. The mathematical terminology and concepts 
used in the thesis are given in Chapter 2, where the definitions and properties of 
some fairly well known structures are given.

In Chapter 3 we focus on those mathematical structures which we use to describe 
the semantics of polymorphic functions. In particular, we define the category of 
domains and embedding-closure pairs. This category and its subcategory of finite 
lattices are studied in some detail.

In Chapter 4 we introduce an explicitly typed polymorphic language, and define 
the semantic functions. Since our aim is to relate separate instances of any poly
morphic function, embedding-closure pairs are used in Chapter 5 to establish such 
relationships.

In Chapter 6 we use a polymorphic language of abstract terms. Terms in the origi
nal language are translated into terms in this language. The values of the semantic 
functions on the abstract terms are the values of the abstract interpretation used 
in strictness analysis. Many of the results of the earlier chapter apply, and hence 
it is shown that the abstract interpretation of the smallest instance of a polymor
phic function is used in building an approximation to that of any other instance. 
Therefore, computing complex instances directly may be avoided.

Strictness analysis of lists is discussed in Chapter 7. We show that the methods of the 
previous chapter also apply for polymorphic functions defined on lists. In Chapter 8, 
we show that the same results apply to the abstract interpretation used in binding
time analysis. Finally, we discuss termination analysis, where embedding-projection 
pairs are used instead.

In the last chapter, we give a summary of results and also discuss some problems. We 
also give the proofs of some propositions stated in the main body in the appendices.

ii
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C hapter 1

Background

The use of lazy functional programming languages as a convenient tool for software 
development has been strongly advocated [19]. The presence of laziness and higher- 
order functions allows the use of infinite data structures and greater modularity 
at the programming level. At the logical level, the absence of side-effects makes 
it easier to reason about programs. However, there are problems regarding the 
efficiency of their implementations. Efficient implementations of these languages 
rely on static program analysis. One such, which is considered to be important, is 
strictness analysis.

A function is said to be strict if it returns a non-terminating value for a non
terminating argument. If a function is strict, arguments may be passed by value 
instead of the less efficient evaluation mechanism call-by-need. This enables more 
efficient code to be generated. Moreover, parallel implementations may make use 
of strictness information of functions of several variables: if a function is known to 
be strict with respect to several arguments then its application can be computed by 
evaluating the expressions at such argument positions in parallel [13].

The two most important aspects of strictness analysis are: first, the development 
of algorithms which detect the strictness of functions, and secondly, a proof of cor
rectness that such algorithms indeed give correct results. When one evaluation 
mechanism is to be used instead of another for efficiency reasons, it is necessary to 
ensure that both evaluation mechanisms give the same result. It is for this reason

1
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that we need proofs of correctness.

Over the last decade several techniques for strictness analysis of functional programs 
have been developed. There are essentially three approaches :

• abstract interpretation

• projection-based analysis

• type inference

In the following sections, an introductory survey of work on abstract interpretation 
is presented. Emphasis is given to this approach because the thesis is mainly about 
abstract interpretation. Issues concerning higher-order functions, data structures 
and polymorphism are covered in some detail. The main contribution of this thesis 
is with regard to polymorphic functions; the central problem addressed is discussed 
in the section on polymorphism. A summary of the discussion and an introduction 
to the proposed solution are given in the third section of this chapter. In the last 
section of this chapter, a very short introduction to the other approaches is also 
given.

Most of the mathematical structures and their properties used in this chapter are 
fairly standard and simple. In any case, the mathematical background required in 
the entire thesis is given in the next two chapters.

1.1 A bstract Interpretation

There are numerous everyday examples of when one is interested in partial informa
tion about the result of a computation. To obtain partial information it may not be 
necessary to perform the whole computation. For example, to determine the sign of 
the product (—694) *453, one could first do the multiplication and then inspect the 
sign of the result. But since it is the product of a negative and a positive number, 
the result will always be negative, so the precise computation is superfluous.
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In practice, these kinds of things are done without bothering about any formal 
justification of the process. However, it is desirable to view it as a special case 
of a very general procedure of deriving certain properties of computations without 
doing the actual computations. A formal development of the process is therefore 
necessary.

Returning to the example of multiplication, which is also one of the examples given 
in [3,12], an operation on the set of possible sign of numbers is defined. Integers have 
three possible signs—positive, negative and neutral (or sign of zero), and they are 
respectively denoted by (+), (-) and (0) as in [37]. The operation on {(+),(-),(0)} 
is given by the table below.

(+) (-) (0)

(+) (+) (-) (0)

(-) (-) (+) (0)

(0) (0) (0) (0)

This operation may be regarded as an “abstract multiplication”. As far as signs are 
concerned models *, where the latter denotes multiplication.

A formal description is then given by first defining an abstraction map
abs : Integers —>• { (+ ),(—), (0)}

This map is the function that returns the sign of its argument. It is now easy to 
show that the diagram below commutes.

Integers x Integers abs x abs * {(+),(-),(0)} x {(+),(-),(0)}



C H A P T E R l .  BACKGROUND 4

This means that for any integers x and y :

abs(x * y) =  (abs x) (abs y)

Therefore, the sign of a product of numbers is obtained by applying to the signs
of the numbers.

If addition were to be considered instead, the set of signs would not be closed under 
the corresponding abstract function. For example, the sign of the sum of a negative 
and a positive number depends on the magnitudes of the numbers. Therefore, a 
new element (±) is added to the set. In this context, (±) denotes the property of 
being an integer (including 0).

In defining + # , (0) is its identity, and x y =  (± ) whenever x is (-) and y is
(+) or vice-versa, or when one of them is (±). Completing the definition is fairly 
straightforward. Thus a table for -f^, similar to that of *^, is obtained. However, 
the diagram corresponding to does not commute because the sign of of the sum 
of two numbers is not entirely determined by the signs of the numbers.

To regain some aspects of a commuting diagram it is convenient to introduce an 
ordering on {(+),(-),(0),(±)}, where x Q (±) for every x. An intuitive meaning of 
the statement x C y is that if a number has the sign x then it is safe to assume that 
it has sign y. It is now easy to see that the following statement holds.

abs(x A y )  C (abs x) (abs y)

Unlike the previous case, some of the information obtained from computing on 
the finite set is not exact. However, it is always safe, z.e, it does not give wrong 
information. Whenever it is impossible to obtain exact information, the ordering on 
the finite set makes it possible to obtain approximate values.

Our aim is to study languages in which it is possible to express a variety of op
erations. Now, depending on the property to be investigated, abstract versions of 
operations are defined. Interpreting these abstract operations to determine cer
tain properties of programs is called abstract interpretation. An essential feature of 
many program analyses by abstract interpretation is that the abstract versions (or 
abstract functions) are interpreted over finite domains and therefore there are no 
infinite loops during their evaluation.
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1.1.1 First-Order Functions

Mycroft was the first to use abstract interpretation for strictness analysis of a lan
guage of first-order recursion equations on flat domains [37]. Flat domains are simple 
to deal with because a value in a flat domain denotes either a non-terminating com
putation or a total one.

If f  is a function of one variable then its standard interpretation (or semantics) is 
given by some continuous function

f : D - > D
where D is some flat domain. In [37] f  is also given an abstract (non-standard) 
interpretation which is a continuous function on the two-element lattice 2(= 
{0,1} with 0 C 1)

f *  : 2 2
The two interpretations are related by an important safety condition; whenever 
f#Q  =  0 it is always the case that /J_ =  _L, i.e, /  is strict. Therefore, it is sufficient 
to check for 0 =  0 to conclude that the original function is strict. It is important, 
however, to note that there are examples of strict functions where f * 0 ^ 0 .

The non-standard interpretation of a term e, that is denoted by e^, is defined by 
induction on the structure of e as follows :

(i) if e is an integer or a boolean constant then =  1

(ii) if e is of the form e l  op e2, where op is one of the usual binary operators +,
-, * and / ,  then e* = e f  A e f

(Hi) if e is i f  b e2 e3 then A (e2^ V e3^)

The operations A and V have the usual boolean algebra interpretations, i.e, con
junction and disjunction respectively, where 0 is treated as False and 1 is treated as 
True.

Consider the example
f  x = x + 6

It can be shown that f # x  =  x. Therefore, f * 0 =  0 and hence /  is strict.
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Suppose f  is a recursive function defined by something of the form
f  x = . . . f  ( .

To obtain the abstract interpretation of f , a sequence of monotonic functions { f f }
is defined where f f  is the constant function that always returns 0, and each f f_t is 
defined to be the function obtained using /„• in the right hand side of the definition 
of the function. Since the functions are interpreted on a finite domain, there is an i 
beyond which no new functions are obtained. Then, f f  is taken to be the abstract 
interpretation of f . Obtaining this /,- requires an iteration with a test for equality 
at each step. It must be noted that checking the equality of functions is an expensive 
operation.

Normally, a function is represented by the set of all its argument-result pairs. To 
check the equality of functions, their corresponding representations are compared. 
To make this operation more efficient, Clack and Peyton Jones [12] introduce a 
more compact representation of monotonic functions. For example, if a monotonic 
function g : 2 2 maps 0 to 1, it clearly also maps 1 to 1. Hence, {(0,1)}, or simply
{0}, may be taken as its representation. This is in some sense the “minimal” set of 
points mapped to 1 by g. The other points can be determined from the monotonicity 
of the function. On the other hand, it is possible to represent the function in terms 
of points mapped to 0. Such sets, which are called frontiers, were introduced and 
used in algorithms developed by Clack and Peyton Jones. The correspondence of 
frontiers with open sets, and also with closed sets, in the topology which arises from 
the lattice structure was explored by Hunt [24]. Using these new representations, 
Hunt and Hankin [25] present algorithms for computing fixed points of functionals; 
their method applies to higher-order functions as well.

If f  is a function of n variables, My croft defines the abstract interpretation to be
some function / ^  : 2n —> 2. He showed that if / ^ (  1,..., 1 ,0 ,1 ,..., 1) =  0, where 
the 0 in the n-tuple is in the k-th position, then the function is strict in its £;-th 
argument.

Consider the recursive function f  given by
f ( x ,y ,z )  = i f  x = 0 then  y-1 e ls e  f ( ( x - l ) , z , y )

Now, it is easy to show that we need to interpret the function f  ̂  : 23 —>■ 2, where
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f  ̂ (x, y, z) =  x A (y V f  ̂ (x, z, y)). The necessary iterates are tabulated below.

f t f t f t f t
(0, 0, 0) 0 0 0 0
(0, 0, 1) 0 0 0 0
(0, 1, 0) 0 0 0 0
(0, 1, 1) 0 0 0 0
(1, 0, 0) 0 0 0 0
(1, 0, 1) 0 0 1 1
(1, 1, 0) 0 1 1 1
(1, 1, 1) 0 1 1 1

Since f f  =  f f ,  f f  = f f  for every i > 2. Therefore, f f  is taken to be f * .  Since 
/ # (0 ,1,1) =  0 f  is strict in its first argument. Both /# ( 1 ,0 ,1) and / # (1,1,0) are 
different from 0, hence it is not known whether or not the function is strict in its 
second or third argument.

Normally, a program has a set of function definitions {fj}. Strictness analysis is 
done by starting with a family {/jfo}, where for each j ,  f f Q is the constant function 
.that returns 0. The collection { f f +1 } is then defined in terms of { f f }  in a way 
similar to the example above. For each iteration, tests for equality have to be done. 
If the program contains n function definitions, performing n tests, that is checking 
if f f + i  =  f f  for each j ,  is expensive. But if one test shows the inequality of a pair, 
then one more iteration is performed. A more efficient way of doing this analysis 
would be to divide the call graph into strongly-connected components. A worrying 
problem is that, even in the case of a single function this process could be expensive.

There is an obvious parallel between this treatment and the rule of signs. In the case 
of addition and the rule of signs (+) denotes all positive integers, and (±) denotes 
all integers. Here, 0 stands for non-terminating terms and 1 denotes all terms. 
However, the abstraction map from D to 2 is not yet explicitly defined. In the next 
section, the definition and properties of the map in the context of a language with 
higher-order functions is provided.



CHAPTER 1. BACKGROUND 8

1.1.2 Higher-Order Functions

A language with higher-order functions that has been studied extensively is the 
simply typed A-calculus. In the case of the pure simply typed A-calculus, it would 
not be necessary to perform strictness analysis. It may be reasonable to talk about 
strictness of a function in the sense that a function is strict if it needs to evalu
ate its argument. But no non-terminating computation can be expressed in this 
language—it is strongly normalisable. However, when the language is extended to 
allow recursion and some constants are introduced, this property no longer holds.

Mycroft’s work was extended to such a language by Burn et al [11]. Below, a 
summary of their work is presented; from now on, we shall refer to this as BHA- 
style abstract interpretation. A detailed account of abstract interpretation of such 
languages may be found in a book by Burn [10].

Type expressions are given by the syntax

a ::= A  | a —> a

where A is a base type.

Terms are given by the grammar :

e ca
I xa 
I Axa.e

I ©1 ©2

An interpretation of a language is a set-up where there is a family of domains {Da}, 
indexed by the type expressions, and an assignment of values c in Da for constants 

. This is normally done by starting with a domain Da corresponding to the base 
type A, and then Da^ r is defined by induction, to be the set of all continuous 
functions from Da to DT. This is sometimes written as Da —> Dr . Interpretations 
of this kind are called domain-theoretic interpretations. Domains are preferred to 
sets so that the fixed-point combinator Ya is given a meaning.

As described in [4], any interpretation induces a semantic function. To see how
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this function is defined, first D is let to be the union of the family of domains 
in the interpretation. Suppose K  : constants —> D is the function (given in the 
interpretation) that assigns values to the constants of the language. Then, the 
semantic function

sem  : Exp  —»■ Env  —)• D

where, Exp  is the set of expressions, and Env  is the set of all partial functions from 
the set of variables to values, is defined as

sem (c“) p =  K (c“)

sem(xa) p =  p(xa)

sem(Axa.e) p = Aya.(sem(e) p[ya/ x a])

sem (eie2 ) p = (sem(ei) p)(sem(e2 ) p)

Depending on the applications in mind, several interpretations may be defined for a 
language. Here, however, strictness analysis is the application under consideration. 
Thus, only two interpretations are considered. The first interpretation is the one 
that provides the standard semantics of the language, and the second is an abstract 
interpretation. If K  assigns the constants their standard interpretations, then the 
resulting semantic function gives the usual denotational semantics of the language. 
It is important to note that i f a and Ya are two of the constants, and their standard 
interpretations are given by

K ( i f a) x y z= <

and

_L if x =  _L 
y if x =  T  rue 
z if x =  False

K(Y“) =  A/a“*a . |_ | / n(_L)

In the case of the abstract interpretation, the domains are denoted by B a, where B a 
is the two-element domain 2. Since Ba is a lattice, Ba is also a lattice for every type 
a. Since all these lattices are finite they are complete, and hence Tarski’s theorem 
may be applied to them [49]; that is, monotonic functions have fixed points.
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To complete the definition of the abstract interpretation, it is necessary to assign 
values to the constants in the language. For example, the conditional, i f A, is 
assigned the value i f * defined by :

J O  if x = 0i t ^ x  y z — < , . .r -
\  yU *  if * =  1

The values corresponding to the usual arithmetic operators and constants are the
same as in the previous section. Now, the abstract interpretation induces a semantic 
function in exactly the same way as the standard interpretation. To distinguish this 
semantics from the previous one, it is sometimes called a non-standard semantics or 
simply abstract interpretation. For any function f  in a program, its standard and 
non-standard semantics are again denoted by /  and respectively.

Obviously, it is necessary to establish a connection between the two semantics. Now, 
if f  is a function of type <j\ —> . . . —>■ <rn —>• A, then whenever f * l ai. . .0^. . .\„n =  
0, it is also the case that f x \  . . . _L& . . . zn =  -L f°r all x i in D0i. Thus the 
strictness of the abstract interpretation in the fc-th argument implies that of the 
standard interpretation. The points 0a< and l a. stand for the least and greatest 
elements of the lattice Bai respectively.

One of the most important contributions of the work reported in [11] is the mathe
matical machinery developed to show that the analysis is sound. To prove soundness, 
a relationship between the two interpretations is first established. This is is done 
by defining abstraction functions absa, for each type cr, from Da to Ba. Then these 
functions are used to relate sem  and asem , where asem is the abstract interpreta
tion. The following diagram may be helpful in trying to see what is going on.
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Exp sem D

asem abs

B

The abstraction functions are defined by induction on the structure of types. In the 
case of the base type A , it has the same definition as the function H A L T  that was 
given by Mycroft in [37]. That is,

absA(d)={5 ^ e=j-se

A b strac tin g  F unctions

One way of dealing with the higher-order case is to use Hoare powerdomains in the 
definition

absa^ ( f ) b = U ( P ( a b s p)(P(f)(Conca(b^)))),

where P  is the functor that maps domains D to their corresponding Hoare power
domains P(i}), and any function /  to P ( /) .  The function P ( /)  takes any closed 
subset X  of D and returns f ( X) ^ —the closure of the set of images of elements of 
X  under / ,  and &’*' is the closure of {6}. The function Conca is also defined on sets 
and it is the inverse image a&s”1, i.e, it takes any set Y  into {x  £ D \ absa(x) E Y}.  
Since absa is continuous, Conca(Y) is closed for every closed set Y.  An equivalent 
definition, which does not explicitly use powerdomains, was given by Abramsky [4].

absa-tp(f) b = U{absp(f(d)) \ absa(d) C 6}

In the abstract interpretation being described, elements of lattices represent infor
mation about values. Moreover, if a and b are in a lattice and a C b then a is more
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informative than b. The motivation underlying the definition of absa^ p ( f )  above, 
is that if b is some information that is known about (or a property of) an argument 
of / ,  then to find some information about the result of / ,  first the results of /  at all 
arguments that we know more than b about are considered. Finally, we approximate 
the information across all the results.

Two important properties of the abstraction functions are the fact that they are 
both strict and _L-reflecting (only _L is mapped to _L). Moreover, when /  and d are 
of the appropriate types, the following semi-homomorphism property holds

absT(fd)  C absa->T(f)absa(d).

A simplified version of a lemma in [11] is that if e is a closed term of type a  then 
absa{sem(e)) p C tabs(e) p'. In particular, if the functions /  and denote the 
corresponding interpretations then

a b s e i l )  C f *

It is from these facts that the soundness theorem for strictness analysis follows. In 
the case of a function of one variable, for example, if /^ 0  =  0 then the proof of the 
strictness of /  is given by :

absT( f± )  C absa^ T(f)(abs0( l ) )

= absa^ T(f)(0)

E f *  0 

=  0

Therefore,

a&sT( /± )  =  0.

Since absT is _L-reflecting, /_L =  _L.

1.1.3 D ata Structures

Although Mycroft’s method can be used in the analysis of data structures, the 
result it gives is too weak to be of practical significance. If a function’s argument
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is a list, then there are several levels in the way the function may use its argument. 
To illustrate this, we look at some examples given by Wadler [52]. Consider the 
functions isem pty, len g th  and sum defined by

isem pty n i l  = True
isem pty (cons x xs) = F a lse

len g th  n i l  = 0
len g th  (cons x xs) = 1 + len g th  xs

sum n i l  = 0
sum (cons x xs) = x + sum xs

It is not difficult to observe that the extent to which these functions have to eval
uate their arguments varies. Wadler introduced a set whose elements model these 
differences [52]. He used the abstract domain {_L, oo, _LG, T e}. The ordering is as 
given in the diagram below.

t  T e 

n _Le

n OO

1 _L

Notice that the notation uses _L and T instead of 0 and 1 of the previous sections.

Wadler first provided a table representing cons#, z.e, the function from 
2 x {_L, oo, _Le, T e} to {_L, oo, _Le, T e} that models the behaviour of cons. In addi
tion, he also defined nil# =  T e. Now, if h is the function defined by

h n i l  = a
h (cons x xs) = f  x xs
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then h# (Wadler’s abstract interpretation of h) is given by

h* T e =  a# U ( /# T T e) 

h*J-z = ( / * J . T 6) U ( /* T  J_6) 

hft  oo =  f *  T  OO 

=  X

The results of the abstract interpretation are to be understood as follows :

(i) If h * l.  = _L then it is safe to evaluate its argument to expose the first cons 
or n i l .

(ii) If h&oo =  JL then it is safe to evaluate its argument and all the tails recursively.

(Hi) If /i#_Le =  _L then it safe to evaluate its argument and recursively all the tails 
and heads.

Returning to the examples at the beginning of the section, it is not difficult to see 
that isem pty, len g th  and sum have properties (i), (ii) and (Hi) respectively.

W hat we have seen so far works for lists of integers, and more generally for lists over 
any flat domain. Wadler also showed how to build the abstract domains appropriate 
for lists of arbitrary types, and also described the abstract interpretation of functions 
defined on lists of lists of integers as examples. We will return to this in more detail 
in Chapter 7.

1.2 P olym orphism

Most functional languages have polymorphic type systems of some kind. Monomor- 
phic instances of any polymorphic function can be analysed by the methods 
described earlier. However, different instances of a polymorphic function have 
similar strictness properties. For instance, Abramsky has shown that abstract 
interpretation-based strictness analysis of a language with the Hindley-Milner type
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system is polymorphically invariant [1]. This means that the analysis can detect the 
strictness of one instance of a polymorphic function if and only if it can detect the 
strictness of all instances. Therefore, it is claimed that it is sufficient to deal with 
the smallest instance of a polymorphic function. It must be said that this applies to 
a specific technique. The moment one decides to use a different analysis technique 
it is necessary to check if polymorphic invariance still holds.

If different instances of a polymorphic function are called at many points in a pro
gram, polymorphic invariance may not be very useful. To obtain as much infor
mation as possible, it is necessary to compute the abstract functions of all these 
instances. To see this consider the following example. Let

f x y  = i f x - 0  then  y e ls e  f  (x-1) y

The abstract interpretation of the smallest instance of f  is a function in 2 —> 2 -* 2, 
and it may be given by a table. Now, consider the function g given by

g x = f s t  ( f  0 x)

where f s t  is the function which takes a pair and returns the first argument. To 
compute the abstract interpretation of g, we need that of some instance of f . This 
instance of f ,  however, is not the smallest one. Therefore, the table mentioned 
earlier will not be of any use here. Thus, we need to build another table for the 
appropriate instance. Clearly, computing the abstract functions of all instances used 
in a program is inefficient. What is desirable is to use the information obtained from 
one instance to study properties of other instances. In order to do this, it is helpful 
to establish a relationship between the semantics of all instances of a polymorphic 
function.

1.2.1 Semantics

A very simple way of looking at the semantics of a polymorphic function is to regard 
it as a mere collection of continuous functions where each continuous function cor
responds to a monomorphic instance. This view does not express any relationship
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between the instances. But the function bodies of all the instances of a polymor
phic function are essentially the same. The similarity at the syntactic level should 
certainly imply some semantic relationship between the different instances. Before 
dealing with polymorphic functions, it is useful to consider some semantic properties 
of terms in the simply typed A-calculus.

A-definability

Plotkin establishes some semantic properties that must hold about terms definable 
in the simply typed A-calculus [40]. To see what these properties are, first assume 
that there is only one base type A. The full type hierarchy (or full set-theoretic 
interpretation), which is a collection { Xa} of sets is then defined by induction on 
types. This is done by starting with some non-empty set X  that is taken to be X a • 
For any higher type « -> /? , X a^p  is defined to be the set of all functions from X a to 
Xp. Now, any closed term of the typed A-calculus may be interpreted by assigning 
it a value (in a way similar to what sem  does in the previous section) from the set 
of the appropriate type. Plotkin reports that such values satisfy certain uniformity 
conditions (see also Coquand [14]). To express this, consider any permutation (bi- 
jection) ita ' X a X a . Then for each type a  —> /?, 7ra-K3 ■ X a_+p -> X a^p  is 
defined by induction as

Ka-+p( f )  =  K/3 o f  o 7T"1.

