
 
 

 

 

 

 

Selyem, Adam (2019) Three-dimensional light sculptures and their interaction 

with atomic media: an experimentalist's guide. PhD thesis. 

 

http://theses.gla.ac.uk/74416/  

 

 

 

    

 

 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 

 

 

 

 
 

Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://theses.gla.ac.uk/74416/
mailto:research-enlighten@glasgow.ac.uk


Three-dimensional Light Sculptures

and their Interaction with Atomic

Media

An experimentalist’s guide

Adam Selyem

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

to the

School of Physics and Astronomy

College of Science and Engineering

University of Glasgow

September 1, 2019





Author’s declaration

The work described in this Thesis was carried at the University of Glasgow under the supervision

of Dr. Sonja Franke-Arnold, School of Physics and Astronomy, in the period October 2015 to

March 2019. The author hereby declares that the work described in this Thesis is his own, except

where specific references are made. It has not been submitted in part or in whole to any other

university for a degree.

Author’s signature:

Adam Selyem

September 1, 2019

iii



Contents

Abstract x

To the reader xii

Introduction 1

I Light 6

1 Amplitude, phase and polarisation 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Measuring polarisation: Stokes parameters . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Amplitude and phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Higher order modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.10 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Shaping light 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Phase-only Spatial Light Modulators . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Phase-only Holograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 SLM Phase Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Spatial filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Digital Micromirror Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Binary holograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Spatially dependent polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Using an SLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Using a DMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Static devices: Q-plates and Fresnel cones . . . . . . . . . . . . . . . . . . . 35

2.5 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Measuring concurrence in structured polarisation 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Correlations and Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The Glasgow experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 A related experiment at the University of Witwatersrand . . . . . . . . . . . . . . 45

iv



CONTENTS v

3.5 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

II Matter 48

4 Fluorescence and the optical Bloch equations 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Rubidium level structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Absorption and emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Fluorescence and the optical Bloch equations . . . . . . . . . . . . . . . . . . . . . 55

4.5 Rabi flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Resonant laser light for working with atoms 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 External cavity diode lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Older ECDL design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 New generation ECDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Setting up an ECDL for spectroscopy . . . . . . . . . . . . . . . . . . . . . 63

5.3 Doppler-free Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Laser locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Frequency control after the laser: acousto-optic modulators . . . . . . . . . . . . . 70

5.6 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Experiment: 3D population patterns 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Atomic states in motion: structured light in warm atoms . . . . . . . . . . . . . . . 76

6.2.1 Tomographic reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Experiment control software . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Cold atom physics: optical traps 89

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Magneto-optical trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Aligning the MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Magnetic field control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4.1 Field strengths and coil currents . . . . . . . . . . . . . . . . . . . . . . . . 96

7.4.2 Magnetic field rise-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Background field compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6 Dark spontaneous force optical trap . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.7 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Experiment: atomic compass 107

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Electromagnetically induced transparency . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Spatially dependent EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.4 SEIT: a simpler model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.6 An atomic compass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.7 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS vi

The end 126

III Short projects 128

9 Short projects 129

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2 Ion traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.2.1 Cooling to the motional ground state in a linear Paul trap . . . . . . . . . . 130

9.2.2 Experiment: single ion in a vector vortex . . . . . . . . . . . . . . . . . . . 136

9.3 Double slit diffraction of vector vortex beams . . . . . . . . . . . . . . . . . . . . . 138

9.4 In summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141



List of Figures

1 Phase to hue map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

2 Polarisation plot legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1.1 Definitions of polarisation directions used throughout this thesis . . . . . . . . . . 9

1.2 Quarter-wave and half-wave Fresnel rhombs . . . . . . . . . . . . . . . . . . . . . . 10
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Abstract

In recent years great progress was made in the spatial control of light with dynamic phase and

amplitude modulators such as spatial light modulators and digital micromirror devices. In this work

we describe the theory and practice of light shaping with such devices, detailing the spatial control

of amplitude, phase and polarisation of coherent laser beams. We use our expertise in generating

and measuring light fields with spatially dependent polarisation structures to characterise the

correlations between spatial modes and polarisation in such light fields. We do this by adapting

concurrence, a quantum measure of entanglement, to these classical correlations.

One of the most promising application of coherent laser light is in the control of atomic media

via atom-light interactions. In this work we describe the construction of simple external cavity

diode lasers designed for the generation of resonant light for atomic physics applications. We

exploit these lasers and spatial light modulators to create and measure three-dimensional atomic

population structures in a warm rubidium vapour.

We also implement a magneto-optic and a dynamic dark spontaneous-force optical trap for rubid-

ium. These traps produce dense (∼ 1011 cm−3) and cold (∼ 100 µK) clouds of rubidium atoms.

We develop the theory of spatially dependent electromagnetically induced transparency in such

traps using rate equations. We find that the absorption of linearly polarised light depends on the

relative direction of a magnetic field and the light polarisation. We use the cold atom clouds to

measure the direction of magnetic fields by using this dependence and laser beams with structured

polarisation.

x
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To the reader

When writing this thesis it has been my goal to collect all knowledge and intuition I gained over

the last five years of doing lots of experiments but not much maths. I hope that the information

contained within will be useful for introducing students to the practicalities of structured light and

atomic physics. Experimental skills take a while to build up in any case, but with good intuition

the process is quicker. I hope I manage to convey why I think about things the way I do, and

through this I might help the reader gain/deepen understanding about the topics in this thesis.

Because of my intention to make this thesis somewhat of a tutorial for new students I am sure

I go into apparently too much detail about some well-known optics, for example. I remember I

was confused about very basic concepts, so I think erring on the side of too much information is

perhaps better. But let me stress that I believe that trying things in the lab is the best and fastest

way of learning and building up intuition.

Before we begin, let me say a few things about notation. There are lots of figures throughout this

thesis that show optical phase in hue. The colour map in these figures is always the one shown

figure 1 below.

0 2πππ/2 3π/2
Figure 1: Phase to hue map.

There are also lots of figures with plots of polarisation across beam profiles. The polarisation in

these plots is represented by a coloured polarisation ellipse drawn according to the definitions in

figure 1.1. The colour scheme is shown in figure 2 below.

linearh a v d r l
Figure 2: Polarisation plot legend.

Lastly, I would like to make a comment about footnotes. I like to put information that I feel

supplements the main text but does not necessarily fit into the sentence structure into footnotes.

I also put tangential comments and observations there, and also things that I find fun, funny or

interesting that have nothing to do with the main text1.

1Cave, hic sunt iocus.



Introduction



Introduction

Light is everywhere. Practically all interactions our minds have with the outside world through

our bodies are mediated electromagnetically via photons, whether they are virtual or real. Every

detector technology we have works mainly by electromagnetic interaction. It is not surprising that

humanity’s most advanced physical understanding is in the field of electromagnetism [1]. But our

understanding of light is not just theoretical either. Recently we have gained exquisite control

over properties of light. With tunable lasers [2] we can produce coherent electromagnetic radiation

in a wide range of frequencies, a technology which has truly wide-ranging applications from com-

munication [3] to gas sensing [4]. With pulsed lasers we can measure distances to objects in the

environment extremely precisely by measuring the time-of-flight of pulses scattered from them [5, 6].

Because of the relatively narrow frequency band emitted even by pulsed lasers such measurements

are pretty much independent from background illumination as well. Through frequency and pulse

length (which are linked to each other through an uncertainty relation, connecting the pulse length

to the inverse bandwidth [7]) we have control over light in the time domain, although for the work

in this thesis this will not be very important.

Of much more relevance is the spatial structure of light. We are used to some rudimentary form

of structured light in everyday life, since our eyes detect spatial information from the environment

because the colour and intensity of light arriving to our retinas carries spatial information. But

there is more to light than colour and intensity. Polarisation is undetectable to us, but apparently

bees, for example, see polarisation and use it to navigate [8]. We exploit polarisation in our liquid

crystal display technology and communication [9], just to name a few. The phase of electromagnetic

radiation is another property we cannot see, and it only becomes important for coherent radiation.

There it leads to interference effects and affects propagation. Both polarisation and phase are

properties of light that change with spatial position, leading to interesting effects on propagation.

Considering beams of coherent, monochromatic laser light, which we will do throughout this thesis,

intensity, phase and polarisation can all vary in a plane transverse to the propagation direction,

more or less independent from each other. Of course, constraints need to be placed on them to be

physically realisable. They also evolve along the propagation direction in a well defined manner,

leading to structures in three dimensions.

In Part I of this thesis we will think about these properties of light, and look at ways of controlling

their structure in experiments. In chapter 1 we introduce the basics of the theory of electromagnetic

waves, including amplitude (which relates to intensity), phase and polarisation. We look at what

structures they take in conventional laser beams, and then we consider ways of manipulating them

with common, simple optical elements, such as lenses, gratings and polarisation optics.

In chapter 2 we introduce two devices that have become rather popular in the optics community in

2
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recent years because of their versatility. Spatial light modulators (SLMs) and digital micromirror

devices (DMDs) are digital devices originally developed for overhead projectors. They offer high

resolution control over the phase of coherent light, which we show to be sufficient for control of

amplitude and polarisation as well, with some cleverness. We go into quite a bit of detail about

experimental techniques involved in their calibration and operation. We also discuss the design of

digital holograms that these devices can display.

There is, of course, purpose behind gathering all this knowledge. In chapter 3 we use our expertise

in the creation and characterisation of light fields to investigate correlations between space and

polarisation in beams with structured polarisation. With the help of our collaborators we show

that concurrence, a measure of entanglement in quantum mechanics, can be adapted to describe

such classical correlations. We also relate concurrence to easy-to-measure Stokes parameters. We

hope that this technique can enable quantum-like technologies that rely on correlations, but not

non-locality.

But light does not exists only in a vacuum. Matter is also everywhere, and without interaction

between light and matter we would not know anything about the universe. In everyday life we

usually experience the effects of light interacting with bulk solids2, but the interactions between

single atoms (or ensembles atoms in a vapour) can become excitingly different. The electronic

structure of atoms of the same species is identical, which is useful in two ways. If we know how one

reacts to external influences, we know how all of them will react. They can also act collectively,

although this we will not consider in detail here.

Our models for the electronic structure of atomic species with a few electrons in their outermost

shell are excellent. This understanding is exploited in, for example, the definition of time via atomic

time standards [10], precision measurements of gravity [11] and magnetic fields [12], and quantum

computing [13]. In this thesis we are more interested in the interaction of extended atomic vapours

with spatially structured light.

First we need to understand how atoms react to light. Chapter 4 introduces the electronic structure

of rubidium, our atom species of choice. We then describe the most basic atom-light interactions,

absorption and emission. These processes form the basis of all of the atomic physics discussed in

later chapters. As we will see, the frequency of light is of great importance in such interactions,

because of the need to match the energy of photons in the light beam to the separation of energy

levels in the atom.

For this reason in chapter 5 we detail the construction and operation of sources of frequency-tunable

laser light in the form of external cavity diode lasers (ECDLs). Constructed from a laser diode

and a grating, ECDLs are cheap and simple to construct. We describe two types of ECDLs that

were used in our experiments. We also consider how to stabilise their frequency to that of atomic

transitions via Doppler-free spectroscopy. We also discuss the use of acousto-optic modulators

(AOMs) for frequency control and switching.

Chapter 6 brings together our beam shaping expertise from Part I and our understanding of

atomic physics (and a bit of rudimentary thermodynamics) for an experiment where we controlled

the occupation of atomic states in 3D in a warm rubidium vapour. We describe the population

structures theoretically using rate equations. In the experiment we used a concept similar to

electron shelving to measure the populations we inscribed in the vapour, and we get 3D information

2Or liquids (I guess glass also counts here even though it looks more solid). And a bit of plasma, if we look up
at a clear sky. Not very frequently in Scotland, then.
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by tomographic reconstruction from fluorescence images. We hope that this work will be useful

for designing 3D quantum memories.

Most high-precision atomic physics experiments benefit from long coherence times that arise at

low temperatures and densities. We are more interested in using the slow movement of cold atoms

during their interaction with structured light. For this reason in chapter 7 we introduce methods

for cooling and trapping a cloud of atoms in a magneto-optical trap (MOT) and a spontaneous

force optical trap (SpOT). We consider both the theory and practice of operating such traps, with

particular attention to controlling magnetic fields.

These magnetic fields play a crucial role in the experiments described in chapter 8. These ex-

periments involve controlling the transparency of a cloud of atoms to resonant laser light via

electromagnetically induced transparency (EIT). We present two theoretical frameworks we used

to explore the absorption of a beam with structured polarisation in the presence of a magnetic field

in a 4-level tripod atomic structure. In the specific example of rubidium 87 such a level structure

is realised with three Zeeman sublevels of a hyperfine ground state, along with one excited state.

