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Abstract ii

A b stra c t

This thesis presents a refinement calculus for expressions.
The aim of refinement calculi is to make programming a mathematical activity, and 

thereby improve the correctness of programs. To achieve this, a refinement calculus 
provides a formal language and a set of rules that allow transformations of the language 
terms. Using a refinement calculus, to produce a correct program, the programmer writes 
a possibly non-algorithmic or inefficient term that nevertheless obviously describes the 
intended program. This term is the specification, and it is transformed into an efficient 
program by syntactic transformation, using the rules of the refinement calculus. This 
transformation is refinement.

Refinement is done iteratively and stepwise. By iterative refinement, we mean the 
specification is transformed into the program via a series of intermediate terms. By 
stepwise we mean a term may be refined by refining one of its subterms, in a piecemeal 
fashion. Formally, refinement is a partial order on language terms, and (most) language 
constructs are monotone with respect to tha t order.

The syntactic transformation rules comprise rules about logic, and rules for each of 
the language constructs. The programmer needs only these rules. A semantic interpre
tation of the expressions is not necessary to verify the refinement steps. All the rules, 
whether they are logical rules, or about the specificational and algorithmic language 
constructs, are at the same level. This is achieved by blurring the distinction between 
propositions and boolean expressions, and it leads to a unified deductive calculus of 
programming.

Our specification language is a wide-spectrum language: it contains non-algorithmic, 
specificational constructs as well as an algorithmic programming language. The refine
ment calculus presented here produces functional programs, and accordingly, the pro
gramming sublanguage is a rich functional programming language, similar to Haskell. 
The specificational constructs of the language are adapted from the imperative refine
ment calculus [Bac80, Mor87, Mor88b]. However, there are no assignments in our lan
guage. The variables never vary. In this sense, the terms of the language are like the 
expressions of the imperative refinement calculus, and we speak of ‘expression refine
ment5.

The language has constructs tha t are nondetermined. In particular, it is possible 
to specify the desired outcome of a program by giving a property it should satisfy. 
Clearly, this need not determine a unique outcome. However, the nondeterminacy does 
not pervade the whole language. It is contained at variable binding. We have ‘singular 
semantics5, tha t is, each variable stands for one value, not for any of a choice of values.

However, variables may stand for the special value nontermination, or datastructures 
that contain nontermination. Function application is lazy: the body of the function must 
be evaluated before the argument is evaluated. We chose lazy semantics rather than the 
maybe more easily implementable strict semantics, because a lazy language is more 
expressive. In it, one can break an algorithm into parts without having to ensure th a t 
the intermediate values are terminating.

The rules of our calculus ensure that the final program delivers the desired outcome, 
and indeed terminates. That is, we have a total correctness calculus.



Abstract iii

Imperative programming techniques are made possible in our language of expressions 
by the state monad. The state monad can be seen as a collection of primitives manip
ulating the abstract data type ‘state5. By combining these primitives one can perform 
destructive updates, and yet variables of the language never vary.

An iterative calculation from non-algorithmic. mathematical specifications via func
tional programs to imperative programs is proposed. Strategies of derivation, and alge
braic refinement laws are given to support this approach. The approach is illustrated by 
a few example derivations of programs from different problem domains.

We provide a denotational semantics of the language to clarify an informal under
standing of the language constructs, and to show tha t the refinement axioms given are 
sound. The existence of the given model shows they are consistent. The semantics uses 
Smyth powerdomains to capture nondeterminacy. However, the programmer need never 
look at the semantics.
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Chapter 1

Introduction

Good software should be correct, and fast. Compilers for the old imperative program
ming languages like Pascal and C are by now so mature and optimised that programs 
w ritten in these languages usually satisfy the second requirement, speed, but since pro
gramming has not become easier, often fail the first, correctness.

The programmers can err in two ways: They can misunderstand the customer’s 
requests and implement something different than their customer asked for. Or they can 
make errors in the programming and implement something different than they themselves 
intended. A refinement calculus tries to avert both kinds of error, the first one by a formal 
specification as a contract between the customer and the programmer, and the second 
by giving the programmer a means by which to derive the program mathematically from 
its specification.

The language of the refinement calculus should therefore be expressive enough to 
make it easy to write understandable yet precise specifications tha t characterise the 
desired properties of the result, without saying how the result may be calculated. At the 
same time, the language should include the target programming language as a subset 
so tha t the transition from logical specification to algorithmic program can be done 
iteratively and stepwise.

“The Refinement Calculus” is such a calculus. It is based on Dijkstra’s guarded 
command language [Dij76], which is given a semantics in terms of predicate transformers. 
The Refinement Calculus was proposed independently by Back, Morris, and Morgan 
[Bac80, Mor87, Mor88b]. T hat language is an imperative language, best suited for 
developing programs in such languages as Pascal.

Imperative languages are easy to implement because their essence, destructively up
datable variables, reflects the architecture of current computers. The changing state of 
the machine, however, makes such programs difficult to reason about, since we have to 
consider time, in the form of execution order, and in the form of change in the mean
ing of variables. For instance addition of two Pascal ‘function’ calls is not necessarily 
commutative. Instead, they could change a global variable in ways depending on which 
‘function’ call is executed first. For example, given global variable a : integer and 
fu n c tio n  f ( x  : integer) : integer; b eg in  a := x\ f  x end , the expressions / ( l )  +  /(2 )  
and / ( l )  +  /(2 ) both evaluate to 3, but leave different values in a. Because of these 
side-effects, Pascal ‘functions’ are not really functions. The same is true for ML with its

2



Introduction 3

references [MTH90].
A functional program, on the other hand, is a mathematical object w ithout time. If 

it is expressed sufficiently algorithmically, it may be executed, remaining mathematically 
equivalent to the result. Furthermore, the order in which its parts are executed is given 
by data dependencies and is otherwise unconstrained. Unlike the variables in imperative 
programs the formal variables in functional programs don’t actually vary.

In these two ways -  no fixed execution order and unchanging variables -  functional 
programs are more similar to mathematical logic than imperative programs are. Speci
fications, too, are written in mathematical logic. Therefore, it is appropriate to develop 
functional programs from them. In addition, current functional languages like Haskell 
[HW89, HPW91, HPW92, PH +96] provide many convenient ways of defining and using 
data structures and higher order functions, so tha t the programmer has to travel less of 
the journey from logical specification to machine code.

Therefore calculi for functional programs or “expressions” have been developed. For 
instance, there is “Squiggol” , also called the “Bird Meertens Formalism”, inspired by 
[Bir84, Mee86] and developed further by Bird [Bir87, Bir88, Bir90] and others. Towards 
the end of the 1980s, Hoare suggested the Squiggolists forsake functions for relations, in 
order to capture nondeterminacy better. He also promoted category theory around tha t 
time [Hoa89], which is related to Squiggol functions and datatypes in [Mal89, Spi89], and 
in the theses [Jeu93, dM92]. The Squiggolists follow Hoare’s suggestion, and relations 
are used in Ruby [JS90b] (a related calculus for hardware), and Squiggol-developments 
[BdBM+91, ABH+92, Hoo93]. It turns out that indeed the laws of functional Squiggol 
have parallels in relational Squiggol. Bird himself comes round to relations in [BdM93a, 
BdM93b].

In Squiggol, an efficient program is developed from a less efficient, but obviously 
correct one. Even the less efficient Squiggol program, however, is already executable in 
principle, and no specification constructs are employed. Functional Squiggol offers no 
nondeterminacy, whereas relational Squiggol does offer nondeterminacy in the form of 
non-functional relations, but unfortunately, the close similarity to functional program
ming languages is lost!

There are moreover researchers who have taken concepts and syntax from the imper
ative refinement calculus to produce a refinement calculus of expressions. These concepts 
include nondeterminacy and specification expressions.

Recently expression refinement calculi have been proposed. In [Mor90a, Mor90b], 
Morris explores the usefulness of such a calculus by example derivations. Norvell and 
Hehner [NH93] formalise an expression refinement calculus by an axiomatic semantics. 
In his thesis [War94] Ward presents an expression refinement calculus whose semantics 
are inspired by the predicate transformer semantics of the imperative calculus, but are 
more complicated, and not as neatly composable as predicate transformers.

However, in these languages there are no constructs for imperative programming at 
all, which is felt to be a loss, since one may want to program imperatively. Here are four 
possible reasons why one may want to employ imperative programming techniques.

Firstly, there is a theoretical reason. Some algorithms depend on sharing for their 
efficiency; such algorithms cannot be w ritten functionally with the same time complexity.
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Examples are the combinator graph reducer derived in this thesis and the depth-first- 
forest construction in [KL93].

Secondly, there is a reason of style. Some algorithms are most naturally expressed as 
imperative programs, tha t is as repeated modification of a set of variables. Examples are 
Bresenham’s line and sphere drawing algorithms, and the fast sphere drawing algorithm 
derived in this thesis.

Thirdly, there is a practical reason. Sometimes speed is so important th a t an imper
ative program is needed since it can be mapped to imperative hardware more directly, 
and therefore is executed faster.

Fourthly, there is a reason of purpose. Programs that interact with the real world 
by nature describe a process rather than a value. Processes are described by imperative 
programs, whereas functional programs describe values. Interaction with the real world 
may be user interaction, communication with another program, in particular an oper
ating system or libraries for particular tasks, or communication with input or output 
devices.

For these reasons, the target language of the refinement calculus in this thesis is an 
expression language with imperative threads in it.

There have been a number of proposals for an integration of functional and imperative 
techniques. The difficulty is adding state in a ‘pure’ way: the value of an expression must 
not depend on the state. Pascal functions and ML functions don’t satisfy this, whereas 
the state monad does. Indeed, one can think of the state monad as just a library of 
operations th a t mimic denotational semantics of an imperative language. Since the 
state is an abstract data type and can be manipulated only by the provided operations, 
it is guaranteed that the underlying state of the machine can be used to implement the 
state. In the state monad model, a state transformer is a function from an old state 
to a pair of a result and a new state, which makes tying the connections between the 
functional and the imperative worlds easy.

The state monad is based on the categorial notion of a monad, utilised for com
puting science by [Mog89]. The idea was taken up by Wadler in a series of papers 
[Wad92b, Wad92a, Wad92c], in which monads are put to various uses, including im
perative programming. The state monad and the related 10 monad are treated in 
[PJW93, Lau93]. In the latter paper, and in [LJ94], the expressiveness resulting from 
the combination of laziness and imperative programming is explored. [LP95] gives a 
comprehensive treatm ent of the use of monads to capture imperative programming in 
Haskell.

The novelty of this thesis is a refinement calculus of expressions, with the state 
monad to capture imperative programming techniques. The language includes both 
non-algorithmic specification constructs and the algorithmic constructs of modern func
tional programming languages, so that all stages in a program derivation, from the first 
specification to the final program can be expressed in the language. Unlike the imper
ative refinement calculus, the state monad allows dynamic use of state: the number of 
updatable variables is not fixed by the program text; rather true references (pointers) 
are available.

The big aim is to develop a unified deductive calculus of programming. Such a



Introduction 5

calculus consists of a formal language, an interpretation of the language, and a set 
of axioms and inference rules describing theorems. The language contains a logic, an 
algorithmic language, and non-algorithmic specificational constructs.

Logic is the basis of any formal proof, in this case proofs about programs and speci
fications. Logical expressions also occur within programs and specifications, for example 
the condition in an if  th e n  else expression or the property in a prescription. We achieve 
a unified calculus by not distinguishing between these boolean expressions within ex
pressions and the propositions about expressions. It turns out that for reasoning about 
specifications and programs, two-valued classical logic is not sufficient. We will come 
back to this point later.

The language also contains algorithmic expressions, tha t is, a programming language. 
Crucially, this language includes recursion, and therefore expressions tha t we interpret as 
nonterminating programs. Consequently, we must add the nonterminating tru th  value 
_L to the usual True and False.

The language also includes constructs to write non-algorithmic specifications, in par
ticular, the generalised choices and guards. They can be combined in expressions tha t 
describe their possible outcomes by a property that they must satisfy. Clearly, such an 
expression may therefore have no, one, or many different possible outcomes. The speci
ficational constructs thus introduce miracles (no possible outcome) and nondeterminacy 
(many possible outcomes). Since generalised choice already introduces nondeterminacy, 
there is no harm and some convenience in adding binary nondeterministic choice n as 
well. Consequently, we must introduce more tru th  values: the miraculous tru th  value T, 
and nondetermined choices between all tru th  values so far, in particular, True n False. 
The way we choose to interpret choice we get E  (1 T =  E  and E  n _L =  ±  for ar
bitrary expression E. and therefore, there are no further tru th  values beside the five 
_L, True n False, True, False, T. However, the miraculous tru th  value T is of little inter
est, since it can be prevented by syntactic restrictions.

The language (not surprisingly) contains a binary relation equivalence = , which 
we have already used above. Furthermore, to compare specifications and programs, it 
contains the refinement relation C.

The interpretations of these language constructs come from extending the interpre
tation of classical two-valued logic to our five values, from extending the interpretation 
of a programming language with nondeterminacy, and interpreting the specificational 
language constructs. Obviously, there are many design choices here. The interpretations 
of equivalence =  and refinement C are (formalisations of): If E = F, then -  as far as 
correctness is concerned -  a customer asking for an implementation of E  will be satisfied 
when given an implementation of F, and vice versa. If E  □ F, then a customer asking 
for E  will be satisfied when given F, but not necessarily the other way around.

The interpretation (model theory) is given to provide the programmers with some 
intuitive understanding of the language. This enables them to write the initial specifica
tion, and decide what program they should aim for in the derivation. In some aspects, it 
is useful to have the interpretation of a program correspond to the way that a computer 
will execute tha t program. However, for each individual refinement step in a derivation, 
no semantic understanding is required. Such a step is a purely syntactic application of
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a rule.
There are postulated rules (axioms) for each of the language constructs. Often, they 

come in pairs of rules that introduce and eliminate the language construct.
We have given a formal language that covers logic, specifications, and programs. 

The choice of language constructs, syntax, and interpretation, is somewhat influenced 
by personal prejudice and open to argument. The language given serves its purpose, 
but may well be revised in future work. Axiomatising a four- or five-valued logic is not 
straightforward: there are many choices with unexpected consequences. In general, the 
aim is to preserve as many familiar theorems from classical logic as possible.

The rest of this document is organised as follows. This was chapter 1. Chapter 2 
introduces the specification language by giving an informal explanation of each of the 
language constructs. Chapter 3 lists and discusses the refinement axioms. These axioms 
characterise the language constructs algebraically. In derivations, they will be used to 
transform specifications to programs. Chapter 4 introduces imperative expressions and 
gives axioms for them. Chapter 5 describes data refinement of expressions. Chapter 6 
gives the (partial) derivations of four simple programs. Its purpose is to familiarise the 
reader with the specification language. Imperative programming is used in the examples. 
Chapter 7 derives three related graphics programs: Bresenham’s line and circle drawing 
algorithms and the Fast Sphere drawing algorithm. They are expressed imperatively for 
reasons of style, and depending on the system, speed. Chapter 8 gives the most involved 
derivation of the thesis: a graph reducer for a simple combinator language. This program 
must use state to achieve a desirable time complexity. Chapter 9 details the denotational 
semantics of the language. Some axioms are proven sound with respect to this semantics. 
Chapter 10 summarises, draws conclusions, and sketches possible further work.



Chapter 2

The Specification Language

This chapter introduces the specification language, except for the imperative expressions, 
which are discussed separately in chapter 4. Section 2.1 gives the general ideas and 
motivations behind the language, such as what it can express, and how we relate the 
expressions of the language to each other. Section 2.2 introduces each of the non
imperative language constructs informally, with small examples demonstrating their use. 
Section 2.3 is a short note on the sets and lists of the language. The final section gives 
grammars for the language, and the typing rules.

2.1 General Ideas

This section outlines the principles behind the specification language. Its subsections 
describe the scope of the language, define the notions of determinacy and feasibility, and 
informally describe the type system. The last subsection characterises expressions that 
are acceptable as complete specifications.

2 .1 .1  S c o p e  o f  t h e  L a n g u a g e

The specification language we’ll use is very broad: it includes a logic, a programming lan
guage, and non-algorithmic specificational expressions. It is typed with implicit Hindley- 
Milner polymorphism [Hin69, Mil78].

The specification language contains the programming language so tha t programs 
can be derived from specifications iteratively. We won’t say exactly what parts of the 
specification language the programming language excludes. It depends how much detail 
is required in a particular derivation. Sometimes one may be satisfied with a final 
program using fairly high-level constructs like floating point operations or lists. At 
other times one may be aiming for low-level code tha t can be mapped onto hardware 
directly. Then, we would eliminate floating point numbers, for example, and favour 
multiplications by powers of 2 over general multiplication. In general, the programming 
language contains the algorithmic, determined expressions -  as the real programming 
languages do -  whereas it definitely excludes the non-algorithmic language constructs.

7
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2 .1 .2  D e f in e d n e ss , D e te rm in a c y ,  a n d  F e a s ib ili ty

Each expression is associated with a set of possible outcomes, also called values. An 
outcome is either a proper value, or the special outcome undefined. Undefined is a 
fictitious outcome of ‘meaningless’ expressions like or of expressions whose evaluation 
does not term inate because of infinite recursion.

If an expression E  cannot yield the undefined outcome, we say E  is defined, and 
write defE . Otherwise, we say E  is undefined, and write -idefE . We view defE  itself 
as an expression of the specification language, rather than as a metalinguistic predicate 
on expression E.

For each type, the outcomes are partially ordered. When we talk of ‘worst’ and 
‘better’ outcomes, we are referring to this order. The undefined outcome is worse than  
any other outcome.

Variables are bound to outcomes, not to expressions, which does make a difference 
in the presence of nondeterminacy. See the discussion of functions and A abstractions 
in subsection 2.2.5. In particular, a variable in an expression may be bound to the 
undefined outcome. Since the semantics of the language are ‘lazy’, that needn’t make 
the outcome of the whole expression undefined. To emphasise the differences, we will use 
capital letters E, F, G , ... for expressions, and small letters x , y , z  or identifiers starting 
with small letters for variables.

The sets of outcomes associated with the expressions are all ‘upward closed’, th a t 
is, if a set contains a given outcome, it also contains all outcomes better than it. We 
classify expressions by the number of their possible outcomes:

• If an expression has no possible outcome, we say it’s a miracle or an infeasible 
expression. Miracles are not executable of course.

• If an expression has at least one possible outcome, we say it is feasible.

We write feasE  to say th a t expression E is feasible, and -TeasE to say tha t E  is 
miraculous. The feasible expressions are further categorised by the worst outcomes in 
their associated sets. An outcome in a set is a minimum  if it is worse than every other 
outcome in the set. An outcome is minimal in a set of outcomes if the set does not 
contain an outcome worse than it.

• If an expression has a minimum possible outcome, we say it is determined.

• If an expression does not have a minimum possible outcome, we say it is nonde
termined. Typically, nondetermined expressions have two or more incomparable 
minimal outcomes.

So for example, the expression 3 is determined. Its minimum outcome is the outcome 
3. The set of possible outcomes of the expression |  contains the undefined outcome, and 
every outcome better than it, tha t is, all other (numerical) outcomes. Therefore ^ is 
also determined. Its minimum outcome is the undefined outcome. On the other hand, 
the expression ± \/2  is not determined. Its set of outcomes comprises the incomparable
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minimal outcomes y/2 and —y/2. We write d e tE  to say that expression E  is determined, 
and -<det£ to say tha t E  is nondetermined.

Our specification language will contain only feasible expressions. They may how
ever have infeasible subexpressions. Later, we’ll characterise some feasible expressions 
syntactically. We’ll also characterise some determined expressions syntactically.

2 .1 .3  E q u iv a le n c e  a n d  R e f in e m e n t

Expressions can be related by equivalence (=) and by refinement (C). Two expressions 
are equivalent if their sets of possible outcomes are equal. Expression E  is refined by 
expression F. w ritten E  C F. if the set of outcomes of E  is a superset of the set of 
outcomes of F. It follows trivially that =  is indeed an equivalence relation (it’s reflexive, 
symmetric, and transitive), and tha t C is a partial order (reflexive, antisymmetric, and 
transitive).

The intuition for equivalence and refinement is this. If two programs are equivalent, 
the customer asking for one of them will be happy when given the other, and the other 
way round. If E  C F, then the customer asking for E  will be happy when given F.

The expression ± T (‘bottom ’ or ‘fail’) may yield any possible outcome of type T, 
even the undefined outcome. Therefore its set of possible outcomes is a superset of any 
other set of outcomes of tha t type, and thus J_r is refined by every expression E  of type 
T. We write just ±  and let the appropriate type be implicit.

±  C E

Our calculus is a total correctness calculus; we are always interested in the worst outcome 
of an expression. An expression tha t may yield the undefined outcome, for example _L, 
is as bad as one tha t definitely yields the undefined outcome.

The extreme expression opposite _L is T (‘top’ or ‘miracle’), which has no possible 
outcomes: I t ’s a miracle indeed. Every expression is refined by miracle.

E Q T

Again, there’s a miracle T T for every type T, but usually, we’ll leave the type implicit. 
Of course miracles are not implementable, and in fact can be excluded by simple syntactic 
restrictions. If miracles were not excluded, the programmer could simply refine any 
specification to T, but tha t would not be acceptable to the customer!

2 .1 .4  T y p e s

The expressions in the language are typed. Types are helpful in programming in th a t 
they document the code, make a lot of programming errors detectable as type errors, 
and provide some guidance in program derivation. The type system we use here is 
essentially the same as the one used in Haskell [PH+96]. We write E  : T  to express th a t 
the expression E  has the type T. We use the capital letters T. U. V , ... for arbitrary type 
expressions. The types include some primitive types like boolean, characters, natural 
numbers, integers, and real numbers, written as ®, Char. N, Z .R  respectively. A type
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can also be a product of types, so for example, the expression (5, False) has type N x l  
Taking the product of types is not associative, so ( N x B )  x C h a r  and N x B x  C h a r 
are not the same type. A 1-tuple is just the same as its single element. The 0-tuple type 
is called the unit type, and written (). Its only proper value is the empty tuple (). The 
type of functions from arguments of type T  to results of type U is T  —> U. The arrow 
associates to the right, so the brackets in T  —> (U —> V) are superfluous.

Types can be named by a type definition, and then used anywhere. We use identifiers 
starting with capital letters for named types. For instance, we can define pixels as pairs 
of integers by:

ty p e  Pixel = Z x Z .

We are then free to use Pixel as a type anywhere else. Naming types serves to  doc
ument code. Using Pixel marks integer pairs that represent a pixel from pairs with 
different roles. There is, however, no semantic distinction. Type definitions can have 
type arguments (we use small letters a.b.c... .).  as in

ty p e  Label a b = a x & x N .

We can then say that (5.95,‘a’, 0) has type Label R C h a r and (‘b \ ‘c \ l )  has type 
Label C h a r  C h ar.

Algebraic data types must be named before they are used. The values of an algebraic 
data type are generated by applying constructors to expressions. Constructors are iden
tifiers starting with a capital letter. The definition of an algebraic data type lists the 
constructors of the type, and fixes how many arguments of what type they take. For 
instance, the most common algebraic data type is the boolean type.

ty p e  ® ^  False | True

It has two constructors, each of which has no arguments. We assume ® as predefined. 
Another example for an algebraic data type are the extended real numbers, which could 
be modelled by

ty p e  Ext Real == Neg Inf \ Fin R | Poslnf.

This type has two constructors with no arguments, and one with one real argument. 
The proper values of this type are Neglnf, Fin r. Poslnf, where r is of type R.

If two proper values of an algebraic data type are constructed from distinct construc
tors, then they are considered distinct. For example, if we modelled complex numbers 
by

ty p e  Complex = Cartesian R R | Polar R R,

then the two values Cartesian y/2 y/2 and Polar 1 j  would be considered not equal, 
and we would therefore probably want to define an equality-function tha t does identify 
them.
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Comparing constructors to functions, we would say constructors are injective. How
ever, unlike functions, constructors must always be fully applied, so Cartesian 3 is not 
a valid expression. Constructors are not strict: A constructor applied to an undefined 
argument is not undefined.

A type may include type variables. To express tha t the expression E  has type T, 
whatever the type variable a in T  stands for, we write E  : V a. T 1, which is abbreviated 
to E  : T.  with the silent assumption tha t all free type variables in T  are universally 
quantified on the outside. We say E  is polymorphic. Using the type definition

ty p e  Sum a b ==■ Ini a \ Inr b.

the expression Inr 5 is polymorphic. Its type is Sum a N, whatever type a stands for.
We will use type definitions and algebraic data types to make recursive types. For 

example, lists would be defined

ty p e  List a =  Empty | Cons a (List a).

The type tha t is being defined (List a) occurs on the right hand side of its own definition. 
The meaning of such a definition is the limit of its unfoldings. Mutually recursive types 
are allowed.

W ith an appropriate formalisation of this type system, it can be shown that every 
expression has a unique ‘most general’ type.

2 .1 .5  C o m p le te  E x p re s s io n s

The specification language consists of complete expressions, that is, those expressions 
tha t are feasible, have a (possibly polymorphic) type, and no free variables.

We insist on feasibility because miracle can never be implemented. Nevertheless it 
is a refinement of any expression. If miracle were not excluded, the programmer could 
accidentally refine too much and then later find they cannot implement the resulting 
infeasible expression on a computer. Such an accident is prevented by syntactic restric
tions th a t guarantee feasibility of complete expressions. However, a complete expression 
still may have infeasible subexpressions.

We insist on typing because often typing guides a program derivation, and mechan
ical type checking exposes many programming errors. Furthermore type annotations 
document the code.

Although technically a complete expression should have no free variables, we allow 
free variables tha t stand for some ‘standard constants’. In real programming languages 
these standard constants are built-in primitives, or are defined in ‘prelude’ files. During 
a derivation we will also often make auxiliary definitions. Technically, the standard con
stants and auxiliary definitions are attached to an expression by use of a le t expression. 
We make the convention tha t the defining expressions of all auxiliary definitions must 
be determined, which allows folding and unfolding the definitions freely in calculations.

1 This is not a dependent function type.
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This convention is very mild, since most auxiliary definitions introduce determined func
tions, and even those tha t are not functions are generally determined.

2 .1 .6  D is c u s s io n

It is worth noting tha t refinement (and therefore equivalence) captures only the correct
ness of a program. It gives information about the sets of possible outcomes of the two 
compared expressions. Firstly, it says nothing about whether an expression is in the 
programming sublanguage of the specification language. So E  □ F  does not mean lF  
uses fewer specification-constructs than E \  Secondly, it says nothing about the length 
and syntactic complexity of the code. So E  C F  does not mean lF  is shorter/m ore ele
gant/m ore readable than E \  Thirdly, it says nothing about the time or space complexity. 
So E  C F  does not mean LF  is more efficient than E \  I t is left to the programmer to 
make sure the derivation ends up in an elegant/readable, efficient program.

Total correctness is a guarantee tha t a program will terminate, and yield the de
sired outcome. Partial correctness on the other hand guarantees only tha t if a program 
terminates then it will yield the desirable outcome, but not th a t it does terminate. Ob
viously total correctness is the more useful guarantee, and therefore our calculus is a 
total correctness calculus. However, in some settings, for instance when dealing with 
parallel communicating processes, it is useful to factor a total correctness proof into a 
partial correctness proof and a termination proof. Partial correctness proofs in general 
are simpler than total correctness proofs.

Some argue that a total correctness guarantee is useless, unless we are also given 
a time bound for termination [Heh94], and therefore build timing into their calculus. 
Instead, we assume tha t all terminating programs do term inate in a reasonable length 
of time, and leave it to the programmer to shorten that time while refining the program, 
if necessary.

2.2 The Language Constructs Informally

In this section, each of the language constructs will be introduced informally, with some 
simple examples of their use. Unless mentioned otherwise, all expressions are possibly 
infeasible. Expressions will be denoted by capital letters, and formal variables by small 
letters.

2 .2 .1  C o m p a r in g  a n d  C la s s ify in g  E x p re s s io n s

We have already mentioned expressions of the forms

defE , d e tE , feasE  

E Q F .E  = F,

expressing that E  is defined, determined, or feasible, and th a t E  is refined by F. or 
equivalent to it. All these expressions are of type B, and are defined, determined, and 
feasible, whatever E  and F  are. In the last two, E  and E must have the same type.
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2 .2 .2  T h e  M ira c le  B u s te r  i f . ,  fi

The meaning of if  E  fi is the same as tha t of E. except when E  is a miracle, in which 
case if  E  fi is undefined.

i f T f i  =  _L

if E fi =  E, i f E ^ T

In this way i f .. fi is a miracle-buster, and clearly not monotone with respect to  refine
ment. It turns a possibly infeasible expression into a guaranteed feasible expression. The 
type of if  E  fi is just tha t of E.

2 .2 .3  C h o ic e

The outcome of the expression E r \F  will be an outcome of E  or of F. We have no more 
information. For example, the expression

(-1 -
denotes a (possibly complex) root of the quadratic equation x 2 +  px +  q = 0 ,  tha t is 
one of two possibly distinct values (assuming 0 <  — q). Mathematicians commonly

write it as — § ±  — Q-
The two arguments of choice must have the same type. Choice is the greatest lower 

bound with respect to refinement. For arbitrary (possibly infeasible) expression X .  we 
have:

( X Q E ) A ( X Q F )  = ( I C £ ? n f ) .

It follows tha t EVM. = _L, for any expression E. We say choice is _L-seeking, or demonic. 
It also follows that choice is T-avoiding, that is, Ei~\ T  =  E. Choice is also idempotent, 
associative, and commutative.

Demonic choice E  n F  is the greatest lower bound of E  and F  with respect to 
refinement. We do not use angelic (that is _L-avoiding) choice, but it can be added as 
least upper bound with respect to refinement. The least upper bound gives E U  L  = E  
as required, and also 3 □ 3 U 4. Refinement means reducing demonic nondeterminacy 
and increasing angelic nondeterminacy.

Choice is not selective: We don’t have E \ l F  = E or E H F  = F for arbitrary 
expressions E  and F. Selective choice (also known as ‘cold nondeterminacy’) has the 
desirable property tha t the A rule is an equivalence, that is (A x.E) F = E[F / x] for any 
E  and F, but unfortunately function application does not distribute over it, and tha t is 
an unacceptable hindrance to calculation.
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2 .2 .4  G e n e ra l is e d  C h o ic e

We generalise binary choice n to a quantifier 11, in the same way tha t conjunction A is 
generalised to universal quantification V. The form of a generalised choice is V\x : T .E .  
Free occurrences of x in the body E  are bound in I"!:*; : T.E .  If the type is obvious, 
we may omit it. The meaning of the generalised choice lla; : T .E  is the meaning of E 
with x bound to an arbitrary outcome of type T. including the undefined outcome. For 
example, f ir  : R .r2 yields the square of an arbitrary real number, or the undefined real 
number.

It is obvious tha t generalised choice introduces nondeterminacy. However, it pre
serves feasibility: I~1 x .E  is feasible if E  is feasible (for arbitrary a:). Generalised choices 
become useful in combination with guards, which will be discussed shortly.

The symbol 11 is chosen to remind us that generalised choice is the greatest lower 
bound with respect to refinement:

(Vz : T .X  C E) = (X  C \lx  : T.E).

where x is not free in X .  The type of lla: : T.E  is simply that of E. under the assumption 
tha t x : T.

2 .2 .5  F u n c t io n s

Function application will be denoted by a space, or by enclosing the argument in brackets. 
Function application associates to the left, so the brackets in (E F ) G are superfluous. 

If E  has type T —> U. and F : T. then E F : U.
Not all functions yield _L when applied to X; those that do are called strict. But X

applied to an expression is X:

X E = X.

Functions are constructed by A abstractions. An abstraction has the form A x : T .E .  
where E  is a feasible expression in which x. of type T. may appear. (We may omit
the type.) Furthermore, we require tha t E  is monotone in x. that is, if F  C G. then
E[F/x]  jX E[G/ x]2. This restriction is necessary to avoid inconsistency; see the later 
subsection 3.3.4 for explanation. When the function A x.E  is applied to an expression, 
the formal variable x is bound to the outcome of the argument expression, and we receive 
an outcome of E.  Formal variables are bound to outcomes, not to expressions. We say 
formal variables have singular semantics, in the sense of [SS92]. For example the possible 
outcomes of (Xx. x  + a :)(0 n  1) are 0 and 2, but not 1. That means the f3 reduction rule 
of the A calculus is not generally true. The refinement

E[ F/ x \  C ( X x . E ) F

2Throughout the thesis, we’ll use the meta syntax E[ F/ x\  for the expression E with all free occurrences 
of variable x replaced by expression F,  and similarly T[ U/ a] for types, subject, of course, to variable 
capture restrictions.
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is valid for any F,  but only if F  is determined is it an equivalence. Many determined 
expressions can be recognised syntactically, namely as closed expressions drawn from 
grammar V.  given at the end of this chapter. In particular _L is determined, and so 
E[L/x]  = ( Xx . E) l .

If E  has type U under the assumption that x : T.  then (Xx : T.E)  : T  —> U.
We will assume lots of standard logical and mathematical functions as predefined. 

They could be built from abstraction, application, and variables, as in the pure A cal
culus. In section 2.3 these predefined functions will be joined by standard functions 
producing data structures.

The domain of a defined function E : T  —> U is the set of values on which the 
function is defined, tha t is, d o m £  = {x \ T  | E x ^  JL{/}. The domain of the undefined 
function is the undefined set, whereas the domain of X x .l .  is the empty set.

A one-point function override is written E[F i-» G]. This is the function tha t maps F  
to G and otherwise agrees with function E. Obviously, the types must fit: if E : T  -» U. 
then F : T  and G : U.

Some standard functions (with symbols rather than identifiers) © : T  —> U —» V  are 
written between their arguments, as E  © F  instead of © E F. Such functions may be 
sectioned, tha t is applied partially:

(£© ) =  X x . E ® x  

(®F) =  A x . x ® E  

(©) =  Xx.  X y.x © y.

The brackets may be omitted when there is no confusion.
The undefined function _L T_> v is refined by any function (of type T  —> 

function E  is refined by a second defined function F if its applications are 
corresponding applications of F:

{E X  C F X )  => {E C F),

for arbitrary expression X .

2 .2 .6  G u a r d e d  E x p re s s io n s

Guarded expressions have the form G —» E  where G is a feasible boolean expression, 
called the guard, and E  is a feasible expression. The guarded expression guarantees that 
G is True, and delivers the outcome of E. If G is not equivalent to True (it could be 
_L, True n False, or False), we are guaranteed a miracle!

True -» E = E  

G ^ E  = T, if G ^  True

Therefore, guarded expressions are possibly infeasible. The type of G -» E  is th a t of E, 
and G must have type ®.

We write G —» E  to express tha t the program evaluation may only use E  if G yields

U). A defined 
refined by the
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true. Guards act like emergency brakes and have to be checked by a human evaluator. 
For instance, an emergency brake may be used to prevent applying functions to argu
ments outside their domain, as in (z ^  0) —y ĵr or (x ^  0) —»lna; or (x /  0 V y ^  0) —>• x y. 
The guard records knowledge tha t may be used to refine E.

Since T is the identity of choice, we can use guarding and choice to build conditional 
expressions like

odd even x —» 0,

which computes the sign of x. The general form is

G\ —y E\ n ... n Gn —y En,

where 1 <  n. All the guarded expressions Gi —» Ei in which the guard is not True 
“disappear” , since they are T, the unit of choice. Of those guarded expressions Gi —y Ei 
where Gi is True, the guards disappear, leaving the Ei. We are left a choice between 
‘unguarded’ expressions. It may be a choice between many expressions, therefore the 
whole expression is possibly nondetermined. However, it could be the case th a t none 
of the guards are true, and then the expression is just T. Therefore it is also possibly 
infeasible. To make it guaranteed feasible, it must be bracketed by the miracle buster 
if...  fi. The general useful form

if G\ —y E\ n ... n Gn —y En fi

is a feasible, nondetermined, many-branched conditional expression, called alternation 
expression [War94]. Alternation expressions are usually refined to many-branched if  th e n  
else expressions.

Guards are useful in generalised choices: If we are looking for any outcome x tha t 
satisfies the property G, we write \~\x.G ->x. All those x tha t make G not equivalent to 
True, make the guarded expression G -y x  become T, and therefore, they are not among 
the outcomes of \~\x.G —y x. To specify an outcome of E. with x bound to any outcome 
satisfying G. we write 11 x.G —y E. Obviously, tha t expression could be infeasible, so we 
enclose it in if fi to get

if rix : T.G  -> F? fi, 

a very convenient shape for initial, non-algorithmic specifications.

2 .2 .7  A s s e r t io n  E x p re s s io n s

The shape of an assertion expression is A > - E, where A is a boolean expression, called 
the assertion, and E  is any expression. We write A >— E  to express tha t we intend to 
use E  only when A is True, and don’t care what happens otherwise. If A is not True, 
the assertion expression is undefined.
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A > -  E = ± , if A ^  True

The type of A >— E  is just tha t of E. and A must have type B. The assertion expression 
A >— E  is equivalent to the one branch alternation if  A —> E  fi, if feasE .

Removing an assertion refines an expression:

A ^ E  H E .

Therefore a computer may simply ignore all assertions. In this way assertions are like 
program comments stating what should be true at this point, for example in 0 <  x > -y /x .  
If the assertion is not fulfilled, we don’t care what outcome is produced. The expression 
could yield a sensible result, for instance for negative x it may yield the expected complex 
number. But we aren’t guaranteed that. The program may not terminate a t all. or yield 
a senseless default value like 0.

Assertions are often used in specifying functions. We write Xx. A  >— E  to express 
tha t the function should deliver E  for arguments x such that A is true. Otherwise the 
function may deliver anything.

Ward [War94] calls assertions “assumptions” .

2 .2 .8  R e c u rs io n

The expression p x  : T . E  is the least fixpoint of the function Xx  : T. E  with respect to 
the refinement order C. If E : T  under the assumption that x : T.  then ( p x  : T . E ) : T. 
In practice, we will often give self-referential definitions instead of using p  explicitly. We 
require that E  be monotone in x, tha t is, if F  C G, then E[F/x\  Q E[G/x\ .  The reason 
will be detailed in subsection 3.3.4. Furthermore, we make the convention tha t E  should 
be determined. This convention ensures that p x . E  is feasible.

Recursion can be a convenient way of defining things. Here are three examples of 
definitions by recursion:

fac :

fac =

two Threes : 

two Threes =  

primes : 

primes =

The first defines a function, namely the factorial function, the second a finite data 
structure, namely a pair of two threes, and the third an infinite data structure, namely 
the ascending list of prime numbers. Some notation, like list comprehension, has not 
been explained yet.

N - > N
/  if 0 =  n -> 1 \

p f .  An. n i < n - * n *  / ( « -  !)

V f i  I
N x N  

p t.(3,fst t)

m
71

p p .  2 : [n | n <— [3, 5..], A/[->(a divides n) | a <— takewhile (< —) p]]
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2 .2 .9  L e t  E x p re s s io n s

The form of a le t expression is le t x = E  in  F where E  is a feasible expression, 
and F  is a feasible expression in which x  may appear free, le t expressions are used 
to tie auxiliary definitions to an expression. The le t expression le t x — E  in  F  is 
very similar to  the application (Ax.F)  E.  The difference is in the typing: in the le t 
expression polymorphism of E  is preserved. So if F : U under the assumption tha t 
x : Va.T,  and E : \ /a .T ,  then (let x =  E  in  F) : U. In contrast the typing rule for 
applying a A abstraction is: If F : U under the assumption tha t x : T. and F  : T, then 
(Ax.F)  E  : U . There is no V a. before T  here.

Binding by le t preserves the polymorphism of an expression, but (as with the (5 
rule) we have to be careful with nondeterminacy. Introducing a le t expression is a 
refinement:

F[E/x\  □ le t x = E  in  F.

It is only an equivalence if E  is determined.
As mentioned in subsection 2.1.5, auxiliary definitions and standard constants are 

technically tied to a program by le t expressions, although we need not write them 
explicitly in tha t way. For calculations it would be most inconvenient if we could make 
auxiliary definitions (refining the whole), but not unfold them again (worsening the 
whole). We make therefore the convention that in auxiliary definitions the defining 
expression (above E)  must be determined. Then we can freely fold and unfold them. In 
practice, this is a very mild restriction. W ithout it, unfolding a local definition must be 
preceded by a determinacy proof.

2 .2 .1 0  B in d in g  G u a r d s  a n d  A s s e r t io n s

Binding guards are three-place language constructs of the shape P  := A -> E  where 
P  is a pattern, and A and E  are determined expressions. Patterns are templates for 
outcomes. Patterns have free variables in them. The free variables of P  may appear free 
in E. and become bound in P := A —» E. The meaning of P := A —> E  is constructed 
by instantiating these variables in such a way that P  considered as an expression is 
equivalent to A. The meaning of P := A —> E  will be the meaning of E  under the same 
instantiation.

Finding such an instantiation is called matching. A matching can go wrong in two 
ways. Either A is not defined enough to judge whether it matches the pattern P. In tha t 
case we say the matching diverges. Or A is defined enough to judge, and the judgement 
says A has a different shape from P. In that case we say the matching fails.

If the matching fails or diverges, the whole expression becomes miraculous.
Some examples will illustrate the different forms of patterns (a grammar is given at 

the end of the chapter) and how binding guards work. A pattern may be one of the 
values of the primitive types. For example 3 :=  A —» “March” yields the list of characters 
“March” if the outcome of A is 3. If the outcome of A is a different value or undefined, 
the expression is miraculous.
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Generally a pattern  may be a constant, a variable, or a tuple of patterns, or a 
constructor applied to patterns.

Assume the algebraic data type definition

ty p e  Complex = Cartesian R R | Polar R R.

Then Cartesian x y :=  A —>■ \ / x 2 +  y2 delivers the modulus of the complex number 
represented by A, if A is built using the constructor Cartesian. If it is built using the 
constructor Polar, the match fails, and we have a miracle.

The wildcard pattern  _ matches everything and binds nothing. It is like a fresh 
formal variable tha t does not occur in its scope. By itself it doesn’t seem much use, but 
it can be used as part of a larger pattern, as in Polar r _  := A —>■ r. This expression 
delivers the modulus of complex number A if A is built from the constructor Polar. If 
the number is in tha t form, we don’t need to know the second argument of Polar, which 
is the angle of the complex number.

The type of P := A —> E  is that of E  with the free variables bound so tha t P = A. 
Binding guards may introduce miracles. Their use is in defining the case expression, 
where their possible infeasibility is tamed.

Binding assertions are similar to binding guards. Their form is P := A >— E  for 
pattern P. and feasible expressions A and E. The variables of P  may occur freely in E. 
Binding assertions differ from binding guards in tha t when the matching fails or diverges, 
the whole expression is _L rather than T. Therefore binding assertions are welcome as 
complete expressions. They are used in a program when we know that the outcome of 
an expression is constructed using a certain constructor, and need to extract the data 
in it. For example we may know that the expression A is a complex number built from 
the constructor Polar. Then we just write Polar _ 6 := A >— 6 mod 360 to extract its 
angle. If our belief th a t the constructor Polar has been used to make A was wrong, the 
expression is _L.

2 .2 .1 1  C a s e  E x p re s s io n s

The syntax of a case expression is:

case E  o f P\ —̂ Aj f~l ... n Pn —y A n.

where E  is a feasible expression, the Pi are patterns, the Aj are feasible expressions, 
and 1 <  n. Matching binds the free formal variables of the pattern Pi in the associated 
expression A*. The case  expression is a shorthand for a combination of binding guards, 
choice, and the miracle buster:

case E  o f P i —>• A l n ... n Pn -* An =  if Px := E  -> A x n ... n Pn := E  An fi.

Case expressions are ‘binding alternations’.
W hat is the outcome of a case expression ? Each of the matchings may succeed, 

producing a list of formal variable bindings, or it may fail or diverge. Those branches 
whose matching fails or diverges become miracles, which disappear, since miracle is the
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unit of choice. The outcome of the case expression is the outcome of an Ai such tha t 
the associated pattern Pi successfully matches E. binding the free formal variables of Pi 
in Ai. If there is no such A i% the case expression is undefined.

Since there may be many branches with successful matchings, case expressions can 
introduce nondeterminacy. How can we recognise case expressions that do not introduce 
nondeterminacy ? We say two patterns are exclusive, if there is no outcome tha t they 
both match. For example (x, 1) and y are not exclusive, since they both match the value 
{True. 1), but the patterns (Cartesian x y. 1) and (Polar r 6. z ) are exclusive.

Case expressions are feasible, but possibly nondetermined. If E  and the Ai are 
determined, and the patterns are mutually exclusive, then the case expression is also 
determined.

Some examples will illustrate the use of case expressions. This case expression

case E  o f 1 —> “January” n 2 —> “February” n ... n 12 —» “December”

converts the outcome of E  into the name of a month. The outcome of E  is matched to the 
constant patterns 1,2,..., 12. If one of those matches succeeds, then the expression will 
deliver the corresponding name of the month. If all twelve matchings fail, say because 
the outcome of E  is 13, then the case expression is _L.

Generally a pattern may be a constant, variable, or a tuple of patterns, or a con
structor applied to patterns. So for example

case E  o f Cartesian x y —> -\/x2 + y2 n Polar r _ —» r

delivers the modulus of the complex number represented by E. If the expression E  
delivers a value constructed by Cartesian, then x and y are bound to the appropriate 
values, and \ / x 2 +  y2 is the outcome of the c a s e , and similarly for the polar case. The 
wildcard pattern _ is used because if the number is given in polar form, we only need to 
know its modulus, the angle is irrelevant.

Case expressions supply some syntactical sugar.

• Function abstraction with patterns. The abstraction A P.E  where P  is a pattern 
stands for A x.case x o f P —> E. where x is a fresh variable.