Here, n~l is the inverse of the permutation na which obviously is itself a permutation. 
It is also easy to see that 7ra->p is a permutation.

The invariance condition that definable terms satisfy is that, if /  denotes some 
closed term of type a then 71> (/)  =  / .  It is important to emphasise that so far this 
property is only stated and holds for the pure system. If the system is extended to 
include constants of type A , then the invariance holds provided some restrictions 
are made to the definition of 7Ta—it is let to be an identity on the constants.

The invariance described here is only a necessary condition; there are objects not 
definable in the language which have this property. The equality operation =  is 
an example, which was given by Plotkin, that is invariant under the appropriate 
permutations, but is not definable in the pure system.
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Logical relations

In an attem pt to give a better characterisation of the definable objects Plotkin 
introduced a semantics based on relations. To do this a collection of relations 
known as logical relations, is defined. This is done by starting with any relation Ra 
corresponding to the base type A , and then defining Ra-+p by

( f , g)  € if and only if for all (x,y)  € Ra : (f ( x ) , g( y )) € Rp

Now, the invariance theorem stated in terms of relations is that if /  denotes some 
closed term of type or then ( / , / )  6 Ra- This is true for all logical relations. This 
theorem is stronger than the invariance theorem involving permutations; in fact it is 
possible to show that the permutations generate logical relations, but not all logical 
relations are generated by permutations. These invariance results are about the 
simply typed A-calculus.

The relational approach was also used by Reynolds to study terms written in an 
extended typed A-calculus [43] . The extension was made by allowing expressions 
of the form le t ty p e  r  =  a  in  e, where r  is a type variable and a is a type expres
sion. Reynolds’s abstraction theorem establishes a relationship between the values 
of lettype-expressions with different tr’s. Such expressions may be regarded as 
instances of some polymorphic term.

The category of domains and embedding-projection pairs was used to present a 
model of the polymorphic (second-order) A-calculus by Coquand et al [15]. The 
language does not allow recursive definitions. In this thesis we take a similar ap
proach except that, for reasons to be explained in future chapters, in the strictness 
analysis of polymorphic functions it is convenient to use the category of domains 
and embedding-closure pairs instead (see also Baraki [6]).

Wadler also used the relational approach to derive theorems about polymorphic 
functions definable in the polymorphic A-calculus [53]. Types are interpreted as 
relations and closed terms satisfy conditions similar to those involving logical rela
tions in [40] in the simply typed A-calculus. Concentrating on relations that arise 
out of functions, equations involving different instances of polymorphic functions are 
obtained. These equations are the theorems. Wadler also shows that the language
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can be extended by adding fixpoints, but then similar theorems only hold if certain 
restrictions are imposed on the kind of relations used.

1.2.2 First-Order Functions

Hughes investigated an abstract interpretation of polymorphic first-order functions 
[21]. He showed how monotypes could be interpreted as domains and type construc
tors as functors in the category of domains and strict functions. In this framework, 
it was shown that polymorphic functions are natural transformations. The compo
nents of the natural transformation, corresponding to a polymorphic function, are 
the semantics of monomorphic instances of the polymorphic function. Thus any 
two instances are related in a certain manner. Such relationships are used in es
tablishing relationships between abstract interpretations of different instances of a 
polymorphic function.

For example, let F(t)  and G(t) be parameterised types and /  be the natural trans
formation from F  to G which is the semantics of some polymorphic function f . Then 
for any domains A  and B,  if a  : A  —V B  is a strict function then

G(a) o f A =  /b o  F (q)

Moreover, Hughes also showed that for any type r , there is a term E( f )  such that

fAbsr =  -E(/2)

Assuming that in t and bool as the only basic types, Abs r  is the type obtained
from t by substituting the occurrence of these basic types by 2. It was then shown
that

f t  e  E'(f*)

where E ' is obtained from E  by replacing the terms by their abstract values. Thus, 
once /jf  is computed, E' ( f f )  provides an approximation to f f .

The difficulty with the higher-order case comes from the contravariance of the func
tion type constructor in its first argument.
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1.2.3 Semantic Polymorphic Invariance

A result more powerful than the polymorphic invariance of strictness analysis was 
recently proved by Abramsky and Jensen [5]. They showed the semantic polymor
phic invariance of strictness for a higher-order language. That is, an instance of a 
polymorphic function is strict if and only if all instances are. To do this, they use 
the notion of a relator. A relator is a mapping that is defined in a similar way as 
a functor but is not required to preserve composition. In this application, transfor
mations are collections of functions which may also be viewed as relations satisfying 
a condition weaker than naturality. Using relators and transformations, they gave 
a semantics to a polymorphic higher-order language, where types are modelled by 
relators and polymorphic functions by transformations.

The significance of semantic polymorphic invariance is that if any analysis technique 
detects that an instance is strict then all instances must be strict. This holds even 
for instances whose strictness may not be detected by that analysis.

1.3 T he M ain  P roblem  and a Solution

As illustrated by an example in the previous section, when different instances of a 
polymorphic function are used in a program, the abstract interpretation of each must 
be computed. The necessity of doing so and the fact that results from polymorphic 
invariance are not satisfactory was first pointed out by Burn [8]. On the other hand, 
it is obvious that the computation is very expensive; this is especially the case with 
recursive functions. This is the problem addressed in this thesis.

We have already seen how Hughes [21], in the first-order case, obtains an approx
imation to the abstract interpretation of any instance of a polymorphic function 
from that of the smallest. In this thesis, we develop a method similar to that of 
Hughes. Our method, however, is not restricted to first-order-functions. It applies 
to higher-order functions, and also to functions defined on lists. In most cases, the 
method gives good approximations and, moreover, these approximations are signif
icantly cheaper to compute. We also show how similar techniques could be used in
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abstract interpretations for binding-time analysis and termination analysis.

1.4 O ther A pproaches to  S trictness A nalysis

Before we move on to the next chapter, we give a summary of other methods used 
in strictness analysis.

1.4.1 Projections

Methods of doing strictness analysis for data types, lazy lists for example, over non
flat domains were developed by Hughes [20] (see also [22]). His approach is entirely 
different from the abstract interpretation described in the previous sections. The 
idea is to look at an expression to be evaluated and find out how much of its sub
expressions are needed. For example if
f  x y = x + 1 , looking at the body of f , i.e x + 1 , it is easy to observe that it is 
strict in x but not in y. In general, assuming that an expression is to be evaluated, 
the aim is to determine the sub-expressions that must necessarily be evaluated. In 
the example, if x + 1 is to be evaluated then x, but not y, must be evaluated. Thus 
information propagates from expressions to their sub-expressions. We also note that 
the function never needs to evaluate its second argument; this kind of information 
may be useful. On the other hand, Mycroft’s method would only detect that it is 
strict in x, and gives no information about y.

To capture, in terms of semantics, the propagation of information from an expression 
to its sub-expressions Wadler and Hughes [51] introduced the idea of a projection. 
Let D be a domain. A continuous function a  : D —>• D is called a projection on D , 
if

a  o a  =  a  and 

a  C id,

where id is the identity function on D. For example, if D is the domain of lists of
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integers then the following two functions are projections on D.

_L if xs =  J_ : xs '
H  xs = x : (H xs') if xs  =  x : xs' and x ^  _L

T  xs =

xs  otherwise

_L if xs is (or an approximation to) an infinite list 
xs  otherwise

Projections are used in describing the extent to which expressions will be evaluated. 
As can be seen from the previous example, we normally start from an expression and 
a context in which it is going to be evaluated and then find out about the context 
in which the sub-expressions will be evaluated. Semantically, this may be expressed 
by an equation of the form (3 o /  =  (3 o /  o a, where /  : D —> E  is a continuous
function and a  and (3 are projections on D and E  respectively. The equation is
normally read as : /  is a-strict in a /3-strict context. Such an equation expresses 
the fact that whenever the body is to be evaluated in a /^-strict context, then it is 
safe to evaluate the argument in an a-strict context.

We consider an example that is given in [51]

before [] = []
before (cons x xs) = [ ] ,  i f  x = 0

= cons x : (before xs)

Now, it is easy to see that
id o before = id o before o H  

From this we say that before is head-strict. Kamin [31] has shown that such a prop
erty cannot be detected by abstract interpretation over finite domains representing 
Scott-closed sets. A comparison of the analyses, which use abstract interpretation 
and projections, is made by Burn [9]. He also introduces a notion of head-strictness 
which can be detected by abstract interpretation. Hunt [27] has developed an ab
stract interpretation where properties are partial equivalence relations, rather than 
Scott-closed sets; this is used to detect head-strictness.

The notion of polymorphic projections was introduced by Hughes and Launchbury 
[23]. Polymorphic projections are natural transformations in the category of domains
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where the morphisms are strict and ^-reflecting continuous functions. It is shown 
that polymorphic first-order functions are natural transformations in the category of 
domains and strict functions. They also prove a more general kind of an invariance 
theorem; that is, if f T is a T-strict in a /3r-strict context for some type r , then it is 
true for all types.

1.4.2 Strictness Analysis by Type Inference

Both abstract interpretation and projection analysis use denotational semantics in 
defining strictness. Kuo and Mishra introduced a type system for a language to 
express the strictness properties of programs [32]. Their approach is operational. 
First, they define an evaluation method for the language and then terms that do 
not have head normal forms are classified as divergent. Now, a term F is said to be 
strict if for every divergent term E, F E is divergent.

The type system used to express the strictness properties of programs has two con
stants (or basic types), <j> and □. In general (strictness) types are defined by the 
following syntax.

a  ::= <f> | □ | a  —> a

Semantically, </> stands for the set of all divergent terms, and □ denotes the set of 
all terms, a (3 stands for all terms F such that F E is in /? whenever E is in a. 
For example integer constants have the type □, and <j> —> <j> is a type of strict terms. 
Primitive operators, for example +, may have more than one strictness type. Both 
</>—>■□ —̂ and □ —v <j> —>■ </> are types of +. Moreover, there are terms which 
may have infinitely many types. For example Ax.x has types of the form a  —>■ a  
for all types a . To manage the situation of more than one type, type variables are 
introduced. Unfortunately functions need not have a principal type. For example 
+ has several types and no sensible ordering can be defined on them. A single 
representation of the strictness type of such operators is only obtained by modifying 
the definition of types. The new types are the old types together with a set of 
constraints. The set of constraints is similar to the ones one finds in subtyping [16].
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Jensen [28] has investigated the relationship between analyses by type-inference and 
by abstract interpretation. Whereas Kuo and Mishra concentrated on the algorith
mic aspects of the type inference, Jensen’s contribution was on the logical aspects 
via Stone duality. He enriched the type system by introducing operators, such as 
conjunction, and he proved that, as far as strictness is concerned, both methods 
are equally powerful. Furthermore, in [29] he considered a system of disjunctive 
types to develop a logic for strictness analysis. From this he obtained a disjunc
tive abstract interpretation. Both works are about the simply-typed A-calculus. A 
more general and detailed account of the relationship between abstract interpreta
tion and logic-based methods for program analysis is given in his thesis [30]. Benton 
[7] has also investigated strictness analysis by type-inference, and has proved that 
the analysis is polymorphically invariant. He also studied polymorphic invariance 
of higher-order properties. An example is the property of mapping strict functions 
to strict functions. It may not make sense to ask if every instance of a polymorphic 
function has this property. For instance, all instances of the identity function where 
it makes sense to ask such a question have the property. But, there are instances, 
and the simplest instance of the identity function is an example, where this doesn’t 
apply.

In abstract interpretation, expensive computations have to be performed. To find 
fixed points of functions, iterations and tests for equality of functions at each it
erative step have to be done. It is, therefore, claimed in [32] that the strictness 
analysis by type-inference is more efficient. This is partly because it is hoped that 
much that has been done in developing efficient type checkers will also apply to this 
analysis. However, carrying the sets of constraints around and checking if a type sat
isfies several constraints is likely to introduce inefficiency. We have not yet seen any 
reported results of experiments comparing the efficiency of abstract interpretation 
and type-inference.
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Som e M athem atical Structures

In this chapter we introduce definitions and properties of some mathematical struc
tures that are used in the thesis. All these structures are fairly standard and may 
be found, for example, in Plotkin [41].

2.1 P artia l Orders

A binary relation C on a set D is called a partial order, if the relation is :

• reflexive, i.e, V# £ D : x Q x

•  transitive, i.e, 'ix^y^z £ D : if x C y and y Q z then x Q  z

• antisymmetric, i.e, Vz, y £ D : li x Q y  and y C x then x = y

We call (Z), C) (or just D ) a partially ordered set.

Let X  be a subset of a partially ordered set D and a £ D, a is an upper bound of 
X  if x Q a for all x £ X .  If on the other hand, a C x for all x £ X  then a is 
called a lower bound of X .  An upper bound a of X is called a least upper bound 
(or supremum or simply sup) of X  if a C b for all upper bounds b of X . Similarly, 
a lower bound a of X  is a greatest lower bound (or infimum or simply inf) of X  if

24
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b C a for all lower bounds 6  of X .  Least upper bounds and greatest lower bounds 
are unique when they exist. This is a consequence of antisymmetry in the definition 
of partial order. The least upper bound and greatest lower bound of a set X  are 
denoted by [JX  and \~\X respectively.

A non-empty subset X  of a partially ordered set D is called a directed set if for every 
a, 6  € X  there is a c £ X  such that a C c and b C c. That is, every two-element 
subset of X  has an upper bound in X .  Equivalently, a set X  is directed if every 
finite subset has an upper bound in X .  A partially ordered set is said to be complete 
(or a cpo) if it has a least element (which is unique and usually denoted by _L) and 
every directed set has a least upper bound. The least upper bound of a directed set 
is not necessarily an element of the set.

Let D and E  be epos and /  be a function from D to E. f  is said to be continuous 
if for every sequence {zn} in D with X\ C X2 C # 3  C . . . (such a sequence is called 
a chain) we have

/ ( L M  =  U /(*•■)

It is simple to observe that continuity implies monotonicity. That is, whenever x C. y 
we have f (x )  C f(y ) .

Normally, continuity is defined in terms of directed sets rather than chains. However, 
in the structures which we use in this thesis, the two definitions are equivalent.

A complete partial order where all sets with upper bounds have least upper bounds 
is said to be consistently complete. An element a of a cpo D is called finite if for 
any directed set X  : a C \_\X implies that there is an x 6  X  such that a C x. A 
cpo where for every x, {e | e C x and e is finite } is directed and x =  U{e | e C x 
and e is finite } is called algebraic. Algebraic epos where the set of finite elements is 
countable are called u-algebraic. A Scott domain (which we will simply call domain 
from now on) is a consistently complete cj-algebraic cpo.
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2.2 C onstructions

There are many ways of building new epos out of a given class of epos. In this 
section two examples of constructions are given.

(i) If {Di | i G 1} is a family of epos, then the product

n  Di
iei

is defined to be the set of all objects where for each t, a; € A* Thus, 
these objects may be viewed as function. That is the product may also be 
defined as

{ /  : I  |J Di | Vi € I : /(*) € A }
iei

An ordering can be defined on the product by letting a C b if and only if for 
every i we have a* C &,• in D{. It can be shown that this ordering turns the 
product into a partially ordered set that is complete. If I  is a finite set, say 
{1 , 2 , ...,n}, then the product is usually denoted by A  x D2 x ... x Dn.

(ii) If D and E  are epos then the set of all continuous functions from D to E  is 
denoted by D —Y E. The ordering, where /  C g if and only if f(a )  C g(a) for 
all a 6  D, is a complete partial order. This set is called the function space.

2.3 Scott T opology and Pow erdom ains

Let D be a non-empty set. A collection of subsets, H, of D that contains both D 
and 0 , and that is closed under arbitrary unions and finite intersections is called 
a topology on D. We also say that (D,Q) is a topological space. Elements of the 
topology are called open sets. Complements of open sets are called closed sets. A 
collection B of open subsets of D is called a base for the topology ft if every element 
of fi is a union of some elements of B. Clearly Q itself is a base, but normally the 
bases of interest are the ones that are minimal in some sense.
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Although continuity of functions between epos was already defined, continuity is 
a topological concept. If (D i,O i) and (D2,£l2) are two topological spaces and /  : 
D\ —>■ D 2 is a function, then /  is said to be continuous if for every open set O in 
D2, / - 1 (0 )  is open in D\. That is, the inverse image of an open set is open.

We will consider topologies that arise out of domains. Let D be a domain and 
be the collection of subsets O of D that axe upwards closed, Le, for all x E O and 
y € D, if x C y then y £ O, and moreover when 5  is a directed subset of D with 
LJ^ in O we have S  f | O ^  0. It is not difficult to show that fI is indeed a topology 
on D. It is called the Scott topology on D. Moreover, functions that are continuous 
between domains are also continuous in the topological sense and vice-versa.

Let D be a domain. For every a € D, define a^ and a} by :

a* =  {x  € D | a C x]

a^ =  {x £ D | x C a}

a1" and od are respectively called the upward closure and downward closure of {a} 
(sometimes the notation {u}^ and {a}^ are respectively used instead of the above 
two). If {0 1 , 0 2 , ■••} is the set of finite elements of D then each a} is open and 
moreover every open set O is a union of such open sets. Hence, these special open 
sets form a base for the Scott topology. They are referred to as basic open sets. An 
element a of D is finite if and only if at is open; thus obtaining a characterisation 
of finiteness. However, there is no way of describing all closed sets in terms of the 
af’s, though a^ is itself closed for any a.

Given some ordering, which is not necessarily complete, on a set D , there are several 
ways of defining orderings on the powerset (the set of all subsets) of D. Then 
by introducing some identifications, domains that are subsets of the powerset are 
obtained. Such domains axe called powerdomains. Fox our purposes we simply start 
with a domain D and consider some subsets of the powerset that form domains, 
without trying to define general constructions.

The Smyth powerdomain of a domain £), with {ai, a2, ...} as its set of finite elements,
is the domain whose finite elements are finite unions of basic open sets of D. The
ordering is the superset ordering. Thus a typical element of the powerdomain is
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a (set-theoretic) intersection of a decreasing chain of such elements. On the other 
hand, the Hoare powerdomain is a domain whose finite elements are finite unions of 
downward closure of finite elements of D. The ordering is the subset ordering. Any 
element of this powerdomain is a (set-theoretic) union of an increasing chain of such 
sets.

2.4 C om plete L attices and F ixed  P oints

A lattice is a partially ordered set where every finite subset has both a least upper 
bound and a greatest lower bound. It is said to be complete if every subset has 
both a least upper bound and a greatest lower bound. Thus a complete lattice A  
has both a least element (_L =  f ]^ )  and a largest element (T =  U ^)- Clearly a 
complete lattice is a cpo. An element a of a lattice is said to be meet-irreducible, if 
a =  b n  c implies that a = b or a — c. It is called join-irreducible if a =  b U c implies 
that a =  b or a =  c.

Tarski [49] proved that any monotonic function /  from a complete lattice A  into 
itself has a fixed point, i.e, there is an a € A  such that f(a )  =  a. Moreover, the set 
of all fixed points is again a complete lattice.

The structures commonly used in the semantics of programming languages are not 
complete lattices but some kind of partial orders, and continuous functions on them. 
Continuous functions on epos also have fixed points. Normally we are interested in 
least fixed points, and it is easy to show that for any continuous function /  from a 
cpo to itself

U r wn6 u/

is the least fixed point of / .  Here uj is the set of natural numbers {0,1,2,...} , f °  is 
the identity function, and for each positive integer n, f n = f  o / n_1.
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2.5 C ategories

D efin ition  2.5.1 A category K is a structure defined by the following set of data
and properties.

(i) We have a collection Obj()C) of objects.

(a) For every pair of objects A and B  in Obj(K), there is a set Homjc(A, B), 
called the set of morphisms from A to B.

(Hi) Given f  E Homjc(A, B) and g E Homjc(B,C), we may form the composite 
g o f  E Homtc{A,C).

(iv) For every object A  there is a morphism idA € Homic{A,A), called the identity 
morphism.

(v) The composition defined in (iii) is associative.

(vi) For every f  E Homic(A, B), we have f  o idA =  /  and ids ° f  = f

E xam ples

(i) The collection of sets forms a category, where sets are objects, functions are
morphisms, and ordinary function composition is the composition and the 
identity function is the identity morphism.

(ii) The collection of partially ordered sets forms a category, where the objects are 
partially ordered sets and the morphisms are continuous functions.

(iii) The collection of domains forms a category where domains are objects, con
tinuous functions are morphisms, ordinary function composition becomes the 
composition of morphisms and the identity function becomes the identity mor
phism.

Given a category /C, its opposite category K op is defined to be the category with the
same objects as /C, and for every pair of objects A  and B, f  E Hom)c°p(A, B) if
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and only if /  £ Homic(B,A). Now it is easy to see how the composition should be 
defined, and then verifying that JCop is indeed a category is also easy.

Let C and V  be two categories. Then the product category, C x V,  is the category 
whose objects are pairs of the form [A, B) where A  and B  are objects of C and T>
respectively. A morphism between (A, B)  and (C, D) will be of the form ( / ,  g) where
/  and g are morphisms from A  to C and from B  to D respectively. Composition of 
morphisms is done component-wise. If for any positive integer n we have categories 
Ci, ...,Cn, then we can define their product in a similar way.

D efinition 2.5.2 A functor F  from a category C to a category V  is a mapping that 
maps objects ofC to objects o fD , and for every pair of objects A  and B  in the cat
egory C, F  maps every morphism f  £ Homc(A, B) to F( f )  £ H om v(F(A), F(B))  
and satisfies the following conditions

F(idA) =  idp(A) for every object A  £ Obj(C), and 

B(g o f )  =  F(g) o F( f )  whenever g o /  is defined in C

Such functors are called covariant functors. If instead of the second condition above, 
F  satisfies the condition : F(g  o / )  =  F( f )  o F(g), then F  is called a contravariant 
functor.

D efinition 2.5.3 Let F  and G be two functors from the category C to the category 
T>. Let {/a} be a collection of morphisms indexed by the objects of the category C, 
with each Ja G Homv{F(A), G(Aj). Such a collection is called a natural transfor
mation from F  to G if for every pair of objects A and B  in the category C, and any 
morphism h £ Homc(A, B) we have

f s o F { h )  =  G ( h ) o f A



C hapter 3

Lax N atural Transform ations

In this chapter the main theoretical results which will be used in the remainder 
of the thesis are introduced. To do this, we define a category which we shall call 
the category of domains and embedding-closure pairs. We concentrate on a certain 
class of collections of functions satisfying a condition weaker than naturality. These 
will be used in the following chapters in investigating some semantic properties 
of polymorphic functions. Moreover, we study the category of finite lattices and 
embedding-closure pairs in detail. This category will be very useful in Chapters 
6 , 7, and 8 , where we establish a relationship between the abstract interpretation 
of different instances of any polymorphic function. The category of domains and 
embedding-projection pairs is also studied here; it is actually a category that has 
been used elsewhere, for example by Coquand et al [15].

From this point on, C will denote the category of domains and continuous functions.

3.1 E m bedding-C losure Pairs

Consider the category Cec whose objects are the same as that of C, and with mor
phisms of the form (e, c) : A  —>ec B, where e : A  —»■ B  and c : B  -> A  are morphisms 
in C satisfying the conditions

Coe =  id and e o c □ id

31
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We shall call any such pair of continuous functions an embedding-closure pair. The 
set of embedding-closure pairs from A  to B , i.e, Homc^(A, B), will be denoted by
A —>ec B. If (ei, ci) and (e2 , c2) are morphisms in A  ->ec B  and B  —¥ec C respectively,
then their composition (e2, c2) o (ei, Ci) : A  —>ecC is defined as (e2 o ei, cx o c2). It is 
trivial to check that this is indeed a morphism. Cec is called the category of domains 
and embedding-closure pairs. If (e, c) is a morphism, we shall call e an embedding 
and c a closure. For any morphism f  in A  —>ec B  we write /  =  ( / e, / c), where f e is 
the embedding and f c is the closure.