First we consider the atoms quantised along the propagation direction of the beam. In this frame

a transverse component of the magnetic field couples the three ground states, making the ab-

sorption dependent on the spatially varying phase difference between the two circular polarisation

components of the laser beam. We find the absorption by evaluating Fermi’s golden rule.

In the second model we consider the atoms quantised along the magnetic field direction. In this

context we describe the absorption in terms of optical pumping between the three ground states,

and derive an expression for the absorption from rate equations. We show that the absorption

patterns depend on the magnetic field direction, allowing us to construct an atomic compass. We

expect that this experiment will be extended to utilise EIT for storage of spatially structured

quantum information.

In the final chapter we briefly introduce two small projects we took part in that are tangentially

related to the core of our work. In one experiment we used a single trapped ytterbium ion in

an attempt to measure the longitudinal polarisation component that arises when a beam with

structured polarisation is strongly focused. Out of interest we introduce the theory of ion trapping

and cooling, which operates on similar principles to the atom traps described in chapter 7, but

afford even better control. Lastly we describe a short investigation into the diffraction of structured

polarisation from double slits in different geometries.
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Part I

Light



Chapter 1

Amplitude, phase and polarisation

1.1 Introduction

In its classical description, light is considered a travelling transverse wave of the electromagnetic

field. This has famously been derived from first principles by Maxwell. Maxwell’s equations, in

the absence of any charges, can be written as

∇ ·E = 0 ∇×E = −∂B
∂t
, (1.1)

∇ ·B = 0 ∇×B = µ0ε0
∂E

∂t
,

where E and B are the electric and magnetic vector fields, respectively, and µ0 and ε0 are the

permeability and permittivity of free space, respectively. From these equations, using simple

vector calculus, one can obtain equation (1.2),

1

c2
∂2E

∂t2
−∇2E = 0, (1.2)

where we have defined c = µ0ε0 ≈ 2.998 × 108 ms−1, the speed of light in vacuum. We recognise

this equation as a wave equation for the electric field. An equation identical in form to (1.2) exists

for the magnetic field as well, but for all purposes in this thesis it is sufficient to consider the electric

field component. Some solutions of this differential equation take the form of a wave travelling in

the r̂ direction,

E(r, t) = E(r) exp[i(k · r− ωt+ φ0(r))]ê(r), (1.3)

where r = [x, y, z] and t are spatial and temporal coordinates. k is the wave vector, whose

magnitude is |k| = ω/c = 2π/λ, and its direction is perpendicular to surfaces of constant phase

φ = k · r − ωt + φ0(r). Phase should not be confused with the phase offset φ0(r), the phase at

x = y = z = t = 0. ê is the unit vector defining the direction in which the electric field oscillates,

known as the polarisation direction. These are all important parameters, but in the following we

will pay particular attention to the control of the spatially dependent terms, the field amplitude

E(r), the phase offset φ(r) and the polarisation ê(r). This is because we notice that fixing the

values of Ex,y,z and φx,y,z at an arbitrary position 0 along the propagation axis z fully determines

their values at any position in space.

We also note that linear superpositions of solutions of the form of equation (1.3) are also solutions

7



CHAPTER 1. AMPLITUDE, PHASE AND POLARISATION 8

to equation (1.2). There are some interesting consequences to this fact. Let us consider the sum

of a set of a very simple forms of equation (1.3) in 1 dimension, at an arbitrary time t = 0,

E(z) = ΣiEi sin(2πz/λ+ φi)êi, (1.4)

where we have assumed for simplicity that the wavelengths are all the same (which will be the case

throughout this thesis).

1.2 Polarisation

In the very simple case where êi are the same in equation (1.4), the waves simply interfere (com-

plex amplitudes are added). If, however, êi have orthogonal components, the total electric field

oscillation will have a different direction, perhaps even changing as the waves propagate. Since in

the paraxial limit the electric field oscillates in the plane transverse to the propagation direction,

it can be decomposed into two orthogonal components, usually in the x and y directions, with

amplitudes Ex,y and phases φx,y,

E =

[
Exe

φx

Eye
φy

]
. (1.5)

We define six polarisation basis vectors using this principle:

ĥ =

[
1

0

]
, v̂ =

[
0

1

]
,

â =
1√
2

(ĥ− v̂) =
1√
2

[
1

−1

]
, d̂ =

1√
2

(ĥ+ v̂) =
1√
2

[
1

1

]
, (1.6)

l̂ =
1√
2

(ĥ− iv̂) =
1√
2

[
1

−i

]
, r̂ =

1√
2

(ĥ+ iv̂) =
1√
2

[
1

i

]
,

where the inclusion of the imaginary number i corresponds to a phase shift of π/2, and we as-

sert that the polarisation direction is transverse to the propagation direction, so we omit the

z-components of the vectors. These basis vectors are illustrated in figure 1.1. In Jones calculus

matrices describe the action of optical elements on the polarisation of light [14]. These matrices

multiply the electric field vectors written in the form of equation (1.5) to produce the output elec-

tric field vector. The most common polarising elements are polarisers and waveplates, described

in the next few paragraphs.

When thinking about light interacting with polarisation optics it is useful to decompose the polar-

isation of the incoming light field into parallel and perpendicular components with respect to the

axis (axes) of the optic. Polarisers transmit the polarisation component of an incoming light field

that is parallel to their axis, and absorb (or reflect) the perpendicular polarisation. In experiments

polarisers are characterised by an extinction ratio, which describe how much of the ”wrong” po-

larisation is transmitted - the lower this number, the better, but no real polariser block all of the

orthogonal polarisation. They may also absorb some of the polarisation component they are meant

to transmit, and could also introduce phase shifts. Global phase shifts common to both polarisa-

tion components would not matter much unless a polariser was placed into an interferometer. In

Jones calculus, a polariser with its axis oriented horizontally is represented by the matrix

[
1 0

0 0

]
.

Waveplates, or retarders, are usually made from a birefringent material with a fast and a slow axis.

As the names suggest, light whose polarisation is parallel to the fast axis travels faster through
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Figure 1.1: Definitions of polarisation directions used throughout this thesis. Polarisation direc-
tions are viewed along the propagation direction, but the naming convention follows the what the
observer looking against the propagation would see.

the waveplate than the orthogonal polarisation. By appropriately choosing the thickness of the

material one can introduce any phase shift to one polarisation component with respect to the other.

This phase shift is given by

∆φ =
2π∆nL

λ
, (1.7)

where ∆n = nslow − nfast is the difference between the refractive indices of the material along the

slow and fast axes, and L is the thickness of the waveplate.

In practice one finds two types of waveplates, quarter- and half-wave plates (abbreviated as λ/4

and λ/2 plates, respectively). A λ/4 plate a introduces π/2 phase shift. This turns an input

linear polarisation at 45◦ to the plate axes into circular polarisation, input circular polarisations

into linear, and input linear polarisations at angles other than m × 45◦ (m ∈ Z) are turned into

elliptical polarisation. A λ/4 plate at an angle α to the horizontal is represented by the matrix
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8 8

-plate -plate

Figure 1.2: Quarter-wave and half-wave Fresnel rhombs. Their action is illustrated for input light
at 45◦.

exp −iπ4

[
cos2 α+ i sin2 α (1− i) sinα cosα

(1− i) sinα cosα sin2 α+ i cos2 α

]
.

A λ/2 plate introduces a π phase shift between the polarisation components along its axes - this

results in a rotation of the input linear polarisation by an angle given by 2α, where α is the angle

between the input transverse polarisation and the waveplate fast axis. If the input polarisation

is elliptical or circular, the handedness is also reversed. The Jones matrix for a λ/2 plate is

exp −iπ2

[
cos 2α sin 2α

sin 2α cos 2α

]
.

In practice, for optical wavelengths the material thickness required for a waveplate to shift exactly

λ/4 (or λ/2) would be so thin (a few 100s of nanometres) that handling them would be impossible.

Commercially available birefringent waveplates usually come instead in two varieties, multi-order

and zero-order. A multi-order waveplate is a single slab of birefringent material cut to a thickness

such that ∆φ = m2π + λ/4 for a given wavelength. A zero-order waveplate is constructed of two

multi-order waveplates with their axes aligned 90◦ with respect to each other. This leads to a

total phase shift that is the difference of the shift due to each component waveplate, and can be

engineered such that ∆φ = λ/4. These two flavours of waveplates are equivalent for the wavelength

for which they are designed, but for a multi-order waveplate the cumulative slightly wrong shifts

at a wavelength even minimally different from the design one leads to behaviour that is hard to

predict, and almost certainly wrong. In contrast, zero-order waveplates perform pretty well for a

relatively larger range of wavelengths (although it is still a bad idea to use them more than a few

tens of nanometres off the design wavelength).

There exists an entirely different class of retarders, however, which are effective over a huge range

of wavelengths. These are Fresnel rhombs, which exploit the phase shift arising on total internal

reflection between the s and p polarisation components (which are perpendicular and parallel to

the reflecting surface, respectively). This phase shift is controlled by the rhombs’ internal angle,

which is designed such that the phase shift is very close to λ/8 for visible light for most glasses, so

two reflections can be used to generate a λ/4 retardance, or four reflections for λ/2. Such devices

are shown in figure 1.2.

1.3 Measuring polarisation: Stokes parameters

We measure polarisation using Stokes measurements. This involves projecting the light field to be

measured onto each of at least 4 of the polarisation basis vectors (e.g. ĥ, v̂, d̂, r̂), and measuring
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intensity in these projection. In this work we usually project onto all basis vectors for conceptual

simplicity. From the measured intensities we can calculate the four Stokes parameters,

S0 = I = Ih + Iv = Id + Ia = Ir + Il

S1 = Q = Ih − Iv (1.8)

S2 = U = Id − Ia
S3 = V = Ir − Il.

From these expressions it is straightforward to see why four measurements are sufficient, since, for

example, S2 = Id − (S0 − Id). So we need to measure in any pair of orthogonal polarisations to

get S0, and then in one each from the other two pairs. Another way of thinking about this is that

there are four parameters of the light field that we need to determine (Ex, Ey, φx and φy), so we

need four measurements that give information about each one. We can then construct a Stokes

vector

S =


S0

S1

S2

S3

 , (1.9)

H

V
DA

R

L
Figure 1.3: The Poincaré
sphere, showing the relations
between polarisation basis
vectors. The axes shown
in colour also correspond to
Stokes parameters S1−3.

which is usually normalised such that S0 = 1. It can represent any

polarisation state (including partially polarised states, for which√
S2

1 + S2
2 + S2

3 < 1). Pure polarisation states live on the surface

of a sphere known as the Poincaré sphere, shown in figure 1.3, while

partially polarised states are inside the sphere. Pure polarisation

states can be written also in the Jones formalism, although there

is no unique way to compute a Jones vector from a Stokes vector,

because of the existence of an arbitrary global phase. If we set

φx = 0, then

|Ex| =
√
S0 + S1

2
, φx = 0 (1.10)

|Ey| =
√
S0 − S1

2
, φy = tan−1

(
−S3

−S2

)
.

1.4 Amplitude and phase

So far we have talked quite a bit about the relative phase between orthogonal polarisation com-

ponents, but variations of the phase across a beam profile is also very much worthy of attention,

since this is the property that the most ubiquitous conventional optical elements modify, and it

has a huge effect on the propagation of light. Amplitude is perhaps the most obvious property of

light, being the one that our eyes are sensitive to1. It is also in a sense inseparable from phase due

to diffraction.

For now let us consider a uniformly polarised light beam, êr = ê0. Then the simplest solution of

equation (1.2) is

E(x, y, z) = E0 sin(2πz/λ+ φ0)ê0, (1.11)

1Strictly speaking most detectors, including our eyes, are sensitive to the intensity I = |Er exp(iφr)|2, which is
why the phase information is lost.
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Figure 1.4: Propagation of a Gaussian beam, showing a) intensity and b) electric field amplitude,
with λ = 4/3w0. An example of a curved phase front is shown in red.

which has one amplitude and phase in any transverse plane, and is known as a plane wave solution.

Unfortunately, while easy to think about, it is not physically realisable. This is easy to see from the

fact that the energy content in any transverse plane is infinite, because the electric field amplitude

is finite extending to infinity. Therefore in realistic solutions the amplitude must go to zero at

infinity. The most common solution that behaves like this is the well-known Gaussian beam [15],

written here in radial coordinates,

E(r, z) = E0
w0

wz
exp

(
−r2

w2
z

)
exp

(
−i
(
kz + k

r2

z (1 + z2
R/z

2)
− ψz

))
ê0, (1.12)

where wz is the radius in a transverse plane where the amplitude falls to 1/e of its axial value,

and its value at z = 0 is the waist w0. ψz = arctan(z/zR) is known as the Gouy phase arising

from a change in phase velocity near the waist and zR = πw2
0/λ is the Rayleigh range. The

amplitude cross-section of such beams is a Gaussian that changes only in size as it propagates

due to diffraction. It should be noted that expressions of this type describe modes of propagation

only in the paraxial limit, when the angle that light rays make with the optical axis are small.