• Recursion with patterns. The recursion p P .E  where P  is a pattern stands for 
px .ca se  x o f P  —> E  where x is a fresh variable.

• Let-expressions with patterns. The expression le t P = E  in  A where P  is a 
pattern stands for le t x =  E  in  (case x o f P A) where x is fresh.

• Function definitions. A function may be defined by listing applications of it to 
patterns. These defining equations are combined by case and transformed into a 
function abstraction. These equations defining / :

/  Pi  — ...; /  P n — A n.
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where 1 <  n stand for the single definition

/  =  p f .  X x .case x o f Pi —> A\ n  ... n Pn —> A n

where x is fresh. We have already mentioned the implicit recursion in subsection 
2 .2 .8 .

2.3 Set and Lists

This section rounds up some notation for sets and lists.

2 .3 .1  S e ts

Sets are unordered, possibly infinite, collections of elements of the same type. A set may 
contain an undefined element without being itself undefined. The type of sets containing 
elements of type T  is written P T.

A type is acceptable as a set expression, so for example the type N can also be used 
as the set of all natural numbers and the undefined natural. The set N is of type PN.

For natural n. the set containing the elements E-y,.... En is written {Eu .... En}. The 
order of the elements between the brackets is arbitrary. In particular, the empty set is 
w ritten {}.

The usual set-operations are available, for instance, the union of two set expressions 
S  and T  is w ritten S  U T. the intersection S  fl T. the set difference S \  T. If E  is an 
element of set S. we write E € S. For integers i and j ,  the expression {i..j}  denotes the 
set of integers from i up to j  inclusively. If i = j  this is a singleton set, and if i > j  this 
is the empty set. If S  is a set of sets, then (JS  is the union of its elements.

A function can be mapped over a set, that is, we take the image of the set by the 
function: F*S  is the set of elements F x where x G S.

Set comprehension are a convenient way of specifying sets. Their general form is 
{E  | Qu .... Qn}. where 1 <  n. The Qi are qualifiers. They are either of the form P <— F  
for pattern  P  and expression F. or boolean expressions. Set comprehensions can be 
expressed in term s of mapping, conditionals, and big union:

{ E \ P * - F }  =  (A P.E)*F
{E  | B} = if  B  th e n  {E}  else {}

{E  | Q1: Q2. .... Qk} = I Q2 •, •••; Qk} | Qi}-,

for 2 < k. See [Wad92a] for the monad story behind list comprehensions.

2 .3 .2  L is ts

Lists are linearly ordered collections of elements of the same type. Since it is always easy 
just to ignore the order of the elements, lists are acceptable wherever a set is expected. 
The type of lists containing elements of type T  is w ritten [T].
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The list containing Ei , . . . ,En in this order is written [E\,.... En\, so in particular, the 
empty list is []. The concatenation of two lists E  and F  is written E  -H- F.  The infix 
function (:) ‘cons5 takes an element E  and a list F  and delivers the list [E] -H- F.

As in many functional programming languages, lists are modelled by the type

ty p e  List a = Nil | Cons a (List a).

Then [] is shorthand for Nil, and a : as for Cons a as. This makes : a cheap operation, so 
our derivations will often favour using : rather than -H-. Every defined list is expressible 
as [], or a : as for some a and as, and these two forms will be allowed as patterns, 
standing for Nil and Cons a as.

Since all constructors are lazy, lists are lazy: A list that contains undefined elements 
is not itself undefined.

For integers i and j ,  the expression [i..j] denotes the list of integers from i up to  j  
inclusively in order. If i = j  this is a singleton list, and if i > j  this is the empty list.

Here are a handful of useful list-manipulating functions. Others can be found for 
example in the Haskell prelude ([PH+96]), or in [BW88].

A function can be mapped over a list: map is defined by:

map : (a —y b) —y [a] —y [b] 
map f  [] =  []
map f  (a : as) = f  a : map f  as.

One useful combinator of lists is foldr, defined by:

foldr : (o —y b — b) —y b —̂ [ct] —y b 
foldr f  b [\ = b
foldr f  b (a : as) = f  a (foldr f  b as).

Its sibling foldl is defined by

foldl : (u —y b —̂ a) —̂ a —y [6] —̂ a
foldl f  a [] = a
foldl f  a (b : bs) =  foldl f  ( f  a b) bs.

The function concat concatenates a list of lists. It is defined by

concat : [[a]] —> [a] 
concat =  foldr (-H-) []•

Filtering a list by a boolean valued function p is defined by

filter : (n —y IB) —y [n] —̂ [n] 
filter p [] =  []
filter p (a : as) =  le t xs = filter p as in  if p a th e n  a : xs else xs

The length of a finite list xs is #xs .  The function takewhile takes a predicate and a 
list and delivers the longest prefix of the list whose elements satisfy the predicate.
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takewhile : (a —̂ IB) —y [a] —̂ [a] 
takewhile p [] =  []
takewhile p (a : as) =  i f  p a th e n  a : takewhile p as e lse  []

The list xs reversed is written xs. The function snoc : [a] —> a —> [a] is defined 
snoc as a =  as -H- [a].

List comprehensions are analogous to set comprehensions. Their general form is 
[E | Q1:.... Qn], where 1 <  n. The Qi are qualifiers. They are either of the form P <— F  
for pattern  P  and expression F, or boolean expressions. List comprehensions are given 
meaning by translation into expressions using map, concat, and filter:

[ E \ P < - F ]  = map (XP.E) F

[E | B] = i f  B  th e n  [E\ else  []

[E | Qu Q2, ..., Qk] = concat [[E | Q2, ..., Qk\ \ Qi\,

for 2 <  k.

2.4 Types and Grammars

The specification language is typed with Hindley-Milner polymorphism [Hin69, Mil78]. 
The type of an expression depends on the types of the free formal variables in the 
expression. If expression E  has only one free variable x, we write x : U h E : T  to 
express tha t if x has type U, then the expression E  has type T. This form is called a 
sequent. The part before h is the antecedent, and the part after it the consequent. The 
antecedent gives the context. Contexts map variables to types. We use T to stand for an 
arbitrary context. T maps the variable x to the type T x. The context T, x : T  maps x 
to T  and otherwise agrees with T.

The consequent may list a number of typings of expressions, but at least one. So the 
general form of a sequent is

Xi : U\,.. . ,xn : Un h Ei : Ti , . . . ,Ek : Tk,

where 0 < n and 1 < A;. A type rule tells us how to derive one sequent called the
conclusion from a number of others, called the hypotheses. We write the hypotheses 
above a horizontal line, and the conclusion below. So if from the single hypothesis 
x : B b E  : N we conclude x : B b 6 +  E : N, we write

x : ® h E : N 
x : IB h 6 +  E : N *

The types include type variables. To express that the expression E  has type T, 
whatever the type variable a in T  stands for, we write E  : V a. T. The type variable a 
is universally quantified in the type T  and we say E  is polymorphic. A typescheme is 
a type with zero, one, or many universal quantifications. Here we write recursive types 
using /i, but in a program we will always define a recursive type by an equation. So
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instead of writing

ty p e  Tree =  p a.Node Z | Branch (a x a)

for a binary tree type with integers at the leaves, we would write

ty p e  Tree = Node Z | Branch ( Tree x Tree).

analogously to the practice of defining recursive functions, thereby removing type vari
ables tha t are bound by p. The remaining type variables are bound by V, which is only 
allowed to occur at the outside of the typescheme. Since in practice we will only ever 
use typeschemes in which all free variables are bound by V we will often take the V as 
understood w ithout writing it.

Figure 2.1 gives the abstract grammar of types. The state transformer and reference 
types will be discussed in chapter 4. The abstract grammar of the specification language 
is given in figure 2.2. The language construct state encapsulation will also be discussed 
in chapter 4. The abstract grammar of patterns is given in figure 2.3. The unsurprising 
typing rules are given in figure 2.4. Capital letters with a tilde (like T)  stand for 
typeschemes th a t may have universal quantifications, whereas capital letters without 
tildes stand for types without universal quantifications.

We will write T-^ for the typescheme that is derived from T  by removing the univer
sal quantification over a. and instantiating3 the then free occurrences of a by the type 
U.

Typing rules for the language constructs involving patterns have been omitted. They 
are long to write. The only point to note is tha t binding to  a pattern loses polymorphism. 
One may miss rules about the constructed types pairs, sums, and sets. They are omitted 
here because we consider the constructors (for example Xx .X y . ( x . y ) )  and destructors 
(for example f s t ) of values of these types as given constants, and each given constant 
comes with its typing. Later, in chapter 9, figure 9.5 will give the types (and semantics) 
of some constants.

The specification language consists of the expressions that

• are generated by the grammar for T .

•  have a (possibly polymorphic) type according the typing rules,

• and have no free variables.

It can be proven th a t all those expressions are feasible. Sometimes we’ll also consider 
the typed, possibly infeasible expressions generated from the grammar for E. but they 
are not acceptable as complete programs.

2 .4 .1  D e t e r m in e d  E x p r e s s io n s

We often may want to find out whether a given expression is determined. We may need 
this information to satisfy a side condition of a law we want to apply, for instance the (3

3 subject to the normal variable capture restrictions
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V a .T typescheme
T
a type variable
p a . T recursive types
B | Z | M | .. . primitive types
T - > T function
T x T pair
r+r sum
F T set
S T T T state transformer
Ref T  T reference

Figure 2 .1 : Abstract grammar of the types

-Lt undefined
k constants
X variables
T  J= application
X x . T abstraction
p x . F recursion
Vx  : T . T V  stands for binders V, =3
le t x = J- in  T local definition
T type as set

enumerated sets
ru n  T state encapsulation
T U T choice
Ux : T . T generalised choice
T > - T assertion
if  ̂  fi miracle buster
V  ■ = ? > -  T binding assertion
case T  o f V\  —> T\  fl .... n  V n -^ jFn case
E Q E refinement
E = E equivalence
def£ definedness
d e t£ determinacy
feas£ feasibility
T feasible expression
S U E choice

guarded expression
V \ = T - + T binding guard
He : T.E generalised choice
T r miracle

Figure 2 .2 : Abstract grammar of the expressions
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V  ::= _ wildcard
| x variable
| k constant
j  (Vi . . . . .Vn) tuples
| K  Vi.. .Vn constructors

Figure 2.3: Abstract grammar of patterns

T h _Lt  : T . T t  : T
T t - E  : T -> U .E  : T  

r  b E F  : U

T ,x  : T  b E : U 
T b A x.E : T  U

T .x  : T  \- E  : T  
T h / i  x.E : T

r  h E  : T , F  : T  
r  b E  n F  : T

T b  E : T
T b d e fE  : B. d e t E  : ®. feasE

r ,  x : T  b E  : U 
T b f ir  : T.E  : U

T b A :M.E : T T b E  : T  
T b i f E f i :  T

r b ( ? : l J : T  
T b  T

r , r  : T b  E  :1 
T h T x  : T .E  : . V. 3

T b E r V o . T
r b ^ : T [ f ]5, a not in ?7

T b £ :  T 
T b £ : V a . T

r  b E : T T ,x  : T \ -  F  : U 
T b let  x = E  in F : U

r  b i? : Vs .ST  s T  
T b r u n  E : T

. s not in T

. for type T
T b El : T, . . . ,En : T  
T \ - { E u ... ,En} : F T

T b E : T . F  : T 
r  b (E □ F) : ®

T b E : T, F  : T 
T \ - ( E  = F ) : M

. a not in T

Figure 2.4: Typing the expressions
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transformation E[F/x\  =  (A x .E )F  which is only true if F  is determined.
W hat does determinacy mean exactly in a total correctness calculus ? It is impor

tant to realize that an intuitively determined expression can be refined by an obviously 
nondetermined expression, for example A C 3 n 4, or Arc.3 n 4 □ (Ax.3) n (Ax.4). Since 
we would like to view evaluation of a program simply as a last refining step, it would not 
be sufficient to say an expression is determined if it has exactly one possible outcome. 
Rather, an expression is determined if it has a minimum outcome. In the two examples, 
the minimum outcome of _L is the undefined outcome, whereas the minimum outcome 
of A £.3 n 4 is just the function tha t maps any argument to either 3 or 4.

An expression E  is determined if it cannot be written as a choice of two expressions4 

tha t are strictly more refined than E,  th a t is, if E = F  n  G, then E = F  or E = G. 
For example, 3 n  4 is not determined, because it can be written as a choice between two 
strictly more refined expressions, namely 3 and 4. On the other hand, A is determined, 
because whenever A =  F  n  G, at least one of F  and G must be A itself (which means 
the other contributes nothing to the choice expression). The example of A x.3 n 4, which 
can also not be written as a choice of two strictly more refined expressions, shows tha t 
an expression may be determined and defined, and still have more than one possible 
outcome under a refining evaluation.

Alternatively, we can express lE  is determined’ using existential quantification: 3 x  : 
T.(x  =  E).  This works fine for A, since in our lazy calculus, x may be bound to 
undefinedness, and the variables in quantifications range over all possible outcomes of 
its type, including the undefined one.

More simply, since nondeterminacy can only arise from certain language constructs, 
we also have an easy syntactic check. If the expression E  is given by the grammar T> given 
in figure 2.5 and has no free variables, it is determined. The grammar basically describes 
a functional programming language. However, if E  is not given by this grammar, it may 
still be determined, for example, if 0 =  £ — 1 n  0 <  x —»16 fi is obviously determined. 
Such an expression may always be refined to an equivalent one which is generated from 
T>. such as here if  x = 0 th e n  1 else (if 0 <  x th e n  16 else A). All constants are 
determined, and the functional constants have determined bodies. If an expression is 
generated by V.  but still has free variables, we may not be able to decide whether it is 
determined. For example, the expression /  3 becomes nondetermined if /  is bound to 
A x . 3 n 4 ,  which is itself determined, but not drawn from V.  Therefore we insist that 
expressions must have no free variables.

4Infeasible expressions need not be excluded here, but they are hopeless, since E =  F fl T means that 
F =  E.
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D  — J_7"
I k 
I x
j V V  
j X x .V  
j p, x .V  
| : T . V
j le t  x =  T> in  T>
I T

j run  £>
j V ^ V
j if  P  th e n  e lse  T>
I £ Q £
j £  =  £
| def£
| d e t£
I feas£

undefined
constants
variables
application
abstraction
recursion
binders V, 3
local definition
type as set
enumerated sets
state encapsulation
assertion
conditional
refinement
equivalence
definedness
determinacy
feasibility

Figure 2.5: Determined expressions



Chapter 3

Refinem ent

This chapter presents a discussion of the meaning and uses of refinement, presents the 
logical underpinnings of refinement, and then lists the axioms and some theorems.

3.1 General Ideas

This section discusses the meaning and uses of refinement. The subsections treat the 
differences between specifications and program, the ways refinement is used and their 
technical implications.

3 .1 .1  F r o m  S p e c if ic a t io n  t o  P r o g r a m

The purpose of a refinement calculus is to give the programmer a language in which to 
specify a program, and a set of refinement rules with which to transform the specification 
into a program. Both the specification and the program describe sets of desired outcomes, 
however, they describe them in different ways.

The description given by the specification need not be algorithmic; rather it could 
be a property tha t the outcomes should satisfy. Even if a specification, or a part of it, 
has an algorithmic reading, that algorithm may not be satisfactory as a program if it 
has an avoidable high time or space complexity.

The program on the other hand describes the outcomes in an algorithmic way. A 
computer can be used to read and execute the algorithm, yielding one of the described 
outcomes. Programs are written in the programming language, which has only algorith
mic constructs, so all programs describe their outcomes algorithmically. Furthermore the 
programming language guarantees that all programs have at least one possible outcome: 
programs are feasible.

A program F  implements a specification E,  or a specification E  is refined by the 
program F.  if the set of outcomes described by the specification is a superset of the set 
of possible outcomes of the program. We write E U. F. Therefore, obviously, refinement 
reduces nondeterminacy: 3 n 4 C 3. Refinement also increases termination, since all the 
sets of outcomes of expressions are upward-closed, tha t is, if a set contains an outcome 
v. it also contains all outcomes better (more terminating) than v. The only way to get 
an upward-closed subset from an upward-closed set is to remove some elements from its

29
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‘lower rim ’, that is. the least terminating elements in the set. Consequently, refinement 
increases termination.

Refining a specification into a program may be a difficult problem, so we can’t expect 
to do it at once. We divide the difficult problem into many smaller problems by iterative 
refinement and stepwise refinement.

3 .1 .2  I te r a t iv e  R e f in e m e n t

Iterative refinement means tha t we transform a specification Ei into the program En 
by transforming into Ei+1 for each i £ { l..n  — 1}. Each of the steps Ei □ E i+1 is 
correctness-preserving in tha t the set of outcomes described by Ei is a superset of the 
set of outcomes of Ei+1. We conclude tha t E± is refined by En.

Iterative refinement requires the following two properties of the refinement calculus. 
First, the specification language and the program language must have a common super
language (the language described in the previous chapter is such a language), for this 
is the language tha t the part-specification, part-program Ei with 1 <  i < n are written 
in. Since programs must be algorithmic, but specifications need not necessarily be non- 
algorithmic, we’ll consider the program language as a sublanguage of the specification 
language. So all E{ with 1 <  i < n are specifications, and in particular, En is also a 
program.

Secondly, refinement (□) must be a transitive relation between expressions of the 
unified specification/program language. Indeed our refinement relation is transitive.

3 .1 .3  S te p w is e  R e f in e m e n t

A big transformation can also be factored into smaller transformations by stepwise re
finement. Stepwise refinement means tha t we transform an expression by transforming a 
subexpression of it. Say the expression is E[F], that is an expression E  with subexpres
sion F  in a certain place. We refine E[F] into E[G\ by showing that F  is refined by G. 
Stepwise refinement requires the language constructs to be monotone with respect to re
finement. In the specification language we describe, almost all constructs are monotone. 
The exceptions are if  _ fi, = , □, def, d e t, feas, and the guards and assertions, which are 
not monotone in their first arguments.

3.2 Logic

This section describes the logical underpinnings of proving formulas.
We choose to identify formulas of the logic with boolean expressions. This makes for 

easy communication between the specification expressions and the formulas. Otherwise, 
the programmer would have to know two separate languages that closely mirror each 
other.

The downside of this decision is that since the expression language has undefinedness, 
nondeterminacy, and miracles, there are strange tru th  values besides true and false. We 
cannot simply use classical logic, but must adapt it in a reasonable way to deal w ith the
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strange tru th  values. There are many possibilities of doing this, and the best choice is 
not obvious.

The first subsection describes the model theory of our logic, tha t is, it gives the 
intended meanings of the formulas. The second subsection describes the proof theory of 
the logic, given in H ilbert’s axiomatic style. The last subsection describes the style of 
reasoning we’ll use in practice -  equational reasoning -  and how this style relates to a 
formal logical argument.

3 .2 .1  M o d e l  T h e o r y  o f  F o rm u la s

This subsection describes our intended semantics for the logical formulas. Denotational 
semantics of the whole language are treated in detail in chapter 9 later.

B oo lean  E x pressions

We take as formulas simply the boolean expressions of the specification language. There
fore, the two tru th  values true and false are joined by the undefined tru th  value, the 
miraculous tru th  value, and choices between them. The meaning of an expression is the 
(upward-closed) 1 set of its possible outcomes. The meaning of the boolean expressions 
is as follows. The meaning of the expression True is the set {true}, and of False it is 
{false}. The meaning of the expression _L is the set containing true, false, and the special 
undefined outcome. This is indeed an upward-closed set. Since it contains the undefined 
outcome, it must also contain all outcomes better than it, which are both true and false. 
The expression T  is a miracle. It has no possible outcome: therefore its meaning is the 
empty set.

Feasib ility , D efinedness, a n d  D e te rm in a c y

The feasibility-test feasF  tells whether the expression E  is feasible. Its meaning is simply 
{true} if the meaning of E  is not the empty set, and {false} otherwise. The meaning of 
the definedness-test d e fE  is {false}, if the meaning of E  contains the undefined outcome 
(and hence all other outcomes), and {true} otherwise. The meaning of d e tF  is {true}, 
if there is a minimum element in the meaning of E,  and {false} otherwise.

E q u iva len ce, R efin em en t, and C hoice

The equivalence relation =  relates expressions whose sets of possible outcomes are the 
same. It is sometimes called ‘strong equality’. If E  and F  have the same meaning, then 
E = F  has the meaning {true},  otherwise {false}.

The refinement relation □ relates two expressions as follows. If the set of outcomes 
of E  is a superset of the set of outcomes of F,  then the meaning of E  C F  is {true}, 
otherwise it is {false}.

Binary choice between two expressions is interpreted as the union of their sets of out
comes. Therefore, when the four boolean expressions _L, True, False, T are combined by 
choice, we obtain only one new tru th  value: Truen False, whose meaning is {true, false}.

1 The definition of the orders for outcomes of each type will be given in chapter 9.
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The meaning of generalised choice I"!# : T.E  is the union of the meanings of E,  in 
environments tha t bind x to every outcome of type T.

P ro p o sitio n a l C alcu lus

Here we interpret the logical connectives A, V. In choosing how the logical
connectives should behave, the design aims are:

extend If all expressions used with a logical connective are proper, that is, defined, de
termined, and feasible, then the connective should behave exactly as its classical 
version.

laws It is desirable tha t as many theorems of classical logic as possible are preserved. 
Some will clearly have to go, for example the theorem of the excluded middle 
E  V -i E. The preserved theorems should be sufficient for practical calculation, and 
(ideally) easily recognisable.

monotone Connectives tha t are to be used within expressions are desirably monotone with 
respect to refinement -  this allows piecewise refinement and term inating recur
sion. Furthermore, only monotone constructs can be part of the programming 
sublanguage.

function For simplicity, it is desirable to treat connectives simply as given constants of 
functional type rather than as extra language constructs. However, any connective 
tha t's  a function must behave as all functions do, for instance, distribute over 
nondeterminacy, and therefore this treatment is not appropriate for all connectives. 
In particular, we’ll treat =4> as a language construct rather than a function.

The first design aim cannot be compromised if the connectives are to have any use. The 
second aim, preserving the theorems, requires care. It is not obvious (and somewhat 
a m atter of taste) which theorems should be preserved and which we can do without. 
The th ird  aim, monotonicity, may be compromised to gain the second, especially since 
logical connectives are not likely used in recursion, although we may want to refine them 
stepwise. The fourth aim is stronger than monotonicity. We include it to keep the 
language simple, with few language constructs.

We make the connectives = n . A, V, -> functions in the specification language, rather 
than language constructs. For any function, the meaning of application of a function to 
an argument is given by mapping the ‘interpreted’ function over the set of outcomes of 
the argument.

For example, the meaning of ->( True n False) is mapping the ‘interpreted’ function 
not over the set {true, false], yielding {not true, not false], which is {false, true]. If the 
argument is T, which has no outcomes, the application also has no possible outcomes, 
for example ->T means mapping not over the empty set, which is of course still the 
empty set. We say the function -> (like all functions) preserves miracles.

From these semantics it follows tha t all functions, in particular = B, A, V, -i, preserve 
miracles and distribute over nondeterminacy in all their arguments.
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E F E  —b F E V F E  A F
X X X X X
X False X X False
X True X True X

False X X X False
False False True False False
False True False True False
True X X True X
True False False True False
True True True True True

Figure 3.1: Interpretation of the binary logical connectives

Now we only have to decide how these connectives behave when applied to _L. The 
undefined boolean expression X may result from a not terminating recursion, or more 
trivially, from a partial function. Intuitively, we can think of X as “no information 
content” , or “no answer” , where True means “yes” and False means “no”.

Our design aims extension and monotonicity could be easily met by making the 
connectives preserve X. Then we would have for example (-iX V E)  =  X, for feasible 
E,  and True V X =  X and -<X =  X. It would make the connectives fit in nicely in a 
language where function application is strict.

But our function application is not strict, and there is good reason to exploit that 
freedom in designing the logical connectives. For example, it is reasonable to regard a 
disjunction as true as soon as one of its branches is: (^ =  l )V(a;  =  0). Similarly, a 
conjunction may reasonably be regarded as false as soon as one of its branches is false: 
(0 < n) A (n! < n n). Indeed, if all connectives were strict, we’d have no way of expressing 
statements about partial functions like the previous formula. This approach is similar 
to tha t of LPF ( “Logic of Partial Functions”), the logic of VDM, as in [BFL+94].

Equality = B (sometimes “weak equality”) however, is strict: it yields True for de
fined equal arguments, False for defined different arguments, and X if an argument is 
undefined. Negation is also strict: - iTrue =  False, -iFalse = True, and -»X =  X.

Summarising, figure 3.1 gives the monotone extensions of the binary connectives 
—Bi V, A.

Whenever a connective applied to True and to False yields the same result, we define 
it to yield tha t same result also for X. Otherwise, the result is X. In this way we ensure 
that the extended connective is still monotone with respect to refinement.

E  => F  is the same as (E =£ True) V F. Therefore, unlike functions, it does not 
preserve miracles, it does not distribute over nondeterminacy, and it is not monotone in 
its first argument. However, it does have desirable properties that make up for this: for 
feasible arguments, it is reflexive and transitive. Furthermore, it satisfies the deduction 
theorem, tha t is, if assuming E  is a theorem, one can prove F. then one can conclude 
E => F . A complete tru th  table is given in figure 3.2.

W hat are the consequences of choosing these extensions ? The most obvious, and 
inevitable loss, is the excluded third: E  V ->E. But False implies everything feasible, and
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_L True n False True False T
_L True True True True T

True 13 False True True True True T
True _L True (3 False True False T
False True True True True T

T True True True True T

Figure 3.2: T ruth  table for implication

everything implies True. The weakening (E => E  V F)  and strengthening (E A F F) 
laws hold for feasible E  and F, but A and V do not distribute over each other. The 
contrapositive law (E => F = ->F  -iE )  does not hold. As mentioned, implication 
is transitive: ((E  =>■ F) A (F =4> G)) =>- (E => G). Implication distributes over V, A 

and ==> in its second argument. The shunting law (similar to ‘currying’) holds: (E  A 

F  =>• G) =  (E => (F =>■ G)). Almost all =>-monotonicity laws hold: for example. 
(E => F) => (E A G =>• F  A G). The symmetric closure of implication is neither equality 
nor equivalence. The ‘consistency law’ (E  A F = E) = (E V F  = F)  is not a tautology.

P r e d ica te  C alcu lu s

Predicate calculus is the layer of logic th a t introduces variables and the binders V and 
3 limiting the scope of the variables. In the  presence of undefinedness, nondeterminacy, 
and miracles, two questions are raised. First, what do variables range over ? Secondly, 
what happens if the body of a quantification turns out to be (equivalent to) a ‘strange’ 
(that is, not simply True or False) boolean expression ?

Our variables range over outcomes, th a t is, proper outcomes and the special unde
fined outcome. The undefined outcome is the ‘outcome’ of a nonterminating expression. 
The justification is tha t we are dealing w ith a lazy language, and it is better to have all 
variables binding elements of the same set, regardless of whether they are bound by a 
A or a quantifier. If one wants to exclude the undefined outcome from the range of the 
variable x in Vx.E.  one simply writes V x . (x  ^  _L) => E  instead.

For the universal quantifier it means tha t from V x .E  we can deduce E[F/x\ ,  for 
determined F,  without having to check whether F  is defined. However, it also means 
th a t from 3 x.E  we can deduce tha t there is an x such th a t E -  but we don’t know 
whether it is defined.

In answer to the second question, we retain universal quantification as generalised 
conjunction and existential quantification as generalised disjunction.

The meaning of \f x : T .E  is constructed as follows. For each outcome of type T, 
interpret E  with x bound to tha t outcome, to  obtain an upward closed set. Order the 
obtained upward closed sets by transitive <v, defined by

{} {false} < v {true, false, undefined} < v {true, false} < v {true}.

The least set is the meaning of Va: : T.E .
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The meaning of 3 x  : T .E  is constructed similarly, except tha t we take the least set 
under the transitive order < 3, defined by

{} < 3  {true} < 3  {true, false, undefined} < 3 {true, false} < 3 {false}.

Notice tha t < 3 is not > v, but tha t S  <v T  is equal to {not s | s £  5} < 3 {not t \ t G T}
and vice versa. This equality makes De Morgan’s laws valid.

W hat are the consequences of choosing these quantifiers ? Firstly, a quantification 
can be miraculous, undefined, or nondetermined. If the body does not mention the 
quantified variable, the quantification is equivalent to its body, tha t is, (Vx.E) = E  and 
(3 x.E) = E,  i f x  £ fv(E).  As mentioned, both De Morgan’s laws hold: Mx.E =  ->3 x.->E 
and 3 x.E  =  - iV i.- iE.  Universal quantification distributes over conjunction, but not 
over disjunction, and existential quantification distributes over disjunction, but not over 
conjunction. Neither distributes over choice. Both quantifications are monotone in their 
bodies with respect to refinement, but not with respect to implication.

Alternatively, one could interpret "ix.E  as {true} if for every binding of x, the
meaning of E  is {true}, and otherwise as {false}. Similarly, 3 x.E  is {true} if there is 
a binding of x tha t makes the meaning of E  be {true}, and {false} otherwise. These 
semantics are simpler, and have the property that quantifications are always defined 
and determined. But they lack many desirable properties, in particular, discarding 
quantifiers over unused variables, monotonicity, distribution properties, and De Morgan’s 
laws.

S em an tic  C on seq u en ce

If the meaning of E  is {true}, whatever the free variables in E  are bound to, we write 
|= E  and say E  is a tautology.

3 .2 .2  P r o o f  T h e o r y

This subsection describes what a formal proof is. We use H ilbert’s axiomatic style, where 
the only inference rules are modus ponens and generalisation. In the next section of this 
chapter, we will list some boolean expressions as axioms. All those boolean expressions 
are called theorems that can be proven. A proof of expression G consists of a finite list 
of boolean expressions ending in G. The expressions are usually written one to a line, 
and numbered for easy reference. Each of the expressions is either an axiom, or is of 
the form Vx .E  and E  is an expression earlier in the list, or is of the form F  and both 
expressions E  and E  => F  occur earlier in the list. That is, our only two inference rules 
are

E E E => F
M x.E  F  ’

called ‘generalisation’ and ‘modus ponens’. We write h G to express that G is a theorem.
The purpose of such a proof is to show that an expression is true by syntactic means 

rather than by examining its meaning.
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To achieve this purpose, we must have the guarantee that the logic is sound. That 
means, all theorems are indeed tautologies, or in symbols, h E  implies |= E.  Anything 
which can be proven is actually true.

Ideally, we would also like the logic to be complete. That means, all tautologies 
are also theorems, or in symbols, |= E  implies h E. Any true formula can be proven 
syntactically.

Soundness is relatively easy to show by showing that each of the axioms is a tautology, 
and tha t the two inference rules preserve tautologies. We claim tha t our calculus is sound. 
For many of the axioms the demonstration is trivial, and will be omitted; for others, a 
proof will be given later. It is unknown whether the calculus is complete.

3 .2 .3  E q u a t io n a l  R e a s o n in g

In practice, we prove formulas and refine expressions using the calculational style known 
as equational reasoning. It is advocated by many Dutch people (for example [DS90, 
GS93]), and it is nothing special really: i t’s just the calculational method taught in any 
school. In school it is applied to numbers, but we can equally use it for formulas and 
specifications. To prove that one expression is equivalent to another, the first expression 
is transformed into the second using as series of ‘substitute equals for equals’. To show 
tha t one expression is less than another in some sense, we transform the smaller into 
the larger in a series of increasing steps. In school, the expressions are numbers, and the 
order is <, whereas here, the expressions are formulas with order <=. or specifications 
with order C.

Equational reasoning uses a linear layout tha t captures routine proof steps like ap
plications of transitivity and modus ponens.

The layout of an equational proof is like this:

Ei
Ri hinti

E2
R2 hint2

R n hintn
En+1

This sequence proves Ex R En+1 where R  is II”=1J2t, the relational composition of the
Ri-

In practice, R will be C, = , or <=, and we have a proof of Ei □ En+1, Ei = En+1. or 
Ei <= En+i. Furthermore, if R  is <= and En+1 is a theorem, then the sequence proves 
Ei.

Equational reasoning can be seen as a layer of shorthand over axiomatic logic. It is 
im portant because the style has a certain calculational dynamic.

We now sketch how equational reasoning is related to axiomatic logic. We’ll treat 
the two cases of using □ and <= for R.

Say the relation is C. An equational proof with just one step:
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Ei
C hint

E2.

is translated to the trivial axiomatic proof
1) Ei □ E2  hint.

The hint will be a reference to the theorem of which Ei C E2 is an instantiation. 
Alternatively, if Ei is syntactically E[F/x],  for fresh x. and E2 is E[G/x],  then the hint 
may also reference a theorem F  □ G. and a theorem tha t E  is monotone \n x.  If in fact 
F  =  G. we can conclude Ei =  E2. whether E  is monotone in x or not.

An equational proof w ith n >  1 steps:

Ei
C hinti

C  hintj-1

Ei
C hintj

hintn
E<n + l j

is translated into an axiomatic proof by combining the axiomatic proofs of

Ei
C hinti

E,

and
hintj-i  C

hintj

h in tn^i

Ei E r

Assume the axiomatic proof of the first has k lines, and the one of the second I lines. 
We simply renumber the lines of the second to k +  l . .k  +  /, and append them to the first 
axiomatic proof, and add a step at the end, getting:

i)

k)
* +  i)

El E E,

Ej C Enk + l)
k T I T  1) Ei C E.

first axiomatic proof

► second axiomatic proof 

(A:), (k +  /), □ —trans..

an axiomatic proof of Ei C En.
A  similar translation procedure is applicable for the relation =. Obviously, =-steps 

can be mixed freely into C-chains, since (E = F) => (E C F)  is a theorem.



Refinement 38

For boolean expressions, we argue similarly, by chains of <=, using <=-(anti)monotonicity 
theorems and transitivity of 4=. Because (E = F) => (E <= F ) for feasible E.  we can 
mix =  steps into the <S=-chain, if -  as is usually the case -  the expressions are feasible.

3.3 The Axioms

In this section, we'll list the axioms. Where appropriate, we’ll also slip in some theorems. 
Their proofs are left as exercises. The axioms are marked axm and the theorems thm. 
Sometimes we’ll also give them a short name. As usual, the axioms and theorems are 
really axiom- and theorem -schemas. In them, the identifiers E. F. G. H.  and occasionally 
X .  A. B.  stand for arbitrary expressions, whereas x. y. z stand for variables, and T. U. V  
stand for types. We assume tha t all expressions type-check. We assume the syntactic 
conveniences E <= F = E => F  and (E ^  F) =  ->(E = F).

The axioms are all ‘simultaneous’, of course, but for presentation, we’ll group to
gether the axioms concerning refinement, those concerning boolean expressions, those 
concerning specificational language constructs, and finally, those concerning program
ming language constructs. Each of the four groups is treated in a subsection.

3 .3 .1  R e f in e m e n t

Feasib ility , D e te rm in acy , an d  D efinedness

axm ot(PE), where a. p  range over feas, d e t, d e f
axm ->def_L, detJ_, feas_L
axm de fE  = (E ^  _L)
axm defT , -idetT , -ifeasT
axm feasE = (E ^  T)

R efin em en t

axm d e f(E  C F),  d e t (E □ F), fea s (E □ F)
axm C —truth ((E O F )  = True) =  (E □ F)
axm C —extr. ±  C E. E  C T
axm C —refl. E C E
axm C —antisym. { E Q F ) A ( F Q E )  = {E = F)
axm C —trans. (E C F) A (F C G) => (E C G)

E quivalence

thm d e f(E = F). d e t (E = F). fea s (E  =  F)
thm = —truth {{E = F) = True) = (E = F)
thm = - refl. E = E
thm =  —sym. {E = F) = (F = E )
thm =  —trans. (E = F ) A ( F  = G)=>(E = G)
axm Leibniz (E = F) ^  (G[E] = G[F])
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G[E\ stands for an expression with a syntactic hole, and E  placed into that hole.

3 .3 .2  B o o le a n  E x p r e s s io n s

In principle, the boolean type is just one of a number of primitive types. Each of the 
primitive types comes with a host of constants and some axioms about those constants. 
The axioms tha t every primitive type satisfies will be given later. In particular, they 
apply to the primitive type boolean. We discuss the boolean type with its associated 
constants True. False. V, A, = B, and its language construct => here already because it 
is fundamental in tha t it is the type of formulas. The functional constants V, A, = B 
also satisfy the axioms for all functions. The axioms about functions will be given later.

Two of the five tru th  values are picked out uniquely by the definedness-test and the 
feasibility-test. Of the remaining three, True n False is identified by the determinacy- 
test. We could have introduced a truth-test to distinguish the remaining tru th  values 
True and False. Instead of doing that, we test for True by giving axioms involving 
=  True for each (relevant) connective.

P ro p o sitio n a l Logic

The constants that come with the primitive type ® are the following:

True. False : B
~i : B —y B
V, A, — B : B —̂ B —y B.

The curried functions in the last line are written between their arguments, as usual. 
There is also the language construct implication, typed

E . F  : B 
E => F

Implication and the constants satisfy these axioms:
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axm -i — strict def(-i£ ) = d e fE
axm -> — inv. ~t~<E E
axm —1 ->True = False
axm V — d e f d ef(F  V F)  =  (-idefF  =>• ( True C F)) A (-idefF  => ( True □ F ))
axm V — truth (F  V F = True) =  (F  =  True) V (F  = True)
axm V — idemp. E  V E  = E
axm V — com. E V  F  = F \f E
axm V — assoc. (F  V F) V G = E V  (F  V G)
axm A — def. E  A F  = —1(—ijE? V “iF )
axm A — truth (E A F = True) =  (F  =  True) A (F = True)
axm z=*> de f . E => F = (E ^  True) V F
axm ^ /  = (E= >(F = G)) = ((E => F) = (E => G))
axm =$■ weaken {(E = F) A feasF) =$■ (E => F)
thm d e f /  => d ef(F  => F) = (E True) V defF
thm d e t /  => d e t(F  =>• F) =  (E ^  True) V d e tF
thm fe a s / =>■ feas(F  => F ) e  feasF
thm => —truth ((F  =>• F) =  True) =  ((F  ^  TVue) V (F  =  True))

The condition fea sF  is necessary in the axiom weaken, since, with the interpretation 
of implication as discussed previously, (E = T) => (E => T) is infeasible rather than 
true.

E x is te n tia l and  U n iv ersa l Q u an tification

Existential and universal quantification generalize disjunction and conjunction. Their 
axioms follow.

axm 3 - d e f d e f(3 x .F ) =  (3 £ .-idefF) (3x.(7Vue C F))
axm 3 —feas feas(3rr.F ) =  -i 3 x .-T easF
axm 3 —d e t d e t(3  x.E)  =  ((3 £ .-id e tF ) => 3 # .-idefF  V (F  =  True)) A feas(3 z .F )
axm 3 — truth ((3 x.E)  — True) =  (3 z .F  =  Th/e) A feas(3 x.E)
axm 3 - a 3 x . E  = 3 y.E[x/y].
axm 3 /V 3 a ; . F V F E  3a:.F V 3rc.F
axm 3 —mon. (\ /x .E  C F ) = >  (3 x.E)  C (3ar.F)
axm 3 —inst. (F [F /z ] A d e tF  =>- 3&.F) -<= feas(3a;.F)
axm M -d e f . V x .E  =  - i3rE.~iF
axm V — truth ((V rc.F) =  True) = V x. (E = True)
thm V —inst. ((Vrr.F) A d e tF  => F [F /x ]) <= feas(F [F /z])
thm V — mon. (Var.F E F) =4> (Var.F C V i . F ) .
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3 .3 .3  S p e c if ic a t io n a l  L a n g u a g e  C o n s tr u c ts

This subsection gives the axioms of the specificational language constructs. Choice and 
generalized choice bring nondeterminacy into the language. The miracle buster is very 
simple: it converts miracles into undefined, and leaves everything else untouched. The 
miracle buster is not monotone with respect to refinement, but almost. Guards are the 
only language construct tha t introduce miracles (apart from T itself).

C ho ice

axm n -  gib. (X  C E)  A (X  □ F) =  (X C E  n F)
thm n -  lb. E  n  F C E,  F  n F  □ F
thm fi — idem. E  n  E = E
thm n — com. E  n  F = F  n  E
thm n — assoc. (F  n F) n G = E  n (F n G)
thm n  — dem. E  n  _L =  _L
thm n  — one E  n  T =  E
thm fi — mon. (E  □ F) => (E n G □ F  n  G)
thm d e f (E n  F ) =  d e fE  A d efF
axm d e t(F  n F)  =  (d e tF  A (E C F)) V (d e tF  A (F  C F))
thm feas(F  n F) =  feasF  V feasF
thm ((F  n F ) =  True) <= (F  =  True) A ( True □ F)

G en e ra lized  C hoice

axm I! - g i b {\ fx .X  C F) =  {X C I!x.E), x <£fv{X)
thm I”! — inst. d e tF  =* (11 x.E  C E[F/x])
thm n  — drop n  x .E  =  F , x &fu(E)
thm I”] — mon. (Var.F C F ) ^  (11 x.E  □ llar.F)
thm ri/n i l x .E  n F  =  llrr.F  n 11 x.F
thm d e f /n def(l1a;.F) =  Va;.defF
thm f e a s /n feas(l1a:.F) =  3 x. feasF
axm n  — a n  x .E  = n  y.E[y/x\ . y &fv{E)
thm fi — exch. Ux.Uy.E = V\y.V\x.E

M irac le  B u s te r

axm if  T fi =  _L
axm feasE =$■ (if E  fi =  E)
thm feas (if E  fi)
thm d e f(if E  fi) =  d efF  A feasF
thm d e t( i f  E  fi) =  d e tE  V (F  = T)
thm if  E  fi □ E
thm (E □ F)  A feasF  => (E □ if  F  fi)
thm (F  □ F) A feasF  =>- (if E  fi □ if  F  fi)
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G u a rd s

axm True —> E  =  E
axm feas (G E) = (G = True) A feasE
thm d e t / —> det(G ! -* E)  =  (G =  True) A d e tE
thm d e f/-* d e f ( G ^ y E )  = G ^ d e f E
thm u s e -----* {G = > {EQ  F)) = > ( E Q G ^ F )
thm -* — mon. {E C F) => {G ->E  C G - y  F)
thm strengthen -- { G = > H ) = > ( H - + E Q G - + E )
thm -> /n G ^ ( E f ] F )  = G ^ E n G ^ F
thm - > / n G ^ V \ x . E  = U x . G - ^ E ,
thm a d d -----y E \ Z G ^ E .

x <£fv(G)

A sse rtio n s

axm True >— E = E
axm def(4  >— E) = (A = True) A d efE
thm (A >— E  =  if  A —> E  fi) <= feasE
thm use — >— (̂ 4 => {E C E)) => (̂ 4 >— E  C F)
thm > mon. (E C F) =$■ (A >— E  C A >— F)
thm weaken — >— (A => B) => (A >— E  C B  >— E)
thm rem. — >— A >— E  C E.

3 .3 .4  P r o g r a m m in g  L a n g u a g e  C o n s tr u c ts  

P r im itiv e  T y p es

Each of the primitive types B, Z , R , ... comes with a host of constants. Some are the 
elements of the type (for example True. 17,7.659), others are functions on elements of 
the type (for example A. +,ln).  Each constant comes with a type rule, and possibly 
some axioms. Here we’ll just list the axioms that apply to every primitive type. In 
particular, every primitive type T  comes with a strict equality function, written = T. 
We may drop the subscript if it is obvious from the context. Below, k and I range over 
distinct constants, whereas e . f . g  range over determined, defined, feasible expressions of 
the primitive type T . In three axioms, the side condition k : U —> V  simply indicates 
tha t k should be of some functional type.
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axm const. defk. d e t A:, feasA;
thm dist. const. k ±  I
axm dist. const. k % I
axm func. const. d e t (A; E ) =  d e tF ,
axm func. const. feas(A; E)  =  feasF ,
axm func. mon. (E C F) => {k E  C jfc F).
axm = —strict d ef(F  = t F ) =  d e fE  A d efF
axm =  -ref l . e — e
axm = —sym. (e = / )  =  (/ =  e)
axm -- —trans. (e = / )  A ( / = # ) = >  (e =  g)
axm = /  = IIIIIIII

thm = —Leibniz ( e = f ) = * G [ e ]  = G\f]

if k U ->• V
if k U -> V
if k U V

T uples

As an example, we treat pairs. For other tuples, the appropriate generalizations apply. 
The last four lines should be generalized to all positions in a tuple, and all projections.

axm d e f(E. F )
axm d e t (E. F) =  d e tE  A d e tF
axm feas(F , F) =  feasF  A feasF
axm C - tuple (E C F) A (G □ H) = ((E, G) C (F, H))
thm tuple/n (E. F  n G) = (E. F)  n  (E, G)
thm tuple/ n  {E.V\x.F) =V\x.{E.F) .  x £ fv{E)
axm proj. strict fstA. =  _L
axm proj. f s t (E .F )  = E

Sum s

As an example, we treat the binary sum type. The appropriate generalizations of the 
given axioms and theorems to other sum types apply. We also use In i here as rep
resentative of all constructors. However, the Inr stands for any constructor different
from Ini. The expression (E y  F)G  stands for the (very simple) case expression
case G o f Inl:r —>■ E x fl Inr?/ —»• F y. where x and y are fresh.
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axm def(In lF )
axm d et(In lF ) =  d etF
axm feas(In lF ) =  feasF
axm C —sum (E C F) = (In iE  C In lF )
axm (In lF  % InrF ) <= feasF
thm constr./n In l(£  n F) =  InlE  n In lF
thm constr.f n Inl(rix.JS) =  H x l n l E
axm case strict ( E s7 F ) ±  = 1.
axm case (E v  F)( ln \G)  = E G
axm case {E F)(InrG) = F G

F u n ctio n s

Functions are formed from A abstractions. We impose the restriction tha t the body of 
an abstraction must be monotone (with respect to refinement) in the variable. T hat is, 
for abstraction A x .E  to be well formed, we require

(F C G) => E[F/x]  □ E[G / 4

The restriction is necessary to ensure consistency of the language, and it is used in 
proving some of the theorems below. If, in future work, the typing rules and axioms
were joined in a unified deductive calculus, the restriction could be added to the typing
rule for abstraction, along the lines of

x :  T h  E :  U (F □ G) => (E[F/x]  □ E[G/x])
A x.E  : T  -> U

If the bodies of A-abstract ions were allowed to be not monotone in the variable, the 
language would become inconsistent. For example, take /  =  A x. \ i  (x = _L) —> False n (x = 
3) —> True fi. Then we would have

False
- axm (3 = , since det_L

/-L
=  thm  £ f l l  =  l ,  axm _ congr.