Rem arks

If h and k  are morphisms in A —>ec B  then

• he o hc is a closure on B, in the sense used by Scott in [45].
This is because

(he o hc) o (he o hc) =  he o (hc o he) o hc 

= he o hC

and by definition he oh° □ id

• he is one-to-one and hc is strict and onto.
To see this, suppose he(x) =  he(y). Then applying hc to both sides of the equa
tion, we obtain x = y, which means that he is one-to-one. Since hc(he(L)) = JL, 
we must have that hc(.L) =  J_, and hence hc is strict. To show that hc is onto, 
assume that x  6  A. Let y = he(x). Then hc(y) = hc(h€(x)) =  x. Thus, hc is 
onto.

• he is _L-reflecting, z.e, he(a) = ±  a =  ± .
This is because he(.L) C he(a) and he is one-to-one.

• he C ke if and only if hc □ k°, and also he is uniquely determined by hc and 
vice versa.
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3.1.1 Functors on (Cec) n

Since we want to model type constructions by functors, it is sufficient to consider 
a certain inductively defined class of functors. We call such functors type functors. 
These include the identity functor Id  and constant functors. Using a notation similar 
to Abramsky’s [2 ], corresponding to product and function space constructors the 
mappings x and —> are defined as follows.

(i) x : Cec x Cec Cec

x (A ,B )  = A x  B  

x( / ,p )  =  (f e x 9eJ c x g c)

(ii) Cec x Cec -> Cec

-> (A ,£ )  =  A - + B

( / >  9) = (M .ge oh ofc, A h.g° o h o f e)

Here, A x  B  denotes the product of A  and B  in C, and A B  denotes the space of 
continuous functions from A  to B. We shall write /  —»■ g for —y (/,<?). In general, 
corresponding to type constructors that involve n type variables a functor from 
(Cec)n to Cec is defined.

For any type functor F defined in this way there are two functors
F e . ( £ e c ) n  £  a n d  p c  . ^ e c j n  £ o p

which act like F on objects. On morphisms, Fe selects the embedding component 
of F(h), and F° selects the closure. That is, for any morphism h Fe(h) = (F(h))e 
and Fc(h) =  ( F(h))c. In much of the discussion that follows we consider the case 
n =  1 . That is, we concentrate on functors defined on Cec.

It is possible to introduce an ordering on A —>ec B  by letting /  C g whenever / e C ge. 
Thus, it makes sense to talk about monotonicity of functors. For example, we have 
the following proposition about the function type functor.



CHAPTER 3. L A X  NATURAL TRANSFORMATIONS 34

Proposition 3.1.1 Suppose F  is the functor — Then the functors F e and F c are 
monotonic in their second and first argument respectively. On the other hand, they 
are anti-monotonic with respect to their first and second argument respectively.

We omit the proof because it is very easy.

For any type functors F  and G, we define the type functors F  x G and F  —>• G by

(i) (F  x  G)(A) = F(A)  x G{A)

( F x G ) { h )  = ( ( F e x Ge)(h),(Fc x Gc)(h))

(ii) (F  —>• G)(A) = F(A)  —»• G(A)

(F  —> G)(h) = {Xk.Ge{ h ) o k o F c(h),Xk.Gc{ h ) o k o F e(h))

3.1.2 Lax Natural Transformations between Functors

D efinition 3.1.1 Let F  and G be functors on Cec and f  be a family { / a }  of con
tinuous functions indexed by domains and '• F(A)  —>■ G(A). We say that f  is a 
lax natural transformation from F  to G, if for any morphism h : A —>ec B  we have

Gc( h ) 0f B C f A o F \h )

We call / a  a component or an instance of the lax natural transformation.

Rem arks

• It is important to observe that each f A is a continuous function, not an 
embedding-closure pair.

• It is not difficult to see that the inequality in the definition above is equivalent 
to

S b  0 F e{h) C Ge{ h ) o fA
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F(A) J a G(A)

h F e(h) G‘(h)

B F(B) / b
G(B)

•  The definition easily generalises to lax natural transformations between func
tors which have more than one argument.

Although the definition of lax natural transformations may be given by one of the 
two equivalent ways, when natural transformations are considered, it is important 
to note that the statements f B <> F e(h) = Ge(h) o / a and Gc(h) of}3  = f a ° F c(h) 
are not equivalent. To see this, we consider the following example.

• Suppose F(A)  =  A  —> A  and G(A) = A. If Ya denotes the fixed point opera
tor, {Ya } is a lax natural transformation from F  to G. For any h : A  —>ec B, 
it is not difficult to show that

YB o F e{h) = Ge{h)oY A 
On the other hand, consider the case where A = 2  and B = {a, 6 , c}, with 
a C 6  C c. Define h : A  —>-ec B  and f  : B  —¥ B  such that he(0) =  b 
and he( 1 ) =  c (it is not difficult to find hc from this), and f(a )  = a and 
f(b) = f(c) = c. Now, Gc(h)(YB(f))  = 0 and YA(F c(h)(f)) = 1. Therefore,

Gc{h) 0 Yb ^  YA o F c(h)

Before the end of this chapter, we will encounter an example of a lax natural transfor
mation which is a natural transformation when the closures are used as morphisms, 
but not with embeddings.

Note also that using the embedding parts, we axe describing naturality from F e to 
Ge, which are functors from Cec to C, whereas in the other case it describes naturality 
from Gc to F° which are functors from Cec to Cop.
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A G(A) f A F(A)

h Gc{h) F c(h)

B G(B) / b
F(B)

This figure is about morphisms in C°v. If we reverse the four arrows in order to read 
it in C, the resulting inequality is exactly the one given in the definition of a lax 
natural transformation above.

3.2 F in ite  L attices and E m bedding-C losure Pairs

When doing strictness analysis, calculation is performed on finite lattices. These 
are complete and moreover they are domains. Therefore, we study the category A ec 
of finite lattices as a subcategory of Cec more closely. Of special interest will be the 
morphisms from the two-element domain 2 to other finite lattices and their images 
under the various functors.

D efin ition  3.2.1 Let A be a finite lattice and a £ A  be different from the top 
element T a of A. The functions hea : 2  —> A and hca : A  —> 2 are defined by

i e/ \  \ a if £ =  0  , i c / \ f 0  if x \Z a
*•<*> = 1 T ,  if x =  1  and = {  1  otherwise

It is now simple to show that h = {hea, h^) is a morphism in 2  -»ec A. Moreover, every 
morphism in 2  —>ec A  has this form. This is because if ( /,  g) is such a morphism, 
then letting a =  / ( 0 ) it is easy to show that ( f ,g)  = (hea,h ca).

Our aim is to establish certain relationships between different components or in
stances of lax natural transformations. In particular, we would like to express the 
components corresponding to big lattices in terms of those of the smaller ones.
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We now come to a very important theorem about lax natural transformations in the 
category of finite lattices and embedding-closure pairs. It provides an approximation 
to a component of a lax natural transformation corresponding to any finite lattice 
from the component corresponding to the lattice 2 .

T h e o rem  3.2.1 I f  f  is a lax natural transformation from the functor F  to the 
functor G, and A is any finite lattice then we have

f A Q r\aGe(ha) 0f 2 o F c(ha) 

where a ranges over the non-top elements of A.

P ro o f
Let h be any morphism in 2 —>ec A. Then,

f A o F e(h) C Ge( h ) o f 2
=► f A o F e(h) o F c(h) C Ge(h) o f 2 o F c{h)
=* f A C Ge(h) o f 2 o F c(h)

Since h is arbitrary and is of the form ha for some a, we have

f A Q r\aGe(ha) o f 2 o F c(ha)

□

Thus, from f 2 we obtain an approximate value to fa. The greatest lower bound in 
the theorem is taken over n — 1 values, where n is the size of the lattice A, that is, 
the number of a ’s that are allowed in forming ha. For a certain class of functors, 
some optimisations that cut down the number of functions involved exist. We will 
be more precise about these matters later.

If F  and G are functors with n parameters, the theorem above would be that for 
finite lattices A i,..., A n

f Ai...An E

where the greatest lower bound is taken over all possible n-tuples of morphisms 
(h i , ..., hn) with hi : 2 ->ec Az- for each i.
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3.2.1 First-Order Type Functors

Type functors that do not involve the function space functor —> will be referred to 
as first-order type functors. We now state and prove a number of properties of such 
functors and lax natural transformations between them.

P ro p o s itio n  3.2.1 I f  F  is a first-order type functor then F e is monotonic and F° 
is anti-monotonic. That is, if  h and k are embedding-closure pairs in A  —>-ec B, then 
whenever he C ke we have F e{h) C F e(k) and F c(h) □ F c(k).

The proof is straightforward.

P ro p o s itio n  3.2.2 Let F  be a first-order type functor. Let A be a finite lattice with 
a, b € A. Suppose k : 2  —>ecA  is a morphism. Then

(i) F e(hanb) = F e(ha) n  F e(hb) and F°(harib) = F c(ha) U F c(hb)

(ii) F e(k) is distributive over both U and n, and F°(k) 
is distributive over U

P ro o f
We will use induction on the structure of the functors.

(i) In the cases where F  =  Id  or F  is a constant functor it is trivial to show that
the properties hold. Suppose F  =  G x H  and assume that the properties hold 
for G and H. Then,

F e{hanb) = Ge(hanb) x H e{hanb)

= (Ge(ha) n Ge{hb)) x (H e(ha) n H e{hb))

= (Ge(ha) x H e{ha)) n (Ge{hb) x H e(hb))

= F e{ha) n F e(hb)

Replacing, where appropriate, e and n by c and U respectively in the above 
proof gives a proof of the second statement.
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(ii) Again, the cases where F = Id  or F  is a constant functor are trivial. Suppose 
F  =  G x H  and assume that the properties hold for G and H. Let x ,y  £ 
F ( 2 ).Then,

F e(k)(x U y) =  Ge(k)(x U y) x H e(k)(x U y)

=  (GT(k)(z) U <?(*)(»)) x  (H°(k)(x) U H ‘(k)(y))

= (G-(fc) x  H ‘(k))(x) U (G‘(k) x  H ‘(k))(y)

=  F'(k){x)  U F'(k)(y)

The other statements can also be proved in a similar way.

□

To see why F c(k) does not in general distribute over n, consider the case where 
F  = Id  and 6  2  - * e c ( 2  x 2 ) is the embedding-closure pair (fce, kc), where for each 
x, ke(x) =  (a:,#). Now, k° maps (0,0) to 0 and the rest to 1. Letting a =  (0,1) 
and 6  =  (1,0) we have F c(k)(a n  6 ) =  0, but F c(k)(a) FI F°(k)(b) = 1.

We now prove a property of natural transformations between first-order type func
tors. Before stating the property we prove the following lemmas. The finite lattice 
A  used in the following lemmas and the proposition is assumed to have more than 
one elements.

Lem m a 3.2.1 Let A be a finite lattice. Then,

I”\ahea ohca = idA

P ro o f
Let a ^  T a - Then /&®(0) =  a and hca(a) =  0, and hence (hea o hl)(a) = a. Moreover, 
(hi o h l ) (T a ) = T a - By definition hi ° h°a □ idA• From this it easy to observe that 
the statement holds. (NB. In oreder for the h„’s to be defined A  must have more 
than one element.) □

L em m a 3.2.2 Let F be a first-order functor and A be a finite lattice. Then 

f]aF°(ha) o F*(ha) = idF{A)
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P ro o f
The proof is given by induction on the structure of F.

(i) If F  = Id  then F e(ha) o F c(ha) =  hea o and hence the statement follows 
from the previous lemma.

(ii) If F  is a constant functor then for every h , F(h) =  id (the identity pair). 
Therefore, F e(h) o F c(h) = idp(A) (the identity function on F(A))  and hence 
the statement holds.

(iii) Suppose F  =  G x H.

11  a{ G x H ) e(ha) o { G x H ) c{ha)

= Ua((Ge(ha) o Gc(ha)) x (H e(ha) o H c(ha)))

= ( n aGe(ha) o GC(ha), flaH e(ha) o H C(ha))

= {idG(A),idH(A))
=  id(GxH)(A)
= idp{A)

□

We consider the case of natural transformations between first-order type functors. 
Here, the naturality that is considered involves the closures.

P ro p o sitio n  3.2.3 Let F  and G be first-order type functors and Abe a finite lattice. 
I f f  is a natural transformation from F  to G then

Sa =  n aGe(ha) ,  f 2 > F%ha) 

where a ranges over all non-top elements of A.

P ro o f
Since /  is a natural transformation, for any a in A we have

Gc(ha) o f A = / 2 o F°(ha)
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This implies

Ge(ha) o Gc(ha) o f A = Ge(ha) o / 2 o F c(ha)

since a is arbitrary

[~\aGe(ha) o Gc(ha) o f A =  \~\aGe(ha) o f 2 o F c(ha) 

But, from the preceding lemma we have

f]aGe(ha) o G C(ha) = idG(A)

and hence,

fA =  r\aGe(ha) o f 2 o F C(ha)

□

The following proposition is used to reduce the number of functions involved in the 
computation of the greatest lower bound.

P ro p o sitio n  3.2.4 Let F  and G be first-order type functors and f  be a lax natural 
transformation from F to G. I f  a and b are elements of a finite lattice A  then

Ge{ha) o h  o F \ K )  n G \ h j ) . / j  o Fc(hb) c  G'(hanb) .  h  o F%K„b)

P ro o f
Since the functors are first-order, we have

G 'i K nb) o h  » F%hanb) = (G‘{ K ) n Ge(hb)) o f 2 O F '{ K rt)

=  G'(ha) O h  • F \ h â )  n Ge(hb) o f 2 o F c(hanb)

3  G‘(ha) o f 2 o F \ h a) n Ge{hb) » f 2 o F ‘(hb)

□

We now have the following corollary.
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C o ro lla ry  3.2.1 I f  F ,G , f  and A are as in preceding proposition then

UaGe{ha) o / a oFc(ha) = UtGe(ht)of2oFc(ht)

where a ranges over elements of A - { T a }, and t is restricted to the meet-irreducible 
ones.

The consequence of this corollary is that the computation of the greatest lower bound 
of the functions can be made efficient by using only those which correspond to the 
meet-irreducible elements. In the case where A  is a chain, there is no improvement 
because all elements are meet-irreducible.

3.2.2 Some Special Transformations

Later, we will use the collections {L_U} and {>a} of functions indexed by finite 
lattices A. The function UA is the usual least upper bound operation on the lattice 
A. The function >yi: 2  x A -> A is defined by

( v f _L x =  0

Clearly both l_U and t>A are continuous functions. Moreover, both the collections 
{l_U} and {>>i} form lax natural transformations. To see this consider a morphism 
h : A  -»ec B  between the finite lattices A  and B. For all x ,y  E A, using infix 
notation, it is easy to show that

he(x) UB he(y) C he(x UA y)

Hence, {l_U} is a lax natural transformation from the functor Id  x Id  to the identity 
functor Id. The above inequality cannot, in general, be replaced by equality; there 
are examples for which equality does not hold. On the other hand, the condition is 
equivalent to

hc oUB E LU o (hc x hc)
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However, we also know that

hc oUb 3  U^o (hc x hc)

Therefore,

h° o Ujg =  l_U o (hc x hc)

Hence {L-U} is a natural transformation when one uses the closure components as 
morphisms.

Also, again using infix notation, for any x ,y  E A, we have

id(x) >b he(y) C he(x >A V)

Hence {>a} is a lax natural transformation from F  x Id  to Id , where F  is the 
constant functor returning 2. If x =  J_ then we have _L on the left hand side, and 
he(±.) on the right. Thus, equality does not hold in general; in particular, if we 
choose h such that he is not strict. On the other hand, it can also be shown that

hc o >b =  I>A 0 {id x hc)

Therefore, {t>^} is also a natural transformation when we use the closure compo
nents as morphisms.

3.3 E m beddin g-P rojection  Pairs

The category of domains and embedding-projection pairs, Cep, is defined to be the 
category whose objects are domains and the morphisms are of the form (e,p) : 
A  —Yep B  where both e : A —t B  and p : B  —> A  are continuous functions satisfying

p  o e =  id and e o p  C id

We call e an embedding and p a projection. We denote the set of all embedding- 
projection pairs from A  to B  by A —t ep B. If (ei,pi) and (e2 ,P2 ) are morphisms in 
A —±epB  and B  —>epC respectively, then their composition (e2 ,p 2 ) 0 (ei>Pi) • A —Yep
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C is defined to be the pair (e2 o ei,pi o p2). For any morphism /  in A  —>ep B  we 
will write /  =  ( / e, / p), where f e is the embedding and f p is the projection. This 
category has been studied and used extensively in foundational issues in domain 
theory, and in particular for describing a semantics of the polymorphic A-calculus 
by Coquand et al [15].

Rem arks

If k and / are morphisms in A  —>ep B  then

• ke o kp is a projection on B, in the sense used by Scott in [45].

• ke is one-to-one and kp is onto.

• both ke and kp are strict.

• since ke is one-to-one and strict, ke is _L-reflecting.

• ke □ le if and only if kp C /p, and hence ke is uniquely determined by kp and 
vice-versa.

3.3.1 Functors on (Cep) n

Here, as for (Cec)n, type constructions involving n type variables may be modelled by 
functors from (Cep)n to Cep. The definitions of the functors x and — for example, 
can be given in a similar way; all we have to do is replace the c, wherever it occurs 
as a superscript in the earlier section, by p. The definition of the other functors are 
also given in a similar way.

3.3.2 Lax Natural Transformations between Functors on
(Cep) n

D efinition 3.3.1 Let F  and G be functors and f  be a family { /a} of continuous 
functions indexed by domains and fA : F{A) —> G(A). We say that f  is a lax natural
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transformation from F to G if for every morphism k : A  —±epB  we have

Gp( k ) o f B □ f A o F p(k)

It is easy to show that the inequality above is equivalent to

/ s . F ' W  3  Ge( k ) o f A

However, as before naturality in terms of the embeddings is not equivalent to natu- 
rality in terms of the projections.

3.4  F in ite  L attices and E m bedding-P rojection  
Pairs

The category of finite lattices and embedding-projection pairs A ep is a subcategory 
of Cep. The morphisms from 2  to any finite lattice my be given by the following 
definition.

D efin ition  3.4.1 Let A  be a finite lattice, and let a € A be different from l .A. The 
continuous functions k% : 2  —»■ A and kp : A  —> 2 are defined by

Clearly (k ^ k p) is an embedding-projection pair, and moreover every embedding- 
projection pair from 2  to A is of this form. Furthermore, we state the following 
proposition which is not difficult to prove.

P ro p o sitio n  3.4.1 For any finite lattice A, we have

U K ° K  = idA
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We now come to a theorem which relates any component, of a lax natural transfor
mation, corresponding to a finite lattice with the component which corresponds to 
2 .

T h e o rem  3.4.1 I f  f  is a lax natural transformation between the functors F  and G, 
and A is any finite lattice then we have :

f A  3
a

where a ranges over the non-bottom elements of A.

The proof is straightforward.

Again from / 2  we get an approximate value to fA from below. The least upper 
bound is taken over n — 1  functions, where n is the size of A.

3.4.1 First-Order Type Functors

For natural transformations between first-order type functors, the theorem above 
could be strengthened; in fact we have an equality. We first give a lemma that may 
be used in its proof.

L em m a 3.4.1 Let F  be a first-order type functor and A be a finite lattice. Then

=  ^ A )
a

Here again, a ranges over non-bottom elements of A.

Next, the case of natural transformations between first-order type functors are con
sidered. The naturality used here is the one that involves the projections.

P ro p o sitio n  3.4.2 Let F  and G be first-order type functors and Abe a finite lattice. 
I f  f  is a natural transformation from F  to G then

f A  = U G ° ( k a )  ‘  h  ° F > ( k a )
a

where a ranges over all non-bottom elements of A.
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It can be shown that in this proposition, the least upper bound may be taken over 
a ’s that are join-irreducible. Thus, in the case where A  is not a chain, we have a 
cheaper way of computing it.

3.4.2 A Special Transformation

We will need the collection {l""U} of continuous functions indexed by finite lattices 
later, where l”U is the usual meet operation on the finite lattice A. It is a lax natural 
transformation from the functor Id  x Id  to Id. To show this consider any morphism 
k : A  —>ep B  between finite lattices A  and B. Let x ,y  6  B. Using the infix notation,

kp(x \1B y)  3  kp(ke(kp(x)) n B ke(kp(y))) 

□  kp(ke(kp( x ) n A kp(y)))  

=  kp( x ) n A kp(y)

Hence, it is a lax natural transformation. On the other hand,

kp(x \1B y) Q kp(x) n A kp(y)

Therefore, kp distributes over n B and hence the collection is a natural transformation 
when projections are used as morphisms. It can be shown that ke also distributes 
over I \A. Therefore, the collection is also a natural transformation if we use the 
embeddings as morphisms.

We will see how to apply these results in the course of the next few chapters.
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Sem antics o f  a Polym orphic  
Language

In this chapter we introduce a polymorphic language that will be used in later 
chapters to illustrate our work on abstract interpretation of polymorphic functions. 
A semantics for this language is also presented. In this semantics any polymorphic 
function is viewed as a collection of functions where each function in the collection 
is the semantics of some instance of the polymorphic function. In Chapter 5, a 
relationship between the semantics of different instances of any polymorphic function 
is established.

4.1 In troduction

There are two commonly used forms of polymorphism in programming languages. 
One arises from the Hindley-Milner type system [35] found in languages such as ML 
and Miranda^ [5 9 ], Normally, expressions in programs are untyped and their types 
are inferred at compile-time. Girard [17] and Reynolds [42] independently devel
oped a calculus of the second form of polymorphism where types appear explicitly 
in expressions. In this explicitly typed system type-checking is done at compile
time to ensure that the type of every expression conforms with the typing rules.

t Miranda is a trademark of Research Software Limited.

48
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The important difference between the two forms of polymorphism comes from the 
definition of types used in both systems and from the rules used in assigning types 
to expressions. We will see this more clearly in the next section.

Extensive work has been done, and still continues to be done, on compilers for lan
guages with the Hindley-Milner type system. Moreover such compilers are widely 
available. We will therefore concentrate on languages with the Hindley-Milner type 
system. It is also the case that the semantics of such languages is easier to de
scribe. However, in order to use type information for various program analyses, it is 
preferable to work with explicitly typed languages. This should not be regarded as 
a restriction because types of expressions can be obtained by inference at compile
time. A good example of such a language is Core-XML, a language introduced by 
Mitchell and Harper in [36]. Core-XML is an explicitly typed fragment of Standard 
ML.

First we define an explicitly typed language similar to Core-XML. The difference 
is that it has the fixed-point operator f ix ,  a pairing operation < , >, and some 
more operations. Mitchell and Harper point out that Core-XML has classical set- 
theoretic models, and Ohori [39] actually describes such a model. The semantics 
provided here uses domains instead of sets so that f ix  can be assigned a meaning.

4.2 Syntax

4.2.1 Type Expressions

We assume that there are some base types, the type of integers in t and the type of 
booleans bool are among them. We use 6  to denote any base type. There are two 
classes of types, and the first is that of types defined by the grammar

t ::= t | 6 | r x r | r —Y t 
where t stands for type variables. Types ranged over by r  and not containing type 
variables are called monotypes.

The second class is given by
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ct ::= r | Vt.cr
Types ranged over by a  are called type-schemes and types of the form Vt.a are called
polytypes. We shall write Vti...tfn .<7 for Free and bound type variables,
and the substitution of a type for a free type variable t in the type a2
are defined in the usual way.