Phase fronts, surfaces of constant phase, form parabolic surfaces with the exception of the waist

plane, where the phase front is a plane. This is shown in figure 1.4. In general the smaller the

waist, the larger the wavefront curvature and hence the divergence of the beam. This is a very

general statement for coherent light: a small light structure (whether it is a beam, light through

an aperture or anything else) always diverges faster than a larger one, provided that they don’t

have some weird phase structure2.

From figure 1.4 we can already see the intimate relationship between beam size and phase front

curvature for Gaussian beams. When thinking about changing beam size one optical element in

particular comes to mind, the lens. In fact, the operation of a lens is exactly the application of a

curvature to the phase front of the incoming beam, which results in the focusing (or defocusing)

of the beam. Examples of the phase profile associated with a lens are shown in figure 1.5. A

particularly interesting application of the fact that all that matters for a lens to function is the

phase curvature is a Fresnel lens. Such a lens is designed to minimise the use of glass in the

formation of the lens, and looks very much like figure 1.5c (although the segments of course have

many wavelengths of thickness, because of both the refractive index of glass responsible for the

phase shifting and practicality).

For subsequent parts of this thesis it is crucial to understand the action of a lens in slightly

more detail. In particular, we need to look at the relationship between the focal planes in front

and behind a lens. Optical fields can be decomposed into plane waves with unique k-vectors,

2... and the structure in question is not much smaller than the wavelength of light, but in that case the paraxial
approximation breaks down anyway and more careful treatment is required.
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a) b) c)

0 2 0
Figure 1.5: Phase profiles of different lenses. The profiles are plotted over 1 mm2. Focal lengths
are a) 200 mm and b,c) 50 mm. The lens profile modulo wavelength is shown in c).

determining their propagation direction. It can be seen from simple ray diagrams that a lens maps

each incoming k to a unique position in its back focal plane. The reverse is also true: it maps

each position in its front focal plane to a unique direction in its back focal plane. This already

indicates that these planes are Fourier transforms of each other, and this can be shown rigorously.

Thus a lens maps position space onto direction space (with a scaling factor proportional to its

focal length). It is then no surprise that a large Gaussian beam arriving at a lens focuses to a

smaller Gaussian beam - that is exactly what a Fourier transform does! What may be slightly

surprising at first sight is that a small Gaussian beam focuses to a large one, but even this is

not unexpected when one considers the effect of diffraction mentioned above. These concepts are

beautifully intertwined, and I hope that the reader appreciates this even without showing rigorous

mathematics; intuition that takes all this into account takes a while to build up, but is a powerful

tool indeed.

On a more practical note, aligning lenses with laser beams is quite easy. A lens should always be

centered on the laser beam, perpendicular to its propagation direction. The latter can be a bit

hard to judge, but usually small deviations, on the scale of a few degrees, do not matter much in

practice. To center the lens on the beam, place a screen (piece of paper, detector card, pinhole

or even a camera) relatively far from the intended lens position further along the beam. Note the

position where the beam hits the screen without the lens. Now insert the lens in such a way that

the beam is centered on the same position, and the lens is not tilted appreciably away from being

perpendicular to the beam. Determining the centre of the beam after the lens has been inserted

might be tricky if the beam expanded a lot by the time it reaches the screen. If this is the case, one

can work backwards towards the laser source when placing lenses, starting from the one closest to

the monitoring screen, always maintaining the beam position on the screen.

1.5 Imaging

It is also well known that lenses are capable of imaging, i.e. relaying optical fields from one

plane to another. Two lenses can relay any optical field from one plane to another if positioned

properly, but one lens can only reproduce intensities correctly. As discussed above, a lens Fourier

transforms the optical field at its front focal plane to its back focal plane (also called far field or

Fourier plane), and placing another lens such that its front focal plane coincides with the Fourier

plane of the first allows us to undo that first Fourier transform, up to an unimportant global

phase. This configuration is known as a telescope, or a 4f imaging system (because of the 4 focal

lengths between the object and image planes, see figure 1.6). It can change the transverse scale



CHAPTER 1. AMPLITUDE, PHASE AND POLARISATION 14

f f f f 2f 2f

Figure 1.6: Imaging with lenses. Both the telescope (left) and single lens (right) imaging systems
are shown in the 1:1 magnification configurations.

of the formed image proportionally to the ratio of the focal lengths of the two lenses, producing a

magnification of f2/f1, where f1,2 are the focal lengths of the first and second lens, respectively.

A single lens of focal length f can also reproduce the intensity distribution that is a distance p

in front of the lens at a plane q behind it, with a magnification of q/p, obeying 1/f = 1/p + 1/q.

This is, in principle3, how single lens reflex (SLR) cameras form images. We emphasise the fact

that this configuration only reproduces the intensity correctly, because the phase acquires an extra

curvature due to the lens, and so the propagation properties of the light field will be different after

the image plane. This is not the case in the telescope configuration, which reproduces phase as

well as intensity correctly.

Of course, in reality imaging systems can not reproduce the object plane exactly in the image plane

because of the finite size of the lenses, and their imperfections. The former leads to the limited

spatial resolution of the imaging system, often expressed as the Rayleigh resolution limit, which

states that two point sources are resolvable if their angular separation is

θ ≥ 1.22
λ

D
, (1.13)

where D is the diameter of the lens. This expression is valid as long as the resolution is limited by

the finite size of the aperture.

The other reason lenses in practice often do not image perfectly is that they usually have some

sort of aberration. The most common of these is spherical aberration, arising because most lenses

are ground to have a spherical surface as opposed to the ideal hyperbolic surface4. The effect is

that light rays entering the lens far off-axis do not focus to the same position that rays closer to

the axis do. A spherical lens thus behaves very close to a hyperbolic one only close to its center

because the two shapes are very similar there. Over what range this is true depends on the focal

length and diameter of the lens; standard 1 inch diameter long focal length lenses (f > 40) tend to

be very good approximations of the hyperbolic surface over their entire diameter, but short focal

length lenses should be used with caution.

1.6 Mirrors

Like a lens, a simple tilted mirror is also a spatially dependent phase shifter, because different

parts of the beam arriving at a tilted mirror encounter the mirror surface at different phases.

3In reality SLR lenses are much more complicated designs, even fixed focal length lenses contain many lens
elements to reduce aberrations.

4The reason for this is simply that it is much easier to do.
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Figure 1.7: An example of using two mirrors to direct a laser beam over a set of holes in an
optical table (marked blue). The angle and position of the first mirror selects the position in the
x − y plane where the second mirror needs to be placed. The angle for the second mirror is also
determined by the first. A few options are shown in different colours.

Mirrors themselves are extremely ubiquitous on optical benches because of logistics reasons. A pair

of mirrors allow the precise alignment, both in position and in direction, of laser beams through

any point of choice in space5. Two mirrors are usually needed because there are two degrees of

freedom (position and direction) of the laser beam that they need to modify, which would be

coupled if only one mirror was used. This is illustrated in figure 1.7. As the figure shows, there

is usually a large number of options for the placement and angles of the mirrors. The choice from

these options the experimentalist has to make is informed by other optical elements on the bench

and properties of the actual mirrors.

Mirrors, especially dielectric ones, cause phase shifts between s- and p-polarised components (that

is, polarisation components perpendicular and parallel to the plane of reflection). Some of this

is inevitable; even an ideal mirror phase shifts reflected light by π. This is not an issue as long

as the polarisation is purely s or p in the plane of reflection. This usually means horizontal or

vertical polarisations if the mirrors deflect beams in the plane of the optical bench surface, the

most common scenario. A second mirror can undo the ideal phase shift, but if the mirrors are not

ideal then this compensation is not perfect, and the output polarisation can be altered. For this

reason mirrors are designed to be used at certain angles (usually either 45◦ to the beam path, or

nearly perpendicular to it) at which such phase shifts are minimised.

Dielectric mirrors are designed to operate within a narrow band of wavelengths and for a small

range of angles, usually either close to perpendicular or at 45◦ to the beam propagation, where

they provide exceptional reflectivity. Metallic ones perform better at larger range of angles and

have much less stringent requirements on their operating wavelength, but can be harder to handle.

Metallic mirror surfaces are susceptible to oxidisation, especially in high humidity, which severely

reduces their reflectivity. They are therefore supplied with protective coating, which is very delicate

and so their reflective surface should not be touched. Dielectric mirrors are usually not permanently

damaged by touch6.

When designing optical paths it is generally a good idea to try and make sure that beams are

travelling parallel to lines of holes in the optical table, and keep its height constant. There is no

physical reason for this, it just makes it easier to follow where beams are going in a complicated

setup.

5Provided that they physically fit where they need to go to allow the required alignment, in the sense that they
do not overlap other optical elements.

6Although they do need cleaning if such a thing happens.
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1.7 Gratings

It is well-known that diffraction gratings disperse polychromatic light into a spectrum that appears

in discrete diffraction orders. Throughout most of this thesis (apart from a brief discussion of exter-

nal cavity diode lasers in chapter 5) we ignore this dispersion because we work with monochromatic

CW laser light. We note that when dealing with polychromatic light, for example ultrashort pulses,

dispersive elements introduce further complications such as pulse front tilt [16]. Here instead we

exploit the fact that gratings can change the propagation direction of light.

a

d

Figure 1.8: Rays (red) reflected from a reflective
diffraction grating (black) of depth λ, period d
and blazing angle θ.

With a little effort it can be shown that the first

diffracted order of blazed grating with depth λ

and blazing angle θ appears at the same angle

as if it was reflected off a mirror at the same an-

gle. The situation is shown in figure 1.8. Two

rays (shown in red) interfere constructively in

the far field if their path difference is a multi-

ple of the wavelength. We have chosen two rays

that arrive on the grating surface with λ path

difference, so that we only need to consider the

reflected path difference, denoted a. Thus we require that, for the first diffracted order, a = λ.

Through the appearance of similar triangles this implies that β = π/2−θ. Then the first diffracted

order is deflected by an angle α = π− (β + π/2− θ) = π− 2(π/2− θ) = −2θ, which is exactly the

expression for a mirror tilted at an angle θ.

1.8 Propagation

The reason we pay so much attention to the phase and amplitude of a beam in a transverse plane

is that the field at any value of z is fundamentally linked to any plane at a different z. One can

obtain the field in the transverse plane at z from a known one at some z0 by propagation. We

do this by exploiting the fact that the Fourier plane of a beam is equivalent to its plane wave

decomposition, that is, every point in the Fourier plane contains the amplitude and phase of one

of the plane wave components of the beam [17]. Thus we can take the 2D Fourier transform of a

transverse plane of a beam we wish to propagate, advance the phase of the plane wave components

appropriately, and take the inverse Fourier transform of the modified far field to get the propagated

beam. This method is known as angular spectrum wave propagation [18]. What is left for us to

do is to describe how to calculate the extra phase for the different plane wave components.

Let us reiterate that every point in the Fourier plane corresponds to one of the plane wave com-

ponents of the optical field at z0. The plane wave components are all characterised by one unique

k-vector with a unique set of kx, ky and kz components. Since we wish to propagate the beam in

the z direction we need to advance the phase by ∆zkz, where ∆z is the propagation distance z−z0.

Thus we need to determine the z component of the wavenumber, kz. We can easily determine the

kx and ky components at each position (x, y) in the far field as

kx(x, y) =
2π

x− x0
, ky(x, y) =

2π

y − y0
, (1.14)

which is also a statement of the fact that a larger transverse distance from the beam centre in the
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far field corresponds to higher spatial frequencies in the near field. Then, knowing that |k| = 2π/λ,

kz(x, y) =

√(
2π

λ

)2

−
(
k2
x(x, y) + k2

y(x, y)
)
. (1.15)

We now have all components necessary to perform the entire propagation:

E(x, y, z) = F−1
(
F (E(x, y, z0)) ei∆zkz(x,y)

)
. (1.16)

This expression works for both positive and negative ∆z (and the trivial case ∆z = 0), meaning

that we can use it to determine the field in a preceding plane as well.

Of course propagation this way assumes that there is no effect that changes the phase or amplitude

between the two planes at z0 and z. We can, however, use it to propagate a field from one optical

component to the next, and in the planes of the optical components we can apply their action to

the field there. This allows us to simulate entire optical benches with many optical elements fairly

efficiently, especially in numerical simulations using fast Fourier transforms (FFTs). One can make

a further small speed improvement by restricting ourselves to the paraxial limit. This allows us to

take the Taylor expansion of equation (1.15) about (kx, ky) = (0, 0) to get

kz ≈
2π

λ
−
k2
x + k2

y

4π/λ
, (1.17)

which eliminates the need to take square roots, which is relatively computationally expensive.

Throughout this work used this expression to perform beam propagation simulations.