/(_L n 3)
: axm A / n

/  -L n /  3
_  axm (3 =, since det_L and det3

False n True.

By generalizing this argument, we could show that in fact all expressions are equiv
alent! Therefore we require abstraction bodies to be monotone in their arguments.

The axioms and some theorems concerning functions are:
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axm def(A x.E).  de t (Xx .E ) ,  feas(A x.E)
axm X —mon. (Vx .E  □ F) = {Xx.E  C Xx.F)
axm app./n E (F  n G) = E F H  E G
axm app./n E f l x . F )  = n x.E  F, x <£fv(E)
axm app./n ( E r \ F ) G  = E F \~ \E  G
axm app./n {Ux.E)F  =  (Ix.E  F, x <£fv(F)
axm 1 £ e 1 < =  ieasE
axm P~ = [E[F/x] = (Xx .E)F) <=detF
thm P - Q E[F/x]  C (Xx .E)F
thm X —a Xx.E  = X y.E[y/x\ , y <£fv(E)
thm V d efE => (E = Xx .E  x). x £  E. E
thin x / n Xx .E  n F  C (Ax.E)  n (Xx.F)
thm A/n A x .n y.E  C f\y. Xx.E, x fv(x)
thm app. mon (E C F) A (G C H)  =» (E G C F H ).

U

As theorems A /FI and A / l l  show, function abstraction with a choice in the body 
is refined by a choice between function abstractions, and not necessarily equivalent. 
Therefore the language is ‘truly nondeterministic5 rather than ‘underdetermined’ in the 
senses of [War94]. For example, Xx.x  — 1 n x +  1 □ (Xx.x — 1) fl (Xx.x  +  1). The 
two expressions can produce different results when they are themselves arguments to a 
function, for example to /  =  Xg.(g 0, g 0). We get

and

/  (Xx.x -  l n x + 1) =  (1,1) n ( - 1 , 1) n (1 ,-1 )  n ( - 1 , - 1)

/  ((Xx.x -  l) n (Xx.x + 1)) =  (1,1) n ( - 1 , - 1 ) .

R ecu rsion

We impose the same restriction on the bodies of recursive expressions as on those of A 
abstractions, tha t is, they must be monotone (with respect to refinement) in the variable. 
For recursive expression f i x .E  to be well formed, we require

{F C G) => E[F/x]  C E[G/x].

We require this because a recursive expression is defined as the fixpoint of the correspond
ing abstraction. We must ensure tha t that corresponding abstraction is well-formed.

The axioms say recursive expressions are fixpoints, and least prefixpoints. A recursive 
expression with a determined body is itself determined.

axm f i —fixp. (Xx.E)(fj ,x.E) = jjbx.E
axm n —least prefixp. ((A x.E) F  Q F) =$■ {(jlx.E C F )
axm p —det  (Vx .de tE )  => de t (px .E ) .
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In trod u c in g  R ecu rsion  by C ircular R efin em en t

Recursion is central to computation, and therefore introducing recursion is central to 
program derivation. For this reason, and because this thesis provides only incomplete 
theorems for introducing recursion, we’ll discuss the topic in more depth.

We would like a law something like

(E  C F[E}) ^  (E □ fj,x.F[x]),

for fresh x. maybe with some conditions. This is similar to co-induction (x Q f  x) =$■
(x □ Mf).  But unfortunately the fixpoints are not the same: Mf  is the greatest fixpoint 
of / ,  whereas recursion is modelled by the least fixpoint.

W hat if, in our proposed law above, the recursion doesn’t terminate, tha t is, fi x.F[x] = 
_L? This would be the case for F[x] = x. From E  C E. which is true whatever E  is, 
we would conclude E  C _L, which makes the system inconsistent. Intuitively we must 
make sure tha t F  is making progress, and tha t after a finite number of applications of 
F  all the work is done. But how much work is there to be done ? It depends on the 
destructors of the type of E.  We must do enough unfoldings to be able to apply any of 
the type’s destructors.

Functions are an easy special case: the only function destructor (in the programming 
language) is function application. If we refine a function specification to a recursion, we 
must guarantee tha t for every possible argument, we can unfold the recursion often 
enough to apply the function to that argument. In other words, each unfolding must 
make progress. We can do tha t by requiring that on each recursive call of the function, 
the argument must decrease in size, in a well-founded order. Eventually the size of 
the argument will reach the bottom, it cannot be decreased any further and no further 
unfoldings are necessary. Usually the well-founded order is <  on the natural numbers.

thm Intro, rec. June. (E □ F[X y.y < x >— E[y/x]]) => (Xx.E  □ f i f .  Xx.F[f]).

where x . y  : T. for which < is a well-founded order, and F[f] is monotone in / .
Law 29 in [War94] is almost the same, but it is only true for at most one occurrence 

of the hole in expression F[]. This form of the theorem is essentially due to J. Morris 
[unpublished]. It follows from well-founded induction

V£.(Vy.y < x  =>• E[y]) => E[x\
V x.E[x\

Every programmer knows tha t to make a well-defined recursive function, the argu
ment of the recursive call must decrease. The theorem captures this strategy formally.

When the x reaches a minimal value, there is no y such that the assertion y < x  is 
true. Therefore the assumption becomes E  C F[Xy.±].  Intuitively, F  must satisfy E  
without using a recursive call.

The theorem makes no restriction of the shape of E.  tha t is, it covers all kinds of 
recursion: one or many recursive calls, tail-recursion or non-tail-recursion, linear or non-



Refinement 47

linear recursive calls. It could be specialised to any of these kinds of recursion. The 
concise practical form of the law however makes this unnecessary.

Just for comparison, here is one specialisation: the invariance theorem of the imper
ative refinement calculus (for instance in chapter 5 of [Mor94]). It is used to refine a 
specification statement by a while loop. The desired postcondition is factored into an 
invariant and a term ination condition. Rewritten in functional notation, the law reads

.  l* f ‘X x.inv x >— if  done x —> xXx.  inv x'>—
C fl ->done x /{body x)

if ri* .inv z A done z —> z fi

if

fi

1. The argument size is in a well-founded set, for example N.

2. The arguments decrease, that is, inv x A -• done x => body x < x.

3. The body of the loop preserves the invariant, tha t is inv xA~>done x =>• inv(body x).

The imperative while loop corresponds to single tail recursion in a two-branch con
ditional.

For types other than functions we can introduce recursion by a refinement that is not 
valid in general, but is valid in a particular surrounding context. If we can show that 
in one particular context j  unfoldings are enough, for some natural j ,  we can introduce 
recursion into tha t context.

thm ii j  context [E C F[E]) A (3 j  : N.P[F^ [E]] C P [F J'[-L]]) =* (P[E] C P\(i x.F[x]]),

if P[] and F[] are monotone. The proof use induction on the natural numbers. The 
notation F*[E] is defined by F°[E] is E.  and F n+1[E] is F[Fn[E]\.

A n O p e ra tio n a l Law  a b o u t R ecu rs io n

Say we have an expression E  th a t is a program, or a subexpression of a program. We 
transform E  into F[E] where F  is an expression with zero or more occurrences of a 
syntactic hole in i|, and F[E] is F  with E  put into the hole. In this transformation we 
use beta reductions and le t reductions and fi unfoldings We denote such 
a transformation by — > and call it ‘reduction5.

axm (Xx.E) F  E[F/x], if  d e tF
axm le t x = F  in  E E[F/x], if d e tF  

axm j i x .E  (Xx .E ){ f ix .E )

Reduction is the smallest relation between expressions that includes (5 reductions, 
le t reductions, and /i unfoldings, is transitive, and is a congruence.
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axm {Ei E2) => (Ex — > E2)
1 pf

axm (Ei E2) => (Ex — > E2)
axm (Ex — y E2) =4> (E^ —  ̂ E2

axm (Ex — > E2) A (E2 — > E3) ^  (Ei —  ̂ E^)
axm (Ei — ► E2) (E[Ei] — ► E[E2])

Obviously E  — > F  implies E = F. Therefore, if for some E  and F  we know 
E  — > F[E\ we can conclude E = F[E] = F[F[E]\ = ... = Fj [E] for any natural j .  E  is 
a fixpoint of F.

Reduction captures progress in an operational semantics, namely progress in the 
evaluation of a program. We postulate

axm operational recursion (E — )■ F[E]) => (E = / ix .F[x]), x ^ f v ( F ) .

E  must be a program or a subexpression of a program, since operational semantics 
only make sense for an executable language, not for a specification language.

The hypothesis E  — > F[E] can only be fulfilled if the transformation includes at least 
one p  unfolding This is because E  — > F[E] means there is an infinite reduction 
sequence starting at E.  But in a typed A-calculus-like language with recursion, only 
unfolding recursion can lead to such sequences.

R efin in g  R ecu rsion

We know how to unfold a recursive expression. More generally we can partially unfold a 
recursive expression that has a function composition as its body. This law is called the 
‘rolling rule5. It follows from the characterisation of recursion.

thm Rolling rule p x . ( f  o g)x = f ( p  y.(g o f ) y )

A doubly recursive expression is equivalent to a singly recursive one. This law is 
called the ‘diagonal rule’. It follows from the characterisation of recursion.

thm Diagonal rule p x. p y.x © y = p x.x © x.

for binary function ©.
Here’s an example application of the diagonal rule. Define mg : [a] ->> [a] -A [a] 

by mg(a : as)(b : bs) = a : b : mg as bs. The two expressions p t .  1 : 2 :  mg t t 
and p t . p x . l  : 2 : mg t x are equivalent. They both yield an infinite list starting 
1 : 2 : 1 : 1 : 2 : 2 : 1 : 1 : 1 : 1 : 2 : 2 : 2 : 2 :  ....

The recursive expression p x.E  is monotone in E. Therefore we may refine it stepwise. 
This theorem follows from the characterisation of recursion.
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thm \ i —mon. (Vx.E El F) => (f ix .E  /jlx.F)

L et E x p ressio n s

For the le t expression le t x =  E  in  F  to be well-formed, we require tha t F  be monotone 
in x. W ithout this restriction, the language would become inconsistent, as a similar 
argument to the one given in the subsubsection about functions shows.

The axioms for le t expressions follow.

axm fold le t (E[F/x\  =  le t x = F  in  E) <= d e tF
thm fold le t E[F/x\  □ le t x = F  in  E
axm func.f  le t E (let x = F  in  G) = le t x = F  in  E G.
axm le t /mon. (Vx.E  □ F)  A {G □ H)  =* (let x = E  in  G
axm le t /n le t x =  (E n F)  in  G = (let x = E  in  G) n
axm le t /n le t x = E  in  (F H G) = (let x = E  in  F)  n
axm le t / f l le t x =  Fly.E  in  F = l"1?/.(let x = E  in  F).
axm le t / n le t x = E  in  I~1 y.F = 11?/.(let x = E  in  F).
axm le t /_!_ le t x = E  in  _L =  _L
axm le t / a le t x = E  in  F = le t y = E  in  F[y/x\.

3 .3 .5 D is c u s s io n

R ecu rs io n

x &f v(E)

V & M F )
V & M E )

y  £ f v ( F ) .

The characterisation of recursion as a fixpoint and the least prefixpoint is the Knaster- 
Tarski theorem. The Knaster-Tarski theorem applies to monotone functions between 
complete lattices. In the specification language the functions are indeed monotone (en
sured syntactically), and there is a least expression _L, a greatest expression T, and a 
binary greatest lower bound operation, namely choice. However, for a complete lattice 
we would need expressions that are least upper bounds and greatest lower bounds for 
any set of expressions. If desired, a least upper bound language construct can be added 
to the language. It would model angelic choice.

The paper [oPCG95] by the Eindhoven group gives a calculational treatment of 
fixpoints. The names ‘rolling rule"' and ‘diagonal rule5 are taken from it.

O p e ra tio n a l recu rs io n

This axiom is quite different. All the other axioms can be shown sound using the deno- 
tational semantics of chapter 9. But the operational recursion law deals with expressions 
as snapshots in the evaluation of a program. Evaluating an expression is rewriting it, 
using a set of rewrite rules that include — >. During such an evaluation the denotation 
never changes. So the denotational semantics of chapter 9 can5t be used to prove this law 
sound. It would have to be proven sound with respect to a rewriting operational seman



Refinement 50

tics. This semantics would only cover the programming sublanguage of the specification 
language, since evaluation of an un-algorithmic specification is meaningless.

As defined — > implies equivalence. If its definition included E  n F  — > E, the — > 
would imply only □. Such operational semantics are treated for example in [dP92].

3.4 Comparison to Previous Work on 3-Valued Logics

Classical logic knows two tru th  values: True and False. In order to reason about par
tial functions such as in 3/0 or recursively defined computations, many researchers have 
extended classical 2-valued logic to 3-valed logics, the new extra value being _L, a rep
resentation for undefined or nonterminating expressions. This section presents a brief 
selective survey of such work. However, in order to reason about the nondetermined and 
infeasible expressions occurring in specifications, we have found it necessary to add the 
further tru th  values True n False and T, producing a 5-valued logic. In this survey, we 
draw from [CJ91].

A third tru th  value beside True and False is motivated by apparently meaningless 
expressions. These expressions arise from partial functions such as in 3/0, In 0, head [ ]. 
In program development, such expressions are quite natural and the theory must deal 
with them. Of course they are ‘detectable at run-time’ and therefore could be treated by 
some exception mechanism, for example the exception monad (for example in [Wad92c]). 
Whereas such a treament may be desirable in a program, it is too cumbersome for 
development of programs, and furthermore is not usable for the other source of undefined 
expressions, nonterminating recursive programs. Recursion (in some form) is the essence 
of any programming language, but sadly, it introduces programs that don’t terminate 
and -  as expressions -  are undefined. This kind of undefinedness cannot be caught, and 
so we must be able to reason about nonterminating programs.

One way of extending the logical operators to cover three values was proposed in 
[McC67]. It suggested conditional versions of conjunction (cand), disjunction (cor), and 
implication (cimp) that may deliver a defined outcome although their second argument 
is not defined. These operators are based on a lazy conditional operator if  th e n  else 
with the following properties

if  _L th e n  E  else F = _L 
if  True th e n  E  else F  =  E  

i f  False th e n  E  else F = F.

The conditional logical operators are given these definitions:

E cand F = if E  th e n  F  else False 

E cor F = if  E  th e n  True else F  

E cimp F  =  if E  th e n  F  else True.

These operators are monotone, and are convenient in a programming language. They 
are provided in several versions of imperative languages, and ML [HMT88 , MTH90], and
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are usual in lazy functional languages such as Haskell [PH+96]. They are used alongside 
the classical operators in [Jon72] and [Dij76]. In calculations they are cumbersome, for 
although they have some familiar properties like forms of De Morgan’s law and left- 
distribution of cand over cor. other familiar properties like commutativity and right- 
distribution of cand over cor are missing. The operators have an implicit left-ro-right 
evaluation order -  which is of little guidance when it comes to interpreting universal and 
existential quantification, usually the generalization of conjunction and disjunction.

A different approach is taken by [Luk20] and many later researchers. It is to use 
the maximal monotone extensions of classical conjunction and disjunction. The tru th  
tables are as in figure 3.1. These operators are pleasingly commutative, and imply 
no evaluation order. Furthermore they can be generalized naturally to universal and 
existential quantification. These operators are taken up by [Kle52]. Their proof theory 
is studied in [Kol76, K0 I8 I], where it is shown that they can express all monotone 
functions {True. False. lS \n —» {True. False. _L} for any natural n. They are taken up 
in [BCJ84] which describes LPF, the “Logic of Partial Functions” , th a t underlies the 
program development method VDM [Jon8 6 , Jon90, JS90a].

In LPF, which is presented in natural deduction style, there are typically two in
troduction and two elimination rules for each operator. For instance the disjunction- 
introduction rules are

Ei —*Ei..... — 1En
V - I —--------— —  - . V - J -  ' '

ExV . . . V  En -.($! V ... V E ny

where 1 <  i < n. This approach is necessary because -  as in every 3-valued logic -  the 
“middle” is not excluded: E  V ->E is not a tautology.

LPF is formalised as a first order predicate calculus with equality with a set-theoretical 
semantics in the thesis [Che86]. A typed version of it is proposed in [Jon90] for which 
[JM94] provides the formal basis.

The implication of LPF retains its usual classical connection to negation and dis
junction:

E => F  =  -1E  V F.

However this implication does not support the deduction theorem; a definedness hypoth
esis must be added:

E \-  F 8E 
E => F '

where 5E = E  V -iE. Furthermore, implication is not reflexive or transitive.
These weaknesses are not acceptable for equational reasoning; therefore [Mor96a] 

proposes a logic based on LPF, with a different implication. It is the same implication 
as in this thesis, and it is indeed reflexive and transitive, and does support the deduction 
theorem.

[Mor96b] develops this logic further by showing that a nondetermined tru th  value 
(like our True n False) can be added at almost no extra cost, thereby making the logic 
useful for settings in which nondeterminacy can occur, for instance in program derivation.
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The present logic is a further extension adding T as a fifth tru th  value. The miracu
lous tru th  value has much less intuitive meaning and brings the number of tru th  values 
up to an unpleasant 5. However, miracles do arise fairly naturally as overspecified ex
pressions -  and they can be contained by simple syntactic measures. In practice, a proof 
of feasE  is a trivial syntactic check.



Chapter 4

Im perative Expressions

4.1 Imperative Expressions

Imperative programming techniques are made possible in the specification language by 
the imperative expressions of the state monad. This section describes the state monad 
informally.

4 .1 .1  W h a t  is S ta t e  ?

We regard a state as a mapping from references to values. A reference to a value is the 
address of. or a pointer to, a value. We can change the value to which a reference points, 
tha t is, change what the state maps that reference to, and still the reference itself stays 
unchanged. If a reference has type Ref s a. then the value it references has type a. Here 
the type s identifies which state the reference belongs to. There may be doubt since 
there may be more than one state in a program.

A state may be changed by special expressions called state transformers. Apart from 
delivering a value, like all expressions, these special expressions also take a state and 
deliver a state. Their type is S T  s a, where a is the type of the value. We say a state 
transformer of type S T  s a returns a value of type a. Again, s identifies which state 
is transformed. It plays a purely technical role in forbidding certain forms of erroneous 
programs. There’s only one interesting instantiation of it: the abstract type RealWorld. 
whose values represent the real world. It is convenient to use type synonyms:

ty p e  10 a =  S T  RealWorld a 

ty p e  R ef 10 a = R ef RealWorld a.

A state transformer of type 10 a is an 10-transformer. It can perform reference accesses 
like other state transformers, and in addition, it can perform changes to the real world, 
tha t is, it can perform 10 operations. This specialisation of state transformers to 10 
transformers is presented in [LJ94].

In a program the state may only be manipulated via the state transformer primitives. 
It can never be bound to a variable. This ensures that the state cannot be duplicated, 
and thus it may be implemented directly using the memory of the machine.

53
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Technically, state is treated like an abstract data type. The state transformer prim
itives themselves are available in the programming language, but not their definitions. 
However, for explaining the state transformer primitives it is useful to give them ‘in
formal definitions’. They are informal in tha t their purpose is to give an operational 
understanding of the state transformer primitives. The state transformer primitives are 
of course formally defined by their axioms. In fact, the informal definitions given here 
do not capture garbage collection, as discussed later, and therefore, strictly, are not a 
model for the axioms. In these informal definitions (and in calculations with state later, 
but never in programs), we do allow the state to be bound to a variable (we use o. r, u). 
We make an exception to the requirement that every expression has a type: the state 
itself has no type. If such a type State existed, we could define S T  s a in terms of it:

S T  s a = State —> a x State.

The type variable s does not occur on the right. Its role will be explained in subsection 
4.1.3.

4 .1 .2  P r im i t iv e  S t a t e  T r a n sfo r m e r s

Here are five primitives th a t make state transformers. The state transformers create a 
new reference, put a value into the place to which the reference points, get the value to 
which a reference points, and return a value without using the state, or while breaking 
the state:

D efin itio n  1 (P r im itiv e  s ta te  tra n s fo rm e rs)

new : a —>■ S T  s (R ef s a)

new a =  A cr.n?;.(i; G Ref s a \  dom a) -> (v. a[v a])

put : Ref s a —y a —y S T  s ()

put v a =  Acr.((),a[v i-)- a])

get : Ref s a —> S T  s a

get v = A (7. ((7 V ,  o )

return : a —̂ S T s a

return a =  A(7.(a,cr)

break : a —>S T s a

break a A (7 . (a. - i - § t a t e).

In all types the type variables a and s are (implicitly) universally quantified. As 
usual in functional programming literature, we use a in two roles: In the types, it is a 
type variable, and in the definitions, it is a variable (of tha t type). The symbol -Lstatfi 
stands for the undefined state.

The state transformer new a creates a new references in the state, and stores a at 
the location it points to. It returns this new reference. The new reference is of type 
R ef s a. Any reference of that type will do, as long as it was not already used in the
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state. Therefore new a a  is nondetermined. We make the reasonable assumptions tha t 
the set of available references Ref s a is infinite, whereas the set of allocated references 
in any state is finite. In practical terms, this is assuming that we never try  to allocate 
more memory than is available. Therefore new a a  is feasible.

The state transformer put v a changes the state by storing a at the location tha t 
reference v pointed to. Otherwise the state is left the same. The state transformer 
put v a has nothing interesting to return. So we’ll just let it return the empty tuple ().

The state transformer get v returns the value stored under the reference v. It leaves 
the state unchanged. The state transformer return a simply returns a and leaves the 
state unchanged.

The state transformer break a returns its argument a and destroys the state. This 
is not useful in programs, but in program calculation. We have break C return .

4 .1 .3  C o m p o s in g  a n d  E n c a p s u la t in g  S t a t e  T r a n sfo r m e r s

Two state transformers may be composed in sequence by the infix primitive semicolon. 
Semicolon is a primitive, but for explanation, we give an ‘informal definition’:

D efin itio n  2 (S em ico lon )

; : S T  s a —»■ (a —»• S T  s b) —» S T  s b

m; k = A cr.let (a. a') = m a in  k a o '.

If m is a state transformer and k is a state-transformer valued function, then m; A; is a
state transformer. It takes a state and passes the state to m. The resulting value and
state are passed to k.

The triple (ST  s, return,-, ) is the state monad of [Wad92b], and it satisfies the 
monad laws:

axm left return return E; F  = F  E  
axm right return E; return =  E
axm ; assoc. E; (Ax.F; G) =  (E; Xx.F); G, x not free in G.

As an example of composing state transformers, the definition of the combinator 
modify, which applies a function to the contents of a reference, is:

modify : (a —> a) —> Ref s a -» S T  s ()

modify f  v =  get v; A a.put v (f a).

A state transformer may be made into a state-less expression by applying run to it. 

D efin itio n  3 (R un)

run k =  I!cr.(-Lstate ^  or) fs t(k  a).

The expression run k applies the state transformer k to an arbitrary proper state, 
thereby obtaining a value-state pair. The state is discarded, and the value is the outcome
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of ru n  k. We say tha t ru n  encapsulates the imperative program k. Since proper states 
exist, the expression r u n k is feasible.

If k s .S T  s a. then ru n  k : a. The V captures tha t k must be a state transformer 
for an arbitrary state. For instance get v would not do, since its type is S T  s a for one 
particular s. not for any s. The state transformer new 13 would also not do. I t can take 
any state, but it returns a reference created in that state. The type of what it returns 
is Ref s N, which contains s and therefore cannot be matched to a. A reference may 
be imported into the state thread encapsulated by ru n , but such an imported reference 
cannot be accessed. So

ru n  (new 13; A v.return (ru n  (new v; g e t ); A v .g e t))

has type N, but

run.(new 13; X v.return ( ru n (get t;)))

cannot be typed. No reference may be exported from the thread it was created in. 
The typing rule for ru n  also prohibits encapsulating an 10 transformer, since an 10 
transformer has type 10 a. which is S T  RealWorld a.

The typing rule of ru n  means that ru n  is a language construct and not a primitive 
constant. As constant its type would be V a.(V s .S T  s a) —> a. But we are using the 
Hindley-Milner type system, in which all quantifications must be at the outside.

4 .1 .4  S ta t e  R e a d e r s

[Wad92a] presents a monad closely related to the state transformer monad: the state 
reader monad. An expression of type SR s a takes a state (indexed by the type s) and 
delivers a value of type a. The value a state reader delivers may depend on the state, 
but a state reader cannot change the state.

We won't define any combinators for the type, except for the combinator ro (for 
“read-only”). Its typing and its informal definition are

D efin itio n  4 (ro)

ro : SR s a —>• S T  s a

ro r =  A a. (r a. o).

4 .1 .5  A s s e r t io n s  a n d  G u a rd s  w i th  S ta te

Sometimes we would like to put an assertion or a guard before a state transformer. In 
writing the assertion or guard, sometimes we would like to refer to the state. For tha t 
purpose we introduce two new language constructs. In effect they are just asserting and 
guarding ‘lifted5. Here are their informal definitions.

D efin ition  5 (A sse rtio n s  an d  g u a rd s  w ith  s ta te )
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( G ^ E ) o  = G o - ^ E o

The typing rules are as expected. If A : SR s B and E  : S T  s T.  then A > —E  : S T  s T.  
and similar for the guards.

4 .1 .6  D is c u s s io n  

N o ta t io n

Good notation is an issue here. The paper [Wad92a] presents monads as a generalisation 
of list comprehensions, and uses monad comprehensions. Monad comprehensions are 
adapted in [Lau93, KL93] as the do-notation, which was adopted in Gofer [Jon93] and 
Haskell 1.3 [PH+96]. Specialised to the state monad (a monad without a zero : S T  s ()) 
the do-notation works like this. We have the following additional form of expressions:

expression do {qualifier; ...; qualifier; expression}

qualifier ::= pattern 4— expression 

| expression.

The do-notation is translated into the bind, return notation by repeatedly applying the 
following rules. We’ll use where we’d normally use ” to avoid confusion with
the different ; in the do-notation.

d o { E }  =  E  

d o {P  <r- E\ F }  = E bind XP.do{Q}

do{I2; Q} = E bind A _.do{Q }

In the do-notation a composition of a state transformer with another that ignores the 
result of the first is w ritten very lightly. In our notation we often have A_.. But th a t is not 
a great failing of our notation, and following Haskell’s ^>_ : S T  s a —>■ S T  s b —>■ S T  s b. 
we could easily define such a composition.

It is claimed in [MJ95] that the do-notation makes programs look more compre
hensible. This repeats the pun of the title of [Wad92a], “Comprehending Monads” . A 
program written in do-notation is more familiar to readers used to imperative languages
like Pascal. But for calculations the notation is inappropriate because it tears apart
a bound variable and its scope, just like assignments do. The in the do-notation 
splits the abstract syntax entity A abstraction in two. Calculations become convoluted 
because of constant translation in and out of the do-notation. For comparison, here are 
the monad laws written in the do-notation.

dojrr <— return E\ F x]  =  F E. x not free in F
do{a: <— E\ return a;} =  E
do{$/ <— do{a: <— E; F  x}; G y }  = do{x <— E\ y <— F x; G y}. x  not free in G.
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The th ird  line in particular is convoluted and doesn't display the essential property 
of bind.

H ow  to  C a lc u la te  w ith  S ta te  ?

In the program language, state is manipulated by the state monad operations. Using only 
the state monad primitives guarantees that the state is never duplicated and therefore it 
can be implemented by the real state of the memory of a computer, and the real state of 
the world surrounding the computer. In specifications outside of the program language 
this guarantee is not needed: After all, non-program specifications only exist on paper 
anyway. In some calculations, for example in chapter 7, always calculating at the level 
of state transformers is enough. We never mention the state explicitly. But for more 
involved use of state, for instance the dynamic use of state in chapter 8, it is necessary 
to m anipulate the state directly. Therefore, in non-program specifications, we allow the 
state to be bound to a variable. Then it becomes possible to write the state transformer 
\<7.{(j. cr) th a t returns a copy of the state. In calculations we treat the state as a function 
from references to stored values.

Here we meet a technical problem. One of the requirements of expressions is tha t 
they must have a type. But what is the type of a state ? We can define

ty p e  S T  s a = State s —»• a x State s.

but what is the definition of State s ? The problem is that the state is a mapping from 
references of type R ef s r  to values of type r ,  for every type r  (except possibly the 
type of the state itself). Such a polymorphism is not available in our type language. In 
a more generous type language it could be expressed as State s = UTRef s r  —> r ,  an 
infinite tuple w ith an element for every type r .  Applying the state to a reference (o v ) 
is read as short for applying the appropriate projection of the state: (7rT o ) v. where 
v : R ef s r .

In principle, the state must be able to accommodate references to any type. How
ever, in any given expression, references for only a finite number of types are allocated, 
for example only integers and booleans. So in any given expression the infinite tu 
ple IITRef  s r  —» r  can be approximated by a finite tuple, for example (Ref { Z -> 
Z) x {Ref s B —> B), w ithout any loss.

Either one treats the type of the state as an infinite tuple and takes this as a special 
case, or one approximates the infinite tuple with a finite tuple appropriate for the given 
expression. In the following we’ll simply use states as if they were ordinary functions, 
and not be concerned w ith the definition of the type State s.

If it were generally allowed to bind the state to a variable, we could take the ‘informal 
definitions’ of the state transformer primitives as their definitions. We won’t do so be
cause they don’t  capture garbage collection: stored values that have become inaccessible 
may be deleted from the state. More generally the inaccessible part of the state may 
change at any time. This assumption is justified since the inaccessible part of the state 
can never be observed by a program anyway.

In the axioms given in this chapter, garbage collection is captured by the axiom 7, 
which is: if v is not free in K . and K  is strict in the state, then new E\ X v . K  = K.
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This law is vital for introducing references into a derivation (or removing unused ones), 
but it is not true taking the informal definitions for new and semicolon.

Definitions of the state transformer primitives that capture garbage collection cannot 
be given within the language because the notion of accessibility depends on variables 
currently in scope, the environment. In chapter 9 we sketch denotational semantics for 
the state transformer primitives tha t capture garbage collection.

4.2 Imperative Axiom s and Theorems

This section lists the axioms and some theorems of the state monad primitives. The first 
subsection shows how imperative threads can be introduced, and combined, tha t is it 
lists the axioms about ru n , semicolon, and return. The second subsection shows how the 
primitive state transformers tha t create and access references can be introduced. The 
third subsection briefly mentions some examples of state transformer combinators. The 
fourth subsection deals with commutativity axioms and theorems. The final subsection 
summarises and discusses related work.

4 .2 .1  I m p e r a t iv e  T h r e a d s

This subsection gives axioms and theorems that let us manipulate ru n . semicolon, and 
return . They let us introduce imperative threads into a program derivation, and move 
calculational work into the thread.

The monad laws are true for the state monad, and are repeated here.

A xiom  1 (M onad  axiom s)

axm left return return E; F  = F E
axm right return E ; return = E
axm ; assoc. E; (Xx.F; G) = (E; Xx.F); G. x ^ f v ( G ) .

The third we’ll refer to as assoc.’, using the word ‘associative’ rather loosely.
Since ru n  discards the final state, using break to destroy the final state changes 

nothing.

A xiom  2 (final b reak ) ru n  E = run(I£; break)

Making an expression into a state transformer by applying return to it and then 
running that state transformer is the identity function:

A xiom  3 ( ru n  in tro )  E  =  ru n  (return E ).

By the previous axiom, we can also use break in place of return . This law is the first 
step in making a functional program imperative.

Combining return and ru n  the other way around is identity with a side condition.

A x iom  4 (fla tten in g  n es ted  th re a d s )  return ( ru n E) = E , for E : V s .S T  s a that 
doesn’t break the state, that is Vcr.deftr =£► d e f(snd(E cr)).
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E  must be a ‘runnable5 state transformer. That is captured by its type. E  must also 
not break the state, th a t is, if E  is given a proper state, it will produce a proper state. 

A function F  applied to the result of a run  can be pushed into the run:

A x io m  5 (fu n ctio n  in to  run) F (ru n E )  =  run(E; Xx.return  (F  x)) for fresh x.

Again by axiom 2 we can replace return by break. This axiom is used to move algorith
mic work from the functional to the imperative part of the program.

The following axiom is also used for tha t purpose, this time to move le t into the 
thread.

A x io m  6 ( le t /r e tu r n )  le t  x — E  in  F = return E\ Xx . F for state transformer F  
and E  not polymorphic.

As an easy consequence we can apply run to both sides to get:

T h eo r e m  1 le t  x = E  in  run F  =  run  (return E; Xx.F)  for state transformer F and 
E not polymorphic.

4 .2 .2  R e f e r e n c e  A c c e s s o r s

This subsection lists axioms that show how the primitive state transformers new . get . put 
can be introduced into a program derivation.

Applying a state transformer to a proper state is the same as creating a new reference 
in the state and then applying the state transformer.

A x io m  7 (n ew -in tro ) new E\ Xv .F  =  F if v is not free in F, and F is strict in the 
state, that is, d e f (F <j) => deftj.

If F  is not strict (for example return 14), we can still use the axiom, as long as the initial 
state for both  sides is proper. This axiom can be read in two directions. From right to 
left it is the axiom tha t we use to introduce references into a program derivation. It may 
seem futile, since v is not free in F. But after using the axiom, we are free to refine F  
to an expression in which v does appear free. From left to right the axiom is used to 
remove references th a t have become redundant, captured by the condition v not in F. 
The axiom captures garbage collection of inaccessible references.

We can introduce get and put behind a new by the following laws.

A x io m  8 (n ew  g e n e r a te s  p u t) new F; Xv.G = new E\ Xv.put v F; X — G

Initialising a new reference to E  and then overwriting it by F  is the same as initialising 
it to F  immediately. The state transformer G may contain v.

A x io m  9 (n ew  g e n e r a te s  g e t)  (new E\ Xv . F E  =  new E\ Xv.get v; F) <= d e tE

Putting a value into a new reference and retrieving it is the same as just putting it into 
a new reference and returning it. The expression F  may contain v.
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4 .2 .3  S t a t e  T r a n s fo r m e r  C o m b in a to r s

A convenient combinator of state transformers is seq. It takes a list of state transformers, 
composes them  in sequence, and delivers a single state transformer. That single state 
transformer gathers the values returned by the composed state transformers into a list 
and itself returns tha t list.

The definition of seq is:

D e fin it io n  6
seq : [ST  h ] ^  S T  s [a]
seq [| =  return []
seq(k : ks) =  k] Xa.seq ks ; X as.return (a : as).

Almost immediate from the definition is this property of seq:

T h eo rem  2 seq{ks 4 f  hs) = seq ks; X as.seq hs\ Xbs. return (as-ibbs), where ks and hs 
are lists of state transformers.

4 .2 .4  C o m m u t in g  S t a t e  T r a n sfo r m e r s

This subsection defines commutativity for state transformers, and lists axioms about 
commuting state transformers.

If composing the two state transformers M  and K  in either order yields the same 
state transformer we say they commute and write M  \ K , defined as

D e fin it io n  7 (C o m m u ta tiv e  s ta te  tran sform ers) K  \ M  stands for

K \ Xx.M;  Xy.return  (x . y )
= M; X y.K \ Xx.return (x.y).

for fresh x and y .

A bunch of axioms are concerned with commuting state transformers:

A x io m  10 get v | get w,

A x io m  11 get v | put w E.

A x io m  12 put v E  \ put w F

where v and w are distinct proper references.
The trivial state transformer return A and the allocating state transformer new E  

commute with every state transformer K :

A x io m  13 (re tu rn  co m m u tes) return A \ K ,

A x io m  14 (n ew  c o m m u tes) new E  | K .
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This axiom captures the intuition tha t the reference allocated and returned by new 
is an arbitrary new one. If new had a determined semantics (say it always allo
cates the least available reference) then the axiom would not be sound. For exam
ple, assume references are modelled by natural numbers, and nothing has been allo
cated so far. Then new 56; Xv.new 47; A w.return {v.w)  would return (0,1), whereas 
new 47; Aw.new 56; Xv.return {v.w)  would return (1,0). W ith a nondetermined se
mantics both expressions return an arbitrary pair of distinct natural numbers, and are
therefore equivalent. Of course the implementation of new may still be determined. 
The above axiom simply guarantees that when we are reasoning about expressions, that 
determinacy is invisible to us. We only know that each call of new returns a fresh 
reference, but not which fresh reference. We calculate with the specification of new . 
not with its implementation.

If a state transformer K  commutes with every state transformer in a list gs. then it 
also commutes with the application of seq to the list.

T h eo re m  3 Mg € gs. g | K  => seq gs | K

The proof is straightforward by induction on gs.
Finally, here is a theorem tha t allows us to replace two composed seq expressions by 

one seq expression. The list of results returned by the first seq expression is bound to 
a formal variable, xs say. The list of state transformers in the second seq expression is 
generated by mapping a function h over xs.

T h eo re m  4 (M erg in g  seq)

seq gs\ Xxs.seq(h*xs) = seq[g\ h \ g <— gs]
<=

V 9 € gs. Vx. g \ h x

The proof is by induction on gs. using the previous theorem.

4 .2 .5  D is c u s s io n

Using a monad to model imperative programming naturally provides the three monad 
axioms. In addition we have provided some axioms about the reference accessing state 
monad primitives.

Wadler [Wad92a] uses the monad comprehension notation for the state monad. This 
early version of the state monad operates on a fixed state type S. The operations given 
are

ty p e  S T  a = S  —» S  x a
init : S  —> S T  a —» a
init a  k = le t (a. -)  =  k a  in  a
assign : S  —» S T  ()
assign a = X &'.{{). cr)
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fetch : S T  S
fetch = Xo.(o .o).

In addition to the monad axioms, he lists the following three axioms on qualifiers (that 
is, comma-separated lists of P <— E  for pattern P  and expression E). The notation 
[j]5T is our return x.

x 4— fetch, y <— fetch = x <— fetch, y 4- |V]5T 

() <— assign u .y  <— fetch = () assign u .y  <— [w]5T

() <— assign u, () <— assign v = () <— assign v

These axioms rewritten as equivalences of state transformers (acting on single references 
rather than the whole state) are true in our system. They could be called ‘get absorbs 
get5, ‘put absorbs get’, and ‘put absorbs p u t5. We did not find tha t they are required 
in deriving imperative programs, although they may be convenient if one wants to show 
two given state transformers are equivalent. Since any proper reference tha t get and 
put can be applied to must have been allocated by new previously, it is not hard to see 
tha t these three axioms follow from our axioms 8 and 9.

In [Wad92a] the axioms are presented as axioms on qualifiers. Qualifiers are not 
expressions. They have no type, and they bind variables, but the scope of the bindings 
is left open. We can replace equal qualifiers by one another, using axioms like the three 
above, but tha t means we are reasoning equationally in two separate worlds: the world 
of expressions, and the world of qualifiers. In effect this is the same as reasoning about 
the world of expressions, and the world of assignments in languages with assignments.

Wadler also gives three axioms on expressions. The first, init u [£]5 r — t is closely 
related to our axiom 3. The other two are init u [£ | () •*— assign v, q]ST = init v [t | g]ST 
and init u [t \ q. () <— assign v]ST = init u [t | q]ST. They are not comparable to laws 
in our system.

Johnsson [Joh95] describes a known optimisation of the G-machine calculationally. 
First the calculation is done on an implementation without sharing, and then on one 
with sharing, tha t is, one using graphs, and the state monad to capture graph manip
ulation in a functional language. To do the calculation, Johnsson postulates only four 
axioms of state transformers (in addition to the monad axioms). (He calls the primitives 
store, fetch, update instead of our new .get .pu t .)

store v; Xp.fetch p; Xv' .m  =  store w, Xp.m[v/v'}  store/fetch
store v ; Xp.update v' p\ X().m =  store v'\ Xp.m  store/update
store v\ Xp.m =$> m garbage store, p £  fv(m)
store e; X p . m ; Xx.k = m; Xx.store e; Xp.k  move store, p £ f v ( m ) . x  £  fv(e

The store/fetch axiom is my axiom ‘new generates get5, law 9. The store/update 
axiom is my axiom ‘new generates p u t5, law 8. In the garbage store axiom, => stands 
for a kind of refinement. Johnsson says the garbage store axiom is ‘hard to prove5. He 
doesn't give detailed semantics of the state monad primitives. The axiom can only be
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proven sound if the semantics captures garbage collection of inaccessible references. The 
left hand side allocates a new reference in the state, and the right does not. If we had 
some simple model of state where the state is completely observable (such as a list of 
stored values) the two sides are incomparable. Johnsson uses the axiom in one direction 
(the direction of =>) to eliminate unused references, but it is also useful in the other 
direction to introduce references into a derivation.

The move store axiom depends on nondetermined semantics of store, that is, store v 
really must return an arbitrary new reference that was previously free. Johnsson defines 
store by \x .\g .{n e w P o in te r  g . updateGraph g (newPointer g-x)).  For this definition 
to work, newPointer g must be determined, since if the two uses of newPointer g had 
different outcomes, it would be nonsense. That means store is overspecified and the 
axiom doesn’t hold. W ith our nondetermined semantics of new (denotational semantics 
given in chapter 9) it holds, and is the axiom 14.

The good tutorial [MJ95] on folds and monads uses a variation of Johnsson’s cal
culation as an example. It gives four axioms about the state monad. They are ‘new 
generates get’ (axiom 9), ‘new-generates-put’ (axiom 8), ‘new commutes’ (axiom 14), 
and an erroneous ‘get-store’ axiom. The authors present the ‘new commutes’ axiom 
using =  rather than =  and remark tha t the two sides are not equal (since they affect 
the state differently), but tha t no surrounding program can distinguish them (since the 
state itself and the values of references are not observable).



Chapter 5

D ata Refinem ent

5.1 W hat is D ata Refinement of Expressions ?

In the early stages of a program development we may express the data in the program 
in an abstract way th a t is easy to understand and easy to calculate with, but not easily 
or efficiently implementable. In the later stages we may want to express the same data 
in a concrete way th a t is implementable, but may be more difficult to understand. For 
instance, we may want to represent sets by boolean arrays, or finite maps by lists of 
pairs, or complex numbers by pairs of reals. Converting the program from abstract to 
concrete data is called data refinement

A program expression has some subexpressions whose types depend on a particular 
type A, called the abstract type. Some, but not necessarily all, of these expressions are 
troublesome: they are impossible or expensive to execute. These are called the abstract 
expressions, and the aim of data refinement is to replace them by concrete expressions. 
th a t is, expressions tha t have essentially the same meaning, but use a certain concrete 
type C instead of A. The concrete expressions should be cheaper to execute than the 
abstract ones. The abstract type and the concrete type are related by the representation 
relation I  : A -B- C (called “abstraction invariant” in [Mor89] and “coupling invariant” 
in [Mor94]).

The types A and C may be primitive or constructed, and they needn’t be distinct. 
The representation relation I  : A B  C may be total, surjective, functional, or injective1, 
but it needn’t be.

It needn’t be total: we may only want to represent those elements of the abstract 
type th a t are actually used. We may for instance implement sets, but only have an imple
mentation for sets below a certain size. I  needn’t be surjective: There may be concrete

1in the sense of van Gasteren[vG88]: relation R is

total: V a. 3 b. a R b
surjective: V b. 3 a. a R b
functional: V a, 6, b'. a R b A a R b ' = > b  =  b'

injective: V a, a', b. a R b A a R b => a =  a .

65
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outcomes th a t don’t represent any abstract outcome. We may for instance implement 
complex numbers by pairs of reals representing the magnitude and the angle. No com
plex number has a negative magnitude, so (—17,7r/2) represents nothing. /  needn’t be 
functional: an abstract outcome may be represented by many concrete outcomes. We 
may for instance implement lists by pairs of integers and arrays representing the length 
of the list and its elements in order. Arrays representing short lists will contain some 
arbitrary elements. I  needn’t be injective: We may only be interested in some aspect of 
the abstract outcome, so the data refinement loses (unwanted) information. For instance 
we may represent a long list over a small type by a histogram, if we are only interested 
in the frequencies.

The programmer will write the representation relation as a function of type A —> 
C —> B (abbreviate this to A o  C). This allows a great flexibility. However, in practice 
sensible representation relations deliver True or False if applied to defined determined 
arguments. For example we may represent booleans by the parity of integers:

I  : B «-> Z

b i z  =  b —jj odd z.

The types A and C , and the relation I  : A o  C are supplied by the programmer. 
The programmer is also expected to know which subexpressions are to be replaced to 
obtain a typed and efficient program. This decision is captured by a mapping from a 
type to  a type. An example is T  defined by T[ ] =  Z x [ ]. Then T[Z] would be Z x Z.