It is important to observe that here every polytype a is of the form \/ti...tn.r and 
hence type-schemes are not closed under x o r - ) .  For example,
(Vt.t -»•£)-* (Vt.t —>■ t) is not a type in this system. On the other hand, the types 
used by Girard and Reynolds may be given by the single definition

f ::= < I M £ x f I f -> £ I vt.f
Therefore, they axe closed under both x and —

4.2.2 Terms

The language we are interested in is an extension of Core-XML. The pre-terms of 
the language are given by the following grammar.

E  ::= x | c \ Xx : r .E  \ (E E) | i f  r  E E E  | f i x  r  E

| < E, E > | f  s t  r  x r  E  | snd r  x r  E

| l e t  x : a = E  in  E \ At .E  | E[t]

Not all expressions defined in this way are terms of the language. Only well-typed 
terms are permitted. It is therefore necessary to provide typing rules to decide if a 
term is well-typed and hence legal. Free and bound (term) variables are defined in 
the usual way. The expression is used to denote the term that is obtained
by substituting Ei for the free occurrences of x in E 2 .

A type variable t is said to be free in an expression E, if it is free in any of the 
types occurring in E. The substitution E 2 [r/t] is defined as the expression that is
obtained by substituting r  for the free occurrences of t. It is not necessary to define
E2 [c / 1] for arbitrary a (and hence possibly belonging to the second class of types) 
because such expressions never arise in the process of evaluation of terms.
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The most significant difference of this language from the simply-typed A-calculus is 
that here there are type abstraction and type application. Moreover, l e t  provides a 
restricted version of binding a variable with a polytype. On the other hand, it is very 
important to note that the type r  in the abstraction Xx : r.E  and the application 
E[r] is not a polytype. In the second-order A-calculus, the calculus developed by 
Girard and by Reynolds, there is no such restriction. It is this generality which 
makes the description of the semantics of this calculus very complicated.

4.2.3 Type Checking Rules

We introduce some notation for typing rules. A statement which expresses that 
a term E  has a type cr is written as E \ a. The type of a term depends on the 
types of the free term variables occurring in it. Thus, a statement of the form 
E  : a  is made under a type assumption (or type assignment), which is an association 
of term variables with types. More precisely, a type assumption T is a partial 
function from the set of term variables to types. It may also be expressed as a set 
{x\  : <7i, . . . ,xn : <jn}. If x is not in the domain of T (written dom(T)), we shall write 
T, x : cr for T U {x  : cr}.

We write the formula T b E : a to say that E  has the type cr under the type 
assumption I \  We assume that for each constant c we have a rule 
{} h c : cr for some type cr. The type rules are given in Figure 4.1.
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(VAR) r , x  : <7 h x : a

(ABS)

(APP)

(PROD)

(PROJ)

(TABS)

(TAPP)

(LET)

(COND)

(FIX)

r ,  x : r  h E : t ' 
r  h Ax: t .E  : r  —>■ t '

r l~ E\  : t —y t * r h E 2 : t 

r h (EiEa) : T*

r  l~ E\ : t  r  h E2 : r '
T h <  E i, E2 >: r  x t '

r  h E : t XT' r  h E : r )
T h f  s t  r  x r' E  : r  T h snd r

r  h E : < 7

T h At.E:Vt.<r

T h E:Vt.<y 
T h E[t] : <t[t /£]

r  h  E i  : cr T ,  a: : a  h  E 2  : r

T h l e t  x : a =  E\ in  E 2 : r

r h Ep : bool r h El : r  T h E
T h i f  r  Eq Ei E 2 : r

T h E  : r  —>• t

T h f i x  r  E  : t

x t ' E : r '  

(t not free

Figure 4.1: Type Rules
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Notice that the rule (TABS) has the restriction that t is not free in I \ This means 
that t is not free in any of the types that are associated with the variables by Y. 
That is, t is not free in r (x)  for every x € dom{Y).

4.3 Sem antics

The semantics of the simply typed A-calculus is normally given by assigning a set to 
each base type, and then sets appropriate to higher-order types are constructed by 
induction on the structure of the types. The meaning of each term is then defined 
to be some value in the set corresponding to the type of the term. For languages 
that allow recursion, sets with some order structure on them are used.

In this section, we use domains to interpret types from the first class (which are either 
monotypes or type variables). Then, the semantic functions which assign values to 
terms axe defined. We will not need to be more explicit about the semantics of 
polymorphic terms except to define the semantics of any such term to be a collection 
of values, where each value is the semantics of some instance of the polymorphic 
term.

4.3.1 Semantics o f Types

The semantics of a monotype r  is normally specified by associating it with a domain 
Dt . Each base type b is associated with a domain D}>. We shall normally write In t  
and Bool for the domains of integers and booleans respectively. That is,

In t  =  {_!_} U Z  and Bool =  {A, True, False} 
where Z  is the set of all integers. The domain, DTlXT2, associated with the type 
T\ x 7 2  is defined to be the product DTl x DT2. Dn ^.T2 is defined to be the set, 
DTl -> DT2, of continuous functions from DTl to DT2.

The semantics of a type r  which contains type variables depends on the domains 
associated with the variables. Therefore, we start with an assignment S  of domains 
to type variables. We shall call such an assignment domain assignment. Any domain
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assignment can be extended to a function Q1 which provides a semantics to all type 
expressions in the first class. The semantics of r  is given as ^ [ t ]  5, where it is 
defined by induction on the structure of r  as follows

^ [ 6 ] S  =  Db, for any base type b

s = s(t)
Sflri x r J 5  =  (9[tJ S) x (QflrJ S)

3 [ t i  -> r2] S  = (Qflri] S) ( 3 [ t2] S)

4.3.2 Semantics o f Terms

The meaning of a term will be defined to be a value in the domain that corresponds 
to its type. The domain depends on the domain assignment the type is evaluated 
under. Since the term may have ordinary variables occurring freely in it, obviously 
its value will depend on the values bound to these variables. Such an association of 
values with variables is given by an environment, which is a partial function from 
the set of ordinary variables to a set of values.

In the following definition, we follow Reynolds’s approach [43]. For any type assign
ment T and type r ,  we let A rfT to be the set of all terms E  such that T h E  : r . 
Now a semantic function fir,r will be defined on this set; it will also have domain 
assignments and environments as parameters.

Let S' be a domain assignment and rj be an environment. We define f ir^ fE j S  rj to 
be some value in S [r]  S. From now on, when we deal with this kind of expression 
we will assume that the variables in the environment are bound to values of the 
correct type, i.e, r](x) E 9[r(a:)] S. Moreover, we will assume that rj(x) is defined 
only when r(a?) is either a type variable or a monotype.

As in Reynolds [43], we assume that for each base type b and the set Kb of constants 
of type 6 , there is a function a*, : Kb —>• Db that provides an interpretation to the 
constants.

Now, the semantic functions are defined by structural induction on terms.
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(1 ) If k e  Kb then jUrJfc] S  rj = a b(k)

(2 ) If x G dom(r )  then ^r,r(x)M  S  rj = r)(x)

(3) If Ei G ir,T-+r' and E 2 G A r)T then

fir ,A { E iE 2)} S  77 =  (/zr ,T-M-'[£i] S  S  ?7)

(4) If E  € A(rf*:T),T' then

tir,T̂ T'l><x : r .£ ]  5  77 =  Ad e  (Qflr] S).fi(r,x:r)ylEj S  {r}[d/x])

(5) If Ei G Ar,T and E2 € A r y  then
^ i\tx t '[<  E u E2 >] S  77 =  (^ r,r[£ i] 5  7 7 , ^ ' [ ^ 2] S  77)

(6 ) If E  G then

/ir,T[ f s t  r  x r ' E j S  rj = fst(fj,r ,TxAEj S  77), and 

^r\T'[snd r  x r f E j S  77 =  snd^r.T xr'I^ ] ^  l )

(7) Let c =  ^r,booi[-So] £  ij. Then

HrAEil  3*1 if c =  True 
^ [ £ 2 !  ^  77 if  c =  False 
L  if c =  _L

(8) ^ r , r [ f i x r  £ ]  5 77 =  L E L o ^ r .r -^ IE ]  S' r7)n (J_)

(9) / i r , r [ l e t  a: : cr =  £1 i n  £ 2] S  77 =  p r . r l ^ I ^ i / z ] ]  S  r\
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(10) If T h At\...Atn.E  : y t\ . . tn.T then for types r i , . . . , r n

^ r |T[(A<i...Atn.E)[ri]...[rn]] S  rj = fJ.r,AE l S U V ti] — [AiAn] r\ 

where for each i
D i = S [tJ  S'

Rem arks

(i) The functions fst and snd, used in (6 ) above, are the usual projection functions 
on products of two domains.

(ii) If a term has no type variables occurring freely in it then the definition above 
is independent of S. It is also Independent of rj if it is closed, z.e, if there are 
no term variables occurring freely in it.

(iii) Consider any closed polymorphic term At\...Atn.E  of type yi t \ . . . t n .T. The se
mantics of this term, because of (1 0 ) above, can be given as the collection 
{/z>i...£>„}? where for any T, 77, and S  mapping each t{ to Di

fDi...D„ =  W A E I  S  t]

4.4 Sum m ary

The semantics provided above is similar to the one given by Ohori [39]. Essentially, 
we start with a model for the simply typed A-calculus and use the usual set-theoretic 
constructions to obtain a model for the polymorphic language. Now, the semantics 
of a polymorphic function is regarded as a collection of continuous functions. The 
semantics of each monomorphic instance is a member of this collection. Recall that 
our interest is in establishing a relationship between any pair of such continuous 
functions. This is done in the next chapter.
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R elational Sem antics

Different abstract interpretations are presented in Chapters 6 , 7 and 8 . The proper
ties studied are to do with strictness, binding-time and termination. The abstract 
interpretation used in each analysis may be viewed as a (non-standard) semantics 
of the language. In all three cases any polymorphic function is interpreted as a 
collection of continuous functions. In each analysis, different instances of the same 
polymorphic function are somehow to be related.

In order not to be repetitive, we first consider the standard semantics defined in the 
previous chapter. In this chapter, we establish a relationship between the semantics 
of different instances of any polymorphic function. Once this is done, the case of 
all the non-standard semantics that we study in later chapters becomes significantly 
easier. Also, as a result of the relationship we establish in this chapter, it is possible 
to show the semantic polymorphic invariance of strictness.

5.1 In troduction

For a polymorphic language, we showed that type constructors may be interpreted 
as functors and polymorphic functions as lax natural transformations (Baraki [6 ]). 
The category used there has domains as objects and embedding-closure pairs as 
morphisms. The lax natural transformation condition relates the values of any two
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instances of a polymorphic function. From such a relationship we obtain an approx
imate value to an instance of a polymorphic function from the value of the smallest 
instance. Any property, relating to strictness, that holds for the approximate value 
also holds for the actual value. Thus the procedure gives correct results. It was for 
this reason that we chose to work with the category of domains and embedding- 
closure pairs. As one might expect from any approximation, the information may 
not always be as precise as the one one would obtain from the actual value.

In this chapter we prove similar results for the language defined earlier. This lan
guage may be seen as an extension of the one used in [6] because, among other things, 
it allows let-declarations. It will be shown that the results follow from what we 
shall call, following Reynolds [42], the representation theorem. The representation 
theorem is a statement about the relationship between meanings of an expression 
obtained by evaluating in different environments. It is very similar to Reynolds’s 
theorem about an extended typed A-calculus in [43], where he proves an abstraction 
theorem which generalises his representation theorem of [42].

The statement and proof of the representation theorem will not involve any termi
nology from category theory. However, we show later that one of its consequences 
is that polymorphic functions are lax natural transformations. From this we obtain 
a proof of a partial result about the semantic polymorphic invariance of strictness. 
That is, if the smallest instance of a polymorphic function is strict then so is any 
other instance. In order to prove the full result, we will later look at how the cate
gory of domains and embedding-projection pairs may be used in describing another 
semantics of the language.

5.2 T he R epresentation  T heorem

Reynolds [42] defines a representation between domains D and D' as a pair (<̂>, x/>) 
of continuous functions <j>: D —» D' and ^  : D' —> D satisfying

xj) o (f> □ id and </> o ij; C id
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An element d £ D is said to represent (or be related to by (</>, t/>)) an element d' £ D' 
if d C t/>(d') (or equivalently </>(d) C d'). What Reynolds’s representation theorem 
then essentially says is that, if two environments are related then the values of a 
term  obtained by evaluating under the two environments are also related. Reynolds 
also remarks that the theorem could also be stated where the first condition above is 
changed to 0  o cj) = id, that is, if (</>, rfr) is an embedding-projection pair. His initial 
attem pt to prove the abstraction theorem was for the set-theoretic semantics of the 
Girard-Reynolds calculus. He later showed, however, that this cannot be done [44].

We work with embedding-closure pairs here. If h : A  —>ec B  is an embedding-closure 
pair then he o hc □ id. The pair can also be seen as a representation (between B  and 
A) because hc o he = id and hence h° o he C id. We choose to have the condition 
h° o he =  id in the definition because he is one-to-one and hence A  is normally 
“smaller” than B. The applications we consider in the next three chapters involve 
relating the two-element lattice 2  and arbitrary finite lattices. This is because we 
want to use the properties of the smallest instance of a polymorphic function in 
analysing other instances.

Now, we say that d £ D and d' £ D ' are said to be related by h : D —>ec Dr if 
he(d) □ d', or equivalently if d □ h°(d'). Thus, this definition is essentially the same 
as the definition of relatedness given above. However, the functions expressing the 
relationship here have to satisfy the condition hc o he =  id

The language we are investigating allows recursive definitions and polymorphic func
tions. Recall that the polymorphism used here is the one found in the Hindley-Milner 
type system [35].

We have already seen that the semantics of a term depends on the domains assigned 
to its free type variables, and also on the values assigned to its free variables. Suppose 
Si and S 2 are domain assignments, and that 771 and 772 are environments. Given a 
formula T h E : r ,  our aim is to establish some relationship between the values

fJtr,rlE l S1 *71 a n d  A T , t [ £ ]  S2 772

Clearly these values belong to the spaces ^ [ r ]  Si and ^ [ r ]  S2 respectively. In 
order to relate the two values we assume that we have embedding-closure pairs
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between S\(t) and S2(t) for type variables t. The two environments are now said 
to be related if for each x , 771(0;) and r)2(x) are related. Such values are related by 
some embedding-closure pair between the spaces associated with the type of x\ the 
appropriate embedding-closure pair must be obtainable from Si and S2.

We have already seen in Chapter 4 that every domain assignment, which is an 
assignment of domains to type variables, extends to a semantics of types. Now, 
suppose that p is an assignment of embedding-closure pairs to type variables, such 
that for each £, p(t) is an embedding-closure pair from Si(t)  to S2(t). For each 
type r ,  we can extend p to an embedding-closure pair from 3[t] S\ to 9?[t] S2\ 
this extension establishes a relationship between these spaces corresponding to r . It 
shall be denoted by [̂t] p. The definition is given by induction on the structure of 
types.

^ [ 6 ] p = idnb, for base types b

s w  p =  p(t)
3 [ t i  x t 2] p = (Qflri] p) x (9flr2J p)

S [ti -+ t2\ p =  (Afc.(9flr2] p)e ok o (QflrJ p)c,Afc.(9flr2] p)° o k o ( 9 [ r J  p)e)

If r  is closed then S [r]  Si and 5 [rJ  S2 are the same and S [r]  p is the identity.

We are now ready to state and prove the representation theorem.

T h e o rem  5.2.1 Let S\ and S2 be domain assignments. Let V be a type assign
ment. Let 771 and rj2 be environments. Suppose for each type variable t, we have an 
embedding-closure pair p(t) : Si(t) —>ec S2(t). Let hT stand for 5 [ r ]  p.

Ifrji and rj2 are related, i.e, if  for all x £ dom(T)

3  m(x),

then for each formula T b E : r  we have

K ( p r A E l  Si  771) □  p rA E j  S 2 rj2

The proof is given in the Appendix.
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5.3 Im plications o f th e  T heorem

Our aim is to develop a relationship between the semantics of different instances 
of a polymorphic function. This relationship is an important consequence of the 
representation theorem. To see this we first consider the case of one type variable.

Suppose that we have the formula T b At.E  for some type assignment T,
and t not free in T. For any types T\ and r2, we want to see how the semantics of 
(At.E)[ri] and (At.E)[r2] are related. Let S' be a domain assignment and 77 be an 
environment. The relationship between the instances depends on the relationship 
between Ti and r2. Since such relationships are expressed by embedding-closure 
pairs, assume that h is an embedding-closure pair from £r[ri] S  to S [ t2] S. For 
i =  l , 2  define the domain assignments Si by

= I  ifs  =  t
i  S(s) otherwise

Sometimes the notation 5'[(Q:[rt] S)/t] is use to express Si. In any case, £ 1  and S 2  

are the same except possibly at t. Also define p by

/ \ _  f ^ if s =  t 
'  ' 1 id otherwise

Now, for every type variable s, p(s) is an embedding-closure pair from Si(s) to S2{s). 
For each type r , let hT be the extension

Qflr] p : $ [ t ]  S i ^ ec^ [ r ]  S2 
Since t is not free in T, for each x € dom(T), hr(x) must be the identity. Hence 77 is 
related to itself. Thus, by the representation theorem,

K(prAEl Si v) 3 PrAEl S2 rj

From the previous chapter we know that for i = 1,2,

p r A E l Si V = Pr,T[Ti/t]l{ht.E)[Ti]} S  rj

Hence,
heT(p,r>T[Tl/i]l(ht.E)[Ti}} S  77) □ AT,T[T2/t][(AL£)[T2]] S  77
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Assuming that ^ [ r ]  Si and 5 [ r ]  S 2 are related by the embedding-closure pair h, 
what we have shown here is how the two instances (At.E)[Ti] and (At.E)[r2 \ are 
related. In general, if we have the formula

T h Ati...Atn.E : V^i tn.r

a n d  t y p e s  r 1? r n , t ( , 7^,  a n d  e m b e d d i n g - c lo s u r e  p a ir s

hi : 3 fo ]  S  S

for i =  1, ...,n , then it can be shown that

where

E0 =  (A*1 ...Ain.E)[r1]...[rn]

E'0 = (A t1...Atn.E)[r[}...K}

Here, hT is obtained by extending the hi s. This is done by first defining two domain 
assignments Si and S2 , where

Si(L) =  9f[rJ S, and 

S2 (tt) =  3[t/1 S,

for « =  1,..., n. For each type variable £ different from we let Si(£) =  S2(£) =  S(t). 
We also define p by letting p(ti) =  hi for each 2 , and p(£) =  id for all t different from 
U.

5.4 P olym orphic Functions as Lax Transform a
tion s

Hughes studied a polymorphic first-order language, where types are interpreted as 
domains and type constructors as functors between some category of domains [21]. 
The functors are defined from the category of domains and strict continuous func
tions to the category of domains and continuous functions. It was shown that
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polymorphic first-order functions are natural transformations. When higher-order 
functions are introduced one immediately observes that the functor corresponding 
to the function type constructor —> is contravariant in its first argument. We over
come this difficulty by using the category of domains and embedding-closure pairs 
that was introduced in Chapter 3; the details are given in this section.

5.4.1 Type Constructors as Functors

In the previous chapter, for domain assignment S  and type r  we defined the se
mantics of t  to be 3 [ r ]  S. Now, suppose that S\ and S2 are domain assignments, 
and that for each type variable t , p(t) is an embedding-closure pair from Si(t) to 
S2(t). For any r ,  we showed how ^ [t] p is defined as an embedding-closure pair 
from ^ [t] 5*1 to S |r ]  S2.

Suppose Vti...tn.r is closed. Consider the mapping which

(i) takes any n-tuple of domains (D i , ..., Dn) and returns 
QflrJ S[D i/tu ...,Dn/ t n], and

(ii) given any n-tuple (hi, ...,hn) of embedding-closure pairs, with 
hi : Di for each i, it returns S [r]  p', where

,, v _  f hi for each i : 1 <  i < n
^ '  '■' I  p(t) otherwise

It is not difficult to verify that this mapping is actually a functor from (Cec)n to Cec.

Given the closed type V f i t  is perhaps easier to see what the associated functor
from (Cec)n to Cec is, if it is given as ^r[Vfi...^n.r] and is defined by induction on the 
structure of r

J*[Vfi...tn.6] =  Id  

^r[Vt1...tn.tf] =  Seli

x t2] =  (^r[Vti...tn.TiJ) x (^r[Vfi...fn.r2])

F f4 tl . . . tn.Ti r2|  =
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where, Seli is the functor which maps any n-tuple of domains to the z-th domain, 
and also the z-th morphism when provided with an n-tuple of morphisms. The 
operators on functors used in the right hand side of the last two equations in the 
above definition are as defined in Chapter 3.

W hat we have shown here is how closed polytypes are interpreted as functors on a 
product of the category of domains and embedding-closure pairs.

5.4.2 Polymorphic Functions

Because of what we have already shown, we use type constructors and their corre
sponding functors interchangeably. Also, we use the notation t for the n-tuple of 
type variables (£i, Now, returning to the representation theorem, suppose

T I- At.E  : V tF(i) -*• G(t)
where A t.E  is a closed term. Let S  be any domain assignment and rj be any en
vironment. For any n-tuple of domains (ZA,..., D n), the semantics of the instance 
corresponding to this n-tuple is given by

/Di...D„ =  1^1 S [ D i / t i ]

If for each z, D i is the semantics of some t,- then

/ D ! =  .............   T„HG(n.T „)I(A ££)[n]...[r„]l S[Di/U] t)

Now, if for each z(l <  z <  n) we have embedding-closure pairs hi : D{ —̂ecZ)J, what 
the representation theorem says is that

(F  -»■ G ) e ( h i , . . . , h n ) ( f D 1...Dn)  ̂ fD[...D'n

From this, letting h = ( /ii , ..., /zn), we have

(F G)e(h)(fDl...Dn) 3 fD'v ..D'n

=» (Ak.G*(h) o k o F c(h))(fD̂ Dn) □ f D.V"D,n
Ge(h) o f D l _ D n o F c(h) □ fD [ . . .D ’n

Ge{h) o f D l ...Dn 3 fD[...D'n o F e(h)

Therefore, {/di...d„} is a lax natural transformation from F  to G.
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From one of the inequalities above we obtain

/jdj ...D'n Q Ge(hi,..., hn) o f Dl _Dn o F c(hi ,..., hn)

Thus, Ge(hi , ..., hn) o f Dl_Dn °-Fc( / i i , h n) is an approximation to fD[...D'n• Since 
each hi is a morphism from D{ to h\ is a one-to-one function. Thus, each D{ 
is in some sense “smaller” than D[. Therefore, the inequality above is a means 
of obtaining approximations to instances of a polymorphic function from smaller 
instances.

The language in Chapter 4 does not allow a polymorphic equality function. It was 
excluded because its semantics fails to be a lax natural transformation. To see this, 
consider the collection {eqo} of continuous functions eqo : D x D -> Bool where

eqD(x,y) =
_L if a: =  _L or y =  _L 
True  if x =  y 
False if x ^  y

If we were to treat equality as a polymorphic function it would have the type \/t.t x  

t —> bool. To test if the collection is a lax natural transformation, we consider the 
functors F  and G where F(A) = A  x A  and G(A) =  Bool for all domains A. The 
actions of these functors on morphisms are not difficult to find out. Now, choose A , 
B  and h : A  —>ec B  such that he is not strict. Clearly,

(eqB o (he x fie))(-L, _L) =  True  and eg^(±, _L) =  _L
But

eqs o (he X he) = eqB o F e(h) and eqA =  Ge(h) o eqA 
Thus, the condition

eqB © F e(h) C Ge(h) o eqA 
does not hold. Hence, {eqo] is not a lax natural transformation. Not treating 
equality as a polymorphic function should not be surprising. In fact, it is consistent 
with the approach followed in the Haskell language [18].
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5.4.3 The First-Order Case

We have shown that polytypes can be interpreted as functors and polymorphic 
functions as lax natural transformations. In the case of the first-order subset of the 
language, it can be shown that polymorphic functions are natural transformations 
when one uses the closure components as morphisms—actually strictness is all that 
is necessary. On the other hand, naturality is not obtained if we use the embedding 
components as morphisms.

