

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Computing Science
Ph.D. Thesis

UNIVERSITY

GLASGOW

Subsequences and Supersequences of
Strings

Campbell Bryce Fraser

Subm itted for the degree of

Doctor of Philosophy

© 1995 Campbell Bryce Fraser

ProQuest Number: 10992195

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10992195

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW i
UNIVERSITY
LIBRARY 1

Abstract ii

A bstract

Stringology — the study of strings — is a branch of algorithmics which been the sub
ject of mounting interest in recent years. Very recently, two books [M. Crochemore
and W. R ytter, Text Algorithms, Oxford University Press, 1995] and [G. Stephen,
String Searching Algorithms, World Scientific, 1994] have been published on the
subject and at least two others are known to be in preparation. Problems on strings
arise in information retrieval, version control, autom atic spelling correction, and
many other domains. However the greatest motivation for recent work in stringology
has come from the field of molecular biology. String problems occur, for example, in
genetic sequence construction, genetic sequence comparison, and phylogenetic tree
construction. In this thesis we study a variety of string problems from a theoret
ical perspective. In particular, we focus on problems involving subsequences and
supersequences of strings.

Many algorithms have been proposed, over the years, for the Longest Common
Subsequence (LCS) problem on two strings. However, very little attention has been
paid to to the problem for more than two strings, perhaps because the problem
is N P-com plete if the number of strings is not bounded [Maier, Journal of the
AC M , 25:322-336, 1978]. In this thesis, we describe two algorithms for the LCS
problem over three strings and show that both can be extended to solve the problem
for any fixed number of strings. The first algorithm can be viewed as a “lazy”
version of a basic dynamic programming strategy, and has tim e and space complexity
0{k n (n — /)A:_1) where k is the number of strings, n is the length of each string,
and I is the length of the LCS. The second algorithm employs a more sophisticated
dynamic programming strategy called the “threshold” approach, and achieves tim e
and space complexity 0 (k l (n — /) fc_1 -f k z n) where z is the size of the alphabet.

Empirical evidence is presented to show that both algorithms improve signifi
cantly on the long-known basic dynamic programming approach, and on a previous
algorithm proposed by Hsu and Du [BIT, 24:45-59, 1984], particularly when the
LCS is relatively long.

Related to the LCS problem is the Shortest Common Supersequence (SCS) prob
lem, also known to be N P-com plete when the number of strings is not bounded
[Maier, Journal of the ACM , 25:322-336, 1978]. When there are two strings, the
LCS and SCS problems are dual so all the algorithms designed for the LCS problem
on two strings apply also to the SCS problem on two strings. However when there
are more than two strings the problems are no longer dual and, as for the LCS prob
lem, very little attention has been paid to the general SCS problem. We describe
two algorithms for the SCS problem over three strings and show how both can be
extended to solve the problem for any fixed number of strings. Both algorithms are

Abstract 111

derived from application of a threshold technique similar to tha t used successfully
for the LCS problem. The first operates on matching symbols of the strings and
achieves 0 (2 tz n k~1t) time and 0 (n k~l t) space complexity, where s is the length
of the SCS and t = kn — s. The second algorithm operates on supersequences of
increasing prefixes of the strings and has tim e and space complexity 0 (k n (s — n)k~1).

Empirical evidence is presented to show that the first algorithm is be tter than
basic dynamic programming for random strings when the alphabet is very large (and
the SCS is consequently very long). When the SCS is short, the second algorithm
performs significantly better than the basic dynamic programming algorithm.

Since the general LCS and SCS problems are N P-hard , exact solutions to large
instances are not likely to be attainable. However the question arises as to how large
the problem instances can become and remain solvable using realistic com putational
resources. For both the LCS and SCS problems, an a ttem pt is made to characterise
the range of problem instances solvable using realistic com putational resources. To
achieve this, a range of efficient algorithms employing two fundam entally different
approaches have been implemented and experiments performed to discover how large
the problem instances may become before the time or the memory space required to
solve them becomes impractical. The first approach employs the familiar dynamic
programming strategy. Throughout the literature, there appears to be an implicit
assumption tha t algorithms based on dynamic programming are the best way to
solve these two problems. To test this, the second approach utilises a natural branch-
and-bound strategy and the extent to which this broadens the range of solvable
problem instances is examined.

The expected LCS length over a given set of parameters (alphabet size, number
of strings, and string lengths) is the average LCS length over all instances of the
problem with that given set of parameters. The expected SCS length is defined
similarly. A natural by-product of the experiments is a body of empirical data,
more comprehensive than any available thus far, which allows estim ation of the
expected LCS and SCS for particular sets of problem parameters. This information
is compared with theoretical results appearing in the literature and may be useful
in guiding future theoretical work on estimating expected LCS and SCS lengths.

Given the N P -hard status of the LCS and SCS problems, it is natural to a ttem pt
to find polynomial-time approximation algorithms for them with good performance
guarantees. The worst-case behaviour of a range of previously proposed, and new,
approxim ation algorithms for the LCS and SCS problems is analysed.

It is shown that none of the approximation algorithms, under analysis, for the
LCS problem has a performance guarantee better than O(z) and 0{n). None of the
approxim ation algorithms, under analysis, for the SCS problem has a performance
guarantee better than O(k) over an unbounded alphabet or O(log k) for a binary

Abstract IV

alphabet.
Despite this worst-case behaviour, empirical evidence is presented to show that,

in practice, some of the SCS approximation algorithms can be expected to give very
good approximations.

The worst-case performance of the stronger SCS approximation algorithms, with
respect to the size of the input, is also studied. It is shown that none has a perfor
mance guarantee better than 0 ((j^ -^)^ loS23_1^ 2) where I is the size of the input.

As discussed above, we may have to resort to finding an approximate solution
to an instance of the LCS (or SCS) problem because it is too big to solve using an
exact algorithm. Having found an approximation 7 to the LCS of a set P of strings,
we could attem p to add symbols to 7 , so tha t it remains a common subsequence of
P , and continue to do so while it is possible. The question then arises as to how
long we can typically expect 7 to get before no more symbols can be added, for it to
remain a common subsequence of P . Similarly, how short can we typically expect 5,
an approximation to the SCS of P , to get while we remove symbols from S so tha t
it remains a common supersequence of P?

The Shortest Maximal Common Subsequence (SMCS) problem is shown to be
N P -complete and a very strong negative result on the approximability of tha t prob
lem, over an unbounded alphabet, is also established. The complexity of the Longest
Minimal Common Supersequence (LMCS) problem is left open 1. Algorithms are
presented for the SMCS and LCMS problems over two strings (in which case, unlike
the LCS and SCS problems, the problems are not dual), which can be extended to
work for any fixed number of strings.

A consistent subsequence of a positive set P and a negative set N of strings is a
string tha t is a subsequence of every string in P but of no string in N. A consistent
supersequence is defined similarly. This thesis addresses, from the complexity point
of view, existence and optimisation problems concerning consistent subsequences
and supersequences.

Some consistent sequence optimisation problems are generalisations of previously
studied sequence inclusion and sequence non-inclusion optim isation problems and
thus inherit NP-hardness. Jiang and Li [Theoretical Computer Science, 119:363-
371, 1992] showed that: (i) finding a consistent supersequence is N P-com plete when
|P | > 2 is bounded and N is unbounded, and (ii) finding a consistent supersequence
is solvable in polynomial tim e when |P | is unbounded and \N\ = 1.

All existing results relating to consistent sequence problems are summarised in
this thesis. Further, the following are shown to be NP-com plete: (i) finding a con

^^Middendorf [Technical Report 300, Institut fur Angewandte Informatik und Formale Beschrei-
bungsverfahren, University of Karlsruhe, 1994] has proved that both problems are M A X S N P -
hard even over a binary alphabet.

Abstract v

sistent subsequence when |P | > 2 is bounded and N is unbounded, (ii) finding a
consistent subsequence when |P | is unbounded and |iV| = 1 , and (iii) finding a con
sistent supersequence when |P | is unbounded and \N\ > 2 is bounded. Polynomial
tim e algorithms are given to find, when |P | and \N\ are bounded: (i) a shortest or
longest consistent subsequence, and (ii) a shortest consistent supersequence.

Analogous to the consistent sequence problems are consistent substring and su
perstring problems. A consistent substring of a positive set P and a negative set
N of strings is a string th a t is a substring of every string in P bu t of no string in
N. A consistent superstring is defined similarly. Polynomial-time algorithms are
described for several consistent substring and superstring problems.

Declaration and Acknowledgements vi

D eclaration

This dissertation is subm itted in accordance with the regulations for the degree of
Doctor of Philosophy in the University of Glasgow. No part of it has been previously
subm itted by the author for a degree at any university and all results contained
within are claimed as original, except where indicated in the preface.

A ck n ow led gem en ts

This work could not have been completed without the first-class supervision of
Rob Irving. He provided me with many pointers for research and his advice and
guidance have been invaluable in broadening my understanding of Algorithmics. His
constructive criticism of everything I have w ritten has greatly improved the quality
of the thesis.

Mike Paterson provided many worthwhile comments on the first complete draft
of the thesis. I would like to thank Ron Poet and A rthur Allison (my supervisory
com m ittee), and Keith Van Risjbergen for their tim e and their advice.

W ithout my parents I would never have received the education to make this
possible and thank-you to Elaine for tolerating my poverty during the last year.

I also wish to thank the Engineering and Physical Sciences Research Council2 for
financial support, in the form of a Research Studentship, during the period October
1991 to September 1994.

2 Previously the Science and Engineering Research Council

Contents

1 In trod u ction and B ackground 1

1.1 In tro d u c tio n .. 1
1.2 Definitions and n o ta tio n s .. 1
1.3 The Longest Common Subsequence P ro b le m ... 3

1.3.1 Complexity r e s u l t s ... 3
1.3.2 Exact algorithms for k = 2 s tr in g s .. 4
1.3.3 Exact algorithms for k > 2 s tr in g s .. 11
1.3.4 Approximation algorithms for the L C S .. 13
1.3.5 Expected LCS l e n g t h s .. 14

1.4 The Shortest Common Supersequence P ro b lem ... 15
1.4.1 Complexity r e s u l t s ... 15
1.4.2 Exact algorithms for k > 2 s tr in g s .. 16
1.4.3 Approximation algorithms for the S C S .. 16

1.5 Problems related to LCS and S C S ... 17
1.5.1 Maximal subsequences and minimal supersequences.................. 17
1.5.2 Negative subsequences and supersequences................................... 17
1.5.3 Consistent subsequences and supersequences................................ 18
1.5.4 Miscellaneous string comparison p r o b le m s 20

1.6 Substring and Superstring P rob lem s.. 20
1.6.1 The Longest Common Substring Problem 20
1 .6 . 2 The Shortest Common Superstring P r o b le m 2 1

1.6.3 Negative and consistent substrings and su p e rs tr in g s22
1.7 The complexity of a p p ro x im a tio n ... 22

2 E x a ct A lgorith m s for th e LCS problem 24
2.1 In tro d u c tio n ..24
2.2 The “Lazy” Approach to Dynamic Programming 24

2 .2 . 1 Recovering an L C S ... 28
2.2.2 A n a ly s is ... 30
2.2.3 Extension to > 3 S tr in g s ... 31

2.3 A Threshold Based A lg o rith m .. 31
2.3.1 Recovering an L C S ... 33
2.3.2 A n a ly s is ... 33
2.3.3 Extension to > 3 S tr in g s ... 36

vii

Contents vm

2.4 Empirical results and co n c lu s io n s .. 36

3 E xact A lgorith m s for th e SCS problem 39
3.1 In tro d u c tio n ...39
3.2 An algorithm operating on m a tc h e s ... 39

3.2.1 Recovering an S C S ... 42
3.2.2 A n a ly s is ... 42
3.2.3 Extension to >3 S t r i n g s ...44

3.3 An algorithm operating on su p ersequences... 45
3.3.1 Recovering an S C S ... 46
3.3.2 A n a ly s is ... 47
3.3.3 Extension to >3 S t r i n g s ... 48

3.4 Em pirical results and co n c lu s io n s .. 49

4 E xact so lu tion s to large instan ces o f th e LCS and SCS p rob lem s 51
4.1 In tro d u c tio n .. 51
4.2 Dynamic programming to solve LCS ... 52

4.2.1 Lazy dynamic programming using an A r r a y52
4.2.2 Lazy dynamic programming using a T r i e ...53
4.2.3 Analysis of Lazy DP solutions to the L C S 53

4.3 Branch-and-bound to solve L C S ..54
4.3.1 Finding a good initial b o u n d .. 54
4.3.2 Improving on the basic s t r a te g y ... 55
4.3.3 Analysis of Branch-and-Bound solutions to the L C S57

4.4 Dynamic programming to solve S C S ...57
4.4.1 Analysis of Lazy DP solutions to the SCS58

4.5 Branch and bound to solve S C S ... 59
4.5.1 Finding a good initial b o u n d .. 59
4.5.2 Improving on the basic s t r a te g y ... 59
4.5.3 Analysis of Branch-and-Bound solutions to the S C S62

4.6 Solving LCS and SCS for two s t r i n g s ... 63
4.7 The experiments .. 63

4.7.1 Behaviour of the branch and bound a lgorithm s................................ 65
4.7.2 Results for the LCS problem when k > 2 ...65
4.7.3 Results for the SCS problem when k > 2 .. 69
4.7.4 Results for the LCS problem when k = 2 ...71

4.8 The expected lengths of the LCS and the SCS of random strings . . . 72
4.8.1 The expected LCS length when k > 2 ... 72
4.8.2 The expected SCS length when k > 2 ... 72
4.8.3 The expected LCS length when k = 2 ... 72

4.9 Conclusions and future w o rk .. 75

Contents IX

5 A pp roxim ation A lgorithm s for th e LCS and SCS problem s 78
5.1 In tro d u c tio n .. 78
5.2 The Algorithm Long-Run ... 80

5.2.1 Worst-case behaviour of L o n g - R u n ... 80
5.2.2 Bad examples for L o n g -R u n ...80

5.3 The Algorithm Best-Next ... 81
5.3.1 Worst-case behaviour of B e s t - N e x t ... 81
5.3.2 Bad examples for B e s t-N e x t...81

5.4 The Tournament A lg o r i th m ..82
5.4.1 Worst-case behaviour of the Tournament A lg o rith m82
5.4.2 Bad examples for the Tournament A lgorithm 85
5.4.3 Bad examples for the Tournament Algorithm on an alphabet

of fixed s i z e ... 87
5.5 The Majority-Merge A lg o r i th m ...87

5.5.1 Worst-case behaviour of the Majority-Merge Algorithm 8 8

5.5.2 Bad examples for the Majority-Merge A lgorithm 8 8

5.5.3 Worst-case behaviour of the Majority-Merge Algorithm on an
alphabet of fixed s i z e .. 89

5.5.4 Bad examples for the Majority-Merge Algorithm on an alpha
bet of fixed s i z e .. 90

5.5.5 “Algorithm M4” of Foulser, Li and Y a n g ... 92
5.6 The Algorithm Greedyl .. 92

5.6.1 Worst-case behaviour of G r e e d y l .. 92
5.6.2 Bad examples for Greedyl on an alphabet of fixed size 94

5.7 The Centre of the Star A lg o rith m ... 97
5.7.1 Worst-case behaviour of the Centre of the Star Algorithm . . . 97
5.7.2 Bad examples for the Centre of the Star Algorithm on an

alphabet of fixed s i z e ...98
5.8 The Minimum Spanning Tree A lg o r i th m ..99

5.8.1 Worst-case behaviour of the Minimum Spanning Tree Algorithm 99
5.8.2 Bad examples for the Minimum Spanning Tree Algorithm . . . 99
5.8.3 Bad examples for the Minimum Spanning Tree Algorithm on

an alphabet of fixed s i z e ..1 0 0

5.9 The Algorithm Greedy2 ..101
5.9.1 Worst case behaviour of G r e e d y 2 ..101
5.9.2 Bad examples for Greedy2 on an alphabet of fixed size 103

5.10 Summary of the approximation algorithms for the LCS and SCS prob
lems .. 104

5.11 Empirical comparison of the approximation algorithms for the SCS
p r o b le m ..104

5.12 Bad examples with respect to the input size for the SCS approxima
tion a lg o r i th m s .. 107

5.13 Conclusions and open p ro b le m s ..110

Contents x

6 M axim al subsequences and m in im al supersequ en ces 1 1 2

6.1 In tro d u c tio n ..112
6.2 The SMCS problem for general k s t r i n g s .. 113
6.3 The SMCS and LMCS problems for k = 2 s t r i n g s115

6.3.1 The SMCS Algorithm ...116
6.3.2 The LMCS A lg o r i th m ...119

6.4 Conclusion and open p r o b le m .. 122

7 C on sisten t subsequences and supersequ en ces 123
7.1 In tro d u c tio n ..123
7.2 Consistent Subsequence P ro b le m s ... 125

7.2.1 Consistent subsequence when |P | is bounded and \N\ is un
bounded (|P | > 2) 125

7.2.2 Consistent subsequence when |P | is unbounded and \N\ is
bounded (\N\ > 1) ..126

7.2.3 Longest consistent subsequence when |P | = 1 and \N\ is un
bounded ..127

7.2.4 Shortest or Longest consistent subsequence when |P | and |iV|
are b o u n d e d ... 128

7.3 Consistent Supersequence P ro b lem s .. 130
7.3.1 Consistent supersequence when \P\ is unbounded and \N\ is

bounded (\N\ > 2) ..130
7.3.2 Shortest consistent supersequence when |P | = 1 and |N\ is

unbounded ... 132
7.3.3 Shortest consistent supersequence when |P | and \N\ are boundedl32
7.3.4 Longest consistent supersequence when |P | is unbounded

and \N\ = 1 ... 134
7.4 Open P r o b le m s ...135
7.5 Consistent String Problems ... 136

7.5.1 Shortest/Longest consistent su b s tr in g ... 136
7.5.2 Consistent superstring when JP| is unbounded and |AT| = 1 . . 137
7.5.3 Shortest consistent superstring when |P | = 1 and \N\ is un

bounded ..139
7.5.4 Longest consistent superstring when |P | is unbounded and

\N\ = 1 139
7.5.5 Open Problems on consistent s t r i n g s ... 139

B ib liograp h y 141

List of Figures

1 . 1 An example of dynamic programming for the LCS of 2 strings 5

2 . 1 The lazy algorithm for the length of the LCS of 3 s t r in g s 29
2 . 2 Evaluation of t (A ,3p — x) for A = (i , j , k) ..29
2.3 Initialisation for the pth iteration of the lazy a lg o r i th m 29
2.4 Recovering an LCS from the t t a b l e ... 30
2.5 The threshold algorithm for the length of the LCS of 3 strings 34
2 . 6 Recovering an LCS from the threshold t a b l e .. 34

3.1 Forward pass of M M L _T hresh ... 43
3.2 Recovering an SCS in M M L .T hresh ... 43
3.3 Forward pass of S C S .T h re sh .. 47
3.4 Recovering an SCS in SC S .T hresh ...48

4.1 The Lazy Dynamic Programming Algorithm for the LCS problem. . . 53
4.2 The basic Branch-and-Bound Algorithm for the LCS problem.............54
4.3 The procedure Choose2.lcs.. 55
4.4 The function Extendible2Jcs... 56
4.5 The function ExtendibleSAcs... 57
4.6 The Lazy Dynamic Programming Algorithm for the SCS problem. . . 58
4.7 The basic Branch-and-Bound Algorithm for the SCS problem............. 60
4.8 The function Choose2.scs.. 61
4.9 The function Extends2.scs... 62
4.10 The function ExtendsS.scs... 63
4.11 Expected lengths of the LCS of random strings...73
4.12 Expected lengths of the SCS of random strings...74
4.13 |Expected LCS|/n for k = 2 ..75
4.14 Random instances of LCS solvable in 1 hour... 77
4.15 Random instances of SCS solvable in 1 hour.. 77

XI

List of Tables

1 . 1 Summary of LCS algorithms for k = 2 s t r i n g s ...1 2

1.2 Summary of LCS algorithms for k > 2 s t r i n g s ...13

2 . 1 CPU times in seconds when LCS is 90% of string length37
2 . 2 CPU times in seconds when LCS is 50% of string length37
2.3 CPU times in seconds when LCS is 10% of string length37

3.1 CPU times in seconds for SCS algorithms on random s t r i n g s50
3 . 2 CPU times in seconds for SCS algorithms when s < l l n / 1 0 50

4.1 CPU times in second for LCS-DP on random strings................................... 6 6

4.2 CPU times in seconds for LCS-BB-3 on random strings.......................... 6 8

4.3 Instances of LCS with similar strings solvable by LCS-BB-2 in 1 hour. 6 8

4.4 CPU times in seconds for SCS-DP on random strings................................... 70
4.5 CPU times in seconds for SCS-BB-3 on random strings................................70
4.6 CPU times in seconds for LCS2-THRESH on random strings.....................72

5.1 Worst-case behaviour of approximation algorithms for the LCS 104
5.2 Worst-case behaviour of approximation algorithms for the SCS 105
5.3 SCS approximations for random strings of length 1 0 0106
5.4 SCS approximations for subsequences of a string of length 100 106

7.1 Consistent Sequence Existence P r o b le m s .. 124
7.2 Consistent Sequence Optimisation P r o b le m s ..124
7.3 Consistent String Existence P ro b lem s... 136
7.4 Consistent String Optimisation P ro b le m s.. 136

xii

Glossary xiii

Glossary

A lp h ab et - A finite ordered list of symbols.

C onsisten t - A string is consistent for two sets P and N of strings if it is a sub
sequence (or supersequence/substring/superstring) of every string in P but of no
string in N.

LC NS - Longest Common Non-supersequence.

LCS - Longest Common Subsequence.

LC St - Longest Common Substring.

LM CS - Longest Minimal Common Supersequence.

M axim al - A subsequence (or substring) 7 of a string a is maximal if no proper
supersequence of 7 is a subsequence (or substring) of a.

M inim al - A supersequence (or superstring) 7 of a string a is minimal if no proper
subsequence of 7 is a supersequence (or superstring) of a.

P re f ix - A prefix of a string a is any string obtainable by deleting zero or more
symbols from the end of a.

P seu d o-cod e - A Pascal-like algorithm description language. The language adopts
many of the reserved words of Pascal but, for brevity, uses indentation to indicate
the scope of a compound statem ent, and omits statem ent separators.

SC N S - Shortest Common Non-subsequence.

SCS - Shortest Common Supersequence.

SC S t - Shortest Common Superstring.

SM C S - Shortest Maximal Common Subsequence.

S trin g - A finite sequence of symbols of some alphabet.

Su bseq uen ce - A subsequence of a string a is any string obtainable by removing
zero or more symbols from a.

Su bstring - A substring of a string a is any string obtainable by removing zero or
more symbols from the start and zero or more symbols from the end of a.

Suffix - A suffix of a string a is any string obtainable by deleting zero or more
symbols from the start of a.

Glossary xiv

Su persequ ence - A supersequence of a string a is any string obtainable by inserting
zero or more symbols anywhere in a.

S u p erstr in g - A superstring of a string a is any string obtainable by prepending
zero or more and appending zero or more symbols to a.

k - The number of strings.

1 - The length of the LCS.

lp(a, 7) - The length of the longest prefix of a th a t is a subsequence of 7 .

n - The length of the strings.

n e x ta(i,a) - The next occurrence table for a string a of length n is defined for
0 < i < n and all symbols a E E as follows;

,. N I m in i7 : a\j] = a, j > zj if such a 7 exists. nexta(t,a) = { V* lJJ J .
{ n + 1 otherwise.

s - The length of the SCS.

sp(a, 7) - The length of the shortest prefix of a th a t is a supersequence of 7 .

2 - The size of the alphabet.

E - The alphabet.

Preface xv

Preface

S ta tem en t o f collaboration
The following describes the roles of student (Fraser) and supervisor (Irving) in work
undertaken jointly.

S ection 1 .3.2

The evaluation strategy of the threshold algorithm to find the Longest Common
Subsequence (LCS) of two strings was designed by Irving. The application of the
divide and conquer technique to improve the space complexity of the algorithm was
carried out by Fraser.

S ection s 2 .2 , 2 .3 , and 2.4

The Lazy Algorithm for the LCS problem was developed simultaneously by Fraser
and Irving. The Threshold Algorithm was developed by Irving. Sections 2 . 2 and
2.3 are adapted in notation and structure from text written by Irving. For the
com putational experiments, the Lazy and Threshold algorithms were implemented
by Irving.

S ection s 5 .4 , 5 .6 , and 5.9

The strategies to prove the upper bounds for the worst-case behaviour of the Tour
nam ent and Greedy approximation algorithms for the Shortest Common Superse
quence problem were proposed by Irving. The sets of strings used to prove the lower
bounds for the worst-case behaviour of the Tournament algorithm (on unbounded
and fixed alphabets respectively) were proposed by Irving. Sections 5.4.1, 5.4.3, and
5.6.1 are adapted in notation and structure from text w ritten by Irving. Section
5.9.1 was w ritten jointly by Irving and Fraser, based on a strategy proposed by
Irving.

S ection s 6.3

The algorithms to find the Shortest Maximal Common Subsequence and the Longest
Minimal Common Supersequence of two strings were developed by Irving. Sections
6.3.1 and 6.3.2 are adapted in notation and structure from text w ritten by Irving.

P u b lica tion s
R.W . Irving and C.B. Fraser. Two algorithms for the longest common subsequence
of three (or more) strings. In Proceedings of the 3rd Annual Symposium on Combi
natorial Pattern Matching, 1992 [32].
(This paper is based on Sections 2.2, 2.3, and 2.4.)

Preface xvi

R.W. Irving and C.B. Fraser. On the worst-case behaviour of some approximation
algorithms for the shortest common supersequence problem. In Proceedings of the
4th Annual Symposium on Combinatorial Pattern Matching, 1993 [33].
(This paper is based on Sections 5.4 and 5.6.)

R.W. Irving and C.B. Fraser. Maximal common subsequences and minimal common
supersequences. In Proceedings of the 5th Annual Symposium on Combinatorial
Pattern Matching, 1994 [34]-
(This paper is based on Sections 6 . 2 and 6.3.)

W ork su b m itted for publication
C.B. Fraser and R.W. Irving. Approximation algorithms for the shortest common
supersequence. To appear in the Nordic Journal of Computing, 1995. (This paper
is based on Sections 5.4, 5.5, 5.6, and 5.9.)

C.B. Fraser, R.W. Irving, and M. Middendorf. Maximal common subsequences and
minimal common supersequences. Submitted to Information and Computation
(This paper is based on Sections 6.2 and 6.3 and related work by Middendorf.)

C.B. Fraser. Consistent subsequences and supersequences. Subm itted to Theoretical
Computer Science. Publication recommended subject to minor corrections.
(This paper is based on Sections 7.2 and 7.3.)

O verlaps w ith recently published w ork by
oth er authors
Immediately after submission of the manuscript to Theoretical Computer Science,
a copy of a just-published technical report of Middendorf [49] was obtained. The
report contains some overlap with the work in Chapter 7. Specifically, using different
problem transformations, Middendorf proves theorems equivalent to Theorems 7.2.1
and 7.3.1. Again using a different transformation, he proves a theorem similar to
Theorem 7.2.2. His result is weaker in tha t it only applies if |iVj > 2 (as opposed
to | | > 1) but stronger in tha t in applies even when the alphabet has size two (as
opposed to unbounded size).

Shortly prior to submission of the thesis, a small overlap with a paper by Chin
and Poon [12] was discovered. The paper contains a similar analysis of the worst-
case behaviour of Long-Run, an approximation algorithm for the Longest Common
Subsequence problem, to tha t in Chapter 5.

Chapter 1

Introduction and Background

1.1 Introduction

Stringology — the study of strings — is a branch of algorithmics which has been the
subject of mounting interest in recent years. Very recently two books [14, 60] have
been published on the subject and at least two others are known to be in prepara
tion. Problems on strings arise in information retrieval, version control, autom atic
spelling correction, and many other domains. However the greatest motivation for
recent work in stringology has come from the field of molecular biology. String
problems occur, for example, in genetic sequence construction, genetic sequence
comparison, and phylogenetic tree construction. In this thesis we study a variety of
string problems from a theoretical perspective. In particular, we focus on problems
involving subsequences and supersequences of strings.

1.2 D efin itions and notations

An alphabet E is a finite ordered list of symbols. A string over E is a finite sequence
of symbols from E. The i th symbol of a string a is identified by a[z]. The symbols
from position i to position j (z < j) are identified by a [i . . . j]. A match between k
strings aq, • • •, &k is an ordered tuple (A, , u) such tha t ai[zi] = o;2 [z2] =

— CK/j [**].
Given a string a over an alphabet E, a substring of a is any string tha t can be

obtained by deleting zero or more symbols from the start and deleting zero or more
symbols from the end of a. A subsequence of a is any string tha t can be obtained
by removing zero or more symbols from anywhere in a. A supersequence of a is any
string tha t can be obtained by inserting zero or more symbols anywhere in a. The
decision version of the Longest Common Subsequence (LCS) problem is to determine,
for a finite set P of strings over an alphabet E, and an integer t £ N , whether there
exists a string of length > t over E which is a subsequence of every string in P.

1

Introduction and Background 2

The decision version of the Shortest Common Supersequence (SCS) problem is to
determine, for a finite set P of strings over an alphabet E, and an integer t £ N,
whether there exists a string of length < t over E which is a supersequence of every
string in P. In this thesis we will study the problems re-formulated in the natural
way as optimisation problems i.e. given a finite set P of strings, find the length of
an LCS (or an SCS) of P.

In general, neither the LCS nor the SCS of a set of strings is unique. In the
case of two strings, the LCS and SCS problems are dual. A Shortest Common
Supersequence of two strings is formed from a Longest Common Subsequence by
inserting into it in appropriate places the unused symbols from each string. In
general, an SCS formed from a particular LCS is not unique for tha t LCS. The
following example serves to illustrate these points:

For the strings

a — abed,

(3 = dacb,

the LCS’s with their corresponding SCS’s in parentheses are ab (dacbcd) and ac
(dabebd, dabedb).

If n and m are the lengths of the two strings and I and 6 are the lengths of the
LCS and SCS respectively then it is clear that

s = n T m — I.

W hen there are more than two strings, there is no obvious duality between the
LCS and SCS. A long LCS does not imply a short SCS and a short LCS does not
imply a long SCS. This can be seen from the following example:

For the strings

a 1 = abc Pi = abc 7i - abzc
C*2 = abd P2 = abd 72 = bczd

= acd = abe 73 = cdze
«4 = bed @4 = abf 74 = dezf .

The unique SCS of the a ’s is abed but the unique LCS is the empty string. Hence
s = n T 1 and I = 0. An SCS of the /?’s is abedef and the unique LCS is ab. Hence
s = 2n and I = n — 1 . An SCS of the 7 ’s is abzezdzezf and the unique LCS is z.
Hence s = 2n + 2 and 1 = 1. Notice tha t the single character (z) common to all the
strings appears in the SCS four times (once for each of the strings).

A generalisation of the LCS problem for two strings is the Minimum Edit Dis
tance problem, also known as the String to String Correction problem. If we al
low the operations delete a symbol, insert a symbol, and substitute one symbol for

Introduction and Background 3

another, on a string, and place a cost on each operation, then the Minimum Edit
Distance problem is to find the minimum cost set of operations to convert one string
into the other. The costs for each operation may not be uniform over the alphabet.
W hen the cost of substitution is set prohibitively high (e.g. infinity) and insertion
and deletion costs are uniform across the alphabet then the problem reduces to the
LCS problem.

1.3 T he Longest C om m on Subsequence P roblem

1.3.1 Complexity results

The Longest Common Subsequence problem was shown to be N P-com plete, even
over a binary alphabet, by Maier [44]. The proof was by a transform ation from the
well-known Vertex Cover (or equivalently Independent Set) problem.

Jiang and Li [37] showed that there exists 5 > 0 such tha t if the LCS problem
over an unbounded alphabet has a polynomial-time approximation algorithm with
performance guarantee k 5 for k strings then P = N P .

Recently Bonizzoni, Duella, and Mauri [9] showed tha t the LCS problem is M A X
S N P -hard , even over a binary alphabet. This means tha t no polynomial-time ap
proxim ation scheme exists for the problem even in tha t special case unless P = N P .
The problem class M A X S N P is discussed in Section 1.7.

B ou nd s for k = 2 strings

Wong and Chandra [70] showed th a t using a decision tree model of com putation
where only “equal/unequal” comparisons between symbols are perm itted, 0 (n 2)
comparisons are necessary and sufficient to find the Minimum Edit Distance or the
LCS of two strings of lengths n over an unbounded alphabet.

Independently Aho, Hirschberg, and Ullman [1] showed the same result for the
LCS problem. They showed that the LCS problem over a binary alphabet can be
solved with 2n + 1 comparisons even if comparisons between symbols of the same
string are forbidden. However when the alphabet size rises above two, they showed
th a t n 2 comparisons are necessary and sufficient. Despite the positive result for the
binary alphabet, no algorithm using only 2 n + 1 comparisons has been presented in
the literature.

Hirschberg showed that ^ (r ilo g n) is a lower bound on the num ber of “less
than /equal to /greater than” comparisons required to find the LCS of two strings of
length n.

Introduction and Background 4

1.3.2 Exact algorithms for k = 2 strings

Throughout this section we will assume the algorithms operate on two strings a and
fd of lengths n and m respectively, and tha t m < n. The following definitions will
be useful in the descriptions of the algorithms. A prefix of a string a is any string
th a t can be obtained by deleting zero or more symbols from the end of a. The i th
prefix a % of a is the string a [l . . . z]. A suffix of a string a is any string th a t can be
obtained by deleting zero or more symbols from the start of a.

The Minimum Edit Distance problem with arbitrary costs on the edit operations
was introduced by Wagner and Fischer [6 8]. They described a Dynamic Program
ming (DP) Algorithm, to solve tha t problem and the LCS problem for two strings,
which runs in 0 (n m) tim e and space. If a is being converted to /3 and D (i , j) con
tains the Minimum Edit Distance between a 1 and , then the algorithm uses the
following recurrence relation:

0 (0, 0) = 0
D(z,0) = D(i — 1,0) -f Del(a[i])

0 (0 , j) = 0 (0 , j - 1) + Ins((3[j])
D(i - 1, j) + 0e/(a[i]),
D (i , j ~ 1) + Ins(p[j]),

~ l , j - 1) + Sub(a[i\,fi[j\)
D (iyj) = M in

where Del(a) is the cost of deleting symbol a, Ins(a) is the cost of inserting symbol
a, and Sub(a,b) is the cost of substituting symbol b for symbol a. The algorithm
evaluates all D (i , j) (0 < z < n, 0 < j < m) and D (n ,m) contains the value of
the Minimum Edit Distance between the two strings. A corresponding set of edit
operations to convert a to (3 can be recovered by a trace through the distance table,
requiring 0 (n + m) time, starting at 0 (n ,m) and finishing at 0 (0 , 0).

In a simplified recurrence relation for the LCS problem, T (z ,j) contains the
length of the LCS of a 1 and for 0 < z < n and 0 < j < m:

0 , if z = 0 or j = 0

L (i , j) = { L(i - 1, j - 1) + 1, if a[i] = f3\j]
max(L(z — l , j) ,L (z , i — 1)), otherwise.

A possible strategy for a DP algorithm derived from the recurrence relation is to
evaluate the L’s in order of increasing z and increasing j . The process is illustrated
in Figure 1 .1 .

An actual LCS can be recovered by a trace through the LCS table, requiring
0 (n + m) tim e, which proceeds as follows. Starting at L (n ,m), scan left while the
L value does not change, then scan up while the L value does not change. Select

Introduction and Background 5

b a c d a
0 0 0 0 0 0

a 0 0 1 1 1 1
c 0 0 1 1 1 1
d 0 0 1 1 2 2
b 0 1 1 1 2 2
a 0 1 2 2 2 3

LCS=ada

Figure 1 .1 : An example of dynamic programming for the LCS of 2 strings

the symbol a £ E represented by the current entry L (i , j) - it is a consequence of
the scans tha t a[i] = p\j] = a. Repeat the process starting at L(i — l , j — 1) until a
symbol at an entry L (i , j) = 1 is selected. In Figure 1 .1 the entries in italics show
where symbols are selected by this process and the corresponding symbols appear
in bold type. It is easy to see the time and space complexities of the algorithm are
0 (n m) .

A simple refinement DPL of DP can find the length of the LCS (or with a simple
extension, the Minimum Edit Distance) but not an actual subsequence (or set of
edit operations) in 0 (n m) time and 0(n) space. When calculating the entries in
row i (L(z, 0) . . . L(i, m)) of the table, only entries from rows i and i — 1 are required.
So when the value in entry L(i — 1 , j — 1) has been used in the evaluation of L (i , j)
it can be discarded and replaced with L(z, j — 1) - the value calculated just prior to
L(z, j) . In this way, only one row of values is stored at any one time.

Hirschberg [25] suggested that the 0 (n m) space complexity of DP would place
a more severe restriction on the size of solvable problem instances than would the
O (nm) tim e complexity. He supported the claim with the following example. Con
sider two strings of length 1000. Assuming coefficients of 1 microsecond and 1 byte
the basic DP algorithm would require 1 second and 1000 kilobytes to find the Min
imum Edit Distance. To address this he provided an algorithm with 0 (n m) tim e
and 0 (n) space complexity which returns the Minimum Edit Distance and a corre
sponding set of edit operations. The algorithm uses a divide and conquer strategy
and applies DPL to compare successively smaller substrings of a with successively
smaller substrings of (3. The strategy is based on the following theorem, the proof
of which is in [25]:

T heorem 1.3.1 For all i, 0 < i < n,

Introduction and Background 6

where D* represents the Minimum Edit Distance between the suffixes a[i + 1 . . . n)
and /3[j -f 1 . . . m].

The algorithm DPL extended for the Minimum Edit Distance is applied to find
D ([n / 2 \ , j) and D*([n /2 \ , j) . The optimum position j ' to split (3 is calculated
using Theorem 1.3.1 with i = [rz/2J. This strategy is then applied recursively to
a[1 . . . | n/2j] with (3[1 .. .j'] and a[|_n/2j + 1 . . . n] with (3[j' + 1 . . . m\. Individual
edit operations are identified when the substrings of a reach length 1 .

Hirschberg [26] proposed two new algorithms aimed at speeding up com putation
of the LCS of two strings based on evaluation of the following structure. Define the
threshold so tha t if t,-^ = j then a 1 and have an LCS of length k bu t a 1 and

have an LCS of length k — 1 . If a % does not have a common subsequence as
long as k with any prefix of (3 then then we define = m + 1 . The r ’s can be
organised in a 2 -dimensional table indexed by i and k and it is clear th a t the largest
k for which rn^ < m is the length of the LCS.

Hirschberg’s first algorithm for computing the table of r values has tim e com
plexity 0 (n l + n logn) where I is the length of the LCS. This will be faster than
DP when the LCS is short, and in the worst case is no worse than DP. The second
algorithm has tim e complexity 0 (l (m — /) logn). When the LCS is long (probably
the interesting cases in practical applications) this algorithm will be much faster
than DP. However in the worst case it has complexity no better than 0 (n m log n).
The space complexity of both algorithms is 0 (n m) .

Independently Hunt and Szymanski [30] developed the same threshold structure
as Hirschberg and proposed a third strategy for the evaluation of the table. Their
algorithm has tim e complexity 0 (r log m) where r is the number of m atches between
symbols of the two strings. In the worst case the number of matches can be nm
giving 0 { n m log m) complexity for the algorithm. However when the num ber of
m atches is low, which is likely when the alphabet is very large, the algorithm will
be very fast. For this reason the Hunt and Szymanski algorithm is used as the basis
of the Unix diff command for file comparison. In this program, each line of a file
is treated as a symbol and the LCS of two files is computed on this principle. The
num ber of matches between two files of n lines will often be fewer than n since often
no two lines in the one file are identical. The space complexity of the algorithm is
0 (n m) .

The algorithm of Masek and Paterson [45] to find the Minimum Edit Distance
broke new ground in that it was the first (and so far the only) algorithm to achieve
a worst-case tim e bound better than 0 (n2), for two strings of length n, in the worst
case. Their algorithm uses the so-called “Four Russians” technique and achieves
a worst-case tim e complexity of 0 (n 2 / l ogn) . The complexity is dependent upon
a fixed size alphabet and all the edit distances being integer multiples of some

Introduction and Background 7

fixed real number. An often quoted result is tha t an extension of the algorithm has
0 (n 2 log log ra/ log n) complexity when the alphabet is unbounded. However no pub
lication of tha t result could be found. Hirschberg [27] cites a private communication
of the result from T.G. Szymanski.