To data-refine a given expression E  the programmer has to identify the abstract 
type A. the desired concrete type C. the representation relation I  between them, and 
the mapping T  identifying which uses of type A should be data-refined. The expression 
E must be of type T[A], and the data refinement will produce an expression, say F.  of 
type T[C]. So data refinement has four parameters: A . C . I . T .  It is clear tha t generally 
data refinement is not a super-relation of equivalence, since even the types T[A\ and T[C] 
may be different. Therefore we will use the symbol <C that has no horizontal bar in it, 
and subscript it w ith the T  and I,  thereby implicitly also identifying A and C. We 
write E <^t ,i F . If the subscripts are obvious from the context, we may omit them. As 
usual, we always assume tha t expressions have the appropriate type.

The typing rule for the data-refinement connective -C is:

/  : A C r  h E  : T[A] T h F  : T[C] 
r  h (E  ^Ct,/ F'j : B

Given A, C. and / ,  the axioms of data refinement enable us to prove formulas of the 
form E <^t ,] F  for any mapping T. In the degenerate case where the body of T  doesn’t 
mention the argument, data refinement specialises to refinement. In this case the axioms 
of data  refinement become refinement axioms. By this specialisation of axioms about 
data refinement to refinement, many of the axioms listed in chapter 3 become theorems, 
provable from the axioms given here. In order to keep chapter 3 self-contained however, 
we keep them  as axioms there. It is not hard to see which axioms become theorems: 
in particular, the axioms stating that refinement is reflexive and antisymmetric are still
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necessary.

5.2 A xiom s of D ata Refinement

In the following, we’ll list the axioms and some theorems of data refinement. For most of 
the shapes of an expression, there is a data refinement theorem tha t allows data-refining 
the whole by data-refining its parts. Specialised to refinement, these theorems state tha t 
almost any language construct is monotone. We are prevented from gathering them into 
one general theorem by the non-monotone constructs, such as if  fi. The monotonicity 
theorems allow us to distribute data refinement into the subexpressions of an expression. 
The base cases of data refinement are given by refinement, and by the representation 
relation I.

F u n d a m e n ta l A x iom s

The base cases of data refinement are given by specialising data refinement to refinement, 
and by the representation relation itself. In the second axiom, the type-to-type mapping 
[ ] maps an type U to the type U itself. In addition, we give similar axioms about 
data refinement as those about refinement. In the axiom /trans.. the relation I  o J  is 
defined by a (I o J )c  = 3 b.a I  b A b J  c.

axm « / E (E  < r )7 F ) ee (E  □ F),
axm « / * { E l  F ) ^  {E «C[L/ F)
axm def(F  >C F ) ,d e t ( F  <$; F ) ,fe a s (F  <C F)
axm truth ((F  « F ) e  True) = {E <  F)
axm *C extr. ±  «  F ,  F  «  T
axm trans. (F  F ) A (F  G) =>■ (F

if T  is constant

G)

L an g u ag e  C o n s tru c ts

Most language constructs are monotone with respect to data refinement.

axm n
thm n — mon.
axm n
thm —>mon.
thm > -m on.
thm intro, if fi
thm use—>
thm use>—

(X  <^t,i E) A (X  <Ct,/ F) =  (X  t , i  E  n F )
(E  F ) A (G t ,i H) (F  n G F  n H )
(Vx.X < T>/ E) = (X  < T)/ Ux.E),  ’ x<£fv{X)
(E t ,i F ) => (G —>• E  <̂C t ,i G —> F)
(E t ,i F ) =>■ ( G >— E <^t ,i G >— F)
(E «Ct ,i F ) A feasF  => (E <^t ,i if  F  fi)
{G =$■ (E <^t ,i F)) => (E <^t ,i G —> F )
(G =► (F  < T>7 F)) =» {G > -  E  < Ti/ F)

The second last theorem is called ‘data refinement by miracle’ by [Mor88b], and 
analogously, the last could be called ‘data refinement by failure’.
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H ig h er T y p es

Data refinement on higher types (tuples, sums, functions) is given in terms of data 
refinement on their constituent types. As before, we take the binary case as example of 
the general case.

axm tuple (E  <^t ,i F) A (G <C j/)y H ) =  ((E,  (?) <̂ .t x u ,i (F,H))
axm <  sum  (E <^t,i F) = (In iE <^t+u,i InlJF1)
axm -i (In lE  t + u , i  InrF) -<= feasF
thm app.mon. (E  F ) A ((? FT) =£■ [E G F H )

V ariab les

For the language constructs tha t bind variables, we must also introduce axioms tha t al
low data refinement of the bound variable. The axioms about generalised choice and the 
quantifications are weaker than the theorems saying that generalised choice and quan
tifications are monotone with respect to refinement in their bodies: They also require 
that the bodies be monotone in the bound variable. For A abstractions, recursive expres
sions, and le t expressions, we already make that assumption. Therefore, specialising 
the last three axioms here to refinement yields exactly the theorems th a t (well-formed) 
A abstractions, recursive expressions, and le t expressions are monotone in their bodies. 
In all six axioms below, we assume x & fv(F)  and y g  fv(E).

axm Y\var. (V x : T[A].Vy  : T[C\.(x  « T,, y) =s- (E  F )) =>
(IHa: : T[A].E n »  : T[C}.F)

axm V var. (V x : T[4].V y : T[C\.(x  « T,, , ) = » ( { :  F)) =>
(V x : T[A].E C V y : T[C].F)

axm 3 var. (V x : T [A } .\ty . T[C].(x « T,/ » ) = » ( £ £  ^ ))  =*
(3® : T[A].E C 3 j :  T[C].F)

axm A var. (V x : T[A]. \ /y:  T[C\.(x  « r>/ y) =* (E F)) =>
(Xx : T[A].E Ay : T[C].F)

axm le t var. (V x : T[A\ .Vy  : T[C].{x « r , ;  ») =S> (E F)) A (G < T>/ H)  =»
(let x = G in  E  le t y =  H  in  F)

axm fi var. (V x : T[A].\jy : T[C].(x <CT,, y) =t- (E  « T,; F))  =*■
{ j l X : T[A].E <ZT,i HV ■■ T[C].F)

5.3 Containing a D ata Refinement in a Refinement

Usually in a derivation, the final program refines the initial specification (rather than 
data-refining it), and data refinement is only applied to subexpressions of the whole 
specification. For this method to work, certain combinations of data-refined expressions 
must lead to refined expressions. These combinations arise from the axioms in which 
the type mapping changes. In particular those include the axiom saying tha t function 
application is monotone with respect to data refinement, and the axioms dealing with



Data Refinement 69

data refinement of variables. Whenever a mapping K  is reached tha t maps any type to a 
constant type, tha t is. K[T]  =  K[U] for any types T  and U, the trivial data refinement 

k ,i is actually ju st ordinary refinement C.
We briefly outline (somewhat abstractly) one usual case of containing a data refine

ment in a refinement in this way. It is based on function application and A-abstract ion. 
Similar situations based on, for example, function composition or the other variable 
binders exist.

Assume we have some specification E  of type Z, say, that we want to implement. 
Some mathematical thought shows the problem can be factored into producing a set of 
naturals, and applying some function to that set. That is,

E  C (Xx.F)G,

for some G : PN  and Ax . F : PN  —> Z. We decide to use this shape as a basis for 
an implementation after checking that we have an implementable representation for the 
range of sets tha t can occur. This representation could be an array together with an 
index. Let’s call this concrete type C , and the representation relation

I  : PN  C.

We produce a data  refinement of G:

G id,/ G' .

where Id is the type mapping defined by Id[T] = T  for every type T.  We specialise 
the axiom about data-refining a A-abstraction by letting U in it be constant mapping 
U[T] = Z, so th a t < ( / j  is in fact just C. Then we look for a data-refinement of F.  
Call it F 1 : Z with a free variable y : C , say, such tha t x y implies F C F ' .  We
conclude tha t

Arc : Id[¥N\.F <^ld^ u ,j  Ay : Id[C].F' .

We have found data refinements for both the function and the argument in our specifi
cation. Furthermore, both  are real data refinements in tha t the types really change. By 
the application-axiom we can combine them to conclude:

(A x .F)G  □ (A y.F ')G '.

and this is just an ordinary refinement. A data refinement has been contained in a 
refinement.

The corresponding situation in data refinement of imperative programs (see for in
stance [Mor88a, Mor89]) is encapsulating data refinement in a block. So command s 
may be data-refined to command t under representation relation I, in symbols s <gij t, 
but when the abstract, respectively, concrete variables are bound in blocks, we return
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to ordinary refinement:

[var a : A; s] □ [var c : C; tj, 

where [ ] delimits the scope of the variables a and c respectively.



Chapter 6

Sim ple Exam ple Programs

This chapter gives four (partial) program derivations illustrating the use of the speci
fication language. Three programs are formulated imperatively because they perform 
simple 10. In the first example, data refinement is used to derive an implementation 
for the abstract type Z. In the second example, state is used to record a history of the 
program ’s successive inputs, and data refinement is used to store that information in a 
more compact way. The third example illustrates a common use of state: a reference is 
added, storing a kind of index, calculated at little extra cost in one run of the program, 
and making the next run of the program more efficient, or (as here) fairer. In the fourth 
example state is used to precompute and store in an array a set of values which otherwise 
may be recomputed many times over in the program.

6.1 W h at’s the Time ?

We specify and implement a small imperative program tha t reads the time from the 
system clock, and displays it on the screen in an agreeable format. The program is 
easily specified using integers. By a data refinement, the integers are implemented as 
signed 32 bit integers and unsigned 32 bit integers.

This program derivation mainly illustrates data refinement in practice. The spec
ification is very short and clear, but formulated in terms of types and operations not 
available in real programming languages. The task is to substitute suitable concrete 
types and operations for the abstract ones. The derivation uses piecewise data refine
ment. Two different concrete types are used to implement the same abstract type. Both 
representation relations are not total, so there are abstract values tha t can’t be repre
sented. Assertions are used to make sure abstract values lie in the representable ranges. 
The program is a small state transformer because it performs 10.

6 .1 .1  T h e  P r o b le m

Assume an 1 0 -transformer getTime : 10 Z  delivers the number of seconds since the 
beginning of time. Time began at 0:00:00 of 1 Jan 1904 and it will end at 6:28:15 of 6

71
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Feb 20401. Therefore the integer delivered by getTime will be in the range 0..232 — 1. 
Write a program th a t displays the time in an agreeable format.

getTime\ Xts.
0 <  ts < 232 -  1 > - 
le t

seconds — ts mod 60
tm = ts div 60
m inutes— tm mod 60 
th = tm div 60
hours = th mod 24

in
write(hours, minutes, seconds)

Unfortunately the programming language lacks the type Z. I t does however provide 
32-bit, two’s complement ‘integers’ as a type called Signed2. This type can represent 
integers in the range —231..231 — 1. It also has equivalents of the integer operations 
mod. div. *, + , —. We’ll use that type to represent most numbers in the program. But 
since the beginning of time more than 91 years, that is 91 * 365 * 24 * 60 * 60 seconds, 
have expired, and th a t’s more than 231 — 1 seconds, the largest integer that can be 
represented by a Signed. However, there was no time before the beginning of time, so 
negative numbers need not be represented. The 10 transformer getTime doesn’t exist 
in the programming languages, only its sibling getTime : IO Unsigned, which delivers 
an unsigned 32 bit ‘integer’, of type Unsigned.

We data-refine the specification to use Unsigned and Signed instead of Z. In the 
following we’ll abstract from 32 by declaring a constant: N  = 31.

6 .1 .2  T h e  R e p r e s e n ta t io n  R e la t io n s  

S ign ed  TV +  1 B it  In teg ers

We represent TV +  1 bits mathematically by finite functions, so we write:

ty p e  Signed = {0..TV} —> {0,1}

It follows from the representation relation below tha t Signed values can represent integers 
in the range —2N..2N — 1.

The representation relation S : Z o  Signed expressed numerically is: z S s is defined

z =  i f  s TV =  0 —>■ sum [2* * s i \ i <— 0..TV — 1]

FIs TV =  1 —> sum[2* * s i \ i 4- 0..TV — 1]—2N

1We ignore leap-seconds.
2Most real programming languages call something like that “integer”.
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where sum = foldr (+) 0. A small proof shows that the same expressed in terms of bits 
and bit-inversion is:

z =  if  s iV =  0 —y sumfe1 * s i \ i «— 0 ..N  — 1]

FIs N  = 1 —> —(sum[T * 5 i \ i <— 0..N  — 1] +  1)fi,
where the bar over denotes bit-inverting: 0 =  1 and 1 =  0.

In our programming language there are many convenient functions and constants on 
the type Signed, for example:

mod. div.+ . * : Signed —>• Signed —» Signed

0 .1 .24 .60 .35791394 : Signed

write : Signed x Signed x Signed 10  ().

We use the underline to distinguish them from their siblings on the type Z:

mod. div. + , * : Z —»■ Z —> Z

0,1,24,60,35791394 : Z

write : Z x Z x Z —>• 10  ().

Since Signed is a function type, we can apply a Signed to an integer in the range
0..N. or use function override. For example, the third bit of s[3 h-> 0] is 0, and otherwise
it is the same as s.

U n sign ed  N  + 1 B it  In tegers

ty p e  Unsigned =  {0..AT} —> {0,1}

It follows from the representation relation below tha t Unsigned values can represent 
integers in the range 0..2JV+1 — 1.

The representation relation U : Z -H- Unsigned is:

z U u =  sum[2l * u i \ i 0..7V] =  z.

In our programming language there are no predefined functions for the type Unsigned 
other than as already mentioned getTime : 10 Unsigned. We must therefore be content 
with function application and function override.

Since Signed and Unsigned are represented in the same way, namely as {0..iV} —> 
{0,1}, a value of one type is also a value of the other. As functions {0. .N}  —> {0,1} 
they are equal, but unless the most significant bit is 0, they represent different integers.

6 .1 .3  D a t a  R e f in e m e n t

We’ll apply two data refinements to the program:
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• We’ll data-refine uses of Z  to uses of Unsigned where necessary because of large 
numbers.

• We’ll data-refine the remaining uses of Z  to uses of Signed. taking advantage of 
the convenient predefined functions and constants.

M ak in g  th e  L arge In tegers  U n sign ed

We’ll data-refine compositionally, that is to say, we data-refine a composite expression 
by data-refining each of its subexpressions, and putting them together to get a data- 
refinement of the whole expression.

Our program, for example, is an application of the function ’ to the two argu
ments getTime and the abstraction starting A ts. We data-refine the application com
positionally. The imaginary getTime : 10 Z  is data-refined by the existing getTime :
10 Unsigned. We data-refine the abstraction simply by changing ts : Z  to  ts' : Unsigned
and data-refining its body.

Before data-refining the body of the abstraction starting A ts. for convenience we 
push the assertion into the local definitions of the let expression:

0 <  ts <  2N+1 -  1 > - 
le t

seconds =  ts mod 60 
tm = ts div 60 
minutes = tm mod 60 
th = tm div 60 
hours = th mod 24

in
write(hours. minutes, seconds)

C
le t

seconds =  (0 < ts < 2N+1 — 1 
tm = (0 < ts < 2n+1 -  1 
minutes = tm mod 60 
th - tm div 60 
hours — th mod 24

in
write(hours, minutes, seconds)

Now we data-refine the le t  expression compositionally. We’ll only change the local 
definitions of seconds and tm . Since we’re not changing the types or values of any of the 
five local variables, the body of the let expression, namely write (hours, minutes, seconds). 
can stay as it is.

Furthermore, we data-refine the applications of mod and div compositionally: the 
functions and the integer 60 are trivially data-refined by themselves. For the two brack
eted expressions we’ll use the theorem use>-. The information in the assertion guaran
tees tha t a data refinement is indeed possible. For the integer ts to be represented by

ts) mod 60 
ts) div 60
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ts' : Unsigned, ts must be in the range O .^ " 1"1 — 1. and th a t’s just what the assertion 
guarantees. For all ts <C[ ],u ts' we have

0 < ts < 2N+1 — 1 >— ts *Cz,u sum[2* * ts' i \ i 4- 0..iV].

After the first data refinement, the complete program reads:

getTim e ; A ts '. 
le t

seconds = sum[2l * ts' i \ i 4— 0..iV] mod 60
tm = sum\2l * ts' i \ i 4— 0..iV] div 60
minutes = tm mod 60 
th — tm mod 60 
hours =  th mod 24

in
write(hours, minutes, seconds).

Let’s do a quick mental renaming of the variable ts' : Unsigned to ts : Unsigned, to lose 
the apostrophe.

M aking th e  R em a in in g  In tegers  S igned

Now we will replace all integer arithmetic by Signed arithmetic. This is done compo
sitionally, and is largely boring: just underline mod, div, write, and the numbers 60,24. 
However, there is a problem in the local definitions of seconds and tm: the integer 
sum[2l * ts i | i 4— 0..A] is not guaranteed to be in the representable range of Signed, so 
we must data-refine the whole expression sum[2% * ts i \ i 4— 0..N] mod 60 rather than 
data-refine it compositionally, and similarly for tm. We calculate:

sum[2l * ts i \ i 4— 0..7V] mod 60 
=  list and sum

(2N * ts N  + sum[2l * ts i \ i 4— 0..N  — 1]) mod 60 
=  properties of mod

((2n mod 60) * ts N  + sum[ 2% * ts  i \ i  4- 0..N  — 1] mod 60) mod 60

Now 2N mod 60 is a fixed integer within the range of Signed. The highest value 
sum[2l * ts i | i 4— 0..N  — 1] can take is 2N — 1, which is also the highest integer tha t can 
be represented by Signed. In fact the integer sum[2l * ts i \ i 4- 0..N  — 1] is data-refined 
by the Signed expression ts[N i-» 0]. We data-refine compositionally:

((2n mod 60) * ts N  +  sum[2* * ts i \ i 4— 0..N  — 1] mod 60) mod 60
<[],s

(k ± f ( t s  N ) +  ts[N i-> 0] mod 60) mod 60. 

where the /  converts a bit into a Signed: 

f  : {0,1} —> Signed
f  0 =  0
/ 1 = 1 ,
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and k : Signed satisfies 2N mod 60 <C[ ],$ k. The value of k depends on the constant N . 
If N  is 31. then k will be 8.

We treat the right side of the local definition of tm  similarly:

sum [2* * ts i | z 0..N] div 60
=  list and sum

('2n * ts N  +  sum[21 * ts i | i <— 0..N  — 1]) div 60
=  properties of div. mod

(2N div 60) * ts N  +  sum[2l * ts i \ i <— 0..N — 1] div 60
+ ((2N mod 60) * ts N  +  sum[2l * ts i \ i <— 0..N  — 1] mod 60) div 60

<̂ C[],s everything in range
m * f ( t s  N ) +  ts[N ^  0] drv 60 
+ { k * f { t s  N)  +  (-> 0] mod 60) div 60.

where k : Signed is as before, and m : Signed satisfies 2N div 60 <C[],s m. It is easy
to show th a t an m exists. If N  is 31, then m will be 35,791,394.

The complete program reads:

getTim e ; A ts. 
let

seconds — (k ± f ( t s  N)  +  ts[N  0] mod 60) mod 60
tm  — m * f i t s  N )  +  ts[N >-> 0] div 60

+ ( k * f ( t s  N ) +  ts[N i y 0] mod 60) div 60
minutes = tm mod 60 
th = tm div 60
hours = th mod 24

in
write(hours. minutes, seconds) 

w h ere
/  : {0,1} —> Signed 
f  0 =  0
/  1 = 1,

and k, m : Signed are constants depending on constant N  : N. iV +  1 is the number of 
bits used for Signed and Unsigned, k is the Signed representing 2N mod 60, and m is 
the Signed representing 2N div 60.

6.2 Pure Tuning

In this section, we specify and implement a small imperative program that repeatedly 
receives a single input from the user and responds with an output. Each output depends 
on all the preceding inputs, so the program has to maintain a history of inputs. In 
the application discussed here, keyboard control of a music synthesiser, the relevant 
information can be stored in a compact form.

The specification is factored into the imperative structure (essentially a while-loop) 
and the calculational part. The imperative structure given in the specification is not
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changed, but the type of references tha t are manipulated is changed. By a data re
finement we replace storing an arbitrary long list by a fixed-length array (represented 
by a finite function). This more compact representation is found calculationally. The 
representation relation is not functional from abstract to concrete values, contradicting 
the sometimes held view that data refinements always add, detail.

6 .2 .1  I n tr o d u c t io n

Imagine a program that holds a dialog with the user. The program starts up and does 
nothing visible until the user gives it one input, whatever tha t may be. Moreover, the 
program responds with exactly one output, which depends on the input just received, and 
then waits for the next input. Whenever the user supplies a single input, the program 
responds with a single output, which depends on all previous inputs up to and including 
the one just received. To express such a program, we must specify the algorithm th a t 
is used to calculate outputs from the inputs. We must also somehow specify the desired 
IO behaviour of the program: the input actions and output actions should occur in the 
interleaved order described above. To specify the calculational part of the program we 
use a function

h : [Input] -> Output.

The function h applied to the list of inputs so far produces the next output. To specify 
the IO behaviour of the program we will use state transformers. The state is used to 
string up the IO actions in the right temporal order, like pearls on a thread. The program 
would have a shape like this:

while more (in ; body; out).

where the state transformer combinator while is defined recursively 

while : S T  s B  -> S T  s a —>• S T  s [a]
while more body =  more; A 6.if  b —> body; A a.while more body; A as.return (a : as)

n-ifc -> return |] 
fi.

This is a recursive definition like any other. Of course we don’t know whether a program 
•written in terms of while will terminate; This depends on the IO tha t more and body 
may perform. However, the unpredictability of this IO is fixed in the arguments more 
and body as state transformers, tha t is, mappings from states. For every fixed more and 
body, while is defined as a certain fixpoint.

We assume that the state transformers more : 10  B, in : 10 Input, and out : 
Output IO (), are given as part of the specification. They find out whether there is 
some more input available, get the next input from the user, and give an output to the 
user. It is the state transformer body that we have to find. It should receive the next 
input and calculate the next output, without doing any IO. We connect this specification 
of the IO behaviour with the specification of the calculation given in h in the following 
way: We use a reference to store the list of inputs so far. This list will be initialised
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to the empty list. On each iteration of the while loop, the next input is received, and 
appended to the stored list. Then h applied to the list is outputted.

init; Xv.
while more (in; body v; out) 
w h ere
init : S T  s (Ref s [Input])
init =new []
body : Ref  s [Input] Input S T  s Output
body v n =get v; Xns.put v (ns -H- [n]); X-.return(h(ns  -IT [n]))-

This specifies an arbitrary dialog program: to apply it to a particular case just plug 
in the particular definitions of Input and Output, and in and out. and the calculational 
specification captured in the function h. In this specification, state is used for two 
purposes: firstly, it orders the IO actions in time, and secondly, it stores the list of 
inputs so far.

6 .2 .2  S p e c if ic a t io n

The program will control the tuning of a musical synthesiser. The tuning depends on 
the musical key of the piece. As the key may change during the piece, the program is to 
monitor the notes played, deduce the current key, and if there is a change of key, adapt 
the tuning to the new key. We’ll just do the program that always keeps track of the 
current key. Adapting the current tuning to the current key is an easy extension.

The first subsubsection motivates the program. The second specifies the calculational 
part of the program formally, and the third gives the complete specification, covering 
calculation and IO behaviour.

T h e  M a th s  o f M usic

This subsubsection briefly explains pure tuning and well-tempered tuning. It motivates 
this particular program, but contains no definitions or calculations.

It is amazing (and disappointing) that to a large extent, mathematics determines 
what humans find pleasing. In music we find the sound of two notes played together (an 
‘interval’) pleasing if their frequencies have a simple ratio. The simplest (non-trivial) 
ratio is 1:2 and it determines the simplest (non-trivial) interval, the octave. Notes one 
octave apart sound so closely related tha t we consider them essentially the same. We 
are therefore free to transpose any note up or down an octave by doubling or halving 
its frequency. The next simplest ratios are 1:3 (essentially the same as 2:3) giving 
the interval ‘fifth’, 1:4 (the same as 1:2) giving another octave, and 1:5 (the same as 
4:5) giving the interval ‘major th ird ’. Together these notes are a major chord. We 
can determine frequencies for all the seven notes of a given key by a mathematical 
procedure like this. For the remaining five chromatic notes there is not one natural 
choice of frequency, but for example [Bar72] gives several reasonable methods. W ith 
such a tuning, the main chords and intervals of the chosen key will sound nice. This is 
called ‘pure tuning’, and it depends on which key is chosen.
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If a piano is in pure tuning, it will sound nice in one key and wrong in all the other 
keys. Therefore ‘equal-tempered’ tuning was invented. In it, an octave still is the ratio 
1 :2 , but all the other intervals are determined by chopping the octave up into twelve equal 
parts. Each single step upwards increases the frequency by a factor of \/2 ~  1.05946. 
Equal-tempered tuning is a compromise and makes every key sound equally out of tune.

The ideal intelligent synthesiser could start in equal-tempered tuning, and follow the 
notes tha t are played. As soon as the key, or later a change to a new key, is detected, 
the instrument retunes itself. It will always be in pure tuning!

S pecification

We’ll define some values capturing notes and keys, then we’ll specify h : [Note] Key, 
and finally put together the whole specification of calculational and IO behaviour. For 
that, we need a type to represent the twelve notes, which we’ll call c, cjj,... w ith suitable 
synonyms like ah =  pjj. The names of the notes should not imply any key.

ty p e  Note = {c, cjj, d, d#, e , / , /# ,  #, #jj, a, ajj, b}

Each of the twelve (major) keys will be represented by its root note.

ty p e  Key =  Note

Each key can also be seen as the set of notes. We assume key membership is given:

G : Note -» Key —> B

n G k =  ‘n is a note in the key k'

Key membership can easily but tediously be defined formally by enumerating the notes 
of each key. We miss out the details here, since there is nothing interesting in it. Now 
we’ll specify h. For each list of notes played so far, we want a key tha t covers a longest 
suffix of it.

h : [Note] —> Key
h ns =  ‘any key tha t covers a longest suffix of ns'

To express the part in quotation marks, we define an auxiliary function tha t given a list 
of notes and a key, returns the length of the longest suffix of the list that is covered by 
the key.

cover : [Note] —> Key -> N

cover ns k = #(takewhile(£ k) ns)

We note two properties of cover:

cover [] =  Xk.Q 

cover (ns -tf [n]) =  A A:.if n G k th e n  (cover ns k) +  1 else 0.
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They are both easily proved. Together they say that cover is a homomorphism from 
snoc3 to some function. In other words, cover may be written foldl f  a for some /  and
а. A key k tha t covers a longest suffix of ns will satisfy cover ns k1 < cover ns k for 
any key k ‘. We use tha t to specify h:

h : [Note] —> Key

h ns =  if  \~\k : Key.(\f k' : Key .cover ns k' < cover ns k) —»• k fi.

The if  fi can be omitted, since they enclose a feasible expression. This function h 
specifies the calculational part of the program. So we’ll plug it into our general dialog- 
program shape of subsection 6 .2.1 to get:

ini t; Xv.
while more (in; body v; out) 
w h ere
init : S T  s(Ref s [Note]) 
init =  new [ ]
body : Ref  s [Note] —>• Note —» S T  s Key
body v n = get v; A ns.put v (ns -H- [n]); A -..return (h(ns -H- [n])).

This is the complete specification, with given IO state transformers more, in, and out.

б .2 .3  C a lc u la t io n

The specification is not acceptable as an implementation, since it stores a list of every 
input so far, and that list may become very long. We aim for a program with a constant 
small storage. We will later replace the stored list by a stored small array, by data 
refinement. First, we’ll determine what information needs to be stored.

Let’s assume the stored information has type X .  We need an initial value start : X ,  
and a function that adds the information contained in a new input note to the storage: 
<-»: X  —> Note —» X .  We also need to extract the keys from the storage somehow: 
use : X  —y Key. The conditions on start, «->, and use are that they should be cheaply 
implementable (in particular the type X  should use little storage space), and that they 
yield the same results as the specification. So, extracting a key from the initial store 
should be the same as the current key of no notes:

use start = h [].

For every list of notes, adding them to the store and extracting a key should yield the 
same key as applying h to the list:

use(start ni) =  h[ni]

use(start «-» n\ «-» n^) =  h[n i,7h]

use(start ^  ... nk) =  h[ni , ..., nk]

3an ugly name for a function that is a kind of reverse of cons: snoc as a =  as 4 f  [a].
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In short, we demand

use o (foldl -H9 start) =  h.

In words, we are seeking a homomorphism from snoc to some function «—>, tha t composed 
with use yields h. Here are two trivial attem pts at a solution: First, 

ty p e  X  =  [Note]
=  snoc 

start =  []
use =  h.

This ‘solution’ is correct, but useless. It is just the specification, and suffers from 
unlimited storage demand. Second attempt: 

ty p e  X  = Key
^  =  ...?
start =  h[]
use = id.

This would be ideal. The only thing stored is the previous key. We are looking 
for <->: Key  —» Note —> Key. such that h(ns -ff [n]) = h ns n, for all n and
ns. In words, given current key k. and next note n, k n should be the next key. 
Unfortunately no such -t- 5 exists. This can be seen by contradiction: Assume such a 
exists. Consider ns = [c. d, e . f .  g, a. b] -H- [c, d . f .  g] and n = ab. We then have h ns = c, 
and h(ns -H- [n]) =  eb. Therefore we conclude c f-> ab e  eb. On the other hand, consider 
ns = [c. d. e . f . g .  a. 6]-H-[d, e. a, b] and n=g§.  We have h ns = c and h(ns-{{-[n\) = a. So 
we conclude c g§ = a. B u ta b ^ g tjjS o c-f-^ ab  should equal c g\j. By contradiction
there is no function such The problem lies not in the underdetermined specification 
of h: all four applications of h above are determined. The problem is a musical one. The 
note ab played after a list of notes in the key of c does not uniquely determine the new 
key. This contradiction also shows that the particular sets and function, Note. Key. €, 
have no hidden property tha t allows a trivial implementation of the program.

Let’s search by calculation. W hat do we need to know about ns to calculate h(ns -H- 
[n]) easily ? Let’s calculate:
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h(ns -H- [n])
=  def. h. omitting if  fi

njL(v k'.cover(ns 4+- [n])k' < cover{ns -H- [ro])&) —> k 
= property of cover

Uk.Vk' .
if  n G k U k' —> cover ns k' +  1 < cover ns k +  1 
n n G k \  k' —> 0 < cover ns k + 1
n n G k' \  k —> cover ns k' +  1 < 0
n n £ k n k ' ^ 0 < 0  
fi ->k  

=  maths
11/;. V k ' .
if  n G k U k ‘ -» cover ns k' < cover ns k 
fin G k \  k' —> True
n n G k' \ k  —> False
n n G k Dk '  —»■ True

The information needed is cover ns. a function from keys to naturals. In words, 
for each key k. we need to know what length suffix of the inputs so far k covers. We 
let X be the function type from keys to naturals. We already know that cover is a 
homomorphism from snoc. 

ty p e  X  = Key  —> N 
s G 1 n =  \ k . i f  n k th e n  s k +  1 e lse  0 
start = Xk.Q

The selection of a best key is left to the function use (again, we can omit if  fi):
use : (Key —> N ) —> Key
use s =  if  [HA; : Key.(\/ k' : Key.s k' < s k) —> k fi

The type Key  contains only twelve elements, so Key —»• N can be implemented by
an array with twelve cells indexed by notes and each containing a natural. We still have 
to prove use o (foldl f -1 start) = h, but this is easily done by snoc-induction on the 
argument list, and using the two properties of cover.

6 .2 .4  D a t a  R e f in e m e n t

The complete specification was: 

init; Xv.
while more (in ; body v; out) 
w h ere
init : S T  s (Ref  s [Note]) 
init = new []
body : Ref  s [Note] Note —> S T  s Key
body v n = get v; X ns.put v (ns 4T [n]); A v—return(h(ns -H- [n])) 
h : [Note] —> Key
h ns =  .cover ns k' < cover ns k) —>• k
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cover : [Note] —» Key  —>■ N  
cover ns k =  #(takewhile(€: k ) ns)

We want to represent the abstract type [Note] by the concrete type Key -» N. The 
representation relation is

I  : [Note] o  (Key -> N)

ns I  s =  cover ns =Ke.y-+ n  s,

where /  =Key^n g ==Vk : Key. f  k =n g k. We data-refine the program be decomposing 
it into subexpressions and replacing subexpressions of types depending on [Note].

The first such subexpression is [] in the definition of init. It will be replaced by A k.0. 
The proof for [] <C[y A k.O is simply the first of the two properties of cover.

The second subexpression of type dependent on [Note] is

Xv.while more (in ; body v\ out)

of type ReflO [Note] —> IO [()]. We deal with it using the rule for data refining A expres
sions. which means in effect, we simply change v : ReflO [Note] to  v' : ReflO (Key —> N), 
and continue data-refining subexpressions under the assumption v ^ R ejio [ ],/ v'■ In fact, 
let’s do this trivial change mentally, and keep the identifier v.

We similarly have to data-refine the A expression

A ns.put v(ns -ft- [n]); A — return(h(ns -H- [n])).

This time we will change the identifier from ns : [Note] to s : Key —> 
data-refining the body of the A expression, under the assumption tha t 

We’ll replace the subexpression ns -H- [n] by A k. if n G k th en  s k 
proof uses the second property of cover:

(ns -ff [n]) < [  y  (A k. if  n € k th e n  s k +  1 else  0 )
=  def. I

cover(ns -ft- [n])k = i f n € k  th e n  s k +  1 else  0 

4= property of cover
cover ns n s

= def. I
ns I  s.

Finally, we have to data-refine the expression h. appearing at the end of the definition 
of body. We’ll replace it by use, defined in subsection 6.2.3. For the proof we use the 
compositional laws of data refinement.

N. We continue 
ns < [ y  s.
+  1 else 0 . The
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h j—tKey,l USe
<S= V ns : [Note], s : Key —» N

(ns < [],/ 5) (h ns use s)

(cover ns =Ke.ŷ n  s) => (h ns = use s) 

use(cover ns) =  h

...and th a t’s an equivalence we noted in subsection 6.2.3. The complete data-refined 
program reads:

init; A v.
while more (in; body v ; out) 
w h ere
init : S T  s (Ref s (Key —> N))
init = new(Xk.Qi)
body : Ref s (Key —> N) —> Note —» S T  s Key
body v n == get v ; Xs.

put v (A A;.if n £ k th e n  s k -f  1 e lse  0); A_. 
return(use(A A:.if n £ k th en  s k +  1 e lse  0)) 

use : (Key —> N) —> Key
use s =  riA;.(Vk'.s k' < s k) k.

6.3 Choosing a Free Printer

This example program illustrates the use of state to add more detail to a program tha t 
is already imperative. Here the program is imperative because it controls a part of the 
real world: a bench of printers.

This derivation illustrates the use of generalized choice in specifications to generate 
arbitrary values. It is also an example of a program-improvement tha t is not reflected 
in the technical notion of refinement: improving the fairness of program implementing 
a nondetermined specification.

6 .3 .1  S p e c if ic a t io n

There is a bench of N  printers, indexed by 0. .N—1. They are controlled by a system 
tha t offers the users only one operation: to send a document to an arbitrary printer. If 
no printer is free the operation fails. The system is initialised by init.

init : IO (Doc —> IO ()) 
init = return print

w h ere  print d = A cr.if Hz : {Q..N — 1 }.free i c r ^ > p p d i c r f i

The state transformer print is specified and will be implemented in terms of two low 
level operations. One of them is the state reader free : N —> IO B which tests whether 
an indexed printer is free. The other is pp : Doc —> N -* IO () which prints a document 
on an indexed printer. T hat printer must be free, otherwise pp fails.
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6 .3 .2  I m p le m e n t in g  t h e  S e a r c h  for a  F r e e  P r in te r  b y  a  L o o p

We will need to calculate modulo N.  Let underlining denote taking a number modulo 
N,  th a t is n = n mod N.  The prescription in the specification is refined by a loop tha t 
starts at an arbitrary index, and steps through the indexes until it finds the index of a 
free printer. If there is a free printer, the loop will find one and terminate. If there is 
no free printer, the loop will keep going until there is. Since choosing an arbitrary index 
from a non-empty range is feasible, we can omit the if  fi below.

print d
C

rec(if llz : N.O < i < N  —>■ i fi); A i.pp d i
w h ere  rec i = ro(free z); A b.if  b th e n  return i e lse  rec i +  1

6 .3 .3  A  S im p le  R e f in e m e n t

The expression still contains a subexpression not in the programming language: the 
choice of the first index to be tested is left open. We can easily refine tha t to any fixed 
integer modulo N.  for example 0.

However, this would lead to a very uneven use of the printers. The lower the index of 
a printer, the faster it would wear out. Printer 0 would have to be replaced soon. Still, 
the program does implement the specification. Asking for an implementation tha t uses 
the printers evenly is adding a requirement tha t is not captured in the specification. It 
doesn’t seem easy to add that requirement to the specification.

But asking for it is not unreasonable -  even without changing the specification. The 
specification only captures some of the desired properties. Others it leaves out, like 
speed, or program size, or in this case, fairness of printer selection.

6 .3 .4  A  B e t t e r  R e f in e m e n t

A fairer implementation would not start the search at the same index each time. Instead, 
it could store the index of the last printer used in an extra reference and start the next 
search from that index.

The initialisation will allocate a reference, store an arbitrary element of {n  | n € N} 
in it, and bind the reference to a variable, v say. The new reference will have the 
invariant tha t the stored integer will always be a valid printer index, that is, an integer 
in {0 . .N—1}. W ith this invariant the reference can always be used to get a starting 
index for a search, and storing the index of the last used printer obviously preserves the 
invariance.

init = new (l"lz : N.O <  i < N  —»• z); A v.return print 
w h ere  print d = get v; Xi.rec z; A i.put v i.

and rec is as before.
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6.4 A Substring Searching Algorithm

The task is to search for occurrences of a string w (called the pattern) as substring of t 
(the text). A naive substring searching algorithm has time complexity 0(mn) .  where m 
is the length of w. and n is the length of t. A complexity of 0 ( m 2 + n) can be achieved 
by some precomputation: before the pattern is compared to the text, it is compared to 
prefixes of itself. The results of the precomputation are stored in an array, and are looked 
up later in the program. The complexity 0 ( m 2 +  n) is a satisfactory improvement over 
O(mn)  if we assume the pattern to be short and the text long. In the Knuth-Morris- 
P ra tt algorithm the complexity is further reduced to 0 ( m  +  n) by exploiting the order 
of dependence of the precomputed values.

In the following, we use the naive 0(m n)  algorithm as specification, and illustrate 
the general method of precomputation by deriving the 0 ( m 2 +  n) algorithm. We don’t 
take the step to the Knuth-M orris-Pratt algorithm with complexity 0 ( m  +  n) since it 
relies on a particular property of the precomputed values.

The Knuth-M orris-Pratt algorithm was first presented in [KMP77]. I t has been 
derived in [Dij76, Dro82], and [BGJ89]. The last derivation by Bird, Gibbons, and Jones, 
is particularly interesting to us, because it is presented in a functional language. The 
program is specified as an inefficient functional program, which is refined in two phases: 
First, a more efficient functional program is derived. This program does not have the 
desired complexity, because it keeps recomputing matches of the pattern against itself. 
In the second phase, a functional table is introduced to avoid this recomputation. The 
method of tabulation is taken from [Bir80], and is not easy to understand.

In this section, we’ll summarise the first phase of the program development from
[BGJ89], but then introduce an array to store the table, rather than use Bird’s tabulation 
technique. This means we’ll have to add state to the program. We don’t consider that 
a disadvantage, since in a practical implementation (some of) the strings will likely be 
implemented by indices into a long array of characters held in the state, so the program 
will be imperative anyway. This intended representation of strings also justifies our use 
of expressions of the form xs -H- [x] in the program: W ith index manipulation, this is as 
cheap as x : xs.

6 .4 .1  S p e c if ic a t io n

We are to find occurrences of the (short) not empty string w called the pattern in the 
(long) string t (called the text), th a t is, we need an efficient implementation of

match : String —> String —>- [®] 
match w t =  (A xs.w G tails xs)*(inits t).

The zth boolean in the list matches w t tells whether w is identical to positions 
i — # w  to i of the string t. The above specification is already an executable program 
of complexity 0{mn) .  if we assume that w G tails xs is implemented with complexity 
O ( m ) .

The auxiliary functions inits and tails are defined:
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inits 0  =  [ Q ]
inits (x : xs) = [] : (x :)*inits xs
tails 0  =  [ Q ]
tails (x : xs) =  (x : xs) : tails xs.

6 .4 .2  C a lc u la t io n

We aim to apply the equivalence (lemma 5 in [Bir87])

(foldl © e)*(inits t) = scanl © e t.

This is a complexity-reducing transformation, since the left side involves 0 ( n 2) applica
tions of ©, whereas the right has only 0(n).

We can use this transformation if we can express Xxs.w £ tails xs using foldl. 
However, the function does not produce enough information for this to be done. The
inventive step of the derivation is therefore to  generalise this function to

/  : String —> String —> String
f  w xs = t # / (inits w fl tails xs).

Here t # /  is some function that returns a longest string from a not-empty set of strings. 
We have Xxs.w £ tails xs = (w =) o ( / w). The function /  can be expressed by foldl: 
[BGJ89] shows tha t /  w = foldl © [|, where

© : String —> Char —>• String
xs © x =  i f  delta w x xs-^

n -idelta w x xs A x  = []—»
n -idelta w x xs A x  ^  [|—>
fi

delta w x xs = xs ^  w A x = hd(xs~1 -H- w)

By xs~1 -H- w we mean the string ys such tha t xs -H- ys =  w. or ±  if none such string 
exists. The complexity of x s ® x  is not 0(1) yet -  the last branch prevents it -  but later, 
after precomputing the necessary values of /  w (tl xs) it will be.

The program becomes 
match w t 

: def. match
(Xxs.w £ tails xs)*(inits t)

- def. /
(w = )*((/ w)*(inits t))

= f  using foldl
(w =)*((foldl © W)*(inits t))

= foldl /  scanl
(w =)*(scanl © [] t).

Assuming the complexity of © were 0(1), the complexity of this program is still 0(mn) .  
since each of the n elements of the list produced by scanl is compared to w -  an 0 (m) 
operation. We optimise these final comparisons by extending /  to a function h tha t

xs -H- [x]
a
/  w (tl xs) © a
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returns a pair of strings. The first string is the same as f ' s  result, whereas the second 
is its complement with respect to w. That way, instead of comparing the first string to 
w (an 0{m )  operation), we simply compare the second to [] (an 0(1) operation). The 
definition of h is:

h : String —> String -* String2 
h w xs = ( f  w xs, (f w x s ) - 1 TH w).

Like / ,  h can be expressed using foldl. We have h w =  foldl 0  ([], to), where

0  : String2 —>■ Char —> String2
(fs, gs) 0  x =  if  delta w x fs gs-+ (fs  TH [a], tl gs)

n - idelta w x fs gs A fs = Q—> ([], w)
n - idelta w x fs gs A fs ^  []—> h w (tl fs) 0 x)
fi

delta w x fs gs = gs ^  [] A x = hd gs.

The second string gs in the pair is also used to optimise the decider function delta. We 
have (Xxs.w G tails xs) = ([] =) o snd o (h w), as desired. The program becomes 

match w t 
= def. match

(Xxs.w G tails xs)*(inits t)
=  def. h

((0 = ) ° snd)*((h w)*(inits £)))
=  h using foldl

((0 =) ° snd)*((foldl 0  ([], ru))* (inits t))
= foldl /  scanl

((Q =) o snd)*(scanl 0  ([],«;)£).
The complexity of the program would be 0(n),  if we can implement 0  in constant 
time. And indeed, all the operations in the definition of 0  are constant-time, except 
for the h w (tl fs) occurring in the last branch. Its value may be required for each 
fs G tl(inits w). We‘Tl precompute those m values (at 0 ( m 2) cost), and store them in 
an array for later use. The overall complexity of the program will then be 0 ( m 2 +  n) 
as desired.

6 .4 .3  P r e p a r in g  for P r e c o m p u ta t io n

First, we introduce state to those parts of the program that will access the array. We 
use a state-carrying version of scanl called scanlST, defined by

scanlST : (a —̂ b —̂ S T  s a) —y a —̂ [6] —̂ S T  s [d]
scanlST © a [] =  return [a]
scanlST © a (b : bs) = a © 6; A a1.

scanlST 0  a1 bs; X as.
return (a : as).

It can easily be shown (by induction on bs) that

scanlST (X a. X b.return (a © b)) a bs = return (scanl © a bs).
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The program becomes
((0 = )o  snd)*(scanl 0  

=  ru n  intro, law 3
((0 = ) ° snd)*run (return {scanl 0  ((]•, w) t ))

=  scanl/scanlST
((D ~ ) ° snd)*run(scanlST (A a. X b.return (a 0 b)) ((], w) t)

We can push the return into the definition of 0 : 
return ((,fs .gs) 0  2:)

=  def. 0 , function alternation
if  delta w x fs gs—> return {fs 4t- [x]. tl gs)
n -idelta w x fs gs A fs = []-» return ([], w )
n -idelta w x fs gs A fs ^  []—t return {h w {tl fs) 0  2:))
fi

=  left return . law 1 ; fi equivalence
if  delta w x fs gs—> return {fs -IT [2:], tl gs)
n -idelta w x fs gs A fs  =  []-* return ([], w)
n -1 delta w x fs gs A fs ^  []—>• {Xxs.return {h w {tl xs))) f s ; Xp.return {p ® x))
fi

We pull the function Xxs.return {h w {tl xs)) out to the front of the program:

(([] =) osnd)* 
ru n  {return {Xxs.return {h 

scanlST 0  ([], w) t 
w h ere  {fs.gs) Q x =

) •

6 .4 .4  P r e c o m p u ta t io n

We have prepared the program for precomputation. Now all we need to do is replace 
the first state transformer in the above program by one which allocates and fills up an 
array tha t holds the precomputed results of h w {tl xs) for xs € tl{inits w), and returns 
an array-indexing state transformer.

precompute : {a —> 6) —> [a] —* S T  s (a -> S T  s b)
precompute f  range = array S T  range {f* range); Am.

return (A a.getArray m a).