5.5 Sem antic P olym orphic Invariance

We have already mentioned that Abramsky and Jensen [5] have used a relational 
approach to describe the semantics of a polymorphic language. The main result 
in [5] is the semantic polymorphic invariance of strictness. It is possible to give 
an alternative proof of this result by using the semantics described in this thesis. 
To see this, suppose A  has a top element so that we are guaranteed to have a 
morphism h : 2 —»-ec Ah We can choose h so that he is strict. Let /  be a lax natural 
transformation from F  to G and / 2 be strict. Since he is strict so is Ge(h). Now, 
since

fa  Q Ge(h) o f 2 o F c(h), 

and F c(h) is always strict, we have

I a {-L) =  -L.

That is, if a function is strict at the 2-instance then it is strict at all instances. On 
the other hand, we need to prove that the strictness of fa  implies that of f 2. To do 
this we need to use embedding-projection pairs.

The R epresentation Theorem  using Em bedding-Projection Pairs

Embedding-projection pairs can be used to provide a relational semantics to the 
language. Except for the difference in the languages, this semantics gives a rep-

Tt is interesting to note that in [5] also, for the purpose of the proof of invariance, it is assumed 
that the cpo’s used have top elements.
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resentation theorem which is essentially Reynolds’s theorem of [42]. Polymorphic 
functions now become lax natural transformations in Cep. A consequence of this is 
that from the smallest instance of a polymorphic function one can build an approxi
mation from below to any instance. In particular, if /  is a lax natural transformation 
between the functors F  and G from Cep to itself, then for any morphism k : 2 —>ep A  
we have

f A(±)  □ Ge( k ) ( M F ”(k)(±)))

If Ja is strict then
G-(fc)(/a(#*(fc)(±))) =  1

Since F p(k) is strict and Ge(k) is ^-reflecting, /2(-L) =  -L. Therefore, this provides 
the other half of the invariance proof. Thus the combination of the two results gives 
the semantic polymorphic invariance of strictness.

5.6 Sum m ary

The relational approach has been used in various ways in providing semantics to 
several languages. The relations which are used in the semantics described in this 
chapter arise out of embedding-closure pairs. This in turn gives rise to a relationship 
between different instances. By working in a different category we have managed 
to overcome the problem which arose out of the contravariance of the function type 
functor in the category of domains and continuous functions. To a certain ex
tent, therefore, we have a generalisation of Hughes’s results on first-order functions, 
where type constructors are interpreted as functors. In the category of domains and 
embedding-closure pairs, polymorphic functions are not necessarily natural trans
formations except in the first-order case. Our primary concern in this thesis is to 
work with approximations obtainable from the smallest instances of polymorphic 
functions. However, the combination of results from this semantics, and the one 
which uses embedding-projection pairs has also given us a proof of the semantic 
polymorphic invariance of strictness.



C hapter 6 

S trictn ess A nalysis

6.1 In troduction

Abstract interpretation was applied in the strictness analysis of a simply typed A- 
calculus with higher-order functions over flat domains by Burn et al [11]. The aim 
here is to show how it can be applied in the strictness analysis of the language 
defined in Chapter 4. The significance of this language is that it allows polymorphic 
function definitions.

We have already mentioned that Abramsky proved the polymorphic invariance of 
strictness analysis [1], and that a proof of the semantic polymorphic invariance of 
strictness was given by Abramsky and Jensen [5]. However, in practice, invariance 
is not entirely satisfactory and hence it is necessary to look for other approaches to 
polymorphic functions. When different instances of the same polymorphic function 
are used in a program, there is useful information that cannot be obtained from 
invariance. On the other hand, as pointed out by Abramsky in [1], performing the 
computation of different instances of the same function as if the instances have no 
connection between them is inefficient. These issues were discussed in greater detail 
and an example which highlights the problem was given in Chapter 1. In the case 
of first-order functions, Hughes proposed a way of obtaining strictness information 
about any instance of a polymorphic function from that of the simplest [21]. To 
do this, he first provided a semantics of the language where type constructors are

68
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interpreted as functors on some category of domains, and polymorphic functions are 
natural transformations.

Here, we use the relational semantics described earlier to obtain, in some sense, a 
generalisation to higher-order functions of Hughes’s results about first-order func
tions. It is a generalisation because type constructors are interpreted as functors, 
albeit on a slightly different category of domains. Although not all polymorphic 
functions are natural transformations, they are lax natural transformations. This 
provides a way of obtaining strictness information about any instance of a polymor
phic function from an analysis of the smallest.

6.2 A b straction  o f T ypes

The abstract interpretation for strictness analysis is done by interpreting every term 
on a lattice. Before describing how this is done, we introduce the notion of a lattice 
type. Lattice types are types that are defined by the type system in Chapter 4 when 
restricted to have 2 as the only basic type. To analyse a term in the original language, 
the type expressions occurring in it are replaced by lattice type expressions, and
then the constants are replaced by new appropriate constants. The new term is
then evaluated to obtain a value in a lattice. Note that, strictly speaking, there are 
two type systems (ordinary types and lattice types); for simplicity the same notation 
is used.

To describe the procedure more formally, first, we define a function mapping ordinary 
types to lattice types. The function Abs, mapping ordinary types to lattice types is 
defined by induction on the structure of types as follows.

Abs in t =  2

Abs bool =  2

Abs t = t

Abs (ri x t2) =  (Abs ri) x (Abs t2)

Abs (ri —> t 2) =  (Abs T\) —> (Abs r2)

Abs (Vt.<j) =  Vt.(Abs a)
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It simply replaces int and bool by 2 wherever they occur in a type.

6.3 A bstract Functions

The abstract interpretation that will be defined later can be regarded as a (non
standard) semantics. From such an interpretation, information about semantic 
properties of functions is obtained. In order to show that this information is correct, 
it is necessary to relate this semantics to the standard semantics.

The semantics of a lattice type is a lattice. For each lattice type r  (which is not a 
poly type), a lattice Br over which terms of this type are interpreted is defined. The 
symbol 2 is used in two ways; as a lattice type, and the two-element lattice which is 
the semantics of the type. Lattices corresponding to other types are defined in the 
same way as the semantics of ordinary types in Chapter 4. It is actually possible 
to use the same notation, that is, if S  is a lattice assignment (in this case, it is a 
domain assignment associating type variables with finite lattices), ^ [ r ]  S  stands 
for the semantics of the lattice type r . This may be defined by induction on the
structure of r .  Note that 3 [2] S  = 2; the rest is straightforward.

For each monotype r ,  the abstraction map absT is defined from the domain corre
sponding to t  to the lattice corresponding to Abs r . Except when r  is a product of 
types, these functions are defined in [11]; they are also provided in Chapter 1. Now, 
for monotypes T\ and t 2, absTlXT2 is defined by

absTlXT2(a,b) = (absTla,absT2b)

The function ,46s may also be defined to act on the domains corresponding to mono
types; it is given by

Abs In t  =  2 

Abs Bool =  2 

Abs (Di x D2) =  {Abs D\) x (Abs D2)

Abs (D\ —y D2) == (Abs D \ ) —y (Abs jD2)
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Notice that absT is a function from ^ [ r ]  S  to r]  S'. Since r  does not have
variables occurring freely in it, these spaces are independent of S  and S'. Several 
properties of the abstract functions are given in [11].

6.4 A bstract In terpretation

In the notation used here, the abstract interpretation in [11] is done by replacing each 
type r  by Abs r ,  integer and boolean constants are replaced by 1, which is a constant 
of type 2. New operators are introduced to replace the usual operators including, for 
example, the arithmetic ones. The new term obtained when the replacing process 
is complete is evaluated on lattices to get strictness information.

6.4.1 A Language for Abstract Interpretation

For reference purposes we will use C to denote the language of concrete terms that 
was introduced in Chapter 4. Here we shall study a similar language £  of abstract 
terms. The difference, as far as types are concerned, is that the only basic type in 
£  is 2. Thus its type system involves only lattice types. Obviously such a language 
cannot have terms involving integer and boolean constants, and thus nor will it 
have the conditional expression i f  r  Eq E\ E2. On the other hand, the following 
are added to the definition of terms

guard t Eq E\ and or r  Eq E \ ,

where r  is a lattice type. It is necessary to make changes to the typing rules as well. 
The typing rules for £  are all the rules for C except COND, the rule involving the 
typing of i f  r  Eq E\ E2. Obviously, the typing rules for this and certain constants 
should be dropped. On the other hand, two new rules are introduced.
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(AND) r I- Eg : 2 r h Ej : r
T h guard t Eq E\\ t

T h Eq : t V \~ E i : t 
T h or t Eq E\ : t

There are also two constants, 0 and 1, in £  and it is assumed that they have 2 as 
their type.

6.4.2 Semantics o f C

To define a semantics of £ ', we use a category of finite lattices. For a lattice type 
environment T and a lattice type r , we define the semantic functions i/r,T in a similar 
way as the semantic functions (the /i’s of the previous chapter) for the language 
C. Because of the similarity in the definitions of the semantic functions for both 
languages, we consider only the new terms; they are of the form guard r  Eq E\ and 
or t Eq Ei. The family of functions {>>1} and {L-U} were introduced in Chapter 3 
for this purpose. Now, using the infix notation, the definitions are given by

i/r.rlguardT  E0 Ei} S  rj = i r t 2[^o] S  rj >A z^r,r[^i] S  77

and
i/r, T[or t  E0 Ei} S  r) = *T, r[^o] S  rj LU iv, t[# i]  S rj 

where A  = ^ [ t ]  S.

We can now use the results of the investigation of the semantics of C in Chapter 
5 for £ .  Several properties of the semantic functions of C hold for the semantic 
functions of £ .  In particular, it is not difficult to show that the representation 
theorem holds. Observe that the only new collections are {>^} and {LU}, and it 
was already shown in Chapter 3 that they are both lax natural transformations. 
Therefore, all polymorphic functions in £  are lax natural transformations between 
functors on the category of finite lattices and embedding-closure pairs.
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Polymorphic first-order functions are actually natural transformations between func
tors on the category of finite lattices which has the closure components of embedding- 
closure pairs as morphisms. Recall that this is not the case when the embedding 
components are used.

The fact that the representation theorem holds allows us to relate separate instances 
of abstract polymorphic functions, and deduce facts about all instances by studying 
just one.

6.4.3 Connection between C  and C!

We prefer to work with two languages for reasons of uniformity in the semantics, 
that is, in order that all polymorphic functions are lax natural transformations. 
If we had a single language containing terms like or r  E0 E\ whose semantics is 
given in terms of the collection {L-U}, then the collection cannot be a lax natural 
transformation between functors on the category of domains and embedding-closure 
pairs. This is because Ua is not defined for arbitrary domains A  (non-lattices).

To perform strictness analysis on a term E  in £ , first, it is translated to a term E ' 
in CJ and then the new term is interpreted over finite lattices. The interpretation is 
simply to evaluate E' using the semantics described above. The translation is done 
by replacing every type t ,  occurring in the expression, by Abs r ,  and then integer 
and boolean constants are replaced by the appropriate terms of type 2. Any term 
of the form

i f  t  Eo Ei E2

is translated to
guard t '  E '0 (or r '  E[ E2),

where t '  =  Abs t  and each E[ is the result of translating Ei. Also every term of 
the form

E\ ® f?2

is translated to
guard 2 E[ E'2,
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where 0  is any one of the arithmetic operators or /  (note that the semantics
of guard 2 is II2). In fact this should be done for all built-in binary operators that 
are strict in both their arguments. The translation of other terms is straightforward.

Suppose T is the type environment {x\  : <7i, ... xn : an}. If the formula

T b E : r

can be obtained from the typing rules of £ , then

r  h E ' : A b s r

can be obtained from those of C', where

T ' =  {#1 : Abs oj, ... xn : Abs <7n},

by straightforward substitution in the derivation of T b E  : r. Now, the standard 
semantics is given by

Pt, tIE} S  77,

and the non-standard semantics of its translation is given by

^ M s r l E ' l  S' 77',

where S' is a lattice environment, i.e, an assignment of lattices to type variables, 
and rj' is an assignment of values from lattices to ordinary variables. Here, S'(t) =  
Abs S(t)  and rj'(x) = abs(r)(x)).

N otation . The smallest family of domains containing Bool and I n t , and that is 
closed under both x and —> will be denoted by T>. Similarly, B will denote the 
smallest family of finite lattices that contains 2, and that is also closed under x and 
-K

6.5 Safety

In a previous section abstract functions were introduced. The abstract functions 
relate the semantics of terms in the language C and that of their translation in £ .  
The following proposition describes the relationship.
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P ro p o sitio n  6 .5.1 Suppose we have the formula T b E  : t , and that S  is 
a domain assignment that assigns type variables domains from T>. Let rj be an 
environment. Let S' be the lattice assignment such that for any type variable t, 
S \ t )  =  Abs S(t).

I f r f  is any environment such that for any variable x € dom(T)

absF(x)(ri(x)) C rf{x),

then
absT(pr,rlE} S  rf) C vr>, Abs t  m  s' n'

The proof is given in the Appendix.

From this proposition it is not difficult to show that the information relating to 
the strictness of functions obtained from the non-standard semantics is correct. 
Moreover, for any monomorphic term E , the semantics of E ', given by the semantic 
functions for £ ', is the same as the value of the function asem at E  (the definition 
of asem is given in Chapter 1).

6.6 P olym orphic Functions

We have now provided the definition of the i/’s on terms with types from the first 
class (that is, not polytypes). The definition is similar to that of /i. The semantics 
of a polymorphic function is the collection of the semantics of all its monomorphic 
instances. From what was shown in the previous chapter, these instances are related 
in a certain way.

Suppose At .E  is a closed polymorphic term in C whose type is V lF (i) —>• G(t). 
The term can be translated into A t .E 1 in C! and it has the type Vt.F 'fy  —>■ G'(P), 
where and G'(t) are obtained by replacing the types in t and bool in F(t)  and 
G(t) by 2. Now, both F' and G1 can be interpreted as functors from (A ec)n to A ec. 
Moreover, the semantics of this new term, At.E1, is a lax natural transformation 
from F' to Gf. Normally, we will drop the superscripts and write F  and G for F' 
and G1.
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Suppose t l ,  ..., rn, r[, are monotypes. For i =  1 , n, let Bi and B\ denote the 
finite lattices which are the semantics of Abs Ti and Abs r/ respectively. Suppose also 
that for each *, hi : Bi —Vec B[ is any embedding-closure pair, and h = (h i , ..., hn). 
Then

i/[(AtE')[Abs r[]...[Abs r ']]

Q Ge(h) o i / [ ( A £ E ' ) [ A 6 s  Ti]...[Abs r n ] ]  o F c(h)

Since At .E 1 is closed, the value i/[Af.Ev] S  rj is independent of lattice assignments 5  
and environments 77. That is why they are omitted here. Also, the usual subscripts 
that come with v are omitted.

In general, the semantics of A t.E ' may be expressed as the collection },
where the BiS  range over all finite lattices and

9 b , ...Bn =  V l E ' l  S  9

where S(U) = Bi for each i (1 <  i < n). The superscript S  (for strictness) is used 
to distinguish this from other non-standard semantics.

If each hi is a morphism from 2 to Bi, then

E  G°(h) . .  F°(h)

Therefore, we obtain an approximate value for _b„ from 92...2- The significance 
of this is that the latter is normally less expensive to compute.

This particular approximation is from above, and is thus appropriate for strictness 
analysis. Using Ge(h i , ..., hn) o g% 2 o F c(hi, ..., hn) instead of mmg in the analysis 
never leads to any incorrect strictness information. This is the central reason why 
we chose to use embedding-closure pairs in describing the semantics of the language.

At this point it is legitimate to ask how good the approximation is. We will assume 
that n = 1 for simplicity in presentation. Recall that if h : 2 — B  is chosen so 
that he is strict, then whenever g% is strict so is Ge(h) o g% o F c(h). But if he is 
not strict, the strictness of g% does not imply that of Ge(h) o 0 F c(h). In general, 
although these new functions may be used instead of g^ , they may not be very good



CHAPTER 6. STRICTNESS ANALYSIS 77

approximations. To obtain a better result, we take the greatest lower bound of all 
possible approximations. This is because the following holds

^  c  n G ' W o f l f  ° F c(h)

The greatest lower bound is taken over all possible h’s.

There are many cases where computing a single Ge(h) o o F c(h) is significantly 
cheaper than computing g%. There are (|B | — 1) embedding-closure pairs from 2 to 
B , where |jB| is the number of elements of B. As a result, if B  is a big lattice then 
computing the greatest lower bound may be expensive. As was shown in Chapter 
3, there are situations where a smaller number of embedding-closure pairs is enough 
to obtain the same approximation. This is particularly the case with first-order 
functions; recall the use of meet-irreducible elements of B. Moreover, the greatest 
lower bound of the functions in the first-order case is exactly g f , z.e,

9b = n G ‘( .h ) » g io F \h )

This follows from the fact that polymorphic first-order functions are natural
transformations when using the closure components as morphisms, and that
f~| Ge(h) o G°(h) — id for all first-order type functors (recall that the details
were given Chapter 3).

E x am p le

To illustrate the ideas discussed above, let us consider the following simple example.

/  =  A a.f ix  r  (Ag : r.Xx : bool.Ay : int.Az : a. i f  a x z (g x (y — 1) z))

where r  = boo l -* in t —> a —» a. Notice that a  is a type variable.

If the abstract interpretation of /  is given to be / 5 , then its value at the simplest 
type, z.e , is given by the following table
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X y z f i  x y  z
0 0 0 0
0 0 1 0
0 i 0 0
0 i 1 0
1 0 0 0
1 0 1 1
1 l 0 0
1 l 1 1

This table may be obtained by iterative means. Now, if 2, the abstract inter
pretation of the function at the type 2 x 2  has to be computed, then a number of 
iterations must again be performed. But performing such computations every time 
we consider an instance of the same polymorphic function is very expensive. The 
method described above provides an approximation to /2X2 by using . That is,

f i x 2 != rU(^u.(A/./i® o I o hca) o u o idc) o / j  o idc

The a ’s range over all non-T elements of 2 x 2 , and thus the ha s axe the embedding-
closure pairs from 2 to 2 x 2 . Note that idc is the identity function, where id is the
identity embedding-closure pair. In this example, the greatest lower bound may be 
taken over two a ’s to obtain the same result. To see this, for any non-T element a 
of 2 x 2 let

ka =  (Xu.(Xl.hea o I o hca) o u o idc) o / j  o idc 

Now, for any x, y, and z we have

ka x y z  =  (\u . ( \ l .h ea o I o hi) ou o idc) o f% o idc x y z

=  (Au.(A/./i® o I o /i£) o u o idc)(f2 x) y z

= (Al.hea o I oh°a)(f*  x y ) z  

= (K  o ( / f  x y) o hca) z

= x V (K  z ))

From this and the definition of the ha’s it is not difficult to build the following table.
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z h  o,o) x y z fc(o,i) X y z h i ,o )x y z
(0,0) (0,0) (0,1) (1,0)
(0,1) h(0,0)(X) (0,1) hh,0)(x )
(1,0) ^(o,o)(x ) (1,0)
( i , i ) o' hlo,l)(X) h‘m ( x )

It is now easy to see that

&(o,i) n &(i,o) Q (̂0,0)

Therefore, when taking the greatest lower bound, fc(o,o) can be ignored. Moreover, 
in this particular case the result obtained this way gives /2X2 exactly. That is,

/?x2 = fyo.i) n fc(i)0)

Therefore, in this example no price, in terms of accuracy, is paid by resorting to the 
method which normally gives approximate values.

In general, whenever B  is large it may be necessary to consider the greatest lower 
bound of only a smaller number of functions. In the first-order case restricting 
to morphisms ha, where a is meet-irreducible gives the exact result. It may be 
a good idea to use this in the general case as well. Obviously, this in turn is an 
approximation of the greatest lower bound. For exact values one has to compute 
directly. But this is exactly what we wanted to avoid in the first place. However, in 
the case of non-recursive functions it is better to compute all the necessary instances 
directly, because it is efficient and we get exact values.

6.7 M onom orphic Functions

So far, we have shown that a useful approximation to the abstract interpretation of 
an instance of a polymorphic function may be found from that of the smallest. How
ever, there are monomorphic functions that are not instances of some polymorphic 
function. The computation of the abstract interpretation of such functions may be 
expensive; this normally involves finding fixed points.

To deal with such problems, Hunt introduced approximate fixed ponts [27]. Suppose 
B  is a large lattice and f  : B  B  is a continuous function. He proposes to pick
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a lattice A  “smaller” than B , and then define a function g : A  -» A  that in some 
sense “represents” / .  Since A  is smaller, computing the fixed point of g is hopefully 
less expensive than that of / .  From this, an approximation to the fixed point of /  
is obtained. The function /  and g are related by an inequality of the form

/  E h-i o g o /ii,

where h\ : B  —> A  and h2 : A  -» B  are some functions which are defined by 
induction on the structure of the lattices A  and B. Seward observed that (h i ,h2) 
forms a special embedding-closure pair from A  to B,  and suggested the use of more 
embedding-closure pairs so that a better approximation may be obtained [47]. When 
A  is the lattice 2 , the embedding-closure pair used by Hunt is h±, in our notation 
of Chapter 3.

Although the function /  is not necessarily an instance of a polymorphic function, 
the procedure above is related to the analysis of polymorphic functions. Recall that 
f i x  is a lax natural transformation. Now, if h : A  —>ec B  is an embedding-closure 
pair then

f i xB  E he o f i x  a © (A k.h° ok o he)

Hence,
Q he( f i x A(hc o /  o he))

Since hc o f  0 he is a function from A  to A, if A  is small then computing 
he( f i x A(hc 0 / 0  he)) is likely to be less expensive. To obtain a better approxi
mation, it is possible to consider the greatest lower bound of several functions of 
this form. If in the above inequality, A  is the lattice 2  then

f i x B{ f ) ^  [}hea{ f ix2{hca o /  o hea)),

where a ranges over the non-T elements of B. It is not difficult to show that

r \ K ( f i M K  o f  ° hD) = n{« € ( B - { T »  I f(a)  C a}

Observe that, in the verification of this statement, for any function k : 2 —>■ 2  it is 
always the case that

f i x 2{k) =  k( 0 )
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Hence,

K ( f i x 2{ h l . / » hi)) =  K ( h i U ( K m ) )

= K ( K ( M ) )

On the other hand, one of Tarski’s descriptions of the least fixed point of /  is given 
as

n { a €  B  | / ( a )  C a}

in [49]. This expression is the same as the right hand side of the above inequality, 
when it is assumed that f]{} =  T. Therefore,

fixB(f) = r\h%uix2(hi o fohD)

It is important to note that this is a statement about accuracy. An approximate 
value may be obtained by using only a few functions. In any case, the preceding 
discussion presents an improvement on Hunt’s proposal because of its use of the 
greatest lower bound. In fact, using his method gives the approximation

h e± ( f i x 2 ( h l  o /  o h ]_))

Since h \  is a two-valued function, this expression is equal to -L# or to T# and hence, 
in some cases, is not a good approximation to /* £ b (/) . If the expression is _!_# then 
f i x s { f )  is also _l_£, which is the exact value. Otherwise, it is T# and this does 
not carry any information at all, because we already know that every element of B  

is bounded by Tg from above. It must be said, however, that Hunt’s suggestion 
does not always imply the use of 2 . In particular, if for example B  is the product 

x B 2 , then a lattice of the form A \ x A2 where each A{ is smaller than B i is used. 
Therefore, an approximation better than the one which results from the use of 2  is 
obtainable even when only a single embedding-closure pair is used.