The algorithm is based on computation of the same dynamic programming table
as the Wagner and Fischer Algorithm. However, instead of calculating the entire
(n + i) x (n + 1) table, every possible table with dimensions (i + 1) x (i 4 - 1), where
i = 0(logn), is calculated using the dynamic programming strategy. If the alphabet
is fixed and i is set appropriately, the time required does not affect the algorithm ’s
overall complexity, because of the limited number of possible tables with dimensions
(t + 1) x(* + l).

Each smaller table becomes a mapping from an initial row and column of edit
distances, and one substring of each string, to a final row and column of edit dis
tances. These smaller tables are then used to construct enough of the (n + 1) x (n + i)
table to find the Minimum Edit Distance and to construct a corresponding sequence
of edit operations.

Despite the algorithm ’s good asymptotic behaviour, in practice the strings must
have length greater than 2 0 0 , 0 0 0 before the algorithm outperforms even the ba
sic Dynamic Programming Algorithm. This is due to a large constant factor in
the complexity and a number of practical problems faced when implementing the
algorithm

A number of algorithms in the literature are based on the basic Dynamic Pro
gramming Algorithm but attem pt to improve upon it by suppressing unnecessary
computations. The first was by Ukkonen [6 6] and it solves the more general Mini
mum Edit Distance problem.

Assuming the two strings have length n, the Distance Table is represented as a
list of 2n -f 1 diagonals numbered (—n, 1 — n, 2 — n, . . . , 0, 1,2, . . . , n). Diagonal 0
contains the entries D(0,0), D(1 , 1), . . . , D (n , n). For i < 0, diagonal i contains the
entries D(abs(i), 0), D(abs(i) + 1,1), D(abs(i) + 2,2), . . . , D (n, n — abs(i)) where
abs(i) is the absolute value of i. For i > 0, diagonal i contains the entries D(0,z),
D (l , i + 1), D(2,z + 2), . . . , D(n — i ,n) . Evaluation proceeds along the entries of
diagonal 0. When computing a particular position, paths from position 0 of diagonal
0 to tha t position are calculated as far as is necessary to be sure tha t they cannot
contribute to its value. The term inating condition is based on the number of editing
steps required for a path to affect the current position and the minimum of all the
editing step costs. This facilitates “lazy evaluation” of the dynamic programming
table. W hen D(n ,n) is evaluated the Minimum Edit Distance is known and a set
of edit operations can be recovered by the same trace through the distance table
as is used in Wagner and Fischer’s algorithm. Ukkonen applies the strategy to two
strings of differing length.

Introduction and Background 8

A new threshold algorithm

An algorithm with 0 (n z + l(m — /)) time and 0 (n z) space complexity, where z
is the size of the alphabet, was developed by Irving and Fraser. The algorithm
employs the table of threshold values introduced by Hirschberg [26] and Hunt and
Szymanski [30]. It uses an efficient strategy for evaluating the table to achieve the
tim e bound and applies Hirschberg’s [25] divide-and-conquer technique to achieve
the space bound.

The algorithm computes the next occurrence table for a defined by

. / • \ | m in{7 : a\j] — a . j > z), if such a j exists
nex ta(i ,a) = { \J UJ J’ .

{ n + 1 , otherwise.

It is easy to see tha t the next occurrence table will take O(nz) tim e to evaluate and
will require 0 (n z) space.

The basis for the algorithm is in the following lemma.

L em m a 1.3.1 rifk = mm(Ti-i tk, n e x ta(Ti-iik-i,l3[i]))

Proof
If j3x~l and a -7 have a common subsequence of length k then so must (3% and aP
If (3l~l and for some j ' < j , have a common subsequence of length k — 1 and
j3[i] = a[j] then /?* and have a common subsequence of length k.

If Ti,k = j then either (3l~l and have an LCS of length k or (3[i] = a[j] is the
last element of an LCS of (3l and a?. If the latter is true then (3l~l and a ? , for some
j ' < j such tha t nex ta(j', (3[i]) = j , must have a common subsequence of length
k - 1 . □

We will first look at an 0 (n z + l(m — /)) tim e and space algorithm and then see
how to reduce the space complexity to 0(nz) . The algorithm begins evaluation of
the t ’s on the main diagonal of the threshold table - i.e. it uses Lemma 1.3.1 to
evaluate • • • until = n + 1 indicating tha t there is no prefix of (3 which
has an LCS of length i with a 1. Following this, the diagonal containing r 2)i, 7 3^ ,. •.
is evaluated, again until the first r equal to n + 1 is reached. The process continues
until Tnj < n -f 1 is evaluated for some /. The length of the LCS will be this I
and an actual LCS can be recovered by a fairly straightforward trace-back through
the threshold table. Each diagonal has length at most /, and m — I diagonals are
evaluated. Every threshold value requires constant tim e to evaluate so the tim e
complexity is 0 (n z + l(m — /)). By generating the diagonals dynamically the space
requirement can be limited to 0 (n z -f l(m — /)). The length of the LCS can easily be
found using 0 (n z) space if we waive the need to recover an actual LCS and calculate
each diagonal from the previous diagonal in-situ. We will refer to this form of the
algorithm as TL (Threshold Linear-space).

Introduction and Background 9

Now we will see how to reduce the space complexity by applying a divide and
conquer strategy to the evaluation of the threshold table. The algorithm evaluates
the threshold table using algorithm TL above - the forward pass. In addition, using
algorithm TL an equivalent table is evaluated for the strings a* (the reverse of a)
and ft* (the reverse of /?) - the backward pass. During the forward pass, all Tfm/2],k
are retained in an array F. During the backward pass all k are retained in
an array B , where r*k = j means tha t P[i + l . . . m] and a[j + 1 . . . ra] have an LCS
of length k but p[i + 1 . . . m] and a[j + 2 . . . n] have an LCS of length k — 1 . The
following is an analogue of Theorem 1.3.1 and can be proved in a similar way.

T h e o re m 1.3.2 For all i, 0 < i < m and 0 < k, k' < m,

I = max (k + A/),

where I is the length of the LCS.

The string p is split into its prefix Pp = P[1 . . . [m /2]] and its suffix p s — P [\ m / 2] +
1 . . . m\. The position to split a into a prefix a p and a suffix a s so as to maximise
the sum of the LCS’s of a p, Pp and o s, Ps and hence the overall LCS is calculated
using Theorem 1.3.2 and the arrays F and B. This strategy is applied recursively
to a p with Pp and to a s with Ps until the substrings of P have length one. At this
point, each substring of P will have a corresponding substring of a. The one-symbol
substrings of P tha t appear in their corresponding substrings of a form the LCS.

Since the same number of table entries are evaluated in the forward passes as
in the backward passes, we need only calculate the number of entries evaluated in
the forward passes. At the first level of recursion, l(m — I) entries are evaluated. If
a p and Pp have an LCS of length l\ and a s and Ps have an LCS of length I2 then
11 + h = I and at the second level of recursion, the number of entries evaluated is

, ,m . ,m
h(~2 ~ h) + ^ (y - h)

= (fi + fe) y - (M)

= f y - (M) .

This is maximised for h = h = 2

l(m — /)
2 '

Repeating this analysis at each level of recursion, the total number of entries eval

Introduction and Background 10

uated comes out as

l(m — I) l(m — I) l(m — I)
l (m _ i) + ± — L + —-— + v g 7 +

]°g2 n ,
=

x = 0 ^

< 21 (m — I).

Hence the tim e complexity, including pre-computation of the next occurrence table
for a , is 0 (n z + l(m — /)). The space complexity depends on the space required
to evaluate a threshold table and compute the optimum position to split a:, and on
the depth of the recursion. Clearly 0 (n) space is required to evaluate a threshold
table and the recursion depth is logarithmic in the length of (3. Therefore the pre-
com putation of the next occurrence table for a is the dominant factor for the whole
algorithm and the space complexity is 0(nz) . Apostolico and Guerra [6] showed
how the next occurrence table can be reduced to size n rather than 2 x n at the
expense of an extra log z factor in the tim e complexity.

A brief summary of the other published algorithms for the LCS of two strings
follows. Nakatsu, Kambayashi, and Yajima [52], Hsu and Du [29], Apostolico and
G uerra [6], Chin and Poon [13], and, very recently, Rick [57] described alternative
strategies for evaluating the threshold table. One of the algorithms of Rick [57]
is similar to the algorithm of Irving and Fraser just described. Independently but
significantly later, Mukhopadhyay [50] developed the same algorithm as Hunt and
Szymanski. Apostolico [4], Apostolico and Guerra [6], and Kuo and Cross [42]
described improvements to the algorithm of Hunt and Szymanski. The algorithms
by Apostolico and by Apostolico and Guerra depend on the number of dominant
matches (also referred to as minimal candidates) instead of the number of matches. A
dom inant match (i , j) (o[z] = (3\j\) is a position such the LCS of a 1 and (33 has length
/ bu t the LCS of cd-1 and f t and the LCS of a 1 and f t ~ l both have length 1 — 1 .
There are likely to be significantly fewer dominant matches than straightforward
matches. Kumar and Rangan [41] and Apostolico, Brown, and Guerra [5] applied
the divide and conquer technique to existing LCS algorithms to derive algorithms
requiring space linear in the lengths of the strings. Myers [51], Hadlock [21], and
Wu, Manber, Myers, and Miller [71] described alternative strategies for suppressing
evaluation of unnecessary parts of the dynamic programming table. Allison and Dix
[3] described an implementation of dynamic programming tha t achieves a speedup
of the order of the word length in a computer, over basic DP. Allison [2] described
an im plem entation of dynamic programming in a lazy functional language.

Introduction and Background 11

S u m m a ry o f th e a lg o rith m s fo r th e LC S of k = 2 s tr in g s

Table 1.1 summarises, in chronological order, the characteristics of the published
algorithms for finding the LCS of two strings. In the table, n and m (m < n) are
the lengths of the strings, / is the length of the LCS, r is the number of matches
between the two strings, d is the number of dominant matches between the two
strings, c is the number of edit operations, and z is the number of symbols in the
alphabet. If the entry in the author column is marked with a then tha t algorithm
solves the more general Minimum Edit Distance problem.

1.3.3 Exact algorithms for k > 2 strings

Throughout this section, we will assume for simplicity tha t the algorithms operate
on k strings of length n. However, all the algorithms apply equally well to the case
of varying length strings.

While there are very many available algorithms to find the LCS of two strings,
very few have been proposed to find the LCS of three or more strings. Itoga [35]
extended the basic Dynamic Programming Algorithm to find the LCS of an arbi
trary number of strings. In his paper, Itoga presents an algorithm but here we
show a recurrence relation for solving the problem with dynamic programming. If
T(z’i, i2, . . . , ik) represents the length of the LCS between aq1, 0 %, . . . , and oqf then

L (0 ,0 , . . . , 0) = 0

T r ■ . x f L(ii — 1 , i2 — 1 , • • •, ik — 1) + 1, if Vj ij > 0 and aj[ij] = a
i Z2 , • • • i I k) j m a x \ ,1 ̂ i<j<k Aj, otherwise

where

A ■ = { ° ’ if ij = °
3 | T(z’i, *2 , • • •, ij — 1, • • •, u) , otherwise

and a is some arbitrary symbol of the alphabet.
The algorithm derived from the recurrence relation evaluates 0 (n k) entries each

requiring O(k) time so the time complexity is 0 (k n k) and the space complexity is
0 (n k).

Hsu and Du [28] described a strategy for finding the LCS applicable to two strings
and generalised it for an arbitrary number of strings. Their algorithm is based on
evaluation of what they call a common subsequence tree (CS-tree). The tree contains
a root and one node representing each m atch between symbols in every string. A
(j—m atch is an ordered k-tuple (A, z2, such tha t a[ii] = a[z2] = • • • = a*[zfc] =
(j. We say m atch y between all the strings follows m atch x if, for every string, the
position represented by m atch y follows the position represented by m atch x. In the
CS-tree, for every a £ £ , there is an edge from the node representing m atch x to

Introduction and Background 12

Authors Year Time Space
* Wagner and Fischer [6 8] 1974 0{nm) 0(nm)
* Hirschberg [25] 1975 0 { n m) 0(n)
Hirschberg [26] 1977 0(n l + n. logn)

0(l (m — I) log n)
O(nm)
0(nm)

Hunt and Szymanski [30] 1977 0 (r log n) 0(r)
* Masek and Paterson [45] 1980 0 (n2/ log n) 0 (n 2)
Mukhopadhyay [50] 1980 0 (r log n) 0(r)
Nakatsu, Kambayashi,
and Yajima [52]

1982 1O

0(nm)

Hsu and Du [29] 1984 0 (m l log(n/m) + m/)
0(m l log(n//) + m/)

O(nm)
O(nm)

* Ukkonen [6 6] 1985 0 (m c) 0(c. min(m, c))
Apostolico [4] 1986 0{m. logn + d. log(nm/d)) 0(d)
Myers [51] 1986 0(n (m — I)) O(nm)
Allison and Dix [3] 1986 0 (n m) 0(nm)
Apostolico and Guerra [6] 1987 0(ml. log(min(z, m, 2 n/ra)))

0(m . log n + d. log(2 nm/d))
0(d)
0(d)

Kumar and Rangan [41] 1987 1O

0(n)
* Hadlock [21] 1988 0 (m c) 0{nm)
Kuo and Cross [42] 1989 0 (r + n(l + logn)) 0{r)
Chin and Poon [13] 1990 0 (n z + min(c?2:, ml)) 0 (n z -f d)
Wu, Manber, Myers
and Miller [71]

1990 1O

0(nm)

Irving and Fraser 1991 0 (n z + l{m — I)) O(nz)
Apostolico, Brown, 1992 0(n (m — I)) 0{n)
and Guerra [5] 0(ml. log(min(2:, n, 2 n//))) 0(n)
Allison [2] 1992 0(nm) O(nm)
Rick [57] 1994 0 (n z + min(dz, ml))

0 (n z + min(/(n — /), ml)
0 (n z + d)
0 (n z + d)

* indicates the algorithm solves the Minimum Edit Distance problem.

Table 1 .1 : Summary of LCS algorithms for k = 2 strings

Introduction and Background 13

Authors Year Time Space
Itoga [35] 1981 0 (k n k) 0 (n k)
Hsu and Du [28] 1984 0 (k r) 0(r)
Irving and Fraser [32] 1992 0(kn(n — /)*-1)

0 (/(n — 0 *-1))
0(kn(n — /)fe_1)
0(l(n — l)k~i)

Hakata and Imai [22] 1993 0 (kn z + kzd(log* - 3 n + log* - 2 z) 0(d)

Table 1.2: Summary of LCS algorithms for k > 2 strings

the node representing the first <r-match following m atch x. The length of the LCS
is therefore equal to the length of the longest path from the root to a leaf node.

The algorithm builds and traverses the tree in an efficient way to achieve O(kr)
time complexity and 0(r) space complexity, where r is the number of matches
between all the strings. In the worst case this is the same as dynamic programming.
However when the number of matches is low, as is likely when the alphabet is large,
the algorithm should require much less tim e and space than dynamic programming.

Chapter 2 of this thesis describes two previously published algorithms [32] which
generalise two algorithms for the LCS of two strings to find the LCS of an arbitrary
number of strings.

Hakata and Imai [22] described an algorithm suitable for finding the LCS of sev
eral strings over a small alphabet. Their algorithm is based on tha t of Chin and Poon
[13] for the LCS of two strings and as such utilises the threshold approach described
in Section 1.3.2. The time complexity of the algorithm is 0 (k n z + kzd(\ogk~3 n +
log*-2 z) where z is the alphabet size and d is the number of dominant matches.
The meaning of dominant matches for k strings generalises in a straightforward way
from the meaning for two strings.

S u m m a ry o f th e a lg o rith m s fo r th e LC S o f k > 2 s tr in g s

Table 1.2 summarises, in chronological order, the characteristics of the published
algorithms for finding the LCS of k > 2 strings. In the table, n is the length of
the strings, I is the length of the LCS, r is the number of matches between all the
strings, d is the number of dominant matches between all the strings, and z is the
number of symbols in the alphabet.

1.3.4 Approximation algorithms for the LCS

Despite the negative results, cited in Section 1.3.1, on the approximability of the LCS
problem there has been a little work on finding effective approximation algorithms for
the LCS problem. Jiang and Li [37] proposed an algorithm they called “Long-Run” .

Introduction and Background 14

For a set P of strings, the algorithm proceeds as follows. It finds the maximum i such
tha t the string <j % is a common subsequence of all the strings in P , for some <r (E £ ,
and returns tha t string as the common subsequence. They analysed the average
performance of the algorithm showing tha t on average it returns a subsequence of
length (/ — 0 (/1/2+e)) for any e > 0 where I is the length of the LCS.

Chin and Poon [12] proposed essentially the same algorithm as Jiang and Li for
approximating the LCS and appeared to be unaware of tha t previous work. They
showed th a t in the worst case, the algorithm returns a subsequence of length l / z
where I is the length of the LCS and z is the size of the alphabet. They provide
a few heuristics for improving the performance of the algorithm in practice and
show they all have the same worst-case performance. A general result regarding
approximation algorithms is established: If an approximation algorithm exploits
only global character frequency information then it might return a subsequence as
short as l /z . Finally, they analyse the average performance of the algorithm over a
binary alphabet.

Chapter 5 of this thesis has an analysis of the worst-case behaviour of “Long-
Run” and of another natural approximation algorithm for the LCS.

1.3.5 Expected LCS lengths

The expected Longest Common Subsequence length over a given set of param eters
(alphabet size (z), number of strings (k) and string lengths (n)), denoted here by
f (z , k , n) is the average LCS length over all instances of the problem with that
given set of parameters. As n tends to infinity, the limiting value for the ratio of
the expected length of the LCS to n is defined to be

F { Z i k) = Um / (« .* ■ ") ,
n —¥ oo

The existence of this limit was established by Deken [16]. Measuring the expected
length of the LCS is worthwhile because it provides a frame of reference in which to
assess the similarity of real strings under analysis.

Chvatal and Sankoff studied the expected LCS length for two strings. They
calculated /(2 ,2 , n) for all n < 5. For 2 < z < 15 they derived upper and lower
bounds for F (z , 2). By experimentation, they estim ated / (z , 2,100) for 2 < z < 15,
/(2 ,2 ,1000), and / (2 , 2,5000).

Deken [16] provided two new methods for deriving lower bounds for F(z, 2), one
which gives a tighter than previously known bound when z — 2 and one which gives
a tighter than previously known bound when 3 < z < 15. He showed th a t the rate
of decrease of F (z , k) with increasing z is no faster than 1 /y /z .

Recently, Dancik and Paterson [15] provided a new method for calculating upper

Introduction and Background 15

bounds for F(z, 2) and derived a stronger upper bound for F (2,2). They suggested
th a t their m ethod may be used to find a slightly tighter bound but th a t a new
approach will be required to find the exact value.

The tightest theoretical bounds to date and estimates from experimental re
sults of F(z , 2) for 2 < 2 < 16 appear in Section 4.8.3 of this thesis. For k > 2
estim ates from experimental results of F(z, k) and, where experim entation was pos
sible, G(z, k), for z = 2 ,4 ,8 ,16 and k = 3 ,4 , . . . , 8,16,24 are also given, in Sections
4.8.1 and 4.8.2 respectively.

1.4 T h e Shortest C om m on Supersequence P rob
lem

1.4.1 Com plexity results

The Shortest Common Supersequence problem was shown to be N P-com plete even
over an alphabet of size five by Maier [44]. The proof was by a transform ation from
the well known Vertex Cover problem. Raiha and Ukkonen [56] showed th a t N P -
completeness applies even over a binary alphabet. Timkovsky[64] considered a set of
restricted versions of the SCS problem - SC S(n,r) where all the strings have length
< n and no character from the alphabet appears more tha t r times throughout
all the strings. He showed that SCS(2,3) and SCS(3,2) are N P-com plete but that
SCS(2,2) can be solved in polynomial time. Jiang and Li [37] showed th a t SCS(2,3)
is M A X S N P -hard implying tha t it has no polynomial-time approximation scheme
unless P = N P . Middendorf [48] proved that the SCS problem is N P-com plete over a
binary alphabet even if the strings all have the same length and all contain precisely
three ones.

Jiang and Li [37] showed tha t over an unbounded alphabet the SCS problem
does not have a polynomial-time approximation algorithm with a constant perfor
mance guarantee unless P = N P . Further, if over an unbounded alphabet the SCS
problem has a polynomial-time approximation algorithm with performance guaran
tee O(loglogfc) then N P is contained in DTIME(2po/2/*°5A:), where k is the number of
strings.

Recently, Bonizzoni, Duella, and Mauri [9] showed that the SCS problem is
M A X S N P -hard even over a binary alphabet. This means tha t no polynomial
tim e approxim ation scheme exists for the problem even in tha t special case unless
P = N P . The problem class M A X S N P is discussed in Section 1.7 of this chapter.

Introduction and Background 16

1.4.2 Exact algorithms for k > 2 strings

Since the LCS and SCS problems are dual when there are only two strings, there
are many algorithms for finding the SCS of two strings. However, there is only
one algorithm in the literature for finding the SCS of more than two strings. Itoga
[35] and later Foulser, Li, and Yang [17] described essentially the same Dynamic
Programming Algorithm to find the SCS of any fixed number of strings. Here we
show a recurrence relation to solve the problem with dynamic programming. If
5 (ii , «2 , • • ., ik) represents the length of the SCS of aq1, a jb • • • > a%t then

5 (0 ,0 ,. . . ,0) = 0

5(z 'i,i2 , . ..,...,* jfc) = ™ "+ l

where Oj e {ai[z'i], « 2[i2] , . . . , otk[ik]} and

K j

0"p, O'q}

The number of A’s at 5(z’i, *2 , • • •, u) is limited by the number of distinct symbols
in the set {ai[zi], Qf2 [*’2]? • • • j &k[ik\} which is limited by the number of strings, so this
leads to an algorithm with 0 (k n k) tim e and 0 (n k) space complexity.

Chapter 3 of this thesis describes two new algorithms for the SCS of an arbitrary
number of strings.

1.4.3 Approximation algorithms for the SCS

Despite the negative results, cited in Section 1.4.1, on the approximability of the SCS
problem there has been some work on finding effective approximation algorithms.

Timkovsky [64] proposed a tournam ent style approximation algorithm and asked
for a characterisation of its worst-case performance. For a set P of k strings, the
algorithm proceeds as follows. There are |dog2 fc] rounds. In each round, the strings
are paired up arbitrarily and an arbitrary SCS of every pair is found using any al
gorithm for the SCS of two strings, and tha t SCS is entered into the next round.
Bradford and Jenkyns [11] showed that the Tournament Algorithm could not guar
antee to find the SCS although Timkovsky had not suggested tha t it would do so.

Jiang and Li described a greedy algorithm called Majority-Merge. The algorithm
proceeds as follows. Initialise the supersequence to the empty string. Let o be the
most common symbol of the leftmost symbols of the remaining strings. Ties are
decided arbitrarily. Append o to the supersequence and remove it from the front

, Off [^ l] ̂ O'j) , ^ (^ 2 ? ^ 2 [^2] ? &j) ? • ’ • ? k 7 ̂ k [^A;] 1 ^ j)) ?

[0 , if h = 0

= < h — 1 , if h > 0 and op — oq
I h, otherwise.

Introduction and Background 17

of the strings of which it is a prefix. Repeat this process until all the strings are
exhausted. They showed tha t on average Majority-Merge returns a supersequence
of length (5 + 0 (s 0-707)) where s is the length of the SCS.

Foulser, Li, and Yang [17] analysed four greedy approximation algorithms similar
to M ajority Merge (in fact one is precisely tha t algorithm) for the SCS problem.
They provided both worst and average case analysis for the algorithms and some
empirical results of their behaviour.

Chapter 5 of this thesis contains an analysis of the worst-case behaviour of the
Tournament Algorithm, Majority-Merge, and four other approximation algorithms
for the SCS problem over both unbounded and bounded alphabets. Some empirical
results on the behaviour of the algorithms are also presented.

1.5 Problem s related to LCS and SCS

1.5.1 Maximal subsequences and minimal supersequences

A common subsequence a of a set P of strings is maximal if no proper supersequence
of a is also a common subsequence of P. A Shortest Maximal Common Subsequence
(SMCS) of P is a maximal common subsequence of shortest possible length. Clearly,
a maximal common subsequence of longest possible length is just a Longest Common
Subsequence.

Analogously, a common supersequence a of a set P of strings is minimal if no
proper subsequence of a is also a supersequence of P. A Longest Minimal Common
Supersequence (LMCS) of P is a minimal common supersequence of longest possible
length. Clearly, a minimal common supersequence of shortest possible length is just
a Shortest Common Supersequence.

In Chapter 6 of this thesis the SMCS problem is shown to be N P -hard and a
very strong negative result on the approximability of the SMCS, over an unbounded
alphabet, is established. Polynomial-time algorithms are provided for both problems
over any fixed number of strings.

Subsequently, Middendorf [49] has proved tha t even over a binary alphabet,
finding an SMCS is M A X SN P -hard and finding an LMCS is M A X S N P -hard .
This implies tha t (unless P = N P) the problems cannot be solved in polynomial tim e
and they have no polynomial-time approximation scheme.

1.5.2 Negative subsequences and supersequences

Problems involving negative strings, known as string non-inclusion problems, were
introduced by Timkovsky [64]. Given a set N of strings, a common non-subsequence
of A is a string tha t is not a subsequence of any string in N. A common non

Introduction and Background 18

supersequence of N is a string tha t is not a supersequence of any string in N.
The decision version of the Shortest Common Non-subsequence (SCNS) problem
is to determine, for a finite set N of strings over an alphabet E, and an integer
t £ N , whether there exists a string of length < t over E which is a subsequence
of no string in N. The decision version of the Longest Common Non-supersequence
(LCNS) problem is to determine, for a finite set N of strings over an alphabet E,
and an integer t £ N, whether there exists a string of length > t over E which is
a supersequence of no string in N. Both problems can be re-formulated naturally
as optim isation problems. There is also the problem of deciding whether any LCNS
exists for a set of strings.

Rubinov and Timkovsky [58], and independently Middendorf [47], proved tha t
the Shortest Common Non-subsequence problem is N P-com plete. M iddendorf’s
result holds even when the alphabet size is fixed at two. Rubinov and Timkovsky
also showed that when either the number of strings or the lengths of the strings is
bounded then the SCNS problem can be solved in polynomial time.

Rubinov and Timkovsky [58] showed that determining whether there exists a
Longest Common Non-supersequence (of any length) over a fixed alphabet is trivially
solvable in polynomial time. Specifically, an LCNS exists for N if and only if there
is a string in N of the form <r* for all a 6 E. However, they and independently
Zhang [73] showed that the Longest Common Non-supersequence problem is N P -
complete. Zhang’s result applies even when the alphabet has size two and he also
showed that over an unbounded alphabet, the problem is M A X SN P -hard . The
result of Rubinov and Timkovsky applies when the alphabet is unbounded but the
strings all have length two. They gave a polynomial-time algorithm for the case
when the number of strings is bounded.

1.5.3 Consistent subsequences and supersequences

If we combine elements of the sequence-inclusion problems (LCS and SCS) and
the sequence non-inclusion problems (SCNS and LCNS) then we obtain consistent
sequence problems. Given two sets, P (Positive) and N (Negative), of strings, a
consistent subsequence of P and N is a string tha t is a common subsequence of
P and a common non-subsequence of N. A consistent supersequence is defined
similarly.

There are two categories of problems, existence problems and optim isation prob
lems. Given two sets, P and N , of strings, does there exist a consistent subsequence
(supersequence)? If a consistent subsequence (supersequence) does exist, what is
the length of the shortest or longest? There are therefore two existence problems
and four optimisation problems. It is clear tha t an NP-com pleteness result for
an existence problem implies N P-hardness for the two corresponding optim isation
problems and further tha t no approximation is possible for them. Similarly, the

Introduction and Background 19

existence of a polynomial-time algorithm for an optim isation problem implies the
corresponding existence problem is also in P . For the N P-com plete problems, the
following questions arise: do they become solvable in polynomial time if we bound
|P |, or bound |iV|, or bound both |P | and \N\ (if the answer to the first two questions
is no)?

It is clear tha t a number of the consistent optim isation problems are generali
sations of previously studied sequence inclusion and sequence non-inclusion optim i
sation problems and thus some of the problems inherit N P-hardness. Four of the
optim isation problems inherit N P-hardness in this way. W hen |P | is unbounded, the
Longest Consistent Subsequence problem is a generalisation of the Longest Common
Subsequence problem. Similarly, when |P | is unbounded, the Shortest Consistent
Supersequence problem is a generalisation of the Shortest Common Supersequence
problem. When |A | is unbounded, the Shortest Consistent Subsequence problem is
a generalisation of the Shortest Common Non-subsequence problem. Similarly when
| TV| is unbounded, the Longest Consistent Supersequence problem is a generalisation
of the Longest Common Non-supersequence problem.

The following results all apply over a binary alphabet. Jiang and Li [38] proved:
(i) finding a consistent supersequence is N P-com plete even when |P | > 2 is bounded
(| TV| is unbounded) and (ii) a consistent supersequence can be found in polynomial
tim e when \P\ is unbounded and |A | = 1. Zhang [73] proved: (i) the Shortest
Consistent Subsequence problem is M A X S N P -hard even when |P | = 2 (\N\ is
unbounded) and (ii) the Longest Consistent Supersequence problem is M A X S N P -
hard even when \P\ = 1 (\N\ is unbounded). Middendorf [49] strengthened Zhang’s
result (i) above to the case when |P | = 1. Further, he proved: (i) the Longest
Consistent Subsequence problem is M A X SN P -hard even when |P | = 1 (\N\ is
unbounded) and (ii) the Shortest Consistent Supersequence problem is M A X S N P -
hard even when \N\ = 1 (|P | is unbounded). Of the existence problems M iddendorf
proved: (i) finding a consistent subsequence is N P-com plete even when |P | = 2
(|A | is unbounded) or |A | = 2 (|P | is unbounded) and (ii) finding a consistent
supersequence is N P-com plete even when \P\ = 2 (|A | is unbounded) or |A | = 2
(|P | is unbounded).

In Chapter 7 of this thesis the following existence problems are proved to be
N P-com plete: (i) Consistent Subsequence even when |P | = 2 (|A | is unbounded)
and the alphabet is binary, (ii) Consistent Subsequence even when |A | = 1 (\P\ is
unbounded) and (iii) Consistent Supersequence even when | N\ = 2 and the alphabet
is binary. Polynomial-time algorithms are provided for the Longest (or Shortest)
Consistent Subsequence and the Shortest Consistent Supersequence when both \P\
and | A | are bounded. A table summarising the status of all variations of these
problems is given.

Introduction and Background 20

1.5.4 M iscellaneous string comparison problems

Jacobson and Vo [36] generalised the LCS problem to the Heaviest Common Sub
sequence (HCS) problem. In this, matches have an associated weight dependent
on the symbol involved and its position in the strings. The weight of a common
subsequence is the sum of the weights of the matches from which it is formed. In
the HCS problem, the common subsequence with the highest weight is sought. Ja
cobson and Vo provided an algorithm for the problem over two strings analogous to
the algorithm of Hunt and Szymanski [30] for the LCS problem. For the case where
the position of a m atch does not affect its weight, they provided an improvement to
their algorithm analogous to the improvement to the Hunt and Szymanski algorithm
due to Apostolico and Guerra [6].

Variations on the LCS and Minimum Edit Distance Problems include those stud
ied by Hebrard [24], Lowrance and Wagner [43], and Tichy [63].

1.6 Substring and Superstring Problem s

Analogous to the LCS and SCS problems are the Longest Common Substring and
Shortest Common Superstring problems. Recall that, a substring of a string a is
any string tha t can be obtained by deleting zero or more symbols from the start
and deleting zero or more symbols from the end of a. A superstring of a is any
string tha t can be obtained by prepending zero or more symbols and appending
zero or more symbols to a. The Longest Common Substring (LCSt) problem is to
determine, for a finite set P of strings over an alphabet E, and an integer t £ V,
whether there exists a string of length > t over E which is a substring of every
string in P. The Shortest Common Superstring (SCSt) problem is to determine, for
a finite set P of strings over an alphabet E, and an integer t 6 N, whether there
exists a string of length < t over E which is a superstring of every string in P. The
problems can be re-formulated in the natural way as optimisation problems.

1.6.1 The Longest Common Substring Problem

It has long been known that using a suffix tree, the LCSt of an arbitrary number of
strings can be found in time proportional to the sum of the lengths of the strings.

Suffix trees

An im portant data structure in string comparison is the Suffix Tree. The struc
ture was introduced by Weiner [69] along with a linear tim e construction algorithm.
McCreight [46] described a linear time construction algorithm which requires sig
nificantly less space that Weiner’s algorithm. Ukkonen [67] described a linear time

Introduction and Background 21

algorithm suitable for online construction of the suffix tree.
The main properties of a suffix tree are as follows. The suffix tree of a string is

unique. To simplify the structure of the suffix tree T of a string a , a unique term inal
symbol is appended to a prior to the construction of T. This ensures th a t no suffix
of a is a prefix of any other suffix which in turn guarantees the following property.
Every suffix of a is represented by a leaf node and every leaf node represents a suffix
of a. Every edge of T is labelled with a non-empty substring of a. The concatenation
of the the edge labels encountered in a path from the root to a leaf node form the
suffix represented by tha t leaf node. Every node has at least two children and no
two edge labels leading from a node start with the same symbol.

1.6.2 The Shortest Common Superstring Problem

The SCSt problem was shown to be N P-com plete even over a binary alphabet by
Gallant, Maier, and Storer [18]. They provided a polynomial-time algorithm for the
case when all the strings have length < 2. Blum, Jiang, Li, Tromp, and Yannakakis
[8] proved tha t the problem is M A X SN P-hard .

Tarhio and Ukkonen [61] proposed a greedy approximation strategy (GREEDY)
for the SCSt problem. The overlap between two strings is the maximum length suffix
of either one which matches an equal length prefix of the other, in every position.
The greedy algorithm repeatedly merges the two strings with the largest overlap
by replacing them with their SCSt (e.g. if a = abac and (3 = acba then they are
replaced with 7 = abacba) until only one string remains. The compression achieved
by the algorithm is the sum of the overlaps of every pair of strings merged. They
proved tha t GREEDY achieves at least half the compression of an SCSt. Note that
this does not imply any constant bound on the length of the superstring returned
by GREEDY with respect to the length of the SCSt. If we have k strings of length
n and the SCSt has length xn for some real x > 1 then the compression in the SCSt
is kn — xn. If GREEDY achieves (kn — x n) / 2 compression then the sequence it
returns has length kn — (kn — x n) / 2 = n(k -f- x)/2. The ratio of the length of the
approximation to the length of the SCSt increases with the limit (k-\~ 1/2) as a; —y 1.
Turner [65] gave a much more concise and elegant proof tha t G R E E D Y achieves
at least half the optimal compression.

Blum et al. [8] proved tha t a variant of G R E E D Y guarantees to return a super
string of length < 3|SCSt|. They conjectured tha t GREEDY actually guarantees to
return a superstring of length < 21SCSt |. Teng and Yao [62] improved the known
bound by showing tha t a different variant of GREEDY guarantees to return a su
perstring of length < 2.89|5,Cf5£|.

Introduction and Background 22

1.6.3 N egative and consistent substrings and superstrings

Given a set N of strings, a common non-substring of TV is a string tha t is not a
substring of any string in N. A common non-super string of N is a string th a t is not
a superstring of any string in N. We therefore have three natural problems. Given
a set N of strings, (i) what is the length of the Shortest Common Non-substring
(SCNSt) ? (ii) does there exist a Longest Common Non-superstring (LCNSt)? (iii)
if an LCNSt does exist then what is its length?

Timkovsky [64] conjectured tha t if an LCNSt exists for a set N of strings then
its length is bounded by the sum of the lengths of the strings in N. Rubinov and
Timkovsky [58] proved this conjecture and gave polynomial time algorithms to solve
both the existence and optimisation versions of the LCNSt problems and to solve
the SCNSt problem.

Analogous to the consistent sequence problems, are the consistent string prob
lems. Given two sets, P and iV, of strings, a consistent substring of P and N is
a string th a t is a common substring of P and a common non-substring of N. A
consistent superstring is defined similarly.

There are two existence and four optimisation problems. Given two sets, P and
N , of strings, does there exist a consistent substring (superstring)? If a consistent
substring (superstring) does exist, what is the length of the shortest/longest?

The shortest consistent superstring problem is a generalisation of the shortest
common superstring problem and thus inherits NP-com pleteness even over a binary
alphabet. Jiang and Li [38] proved that finding a consistent superstring is N P -
complete even if the num ber strings in P is bounded but greater than 1. They gave
a polynomial tim e algorithm for the case where |AT| = 1. Jiang and Timkovsky
[39] gave polynomial tim e algorithms to find the Shortest or Longest Consistent
Superstring when a Longest Common Non-superstring exists for N and to find the
Shortest Consistent Superstring when the number of strings in P is bounded and
every symbol of the alphabet appears at the end of some string in N.

In Section 7.5 of this thesis, polynomial-time algorithms are given to find the
shortest or longest consistent substring, a consistent superstring when \N\ < 2, and
a shortest consistent superstring when |P | = 1. It is shown that when \N\ = 1,
there cannot exist a longest consistent superstring.

1.7 T h e com p lex ity o f approxim ation

In C hapter 5 we will examine some approximation algorithms for the LCS and SCS
problems. It is therefore worthwhile taking a brief look at some recent developments
on the approxim ability of N P -hard optimisation problems.

Papadim itriou and Yannakakis [53] gave a syntactic definition of a subset of

Introduction and Background 23

N P , called strict N P or S N P . They showed how to obtain the class M A X S N P
containing the optimisation versions of the decision problems contained in S N P .
They proved tha t any problem in M A X S N P can be approximated to within
some constant factor in polynomial tim e, and showed that a number of N P-hard
optim isation problems are members of M A X S N P . They defined a new kind of
problem transformation called an L-reduction. In an L-reduction from problem IIi
to problem II2 the approximability of IIi is preserved in II2 to within some constant
factor. Hence if n 2 can be approximated to within some constant factor then it
follows tha t n x can be approximated to within some constant factor. Conversely,
if n x cannot be approximated to within any constant factor then it follows that
n 2 cannot be approximated to within any constant factor. Under L-reductions,
they showed that a number of optimisation problems are complete for M A X S N P
e.g. Maximum Satisfiability and the Independent Set problem on bounded-degree
graphs.

A significant development was the result of Arora, Lund, Motwani, Sudan, and
Szegedy [7] that no polynomial-time approximation scheme exists for any M A X
SN P-com plete problem (unless P = N P) . A thorough account of M A X S N P can
be found in [54].

Chapter 2

Exact Algorithm s for the LCS
problem

2.1 Introduction

As was noted in Section 1.3.3, the Longest Common Subsequence problem for k
strings of length n can be solved by dynamic programming in 0 (knk) tim e and 0 (nk)
space. The space complexity of dynamic programming can be improved to 0 (n k~l)
using the technique developed by Hirschberg[25]. See Section 1.3.3 for details of
previous work. In this chapter we look at two alternative algorithms intended to
provide, in particular circumstances, improvements on the tim e and space required
by the dynamic programming algorithm. The two algorithms are presented in the
context of finding the LCS of three strings (a i, <2 2 , 0 :3). However, they can both be
extended to work for any fixed number of strings and at the end of each section,
this is explained. Throughout this chapter, I represents the length of the LCS.

2.2 T he “Lazy” Approach to D ynam ic Program
m ing

Consider the problem of finding an LCS of 3 strings 0 1 , o 2 and 0 3 , each of length
n. We shall assume equal length strings throughout, for simplicity, but all of our
results can be extended in a straightforward way to cases where the strings are of
different lengths. Denote by L (a i, <2 2, <2 3) the length of an LCS of <2 1 , a 2 and <2 3 ,
and by L (i , j , k) the length of an LCS of the i ih prefix <2 ̂ = <2 i [l . . . i] of <2 1 , the
j th prefix <22 — a 2 [l • • - j] of <2 2 and the k th prefix a k = <2 3 [1 . . . k] of <2 3 . As in the
classical case of two strings [6 8], a basic dynamic programming scheme, using 0 (n3)

24

Exact Algorithms for the LCS problem 25

tim e and space in this case, can be set up, based on the recurrence

K i j k) = { L ^ ~ 1,J' " 1; k ~ :) + 1 if 011 ̂ = = (2 1)
’ ’ \ max(L(z — l , j , k), L (i , j — 1, k), k — 1)) otherwise

and the initial conditions

L(i, j , 0) = L (i ,0 ,/c) = T(0 , j , k) = 0 for all «, j , k.