Here array S T  takes two lists, and allocates and returns a reference to a mutable 
array indexed by the elements of the first list and containing the elements of the second 
list. The function get Array takes an array reference, and an index a. and returns the 
contents of the ath cell of the array. For indexing to be determined, the range should 
be a list without duplicates. For it to be efficient, the indices should be represented by

w {tl 2 :5 ) ) ) ;  A tf.

if delta w x fs gs—» return {fs - t f  [2;], tl gs)
n -idelta w x fs gs A fs = []—> return ([], w)
n - 1  delta w x fs gs A fs ̂  []—)■ t f fs; Xp. © 2;)

fi
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an initial part of the naturals. We'll indeed use a duplicate-free range, but won’t make 
the integer representation explicit.

We use the equivalence

precompute f  range = return (A a.a £ range >— return (f  a))

to put precomputation into the program. A formal proof of this equivalence would 
require more investigation of state in combination with invariants, scope, and garbage 
collection. Here, the function to be precomputed is Axs.h w (tl xs) and the range is 
tl(inits w). For array indexing, the elements of the range can be represented by their 
lengths.

The program with precomputation reads:

(([] = ) osnd)*
ru n  (precompute (Axs.h w (tl xs) (tl(inits w))); A tf. 

scanlST © ([],«;) t
w h ere  (fs. ^ ) © i =  if  delta w x fs gs-+ return (fs -H- [x]. tl gs)

n -idelta w x fs gs A fs = \\-+  return ([], w)
n -idelta w x fs gs A fs /  Q-> t f  f s ; A p. © x)
fi

)•

The complexity of this program is 0 ( m 2 +  n). After precomputation, the program 
takes O(n)  steps as desired, and precomputing the m values at up to m steps each is 
0 ( m 2). The Knuth-M orris-Pratt algorithm reduces tha t to O(m)  by precomputing the 
values in ascending order of arguments, and re-using the results so far. But since m is 
assumed small, we’ll be satisfied with overall complexity 0 ( m 2 +  n) instead of 0 ( m  +  n) 
as in the KMP algorithm.

Under a lazy evaluation strategy, the program above will calculate the values of 
h w (tl xs) a t most once, and never if they are not required. Under an eager evaluation
strategy, it would precompute all the values and store them in the array, before the
scanlST is evaluated. We can prevent computation of values tha t will never be needed 
by refining precompute to memo-.

memo : (a —>• b) —> [a] -> a -> S T  s b
memo f  range =  airrayST range [Ao | r range]; Am.

return (A a.getArray m a; Ac. 
case c o f

No —> le t b =  /  a in
putArray m a (Yes b); A_. 
return b 

n Yes b —> return b).

Precomputing a function lazily is memoizing it.



Chapter 7

Lines, Circles, Spheres

7.1 Introduction

This chapter gives derivations of three related programs: Bresenham’s line drawing 
algorithm [Bre65], Bresenham’s circle drawing algorithm [Bre77], and the fast sphere 
drawing algorithm [FGS+85, Pat93]. They calculate the pixels that best approximate a 
line, a circle, or a sphere, and display them on a screen.

Calculating the pixels can be written without using state. We will still express it 
with state for two reasons.

The first is tha t an imperative program seems -  to many people -  a natural de
scription of the algorithms. In each algorithm, a bunch of variables is initialised, and 
repeatedly modified, each time producing one pixel. It is natural to express this repeated 
modification by in-place updates.

The second reason for an imperative formulations is that displaying pixels on a 
screen is an IO operation, and therefore necessarily imperative. If calculating the pixels 
is expressed imperatively, displaying and calculating can be merged, so tha t -  even 
without a lazy evaluation strategy -  each pixel is displayed as soon as i t ’s calculated.

All three algorithms make only static use of state, that is, the number of updatable 
variables is fixed. No pointers are required, just in-place updates.

These derivations show examples of calculating with state transformers, in partic
ular, introducing state into a state-free program, and moving more and more of the 
calculational work into the state. The program is first formulated in terms of higher- 
order functions. A theorem is used that transforms programs written in such a way into 
equivalent imperative ones. The proof of the theorem illustrates most of the state monad 
axioms. The final stages illustrate the techniques of flattening nested state threads, and 
of commuting state transformers.

Mathematically, lines, circles, and spheres are infinite sets of real number pairs or 
triples. These infinite sets are mapped to finite sets of integer tuples by rounding. We 
will use these sets as specifications.

The task is to derive algorithms that enumerate the elements of the sets, preferably 
using integer operations rather than real number operations.

We will use recurrence relations of the set elements to express the sets in terms of 
the standard higher order combinators take. map. and iterate (for example found in

91
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Haskell [HPW92]). We give an imperative implementation of a combination of these 
combinators. Using this implementation in the three programs yields three imperative 
programs. Each calculates a list of pixels which are then fed to the displaying IO 
transformer.

Finally, we push the IO transformer that displays the pixels forward so tha t each 
pixel is displayed as soon as it’s calculated.

The three algorithms have the same structure; we will derive them in parallel. The 
sphere algorithm re-uses part of the circle algorithm.

In [Spr82] Bresenham’s line drawing algorithm is used to demonstrate program 
derivation by transformation, using a form of Pascal extended with real numbers (as 
opposed to floating point numbers). The transformation steps are justified informally.

In [Wir90] the line and circle drawing algorithms are presented in the imperative 
guarded command language. The initial specification there is x := 0; do x < a —> y := 
(b * x ) D IV  a; Mark{x, y ); x := x +  1 od.

In [Sne93] Bresenham’s line drawing algorithm is presented in the imperative guarded 
command-language. Its semantics is given by Hoare-triples.

7.2 Specifications

We will give the specifications in terms of set comprehensions and real numbers. The 
derivation will have to substitute the real numbers by integers, and give an algorithm to 
enumerate the sets. We’ll do some initial transformations to get expressions of the form 
map f  [i. .j] for some function /  and some integer range [i..j].

Before we start, let us define some types for two- and three- dimensional points and 
pixels.

ty p e  Point2 =  I x E  
ty p e  Points  =  l x E x I  
ty p e  Pixel2 =  Z x Z  
ty p e  PixelS =  Z x Z x Z

7 .2 .1  L in e s

The task is to find a set of pixels L th a t represent well the points of the straight line 
segment from the point {x\, y\) to  (x2, y2)- For simplicity we assume that X\,x2,y\,  y2 £ Z, 
and tha t the slope of the line is between 0 and 1 , so 0 < < 1 , where dy =  y2 — y\ and
dx = x2 — Xi. The points of the line segment are

dy
{ ( ® 5y )  I x -,y e  k *  y  -  y\  =  < x  < x 2}.

This is an infinite set of points. We round to get a finite set of pixels. We express the 
vertical coordinate as a function of the horizontal coordinate:

{{round x, round{l #)) | x £ R, Xi < x < x2}.
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The gradient of a curve given by function /  is the derivative o f / ,  w ritten / ' .  We can 
represent the points of a curve with a ‘shallow5 gradient well by choosing one pixel in 
each column of pixels. That means we can eliminate real numbers from the horizontal 
coordinate.

T h e o re m  5 (Shallow  g ra d ie n t)  I f  \f'x\ < 1 for x such that a < x <  b, then

{(round, x, round(f rc)) | x (E M. a < x < b}

{(z. round(f z)) | i G Z, round a < i < round b}.

The gradient of I is which is indeed shallow by assumption. We can apply the 
theorem to get:

{(z, round(l z)) | z (E Z .^i < i <  x2}.

Let5s abbreviate round o I by rl. and implement the unordered data structure set by the 
ordered data structure list:

L =  map (A z.(z. rl z)) [xi..x2\.

7 .2 .2  C irc le s

The task here is to select a set of pixels C tha t represent the points of the circle around 
the origin of radius r € N \  {0}. The circle is given by

{(x. y ) | x, y € K, x 2 +  y2 = r 2}.

A circle around the origin can be generated trivially from the arc in one of its octants by 
symmetry. We will calculate the pixels of the second octant because in it. the gradient 
of the curve is shallow.

{(a;, y) \ x . y  G R , x 2 + y2 = r 2, 0 < x <  ~^=}

The limit round(r / \ /2) for the range of z is derived from geometry. See figure 7.1, in 
which \/2  is written sqrt(2).

Once again, we round to get a finite set of pixels, and express the vertical coordinate 
as a function of the horizontal coordinate:

r
{(round x,round(c x)) | x € M, 0 < x <

where

c : M —> M 
c x = \ / r 2 — x 2.
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rlsqrt(2)

Figure 7.1: Horizontal limits of the arc of the second octant

We observe that indeed for 0 < x < -j* the gradient is shallow (\c' x\ < 1), and apply 
theorem 5. We implement the set by a list, and abbreviate round o c to rc:

r
C =  map (A i.{i,rc i)) [0.. round-y=\.

7 .2 .3  S p h e re s

A sphere of radius r £  N \  {0} around the origin is given by this set comprehension:

{(x , y, z ) | x. y, z £ M, x 2 +  y2 +  z2 — r 2}.

We5ll only calculate the points (x . y . z ) of the second octant (where 0 < x < y) of 
the front hemisphere (where 0 < z), since the other points can then easily be generated 
by symmetry.

{(x, y, z) | x, y, z £ M, x 2 +  y2 +  x 2 = r2, 0 <  x < y. 0 <  z}

We round to get a finite set of three dimensional pixels:

{{round x, round y. round z) \ x, y, z £ M, x 2 +  y1 +  z 2 = r 2, 0 < x < y, 0 < z}.

The pixels will be displayed on a screen by projecting ( i . j , k) to the two dimensional 
pixel {i , j )  and representing k by giving {i. j)  an appropriate colour. Clearly for fixed i 
and j ,  of the set {(z, j ,  round z) | x . y . z  G l ,  x 2+ y 2-\-z2 = r2, i  = round x . j  — round y}, 
only one pixel can be displayed. We choose {i.j.  rounder2 — i2 — j 2).

The program is to enumerate the set

S  =  { (i.j,  round {s {i.j))) \ x . y  £ K Q  < x < y . x 2 + y2 < r 2,

i . j  £ Z, i = round x . j  = round y),

where

s : Pixel2 —> M 
s{i , j )  =y/r2 — i2 — j 2.
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slice( i, j)

(i,i)

Figure 7.2: A slice

We will calculate S  by partitioning it into subsets with constant first coordinate, and 
taking the union of the subsets. Geometrically a subset with constant first coordinate is 
a slice of the shape we aim at. See figure 7.2.

The set C is the set of pixels representing the points on the arc of the second octant 
of the circle. It will be implemented by Bresenham’s circle drawing algorithm. We will 
later re-use its implementation in the implementation of sphere drawing.

Given a pixel near the arc. the slice is delivered by the function

slice : Pixel2 —» P Pixels
slice(i.j) = { ( i , k , r s ( i , k )) | k € Z, i < k < j} ,

where rs abbreviates round o s.
We have S = (U / o slice*) C . We’ll continue working on slice. We implement the set 

by a list and express it using map.

slice(i.j) = map ( \ k . ( i , k , r s ( i , k ) ) )  [i . .j].

7.3 Functional Programs

In this section, we’ll list the definitions of some standard higher-order combinators, and 
a couple of lemmas about them. We’ll combine them to get a theorem that transforms 
an expression of the form map f  [i..j] to an expression that is iterative in style. The 
theorem will be applied to each of the three program derivations.

7 .3 .1  S o m e  H ig h e r -O r d e r  C o m b in a to r s

Our aim is to transform programs of the shape map f  [i..k] into iterative programs, 
where calculation of f ( j  +  1) can re-use some of the work that went into calculating /  j ,  
for integers j  such that i <  j  < k. Say calculating f ( j  +  1) from /  j  is performed by 
applying a (simple) function called next to f  j ,  tha t is formally,

V j.(z < j < k ) => (/O' +  1) =  next(f j)).
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Then we would only have to apply /  once, namely to i, the first integer in the range 
[■i..k]. After tha t, we could simply keep applying next. We stop if we have a result for 
each integer in the range [i..k]. We express this formally using the functions iterate and 
take, which are found in the standard Haskell prelude [HPW92], and can be defined in 
any lazy functional language. They are defined as:

take : N —> [a] —> [a]
take 0 as =[ ]
take n [ ] =[]
take (n +  1) (a : as) =a : take n as
iterate : (a —> a) —>■ a —>• [a]
iterate f a  =a : iterate f  ( / a)

The function take receives a natural number n. say, and a list, and delivers a list of 
the first n elements of the list. If the list has fewer than n elements, the whole list is 
returned. The function iterate receives a function /  with equal domain and range type, 
and a value a of tha t type. It delivers the infinite list [0“j a . f { f a ) . f { f { f a ) ) . ...]. Typically 
one applies take n to the infinite result of iterate f  a. and receives a finite result. In the 
expression take n (iterate f  a) laziness allows us to separate the loop, represented by 
iterate f ,  from the halting condition of the loop, represented by take n.

One more bit of notation: # x s  stands for the length of the list xs. For an integer 
range it is of course trivial to calculate its length: #[x..y\ = max(0, y — x  +  1).

We are now ready to formalise the transformation described above:

L em m a 6 (M ap  to  itera te )

map f  [x..y] = (take #[x . .y] o iterate next)(f x)

if x < i < y implies f ( i  +  1) =  next(f i).

The proof is by induction on the length of the list.
To make this a little more general, we need another lemma:

L em m a 7 (M ap  and  take com m u te) map f  o take n = take n o map f

These two functions on lists are the same. The proof is by induction on their argument 
list.

We also know tha t mapping a composition is the same as composing maps:

L em m a 8 (C o m p o sin g  m ap) map{f  o g) = map f  o map g

Now we generalise lemma ‘map to iterate’ by precomposing both sides with map use. 
and using the two previous lemmas:

T h eo r e m  9 (M a p  to  itera te )

map {use o make)[x..y\ = {take #[x..y\ o map use o iterate next) {make x) 

i f  x < i < y implies make{i +  1) =  next{make i).
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(7+7, rl i +1)
□

(i, rl i) (i+1, rl i)

Figure 7.3: Choosing the next pixel to represent the line.

This theorem says tha t to map a function / ,  say. over an integer range, all we have 
to do is find three functions, here called make, use, and next, such that use composed 
with make is our original function / ,  and next captures a recurrence relation on make. 
Typically make will do what /  does, and some extra work, whereas use is typically a 
simple function like a projection from a tuple. Naturally this theorem only reduces work 
if the function next is simpler than / .

7 .3 .2  L in e s

The last formulation was

L = map (Xi .( i ,r l i)) [x1..x2].

To apply theorem 9 we have to find a recurrence relation for rl.
For integer i such tha t x± < i < x2, can we calculate rl(i +  1) from rl i ? Since the 

gradient ^  is between 0 and 1 inclusively. rl(i + 1) is either one more, or the same as 
rl i. See figure 7.3.

We compare distances to choose the next pixel: 
rl(i +  1)

i f  |rl i +  1 — l(i +  1)| < |/(z T 1) — rl i\ th e n  rl i +  1 e lse  rl i
= maths; def. err below

i f  err i <  0 th e n  rl i +  1 e lse  rl i, 
where err is defined:

err : Z x Z
err i=2dx(rl i — y\) — 2dy(i -L I — Xi) + dkx.

We have a recurrence relation for rl, but it involves another function, namely err. For
tunately err also satisfies a recurrence relation: 

err(i +  1)
=  maths

err i +  2dx(rl(i  +  1) — rl i) — 2dy
= introduce i f  ; recurrence rl

i f  err i < 0 th e n  err i +  2(dx — dy) e lse  err i — 2dy, 
for any integer i.
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By defining

make : Z - ) Z x Z x Z
make i =(i ,r l  i, err i)
next : Z x Z x Z - ) Z x Z x Z
next (i , r, e) =i f  e < 0 th e n  (z +  1, r +  1, e +  2(dx — dy)) else  (i +  1, r, e — 2dy)
use : Z x Z x Z 4 Z x Z x Z
z/se = (i, j )

we satisfy the condition of theorem 9 and conclude

L = (take #[x\..yi\  o map use o iterate next) (make X\).

The initial values make Xi are easily calculated: 
make X\

(xi .rl  x i , err Xi)

[Xi, yi, - 2 dy +  dx).

7 .3 .3  C irc le s

The last formulation was

T
C =  map (A z.(z,rc z)) [0..round—̂=],

We would like to use theorem 9, so we aim for a recurrence relation on function rc. 
We know that the gradient on the arc in the second octant is between —1 and 0 inclusive, 
so rc (i T  1) is either rc i, or one less.

But which of the pixels (z +  1, rc i — 1) and (z +  1, rc i) is closer to the circle point 
(z +  l,c (z  +  l)) ? We could simply compare the distances: 

rc(i +  1)

if  |rc i — f ( i  +  1)| <  |/(z +  1) — (rc i — 1)| th en  rc i e lse  rc i — 1.

There is, however, an equivalent way of deciding: Consider the midpoint (z +  1, rc i —
of the two candidate pixels. If it lies inside the circle, then we choose the upper candidate.
See figure 7.4.

W hether a point lies inside, on, or outside the circle can be determined from this 
function in:

in : Point —> K 
in(x, y) =4(x2 +  y2 — r2)

We know

in(x, y) < 0 =  (x. y) inside circle,

in(x, y) =  0 =  (x. y) on circle,

to 
11—

.
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(i, round(c i)) (i+1, round(c i))

c i)

(i+1, round(c i)-0.5)

(i+1, round(c i)—l)
□

Figure 7.4: Choosing the next pixel to represent the circle.

0 < in (x.y)  = (x.y)  outside circle.

The factor 4 is not critical at this stage. It doesn’t affect the comparisons to 0. Later
the 4 will cancel a \  and thereby ensure the final program uses only integers.

So we have: 
rc(i +  1)

if in(i +  1, rc i — \ )  <  0 th e n  rc % else rc i — 1
=  def. q below

if q i < 0 th e n  rc i else rc i — 1.

The function q is defined 

q : Z —> Z
q i=in(i  +  1, rc i — -|).

The two ways of deciding between the candidate pixels, they are comparing distances
and using the midpoint, are in fact equivalent. The proof is school algebra.

We now have a recurrence relation for the function rc. But it uses another function 
q. Therefore, to apply theorem 9, we must also find a recurrence relation for q. Can we
express q(i + l) in terms of q i (and rc i) for integer i such that 0 < i < r o u n d ? The
answer is yes, by simple mathematical calculations:

q(i +  1)
=  def. q

in(i +  2, rc (* +  1) — -|)
=  recurrence for rc; function into if

if q i <  0 th e n  in(i +  2, rc i — | )  else in(i +  2, rc i — 1^)
=  def. in, maths

if  q i < 0 th e n  in{i +  1, rc i — | )  +  4z +  6
else in(i +  1, rc i — | )  +  4(i — rc i) +  10

=  def. q
if  q i < 0 th e n  q i +  4i +  6 else q i +  4(z — rc i) +  10.

By defining
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make : Z —» Z x Z x Z
raafce i = (i, rc i, q i)
next : Z x Z  x Z - >■ Z x Z x Z
next(i, rci, qi)= if qi <  0 th e n  (z +  1, rcz, qi +  4z +  6) else (z +  1, rcz — 1, qi +  4(z — rcz) +  
use : Z x Z x Z —» Pixel2
use(i, rci, J) ={i, rci)

we satisfy the condition of theorem 9 and conclude

r
C = (take # [ 0 ..round—p] o map o iterate next) (make 0).

v2

The initial values make 0 are as follows.
We have rc 0 =  round(c 0) =  r. The first midpoint to be tested is (1, r  — \ ) ,  and we

get
9 0

=  def. q
in( 1 , r — \)

=  def. m
4(12 +  (r — | ) 2 — r 2)

=  maths
4(14 -  r)

=  The 4 fulfils its purpose.
5 — 4r.

Therefore make 0 =  (0, rc 0, q 0) =  (0, r, 5 — 4r).

7 .3 .4  S p h e r e s

The last formulation of slice {i. j)  was

map (A k . ( i , k ,r s ( i , k ) ) )  [i. .j],

where rs =  round o s .  To use theorem 9 we search for a recurrence relation for rs. Let’s 
try for a recurrence for s.

s(x, y + 1)

s(x, y ) — s(x, y) +  s(x, y +  1)
=  def. s

s (x ,y )  — yjr2 — x 2 — y2 +  y/r2 — x 2 — (y +  l )2

Unfortunately there is no easy way to proceed from these square roots! We will 
borrow an idea from [FGS+85] and use a parabola instead of a sphere. Instead of s, we 
will use function p given by
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The function p receives (x, y ) and delivers z, such tha t (x , y, z) is a point on the three- 
dimensional parabola given by x 2 +  y2 +  zr =  r2. For (x, y) within the circle of radius 
r around (0, 0). p(x,  y) is close to s(x, y), and it allows us to find a recurrence.

How wrong is this approximation ? W ithin the circle, we always have p{x,y)  < 
s{x, y). The error is minimal at the origin and at the circumference, where it is 0. The 
error is maximal at «  0.87r distance from the origin, where it is \ r .

We were stuck looking for a recurrence for s, but for p it is easy:

p (x , y  + 1) =  p(x, y) +  /  y

where auxiliary function /  is defined:

/  : K -> M
f y  =

It also allows a recurrence:

f ( y  + i )  = /  y  - 2 / r

We redefine slice to use p in place of s.

slice : Pixel2 —> [Pixels]
slice(i.j) =map (Xk. ( i ,k ,  round(p(i,k)))) [i . .j]

We define

make : Z —> Z x IR x M
make k = ( k ,p ( i . k ) , f  k)
next : Z x I x M - > Z x I x l
next(k.pik. fk)  =(k  +  1, pik + fk . fk  — ^)
use : Z x R x K -> Pixels
use(k.pik ,- )  =(i ,k ,  round pik).

The definition of make, next , use are local to the body of slice. The arguments i and 
j  of slice appear free in them.

The condition of 9 is satisfied, and we conclude

slice(i.j) =  (take #[z..j] ° map use o iterate next) (make i).

But where do the initial values

r 2 —  i 2 —  i'2 -4-  r
make i = (i . p ( i . i ) . f  i) = ( i . ---------------- . ---------)

r ' r

come from ? We will extend the definition of slice, and make it receive the second and 
third elements of above triple as extra arguments:

slice 2 : Pixel x t x l - >  [Pixel3]
slice2((i,j), pii .f i) =(pii = p { i . i )  A fi = f  i) >— slice ( i . j) .
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We conclude

slice2((i,j),pii,fi) = (take ° map use o iterate next) ( i ,pii.fi).

The whole program used to be

S = (U/ o slice*) C 

bu t now slice2 requires a larger argument, so we get

S  =  (U/ o slice2*) D,

where

D : [Pixel2 x K x I ]
D = map (A( i J ) - ( ( i J ) : P ( i zi ) J  *)) c

We calculate:
D

= def. D and previous development of C
map (A(z, j) .( (z ,j ) ,p (2, z ) ,/ i)) {map (A i .(i,rc  z)) [0..round-^])

map (A i.((i,rc i ) , p ( i . i ) . f  z)) [0..round-j=\

We re-use the recurrence for rc.
A recurrence relation for p is also easy to find:

p(x  +  1 , y +  1) =  p(x, y) +  g{x, y),

where the auxiliary function g defined by:

g : Point2 —> K 
g{x, y ) = -  {2x +  2 y + 2)/r.

Again, we must also find a recurrence relation for it:

g{x +  1, y +  1) =  g{x, y) -  4 /r .

And finally we re-use the recurrence relation for /  tha t we already used in deriving 
the body of slice:

f ( i  +  1) =  /  i -  2/r

Putting the recurrences for the functions rc, q, p, g,  and /  together, we define

make : Z —̂ Z x Z x Z x I x l x l
make i =(z, rc i, q i,p{i,  i )- ,g{i i)-J  0
next : Z x Z x Z x M x M x M 4 Z x Z x Z x i x f x l
next{i, rci, qi,pii, gii-,fi) = if  qi < 0 then(z +  1, rci, qi +  4z +  6,pii +  gii, gii — 4 /r , f i  — 2/r)

else(z +  1, c — 1, q +  4(z — c) +  10,p +  g , f  — 2/r)
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use : Z x Z x Z x l x M x I - }  Pixel2 x K x t
use(i, rci, pi i , fi) =((i-, rci), pii.fi)

and as required we find use o make = Ai.((i,rc i ) ,p ( i , i ) -J  i) and make(i +  1) =  
next (make i) for i such that 0 < z < round (r/y/2).  The initial application of make to 
the first integer in the list [0.. round(r/ V2)] is straightforward: 

make 0 
=  def. make

(0, rc 0. q 0 .p (0 ,0), g(0,0 ) ./  0)
=  definitions

(0, r ,5  — 4r, r, — 2 /r , — 1 /r)

The whole program put together is:

le t
slice : Pixel2 x l x R ^  [Pixels]
slice((x, y ) , z , k )  = (take n o map use o iterate next) init 
w h ere

n = 4[x..y] 
init = (x, z, k) 
use : Z x M x M - )  Pixels 
use( j ,p ,- )  =  (x . j .p )  
next : Z x l x l - > Z x R x l  
nex t ( j .p . f )  = (j + 1 ,p  + / , /  -  2 /r)  

d : \Pixel2 x R x l ]
d = (take n o map use o iterate next) init 
w h ere

n = #[Q..round(r/y/2)\
init =  (0, r, 5 — 4r, r. —2/r,  —1/r)
next : Z x Z x Z x M x l x R 4 Z x Z x Z x R x l x M
next(i, rci, qi,pii,gii,fi) = if  qi < 0

then(z +  1, rci, qi +  4z +  6, pii +  gii, gii —4/r , f i  — 
else (i +  1, c — 1, q +  4(i — c) +  10, p +  g , f  — 2/r)  

use : Z x Z x Z x M x R x R - }  Pixels x M x i
use(i, rci,—,pii ,—,fi) =(( i5 rci),pii, fi)

in
(flatten o map slice) d 

The function flatten takes a list of lists, and concatenates the lists.

7.4 Im perative Programs

In this section we’ll give an imperative implementation for expressions of the shape 
(take n o map use o iterate next) init. We then use that implementation to derive 
imperative implementations of the three graphics algorithms.
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7 .4 .1  S o m e  L e m m a s  a b o u t  t h e  I m p e r a t iv e  C o m b in a to r  fo r

The flexibility of imperative expressions in a rich expression language allows us to de
fine many kinds of imperative control structures within the language as higher-order 
functions. We use this freedom to define for loops:

for : N -» S T  s a —> S T  s [a]
for 0 k =return [ ]
for (n +  1) k =k; A a .

for n k; A as. 
return (a : as)

The state transformer for n k is the state transformer tha t sequentially composes n 
copies of k, and returns the list of their results. We can express for in terms of seq.

L em m a 10 (fo r /se q ) for n k = seq[k \ i <— [l..n]]

A function mapped over the result of a for  loop can be moved into the loop body.

L em m a 11 (fu n ction  in to  for) For proper n : N we have

for n k; Xas.return (map f  as) =  for n (k ; X a.return (f  a))

The proof uses the merging seq lemma 4. It appears in section 7.5.
In a similar lemma the results of a for loop are fed to a state transformer valued 

function in order.

L em m a 12

for n k; X as.seq(map I as) = for n (k ; I)

if k | I a.

The lemma is a consequence of merging seq, lemma 4 in chapter 3. Its proof is in 
section 7.5.

We use for to give an imperative implementation of a finite iteration.

L em m a 13 (Im p era tiv e  iterate) 
take n (iterate next init)

run (new init; Xv.  
for n (get v; Xx.

put v (next x); A_. 
return x))

The proof is by induction on proper n : N. Both the base case and the step case appeal 
to lots of state transformers laws. A detailed proof is given in section 7.5.
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T h eo rem  14 (ta k e ,m a p ,itera te )
(take n o map use o iterate f )  init

run(new init-, Xv. 
for n (get v; Xx.

put v (f x); A_. 
return (use a;)))

The theorem is a combination of the previous lemmas. Its proof is given in section 7.5.

7 .4 .2  L in e s

The last formulation was: L =  (take n o map use o iterate next) init, where 
n, init, next , use are defined as previously. We may apply the theorem 14 to derive 
the imperative program

run  (new init; X v.for n (get v; Xx.put v (next a;); X—.return (use a;))).

The program evaluates to the list of pixels approximating the line. The natural use
for this list is to display the pixels on a screen. Let’s assume the 10 transformer out2 :
Pixel2 —> 10  () receives a pixel and displays it. We make the reasonable assumption tha t 
displaying a pixel commutes with reference accesses: out2 p | get v and out2 p \ put v x.

Our aim is to move out2 forward in the program so that each pixel is displayed as 
soon as it is calculated.

seq (map out2 L)
=  left return, law 1

return L; Xps. 
seq(map out2 ps)

= theorem 14
return (ru n (new init; Xv.for n (•••))); Xps. 
seq (map out2 ps)

= law 4, return /run
(new init; Xv. for n (...)); Xps. 
seq (map out2 ps)

= ; assoc., law 1
new init; X v.
for n (get v; Xx.put v (next a;); A -.return (use a;))); Xps. 
seq(map out2 ps)

= function into for, lemma 12, out2 commutes
new init; Xv.
for n ((get v; Xx.put v (next a;); X— return (use a:)); A p. 

out2 p)
= ; assoc., law 1, and left return, law 1

new init; X v.
for n (get v; Xx.
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put v (next x); A_. 
out2(use x))

We have derived an imperative program for Bresenham’s line drawing algorithm. Each 
pixel is displayed on the screen as soon as it is calculated.

7 .4 .3  C ir c le s

The last formulation was: C = (take n o map use o iterate next) init, where 
n, init, next, use are defined as previously. We use the theorem 14 to derive an imperative 
program tha t displays the pixels on the screen, just as for the line drawing program.

seq (map out2 C )
=  theorem 14, etc.

return ( ru n (new init; Xv.for n (•••))); ^ Ps • 
seq (map out2 ps)

= return/run, law 4, etc.
nevj init; Xv. 
for n (get v; Xx.

put v (next x); A_. 
out2(use z))

We have derived an imperative program for Bresenham’s circle drawing algorithm. Each 
pixel is displayed on the screen as soon as it is calculated.

7 .4 .4  S p h e r e s

In the last formulation of the sphere drawing program, the body of function slice and d 
both can be made into imperative programs by theorem 14. W ith n, init, make, use, next 
as defined before, we have:

flatten(map slice d)
=  theorem 14 for d

flatten(map slice
( ru n (new init; Xv.for n (get v; Xx.put v (next x); X—.return (use a:)))))

=  twice function into run, law 5
ru n  (((new init; Xv. 

for n (get v; Xx.
put v (next s); A_. 
return (use x))); A ts. 

return (map slice ts)); Xcs. 
return (flatten cs))

=  ; assoc., 1
run((new  init; Xv. 

for n (get v; Xx.
put v (next x); A_.
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return {use rc)); A ts. 
return {map slice ts)); A cs. 
return {flatten cs))

- for/seq/m ap, 12
run{{new init; Xv. 

for n {get v; Arc.
put v {next rc); A_. 
return {use rc); A t. 
return {slice £))); A cs. 

return {flatten cs))
=  theorem 14 for slice, return/run, law 4

ru n  {{new init; Xv.  
for n {get v; Xx.

put v {next rc); A_. 
return {use rc); A((rc, y). z, k).
(le t {n, init, next, use) = (...as given in development of slice...) in  
new init; Xw. 
for n {get w; X t.

put w {next w); A_. 
return {use i)))); Acs. 

return {flatten cs))

The points calculated by this program are to be displayed on a screen. Let’s assume 
there is a 10 transformer valued function out3 : Pixel3 —> 10 {) tha t takes a three 
dimensional pixel and displays it on the screen. We append displaying the pixels to the 
above program, and then move displaying forward in the program so that each pixel is 
displayed as soon as it is calculated. It is reasonable to assume that displaying a pixel 
commutes with reference accesses: out3 p | get v and out3 p \ put v rc.

new init; X v. 
for n {get v; Xx.

put v {next rc); A_. 
return {use x); X{{x,y), z ,k ) .
(let {n, init, next, use) = (...as given in development of slice...) in  
new in it; Xw. 
for n {get w; X t.

put w {next w); A_. 
return {use £))); A cs. 

return {flatten cs); Xps. 
seq {map out3 ps)

new init; X v. 
for n {get v; Xx.

put v {next rc); A_.
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return (use x); X((x,y), z.k) .
(let (n, init, next, use) =  (...as given in development of slice...) in  
new init; Xw. 
for n (get w; X t.

put w (next w); A_. 
return (use £))); A css. 

seq(map (seq o (map out3)) ps); Xrss. 
return (flatten rss)

=  for/seq, lemma 12
new init; Xv. 
for n (get v; Xx.

put v (next x); A_. 
return (use a:); A ((x.y), z .k) .
(le t (n, init, next, use) =  (...as given in development of slice...) in  
new init; X w. 
for n (get w; X t.

put w (next w); A_. 
return (use £)); A as. 

seq(map out3 as)); Xrss. 
return (flatten rss)

=  for/seq, lemma 12
new init; X v. 
for n (get v; Xx.

put v (next x); A_. 
return (use x); X((x,y), z .k) .
(le t (n, init, next, use) = (...as given in development of slice...) in  
new init; X w. 
for n (get w; X t.

put w (next ic); A_. 
out3(use t))); Xrss. 

return (flatten rss)

Each pixel is drawn as soon as it is calculated. The last line of the program collects 
the results of applying out3 and returns them in a list. Since they are only empty tuples, 
we may want to discard them.

P o s tsc r ip t: R ea l N u m b e rs

We intended to rid the program of real number arithmetic, but there are quite a few real 
number operations left in the auxiliary functions of the above program. Fortunately all 
real number expressions are of the form E /r ,  where E  is an integer expression, and r is 
the radius of the sphere.

So we will apply an old trick: instead of dividing by r, we’ll multiply by an integer 
that represents the first few significant digits of 1 /r . Let us say, for example, tha t r =  17,
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and therefore 1 /r  «  0.05882352941. We are satisfied with a precision of five digits, so we 
define the integer p = 58823. We do the calculations, multiplying by p instead of dividing 
by r. In the end we simply divide by 106 in this example. That of course corresponds to 
the easy operation of shifting the decimal point. In the program, we will use the same 
trick, with base 2 instead of 10 of course.

The real division operations become integer multiplications, followed by a shift in 
the inner use. We just give a specification of man(tissa) and e x p o n e n t) , since how 
to calculate them is a separate problem. The one remaining real number calculation of 
round{r/yJ2) is not a problem, since it occurs only once. The radius r  is the argument 
of the final program. The accuracy is here set to 8, but any suitable natural would do.

Ar : N. 
le t

accuracy =  8
(man, exp) =  lim an : M.flerrp : Z . ( l / r  = man * 2exp A 0.5 < |man| < 1) —> (man, exp)
p = round(man * 2accuracy)
n =  #[Q.. round (r /  V2)]
init = (0, r, 5 — 4 * r, r, —2 * p, —p)
next (i, c, q,p, g , f ) =  i f  q <  0 th e n  (i +  1, c, q + A * i  + h,p + g,g — 4 * p , f  —2 * p) 

else(« +  1, c — 1, q +  4 * (i — c) +  10, p +  g . f  — 2 * p) 
use (i, c , - , p , - , f )  =  ((*, c ) ,p , f )

in
new init; A v. 
for n (get v; Xx.

put v (next x); A_. 
return (use rr); X((x, y ), z, k).
(let

n = #[x..y] 
init = (x ,z ,  k )
next ( j . ,p j )  = (j + l , p  + f . J  -  2* p) 
use ( j ,p ,—) =  ( x , j ,p  * 2exp~accnracy)

in
new init; Xw. 
for n (get w; Xt.

put w (next w); A_. 
out3(use £)))

7.5 Proofs

This section gives detailed proofs of some lemmas tha t were used in the three derivations, 
but are of general use. The lemmas are fairly believable. We still give the proofs in such 
detail as a test of mechanical state transformer calculations. The most frequently used 
laws are the monad laws, in particular the left return law and ‘associativity’ of semicolon.
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L em m a 15 (fu n ctio n  in to  for) For proper n : N we have

for n k ; A as.return (map f  as) = for n (k ; A a.return (f  a))

The proof uses the merging seq lemma 4. 

for n k\ A as.return (map f  as)

seq[k | i 4— [l..n]]; A as.seq[return (f a) \ a 4— as]
=  merging seq. lemma 4, return commutes, law 13

seq[k\ A a.return (f a) \ i 4- [l..n]]

for n (k ; A a.return (/ a)).

Lemma proven.

L em m a 16

for n k\ A as.seq(map I as) = for n (k ; I)

if k \ I a.

Proof. A consequence of merging seq. lemma 4 in chapter 3. 

for n k\ A as.seq(map I as)

seq[k | i 4— [l..n]]; A as.seq(map I as)
= merging seq. lemma 4, assumption 

seq[k\ I | i <— [l-.n]]

for n (k ; /).

Lemma proven.

L em m a 17 (Im p era tiv e  iterate) 
take n (iterate next init)

run(new init; Xv. 
for n (get v; Xx.

put v (next #); A_. 
return rc))

Proof. For n =  X the lemma holds trivially. For proper n : N we use induction. The 
base case n = 0 is proven:
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run (new init; Xv.for  0 (...))
=  for

run (new init; Xv.return [])
=  new intro, law 7

run {return [])
=  run intro, law 3

[]
take

take 0 (iterate next init).
The induction hypothesis is: for arbitrary I  and fixed n we have take n (iterate next I) = 
run(new  I; Xv.for n (get v; Xx.put v (next x); X-.return a;)). The inductive case is 
proven:

run (new init; Xv.
for n (get v; Xx.put v (next a;); X-.return a:))

=  for
run (new init; Xv.

(get v; Xx.put v (next a;); X-.return x); X a. 
for n (get v; Xx.put v (next a;); X-.return a;); A as. 
return (a : as))

= ; assoc, twice, law 1
run (new init; X v. 

get v; Xx. 
put v (next a;); A_. 
return x; X a.
for n (get v; Xx.put v (next a:); X-.return a:); A as. 
return (a : as))

= left return , law 1
run [new init; Xv. 

get v; Xx. 
put v (next a;); A_.
for n (get v; Xx.put v (next x); X-.return a;); A as. 
return (x : as))

= new generates get , law 9
run (new init; Xv.

put v (next init); A_.
for n (get v; Xx.put v (next x); X-.return x); X as. 
return (init : as))

=  new generates put , law 8
run (new (next init); Xv.

for n (get v; Xx.put v (next a:); X-.return x); Xas. 
return (init : as))

= ; assoc. , law 1
run((new (next init); Xv.for n (get v; Xx.put v (next a:); X—.return a;)); A as.
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return (init : as))
=  function into run , law 5

init : run {new (next init); Xv.for n (get v; Xx.put v (next x); X-.return  rc)) 
=  IH with next init for I

init : take n (iterate next (next init))
=  take, iterate

take (n +  1) (iterate next init).

Lemma proven by induction.

T h eorem  18 (ta k e ,m a p ,itera te )
(take n o map use o iterate f )  init

run(new init; Xv. 
for n (get v; Xx.

put v (f x); X— 
return (use rc)))

The theorem is a combination of the previous lemmas.

(take n o map use iterate next) init 
= take/m ap, lemma 7

map use(take n (iterate next init))
= imperative iterate, theorem 13

map use
(run (new init; Xv.for n (get v; Xx.put v (next init); X—.return a;)))

=  function into run, law 5
run ((new init; Xv.

for n (get v; Xx.put v (next a;); X-.return ar)); Acs. 
return (map use cs))

=  ; assoc., law 1
rw.n(new init; Xv.

for n (get v; Xx.put v (next x); X-.return a:); Acs. 
return (map use cs))

=  function into for, lemma 11
run (new init; Xv.

for n ((get v; Xx.put v (next a;); X-.return a;); A a. 
return (use a))

— twice ; assoc., law 1
run (new init; Xv. 

for n (get v; Xx.
put v (next x); A_. 
return x; X a. 
return (use a))

=  left return, law 1
run (new init; Xv.



Lines, Circles, Spheres 113

for n (get v; Xx.
put v (next x ); A_. 
return (use &)).

Theorem proven.



Chapter 8

A Simple Combinator Graph 
Reducer

In this chapter, we’ll specify and derive a program for an imperative algorithm (one tha t 
necessarily requires state).

It implements graph reduction for a simple language with the combinators S . K . I .  Y . 
integers, and binary integer operations. The algorithm requires state because it repeat
edly modifies a graph. Each change in one part of the graph is potentially visible from 
any other part of the graph.

The program could be written in a functional language without state, simply by 
simulating the state by a functional value that is passed around. However, without a 
guarantee tha t this simulated state is passed around single-threadedly, it could not be 
changed in-place, but would have to be copied. Although the program would be correct, 
it would not have the desired complexity. Instead, by using state in the state monad we 
have that guarantee.

This derivation is the most involved of this thesis. It illustrates the use of many of 
the language features (generalized choice, case-expressions, recursion, assertions, etc) but 
most importantly it is an example of a derivation in which state is manipulated directly 
rather than only through the state monad primitives. In the derivation, variables (usually 
cr) are used to stand for individual states. There is nothing wrong with tha t (apart from 
the technical point of the state’s type), as long as no state appears in the final program, 
which must be constructed in terms of the state monad primitives only. The program 
comes from [KL93], where it demonstrates the expressiveness gained by adding state to 
Haskell.

The first section describes the SKIY language, and gives the specification of the 
program. The second section gives the derivation of the graph reducing program in 
detail, preceded by a road map in its first subsection. The third section discusses the 
derivation. The fourth section contains the details of some proofs tha t were skipped in 
section 2.

114
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8.1 Specification

We describe a simple combinator language. Then we formulate the specification of the 
program. Before the derivation, we examine some properties of the specification.

8 .1 .1  T h e  S K I Y  L a n g u a g e

A term of the SKIY language we will use is either a number, or an operator, or one of 
the combinators S, K, I, and Y, or an application of one SKIY term to another, 

ty p e  S K IY  = Num TL
| Opr (Z —> 1L —> Z)
I S \ K \ I \ Y  
| App S K IY  S K IY

D efin ition  8 ( rewrite) We define A  as the smallest binary relation satisfying these
eight axioms:

1. x  A -  X

2. x A y A y A z ^ x A z

S. App I  x A x

1 App (App K  x)  y A  x

5. App (App (App S f )  g) x A  App (App f  x ) (App g x)

6. App Y  f  A  App f  (App Y  f )

7. App (App (Opr 0 )  (Num m)) (Num n) A Num (m 0  n)

8. f  A  / '  A x A  x' =$■ App f x A  App f i  x'

Axioms 1 and 2 say A  is reflexive and transitive, axioms 3-6 capture combinator 
reduction, axiom 7 captures operator reduction, and axiom 8 says A  distributes through 
the term structure. If x A  y.  we say Lx can be rewritten to y'.

Strictly speaking, in the SKIY terms Num z and Opr 0 ,  z is only some representation 
of an integer, and 0  is only the representation of some function. On the right hand side 
of axiom 7 there should be some interpretation map applied to n. m, and to 0 .  But 
we’ll ignore tha t to aid clarity.

Clearly we can keep applying the Y  axiom forever:

App Y  f  A  App f  (App Y  f )  A  App f  (App f  (App Y  / ) )  A  . . .

The limit of this sequence is the recursively defined infinite expression px .A pp  f  x  of 
type S K IY .  By appealing to the axioms 6 and 8 ‘infinitely many tim es’, we deduce

App Y  f  A  px.A pp  f  x.
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8 .1 .2  S p e c if ic a t io n  o f  t h e  P r o g r a m

We are seeking a program, tha t given a (finite) SKIY term x, delivers an integer z such 
tha t x A  Num z, if such an integer exists. Formally tha t is

S pecifica tion  1 (eval)

eval : S K IY  Z

eval x = if  V\z : Z.(x  A  Num z) —» z fi.

8 .1 .3  P r o p e r t ie s  o f  A  a n d  c o n s e q u e n t ly  o f  eval

Here are some fairly obvious properties of A .  A number cannot be rewritten any further, 
that is Num z A  x implies Num z = x. We’ll call a term s hopeful if 3 z : Z.s A  Num z. 
Otherwise it is stuck. A  number applied to an argument is stuck, that is the term 
App (Num z) x is stuck. The combinator S  needs at least three arguments. The terms 
S. App S f .  and App (App S f )  g are stuck. The combinator K  needs at least two 
arguments. The terms K  and App K  x are stuck. The combinators I  and Y  need at 
least one argument, so the term I  and Y  are stuck.

An operator needs exactly two arguments, which must themselves not be stuck. The
terms Opr © and App (Opr ©) x are stuck. If an operator has two arguments tha t
are not stuck, then the arguments can be rewritten to numbers (axiom 8), and then the 
operator can be reduced (axiom 7). W ith the result being a number, if there were any 
further arguments, the term would be stuck.

It can be shown that, given a hopeful SKIY term, there is an algorithm for finding
the number it can be rewritten to. Our program will be based on this algorithm. The
algorithm is called normal order reduction and is captured in this subrelation of A :

D efin ition  9 (N o rm al o rd e r  red u c tio n ) Let A  be the weakest transitive relation sat
isfying these axioms:

1. App I  x A  x

2. App (App K  x) y A i

8. App (App (App S f )  g) x A  App(App f  x)(App g x)

4• App Y  f  A  App f(A pp  Y  f )

5• /  A  f  implies App f  x A  App f  x

6. m A  m' implies App(App(Opr ©) m) n A  App(App(Opr ©) m ') n

7. n A  n' implies App(App(Opr ©) m) n A  App(App(Opr ©) m) n'

8. App(App(Opr ©) (Num m))(Num n) A  Num(m  © n)

It can be shown that A  has the ‘diamond’ property, tha t is

n A w A n A e = > 3 s .  A  s A e A  s.