1.9 Higher order modes

So far we have considered very simple fundamental solutions to the wave equation (1.2) in the

paraxial limit. Higher order modes are something of a speciality of the Optics group at the

University of Glasgow, and central to most of the techniques described later on, either as a mo-

tivation or as a tool. The two most commonly used sets of modes are the Hermite-Gaussian and

Laguerre-Gaussian modes [19], and no thesis from the Optics group can be complete without their

terrifying7-looking expressions:

HGm
n (x, y, z) =E0

w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
exp

(
−x

2 + y2

w2(z)

)
×

exp

(
−ik(x2 + y2)

2R(z)

)
exp (−ikz) exp (iψ(z)) ê, n,m ∈ N,

(1.18)

LG`
p(r, φ, z) =E0

w0

w(z)

(
r
√

2

w(z)

)|`|
exp

(
− r2

w2(z)

)
L|`|p

(
2r2

w2(z)

)
exp (−i`φ)×

exp

(
−i kr2

2R(z)

)
exp (−ikz) exp (iψ(z)) ê, ` ∈ Z, p ∈ N,

where all the symbols carry their previously used meanings, and the new ones are Rz the wavefront

curvature at z, the Hermite polynomials of order j, Hj(x), generalised Laguerre polynomials L
|`|
p (x),

and the Gouy phase picks up a new definition, ψ(z) = (N + 1) tan− 1(z/zR). The value of the

combined mode number N for the two classes of beams is different, for the Hermite-Gaussian (HG)

case N = m+ n while for the Laguerre-Gaussian (LG) case it is N = |`|+ 2p. Note that the HG

7At least to me. I mean look at them, they don’t even fit on a single line!
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Figure 1.9: Zoo of higher order Gaussian modes, with intensity on the left and phase on the right.
The indices in the corners are m,n for HG modes and `, p for LG modes.

modes are described in Cartesian coordinates and carry rectangular symmetry, while the LG modes

are in cylindrical coordinates and so have cylindrical symmetry. This can be seen in the case of a

few example modes shown in figure 1.9.

Since these solutions are eigenmodes of propagation, they only change in transverse size on prop-

agation (and they of course pick up a global phase, which is usually unimportant, except in

interferometric setups). It is also worth noting that modes with different indices within either set

are orthogonal to each other. Both mode sets are complete, which means that any light field can

be decomposed into a (potentially infinite) subset of them, in the paraxial approximation.

An interesting relation between phase and intensity can be seen in all HG and LG modes with

non-zero mode number. In points within a light field where the phase is discontinuous (e.g. phase

jumps in HG modes and p-modes, LG modes with non-zero p, and optical vortices at the centre

of `-modes) the intensity is exactly zero.

A particularly important property of the Laguerre-Gaussian modes with non-zero ` is that they

carry optical orbital angular momentum (OAM) [20, 21]. This is due to the helical phase fronts

introduced by the azimuthally varying phase term, e−i`φ. The reason this is interesting is that

OAM is a quantity that is conserved in most interactions with matter, with a few exceptions, in

which case it is transferred to spin angular momentum (SAM). We will talk about this spin-orbit

exchange in more detail later on. Spin angular momentum is related to the polarisation of light,

specifically it is associated with circular polarisation. It is interesting to note that SAM can take

two values, ∓~ corresponding to left- and right-handed polarisation (and their linear combinations),

while OAM can take any integer value (and their linear combinations). In other words, SAM (and

so polarisation) spans a 2-dimensional Hilbert space, while OAM spans an infinite-dimensional

one, a fact that could be useful for high-bandwidth quantum information transfer and storage.

1.10 In summary

We have briefly introduced light as an oscillation of the electromagnetic field and described it

in terms of polarisation, amplitude and phase. We looked at some examples of manipulating

polarisation (polarisers and waveplates) and the changes of propagation due to structured phase

(focusing by a lens and deflection by a mirror/grating). We saw examples of higher order modes of

propagation with structured phase and intensity. In the following, we will look at some methods

of controlling phase, intensity and polarisation, mostly using dynamic optical elements but also

introducing a few static ones.



Chapter 2

Shaping light

2.1 Introduction

Let us remind ourselves of one of the key points of the previous sections: the entire three-

dimensional structure of phase, intensity and polarisation of a laser beam is defined by one single

cross-section of the beam. This is because light behaves according to Maxwell’s equations, so if

we know the electric field in one plane, say, z = 0, we can easily find out what the field looks like

some distance z away by propagation. As long as we restrict ourselves to the paraxial limit, this is

particularly easy. All this means is that if we could arbitrarily control the phase and intensity of a

beam in one plane, we could control its 3-dimensional structure as its transverse structure changes

on propagation. This is exactly what spatial light modulators (SLMs) and digital micromirror

devices (DMDs) allow us to do. We published some of the considerations about the limitations on

beams that can be practically produced by such devices in [22].

2.2 Phase-only Spatial Light Modulators

The section title spoils the key feature of the SLMs we consider here, namely that they offer

direct control over the phase of light. As we will see, this is enough for simultaneous control of

phase, amplitude and polarisation. The theoretical discussions in this chapter are described in [23]

and [22], and references therein.

2.2.1 Phase-only Holograms

It is obvious that a phase-only SLM provides control of the phase of a laser beam reflected from

it, but the ability to control amplitude is more subtle. This is necessary if we wish to be able to

create an arbitrary desired complex field Edes(x, y) = Ades(x, y) exp(iφdes(x, y))ê in a transverse

plane, where we restricted ourselves to shaping a single polarisation component ê for now, which

we will drop from the following discussion for simplicity.

After the interaction with the SLM we wish to spatially separate the newly structured beam from

the remnants of the unstructured light, so that we can use the desired beam without any contam-

ination. This is most easily achieved by deflecting the structured light, changing its wavevector,

Ein(x, y) exp(ik′in · r) exp(iH(x, y)) = Edes(x, y) exp(ikdes · r), (2.1)

19
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where Ein is the input complex field travelling in the k′in direction, the desired field propagates

in the direction given by kdes and H is the phase-only hologram displayed on the SLM. Here we

describe the process considering the SLM as a transmissive element, although the ones used in our

experiments are the reflective type - this makes no conceptual difference. Figure 2.1 shows the

relevant directions.

SLM

x

zk'in

k'in

kdes

kin

Figure 2.1: Propagation directions of diffracted
and input beams on a reflective-type SLM.

We can easily express the action of the phase-

only hologram as

exp(iH(x, y)) =
Edes(x, y)

Ein(x, y)
exp(i(kdes − k′in) · r)

(2.2)

= Arel(x, y) exp(iφrel(x, y)),

where Arel = Ades/Ain is the relative amplitude

and φrel = mod(φdes−φin +(k′des−k′in) ·r, 2π)

is the relative phase, including the direction

change. As discussed in section 1.6, a grat-

ing with 2π phase depth behaves like a tilted

mirror, deflecting the beam impinging on it. We can therefore achieve the rotation of the k-vectors

by including the proper grating phase, given by

φg(x, y) =
2πx

d
, thus (2.3)

φrel = mod(φdes − φin + φg, 2π),

where d = 2π/(kdes − k′in) is the grating period. It is clear from equation (2.2) that we cannot

simply use the relative phase φrel as the phase-only hologram H, because while it would give

the correct phase to the beam in the image plane of the SLM, it would not reproduce the correct

intensity pattern. Instead, the intensity distribution of the input beam would reappear. Additional

amplitude shaping is thus required, but since the phase-only SLMs only give access to phase control

this has to be achieved through the modulation of the relative phase.

Reducing the depth of a blazed diffraction grating while keeping the period constant does not

change the angle of diffraction, but it does change the diffraction efficiency. Shallower gratings

diffract less light into the desired first order and leave more light in the zeroth order. We can

spatially control the grating depth, and thus amplitude in the first grating order, by multiplying

the relative phase by some function of the relative amplitude,

H(x, y) = f (Arel(x, y))φrel(x, y). (2.4)

One can then place a spatial filter in the Fourier plane of the SLM that blocks the zeroth grating

order, and would then be left with the desired beam. There are multiple choices one could make

for the function f . The simplest method is to simply scale the relative phase by the relative

amplitude, f(Arel) = Arel. This expression assumes that diffraction efficiency depends linearly

on grating depth, which is incorrect. Yet, surprisingly enough, this method works rather well in

practice.

A more rigorous treatment was proposed by Davis et al. [24]. They calculated that the first-order
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- + mod 22

des in

Figure 2.2: Calculation of a hologram designed to generate an ` = 2 LG mode from a simple
Gaussian input mode. The indicated operations are performed from left to right. The scales of
grayscale images are 0-Imax for intensity images and 0-2π for phase maps.

diffracted light amplitude from a phase grating is given by

A(x, y) = exp (i(1− f(A(x, y)))π) × sinc(π(1− f(A(x, y)))), (2.5)

where sinc(x) = sin(x)/x, with sinc(0) = 1 at x = 0. We can find the function f , omitting the

exponential term, as

f(Arel(x, y)) = 1− 1

π
sinc−1(Arel(x, y)). (2.6)

The sinc function is not directly invertible, but the inverse function sinc−1 can be defined on the

domain [0, π]. In the rest of this work this will be our preferred method for amplitude shaping with

phase-only SLMs, essentially applying a spatially varying amplitude mask to the phase grating.

There are other methods, which have their own strengths in different scenarios [25], but for our

purposes this simple solution works extremely well. Our hologram calculation process is illustrated

in figure 2.2.

2.2.2 SLM Phase Response

The pixelated device we used during this work was a liquid crystal on silicon (LCOS) type. As the

name suggests, each pixel contains long, thin liquid crystals whose orientation can be controlled

by applying an electric field through them. For this purpose each pixel has electrodes at the front

and back surfaces which minimally affect light transmission. When maximum field is applied, the

long axis of the crystals is perpendicular to the polarisation direction, such that the optical path

through them is minimal (see figure 2.3a). As the electric field is decreased the crystals rotate to be

parallel to the polarisation direction, maximising the optical path when minimum field is applied

(figure 2.3b). We would also like to note that the phase across a single pixel is not uniform, but

shows something approaching a sinusoidal variation.

The SLM used here is a reflective type, which means that the back surface of pixels is a mirror. This

means that light travels through the liquid crystals twice. If the optical retardation between the
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Figure 2.4: Schematic diagram (a) of the setup used to measure the SLM lookup table and measured
power as a function of pixel value displayed on the SLM (b). Measured data is shown in blue, and
the red curve is a sine fit to the data. The period of the fit is 204.3. PBS: polarising beam splitter,
PD: photodiode, HWP: half-wave plate.

minimal and maximal path through the pixels is at least half of the wavelength of the input light

then this system gives arbitrary control of the phase of the input light at each pixel independently.

In practice the crystal orientation in the devices used in this work can be set to one of 28 = 256

settings, but this range may not be fully utilised for a given wavelength.

a) b)

Figure 2.3: Schematic diagram of liquid crystals
in a pixel of a LCOS SLM, with a) maximum elec-
tric field applied and b) no electric field applied.
Light input direction and polarisation is shown
by the arrow, and mirrors on the back surface of
the pixel are shown as hatched areas.

Let us consider such an SLM that applies a

phase difference of exactly 2π between the 0

and 255 setting of a pixel to light of wave-

length 800nm. This means that the extra op-

tical path introduced at a pixel value of 255

in a double pass through the device is 800nm.

As a result, using 780nm light, between the

settings of 0 and 255 this device would apply

800/780 × 2π > 2π. This fact means that the

control software needs to take into account the

wavelength of light used. In practice this was

done by generating a lookup table to convert

from phase to 8-bit value to be sent to the SLM. The procedure for doing so is outlined below.

To understand how this works it is important to note that the device is polarisation sensitive, it

interacts only with horizontally polarised light and leaves vertically polarised light untouched.

A schematic diagram of the simple experimental setup used to measure the phase response lookup

table is shown in figure 2.4a. The laser light is transmitted through a polarising beam splitter

(PBS), which transmits horizontally (|H〉) polarised light and reflects vertically (|V 〉) polarised

light. The reflected light is blocked. The transmitted, now |H〉 polarised light passes through

a half-wave plate (HWP) with its fast axis at 22.5◦ with the horizontal such that it turns the

polarisation to |A〉. Since the SLM only acts on the |H〉 component, it can introduce a phase shift

between the |H〉 and |V 〉 components of this |A〉-polarised beam. In this setup we set the SLM

to apply the same phase shift over the entire surface. When this phase shift is 0, the SLM just

acts as a mirror which in this case turns the light from |A〉 to |D〉 because it only reverses the

propagation direction. The new |D〉 polarisation passes once more through the HWP which rotates

the polarisation back into |H〉. All light with this polarisation is transmitted through the PBS,

not reaching the photodiode, corresponding to minimal signal. The signal from the photodiode is

recorded by the computer controlling the SLM.
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When the SLM applies a phase shift of π between the |H〉 and |V 〉 components (and after reflection),

the input |A〉 light turns back into |A〉, which turns into |V 〉 after the HWP and is reflected by

the PBS. This corresponds to maximal signal from the photodiode. Between these extremes the

amount of light reaching the photodiode varies sinusoidally. This is shown in figure 2.4b.