We now investigate how this dynamic programming approach can be speeded up
by suppressing unnecessary evaluations. Our approach is similar to th a t employed
in [51], [71] and [6 6] for the case of two strings, and we refer to our algorithm as the
“lazy” approach to dynamic programming.

We first look at the problem from a slightly different point of view. Define the
difference factor D = D (a i ,a 2 , a 3) of the three strings to be the smallest total
number of elements tha t need be deleted from the strings in order to leave three
identical strings. Clearly D is a multiple of 3 if the strings are of equal lengths, since
the same number of elements must be deleted from each string.

L em m a 2 .2 . 1 Z)(ai,a2 , a 3) = 3(n — L (a i ,a 2 , a 3)).

Proof
The identical strings tha t remain when D elements are deleted from Qi, a 2, 0 3 form
an LCS of c*i, a 2 and 0 3 . Hence the deleted symbols, together with the 3 copies of
the LCS constitute the 3n symbols of the original strings. □

It follows that evaluation of D (a i ,a 2 , <2 3) gives the value of L (a i ,a 2 ,Q3), and
tha t identification of a minimum set of deletions reveals an LCS. This is the approach
tha t we shall now follow.

Let D (i , j , k) be the difference factor of the prefixes OL\^a32 and 0 :3 . Then the
recurrence corresponding to 2 . 1 above is

■ m = / D (i ~ - l ' k ~ X) if = 0 :2 [j] = a 3[k]
\ 1 + min(D(z — 1 , j , k), D(z, j — 1 , k), D (z,i, k — 1)) otherwise

(2 .2)
subject to

D (i , j , 0) = i + j , D(i, 0 , k) = i + fc, D (0 , j , k) = j + k for all i, j , k.

Clearly, in the light of this equation, cells (i , j , k) such that ai[i] = a 2 [j] = a 3[k]
have a special significance — we refer to such a cell as a match position.

We now consider the task of evaluating D (n ,n ,n) while calculating as few as
possible of the other D values. We refer to the 3-dimensional table D (i , j , k)

Exact Algorithms for the LCS problem 26

(1 < k < n) as the D-table and we say tha t the cell (i, j , k) has D-value D (i , j , k).
Note tha t we will include coordinate values of — 1 and 0 when implementing the table
to facilitate appropriate initialisation in our algorithm.

By a diagonal of the D-table we mean an ordered sequence of cells with coor
dinates (i A I, j + I, k + /) where m in (i,j, k) = — 1 and I = 0 , . . . , n — m ax(z,j, k).
The diagonal containing cell (z, j , k) will be denoted by (z, j , k). We say th a t a given
cell (i , j , k) occupies position i + j + k on its diagonal. Note tha t the positions on
diagonal (z, j , k) increase by 3 from cell to cell, and are all = z + j + k (mod 3).

We also define

< i , j , k » = { (i , j , k) , (i , k , j) , (j , i , k) , (j , k , i) , { k , i , j) , (k , j , i) } ,

noting th a t this set of diagonals is of size 6 , 3 or 1 depending whether the number
of distinct values in the set {z,j, k} is 3, 2 or 1 . Any such set of diagonals has a
canonical representation as <C z, i , 0 with z > j > 0 .

The following lemma is immediate:

L e m m a 2 .2 . 2 I f { x ,y , z) i , j , 0 with x , y , z > 0 and i > j > 0, then
D (x , y , z) > i + j .

The neighbours of diagonal (i , j , k) are the 3 diagonals (z — 1 , j , fc), (i , j — l , k) and
(z, j , k — 1) and the neighbourhood of the set i-,j->k consists of all the diagonals
th a t neighbour at least one diagonal in tha t set. (Note tha t the neighbour relation is
not a symmetric one — indeed it is antisymmetric, in tha t if diagonal (z', j \ k ') is a
neighbour of diagonal (z,j, k) then (z, j , k) is not a neighbour of (i ' , j ' , k ') . However,
the following lemma may be easily verified.

L e m m a 2 .2 .3 I f diagonal A ' is a neighbour of diagonal A , then there is a diagonal
A" such that A" is a neighbour of A ' and A is a neighbour of A".

The neighbours of a cell (z,j, fc), likewise, are defined to be the cells (z — l , j , &),
(z, j — 1 , k) and (z, j , k — 1). Obviously, the cell in position p in a given diagonal has,
as its neighbours, the cells in position p — 1 in each of the neighbouring diagonals.

For the cell in position p in a given diagonal A, let us denote the D -value of tha t
cell by D(p , A). The following technical lemmas may be established easily from the
definitions of difference factor, neighbour and position.

L e m m a 2 .2 .4 Let diagonal A ' be a neighbour of diagonal A. Then

D(p, A) < 1 + D (p - 1 , A ') .

L e m m a 2.2.5 The values in any diagonal of the D-table form a non-decreasing se
quence, with the difference between successive elements in that sequence being 0 or 3.

Exact Algorithms for the LCS problem 27

D e sc r ip tio n o f th e “L azy ” A lg o rith m

The objective of the pth iteration of our so-called “lazy” algorithm is the determ i
nation of the last (i.e., highest numbered) position in the main diagonal (diagonal
(0 ,0 ,0)) of the D-table occupied by the value 3p. But this will be preceded by
the determ ination of the last position in each neighbouring diagonal occupied by
3p — 1 , which in turn will be preceded by the determ ination of the last position in
each neighbouring diagonal of these occupied by 3p — 2 , and so on. As soon as we
discover tha t the last position in the main diagonal occupied by 3p is position 3n
(corresponding to cell (n ,n ,n)) , we have established th a t D(ai , a 2, <a3) = 3p, and
therefore, by Lemma 2.2.1, tha t L (a i, a 2 , 0 :3) = n — D (a i , a 2 , 0 3̂)/3 = n — p.

In general, when we come to find the last position in diagonal (z ,j, k) occupied
by the value r, we will already know the last position in each neighbouring diagonal
occupied by r — 1 . If we denote by t (A , r) the last position in diagonal A occupied
by the value r, then we can state the fundamental lemma tha t underpins the lazy
algorithm.

L e m m a 2 .2 . 6 I f x = m ax£(A ', r — 1), where the maximum is taken over the neigh
bours A ' of diagonal A , then

t (A, r) = x + 1 + 3 5 ,

where s is the largest integer such that positions a:+ 4, x + 7 ,. . . , a:+ 3 5 +1 on diagonal
A are match positions. (These positions constitute a “snake” in the terminology of
Myers [51] - albeit a very erect snake.)

Proof
It follows from Lemma 2.2.4 tha t D(x + 1 , A) < r, and clearly if its value is < r then
it is < r — 3. But in this la tter case, by Lemmas 2.2.3 and 2.2.4, D(x + 3, A ') < r — 1

for A ' a neighbour of A, contradicting the maximality of x. Hence D(x + 1, A) = r.
Further, if D (y , A) = r for any y > x + 1 then, since no neighbouring diagonal has
a value less than r beyond position x, according to the basic dynamic programming
formula (2 .2) for D , it must follow that y is a m atch position in tha t diagonal. □

We define the level of a diagonal A to be the smallest m such th a t there is a
sequence A 0 = (0 ,0 ,0), A j , . . . , A m = A with A s a neighbour of A s_i for each s,
s = 1 , . . . , m. It may easily be verified tha t the level of A = (i , j , k) is fijk =
3 max(z, j , k) — (i + j + fc), and therefore tha t the level of diagonal A = (z, j , 0)
(z > j) is 2z — j . This can be expressed differently, as in the following lemma.

L e m m a 2.2.7 The diagonals at level x are those in the sets « x — y , x — 2z/,0
f o r y = 0 , 1 , . . . , [f j .

The next lemma is an easy consequence of Lemmas 2.2.2 and 2.2.7.

Exact Algorithms for the LCS problem 28

L em m a 2 .2 . 8 The smallest D-value in any cell of a diagonal at level x is | i f x is
even, and i f x is odd.

During the pth iteration of our algorithm, we will determine, in decreasing order
of x , and for each relevant diagonal A at level x , the value of f(A ,3p — a:). Since,
by Lemma 2.2.8, no diagonal at level > 2p can contain a D-value < p , we need
consider, during this pih iteration, only diagonals at levels < 2p. Furthermore, by
Lemma 2.2.2, the only diagonals at level x tha t can include a D-value as small as
3p — x are those diagonals in the family <C x — y , x — 2 y , 0 with (x — y) + (x — 2y) <
3p — x , i.e., with y > x — p.

Hence, to summarise, the pih iteration involves the evaluation, for x = 2p, 2p —
1 , . . . , 0, of t (A, 3p — x) for A £<C x — y, x — 2 y, 0 with max(0, x — p) < y < [| J .

L em m a 2.2.9 I f the t values are calculated in the order specified above, then, for
arbitrary A, r , the values of t (A ' , r — 1), for each neighbour A ' of A , will be available
when we come to evaluate t (A , r) .

Proof
Consider, without loss of generality, A = (i , j , k) with i > J > k. If the t values are
calculated according to the scheme described, then t ((i , j , k ,) , r) is evaluated during
iteration p = r+2i-J~k. Furthermore, t ({ i , j — l , k) , r) and t ((i , j , k — l) , r) are also
evaluated during iteration p, and t((i — 1 , j , k) , r) is evaluated during iteration p — 1

or p according as i > j or i = j . Since, during iteration p, any t (. , r — 1) is evaluated
before any £(.,r), it follows tha t t(A' , r — 1) is evaluated before t ((i , j , k) , r) for every
neighbour A ' of (i , j , k) . □

The algorithm is shown in pseudo-code in Figure 2.1. The evaluation of the value
t(A, 3p — x) is carried out using Lemma 2.2.6, following a snake, as in Figure 2.2 for
diagonal (i , j , k) .

The relevant initialisation for the pth iteration involves those diagonals not con
sidered in the (p — l) th iteration, and these turn out to be the diagonals in the set

p, r, 0 for p > r > 0. We initialise t for such a diagonal so tha t the (imaginary)
last occurrence of the value p + r — 3 is in position p + r — 3 — see Figure 2.3.

2.2.1 Recovering an LCS

Recovering an LCS involves a (conceptual) trace-back through the n-cube from cell
(n ,n ,n) to cell (0,0,0) under the control of the t values. At each step, we are in a
cell whose D-value became known during the execution of the algorithm. We step
back one position in the current diagonal if tha t cell is in a snake, and otherwise step
into a neighbouring cell whose D-value (which can be discovered from the t array)
is exactly one smaller. In the former case, we will have found one more character

Exact Algorithms for the LCS problem 29

LCS _Lazy
p := -l
rep ea t

p:=p+l
I n i t i a l i s e t values fo r the pth i t e r a t io n
for x:=2 p dow nto 0 do

for y:=max(0 , x-p) to [|J do
for A E<C x-y, x -2 y, 0 >> do

evaluate £(A,3p — x)
un til £((0, 0, 0), 3p) = ra

Figure 2.1: The lazy algorithm for the length of the LCS of 3 strings

u: = l + m ax t(A ',3p-x-l) over neighbours A' of (i , j , k)
v:= (u - i - j - k) div 3
while (oxCi+v+1] = a^Cj+v+l] = o3[k+v+l]) do {Match position}

v:=v+l {Assuming sentinels}
t ((i , j , k), 3p-x) : = i + j + k + 3 v

Figure 2 .2 : Evaluation of £(A,3p — a:) for A = (z,i, k)

for r : = 0 to p do
for (L i, k) e < p, r, 0 > do

r - 3) : = p + r - 3

Figure 2.3: Initialisation for the pth iteration of the lazy algorithm

Exact Algorithms for the LCS problem 30

LCS.Lazy: Recover the LCS
{ Throughout, A rep resen ts diagonal (i , j ,k) }
i , j , k :=n
d:=3p
m:=n - p
repeat

if on Ci] =Oi2 [j] =o3 [k] then
LCS[m] := [i]
m:=m-1
decrement each of i , j , k

else
find neighbour A' of A such th a t t (A ', d-1) = i + j + k - l
d:=d-l
decrement i , j or k according as A' d if fe rs from A

in i t s 1st, 2nd or 3rd coordinate
until i=0

Figure 2.4: Recovering an LCS from the t table

in the LCS, and as this backward trace unfolds, the LCS will be revealed in reverse
order.

The algorithm is shown in pseudo-code in Figure 2.4.

2.2.2 Analysis

We now consider the time and space requirements of the algorithm. As far as time
is concerned, it is not hard to see tha t the worst-case complexity is dependent on
the total number of elements of the t table tha t are evaluated. In iteration p, the
diagonals for which a t value is calculated for the first tim e are precisely the diagonals
in the sets < p , r , 0 > for r = 0 , . . . , p. There are 6 p such diagonals in to ta l, since
| <C p, r, 0 | = 3 for r = 0 or r = p, and |< C p , r, 0^> | = 6 for 1 < r < p — 1.
The number of iterations is the value of p for which D (a i , a 2, a 3) = 3p, and by
Lemma 2.2.1, this is exactly equal to n — /, where I = L (a i , a 2, a 3).

So, the total number of diagonals involved during the execution of the algorithm
is

n —l

y j bp = 3(n — l)(n — I + 1) .
p = o

Furthermore, the 6 p diagonals that are started at the pth iteration each contains at
most n —p entries in the n-cube, so the total number of t elements evaluated cannot

Exact Algorithms for the LCS problem 31

exceed
n —l

Y , 6p(n — p) = (n — /)(n — I + l)(n + 21 — 1). (2.3)
p=0

As a consequence, the worst-case complexity of the algorithm is 0 (n (n —/)2), showing
tha t we can expect it to be much faster than the naive dynamic programming
algorithm in cases where the LCS has length close to n.

Diagonal (z, j , k) may be uniquely identified by the ordered pair (i—j , j — k) (say),
and such a representation leads in an obvious way to an array based im plem entation
of the algorithm using 0 (n 3) space. But appropriate use of dynamic linked structures
enables just one node to be created and used for each t value calculated, and so by
Equation 2.3, this yields an implementation tha t uses both 0 (n (n — I)2) tim e and
space in the worst case. A little more care is required, in th a t case, in recovering
the LCS from the linked lists of t values.

As with standard algorithms for the LCS of two strings, the space requirement
can be reduced to 0 ((n — I)2) if only the length of the LCS is required — in tha t
case, only the most recent t value in each diagonal need be retained.

2.2.3 Extension to > 3 Strings

The lazy algorithm may be extended in a natural way to find the LCS of a set
of k strings for any k > 3. Such an extended version can be implemented to use
0 (k n (n — l)k~l) time and space in the worst case, the factor of k arising from the
need to find the smallest of k values in the innermost loop.

2.3 A T hreshold B ased A lgorithm

We extend the evaluation strategy of the threshold algorithm of Irving and Fraser,
described in Section 1.3.2, to find the LCS of three strings. In the case of 3 strings
Qi, « 2 and ai3 of length n, we define the threshold set TijTn to be the set of ordered
pairs (ji, k) such tha t a \ , aJ2 and a k have a common subsequence of length m, but
neither a 2 and ĉ - 1 nor a \ , a 2_1 and a k have such a common subsequence.

For example, for the sequences

cx.\ = abacbcabbcac a 2 = bbcabcbaabcb ot.% — cabcacbbcaba

we have r 5)2 = {(2, 7), (3,4), (5,3)}, corresponding to the subsequences 6 6 , 6 c, and
ab or cb respectively.

If (x,y), (x \ y f) are distinct ordered pairs of non-negative integers, we say tha t
(®? y) ^ {x '-> y') if x ^ x ' and y < y'■ Let S' be a set of ordered pairs of non-negative
integers. The set S is therefore a partial order. The set S is the set of all minimal

Exact Algorithms for the LCS problem 32

elements of S. The set S is therefore an antichain of the partial order. The set S
can be found from S by successively removing from S any pair tha t is greater than
another pair in S. If the pairs in S are arranged in a list so tha t (x ,y) precedes
(®/,y /) in the list whenever x < x ' , then a similarly ordered list representing S can
be obtained by a single scan of the original list, comparing successive neighbours on
the list and deleting any pair found to be greater than its immediate predecessor.
So deriving S from S can be done in time linear in the size of S.

It is immediate from the definitions tha t ifi(x,y), (x', y') £ r^m such th a t (x ,y) <
(x ' , y') i.e. the Tj>m sets are antichains in the partial order. The length of a longest
common subsequence of oq, a 2 and otz is the largest value of m for which Tn m̂ is
non-empty. Hence, evaluation of the threshold sets Ti,m in some appropriate order
will enable us to determine the length of the LCS, and by suitable back tracing, to
find an actual LCS of the 3 strings.

We shall now describe an algorithm for the LCS of 3 strings based on the eval
uation of the threshold sets TjfTn in diagonal order — i.e., in general we evaluate
r,-iTn immediately after r t-_i,m_ i . To explain the algorithm we need some additional
terminology.

For any character a in the string alphabet, and any position i (0 < i < n), we
define the next-occurrence table nex ta2 for string a 2 by

. f m in j : j > i and a 2[j] = cr if such a j exists
n ex ta2{a,i) = <

[oo otherwise

So, as a special case, nex ta2(cr, 0) is the position of the first occurrence in string a 2 of
character a. The next-occurrence table nex ta3 for string 0:3 is defined analogously.

For any positions i and j in strings ai and a 2 respectively, we define bij to be
the first position after j in a 2 tha t is occupied by character ai[i], i.e.,

= nexta2[oii[i\,j\ .

Similarly, we define
Cij = nex ta3[ai\i\,j] .

The basis of our algorithm is the following Lemma.

L e m m a 2.3.1 = S where S = r t- _ U U(jlfc)Gri_,im_1(^t,j5 Ct.fc)-

Proof
Let (j, k) € rz-,m, so tha t a i , a J2 and a \ have a common subsequence of length m but
neither a i , o f f 1, a 3 nor a\, a f a j - 1 have such a common subsequence.
If aq-1 , a f « 3 have a common subsequence of length m, then (j, k) 6 T;,m_ O th
erwise any common subsequence of a i , a f a 3 of length m contains ai[z] = a 2[j] =

Exact Algorithms for the LCS problem 33

ô 3 [/c] as its last element. So there is some {j'^k') 6 such th a t bij> = j ,
ci,k' = k. As a consequence, any element of Tt-)7n is in the set defined in the
lemma, and since T;)m is an antichain, it is included in <rt->m.

On the other hand, any member of and any pair (6 ;,j', c;^/) for (j f,k') £
i,m is bound to be greater than a member of T;>m, so tha t there are no elements

in tha t are not in □

Our algorithm begins the evaluation of the sets r J)m on the main diagonal — i.e.,
it uses the above lemma to evaluate r^ i, r 2>2, . . . until 7^ = 0 , this last condition
indicating tha t the i th prefix of oq is not a common subsequence of aq, a 2 and a 3.
Next comes the evaluation of r 2)1, r3i2, . . . , again continuing until the first em pty set
is reached.

The process continues until rn>m is evaluated for some m. At th a t point the
algorithm term inates, for no Tn m̂> can be non-empty for any m' > m. If r njm 7 ̂ 0
then m is the length of the LCS of aq, a 2 and a 3, otherwise its length is m — 1 ,
since 1 must have been non-empty. To enable the recurrence scheme to
work correctly, at the beginning of the ith iteration r Z)0 is initialised to (0 , 0), and
whenever an unevaluated set rZ)m is required (in the diagonal above the current one)
it is initialised to the em pty set.

The algorithm is shown in pseudo-code in Figure 2.5.

2.3.1 Recovering an LCS

If the algorithm term inates with Tnjm non-empty then we start the trace-back at
an arbitrary pair (j, k) in rn)m, otherwise at an arbitrary pair (jf, k) in Tn _ In
either case, OL2[j] = a 3 [fc] is the last character of our LCS. At each stage, when we
have reached rZjm say, we repeatedly decrement i until the current pair (j, k) is not
a member of T;_i)7n. This indicates that, when constructing the r table, we had
oq[z] = a 2[j] = (*3 [k], and (j, k) must have arisen from an element (j f, k ') in t;_ i>m_i
tha t is less than it — so we locate such a pair, and record a \ [z] as an element in the
LCS. We then decrement i and m, and the pair (j ' , k ') becomes the new (j, k). The
algorithm is shown in pseudo-code in Figure Figure 2.6.

2.3.2 Analysis

As described, the algorithm requires the pre-computation of the nex ta2 and nex ta3
tables, each requiring O(zn) steps, where £ is the alphabet size.

The crux of the main part of the algorithm is the evaluation of r t-jm from t;_i im_i
and This can be achieved in 0(|T j_ijm| + |r;_ iim_i|) tim e by m aintaining each
set as a linked list with (j, k) preceding (jv, k ') in the list if and only if j < j ' . For
then the lists may easily be merged in tha t time bound to form a list representing

Exact Algorithms for the LCS problem 34

LCS_Thresh; Build the array of r sets
max:=0 {length of LCS found so fa r)
d :=—1 { d is the current diagonal }
repeat

d:=d+l
i:=d { i is the row number in the r tab le }
T i l0 : = { (O , 0) }

m:=0 { m is the column number in the r tab le }
repeat

i := i + 1
m: =m+1
if m > max then

Ti-i,m'=0 { fu rther in i t i a l i s a t io n }
^ (hjj , Cj fc)
1~itm ‘ " ~ S

until (r,im = 0) or (i=n)
if m-l>max then

max:=m-1
until i=n
if rn m = 0 then 1: =m-l
else 1: =m
end

Figure 2.5: The threshold algorithm for the length of the LCS of 3 strings

LCS.Thresh; Recover the LCS
c h o o s e (j , k) G r n ,i

i : = n

r : =1
L C S : = t h e e m p t y s t r i n g

w h i l e r > 0 d o

w h i l e (j , k) G r , - l r d o

i : = i - l

L C S ^ O i f i] - j f LCS { o i [i] = a?2 [j] = a 3 [k] i n L C S }

{ T h e s y m b o l <-H-’ d e n o t e s c o n c a t e n a t i o n . }

i : = i - l

r : = r - l

c h o o s e (j ' j k ') G s u c h t h a t C j C k ') < (j , k)

(j > k) : = (j / , k /)

e n d

Figure 2.6: Recovering an LCS from the threshold table

Exact Algorithms for the LCS problem 35

and as observed earlier, the list representing 7{>m = <7 ;im may be generated by
a further single traversal of tha t list, deleting zero or more elements in the process.

It follows tha t the total number of operations involved in the forward pass of the
algorithm is bounded by a constant times the number of pairs summed over all the
sets Titm evaluated. The backward pass involves tracing a single path through the
t table, examining a subset of the entries generated during the forward pass, and
hence the overall complexity is dominated by the forward pass.

A trivial bound on the number of pairs in rZ)m is n — m + 1 , since the first
component of each pair must be unique and in the range m , . . . , n. Hence, since
the number of sets r t->m evaluated is bounded by l(n — I + 1) — at most I sets in
each of n — I -f 1 diagonals — this leads to a trivial worst-case complexity bound
of 0 (l (n — l)(n — ^)). In fact, it seems quite unlikely tha t all, or even many, of the
sets Tj>m can be large simultaneously, and we might hope for a worst-case bound of,
say, 0 (l (n — I)2). But it seems to be quite difficult to establish such a bound for the
algorithm as it stands. To realise this bound, we adapt the algorithm to a rather
different form, with the aid of a trick also used by Apostolico et al. [5] in a slightly
different context.

The crucial observation is that, if a pair (j , k) in set r4)m is to be part of an LCS
of length /, then we must have 0 < j — m < n — I and 0 < k — m < n — I, since
there cannot be more than n — I elements in either string a 2 or string <23 tha t are
not part of the LCS. So, if we knew the value of / in advance, we could immediately
discard from each set 7ym any pair (j, k) for which j > n — l - \ -m or k > n — / + m.
Hence each set would have effective size < n — / + 1, and since the num ber of sets is
0 (l (n — /)), this would lead to an algorithm with 0(l (n — I)2) worst-case complexity.

Of course, the problem with this scheme is tha t we do not know the value of I
in advance — it is precisely this value that our algorithm is seeking to determine.
However, suppose we parameterise the forward pass of our algorithm with a bound
p, meaning tha t we are going to test the hypothesis tha t the length of the LCS is
> n — p. In tha t case, we need evaluate only p + 1 diagonals (at most), each of
length < /, and in each set Tj>m we need retain at most p + 1 pairs. So this algorithm
requires 0(lp 2) tim e in the worst case.

Suppose tha t we now apply the parameterised algorithm successively with p =
0 , 1 , 2 , 4 , . . . until it returns a “yes” answer. At tha t point we will know the length of
the LCS, and we will have enough of the threshold table to reconstruct a particular
LCS. As far as tim e complexity is concerned, suppose tha t 2t_1 < n — I < 2*.
Then the algorithm will be invoked t + 1 times, with final param eter 2b So the
overall worst-case complexity of the resulting LCS algorithm is 0(1 Z^=0 (2*)2) =
0 (l2 2t+2) = 0 (l (n — /)2), as claimed.

As it turns out, the above worst-case analysis of the threshold algorithm does
not depend on the fact that the sets 7ym are antichains, merely on the fact tha t if

Exact Algorithms for the LCS problem 36

(j, k), (j ', k ') £ Tî m then j ^ / and k ^ k! (though the m aintenance of the sets as
antichains, by the method described earlier, will undoubtedly speed up the algorithm
in practice.)

As described above, the space complexity of the algorithm is also 0 (l (n — I)2 +
zn), the first term arising from the bound on the number of elements summed
over all the 7ym sets evaluated, and the second term from the requirements of the
next-occurrence tables. The first term can be reduced somewhat by changing the
im plem entation so tha t, for each pair (j, k) tha t belongs to some 7y m, a node is
created with a pointer to its “predecessor” . In each column of the r table, a linked list
is m aintained of the pairs in the most recent position in tha t column. By this means,
each pair generated uses only a single unit of space, so the overall space complexity
is big oh of the number of (different) pairs generated in each column, summed over
the columns. An LCS can be re-constructed by following the predecessor pointers.

A T im e-Sp ace Tradeoff

As described by Apostolico and Guerra [6], the next-occurrence tables can be re
duced to size 1 x n rather than of size z x n, for an alphabet of size 2 , at the
cost of an extra log 2 factor in the tim e complexity — each lookup in the one
dimensional next-occurrence table takes log 2 tim e rather than constant time. In
fact, for most problem instances over small or medium sized alphabets, the size of
the next-occurrence tables is likely to be less significant than the space needed by
the threshold table.

2.3.3 Extension to > 3 Strings

The idea of the threshold algorithm can be extended to find an LCS of k strings
for any k > 4, using sets of (k — l)-tuples rather than sets of pairs. In the general
case, it is less clear how the sets 7y m can be efficiently m aintained as antichains, but
as observed above for the case of three strings, the worst-case complexity argument
does not require this property. In general, the extended version of the algorithm has
worst-case tim e and space complexity tha t is 0 (k l (n — /) /c~ 1 + k z n), with the same
time-space trade-off option available as before.

2.4 Em pirical results and conclusions

To obtain empirical evidence as to the relative merits of the various algorithms,
we implemented, initially for 3 strings, the basic dynamic programming algorithm
(DP), the lazy algorithm (Lazy), the diagonal threshold algorithm (Thresh), and
the algorithm of Hsu and Du (HD) [28]. In the case of the lazy algorithm, we used

Exact Algorithms for the LCS problem 37

n
Algorithm 1 0 0 2 0 0 400 800 1600 3200 6400

DP 2.5 19.2 - - - - -

Lazy 0.05 0.18 1.5 11.9 - - -

2 = 4 0.03 0 .1 0.4 2.3 21.7 136.2 -

Thresh z = 8 0.03 0 .1 0.3 1.7
00oo 54.8 -

2 = 16 0 . 0 2 0 .1 0.3 1.3 7.1 33.6 212.5
z = 4 0.9 10.5 - - - - -

HD 2 = 8 0.4 5.0 73.4 - - - -

2 = 16 0.2 2.8 36.7 - - - -

Table 2 .1 : CPU times in seconds when LCS is 90% of string length

n
Algorithm 1 0 0 2 0 0 400 800 1600 3200

DP 2.3 18.9 - - - -

Lazy 3.0 23.1 - - - -

2 = 4 0 .2 1.5 11.7 107.8 - -

Thresh 2 = 8 0 .1 0.7 5.5 48.3 - -
2 = 16 0.05 0.4 2.5 18.8 184.0 -
2 = 4 0 .8 9.7 - - - -

HD 2 = 8 0.3 4.5 59.6 - - -

2 = 16 0 .2 2.3 31.8 - - -

Table 2 .2 : CPU times in seconds when LCS is 50% of string length

n
Algorithm 1 0 0 2 0 0 400 800 1600 3200

DP 2.4 18.0 - - - -
Lazy 17.0 - - - - -

2 = 4 0 .0 2 0.4 2 .6 17.1 142.2 -
Thresh 2 = 8 0 .0 2 0.3 2.3 15.3 128.5 -

2 = 16 0 .0 2 0 . 2 1.5 1 0 .6 117.2 -
2 = 4 0.06 0.5 - - - -

HD 2 = 8 0.06 0.4 9.7 - - -
2 = 16 0.06 0.3 5.0 - - -

Table 2.3: CPU times in seconds when LCS is 10% of string length

Exact Algorithms for the LCS problem 38

a dynamic linked structure, as discussed earlier, to reduce the space requirement.
We implemented both the straightforward threshold algorithm of Figures 2.5 and
2.6, and the version with the guaranteed 0 (l(n — I) 2 + zn) complexity, and found
th a t the former was consistently between 1.5 and 2 times faster in practice — so
we have included the figures for the faster version. The Hsu-Du algorithm was
implemented using both a 3-dimensional array and a dynamic structure to store
m atch nodes. There was little difference between the two in terms of time, but the
la tte r version allowed larger problem instances to be solved, so we quote the results
for tha t version.

The algorithms were coded in Pascal, compiled and run under the optimised
Sun Pascal compiler on a Sun 4/25 with 8 megabytes of memory. We used alphabet
sizes of 4, 8 and 16, string lengths of 100, 200, 400, . . . (for simplicity, we took all 3
strings to be of the same length), and we generated sets of strings with an LCS of
respectively 90%, 50% and 10% of the string length in each case. In all cases, times
were averaged over 3 sets of strings.

The results of the experiments are shown in the tables, where the CPU times are
given in seconds. Times for DP and Lazy were essentially independent of alphabet
size, so only one set of figures is included for each of these algorithms. In every case,
we ran the algorithms for strings of length 100, and repeatedly doubled the string
length until the program failed for lack of memory, as indicated by in the table.

C onclusions.

As far as comparisons between the various algorithms are concerned, the threshold
algorithm appears to be the best across the whole range of problem instances gener
ated. The lazy algorithm is competitive when the LCS is close to the string length,
and the Hsu-Du algorithm only when the LCS is very short.

However, the clearest conclusion that can be drawn from the empirical results is
tha t, at least using the known algorithms, the size of LCS problem instances with
three strings tha t can be solved in practice is constrained by space requirements
rather than by tim e requirements. Preliminary experiments with versions of the
threshold and Hsu-Du algorithms for more than three strings confirm the marked
superiority of the former, and show that the dominance of memory constraint is
likely to be even more pronounced for larger numbers of strings. So there is clearly
a need for algorithms tha t use less space. One obvious approach worthy of further
investigation is the application of the space-saving divide-and-conquer technique
[25], and other possible time-space trade-offs, particularly, in view of the evidence,
to the threshold algorithm.

Chapter 3

Exact Algorithm s for the SCS
problem

3.1 Introduction

As was noted in Section 1.4.2, the Shortest Common Supersequence problem for
k strings of length n can be solved by dynamic programming in 0 (knk) tim e and
0 (n k) space. The space complexity of dynamic programming can be improved to
0 (n k~l) using the technique developed by Hirschberg[25]. In this chapter we look
at two alternative algorithms intended to provide, in particular circumstances, im
provements on the time and space required by the dynamic programming algorithm.
The two algorithms are presented in the context of finding the SCS of three strings
(a i, a 2, <2 3)- However, they can both be extended to work for any fixed number of
strings and at the end of each section, this is explained. Throughout this chapter, s
represents the length of the SCS.

3.2 A n algorithm operating on m atches

The first algorithm is called “MML_Thresh” (for a reason which will become clear
shortly), and is an analogy of the Threshold Algorithm of Chapter 2 for the Longest
Common Subsequence problem in that it operates on the matches between symbols
of increasing prefixes of the three strings.

In a fixed embedding of the three strings in an SCS, each position of the SCS
corresponds to either a single symbol from one of the strings, a m atch between
symbols in a pair of the strings or a match between symbols in all three of the strings.
It is a trivial observation tha t the longest possible SCS consists of the three strings
concatenated (or interleaved) together, and this occurs when there are no elements
common to any two of the strings. Positions in an SCS are assigned values 0,1, and
2, depending on whether they correspond to symbols in 1, 2, or 3 strings respectively

39

Exact Algorithms for the SCS problem 40

in the fixed embedding. Thus the value assigned to a position represents the saving
achieved, by the symbol in tha t position, over the longest possible SCS. Positions
with a value of 1 represent a m atch between two of the strings and positions w ith a
value of 2 represent a m atch between all three strings. The matches represented by
these positions form a list of matches over a i ,a :2 , and a 3. Defining m to be the sum
of the values of all the matches in a m atch list, the maximum m atch list (MML)
is the list of matches tha t maximises m. Defining t to be the size of the MML, it
is clear tha t s = 3n — t. A supersequence can be formed from a list of matches
by forming a string from the symbols of the matches respectively and inserting the
unm atched symbols from the three strings appropriately.

We define the threshold set Aj>m to be the set of pairs (j, &), ordered by increasing
j , such tha t the ith prefix a\ = ori[l..i] of a i , the j th prefix of a 2 and the k th prefix
of a 3 have an MML of size m but neither a^-1 , and a * nor oc\, a J2, and a g-1
have an MML of size as large as m.

For example for the strings

a\ = abca a 2 — abcb a 3 — cbac

the set Ai^ = {(1, 3), (2, 2), (3,1)}, corresponding respectively to the alignments

c b a a c b a b c
a\ : — — a a — — a — —
a 2 : — — a a — b a b c
a 3 : c b a — c b — — c

" 0 0 2~ 1 0 ~ ~i 0 r

where the numbers show the values assigned to the positions of the supersequences.
Recall the following definitions given in Section 2.3. If (x ,y), (x \ y ') are distinct

ordered pairs of non-negative integers, we say tha t (x ,y) < (V, y') if x < x' and
y < y ' . Let S' be a set of ordered pairs of non-negative integers. The set S is
therefore a partial order. The set S is the set of all minimal elements of S and is
an antichain of the partial order. Section 2.3 shows how S can be derived from S in
tim e linear in the size of S.

It is immediate from the definitions tha t there are no two pairs (z ,t/), (x ' , y f) in
the set 71\ ti such tha t (x ,y) < (x \y ') . In other words, the A,->m sets are antichains of
a partial order. The largest m for which \ ntTn is not empty gives the size t of the
MML of o ;i,a 2 ,« 3 , from which the length of the SCS can be calculated. The table
of threshold sets will have the following structure:

Exact Algorithms for the SCS problem 41

0 1

m
2 3 .. t

0 {(0 , 0)} Ao,i Ao,2 Ao,3 Ao,z
1 {(0 , 0)} Ai,i A l,2 Al ,3 Ai,z

i 2 {(0 , 0)} A2,l ^2,2 A2,3

n {(0 , 0)} An,l An,2 An,3 • A n,t

We will set up a scheme in which the evaluation of set A,->Tn requires the sets
Aj_i)7n_i, A;_ijTn and A;)Tn_i and no other sets. This leads to calculation of

the sets row by row (increasing z) from left to right (increasing m). Some further
definitions will be helpful in establishing the scheme.

,. , (m ini j : a\j] = a, j > z} if such a j exists
n ex ta(i ,a) = { XJ ^ •

[oo otherwise.

The function next was used in the threshold algorithm for the LCS problem in
Section 2.3 of Chapter 2.

m atch2 ((j, &;), a) = {(nexta2(j , o) , n e x t a3(k,cr))}
MATCH2 (A,<t) = S where S = U(j,A:)ga m atch2 ((j, A;), cr)

The function MATCH2 will be used to generate matches between a\ and both
0 L2 and a 3 .

m a tch l((j, k),cr) = {(j, nex ta3(k, cr)), (nexta2(j, cr), k)}
MATCH1 (A, cr) = S where S = U(j,fc)eA m atch l((j, k), a)

The function MATCH 1 will be used to generate matches between c*i and each
of 0 C2 and « 3 independently.

0THER2(A) = S where S = U(j,*)eA IW e m atch2((j, k), a)

The function 0THER2 will be used to generate matches between « 2 and <23 but
not ai. It operates in time 0 (z |A|) since each pair in A will generate at most 2 new
pairs.

The crux of the scheme is in Lemma 3.2.1 and the algorithm is shown in pseudo
code in Figure 3.1.

L em m a 3.2.1 Â m = S where

S = M ATC H 2{\ i - i iTn-2'> U M A T C H l(\ i—i tm- i , oqfz]) U

A ; - i , m U 0THER2{\i,m-i)

Proof
There are two stages to this proof. The first stage shows how a pair in one of the sets

Exact Algorithms for the SCS problem 42

^t-i.m -2 ? and may generate a pair in Ai>rn. The second stage
shows how every pair in At-jrn must have a ‘parent’ in one of A^_ij7TI_2 , Ai_]jm_i, At-_i)77l,
Or ^i,m— 1*

If pair (j ,k) G Ai_i|TO_2, and nex ta2(j, ai[i]) < oo and nex taz(k,Oii[i\) < oo
then there is a match list with size m ending at ai[i] = a 2[ne;r£a2(j, a i [i])] =
et3[next0l3(k,ai[i])\. If pair (j ,k) G A;_ijm_i, and nex ta2(j 1cti[i]) < oo then there
is a m atch list with size m ending at ai[z] = a 2[ne:r/a2(j, ai[z])]. If pair (j, k) G
Ai_i)Tn_x, and nex taz(k,ai[i]) < oo then there is a m atch list with size m ending at
ol\ [z] = a 3[nexta3(k, ai[i])\. If and have an MML of size m then clearly
cx\,a2 , and a j have a match set of size m. If pair (j/, k) G K,m-h and for symbol
<r, nex ta2(j,<j) < oo and nex taz(k,cr) < oo then there is a m atch list with size m
ending at a 2[n exta2(j,a)] = az[nextaz(k, cr)].

A pair (j, k) G A,-im represents a list of matches, the last of which is a m atch
between symbols of a i and one of the other strings, or of Qi and both of the other
strings, or of a 2 and a 3. If the last m atch is between oli[i \ and symbols in both
the other strings then the match list of size m — 2 with tha t last m atch removed
must be represented by a tuple (j-/, k') G A;_1)m_2 such tha t j ' < j and k' < k. If
the last m atch is between a jz] and a symbol of a 2 (or as) then the m atch list of
size m — 1 with tha t last m atch removed must be represented by a tuple (jv, k) (or
(j ,k ')) G Ai_iim_i such that j ' < j (or k' < k). If a ^ a ^ , and have an MML of
size m and the last match does not involve a\ then clearly a*!-1 , a 2 , and a^ have
an MML of size m. If the last match is between symbols of a 2 and a 3 then the
m atch list of size m — 1 with tha t last m atch removed must be represented by a
tuple (j ' , k ') G A;)m_i such tha t j ' < j and k' < k. □

3.2.1 Recovering an SCS

If appropriate extra information is stored, recovering the SCS involves a straightfor
ward trace back through the threshold table. When a pair is created, it is linked via
a pointer to its parent, i.e. the pair from which it was created. W here there is more
than one parent, any one may be chosen. In this way, the matches in the MML will
form a list, in reverse order, of the matches in an SCS, starting at any m atch in the
set An>*. Following this list back to A0,o will trace the matches used in an MML.
The elements from each string not included in any of the matches can be inserted at
their appropriate places between the matches of the MML. The algorithm is shown
in pseudo-code in Figure 3.2.