6.8 Sum m ary

The semantic approach to polymorphic functions, which we have developed, has 
provided a way of using the result of an analysis of simple instances to obtain infor
mation about more complex instances. Seward has implemented this method, giving
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impressive performance figures [48]. He discusses these results and the usefulness of 
the information so obtained; we will see concrete examples in the next chapter.



C hapter 7 

A nalysis o f Lists

7.1 In troduction

The language we have been investigating so far does not have some of the common 
structure types. In this chapter, we consider the case of lists. In the monomorphic 
case, Wadler defined an abstract interpretation that detects some semantic proper
ties of functions defined on lists [52]. He introduced abstract domains appropriate 
for doing this interpretation.

Our main concern here is polymorphism. We extend our language to include lists, 
and establish a relationship between the abstract interpretation of different instances 
of polymorphic functions. Hence, as in Chapter 6 , we have a method of using the 
abstract interpretation of the smallest instance in other instances.

Unfortunately, we are unable to prove the correctness of our method when using 
Wadler’s abstract domains; though we could not find counter examples either. F. 
Nielson and H.R. Nielson in their work on generalising Wadler’s method have used 
different abstract domains [38]. We use these domains in our study of polymorphic 
functions.

One of the results that we proved in Chapter 5 is the semantic polymorphic in
variance of strictness. We have already remarked that this is not a new result;

83
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Abramsky and Jensen have already given a proof in [5]. Our proof was given simply 
to demonstrate that this property follows also from the semantics which involves 
embedding-closure pairs. As explained in Chapter 1 , in the monomorphic case, 
Wadler’s analysis detects different kinds of strictness of functions defined on lists. 
Consequently, in the case of polymorphic functions, it may be desirable to investi
gate the semantic polymorphic invariance of such properties. This would generalise 
the work of Abramsky and Jensen [5]. This will be done in Section 6 .

7.2 S trictness P roperties

We consider functions defined in terms of the case-statement. First, we define

c a s e ( a , f ,n i l )  = a
c a se (a ,f ,c o n s  x xs) = f (x ,x s )

The type of this function is Vtf.Vs.s x ((t x [f]) —> s) x [£] —>■ s. We investigate the 
semantic properties of the function g which is given by

g ys = c a s e (a ,f ,y s )  
for some fixed a and f . For the purposes of the discussion in this and the next 
section, we assume that case and g are monomorphic. Suppose case and g are their 
respective semantics, where

case(a, / ,  -L) =  _L 

case(a, / ,  []) =  a 

case(a, f ,cons  x xs) = f ( x , x s )

and
g(ys) = case(a, / ,  ys)

Among the properties studied by Wadler are tail-strictness and hyper-strictness. 
The function g is said to be

(i) tail-strict, if g(xs) =  _L for all lists xs  which are infinite or partial, and
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(ii) hyper-strict, if g(xs) =  _L for every list xs which is not “total” . We say that 
an element a of a domain is total if it is maximal, i.e if there is no b with a IZ 6 , 
and is finite (in the domain-theoretic sense). In particular, if zs is a list which 
is total then it must be of the form [zi, ..., zn] for some n > 0 , where each Z{ is 
total.

In the case of a list of integers, to say that it is total means that it is finite and 
does not contain 1  as a member. However, for lists of more complex types, the two 
definitions are not equivalent. Consequently, for example, if h is a function defined on 
lists of lists of integers and is hyper-strict then we must have /&([[8], [2, _L, 12]]) =  _L, 
although the list does not contain _L as one of its members.

To detect such properties, Wadler defined an abstract interpretation. One way of 
looking at the abstract domain used by Wadler in the analysis of lists of elements of 
some type r is as a domain obtained by double-lifting the abstract domain used in the 
analysis of expressions of type r. For example, if r  =  int then his abstract domain, 
{_L, oo, _Le, T e}, may be seen to be the same as (2_l)jl. Recall that the abstract 
function conss  of the operation cons was defined as follows. For any x , y  E 2

conss x _L =  oo 

conss x oo =  oo 

conss x =  (a; fl t/)e

It is necessary to add that nils  =  T €. In general for any finite lattice A, we can 
define consJ  : A  x (A jJj. —¥ (Aj_)j_ in this way.

Recall that our ultimate aim, as in Chapter 6 , is to somehow relate the abstract 
interpretation of different instances of polymorphic functions. Unfortunately, with 
this choice of abstract domains and definition of conssA, we are unable to prove that 
the desired relationship holds. We overcome this difficulty by using the abstract 
domains used by Nielson and Nielson [38]. In explaining it in the next section, we 
will mainly concentrate on the monomorphic case.
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7.3 A bstract Interpretation

7.3.1 N ielson and N ielson’s Approach

If A  is the abstract domain corresponding to the type t ,  Nielson and Nielson use 
certain subsets of A  as elements of the abstract domain for the type of lists whose 
members are of type r  [38]. We need to give a number of definitions before intro
ducing these subsets. Except for some difference in notation, these definitions are 
to be found in [38].

Let A be a finite lattice. Recall that any subset X  C A is said to be open if X  
is upwards closed; that is, X  is open in the Scott topology induced by the lattice 
structure on A. Let 0{A)  denote the set of all non-empty open subsets of A, that is

O(A) = { X ? \ X C A  and X  ^  0}, 
where X ^  is the upward closure of X.

The relation D makes 0{A)  a lattice in which A is the smallest element and {T} is 
the greatest element, where T is the greatest element of A. The lattice operations 
[“I and U are respectively given by the set-theoretic operations U and fl.

We now come to the set of points used in the abstract interpretation of lists whose 
members use A in their abstract interpretation. Define L(A)  by

L(A)  =  {_L, oo} U { X e | X  e  0{A)}

Another way of looking at this set is as (0(A)_l)jl. To make this a lattice, first an 
ordering C is defined on L(A). To do this let Z, and Ye be any elements of this 
set. Then the ordering is given by

-L C Z

oo C Z if Z ^  1

C Ye if X  C y  in 0(A)

The last statement is equivalent to saying that X  3  7 .

It is now necessary to provide an interpretation to the elements of L(A).  That is,
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<» oo

Figure 7.1: The Lattice L(A) 

what does it mean for a list xs to have the property represented by an element of

L(A)7

• JL describes the list _L.

• oo describes all infinite lists, all partial lists and _L.

• If X  =  {ai, 0 2 , a,k} is an open set, then X e describes all lists described by 
_L and also those described by oo, and all non-empty finite lists [xi,x2, ...,£n] 
in which each a*- describes some X j .  (NB : two distinct a,- may describe some 
Xj . )

• {T}e describes all lists, (the empty list is described only by this point.)

Later we will express this more clearly by defining the mapping abs which relates 
the standard semantics with the abstract semantics.

7.3.2 Comparison o f L ( A )  w ith Wadler’s Domains

Since 2  is used in the abstract interpretation of integers, L( 2 ) is used in that of lists 
of integers. Now, {l}e describes all lists, whereas {0, l} e describes all except finite 
lists which do not have l a s a  member. Therefore, in this example Wadler’s domain
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and £(2) may be regarded as the same by identifying T e with {l}e and _Le with

{0 , i } e .

One of the differences between the points of Wadler’s abstract domains and those 
which we just described is easily observed when lists of pairs of integers are consid
ered. Now, if (0,0)e describes the finite list [xi, x<i, ^  is n°t necessarily the 
case that there is some Xj described by (0,0). For example, the list [(4, _L), (_L, 5)] is 
described by (0 ,0)e using Wadler’s definition, but none of its members is described 
by (0,0). Clearly, as was pointed out, this is not the case when the abstract do
mains which involve open sets are used. The point {(0,0)}£ does not describe this 
list because the list does not have a member describable by (0,0). The smallest 
point which describes this list is {(0,1), (1,0)} |. Notice also that in this example 
Wadler’s domain has six elements whereas the one used by Nielson and Nielson has 
seven.

In general, whenever A is a chain, L(A)  is also a chain with two more elements. 
Therefore, for the many examples considered by Wadler in [52], the lattices whose 
definitions were just outlined are the same (up to isomorphism) as Wadler’s. But 
whenever the operator x is involved, two different abstract domains are obtained.

7.3.3 Some Operations on Lists

The abstract interpretation of some operations on lists will be defined. For any finite 
lattice A, define cons5  : A —► L(A)  —>■ L(A)  by

consA x _L =  oo 

cons5  x oo =  oo 

conssA x X e = ({z}1' n X ) e

where n  is the set union U. Also, let nilA =  {T^}G; recall that this is the greatest 
element of L(A). It is easy to show that consA is continuous.

In this section, recall that only monomorphic functions are considered. Suppose A 
and B  are finite lattices and bin B,  and also that /  : A x L(A) B  is a continuous 
function. Define case5, the abstract interpretation of case, by



CHAPTER 7. ANALYSIS OF LISTS 89

case5 (6 , / ,  _L) =  _L
cases (b,f ,  oo) =  /(T ,o o ) 
cases ( b j , {  T }e)= 6 U /(T ,{ T } e) 
cases ( b J , Y e) = Ur> e U y f ( n Y ' , ( Y  e Y % ) ,  i f Y * { T }

where Uy — {Y '  \ Y '  C Y, Y '  open and non-empty}, and for any set X ,
Y  © X  =  (Y  — X 1')1' U {T}. In the fourth case of the definition, it is assumed that 
h  /  {T} because it has been treated in the third case.

As described in [38], the motivation to the last equation in the definition of cases  is 
as follows. If Ye (Y  ^  {T}) describes the list xs then we may assume that the list 
is of the form cons x xs'. Now, if the open set Y '  C Y  consists of the points which 
describe x then n Y '  also describes x. This is because, if abs(x) □ y for every y ( zY '  
then abs(x) C n Y ' . We may assume that Y'  is non-empty because T describes x. 
If y € Y  — Y '  then by definition of Y7, y does not describe x. But Ye describes 
cons x xs ', and hence y must describe some member of xs'. Therefore, (Y  © Y ' ) e 
describes x s more details are given in [38].

To show that cases  is continuous we consider the last case only; the other cases are 
very easy to check. Suppose X G C Y$. It is necessary to show that

cases (b, / ,  X €) C cases (b, f , Y e)
By assumption Y  C l .  Let U be any non-empty open subset of X .  Then

( Y - U )  C ( X -  U)
Consider the non-empty open subset Vu of Y , which is defined by Vjj — Y  fl U\ it is 
non-empty because both Y  and U contain at least T. Observe that

( X - U ) D ( Y - U )  = ( Y - V u )
Hence,

( X Q U ) £ Q ( Y Q V u ) e
Also,

n u c  n Vu
Thus,

f(nu, (x e  u)e) E f (nv„ ,  (y  e  v„)e)
W hat is shown is that for any expression in the set whose least upper bound gives 
the left hand side of the inequality which we want to prove, there is an expression
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in the corresponding set for the right hand side which dominates it. Now, it is easy 
to observe that

cases ( b J , X e) =  U  f ( n U , ( X Q U ) e)
ueux

c  U  f ( n V u , ( Y e V u h )
u e u x

c U /(nv,(y©v)e)
V eu Y 

js= case (6 , / ,  ye)

Therefore, cases  is continuous.

7.3.4 Strictness Analysis and Safety

Among the information that can be obtained from the analysis described above, we 
concentrate on tail-strictness and hyper-strictness. Consider the function g which 
was defined earlier in terms of a, f  and case. Let A  and B  be the finite abstract 
domains which correspond to the semantic domains D and E  respectively. Now, 
gs  : L(A)  —> B  is given by

gs (Z) = cases (as , f s , Z)  
and this function is continuous because cases  is. On the other hand, if List(D)  is 
the domain of all lists whose members are elements of D , then g : List(D)  —* i?, 
the semantics of g, is defined by

g(ys) = case(a,f ,ys)  
where a and /  are the respective semantics of a and f . The properties of interest 
are

• If <7^(0 0 ) =  _L then g is tail-strict.

If gs (X e) = _L for all X  ^  {T }, then g is hyper-strict.

At this point, it is necessary to prove that these statements are correct. In order to 
give a BHA-style proof, we extend the definition of abs. The new case here is that 
of lists, otherwise the definition of abs is as given in [11] (see also Chapter 1). If D
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is a semantic domain whose corresponding abstract domain is A , in the notation of 
the previous chapter Abs D = A, then the abstract mapping abs : List(D) —> L(A)  
is given by

abs(xs) =

-L if =  _L
{T } 6  if xs =  []
oo if xs  is infinite or a partial list
{a6 s(a;t) | 1 < i <  n } | if xs = [ ^ i , x n]

The abs in the right hand side in the fourth case of this definition is the one that 
relates D and A. Strictly speaking abs should be indexed by the type which is 
interpreted by its argument domain. Now, it is easy to see that abs is continuous.

W ith this extension of the definition of abs, the following two properties still hold.

abs(h(x)) C abs(h)(abs(x)) 

abs(x) = _L => x =  _L

Moreover,
abs(xs) ^  {T}e if and only if xs  is not total.

Since essentially open sets are being used as elements of abstract domains, the 
significant adjustment which has to be made in the definition of abs is seen in the 
fourth case of the definition above. Recall that Wadler’s original definition is given

by
a&s([zi,...,zn]) =  (n{a6s(:ri),...,a&s(:rn)})e

We need the following statement to prove the correctness of the abstract interpre
tation.

P ro p o s itio n  7.3.1 abs(case) C cases  

P ro o f
It is not difficult to see that it is sufficient to show that for any 6 , g , and Z, if 
abs(a) C 6 , abs(f)  C g , and abs(xs) C Z  then

abs(case(a, f , x s ) )  C cases (b,g, Z)
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We consider the different possible values of Z.

(i) Z  = L

If abs(xs) □ Z  then xs = _L. Now,

abs(case(a, f , x s ) )  = abs(case(a, / ,  J_))

=  a 6 s(_L)

=  _L

On the other hand,

cases (b,g, _L) =  _L 

In this case, the two values are actually equal.

(ii) Z  — oo

If abs(xs) C Z  then either xs = _L or xs is a partial or an infinite list. The 
first case is trivial, and hence we assume that xs = cons x xs f. Notice that 
since abs(xs) C Z, it is also the case that abs(xs') □ Z.  Now, by definition 
and by assumption on g

abs(case(a, f , x s ) )  =  abs(case(a, f ,cons  x xs1))

=  abs(f(x,xs'))

C abs(f)(abs(x),abs(xs'))

C g(abs(x), abs(xs'))

C fl(T,oo)

On the other hand,

cases (b,g, oo) =  g(T,oo)

Therefore,
a 6 s(case(a, / ,  res)) C cases (b,g, Z)
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(iii) Z  = y €j where Y  = {yi,

Assume that Y  ^  {T}; we will consider the other possibility later. Sup
pose also that abs(xs) C Ye. We may also assume that xs  is some finite list 
[ z i , # n]; the remaining possibilities have already been dealt with in the pre
vious cases. Now,

abs(xs) = {a6 s(xi), ...,a&s(:rn)} |
Moreover,

Y  C {abs(xi) , . . . ,abs(xn)}t, 
and hence for any open subset Y'  of Y

{ Y Q Y %  3  ( (abs(x8))GY%

There are two cases to consider. The first is when n =  1 . In this case Y  C 
{a6 s(ari)}^, and hence for every y,- £ Y  we have abs(xi) C yt-. Thus, for any 
subset Y '  of y ,  abs(x\) C HY1. Therefore, if Y f =  Y  then {Y  © Y ' )e = {T}e 
and hence

g i a b s f a M T}e) c  y (n y ', (y  © y % )

Now, we have

abs(case(a, f , x s ) )  = abs(f(xi,  []))

C g(abs(xi), a&s([]))

=  g(abs(x\), {T}e)

C y ( n r ,  (Y  © Y % )

c  U  g ( n x , ( Y e x ) e) 
x  euY

=  cases (b,g,Y£)

=  cases (b,g, Z)

Suppose n /  1 . Let xs' =  [x2, ..., xn] and Y f = Y  CI In this case,
we have

y - y ' = y - ( y n { a & s ( z 1)}t )

=  y  — {a6s(rci)}^

C ..., abs(xn) Y  — {a&s(zi)}^

C {abs(x2),...,abs(xn) y
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Thus,

abs(xs') =  {abs(x2 ) , a b s ( x n)}^ 

c  ( Y e Y %

Moreover, abs(xi) C FIV  and hence

g(abs(xi), abs(xs')) C g{V\Y\ (Y  © l^)e)

On the other hand,

abs(case(a, f , x s ) )  = abs(f(xi,xs'))

C abs(f)(abs(xi),abs(xs'))

C g(abs(xi), abs(xs'))

Combining the above results, we obtain

abs(case(a, f , x s ) )  C g(T\Y', (Y  © l^)e)

C cases (b, g, Ye)

=  cases (b,g, Z)

(iv) Z =  {T}e

By definition, for this Z
cases (b, g, Z) = b U <?(T, Z)

If xs  =  [] then case(a, / ,  res) =  a, and since by assumption abs{a) □ 6 , it fol
lows that

abs(case(a, f , x s ) )  =  abs(a)

C b

C b U # (T , {T}G)

=  cases (b,g, Z)

If xs  is a non-empty list we may assume that it is of the form cons x xs'. Now, 

abs(case(a, f , x s ) )  =  abs(case(a, f ,cons x xs'))
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= abs(f(x , xs'))

c abs(f)(abs(x), u&s^s'))

c <7(a&s(;r), abs(xs'))

c 9( T ,{T }e)
c &U<7(T ,{T }€)

= cases (b,g, Z)

□

From this it is easy to see that for the function g defined earlier, we have

abs(g) C gs  

Moreover, we can now prove the following proposition.

P ro p o sitio n  7.3.2 (i) I f  gs (oo) =  _L then g is tail-strict, and
(ii) I f  gs (Xq)  =  J_ for all X  ^  {T}, then g is hyper-strict.

P ro o f
(i) Suppose <7^(0 0 ) =  _L. Let ys be any infinite or partial list. We want to show 
that g(ys) =  _L. By the previous proposition,

abs(g(ys)) C abs(g) (abs(ys))

E / ( o o )

=  _L

Since abs is is _L-reflecting, we have
g(ys) =  _L,

and hence <7 is tail-strict.

(ii) Suppose gs ( X e) =  _L for all X  ^  {T}. To prove that g is hyper-strict, let ys 
be any finite list which is not total. Again,

abs(g(ys)) C abs(g)(abs(ys))

Q / ( X G), for some X / { T }
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Since abs is is _L-reflecting, we have

9(ys) = -L

Therefore, g is hyper-strict. □

7.3.5 An Example

In a previous subsection, to highlight the difference between the abstract domains 
used in the original approach, which is Wadler’s, and its generalisation by the Nielson 
and Nielson, a domain of lists of pairs was considered. Here, an example of a function 
which is defined on lists of pairs of integers is given.

Consider

g n i l  = 0
g (cons x xs) = i f  c then ( f s t  x) + (g xs)

e ls e  (snd x) + (g xs)

Suppose that cs  =  1.

(i) It is not difficult to see that Wadler’s analysis of g yields the function gs  : 
( ( 2  x —y 2, which is given by

if 2  =  _L or z =  oo5 / x _  f 0 if z =  _L o 
^  |  1  otherwise

Note that ^((OjOjg) =  1.

(ii) Using the approach of Nielson and Nielson, g5  : (L(2 ) x L( 2 )) —> 2 , is given

by
s ,  n JO  if z =  _L or z =  oo or z =  {(0,0)}£

9 <*) =  \  1 otherwise

Thus, / ( { ( 0 ,0 ) } |)  =  0.

The first method is more efficient because the domain of the abstract function is 
normally smaller. As was mentioned earlier, the reason behind our choice of the 
latter is due to its suitability in dealing with polymorphic functions.
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7.4 P olym orphic Functions

We now consider polymorphic functions. It will be shown that the collection of the 
abstract interpretations of instances of any polymorphic function form a lax natural 
transformation.

Of particular interest is the function case which will now be regarded as polymor
phic. In the next sections, we will show that cases  is a lax natural transformation. 
To do this, we need some definitions.

7.4.1 L  as a functor on A ec

We extend the definition of L so that it becomes a functor on the category of finite 
lattices and embedding-closure pairs. Its action on objects is already defined. Now, 
for any embedding-closure pair h : A  —t ecB  we need to define L(h) : L(A)  ->ec L(B).  
To do this let Le(h) : A  —► B  and Lc(h) : B  —> A  be given by

£-(fc)(J.) =  1

Le(h)( oo) =  oo 

L%h)(Y) =  X 

Lc(h)( oo) =  oo

To complete the definitions we introduce the following notation.
N o ta tio n . For any function /  and any subset C of the domain of / ,  f (C )  is used 
to denote the image of C under / ,  that is, f (C )  = { f (x )  | x E C}. Since we use 
upper-case to represent sets and lower-case to represent points, no confusion should 
arise as to which application is being referred to a time.

For any X G 6  L(A)  and Ye E L (B ), we define

Le{h){X<=) = [he{X)^)e , and 

L'(h)(Yz) = (hc(Y))e

Le(h)(Xz)  is essentially the upwards closure of the image of X  under he, except that 
it is an element of L(A)  and not 0(A) .  It can be shown that hc(Y)  is the inverse
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image of Y  under he, that is h°(Y) = he This is because,

x E hc(Y) =$■ x =  hc(y) for some y G Y

=> /ie(x) □ y

=>■ /ie(a:) E y  since V is open 

=► x E / i e_1 (y )

On the other hand,

x e h e~ \ Y )  => /ie( x ) E y

=» /ic(/ie(x)) E hc(Y)

=» x e h c{Y )

Thus, /ic(y ) is always open because the inverse image of an open set under a con
tinuous function is always open. It appears that there is a lack of symmetry in the 
above definitions, in the sense that we do not have the operator  ̂ in the second case. 
This is because, unlike /ie, hc is an open map, that is, it maps open sets to open 
sets, and hence for open sets Y,  hc(Y)I = hc(Y).

It is easy to check that both Le(h) and L°{h) are continuous. Next, it will be shown 
that L(h), that is (Le(h), Lc(h)), is an embedding-closure pair. To do this we need 
the following proposition.

P ro p o sitio n  7.4.1 For any non-empty open sets X  C A and Y  C B,

(i) he(hc( Y )Y  C Y  and (ii) hc(he( X y )  = X

P ro o f
(i) Let y E he(hc( Y y f . This means that there is some yi E he(hc(Y))  such that 
Vi C y. Now, yi =  he(x) for some x E hc(Y).  Also, there is some y2 E Y  such that 
x = hc(y2). Therefore,

y 3  yi = he(x) =  he(h°(y2)) □ y2 E Y  

Since y2 G Y  and Y  is open, we have y G Y .  Therefore,
he(hc( Y ) y  C Y

(ii) Let x G hc(he(X)I).  Now, x = hc(yi) for some yi G he(X)I.  This implies that 
Vi ^  2/2 € he( X ) for some y2. Again y2 = he(x2) for some x 2 G X .  Thus,
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x = hc{yi) □ hc(y2) = hc(he(x2)) = x 2 
Since x 2 £ X  and X  is open, x £ X .  Therefore

hc(he( X y )  C X

Since h° o he = id, it follows that
X  =  hc(he(X))

Clearly,
hc{he(X))  C hc(he( X y )

Hence,
x  c  hc(he( x y )

Therefore,
fc^/i^X)*) = X

This completes the proof of the Proposition. □

Going back to the definition of the mapping L, we have
(Le(h) o Lc(/i))(_L) =  _L and (Le(h) o Lc(h))(oo) =  oo

Moreover,
(Lc(fi) o Le(h))(±.) = _L and (Tc(/i) o Le(fi))(oo) =  oo

Also,

( L ' ( h )  o L ' ( h ) ) ( Y e ) =  L % h ) ( h ' ( Y ) e )

= h\h\Y))\
3

and

(L°(h) o £ '(h ))(X e) =  L%h)(h‘(X ) l )

= hcm X ) %

= x €

It is now easy to see that L(h) is indeed an embedding-closure pair.