During the experiment the value displayed on the SLM is ramped from 0 to 255, while recording

the photodiode signal corresponding to each value. By fitting the resulting curve with a sine we

can determine the actual phase shift introduced by a given 8-bit value sent to the SLM, and such

can determine the lookup table for the laser wavelength used. In fact for the SLMs we used it

was sufficient to find the period of the sine because the phase response of these SLMs is (very

nearly) linear with pixel value. This is not, in general, true for all SLMs. The period of the fitted

sine corresponds to the pixel value at 2π phase shift. The data shown in figure 2.4 taken using a

Hamamatsu LCOS X13138-02. The nearly linear response of the SLM can be seen from the close

match between the data and the fitted sine. The period of the fit is 204.3, so this corresponds to

a phase shift of 2π (and ∼ 102 would correspond to π, etc.)

Notice that the minimum (∼ 0) phase shift does not occur for a pixel value of 0 (it’s close to 200).

This is not an issue, because for most applications we are only interested in relative phase shifts

introduced by the SLM between parts of a beam. The absolute phase shift only plays a role in a

few measurements, such as the one presented above, or interferometers in which the SLM is only

interacting with one arm.

The measurement described here assumes that the phase shift applied by the SLM for a given

pixel value is the same for all pixels (or at least the ones that the laser beam interacts with). This

is a decent assumption, especially for small beams, but it is not exactly true. SLMs are prone to

aberrations mostly due to their surface not being optically flat, although the phase response of all

pixels are not identical either. We assume the latter to be a small enough effect to be neglected. In

any experiment we performed so far we have never seen any strange behaviour that would need to

be attributed to this, mainly because pixels with reduced phase throw are located near the edges

of the SLM, which we do not often utilise. However, the former is significant and needs to be taken

into account.

2.2.3 Aberrations

Phase aberrations are commonly described in terms of the Zernike polynomials Zmn [26]. The most

frequently encountered examples are shown in figure 2.5. Z0
0 is known as piston, and describes

the static phase offset we encountered two paragraphs ago. The second row in figure 2.5, Z±1
1

are tip-tilt, which we recognise as examples of unwanted deflection. So far all of these can almost

always be ignored because tip-tilt is usually automatically corrected in further alignment by the

experimenter constructing an optical bench.

Of more practical importance are the ones in the third row. These are known as defocus (Z0
2 ) and

astigmatism (Z±2
2 ). We recognise the phase structure of defocus as the same as that of a lens, and

it is due to a bulge in the SLM surface. Astigmatism behaves like a strange lens which has two

focal lengths for two orthogonal directions; a more familiar example of such an optical element

would be a cylindrical lens. These result from bends in the SLM surface; the archetypal phase

patterns look like saddle-shaped bends.

Because of the need for a far-field filter in SLM-based light shaping setups it is technically possible
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in most experiments to correct defocus by moving the two telescope lenses closer to or further away

from the SLM. In practice this is very hard to do right. The most common SLM aberrations are

(mostly) combinations of astigmatism and defocus, so shifting the lenses cannot solve all problems

anyway. We could conceivably insert cylindrical and spherical lenses with the correct focal lengths

to correct the aberrations, but we already have access to a device that can arbitrarily control phases

in the SLM plane - the SLM itself! In the following we describe two methods used to determine

the aberrations of the SLM surface, and we discuss how to correct them.

0,0

1,1-1,1

-2,2 0,2 2,2

3,31,3-1,3-3,3

Figure 2.5: The first few Zernike polynomials,
corresponding to the most common aberrations.
Indices are m,n.

Our goal is to build up an image of the phase

profile of the SLM. To do this we use concepts

of computational imaging. We illuminate the

entire SLM surface and display a simple blazed

grating with 2π phase depth in a small section

of the SLM, a superpixel. In the far field of

the SLM we then see two spots1. One very

bright spot corresponds to the zeroth order of

the grating and the unaffected reflection of the

parts of the SLM that do not contain the grat-

ing superpixel, and a much dimmer one con-

tains the first order diffraction from the super-

pixel. We can then scan this superpixel across

the SLM surface, and by monitoring the power

in the first order diffracted spot we can mea-

sure the relative optical power arriving in any

given superixel area. We normalise the first order diffracted powers to the brightest superpixel,

and through interpolation we can build up a smooth distribution of the peak-normalised optical

power arriving on the SLM. This gives us a measurement of the input beam intensity, but does

not tell us anything about the phase yet.

Since we are interested in the relative phase between different parts of the SLM, we can simulta-

neously display two superpixels in different positions on the SLM, and use interference to deduce

their relative phase. We usually place one superpixel in the centre of the SLM because this area

receives the most optical power. We then do not change this superpixel for the duration of the

experiment. A second superpixel is scanned across the SLM. Recall that in the Fourier plane spa-

tial position turns into angle and angle information turns into spatial position. This means that

the first diffracted orders of the two superpixels arrive at the same position in the far field (since

their grating periods are the same), but they will have an angle between them (because they come

from different positions), see figure 2.6. This results in the formation of linear interference fringes.

We then apply a series of global phase shifts to the second superpixel. This moves the interference

fringes. We measure the intensity in a small point within the interference pattern, and observe a

sinusoidal variation as the interference fringe moves across the measurement point. We then fit

this sinusoid, and extract the phase from the fit. This is in fact the relative phase between the

center area of the SLM and the second superpixel position. Of course this is an average phase

within the superpixel, but it is reasonable to assume that the phase is close to flat across small

superpixels. In practice we use 20-by-20 pixel superpixels, in order to maximise resolution and

fringe visibility, and this method works well. We then fit the measured phase with the Zernike

polynomials to obtain the phase map of the light on the SLM.

1... in principle. In practice there will be more spots due to higher orders of diffraction, but power in those
quickly becomes negligible.
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Figure 2.6: SLM aberration measurement process. a) Superpixels containing a phase grating are
scanned and phase-shifted. b) The diffracted orders interfere in the far field. c) As the scanned
superpixel is phase-shifted, the interference fringes move and the intensity in a camera pixel varies
sinusoidally. The relative phase φrel between of the stationary central superpixel and the scanned
one can be extracted from the fit.

There is a slightly different way of using superpixels to determine the SLM phase map [27], for which

we need to assume that the aberrations are relatively well-behaved, i.e. reasonably planar over

superpixels. This can usually be assured by using superpixels of sufficiently small size. Consider

a superpixel containing a grating with some period. We could say that in the far field the light

diffracted from this grating is displaced from the zeroth order propagation direction by an amount

related to the grating period. However, this statement assumes that the SLM phase over this

superpixel is flat. If, however, it contains some extra tip or tilt then the diffracted spot will be

displaced further accordingly. We can then tile the entire SLM surface with superpixels with

different known gratings and get information of excess tip-tilt over each superpixel. We do this by

knowing how much the diffracted light from a superpixel should be displaced from the zeroth order

due to the computer-generated grating and how much it actually is displaced in the experiment,

and retrieving the extra change in k-vector. This can, in principle, be calculated knowing the

grating period and lens focal length, but in reality there is a way to take a calibration image,

which is more reliable in practice because it does not assume perfect alignment.

For this we calculate a multiplexed grating that contains all gratings that we used to tile the SLM

surface. This is simply done like this:

G(x, y) = arg

 n∑
j

exp (iφg,j(x, y))

 , (2.7)

where we used j superpixels containing the grating phases φg,j . Such a multiplexed grating creates

an array of spots in the far field, each corresponding to one grating in the set. The important

difference between this set of diffracted spots and the one due to the tiled gratings is that now all

gratings sample phase aberrations of the entire SLM, not just a subset. This means that they will

be displaced by the same amount due to global tip-tilt, and their shapes will be aberrated due to

higher order aberrations. Crucially, they will not be differentially displaced from the the positions
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Figure 2.7: Operating principle of the Shack-Hartmann aberration measurement scheme. The SLM
displays a) multiplexed and b) tiled holograms in sequence. These are shown with the aberration
phase included. Correspondingly, in the far field d) aberrated and e) displaced spots appear. Here
we simulated an aberration consisting of two cylindrical lens phases with different focal lengths,
seen in c). This is a fairly common type of aberration. The displacement of the spots is shown by
cyan arrows in f), where the far field of the multiplexed gratings is shown in green and that of the
tiled gratings in red.

dictated by the gratings. This is shown in figure 2.7.

We can thus compare the far field images generated by the tiled and multiplexed gratings, find

the centres of masses of the diffracted spots in each, and calculate displacement vectors due to the

excess tip-tilt over each superpixel. This gives gradients of the SLM phase over each superpixel,

which can be translated into a rough estimate of the SLM aberration map, which can then be

fitted with Zernike polynomials to get a smooth phase map. This method, which we call the

Shack-Hartmann method2 has the advantage over the scanning one in acquisition speeds, since

only two images are needed.

The disadvantages are that because of the need to estimate displacement vectors we need to

calculate centres of masses of spots that do not have uniform shapes: recall that because the

multiplexed grating samples the entire SLM its far field spots have differents shapes than in the

tiled case. This issue is further complicated by noise in the images, which is notoriously bad for

calculating centre of mass. There can also be an issue with spot registration; if two spots are

close together in the far field of the tiled grating it can be difficult to know which one corresponds

to which spot from the multiplexed grating. Also, since we never measured actual phase, but

phase gradients, building up an estimate over the SLM surface is a bit more tricky, and needs an

assumption of relative smoothness (which, to be fair, is usually a perfectly reasonable assumption).

Ultimately the increase in acquisition speed could be worth exploring solutions to these issues,

especially if one needs to perform aberration measurements often.

2Because of similarities to the wavefront-measurement sensors used in adaptive optics in astronomy and SLR
autofocus sensors.
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Note that the measurements outlined above does not only measure the SLM aberrations but also

any aberrations in the input beam as well. It is very common to see a relatively large defocus

aberration that does not come from the SLM, but some slightly incorrectly aligned lenses before

the SLM. This is good because it allows us to correct any imperfection in the pre-SLM system so

can be used in a complicated setup to save alignment effort, but it is also bad because it needs to

be done every time the setup changes. I would personally recommend carefully aligning all optical

elements and measuring SLM aberrations once, and correcting for those same aberrations even

when the setup changes; I feel that it is better to have well-aligned systems than to try to measure

aberrations every time something changes3.

The correction itself is very simple. We just need to add the aberration phase to the input phase

in equation (2.2):

exp(iH(x, y)) =
Edes(x, y)

Ain(x, y) exp(iφabr(x, y))
exp(i(kdes − k′in) · r), (2.8)

where φabr is the measured aberration phase, including the input beam phase. The logic of this is

clear, since in the last paragraph we discussed how the method can be used to measure the phase

profile of the entire beam line before and including the SLM; so the correction is simply to explicitly

include our knowledge of the aberrations of the light field at the SLM. We could also equivalently

subtract φabr from the desired phase. Of course the amplitude function from equation 2.4 should

be factored in as well.

2.2.4 Spatial filtering

As mentioned previously, we use gratings to separate the phase- and amplitude-shaped desired

beam from the unwanted remnants of the input beam in the far field of the SLM. This is achieved

by placing a lens its focal length away from the SLM. However, this is obviously not sufficient to

obtain the desired beam, as beyond the far field all grating orders diverge because of the phase

curvature introduced by the lens. We need a second lens to complete a telescope and collimate the

beams again, but this comes with the issue that the telescope forms an image of the SLM plane,

recombining the zeroth order with the first, which is not what we want. We can, however, place

a far field filter in the Fourier plane of the telescope. Such a filter ideally blocks all light from all

orders apart from the first. In practice we use variable aperture irises to transmit the first order.

The effects of changing the far field filter size, discussed below, can be seen in figure 2.8.

An issue with this idea is that beams never quite fall off to zero power, so it is impossible to

filter orders perfectly. Some light from the zeroth order always remains, and some light from the

first order will be cut off. The smaller the filter aperture around the first order, the smaller the

influence of the remaining light from the zeroth order will be. However, recall that in the far

field the Fourier transform of the spatial structure of the desired beam appears. Thus a small far

field filter acts as a low-pass filter, inevitably truncating high spatial frequency components. The

smaller the aperture the stronger this effect. It turns out that for most beams of interest in this

work this is a good thing, since we rarely want beams with hard edges or high frequency details.

In fact far field filters in the form of few tens of µm diameter pinholes are often used to clean up

the messy, non-Gaussian beams that many lasers output. An example of this is shown in figure

2.9.