A Simple Combinator Graph Reducer 117

From it we can conclude that for any x, there is at most one z fulfilling the speci
fication. Therefore applications of eval axe determined. We can also conclude th a t the 
normal-order sequence of reduction steps may safely be interrupted by (finitely many) 
reduction steps that are not in the normal order without affecting termination or the 
result. In other words backtracking is never necessary. A useful special case of the 
diamond property is x -A Num z A x - > y = > y - ^  Num z.

8.2 Im plem entation

This section gives a detailed derivation of the graph reducer. The first subsection gives 
a road map of the derivation. The leisurely reader may skip this subsection, and the 
hurried reader may read it and skip the rest of this section.

The following subsections show how to represent terms as graphs, and how to model 
term rewriting by graph reduction. The last two subsections discuss termination of the 
program (which we have failed to prove) and list the final program.

8 .2 .1  R o a d  M a p

The function eval will be implemented by graph reduction, which is essentially an im
perative program. The graph will be represented as a function from vertex references to 
vertex contents, so it’s a kind of adjacency list. The state is just this function.

First, we’ll give some types appropriate for storing a SKIY expression as a graph 
in the state. Then we’ll define a function that takes a SKIY expression and stores it, 
returning a reference to the root of the graph. From it, a function can be derived that, 
given this reference, extracts the SKIY expression from the state.

These two functions will be used to refine eval into a program that has state, but 
doesn’t yet use it for graph reduction:

eval x
□ defs., run intro

ru n  (store x; extract; A x.break(eval x)).

The graph reducing state transformer we are looking for does work equivalent to the 
last two state transformers in the program above, but the work of eval is pushed into 
the extracting. We specify

red : Ref s ( Vert s) -» S T  s Z

red v = extract v\ A x. break (eval x),

and the program becomes

=  spec, red
ru n  (store x\ red).

In trying to implement red we find we have to keep track of the spine of the SKIY
expression, that is, a stack of the application vertices from the leftmost vertex to the
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root of the graph. We specify 

S p ecifica tion  2 (red)

redS : Ref s ( Vert s ) —> [Ref s ( Vert 5 )] —>• S T  s Z

redS v xs =  spine v xs>—red (last (v : res)),

introducing auxiliaries spine and extS. The program becomes

C spec. redS
r\xn(store x; Xv.redS v []).

In implementing redS the need for indirections becomes obvious. Since we are head
ing for a recursive implementation, we notice that the specification of redS (and red on 
which it is based) is too weak. The specifications say what result these state transformers 
should return, but leave open what final state they produce. Formally they produce the 
worst final state _Lsta te.- We are forced the ‘strengthen the induction hypothesis5 by re
quiring red to change the state in a restricted way: we add an unspecified binary relation 
4> between initial and final state to the specification of red. We continue refining redS. 
collecting requirements about 4>. Gathered together these requirements give a definition
of 4>. On the way, we also collect lemmas required of the auxiliaries ext, spine, extS th a t
were introduced. These lemmas are proved separately.

Finally we take the recursive refinement of redS C F[redS] and conclude that redS 
is refined by the least fixpoint, redS Q p F .  In a total correctness calculus like ours, this 
conclusion is of course only valid if a termination argument were provided. We have no 
termination argument, but discuss the search for one in the second last subsection.

8 .2 .2  R e p r e s e n t in g  S K I Y  T e r m s a s  G ra p h s

This is a straightforward implementation of the SKIY datatype using references to the 
vertices of the graph. The type of the vertices is Vert s , and therefore the type of the 
references is Ref s ( Vert s ). In these types, the type variable s indexes the state thread 
a reference was created in. Since the sumtype Vert s includes references, it also must be 
parametrised over s.

The only unexpected thing in the definition of the type Vert s below are the indi
rections Ind (Ref s (Vert s)). Their use will become apparent later, 

ty p e  Vert s = Num  Z
| Opr (Z —>• Z —> Z)
I S \ K \ I \ Y
| App (Ref s (Vert s)) (Ref s (Vert 5 ))
| Ind (Ref s ( Vert 5 ))

The program will be imperative. During the derivation, the state will be simulated 
by a function from references to elements of Vert s.

ty p e  State s = Ref s ( Vert s ) —> Vert s
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However, in the final program it will only be manipulated by the state transformer 
primitives, and therefore the real state can be used.

The state transformer store puts a SKIY term into the state.

D efin ition  10 (s to re )
store : S K IY  —» S T  s (Ref s ( Vert 5 ))
store (Num z) = new (Num z )
store (Opr ©) =  new (Opr ©)
store S  = new S
store K  = new K
store I  = new I
store Y  = new Y
store (App f  x) = store / ;  A I.

store x\ A r. 
new (App I r)

A  SKIY term  is represented by a reference v : Ref s ( Vert s) and a state <r : State 
such tha t extract v a — x. where extract recursively replaces the references by the things 
they point at in the state. We’ll derive the definition of extract from the specification

Specifica tion  3 (e x tra c t)

extract : Ref s ( Vert s) —> S T  s S K IY

store 5 ; extract =  return s.

Since extract takes a reference as argument, it is reasonable to expect that it will
look up the reference, and do a case distinction on the result. The derivation of extract
will be done by case distinction on s : S K I Y . The cases S, K. / ,  Y, Num z. Opr © are 
very similar. Here’s the case for S.

store S; extract 
=  def. store

new S; extract 
= shape of ext

new S\ get; A e.case e o f ... n S —y X  n ...
=  law get/new

return S ; A e.case e o f ... n S —> X  n ...
=  law return(l), f3. case

X
- defining X

return S

For the recursive case, namely App f  x. we get:
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store (App f  x); extract 
= def. store

store f;  Xu.store x; Xv.neui (App u i;); extract 
= shape of extract

store / ;  A u.store x\ X v.new (App u ?j); g e t ; A e.case e o f ... n App u v —)■ X  n ... 
=  new/get

store / ;  A u.store x; X v.return (App u v); X e.case e o f ... n App u v - > I  n  ...
=  return, (3. case

store f;  X u.store x; X v .X  
= defining X

store / ;  Xu.store x\ Xv.extract v; Xx'. extract u; X f .re turn  (App f  x')
=  bind, 7]

store / ;  A u. (store x; extract); X x'.extract u; X f .re turn  (App f  x 1)
=  IH

store / ;  Xu.return x; Xx'.extract u\ X f  .return (App f  x')
= return(l), /3, bind, rj

(store / ;  ext); X f  .return (App f  x)
=  IH

return / ;  X f  .return (App f  x)
— return(l), /3

return (App f  ar)

We collect the definition of extract. In it, the Ind case can be defined in any way. 
One could choose _L and then later on refine.

D efin ition  11 (ex tra c t)
extract : Ref s ( Vert s) —»• S T  s S K IY  
extract v== get v. X e.case e o f

Num z return (Num z)
n Opr © -»return (Opr ©)
n S return S
n K  —>•return K
n I  —> return I
n Y  return Y
n App f  x ^ ex tra c t  x; X u.extract / ;  A v.return (App u v ) 
n Ind u —>■extract u

For convenience, we also define a state reader ext v that does the same thing as the 
state transformer extract v. The specification is simply

Sp ecifica tion  4 (ex t)

ext : Ref s ( Vert s) —> SR s S K IY

ro(ext) =  extract.

where ro : SR s a —>• S T  s a makes a state reader into a state transformer that 
delivers the same result and leaves state unchanged[Wad92a].
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8 .2 .3  I n tr o d u c in g  S t a te  in to  t h e  S p e c if ic a t io n

We introduce state:

eval s 
r- futile run

eval (run [return 5 ))
=  spec, extract

eval{run{store s; extract))
=  function into run

run {store s ; extract; A s .break (eval 5 ))

We pick out the last two state transformers in the run to continue refining. For 
convenience, give them a name. Specify function red by

S p ecifica tion  5 (red)

red : Ref s ( Vert s ) —> S T  s Z

red v = extract v, Xs.break{eval s )

with the aim of implementing red by graph reduction. The program so far becomes

- spec, red
run(store s ; red).

Now we try to derive an implementation for red. Its argument is a reference, so like 
for extract, it suggests itself tha t the reference is looked up and then a case analysis is 
made on what it stored. Thus, the shape of red will be: red v = get v ; A e.case e o f ...n 
App u v —» X  n .... First, we move eval into extract:

red v 
=  spec, red

extract v; (break o eval)
=  def. extract

{get v ; A e.case e o f Num z —> return (Num z) n ...); {break o eval)
=  bind, function into case

get v; A e. 
case e o f

Num z -» return {Num z); {break 0 eval)
n Ind u —> extract u ; {break 0 eval)
n Opr ® —» return ( Opr®); {break 0 eval)
n S , K , I return (...); {break 0 eval)
n App u v —> extract v; Xx.extract X f  .return {App f  x); {break 0  eval)

We’ll continue refining each of the case branches. The first is trivial:
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return (Num z)\ break o eval 
= left unit

break (eval(Num z )) 
property eval 

break z.

The indirection case is easy too:

extract u; (break o eval)
= spec, red

red u.

For the cases Opr ©, S. K . I  there’s no proper result because they need arguments. 
Example K:

return K; (break o eval)
=  left unit

break (eval K)
=  property eval

break _L.

For applications, nothing much is gained:

extract v; Xx.extract u ; X f  .return (App f  #); (break o eval)
= left unit

extract v, Xx.extract u\ X f  .break (eval( App f  a:))

Now if f  = I, we could continue one step. Unless /  is a function that needs exactly one 
argument, the next step is break-L. Therefore the cases of /  being Opr ©, S. K . Num z 
can be dealt with. But what if f  is App g y ? We would have to do some more case 
analysis on g\ Clearly this path of the derivation has reached a dead end.

We can only reduce a vertex containing a combinator or an operator if we have 
collected enough arguments for the combinator or operator. To find the arguments, we 
need to descend application vertices on the left, keeping track of the application vertices 
we’ve seen in a stack. Call this stack the spine.

8 .2 .4  S im p le  C a se s , w it h  spine 

Define

D efin itio n  12 (sp ine)

spine : Ref s ( Vert s) —> [Ref s ( Vert s)] —» SR s B

spine v [ ] a  = True

spine f  (v : vs) a  =  3 x.a v — App f  x A spine v vs a.

A reference /  and a list of references vs satisfies the spine property in a given state a
if each reference v in the list points to an application vertex App u _, and u is directly
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before v in the list. The first reference in the list must point to a vertex App f  _. We 
write spine f  vs o.

Let’s extend the definition of spine, and make it take three arguments rather than 
just two. In an alternative version with just two arguments the first argument would 
correspond to the first argument in the version above cons’d onto the second. We choose 
this formulation to emphasise that the first reference has a different role from the other 
references. One can read spine f  vs o  as ‘in state o  the references vs point to a chain 
of application vertices ending in what /  points to ’. In the alternative representation 
spine : [Ref s ( Vert s)] —> SR s ®. one could write spine [ ] o. although such an ‘empty’ 
spine leading nowhere does not make practical sense.

However, we will find out later that the definition above is not enough: it doesn’t 
account for indirections.

Given just the root reference r of a graph, we have an easy initial spine, since 
spine r [ ] a  will hold.

Specify the function redS as a version of red using spines.

S p ec ifica tio n  6 (redS )

redS : Ref s ( Vert s) —> [Ref s ( Vert s)] ^  S T  s Z

redS v xs = spine v xs>—red (last (v : xs)).

As for extract, since redS takes a reference, it is reasonable to  look for an imple
mentation that looks up the reference and then does a case analysis: redS v xs = 
get v, A e.case e o f ... n Num z —> redS v xs fl .... We’ll refine redS v xs o by case 
analysis of o v. The case of an application vertex is easy. The fact that redS has en
countered an App vertex is recorded in the spine, and redS descends to the left, tha t is 
to the function. Assume o v = App f  x. Then

redS v xs a 
= spec. redS

spine v xs a  >— red(last(v : xs)) a 
=  def. spine and assumption

spine f  (v : xs) o  >— red(last(v : xs)) a  
= def. last

spine f  (v : xs) o >— red(last(f : v : xs))) o 
=  spec. redS

redS f  (v : xs) a.

The case of a number vertex is easy too. The number is just retrieved from the state 
and returned. We assume the spine is empty since a number applied to an argument is
a stuck term  anyway. Assume <j  v = Num z. Then
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spine v [ ] o >— red(last[v]) a
=  def. spine, last

True >— red v a 
=  previous refinement of red

break z.

W hat should happen when redS finds an indirection vertex ? The function ext simply 
follows an indirection, so the function redS which is defined in terms of ext must do the 
same. Assume spine v xs cr and o v =  Ind u. Then

redS v xs o 
=  spec. redS

spine v xs o  >— red (last{v : rrs)) o 
=  def. last, red, and ext

spine v xs o  >— red (last(u : xs)) o 
^  a desired step contradicting the present definition of spine

spine u xs a  >— red (last(u : zs)) o 
=  spec. redS

redS u xs a

The desired step above is not true since our present formulation of spine does not
allow spines with some indirections in them. We widen the definition of spine to allow
indirections. W ith the new definition the above ^  becomes =.

D efin itio n  13 (sp in e , u p d a ted ) Let spine be the weakest predicate satisfying the these 
three axioms.

1. Empty spine, spine v [ ] cr

2. Application, spine f  (v : vs) cr <= 3 x.o v = App f  x A spine v vs a

S. Indirections, spine u vs cr <= o v = Ind u A spine v vs a

For developments of the other branches of redS, namely the operator and combinator 
branches, we have to unfold the definitions right down to the rewriting relation A . We’ll 
unfold redS v xs cr under the assumption tha t indeed spine v xs cr is true:

redS v xs o 
= spec. redS

spine v xs cr >— red(last(v : xs)) cr 
=  true assertion

red(last(v : xs)) cr 
=  def. red

(extract(last(v : xs))-, A s.break(eval s)) cr 
= defs.

i f  n  ( z ,r )  .(ext (last(v : xs)) cr A  Num z) —> (z .r)  fi 
=  new auxiliary extS

i f  n  ( z , t ) .(extS v xs a  A  Num z) —> (z, r )  fi.
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The new auxiliary extS extracts a SKIY term from a state, given the spine of the 
term. Its definition is

D efin ition  14 (ex tS )

extS : Ref s ( Vert s) -> [Ref s ( Vert s )] -> SR s S K IY

extS v xs = ext (last(v : xs)).

The purpose of this auxiliary is just to break up big proofs into smaller proofs.

8 .2 .5  M e e t in g  a n  O p e r a to r

Let’s try  the case of an operator. An operator Opr © needs exactly two arguments, 
otherwise the term  is stuck. Let us therefore assume that there are two references 
to application vertices on the spine. To give some names, say o v =  Opr © and 
spine v [b.c] a. For this whole subsection let x and y be such that o b = App _ x and 
o c =  App _ y. We are guaranteed existence of these values by the existential quantifier 
in the definition of spine. Then

redS v [b.c] o 
= spec. redS. ass., spec, red

if fl(z, r )  .(ext c o  A  Num z) —> (z . tau) fi 
- ass.

if r \(z ,r)  .(App(App(Opr (B)(eval(ext x o)))(eval(ext y a)) A  Num z) —>• (z . r ) fi 
=  def. A ,  successful rewriting is determined

i f  r i(*  , r).(3!m , n.ext £ cr A  Num m A ext x a  A  Num n A 2: =  m © n) —>■ (z, r) fi 
C Heading for two recursive calls, law: 3! out of 11

if I!m.ext £ cr A  Num n —>
I!n.ext y cr A  Num m —>
FI(z, r).(z = m @ n) ( z . t ) fi

C last generalised choice is trivial
Have to make the preceding FI into state transformers, so add state, 

if f i (m.(7i).ext x o A  Num  m—>•
I!( n , a 2).ext y cr A  Num n —> 
break (m © n) A.state fi 

C trying to sequentialise. For break any state will do, so cr2
if  ll(m , G\).ext x cr A  Num  m—> 
r \ ( n . a 2).ext y a A  Num n —> 
break(m © n)a2 fi 

C spec, red
le t (m, (Ji) =  red x cr in  
le t (n. a2) =  red y a  in  
break(m © n)o2

The two le t use recursive calls of red. but both on the same input state cr. We 
have to sequentialise them, tha t is, make the second recursive call use as input state
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the output state G\ of the first recursive call. The specification of red leaves open what 
happens to the st^te, so we are free to add a binary relation on states that describes 
what should happen to the state. Let’s call the relation (j>. W hat are the requirements 
on (f) ?

1. Total. V <r. 3 r.(T(j)T This requirement is necessary for the step ‘refining binding 
assertions’ above, to keep feasibility of the prescriptions.

2. Reflexive. V cr.crrfxj. This requirement includes totality. It stems from our previous 
refinements of red v o  for the case of o v = Num z. We implemented it by break z. 
which is trivially refined by return z. The state is not changed at all. If this is to 
refine the new version of red with the relation then 0  must allow that, tha t is, 
it must be reflexive.

3. Transitive. There are two consecutive recursive calls, so if together they are to 
satisfy <f) by each satisfying it, (f> must be transitive.

4. Rewriting. If <7 0 <7 i, then ext y cr A- Num n implies ext y o 1 A  Num n. This 
is to ensure that the second recursive call can safely use 0 \ instead of a  without 
affecting the result. The formal variable y ranges over all accessible references.

In short, we are looking for a preorder on states that rewrites (or leaves unchanged) 
the extractions of every accessible vertex. The simplest 0 would be = state-, but tha t 
would rule out any change to the state. For now, let </> be any relation that satisfies 
these requirements.

Update the specification of red and redS to:

S pecifica tion  7 ( red.redS, second try )

red v a  == if FI(z, r).(ext v a  A  Num z A <7 0 r )  —> (z. r )  fi

redS v xs a = spine v xs a  >— if  V\(z.r).(extS v xs A  Num z A o$ t ) —> (z, r)  fi.

The above derivation goes through with the new versions of red and redS. and break 
refined to return , and is continued by:

□ sequentialise
(red x ; A m.red y ; Xn.return (m 0  n)) a  

- spec. redS
(redS x [ ]; A m.redS y [ ]; A n.return (m 0 n)) cr.

The previous developments of redS for the case Num z and App u v still go through 
with the new versions of red and redS.

8 .2 .6  T h e  c a s e  o f  I

Now the cases of three combinators. We’ll start with the simplest: the I  combinator. The 
I  combinator is stuck unless it has at least one argument. So we’ll assume spine v (b : 
xs) a  and cr v =  I. Throughout this subsection let x be such that cr b = App _ x. Then
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redS v (b : res) cr 
=  spec. redS

if IH(z. r).(extS v (b : xs) o  A  Num z A (xftr) —> (z, r)  fi

At this point we would like to make use of the local knowledge of the graph to apply 
the I  transformation. First we isolate a lemma.

L em m a 19 ( e x tS /I )  .
I  = o v A spine v (b : xs) a

extS v (b : xs) o  A  extS x xs o[b Ind x]

It is easy to see that lemma ex tS /I  follows from this lemma:

L em m a 20 ( e x t / I )  .
I  = o v A spine v (b : xs) o

=>

ext u a  A  ext u o[b i-» Ind x]

Here, we formulate both lemmas assuming spine v (b : xs) o  rather than just assum
ing o b = App v x in order to account for indirections. Furthermore, we formulate the 
lemma for arbitrary reference u rather than only b because the extra generality is not 
much more work to prove and useful later on.

Proof. The proof is not as straightforward as it may at first appear since we can 
make no assumptions about absence of cycles in the graph. In particular the node b 
may be accessible from node x. In tha t case, extracting from b would yield an infinite 
SKIY expression containing infinitely many occurrences of / ,  all of which are removed 
in one graph transformation. We first prove the special case u = b. and then show it for 
any u. We use the recursion law based on operational semantics.

We generate the expression with a syntactic hole X[ ] by extracting from x as far as 
possible, but stop as soon as we reach b.

ext x o  — \ X[ext b a]

Doing this is just a series of p  unfoldings, le t reductions, and (3 reductions. If b is not 
reachable from x, then there is no occurrence of the hole in X . From

ext b a 
— > unfold ext

App I  (ext x cr)
— > constr of X

App I  (X[ext b cr])

we conclude

ext b o = p t .A pp  I  (X[t\).
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From

ext b cr[b ^  Ind ar]
— > unfold ext

ext x cr[b i-> Ind x]
— >■ construction of X

X[ext b cr[b >-)• Ind re]]

we conclude

ext b a[b i-> Ind x] = p t.X[t\.

Therefore 

ext b o

p t.App I(X[t])
A  rewriting

pt.X[t]

ext b o[b Ind x\.

The case for u = b is proven. Further, for arbitrary u. let U[ ] be the expression 
with a syntactic hole generated by extracting from u until b is reached. Then

ext u cr
= construction of U

U[ext b cr]
A  just proved; compositional A

U[ext b cr[b Ind rr]]
=  construction of U

ext u cr[b Ind re],

which we set out to show.
We continue the implementation. The assumptions were spine v (b : xs) g and 

a v = I. Then
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redS v (b : xs) cr 
=  spec. redS

if r i ( z ,  t )  .(extS v  ( b : xs) o A  Num z  A o(j)T) —> ( z ,  r )  fi 
C lemma ex tS /I .  diamond property of A

i f  r i(z , r )  .{extS x xs cr[b )->• Ind i j a A  iVum 2; A cr4>r) —>• (2 , r )  f i  
C  0  t r a n s . ,  c o l l e c t  r e q . :  c r 0 c r [ &  Ind x\

i f  I H ( z ,r )  .(extS x xs <j[b i - »  Ind x\ A  Num z A cr[b i - >  Ind x]<pr) —> (z. r) f i  
C defs. put . red

(put b (Ind x); A -.red (last(x : xs))) a 
= lemma sp ine/I

(put b (Ind x); A—spine x xs>—red (last(x : xs))) cr 
=  spec. redS

(put b (Ind x); A —.redS x xs) cr

We have assumed one lemma about the auxiliary spine and another requirement for 
(f). The requirements for (f) will be collected later. The lemma is:

L em m a 21 (sp in e /I )  .
I  —  <7 v A spine v (b : xs) cr

=>

spine x xs cr[b (->• Ind x]

Informal justification. From spine v (b : xs) a  we get spine b xs a by the axioms 
of the definition of spine. We know that b does not occur in xs since it points to an 
application node whose left reference points to I. So spine b xs o is true regardless of 
what cr b is. We overwrite cr b with Ind x. to get spine b xs a[b (->• Ind x] and appeal to 
the indirection axiom of the definition of spine.

8 . 2 . 7  K  i s  m e t

Now the case of combinator K . We recognise that K  needs at least two arguments to 
yield a proper result, so we assume there are at least two pairs on the spine. Assume 
cr v = K and spine v (b : c : xs) cr. In this subsection let x and y be such tha t 
cr b =  Ayp _ x and o c — App _ y. Then

redS v (b : c : xs) cr 
= spec. redS

i f  n  ( z . t ) .(extS v (b : c : xs) 0  A  Num z A c r 0 r )  —> (z, r )  f i  
C lemma ex tS /K

i f  P ( z , t ) .(extS x xs cr[c i - »  Ind x] A  Num z A c r ^ r )  ( z . t ) f i  
□ (f) trans., collect req. o(f>cr[c i->- Ind x]

i f  n (z, r).(extS x xs cr[c Ind x] A  Num z A a[c 1—>■ Ind x]4>r) —> (z. r) f i  
C lemma spine/K

(pm c (Ind x); A —.redS x xs) o.

Again we have used two lemmas. The first one is:



A  Simple Combinator Graph Reducer 130

Lem m a 22 (e x tS /K ) .
K  =  g  v A spine v (b : c : xs) g

extS v (b : c : xs) g  A  extS x xs g[c  i- »  Ind x]

It is a consequence of:

Lem m a 23 (e x t /K )  .
K  =  a  v A spine v (b : c : xs) g

=>
ext u g  A  ext u g[c  i- »  Ind x]

The proof follows the same strategy as for combinator I. and is moved to the last 
section.

8 .2 .8  S  e n c o u n te r e d

The case of combinator S  is more interesting, because it introduces sharing. Since S  can
only yield a proper result if it is applied to three arguments, we assume there are at least
three pairs on the spine. Assume g  v =  S  and spine v (b : c : d : xs) g.  Throughout
this subsection let / ,  g. and x be such that g  b =  App  _ / ,  and g  c =  App  _ g. and
g  d =  App  _ x . Then

redS v (b : c : d : xs) g  
= spec. redS

i f  r i ( z ,  r )  . {extS v (b : c : d : xs) g  A  Num z A gc^t) —> (z, r )  f i  
C lemma ex tS /S ,  abbr. <73 given below

i f  F I  [ z . r )  . (extS d xs 0 3  A  Num z  A g4>t) (z,  r )  f i
C 4> trans., collect req. g4>g3

i f  l"1 (z, t )  . (extS d xs g 3 A  Num z  A G3<f)r) —> (z.  r) f i  
C expand <r3, lemma s p ine /S

(new (App f  x)\ Xfx.new (App g x); Agx.put d (App fx gx)\ X s e d S  d xs) g .

The abbreviation g 3 in this whole subsection stands for

let (fx, G\) =  new (App f  x) g  i n  
let (gx.G 2 ) =  new (App g x) <r2 i n  
ct2[d >—>• App fx  gx\.

We have appealed to

Lem m a 24 (e x tS /S )  .
S =  g  v A spine v (b : c : d : xs) g

=>
extS d xs g  A  extS d xs g 3

which is a consequence of
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L em m a 25 ( e x t /S )  .
S  =  o v A spine v (b : c : d : xs) o

ext u o  A  ext u cr3.

The proof follows the same strategy as the proof of lemma ext/I, and is therefore 
moved to the last section.

8 .2 .9  R e fe r e n c e  p o in t s  t o  Y

For Y  not to be stuck, at least one argument is required. Let us assume o v = Y  and 
spine v (b : xs) cr. In this subsection let /  be such that a b = App _ / .  Then 

redS v (b : xs) cr 
=  spec. redS

if  ( I (z ,r)  .(extS v (b : xs) a  A  Num z A a<f>r) —>> (z, r) fi 
C lemma e x tS /Y

if  ri(z, t )  .(extS b xs a[b i-» App f  b] A  Num z A a<jrr) —» (z. r) fi 
□ <fi transitive, collect req. a <j> o[b i-> App f  b]

if  IH(z , t ) .(extS b xs a[b !->■ App f  b] A  Num z A cr[b (->• App f  b\<j)T) (z, r) fi
C defs. put . red

(put b (App f  b); \-.red(last(b  : £s))) o  
— lemma spine/S

(put b (App f  6); A -.spine b xs>—red (last (b : £s))) o 
=  spec. redS

(put b (App f  b); X-.redS b xs) a

We used

L em m a 26 (e x tS /Y )
<7 v = Y  A spine v (b : xs) cr

=>

extS v (b : xs) o A  extS b xs cr[b i-> App f  b] 

which is a consequence of the following lemma.

8 .2 .1 0  S o  w h a t ’s cf> ?

We collect the requirements for <j>. The first three have already been discussed. Then 
there are four new ones.

1. Reflexive. V<7.cr0(7.

2. Transitive. cr0r and T(j)V imply crrfiv.

3. Rewriting. If cr(j)T. then ext v o A  Num n implies ext v r  A  Num n. The formal 
variable v ranges over all accessible references.

4. Reducing I. cr v — I  and spine v (b : xs) a imply a<j>cj[b i->- Ind x\.
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5. Reducing K . cr v = K  and spine v (b : c : xs) cr imply cr(f>cr[c i—> Ind x\.

6. Reducing S. cr v — S  and spine v (b : c : d : xs) cr imply a 0 a 3 where cr3 is as 
before.

7. Reducing Y . cr v = K  and spine v (b : xs) cr imply cr<ficr[b i-» App f  b].

We can strengthen the third requirement simply to acjrr implies ext v cr A  ext v r  
for all accessible references v. By the lemmas ext/1. ex t /K .  ext/S .  and e x t f Y . the four 
requirements about combinators are then satisfied. We have gathered and analysed the 
requirements for the relation cj>, now we’ll define the relation <f>.

D e fin it io n  15 (<fi)

4> : State -» State —> B
4> cr r  = for all accessible references v, ext v cr A  ext v r.

8 .2 .1 1  D o e s  i t  T e r m in a te  ?

We have found a recursive refinement for redS. that is an expression with holes F  such 
tha t redS C F[redS). We would like to conclude redS □ reduce, where reduce = p f .F \ f ] .  
For th a t we aim to use the law introducing a recursive function. We repeat it here:

T heorem  27 (Introducing recursive function) I f  x . y  : T, < is a well-founded or
der on T, and expression F[f] is monotone i n f  then

(Vx : T .E  C F [ \y .y  < x >— E[y/x]]) =*► (A x .E  □ p f .  \x .F \ f] ) .

To ensure termination of the recursion, we have to find a well-founded order on 
the argument of the function. The law is formulated for a function of one argument. 
We can apply it to the function redS by considering its three arguments as a triple 
Ref s ( Vert s) x [Ref s ( Vert 5)] x State. We need a well-founded order on that. In the 
following the unsuccessful search for such an order will be described.

Before the start of the search we note tha t some S K IY  terms simply cannot be 
rewritten to a number. This may be due to ‘recursion’ expressed by the combinator Y . 
but there are also terms without Y  tha t can’t be rewritten to a number.

So our program is not obliged to terminate for any input, but only for members of 
this set: {s : S K IY  \ 3 z  : Z.s  A  Num z}. the hopeful terms. Normal order reduction 
A  as defined before is indeed a well-founded order for this set. That is, there are no 
infinite chains So A  Si A  52 A  ....

Thus, if we can show tha t each unfolding of reduce does the equivalent of one normal 
order step, we are fine.

The first problem is tha t because of sharing, the S. K . I  branches of reduce do the 
work equivalent of one normal-order-reduction step, and maybe more. The Y  definitely 
does more: it does the work of infinitely many steps, the first of which is a normal order 
step. We can solve tha t problem. The order A  =(A )* o (A ) o (A )*, that is, any number 
of rewriting steps, and one normal order reduction step, is still a well-founded order on
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the set of hopeful SKIY terms. If each unfolding of reduce does the equivalent of one ^  
step, term ination necessarily follows.

The second problem is that two branches of reduce don’t correspond to steps: 
the indirection following branch and the application vertex branch. A finite number of 
unfoldings tha t don’t  make progress are acceptable, but how can we be sure there is 
never an infinite succession of calls of these branches in the reduction of a hopeful SKIY 
term ? It seems th a t this is a hard question. Since the graph is always finite, the problem 
would occur if there was a cycle of indirections and application vertices on the spine. 
We would have to show that if a SKIY term is hopeful, then the graph generated from 
it never develops these harmful cyclic spines. This second problem remains unsolved.

The third problem is tha t the branch of reduce tha t deals with operator vertices 
does not pass (a representation of) the whole term to its two recursive calls, but (rep
resentations of) subterms. The argument and the arguments of its recursive calls don’t 
satisfy the relation but the ‘has-subterm’ relation. It seems we should construct a 
term ination proof by induction on the number of Opr vertices in a SKIY term. However, 
a SKIY term  represented by a graph with a cycle may have infinitely many Opr vertices! 
This third problem is also unsolved.

In summary, we have no proof that unfolding the recursive definition of reduce makes 
progress. The program given is thus a ‘partially correct’ implementation of the specifi
cation: it will never return an incorrect answer, however, we have no guarantee it ever
returns an answer. To conclude, we have implemented eval n _L.

However, informally we may have some confidence in termination of the program. It 
is based on normal-order-reduction, which is guaranteed to terminate for hopeful terms. 
The second problem mentioned above stems from cycles on the spine; we suppose tha t
graphs with these harmful cycles can only appear from SKIY terms with Y  th a t are
hopeless anyway.

8 .2 .1 2  T h e  P ro g r a m

If we had a term ination proof for reduce, we’d conclude:

eval s C ru n  (store 5 ; Xv.reduce v [])

where

reduce : Ref s ( Vert s ) —> [Ref s ( Vert 5 )] —y STs  Z 
reduce v xs = get v; A node.

case node o f
Num z —» return z 

n  Ind u reduce u xs
n App f  x —> reduce f  (v : xs)
n I  —» b : xs' := xs> -

get b\ A App _ x. 
put b (Ind x); A_. 
reduce x xs' 

fi K  —)• b : c : xs' := xs~^~
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get b; A App _ b. 
put c (Ind x ); A_. 
reduce x xs' 

n  5  b : c : d : xs' := xs>-
get b; A App _ / .  
get c; A App _ g. 
get d; A App _ x. 
new (App f  x); A fx. 
new (App g x); Agx. 
put d (App fx gx); A_. 
reduce d xs' 

n  Y  —> (b.f)  : xs' := xs>—
get b; A App 
put b (App f  b); A_. 
reduce b xs' 

n Opr ® -» [b, c] xs>—
get b; A App _ x.
get c; XApp  _ y.
reduce x [ ]; Am.
reduce y [ ]; An.
put c (Num (m ® n)); A_.
return (m © n).

In any case, this program remains rather clumsy: all the get are superfluous, except 
the first one. They can be avoided by storing more information in the spine. The 
branch dealing with application vertex loses information: the x in App f  x is lost. If 
we implement the spine as a list of pairs of references (each pointing to one application 
vertex, and to its argument child), the program becomes:

reduce : Ref s ( Vert s) —> [Ref s ( Vert s) x Ref s ( Vert s)] —»■ STs  Z 
reduce v xs =  get v; A node.

case node o f
Num z —> return z

n Ind u —> reduce u xs
n App f  x —> reduce f  ((v. x) : xs)
n I  —>• (b. x) : xs' xs>—

put b (Ind x); A_. 
reduce x xs' 

n K  —> (b. x) : (c, y) : xs' := xs>—
put c (Ind rr); A_. 
reduce x xs1

n S  —> (b. f) : (c.g) : (d.x)  : xs' := xs>-
new (App f  a;); A fx. 
new (App g x); A gx. 
put d (App fx  gx); A_.
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reduce d xs1 
n  Y  —> (b. f)  : xs1 := xs>-

put b (App f  6); A_. 
reduce b xs1 

n  Opr © —>• [(6, x), (c, ?/)] := xs>— 
reduce x [ ]; Am.
reduce y [ ]; An.
put c (Num (m © n)); A_. 
return (m © n).

8.3 Proofs

This sections lists proofs th a t were omitted from the main text.

8 .3 .1  L e m m a  e x t / K

L em m a 28 ( e x t /K )  .
K  = g v A spine v (b : c : xs) o

ext u o  A  ext u o[c ■-> Ind x]

Proof. We first show the special case u = c. and then generalise. Let X[ ] be the 
expression with a syntactic hole generated by extracting from x until c is reached. From

ext c o 
— > unfold ext

App (App K  (ext x o))(ext y cr)
— > construction X

App(App K  (X[ext c a]))(ext y cr)

we conclude

ext c o  = p t .App(App K(X[t]))(ext y o).

From

ext c o[c i—y Ind x]
— > unfold ext

ext x o[c Ind x]
— > construction X

X[ext c o[c I—» Ind x]\

we conclude

ext c o[c t-> Ind x] =  p t.X[t].

Therefore
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ext c a

p t.App (App K  pf[£])) (ext y a)
A  SKIY rewrite rules

p  £.X[£]

ext c<j[c H  Ind x\.

which we set out to show. Now for the general case. Let u be any reference. Let U 
ne the expression with a syntactic hole generated by extracting from u until c is reached. 
Then

ext u a 
= construction U

U[ext c <r]
A  just proved; compositional A

U[ext c g [ c  Ind a;]]
=  construction U

ext u g [ c  !->■ Ind x].

which we set out to show.

L em m a 29 (sp in e /K )
K  = g  v A spine v ( b  : c : xs) g

=>
spine x xs g [ c  (->• Ind x]

Informal justification. Similar to the lemma spine/1 .  From spine v ( b  : c : xs) g  we 
deduce spine c xs g .  Since c is the end of this spine, and has obviously not occurred in 
xs. it can be overwritten by anything. Therefore spine c xs g [ c  >-> Ind x]. We use the 
indirections axiom of the definition of spine.

8 .3 .2  L e m m a  e x t / S

L em m a 30 ( e x t /S )  .
S = g  v A spine v ( b  : c : d : xs) g

=»
ext u g  A  ext u g 3 .

Proof. We'll first show the special case u = d. Let F. G . X  be the expressions with a 
syntactic hole generated by extracting from f . g . x  respectively until d is reached. From

ext d  g  

— ► unfold ext
App (App (App S (ext f  g ) )  (ext g G ) )  (ext x g )

— > constructions F, G. X
App(App(App S F[ext d a]) G[ext g cr]) X[ext x g ]
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we conclude

ext c o  =  p t .  App (App (App S F[t]) G[t]) X[t].

From

ext d o3 
->• unfold ext

App(App(ext f  o3)(ext x  cr3))(App(ext g o3)(ext x  cr3))
->• construction F . G . X

App (App F[ext c <73] X[ext d 03]) (App G[ext d cr3\ X[ext d cr3])

we conclude

Now to prove the general lemma, let u be any reference. Let U be the expression 
with a syntactic hole generated by extracting from u until d is reached. Then 

ext u <7

=  construction of U
U[ext d cr]

A  just proven; compositional A
U[ext d cr3]

=  construction U
ext u cr3.

which is what we set out to show.

L em m a 31 (sp in e /S )
S — <7 v A spine v (b : c : d : xs) <7

spine d xs cr3.

ext d cr3 =  p t.App(App F[t] X[i]) (App G[t] X [f]).

Therefore 
ext c cr

p t .  App (App (App 5F[£]) ^[i]) X[t]
A  rule

pt.App(App  F[t] X[£]) (App G[t] X[t])

ext d cr3.

Informal justification. From spine v (b : c : d : xs) <7 we deduce spine d xs o. 
The reference d cannot appear in xs, so it can be overwritten arbitrarily. Therefore 
spine d xs cr3.
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8 .3 .3  L e m m a  e x t / Y

Lem m a 32 (e x t /Y )
cr v = Y  A spine v (b : js )  o

=>
ext u o  —)■ ext u o[b i->- App f  b\

The proof follows the same strategy as the case of combinator I.
Proof. Once again we first show the case u =  b, and then the general case. Let F  be 

the expression with a syntactic hole generated by extracting from /  until b is reached.

ext f  cr — y F[ext b cr]

From

ext b o  
— y unfold ext

App Y  (ext f  cr)
— > constr. F

App Y  F[ext b o]

we conclude

ext b cr = p t .App  Y  F[t\.

From

ext b cr[b App f  b]
— ► unfold ext

App (ext f  cr[b i-» App f  b]) (ext b cr[b !->• App f  b])
— > constr. F

App F[ext b cr[b App f  b]] (ext b cr[b (->• App f  6])

we conclude

ext b cr[b y-y App f  b\ =  p t.App F[t] t.

Therefore
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ext b a

p t.App Y  F[t]
A  Y  rewrite

p t .p x .A p p  F[t] x 
=  merging recursion

p t.App F[t\ t

ext b o[b i-* App f  b].

Now let u be any reference. Let U be the expression with a syntactic hole generated 
by extracting from u until b is reached. Then

ext u g

U[ext b g ]

A  compositional A
U[ext b o[b i->- App f  b]]

: constr. U
ext u G[b >-> App f  b],

which is w'hat we set out to prove.

L em m a 33 (sp in e /Y )
g  v = Y  A spine v (b : xs) g

=>
spine b xs cr[6 !->• App f  b]

Informal justification. From spine v (b : xs) g  we deduce spine b xs g .  Since b does not 
occur in xs, we can overwrite it.



Chapter 9

D enotational Semantics

This chapter gives denotational semantics for the specification language. The semantics 
are a (non-trivial) model of the calculus, and therefore the calculus is consistent. Each 
axiom can be proven sound with respect to the semantics by verifying tha t it is indeed 
a tautology.

A programmer needs the semantics to write the initial specification, and to decide 
what shape of program to aim for, but not in the derivation itself. The semantics are 
needed to decide what to prove, but not to do the proof. However, for the programmer, 
the informal semantics given in chapter 2 should suffice.

In giving the semantics, we use some algebra of complete partial orders and upward 
closed sets that is introduced briefly before the semantics are given. Finally, we give 
soundness proofs of some axioms.

For this chapter, the language is slightly simplified. We present only binary products 
and sums. The generalisations are trivial. We omit semantics of data refinement.

9.1 Com plete Partial Orders and Upward Closed Sets

We’ll interpret each type of the specification language by a complete partial order (cpo), 
and each expression as an upward closed subset of the interpretation of its type. We 
must order the interpretations of the types to give meaning to refinement and recursion. 
Expressions are interpreted as sets to capture nondeterminacy. This section describes 
the set and order algebra tha t will be used. First, we’ll introduce some set algebra tha t 
will be used to construct the interpretations. Then, we’ll present partial orders to go 
with the sets. In the third subsection, we’ll construct some complete partial orders. 
These will later be used to interpret expressions.

9 .1 .1  T h e  S e ts

We start by building up an algebra of partially ordered sets from some primitive sets. 
Let’s consider the sets first, and the associated orders in subsection 9.1.3. The primitive 
sets contain primitive, uniquely named values. An example is {true, false}. Other 
primitive sets are the naturals, integers, reals, and characters. The elements of each 
primitive set P  come with a primitive equality, denoted =p.

140
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W hen giving interpretations to the types later on, we will use these six ways of 
constructing sets from other sets. They are Cartesian product, disjoint sum, monotone 
function space, fraction, upward closed sets, and convex sets.

A x B =  {(a, b) | a £ A.b  £ B]
A +  5 =  {Inla,Inr&  | a £ A.b £ B]
A B = {/ | a £ A , f  a £ B . f  monotone}
A
B =  {Hia,Lo& | a £ A.b £ B}
UA = { U S  | S C i }
CA =  {closeA S  | S  C A}

The first three constructions are standard. The functions are monotone with respect 
to the orders on A and B  tha t will be presented later. Rather than representing functions 
as sets of pairs, we’ll be content with taking functions as basic mathematical objects. 
The Cartesian product set A x B  may also be used as the full relation between the sets 
A and B:

a A x B  b = a £ A A 6 G B.

As sets, fractions are isomorphic to disjoint sums, but will later ordered differently. 
The fraction constructor will be used to add bottom elements to sets. For convenience, 
here is an abbreviation:

A , — -A-
A ±  ~  f - L >  *

We say “A is lifted” . In the definitions of disjoint sums and fractions, Ini, In r , H i, Lo 
are four distinct tags. We’ll also extend the four tags In i, In r, H i, Lo with sets and 
binary relations. For set S  and relation R : A B, define

Ini* S  = {Inis | s £ S }  
x  Inl*R  y = x =  In la  A y — In ib A aRb.

The set UA of upward closed sets and the set CA of closed sets are different subsets 
of the powerset of A. They are defined in terms of the order associated with A.  HJA 
contains all upward closed sets, tha t is, sets th a t must contain y whenever x C. y and 
they already contain x. Upward-closing a set (within universe A) is written as a prefix 

defined by

t AS = {x £ A | 3 s  £ S.s Q x}.

CA contains all closed sets, tha t is, sets that contain the limits of all chains they contain. 
Closing a set (within universe A) is written by a prefix close a defined by

close,4 S  = { i e A  | (3 s € S.s  C x) A (Vz.z C x =*► 3 s £ S.z  □ s)}.

The mappings t A and closeA produce the smallest superset of a set tha t is upward 
closed, respectively closed. They produce the smallest such superset within the universe 
A, which may be omitted when obvious. An upward closed set is also closed, but not 
vice-versa.

Binary and general union and intersection of sets are as usual, and will also be used.
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9 .1 .2  R e la t io n  A lg e b r a

We define relation-constructors x , + , —>•, - . S . V  corresponding to the set-constructors 
x, U, C. From R : A B  and S : C D we construct

R x S  : A x C £* B x D
(a. c) R x S  (b. d) =  a!26 A cSd

-(- S : 4̂ C ■£$■ B -\- D
R + S  = Ini* 12 U Inr* 5

12 —)■ : vl —̂ C £$ B  —̂ D
f  R  —>■ 5 g =  V a £ A.b £ B. aRb => f  a S g b

R  A_ j .  £
S  B  D
§  =  Hi* 12 U Lo*S

S R  : ILL4 U£
a S R f i  = V b £ p. 3 a £ a.aRb

V R  : CA <-> CB
a V R p  =  V&E/3.3a<Ea.al2&

A V a £ a .3  b £ p. aRb

12 x B is called “parallel composition” , and in Ruby [JS93] is written [12, 5]. 12 x S  is 
not the Cartesian product of the two relations R  and S  seen as sets. The —> combinator 
of relations can be used to express properties like monotonicity or anti-monotonicity.
For example, “/  is anti-monotone” is /  < —>>/ .  Its calculational properties are explored
in [Bac90], which gives “pointless” definitions for it.

V  and S  are ways of distributing a relation into a set. The symbols are chosen 
because, when applied to the order of the set elements, they give rise to the Plotkin and 
Smyth order respectively. The relation V R  is the conjunction of «S12 and 'HR. where 
H  would give rise to the Hoare order. We won’t use H  however. We will also use the 
conjunction and disjunction of a set of relations. For S  a set of relations between A and 
B.  we have

f]S.,[JS : A ^ B
a f] S  b = V R £ S . a R b
a US' 6 =  312ES.al2&.