3.2.2 Analysis

The algorithm evaluates n rows each with at most t + 1 sets. The only other
factor is the tim e required to evaluate a particular set of pairs. The tim e required

Exact Algorithms for the SCS problem 43

MML_Thresh: Build the table of A’s
for row: = 0 to n do

col:= 0 ;
repeat

col:=col+l
Li»L2 , L3 , L4 : = (f)

if (row>0) and (col>l) then
Li :=MATCH2 (Ar0 U;_i)C0 /_2 , < * 1 [row])

if (row>0) and (col>0) then
L2 : =MATCH 1 (Xrow _ 1 >co/_ 1 , < * 1 [row])

if (row>0) then
L3 • ~ ^ r o w — l , c o l

if (col>0) then
L4: =0THER2(AroU)Coi_i)

S:=LX U L2 U L3 U L4 U {(0,0)}
X r o w ,col ' ~ S

until X r o W i col-<f>

t :=col-l
end

Figure 3.1: Forward pass of MML_Thresh

MML_Thresh: Recover the SCS
i : = n
p := Any pair in Ant
SCS:=The empty s tr ing
while p<>(0 , 0) do

p':=Parent of p (G A,/>m)
{Add the unmatched symbols 0 / 0 ^, a 2 and o;3}

SCS: =0 3 [p. second+1 ...k-1] -H- SCS
SCS:=o:2 [p .f i r s t+ l ...k-1] -ft- SCS
SCS: =ai [i'+2 . . . i] -H- SCS

{Add the character of the current match.}
if p . f i r s t > p ' . f i r s t then

SCS: =o2 [j] -H- SCS
else {p. second > p'. second}

SCS:=a3 [k] 4f SCS
P := P;
i := F

end

Figure 3.2: Recovering an SCS in MML.Thresh

Exact Algorithms for the SCS problem 44

to generate a set is proportional to the sum of the times required to evaluate the
functions M A T C H I , M A T C H2, and 0 T H E R 2 . The dominant factor there is the
tim e to evaluate 0 T H E R 2 which is 0(n |A |) where |A| is the m aximum size of a set.
An immediate bound on the number of pairs in a set is n + 1. This gives a running
tim e of 0 (z n 2t). Since the space complexity depends directly on the number of pairs
generated, it is 0 (n 2t). When there are very few matches between the strings we
can expect MML.Thresh to be better than Dynamic Programming.

This analysis does not depend on the A sets being antichains although the main
tenance of them as such will undoubtedly speed the algorithm up in practice.

3.2.3 Extension to >3 Strings

We can extend MML-Thresh to find the size of the MML and hence the length of
the SCS of k strings (an, a 2, • • •, <*&) for any fixed k > 3. However it is easy to
see tha t the rather inelegant resulting algorithm is very inefficient for even mod
est values of k. Pairs are replaced by (k — l)-tup les. The evaluation of At-|Tn re
quires the 2k — 2 previously evaluated sets: At- _ i >m_ * + i , A i _ i tTn_jfe+ 2 , . . . , A t- _ i >m and
Ajjm_fc+ 2 , A;)m_ k + 3 , . . . , Ajim_ ! . The functions “m a tch l” , “MATCH1 ” , “m atch2” , and
“MATCH2” are extended to “m atch” and “MATCH” which take an additional pa
ram eter a in the range 0 . . . k — 1. The function “0T H E R 2” is extended to “OTH
ERS” which takes an additional param eter b in the range 2 . . . k — 1. The new
functions behave as follows,

m atch(a,p , cr) = { The tuples such th a t n e x t (a 1a) is applied to
precisely a components of p.}

MATCH(a, A, cr) = S where S = UPeA m atch(a,p , <r)

0TH ERS(6, A) = S where S = UPeA Lbes m atch(6 , p, a)

where p is a tuple, cr is a character, and a represents any one of aq . . . a^. Eval
uation of sets is based on the following lemma.

L em m a 3.2 .2

k — 1 fc—1

Ai,m — S where S = U M 4TCff(a, A , a j *]) | J | J OTHERS(b, A,
a = 0 6=2

Entries in the table of A sets are calculated in the same order as for k = 3.
The tim e complexity of the algorithm is 0 (2 kz n k~l t) in the worst case. The 2k
factor arising from the execution of M A T C H (a) with a in the range 0 . . . k — 1
and O T H E R S (b) with b in the range 2 . . . k — 1 . The space complexity is 0 (n k~1t)
arising from the number of tuples stored in the array.

Exact Algorithms for the SCS problem 45

3.3 A n algorithm operating on supersequences

The second algorithm is called “SCS_Thresh” . It is dual to the Threshold Algorithm
of Chapter 2 for the Longest Common Subsequence Problem in tha t it operates on
the lengths of the SCS’s (as opposed to LCS’s) of increasing prefixes of the three
strings.

We define the threshold set nmij to be the set of pairs (j, k), ordered by increasing
j , such tha t a}, a 2 and a 3 have a shortest common supersequence of length I but
neither a \ , a 2+l and <23 nor a \ , a 2 and a ^ + 1 have such a common supersequence.

For example, for the strings

ot,\ = bcab ot2 — cbca a.3 = abbc

the set 7t2)4 = {(1,4), (3,2), (4,1)}, corresponding to the supersequences abbc,acbc
and cbca respectively.

If (x ,y) and are distinct ordered pairs of non-negative integers, we say
th a t (x ,y) > (x \ y ') if x > x' and y > y'. Let S be a set of ordered pairs of non
negative integers. The set S is therefore a partial order. The set S’, is the set of all
m aximal elements of S. Like S’, S is an antichain of the partial order.

It is immediate from the definitions tha t there are no (x, y), (x', y') € 7Tij such
tha t (x ,y) > (x \y ') , i.e., the 7 sets are antichains. Any set containing the pair
(n, n) will contain no other pairs, and therefore the length s of the shortest common
supersequence is the smallest I for which irnj = {(n, n)}. The table of threshold sets
7n fi has the following structure:

0 1 2 3
1

n 5 — 2 5 — 1 5

0 { (0, 0) } 7T0,1 71*0,2 71*0,3 • • • 7To,n • .

1 714,1 71*1,2 71*1,3 • • • 714|Tl . .

i 2 4> 4> 71*2,2 71*2,3 • • • 7T2 fn • .

n <t> <t> <i> • • • 7T n tn • 71*71,s —2 7Tn)S_ i {(72, T l)}

So we require a m ethod to evaluate the threshold sets in some appropriate order
leading to the required nnj containing only the pair (n, n). We will set up a scheme in
which the evaluation of 7rt-(/ requires the sets 7Tjt/_i and 7rz- _ H e n c e the evaluation
will be in diagonal order, starting with the main diagonal 7r0)o , 7 r i , i5 7r2 ,2 , • • • , t t n ,n

and then the adjacent diagonal 7To,i, 7T2 ,3 -> • • •, 7rn , n + 1 and so on until a set 7Tnj/
is evaluated which contains only the pair (n,n). Some further definitions will be
helpful in establishing the scheme.

For a pair of non-negative integers (j, fc), a character a and a set of pairs of
non-negative integers 7r, we define the functions

Exact Algorithms for the SCS problem 46

extend((j, k), cr) = { (j A 1, k A 1)} if a 2[j + 1] = a 3[k + 1] = a
= { (j A 1, k)} i f a 2[j + 1] = cr and a 3[k + 1] <> cr
= {(j, k A 1)} i f a 2[j A 1] 7̂ <7 and a 3[k + 1] = a
= {(j, fc)} i f a 2[j + 1] ^ <7 and a3[fc + 1] <> a

EXTEND(?r,a) = U(j,fc)e7r extend((j, fc), cr)

fork((j, k)) = { (j A 1, k A 1)} if a 2 [7 + 1] = a 3[k + 1]
— {(i + 1> &)» (j? & + 1)} o th e rw ise

FO RK (tt) = U (il*)€irfo rk ((jl A;)).

The crux of the scheme is in Lemma 3.3.1 and the algorithm is shown in pseudo
code in Figure 3.3.

L e m m a 3.3.1 7 — S where S — E X T E N D ^ i - i ^ - i , ai[z]) (J F O R K f a j - i)

Proof
There are two stages to this proof. The first stage shows how a pair in one of the
sets and 7rZi/_i may generate a pair in i The second stage shows how every
pair in 717/ must have a parent in either 7rt-_lt/_i or 7r»t/_ i.

Every pair (j ,k) £ 7rt-_it;_i represents a supersequence of a\~1, a 32, and a 3 of
length I — 1. If we append ai[z] to tha t supersequence we will get a supersequence
of a \ , a 2 , and a $ of length I such tha t j ' = j A 1 if a 2\j + 1] = 0 7 [z], otherwise
j ’ = j , and k' = k A 1 if a 3[k-\-1] = ai[z], otherwise k' = k. Every pair (j, k) £ ni,i-i
represents a supersequence of a \ , a 2 and <23 of length I — 1. If we append a 2[j + 1] to
th a t supersequence we will get a supersequence of a\,oc2+1, and a^ of length I such
tha t k' = k A 1 if a 3[k -f 1] = a 2[j + 1], otherwise k' = k. Every pair (j, k) £ 7rjf/_i
represents a supersequence of ct\,ct2 and a 3 of length I — I. If we append a 3[k + 1]
to tha t supersequence we will get a supersequence of ct\,ce2 , and a 3 +1 of length I
such tha t j 1 = j A 1 if a 2[j A 1] = ot3[k A 1], otherwise j ' = j .

A pair (j ,k) £ 717/ represents a supersequence 7 of length I of a \ , a 2, and a 3 . If
7 [/] = 0 7 [z] then the supersequence with tha t last symbol removed must be repre
sented by a pair (jv, k1) £ 7 . If ot2[j\ = 7 [I] then j ' = j — 1 otherwise j* = j . If
a 3[k\ = 7 [I] then k' = k — 1 otherwise k' = k. If 7]/] ai[z] then the supersequence
with tha t last symbol removed must be represented by a pair (j ^ k 1) £ iTij-i. If
a 2[j] = 7 [/] then j ' = j — 1 otherwise j 1 = j . If a 3[k] = 7 [/] then /c' = k — 1 otherwise
k' = k. □

3.3.1 Recovering an SCS

W hen each pair is created, it is linked via a pointer to its parent. Hence the fi
nal pair (n,n) will be at the head of a list of (s + 1) pairs, ending with the pair
(0,0) £ 7Tn s. To recover an SCS this list is followed and for each pair except the

Exact Algorithms for the SCS problem 47

S C S _ T h r e s h : B u i l d t h e t a b l e o f 7r’s

r : = - l

r e p e a t

r : = r + l

f o r d : = 0 t o n d o

L i > ^2 : =<j)
i f d > 0 t h e n

L1:=EXTEND(7rd_lir+d_l l a 1[d|)
i f r > 0 t h e n

L2: =F0RK(7rdir+d_i)
S:=LiU L2U{(0,0)}
71"d,r+d • ~S

u n t i l 7Tdir+d={(n ,n)}
s : = r + d

e n d

Figure 3.3: Forward pass of SCS-Thresh

last, the corresponding symbol is prepended to the SCS. The algorithm is shown in
pseudo-code in Figure 3.4

3.3.2 Analysis
The table of threshold sets shows that each diagonal calculated has (n + 1) sets
and tha t there are (5 — n + 1) diagonals to evaluate. The tim e taken to evaluate
the set 7Tij is proportional to | 7T i_ i j/ _ i | + |7rtj/ _ i | so the tim e to process each set is
lim ited by the maximum size of a set. A slight modification to the running of the
algorithm can ensure a bound of (s — n) pairs in each set. This is the same ‘trick’
used to achieve a performance guarantee for the Threshold Algorithm for the LCS
Problem in Chapter 2. We parameterise the algorithm with param eter p so tha t we
are testing the hypothesis tha t s < n + p. That means we must evaluate at most
p + 1 diagonals with at most p + 1 pairs in each set. This algorithm will therefore
have tim e complexity 0 (n p 2). If we successively call the algorithm with param eter
p = 0 , 1, 2, 4 ,8 , . . . then when the answer “yes” is returned, we will know the length
of the SCS and have enough information to reconstruct a particular SCS. Suppose
tha t

n -f- 2 U_1 < s < n + 2U

i.e.
2 U_1 < s - n < T .

Exact Algorithms for the SCS problem 48

S C S _ T h r e s h : R e c o v e r t h e S C S

p : = (n , n) E 7r„ia

i : = n

S C S : = T h e e m p t y s t r i n g

w h i l e p < > (0 , 0) d o

p ' : = P a r e n t o f p (E 7Tj/ /)
i f p . f i r s t > p ' . f i r s t t h e n

S C S : = c t 2 Cp • f i r s t] -H- S C S

e l s e

i f p . s e c o n d > p ' . s e c o n d t h e n

S C S : = o 3 [p . s e c o n d] -H- S CS

e l s e

S C S : =ai [i] -H- S C S

p : = p '

i : = i '

e n d

Figure 3.4: Recovering an SCS in SCS-Thresh

The algorithm will be invoked u -\-1 times with the final param eter p = 2U. The time
complexity of the resulting algorithm is O (n S ^ 0(21)2) — 0 (n 2 2u+2) = 0 (n (s — n)2).
Since the space complexity depends directly on the number of pairs generated
throughout all the sets, the space complexity is also 0 (n (s — n)2). We can therefore
expect SCS-Thresh to be good when the SCS is short.

As for the analysis of MML-Thresh, the analysis for SCS-Thresh does not de
pend on the 7r sets being antichains although the maintenance of them as such will
undoubtedly speed the algorithm up in practice.

3.3.3 Extension to >3 Strings

We can extend SCS-Thresh to find the SCS of k strings for any fixed k > 3. In
this case, pairs are replaced by (k — l)-tup les. As for k = 3, 7r^/ = S where
S = EXTEND(7ri_it/_i,ai[z]) U F0RK(7Ti^_i). The function extend(p, cr) on tuple
p and symbol cr expands easily so tha t in the new tuple generated, the ith component
will be one greater than c, the i th component of p, if and only if a{[c + 1] = cr,
otherwise it will have the same value (c). As before the function EXTEND(7T, cr)
on set 7r applies extend(p, cr) to each tuple p E 7r. Extending the function fork(p)
to work in linear time is less straightforward. The tuple p generates between 1 and
(k — 1) new tuples, depending on the number of groups of strings with distinct,
matching characters in the positions following their corresponding components in p.
This is best explained with an example.

Exact Algorithms for the SCS problem 49

For the strings

cti = abcbc a 2 = cabab a 3 = acbac

a 4 = c acab a 5 = cba&c a 6 = cabcb

where p — (U,z2, *3 , «4 , *5 , i&) = (1 ,1 ,2 ,1 ,2 ,0), the function fork(p) generates three
new tuples - (1,2,2,2,3,0), (2,1,3,1,2,0), and (1 ,1 ,2,1,2,1). The first tuple arises
because a 2 [z2 + 1] = &a[h + 1] = <25[25 + 1] = ‘a \ The second tuple arises because
ai[*i + 1] = <23 [*’3 + 1] =ib\ The third tuple arises because a 6 alone has ‘c’ in po
sition ?6 + 1. One pass of the components of p is required to generate this list of
tuples. For the i th component p.i = c, the character a t-[c] is checked to see if it
has been seen already in this pass. If not, then a new tuple associated with a t-[c] is
created. The new tuple p' is a copy of p except th a t p'.i = c + 1. If OLi[c\ has been
seen before then the i th component of the tuple associated with tha t character is
incremented.

Using these expansions, the threshold table is evaluated in the same order as be
fore, until the tuple (n, n, n , ..) is reached in the bottom row. By param eterising the
algorithm as for three strings, the resulting worst case tim e and space complexity is
0 (k n (s — n)fc_1). When the shortest common supersequence is short, this algorithm
can be expected to be much better than basic Dynamic Programming.

3.4 Em pirical results and conclusions

To compare the performances of the two new algorithms to tha t of Dynamic Pro
gramming we implemented, for three strings, the basic Dynamic Programming Al
gorithm, algorithm MML_Thresh, and algorithm SCS-Thresh. As for the threshold
algorithm for the LCS problem, the straightforward version of SCS_Thresh was used
(and not the version with the param eterisation trick to ensure the worst-case time
complexity). They were coded in Pascal and compiled with the Sun Pascal Compiler
version 1.0 using the “-0” option to provide the widest range of optimisations. They
were run on a SPARCstation-10 with sixteen megabytes of memory.

Alphabet sizes of 4, 8, 16, and, where appropriate, 128 and 256 were used. String
lengths of 100, 200, 400, . . . were used. Two sets of experiments were performed. The
first used completely random strings. That is, every symbol was selected uniformly
at random from the alphabet. The second set used strings with an SCS of length
less than or equal to lln /1 0 . They were generated by taking random subsequences,
with length n, of a string of length lln /1 0 . Similar strings were chosen because it is
when strings are similar tha t their relationship is likely to be interesting in practical
applications. The CPU times in seconds for the running times of the algorithms are
shown in Tables 3.1 and 3.2. The times for the DP algorithm were independent of

Exact Algorithms for the SCS problem 50

n
Algorithm 1 0 0 2 0 0 400 800

DP 1.7 13 - -
z = 4 13 - - -

MMS.Thresh z = 8 8.7 74 - -
z = 16 6 46 - -

II i—' to 00 0.9 OO 00 80 -
2 = 256 0.4 4.4 42 -
z = 4 2 .8 2 2 - -

SCS-Thresh z = 8 6.5 50 - -
z — 16 11 - - -

Table 3.1: CPU times in seconds for SCS algorithms on random strings

n
Algorithm 1 0 0 2 0 0 400 800 1600

DP 1 .6 13 - - -

z = 4 14 - - - -

MMS.Thresh z = 8 1 2 93 - - -

z = 16 1 0 8 6 - - -
z = 4 0 .1 0 .6 3.7 32 -

SCS-Thresh z = 8 0 .1 0.5 3.5 28 -
z — 16 0 .1 0.4 3.0 23 -

Table 3.2: CPU times in seconds for SCS algorithms when 5 < llrc/10

the size of the alphabet so only one set of figures for it is included in each of the
tables. As the lengths of the strings increased, all the algorithms eventually failed
due to a lack of memory as indicated by in the tables.

For random strings, it appears tha t the two algorithm do not provide any im
provement over the basic dynamic programming. However when the length of the
SCS is known to be close to n , SCS-Thresh shows a big improvement over the
Dynamic Programming Algorithm.

As was the case for the LCS problem in Chapter 2 , the clearest conclusion tha t
can be drawn from the experimental results is tha t the size of instances of the SCS
problem which can be solved in practice using these algorithms is constrained by
space requirements and not tim e requirements.

Chapter 4

Exact solutions to large instances
of the LCS and SCS problems

4.1 Introduction

The prim ary aim in this chapter is to identify the range of instances of the Longest
Common Subsequence and Shortest Common Supersequence Problems tha t can be
solved in practice using realistic computational resources. To achieve this, a range
of efficient algorithms employing two fundamentally different approaches have been
implemented and experiments performed to discover how large the problem instances
may become before the time or the memory space required to solve them becomes
impractical.

Throughout the literature, there appears to be an implicit assumption tha t algo
rithm s based on dynamic programming are the best way to solve these two problems.
The second aim of this chapter is to investigate the applicability of algorithms based
on a natural branch-and-bound strategy and find out whether they can extend the
range of problem instances tha t we can expect to be able to solve in practice.

The two strings case has been treated separately because the two problems be
come dual in this case and because it has received so much attention in the literature.
For more than two strings, all programs implemented solve instances with an arbi
trary, specifiable number of strings. The results for any particular num ber of strings
could be improved a little by tailoring the algorithms specifically for tha t case.

The critical parameters of a problem instance are (i) the number of strings fc, (ii)
the size of the alphabet used z, and (iii) the lengths of the strings n. In all cases,
strings of equal length n have been used because studying this case is sufficient to
gain the information sought. For the rest of the chapter, P represents the set of
strings and S represents the alphabet. The strings are labelled a q , a 2 , . . . , a^.

A third purpose of this chapter is to provide a substantial body of empirical
data to enable accurate estimation of the expected length of the LCS or SCS of

51

Exact solutions to large instances o f the LCS and SCS problems 52

an arbitrary number of random strings of any particular length over an alphabet of
any particular size. The expected LCS or SCS length over a given set of param eters
(alphabet size (2), number of strings (k) and string lengths (n)), denoted by / (z , /c, n)
or g (z , k;, n) respectively, is the average LCS or SCS length over all instances of the
problem with tha t given set of parameters. As n tends to infinity, the lim iting values
for the ratio of the lengths of the LCS and SCS to n are defined to be

F { Z t k) = l i m L h h r l
n —± oo j i

G (Z t k) = lim
n —¥ 00 f i

See Section 1.3.5 for details of previous work.

4.2 D ynam ic program m ing to solve LCS

As we know, Dynamic Programming was the first method of solution proposed for
the LCS problem for two or more strings [25, 35, 6 8] and Dynamic Programming
based strategies are the first approach employed in our experiments. Two different
implementations of a Lazy Dynamic Programming Algorithm, derived directly from
the recurrence relation given in Section 1.3.3 of Chapter 1 , have been used. This
is not the same as the lazy algorithm of Chapter 2 . Calculation starts at the final
entry of the dynamic programming table i.e. L(n, n , . . . , n). Evaluation of this entry
requires the value of either 1 or k other entries in the table, each of which require the
value of 1 or A; other entries etc. Thus a recursive process evaluates a subset of the
entries of the dynamic programming table. The algorithm is shown in pseudo-code
in Figure 4.1.

4.2.1 Lazy dynamic programming using an Array

The first implementation of the Lazy Algorithm uses a one-dimensional array to
represent the fc-dimensional table required for the algorithm. This is done by repre
senting the multi-dimensional table in a way similar to how a program in machine
language represents a multi-dimensional array in “flat” memory. Assuming all the
k dimensions have length m, indexed (0 . . . m — 1), the single dimensional array has
length m k (the product of the lengths of dimensions) and is indexed (0 . . . m k — 1).
The multi-dimensional table entry (z 1 , z2 , • • •, u) is stored in the single-dimensional
array entry ((?i x m k~l) + (Z2 X m k~2) -f • • • -f (ik-i x m 1) + i*).

Exact solutions to large instances o f the LCS and SCS problems 53

Solve LCS w ith Lazy D ynam ic P rogram m ing
O u tp u t LCS(n,n, . . . ,n)
end

function L C S(i1? i2, . . . , ik)
if L [i l5 i2, .. •, ik] has not been ca lcu la ted th en

if . • .,i* > 0) th en
if ai[»i] = a2[i2] = • • • = Ofefo] th en

L D l } ^2) • • • i ♦ ~ L C S (Z j 1 , 12 1) • • • j 1) ^ 1

else
L[z'i, z2, :=max(LCS(i! - 1, i2, ,

LCS(i’i , z2 !»•••» fie) >

LCS(ii, 22, . . . , ik 1))
else

L [«i, i2) • • • i ikl ♦—0

re tu rn L[*i ,*2,
end

Figure 4.1: The Lazy Dynamic Programming Algorithm for the LCS problem.

4.2.2 Lazy dynamic programming using a Trie
If the dynamic programming table is very sparse then the array representation will
be very inefficient with respect to space usage. This is likely to happen when the
LCS is very long and the alphabet size is large. In this case, it would be ideal if
memory space is used only for those entries tha t are calculated. This is possible
using a trie [59] to represent the dynamic programming table.

For every entry in the DP array calculated, there is a path from the root to a
leaf node where the value is stored. The steps in the path represent the indexes
into the DP array. Physically, each node of the trie contains three elements, a key,
a pointer to a child node and a pointer to a sibling node. In branch nodes, the key
stores the value of the index into the DP array and in the leaf nodes, the key stores
the DP table entry and the two pointers are null.

4.2.3 Analysis o f Lazy D P solutions to the LCS

The worst-case requirement of the Lazy Dynamic Programming Algorithm is clearly
0 (k n k) for tim e and 0 (n k) for space. The array based implementation requires
the initialisation of the entire array. In practice this initialisation takes very little
tim e because it is such a simple task. The trie-based implem entation requires no
significant initialisation. It only uses space for the dynamic programming table

Exact solutions to large instances o f the LCS and SCS problems 54

S o l v e L C S b y B r a n c h - a n d - B o u n d

7 , S:= t h e e m p t y s t r i n g

f o r i : = 1 t o k d o F [i , 0] : = 0

C h o o s e . l c s (l)

O u t p u t 6
e n d

p r o c e d u r e C h o o s e . l c s (l e n g t h)

f o r e v e r y cr G E d o

i f E x t e n d i b l e , l c s (c r , l e n g t h) t h e n

A p p e n d cr t o 7

i f l e n g t h > |<$| t h e n S:=j
C h o o s e . l c s (l e n g t h + 1)

R e m o v e cr f r o m t h e e n d o f 7

e n d

f u n c t i o n E x t e n d i b l e . l c s (c r , l e n g t h)

f o r i : = 1 . . .k d o

F [i , l e n g t h] : = n e x t o c c u r r e n c e o f cr a f t e r F [i , l e n g t h - 1] i n cq

r e t u r n (l e n g t h + i < ; < A ; (n - F [i . l e n g t h]) > | £ |)

e n d

Figure 4.2: The basic Branch-and-Bound Algorithm for the LCS problem,

entries it evaluates but requires more space for each entry.

4.3 B ranch-and-bound to solve LCS

The second approach employed to solve the LCS problem is a very simple branch-
and-bound strategy. Strings are generated lexicographically. Each string is tested
to see if it is a common subsequence of P. If a string 7 is a common subsequence of
P and the bounding conditions are satisfied then all one character extensions of 7

are tested. For each string ot{ in P , the length of the shortest prefix of ct{ which is
a supersequence of 7 is stored in a 2-dimensional array P , indexed [1 . . . k, 0 . . . n],
in entry F[z, I7 1]. A simple bounding condition is tha t I7 I + i<V<a? (n ~ F[z, M l) be
greater than the length of the longest common subsequence found so far. The
algorithm is shown in pseudo-code in Figure 4.2.

4.3.1 Finding a good initial bound

The execution of branch-and-bound algorithms can usually be speeded up greatly
if a good initial bound is found. For this it is natural to use a fast approximation

Exact solutions to large instances o f the LCS and SCS problems 55

p r o c e d u r e C h o o s e 2 . 1 c s (l e n g t h)

t o t : = 0

f o r e v e r y cr £ £ d o

t o t : = t o t + ! < ; < £ (o c c u r r e n c e s o f cr i n a,- a f t e r p o s i t i o n F [i , l e n g t h - 1])

i f l e n g t h - l + t o t > | £ | t h e n

f o r e v e r y cr E £ d o

i f E x t e n d i b l e . l c s (< r , l e n g t h) t h e n

A p p e n d cr t o 7

i f l e n g t h > \S\ t h e n S: = 7

C h o o s e 2 . l c s (l e n g t h * 1)

R e m o v e cr f r o m t h e e n d o f 7

e n d

Figure 4.3: The procedure Choose2.lcs.

algorithm. The approximation algorithm Best-Next from Chapter 5 was employed
for this purpose because, in practice, it was found to produce a very good approxi
mation.

4.3.2 Improving on the basic strategy

U sing ch arac te r frequency analysis

The first method applied to speed up the Branch-and-Bound Algorithm used char
acter frequencies to calculate a tighter bound. Some simple preprocessing of the
strings in P is carried out. For every a;, the number of occurrences of each symbol
in the alphabet after every position in a; is calculated and retained in an array.
During execution of the algorithm, before extending a common subsequence 7 , the
sum t of the minimum numbers of each symbol occurring in the unused suffixes of
the a ’s is calculated. That is, the sum for all cr £ E of

min (the number of occurrences of cr in a z- after position F[z, I7 1]).
l < i < k

The sum t is then an upper bound on the length of the LCS of the unused suffixes
of the a ’s. The bounding condition is tha t I7 1 + t be greater than the length of
the longest common subsequence found so far. This generates a bound which is
independent from the bound already used in the function Extendible.lcs. Pseudo
code for the procedure Choose2.lcs which is an alternative to Choose.lcs is shown in
Figure 4.3.

Exact solutions to large instances o f the LCS and SCS problems 56

function Extendible2.1cs(<r,length)
for i : = l to k do

F [i , l e n g t h] : = n e x t o c c u r r e n c e o f a a f t e r F [i , l e n g t h - 1] i n o t-

q : = i<f<fc (n - F [i , l e n g t h])

r e t u r n ((l e n g t h + ^ j t C n - F C i , l e n g t h]) > | £ |) a n d (l e n g t h + U [q] > | <$ |))

e n d

Calculate U
for i : = l to n do U [i] : - i ;
f o r e v e r y p a i r o f s t r i n g s a,- a n d aj d o

b u i l d L , t h e LCS DP a r r a y o f t h e reverse o f o,- a n d t h e reverse o f aj
f o r x : = l t o n d o

U [x] : = m i n (U [x] , L [x , x])

end

Figure 4.4: The function Extendible2.lcs.

U sing all pairw ise LCS lengths

A strong bounding condition can be achieved using pairwise comparison of the
strings in P. For 1 < q < n, the array U[q] represents an upper bound on the LCS
of the k suffixes on [n — q + 1 . . . n], a.2 [n — q + 1 . . . n], . . . , a^ [n — q -f 1 . . . n]. The
array U is calculated as follows. For every pair of strings, a,- and aj, the entire
dynamic programming table for the LCS of the reverse of a t- and the reverse of aj
is calculated. Thus the length of the LCS of every suffix of a,- and every suffix of
Oij is temporarily stored. For 1 < q < n, U[q] is set to the minimum of the LCS’s of
the suffixes ai[n — q -f 1 . . . n] and ctj[n — q + 1 . . . n\ over all and aj.

After the algorithm generates the common subsequence 7 it finds the length q
of the longest1 suffix, of a string a,-, not required for a t- to be a supersequence of 7 .
The bounding condition is tha t I7 I + U[q] be greater than the length of the longest
common subsequence found so far. Pseudo-code for the function Extendible2.lcs
which is an alternative to Extendible.lcs is shown in Figure 4.4.

U sin g all pairw ise LCS D P arrays

A stronger bound is obtained if the dynamic programming table for the LCS of every
pair of strings, a* and aj, in P is calculated and retained. Each array is calculated
using the reverse of a,- and the reverse of aj. Thus the length of the LCS of any suffix
of a t- and any suffix of aj can be found in constant time. A very tight bounding
condition is established as follows. When the common subsequence 7 is generated,

1In fact, the second longest could be used but the difference this makes is not significant.

Exact solutions to large instances o f the LCS and SCS problems 57

Extendible3.1cs(<j,length)
for i : = l to k do

F [i,le n g th] :=next occurrence of o a f te r F [i,le n g th -1] in O',-
P : =1 <i<k (n-F [i , length])
q := i< i<fc(n-F[i,length]) i<>p
re tu rn ((length+!</</;(n-F [i , length])>|£|) and

(1 engt h+LCS (p , F [p , 1 engt h] +1, q , F [q , 1 ength] +1) > | <51))
end

where LCS(p,x,q,y) = the leng th of the LCS of the su ffix e s
ap [n — x + 1 . . . n] and aq [n — y + 1 . . . n].

Figure 4.5: The function ExtendibleS.lcs.

the two strings cq and oij, such tha t F[i] and F\j] are the highest two values in the
array F, are found. The bounding condition is tha t the length of 7 plus the length of
the LCS of a t-[F[z] .. .n] and otj[F\j] .. .n] be greater than the length of the longest
common subsequence found so far. Pseudo-code for the function ExtendibleS.lcs
which is an alternative to Extendible.lcs is shown in Figure 4.5.

4.3.3 Analysis o f Branch-and-Bound solutions to the LCS
It is very difficult to say anything concrete about the behaviour of branch-and-bound
algorithms in practice. However, since the branch-and-bound algorithm generates
strings of length < / spending O(k) on each, and there are 0 (z l) strings of length
< /, the worst-case time complexity is 0 (k z l). The space complexity is 0 { k n z) to
store the next occurrence tables. In practice, the heuristics employed will hopefully
make branch-and-bound run much faster than the worst case.

Using all the pairwise LCS DP arrays imposes a

space requirement. For high &, this will be very significant. Later in this chapter the
behaviour of the branch-and-bound algorithms for both LCS and SCS are discussed
in more detail.

4.4 D ynam ic program m ing to solve SCS

As for the LCS problem, two implementations of a Lazy Dynamic Programming
Algorithm for the SCS problem have been used. The algorithm is derived directly

Exact solutions to large instances o f the LCS and SCS problems 58

S o l v e S C S w i t h L a z y D y n a m i c P r o g r a m m i n g

O u t p u t S C S (n , n , . . . , n)

e n d

f u n c t i o n S C S (* 1, *2, . . . ,

i f S [z i , i2, . . . , zjfe] h a s n o t b e e n c a l c u l a t e d t h e n

i f (*! = i2 = ' • • = ik = 0) t h e n

S [ii, z2, • • • ?**] •—0
e l s e

l o w : = n x k
for every o £ {ofi[*i],Qr2[i2], • ••,«*[**]} do

l o w : = m i n (l o w , S C S (J ^ (i 1, cr) , J F (i 2, <j) , . . <r))

S [z ’i , «2 , . . ifc] : = l o w

r e t u r n S [i 1} i 2, . . . , «*]

e n d

f u n c t i o n

i f ih = 0 t h e n

r e t u r n 0

e l s e

i f Oih[ih] = <j t h e n

r e t u r n ih — 1

e l s e

r e t u r n ih
e n d

Figure 4.6: The Lazy Dynamic Programming Algorithm for the SCS problem.

from the recurrence relation given in Section 1.4.2. Calculation starts at the final
entry of the dynamic programming table i.e. 5 (n , n , . . . , n). Evaluation of this
entry requires the value of between 1 and k other entries, each of which requires the
value of between 1 and k other entries, etc. Thus a recursive process evaluates a
subset of the entries of the dynamic programming table. The algorithm is shown
in pseudo-code in Figure 4.6. As for the LCS problem, two implementations of the
Lazy Dynamic Programming algorithm were employed. They used an array and a
trie respectively to represent the dynamic programming table in precisely the same
way as for the LCS problem.

4.4.1 Analysis o f Lazy D P solutions to the SCS

The analysis is precisely the same as tha t for the Lazy Dynamic Programming
Algorithm for the LCS problem. Both implementations require 0 (k n k) tim e and

Exact solutions to large instances o f the LCS and SCS problems 59

0 (n k) space in the worst case.

4.5 Branch and bound to solve SCS

A branch-and-bound strategy, similar to tha t employed for the LCS problem, was
the second approach used to solve the SCS problem. The basic algorithm proceeds
as follows. Strings are generated lexicographically. For the current string 7 of
length m, a two-dimensional array F indexed [1 . . . fc, 0 . . . n] stores in F[z, m], for
1 < i < fc, the length of the longest prefix of which is a subsequence of 7 . So
7 is a supersequence of the prefixes a, ;[l . . . F[z,m]], for 1 < i < k. The string 7 ',
a one character extension of 7 , is clearly a supersequence of all a z[1 . . . F[z, m]] and
may be a supersequence of some a;[1 . . . F[z,m] + 1], for 1 < z < k. If for any z,
7 ' is a supersequence of cq[1 . . . F[z,m] -f 1] and the bounding conditions are met,
then all one character extensions of 7 ' are tested. A simple bounding condition is
th a t 777. T 1T i<f<A; (tz — F [z, m —(— 1]) be less than the length of the shortest common
supersequence found so far. The algorithm is shown in pseudo-code in Figure 4.7.

4.5.1 Finding a good initial bound

To find a good lower initial bound on the length of the SCS, two of the approxima
tion algorithms from Chapter 5 were employed. The M ajority Merge algorithm and
the Greedy2 algorithm were chosen because when testing the approxim ation algo
rithm s, almost invariably one of those two produced the best approximation. Both
algorithms are executed and the lower approximation chosen as the initial upper
bound for the SCS length. See Chapter 5 for descriptions of the two algorithms.

4.5.2 Improving on the basic strategy

The methods used to speed up the Branch-and-Bound Algorithm for the SCS prob
lem are all analogies of the methods used to speed up the Branch-and-Bound Algo
rithm for the LCS problem.

U sing ch arac te r frequency analysis

Precisely the same preprocessing of the strings is carried out as for the LCS problem.
During execution of the algorithm, before extending a common supersequence 7 , the
sum t of the maximum numbers of each symbol occurring in the unused suffixes of
the q ’s is calculated. That is, the sum for all cr 6 S of

max (the number of occurrences of cr in cq after position F[z, I7 1]).
K i < k

Exact solutions to large instances o f the LCS and SCS problems 60

S o l v e S C S b y B r a n c h - a n d - B o u n d

7 : = t h e e m p t y s t r i n g

S:= En (S t h e r e f o r e h a s l e n g t h kn)

f o r i : = l t o k d o F [i , 0] : = 0

C h o o s e . s c s (l)

O u t p u t 5
e n d

p r o c e d u r e C h o o s e . s c s (l e n g t h)

f o r e v e r y a 6 P d o

i f E x t e n d s . s c s (c r , l e n g t h) t h e n

A p p e n d <7 t o 7

i f F [l . . . k , l e n g t h] = n t h e n 5: = 7

e l s e C h o o s e . s c s (l e n g t h + 1)

R e m o v e cr f r o m t h e e n d o f 7

e n d

f u n c t i o n E x t e n d s . s c s (c r , l e n g t h)

x t e n d s : -FALSE
f o r i : = 1 t o k d o

i f o , [F [i , l e n g t h - l] + l] = c r t h e n

F [i , l e n g t h] : = F [i , l e n g t h - 1] +1

x t e n d s : = TRUE
e l s e

F [i , l e n g t h] : = F [i , l e n g t h - 1]

r e t u r n (x t e n d s a n d (l e n g t h + i < f < j t (n - F [i , l e n g t h]) < | $ |))

e n d

Figure 4.7: The basic Branch-and-Bound Algorithm for the SCS problem.

Exact solutions to large instances o f the LCS and SCS problems 61

p r o c e d u r e C h o o s e 2 . s c s (l e n g t h)

t o t : = 0

f o r e v e r y <r E E d o

t o t : = t o t + 1< f < k (o c c u r r e n c e s o f a i n a * a f t e r p o s i t i o n F [i , l e n g t h - 1])

i f l e n g t h - l + t o t < | < 5 | t h e n

f o r e v e r y u E P d o

i f E x t e n d s . s c s (< j , l e n g t h) t h e n

A p p e n d cr t o 7

i f F [l . . . k , l e n g t h] = n t h e n S: = 7

e l s e C h o o s e . s c s (l e n g t h + 1)

R e m o v e cr f r o m t h e e n d o f 7

e n d

Figure 4.8: The function Choose2.scs.

The sum t is then a lower bound on the length of the SCS of the unused suffixes of the
a ’s. The bounding condition is tha t I7 1 + t be less than the length of the shortest
common supersequence found so far. Pseudo-code for the procedure Choose2.scs
which is an alternative to Choose.scs is shown in Figure 4.8.

U sing all pairw ise SCS lengths

For 1 < q < n, the array L[q] represents a lower bound on the SCS of the k suffixes
Qi [n — q + 1 . . . n\ , c*2 [n ~ <? + 1 • • • n\ > • • •, a k [n ~ q T 1 • • • n\ . The array L is calculated
as follows. For every pair of strings, a; and 0 7 , the entire dynamic programming
table for the SCS of the reverse of a; and the reverse of aj is calculated. Thus the
length of the SCS of every suffix of a*- and every suffix of 0 7 is temporarily stored. For
1 < q < n, L[q] is set to the maximum of the SCS’s of the suffixes ai[n — q + I .. .n]
and aj [n — q + 1 . . . n].

After the algorithm generates the common supersequence 7 it finds the length q
of the shortest2 suffix, of a string cq-, not required for cq to be a supersequence of
7 . The bounding condition is tha t I7 1 + L[q] be less than the length of the shortest
common supersequence found so far. Pseudo-code for the function Extends2.scs
which is an alternative to Extends.scs is shown in Figure 4.9.

U sin g all pairw ise SCS D P arrays

For every pair of strings, ct; and a j, the SCS DP table of the reverse of a z- and the
reverse of aj is calculated and retained. Thus the length of the SCS of any suffix of a*
and any suffix of a j can be found in constant time. A very tight bounding condition

2In fact, the second shortest could be used but the difference this makes is not significant.