The larger the separation between the grating orders in the far field the easier it is to filter out

3Which happens very frequently.
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Figure 2.8: Effects of different far field filter sizes. a) Experimental setup used to record the
images. The camera is close to, but not quite in the image plane of the SLM. b) The hologram
here is designed to generate a superposition of LG8

0 and LG20
0 modes. c) Bottom row, left to

right: aperture fully open; aperture cutting (but not blocking entirely) the 0th order; aperture
transmitting the 1st order only; aperture too small, high spatial frequencies truncated. Top right:
0th order transmitted. Notice the vertical interference fringes where the 0th and 1st orders overlap;
this is an image of the grating.



CHAPTER 2. SHAPING LIGHT 29

a) b)

Figure 2.9: Filtering a He-Ne laser output mode. The images are deliberately overexposed to
highlight a) the unwanted structure in the unfiltered beam and b) their absence after filtering.
Notice that the filtered beam has a slightly larger diameter because the filter aperture is smaller
than the input beam waist and the Fourier relationship between the far and near fields.

the unwanted orders. Since angles in the near field turn into positions in the far field, we desire

gratings that introduce large angles between the k-vectors of the outgoing orders, so large θs in

figure 1.8. The wavelength in any experiment is fixed by the laser, so the only way to change θ

is by varying the grating period. There is an inverse relationship between far field separation and

grating period: short periods lead to large separation and vice versa.

So it seems logical that we desire as small a grating period as we can get. The limit is set by

the SLM pixel size. The smallest period we can have is two pixels per 2π phase cycles. This,

however, is a very poor approximation of the blazed grating phase; in fact it looks like a binary

grating. We investigated this, along with a number of other limitations of SLMs, in [22]. We find

that the gratings appear too discretised below approximately 5 pixels per period and the grating

efficiency is severely reduced. Peak efficiency is reached around 5 pixels per period, so this is the

most practical choice of grating period. More pixels do not gain much in efficiency as the grating

phase is already well represented, but the risk of contamination by the 0th order increases. This

gives a distinct advantage to high resolution SLMs with small pixels, because the 5 pixel period is

represented in a smaller physical size.

The last thing to consider is the fact that since the way the method we described for intensity

shaping works by ’throwing away’ unwanted light from the input beam, the total power in the

generated beam suffers. This gets worse for desired beams that have a small overlap with the

input mode. The worst case scenario would be if the input beam had zero intensity where the

desired beam has its maximum. In a sense, the desired beam needs to ’fit under’ the input beam;

this is where the analogy to sculpting in the title of this thesis comes from. Figure 2.10 illustrates

the idea. In extreme scenarios, where the overlap between the input and desired beam profiles is

small and one would get essentially no power in the desired beam, it may be desirable to not use

the measured input beam for the intensity correction. Instead, one could use a thresholded version

of the input profile, shown in the second row of figure 2.10. Of course the intensity profile of the

output beam will be wrong by doing this, but if the phase profile of the desired beam is more

important for the experiment, this might be a reasonable tradeoff.
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Figure 2.10: Beam sculpting using a-c) the measured input beam and d-f) thresholded input beam.
The input beam is always the same Gaussian, and the desired beam is a LG2

0 mode with a waist
that is a,d) 1/3, b,e) 2/3 and c,f) 3/3 of the input waist. The ratios of the input and output powers
in each scenario are shown under the graphs.

2.3 Digital Micromirror Devices

Digital micromirror devices feature a 2D array of µm-sized mirrors that can be independently

electronically switched to point in two different directions. These devices act on the amplitude

of the incident light, in contrast with the phase modulation of SLMs. The square mirrors in a

DMD are arranged in a diamond pattern, with a hinge along one of their diagonals. They can

flip along this diagonal to point in one of two directions, ±12◦ to the DMD normal. These very

same devices are used in current overhead projectors, in conjunction with RGB LEDs, to produce

full colour images at video rates. This is achieved by pulse width modulation of the red, green

and blue channels in sequence at a very high rate (even the cheapest DMDs run at 5 kHz, with

top-of-the-line ones exceeding 20 kHz) with spatial resolution. To the human eye, with a relatively

long integration time, this appears as a single, coloured image.

Note that because of the diagonal arrangement of DMD pixels the rows of pixels are twice as dense

as the columns are (see figure 2.11), which means that images appear stretched on a DMD. This

needs to be taken into account when designing holograms.

2.3.1 Binary holograms

The DMD acts as a spatially dependent binary intensity modulator; each pixel can be ’on’ or ’off’,

sending light either in the desired direction, towards the rest of the experiment, or away from it.

It is not immediately obvious that such a device can provide the same flexibility that a phase

modulator SLM can. It turns out DMDs are, in fact, capable of this.

Light in a given order diffracted from a uniform diffraction grating has a flat wavefront. However,

modulating the grating slit positions leads to a curvature of the wavefront. In other words, spatially

dependent lateral shifts of the grating slits introduces spatially dependent phase shifts. This is

because if a grating is shifted in the direction parallel to its surface by 1 grating period the output



CHAPTER 2. SHAPING LIGHT 31

1 1 1
2 2
3 3 3

5 5 5
4 4

i)

Figure 2.11: Photograph of a (rather dusty) DMD surface, where the micromirrors are resolved.
The bright spots in the inset are mirrors pointing to the right, and dark regions are mirrors pointing
to the left. These mirrors have approximately 7.6µm side length. The inset (i) shows the pixel
arrangement, where numbers show the row index and shading shows columns.

light acquires a 2π phase shift [28]. Shifting a slit with respect to the rest of the grating applies

this effect in a spatially dependent manner. Spatial control of the intensity is possible by spatially

varying the slit widths4, simply because this modulates the amount of transmitted light. On the

DMD surface slits translate to ’on’ pixels, surrounded by ’off’ pixels. The binary hologram that

generates a desired optical field Ades(x, y) exp(iφdes(x, y)) in the image plane of the DMD is given

by [29]

H(x, y) =
1

2
+

1

2
sgn

(
cos(φrel(x, y)) + cos(sin−1(Arel(x, y)))

)
, (2.9)

where sgn stands for the sign function. Note that the binary nature of the hologram leads to a

reduced efficiency as it does not diffract preferentially to either the +1st or -1st order.

Furthermore, DMDs present an additional challenge in that the pixels, being physically separate

mirror surfaces, also act as an additional grating, with a period corresponding to the pixel size.

The orders of this overall grating each contain the diffraction pattern generated by the computer-

generated grating, and for practical reasons only the brightest order of the pixelation grating is

used in experiments. An example is shown in figure 2.12. This leads to further loss of efficiency,

although it does not degrade beam quality. Practically, it is difficult to achieve more than 10%

efficiency with a DMD.

DMDs also suffer from the same types of aberrations that SLMs do, and because of the use of

gratings for amplitude and phase shaping the generated beams also require spatial filtering. The

techniques described above for SLMs work just as well here. For obvious reasons there is no need

to calibrate the phase response of the DMD for different wavelengths.

4The pulse width modulation (PWM) trick for intensity control that works very well for the human eye is not
capable of generating coherent beams with amplitude shaping. A proper binary hologram works, in principle, for a
single photon, but PWM does not.



CHAPTER 2. SHAPING LIGHT 32

Figure 2.12: A subset of diffraction orders from a DMD using a He-Ne laser. The large, roughly
square-shaped light beams show the pixelation orders of the DMD itself. Surrounding each of
these zeroth orders of the computer-generated hologram one can see the first and higher diffraction
orders of the hologram. Some 1st and -1st orders (intended to be HG1

0 modes) are circled in blue.

2.4 Spatially dependent polarisation

So far all of our discussion was restricted to generating light fields with spatially varying phase

and amplitude, but we did not consider the spatial control of polarisation. As we discussed earlier,

an SLM is polarisation sensitive; it only acts on a single polarisation, usually ĥ, so it seems that

spatially dependent polarisation control with such a device is doomed to fail. However, just as a

DMD is capable of phase control even though it does not appear to be at first glance, polarisation

control is also possible with a bit of cleverness.

2.4.1 Using an SLM

Recall the definitions of the polarisation basis vectors in equation (1.6). It can be seen that any

basis vector can be expressed in terms of a pair of others. For example, â = 1/
√

2(ĥ − v̂) and

r̂ = 1/
√

2(ĥ+ iv̂). This is because pure polarisation states span a two-dimensional vector space.

The point really is that if we could, at every point in a plane z, generate arbitrarily weighted

coherent superpositions of two orthogonal polarisation components with an arbitrary phase between

them, we could generate any polarisation at any point in space. For this we need two orthogonally

polarised amplitude and phase shaped laser beams (that are coherent with each other) and overlap

them.

We can use an SLM to generate two (or, in principle, any number of) structured beams propagating

in different directions. This is actually very easy. We need to multiplex gratings with different

periods, each containing the required phase and amplitude information for the different desired
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Figure 2.13: Practical polarisation shaping with an SLM. The grating 0th order is not shown for
clarity. The SLM is drawn in transmission, although in reality it is reflective. HWP: half-wave
plate, BD: calcite beam displacer.

beams, into a single hologram. For n beams this hologram is defined as

H = arg

 n∑
j

Arel,j × exp (imod (φdes,j − φin + φg,j , 2π))

 , (2.10)

where the spatial dependence of the terms is implicitly considered.

An SLM acts only on horizontal polarisation. In order to control polarisation with an SLM,

we need to decompose the desired vector field into horizontally and vertically polarised complex

scalar fields, and generate a hologram using equation (2.10) above to direct them in two different

directions. We then Fourier transform the optical field after the hologram using a lens, just like in

the standard setup for an SLM. In the far field the two first orders of the two computer-generated

gratings are spatially separated because φg,j are different. We place a half-wave plate into the beam

corresponding to the beam component that will be vertically polarised to turn it from horizontal

to vertical polarisation. We then overlap the two, now orthogonally polarised, beam components

using a beam displacer. The resulting vector beam5 is then collimated by a second lens completing

the telescope, and the desired polarisation structure appears in the image plane of the SLM.

There are a few practical considerations that somewhat alter the description in the preceding

paragraph. First, one needs to carefully choose the two gratings to separate the two first orders.

They should be far enough from the zeroth order to be efficiently filterable. Grating efficiencies

vary in reality with grating period, so the two gratings should have the same period but pointing in

different directions symmetric around the zeroth order to minimise efficiency differences between

the two beam components.

Second, ideally one would like to perform all manipulations of the two beam components in the far

field, where they are maximally separated and where their propagation directions are the same.

This is not practically achievable because of the finite sizes of the optical elements needed. Calcite

beam displacers are particularly long, few centimetres in length. The practical setup is shown in

figure 2.13.

Notice that we use two calcite beam displacers in order to make alignment easier. These optical

elements displace light with polarisation parallel to one of their axes and leave orthogonally po-

larised light unaffected. The half-wave plates before the beam displacers are used to rotate the

polarisation of one of the beams to match the axes of the displacer (and turn the other beam to

be untouched). Two displacers are used for flexibility. The alignment of the displacers is quite

5Throughout this thesis we refer to polarisation-shaped beams as vector beams. Technically all beams are
vectorial, of course, since even a uniformly polarised beam has a polarisation vector associated with it.
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Figure 2.14: Practical polarisation shaping with a DMD. The zeroth orders of the grating are not
shown for clarity. The DMD is drawn in transmission, although in reality it is reflective.

time-consuming and counterintuitive in the first instance, although it does get easier with practice.

The two polarisation components also travel slightly different distances. We need to make sure

that the optical path difference is shorter than the coherence length of the laser, otherwise the

resulting beam becomes not a vector beam, but an incoherent superposition of horizontally and

vertically polarised beams. A much simpler setup can be utilised using a DMD.

2.4.2 Using a DMD

In our DMD-based polarisation shaping device we exploit the fact that the micromirrors are not

polarisation sensitive. Because of this, they can interact with two orthogonal polarisation compo-

nents, shape them appropriately and overlap them, all in a single plane. Our way to do this is

illustrated in figure 2.14.

First, we split a diagonally polarised laser beam into horizontal and vertical components using a

Wollaston prism. Such a prism is a lot like a polarising beam splitter, but the output propagation

angle between the two orthogonally polarised beams is not 90◦, but much smaller6. The plane

where the beams are split is imaged onto the DMD using a telescope. The magnification of the

telescope can be used to control the size of the beams on the DMD, but also the angle between

them. In practice, along the propagation direction there is no single transverse plane where the

beam-splitting happens, since the interface within the prism is diagonal. This is not really a

problem, however, because all we really need on the DMD is a large spatial overlap between the

two orthogonally polarised beams; they do not need to be completely overlapped.

We once again need to use a hologram corresponding to two multiplexed gratings, just like in the

SLM case. However, in this case there is an extra consideration to the choice of the grating periods

and directions which was not present in the SLM case. Because we do not need different optical

elements in the two beams that are diffracted from the DMD (since the polarisations are already

orthogonal) we can overlap the two appropriate first diffracted orders immediately after the DMD.