Binary conjunction and disjunction of relations 12,12' : A B  is as expected:

R U R ' . R n R ’ : A ■£> B
a RUR' b = aRb V aR'b
a R f]R 'b  = aRb A aR'b.
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9 .1 .3  P a r t i a l  O rd e r s

We define partial order and then construct a partial order for each of the set constructions 
given in the first subsection.

A set S  is partially ordered by the relation Q: S x S  if C is reflexive, antisymmetric, 
and transitive. We say “S  is a partial order” .

For each set S  constructed from primitive sets using x , U ,  C, we define a 
partial order E 5 on its elements. We re-use the symbol □, but this is not refinement of 
specification expressions, it’s a relation between the mathematical values used to model 
the specification expressions. One can think of the symbol C as a mapping from a set 
expression to a relation. The argument is the index. We define E s inductively on the 
structure of S  seen as an expression. For primitive sets P  and partial orders A  and B,  
we have

Ep — —p
QaxB — E/l x Eb
Q a + b  —  Q a  +  E b

Q a - > b  — E/1 E b

Primitive sets P  are mapped to primitive equality =p.  and the set constructors 
x, + , -» to the relation constructors x, + , —>.

For arbitrary functions, our function ‘order’ E/i->b is not a partial order. However, 
we only use monotone functions, and for them, E/i —̂ Eb is indeed a partial order, and 
it is in fact the same as the usual order on functions — A —»Eb-

Fractions ^  are treated specially: In addition to distributing □ through the fraction 
constructor —, anything from B  is below anything from A. It follows that E /u  — U
({Lo_L} x Aj_), tha t is, the order of A± is essentially the order of A. and in addition, 
Lo_L is below everything.

□ A =  u  (Lo*B x Hi* A)
—  B  L / j  V /

Upward closed sets are ordered using the Smyth-order (the order of the “weak pow- 
erdomain” in [Smy78]), whereas closed sets are ordered using the Plotkin order.

Eim — $  E a
E c>4 =  P E  A

It doesn’t conflict with the previous definitions to let order distribute into intersection 
and union of sets.

EnS — flsGS —»
Eus — UsGS E.S •

T h eo re m  34 For every set S  built from primitive sets using x, U, C, and f|>
the relation Qs is indeed a partial order.

For the case of S = A+ B.  Cs is defined as the relational disjunction Inl*C ^U lnr*C 5 . 
In general, the relational disjunction of partial orders need not be a partial order, but 
in this case it is because and Inr*C 5 are disjoint.
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As mentioned, the relation is not a partial order for arbitrary functions:
it is not reflexive, although it is antisymmetric and transitive. However, for monotone 
functions, Qa->b =  Qa -> Eb is indeed a partial order, and on monotone functions, it 
coincides with = A—>Qb -

Neither S Q A nor V ^ A are antisymmetric for arbitrary subsets of A; but for upward 
closed, respectively closed, sets, they are antisymmetric.

W hen there is no confusion we will drop the subscript and write E for the order on 
the appropriate set.

9 .1 .4  C o m p le te  P a r t i a l  O rd e r s

We define complete partial order and then present some ways of constructing complete 
partial orders.

A set S  is a complete partial order (cpo) ordered by E if S  is partially ordered by C, 
S  contains a least element, and every increasing chain of elements of S  has a least upper 
bound in S. We will write _L5 for the least element. It is least if _L E s for every element 
of S. We will write |_|* si f°r the least upper bound of the chain s0 E «i E s2 E •••• It 
satisfies, for arbitrary x.

V i.Si E x =  |_| Si E x.
1

The index i ranges over some unspecified index-set.
We call a function /  : A -» B  for complete partial orders A and B continuous if it 

preserves least upper bounds. In symbols, that is,

/ (U 5*) = U f Si‘
i i

For primitive sets P  and epos A and B. these constructions are also epos:

P±
(A x B )±
(A + B ) ±
{A U£)_l 
(CA)_l.

There are others (for example A x B  and A -» B).  but here we only discuss those tha t 
will later be used as type-interpretations. A primitive set P  is almost a cpo: it only 
lacks a least element. Therefore, we simply add one and form P±. The product A x B  
is already a cpo, with least element J_B). However, since we aim to model lazy 
pair-formation in the specification language, we add a new least element. The least 
element of {A x B ) j _  is Lo_L, which is strictly less than _Lb). The sum A -f- B
is not already a cpo, since it lacks a least element. The candidates InlJ-^ and InrTjg 
are incomparable. We must add a new bottom, and form {A -f B)± . As will be shown 
in the next subsection, for cpo B.  the set UB  is also a cpo. Therefore the monotone 
function space A —> UB  is also a cpo. We use UB  as the domain of the functions 
rather than  B  because we aim to model functions with nondetermined bodies. Because
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in the specification language we aim to distinguish the undefined function _L from the 
“everywhere undefined function” Ax._L (which is itself defined), we lift the monotone 
function space, and form (A —> UB)j_.

Finally we construct the cpo (CA)j_ which will later be used to model set-values. In 
fact, CA \  {{}} is already a cpo, namely a version of the Plotkin powerdomain [Plo76]. 
Unlike [Plo76], we don’t restrict ourselves to finitely-generable sets since we aim to model 
unbounded non-computational sets like N as well as computational sets. This m atter is 
further discussed in section 9.3.1. Recall the definitions

CA =  {closea S  | S  C A}

closeA S  =  {x  € A | (3 s € S.s  U x) A (Vz.z C x =$■ 3 s € S.z  □ s)}.

By using closed subsets of A rather than just arbitrary subsets, we ensure tha t the order
is in fact antisymmetric, tha t singleton formation and the union operator are as desired
continuous, th a t and CA \  {{}} is in fact a cpo. A more detailed presentation can be 
found in [Plo76, Plo83, Sch86]. The least element of the cpo CA \{{}}  is {-L^}. The 
empty set has to be excluded because it is incomparable to any other set, in particular to 
{_L^}. However, we need to model the empty set too, and furthermore we aim to model 
lazy set formation (a set with undefined elements is not itself undefined) and therefore 
add a new least element below everything, including {-L^} and {}, and form the cpo 
(CA)j_.

Finally, here is one last cpo-construction: separated sum. It will not be used directly 
in interpreting the types of the specification language, but it will be necessary to define 
the universe of all outcomes later. For epos A and B,  the cpo A © B  is defined as 
((A \  {-L^}) +  (B \  {-Lb}))^ with the same order as (A +  B )± . This binary construction 
can be generalized to any finite number of arguments.

Summarising, we have the following theorem.

T h eo rem  35 For primitive sets P  and epos A and B,  the following are also epos: 
P l ,  (A x B ) j _ ,  (A +  B)  l ,  (A -» UB)± . (CA)± .A  © B, with notation and associated order 
as described.

9 .1 .5  U p w a r d  C lo s e d  S e ts

We will model expressions by upward closed sets. This subsection defines upward closed 
sets, and presents some lemmas about upward-closure. Finally it relates the order prop
erties of a set A to the order properties of its upward closed subsets UA with a view to 
using least upper bounds and fixpoints to model recursion later.

The upward closure of set S  within universe A is defined as

= {b e A \ 3a  £ S.a Ub}.

S  is the set of elements tha t can be reached from elements of S  by ascending. When 
the universe is obvious, we’ll omit the subscript. It is easy to show that

L em m a 36 Upward closing is monotone with respect to C; A C B implies t VA C j"VB.
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Upward closing by the relation C has these properties:

L em m a 37  Upward closing increases a set: S C ^ S .

This is an easy consequence of □ being reflexive.

L em m a 38 Upward closing is idempotent: =

This lemma follows from reflexivity and transitivity of □.
An easy proof will show

L em m a 39 Arbitrary intersections and unions of upward closed sets (within the same 
universe) are upward closed: =  tfM  and (JA = tLM for any set of upward closed
sets A.

T h eorem  40 For upward closed sets (within the same universe), the order S Q  is simply 
supersetting: ^A  t B i f f “\A  3  t B.

This theorem is the motivation for rather than the consequence of using upward closed 
sets. If we interpreted specification language expressions simply as the set of their 
outcomes, then the order that captures the desired meaning of refinement would be 
the Smyth order S [I where □ is the order on outcomes. But using upward closed 
sets of outcomes to interpret specification language expressions, the order interpreting 
refinement is the simpler superset order. The proof of the theorem is:

t  A D t  B  
- superset

V6 e ^ B . b  G t-4 
=  reflexive C

V b € 3 a € t A.a C b A b G jA
= t  A

V 6 € 3 a e ^ A . a  □ b
SU  

t A t B.

L em m a 41 In particular, for upward closed sets (within the same universe) is an
tisymmetric: t  A SQ  t B and t B SU  -f A imply t  A = t B.

This lemma gives a simple interpretation of specification equivalence, namely set 
equality.

A complete lattice is a set S  ordered by some relation C such tha t □ is a partial 
order, and least upper bounds and greatest lower bounds of arbitrary subsets of S  exist. 
In particular, there are a least and a greatest element, necessary as the least upper and 
the greatest lower bound of the empty subset of S.  Obviously, any complete lattice is 
also a cpo.

We conclude:
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T h eo rem  42 For each partial order S, upward closed subsets of S, VS, are a complete 
lattice. The order is supersetting, the least element is S itself, the greatest element is the 
empty set, least upper bounds and greatest lower bounds are given by intersections and 
unions.

The least upper bound of a chain of upward closed sets (that is, its intersection) 
obviously exists, and is itself upward closed, but it may be empty. For example, let 
Si = {x | 0 <  x < 4-}- The Si are upward closed with respect to C r (which is simply 
= r )  and moreover, since S, D Si+1 for each i. they form a chain, but I z £ N} is
empty. Now upward closed sets will be used to denote the expressions of the specification 
language, and in particular, the empty set will denote an infeasible expression. We will 
use least upper bounds to give semantics to recursive expressions. Clearly, there always 
is an upper bound, namely the empty set. However, one would expect a recursive 
expression (with feasible body) to be itself feasible. How can we ensure that empty sets 
cannot arise as the denotations of recursive expressions ?

If we demand, firstly, tha t S be not merely a partial order, but in fact a complete 
partial order, and secondly, restrict our attention to chains of (upward closed) singleton 
sets, tha t is Si = t{ 5i} f°r each b then we can guarantee non-empty least upper bounds. 
Since Si Cus Sj implies Si Qs Sj, we obtain a chain s0 C Si C s2 Q ... in S. S is a 
cpo, and therefore this chain has a least upper bound Ui si • Since singleton formation 
s i-» t{s}  is continuous, we have U* t{ si} — t{L_li our desired non-empty least upper 
bound. We have

T h eorem  43 For each complete partial order S, chains of upward closed singleton sub
sets of S have a non-empty least upper bound in the complete lattice VS.

In the semantics that follow this subsection, we often make sets upward-closed by 
aPplying t- In calculations, we can remove the t  under certain conditions, making use 
of monotonicity. For instance, when calculating the semantics of a function application, 
we will find sets given by { y  \ f  4- t F . x  <— ^ X ,  y 4-  /  x}1. Given that all functions 
in F  are monotone, we can remove both occurrences of t  without changing the set. The 
result is a combination of the following two lemmas.

L em m a 44 { y  \ f  4— 1'F, x 4— X . y  -4- f  x}  =  {y \ f  4-  F . x  4— X . x  4— f  x}, where F  
is a set  of functions to upward closed sets.

Proof.
{ y  | /  4-  tF ,  x 4- X ,  y 4-  f  x}

=  set comprehension
[ J ( X f . { y \ x ^ X , y ^ f x } r  t  F  

-  X f  . { y | x 4— X ,  y 4— f  x }  is C—̂O monotone, lemma 46
\ J ( X f . { y \ x 4 - X , y 4 - f x } Y F  

= set comprehension
{ y  | /  <-  F,  x 4-  X ,  y 4-  f  x} .

1We use set-comprehension notation with . It may be more familiar to some readers when £ is
substituted for . Others may want to remove the set comprehension notation completely using these
rules: {e | x  4— s} =  {e | x  £  5 } ,  and {e | <71, qn } =  (J{{e | <72,..-, qn} \ <71) where each qi is of
the form x  4— s for some variable x  and set s
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The function Af . { y  \ x <— X ,  y <— f  x }  is indeed C—O  monotone, since its body is 
D—O monotone in f  x, and the order on upward-closed-set-valued functions (like /) 
gives us /  C / '  is V x . f  x f  x. Lemma proven, for arbitrary functions f  : A UB.

L em m a 45 { y  \ f  «— F. x <— t X , y 4-  f  x}  =  { y  \ f  4- F^x 4-  X , x  4-  f  x }, w/aere F 
is a set  of C-O monotone functions.

Proof.
{y | /  4- P, a: 4-  y 4-  f  x }

= set comprehension
u { u / * t * i / < - n

— / i s  C—O  monotone, lemma 46

U { U / * * ! / < - * ’}
=  set comprehension

{ y \ f  4-  F. x  4-  X . y  4-  f  x} .
Lemma proven, using monotonicity of / .

We used the lemma:

L em m a 46 \Jf*^S — U  f*S, if f  is C—O  monotone.

Proof.
a e [ ) n s

=  t
3 x. 3,9 (E S.s C x A a € /  x

— / i s  O  monotone
3 s G S.a £ f  s

a£ \J f*S .
Lemma proven.

Another place where t  can be dropped is in calculating the semantics of enumerated 
sets. Here we meet sets of the form ^{close{vi , ..., tin} | Vi <— which are equal to 

{close{vi . .... i>n} | Vi 4- Si}.

L em m a 47 t {c lose{^ i,..., vn} \ Vi 4-  t ^ }  = }~ {dose {v i , .... vn}  \ Vi 4-  Si}

Proof.
s <E LHS

t
3 Vi. 3 Si £ Si.Si Q Vi A close{vi..... vn} P C  s 

= close{ai , ..., an} is C—> P C  monotone in P C  transitive
3 Si € Si.close{si,.... sn} P C  s

s € RHS.

9.2 Semantics

We'll now give semantics to the specification language, but first some preliminaries. 
The semantics of state transformers are given in a separate subsection. We'll use three
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n ® ] t = {true, false} ± example of a primitive type
T[A x B]i = (TlA]i x T[B\i)± pairs
T[A + B\t = {r{A}i+TlBji)± sums
T[A -> B\i = {monotone /  : D —t D

| Vd e T [y l] i . /  d €  UT[B]i}_L functions
T p M ] t == (C T M O x sets
W a . T ] c n TT [T ] t [a r] typeschemes
T [a ] t = i a type variables
T h i a . T \ i = pF

where F S = T[T]i[a i-x S] recursive types

Figure 9.1: Interpretations of the types

meaning functions. T [ ] gives the meaning of a type, which is a set. E\  ]p gives the 
meaning of an expression in environment p. which is a set. and C\ ] gives the meaning 
of a constant, which is a single element.

9 .2 .1  T y p e s  a n d  E n v ir o n m e n ts

Every type T  is interpreted by a set of outcomes T [T ]t. where t is a mapping from type 
variables to  sets. T [T ] t will be a subset of the universe of outcomes D. to be described 
shortly. Figure 9.1 gives the interpretations of the types.

The primitive types are interpreted by the appropriate primitive sets, lifted to add 
a least element. Pair types and sum types are interpreted by lifted cartesian products 
and lifted disjoint sets. This means that pair and sum expressions may contain unde
finedness without being themselves undefined. Function types axe interpreted by lifted 
monotone function spaces, with range upward closed sets. This makes the undefined 
function _L different from the “everywhere-undefined” function A x._L. The range of the 
interpretation are sets to capture the nondeterminacy contained in function-expression 
bodies. Monotone functions are sufficient to model the functions in the language since 
(for reasons explained in subsection 3.3.4, under “Functions”) we restricted functions in 
the language to be monotone. The set type is interpreted by closed sets lifted. This 
means a set expression can contain undefinedness without being itself undefined.

The interpretation of a typescheme Va .T is the intersection of all its interpreted 
instantiations T  where the type variable a is replaced by a (monomorphic) type r .  For 
example, the interpretation of V a.[a] will be the intersection of all monomorphic list- 
types. This intersection is not empty. It will contain representations of the undefined list 
_L, the empty list [ ], and all lists obtained by “cons”-ing _L onto these lists arbitrarily 
many times. The interpretation of the type V a, b.a x b —> & x a is a subset of the 
intersection of, for instance, the interpretations of N x 1  - y l x N  and 1  x N 4  N x B. 
This intersection is not empty. It contains the (representation of the) polymorphic 
pair-swapping function and various lower functions. This becomes obvious when the 
interpretation o f N x B —x B x N i s  considered: it is {monotone /  : D —> D | V d G 
T[N  x B]i. /  d € UT[B x Njt}j_. A non-bottom element of it, /  say, maps values of
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N x l  to (upward closed sets of) values of ® x N; but it also maps other elements of D to 
arbitrary elements of D. W hat these elements are doesn't matter, because type-checking 
ensures th a t such applications will never be of interest. However, the interpretation of the 
polymorphic pair-swapping functions is indeed an element of T [N x  ® —> i x  N]t, and of 
every other type of shape T  x U —>• U x T, and therefore also of T[V a , b .a x b  —> b x  aji.

A type variable is interpreted simply by looking it up in the mapping i. The interpre
tation of fi a .T  under type-variable mapping i is the least fixpoint (with respect to C) of 
the set-to-set function F.  which maps a set S  to T [T ]t[a  5]. The fixpoint exists if F  
is monotone with respect to  C. We will only use recursive types for which this is indeed 
the case. This is quite easy to ensure since apart from function types, which are not 
monotone in their first argument, all type constructions are monotone in their arguments. 
However, to make types tha t are easily understood, all the recursive types we use have 
the form f i a .T  where T  is a sumtype, one of whose summands is a product containing 
a. Types are equal under unfolding of recursion, that is f i a .T  = T[(fi a . T ) / a].

By theorem 35 every type interpretation is a complete partial order.
The universe of all outcomes D should be a set that contains as subsets T \ T \ l  for 

every type T.  Since for every type T  and U we also have the types T x U. T + U, 
T  -» U , and IP T. we must ensure tha t for all subsets A and B  of D tha t interpret the 
types T  and U. respectively, the sets (A x B)±.  (A +  B)  L, (A —> UB)jl, and (CA)j_ are 
also subsets of D. Naturally the interpretations P]_ of the primitive types must also be 
subsets of D (1 < i < k).

One way to achieve this is to define D as the cpo that is the least fixed point of the 
recursive domain equation

D = P{  0 ... © P i  © (D x D)± © (D +  D)± © {D -» VD)± © (CD)± .

We use the symbol =  rather than =  to indicate tha t D need not be equal to the right hand 
side. It need only be isomorphic to it, tha t means, there should be an order-preserving 
bijection between the two. Of course the functions D —> UD must be monotone.

Such recursive domain equations are studied for example in [Sto77, Plo83, Sch86, 
SHLG94], and there are various approaches for finding solutions to them, for instance 
the category-theoretic method described in [SP82]. It is beyond the scope of this thesis 
to describe the methods, but a solution is guaranteed to exist if the cpo-constructors 
used on the right hand side satisfy certain conditions.

In the above recursive domain equation, the only problematic constructors are mono
tone function space _ —> _ and lifted closed subsets (C_)j_. Of the other constructors, 
lifting _j_, coalesced sum ©, pairing x, and separated sum (_ +  _ )± are shown to be 
well-behaved in standard texts such as [Sch86, SHLG94], and the upward-closed set 
constructor U is dealt with in [Hec90].

The monotone function space constructor makes non-trivial solutions impossible, 
noted in [Sto77]. This is also true for arbitrary functions, and is caused by comparing 
cardinalities. The standard solution to this problem, presented first in [SS71, Sco75], is 
to restrict ourselves to continuous functions only. For the purpose of modelling a pro
gramming language, this is acceptable, since programs are computable, and computable
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functions are continuous. However, in a specification language we need to model un
bounded nondeterminacy -  which is not computable, as demonstrated in [Dij82] -  and 
therefore we require non-continuous functions. Presently, we have no solution to this 
problem, and therefore restrict ourselves to continuous functions. That means we are 
guaranteed existence of a universe D. but our semantics does not cover expressions with 
unbounded nondeterminacy.

The second unusual constructor is the lifted closed-subset constructor It
is related to Plotkin’s powerdomain constructor p[_] described in [Plo76], but slightly 
different. In particular, we do not exclude the empty set and sets that are not finitely- 
generable. tha t is non-computable infinite sets. Inclusion of the empty set should not 
be problematic, although it does force us to lift C_ in order to have a least element. 
However, it could be tha t inclusion of non-finitely generable sets causes problems similar 
to those caused by unbounded nondeterminacy. Recursive domain equations involving 
Plotkin’s powerdomain constructor p[_] can indeed be solved, although it is necessary 
to forsake the category CPO in which the objects are epos for the category SFP  whose 
objects are certain limits of CPO. It is not known whether a similar construction can 
be used with (C_)j_. However, sets are much less central to our expression language 
than functions. It if turns out tha t ( C _ ) _ l  is not well-behaved in a suitable category, we 
have not given semantics to set expressions and “©(C-D)j.” should be erased from the 
recursive domain equation specifying the universe D.

Environments map each variable of type T  to an outcome, tha t is, an element of 
the type interpretation of T. We use p  to stand for an environment. Environment p  

maps the variable x  to the outcome p  x .  The environment p [ x  o ] maps x  to o  and 
otherwise agrees with p .  Environments are typed with contexts. We write p  : T to say 
tha t dom p  =  dom T. and for every variable x  £ dom p .  we have p  x  £ TfT x].

It can be shown that for any expression E  and environment p. the set £ [E ]p  is 
upward closed. This is easy to verify by examining the definitions of £ [E ]p  for all the 
shapes of E.  The meaning of many shapes of expressions is explicitly upward closed. 
In other cases upward closedness follows from the facts that unions and intersections 
preserve upward closedness (lemma 39), and that each type interpretation is upward 
closed.

The meaning of expression E  in the environment p is the set of outcomes E\E\p.  It 
can be proven tha t the semantics respects the typing:

T b E  : T implies Vp : T.E\E\p £ U T[T]t.

In this nondeterministic language £[E ]p  is an element of U T [T ]t rather than  an element 
of T [ T \ l .  as may be expected for a deterministic language. The proof is by induction 
on derivations in the type rules for T h E  : T. as in [Wad92a], using the typing rules. 
For each typing rule rjl^Vy* we need to show that Vp : r .£ [E ]p  £ U T [T ji follows from 
V/9j : Ti.ElEij £ \JT\Ti\ i .  for each of the i hypotheses.

In the following subsections we’ll give the interpretations of the expressions, in sep
arate subsections for def, d e t, feas, for refinement and equivalence, for application ex
pressions, for constant expressions, for specificational expressions, for set expressions,
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£ [defE\p  =  {false}, if £[E\p  = t{-L}
=  {true}, otherwise

£{det  Ejp = {true}, \ i 3 v  £ £ \E \p .£ \R \p  = ^{v}  
= {false}, otherwise

£[feasF ]p  =  {false}, \{ £ \E \p  = {}
= {true}, otherwise

Figure 9.2: Meaning of definedness, determinacy, and feasibility

£ { E Q F \ p  =  {true}, if £{E]p D £[F\p  
=  {false}, otherwise 

£[E = F \p  = {true}, if £[E]p = £[F}p  
= {false}, otherwise

Figure 9.3: Meaning of refinement and equivalence

for quantifier expressions, and finally, for imperative expressions.

9 .2 .2  D e f in e d n e s s , D e te r m in a c y , a n d  F e a s ib il ity

The meaning of the definedness-, determinacy-, and feasibility-testers is given in 
figure 9.2. The meaning of defjE is the singleton set containing false if its meaning 
includes the undefined outcome (of the appropriate type). Otherwise it is the singleton 
set containing true. An expression is determined if its meaning contains a minimum 
outcome, or equally, if its meaning is equal to the upward-closure of the singleton set 
containing tha t minimum outcome. An expressions is feasible unless its meaning is the 
empty set.

9 .2 .3  R e f in e m e n t  a n d  E q u iv a le n c e

The meaning of refinement and equivalence is given in figure 9.3. The meaning of 
E  □ F  is {true},  if the meaning of E  is a superset of the meaning of F.  Otherwise, 
it is {false}. Both sets {true} and {false} are indeed upward closed. The meaning of 
E  =  F  is {true} if the meanings of E  and F  are the same set. Otherwise, it is {false}. 
Trivially, mutual refinement is equivalence.

9 .2 .4  A p p lic a t iv e  E x p r e s s io n s

Figure 9.4 gives meaning to the expressions from the A calculus with constants, 
recursion, and le t expressions. Semantics and types for some constants are given in the 
following subsection. The meaning of a constant expression is an upward closed set. For 
some constants, for example 7, this set will just be a singleton, for example {7}, which 
is indeed upward closed. But for other constants, in particular functional constants, the 
set will not be a singleton.

The meaning of a variable is simply the variable looked up in the environment, 
packed into an upward closed set. As for constant expressions, tha t set may or may
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E[k\p = t  {C[k]} constant
E[x\p = t  { p x } variable
E[F X]p = {y 1 /  £\F\P-, % ^  £ p n p ,  y f  x} application
ElXx.EJp = t{A v.E[E]p[x i-> v]} abstraction
E[px.E}p = p F recursion
where F X {y | v <- X . y  <- E{E]p[x ^  v]}
E [let x = E  in  F\p = {w | v 4- E[E}p. w 4- E\F(\p[x •-> t>]} local definition

Figure 9.4: Meaning of the applicative expressions

not be a singleton. The meaning of an application expression F X  is a set, constructed 
as follows. Apply each outcome /  of F  (these will be set-valued functions) to each 
outcome x of X .  obtaining sets, and then union all those sets. The meaning of an 
abstraction expression A x.E  in environment p is a set. It is the upward closure of the 
singleton set containing a function from a value v to the set obtained by interpreting 
E  is the environment tha t maps x to v. and otherwise coincides with p. The functions 
in the set are monotone functions. Monotone functions are sufficient to interpret any 
specification language function, because these are restricted to being monotone (with 
respect to refinement) themselves. Here we are using A in the target language purely 
as a convenient abbreviation. Equivalently, we could have written £[A x .E jp  =  |
V v. f  v =  £[-E]p[:r ^  i>j}, thereby eliminating references to A from the target language.

The meaning of a recursive expression p x : T.E  is the least (with respect to <SC) fix
point of the set-to-set function F. F  applied to a set X  yields the union of E  interpreted 
with x bound to each element of X .  By construction, F is monotone with respect to 
<SC (which is ^  by theorem 40), the order we use for sets representing nondeterminacy. 
This can be verified (without using any property of E ) by noticing tha t x € _ is C — 

monotone, conjunction and existential quantification are =>—>=$■ monotone, {y | _} is 
=>—*C monotone, and t  is C — monotone (lemma 36). By the Generalised Limit The
orem (from [HP72], repeated in [Nel89]), the least fixpoint of F  exists, and is F x for 
some ordinal number A. For any ordinal a. F n is defined

F n = [_\{F{F^) | /3 < a } .

In our case, the order <SC is D. and therefore |J is (notationally confusing) f|. For 
illustration, we have F° = f){} =  t{_LT}, and that is the meaning of recursion if F S  = 
S. tha t is, the recursion makes no progress. For natural n, we have F n+1 = F ( F n).

As detailed in the previous section, if E, the body of the recursive expression p x . E .  
is determined, then we are guaranteed that F  has a non-empty fixpoint, tha t is, p x . E  
is as desired feasible. See theorem 43.

The meaning of the le t expression le t x =  E  in  F  is constructed as the meaning 
of (A x.F)E.  However, this reshuffling of parts of a le t expression need not have a 
type seen as a specification language expression in its own right, even though the le t  
expression has. Therefore, let expressions are not merely syntactic sugar.
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7 N
C[7] = 7 numbers
“1 B -> B

= X± v.{-iv} negation
+ M R -> R
q+i = Aj_ b.{a + b}} addition

: x —̂ y —>• x x y
C |(_ _ )l == Az.tjA y.~\{(x. y)}} pairing
fst x x y —>• x
C\Jst\ = A± ar.t{fs t  x } projections
In i x —> x + y
C[Inl] = Ax.t{Ini  x } constructors
- V- (x —> z) —v (y —> z) —y x -1- y —> z
C[-V-] = A/-t{Aft{A±a:.(/V5W} dis

A± x.E = Ax . i f  x =  _L then t{-L} else E notational convenience

Figure 9.5: Types and meaning of some constants

9 .2 .5  C o n s ta n t  E x p r e s s io n s

Each of the standard constants also has appropriate semantics, and a typescheme. 
Some examples are given in figure 9.5. The functions used on the right hand sides of the 
equations are well-known, except maybe V, which can be pronounced ‘dis’, defined by: 
( / V  9) { Inl  a ) = f  a and (/ v  g){Inr b) =  g b.

9 .2 .6  E x a m p le  o f  D e n o t a t io n a l  S e m a n tic s  o f  a n  E x p r e s s io n

Since there are a lot of sets within functions within sets in the denotational semantics 
we are proposing here, it may be useful to consider an example. We’ll work out the 
semantics of 3 +  4. We treat +  as a curried function applied to two arguments. The 
calculation will use some of the lemmas about upward closed sets presented earlier.

£[3 +  4]p 
=  app.

{ y  I /  <- £[3+]p, X  <-  <?[4]p, y < - f  x}

Now £[4]p =  t{£[4]]} =  t{4} is quite simple, and similarly, £[3]p =  t{3}- The 
partial application 3+ has semantics:
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£{V\x- .T .E\p  =  \J{£[E]p[x •-> v] | v £ T [T ]}  generalised choice
£[-L t]p 
^ [ T t ] p  
£[£  n F]p 
£[if E  fi]p
£ [ ^ £ ] p

£[3+]p
=  app.

{2/ 1 /  —̂ £ [+ Jp -x <- £[3]p, y <- f  #}
=  constants

{y \ f  t{ ^ [+ ]} ?x *- t{^[3]}5 y f  x }
= lemmas 44 and 45 remove both occurrences of t

{y I /  {£[+]}; ® ^  {£[3]}? y *- f
=  def. of the constants

{ y  I /  4— {^j_ a -t{A± b . { a  4- 6 } } } ,  x 4— {3}, y -<r- f  x}
= drawing from singleton sets

{y I y A± a*t{A± M a +  b}} 3}
=  3 7̂  -L. set comprehension

t{A± 6 .{3 +■ 6}}.

We return to the enclosing calculation:
{y I /  £[3+]p, x <- £[4]p, y < - f  x}

=  previous calculations
{y I /  <- t{  A± 6.(3 +  b}}, x <- t{4}, y * - f x }

- lemmas 44 and 45 remove the t
{ y \ f < ~  {A± b.{3 +  b}}, x  <- {4}, y <- f  x]

= drawing from singleton sets
{y | y 4-  Ax b.{3 +  b} 4}

=  4 7  ̂ _L, set comprehension
{3 +  4}

=  arithmetic

{7}-

We arrive at the expected singleton set!

9 .2 .7  S p e c if ic a t io n a l  E x p r e s s io n s

The meaning of specificational expressions is given in figure 9.6. The meaning of the 
generalised choice Fla: : T.E  in environment p is union of the meanings of E.  in every 
environment p[x v]. where v T [T ]t.

The meaning of the undefined and miraculous expressions of type T  are (which 
is T [T ]i)  and {} respectively.

=  t{-L} undefined
=  {} miracle
=  S \ E \ p l } £ \ F \ p  choice
=  if £ \E \p  = {} then t{JL} else E\E\p  miracle buster
=  i f 8{G\p = {true} then £ \E \p  else {} guards
=  if £|y4]]p =  {true} then S \E \p  else t{-L} assertions

Figure 9.6: Meaning of specificational expressions
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£\np = t{r[T]t}
.... E„}]p = ^{dose{v,  . | «, ^

type as set 
enumerated sets 
mapping(a —> b) —► Pa—>¥b

c[*]
u
C M

= \ f  {close(select*s) | Vw G s.select v € /  ^}}
P(P a) —> P a big union

=  A s . t { c / o s e ( | J s ) }
U P a  - > P a  - y P a binary union
C[U]
{ E \ P i - F }  
{ E  I B}
{E  | Ql-, •••; Qn}

= As.t{A £.t{c^ 5e(5 u t)}} 
= (XP. E)*F  
= if  B  th e n  {E}  else {}
=  U { { ^ |  Q2.,~~,Qn}\ Ql}

set comprehensions

Figure 9.7: Meaning of the set expressions

Choice between expressions is interpreted as set union, which preserves upward 
closedness. The meaning of the miracle buster is simply defined by cases. Guards and 
assertions are given meaning using conditional expressions testing their first argument 
for truth.

9 .2 .8  S e t  E x p r e s s io n s

The meaning of set expressions is given in figure 9.7. Any type T  can be used as a set, 
in which case its meaning is simply the upward closure of the singleton set containing 
the interpretation of the type. The interpretation of any type is, as required here, a 
closed set, since any upward closed set is also closed. The meaning of an enumerated set 
expression is the upward closure of the set of all closed sets constructed by drawing one 
element from the interpretation of each enumerated expression.

The usual set-manipulating functions are available as constants. However, their 
definitions are not simply nondeterministic versions of the usual: they must also preserve 
closedness of the sets. We give mapping, big union, and binary union as examples. The 
meaning of big union and binary union is straightforward. The symbols (J and U in the 
bodies of the definitions refer to normal mathematical big union and binary union.

The meaning of mapping a function expression F  over a set expression S.  tha t is 
F*S  is constructed as follows. For each outcome /  of F, and for each outcome s of S , 
and for each element v of s. we select an element of /  v. gather them into a set, and 
close that set. We do this for all possible selecting functions, and collect the resulting 
closed sets into a set, which is finally upward-closed. If for example s is empty, this set 
will contain only the empty set.

The meaning of set comprehensions is given in terms of mapping, conditional, and 
big union. The definitions are repeated in the figure 9.7.

9 .2 .9  Q u a n tif ie r  E x p r e s s io n s

Figure 9.8 gives the meaning of the universal and existential quantifiers. The meaning 
of Vrr : T.E  is constructed as follows. For each outcome of type T, interpret E  with
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£[\/x  : T. Ej p  = M in^{S[E\p[x  ^  v] \ v G T [ T \ i }
£ p x : T . E ] p  = Min<3{ S [ E ] p [ x ^ v ] \ v G r [ T ] L }

{} <v {false} <v {true, false, _L} < v {£n/e,/a/se} <v {true}
{} < 3  {true} < 3 {true, false, -L} < 3 {£n/e,/a/se} < 3 {/a/se}

Figure 9.8: Meaning of the quantifications

x  bound to  th a t outcome, to obtain an upward closed set. Order the obtained upward 
closed sets by transitive < v. The least set is the meaning of Vx : T.E.

The meaning of 3 x  : T .E  is constructed similarly, except tha t we take the least set 
under the transitive order < 3.

9 .2 .1 0  S e m a n t ic s  o f  S t a t e  T r a n sfo r m e r s

A function type delivering a pair is given semantics like this:

T[s a x s]i = (T [s]i U (T [a]i x T [s]t)± )± ;

tha t is, such a function is either 1  or a mapping from a value to a set of things th a t are 
undefined, or pairs. The interpretation of the state transformer type is analogous:

T \ S T  s a}i =  (State —> U (T[a]t x State)

A state transformer is undefined, or a mapping from a state to a set of things tha t are 
undefined, or pairs. Above State is an abbreviation:

State 7 - (N —} D±)±

A state is undefined, or a mapping from a natural to undefined or an outcome (all 
outcomes are represented in the universe D ). The reference types are interpreted as 
naturals or an undefined error reference:

T \R e f  h ] (  =  Njl.

In order to accommodate representations for the types S T  s a and Ref s a in 
the universe D, the recursive domain equation specifying D must be adjusted. We 
add “®(N —>■ to the right hand side. Representations of state transformers and
references are already available, in the form of representations of functions returning 
pairs, and the representation of the type N. We add a representation of states. W ith 
the proviso about continuous versus monotone functions as discussed earlier, there is no 
problem about doing this.

In the definitions of T \ S T  s a\i and T \R e f  s a]t the type s, respectively the types 
s and a, do not appear on the right hand sides. After they have played their role during 
type-checking, they have become meaningless and don’t affect the semantics. Intuitively, 
for references this means: pointers are typed, but all pointers are represented in the same
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way.
W ith these models, states are slightly different from other functions: the body of the 

state-function is determined, whereas normal functions can have nondetermined bodies. 
T hat seems a reasonable choice since the only way to store a value in the state is by 
using the primitive state transformer put  , and that involves binding, which extracts a 
single value from an expression.

However, like normal functions, the state-function is a partial function. The partial 
function is modelled by a total function that maps some arguments to Lo.L. We refer to 
the set of those references for which this is not the case as the domain of the state. We 
define dom a  =  { n £ N  | a n ^  Lol.}.  We also assume that the domain of any state is 
finite, but this is not captured by the semantics. It is possible to distinguish a reference 
th a t is not allocated and one tha t is allocated, but stores the undefined value. The first 
will be mapped to Lol.  and the second to Hil..  The order on the interpretation of the 
state transformer type follows by construction from the rules for distributing order over 
a set.

Now let’s examine the semantics of the state transformers. Operationally between 
the executions of two consecutive state transformers, the state can be changed nonde- 
terministically by two occurrences. There could be an intervening garbage collection, 
examining which references are still accessible, and freeing the others. Or a concurrent 
state thread does a state-operation2.

So far mathematically the states of two separate threads in a program are just tha t 
-  separate. Yet operationally both state threads would be implemented using the same 
underlying state of the machine. So from the point of view of one thread we must model 
the changes tha t another thread may do by nondeterministic changes. Launchbury 
[LJ94] addresses these changes. Neither of these two intervening state changes is visible 
to any program. They leave invariant that part of the state that is accessible from the 
surrounding program.

Semantically the accessible references can be derived from the current environment 
p and the current state a. Define acc p o  to be the set of accessible (proper) references 
using the current environment p and current state a. We have not defined acc p o 
formally, and suppose such a definition will be very long, but for illustration, here are 
some examples. If p maps the variable x to a reference r. then r € acc p o. Furthermore, 
if p maps /  to a function tha t maps 3 to a set of references R. then R C acc p a. As third 
example, if r € acc p o. and o r = H i r' where r' is another reference, then r ' G acc p o. 
The formal definition of acc p o  should list all the one-step accessible references, and 
define acc p a as the union of all references accessible in finitely many steps.

A state a may be changed nondeterministically to state r  by a garbage collection or 
a foreign state operation as long as the states agree domain-restricted to acc p o. Define 
gc p a  to be the least such r ,  that is gc p o =  (acc p o) <3 a. where <3 denotes domain 
restriction. We get the lemma that gc p ((acc p o) < o) = gc p o. tha t is, garbage 
collection loses no accessible references, as expected.

2There is no theoretic need to accommodate this, but we’d like to keep some connection between the 
semantics and the implementation.
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So at many points in the program the current state o  could be changed to any of 
{ t  | gc p r  =  gc p o}. This set is a semantic way of expressing this nondeterministic 
change. The question is just at what points in the semantics this change should be 
inserted.

One thing to keep in mind is that this nondeterministic state transformation depends 
on the  current environment p. However, the meaning of a constant k (such as the 
primitive state transformers) is C\k\ -  it does not depend on the environment p. Building 
this nondeterministic state change into the semantics of the primitive state transformers 
or semicolon, they become ‘environment-dependent constants’. In essence they remain 
constant, but the exact range of their nondeterminacy depends on the environment.

For example, the meaning of the trivial state combinator return cannot be given as

C{return ] =  A a.t{Acr.t{(a, ex)}},

if we assume that the result state may be changed nondeterministically -  with the range 
depending on the environment p. Rather, we’ll use the meaning function E \ \ p  for the 
primitive state combinators, and then we have

E\return ]p =  ^ { \ \  gc p o = gc p r}}}.

Launchbury [LJ94] treats the problem of foreign state operations. He defines an 
‘equivalence modulo foreign state operations’ on state transformers, and rewrites the 
semantics to apply nondeterministic foreign state changes in the middle of the semicolon 
operator. That is, M; A x .K  is roughly: execute M  on the initial state, bind the result 
to x. change the state nondeterministically, and then execute K.

For our purpose (dealing with foreign state operations and garbage collection) tha t 
is not sufficient. Just consider the equivalent pair

new 13; Xv . newS  =  new 3.

The nondeterministic state change to make them equal cannot come at the semicolon: 
there’s no garbage to collect. It cannot be before the execution of the second new on 
the RHS: v is in the environment, and so still considered accessible. Only after the end 
of the second argument of semicolon is it clear that the new reference v is garbage, since 
it goes out of scope.

Here are semantics tha t make the above examples of observably equivalent state 
transformers semantically equivalent: After each primitive state transformer, there’s 
a nondeterministic state change preserving the accessible references. Further, the se
mantics of semicolon are modified: Executing M; A x . K  is roughly: execute M  on the 
initial state, binding the result to x.  Then execute K.  and finally change the state 
nondeterministically, preserving the accessible references. This makes all four primitive 
state transformers and semicolon environment-dependent constants. We’ll just use the 
expression meaning function E[ ]p.

Their semantics are given in figure 9.9.
The meaning of ru n E  is the upward closed set obtained by applying the state-
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return : a —>■ S T  s a
break : a -> S T  s a
new : a -» S T  s (Ref s a)
get : Ref s a —>■ 5T  5 a
pui : i2e/ s a a S T  s a
; : ST 5 a —y (n —̂ ST 5 6) —> S T  s b

8{runE jp  = t{ ^  I k <— 8{Ejp.  o  «— State \  {_L}, (x . o') <— k crj
8[re turnjp  =  ^{X a.\{returnp a}}
8[breakjp =  t{A a.t{A<r.t{(a, ± ««*«)}}}
8{new]p  =  t{ ^  (7-neWp a a}}
8[get Jp = t{A± u.|{A± a.getp a a}}
8\put Jp =  t{A± v-t{A a -t{A± v-putp v a <j}}}
£[;]/> =  t{A &-t{A m.t{semzp A: m}}}

returnp a o  =  t{ ( a ; T) I <?c P G — #c P T}
newp a a = t{(*hr ) I v N \  domcr, gc p r  =  gc p (<j[v  a;])}
getp v o  = if v £  domcr then t{-L} else t U 0" V-,T) I 9C P T — 9C P a }
putp v a a =  if v £  domcr then t{-L} else t{ ( ( ) ;T) 1 9 C p r  = gc p ^  ^])}
s e m i p k m o  = ^{(b. r)  \ (a .o1) <r-k o. l  <r-m a,(b.o")  I o ' . gc p o" = gc p t }

X± x.E  =  Xx. i f  x = _L then t{-L} e/se E

Figure 9.9: Types and meaning of the state combinators
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transformer outcomes of E  to every defined state, and gathering the first elements of 
the resulting pairs. If an undefined pair _L results, the whole expression is undefined. 
The trivial state transformer return a changes the inaccessible part of the state while 
returning a. The state transformer break a simply returns a while destroying the state. 
The state transformer new a fails if applied to an undefined state. Otherwise, it al
locates a free reference, stores a in it, and changes the inaccessible part of the state 
nondeterministically. The state transformer get v fails if v is the undefined reference, or 
if the state is undefined, or if r  is not in the domain of the state. Otherwise, it changes 
the inaccessible part of the state nondeterministically and returns the value stored at 
v. The state transformer put v a fails is the reference v is undefined, or if the state in 
undefined, or if the reference v is not in the domain of the state. Otherwise, it overwrites 
the state with v (->• a. and changes the inaccessible part of the state nondeterministically.

In summary, nondeterminacy is useful in giving semantics to state transformers in 
three ways:

1. The initial state of ru n E  is arbitrary.

2. Allocation returns an arbitrary new reference.

3. The invisible state changes resulting from garbage collections and foreign state 
operations are captured by nondeterminacy.

9.3 Sketches of some Soundness Proofs

This section presents sketches of soundness proofs of some of the refinement laws with 
respect to the denotational semantics given in this chapter.

Refinement is a partial order with minimum _L and maximum T. This is immediate 
since the interpretation of refinement. I), is a partial order with minimum and
maximum {}, which are the interpretations of J_ and T.

Equivalence is mutual refinement. Immediate, since set-equality, the interpretation 
of equivalence, is mutual set inclusion, which is the interpretation of refinement.

Equivalence is a congruence, that is, from E = F  we conclude G[E\ = G[F]. Proof: 
The semantics of G[E] depend on E  only via E{E\p, which is equal to £[E ]p  by as
sumption. Therefore G[E] = G[F].

Choice is greatest lower bound with respect to refinement. Immediate, since set 
union, the interpretation of choice, is the greatest lower bound with respect to set inclu
sion I), the interpretation of refinement.

Function application preserves miracles and distributes over choice in both argu
ments. T hat is, E  T =  T and E  ( F n  G) = E F \1 E G. and similarly for miracles and 
choices as functions. Furthermore, function application is monotone in both arguments. 
Proof. The semantics of an application E X  are {y \ f  <— E\E \p .x  <— E\X\p.  y <— f  x}.  
It is easy to see that if either /  or x are drawn from the empty set (the interpretation 
of T), then the whole set will be empty. Furthermore, if £ [E ]p  or £[X ]p are unions, 
these unions can be distributed to the outside since unions preserve upward closed sets. 
Furthermore, E X  is refinement-mo notone in E  and X .  since the set interpreting it is 
C-monotone in E \E \p  and E\X\p.
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Lambda abstractions are monotone in their bodies, that is, from E  □ F  we conclude 
A x .E  C A x .F .  Proof. The semantics of Xx.E  is t{A v.E\E\p[x i-> i>]}. Upward closing is 
inclusion-monotone, and we have E  C F  by assumption in the environment p. therefore 
it is also true in environment p[x f-> v\.