Exact solutions to large instances o f the LCS and SCS problems 62

f u n c t i o n E x t e n d s 2 . s c s (c r , l e n g t h)

x t e n d s : = FALSE
f o r i : = l t o k d o

i f a,- [F [i , l e n g t h - l] + l] = o - t h e n

F [i , l e n g t h] : = F [i , l e n g t h - l] + l

x t e n d s : = TRUE
e l s e

F [i , l e n g t h] : = F [i , l e n g t h - 1]

P : = i < f <* (n - F [i , l e n g t h])

r e t u r n (x t e n d s a n d (l e n g t h + i ^ x ^ (n - F [i , l e n g t h]) < | £ |)

a n d (l e n g t h + L [p] < | < 5 |))

e n d

C a l c u l a t e L

f o r i : = l t o n d o L [i] : = i

f o r e v e r y p a i r o f s t r i n g s a * a n d aj d o

b u i l d S , t h e S C S DP a r r a y o f t h e reverse o f a,- a n d t h e reverse o f aj
f o r x : = l t o n d o

L [x] : = m a x (L [x] , S [x , x]) e n d

Figure 4.9: The function ExtendsS.scs.

is established as follows. When the partial supersequence 7 is generated, the two
strings, a ; and a j , with the shortest maximal length prefixes tha t are subsequences
of 7 are found. The bounding condition is tha t the length of 7 plus the SCS of
the uncovered suffixes of a ; and aj be less than the length of the shortest common
supersequence found so far. Pseudo-code for the function ExtdendsS.scs which is an
alternative to Extends.scs is shown in Figure 4.10.

4.5.3 Analysis o f Branch-and-Bound solutions to the SCS

Since the branch-and-bound algorithm generates strings of length < s spending 0(k)
on each, and there are 0 (z s) strings of length < s, the worst-case tim e complexity is
0 (k z s). The space complexity is 0 (k n) to store the strings themselves. In practice,
the heuristics employed will hopefully make branch-and-bound run much faster than
the worst case.

Using all the pairwise SCS DP arrays imposes a

space requirement. For high this will be very significant. Later in this chapter the

Exact solutions to large instances o f the LCS and SCS problems 63

f u n c t i o n E x t e n d s 3 . s c s (< r , l e n g t h)

x t e n d s : = FALSE
f o r i = l t o k d o

i f cxi [F [i , l e n g t h - 1] + 1] - g t h e n

F [i , l e n g t h] : = F [i , l e n g t h - 1] + 1

x t e n d s : = TRUE
e l s e

F [i , l e n g t h] : = F [i , l e n g t h - 1]

P := i< 7 < \ (n - F [i , l e n g t h])

q : = i < f < * (n - F [i , l e n g t h]) i O p

r e t u r n (x t e n d s a n d (l e n g t h + j i ^ * / . (n - F [i , l e n g t h]) < | £ |)

a n d (l e n g t h + S C S (p , F [p , l e n g t h] + l , q , F [q , l e n g t h] + l) < | £ |))

e n d

w h e r e S C S (p , x , q , y) = t h e l e n g t h o f t h e S C S o f t h e s u f f i x e s

a p [x . . . n] a n d a q [y . . - n]

Figure 4.10: The function ExtendsS.scs.

behaviour of the branch-and-bound algorithms for both LCS and SCS are discussed
in more detail.

4.6 Solving LCS and SCS for two strings

As was discussed in Chapter 1 , when there are only two strings, the LCS and SCS
problems become dual and this special case has received a great deal of attention in
the literature. The threshold algorithm described in Section 1.3.2 was used because
it combines excellent tim e and space performance in a very straightforward algo
rithm . Recently Rick [57] published a similar algorithm (but with quadratic space
complexity) and showed empirically tha t for most values of I (0 < I < n) it is faster
than four previously published algorithms (Apostolico and Guerra [6], Nakatsu et
el. [52], Chin and Poon [13], and Wu et al. [71]).

4.7 T he experim ents

The objectives of the experiments were:

1 . Identify, for both problems (LCS and SCS), the range of problem instances
solvable in practice using realistic computational resources.

2 . Assess the applicability of branch and bound algorithms to solving these prob
lems.

Exact solutions to large instances o f the LCS and SCS problems 64

3. Generate a large body of empirical results to allow accurate estim ation of the
expected lengths of LCS and SCS for random strings over a wide range of
string numbers, alphabet sizes and string lengths.

All the programs were implemented in Pascal and compiled with the Sun Pascal
Compiler version 1.0 using the “- 0 ” option to provide the widest range of optim i
sations. The experiments were carried out on a SPARCstation-10 workstation with
sixteen megabytes of RAM.

Two sets of experiments were carried out. The first set used completely random
strings. That is, every symbol was selected uniformly at random from the alphabet.
The second set used strings known to have a relatively long LCS or a relatively
short SCS. Similar strings were used because it is when strings are similar th a t their
relationship is likely to be interesting in practical applications. For the experiments
on the LCS problem, the strings had an LCS of length at least 9n/10. They were
created by first generating a random string with length 9n/10. Then k copies of
th a t string were made, each with n / 10 additional random characters inserted in
random positions. The LCS for those k strings of length n therefore has length at
least 9n/10. For the experiments on the SCS problem, the strings had an SCS of
length at most l ln /1 0 . They were created by first generating a random string with
length l ln /1 0 . Then k copies of tha t string were made, each with n/10 characters
deleted from random positions. The SCS for those k strings of length n therefore
has length at most lln /1 0 .

To measure the effect of the number of strings, k was taken over the values
2 ,3 ,4 ,5 ,6 ,7 ,8 ,1 6 ,2 4 .

To measure the effect of the alphabet size for k > 2, an exponential scale was
used - alphabet sizes of 2 ,4 ,8 ,16 , because preliminary testing suggested th a t, with
all other factors being equal, a significant change in the alphabet size was required to
show a significant change in either of the measured quantities (time and LCS/SCS
length). For k = 2, all alphabet sizes from two to sixteen were studied to find
accurate estimations of F (2, z) which can be compared to the upper and lower
bounds found in the literature.

For every k and ^ pair, the length of the strings tested rose in a linear scale
until the problem instances could not be solved in one hour of CPU tim e or due to
a lack of memory. For the various programs and for different values of k , different
scales were used, depending on how quickly the tim e required to solve problems rose
with n.

The experiments are grouped into families where each k and z pair represents
one family of experiments. For each family, as n increases we can expect to see
a pattern in the behaviour of each program. Except where otherwise stated , each
individual experiment within a family was only run once. That is, for each z and
n triple, only one problem instance was generated and solved. So for each family,

Exact solutions to large instances o f the LCS and SCS problems 65

a set experiments was performed, with one param eter changing slightly from one
experiment to the next.

For the array-based Lazy Dynamic Programming Algorithms, an upper bound
of 224 was imposed on the number of cells used by the multi-dimensional DP table
to represent a reasonable limit on the amount of RAM available to the machine.

4.7.1 Behaviour of the branch and bound algorithms

For studying the results of the experiments, some definitions and observations about
the behaviour of the branch and bound algorithms are useful. A branch and bound
algorithm can be viewed as searching a tree where a correct solution lies at some
leaf node. The breadth of the tree is the maximum number of children of each node.
The depth of the tree is the length of the longest path from the root node to a leaf
node. The density of the tree is a measure of the proportion of the tree actually
visited during execution of the algorithm. This will depend mainly on how tight an
initial bound is found and on the strength of the bounding conditions used.

The tim e required to solve a problem with a branch and bound algorithm depends
on the number of nodes of the tree visited and on the time spent at each node. The
number of nodes visited will depend on the above three factors - breadth, depth,
and density. In the context of the branch and bound algorithms for the LCS and
SCS problems, proposed here, the following facts are trivial;

1. The breadth is equal to the size of the alphabet.

2. The depth is equal to the length of the LCS or SCS respectively.

3. The tim e spent at each node is proportional to k since each new symbol gen
erated must be checked against k strings.

4.7.2 Results for the LCS problem when k > 2

Experim ental results for only one program based on dynamic programming are pre
sented. In all cases, the array-based implementation of the Lazy Dynamic Program
ming Algorithm was superior to the trie-based implementation. The array-based
im plem entation was consistently significantly faster. All instances th a t could not be
solved by the array-based implementation due to the amount of memory required
also could not be solved by the trie-based implementation for the same reason. From
here on, the array-based implementation will be referred to as LCS-DP.

The experimental results for two programs based on branch-and-bound are pre
sented. In all cases of the algorithms based on branch-and-bound, the basic algo
rithm with the function ExtendibleS.lcs was the fastest. No further increase in speed
was observed when, additionally, the procedure Choose2.lcs replaced Choose.Ics.

Exact solutions to large instances o f the LCS and SCS problems 66

n
k 10 20 30 40 50 100 150 200 250
3 1.5 12 45 159 345
4 0.1 2.4 13 42 136 - - - -

5 2.0 62 - - - - - - -

6 26 - - - - - - - -
7 - - - - - - - - -

z — 4

Table 4.1: CPU times in second for LCS-DP on random strings.

From here on, the basic algorithm using ExtendibleS will be referred to as LCS-BB-3.
For the instances involving random strings, LCS-BB-3 failed to solve instances as
the length of the strings increased because the tim e required was too great. How
ever, for the instances where the LCS had length at least 9n/10, much higher values
for n were achieved before the solution tim e became a problem. Consequently, the
amount of memory required to store the LCS DP array for all pairs of strings, used
in ExtendibleS.Ics, was the limiting factor. Our second program LCS-BB-2 is an
im plem entation of the basic algorithm with the function Extendible2.lcs. For most
cases, it was able to solve instances with larger n than LCS-BB-3 , when the LCS
was long, so results for it are presented. Again, no further increase in speed was
observed when, additionally, the procedure Choose2.lcs replaced Choose.Ics.

R esu lts for th e LCS of random strings

The CPU times in seconds for the program LCS-DP running on random strings
over an alphabet of size 4 are shown in Table 4.1. For every k and n pair, the
tim e required to solve an instance with those param eter values rose very slowly with
increasing alphabet size. Hence for alphabet sizes of 2,8 and 16, very similar sets
of timings were observed. It is clear from the sizes of problem unsolvable due to
memory requirements, and from the time required to solve the solvable instances,
th a t memory requirements are the limiting factor in the random instances of the
LCS problem solvable by dynamic programming based algorithms.

The CPU times in seconds for the program LCS-BB-3 running on random strings
are shown in Table 4.2. It appears tha t as the alphabet size increases, the effect of
increasing the number of strings changes. W hen the alphabet size is two, increasing
k results in the problems requiring more tim e to be solved and there is a reduction
in the maximum value of n for which the problem can be solved within 1 hour of
CPU time. When the alphabet size is sixteen however, increasing k appears to make
the problems easier - less tim e is required to solve them and there is an increase
in the maximum value of n for which the problem can be solved within 1 hour of
CPU time. There appears to be a gradual change from the former behaviour to
the la tte r as the alphabet size increases from two to sixteen. The explanation for

Exact solutions to large instances o f the LCS and SCS problems 67

this behaviour can be found by looking at the actual lengths of the LCS’s. As the
number of strings increases, there is a decrease in /, the observed length of the LCS.
The rate at which I decreases appears not to depend heavily upon the alphabet
size, as illustrated by the following table which shows the observed value for I when
n — 70 and its decrease over k = 3 and k = 24;

?r* II CO k = 24 Decrease
z = 2 48 36 12
* = 4 34 18 16
* = 8 24 9 15
z = 16 14 4 10

The observed \LCS\ for random strings when n = 70.

W hen k = 3, the value of I decreases very sharply with increasing alphabet size.
Consequently the decrease of I in proportion to its original value increases with the
alphabet size. As was observed in Section 4.7.1, increasing k increases the work
done at each node. However it also reduces the length of the LCS i.e. the depth of
the search tree, therefore reducing the number of nodes visited. Explanation for the
behaviour described above is therefore as follows. For increasing fc, when z = 2 the
increase in work at each node outweighs the drop in the depth of the search tree.
As the alphabet size increases, the drop in the depth of the search tree caused by
increasing k starts to outweigh the increase in work required at each node caused
by increasing k.

It is clear tha t, for random problem instances, the lim iting factor on the size of
solvable instances for branch and bound based algorithms is the tim e required to
solve them.

R esu lts for th e LCS of sim ilar strings

For problem instances where the length of the LCS was known to be long, the
LCS-DP required less time than it did to solve the equivalent instances of random
strings. However, it was unable to solve larger instances because the amount of
memory required for the array to represent the DP table was unchanged.

As was stated at the beginning of the section, the program LCS-BB-2 was able
to solve larger problem instances than LCS-BB-3 when the LCS was known to
be very long. As the length of the strings increased, the behaviour of LCS-BB-2
became less predictable as large variances in the running tim es were recorded. The
explanation for this lay in the lengths of the common subsequence found by the
approximation algorithm BestNext. When BestNext found a strong initial bound,
LCS-BB-2 completed fairly quickly and when BestNext found a weak initial bound,
LCS-BB-2 required a relatively long tim e to complete. Table 4.3 shows, for alphabet

Exact solutions to large instances o f the LCS and SCS problems 68

n
k 80 90 100 110 120 130
3 1.2 5.1 5.5 80 236 485
4 8.8 56 52 2779 - -

5 41 329 511 1990 - -

6 62 388 1739 - - -

7 58 1668 - - - -

8 96 2096 - - - -

16 369 - - - - -

24 865 - - - - -

n
k 60 70 80 90 100 110
3 0.1 3 4.9 19 440 126
4 1.5 23 52 337 2201 -

5 3.7 30 25 3125 - -

6 17 49 117 2418 - -

7 18 149 229 - - -

8 15 95 265 - - -

16 8.8 141 688 - - -

24 8.1 143 642 - _ _

2 = 4

n
k 110 120 130 140 150 160
3 56 140 1794 - - -

4 131 879 - - - -

5 213 502 2936 - - -

6 88 433 2173 - - -

7 43 269 2408 - - -

8 43 261 1475 - - -

16 5.7 19 116 304 1148 -

24 5.3 11 31 31 252 1463

n
k 60 70 80 90 100 110
3 0.2 3.5 1.8 52 909 2201
4 0.6 7.4 34 403 1321 -

5 1.4 5.9 230 294 2305 -

6 0 .7 3 380 177 1015 -

7 0.8 2.8 300 94 870 -

8 0 .8 4.5 42 132 924 -

16 0 .7 1.8 20 60 451 -

24 1.5 2.4 14 32 165 2181
2 = 8 2 = 16

Table 4.2: CPU times in seconds for LCS-BB-3 on random strings.

Z n
2 250
4 400
8 600
16 900

Table 4.3: Instances of LCS with similar strings solvable by LCS-BB-2 in 1 hour.

sizes of 2,4,8, and 16, how long the strings could be, typically, before LCS-BB-2 was
unable to solve the problem instances within 1 hour of CPU tim e for the recorded
results. The number of strings did not appear to be a significant factor in this. The
figures for n are to the nearest 50.

As the alphabet size increases, the length of strings for which the problem can
be solved increases. This is because, as the alphabet size increases, the num ber of
subsequences with length close to that of the longest decreases. The density of the
search tree is therefore reduced and this outweighs the increase in the breadth.

It is clear tha t for very similar strings significantly longer instances can be solved
than for random instances and th a t time is still the limiting factor on how large the
problem instances can become and still be solved by realistic resources.

Exact solutions to large instances o f the LCS and SCS problems 69

4.7.3 Results for the SCS problem when k > 2

As for the LCS problem, the array-based implementation of the lazy dynamic pro
gramming algorithm was consistently superior to the trie-based implementation.
The results for the array-based implementation, labelled SCS-DP , are presented.

Unlike for the LCS problem, results for only one program based on branch-
and-bound are presented. The basic algorithm with the function Extends.scs3 was
consistently the fastest and was able to solve all instances solvable by the other
variations.

R esu lts for th e SCS of random strings

The CPU times in seconds for the program SCS-DP running on random strings are
shown in Table 4.4. It is clear tha t as the alphabet size increases, the tim e required
increases very quickly. There are two reasons for this. Examination of the observed
SCS lengths reveals, unsurprisingly, that as the alphabet size increases, the lengths
of the SCS’s, and hence the proportion of the DP table required to calculate the value
of the final cell, increase. Close examination of the algorithm (Figure 4.6) reveals
th a t the increase in the alphabet size is itself likely to increase the proportion of the
cells in the DP table tha t are required to calculate the value of the final cell. This
is because, for any particular cell, the number of cells required to calculate its value
is equal to the size of the set of symbols from the ‘current’ positions in the strings.
This set is likely to become bigger as the alphabet size increases. As for the LCS
problem, it is clear tha t memory requirements are the limiting factor on the size of
random problem instances solvable by dynamic programming based algorithms.

The CPU times for the program SCS-BB-3 running on random strings are shown
in Table 4.5. As for the Lazy Dynamic Programming Algorithm, as the alphabet
size increases, the tim e required increases very quickly. The explanation is quite
straightforward. As noted in Section 4.7.1, the alphabet size is equivalent to the
breadth of the search tree. As noted above, as the alphabet size increases, the lengths
of the SCS’s increases. Hence the depth of the search tree increases. W ith both the
breadth and depth of the search tree increasing with alphabet size, there is a very
sharp increase in the number of nodes in the search tree and a corresponding increase
in the tim e required to solve the problem instances. As for the LCS problem, time
appears to be the limiting factor on the sizes of random problem instances solvable
by branch and bound based algorithms.

R esu lts for th e SCS of sim ilar strings

For problem instances where the length of the SCS was known to be short, SCS-DP
required less tim e than it did to solve equivalent instances of random strings. As for
LCS-DP however, it was unable to solve larger instances than for random strings

Exact solutions to large instances o f the LCS and SCS problems 70

n
k 10 20 30 40 50 60 100 150 200 250
3 0.3 2.1 8.4 17 35
4 0 0.1 1.0 2.0 6.5 13 - - - -

5 0.1 1.6 - - - - - - - -

6 0.3 - - - - - - - - -
7 - - - - - - - - - -

z = 2

n
k 10 20 30 40 50 60 100 150 200 250
3 0 .9 6.9 24 60 119
4 0.1 0.8 4.2 13 32 71 - - - -
5 0.5 12 - - - - - - - -

6 2.2 - - - - - - - - -
7 - - - - - - - - - -

z = 4

n
k 10 20 30 40 50 60 100 150 200 250
3 2.1 16 55 137 262
4 0.2 2.7 12 41 113 216 - - - -
5 1.9 58 - - - - - - - -
6 16 - - - - - - - - -
7 - - - - - - - - - -

z — S

n
k 10 20 30 40 50 60 100 150 200 250
3 4.2 34 113 264 527
4 0.4 6.6 33 97 250 474 - - - -

5 4.3 146 - - - - - - - -
6 37 - - - - - - - - -
7 - - - - - - - - - -

z = 16

Table 4.4: CPU times in seconds for SCS-DP on random strings.

n
k 10 20 30 40 50 60 70 10 20 30 10 10
3 0 0 0 0.2 25 2.9 474 0 0.2 16 0 0.5
4 0 0 2.6 4.2 427 657 - 0.1 4.6 - 1.4 2133
5 0 0.6 5.1 20 - - - 0.5 - - 310 -

6 0 0.1 7.6 86 - - - 0.8 - - 2537 -

7 0 0.8 33 287 - - - 2.5 - - - -

8 0 0.3 47 650 - - - 13.7 - - - -

16 0.1 4.1 723 - - - - - - - - -

24 0.2 8.4 - - - - - - - - - -

2 = 2 2 = 4 2 = 8 2 = 16

Table 4.5: CPU times in seconds for SCS-BB-3 on random strings.

Exact solutions to large instances o f the LCS and SCS problems 71

because the amount of memory required for the array to represent the DP table was
unchanged.

Similarly when the length of the SCS was known to be short, SCS-BB-3 required
less tim e than it did to solve the equivalent instances of random strings. Conse
quently much larger instances could be solved within 1 hour of CPU tim e since
memory requirement were still not a problem. The following table shows how long
the strings could be, typically, before SCS-BB-3 was unable to solve the problem
instances within 1 hour of CPU time. The values for n are to the nearest 50.

z
k

3 4 5 6 7 8 16 24
2
4
8
16

250
350
450
550

250
350
400
450

250
350
350
450

250
350
350
350

250
350
350
350

250
350
350
350

250
250
250
250

200
200
200
200

Instances of SCS with similar strings solvable by SCS-BB-3 in 1 hour.

As the alphabet size increases, the length of strings solvable within 1 hour of CPU
tim e increases by an amount depending on k. As k increases, the increase in n is
reduced. The explanation is as follows. As z increases, the number of supersequences
of length almost as short as the shortest, and therefore the density of the search tree,
decreases. This effect is more pronounced for small k because increasing k also has
this effect. So when k is large, increasing the alphabet size has little or no effect on
the density of the search tree.

4.7.4 Results for the LCS problem when k = 2
The implementation of the threshold algorithm for the LCS of 2 strings is referred
to as LCS2-THRESH.

The CPU times in seconds for LCS2- THRESH running on random strings are
shown in Table 4.6. The length of the longest common subsequence of two random
strings of length 100,000 over alphabet sizes 2 ,4 ,8 ,16 were found within one hour
of CPU time.

A similar set of experiments were run where the length of the LCS was known to
be long (i.e. 9n/10). As for when k > 2, less tim e was required to solve equivalent
instances of the problem. In fact the tim e required to solve any instance with k
strings of length n decreased with the alphabet size. The reason for this is th a t as
the alphabet size increases but the length of the LCS remains constant, the number
of common subsequences decreases making it “easier” for the algorithm to find the
longest.

Exact solutions to large instances o f the LCS and SCS problems 72

n
z 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80 ,000 90,000 100,000
2 23 91 204 369 575 832 1125 1461 1857 2282
4 33 133 296 522 817 1183 1607 2108 2750 3308
8 35 141 317 563 887 1286 1748 2256 2861 3543
16 34 136 308 545 852 1223 1669 2170 2716 3406

Table 4.6: CPU times in seconds for LCS2-THRESH on random strings.

4.8 T he exp ected lengths o f th e LCS and th e SCS
of random strings

4.8.1 The expected LCS length when k > 2

Recall tha t /(z ,& ,n) represents the average LCS length over all instances of the
problem for k strings of length n over an alphabet of size z. Estimations of

F (z, k) = lim' Vi V /\̂
f (z , k , n)

n

for k = 3 ,4 ,5 ,6 , 7,8,16,24 and z = 2 ,4 ,8 ,16 were made using the LCS lengths from
the experiments carried out. For each k and z pair, a graph of (\L C S \/n) was drawn
and the limiting value estim ated from the graph. Figure 4.11 shows a graph of the
estimations augmented with those for k — 2 (which follow shortly).

4.8.2 The expected SCS length when k > 2

Recall tha t g (z ,k ,n) represents the average SCS length over all instances of the
problem for k strings of length n over an alphabet of size z. Estimations of

G(z, k) = lim' ' I»1 L
g (z ,k ,n)

n

for k = 3 ,4 ,5 ,6 , 7,8,16,24 and z = 2 ,4 ,8 ,16 were made using the SCS lengths from
the experiments carried out. For each k and z pair, where experimental results were
available, a graph of (\S C S \/n) was drawn and the limiting value estim ated from
the graph. Figure 4.12 shows a graph of the estimations augmented with those for
k = 2 expressed in terms of G(z, 2).

4.8.3 The expected LCS length when k = 2

Estim ations of
F(z, 2) — lim

f (z , 2, n)
n

Exact solutions to large instances o f the LCS and SCS problems 73

0 .59
0 .36
0.21
0.12

F i g u r e 4 . 1 1 : E x p e c t e d l e n g t h s o f t h e L C S o f r a n d o m s t r i n g s .

Exact solutions to large instances o f the LCS and SCS problems 74

G(z,k)

F i g u r e 4 . 1 2 : E x p e c t e d l e n g t h s o f t h e S C S o f r a n d o m s t r i n g s .

Exact solutions to large instances o f the LCS and SCS problems 75

0.9

0.7

0.6
0.5

F (Z ,2)
0.4

0.3

0.2

■ ■

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-------- ■— Upper Bound

------□— Estimate

------♦— Lower Bound

Z

z 2 3 4 5 6 7 8 9
U p p e r B o u n d 0.8376 0.7864 0.7297 0.6861 0.6509 0.6209 0 .5967 0 .5750
E s t im a te 0 .8123 0.7171 0.6542 0.6068 0.5702 0.5399 0.5151 0.4931
L ow er B o u n d 0.7615 0.6153 0.5454 0.5061 0.4716 0.4450 0.4223 0.4032

z 10 11 12 13 14 15 16 -

U p p e r B o u n d 0.5559 0.5389 0.5236 0.5097 0.4970 0.4853 - -

E s t im a te 0 .4744 0.4573 0.4428 0.4291 0.4171 0.4062 0.3960 -

L ow er B o u n d 0.3865 0.3719 0.3589 0.3473 0.3368 0.3273 - -

Figure 4.13: |Expected LCS|/n for k = 2.

for 2 < z < 16 were made by running, for each alphabet size, three random instances
where the strings had length 100,000. For each alphabet size, the average value for
the (\L C S \/n) was computed and used as an estim ation of F (2 ,z) . A table of the
results and a graph comparing them to the upper and lower bounds found in the
literature is shown in Figure 4.13.

4.9 C onclusions and future work

Figure 4.14 shows, for k > 3, the range of LCS problem instances solvable in 1
hour using the Dynamic Programming and Branch and Bound algorithms employed
in these experiments. In the graph, for only and all the instances where k = 3,
the largest values of n are solvable by the Lazy Dynamic Programming Algorithm.
For only and all the instances where k > 4, the largest values of n are solvable
by a branch-and-bound algorithm. The range of problems solvable by DP based
strategies can however be extended. Adapting the space saving technique developed
by Hirschberg [25] to any particular DP based algorithm reduces the 0 { n k) space
requirement to 0 (n fc-1). Algorithms which improve on the basic Lazy Dynamic

Exact solutions to large instances o f the LCS and SCS problems 76

Programming, such as those in Chapter 2, can also increase the maxim um string
length solvable for any particular k , but it is clear from the evidence presented
in Chapter 2 tha t for k > 5 they will not compete with the Branch and Bound
Algorithms. For the LCS problem then, algorithms based on branch and bound
greatly extend the range of solvable problem instances.

Figure 4.15 shows, for k > 3, the range of SCS problem instances solvable in 1
hour using the Dynamic Programming and Branch and Bound algorithms employed
in these experiments. In the graph, for only and all the instances where k = 3,
the largest values of n are solvable by the Lazy Dynamic Programming Algorithm.
For only and all the instances where k > 4, the largest values of n are solvable by
a branch-and-bound algorithm. As for the LCS problem, the range of problem in
stances solvable by DP based algorithms can be extended by using Hirschberg’s space
saving technique. The ranges could be further extended by using algorithms which
improve on the on basic Lazy Dynamic Programming, such as those in Chapter 3
but from the evidence in Chapter 3 it is clear tha t for a binary alphabet and k > 4
they will not compete with Branch and Bound Algorithms on random strings. For
the SCS problem then, algorithms based on branch and bound extend the range of
solvable problem instances but not yet by a great deal.

Estimations of the limiting value for the expected LCS and SCS lengths over the
ranges k = 3 , . . . , 8,16,24, = 2 ,4 ,8 ,16 and k = 2, z = 2 , . . . , 16 have been found.
The estimations for F(z, 2) consistently lie close to half way between the upper and
lower bounds provided in the literature.

One possible improvement to the Branch and Bound Algorithms for the LCS
problem involves a a simple refinement of its use of the next occurrence table. At
any node in the search tree, if

nextat(jiya) < nextai(ji,q) Vz, 1 < i < k

for symbols cr and <; and positions ji then is said to be dominated by a. W hen the
algorithm chooses a new symbol to append to the growing subsequence, it ignores
any dominated symbols to prevent it from following some “blind alleys” in the search
tree.

No doubt a variety of alternative branch and bound strategies for the SCS prob
lem are possible. One particular alternative involves starting with the string x
consisting of the concatenation of n copies of all the symbols in E in lexicographic
order. The string x is then a supersequence of all the strings in P. Subsequences
of x are removed in lexicographic order as long as the resultant string remains a
supersequence of all the strings in P. Preliminary testing with an implementation
of this algorithm shows tha t it will at least allow finding the SCS of very many short
strings for small alphabets (k > 60, n < 20, z < 4).

Exact solutions to large instances of the LCS and SCS problems

F i g u r e 4 . 1 4 : R a n d o m i n s t a n c e s o f L C S s o l

n

F i g u r e 4 . 1 5 : Random i n s t a n c e s o f S C S s o l v a b l e i n 1 h o u r .

Chapter 5

Approxim ation Algorithm s for the
LCS and SCS problems

5.1 Introduction

Given the N P -hard status of the Longest Common Subsequence and Shortest Com
mon Supersequence problems, it is natural to a ttem pt to find approximation al
gorithms for them with good performance guarantees. However Jiang and Li [37]
showed tha t El£ > 0 such tha t if the LCS problem has a polynomial tim e approxi
m ation algorithm with performance guarantee ks (where k is the num ber of strings)
then P = N P . They showed that over an unbounded alphabet there can be no polyno
mial tim e approximation algorithm for SCS with a constant worst-case performance
guarantee (unless P = N P) . In this chapter we analyse the worst-case behaviour over
bounded and unbounded alphabets for some approximation algorithms for the LCS
and SCS problems. For the LCS problem, the analysis is either with respect to z,
the alphabet size, or with respect to n, the length of the strings. This is because the
worst-case behaviour of the algorithms under study turns out to depend directly on
one or the other of these parameters. For the SCS problem, the analysis is almost
entirely with respect to k , the number of strings. This is because it is the number
of strings which make the problem hard to solve. In the final section, the worst-
case of some of the SCS approximation algorithms with respect to the input size is
considered.

To analyse the worst-case performance of the approximation algorithms for the
LCS problem, we find upper and lower bounds for the ratio

Optimal length
Approximation length

in the worst case. In this way, the performance is measured as a positive real not less
than 1 such tha t, the smaller the ratio, the better the approximation and a value

78

Approximation Algorithms for the LCS and SCS problems 79

of 1 indicates exact solution. To achieve the same principle for the approximation
algorithms for the SCS problem, we swap the arguments of the ratio thus;

Approximation length
Optimal length

The first algorithm for the LCS problem was proposed by Jiang and Li [37].
They called it Long-Run and provided an analysis of its behaviour on average. The
second algorithm uses a natural greedy strategy to build a common subsequence
from left to right and is called Best-Next.

For the SCS problem, Timkovsky [64] proposed a tournam ent style approxima
tion algorithm, and asked for a characterisation of its worst-case behaviour. Jiang
and Li [37] described an algorithm called the Majority-Merge Algorithm and pro
vided an analysis of its performance on average. An obvious approximation algo
rithm , named Greedy 1, involves a greedy strategy, in which we start with the first
string in the set, and repeatedly find an SCS of the current common supersequence
and the next string in the original set. For a similar problem in multiple sequence
comparison, Gusfield [20] described an algorithm named the Centre of the Star Algo
rithm , based on aligning one string optimally with all the other strings, and showed
it had a constant worst-case performance guarantee for tha t problem. Our fourth
algorithm adapts this strategy to the SCS problem. A direct improvement of this is
considered where a minimum spanning tree of optimal alignments is used, instead
of a star structure. This is the Minimum Spanning Tree (MST) Algorithm. Finally,
a direct improvement of MST is considered where a minimum spanning tree is built,
but after each edge is added to the spanning tree and hence to the alignment, the
weights of all unused edges are re-calculated. This algorithm can also be viewed as
a greedy algorithm since at each step it does what is locally best. Hence it is named
Greedy2.

In this chapter, the aim is to characterise the worst case behaviour of these
algorithms. The analysis assumes tha t all the strings are of equal length but can be
easily extended to the case of varying string lengths.

Precise characterisation is given for both the LCS approximation algorithms. It
is shown tha t the worst-case of Long-Run depends on the alphabet size and the
worst-case of Best-Next depends on the length of the strings.

For the SCS approximation algorithms, it is shown that none has a worst-case
performance guarantee better than 0 (k) for an unbounded alphabet, and tha t none
has a constant performance guarantee for a binary alphabet. This analysis can be
contrasted with a trivial approximation algorithm which achieves a worst-case ratio
of z for an alphabet of size 0 . If the alphabet is {ai, &2 , . . . , az} and the strings have
length n, the trivial algorithm returns the supersequence (a i« 2 • • • az)n -

All of the algorithms under study have stages in their execution where a choice

Approximation Algorithms for the LCS and SCS problems 80

must be made between two or more equally valid options e.g. between two SCS’s
of a pair of strings. We will assume that when this occurs, the choice will be made
arbitrarily. W hen describing a bad case for a particular algorithm, the behaviour de
scribed therefore represents a feasible execution of the algorithm but not necessarily
the only possible execution.

W hen studying the behaviour of an algorithm over an alphabet of size two, the
alphabet E = {a, 6} is used.

A pproxim ation A lgorithm s for th e LCS problem

5.2 T he A lgorithm Long-R un

The algorithm Long-Run proceeds as follows. It finds the maximum i such tha t
the string a 1 is a common subsequence of all the strings in P , for some a £ E and
returns tha t string as the common subsequence. This can be achieved in 0 (kn -\-kz)
tim e with one pass of every string.

5.2.1 W orst-case behaviour of Long-Run

T h e o re m 5.2.1 For a given set of k strings over an alphabet of size z, denote by
I the length of an LCS and by r the length of a common subsequence returned by
Long-Run. Then

I
- < z.
r

Proof
Assume, without loss of generality, tha t Long-Run returns the string ax where
(1 < x < n). Any LCS contains > x a ’s and less than or equal to x occurrences
of each other symbol in the alphabet. The length of the LCS is therefore less than
or equal to zx and the theorem is proved. □

5.2.2 Bad examples for Long-Run

T h e o re m 5.2.2 For any k > 2, there is a set of k strings, over an alphabet o f size
z, for which

I
— = z
r

where I is the length of an LCS and r the length of a common subsequence returned
by Long-Run.

Proof
Consider the case where all the strings have length z and contain all the symbols
of the alphabet in lexicographic order. The LCS clearly has length z but Long-Run
will return a sequence of length 1. □

Approximation Algorithms for the LCS and SCS problems 81

5.3 T he A lgorithm B est-N ex t

The algorithm Best-Next proceeds as follows. A common subsequence is constructed
from left to right. Initialise the subsequence to the empty string. Let cr be the symbol
which maximises the length of the shortest suffix of a string starting immediately
after the first occurrence of cr in tha t string, over all the strings in P . Append a
to the subsequence and remove the shortest prefix containing cr from each string.
Repeat this process until the strings have no common symbol remaining. W ith
suitable preprocessing of the strings this can be achieved in 0 (k n z) time.

5.3.1 W orst-case behaviour of B est-N ext

T h e o re m 5.3.1 For a given set of k strings o f length n, denote by I the length of
an LCS, and by b the length of a common subsequence returned by Best-Next. Then

I n
6 “ 2 '

Proof
If I > 1 then Best-Next will return a sequence of length at least 1. Therefore for the
ratio l/b to be greater than n/2 , I must be greater than n / 2. The first symbol of a
common subsequence of length greater than n /2 must appear at or before position
[n /2 j and the last symbol of tha t sequence must appear at or after position \n /2 \ +1
in each string. In tha t case, the positions of those two symbols ensure tha t Best-Next
will return a sequence of length at least 2 thus guaranteeing l/b < n/2. □

5.3.2 Bad examples for B est-N ext

T h e o re m 5.3.2 For any k > 3, there is a set of k strings over an alphabet of size
2 for which

I n
b = 2

where I is the length of an LCS and b the length of a common subsequence returned
by Best-Next.

Proof
Consider k > 3 strings of length n (n even) over the alphabet {0,1} defined as
follows

Q, = 0n/2l n/2

a 2 = l n/20n/2

on = lO "-1 (3 < i < k).

Approximation Algorithms for the LCS and SCS problems 82

The LCS of the strings is (W2 and has length n/2. A feasible string returned by
Best-Next is the one character string 1. Hence l/b = n/2. □

A pproxim ation A lgorithm s for th e SCS problem

5.4 T he Tournam ent A lgorithm

The Tournament Algorithm applied to k = 2q strings a j , . . . , a°k of length n proceeds
as follows. The tournam ent has p = [log2 k] ‘rounds’. In the r th round there are
['R(k) = (k + 2r_1 — l) /2 rJ ‘m atches’ leaving \k /2 r] strings remaining. The i th
m atch generates an arbitrary shortest common supersequence a r{ of the two strings

and ajj"1, for i = 1 , . . . , 7Z(k). If there are an odd number of strings in round
r then the final string receives a ‘bye’ and forms ct^k/2r-1.

It follows tha t the string a j (i < \ (k /2 r)]) is a common supersequence of the
2r strings o;J)i_ 1̂ 2r+1, . . . , a°2r, tha t a r{ (i = [(fc/2r)]) is a supersequence of the
k — (i — l)2 r strings a°f_i)2r+i> • • • an(̂ m particular tha t a \ is a common su
persequence of all the original 2q strings.

It is easy to verify tha t, using an 0 (n m) algorithm for the SCS of 2 strings, the
Tournament Algorithm for k strings of length n has 0 (k 2n 2) tim e complexity.

5.4.1 W orst-case behaviour of the Tournament Algorithm
T h e o re m 5.4.1 For a given set of k = 2P strings, denote by s the length of an
SCS, and by t the length of a common supersequence returned by the Tournament
Algorithm. Then

t ^ 3k + 2
s ~ 8 '

Proof
Consider an SCS a , of length s say, of the strings a j , . . . , a° , together with a par
ticular embedding of each of the k individual strings in a. For i = 1, 2 , . . . , fc, let Xi
denote the number of positions in a that correspond to symbols in exactly i of the
individual strings in the chosen embedding. Then

k

J 2 Xi =S (5 . 1)
i=1

and
k

^ ~2/ ixi = kn. (5 - 2)
2 = 1

Also, it is easy to see that

V 2 P“ r

/ = k n - £ Y i l 2 i - i , 2 i
r = l i = l

(5.3)

Approximation Algorithms for the LCS and SCS problems 83

where 1S length °f the longest com m on subsequence of the strings ce^i - i

and a r2~l .
Let m i j (1 < i < j < k) be the number of positions in a that correspond to

sym bols in both oP{ and oP- for the chosen em beddings.

Since OLr2~ l i is a supersequence of the strings • • • > a (; - i) 2 r + 2 r- 1 j a n < ^ a 2 i 1
is a supersequence of the strings a (t-_1)2r+2r-i+1, • • • j a ?2r> ^ follows that

2̂t—1,2* — 1<n .̂a^_1 m (t-l)2r+u,(*-l)2r+2r- 1+t;*
1 < t) < 2 r —1

and so
2r—12r_1

^2i—l,2i ̂92r-2 X X 17l(i - l) 2 r+ u , { i - l) 2 r + 2 r- 1+ v (5.4)
Z u = 1 v = l

Com bining (5.3) and (5.4), we get

t < kn — X (5.5)

where
p ^ 2p~ r 2 r —1 2 r —1

X = X o2r-2 X X X m { i - l) 2 r+ u , (i - l) 2 r+ 2 r- 1+ v (5.6)
r=l Z i=l u=l u=l

M anipulation of (5.6) gives

^ = q 2 p —2 X I m u >v + X o 2 p —2r X X ” V i / - (5 - 7)
l<u<w<2P r=l z t=0 t'2P-r + l<u<v<(i+l)2P-r

This m ay be seen by noting that, in both (5.6) and (5.7) the coefficient o f m UjV

is l / 2 2x, where x is such that 2X divides som e number in the closed interval [it, v — 1]
but 2a:+1 does not.

We now seek a lower bound, in term s of aq, . . . , a^p, for the two expressions
involving J 2 m u,v in (5.7). The first is easy, nam ely

X = X ({W (5-8)
l < u < v < 2 P j = 2 \ Z /

This is because X j counts the number of positions in a that represent sym bols
in exactly j of the strings for the chosen em beddings. For any particular choice of
exactly j strings, there are Q choices of m UtV that contribute.