It also easy to check that

L(id) =  id and 

L(h2 oh!) = L{h2) oL{hi)
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Therefore, L is a functor from A ec to A ec.

Som e P ro p e r tie s  of L(h)

The embedding-closure pairs from the two-point lattice 2  to any finite lattice are of 
special interest; this was seen in the previous chapter. We consider such pairs and 
see what their images under L are. For every non-top element a of the finite lattice 
A , consider the embedding-closure pair ha : 2  —Y c A, whose definitions is given in 
Chapter 3. Suppose X  and Y  are non-empty open subsets of 2  and A  respectively. 
Then, it is not difficult to show that

he( X Y  =  1 ^  0 €  X
'  \ { Ty i }  otherwise

Also,

hc( Y \  =  /  { °> 1} if “ 6  Y
\  {1 } otherwise

Thus,

and

L<(ha)(Y€) =  {  { J - ^

In the first and third equations above, the condition 0 G X  is equivalent to X  =  
{0,1} because X  is an open subset of 2 .

In previous chapters, we have already seen how type constructors can be interpreted 
as functors. In the case of lists, the mapping List can be extended to be a functor 
from Cec to Cec. W ith regard to abstract interpretation, what is different about the 
list type constructor, is that the functors List and L are not similar. In the case 
of the function type constructor —>•, for example, the functors interpreting it both 
in the standard semantics and the abstract semantics are defined in the same way. 
Actually, the second can be seen as the restriction of the first, because it is only 
defined on finite lattices and embedding-closure pairs between them.
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7.4.2 Some Lax Natural Transformations

It is easy to show that the collection of mappings cons5 : A x L(A)  —>• L(A)  is a lax 
natural transformation; in fact it is a natural transformation. We omit the proof; 
it follows from the definition very easily. We give only the proof of the fact that 
{case^ B} is a lax natural transformation from F  to G, where

F(A, B) = B x ( A x  L(A) -> B) x L(A)  and G{A, B) = B.
Suppose h : A —YecC and k : B  —t ec D. From the type information, we have 

F e(h,k)  =  ke x  (Av. ke ov o hc x Lc(h)) x Le(h) and Ge(h,k)  =  ke.

The following lemma will be used in the proof of the proposition following it.

L em m a 7.4.1 Let h : A  —>ec B  be an embedding-closure pair, and let X  and Y  be 
non-empty open subsets of B  such that X  C Y.  Then

hc{Y) © hc(X)  C hc(Y  © X )

P roof
To show this let a € hc(Y)  © hc(X). If a = T a then since hc(Y  Q X )  is a non-empty 
open set, a must be one of its elements. If a ^  then a € hc(Y)  and a £  hc(X).  
Thus, a =  hc(y) for some y € Y.  Clearly y £  X , and therefore y £ {Y — X )  which 
implies that y G F  © X  and hence a 6  hc{Y  © X).  Thus, we have

hc(Y)  © hc(X) C h°(Y © X )
□

A consequence of this lemma is that
L “( & ) ( ( r e x ) s ) c  (h% Y )  © h ° { x ) ) e

P ro p o s itio n  7.4.2 cases is a lax natural transformation from F to G. That is, if 
A , B , C and D are finite lattices, h : A —}ecC and k : B  —}ecD are embedding-closure 
pairs, then we have

caseQ D o F e(h,k)  C Ge(h,k) o case^ B

P roof
Let ob be any element of B,  and f  : C x L(C)  —» D be any continuous function.
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We want to show that for any Z  £ L(A),  we have
(casef; D o F e(h,k))(aBJ , Z )  C (Ge(h,k)  o casesAB)(aB, / ,  Z)  

Now, there are four cases to consider.

(i) Z  =  ± L(A)

(case%D o F e(/i, k))(aBi / ,  -J-L(ii))
=  case%D(ke(aB) ,k e o f  o (hc x Lc(h)), Le(h)(±l(A)))
=  case§>D(fce(aB), ke o f  o (hc x Lc(h)), ±l(c))

=  -L D  

On the other hand,
(Ge(h,k)  o case^B)(aBJ ,  -Ll(a)) =  ke(± B) 

Since -LB C (_!_#), the inequality holds.

(ii) Z  — oo

(case§D o F e(/i, k))(aB, / ,  oo)
=  case§D(Aje(as), fce o /  o (hc x Lc(h)), Le(h)(oo))
=  casecD(ke(aB), ke o /  o (/ic x Lc(h)), oo)
=  (fce o /  o (/ic x  Lc( / i ) ) ) (T c ,  oo)

=  ke( f (h c(T c ) ,L c(h)(oo)))
= ke( f ( T A, oo))

Also,
(Ge(h,k) ocasesAB)(aB, f ,oo)  = ke( f ( T A,oo)) 

Again, the inequality holds.

(iii) Z  = {T a } 6

(case%tD o F e(h,k))(aBJ , { T A}e )
= case%D{ke(aB), ke o /  o (hc x Lc(h))y Le(h)({TA}€)) 
=  case%D(ke(aB), ke o /  o (hc x Lc(h)), {Tc }e)
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=  k'(aB) U (fce o /  .  (hc x I c(/»))(TC) {T c }e))

=  fc'(aB) U ke( f (h c(Tc),  Lc(h){{Tc }e)))
E k°(aB U f ( h c(Tc) ,  L%h)({To}e)))
= k°(aB U f ( T A, { T A}z))

On the other hand,
(Ge(h, k) o caseA B)(aB, f ,  {TA}e) =  k ‘(aB U f ( T A, {TA}€))

(iv) 2  =  K6

We may assume that Y  ^  {T^}, because we have treated the other case 
already. Let W  = he( Y y .

(casefjp o F e(h,k))(aB, f , Y e)
= caseBD(ke(aB), ke o f  o (hc x Lc(h)), Le(h)(Y^))
=  c a s e Q j ) { k e{ a B ) , k e o /  o (ftc x  Lc(h)),he(Y) \ )
=  Liz e u j k '  o /  o (&" x I 'W J H n Z , (& '(K)t 0  Z )6)
=  Liz erv  f f / W Z ) ,  Lc(h)((he( Y y  0  Z )6)))

= Uz« fee(/(ftc(n̂ ), W W  e «
E UzeMW **(/(rw (z), (&“(A*(y)t) e  h' (z ) )e)) 
= Liz euw k' ( f (nh' (z ) ,  {Y e  h'(Z))e)) 
E fce(Uz € /(nftc(^), (V e  h,c(Z))€))

On the other hand,
(Ge(/i, k) o case%B)(aB, / ,  ye) =  fce(|Jx e / (n X , ( y  © X ) €))

It is now sufficient to show that for any non-empty open subset V  of he{Y )^, 
i . e V  £ Uw, the following holds

f (nhc( v ) , ( y  © /*c(y ))G) E U ^ eWy/ ( n x , ( y  © x ) 6)
Let X ' =  /ic(V). It is easy to check that X ’ C Y,  that is X '  £ Uy. Hence,

f (n hc( V ) , ( Y e h c(V))e) = f ( n x ' , ( Y e x % )

E U  /(ruf, (K 0  X)e)
X eUy

Therefore, cases  is a lax natural transformation. □
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Suppose f  is a polymorphic function with type \ft.t x [t] —> H ( t ), and g is the 
polymorphic function defined by g (xs) = case ( a , f  ,x s) with type Vi.[t] —>■ H(t). 
For any finite lattices A  and (7, and an embedding-closure pair h : A  —»ec C, assuming 
that

yg o (ft' x £-(*)) e

it is possible to show that

gsc o L \ h )  C

(Strictly speaking, we should have H' instead of H  here.) To show this inequality, all 
we have to do is use the above proposition where we have H(A)  and H(C)  instead 
of B  and D , and H(h)  instead of k. Therefore,

gsc  E n H'(h)o<fA oL‘{h)

The greatest lower bound is taken over all possible h ’s. When A is 2 , from the 
nature of the embedding-closure pairs defined on 2 , which we studied in Chapter 3, 
we have

E []H°(hv)ogi  o L \ K)

where u ranges over all non-top elements of C. Here as well, we obtain the same 
approximation by using only the meet-irreducible elements of (7. This, in many 
cases, reduces the number of functions involved when taking the greatest lower 
bound.

7.5 Im plem entation

We reported how to obtain an approximation to the abstract interpretation of any 
instance of a polymorphic higher-order function from that of the smallest in [6 ]. 
The type system of the language used in that work did not include lists. Seward’s 
implementation of this method is for a lazy functional language called C ore [48]. His 
implementation also extends to lists, although there is no known proof of correctness 
for this extension. It was our inability of proving the technique correct that lead
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us to consider the method by Nielson and Nielson. However, many of the results in 
Seward’s paper remain valid in this framework.

One of the examples given in [48] involves the function

fo ld r  :: (a -> b -> b) -> b -> [a] -> b 
fo ld r  f  a n i l  = a
fo ld r  f  a (cons x xs) = f  x (fo ldr  f  a xs)

The abstract interpretation of the smallest instance of this function, that is foldr2i2,
would have 48 entries when tabulated. On the other hand, f o l d r f ^  L^  has a vast 
number of entries; in fact Hunt reports that they are of the order of 106  [27]. Thus, 
if one computes the latter by the usual iterative means, checking for equality of 
functions at each iterative step will be very expensive.

Consider the function

concat s  fo ld r  append n i l

where

append :: [a] -> [a] -> [a] 
append n i l  ys = ys
append (cons x xs) ys -  cons x (append xs ys)

In the computation of the abstract interpretation of the simplest instance of concat, 
f o l d r ^ is involved. This is because

concat2 = fo ld r ^ 2 ),l(2 ) nppendf nils

Instead of computing foldr  ̂ 2̂ L^  directly one can use

n Ge(ha,kb) ofoldrfp  ° F c(ha,kb),

where both ha and kb range over all the embedding-closure pairs from 2  to L(2 ). 
Notice that
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F(A, B) = A  -> B  -> B  and G(A, B) = B  -> L(A) B.
These definitions follow from the type of the function.

According to Seward’s experiments, the use of the above approximation in analysing 
concat makes it 750 times faster than computing it directly. Moreover, the approx
imate value coincides with the exact value in this case. In this kind of examples, 
we are free to use Wadler’s domains because, the lattices under consideration are 
chains.

7.6 Sem antic Polym orphic Invariance

We have already promised to prove the semantic polymorphic invariance of some 
properties of functions defined on lists. The properties which were considered in the 
monomorphic case are tail-strictness and hyper-strictness. We study the invariance 
of these properties. In order to do this we need some definitions.

List  as a  fu n c to r on Cec

Corresponding to the list type constructor we define a mapping List  on the category 
of domains and embedding-closure pairs, Cec. For any domain D let List(D)  denote 
the domain of lists whose elements come from D. For any embedding-closure pair h : 
D  —>ec E,  we define List(h)  : List(D) —>ec List(E)  by List(h) = (map he,map hc), 
where map is given by

map k _L =  _L 

map k [] =  [] 

map k (cons x xs) =  cons (k{x)) (map k xs)

To show that List(h)  is indeed an embedding-closure pair is not difficult. The only 
remark which perhaps is necessary to make here is, that when both xs  and ys are 
infinite lists, the proof of

map hc (map he (cons x  xs)) =  cons x xs 

map he (map hc (cons y ys)) □ cons y ys
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follows by using partial lists approximating xs and ys and the continuity of the 
functions involved; all the remaining cases are easy to verify. It is now easy to check 
that List  is a functor from Cec to itself.

S em antics of case

For domains D and E , let caseE,E be the concrete semantics of an instance of case, 
where

caseDyE(a, / ,  _L) =  JL 

caseDyE(a , f ,  []) =  a 

caseD,E(a, f ,cons  x xs) = f ( x , x s )

Now, we want to show that the collection of such functions is a lax natural trans
formation from F  to G, where

F(D, E)  =  E  x (D x List(D) -» E)  x List(D)  and G(D, E)  =  E.
Suppose h : D —>ec R  and k : E  —Y c S  are embedding-closure pairs. Then,

F e(h, k) =  (fce, A g. ke o g o(hc x Listc(h)), Liste(h)) and Ge(h, k) = ke.
Now,

(ease ls  o F e(/i,fc))(a,/,_L) =  _L

(ease ls  o F e(/i,fc))(a,/, []) =  ke(a)

(caseRts o F e(h, k))(a, / ,  cons x xs) =  ke( f (h c(he(x)), map hc (map he £,s)))

=  ke( f (x ,xs) )

On the other hand,

(Ge(h,k) ocaseDfE)(a,f , .L)  =  ke(J_)

(Ge(h,k) ocaseDtE)(a , f ,  []) =  ke(a) 

(Ge(h ,k)ocaseE Ê) (a , f , c o n s x x s )  =  ke( f (x ,xs ) )

From the two sets of equations above, it is easy to observe that
caseRts  o F e(h, k) C Ge(h, fc) o caseE,E 

Therefore, the collection is a lax natural transformation.
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Suppose the f  in the definition of g is polymorphic with type W.t x [t] —> H{t ) so 
that it is possible to assume that

f R o (he x Liste(h)) C H e(h) o f D

where /  is the semantics of f . Also, if we assume that clr C H e(h)(ar>), where ap
and an are the semantics of a in H(D)  and in H(R)  respectively, this statement 
together with the result that we just proved imply that

g n  o Liste(h) C H e(h) ° 9 d

That is, g is interpreted by a lax natural transformation. To see this, use H (D ),
H ( R ), and H(h ) instead of E , 5 , and k respectively in the proof above.

Coming back to the question of invariance :

• Suppose that gp is tail-strict. Without loss of generality, assume D is the 
two-element lattice 2. We want to show that gR is tail-strict. Suppose ys is 
either an infinite or a partial list. We have to show that gR(ys) =  _L. From 
the lax natural transformation condition we have

9r {vs) E (He(h) og2 o Listc(h))(ys)

Since Listc(h)(ys) is also an infinite or a partial list, and g2 is tail-strict, it 
follows that

gR(ys) C H e(h ) ( l )

This is true for all h. As in Chapter 5, if we assume that R  has a top element 
then there always exists an embedding-closure pair h for which the embedding 
component he is strict, and moreover H e(h) is also strict. Hence, we have

gR{ys) = J_

Therefore, gR is also tail-strict.

• On the other hand, suppose <72 is hyper-strict. To prove that gR is also hyper- 
strict, let ys be any list that is not total. Now, it is not difficult to show that 
Listc(h)(ys) is also not total. Thus, the inequality

gR{ys) Q (He(h) og2 o Listc(h))(ys)
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implies that
gR{ys) C H e(h)(.L)

By an argument similar to the previous case, we have gR,s(ys) = _L, that is, 
gR is hyper-strict.

W hat we have done so far is to prove a partial result. Roughly, what it says is that if 
any of the properties holds for smaller instances of a polymorphic function then that 
property must also hold for the higher instances as well. To complete the proof it 
is necessary to prove the other half. That is, if the higher (complex) instances have 
the property, so do the smaller (simpler) ones. However, as was shown in Chapter 5, 
one needs to use the category of domains and embedding-projection pairs to do this. 
The lax natural transformation condition for g between functors on this category 
implies that

H p(h) o gR o Liste(h) □ go

for all embedding-projection pairs h : D -»ep R. Notice also that the functor List 
here is different from the one that was being use so far. From this inequality, the 
remaining half of the proof is obtained.

The statement about the invariance of hyper-strictness is perhaps vacuous. It ap
pears that there are no examples of hyper-strict polymorphic functions in the lan
guage. In fact, that is what one would intuitively expect. We included the proof of 
its invariance because no extra effort was required.
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Further A pplications

There are other analyses of programs that can be done by abstract interpretation 
in a way similar to strictness analysis. The inefficiency in computing fixed points 
by iteration is also present in these analyses, so we have problems similar to the 
ones we had before with polymorphic functions. Fortunately, techniques similar to 
those used in Chapter 6  can also be applied here. That is, an approximation to the 
abstract interpretation of any instance of a polymorphic function can be obtained 
from that of the simplest.

The two analyses which we study here are binding-time analysis and termination 
analysis.

8.1 B ind ing-T im e A nalysis

For the purpose of partial evaluation, expressions in a program may be classified as 
static or dynamic. Any expression that can be evaluated during partial evaluation 
would be classified as static, and all other expressions are classified as dynamic. 
Binding-time analysis is the analysis which determines these properties. One way 
of performing this is by abstract interpretation. As one would expect, there may 
be expressions which are static but this fact may not be detected by the abstract 
interpretation. We have a similar situation in strictness analysis; there axe strict

110
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functions whose strictness could not be detected by the abstract interpretation we 
were discussing in the previous chapters.

In the first-order case, the abstract interpretation for binding-time analysis is done 
on the two-element domain {S, D} with S  □ D, where S  represents the property 
of being static and D represents the property of being dynamic. An abstract in
terpretation that uses this domain is given by Sestoft [46]. Strictly speaking, any 
expression for which we could not decide if it is static is classified as dynamic. There 
is some analogy between D here and 1 as used in strictness analysis.

8.1.1 Higher-Order Functions

An abstract interpretation for binding-time analysis of a simply-typed A-calculus 
with constants was defined by Hunt and Sands [26]. Our study of polymorphic 
functions will make use of this abstract interpretation. Their method is very similar 
to the one used in the strictness analysis of higher-order functions by Burn et al

in ].

The notation we shall follow will be similar to the one in Chapter 5. Assume that 
in t and bool are the only basic types, and that In t  and Bool are their respective 
semantic domains. The abstract domains corresponding to these semantic domains 
(or types) are given by

Abs In t  =  Abs Bool =  {S, D}
The abstract domains corresponding to products and function spaces are given by

Abs (Di x D2) =  (Abs Di) x (Abs D2) 

A b s (D 1 ^ D 2) =  (Abs Dx) -> (Abs D2)

Hunt and Sands also deal with lists, however we will delay this until later.

8.1.2 Interpretation of Terms

If one identifies 0 with S  and 1 with Z), there is a similarity between the abstract 
interpretation for strictness analysis in [1 1 ] and the one used in binding-time analysis.
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The only difference is that here

• integer and boolean constants are interpreted by S.

• the usual binary operators +,-,* and /  are interpreted by U.

• the conditional i f  is interpreted by i f B, where for a lattice A,
i f * - { S , D }  A ->  A ->  A

is given by
i fB „ i /  t a i i a  =  D 

\  6 U c if o =  5

Obviously, we are assuming that A  is the lattice that corresponds to the type 
of the appropriate instance of i f .

The remaining expressions are interpreted in exactly the same way as for strictness 
analysis, and of course, subject to the identification of elements of the abstract 
domains which we mentioned above.

N o ta tio n . For any function f , we shall denote its abstract version by f B (B refers 
to the fact that we are dealing with the abstract interpretation for binding-time 
analysis).

E xam ples

(1 ) Let
f  x y z = i f  x (y-1) (y+1)

Now, f B is given by
fB J T \ i x  = Df  x y  z = < .. c

[ y ii x = b

Therefore, if Eo and Ei are static, for example, then f  Eo Ei E2 is also static
even when E2 is dynamic.

(2) Let

g x = i f  True 0 x 
h x = 0
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Clearly, g and h have the same semantics. On the other hand, for every x
gB x = x and hB x — S  

From this we conclude that h E is static for every E, whereas this is not the 
case for g  E. More precisely, the abstract interpretation detects that g E is 
static only when E is static.

8.1.3 Polymorphism

Because of the similarity with the abstract interpretation for strictness analysis, to 
conclude that the abstract interpretation (for binding-time analysis) of any polymor
phic function is a lax natural transformation, we only need to look at the functions 
whose interpretation are defined differently. In fact, the only function that we need 
to check is the conditional.

We show that the collection {if®} is a lax natural transformation between the 
functors F  and G on the category of finite lattices and embedding-closure pairs, 
where

F(A)  =  {S, D} and G{A) = A  -* A  -> A  
The actions of F  and G on morphisms are given in the usual way; in fact F  is 
the constant functor always returning the identity morphism on {S', D}. Now, let 
h : A —>ec B  be an embedding-closure pair. Since F e(h) — id, we have

( i f i  o F'(h)) S  b c = i f i  S  be  

= b\JB c 

( i f i  o F°{h)) D b c = i f i  D be  

= T  B
On the other hand,

(iGe( h ) o i f B) S b c  = he( i f B S  hc(b) hc(c)) 

= he(hc(b)UA hc(c)) 

= h \ h c(bUB c)) 

□ b Us c

=  ( i f i  o F \ h ) )  S  b c
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Also,

(Ge(h) o i f %) D b c = he(if%D hc(b) hc(c))

= he{ T a ) 

=  t b

=  (ifg o F e(h)) D be

Combining all these we have
i f g ° F ' ( h )  C Ge( fe )o i / |

That is, the collection is indeed a lax natural transformation form F  to G.

The operation U in the definition above should normally be indexed by the appro
priate lattice. In fact, we have already shown, in Chapter 3, that the collection {LU} 
is a lax natural transformation between the functors Id  x Id  and Id.

Now in general, for any polymorphic function f  of type V£.F(£) —> G(t), we have
/ I  • F'(h)  C G*(h) . f t

and hence,
f t  C f | G‘(h) .  / I  o F ‘(A)

The greatest lower bound is taken over all possible embedding-closure pairs h. As 
in strictness analysis, if f  is recursive and B  is a big lattice then the computation 
of /g  by iterative means is normally very expensive. Instead, because of the above 
inequality, we let A = {5, D} and first compute f® by iteration, and then build an 
approximation to from it.

One of the desirable features of the abstract interpretation described above is that 
it also works for higher-order functions. This is a noteworthy advance over the 
work of Launchbury [33] where he uses projections in his binding-time analysis of 
polymorphic first-order functions.

8.1.4 Lists

Hunt and Sands also deal with lists. The abstract domain they use in the abstract 
interpretation of, for example, lists of integers is the three-element domain
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{ S P I N E ( S ) ,  S P I N E ( D ), D}
where

S P I N E ( S )  c  S P I N E ( D )  C D 
S P I N E ( x ) is the property of a list with static structure with all its elements having 
property x.

In general, for any finite lattice A , they define the domain
{S P IN E (a )  | a € A}  U {D}  

where D is the top element, and S P IN E (a )  C S PINE (b)  if and only if a □ b. 
From now on, we shall denote this domain by K(A).  The operator K  is analogous 
to L in the previous chapter.

K  as a functor on Aec

It is now possible to extend the definition of K  so that it becomes a functor from 
the category of finite lattices and embedding-closure pairs to itself. To do this, let 
h : A  -»ec B  be an embedding-closure pair. Define the functions

K e(h) : K(A)  -> K(B)  and K c(h) : K (B )  -> K(A)

by

K e{h)(D) = D 

K e(h)(SPINE(a))  = S P I N E ( h e(a)) 

K c(h)(D) = D 

K c(h)(SPINE{b)) = S P I N E ( h c(b))

Clearly both functions are continuous. Moreover, it is easy to show that 
( K e(h), K c(h)) is an embedding-closure pair and furthermore, K  is a functor; we 
omit the verification.