The (3 transformation is E[A/x] = (Ax .E )A  if A is determined. Proof. A is deter
mined means semantically that there is a semantic value a such tha t £[A]p =  
the proof we’ll use the function F  tha t gives the outcomes of E [A /x\ in terms of the 
outcomes of A. It has the property tha t F  (t{^}) — £\Ei\p\x l~* w].

£{E[A/x]]p  
= for some set-to-set function F

F £[A\p
— A det.

F (t{a})
=  property of F

E\E\p[x  i—̂ a]
=  drawing from singleton sets

{y  I /  v£{E \p[x  w]}, y <- {a}, y * - f  v}
— lemmas 44 and 45, using E  is monotone in x

{ y \ f  t{A v.SlE]p[x w]}, y <- t{a} , y f  v}
= semantics of application and abstraction, and £(y4]|p — t{«}

E [ { \x .E ) A l  
Axiom proven sound.

For arbitrary expression A. the (3 transformation is a refinement: E[A/x]  C (A x.E) A. 
Informal proof. For miraculous A. the law is trivially true. A feasible A can be expressed 
as a choice of determined expressions. For each of these determined expressions A,-, we 
apply the previous law to get E[Ai/x]  =  (Xx.E)Ai.  Since E  is monotone is x. we have 
E[A/x\  is refined by a choice over the left hand sides, and, since application distributes 
over choice, a choice over the right hand sides is equivalent to (A x.E) A.

9 .3 .1  R e la te d  W ork  o n  P o w e r d o m a in s

Powerdomain constructors in denotational semantics correspond to the powerset con
structor in set theory. There are (at least) three groups of powerdomain constructors. 
They are based on the Smyth order, the Hoare order, and the Egli-Milner order. Each 
group is useful for modelling different things. Powerdomains based on the Smyth order 
are useful for modelling demonic nondeterminacy, powerdomains based on the Egli- 
Milner order (e.g. the Plotkin powerdomain) are useful for modelling erratic nondeter
minacy, or for modelling formal sets, whereas powerdomains based on the Hoare order 
are useful for modelling angelic nondeterminacy.

In this thesis, we use a Smyth-style powerdomain to model demonic nondeterminacy 
and a powerdomain based on the Egli-Milner order to model formal sets, that is, the 
sets of the specification language. In the following, we give a brief overview of the work 
about powerdomains by Plotkin and others, and then relate their work to ours.

Powerdomains were first proposed in [Plo76]. T hat paper develops the “Plotkin pow-
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erdomain” , based on the Egli-Milner order. The aim is to model computational nonde
terminacy. The simplest candidate construction P D for domain D is rejected, because 
it lets “nondeterminism mask nontermination”. The kind of nondeterminacy Plotkin 
aims at is computational: Therefore he excludes the empty set and certain infinite sets. 
He excludes the empty set because a computation may have the outcome nontermina
tion, but no computation has no outcome at all. He excludes infinite sets modelling 
unbounded nondeterminacy, since such sets are not computable, see for example [Dij82]. 
In  Plotkin’s terminology, the allowed sets are finitely generable.

Unfortunately, even on this restricted range, the Egli-Milner order has a number of 
defects. Firstly, if the base domain is not flat, then the Egli-Milner order is not antisym
metric. For example, take (N, <) as the base order. Then we have {0,2}'P<{0,1,2} and 
{0 ,1 ,2}P < {0 ,2} and still the sets are distinct. Furthermore, we desire tha t singleton 
formation and the union operator are continuous. Continuity of these operations and 
antisymmetry are achieved by considering closed sets only, tha t is, sets that contain the 
limits of all chains they contain. The non-empty finitely-generable closed subsets of a 
cpo, ordered by the Egli-Milner order, are as desired a cpo with continuous singleton 
formation and union operation.

[Smy78] follows on from Plotkin’s paper. Here too the aim is to find a powerdomain 
construction tha t can be used to model computational nondeterminacy, so Smyth also 
rules out the empty set and sets representing unbounded nondeterminacy. However, 
adopting the attitude that “a computation which may fail to yield any result is as good as 
worthless” , that is, considering demonic nondeterminacy rather than erratic, he develops 
a simpler construction than Plotkin. It is now known as the “Smyth powerdomain”.

The third of the classical powerdomains, the lower or Hoare powerdomain, is intro
duced in [Smy83]. It is useful for modelling angelic nondeterminacy. However, it is not 
relevant in the context of this thesis.

In more recent work, Heckmann [Hec90] examines the three classical powerdomain 
constructions to see whether they are are suitable for modelling formal sets — a motiva
tion different from the original one, which was modelling nondeterminacy. He finds all 
three inappropriate. In particular, the Plotkin powerdomain does not include the empty 
set, but a representation of the formal empty set is definitely needed. If the empty 
set were added to the Plotkin powerdomain, there would be no least element anymore, 
because the empty set is incomparable to any other set, in particular {_L} % {}. Heck
mann rejects putting the empty set artificially above {_L} or adding a new least element, 
“because the algebraic properties ... are messed up” . Instead, he proposes the big set 
domain and the small set domain, which are defined in terms of pairs containing an 
element of the Hoare and Smyth powerdomain each. The big set domain is isomorphic 
to the sandwich domain of [BDW88], and is bounded complete, whereas the small set 
domain is isomorphic to the mixed powerdomain with {} of [Gun89, Gun90].

We use two powerdomains: one of the Smyth-kind to represent demonic nondeter
minacy, and one based on the Egli-Milner order to model formal sets. However, since 
we are giving semantics to a specification language, our requirements are different.

To model demonic nondeterminacy, we use the powerdomain constructor U. Given 
an expression E  with outcomes in the partial order A. the meaning of E  is an upward
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closed subset of A. tha t is, an element of UA =  { t #  | S  C A}. Upward closed sets 
are ordered by D, which, as detailed in theorem 40, is equivalent to ordering arbitrary 
subsets of A by the Smyth order. For any partial order A, UA is a complete lattice, and 
therefore also a cpo.

This approach differs from the one in [Smy78] because our motivation differs. We 
are not giving semantics to a nondeterministic programming language, but to a specifi
cation language. In particular, the empty set does make sense as the model for infeasible 
expressions, and it introduces no problems. Furthermore, we do require sets represent
ing unbounded nondeterminacy. Since IL4 is a complete lattice, fixpoints of monotone 
functions can always be found as the least upper bound (here: intersection) of the ap
proximations. However, to guarantee tha t the fixpoint is more than simply the empty 
set, some extra work is required, as detailed earlier.

To model outcomes of a set-type, we use the powerdomain construction (CA)_l for 
cpo A. This is a variation of Plotkin’s powerdomain. CA are the closed subsets of cpo 
A. including those tha t are not finitely generable. They are not computable, but they 
do represent useful specifications with unbounded nondeterminacy, such as I~\.n : N.n. 
Adding the non-finitely-generable sets causes no difficulties.

However, we have also not excluded the empty set which is needed to represent the 
empty set of the specification language, and that causes a problem. The empty set 
is incomparable to any other set, including {-L^}, and therefore CA does not have a 
least element. Despite Heckmann’s objections [Hec90], we simply add an artificial least 
element. He also does so in [Hec92]. Therefore, the meaning of an expression of type 
IP T  is an upward closed set (like for any expression of any type), containing elements of 
the domain (CA)±. where domain A is the interpretation of type T.



Chapter 10 

Conclusion

The first section of this chapter summarises the technical work of the thesis. The second 
draws conclusions from the experience gained in calculating with imperative expressions 
to compare them with the usual way of writing imperative programs, namely by using 
assignments. The third and fourth sections compare the work of this thesis to tha t of 
Ward [War94] and Flynn [Fly97]. The fifth section sets some areas in which the present 
work could be extended and improved.

10.1 Summary

The aim of this thesis is to present a formalism for calculating programs, including 
imperative programs. The two aspects, easy calculation and capturing imperative pro
gramming, are not easily combined, because the first is based on timeless unchanging 
mathematical expressions and the second is based on specified changes to a state. Rather 
than have imperative variables with assignments which destroy referential transparency 
and thereby make calculations clumsy, we choose to preserve referential transparency 
and bring state into the language in referentially transparent unchanging variables. To 
ensure that the program only ever has one state -  the state of the machine memory -  
the state manipulating operations are parcelled up in the state monad. All the available 
operations ensure that at any time only one state value is used, and therefore the opera
tions can be implemented as performing in-place updates of the real state, the machine’s 
memory.

However, during the derivation of a program, we needn’t limit ourselves to the oper
ations of the state monad. We are free to bind the state to a variable, and manipulate or 
duplicate it in any way we like. It doesn’t matter whether in these intermediate stages 
between specification and program we use the state single-threadedly1: these intermedi
ate stages only exist on paper. The specification language they are w ritten in must be 
as expressive as possible. In the program resulting from the derivation, such freedom 
is forbidden. We take the view that variables that are bound to states are part of the 
specification language, but not of the programming sublanguage.

1that is, there are never two states ‘at the same time’

165
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They share this property with other language constructs, in particular the generalised 
choice and guards. Using generalised choice and guards, it is possible to write expressions 
tha t describe their outcome by a predicate, but don’t give an algorithm to find it. They 
are typically the starting points of transformational program derivations.

The specification language is a very rich expression language, which can roughly be 
described as a combination of the algorithmic language constructs of a modern func
tional programming language like Haskell, with firstly, language constructs capturing 
equivalence, refinement, and propositional and predicate logic, secondly, descriptive non
deterministic language constructs from the refinement calculus, and thirdly, the state 
monad to capture imperative programming.

The language is typed and nondeterministic. The expressions of the language are 
related by equivalence (=) and by refinement (C). The intuition behind refinement is: 
Expression E  is refined by F, written E  □ F. if a customer asking for an implementation 
of E  would be satisfied if given an implementation of F. The technical meaning on the 
other hand is a precise formulation of: For any possible outcome of F  there exists a 
possible outcome of E  th a t approximates it. Refining is a combination of increasing 
term ination and decreasing nondeterminacy.

The two extreme expressions _L and T are the expression tha t need never terminate 
but may deliver any outcome if it does, and the expression that definitely terminates 
delivering exactly the right outcome the user desires. Clearly T  is not implementable -  
a miracle -  and therefore excluded from the programming language.

Our notions of equivalence and refinement capture correctness, but there are many 
aspects they don’t capture. For example, they say nothing about whether the expres
sions are descriptive specifications or algorithmic programs. So if the very first step 
in a derivation -  usually a generalised choice -  is already determined, and we derive 
a term inating algorithmic program from it, this means that all intermediate steps are 
equivalence rather than proper refinements. This occurs in our derivation of a combina- 
tor graph reducer.

Furthermore, refinement also doesn’t capture any time or space complexity of the 
program, or anything about programming style. If the program has nondeterminacy, 
there are no requirements about fairness of the nondeterminacy. Fairness may be added 
during the derivation (a correctness preserving step), but technically tha t step is an 
equivalence. This occurs in our partial derivation of a printer control system.

One question arising here is whether the aim of combining calculational ease and im
perative programs was achieved. We tested our specification language on some example 
derivations. There were four small examples: a printer control system, a musical synthe
siser, an electric clock, and a pattern matching algorithm. It is appropriate to formulate 
them imperatively because they perform some 10 operations. The first two also store 
information in the state tha t will influence the future behaviour of the program. Already 
in writing these small programs, the clumsiness of using imperative operations becomes 
obvious, which discourages the programmer from using imperative expressions. While 
an advocate of functional programming may consider tha t to be an advantage, ideally 
the calculus should allow easy use of state even for algorithms that can be expressed 
without state.
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In another triplet of example derivations, the line, circle, and sphere drawing algo
rithms, state is not necessarily needed until the 10 operations of displaying the figures 
are reached. The programs can be written as stateless expressions producing lists of 
integer pairs, which are then fed to a state transformer performing the 10 operation of 
displaying them as pixels on the screen. The algorithms are however imperative in style, 
since each algorithm initialises a handful of variables and then repeatedly modifies them, 
producing a pixel of the figure each time. The algorithms use state statically, th a t is, 
the number of allocated variables is constant.

In the case of these graphics algorithms, imperative programs were derived indirectly, 
tha t is, the algorithms are first expressed in terms of a state-less higher order combinator. 
Then, an imperative implementation is provided for that combinator, immediately giving 
imperative programs for the algorithms. A host of state-less programs can thus be made 
imperative, possibly by the compiler. The calculations with state are then confined to 
the derivation of the imperative implementations of the combinators, however, there the 
clumsiness has to be faced.

This combinator approach can be applied to programs constructed from certain com
binators. The programs could be left in the form with the combinator, and then several 
implementations given, targeted at different machine architectures.

The graphics algorithms used state in a static way. Some algorithms on the other 
hand need dynamic use of state, tha t is, the number of allocated variables is not fixed. As 
an example, a combinator graph reducer has been derived. The algorithm is imperative, 
with the state being a directed graph. The graph is locally modified by the program 
until it reaches a trivial form. The modifications are overwriting of existing vertices and 
creation of new vertices. Each local modification of the graph is potentially accessible 
from any other part of the graph and therefore not really local.

In deriving this program, we found it necessary to bind the state explicitly to vari
ables, and to use it in many logical and algorithmic expressions. Moreover, to keep 
the expressions manageable we then introduced a generous set of auxiliary functions on 
state values. Of course, in the final program only the state monad operations manipulate 
state.

Our approach to designing a specification language with axioms is fairly practical. 
Nevertheless, we provide denotational semantics based on domain theory. Since the 
specification language contains not-executable constructs, operational semantics based 
on reduction axioms would be inappropriate. The main aim for the semantics is to make 
precise three language features: nondeterminacy, recursion, and state. We have not 
proven soundness of every refinement axiom with respect to the semantics, but believe 
this is possible. We don’t claim tha t the set of refinement axioms given is minimal. It 
could be the case tha t a particular axiom can be derived from the others. We have 
given axioms covering logic, refinement and choice, and the basic language constructs. 
To give a complete set of axioms, one would have to axiomatise arithmetic, set theory, 
data types, and any other primitive constant tha t is used. Instead of doing this, we 
rely on intuition about these algebras from mathematics being carried over to expression 
refinement. Some of these algebras bring theoretical problems with them, but we assume 
th a t none of these are disastrous for program derivation in practice.
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In the denotational semantics, nondeterminacy is treated by sets. Each expression 
denotes the set of its possible outcomes. Refinement (C) is modelled by the superset 
relation (ID). The sets of outcomes may contain the fictional undefined outcome to repre
sent nontermination. Unbounded nondeterminacy is possible, for example the meaning 
of I”! n : N.(n ^  _L) -» n is the set of proper outcomes {0,1,2,...}, a set tha t does not 
contain nontermination. Our calculus is concerned with total correctness, that is, an 
expression th a t need not term inate is as bad as an expression that will not terminate.

T hat relation ‘as bad as’ is captured by the Smyth order of sets [SS92], which gives 
rise to the weak powerdomain [Smy78], also known as the upper powerdomain. Rather 
than use the Smyth order as refinement and its antisymmetric closure as equivalence, 
we adopt the equivalent approach of letting each expression denote an upward closed set 
of outcomes. Then refinement is indeed simply supersetting, and equivalence is just set 
quality. The Smyth order is still used, namely in upward-closing the sets.

Recursion is given meaning as the least fixpoint of a monotone function. Upward 
closed sets form a lattice, so least fixpoints of monotone functions exist, and can be 
found by repeatedly applying the function to the least set.

State is modelled by a finite function from natural numbers to outcomes. Nonde
terminacy is used three times in giving semantics to the state manipulating primitives: 
the initial state is arbitrary, allocation yields an arbitrary new reference, and between 
state transformers the inaccessible part of the state may change arbitrarily. This use of 
nondeterminacy leads to nondetermined expressions. However it does not lead to nonde
termined whole programs, since the values of references and of states are not observable.

10.2 Comparison with the Imperative Refinement Calcu
lus

We have presented a refinement calculus in which imperative programs can be specified 
and derived. That is also the purpose of [Bac80, Mor87, Mor88b]. They present ‘the 
refinement calculus*' which we will refer to here as the imperative refinement calculus 
(IRC). A comprehensive account is given in the textbook [Mor94]. In this section we 
will compare the two calculi, based on the experience of the derivations given earlier.

The crucial difference between the two is the way in which imperative programming 
is captured. In IRC assignments to program variables are used, whereas in our language 
the state monad is used.

The imperative refinement calculus as commonly presented has the following three 
weaknesses. The first is tha t as a consequence of using assignments there are two levels 
of reasoning: the level of expressions and the level of commands. One level of reasoning 
with one universally applicable set of laws would be simpler, and therefore preferable. 
In IRC at the level of expressions there is no nondeterminacy and no recursion. We 
reason about expressions by replacing subexpressions by equal subexpressions. Since the 
expression language in IRC is so simple there’s usually not much reasoning to be done at 
expression level. At the level of commands ‘specification statements*' (nondeterministic 
assignments) give rise to nondeterminacy, and recursion gives rise to nontermination. 
Recursion is usually used in the form of tail-recursive loops.
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We reason about commands by replacing one command in a program by an equivalent 
command or a command refining it. Here, equivalence of commands is equality as pred
icate transformers [Dij76], and refinement is lifted implication of predicate transformers. 
To derive a program (essentially a sequence of assignments with simple expressions) 
from a specification (usually one assignment or a nondeterministic assignment with rel
atively complicated expressions), we need to connect reasoning about expressions and 
reasoning about commands. This is done by translating assignments into substitutions: 
the semantics of the assignment x := E  is given in terms of a substitution, namely 
wp (x := E ) P = P [E / x\. Substitution also appears in the refinement laws. For example 
the law th a t introduces an assignment is: if P  => Q[E/x] then x : [P. Q] □ x :=■ E.

The second weakness of the imperative refinement calculus is that the poverty of the 
expression language forces one to express almost all calculations at the level of com
mands. Expressions are always determined and terminating. Therefore there can be 
no (possibly nondetermined) specification constructs in expressions. While that may be 
fine for programming, during program specification and derivation it is useful to have 
specification expressions. Recursion is also banned from expressions, since it introduces 
the possibility of undefined (nonterminating) expressions. Recursive functions in expres
sions are very convenient for programming, and exist in real imperative programming 
languages, but in IRC what could have been expressed by a recursively defined function 
must be put into a loop. One could add if  th e n  else expressions to IRC, since they pre
serve definedness and determinacy, but not the potentially undefined and nondetermined 
alternation expressions. One has to use an appropriate alternation command instead.

The third weakness is that there is no provision for dynamic use of state, tha t is, 
there are no pointers. There is no way to program with any linked data structure such as 
linked graphs. State comes only in the form of variables. They are declared by [var x*C \ 
where C is a command tha t may use variable x. So the number of variables is fixed by 
the program text, tha t is, the use of state is static. Some papers [Bij89, But95] work 
around this weakness by simulating dynamic use of state. They add an explicit program 
variable, called a ‘thought variable5, tha t represents a mapping from references to values. 
Let5s say the variable is o  of an appropriate array type. Then (in the notation of [Mor94]) 
allocation is the nondeterministic assignment v .o  : [v £  dom <7 , v G dom o  Adom <t0 <a — 
<70]. Dereferencing (t>t) is a shorthand for the application o v. and updating n f E  
is the assignment a  :=  a[v (->■ E]. This only simulates dynamic use of state since (in a 
straightforward implementation) the amount of state is fixed: the whole of the array a  
has to be allocated.

Apart from these weaknesses, the imperative refinement calculus has the advantages 
of being well understood and well known, and of being close to real imperative program
ming languages. It is quite reasonable to specify and derive a program in IRC, and then 
to transcribe it to Pascal or C.

A refinement calculus of expressions with the state monad addresses these three 
weaknesses of the imperative refinement calculus.

Firstly, there is only one level of reasoning. Everything is an expression. In par
ticular, imperative programming is captured in the imperative expressions of the state 
monad. The main expression-forming constructs are function application and function
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abstraction. We reason by distributing function application over nondeterminacy, and 
then using the j3 rule (A x.E ) F  = E [F /x\ for determined F. Replacing subexpres
sions by equivalent subexpressions is equivalence, whether they are numbers, functions, 
or state transformers. Because everything is an expression we have higher-order func
tions, and in particular, higher-order imperative programming: state transformers can 
be bound to variables or encapsulated with run , and be subexpressions of otherwise 
not imperative expressions. That allows us to define higher-order functions correspond
ing to control structures like for  loops in Pascal. Encapsulation allows an imperative 
implementation of a non-imperative specification.

Secondly, the expression language is rich: it includes specification constructs that in
troduce nondeterminacy as well as the algorithmic constructs of a higher-order functional 
programming language tha t bring recursion.

Thirdly, it is easy to make dynamic use of state. The references in the state monad 
are truly references, or pointers. The scope of the reference variable does not limit the 
‘lifetime’ of the stored value. In r u n((new  3; Av.new v); Aw.get w\ Xu.get u ) the 
scope of v is within the inner brackets, but the stored value 3 ‘survives’ and is the value 
of the expression.

These features seem promising. However the price one has to pay for the state monad 
is tha t imperative programs become quite clumsy. The unchanging reference and the 
changing value stored at the reference are distinguished. Consequently every time we 
want to  use the value stored at a reference, we have to dereference the reference, and 
bind the result to a new variable. This make programs longer and less clear, particularly 
if variable names are chosen badly. In some places in the examples we used the same 
variable name for a reference and the value stored there, prefixing the reference variable 
by lv" to emphasise the connection. In addition this explicit dereferencing is clumsy 
in tha t the state has to be mentioned as an argument, even though it is not changed. 
For example, determining whether the value stored at a reference is even, is a function 
of two arguments, rather than just one, the reference. It can be expressed as a state- 
reader valued function A v. Xo.even(o v) : Ref s Z —» SR s B, or even clumsier as the 
state-transformer valued function A v.get v\ X i.return (even z) : Ref s Z - >  S T  s B.

This frequent explicit dereferencing means that state monad programs usually have 
lots of binding lambdas. Many calculation steps are applications of the monad laws, 
particularly the ‘associative bind’ law and the ‘left return’ law. These steps don’t advance 
the derivation much conceptually; they just reshuffle variables and scopes. Although they 
can be made silently they are not completely trivial and it is not difficult to make errors 
in applying them.

On the whole, the clumsiness of the state monad discourages the use of state. That 
may be considered good in a masochistic way, if the derived programs are aimed at 
Haskell compilers tha t naturally don’t compile a state transformer expression as directly 
as a Pascal compiler compiles a sequence of assignments. But a flexible language should 
allow easy imperative programming. Imperative programming is desirable because some 
algorithms rely on (dynamic) use of state for an acceptable time complexity. For others 
the most natural way to express them may be imperative. Admittedly what is natural 
depends on experience and opinion to some degree. However, most people would agree
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tha t Bresenham’s line drawing algorithm for example is naturally expressed as repeated 
modification of updatable variables. But no one would prefer its state monad form to its 
assignment form! For algorithms with static use of state, assignments lead to clearer 
programs. In contrast, for algorithms with dynamic use of state a construction like the 
state monad seems unavoidable (witness the papers mentioned above treating dynamic 
state in IRC tha t make the state into a thought variable that is passed along, like the 
state in the state monad).

Another disadvantage of expression refinement with the state monad is tha t the 
language is not close to real imperative programming languages. It is close to Haskell 
with the state monad, but th a t’s not the usual language or even the usual programming 
paradigm for most real programmers. One could specify and derive a program in ex
pression refinement with the state monad and then transcribe it to Pascal, but that is 
not a good route. The transcription step is too big.

10.3 Comparison with Ward’s Thesis

The work in this thesis in similar in aim to tha t of Nigel Ward [War94]. He presents 
a refinement calculus for a functional language, based on the ideas of the imperative 
refinement calculus. The language constructs he proposes are broadly similar to those 
presented here, except that he proposes language constructs with two kinds of nondeter
minacy: demonic and angelic. For instance he proposes two infix binary choice operators, 
demonic choice E \F . which is the same as our E  (“1F. and angelic choice E o F. which if 
required could be added to the language presented here as E  U F. We prefer the nota
tion n, U, together with □ for refinement and JL, T for what Ward calls abort and magic. 
to emphasise the lattice structure of the specification language. Accordingly, essential 
properties of demonic and angelic choice are 

(X  □ E) A (X  □ F) =  (X O E  n F)
{E C X )  A (F  C X ) = {E U F  □ X), 

from which the demonic and angelic behaviour follows 
E  n _L =  _L 
E  U 1  =  E.

Both our languages are “truly nondeterministic” which means that A abstractions 
with nondetermined bodies are themselves considered determined. Ward contrasts this 
with abstraction distributing over nondeterminacy as seemingly the only alternative, 
for example A x.l n 2 =  A z.l n A £.2. He rightly identifies this proposed theorem as 
undesirable, for the left-hand-side can be refined to A z.if even x  th e n  1 else 2, whereas 
the right-hand-side cannot.

However, there is another option. A A abstraction with a nondetermined body could 
be seen as a nondetermined choice between all functions2 that refine it. For example, the 
expression A z.l fl 2 would be equivalent to (Arr.l) n (A£.2) n (Aar.if even x th e n  1 else 
2) n (Xx. (x mod 1) +  1) n ... A typical A abstraction with nondetermined body would 
be equivalent to an unbounded choice between functions, and not itself determined. A

2 in the usual mathematical sense of determined mappings
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theorem along the lines of the following would relate the nondeterminacy inside the A 
abstraction to nondeterminacy on the outside:

A x. E  =  n f . \ f x . ( E \ Z f x ) - + f ,

where /  ranges over (deterministic) functions of the appropriate type.
Like in W ard’s and our systems

X x . E n F  C X x . E n X x . F

would not in general be an equivalence. However, this third option is genuinely differ
ent. The difference becomes obvious when A abstractions are themselves arguments to 
higher-order functions. Consider applying /  =  Ag.(g 1 =  g 1) to Aar.l n 2. The calculus 
of this thesis and W ard’s yield 

/ ( Xx . l  n 2)
=  /?, det(A x .l  n 2)

(A x.l n  2)1 =  (Ax .l  n  2)1

(l = l) n (l = 2) n (2 = l) n (2 = 2)

True n False.
whereas with a suitable axiomatisation the third option would give 

f { X x . l  n 2)

(i = i) n (2 = 2)

True.
However, we have no axiomatisation of this understanding of A abstractions with non
determined bodies.

In contrast to our calculus, W ard’s language is strict rather than lazy. This decision 
is somewhat a m atter of taste. However, laziness allows more modularity in program 
construction, as has been often argued (for example in [Hug89, Hug90]) whereas strict 
semantics are more easily implementable. We feel that a specification language should 
aim for expressiveness rather than implementability. Of course the lazy/strict decision 
will affect the refinement laws. However, if required, a strict version of A abstraction 
can be defined within our lazy language, e.g. as the abbreviation

A ± x. E = X x . x ^ L ^ E .

Ward briefly discusses a lazy version of his system.
Furthermore, Ward does not discuss imperative programming techniques in his sys

tem. Program development is aimed at implementations in functional languages. How
ever, there seem to be no obstacles to adding the state monad to his language.

The main difference in approach between Ward’s work and ours is that he presents the 
language as defined by the semantics rather than by axioms. He lists many “refinement
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laws” and advises the reader to generate new refinement laws by taking the dual of 
existing laws or proving new laws using the semantics. Therefore a programmer would 
be required to know the semantics Ward supplies — a substantial requirement, since 
the semantics he gives are inspired by the fairly straightforward predicate transformers, 
but a lot more complicated. Furthermore, Ward does not supply inference rules or other 
guidance about how to use the laws calculationally. In contrast we give a language 
defined by an inference system, that is, a list of axioms and a small number of inference 
rules. All laws are theorems — that is, provable from axioms or axioms themselves. 
We do provide semantics for our language to demonstrate the existence of non-trivial 
models. However, the user of the calculus is not required to know the semantics. In 
fact, one could give entirely different semantics to the language — as long as the same 
axioms are supported.

In particular, Ward does not treat improper boolean expressions in depth. Instead, 
he rather restricts boolean expressions occurring in laws to value expressions. However, 
not all non-value expressions are actually improper, and some value expressions are 
improper, namely non-terminating recursive expressions. In contrast, we axiomatise the 
behaviour of the logical connectives for all five possible tru th  values. In laws where 
restrictions have to be made, they are expressed in terms of de t, def, feas, which are 
themselves fully axiomatised. We also characterise value expressions syntactically, but 
just as an easy guide to some of the determined (possibly undefined) expressions.

In giving semantics to his language. Ward has chosen a different route from the work 
presented here. He considers both angelic and demonic nondeterminacy, and therefore 
cannot map the specification language (which has a lattice structure) into sets. If he 
did so — like we do — demonic choice would be interpreted by set union, and angelic 
choice would be interpreted by intersection. In effect, the lattice (C, n, U, X, T) would be 
interpreted by the lattice (D,U,fl, Val, {}). However, this mapping is not appropriate 
since it does not reflect the intended meaning of angelic choice. We would have, for 
example, £[3 U 4]p =  £[3 \p  n  £[4]p =  {3} n  {4} =  {} =  £[T]p.

It is useless to search for a different binary operation on sets to interpret U since it 
would have to be a least upper bound with respect to I) to reflect tha t LI is the least 
upper bound with respect to C, but fl is the unique operation that satisfies this. As 
[Hes90] says, angelic choice has nothing to do with intersection.

To avoid this shortcoming of set-based semantics, Ward maps the specification lan
guage into the lattice MBool = (W o l  —> B), that is, the space of monotone functions 
from upward closed sets of values to { t t . f f}. This lattice does indeed model angelic and 
demonic nondeterminacy in the desired way. The semantics are informally: ((E))pS  
stands for “In environment p. expression E  is guaranteed to yield an outcome in the 
upward closed set £ .”

Demonic and angelic choice are interpreted as follows.

{ ( EnF) ) pS  = {(E))pS A ((F))pS 

« E UF) ) p S  = ((E))pS V ({F))pS.

Both W ard’s semantics and ours use upward closed sets for essentially the same
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reason, namely to model a nondeterministic total-correctness calculus with non-trivial 
semantic domains. That is, in some domains there are distinct semantic values u. v 
such th a t u < v. In fact, in our semantics such distinct semantic values exist even in 
simple domains such as that modelling integer expressions. However, undefined integer 
expressions could have been modelled without requiring an undefined semantic value. 
For functions, on the other hand, non-trivial semantic domains seem unavoidable.

Now refinement in a total-correctness calculus is a combination of

• narrowing demonic nondeterminacy

• widening angelic nondeterminacy

• improving termination.

Nondeterminacy suggests to use sets in the semantics, but if the expressions are actually 
determined, the sets can be singleton sets. Assume we have two determined expressions 
U and V  such that U Q V  whose only possible outcomes are u and v such tha t u < v 
respectively. Then in W ard’s semantics 

U C V 
= semantics of C

V p , S . { ( U ) ) p S ^ ( ( V ) ) p S ,  
where S  ranges over sets of semantic values. Now if S  were not required to be upward- 
closed, we could choose S  = {u} to disprove the intended refinement. Therefore Ward 
requires the target sets of semantic values to be upward-closed. In our style of semantics, 
if E\E\p  were simply the set of possible outcomes of E  in environment p. and as such, 
possibly not upward-closed, then we would have 

U C V 
— semantics of C

vp.empD£iv]p 

M  2 M

false.
which would not model the intended refinement. As mentioned in chapter 9, there are 
two equivalent solutions: Either we order the sets by the Smyth order instead of D, or 
we upward-close the sets E\E\p  and continue to use the simpler superset order.

10.4 Comparison with Flynn’s Thesis

The recent thesis of Sharon Flynn [Fly97] broadly follows the same programme as this 
work. However, there are some differences in scope and emphasis, and in the design 
decisions taken. The main contribution of [Fly97] are given as, firstly, ways of structuring 
large specifications by combining abstractions with potentially infeasible bodies (“partial 
functions”) and, secondly, a simple semantics. The denotational semantics she outlines 
is based on powerdomains and comparable to ours. This approach is indeed simpler 
than for instance W ard’s semantics [War94] -  but as discussed in section 10.3, it cannot 
model both demonic and angelic nondeterminacy at the same time.
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In the following, we will outline and discuss the differences in scope and design 
decisions between [Fly97] and this thesis.

First of all, in Flynn's calculus function application and data type formation are 
strict. Our view on the advantages and disadvantages of laziness is discussed in subsec
tion 10.5.1.

Secondly, the calculi differ in the types they provide. In Flynn’s calculus, there are 
primitive types, functions and tuples, and lists, bags, and sets. The last three in partic
ular facilitate model-oriented specification styles, as in Z or VDM. In contrast, in our 
calculus, there are primitive types, sums, tuples, functions, and sets, and recursive and 
polymorphic types. We don’t provide lists and bags as type constructors, but they can 
be modelled in various ways using the given constructors, for instance as 
typ e  List a = f i x . Empty | Cons a x  

typ e  Bag a =  a —> N.
We consider both recursive types and polymorphic types to be general useful tools in 
constructing various kinds of customised data structures and standard combinator func
tions.

Flynn has proposed and examined language constructs tha t are useful in making4—
modular large specifications. They are biased choice [], function union U, and biased 
function union U. They can be expressed in terms of the core language3 as follows:

E  [] F  =  feasE  E  n -Teas# F 

X x . E U X x . F  =  X x . E u F  

Xx . E U Xx . F = Xx . E  ] F.

The motivation for biased choice is to specify the “normal” case of a program execu
tion first and guard it with a boolean expression capturing “normality” . In case of an 
exception, this guarded expression is infeasible, and the right argument of biased choice 
performs the necessary error-handling. Here is an example: 

atm : (Request, D B ) —» DB
4—

atm (r, db) = (PINCorrect —* Process) [] db.
There are alternative ways of handling errors, for instance, the exception monad, see for 
example [Wad92c]. The motivation for function union and biased function union is sim
ilar, except that now there is an argument. We could build the function atm stepwise. 
First the normal case: f  = X(r. db) .PINCorrect —* Process, and then the exceptional case: 
g = X(r, db).~iPINCorrect —> db, and then combine the two partial specifications to get 
atm = f  U g. Biased function union works similarly, but here would make the guard 
-iPINCorrect superfluous in g. Although the higher order functions X f . Xg . X x . f  xHg x

4—

and Xf . Xg .  Xx . f  x [] g x already exist in her language (and in ours), Flynn insists that 
U and U are ’’syntactic” rather than language constructs. The reason is tha t she has im
posed syntactic restrictions in order to ban potentially infeasible expressions. Therefore, 
according to these restrictions, the above functions /  and g are not well-formed, since 
their bodies are potentially infeasible. However, they may still appear as arguments of

3Here we use our syntax. Similar expressions can be given in Flynn’s syntax.
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4—

U and U. But now still a proof must be given tha t the combined function has in fact got
4—

a feasible body, since tha t is not ensured by use of U or U alone, for example consider 
Xx. x = 1 —>1 U Xx. x  =  2 —» 2. A feasibility proof is still required. In this thesis, 
we have also imposed syntactic restrictions to outlaw potentially infeasible expressions, 
but since as [Nel89] says “syntax is bad”, maybe it would be better to remove these 
syntactic restrictions, particularly in the light of the usefulness of U and U. Naturally, 
the programmer would then have to ensure feasibility is not lost during the refinement 
by other means.

A further difference between the calculi concerns the interpretation of nondetermi
nacy. Flynn interprets nondeterminacy as erratic, tha t is, E  [] F  could evaluate to either 
E  or F  without any preference for defined or undefined outcomes. Therefore _L and _L Q 3 
are not equivalent. We share this operational intuition. However, in a total correctness 
calculus one is always interested in the worst possible outcome and therefore a program 
tha t could fail is as useless as one tha t definitely fails. That means _L n 3 = _L, and we 
have demonic nondeterminacy. In fact, the total correctness view is present in Flynn’s 
work, in form of the axiom for definedness of a binary choice: S(E  [] F) = SE A 5F, 
where 5E  stands for “E is defined”. There are a number of algebraic advantages to 
regarding _Ln3 and _L as equivalent (=) rather than just “refinement equivalent” (□ ) as 
Flynn does. The first is tha t refinement is antisymmetric (with respect to equivalence) 
and therefore a partial order rather than just a preorder. Secondly, the properties of 
demonic binary choice are not only associativity, commutativity, idempotency, unit T, 
but in addition it has the zero _L. Thirdly, the connection between refinement and choice 
is expressed more clearly by

E Q F = E  n F = E

whereas in Flynn’s calculus we only have

E Q F  = -.<5£V {E \\F  = E).

The first formula of the two captures the connection between refinement as a partial 
order with a minimal and maximal element, and demonic choice as the greatest lower 
bound operation. If desired, angelic choice can be added as the least upper bound op
eration. In our view the mathematical elegance of refinement as a complete lattice is 
compelling. However, with the demonic view of nondeterminacy, the axiom for proper- 
ness/determinacy of a choice becomes more complex. Instead of Flynn’s

A (E  I F) = A E  A A F  A (E =  F)

we have

det(F? n F) =  (d e tF  A (E  C F )) V (d e tF  A (F  □ E)).

Continuing with our viewpoint of the refinement lattice, we prefer our generalized 
choice of the form lla; : T. E (E with x bound to an arbitrary outcome of type T)  to 
Flynn’s “specification expressions” [I/S' (an arbitrary element of set S). The advantages
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are tha t n  x .E  is axiomatised concisely as the greatest lower bound and tha t it does 
not require any theory of sets. Furthermore, we have only one language construct that 
introduces infeasibility: the guard. Generalized choice does at worst inherits potential 
infeasibility from its body (typically of the shape F  —» G) but does not introduce infeasi
bility. This design choice makes guarding play a singular crucial role in our calculus: it is 
the connection between the refinement lattice of expressions and the implication lattice 
of propositions. Many other language constructs (assertions, if ... fi, biased choice, ...) 
can be expressed, using guards, as alternations. A generalized angelic choice can easily 
be added as the general least upper bound |J a: : T.E .

Naturally, F lynn’s design choice of interpreting nondeterminacy as erratic also in
fluences her denotational semantics. Broadly, they are similar to ours (and share the 
weakness of not providing a model for angelic nondeterminacy). Both our semantics em
ploy the Smyth order to model the refinement order, but unlike this thesis her semantics 
uses a variant of the Plotkin order for the definedness order. The definedness order is 
used to  find least fixpoints as models for recursive definitions. Incidentally, none of her 
axioms forces the use of least fixpoints; any fixpoint would satisfy the relevant axioms. 
In contrast, our view of nondeterminacy as demonic blurs the distinction between the 
refinement order and the definedness order; we use the Smyth order for both. We do use 
a variant of the Plotkin order to model the order of set-values, but that is a completely 
different purpose, and not central to the semantics.

10.5 Further Work

This section describes possible extensions to our work. Firstly, with laziness and recur
sion, the language has sensible expressions tha t cannot be introduced into a program 
refinement using the present set of axioms. A general theorem introducing recursion 
is missing. Secondly, we ponder an alternative to adding imperative features to a rich 
expression language, namely adding a rich expression language to the imperative refine
ment calculus.

1 0 .5 .1  L a z in e s s , R e c u r s io n , a n d  In f in ite  V a lu e s

Our specification language is ‘lazy5. Semantically, that means that a variable can be 
bound to undefinedness. Intuitively, it means that to evaluate a function application, 
instead of evaluating the argument, and then the body of the function, one rather evalu
ates the body of the function straight away, and only evaluates as much of the argument 
as is needed to evaluate the body. In terms of the theorems of the calculus, laziness 
means th a t j3 reduction is an equivalence for arbitrary determined, but possibly unde
fined, arguments.

We chose laziness because we consider it to be an important tool in specification. 
Laziness separates what is being calculated from how much is calculated. This point 
is frequently argued by lazy functional programmers, for instance in [Hug89, Hug90]. 
Unfortunately, implementations of lazy programming languages are often not as efficient 
as this naive way of thinking seems to promise. The problem is that in an average 
program, many, if not most function arguments will be evaluated sooner or later, and
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delaying their evaluation only adds a large book-keeping overhead. Trying to determine 
which arguments will be used is known as strictness analysis.

However, in our specification language we have already admitted features (foremost 
generalised choice) tha t provide greater expressiveness at the expense of executability. 
We view laziness in the same way: it is a language feature tha t adds expressiveness, 
possibly at the expense of efficient executability. Laziness definitely does not increase 
the set of functions th a t can be implemented: There are algorithms that can be elegantly 
and modularly expressed if the language is lazy, but all computable functions can also 
be w ritten in a strict language.

By the way, making function application lazy can be seen as making the semantics 
more homogeneous. For if we deal with recursive expressions by unfolding, tha t is, 
nf . F\ J]  = F\pf .F\ f ]].  then even in a language with strict application, the functional 
F  th a t produces the recursively defined function is lazy. For us, there is no distinction 
between such a functional and a normal higher-order function A f .F\ f ].

To make lazy function application useful in more than the most pathological exam
ples, we require lazy data structures, that is, the tuple and sum constructors are lazy. A 
consequence is tha t we can write defined recursive expressions of these types too, rather 
than only of function types. The values of these expressions may be finite or infinite.

Yet, our theorems for introducing such expressions into a program derivation are 
limited. For instance, the theorem tha t we use to introduce recursively defined functions 
is repeated here. For <  a well founded order on T.  and F[f] monotone in / ,

fVx. (E  □ F[Xy.y < z > -  E[y/x]])) =» (Xx. E  C p f . Xx . F\ f \ ) .

The resulting recursively defined function takes arguments of type T.  It need not be 
strict, and need not be primitive recursive (for instance the Ackermann function), but 
still there are many functions that cannot be generated by this theorem. These are 
functions that produce potentially infinite results, like iterate f  x =  x : iterate f  ( /  x). 
or even the familiar map : (a -> b) —»• [a] —> [6]. The arguments of their recursive calls 
may be exactly the same as the original arguments, and there is no well founded order 
such tha t X  < X .

As discussed in the section about refinement in chapter 3, the desired general theorem 
tha t introduces recursive expressions (of any type) would be of the shape

(E  □ F[E]) =>■ (E □ fj,x.F[x]). where x is fresh,

with some condition tha t ensures the unfolding-function F  does make progress, th a t it is 
productive. But what is progress ? It is too much to require that F  be not strict, tha t is, 
F[_L] ^  _L, since if E = _L, the strict F[x\ =  x should not be forbidden. It is clearly too 
much to require tha t X  C F[X] for all X ,  since it would rule out F  having any fixpoint 
at all! It would also rule out any candidate F, since if X  = T, no inequivalent, more 
refined F[T] exists. But the weakened requirement X  □ F[X] for all X  is too little: it 
would not rule out F[x\ = x. for arbitrary E. The question remains open: W hat does it 
mean for F  to ‘make progress’ ?

A possible line of attack is to say that if we can observe a certain amount of infor
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mation from X .  we must be able to observe ‘one step’ more from F[X].  For example, 
for lists, we would require something like

(take n xs) -H- J_ C take (n + 1) -Fjars],

for every natural n.
It seems tha t we need comparisons of infinite values, tha t is, theorems like for instance 

the take-lemma of [BW88]: If take n xs = take n ys for each natural n. then xs = ys. 
whether they are finite or infinite. Such laws can be proven sound with respect to  a 
denotational semantics (informally done in [BW88]), or an operational semantics using 
co-induction (see [Gor94b, Gor94a]). Whatever style of semantics is chosen, such theo
rems are only true in programming languages, not for specification languages, since the 
observers are programs. If we restrict ourselves to programs, a progress-characterisation 
along the lines of our tentative axiom ‘operational recursion’ seems reasonable.

In summary, our specification language offers more expressiveness than our present 
theorems can introduce into a program derivation. We desire a theorem that introduces 
recursive expressions of any type, into arbitrary specification contexts.

1 0 .5 .2  T h e  I m p e r a t iv e  R e f in e m e n t  C a lc u lu s  E x te n d e d

The advantage of imperative expressions using the state monad is their referential trans
parency. Their disadvantage is that they are quite clumsy. A Pascal programmer will be 
quite unwilling to accept this clumsiness, especially since for programs with only static 
use of state, the Pascal versions are very clear, even if not referentially transparent.

Weakest preconditions provide a way of reasoning about imperative programs with 
static use of state. The well-known imperative refinement calculus is based on weakest 
precondition semantics. It deals with undefinedness, nondeterminacy, and miracles, but 
only a t the level of commands. The expressions are always assumed to be feasible, 
defined, and determined.

One way to combine expression refinement and imperative programming would be 
to extend the expression language of the imperative refinement calculus. One could use 
our specification language, without the state monad operations. The weakest precon
dition semantics would have to be extended to deal with miracles, undefinedness, and 
nondeterminacy at expression level.

Then ‘functional programs’ (expressions) could be embedded in imperative programs. 
It would also be useful to embed imperative programs in expressions in the way tha t 
r u n E  encapsulates the state transformer E  in a state-less expression. One could extend 
the expression language by adding expressions of the form v a r x : T  *C  •E ,  where x  : T  
is a list of typed variables whose scope is the command C and the expression E. The 
intended meaning is tha t of expression E  with x replaced by the final value of x after 
command C. For example v ar r  : N • r  17; x : = x  — l » x  + 4 would be equivalent to 
20 . Referential transparency for expressions is preserved by demanding that C have no 
free variables except x.  So the above expression could be substituted for 20 anywhere. 
Exploring such a language would have to show whether it is at all useful to distinguish 
referentially transparent variables and assignable variables. It would be reasonable to
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allow C in v a r x : T • C • E  to  refer to referentially transparent variables, but not to 
assignable variables. On the other hand, having two different kinds of variables is not 
desirable for simplicity.

This approach is appealing in tha t it combines well-known syntax from both pro
gramming paradigms, imperative and functional. It addresses the weakness of IRC of 
having a poor expression language. However, it doesn’t remove the two levels from the 
language, and it doesn’t add dynamic use of state.
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