The lower bound for

2 £ m «.» (5-9)
t'=0 i2P-r+l<u<v<(i+l)2P“r

Approximation Algorithms for the LCS and SCS problems 84

in term s of the Xj is less obvious. Recall tha t Xj counts the number of positions
in the SCS a tha t correspond to symbols in exactly j of the original strings. So
we ask, for any particular j strings, what is the smallest number of term s in (5.9)
th a t count the positions in a at which just these j strings are represented? This
smallest number will arise when the indexes of the j strings are as evenly distributed
as possible in the 2r intervals [i2p~r + 1, (* + l)2 p_r] (i = 0 , . . . , 2r — 1), and will be
precisely

2r —1

E
w = 0

Vi (5.10)

where yw is the number of indexes in the icth interval.
But in a typical case of even distribution, there will be [_̂ fJ indices in the first

interval, indices in the second interval, . . . , and [J+^r~1 J indices in the 2r th
interval, and these values of yWi together with (5.10), establish

2 r — 1

E E
*=0 i 2 P - r + l < u < v < (i + l) 2 P -

2P 2r —]r- l /I i±w
«,»> E E (L o

j —l w = 0

From (5.7), (5.8), (5.9) and (5.11) we obtain

2 p
* > E / - I

5-1

+ E
2r —1
E
w = 0f ^ \ 22p- 2 [2 j rt t 22̂ "

So, combining (5.1), (5.2), (5.3), (5.5) and (5.12)

X i . (5.11)

(5.12)

s ~ e L i x i
(5.13)

where

_ v_L_ v
^ \ v h ^ - 2r t 0

2r —1
C; — I

It is immediate from (5.13) that

l + VJ
2 r (5.14)

- < max C{.
S l < i < k

(5.15)

It is not hard to show tha t c; < cz+i if i < 2P — 1, and c; > ct-+1 if i > 2P ,
so th a t the maximum value of C{ occurs when i — 2P x(= |) . Substituting in (5.14)
and simplifying gives - < and the proof of the theorem is complete. □

Approximation Algorithms for the LCS and SCS problems 85

5.4.2 Bad examples for the Tournament Algorithm

We now show tha t the Tournament Algorithm cannot guarantee to return a super
sequence within a factor better than 0 (k) of the optimal.

T h e o re m 5.4.2 For any even k > 2 , there is a set o f k strings for which

t > k + 2
s ~ 4

where s is the length of an SCS and t the length of a common supersequence found
by applying the Tournament Algorithm.

Proof
We give an example with k = 2q strings of length n = 2k!2~l — 2q~1 over the
alphabet £ 9 = {0,1 , . . . ,29 — 1}. Let a q be the string of length 2q comprising the
symbols of £ 9 in natural order.

The set Pq of strings is defined as follows. For i = 1 . . . q let a°2f_ i be the
subsequence of a q of length 29-1 containing all and only those symbols whose i th
least significant bit is 1 and let be the subsequence of a q of length 29_1 containing
all and only those symbols whose ith least significant bit is 0.

Every a 0,q is a subsequence of a q and every symbol of a q appears in k j 2 of the
tt0,9’s so a q of length 2q is a supersequence of all the strings in Pq.

In the first round of the tournam ent, o^f_i is matched with a 2f for i = 1 . . . k/2
and a feasible outcome is a \'q = the perm utation of a q obtained from a q by flipping
the i th least significant bit.

C la im 5.4.1 Executing the Tournament Algorithm on the above set of strings can
return a supersequence of length

t = f (k) = 2k/2~2{k + 2).

The proof of Claim 5.4.1 is by induction. The base case is when k — 2. The
two strings are cq’1 = 1 and a®'1 = 0. The Tournament Algorithm will return the
supersequence a\ x = 10 which has length 2 thus establishing the base case.

We will see tha t if the claim is true for k — 2 strings then it is true for k strings. To
study the behaviour of the algorithm beyond the first round, some more definitions
will be helpful. Define E9+ = {29, 2q + 1 , . . . , 29+1 — 1} and let a q+ be the string of
length 2q comprising the symbols of £ 9+ in natural order. Let 0 % + = a ri q where
every symbol a is replaced by the symbol (a + 2q).

For Pq, it is easy to verify tha t for i = 1 . . . q — 1,

a? - =

Approximation Algorithms for the LCS and SCS problems 86

and

where -H- denotes concatenation.
In subsequent rounds of the tournam ent, a q,q will be given a ‘bye’ until the

num ber of strings in round r, say, is even. Until then the other strings will behave
as two independent, isomorphic sets of strings, each equivalent to the case where
k = 2q — 2 . When, in round r, the number of strings is even an arbitrary SCS of

and

will form the string

r - 1 . 9 _ r - l , q - l
[A:/2r - 1 l —1 ~ a \ k / 2 r - '] ^ t a \ k / 2 r - 1]

a \ k / 2 r\

It is easy to see tha t the string

a(’- I)+^SCS(a»-\a^/2vY1)^ a r̂ ,+ =

where SCS(7 , J) represents an arbitrary SCS of strings 7 and and rePre_
sents an arbitrary supersequence of 5 is a feasible result for « ^y 2r-1.

For rounds u = (r + 1) . . . p of the tournam ent, the string

a \k/2r] — a ii P{k/2r] a \k/2r]

will either receive a ‘bye’ to form o^ 2u-1 or be matched with the string

u —l q________ __ u — l , q — 1 , | u — l , (g — 1) +
Q ('fc/2“- 1l - l — a r(A:-2)/2“- 1l - l " ,̂ a r(A:-2)/2“- 1l - r

A feasible SCS generated from this m atch is

since
|LCS(«(’- 1)+ 4 f 4 7 12f c 11)+, <

|LCS(^/2’„,-ii,arJfc/2'’_ii_1)| + ILCSfai- ĵ’flii^ .c*(-fc/2’i—■ 11.1)t
where LCS(7 ,<£) represents an arbitrary LCS of the strings 7 and 5.

Hence the length t = f (k) of the final string

a p.i = a (»-1)+-H- ^ ?-i-H-aJ'<, - 1)+

Approximation Algorithms for the LCS and SCS problems 87

will be > \aq *| + 2f (k — 2) — 2k!2 1 + 2f { k — 2). Solving the recurrence relation
where the base case is /(2) = 2 gives

t > (k + 2)2k/2~2

proving Claim 5.4.1.
Since we know th a t s = 2k/2, the theorem is proved. □

5.4.3 Bad examples for the Tournament Algorithm on an
alphabet of fixed size

T h e o re m 5 .4 .3 For k an arbitrary power of 2, there is a set of k strings over an
alphabet of size 2 for which

7 > h loS2fc + !)s 2
where s is the length of an SCS and t the length of a common supersequence found
by applying the Tournament Algorithm.

Proof
Consider the instance involving k = 2P strings all of length 1 over the alphabet
{a, 6} defined by a§t-i = a , = b for 1 < i < 2P_1. It is easy to see th a t a feasible
application of the Tournament Algorithm leads to the following:

a 2 i - i = { a b) 3a

<*2i- l = (a b Y

a 2i = (b a Y b

a l l ' 1 = (ba)3.

Hence, after the r th round of the tournam ent, all of the strings have length r + 1,
and, in particular, the common supersequence generated by the algorithm has length
p + 1 = log2 & + 1. But a shortest common supersequence has length 2, and the
proof of the theorem is complete. □

5.5 T he M ajority-M erge A lgorithm

The Majority-Merge Algorithm applied to k strings of length n proceeds as follows.
Initialise the supersequence to the empty string. Let a be the most common charac
ter of the leftmost characters of the remaining strings. Ties are decided arbitrarily.
Append a to the supersequence and remove it from the front of the strings of which

Approximation Algorithms for the LCS and SCS problems 88

it is a prefix. Repeat this process until all the strings are exhausted. In a naive im
plem entation, each step requires at most tim e proportional to the num ber of strings.
Since at least one string becomes shorter at each merge, the number of merges is
lim ited by kn, the total number of characters in all the strings. The worst-case time
complexity is therefore 0 (k 2n). Careful implementation making use of a heap can
give a tim e complexity of 0 { k n \o g z) for an alphabet of size z. For an unbounded
alphabet this is then 0 (k n log(fcn)) in the worst case.

5.5.1 W orst-case behaviour of the M ajority-M erge Algo
rithm

T h eorem 5.5.1 For a given set of k strings, denote by s the length of an SCS,
and by m the length of a common supersequence returned by the Majority-Merge
Algorithm. Then

m
— < k.
s

Proof
The length of the SCS is at least n so it suffices to show tha t the length of the
supersequence returned by the algorithm is not greater than kn. At each merge,
one character is added to the supersequence and at least one character is removed
from the set of strings. Since there are a total of kn characters in the strings, the
supersequence returned cannot have length greater than kn. □

5.5.2 Bad examples for the M ajority-M erge Algorithm

We now show that for a particular set of strings, the algorithm will simply concate
nate the strings.

T h eorem 5.5 .2 There is a set of k strings for which

m kn
— > -------------------------------------

s n + k — 1

where s is the length of an SCS and m the length of a common supersequence found
by applying the Majority-Merge Algorithm.

Proof
Consider the set of k strings, « i , . . . , a*, of length n over the alphabet {«i, a2, . . . , a
of size k, with a ; = az(a i)n_1 for 1 < i < k. In the first merge, there is one occurrence
of every character in the alphabet so only one can be selected. We take it th a t the
first character of a.\ is selected. This leads to a similar situation with no m ajority
character and this repeats until ol\ has been appended to the supersequence without

Approximation Algorithms for the LCS and SCS problems 89

using any of the other strings. Again a similar situation arises and a 2 is appended
without using any of the other strings. This continues to arise so th a t the strings
are appended individually to the supersequence in any order, after the first, giving
a supersequence of length kn. It is clear tha t an SCS of Qi , . . . , a* is a \a2 . . . a ^ i -1
which has length n + k — 1. □

By increasing the value of n it is possible to provide a set of strings for which
the Majority-Merge Algorithm will return a supersequence with length arbitrarily
close to a factor of k of the optimal. The lower bound can therefore be brought
arbitrarily close to the upper bound and this completes characterisation of the worst-
case behaviour of the Majority-Merge Algorithm on an unbounded alphabet.

5.5.3 W orst-case behaviour of the M ajority-M erge A lgo
rithm on an alphabet of fixed size

T h e o re m 5.5 .3 For a given set of k strings over a binary alphabet,

— < (log2k + 1)
s

where s is the length of an SCS and m the length of a supersequence returned by the
Majority-Merge Algorithm.

Proof
The length of the SCS is at least n so it suffices to show that the length of the
supersequence returned by the algorithm is not greater than (log2 k-\- l)n. The total
number of characters to be merged is kn. Let c; denote the number of characters
remaining and /; denote the number of non-empty strings prior to step i of the algo
rithm . Clearly C\ = kn and A = k. The number of characters under consideration
at step i is clearly equal to Since there are only 2 possibilities for each character,
the number of characters merged at step i is equal to at least |7;/2"|.

Over the n steps i , . . . , i -f n — 1 of the algorithm, the number of characters
considered from each string, including repeated consideration of the same character,
is at least equal to the string’s length since no string has more than n characters
and a character from every un-exhausted string is considered in each of the n steps.
Thus the to tal number of characters considered for merging is at least equal to the
number of characters remaining prior to step i , i.e.

n

h + j - l — Ci-
3 = 1

As stated above, the number of characters merged at each step is at least half
th a t under consideration, so over the n steps i , . . . , z + n — 1 the to tal num ber of
characters merged will be at least ^c;. So after any arbitrary n steps, the number

Approximation Algorithms for the LCS and SCS problems 90

of characters remaining will be at most half tha t before the n steps. It follows
easily then tha t after (log2 k)n steps, kn characters will be reduced to at most n
characters, which will require at most a further n steps to be merged. Therefore
at most log2 k + 1 groups of n steps will be executed before all the characters are
merged. Since one character is added to the supersequence for each step, the length
of the supersequence cannot be greater than (log2 k + l)n . □

5.5.4 Bad examples for the M ajority-M erge Algorithm on
an alphabet o f fixed size

In Section 5.5.2 bad examples for the Majority-Merge Algorithm were constructed
using an alphabet of unbounded size. Here we show th a t when the alphabet size is
lim ited to 2, the algorithm still cannot guarantee to find a common supersequence
within a constant factor of the optimal.

T h e o re m 5 .5 .4 For k an arbitrary power of 2, there is a set of k strings over an
alphabet of size 2 for which

m (log2 k + l)n - | log2 k + \ log2 k
s ~ n + log2 k

where s is the length of an SCS and m the length of a supersequence returned by the
Majority-Merge Algorithm.

Proof
Consider the following instance involving k = 2P strings of length n > p over the
alphabet {u,6}. For 1 < i < fc, a; = bXian~Xi where Xi = log2 k — [log2(& — i + 1)].
It may be verified tha t tha t the first n steps will merge the first k / 2 strings, which
are all equal to an, into n elements in the supersequence, if the ties are resolved
appropriately. Following this, one ‘column’ of b's prefixing all the un-exhausted
strings will be merged. This will give rise to a situation analogous to th a t at the
s tart but where now the strings have length n — 1. Now if I is the num ber of
strings remaining and c the length of these strings, the first 1/2 strings will be
merged into c elements in the supersequence and then one column of b's prefixing
the now //2 remaining un-exhausted strings will be merged into one element in the
supersequence. This process will repeat until one string remains un-exhausted and
this will be merged into n — log2 k elements. Thus the supersequence will contain
]Cx=c>fc(n — x) a ’s and lo§ 2 ^ fe’s. Hence the length of the supersequence generated
will be

log2 k

m = ^ 2 (n — x) + log2 k
x = 0

Approximation Algorithms for the LCS and SCS problems 91

log2 k log2 k

= n - J 2 x + loS2 k
x = 0 x = 0

= (log2 k + l) n - i(log^ k) + i log2 k.

An SCS for the given strings is clearly 6log2 of length n + log2 k , and the proof
is complete. □

By increasing the value of n it is possible to provide a set of strings for which
the Majority-Merge Algorithm will return a supersequence with length arbitrarily
close to a factor of log2 k of the optimal. The lower bound can therefore be brought
arbitrarily close to the upper bound and this completes characterisation of the worst-
case behaviour of the Majority-Merge Algorithm on an alphabet of size 2.

We can generalise the strategy in the proof of the above theorem to alphabets of
size greater then 2. For the alphabet { a i , . . . , az} of size z and k > z (the structure
is clearest when k is a power of z), let

a ; = ac ^ aB { z , z - i M aB^-2.k,i) _ _ f o r 1 < t < fc.

where

C(zi k i i) = 0 if (i < \k(z — l) /z])

= 1 + C(z, k — \k(z — 1)/^1, i — \k(z — l) /z " |) otherwise

B (z , j , k , i) = 0 if (i < \k (j - l)/z~\) or (\ k j / z] < i < \k(z - I) /*])

= 1 t f (\ k (j ~ l) / z] < i < \ k j / z])

= B (z , j , k — \k(z — l) l z \ , i — \k(z — 1)/^]) otherwise

n) = n A {i < \ k / z~\)

= (n — 1) if (|~k/z\ < i < \k(z — 1)/^])

= A(z , k — \k(z — 1)/z ~\, i — \k{z — l) / z] , n — 1) otherwise.

The length of the supersequence generated by an application of Majority-Merge,
analogous to the above, is

/ , j ^ g z k(logz k - 1)
(z - l) (n logz k --------------- -----------) + n

and the length of the SCS is n -f log^ k + {z — 2). As n tends to infinity, the error in
the approximation tends to 0 ((z — 1) logz k). W hen k = z, the above strings reduce
to the bad case in Section 5.5.2 for an unbounded alphabet.

Calling it “Algorithm M3” , Foulser, Li and Yang [17] also analysed the worst-
case behaviour of the Majority-Merge algorithm for a binary alphabet, focussed on
the special case of n strings of length n. For tha t case they used a different m ethod

Approximation Algorithms for the LCS and SCS problems 92

to show tha t Majority-Merge guarantees to return a sequence of length O(nlogn) .
They used essentially the bad example above to prove tha t, in tha t special case, it
can return a sequence of length fi(n logn).

5.5.5 “Algorithm M 4” of Foulser, Li and Yang

Foulser, Li and Yang [17] analysed an algorithm which they called “Algorithm M4” ,
a hybrid of the Majority-Merge algorithm and the trivial algorithm described in
Section 5.1. Algorithm M4 proceeds as follows. Let 4/ be the set of leftmost symbols
of the remaining strings. Merge every symbol in 4/, in order of decreasing frequency
in the leftmost positions, removing the symbol from the leftmost position of each
string where it appears and recalculating the frequencies of the symbols in 4/ after
each merge. W hen every symbol in 4/ has been merged, form a new $ from the
current leftmost symbols. Repeat this process until all the strings are exhausted.
They showed tha t for a fixed alphabet size, M4 has the same worst-case guarantee
as the trivial algorithm and tha t it has the same average case behaviour as the
Majority-Merge algorithm. It is easy to show that in the worst case, Algorithm M4
behaves as badly as the trivial algorithm for a fixed alphabet. For an unbounded
alphabet it is easy to show that, as for the Majority-Merge algorithm, no worst-case
guarantee beyond the trivial factor of k is possible. They showed empirically tha t
“Algorithm M4” has similar performance to Majority-Merge in practice.

5.6 T he A lgorithm G reedy 1

The algorithm Greedy 1 applied to k strings a i , . . . ,<** of length n proceeds as fol
lows. There are k — 1 steps. Define f t = a i. In the zth step, an arbitrary SCS of the
strings 1 and f t is found and labelled ft+ i. Hence f t is a common supersequence
of the strings a u , . . . , a ;, and in particular f t is a supersequence of all k strings.

It is easy to verify tha t, using a standard 0 (n m) algorithm for the SCS of two
strings, Greedyl for k strings of length n has 0 (k 2n 2) tim e complexity.

5.6.1 W orst-case behaviour of G reedyl

T h eorem 5.6.1 For a given set of k strings, denote by s the length of an SCS, and
by gi the length of a common supersequence returned by Greedyl. Then

c/i k — 1
— < + 1 .
s e

Proof
As before, consider an SCS a of the strings a u , . . . , a^, together with a particular

Approximation Algorithms for the LCS and SCS problems 93

embedding of each of the k individual strings in a . For i = 1 , 2 , . . . , fc, let X{ denote
the number of positions in a tha t correspond to symbols in exactly i of the individual
strings in the chosen embedding. Then equations (5.1) and (5.2) hold as before.

Also, it is easy to see that

k —1

gi = k n - J 2 l r (5-16)
r = l

where lr is the length of a longest common subsequence of the strings a r+1 and (3r.
Let mij (1 < i < j < k) be the number of positions in a tha t correspond to

symbols in both a; and aj for the chosen embeddings.
Since (3r is a supersequence of the strings a q , . . . , a r , it follows tha t

lr > max
l < z < r ’

and so,

l r > - £ m , +1. (5.17)
r i=i

Combining (5.16) and (5.17) we get

gi < kn — X (5.18)

where

x = (5.19)
r = l ^ i —\

We now seek a lower bound, in terms of aq , . . . , a;*, for the expression on the right
hand side of (5.19). Recall tha t Xj counts the number of positions in the SCS a tha t
correspond to symbols in exactly j of the original strings. So we ask, for any choice
of j strings, how small the sum of coefficients of terms in (5.19) can be, term s tha t
count the positions in a at which just these j strings are represented. This smallest
sum will clearly arise for the particular j strings a^ -j+ i, ak-j+2 ̂■ ■ •, ctk, and will
have value

^ I - k + j . k - j

So

l = k - j + 1 l = k - j + 1

k I k —l

j = 1 \ l = k - j + 1

Combining (5.1), (5.2), (5.18) and (5.20) gives

Approximation Algorithms for the LCS and SCS problems 94

It is immediate from (5.21) that

91 <r 1 _l V ' k ~ i— < 1 + max > ——
5 Ii=k—i+1

fc—i
= 1 + max ? V -

1
= 1 + , max jfWfc-i - t f,)

- 1 + , J^AX , i (log(k - !) - log i)-

By calculus, the maximum value of x (K — log x) occurs when log x = K — 1, i.e.,
when x = eA_1 = (e = 2 .718 ...). Hence

— < 1 + - — -(log (k - 1) - log(fc - 1) + 1) = ^
s e e

This completes the proof of the theorem. □

5.6.2 Bad examples for G reedyl on an alphabet o f fixed size

Algorithm Greedyl differs from the Tournament in tha t it appears to behave as
badly for a bounded alphabet as for an unbounded alphabet. In fact, in the worst
case, the ratio of the greedy solution to the optimal solution is at least a constant
times for any alphabet.

T h eorem 5.6 .2 For any k > 2 , there is a set of k strings over an alphabet of size
2 for which

9_ > fc + 3
5 “ 8

where s is the length of an SCS and g\ the length of a common supersequence found
by applying Greedyl.

Consider the set of k strings of length n — 2k over the alphabet {a, 6} defined
by ai = (b2k 1 a2k ') 2' \ for 1 < i < k.

L em m a 5.6.1 For 1 < i < j < k
(i) \LC S{a t, a J)\ = 2k~ \ l +?->) .
(ii) | LCS{cLi,CLf)\ < 3?.

Proof
(i) A particular common subsequence, of length 2/c-1(l -f 2t_J), of a; and otj consists
of all of the 2k~1 a ’s in each string and as many 6’s as possible. The number of
6’s th a t can be included is equal to the number of blocks of 6’s in ai (namely 2l_1)

Approximation Algorithms for the LCS and SCS problems 95

multiplied by the size of each block of 6 ’s in otj (namely 2k~i). To see th a t this is an
LCS, note tha t a; consists of 2 * blocks of identical symbols, each block of length 2k~ \
Suppose tha t an LCS of a t- and aj has x m symbols from block m (m = 1 , . . . , 2 *).
To obtain x m identical symbols from aj we must exclude at least x m — 2fc-J copies
of the other symbol. So

2 *

E O C m + Z m - 2 *--*) < 2 k,
m = 1

so tha t
2\LCS\ - 2k+i- j < 2k,

from which the result follows at once.
(ii) Follows from (i) and the fact tha t n = 2k. □

Proof
(of T h e o re m 5.6.2). The particular bad case occurs for the set of strings described
above. We show by induction tha t at stage i (1 < i < k — l) o f the algorithm, if
Greedyl merges an accumulating supersequence f t with q j+i to form ft+ i, and
f t = ai then a possible value for (3i for 1 < *' < k is

3=1

where
F (i , j) = 2k- { mzx{2r :2”\j}

and 0 denotes concatenation.
The base case is f t = a\ = b2 1 a2* 1 = Now we show tha t if Sitk gives a

possible value for f t , i > 1 then gives a possible value for ft+ i. So we find an
SCS of f t and a t-+ 1 to get f t+i as follows:

3 = 1

— [b a)

We claim that an LCS of f t and a l+i is 7 ,■ = (b2* ‘ ' a 2* ‘)2' \ Firstly, 7 1- is a
subsequence of f t since they have an equal number (namely 2 Z_1) of blocks of the
form bxay for some :r, y, and in each block, f t has at least as many (namely 2k~l) 6 ’s
and an equal number (namely 2k~%) of a ’s. Also, 7 ; is a subsequence of a t-+i since,

Approximation Algorithms for the LCS and SCS problems 96

expressed differently,

(U 2 k ~ i ~ x 2 k ~ i — 1 i 2 k ~ i ~ l 2 * — *— 1 \ 2*- 1oti+i = (6 a b a)

which is clearly a supersequence of (62* ' 1 a 2* ' 1a2fe * 1)2‘ 1 = 7 ,-. By precisely the
same argument as was used to prove Lemma 5.6.1, where f t and a t-+1 replace a; and

respectively, 7 ; can be shown to be an LCS of f t and
We can now build the unique SCS of f t and a t-+ 1 constructible from 7 ,-. All the

a ’s of f t and a z+i have been matched and each block of a ’s in f t has a block of
length 2k~l~1 of 6 ’s inserted half way along it. Hence

SCS(0 i , a*+i) =
j = 1

= b2k- la2k- " ' 0 6^ + 1|» a 2fc- ‘- 1

j=i
— f t + i •

So the supersequence generated by the algorithm is

f)k = b2k~'a
3 = 1

There are 2k~l = n / 2 6 ’s in the prefix and 2fc_1 = n /2 individual a ’s. The
number of 6 ’s in the remaining part of the string is

2fc—1—1 k - l

Y max{2 p : 2p\j} = ^ 2 fc_1" /2 / “ 1

j = 1 /= i
= (A: — l)2fc- 2

(fc “ !)n • oA:= since n — 2 .
4

The to tal length of the supersequence is therefore n + (k — l) (n / 4) = n(fc + 3)/4.
The string (6 a)n is a common supersequence, so the length of the shortest common
supersequence is < 2 a, and Greedy cannot guarantee to be within a factor better
than (n{k + 3)/4)/2n = (k + 3)/8 of the optimal. This completes the proof of the
theorem. □

Approximation Algorithms for the LCS and SCS problems 97

We can generalise the strategy in the proof of the above theorem to alphabets
of size greater than 2. For an alphabet {ai, ...,g 2} of size z, let n = z k, and

a i ~ \ for 1 < i < k.
3 = 0

The length of the supersequence generated by an analogous application of Greedyl
is

(z — V)2
n-\- (k — 1) ----- -— n

z z
and the length of the shortest common supersequence cannot be greater than nz.
Therefore the error in the approximation is > 1/z + {k — 1)(z — 1)2/ z 3, which is
maximised for z — 3, when k > 8 , leading to a lower bound of (4k + 5)/27.

5.7 T he C entre o f th e Star A lgorithm

The Centre of the Star Algorithm applied to a set of k strings proceeds as follows.
Find all the pairwise SCS lengths between the strings and represent this information
as a weighted graph G in which the strings are vertices and the weight of an edge
connecting a,- and aj is S{j — n where Sij is the length of the SCS of a,- and aj. Find
the string a c such tha t the star graph centred on a c and including all the strings of
G has minimum weight. A star graph is a graph in which one vertex is connected
to every other vertex but no two other vertices are connected. Form a common
supersequence by independently aligning every string with a c. This will always be
possible because a star graph is acyclic. The length of the supersequence generated
is n plus the sum of the weights of the edges in the star graph. Using an 0 (n 2)
algorithm for the SCS of two strings of length n, this algorithm has 0 (k 2n 2) tim e
complexity.

5.7.1 W orst-case behaviour of the Centre of the Star Algo
rithm

T h e o re m 5.7.1 For a given set of k strings, denote by s the length of an SCS,
and by c the length of a common supersequence returned by the Centre of the Star
Algorithm. Then

c k
- < - .
3 ~ 2

Proof
We can, without loss of generality, assume tha t a*. is the centre string. Denote the
sum of its SCS values by m = \SC S(ak , a,-)|. The length c of the supersequence
returned will be equal to n (for ak) plus the number of extra characters added by

Approximation Algorithms for the LCS and SCS problems 98

each other string in the alignment. Denote by s = m / (k — 1), the average SCS of
oik and ai for i = 1 , . . . , (k — 1). The average number of extra characters added by
a i , . . . , ak~i is then s — n. Therefore c = n -f (s — n).(k — 1). Clearly s is at least
equal to the average SCS value, i.e. s > s. We then have

c (m / (k — 1) — n).(k — 1) + n
s ~ m / (k — 1)

m (k — 1) — (k — l) 2n + (k — 1)n
m

= (* _ !) _ (^ 2 + (5.22)
m m

Clearly (k — l)n < m < 2(k — l)n therefore 2̂ 1_1̂ < ^ • So using this range
to maximise (5.22) we get,

k
2 ' °

5.7.2 Bad examples for the Centre o f the Star Algorithm
on an alphabet of fixed size

T h e o re m 5.7 .2 For k an arbitrary even number, there is a set of k strings, over
an alphabet of size 2, for which

- > (* + 2)/4

where s is the length of an SCS and c the length of a common supersequence found
by applying the Centre of the Star Algorithm.

Proof
Consider the following set of k strings, a n , . . . , a^, of length 1. For 1 < i < [| j ,
CXr — a and for [2J + 1 i ^ k , — 6. For the case of k even, each string
could clearly be chosen as the centre string. The supersequence generated will
have length one plus the number of characters unm atched with other strings. The
strings identical to the centre string will add nothing to the supersequence and the
(k/2) strings which do not m atch the centre string will each add one element to the
supersequence. Thus the length of the supersequence will be (k/2 + 1). The SCS is
clearly ab which has length 2. Therefore the error ratio is in general (k /2 + l) / 2 =
(fc + 2)/4. □

Approximation Algorithms for the LCS and SCS problems 99

5.8 T he M inim um Spanning Tree A lgorithm

The Minimum Spanning Tree Algorithm proceeds as follows. Build a weighted graph
G as for the Centre of the Star algorithm. Now find a minimum weight spanning tree
of G and form a supersequence by aligning each string optimally with its neighbours
in the spanning tree. This will always be possible because a minimum spanning tree
is guaranteed to have no cycles. The supersequence will have length n plus the sum
of the weights of the edges in the spanning tree. The graph can be constructed in
0 (k 2n2) tim e and a minimum spanning tree can be found with P rim ’s algorithm
[55, 59] in 0 (k 2) time.

5.8.1 W orst-case behaviour of the Minimum Spanning Tree
Algorithm

This algorithm is a refinement of the Centre of the Star Algorithm since a star is
a spanning tree. It therefore guarantees to return a supersequence of length not
greater than tha t returned by the Centre of the Star Algorithm. This gives us the
following theorem.

T h e o re m 5.8.1 For a given set o f k strings, denote by s the length of an SCS, and
by q the length of a common supersequence returned by the Minimum Spanning Tree
Algorithm. Then

5.8.2 Bad examples for the Minimum Spanning Tree A lgo
rithm

T h e o re m 5.8 .2 For k an arbitrary even number, there is a set of k strings for
which

i > (fc + 1)
s ~ 4

where s is the length of an SCS and q the length of a common supersequence found
by applying the Minimum Spanning Tree Algorithm.

Proof
Recall the bad example, for an unbounded alphabet, for the Tournament algorithm.
It comprises k = 2q strings of length n = 29_1 over the alphabet E = { 0 , 1 , . . . , 2q —
1}. Let a be the string of length 2q comprising the symbols of E in natural order.
The set P of strings is defined as follows. For i — 1 , . . . , q let ot2 i-i be the subsequence
of a containing all and only those symbols whose ith least significant bit is 1 and let
ct2 i be the subsequence of a containing all and only those symbols whose i th least
significant bit is 0. Each a; is of length n = 29-1.

Approximation Algorithms for the LCS and SCS problems 100

Every cq (1 < i < k) is a subsequence of a and every symbol of a appears in
k / 2 of the cq-’s, so a of length 2n is an SCS of all the strings in P.

It is immediate tha t the length of the longest common subsequence of any two
strings in P is not more than n/2 . Every edge in the spanning tree will therefore
have weight no less than n / 2 . From the relationship between the spanning tree and
the length of the supersequence returned we get

71
q > n + - (k - 1)

n(k + 1)
2 '

Given th a t s = 2 n, we conclude that

i > ^ ± h . D
s 4

5.8.3 Bad examples for the Minimum Spanning Tree A lgo
rithm on an alphabet of fixed size

T h e o re m 5.8 .3 For any k > 2 , there is a set of k strings, over an alphabet o f size
2 for which

q > (fc + 3)
s ~ 8

where s is the length of an SCS and q the length of a common supersequence found
by applying the Minimum Spanning Tree Algorithm.

Proof
Recall the bad example for Greedyl. It comprises k strings of length 2k over the
alphabet { n ,6 }, defined by cq = (6 2#£ ‘a2* ‘)2‘ 1 (z = 1 , . . . , k). From Lemma 5.6.1
we know tha t the length of the longest common subsequence of any two strings in P
is not more than 3n/4. Every edge in the spanning tree will therefore have weight
no less tha t n j 4. Therefore

q > n + j(fc-l)
n(k + 3)

4 '

Given tha t a = (ba)n of length 2 n is a supersequence of the strings in P , we have

Approximation Algorithms for the LCS and SCS problems 101

5.9 T he A lgorithm G reedy2

Algorithm Greedy2 applied to k strings, a i , . . . , a*,, of length n proceeds as follows.
Let (3j = otj for 1 < j < k. There are k — 1 steps. In the i th step, an arbitrary
SCS of two strings, and (3*, p < q, with the longest LCS is found and labelled
(3p+f (the subscript then represents the smallest numbered a which is guaranteed to
be a subsequence of this (3). The string (3p~l replaces (3* and (3* in the set and we
say tha t (3̂ and (3* are merged. It follows tha t (3̂ is a supersequence of e of the a ’s
and in particular tha t (3f is a supersequence of all the a ’s. It is not hard to verify
th a t using an 0 (n m) algorithm for the SCS of two strings, Greedy2 for k strings of
length n has 0 { k 2n2 log k) tim e complexity.

5.9.1 Worst case behaviour of Greedy2

The compression, c, achieved by an approximation algorithm is a measure of the
degree of matching tha t exists in the alignment it returns and is defined by

c = kn — a (5.23)

where a is the length of the string returned by the approximation algorithm.

T h e o re m 5.9.1 For a given set of k strings, denote by s the length of an SCS, and
by g2 the length of a common supersequence returned by Greedy2. Then

9Jl <
s ~ 4

Proof
Suppose tha t we knew the length of the LCS of aj and each of the other a ’s, and
th a t these k — 1 numbers were written in descending order. Let v l- denote the ith
element in this list.

At step i of Greedy2 , the compression achieved, ct-, is the length of the LCS of the
two strings merged and it is clear tha t c = Ci• In order to obtain a lower bound
for the level of compression achieved by Greedy2 , the credit for the compression at
each merge is distributed amongst the strings involved according to the following
strategy. W hen merging (3f and (3̂ at step z,

f3% is credited with -—- —-c*; (5.24)
P (x + y)

X
Qyn is credited with 7------- -c,-.

9 (x + y)

The compression credited to (3f is divided equally among the x a ’s th a t we know to
be subsequences of /?*. A subsequence, otj, of (3f, is therefore credited with Q•

Approximation Algorithms for the LCS and SCS problems 102

Since c* is the greatest level of compression tha t can be achieved at step z, and aj
has been merged with a total of x — 1 other a ’s, it follows tha t aj is credited with
> x^ y) vj compression.

Suppose aj is involved in r merges altogether, and tha t, in the pth of these
merges, aj is a subsequence of some j3Xp which is merged with some f3Vp. Then
X\ = 1 , x p = x p - 1 -f yp - 1 for p = 2 , . . . , r, and x r + yr = k. The to tal compression
credited to aj is at least

E
Vp Xnu / .

p = i x p(xp + V p)

It can be proved by induction that

s 1 x , + y , - l

v — ^ > — -— y ;
p_i Xp(xp + ijp) x s + t-=1

for s = 1 , . . . , r , and in the case s = r this shows tha t the compression credited to
aj is

1 /c—1

> - Y V .
- k h 3

= - Y i
l<i,j<k, i<>j

where represents the length of the LCS of a 4- and aj. The total compression
achieved is then

c ^ f E k i
1 < i< j< /c

- r E (5-25)

where represents the number of positions in the SCS represented by symbols
from both a{ and aj. Combining (5.2), (5.23) and (5.25) we get

k 2
9i < E ^ - r E7 ^ m i,J

i=l l<i<j<.k

- g'-KO1-

Approximation Algorithms for the LCS and SCS problems 103

where the equality holds by the same reasoning as in (5.8), and so

i — 1)
92 < E (5-26)

t = l K

where X{ represents the number of positions in an SCS which correspond to symbols
in exactly z of the individual strings. Combining (5.26) with (5.1) we get

9 2 ^ * (i - l K— < maxfz -----).
s i k

The maximum occurs for

g i v i n g

5.9.2 Bad examples for Greedy2 on an alphabet of fixed size

Recall the bad example for Greedyl in Section 5.6.2. The set of strings used rep
resents a potentially bad case for Greedy2 with precisely the same behaviour as for
Greedyl. It is required to show that the behaviour described in Section 5.6.2 repre
sents feasible behaviour of Greedy2 on tha t set of strings. Recall the definitions of
cti,/3i and 7 ; for (1 < i < k). For 1 < i < k — 1,

|7,| = 2i~1(2k~'~1 + 2k~'))

= 2h~2 + 2 k~1
n n .

= — |— since n — 2
4 2
3 n
T ’

Therefore by Lemma 5.6.1, 7 i is as long as the LCS of any pair of a ’s in the original
set. By an argument very similar to tha t which was used to prove Lemma 5.6.1,
the LCS of /3{ and otj (j > i + 1) can be shown to have length not greater than |7 ;|.
Therefore at step z, merging /?* with cq+i is a feasible step for Greedy2.

This gives a result for Greedy2 for a binary alphabet equivalent to the result for
Greedyl. Generalising the strategy as for Greedyl is also effective for Greedy2 to
give an equivalent result for Greedy2 over an unbounded alphabet.

Approximation Algorithms for the LCS and SCS problems 104

LCS A pp roxim ation
A lgorithm Lower B ound U pp er B ound
Long-Run z z
Best-Next for a
binary alphabet

n / 2 n / 2

Table 5.1: Worst-case behaviour of approximation algorithms for the LCS

5.10 Sum m ary o f th e approxim ation algorithm s
for th e LCS and SCS problem s

The status of the analysis of the worst-case behaviour of the approximation algo
rithm s for the LCS and SCS problems are shown in Tables 5.1 and 5.2 respectively.

5.11 Em pirical com parison o f th e approxim ation
algorithm s for th e SCS problem

The algorithms for approximating the SCS have been tested to find how close an
approximation to the optimal they provide in practice, in particular how varying
the three im portant param eters - the number of strings (k), the length of the strings
(n), and the size of the alphabet (z) affects their performance. Two sets of exper
iments over different conditions were carried out. The first set was over groups of
random strings (of length 100). Where possible, rough estimates of the length of
the SCS, calculated from the experimental results obtained for Chapter 4, are pro
vided. The second set of experiments used random subsequences (of length 90) of a
supersequence (of length 100). In this case it is possible to give an upper bound on
the length of the SCS and accurately assess how close the algorithms come to the
optimal. In both cases, the results are averaged over four distinct sets of strings.
The results are shown in Tables 5.3 and 5.4 respectively. Because Greedy2 sub
sumes the Centre of the Star and Minimum Spanning Tree algorithms and performs
significantly better than them in practice, results for those two algorithms are not
presented.

Approximation Algorithms for the LCS and SCS problems 105

SCS A pproxim ation
A lgorithm Lower B ound U pp er B ound
Tournament
for unbounded alphabet
for binary alphabet

(fc + 2)/4 (3k + 2)/8
(log2 k + l) / 2 (3A: + 2)/8

Majority-Merge
for unbounded alphabet
for binary alphabet

k k
log2 k log2 k

Greedyl
for unbounded alphabet
for binary alphabet

(4fc + 5)/27 ((k — 1)/e) + 1
(fc + 3)/8 ((f c - l) / e) + l

Centre of the Star
for unbounded alphabet
for binary alphabet

(fc + 2)/4 k /2
(k + 2) /A k /2

Min. Span. Tree
for unbounded alphabet
for binary alphabet

(k + l) /4 k /2
(fc + 3)/8 k /2

Greedy2

for unbounded alphabet
for binary alphabet

(Ak + 5)/27 [k + 3)/4
(k + 3)/8 (k + 3)/4

Table 5.2: Worst-case behaviour of approximation algorithms for the SCS

Approximation Algorithms for the LCS and SCS problems 106

n = 100 Random Strings
z k Tournament Majority-Merge Greedyl Greedy2 Estim ate
2 4 145 147 142 142 134

8 171 154 158 155 141
1 2 185 155 167 162 144
16 2 0 0 159 170 167 146

4 4 186 204 184 184 175
8 248 231 230 227 2 0 0

1 2 294 243 255 250 -

16 330 252 272 268 -

8 4 225 284 2 2 2 2 2 2 2 1 2

8 337 355 313 309 -

1 2 422 396 368 361 -

16 497 412 408 403 -

16 4 265 348 262 261 249
8 427 510 400 398 -

1 2 557 577 496 489 -

16 675 652 574 560 -

Table 5.3: SCS approximations for random strings of length 100

n = 90 s < 100
z k Tournament Majority-Merge Greedyl Greedy2

2 4 1 0 2 128 1 0 1 1 0 0

8 108 125 103 104
1 2 1 1 2 128 103 103
16 1 1 2 126 103 103

4 4 1 0 2 143 1 0 1 1 0 0

8 104 142 1 0 1 1 0 1

1 2 1 1 0 1 0 2 1 0 1 1 0 1

16 109 1 0 0 1 0 1 1 0 2

8 4 1 0 2 161 1 0 1 1 0 1

8 105 1 2 2 1 0 1 1 0 1

1 2 1 1 0 1 0 0 1 0 1 1 0 0

16 108 1 0 0 1 0 1 1 0 1

16 4 1 0 2 154 1 0 1 1 0 1

8 105 1 2 2 1 0 1 1 0 1

1 2 107 1 0 0 1 0 1 1 0 1

16 109 1 0 0 1 0 1 1 0 1

Table 5.4: SCS approximations for subsequences of a string of length 100

Approximation Algorithms for the LCS and SCS problems 107

5.12 Bad exam ples w ith respect to th e input size
for th e SCS approxim ation algorithm s

The preceding sections analysed the performance of various approximation algo
rithm s for the SCS problem, with respect to the number of strings in the problem
instances. However, when studying other optimisation problems, it is common to
assess the performance of approximation algorithms with respect to the size of the
input rather than with respect to one of the input parameters.