We do this by choosing grating periods and directions in such a way that the input angle between

the two polarisation components is exactly compensated in the first orders of the two gratings.

There is no need for any further optical elements, apart from far field filtering, the desired vector

beam appears immediately behind the DMD.

Since the aligment of overlapping of the two polarisation components is done entirely by the design

of the multiplexed grating, in other words, in software, the efforts required of the experimenter are

minimal. Setting up the two telescopes shown in figure 2.14, as well as positioning the far field

filter, are the only experimental challenges, and none of these are very hard or time-consuming with

a little bit of experience. One can determine an appropriate pair of grating periods and directions

by placing a camera in the far field of the DMD and iteratively modifying the grating parameters

6It depends on the material. 1◦ for quartz, 1.334◦ for MgF2 and 20◦ for calcite.
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Table 2.1: Comparison of some experimentally relevant properties of SLMs and DMDs.

SLM DMD
Shaping accuracy very good very good

Output power high (8̃0%) low (1̃0%)
Refresh rate video (60 Hz) fast (several kHz)
Surface flatness astigmatic a bit less astigmatic
Pixel flatness sinusoid very flat
Ease of polarisation control difficult easy

until an appropriate overlap of the first orders is achieved at an acceptable separation from the

zeroth orders7. An example of the DMD far field is shown in figure 2.15.

0th order 0th order

Figure 2.15: DMD far field when gen-
erating a radially polarised beam from
horizontally (red) and vertically (blue)
polarised input beams. In the experi-
mental image (bottom) desired beam is
circled in blue. The zeroth orders are
circled in green.

Some experimentally relevant properties of SLMs and

DMDs are compared in table 2.1.

2.4.3 Static devices: Q-plates and Fres-

nel cones

Hopefully based on the discussion in this chapter so far

it is obvious that there are many advantages to using dy-

namic devices for beam shaping. Most importantly, the

action of the dynamic optical elements can be changed

without requiring realignment of entire optical benches.

Aberration compensation can be done easily in situ. Ex-

periments can be automated with computers (one exam-

ple for this is the measurement of aberrations and phase

response of an SLM, but we will see more later). They

can also simplify alignment, as seen in the case of the

DMD polarisation shaping. However, they are limited in

resolution, so creating fields with high spatial frequencies

in phase or amplitude are problematic or impossible. Effi-

ciency also suffers because of the pixelation of the grating

phases. Because of these reasons in some cases it might

be advantageous to use static devices. In the following

we describe two examples of such devices of particular

interest: Q-plates and Fresnel cones.

A Q-plate is a liquid crystal device, like an SLM. It is

characterised by a number q and it affects the two cir-

cular polarisations differently: it imprints an orbital an-

gular momentum (LG) phase of +` = 2q and −` = −2q

onto r̂ and l̂, respectively [30]. Thus they can be used to

generate circularly polarised beams with OAM, although they are not capable of amplitude mod-

ulation, so they cannot make proper LG beams. If, however, we send a linearly polarised beam

through a Q-plate, then the output is linearly polarised, with the polarisation direction rotating

with azimuthal angle. Examples of this are shown in figure 2.16. A similar effect can be achieved

with segmented half-wave plates, where the segments have differently oriented axes, but a Q-plate

varies nearly continuously.

7of which there are two now, because of the two input beams.
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a) b)

Figure 2.16: a) The action of a q = 1/2 Q-plate on an |D〉 polarised input beam. The linear input
beam (indicated by green polarisation lines) is decomposed into left- and right-handed polarisation
components (shown in blue and red circles, respectively). These components acquire ±2q OAM
(shown by the helical phase maps). In this example the coherent superposition of these components
gives a radially polarised beam. b) Photograph of a q = 2 plate (green hue) between two orthogonal
polarisers, illustrating the polarisation structure.

Since Q-plates work by applying spatially dependent phase shifts, their operation is wavelength-

dependent. For this reason they come with electrodes, just like an SLM pixel, where a voltage can

be applied. In the case of the Q-plate the standard operation requires supplying an AC voltage with

a frequency of around 1 kHz. The amplitude of this signal determines the operating wavelength.

The Q-plates we used (see chapter 8) are luckily designed exactly for the wavelength used in the

experiments so do not require this AC voltage to work well.

We find it interesting to mention that it is possible to obtain both OAM and structured polarisation

from an extremely simple optical element, a glass cone with cone angle of 90◦. Although we did

not use a cone in our experiments we include them here for completeness and interest.

Light entering a 90◦ cone from the flat side undergoes total internal reflection twice and leaves

propagating in the inverse direction. In other words the cone is a retroreflector. If a left-hand

circularly polarised beam enters such a cone, after the two total internal reflections it leaves left

circularly polarised, but travelling in the opposite direction. Thus, in the original frame of reference,

it loses 2 units of angular momentum. Since the cone is cylindrically symmetric this angular

momentum cannot be imparted by a torque to the cone. Instead it is transferred to orbital angular

momentum, such that the beam leaving the cone carries 2 units of OAM, that is, has a phase term

of the form exp(i2φ), where φ is the azimuthal coordinate.

It has been known since the early 19th century that on total internal reflection the polarisation

components perpendicular and parallel to the plane of reflection undergo different phase shifts.

The differential phase shift between these s and p components are the reason Fresnel rhombs

(described in section 1.2) work. It so happens that in most glasses the relative phase shift between

s and p is very close to π/4. Because of the cylindrical geometry of the glass cone, the s and

p decomposition of an incoming light beam is azimuthally changing [25]. This leads to uniform

input polarisations turning into azimuthally varying polarisations as they exit the cone. Of most

interest are beams produced from circularly polarised input beams. Circular polarisation is always

equally decomposed into s and p components, but the axis of the decomposition is azimuthally

varying. After the two π/4 phase shifts between the components the output light is always linearly

polarised, but the direction of the polarisation is spatially dependent. Such beams exhibit a swirly

polarisation pattern, but this can be easily turned into radially or azimuthally polarised beams

using a half-wave plate.
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2.5 In summary

In this chapter we looked in great detail at the practical details of using SLMs and DMDs to

structure light. We talked about correctly designing phase-only holograms that allow us to gener-

ate beams with arbitrary spatially dependent phase and amplitude. We also saw how to measure

and correct aberrations of optical systems including an SLM. We described how to design binary

holograms for use with a DMD to achieve the same capabilites that an SLM has (albeit at lower

powers, but much higher refresh rates). We showed two setups for spatially controlling the polari-

sation of laser beams using dynamic elements, and introduced two static elements that can be used

to generate useful polarisation structures at the expense of amplitude control. In the next chapter

we will apply some of this knowledge to investigate correlations that mimic some properties of

quantum entanglement.



Chapter 3

Measuring concurrence in

structured polarisation

3.1 Introduction

In order to illustrate the power of structured light we investigate correlations within vector beams as

a classical analogue to quantum entanglement. At the time of writing the work in this chapter has

been submitted for publication1, although not reviewed. Here we will outline a method to calculate

concurrence, a measure of entanglement in quantum mechanics, for vector beams. In this situation

concurrence will be used to characterise correlations between spatial modes and polarisation. We

then describe an experiment where we generate various beams with different degrees of correlations

and measure their concurrence, showing that concurrence is indeed an accurate and practical

measure for these correlations. I have built the experiment setup in Glasgow, used it take data

and I have analysed the data.

3.2 Correlations and Concurrence

The inherent correlations between the spatial and polarisation degrees of freedom in a vector beam

shares mathematical properties with quantum entanglement, with the notable exception of non-

locality [32, 33, 34, 35, 36]. This means that the kinds of correlations we are about to discuss

are inherently local, because the correlations exist between degrees of freedom of the same photon,

not degrees of freedom of a set of photons. In any case, in the experiment we do not work with

individual photons.

In particular, we can determine spatial location based on polarisation measurements using these

correlations [37], which have been used as a resource for wide ranging applications [38] including

laser material processing [39], optical manipulations [40, 41], high resolution microscopy [42], and

classical and quantum communications and information [43, 44, 45, 46, 47].

Vector beams can be quantified and analyzed using a variety of approaches, including geometric

phase measurement [48], shear interferometry [49], Bell violations [50, 34, 51], and quantum state

tomographies via projection measurements [52]. Projection measurements only work for a subset

1For the time being see [31].

38
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of vector beams, because one needs to project into a subset of the infinite set of spatial modes.

This requires a priori knowledge of the possible spatial modes involved. However, the correlations

exist no matter what the measurement basis is, which suggests that there ought to be a method

for quantifying them without the need to project onto spatial modes.

In the following we show that concurrence can be expressed in terms of Stokes parameters, allowing

us to characterise vector beams without knowledge of its spatial mode degree of freedom. Stokes

parameters can be measured in a spatially resolved manner with appropriate detectors, although

they still require projection onto the polarisation basis states. However, polarisation is a finite-

dimensional space, and so this does not lead to experimental restrictions.

Concurrence is a measure of entanglement used for bipartite states and can be thought of as

a measure that tells us how much information we could gain about a quantity by measuring a

different, correlated quantity. Here the correlation is between spatial structure and polarisation,

for which we shall define the concurrence. The following proof is originally due to Dr Sarah Croke

at the Quantum Theory group of the University of Glasgow, and it is gratefully acknowledged.

Later, we compare the results of this basis-independent method with a projection measurement

method which was developed at the University of Witwatersrand by Dr Carmelo Rosales-Guzmán

and Prof Andrew Forbes, who kindly agreed to the reproduction of some of their results.

3.2.1 Concurrence

Let us start by considering the kinds of beams we study here. They are composed by two orthogonal

polarisation components, each with an arbitrary amplitude and phase,

|Ψvec〉 = |H〉|ψ̃H〉+ |V 〉|ψ̃V 〉

with (3.1)

|ψ̃H,V 〉(x, y) =

∫
dxdyAH,V (x, y)eiφH,V (x,y)|x, y〉.

In this description |x, y〉 are position eigenstates, and the beam is defined by electric fields with

spatially varying amplitudes A and phases φ in two orthogonal polarisation directions, which are

|H〉 and |V 〉 here. Such beams can be written in the form

|Ψvec〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉, (3.2)

where |p, s〉 contain polarisation (p) and spatial (s) modes. The orthogonal polarisation states p

can be e.g. |H〉 = 0 and |V 〉 = 1, and for the spatial modes s any orthogonal pair of modes can be

represented by 0 and 1. We can transform equation 3.1 into the form of equation 3.2 by making a

number of substitutions, defined as

pH = |〈ψ̃H |ψ̃H〉|,

|ψH〉 =
|ψ̃H〉√
〈ψ̃H |ψ̃H〉

=
|ψ̃H〉√
pH

, (3.3)

pV = |〈ψ̃V |ψ̃V 〉|,

|ψV 〉 =
|ψ̃V 〉√
pV

.

Stokes measurements are insensitive to global phase, that is, phase that is common to both |H〉 and

|V 〉 polarisation components. Luckily, global phase does not matter for our purposes here. Thus
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we can define, without loss of generality, the global phase of |ψV 〉 such that 〈ψH |ψV 〉 = 〈ψH |ψV 〉∗.
And so we can use the following orthonormal qubit basis:

|0〉 =
1√
2c+

(|ψH〉+ |ψV 〉),

|1〉 =
1√
2c−

(|ψH〉 − |ψV 〉) (3.4)

with c± = 1± |〈ψH |ψV 〉|.

Choosing such a basis is going to be useful for defining a concurrence, since we can now explicitly

write |Ψvec〉 in the form of equation (3.2), since

|ψH〉 =
1

2

√
2c+|0〉+

1

2

√
2c−|1〉, (3.5)

|ψV 〉 =
1

2

√
2c+|0〉 −

1

2

√
2c−|1〉

and thus

|Ψvec〉 =
√
pH

1

2

√
2c+|H〉|0〉+

√
pH

1

2
c
√

2c−|H〉|1〉+
√
pV

1

2

√
2c+|V 〉|0〉 −

√
pV

1

2

√
2c−|V 〉|1〉,

(3.6)

where |0, 1〉 refer to two orthogonal spatial modes. We then find the expression for the concurrence

in terms of the parameters from equation (3.2) in the form suggested by [53],

C(|Ψ〉) = 2|ad− bc|, (3.7)

which we can do by comparison with the expression in equation (3.6). This yields

C(|Ψvec〉) = 2

∣∣∣∣−√pHpV 1

2

√
c+c− −

√
pHpV

1

2

√
c+c−

∣∣∣∣ = 2
√
pHpV

√
1− |〈ψH |ψV 〉|2

= 2

√
〈ψ̃H |ψ̃H〉〈ψ̃V |ψ̃V 〉 − |〈ψ̃H |ψ̃V 〉|2, (3.8)

where we have defined the polarisation basis as |H〉 = |0〉 and |V 〉 = |1〉. Stokes parameter

measurements can provide all information required here. Spatially resolved Stokes parameters are

obtained from spatially resolved intensity measurements of the state Ψvec projected onto the 6

polarisation basis vectors:

IH(x, y) = |〈H|〈x, y|Ψvec〉|2,

IV (x, y) = |〈V |〈x, y|Ψvec〉|2,

ID(x, y) = |〈D|〈x, y|Ψvec〉|2, (3.9)

IA(x, y) = |〈A|〈x, y|Ψvec〉|2,

IR(x, y) = |〈R|〈x, y|Ψvec〉|2,

IL(x, y) = |〈L|〈x, y|Ψvec〉|2.