D efinition of consB

Going back to some operations that are defined on lists, we first consider cons. Now, 
as given in [26] for the monomorphic case

consBA : A  x K(A)  -► K(A)
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is defined by

B( i\ _  f  D  i f  I — D
consA\a' l> ~  |  S P I N E ( a  U a1) if I =  SPIN E (a ' )

Also nil® =  S P I N E ( L a ). Clearly cons® is continuous. Moreover, the collection 
{cons®} is a lax natural transformation between the functors Id  x K  and K.  To 
show this we note the following

( K e{h) ocons^){a,D) = K'(h)(D)  

=  D 

{ K \ h )  oc<ms%){a,SPINE{a')) = K e{h){SPINE{aUa') )  

= S P I N E ( h c(a U a')) 

3  S P I N E ( h e(a )U h e(a'))

On the other hand,

(consg o (he x K e{h)))(a, D) =  cons |(he(a), K ‘(h){D)) 

=  amsg(he(a), D) 

= D 

(consg o (he x K e(h)))(a,SPINE(a') )  = c m s BB{ h \ a ) , S P I N E { h e(a'))) 

=  S P I N E ( h ‘(a) U he(a'))

From these statements, we obtain the desired result. That is,

consg o (he x K e(h)) C K c(h) o consA

Notice also that

nil% = S P I N E ( L b )

C S P I N E ( h e(± A))

= K ' (h ) (S P IN E ( .La ))

=  K'(h)(nilB)

Therefore, nil^ C K e(h)(nil^); this property will be used later.
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D efinition and properties of case0

As in Chapter 7, we concentrate on functions defined in terms of case. An important 
issue here is how to define

c a s e A,B • B x ( A x  K ( A ) -»■ B) x  K(A) B  
To motivate the definition which we will give, let b € B, f  : A  x  K(A)  —> B , and 
as € K(A).  Now, case^B(b, f ,a s )  should depend on the nature of as.

•  If as =  D it is reasonable to let case^B(b̂  / ,  as) = D

• If as = S P I N E ( v )  then the list whose abstraction is given to be as is either 
n i l  or cons x xs. In the latter case, its abstract version will be something 
of the form cons^(a, I) for some a and /, and moreover I itself must be of the 
form S P I N E ( a t) for some a'. Hence, it is safe to assume that both a and a' 
axe equal to v. Thus, we define

caseA,B(bi f i as) = b \ J ( f ( v ,S P IN E (v ) ) )

Statements analogous to those about the abstract interpretation for strictness can 
now be made. That is, {case^ B} is a lax natural transformation between the func
tors F  and G, where

F(A, B) = B x  ( A x  K(A)  B) x K ( A ) and G(A, B) = B  
Again, their action on morphisms is defined in the usual way. Now, suppose we have 
finite lattices A,B,C  and D, and embedding-closure pairs

h : A  —Vec C and k : B  -*ec D
Now, we have

(ke ocaseBAB)(b , f ,D)  =  ke(D)

=  D (since ke T -preserving)

Also,

(ke .caseBAtB) (b , f ,S P IN E { v ) )  =  k‘ (b U ( f{v ,S P IN E (v ) ) ) )  

□ ke(b)Uke( f ( v ,S P IN E (v ) ) )

On the other hand, letting
M  =  case^D o (ke x  \u . (ke o u o (hc x K c(h))) x K e(h))
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we have

M (b , f ,D )  = D

M (b , f ,  S P I N E ( v ) )  =  casel'D(kc{b), k? „ /  .  (hc x K c(h)), K \ h ) ( S P I N E ( v ) ) )

=  caae%f l (k‘(b), k‘ « /  o (ftc x  /Tc(ft)), S P I N E ( h e(v)))

= ke(b) U ke( f (h c(he(v)), K c(h ) (S P IN E (h ‘(v)))))

=  Jb'(6 ) U SP IN E (v ) ) )

It is now easy to see that the collection is indeed a lax natural transformation. That 
is,

caseQ D o F e(h,k)  C Ge(h,k) o case^B

Recall the definition of the function g which was given in Chapter 7 by
g(xs) * c a s e (a ,f ,x s )

Assuming that f  is polymorphic with type Vt.t x  [tf] —> H(t) and hence

f c  o (hr x  K'{h))  C H'{h)  .  f A

and also that
4  C  H‘(h)(aeA)

we can show that
flg C H ° ( h ) o g * o K ‘(h)

(Note that, strictly speaking, we should have H ' here.) Recall that for any xs

9 a ( x s ) =  c a s e A ,H{A) (a A J A , x s )

Taking greatest lower bound over all possible expressions of the form which appear 
in the right hand side of the above inequality, we obtain a good approximation. We 
normally would replace A  by {S', D}  to use the simplest instance. Identifying {5, D}  
with 2  , we have

gc E n H°{hu) o g i  o K c(h„) 

where u ranges over all non-top elements of C.

Exam ple
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The following table is that of a p p e n d where append is defined in the usual way. 
The table is obtained by the usual iterative means. As in strictness analysis, this 
may be used in the analysis of f  o ld r  which in turn is used in the analysis of concat.

xs /ys S P I N E ( S ) S P IN E (D ) D
S P I N E ( S ) S P I N E ( S ) S P IN E (D ) D
S P I N E ( D ) S P I N E ( D ) S P IN E (D ) D

D D D D

8.2 T erm ination A nalysis

The property of functions that one usually looks for when performing termination 
analysis is dual to strictness. More precisely, for a function /  we check if for all 
x ^  _L it is the case that f ( x )  ^  _L. The techniques used in both analysis are, 
therefore, similar.

Mycroft has shown how abstract interpretation can be used for termination analysis
[37]. He deals with first-order functions defined on flat domains. The abstract 
domains used in this interpretation are exactly those used for strictness analysis. 
However, in this case 1 represents termination, whereas 0 represents no information. 
Constants and the conditional are given the following interpretations.

• integer and boolean constants are interpreted by 1 .

•  the binary operators +,-,* and /  are interpreted by f~l.

•  the conditional i f  is interpreted by */r , where for a lattice A,
i f £ : 2  —y A  —̂ A  —y A

is given by
■ f T i -  $ ±A if a = 0  

A a C | 6 r ic  otherwise
Again, we are assuming that A  is the lattice that corresponds to the type of
the appropriate instance of i f .

We need not be specific about the lattice A  above. In his extension of this in
terpretation to higher-order functions, Abramsky [4] uses these definitions and the



CHAPTER 8. FURTHER APPLICATIONS 120

interpretation of other expressions is defined in a way similar to that for strictness 
analysis given in [11].

Polym orphism

We show that the abstract interpretation of a polymorphic function is a lax natural 
transformation between functors on the category of finite lattices and embedding- 
projection pairs, Aep. This is fairly straightforward; except perhaps that of the 
conditional defined above. Thus, we must consider the collection { i f j } .  Before 
doing this, notice that normally the n used in the definition above should be indexed 
by A. We have actually shown, in Chapter 3, that the collection {l""U} is a lax natural
transformation between functors on the category Cep x Cep.

Suppose A  and B  are finite lattices, and k : A —̂ep B  is any embedding-projection 
pair. Notice that this is of the form (fce, kp) and recall that ke o kp C id and kp o k e =
id. Now, letting F  and G be the functors given by

F(A) = 2 and G{A) = A  -> A  -> A  
where F (k ) and G(k) are defined as in Chapter 3, we want to show that the { i f j }  
is a lax natural transformation between F  and G. To see this consider the following 
equations

(z /J  o F e(k)) 0 be  =  z / J  0 6 c

=  -L B

(if% o F e(k)) 1 6 c  =  z '/J 1 6 c  

= 6nf ic

On the other hand,

(Ge(k) o i f j )  0 be  =  k ‘( i f j 0 k ? ( b ) k p(c))

=  k ' ( ± A)

=  -Ljg (since ke is strict)

Also,

(Ge(fc) o i f A ) 1 6 c  =  k \ i f l  1  kp(b) kp(c)) 

=  ke(kp(b) rig kp(c))
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= ke(kp(bnAc)) 
c  b n A c

It is now trivial to observe that
G‘{ k ) * i f l  C i fg  o F ‘(k)

In general, the abstract interpretation of any polymorphic function is a lax natural 
transformation. Furthermore, if /  is a lax natural transformation from some functor 
F  to G then the function

UG'{k) „ f t  * F*(k)
may be used in place of because if x ^  _L and (JJ G?e(Ar) o o F p(k))(x) ^  _L 
then / J (  x ) ^  -L.This why embedding-projection pairs are chosen for termination 
analysis.
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C onclusion

It has been known for a long time that instances of polymorphic functions are seman
tically related to each other. In this thesis we have seen two particular examples 
of relationships that are useful for program analysis. The choice of relationship 
depends on the semantic properties under investigation. In the case of strictness, 
for example, the relations that arise out of embedding-closure pairs are appropri
ate. One consequence of using these relations is a proof of a partial result about 
the semantic polymorphic invariance of strictness. Combining this with the results 
obtained from the use of embedding-projection pairs, we showed how the full re
sult of polymorphic invariance can be proved. We have also stated and proved the 
appropriate invariance results for functions defined on lists.

The abstract interpretation of any polymorphic function was regarded as the stan
dard interpretation of some polymorphic function in a language of abstract terms, 
where the semantic domains axe finite lattices. This enabled us to use results from 
our study of the original language and its semantics; in particular, that the ab
stract interpretation of any polymorphic function is a lax natural transformation. 
It is interesting to note that the semantic polymorphic invariance of strictness in 
the language of abstract terms implies that the strictness analysis of the original 
language by abstract interpretation is polymorphically invariant.

We studied lax natural transformations on the category of finite lattices and 
embedding-closure pairs in some detail. This effort was rewarded by our ability

122
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to build approximate values to the abstract interpretation of any instance of a poly
morphic function from that of the smallest. This is the solution proposed to the 
central problem which was described at the beginning. It is the main contribution 
of this thesis. Seward has already built an efficient strictness analyser based on this 
method.

The lax natural transformation condition also holds in the presence of lists. However, 
the abstract domains used in the abstract interpretation of functions defined on lists 
are those of Nielson and Nielson. The disadvantage of this over the use of Wadler’s 
abstract domains is that the domains are bigger. Consequently, in some cases the 
number of functions involved in building an approximation are by that much bigger, 
and hence making the process less efficient. On the other hand, there are several 
examples that arise in practice where the two domains are of the same size. In 
particular, this is so when the types being considered do not involve products.

Binding-time analysis was given less space in the thesis. However, every result that 
was proved about strictness analysis has a counterpart in binding-time analysis. 
This does not apply to functions defined on lists, because the abstract domains used 
in the analyses of lists are different. We have also shown that termination analysis 
can be treated in much the same way by using embedding-projection pairs.

It is worth recalling that the method of finding approximations in each analysis 
should only be applied in the case of recursive functions. In other cases, the cost of 
building approximations is likely to be more expensive than evaluating the actual 
value directly.

Because of their size, we would have liked to use Wadler’s abstract domains in the 
strictness analysis of lists. But then it would be necessary to prove that {case5} 
(Wadler’s version) is a lax natural transformation. We have not managed to do this. 
More experiments are required to assess how the use of the domains by Nielson and 
Nielson affects the performance of strictness analysers.

Results about binding-time analysis must be comparable to those on strictness anal
ysis. But, if the language is to include lists, separate experiments must be performed. 
However, it is not difficult to show that, binding-time analysis of lists is cheaper than
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strictness analysis because of the size of the abstract domains used.



A p p en d ix  A  

T h e R epresentation  T heorem

Theorem  5.2.1

Let Si and S 2 be domain assignments. Let T be a type assignment. Let 77 1 and 
772 be two environments such that r)i(x) E T[r(:r)] S'* for all x E dom(T) and 
i = 1 , 2 . Suppose for each type variable t , we have an embedding-closure pair 
p(t) : Si(t)  —>ecS 2 {t). Let hT stand for T[r] p.

If 771 and 772 are related, i.e., for all x E dom(T)

fef(* )M *)) 3  »/a(s), 

then for each formula r  b E  : t we have

heT{ p v A E \ S i m )  3  Vr,AE l S 2 *72

P roof
It is important to remember that both the condition and the statement of the 
theorem could equivalently be expressed in terms of the hc’s instead of the he’s. 
That is, the statement is the same as

prA El Si l i  3  K (vrA El S 2 *72)

The proof is now given by structural induction on terms.

125
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(1 ) If k is a constant of type b then

Pr,blk l  s i Vi = Pr,blk l  s 2 rj2

and since hi is an identity we have the desired inequality.

(2) Since /^r,r(ar)[^] Si rji = r]i(x) for i = 1,2, the statement follows from the fact 
that r]i(x) is related to rj2(x) by hypothesis.

(3) Suppose T b E\ : r  —> r' and T h E2 : r  

Now,

h U v r A i E i E i ) ]  S t  V l )

[defn. of fi]

= heT,((fir ,T->AEi1 Si ^ i)(/ir,r[^ 2] Si rji))

[inductive hypothesis]

□  K ,{ { h U A » T t r - > A E i \  s 2 m ) ) { K < j * r A E d  &  m) ) )

[defn. of h°T̂ T,\

=  h A i K ,  o ( f ir ,T -T '[ £ iJ  S2 rj2) o h er ) (h cT(fiTA E 2l  s 2 m )))

=  K , ( h cA ( P r , r ^ A E i }  S2 Tf iXhXhfor ,t\E2\ S2 rf2)))))

[inductive hypothesis]

3  {pr  ,T— {Ei j  s 2 m ) { p r A E 2l s 2 m )

— ^ r ,A { E lE 2)J S2 V2

(4) Suppose T,x  : r  h E  : r'. Since rji and r]2 are related, for each dr £ T[t] S2, 
Y]i[hcT{d!)Ix] and r}2[d'/x] are related. This is because heT(hcT(dI')) □ d By 
induction assumption,

K . ( P r , A E l  Si rji[h°T(d')/x]) □  f i r , A E l S2 rj2[d,/x\

Now,

—YT1 (f*r [ A s  : r . E ]  Si rji)
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[defn. of heT_+T]

= heT, o ( / i r )T_^T/[A a : : t .E \  Si rji) o h%

=  Ad! <E ( T [ t ]  f t ) . / ^ i > ' [ f t ]  f t  171 [*£(<0 / * ] )

[inductive hypothesis]

□  Ad' G ( T [ t ]  ft)./ir> '[[ft] f t  r j2[d ' /x \

=  / i r ,T->r'[Aa: : r . f t ]  f t  772

(5) Suppose T b < Ei, E 2 >: t  x Tf 
By induction assumption,

f t  rji) ^  A * r ,r [ft ]  f t  *72 and

/ ^ r , r ' [ f t ]  f t  *7i) 3 A *r,r'|[ft] f t  7̂2

Now,

K x A P r tr x A <  f t ,  f t  >] Si 771)

=  {h% x /j*,)(/ir,T[ft] f t  f7i,/4r>'[ftj f t  »7i)

=  ( K (/^ rv lft] f t  *7i), ^ r v r ' I f t l  f t  »7i))

□  ( ( / i r . r l f t l  f t  *72), (p r .T 'I ft]  f t  772))

=  /^r,Txr4< ft> f t  >] f t  ^2

(6) Suppose T b E : t x r'. We want to show that

heT(firA f s t  r x t '  Ej  f t  771) □ /u i> [fst r x r ' E ]  f t  772 

By induction assumption we have :

Mr,TXT'[£] f t  Vl 3  ^ X T 'fe r X T '^ l f t  *72)

Now,

/i®(//r ,r[fS t r  x Tf Ej  Si rji)

=  heT( f s t ( f i r ,TXT'lE] f t  771)) 

□  heT( f s t ( h cTXT, ( p r ,T x A E }  f t  772)))
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=  heT( fs t ( (hcT x hcT,)([iriTXT'lE} S2 772))) 

=  heT(fst(h°(fst(iJir,TxAE} S2 772)), hcTl(snd(fir , r x A E l S2 rj2))))

= h eT(hcT( f s t ( n r , r x A E ] S2 rj2)))

□  M / i r fT X T '[ £ ]  S2 772)

=  /ir ,T[ f  s t  r  x t ' E j  S2 772

Similarly, we can show that a similar proposition holds for the term 
snd r  x r '  E .

(7) Suppose T b i f  r  Eo E i  E 2 : t ,  and for * =  1,2 assume that

h l ( n r A Eil s i *7i)  3  VrAEi]  S2 772

and

^booi(^r,booi|[-EoJ Si  771) □  ^ b o o i M  £2 772 

Since /i^ool =  id, at least one of the following holds :

A*r,booi[[£o] 52 772 =  ± ,  or 

A*r,booi[£o] S i  771 =  //r.booil^o] S2 772

In the former case,

/ i r , r [ i f  r  E 0 E i  E 2J S2 rj2 =  JL

and hence

heT(fir ,rli f  T Eo El E2\ S i rji) □ / ir ,r [ i f  r  E0 E x E2] S2 772

The second case together with the induction assumption also yields the desired 
result.

(8)
00

h%{ f irAf  ix  T E l Si 771) =  h eT( [ J  { f i r ^ A E l  Si T7i)n(J_))
n=0
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[continuity of heT\
oo

,T -+T IE} *)»(_L))
n=0

[inductive hypothesis]
oo

3  U 5 2 »?2))"(-L))
n=0
[defn. of
oo

=  U  K { ( K  o IJ,) O fc-)“ (X ))
n=0
[/i® o/i‘ □ id]

OO

□  U  h‘((hCr •  ( « W t [ * 1  5 2  I * ,)"  » ^ ) ( 1 ) )  
n=0
ooa Ufa r,r—»-r[£J S2 r>2 )n(±)

n=0
= /xr,r [fix r  £ ] ^2 r}2

(9) Suppose T h l e t  z : cr =  ^  in  E 2 : t .  Since the semantics of this is defined 
in terms of that of the term E 2 [E\/x], for the purposes of this proof we may 
assume that we do not have let-expressions. We make similar assumptions 
about instantiations.



A p p en d ix  B  

T h e Safety C ondition

Proposition  6.4.1

Suppose we have the formula T E  : r  and that S  is a domain assignment which 
assigns type variables domains from V.  Let 77 be an environment. Let S'  be the 
lattice assignment such that for any type variable t, S'(t) = Abs S(t).

If 77' is any environment such that for any variable x £ dom(T), a b s r ^ i v i30)) v'{x )i 
then

absT(fir , T[# ] S  77) C i/p/, Aba r {E'j S'  77' 

where P  h E'  : r'  is the translation of the above formula.

P roof
The proof is given by induction on the structure of terms.

(1) For every basic type 6 , by definition of VT>tAbs b the two expressions are actually 
equal.

(2) If x  £ dom(T) then

absr(x){fJ>r,r(x)lxl $  v) =  ^ s r^(rj(x))

By assumption on the environments, the statement follows.
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(3) If Ei G Ar,T-+T' and E 2 G Ar,T then

absT,(fxrA ( E i E 2)j S  77)

=  absT'((fiT,T^T'lEil S  r})([iTtTlE2] S  77))

[property of abs]

C (a&sT_+T/(^r ,T'IE\E2} S  r]))(absT(fzr>rlE2j S  rj)) 

inductive hypothesis 

Q (vr1, Abs {t^ t')IE[} S' 77/)(i^', Abs t \E ’2] S' T]')

= ^ A b s A i E ' ^ j S ' r i '

(4) Suppose E  G A(r,x:r),r/- We want to show that

<z6sT—>.r/(/^r,r—►t/[̂ *e • 77)

E: ^T7, (>16s r)-+(A6s r ;) [A x  I (.A6.S 7*).Z?J $  T]

That is, for any value b from the appropriate lattice

(absT->Ti([j,r j T - t - T 1[Ax : t.E\ S  rj))(b)

E f a ',  (Abs r )->(Abs r ' ) [ ^  : {Abs r).E'j  S' rj')(b)

But

(o6sT_*.T/(̂ tr,T-»-T'[̂ *E • S  r]))(b)

= |_|{a&sT/((/Jr|T-».T'[Ax : t.E\ S  77)(a)) | absT(a) C 6}

Thus, it is sufficient to show that for an arbitrary element a with absT(a) C b

absTi((nY,T^r>l^x : r .Ej S  rj)(a))

E {vr>, (A6s r)^(Abs r ' ) ! ^  : (Abs r).E'j S' rj')(b)

But

absTi((fir,T->T' l^x  : t.^/J S  7 7 ) ( a ) )  

a&ST'(P(i>:T),T'[£J S  T7[a/x])

[inductive hypothesis]
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^(Tf,x:(Abs r)),Abs t1 1-  ̂1 S  (jl \^bsT{(Tj j  X̂ )

[monotonicity]

^  V(T',x:(Abs r)),Abs t1 [£ ']  S' W[b/x])

iyr', (Abs t )—►(Abs t 1)1̂ 2? • {Abs r ) .E  J S  77 )(&)

Therefore, we have the desired result.

(5) If Ei  G A r)T and E 2 6  A r)T' then

cibsTxT'{f̂ r,Txt1 I< E\^E2 S 77)
[defn. of /i]

=  a65TXT/(/ir,r[^l] S 77,/ir,r4 ^ 2] #  77)

[defn. of 0 6 5 ]

=  (absT((j,r ,tIe iI S 7]),absT>{fir ,r'lE2} S 77))

[inductive hypothesis]

E S'  T77, r' [-#2] V!)

= FT', (Abs tX t')[^ E u E 2 >J S 77

(6 ) If E  € Ar.rxT' then

absT{fjirAf  s t  r  x  r ' £7] 5  77) =  a 6 sT( / s t ( / / r ,TXT'[£] ^  »?))

=  /3t(a6sTXT/(^r,r'[^ ] S  77))

C / (Abs r) X (46s r') 77')

=  r[f St T X T '  E'j S' T)'

The case of snd r  x r 7 E  can be proved in a similar way.

(7) Suppose we have the formula V h i f  r  E0 E\ E2 : r .  From this we have 
T7 b cond A6 s t  (or Abs r  E[ Ei )̂ : Abs r. There are now two cases to 
consider.

case(i)

Vr, booi[^o] S  77 =  _L
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In this case

Mr, r [ i f  r  E0 Ei E2j S  77 =  _L

Since absr is strict,

absT{fir , r [ i f  t  E0 Ei E2\ S  77) =  1  

Therefore, we have the inequality.

case(ii)

Mr, booll-^oj S Tj ^  -L 

Since abshooi is -L-reflecting

Qtbs\y ooi (Mr, bool [£o l5r?) *  0

By induction assumption,

a&sbooi(Mr, booi[^ol S  77) C i/p, 2 [#o] S' 77'

Hence,

vr'^lE'ol S ' r f  = 1

Therefore,

vp, r[cond A&s r  JE7J (or £ 2 )] & rf = LU(ui, u2) 

where for i = 1 , 2

Vi = vr,  a k A E S  S' t?', and 

A = V l A b s r l S '

Again by induction, for t =  1,2 we have

absT(nr , T [ ^ < ]  S '  77) ^  ^ T ' ,  t [ # ' ]  5 "  rj

Clearly this implies that for i — 1 , 2

a6sT(7ir ,r[^i] 5  77) C Ua(ui,u2)
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where v \ , v2 and A  are as defined above. But in the case we are consid
ering,

fir, r [ i f  t  E0 Ei E2} S  rj =  fir , T[J57J S  rj or 

fir, T[ i f  t  E0 E i  E2} S  r) = fiT, T[ £ 2] S  rj

It is now obvious from this that the required inequality holds.

(8)

a6sT(^r ,r[f ix T  B] S rj)
OO

=  absT( LI (fir , T  —Y T [B] 5  r , n ± ) )
n = 0

[continuity of abs]
oo

= LI absT((fir,T-+TlE} S  rj)n(±))
71=0
[property of abs]
oo

□ LI absT->r((fir , t - 4 t  [B] S rj)n)(a,bsT(±.))
71=0
[property of abs]
oo

□ LI (a&sT->r 0*r,T->T[£] s T]))n(absT(±.))
71=0
[abs is strict]
oo

=  L |  ( a b s  r — { p r  ,T —Y T  IB] S  , ) ) " ( ! )
71=0
[inductive hypothesis]
oo

E U  T - ^ 6 ,  r [B l  5 ' T7')”(-L)
71=0

=  ^T',Abs r [ f i x  Abs T E'j  S' rj

(9) Again, we may assume that we do not have let-expressions and expressions 
of the form E[r'].
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