Here we briefly analyse bad cases for the SCS approximation algorithms with
respect to the input size. It is shown that none of the algorithms has a performance
guarantee with respect to the input size better than ^ ((j— j)^ 0®23-1^ 2) where I is
the size of the input.

T h e T ournam ent A lgorithm

The bad cases for the Tournament Algorithm given in Sections 5.4.2 and 5.4.3 do
not elicit poor performance for the algorithms with respect to the size of the input.
We describe an alternative set of bad cases which does.

Consider a set of k = 4P strings O q , ^ , . . . , «£_! of length 1 over the alphabet
E = { 0 , 1 , . . . , 2P — 1 } of size 2P. The strings are defined recursively by

a? = F (hP) (0 < i < 4P)

T (i \ = I i mod 2’ if p = 1
\ 2 P_1 x (|y /4p_1J mod 2) + T (i mod 4P -I,p — 1), otherwise

For example, when p — 2, the sixteen strings are

0 ^ = 0 a 4 = 2 Ofg = 0 = 2

“ l = 1 a 5 = 3 a 9 = 1 = 3
0 = 2 a | 0 = 0 c*j4 = 2

= 1 _ 3 Qfjj = 1 a f 5 = 3

It is not hard to verify tha t a feasible application of the Tournament Algorithm,
pairing Qq with a % with a 3 etc, leads, after two rounds of the tournam ent, to the
analogous set of strings for k = 4P_1 where symbol j (0 < j < 2P_1 — 1) is replaced
by the concatenation of the three symbols 2 j , (2 j + 1), and 2 j , respectively.

In the above example, after two rounds of the tournam ent the four remaining
strings could be;

a 20, - 010 a 2, = 232 a \ , = 010, a \ , = 232

where the number of dashes indicates the number of pairs of rounds of the tourna
m ent the string has been through. After a further two rounds, the one remaining

Approximation Algorithms for the LCS and SCS problems 108

string could be (ignoring the white space);

= 010 232 010.

In the whole tournam ent, there are p pairs of rounds which divide the num ber of
strings by four and multiply the lengths of the strings by three. The length of the
supersequence returned by the Tournament Algorithm is therefore 3P. The unique
SCS is just the string containing the symbols of the alphabet in lexicographic order
and has length 2 P. The size of the input is kn log2 z = 4P log2 2P = 4Pp. We therefore
have

where s is the length of SCS, t is the length of a supersequence returned by the
Tournament Algorithm, and I is the size of the input.

T h e M ajority-M erge A lgorithm

Recall the bad case for the Majority-Merge Algorithm over an unbounded alpha
bet in Section 5.5.2. It comprises k strings of length n over the alphabet £ =
{ai, a 2 , •. •, flfc}, defined by a; = a t-(ai) n _ 1 for 1 < i < k. If we fix n = k then for
the behaviour of the algorithm described in Section 5.5.2 we get

m > kn = _ n y _ > „
s n + k — 1 2n — 1 2

where s is the length of an SCS and m is the length of a common supersequence
found by applying the Majority-Merge Algorithm. If I is the input size then

L log 2 3 - 1
where c = -------------

2

I =
I

n 2 log2 n,
n 2 log2 n

2 log2 I 4(log2 n + \ log2 log2 n)

(5.28)

Combining 5.27 and 5.28 we get

A lgorith m s G reed y l and G reedy2

The bad case for Greedyl and Greedy2 given in Section 5.6.2 does not elicit poor
performance for the algorithms with respect to the size of the input. We describe an

Approximation Algorithms for the LCS and SCS problems 109

alternative set of bad cases which does. In what follows, the name “Greedy” refers
to both Greedyl and Greedy2 .

Consider a set of k = 2n strings of length n (n > 1) over the
alphabet E = { 0 , 1 , 2 , . . . , n} of size n + 1 . The strings are defined recursively by

a " =

I the empty s tr inq , if i = 0

7f \ if 1 < i < 2P_1,

C i-i-H -P, if2p- 1 < i < 2 » .

For example, when n = 3 the eight strings are

«o = ooo
a? = 100
a\ = 200

a f = 120

a \ = 300

a l = 130

a e = 230

Oty = 123

It is clear tha t no two of the strings chq,. . are identical so we get the
following lemma.

L e m m a 5.12.1 \ L C S { a ^ a nJ)\ < n - 1 for 0 < i < j < 2n - 1

It is not difficult to verify tha t if Greedy merges an accumulating supersequence
/?" with a ”+1 to form j3™+1, and = a j , then a possible value for (1 < i < k) is

S? =

and the length of the LCS of (3™ and is n — 1 .
For example, when n = 3 the eight strings and the accumulating supersequence

are
*2 = 000 00 = 000

= 100 01 = 1000
«5 = 200 Pi = 21000
<*3 — 120 Pi = 121000

= 300 Pi = 3121000

«I = 130 Pi — 13121000

= 230 Pi - 213121000

= 123 Pi = 1213121000

It is clear tha t the above represents feasible behaviour for Greedyl. It follows
from Lemma 5.12.1 and the fact tha t |LCS(/3™, Q̂ +1)| = n — 1 tha t it is also feasible

Approximation Algorithms for the LCS and SCS problems 110

behaviour for Greedy2 .
The length of the supersequence returned by Greedy is therefore n + 2n — 1 . The

length of an SCS (e.g. 1 2 . . . n0n) is clearly 2 n. The size of the input is kn log2 z =
2nn log2(n + 1). We therefore have

q n + 2n - 1 I
- > — ~-------- > f°r any e > os 2 n 2 (log2 /) 2+e

where s is the length of an SCS, g the length of a supersequence returned by either
Greedy Algorithm, and I is size of the input.

5.13 C onclusions and open problem s

An exact characterisation of the worst-case performance of both Long-Run and Best-
Next over bounded and unbounded alphabets have been found. It is shown th a t the
worst-case behaviour of Long-Run depends on the alphabet size and the worst-case
behaviour of Best-Next depends on the length of the strings.

Close bounds for the worst-case performance of the Tournament, G reedyl, Cen
tre of the Star, Minimum Spanning Tree and Greedy2 algorithms, on an unbounded
alphabet, have been found. A precise characterisation of the worst-case behaviour
for bounded and unbounded alphabets for the Majority-Merge Algorithm has been
found. All the algorithms have been shown to have bad performance on bounded
alphabets and to have worst-case behaviour no better than Q(k) for an unbounded
alphabet.

From the empirical results, it is clear tha t the Majority-Merge clearly suffers
the least by increasing the number of strings but suffers the most by an increase in
the alphabet size. The Tournament, Greedyl and Greedy2 algorithms have similar
performance but the Greedy algorithms and in particular Greedy2 appears to con
sistently return the shorter supersequence. When the strings have a very short SCS,
the Tournament, Greedyl, Greedy2 and Majority-Merge algorithms are all capable
of returning good approximations. The performance of the M ajority-Merge Algo
rithm varies dramatically depending on the number of strings because as the number
of strings increases, the probability of Majority-Merge choosing the “correct” first
character increases. In fact, except in unlikely circumstances, the probability of
Majority-Merge choosing the “correct” character at any step of the algorithm in
creases.

The following problems remain open:
1) Is there a polynomial-time approximation algorithm for the LCS with worst-
case performance guarantee better than each of O(z), 0 (/c), and O(n) where no
restriction is placed on the value of any parameter?
2) As for the LCS, is there a polynomial-time approximation algorithm for the SCS

Approximation Algorithms for the LCS and SCS problems 111

with worst-case performance rising more slowly than all the three main problem
param eters (z, k , n) where no restriction is placed on the value of any param eter?
3) Is there a polynomial-time approximation algorithm for the SCS with a worst-case
performance guarantee better than 0 ((j^ -^)^ loS23-1^ 2) where I is the input size?

In connection with 1), Jiang and Li [37] showed tha t E3<£ > 0 such tha t if there is
an approximation algorithm for the LCS problem (with arbitrarily long strings) with
worst-case performance k s then P = N P , where k is the number of strings. Bonizzoni,
Duella, and Mauri [9] proved th a t the LCS problem on a bounded alphabet is M A X
S N P -hard implying tha t a polynomial time approximation scheme is not possible
for the LCS on a bounded alphabet (unless P = N P) . In connection with 2), Jiang
and Li [37] showed tha t > 0 such tha t if there is an approximation algorithm for
the SCS problem with worst-case performance O(log5 k) then N P is contained in
DTIM E(2po/2/*°5 *). Bonizzoni et al. [9] proved tha t the SCS problem on a bounded
alphabet is M A X SN P-hard .

Chapter 6

M axim al subsequences and
minimal supersequences

6.1 Introduction

As discussed in Chapters 4 and 5, we may have to resort to finding an approximate
solution to an instance of the LCS (or SCS) problem because it is too big to solve
using an exact algorithm. Having found an approximation 7 to the LCS of a set
P of strings, we could a ttem pt to add symbols to 7 , so tha t it remains a common
subsequence of P , and continue to do so while it is possible. The question then
arises as to how long we can typically expect 7 to get before no more symbols can
be added, for it to remain a common subsequence of P . Similarly, how short can
we typically expect <£, an approximation to the SCS of P , to get while we remove
symbols from 8 so tha t it remains a common supersequence of P?

Recall the following definitions from Chapter 1 . A common subsequence a of
a set P of strings is maximal if no proper supersequence of a is also a common
subsequence of P . A Shortest Maximal Common Subsequence (SMCS) of P is a
maximal common subsequence of shortest possible length. Analogously, a common
supersequence a of a set P of strings is minimal if no proper subsequence of a is
also a supersequence of P . A Longest Minimal Common Supersequence (LMCS) of
P is a minimal common supersequence of longest possible length.

For example, for the strings

a i = abed

a 2 = bacd
<23 = bead

ol\ — beda

the SMCS is the string a of length 1 but the LCS is the string bed of length 3.

112

Maximal subsequences and minim al supersequences 113

The LMCS is the string bcdabcd of length 7 although the string abcda is the SCS of
length 5.

In this chapter, we study the Shortest Maximal Common Subsequence problem
and and the Longest Minimal Common Supersequence problem from the complexity
point of view.

We show that the SMCS problem is N P -hard when the number k of strings
becomes a problem param eter. Furthermore, we prove a strong negative result
regarding the likely existence of good polynomial-time approximation algorithms
for the SMCS problem in the case of general k.

We also show that, like the LCS and SCS problems, both of these new problems
can be solved in polynomial tim e by dynamic programming for k = 2 (and, by
extending the algorithms, for any fixed value of k). However, the dynamic program
ming algorithms are less straightforward than those for the LCS and SCS problems,
and have tim e and space complexities 0 (m 2n) and 0 (m n 2) respectively for strings
of lengths m and n (m < n). Note tha t the existence of polynomial-time algorithms
for the SMCS and LMCS problems in the case of two strings is by no means obvi
ous. Consider the problem of finding a maximum cardinality matching in a b ipartite
graph. This problem is well known to be solvable in polynomial time, whereas the
problem of finding a smallest maximal bipartite matching is N P -hard [72].

6.2 T he SM CS problem for general k strings

It is well-known that the problem of finding an LCS of k strings is N P -hard , even
in a number of special cases [44, 56, 64]. Recently, Jiang and Li [37] described a
polynomial-time transformation from the Maximum Clique problem for graphs to
the LCS problem with the property that the strings constructed have a common
subsequence of length r if and only if the original graph has a clique of size r. If
the given graph has k vertices then the derived LCS instance comprises 2k strings.
Now, it has recently been established by Arora et al [7] tha t, if P ^ N P , then there
cannot exist a polynomial-time approximation algorithm for the Maximum Clique
problem with a performance guarantee of k 5, for some 8 > 0. Hence, Jiang and Li
were able to conclude tha t, unless P = N P , there cannot exist a polynomial-time
approximation algorithm for LCS with a performance guarantee of ks, for some
6 > 0.

As we shall see in Theorem 6.2.1, the transformation, from Independent Set,
given by Maier [44] to prove the NP-completeness for LCS also serves as a trans
formation from the Minimum Independent Dominating Set problem to SMCS. The
former problem is also N P -hard [19], and was shown by Irving [31] not to have a
polynomial-time approximation algorithm with a constant performance guarantee
(if P ^ N P). Halldorsson [23] has recently strengthened this result to show that,

M aximal subsequences and m inim al supersequences 114

if N P , then, for no S < 1 , can there exist a polynomial-time approximation
algorithm with performance guarantee k s. M aier’s transform ation has the property
th a t the strings constructed have an LCS of length r if and only if the original graph
has an independent set of size r. If the given graph has k edges then the derived LCS
instance has k + 1 strings. It will therefore follow from the transform ation, not only
th a t SMCS is N P-hard , but also tha t this same strongly negative approximability
result applies to the SMCS problem.

T h e o re m 6 .2 . 1 (i) The SMCS problem is N P -hard.
(a) / / P ^ N P , then, for no S < I, can there exist a polynomial-time approximation
algorithm for SMCS on k strings with performance guarantee k 5.

Proof
(i) Let G = (V ,E), t , with V = {i>i , . . . ,un} and E = {ei, e2, . . . , em}, be an
arbitrary instance of (the decision version of) the Minimum Independent Dominating
Set problem. We construct an instance of SMCS as follows. Include in the set S of
strings the string ao = Viv2 • • • vn. For each edge e; = {up, (p < q) include in the
set S of strings the string a; defined by

Oti = V1 V2 . . • Up_iUp+i . . . VnVlV2 . . . Vq^Vq + 1 . . .V n.

We claim that G has an independent dominating set of size t if and only if S has
a maximal common subsequence of length t.

To prove this claim, we must show that (a) if G has an independent dominating
set U of size t then S has a maximal common subsequence of length t ; (b) if S has
a maximal common subsequence of length t then G has an independent dominating
set of size t.

To prove (a), assume that U = {uUl,uU2, . . . ,uUt} is an independent dominating
set of size /, where 1 < iq < u2 < . . . < ut < n.

It can easily be checked tha t the string a = vUl vU2 . . . vUt is a common subse
quence of S. If some supersequence, c/, of a , is a common subsequence of S then
observe for a contradiction, tha t 3 vp in a ' but not in a , which is connected to
vq £ U, in G by edge ej = {vp, v q} since U is dominating. Assuming p < q then the
string a.j = V\V2 . . . vp- i v p+i . . . vnv\v2 . . . vq- i v q+i . . . vn. For a' to be a subsequence
of ao, vp must precede vq in a'. But this prevents a 1 from being a subsequence of
ctj. A similar contradiction is obtained if p > q is assumed.

To prove (b), assume a = vUlvU2 . . . vUt, of length t, is a maximal common sub
sequence of the strings in S. The first observation is tha t if vUp and vUq are two
symbols in a and p < q then up < uq. For otherwise a could not be a subsequence
of ao* The elements of a must form an independent set, U , of size t, in G. To see
this, observe for a contradiction tha t if two elements, vUp and vu (p < q), of a are
connected in G by edge ej = {vUp,v Uq} then the string vUpvUq, a subsequence of a ,

M aximal subsequences and m inim al supersequences 115

would not be a subsequence of cx.j and hence a would not be a subsequence of aj. If
U is not maximal then 3 U', an independent set of size t' > t, and U C U'. Observe
for a contradiction tha t this would imply 3vj £ U' and Vj ^ U. Then it is easy to see
th a t the string a 1 = vUl . . . vUpVjVUp+l .. . v Ut, where up < j < up+i, a supersequence
of a , would be a common subsequence of all the strings in 5 , contradicting the
m axim ality of a. This concludes the proof of part (i).

The proof of part (ii) follows from the observation tha t the reduction is linear
[53], and therefore preserves the approximability of the Minimum Independent Dom
inating Set, and from the result of Halldorsson [23] on the approximability of tha t
problem. □

6.3 T he SM CS and LM CS problem s for k = 2
strings

As is discussed in Section 1 .1 , when restricted to the case of just two strings a and
j3 of lengths m and n respectively, the LCS and SCS problems are easily solvable
in O (ran) tim e by dynamic programming. Indeed, in this case, the problems are
dual, in tha t s = m + n — /, where I and s are the lengths of an LCS and an SCS
respectively, and an SCS can easily be formed from an LCS.

The following example illustrates the fact tha t there is no obvious corresponding
duality between the SMCS and LMCS in the case of two strings. For the strings

a = abc,

(d — dab,

the only maximal common subsequence is ab of length 2 , while dabc, abcdab, abdcab,
and abdacb are the minimal common supersequences, the la tter three being the
longest.

It is true, however, tha t if 7 is a maximal common subsequence of length r of
a and /?, then forming an alignment of a and (d in which the elements of 7 are
m atched reveals a minimal common supersequence of a and (d of length m + n — r.
Hence, if V is the length of an SMCS, and s' the length of an LMCS, it follows tha t
s' > n + m —

Hence the question arises as to whether either or both of the SMCS and LMCS
problems can be solved in polynomial time, by dynamic programming or otherwise.

In the following two sections we describe polynomial-time algorithms to deter
mine the length of an SMCS and an LMCS of two strings, respectively. In fact these
algorithms will determine the lengths of all maximal common subsequences and all
m inimal common supersequences respectively. They will also allow the construction

Maxima,! subsequences and minim al supersequences 116

of an SMCS, and indeed of all the maximal common subsequences (respectively an
LMCS, and all minimal common supersequences) of the two strings (although to
construct all maximal common subsequences or minimal common supersequences
would require exponential time).

The algorithms use a dynamic programming approach based on a table that
relates a 1 and f t , for i = l , . . . , m , j = 1 , . . . , n , where m ,n are the lengths of
a f t respectively. However, as we shall see, for each i , j we must retain rather more
information than merely the lengths of the maximal common subsequences, or of
the minimal common super sequences, of a x and f t .

6.3.1 The SMCS Algorithm

G iven a string a and a subsequence 7 of a, we define

sp(a , 7) = length of the shortest prefix of a tha t is a supersequence of 7 .

Given strings a f t of lengths m and n respectively, we define the set Sij, for each
i = l , . . . , m , j = l , . . . , n , by

Sij = {(r, (rc, y)) : a 1 and f t have a maximal common subsequence 7 of length r,
and sp(a, 7) = x , s p { f t f t = y}

with
5oo = {(0,(0,0))}.

For string a of length m, position i and symbol a, we define

x f minjA; : a\k] = a, k > i} if such a k exists
nex ta(i,a) = { ,u ■[m -f 1 otherwise.

If a is a string and a a symbol of the alphabet, we denote by a + a the string
obtained by appending a to a. Likewise, if the last character of a is a, we denote
by a — a the string obtained by deleting the final a from a.

The algorithm for SMCS is based on a dynamic programming scheme for the
sets Sij defined above. So evaluation of Smn reveals the length of the SMCS, but
also finds the lengths of all maximal common subsequences of a and (3 (indeed of
all maximal common subsequences of all pairs of prefixes of a and (3). Furthermore,
by applying suitable tracebacks through the array of Sij values, we can recover an
SMCS and all maximal common subsequences.

The basis of the dynamic programming scheme is contained in the following
theorem:

M aximal subsequences and m inim al supersequences 117

T h e o re m 6.3 .1 (i) I f a \ i \ = (3[j \ = a t h e n

S i j = { (r> (n e x t a (x , a) , n e x t p (y , a))) : (r - 1 , { x , y)) G S ' i - i j - i } .

(i i) I f a \ i \ ± / 3 \ j \ t h e n

S i j = { (r , (x , j) G S i - h j } U {(r , (i ,y)) G S ^ - i } U D 5 ifj_ i) .

Proof
(i) Suppose (r — 1, (x , y)) G and that 7 ' is a m axim al com m on subsequence
of a l~ l and (33~ l of length r — 1 w ith s p (a , 7 ') = x and s p ([3 , 7 ') = y. T hen it is
im m ediate that 7 = 7 ' + a is a m axim al com m on subsequence of a x and (3 f and that
s p (a , 7) = n e x t a (x , a), sp(/?, 7) = n e x t p (y , a) .

On the other hand, suppose that 7 is a m axim al com m on subsequence o f length
r of a 1 and (33 . Then the last sym bol of 7 is a , and 7 ' = 7 — a is certainly a com m on
subsequence of a *- 1 and /3-7-1. If it were not m axim al, then som e supersequence 6 of
7 ' would be a com m on subsequence of a l ~ l and and therefore 5 -f a, a superse
quence of 7 , would be a com m on subsequence of a 1 and /3J, contradicting the m axi
m a lly of 7 . So (r —1, (sp (a , 7 /) ,sp (/? ,7 /)) G S i - l t j - i and (r, (sp (a , 7), s p (f i , 7)) G S i j

w ith s p (a , 7) = n e x t a (s p (a , 7 '), n) and s p (/ 3 , j) = n e x t p (s p ({ 3 , 7 '), <2).

(ii) Suppose (r, (:c ,j)) G and that 7 is a m axim al com m on subsequence
of a %~ 1 and f33 of length r w ith s p (a ,7) = £ , s p (f i , 7) = j . Then 7 is a com m on
subsequence of a* and (33, and must be m axim al since 7 + a [i] cannot be a sub
sequence of (33 . A similar argument holds for (r, (z ,y)) G 5 'ij-i- So {(r , (:r ,j) G
S 'i- ij} U {(r , (i ,y)) G S 'ij - i} C S i j .

Further, if (r, (x , y)) G S i-n j D S ^ - i , then there is a string 7 w ith s p (a , 7) =
x < i , s p (f i , 7) = y < j , of length r, which is a m axim al com m on subsequence of a 1

and and of cd- 1 and (33 . So 7 m ust also be a m axim al com m on subsequence
of a 1 and j33 . For any supersequence of 7 that is a subsequence of a % and (33 must
either be a subsequence of a % and /?J_1, or of a *- 1 and (33.

On the other hand, suppose that 7 is a m axim al com m on subsequence of length
r of cd and f t 3 .

case (iia) sp (a , 7) = i . Then 7 is a m axim al com m on subsequence of a 1 and (33~ l ,
and so (r, (* ,y)) G S i j - 1 for som e y .

case (iib) sp (/? ,7) = j . Then 7 is a m axim al com m on subsequence of a x~ l and (33,
and so (r, (x , j)) G S i - i j for som e x .

case (iic) sp (a , 7) < j, s p { (3 , 7) < jf. Then 7 is both a m axim al com m on subsequence
of a l ~ l and {33, and of a* and (33~ l . So (r, (s p (a , 7), sp(/?, 7))) G S’t - i j fl

This com pletes the proof of the theorem . □

Maximal subsequences and minim al supersequences 118

R ecovering a Sh ortest M axim al C om m on Subsequence

The recovery of a particular Shortest Maximal Common Subsequence involves a
standard type of traceback through the dynamic programming table from cell (m, n),
during which the sequence is constructed in reverse order. To facilitate this trace-
back, each entry in position (i , j) in the table (for all i , j) should have associated with
it, during the application of the dynamic programming scheme, one or more pointers
indicating which particular element(s) in cells (z — l , j) , (i , j — 1) or (i — l , j — 1)
led to the inclusion of tha t element in cell (i , j) . For example, if a[z] = (3[j] = a,
and (r — 1 , (ar,y)) E S i - i j - i then (r , (nexta(xya),nextp(yJa)) is placed in cell (z, j)
with a pointer to the element (r — 1 , (x ,y)) in cell (i — 1 , j — 1).

W ith these pointers, any path from an element (r, (x ,y)) in cell (m,rz) to the
element in cell (0 , 0) represents a maximal common subsequence of a and f3 of
length r, namely the reversed sequence of matching symbols from the two strings
corresponding to cells from which the path takes a diagonal step.

A n alysis o f th e SM CS A lgorithm

The number of cells in the dynamic programming table is essentially m n, so th a t if we
could show tha t the number of entries in each cell was bounded by, say, m in(m ,n),
and tha t the total amount of computation was bounded by a constant times the
total number of table entries, then we would have a cubic time worst-case bound for
the complexity of the algorithm. However, this turns out not to be the case, as the
following example shows.

Consider two strings of length n = p(p + l) / 2 + q over an alphabet £ =
{ a i , . . . , an}, defined as follows

OL — + Ol2 + • • • - ! - Otp + U p (p - f l) / 2 + l , • • • 5 a n

(3 = a p + cxp - 1 + •••-!- a i + an, . . . , ap(p+i)/2-f-i

where ct\ — c q , q ?2 ■-- ^ 2 ^ 3 ? • • • ■> ~ ®(p—i) p / 2 + i • • • @,p(p+1) / 2 ? crnd T denotes concate
nation.

It is not hard to see tha t position (n ,n) in the dynamic programming table
contains the pq entries (r, (x, y)) for r = 2 , . . . ,p + 1 , x = p(p + l) / 2 + 1 , . . . , n,
y — n + 1 + p (p + l) / 2 — x. W ith q = 0 (p 2), this gives 0(rz3/2) entries in the (n, n)th
cell.

However, suppose tha t we wish to find only the length of an SMCS (and to con
struct such a sequence by traceback through the table). Then, if any particular cell
in the table contains more than one entry (r, (x, y)) with the same (ar, y) component,
we may discard all but the one with the smallest r value. For if a maximal common

Maximai subsequences and minim al supersequences 119

subsequence 7 has a prefix 7 ' such tha t sp(a, 7 ') = x and sp(P,/y') = y , then to
make 7 as short as possible, 7 ' must be chosen as short as possible.

Also, if the entries (r, (a;, y)) in the (z, j)th. cell are listed in increasing order of x ,
then they must clearly also be in decreasing order of y, and therefore, since x < z,
y < j , the number of such entries with distinct (x ,y) components cannot exceed
min(z, j) . Further, it is easy to see tha t by processing the lists of cell entries in this
fixed order, the amount of work done in computing the contents of cell (z, j) is, in
case (i) bounded by a constant times the number of entries in cell (z — 1 — 1), and
in case (ii) bounded by a constant times the sum of the numbers of entries in cells
(z — 1 , j) and (z,j — 1). (In case (i), this assumes precom putation of the tables of
next values, which can easily be achieved in 0 (n |£ |) tim e for a string of length n,
where S is the alphabet.)

In conclusion, the length of an SMCS can be established by a suitably amended
version of the above dynamic programming scheme in 0 (m 2 n) tim e in the worst
case, for strings of lengths m and n (m < n). Furthermore, such a subsequence
can also be constructed from the dynamic programming table without increasing
th a t overall tim e bound. But it remains open whether the lengths of all maximal
common subsequences can be established within tha t tim e bound. A trivial bound
of 0 (m 3n) applies in tha t case, since the number of entries in each cell is certainly
bounded by m 2.

6.3.2 The LMCS Algorithm

The LMCS algorithm is not dissimilar in spirit to the SMCS algorithm, and there
is a certain duality involving the terms in which the algorithm is expressed.

Given strings a and 7 , we define

/p(a, 7) = length of the longest prefix of a tha t is a subsequence of 7 .

Given strings a,/3 of lengths m and n respectively, we define the set X̂ -, for each
i = 0 , . . . ,m , j = 0 , . . . ,n , by

Tij = {(r, (rc, y)) : there exists a minimal common supersequence 7 of a 1 and /X7,
of length r, such tha t lp(a, 7) = rr,/p(/], 7) = y}.

Finally, for string a , position z and symbol a, we define

f x _ j i + 1 if ot[i -f 1] = a
a ’ \ i otherwise.

The algorithm for LMCS is based on a dynamic programming scheme for the sets
defined above. So evaluation of Tmn not only reveals the length of the LMCS, but
also finds the lengths of all minimal common supersequences of a and (3 (indeed of all

Maximal subsequences and m inim al supersequences 120

minimal common supersequences of all pairs of prefixes of a and (3). Furthermore,
by applying suitable tracebacks through the array of T j values, we can recover an
LMCS and all minimal common supersequences.

The zero’th row and column of the T\j table can be evaluated trivially, as follows:

Ti0 = {(*, (*, lp((3, a 1)))} (1 < z < m)

and
T0j = {(i , (lp (a ,PJ) , j)) } (1 < j < n)

with
Too = { (0 , (0 , 0)) } .

The basis of the dynamic programming scheme is contained in the following
theorem:

T h e o re m 6 .3 .2 (i) I f ot[i] = f3[j] = a then

T ij = {(r > { fa (x ,a)Jp (y ,a)) : (r - 1 ,(z ,y)) €

(ii) I f cx[i] — a ^ b — (3[j] then

T i j = {{r ,{f<>(x , b) J)) ’■ (r “ ~ 1)) C Titj- 1}
U {(r,(z ,//?(?/, a)) : (r “ M * - 1 , y)) C T i - u } .

Proof
(i) Suppose (r — 1, (x, y)) E and tha t 7 ' is a minimal common supersequence
of a %~1 and (33~l of length r — I with = x and lp({3,7 ') = y. Then it is
im m ediate tha t 7 = 7 ' + a is a minimal common supersequence, of length r, of a 1
and (33, and th a t /p(a, 7) = f a(x ,a) and lp(/3,7) = fp(y,a).

On the other hand, suppose tha t 7 is a minimal common supersequence of length
r of a 1 and f33 . Then 7 [r] = a, and 7 ' = 7 — a is certainly a common supersequence
of a l~l and (33~x. If 7 ' were not minimal, then some subsequence 5 of 7 ' would be a
common supersequence of a *- 1 and (33~l , and therefore 6 + a, a subsequence of 7 ,
would be a common supersequence of a 1 and (33 , contradicting the minim ality of 7 .
So (r - l , (z ,y)) E T i - i j - i with x = lp(a, 7 '), y = lp{(3,i) and lp(a, 7) = f a(x ,a),

W , l) = f p { y ,a)-
(ii) Suppose (r —1, (z —1, y)) E and tha t 7 ' is a minimal common supersequence
of cd- 1 and (33 of length r — 1 with lp(a,^ ') = i — 1 , lp((3,7 ') = y. (The argument
is similar in the case (r — 1 , (x , j — 1)) E Then 7 = 7 ' + a is a common
supersequence of cT and (33 with /p(a, 7) = z and lp((3,7) = fp(y ,a). Further, 7

must be minimal. For suppose tha t a subsequence 8 of 7 is a common supersequence

Maximal subsequences and m inim al supersequences 121

of a 1 and /33 . If 8 were a subsequence of 7 ', then 7 ' would not be a minimal common
supersequence of a *- 1 and (33 . So 8 = 8 ' -f a, where 8 ' is a subsequence of 7 '. So
8 ' cannot be a common supersequence of a *- 1 and (33 . If it is not a supersequence
of a *- 1 then S' + a cannot be a supersequence of a 1 — a contradiction. If it is not
a supersequence of (33 then, since S' + a is a supersequence of (33 , we must have
f3[j] = a — a contradiction.

On the other hand, suppose tha t 7 is a minimal common supersequence of length
r of a * and (33 . Then 7 [r] — a or b.
case (iia) 7 [r] = a. It is immediate tha t /p(a, 7) = z, for otherwise 7 — a would
be a common supersequence of a 1 and (33 . So 7 ' = 7 — a is a minimal common
supersequence of a 1-1 and (33 with lp(a, 7 ') = i — 1 and lp((3,7 ') = y for some y such
th a t lp(j3,7) = M y , a).
case (iib) 7 [r] = b. A similar argument shows tha t 7 ' = 7 — 6 is a minimal common
supersequence of a 1 and (33~l with lp((3,7 ') = j — 1 and /p(a, 7 ') = £ for some x
such tha t /p (a ,7) = f a(x,b).

This completes the proof of the theorem. □

R ecovering a L ongest M inim al C om m on Supersequence

As in the case of an SMCS, the recovery of a particular Longest Minimal Common
Supersequence involves a traceback through the dynamic programming table from
cell (m ,n) to cell (0 , 0), during which the sequence is constructed in reverse order.
To facilitate the traceback, each entry in position (i , j) in the table (for all z, j)
should have associated with it, during the application of the dynamic programming
algorithm, one or more pointers indicating which particular element(s) in cells (z —

{ h j ~ 1) or {} ~ C i ~ 1) led to the inclusion of tha t element in cell (z ,j). For
example, if a\i\ = a = j3\j\ and (r - 1 , (x, y)) G Tz_ t h e n (r, {fa (x, a), fp(y, a)))
is placed in cell (i , j) with a pointer to the element (r — 1 , (x, y)) in cell (z — 1 , j — 1).

W ith these pointers, any path from an element (r, (x ,y)) in cell (m,rz) to the
element in cell (0, 0) represents a minimal common supersequence of a and (3 of
length r, namely the reversed sequence of symbols found by recording a[z] for a
vertical or diagonal step from cell (z,y) and (3[j] for a horizontal step from cell (z, j) .

A n alysis o f th e LM CS A lgorithm

As in the case of the SMCS algorithm, we can establish a cubic tim e bound for
the restricted version of the LMCS algorithm tha t is designed to find the length of
an LMCS, and to construct such a common supersequence from the dynamic pro
gramming table. The trick again is the observation tha t, for this purpose, whenever
(r, (x ,y)) elements in the same cell have the same (x , y) component, only one need

M aximal subsequences and m inim al supersequences 122

be retained, namely tha t with the largest r value. For if a minimal common super
sequence 7 has a prefix 7 ' such tha t /p(a, 7 ') = x and /p(/?, 7 ') = y, then to make 7

as long as possible, 7 ' should be chosen as long as possible.
By this means we can restrict the number of elements in the (i, j) th cell to at

most i + j , recalling tha t each such entry (r, (x ,y)) has either x = i or y = j . This
leads to a worst-case tim e bound of 0 (m n 2) for this version of the algorithm. Again,
it is not clear whether the lengths of all minimal common supersequences can be
found in tim e better than 0 (m n 3) in the worst case, this arising from the obvious
upper bound of (m -f n) 2 on the number of elements in each cell of the table.

6.4 C onclusion and open problem

We have shown that, in the case of two strings, a Shortest Maximal Common Subse
quence and a Longest Minimal Common Supersequence can be found in polynomial
tim e by dynamic programming. In fact, both algorithms can be extended in a fairly
straightforward way to find the SMCS or the LMCS of any fixed number of strings.
However, for general k , we have shown that finding an SMCS of k strings is N P -
hard, and further, tha t, unless P = N P , over an unbounded alphabet, the length of
an SMCS cannot be approximated, in polynomial time, within a factor of k 5 for any
5 < 1 . We conjecture that over an unbounded alphabet, the length of the LMCS is
as hard to approximate as the length of the SMCS. 1

^ id d en d o r f [49] has shown that both problems are M A X SN P-hard, over a binary alphabet.

Chapter 7

C onsistent subsequences and
supersequences

7.1 Introduction

Recall the following definitions from Section 1.5.3. Given two sets, P (Positive)
and TV (Negative), of strings, a consistent subsequence (supersequence) of P and
TV is a string tha t is a common subsequence (supersequence) of P and a common
non-subsequence (non-supersequence) of N. In this chapter, we study consistent
sequence problems from a complexity point of view. There are two categories of
problems, existence problems and optimisation problems. Given two sets, P and N,
of strings, does there exist a consistent subsequence (supersequence)? If a consistent
subsequence (supersequence) does exist, what is the length of the shortest/longest?
There are therefore two existence problems and four optimisation problems.

It is clear tha t an NP-completeness result for an existence problem implies N P -
hardness for the two corresponding optimisation problems. Similarly, the existence
of a polynomial-time algorithm for an optimisation problem implies the correspond
ing existence problem is also in P . For the N P-com plete problems, the following
questions arise: do they become solvable in polynomial tim e if we bound \P\, or
bound |TV |, or bound both \P\ and |TV | (if the answer to the first two questions
is no)? In this chapter, when a problem is characterised as being in P , the most
efficient solution is not sought, the aim is merely to show tha t it is solvable in
polynomial time. See Section 1.5.3 for details of previous work.

The known complexities of the existence and optimisation problems are sum
marised in Tables 7.1 and 7.2 respectively, together with the source for each char
acterisation. The characterisation is displayed above the source, where N PC /N PH
means the problem is N P-com plete /N P-hard , P means the problem can be solved
in polynomial time, ^ means no such sequence exists for any instance of the problem
and “Open” means the complexity of the problem remains open. A table reference

123

Consistent subsequences and supersequences 124

1 2 3 4 5 6

E xisten ce \n\N\ \ P \ > 2 \p\ = i \N\ > 2 \N\ = 1 \ p i \ m

P rob lem U n b o u n d e d B o u n d e d B o u n d e d B o u n d e d

A Consistent NPC P NPC P
Subsequence Th. 7.2.1 (D3)—>• Th. 7.2.2 (D6)->

B Consistent NPC P NPC P P
Supersequence [38] (E3)-> Th. 7.3.1 [38] (E6)->

Table 7.1: Consistent Sequence Existence Problems

1 2 3 4 5 6

O p tim isation \ n \ m | P | > 2 |P | = i \N\ > 2 \N\ = 1

P rob lem U n b o u n d e d B o u n d e d B o u n d e d B o u n d e d

C Shortest Con. NPH NPH P
Subsequence [47, 58]-+ (A5)-+ Th. 7.2.3

D Longest Con. NPH NPH P NPH P
Subsequence [44]-+ (A2)—► §7.2.3 [44]—> Th. 7.2.4

E Shortest Con. NPH NPH P NPH P
Supersequence [44]-+ (B2 H §7.3.2 [44; -+ Th. 7.3.2

F Longest Con.
Supersequence

NPH
[58]—►

NPH
(B 4 H §7.3.4

Open

Table 7.2: Consistent Sequence Optimisation Problems

of the form (AT)-> means the entry follows immediately from the table entry in row
X and column i. A table reference of the form [n] means the entry is proved in ref
erence [n]. A table reference of the form [«]—>■ means the entry follows immediately
from a result proved in reference [n]. A table reference of the form Th.n means the
entry is proved in Theorem n of this chapter. Finally, a table reference of the form
§72 means the entry is quite straightforward and is explained in Section n of this
chapter.

One additional piece of notation is used throughout this chapter. The string cd
(or a%) represents i copies of the string a (or the symbol a) concatenated.

Consistent subsequences and supersequences 125

7.2 C onsistent Subsequence Problem s

7.2.1 Consistent subsequence when |P| is bounded and \N\
is unbounded (\ P \ > 2)

See table entries A l and A2.

T h eorem 7.2.1 Determining whether there exists a consistent subsequence is N P -
complete even when |P | = 2 .

Proof
Given an instance of the 3-Satisfiability problem (3-SAT), well-known to be N P -
complete [19], we construct an instance of the Consistent Subsequence problem, over
the alphabet E = { # , 1 , 0 }, as follows.

Set P contains the two strings

oq = (# 1 0)3c,

«2 = (# 01)3c,

where c is the number of clauses in the instance of 3-SAT.
Set N is the union of four subsets, Ah, Ah, Ah, Ah- Set Ah contains the two

strings

/A = 1 0 (# 1 0 1 0)3c_1,

f t = ^ l O) 3̂ 1# .

The string /A prevents any consistent subsequence from having fewer than 3c # ’s.
The string 02 prevents any consistent subsequence from having fewer than a total
of 3c 0’s and l ’s.

Every consistent subsequence of the sets P and Ah has the form (# { 1 or 0})3c.
Such a string represents an assignment of tru th values to the literals, in the order in
which they appear, in the instance of 3-SAT; 1 represents a true assignment and 0
represents a false assignment. It remains to ensure tha t every consistent subsequence
of P and N will assign matching literals with matching logical values (Ah), assign
opposite literals with opposite logical values (Ah) and satisfy every clause i.e. assign
true to at least one literal of every clause (Ah).

Set Ah contains two strings for every pair of matching literals in the instance of
3-SAT. If clause p, literal q matches clause 5 , literal t, (1 < p < s < c, 1 < q, t < 3)
then Ah contains the two strings

lpqst = (^ i o) 3(f - 1)+(«-1) # i (# i o) (3-«)+3(*-’’- 1*+(,- 1) # 0 (# 10) (3- ‘)+3(c- s),

y ̂ — ^ |Q y (p -i)+ (g -i) ;̂ ;Q^^Qj(3-g)+3(5-p-i)+p-i)^;2 ^ 2 0) (3_^ +3 lc_5h

Consistent subsequences and supersequences 126

The string 7 pqst prevents the first literal being true while the second is false and 7 ' f
prevents the first literal being false while the second is true.

Set N 3 contains two strings for every pair of opposite literals in the instance of
3 -SAT. If clause p, literal q is the negation of clause s, literal t, (1 < p < s < c, 1 <
q,t < 3) then N 3 contains the two strings

5pgst = (# i o) 3lP-1>+<’ - 1> # l (# 1 0) (3- ,)+3(s- p"1)+(<~ 1)# l (# 1 0) (3- i)+3(c- s),

S ’pqst = (# i o) 3(p-1>+(’ - 1> # 0 (# 10) (3“ ,)+3(s“ p~ 1)+(t~ 1)# 0(# 10) (3- ')+3(c- ,,).

The string 5pqst prevents both literals being true and 5pqst prevents both literals
being false.

Set N 4 contains one string for each clause in the instance of 3-SAT, namely,
corresponding to clause z, the string

0; = (#10)3(i- I)(# 0)3(#10)3(c_i) (1 < i < c).

The string 8 { prevents clause z from having no true literals.
As should now be clear, there exists a satisfying assignment to the variables in

the instance of 3-SAT if and only if there exists a consistent subsequence of the
strings in the derived instance of Consistent Subsequence. □

The transform ation can be modified to work on a binary alphabet by replacing
every # with 001 in the construction of P and N.

7.2.2 Consistent subsequence when |P| is unbounded and
\N\ is bounded (\ N \ > 1)

See table entries A4 and A5.

T h e o re m 7.2 .2 Determining whether there exists a consistent subsequence is N P -
complete even when |Af| = 1.

Proof
Given an instance of the Independent Set problem, well-known to be N P-com plete
[19], on the graph G = (V, E) where V = { 1 7 , u2, . . . , up}, E = {ei, e2, . . . , eq},
and t is the target size for an independent set, we construct an instance C of the
Consistent Subsequence problem as follows.

The alphabet E is the set of vertices of G, i.e. {v\ ,V 2 , ■ • ■ Set P contains
q + 1 strings. The first string in P is

<*0 = Viv2 . . . vp.

Consistent subsequences and supersequences 127

This ensures that every consistent subsequence will be a string of vertices with
increasing subscript. For each edge e* = { v x , V y } (x < p), P contains the string

= UlU2 . . . VX- l V X+l . . . VVVlV2 . . . V y - l V y + l . . . v p .

The string a; is a supersequence of every subsequence of au that does not contain
both v x and v y . It is not a supersequence of the string S = v x v y or of any su
persequence of S. Hence no com m on subsequence of ao and ol{ and, therefore, no
consistent subsequence of P and N can contain both v x and v y .

Set N contains the single string

(3 = (v p V p - 1 . . . v 2v l) t ~ 1 .

T he string (3 is a supersequence of every string over E of length less than t and
thus prevents a consistent subsequence from having length less than t . However (3

is not a supersequence of any string containing > t vertices in order of increasing
subscript.

To prove the theorem , we m ust prove two claims; (i) if G has an independent
set of size t then C has a consistent subsequence (of length t) and (ii) if C has a
consistent subsequence then G has an independent set of size t .

Proof of (i). Let U = { v ^ , u,-2, . . . , ut-t} with 1 < i \ < i 2 < . . . < i t < p, be an
independent set of G of size t . It is clear that the string 7 = uZlu;2 . . . represents
a com m on subsequence, of length of P . The string 7 will not be a subsequence of
(3 because 7 has t vertices in order of increasing subscript. Hence 7 is a consistent
subsequence of C .

Proof of (ii). Let 7 = . . . ulu be a consistent subsequence of C . It is im m e
diate that u > t since 7 is a non-subsequence of (3. The set U = . . . ,u*u}
represents an independent set, of size u, of G . Since every consistent subsequence
m ust be a list of vertices ordered by increasing subscript, for every pair of vertices,
v x and v y (x < y) in 7 there can be no edge et- connecting them in G . For otherwise
the string

<*i = ^1^2 • • • VX- l V X+l . . . VpV lU2 . . . V y - l V y + l . . . V p E P

would prevent v x and v y from being in a com m on subsequence of P . □

7.2.3 Longest consistent subsequence when |P| = 1 and \N\
is unbounded

See table entry D3.

Let a be the single positive string. If there exists a consistent subsequence then a

m ust be a consistent subsequence since, if any subsequence of a is a com m on non

Consistent subsequences and supersequences 128

subsequence of AT, then a itself must be a common non-subsequence of N. Therefore,
if a is a common non-subsequence of N, which can be checked in polynomial time,
then a is the longest consistent subsequence of P and AT, otherwise there is no
consistent subsequence.

7.2.4 Shortest or Longest consistent subsequence when |P|
and \ N\ are bounded

See table entries C6 and D6 .

In this section, we describe a polynomial-time algorithm to find both the shortest
and the longest consistent subsequence when both |P | and \N\ are bounded. The
algorithm is explained in terms of |P | = |AT| = 2 but can be easily extended to
work for any fixed |P | and |AT|. The positive strings are labelled ot\ and a 2 and the
negative strings f3\ and (32.

The algorithm uses a dynamic programming approach tha t is a generalisation
and an extension of tha t used in Section 6.3.1 to find the Shortest Maximal Common
Subsequence of a fixed number of (positive) strings. It is based on a table th a t relates
the zth prefix a\ = aq[1 . . . z] of and the j th prefix a 2 = a 2[l .. . j] of a 2.

Given the positive strings a i ,a 2 and the negative strings /?i,/?2 of lengths m, n ,p , q
respectively (m < n), we define the set Sij for each i = 0 , . . . , m, j = 0, . . . , n, by

Sij = z)) : a\ and a 2 have a common subsequence 7 of length r,
ending at q[r] = 0 7 [u>] = 0 :2 [®]j and sp(/31 , 7) = y,sp((32 , 7) = z j (1 < i < m)
(1 < j < n) and

S i0 = {(0,(0,0,0,0))} (0<*<m) ,
Soj = {(0 , (0 , 0 , 0 , 0))} (l < i < n) .

For a set S of tuples and symbol a, we define

extend(S ,a) = {(r, (nextai(w, a), nex ta2 (x, a),

nextp^y , a), nextp2 (z , a)) : (r - 1 , (w, x, y, z)) G S}.

The algorithm is based on a dynamic programming scheme for the sets Sij defined
above. Evaluation of Smn reveals the lengths of the shortest, the longest and indeed,
all consistent subsequences. A tuple (r, (u;, x, y, z)) G S mn represents a consistent
subsequence if and only if y = p -f 1 and 0 = q-{-1. The lowest (highest) r from such
a tuple is the length of the shortest (longest) consistent subsequence. Furtherm ore,
by applying suitable tracebacks through the array, a shortest, a longest, and all
consistent subsequences can be found.

Consistent subsequences and supersequences 129

The basis of the dynam ic programming schem e is contained in the following
lem m a.

L em m a 7.2.1

(i) I f oq[z]

S j

(i i) //oq[z]

P r o o f

(i) It is straightforward that every com m on subsequence of a \ and o c f f 1 and every
com m on subsequence of aq_1 and a 2 is a com m on subsequence of a \ and a 2. It
is also straightforward that every com m on subsequence of oq- 1 and a 2~l , w ith the
sym bol a appended, will be a com m on subsequence of a \ and a 2. If a string 7 is a
com m on subsequence of a \ and a 2 and 7 ends in the sym bol a then 7 — a m ust be a
com m on subsequence of oq- 1 and o d f 1 . If a string 7 is a com m on subsequence of oq
and a 2 and 7 does not end in sym bol a then clearly 7 is a com m on subsequence of
a \ and a 2_1 or 7 is a com m on subsequence of oq- 1 and a 2. W ith regard to P i and
equivalently /?2, the behaviour of n e x t ensures their conditions are always satisfied.
It is clear that s p (P i , ~ f) = g if and only if s p (P i , j + a) = n e x t p 1(g , a) . (ii) This is
sim ply case (i) restricted. □

A n alysis o f th e con sisten t subsequence algorithm

The number of cells in the dynam ic programming array is 0 (m n) and the number
of tuples in S i j is bounded by 0 (i j . p q . m m (i , j)) . If the tuples (r, (w , x , y , z)) in
S i j are stored in order of increasing w , then by increasing x and so on, then the
am ount of work done in com puting the contents of S i j is, in case (z) bounded by a
constant tim es |S'2_ i J | + |S'l_ iq _ i| + l ^ q - i l , and in case (ii) bounded by a constant
tim es |5 i_ i,j | + |S'ZJ_ i|. The lengths of both a shortest and a longest consistent
subsequences can therefore be returned in tim e bounded by 0 (m 3n 2p q) .

This gives us the following two theorems.

T h eorem 7 .2 .3 T h e l e n g t h o f a s h o r t e s t c o n s i s t e n t s u b s e q u e n c e , w h e n |P | a n d |A |
a r e b o u n d e d , c a n be f o u n d i n p o l y n o m i a l t i m e .

T h eorem 7 .2 .4 T h e l e n g t h o f a l o n g e s t c o n s i s t e n t s u b s e q u e n c e , w h e n \ P \ a n d |A |
a r e b o u n d e d , c a n be f o u n d i n p o l y n o m i a l t i m e .

— <*2 [j] — a t h e n

= S i - i j U S i tj - i U e x t e n d (S i - i j - i , a) .

7 ̂ a 2 [j] t h e n

— S i — l , j U S i j — i -

Consistent subsequences and supersequences 130

R ecovering a sh ortest or longest con sisten t subsequence

Recovering a shortest (longest) consistent subsequence involves a traceback through
the dynamic programming table, starting at Smn and ending at £0 0 , during which
the sequence is constructed in reverse order. The subsequence 6 is initially the em pty
string. A tuple, (r, (tc ,x ,p + 1 ,<7 + 1)), in Smn giving rise to a shortest (longest)
consistent subsequence is chosen and oi[u;](= a 2 [;r]) is prepended to S. The second
step of the traceback occurs at S wx where the tuple (r, (rc ,x ,p + 1 , <7 + 1)) must
have been created. Any tuple from the set Sw-i ,x- i which could have given rise to
(r, (ic ,x , p + l , q + l)) in Swx is chosen and the process repeated until £ 0 0 is reached.

7.3 C onsistent Supersequence Problem s

7.3.1 Consistent supersequence when |P| is unbounded and
\ N\ is bounded (\ N\ > 2)

See table entry B4.

T heorem 7.3.1 Determining whether there exists a consistent supersequence is
N P -complete even when |A | = 2 .

Proof
Given an instance of the Vertex Cover problem, well-known to be N P -co m p le te [19],
on the graph G with vertex set {ui, u2, . . . , vp} and edge set {ei, e2, . . . , eg}, and with
t the target size for a vertex cover, we construct an instance C of the C onsistent Su
persequence problem, over the alphabet E = { 0 , 1 }, as follows. The transform ation
is a straightforward extension of that used by Raiha and Ukkonen [56] to prove the
SCS problem N P -com p lete over a binary alphabet. In our notation we m ake the
following substitutions; N —» V , E —»■ E, s(sink) —»• *, t —> p, r —»■ <7 , and k —¥ t.

For c — m ax(p, <7), the following strings are useful in the construction. T he first
group relates to the vertices of G\

V = (l 7c)p+1,

Vi = (l 7c)i0 (l 7c)p+1~i (1 < i < p),

Vii , i 2 , - , i u = (l 7r 0 (l 7r ^ 0 . . . (l ^)u - .- .- l 0 (l 7c)P+1-*.

(1 < ii < . . . < iu < p),

K = (l 7c0)p(l 7c).

The second group of strings is analogous to the first and relates to the edges of G\

E = (07c)9+1,

Consistent subsequences and supersequences 131

Ej = (07c)j l l (0 7c)9+1- J (1 < j < q) ,

E h , h , . . . j v = (o7c)j i i i (o 7c)j2“j i n . . .

(1 < j i < . . . < j v < q),
E * = (0 7cl l) 9 (0 7c).

Hence V{ is a subsequence of VJ1>t-2 if and only if i is contained in the list
z*i, z2, . . . , iu, and V and V{ are subsequences of K for all i. The analogous rela
tionships are true for E , E j , Ejuj2 f..,fjvi and E *. Set P contains q + 1 strings. The
first is

T = EV+E*VE+V+E.

For each edge, ej = {vy, vz} 1 < j < q, P contains the string

a i = E j V y V z E j -

Set N contains the two strings

^ _ Q 7 c(4 g + 4)+ 2 p + i+ l

_ 27c(3p+3)+ 6? + i

The following two claims are proved in [56].

C la im 7.3.1 I f G has a vertex cover of size t then P has a common supersequence
with 7c(Aq + 4) + 2p -f- t 0 ;s and 7c(3p -f 3) -f- 6 q 1 ’s.

C la im 7.3 .2 I f P has a common supersequence of length 7c(4g + 3p + 7)+ 6 g + 2p-ft
then G has a vertex cover of size t.

The following example will make the transform ation clearer. For vertex set
{tq, u2, u3}, edge set {{tq, u2}, {v2, t>3}}, and t — 1 the target size for a vertex cover,
vertex v2 alone is a suitable vertex cover. The SCS 7 of the derived set P together
with the strings of P embedded in 7 are as shown;

7 = E 1 V*E*V2 E*V*E2

T = E V mE mV E * K E

Qq = FiVi V2 E\

ol2 = E 2 V2 VsE2.

To prove the theorem, we must prove two assertions; (i) if G has a vertex cover
of size t then C has a consistent supersequence and (ii) if C has a consistent super
sequence then G has a vertex cover of size t.

Consistent subsequences and supersequences 132

Proof of (i). If G has a vertex cover of size t then, by Claim 7.3.1, P has a common
supersequence with 7c(4q + 4) + 2 p + 1 0 ’s and 7c(3p + 3) + 6 g l ’s. Such a string has
too few 0 ’s to be a supersequence of pi and too few l ’s to be a supersequence of p 2

and is therefore a consistent supersequence of C.
Proof of (ii). A consistent supersequence of C must have fewer than 7c(4g-f4) +

2p + t - f l 0 ’s (or it would be a supersequence of pi) and fewer than 7c(3p + 3) + 6 ^ + l
l ’s (or it would be a supersequence of p 2). It must therefore have 7c(4q + Sp -f- 7) -f
6 q + 2 p + t or fewer characters in total which, by Claim 7.3.2, implies th a t G has a
vertex cover of size t.

This completes the proof of the theorem. □

7.3.2 Shortest consistent supersequence when |P| = 1 and
|TV| is unbounded

See table entry E3.

Let ol be the single positive string. If there exists a consistent supersequence then
a must be a consistent supersequence since, if any supersequence of a is a common
non-supersequence of N, then a itself must be a common non-supersequence of
N. Therefore, if a is a common non-supersequence of N, which can be checked
in polynomial time, then a is the shortest consistent supersequence of P and N,
otherwise there is no consistent supersequence.

7.3.3 Shortest consistent supersequence when |P| and |AT|
are bounded

See table entry E 6 .

In this section, we describe a polynomial-time algorithm to find the shortest con
sistent supersequence when both |P | and \N\ are bounded. As in Section 7.2.4, the
algorithm is explained in terms of |P | = \N\ = 2 but can be easily extended to
work for any fixed |P | and |iV|. The algorithm is a straightforward extension of that
used in Section 6.3.2 to find the Longest Minimal Common Supersequence of a fixed
num ber of (positive) strings. The positive strings are labelled a\ and a 2 and the
negative strings are labelled pi and p2.

Given the positive strings a:i,a;2 and the negative strings Pi,P2 of lengths m, n ,p , q
respectively (m < n), we define the set for each i = 0 , . . . , m, j — 0 , . . . , n, by

Tij = {(r, (iu, x , y, z)) : there exists a minimal common supersequence 7 of a\ and
« 2 , of length r, such tha t lp(a 1 , 7) = w,lp (a 2 , j) = £,/p(/A, 7) = y, lp(P 2 , 7) = z }

Consistent subsequences and supersequences 133

(1 < i < m) (1 < j < n) and

Too - {(0 , (0 , 0 , 0 , 0))},

T i 0 = { (i , (i , lp (a 2 ,a \) , lp (Pu a\) , lp(P 2 ,a \))) } (1 < i < m),

Toj = { (j , { lp (au a J2) , j , lp((3u aJ2), lp({32 , a J2)))} (1 < j < n).

For string a of length m, position i and symbol a, we define

, ,. \ f i + 1 if ct[i + 1] = a
f ° M = { i otherwise.

For a set, 5 , of tuples and symbol a, we define

extend'(S, a) = {(r, (/ a i(w ,a) , /a2 (:c,a),

f/3 i (y , a) J f 32 {z,a)) : (r - 1, (in, x, y, z)) G S'}.

The algorithm is based on a dynamic programming scheme for the sets T { j defined
above. So evaluation of T m n reveals the length of a shortest consistent supersequence.
A tuple (r, (m, n, y, z)) G T m n represents a consistent supersequence if and only if
y < p and z < q. The lowest r from such a tuple is the length of a shortest consistent
supersequence. Furthermore, by applying suitable tracebacks in the array, a shortest
consistent supersequence and indeed all minimal consistent supersequences can be
found.

The basis of the dynamic programming scheme is contained in the following
lemma.

L e m m a 7.3.1

(z) I f OL\[i] — a 2 [j] = a then

Tij = extend!(Ti-i j-i , a).

(ii) I f a\[i] = a ^ b = oc2 [j] then

Ti,j = { (r> (*\ /<*20 b a), f(3 i(y , a), f (h (z i a)))

: (r - 1, (i - 1, x, y, z)) G i j}

u { (r 5 { f a y (w , 6), j , f p y (y, 6), / ^ (z , 6)))

: (r - 1 , (w , j - 1 ,y,z)) G Tifj- 1 }.

Proof
See Section 6.3.2. □

Consistent subsequences and supersequences 134

A n alysis o f th e consisten t supersequ ence algorithm

The number of cells in the dynamic programming array is (m + l)(n + 1) and the
number of tuples in each cell is bounded by 0(ij .pq. min(?,<;)). The term min(z, j)
comes from the range of possible values for r; m ax(z,j) < r < i + j . If the tuples
(r, (to, x, y, z)) in T{j are stored in order of increasing w , then by increasing x and
so on, then the amount of work done in computing the contents of Tz-j is, in case (z)
bounded by a constant times |7T—i,y—1 1, and in case (ii) bounded by a constant times
\T{-ij\ + \Tij-i \. The length of a shortest consistent supersequence can therefore be
returned in tim e bounded by 0 (m 3 n 2pq) (m < n) .

This gives us the following theorem.

T h eorem 7.3 .2 The length of a shortest consistent supersequence, when \P\ and
| A | are bounded, can be found in polynomial time.

R ecovering a sh ortest con sisten t supersequence

Recovering a shortest consistent supersequence involves a traceback through the
dynamic programming table, starting at Tmn and ending at Too, during which the
sequence is constructed in reverse order. To facilitate the traceback, when a tuple t
in Tij is created, it should have a pointer or pointers associated with it, indicating
which tuple(s) in or Tt-j_i led to the creation of t. The supersequence S
is initially the empty string. A path is then followed from the appropriate tuple
in Tmn 1° Too- When a pointer from a tuple (r, (w, x, y, z)) is followed to a tuple
(r7, (w — 1, x \ y ' , z')) then the symbol a[w] is prepended to 5 and when a pointer from
a tuple (r, (w, x, y, z)) is followed to a tuple { r \ { w \ x — l,z /, z')) then the symbol
f3[x] is prepended to 5.

7.3.4 Longest consistent supersequence when \P\ is un
bounded and \N\ = 1

See table entry F5.

W hen \N\ = 1, it is clear tha t the alphabet size, |£ |, is larger than |7V|. Whenever
this is the case, there does not exist a longest consistent supersequence. This is
because there must be at least one symbol a E £ tha t is not the last character of
any string in N. Therefore, any consistent supersequence could have an arbitrary
num ber of a ’s appended and remain a common non-supersequence of the strings
in N.

Consistent subsequences and supersequences 135

7.4 O pen Problem s

Finding a longest consistent supersequence when both |P | and \N\ are bounded
remains open. The algorithm in Section 7.3.3, to find a shortest consistent super
sequence when |P | and \N\ are bounded, can find the longest minimal consistent
supersequence in polynomial time. Timkovsky showed, in a private communication,
how to find, in polynomial time, a longest consistent supersequence when |P | and
| AT| are bounded and there exists a longest non-supersequence of N, which can be
tested in polynomial time [58]. However there are instances where no longest non
supersequence exists for N but a longest consistent supersequence exists for P and
N as the following example shows;

P = {aba}

N = {6 6 , a a 6 , baa}.

Assuming the alphabet £ = { n ,6 }, the longest consistent supersequence for P and
N is aba but the string ax is a non-supersequence of N for all integers x.

The complexity of determining whether there exists a consistent subsequence,
and finding the length of a shortest consistent subsequence, when |P | is unbounded
and | N\ = 1 over an alphabet of fixed size, remain open. All the other N P-com plete
consistent sequence problems remain N P-com plete when the alphabet size is fixed
at 2 as shown by the following NP-completeness results which apply to a binary
alphabet. The entries in Tables 7.1 and 7.2 to which they apply, directly or by
implication, are given in parenthesis: Maier [44] - finding the length of the longest
common subsequence (D l, D4-D5); Raiha and Ukkonen [56] - finding the length
of the shortest common supersequence (E l, E4-E5); Middendorf [47] - finding the
length of the shortest common non-subsequence (C1-C3); L. Zhang [73] - finding
the length of the longest common non-supersequence (F1-F3); Jiang and Li [38] -
finding a consistent supersequence when |P | > 2 is bounded and |7V| is unbounded
(B1-B2, E2); Theorem 7.2.1 - finding a consistent subsequence when |P | > 2 is
bounded and |iV| is unbounded (A1-A2, D2); Theorem 7.3.1 - finding a consistent
supersequence when \N\ > 2 is bounded (B4, F4).

Consistent subsequences and supersequences 136

1 2 3 4 5 6

E xisten ce \n\N\ | P | > 2 |p | = i \N\ > 2 \N\ = 1

P rob lem Unbounded Bounded Bounded Bounded

G Consistent P
Substring (ii)->

H Consistent NPC P Open P P
Superstring [38] [38] §7.5.2 [38]

Table 7.3: Consistent String Existence Problems

1 2 3 4 5 6

O p tim isation
P rob lem

1 p \ , \ n \

Unbounded

| P | > 2

Bounded

\p\ = i \N\ > 2

Bounded

\N\ = 1 \ n \ m
Bounded

I Shortest/Longest
Con. Substring

P
§7.5.1

J Shortest Con.
Superstring

NPH
[18]-*

Open P
§7.5.3

NF
[18]

>H
->

Open

K Longest Con.
Superstring

NPH
(H l)->

Open Open Open
§7.5.4

Open

Table 7.4: Consistent String Optimisation Problems

7.5 C onsistent String Problem s

Recall the following definitions from Section 1.6.3 Given two sets, P and N, of
strings, a consistent substring of P and IV is a string tha t is a common substring of
P and a common non-substring of N. A consistent superstring is defined similarly.

There are two existence and four optimisation problems. Given two sets, P and
IV, of strings, does there exist a consistent substring (superstring)? If a consistent
substring (superstring) does exist, what is the length of the shortest/longest? As
for the consistent sequence problems, when a problem is characterised as being in
P , the most efficient solution is not sought, the aim is merely to show th a t it is
solvable in polynomial time. See Section 1.6.3 for details of previous work. The
known complexities of the problems are summarised in Tables 7.3 and 7.4, together
with the source for each characterisation. The tables use the same form at as the
tables for the consistent sequence problems.

7.5.1 Shortest/L ongest consistent substring

See table entries 11-16.

Consistent subsequences and supersequences 137

All the problems on substrings can be solved in polynomial time using a suffix tree
[46, 67, 69]. The suffix tree of a string is unique. To simplify the structure of the
suffix tree T of a string a, a unique terminal symbol is appended to a prior to the
construction of T. This ensures tha t no suffix of a is a prefix of any other suffix
which in turn guarantees the following property. Every suffix of a is represented
by a leaf node and every leaf node represents a suffix of a. Every edge of T is
labelled with a non-empty substring of a. The concatenation of the the edge labels
encountered in a path from the root to a leaf node form the suffix represented by
th a t leaf node. Every node has at least two children and no two edge labels leading
from a node start with the same symbol.

Having built the suffix tree T for « i, T can be pruned using strings a 2, • • • ? &k
so tha t there is a one-to-one correspondence between the common substrings of
a q , . . . , ak tha t cannot be extended to the right, and the leaf nodes of T. Moreover,
the string represented by the path from the root to a leaf node is the common
substring corresponding to tha t leaf node. This pruning can be performed in time
proportional to the combined lengths of <2 2 , . . . , a k-

To find the longest consistent substring of two sets, P and N, of strings, build
a suffix tree T and prune as above using the strings in P. Now traverse T testing
every common substring of P represented in T to see if it is a common non-substring
of N. The longest such string is the longest consistent substring and the shortest
such string is the shortest consistent substring. Since every string has only 0 (n 2)
substrings (where n is the string length), and checking whether a string is a non
substring of another can be achieved in linear tim e [10, 40], the whole process can
be carried out in polynomial time.

It follows tha t the existence problem is also in P. It is not true tha t a consistent
substring always exists as the following example shows;

P = {aabb, bbaa]

N = {aaa,bbb}.

7.5.2 Consistent superstring when |P| is unbounded and
\ N\ = 1

See table entry H5.

Let P = { a q ,a 2,. • N = {/3} and \(3\ = n. If (3 is a substring of any string
in P then clearly no consistent superstring exists. If some symbol x £ E does not
appear in either the first or last position of (3 then a consistent superstring is

Consistent subsequences and supersequences 138

where = x n.
If every symbol of E appears in either the first or the last position of (3 then the

alphabet must binary, and we can assume tha t the first symbol of (3 is 0 and the
last symbol is 1. If (3 has the structure 0 . . . 1 . . . 0 . . . 1 (where the dots represent
arbitrary strings of zero or more symbols) then a consistent superstring is

7 = ai-H-£2 -H-a2 -4f

where S2 = 0 nl n.
If (3 has the structure 0 . . . 1 but not 0 . . . 1 . . . 0 . . . 1 then it must be of the form

0*P for some x , y > 1. If both x and y are greater than 2 then

Va; G P such that a t- ends with 0, let a [= a;-+fl01,

\ /o ti G P such that a; ends w ith 1, let aj = aj-jfO l.

A consistent superstring is
7 = a #1d f a ,2 - - -dfai k.

If (3 = 0*1 (i.e. x > 2 ,y = 1) then for i = 1 , . . . , &, let Si be the length of
the longest suffix of a; consisting purely of the symbol 0. Any a,- for which s; > x
cannot precede the symbol 1 in a consistent superstring. Therefore if there exists
more than one a; containing the symbol 1 and for which S{ > x then no consistent
superstring exists. Otherwise a consistent superstring can be formed as follows.

Let oli = a;-H-l Va; G P such that s,- < x,

7 i = the concatenation of all the a'-,

aj = the only string containing 1 and for which sj > x, if it exists.

Then a consistent superstring is

7 = 7iTI-a:,--H-0m where m = m ax lad.
l<.i<k,Si >x

If (3 = 01y (i.e. x = l , i / > 2) then the existence of a consistent superstring can
be checked in a way similar to the case when (3 = 0*1 (i.e. x > 2, y = 1).

Finally, if (3 = 01 (i.e. x = y = 1) then, for a consistent superstring to exist, all
OLi G P must have the form P 0 ™ for u, w > 0 , otherwise (3 would be a substring of
some a* G P. Therefore a consistent superstring is

Consistent subsequences and supersequences 139

7.5.3 Shortest consistent superstring when \P\ = 1 and |AT|
is unbounded

See table entry J3.

Let oc be the string in P. If a is a common non-superstring of the strings in N then
it is the shortest consistent superstring of P and N. If a is a superstring of any
string in N then clearly no consistent superstring exists. This is easily checked in
polynomial time.

7.5.4 Longest consistent superstring when |P| is unbounded
and \ N\ = 1

See table entry K5.

W hen \N\ = 1, it is clear tha t the alphabet size is larger than |N\. W hen this
is the case, there does not exist a longest consistent superstring. This is because
there must be at least one symbol x E E tha t is not the last character of any string
in N. Therefore, any consistent superstring could have an arbitrary num ber of x ’s
appended and remain a common non-superstring of N.

7.5.5 Open Problems on consistent strings
The following problems remain open:

1) Can the existence of a consistent superstring be checked in polynomial time
when the number of negative strings is bounded above but greater than 1? (Table
entry H4)

2) Is there a polynomial time algorithm to find a shortest consistent superstring
when the number of positive strings is bounded above but greater than 1 ? (J 2)

3) If the answer to 2) is “no” then, is there a polynomial tim e algorithm to find
a shortest consistent superstring when the numbers of positive and negative strings
are bounded above ? (J 6)

4) Is there a polynomial tim e algorithm to find a longest consistent superstring
when the number of positive strings is bounded above ? (K2,K3)

5) Is there a polynomial tim e algorithm to find a longest consistent superstring
when the number of negative strings is bounded above? (K4)

6) If the answers to 4) and 5) are “no” then, is there a polynomial tim e algorithm
to find a longest consistent superstring when the numbers of positive and negative
strings are bounded above? (K6)

In connection with 1), the algorithm in Section 7.5.2 used to check the existence
of a consistent superstring (table entry H5) when there is only one negative string

Consistent subsequences and supersequences 140

can be extended to the case of two negative strings. The algorithm uses a case-
by-case analysis of the structures of the two negative strings. We conjecture that
the existence of a consistent superstring can be checked in polynomial tim e for any
fixed number of negative strings but a more easily generalised m ethod is required
to prove this.

In connection with 2) and 3), the shortest minimal consistent superstring can be
found in polynomial tim e when the number of positive strings is bounded. This is
because there are a polynomial number of minimal common superstrings of P , each
of which can be checked in polynomial tim e to see if it is a common non-superstring
of N. In this context, minimal requires tha t every symbol in the superstring be
necessary for it to be a superstring of the strings in P . Further, Jiang and Timkovsky
[39] showed how to find, in polynomial time, a shortest consistent superstring when
the number of positive strings is bounded above and every symbol of the alphabet
appears at the end of some negative string.

Jiang and Timkovsky [39] showed how to find, in polynomial tim e, a shortest
or a longest consistent supers tring when there exists a common non-superstring for
the set of negative stings, even when the sizes of both sets are unbounded. Rubinov
and Timkovsky [58] showed tha t the existence of a common non-superstring can be
checked in polynomial time.

Bibliography

[1] A.V. Aho, J.E . Hopcroft, and J.D. Ullman. The Design and Analysis of Com
puter Algorithms. Addison-Wesley, 1974.

[2] L. Allison. Lazy dynamic-programming can be eager. Information Processing
Letters, 43:207-121, 1992.

[3] L. Allison and T.I. Dix. A bit-string longest common subsequence algorithm.
Information Processing Letters, 23:305-310, 1986.

[4] A. Apostolico. Improving the worst-case performance of the Hunt-Szymanski
strategy for the longest common subsequence of two strings. Information Pro
cessing Letters, 23:63-69, 1986.

[5] A. Apostolico, S. Browne, and C. Guerra. Fast linear-space com putations of
longest common subsequences. Theoretical Computer Science, 92:3-17, 1992.

[6] A. Apostolico and C. Guerra. The longest common subsequence problem re
visited. Algorithmica, 2:315-336, 1987.

[7] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and intractability of approximation problems. In 33rd FOCS , pages 14-23,
1992.

[8] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation
of shortest superstrings. Journal of the A .C .M. , 41:630-647, 1994.

[9] P Bonizzoni, M Duella, and G Mauri. Approximation complexity of longest
common subsequence and shortest common supersequence over fixed alphabet.
Technical Report 117/94, Universita degli Studi di Milano, D ipartm ento di
Scienze dell’Informazione, 1994.

[1 0] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications
of the A.C .M. , 20:762-772, 1977.

[11] J.H. Bradford and T.A. Jenkyns. On the inadequacy of tournam ent algorithms
for the n-SCS problem. Information Processing Letters, 38:169-171, 1991.

141

Bibliography 142

[1 2] F. Chin and C.K. Poon. Performance analysis of some heuristics for computing
longest common subsequences. Algorithmica, 12:293-311, 1994.

[13] F.Y.L. Chin and C.K. Poon. A fast algorithm for computing longest common
subsequences of small alphabet size. Journal of Information Processing, 13:463—
459, 1990.

[14] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,
1995.

[15] V. Dancfk and M. Paterson. Upper bounds for the expected length of a longest
common subsequence of two binary sequences. Random Structures and Algo
rithms, 6 , 1995. To appear.

[16] J. G. Deken. Some limit results for longest common subsequences. Discrete
Mathematics, 26:17-31, 1979.

[17] D.E. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging.
Artificial Intelligence, 57:143-181, 1992.

[18] J. Gallant, D. Maier, and J.A. Storer. On finding minimal length superstrings.
Journal of Computer and System Sciences, 20:50-58, 1980.

[19] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freedman, San Francisco, CA, 1979.

[20] D. Gusfield. Efficient methods for multiple sequence alignment with guaran
teed error bounds. Technical report, Computer Science Division, University of
California, 1991.

[21] F. Hadlock. Minimum detour methods for string or sequence comparison. Con-
gressus Numerantium , 61:263-274, 1988.

[22] K. Hakata and H. Imai. The longest common subsequence problem for small al
phabet size between many strings. In Proceedings of the 3rd Annual Symposium
on Algorithms and Computation, volume 650 of Lecture Notes in Computing
Science. Springer-Verlag, 1992.

[23] M.M. Halldorsson. Approximating the minimum maximal independence num
ber. Technical report, Japan Advanced Institu te of Science and Technology,
1993.

[24] J Hebrard. An algorithm for distinguishing efficiently bit-strings by their sub
sequences. Theoretical Computer Science, 82:35-49, 1991.

Bibliography 143

[25] D.S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Communications of the A.C.M., 18:341-343, 1975.

[26] D.S. Hirschberg. Algorithms for the longest common subsequence problem.
Journal of the A.C.M., 24:664-675, 1977.

[27] D.S. Hirschberg. Recent results on the complexity of common subsequence
problems. In Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison, chapter 12, pages 325-330. Addison-Wesley,
1983.

[28] W .J. Hsu and M.W. Du. Computing a longest common subsequence for a set
of strings. B I T , 24:45-59, 1984.

[29] W .J. Hsu and M.W. Du. New algorithms for the LCS problem. Journal of
Computer and System Sciences, 29:133-152, 1984.

[30] J.W . Hunt and T.G. Szymanski. A fast algorithm for computing longest com
mon subsequences. Communications of the A.C.M., 20:350-353, 1977.

[31] R.W. Irving. On approximating the minimum independent dominating set.
Information Processing Letters, 37:197-200, 1991.

[32] R.W. Irving and C.B. Fraser. Two algorithms for the longest common subse
quence of 3 (or more) strings. In Proceedings of the 3rd Annual Symposium
on Combinatorial Pattern Matching, volume 644 of Lecture Notes in Computer
Science, pages 214-229. Springer-Verlag, 1992.

[33] R.W. Irving and C.B. Fraser. On the worst case behaviour of some approxi
m ation algorithms for the shortest common supersequence. In Proceedings of
the 4th Annual Symposium on Combinatorial Pattern Matching, volume 684 of
Lecture Notes in Computer Science, pages 63-73. Springer-Verlag, 1993.

[34] R.W. Irving and C.B. Fraser. Maximal common subsequences and minimal
common supersequences. In Proceedings of the 5th Annual Symposium on Com
binatorial Pattern Matching, volume 807 of Lecture Notes in Computer Science,
pages 173-183. Springer-Verlag, 1994.

[35] S.Y. Itoga. The string merging problem. BIT, 21:20-30, 1981.

[36] G. Jacobson and K.P. Vo. Heaviest increasing/common subsequence problems.
In Proceedings of the 3rd Annual Symposium on Combinatorial Pattern Match
ing, volume 644 of Lecture Notes in Computer Science, pages 52-65. Springer-
Verlag, 1992.

Bibliography 144

[37] T. Jiang and M. Li. On the approximation of shortest common supersequences
and longest common subsequences. Subm itted to SIAM J. Comp., 1992.

[38] T. Jiang and M. Li. On the complexity of learning strings and sequences.
Theoretical Computer Science, 119:363-371, 1992.

[39] T. Jiang and V. G. Timkovsky. Shortest consistent superstrings computable
in polynomial time. Theoretical Computer Science, 143(1):113-122, 1995. To
appear.

[40] D.E. K nuth, J.H. Morris, and V.R. P ratt. Fast pattern matching in strings.
S IA M Journal on Computing, 6:323-350, 1977.

[41] S. K. Kumar and C. P. Rangan. A linear space algorithm for the LCS problem.
Acta Informatica, 24:353-362, 1987.

[42] S. Kuo and G. R. Cross. An improved algorithm to find the length of the
longest common subsequence of two strings. Sigir Forum, 23:89-99, 1989.

[43] R. Lowrance and R.A. Wagner. An extension of the string-to-string correction
problem. Journal of the A.C.M., 22:177-183, 1975.

[44] D. Maier. The complexity of some problems on subsequences and superse
quences. Journal of the A.C.M., 25:322-336, 1978.

[45] W .J. Masek and M.S. Paterson. A faster algorithm for computing string editing
distances. J. Comput. System Sci., 20:18-31, 1980.

[46] E. M. McCreight. A space-economical suffix tree construction algorithm. Jour
nal of the A.C.M., 23:262-272, 1976.

[47] M. Middendorf. The shortest common nonsubsequence problem is NP-
complete. Theoretical Computer Science, 108:365-369, 1993.

[48] M. Middendorf. More on the complexity of common superstring and superse
quence problems. Theoretical Computer Science, 125:205-228, 1994.

[49] M. Middendorf. On finding minimal, maximal and consistent sequences over
a binary alphabet. Theoretical Computer Science, 145(327):317—327, 1995. To
appear.

[50] A. Mukhopadhyay. A fast algorithm for the longest common subsequence prob
lem. Information Sciences, 20:69-82, 1980.

[51] E.W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1:251-266, 1986.

Bibliography 145

[52] N. Nakatsu, Y. Kambayashi, and S. Yajima. A longest common subsequence
algorithm suitable for similar text strings. Acta Informatica, 18:171-179, 1982.

[53] C.H. Papadim itriou and M. Yannakakis. Optimisation, approximation and com
plexity classes. Journal of Computer and System Sciences, 43:425-440, 1991.

[54] P. H. Papadim itriou. Computational Complexity. Addison Wesley, 1994.

[55] R. C. Prim . Shortest connection networks and some generalisations. Bell System
Technical Journal , 36:1389-1401, 1957.

[56] K.J. Raiha and E. Ukkonen. The shortest common supersequence problem
over binary alphabet is NP-complete. Theoretical Computer Science, 16:187-
198, 1981.

[57] C. Rick. New algorithms for the longest common subsequence problem. Tech
nical report, Institu t Fur Informatik Der Universitat Bonn, 1994.

[58] A. R. Rubinov and V.G. Timkovsky. String non-inclusion optim isation prob
lems. Subm itted to SIAM J. on Discrete M ath., 1992.

[59] R. Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

[60] G. A. Stephen. String Searching Algorithms. World Scientific, 1994.

[61] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for construct
ing shortest common superstrings. Theoretical Computer Science, 57:131-145,
1988.

[62] S. Teng and F. Yao. Approximating shortest superstrings. In 3 f th FOCS , 1993.
To appear in Theoretical Computer Science.

[63] W .F. Tichy. The string-to-string correction problem with block moves. AC M
transactions on computer systems, 2:309-321, 1984.

[64] V.G. Timkovsky. Complexity of common subsequence and supersequence prob
lems and related problems. Kibernetika, 5:1-13, 1989. English translation in
Cybernetics 25:565-580,1990.

[65] J.S. Turner. Approximation algorithms for the shortest common superstring
problem. Information and Computation, 83:1-20, 1989.

[66] E. Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100-118, 1985.

[67] E. Ukkonen. On-line construction of suffix trees. Technical Report A-1993-1,
University of Helsinki, 1993.

Bibliography 146

[68] R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal
of the A.C.M., 21:168-173, 1974.

[69] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 1 4 th
IEEE Symposium on Switching and Automata Theory, pages 1-11, 1973.

[70] C.K. Wong and A.K. Chandra. Bounds on the string editing problem. Journal
of the A.C.M., 23:13-16, 1976.

[71] S. Wu, U. Manber, G. Myers, and W. Miller. An O(NP) sequence comparison
algorithm. Information Processing Letters, 35:317-323, 1990.

[72] M Yannakakis and F Gavril. Edge dominating sets in graphs. S IA M Journal
for Applied Mathematics, 38(3):364-372, 1980.

[73] L. Zhang. On the approximation of longest common non-supersequences and
shortest common non-subsequences. Theoretical Computer Science, 143(2):353-
362, 1995. To appear.

I GLASGOW
I UNIVERSITY I
| LIBRARY I