Using the definitions of the polarisation basis states from section 1.2 and equation (3.1), and

dropping the explicit spatial dependence of AH,V and φH,V for conciseness, we can calculate these
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as

IH(x, y) = |〈x, y|ψH〉|2 = |AH |2,

IV (x, y) = |〈x, y|ψV 〉|2 = |AV |2, (3.10)

ID/A(x, y) =
1

2
|〈x, y| (|ψH〉 ± |ψV 〉) |2 =

1

2

(
A2
H +A2

V ± 2AHAV cos (φH − φV )
)
,

IR/L(x, y) =
1

2
|〈x, y| (|ψH〉 ± i|ψV 〉) |2 =

1

2

(
A2
H +A2

V ± 2AHAV sin (φH − φV )
)
.

It can be shown that the concurrence in (3.8) can be expressed in terms of these as

C(|Ψvec〉) =
√

(IH + IV )2 − ((IH − IV )2 + (ID − IA)2 + (IR − IL)2), (3.11)

where the Stokes parameters are integrated over space. This is a particularly simple formula

that is very easy to use with experimentally available data. In the following section we outline

the experimental procedure where we use this expression to quantify the correlations in several

vector beams, and briefly compare the results with an alternative approach based on projection

measurement.

3.3 The Glasgow experiment

Based on the above description we expect that we can use concurrence to quantify correlations

within light fields with spatially varying polarisation. Therefore we need to generate and measure

such beams. Any of the dynamic polarisation-shaping setups described in section 2.4 would be

capable of doing this; we opted to use the DMD and Wollaston prism-based device (see figure 2.14)

because of its simplicity and the lack of need for high optical powers. The laser beam from a He-

Ne source polarised using a PBS, and it is spatially filtered by placing a 50 µm pinhole in the

far field of a telescope (lenses: 40 mm to 75 mm). It is then rotated to |A〉 polarisation using a

Fresnel rhomb, and enters the Wollaston prism. The imaging telescope between the prism and the

DMD is comprised of a 100 mm and a 125 mm lens. The DMD is imaged onto a camera (Allied

Vision GC660) using another telescope (both lenses 200 mm), with a far field filter in the form of

a variable aperture (Thorlabs ID36/M) placed in the appropriate plane.

At the two extreme ends of the correlation spectrum are beams with uniform polarisation and some

classes of vector beams in which the spatial modes for the two orthogonal polarisation components

are also orthogonal. In this section we will call beams in the second category maximally correlated

beams. A beam with uniform polarisation carries no correlation between spatial structure and

polarisation. For such beams the concurrence is 0. For example, consider any |H〉-polarised

beam: C =
√

(IH + 0)2 − ((IH − 0)2 + (1/2IH − 1/2IH)2 + (1/2IH − 1/2IH)2) = 0. On the other

hand, for maximally correlated beams the concurrence evaluates as 1 if the Stokes parameters are

normalised, although this is more involved to show, and we will not do so here.

While it is possible to analytically evaluate the concurrence for all beams discussed here, we opt

to do the calculation numerically. We can then pass the measured Stokes parameters and those

calculated numerically through the same analysis pipeline. The analysis and numerical simulations

are carried out in LabVIEW, using parts of the WaveTrace package.

We generate beams where the two orthogonal polarisation components are |H〉 and |V 〉 and the

corresponding spatial profiles are those of Laguerre-Gaussian modes. We include a parameter θ

the value of which allows us to tune the degree of correlation. The beams are then described in
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=0 =  /4 =  /2 =  =3  /4

Figure 3.1: Evolution of the polarisation structure of a vector beam (cos(θ/2)LG1
1ĥ +

sin(θ/2)LG−1
1 v̂). Insets show theoretical structures. Note that the only information missing from

these measurements is the spatially dependent phases of the ĥ and v̂ components, but their relative
phases are manifested in the polarisation structures.

the form

E = cos(θ/2)LG`HpH ĥ+ sin(θ/2)LG`VpV v̂. (3.12)

Here varying θ from 0 to π the concurrence should go from 0 through 1 to 0. At θ = 0 E = LG`HpH ĥ

so C = 0 and at θ = π E = LG`VpV v̂, for which C = 0 also. At θ = π/2 we have an equal weighting

of the two polarisation components, and C = 1. Some examples of such beams are shown in

figure 3.1.

PBS Cam

Figure 3.2: Polarimeter setup. Details
in main text. PBS: polarising beam
splitter.

The Stokes parameters are measured using a simple auto-

mated polarimeter setup shown in figure 3.2. The vector

beam passes through a quarter- and a half-wave plate

followed by a polariser (in the form of a polarising beam

splitter) and finally arrives at a detector in the image

plane of the DMD. Different orientations of the wave-

plates allow the polariser to project the incoming beam

onto all the polarisation basis states according to table

3.1. This is the most efficient way of measuring all six

projections, requiring one to turn only one waveplate for

each projection. It is possible to calculate Stokes parameters from only four measurements, how-

ever, by using the relation IH + IV = ID + IA = IR + IL. Later in this section we will discuss why

we have not done this.
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Figure 3.3: Stepper motor
driver circuit diagram. For
the Arduino connection dif-
ferent ports can also be used.

The automation comes in with the waveplates being placed in 3D-

printed rotation stages driven by stepper motors and controlled

by Arduino boards connected to the experiment control computer.

The Arduino boards need to be connected to the stepper motor

through a small control board that we built ourselves. The circuit

diagram for this is shown in figure 3.3. Depending on the reduction

ratio of the stepper motors this system can measure all Stokes

parameters in about 10 seconds. Of course a higher reduction ratio

results in increased accuracy but reduced speed. The components

of the 3D printed rotation stage, designed by Ermes Toninelli at

the University of Glasgow, are shown in figure 3.4.

In principle one could also replace the half-wave plate with a sheet

polariser, remove the beam splitter, and rotate the polariser by

double the half-wave plate angles listed in table 3.1. The reason

we choose not to do this is because the sheet polarisers available to us were mounted between
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Table 3.1: Waveplate angles with respect to the horizontal for projection onto the polarisation
basis states for Stokes measurements.

Polarisation state λ/4 λ/2
|H〉 0◦ 0◦

|R〉 0◦ 22.5◦

|V 〉 0◦ 45◦

|L〉 0◦ 67.5◦

|A〉 45◦ 67.5◦

|D〉 45◦ 22.5◦

Figure 3.4: Components of the 3D printed rotation stages used to measure Stokes parameters.
The waveplates in the experiment were mounted into the 1 inch internal diameter optic holder
(green), which was attached to the large cog (cyan). The large cog had teeth on its inner surface,
connecting to a small cog (yellow) driven by a stepper motor (dark gray). The stepper motor was
attached to a back plate (light purple), which connected to the large cog with a ball bearing (gray)
and also to a post mount (light gray) to which standard Thorlabs posts could be attached via M6
grub screws. The assembly provides a roughly 1 cm diameter through path for optical access. The
components were held together by M3 screws at the connections indicated by the dashed black
lines.
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two relatively thick plates of acrylic. This is not, in itself, a problem, but if they are not placed

in the beam path exactly perpendicular to the propagation direction then the beam is displaced

due to refraction. This is still not much of an issue, but if the rotation stage wobbles, then the

displacement due to refraction changes with polariser angle, which leads to the beam moving on

the detector. This is undesirable, because it would make the calculation of polarisation patterns

difficult, since it would make it necessary to align the recorded Stokes images in software. Since the

Stokes parameters used in determining concurrence are integrated over the beam profile one could

focus the output of the polarimeter setup onto a photodiode instead of imaging onto a camera.

Noise is a significant issue for Stokes parameter measurements because of normalisation. The

expression for the concurrence, including the normalisation chosen for the experiment, is a form of

equation 3.11,

C =

√√√√1−

((
IH − IV
IH + IV

)2

+

(
ID − IA
ID + IA

)2

+

(
IR − IL
IR + IL

)2
)
. (3.13)

Of course in theory IH + IV = ID + IA = IR + IL, but it is possible that in the experiment we

have optical elements that absorb in different ways for different polarisation states, in which case a

slightly more reliable normalisation could be obtained using the expression in (3.13). Issues arise in

areas of the images where the signal-to-noise ration (SNR) is low, i.e. in areas where there is little

light in the beams. Because of the division in the normalisation these areas are prone to causing

large fluctuations in the Stokes parameters. Recall that the point of the concurrence measurement

is to discern whether there is spatial information correlated with polarisation. If there is any kind

of spatial fluctuation due to noise this will cause us to overestimate concurrence.

In a way this is not surprising at all. The background noise does not carry polarisation structure,

but neither is it associated with any particular polarisation. The main sources for this noise

is background light scattered from room lights, LEDs and screens in the lab, and CCD noise.

Scattered light is unpolarised, and CCD noise is not related to polarisation at all. A characteristic

of unpolarised light is that the normalised Bloch vector, the vector comprised of the last three

normalised Stokes parameters S1,2,3, associated with it has a magnitude less than 1. But looking

at the definition of concurrence, this property is shared with vector beams, if we integrate over

the beam profile! The Bloch vector of vector beams integrated over their profile is indeed shorter

than 1, and it has a length 0 for maximally correlated beams. So unpolarised light, like noise, is

indistinguishable from vector beams using this measure. This is why we pay careful attention to

reducing noise in the recorded images. The way we do this is by low-pass filtering the images. We

Fourier transform the images and remove a few of the highest frequency components. In practice

we chose to remove the two highest frequency components as this gave very good results without

an overly harsh reduction of detail in the beams. This, of course, limits the spatial resolution that

we can detect in the beams, but for the smooth beam profiles we were interested in this was not

an issue.

Results of the measurements are shown in figure 3.5. It can be seen that there is excellent agreement

between the numerical simulations and the measured data. We obtain the error bars by performing

the same measurement 21 times and taking the standard deviation of the calculated concurrences.
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a) c)b)
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Figure 3.5: Concurrence measurements calculated from data (blue) and numerical simulations

(orange) from Stokes measurements at the University of Glasgow. The polarisation basis is ĥ, v̂.
The LG modes used are, in the format [`0, p0; `1, p1], a) [1,0;-1,0], b) [1,1;-1,1], c) [3,0;1,1].

PBSLaser DMD Aperture/4 plate /4 plate SLM

Figure 3.6: Vector beam generating and measurement setup built at the University of Witwater-
srand.

3.4 A related experiment at the University of Witwater-

srand

Our collaborators at the University of Witwatersrand carried out a different experiment intended to

measure the concurrence of vector beams. Their experimental setup for generating vector beams,

shown in figure 3.6 was conceptually identical and practically similar to ours as well. They have

opted to use a polarising beam splitter instead of a Wollaston prism and overlapped the two

orthogonal polarsation components on the DMD by directing one of the outputs from the beam

splitter using a mirror. They have included a quarter-wave plate before the DMD to transform

from the |H〉 − |V 〉 basis to the circular one.

Of more interest is the difference in concurrence measurement setups. Our collaborators projected

the vector beams onto not only polarisation basis states but also spatial modes using an SLM in

the reverse operation compared to how it would be used for beam shaping, followed by on-axis

intensity measurement. This exploits that beam propagation is symmetric in z; in other words, if

we know the optical field in any plane we can determine it in any other plane. Thus if we propagate

for example a LG`p beam backwards through a hologram that is designed to generate a LG`p beam

from a Gaussian, the output field will be a Gaussian. This is a form of projection; the more the

output of such a hologram is like a Gaussian the more the projected beam was like the one the

hologram was designed to generate if a Gaussian propagated through it. In fact, one can measure

the on-axis intensity of the output, which is related to the projection 〈Ψin|Ψtest〉.

Naturally, for this to work one needs to know which subspace of spatial modes to test, since the

whole space of spatial modes is infinite. With this restriction, though, the method works very well,

as can be seen in figure 3.7 showing measurement results kindly provided by our collaborators. The

uncertainty in these measurements depends on the particular beam chosen. The measurement was

performed using a camera, and uncertainty was calculated by taking the standard deviation of the

64 pixels around the on-axis pixel as the uncertainty of the on-axis pixel value, and propagating

this through equation 2 in [52]. Interestingly these measurements have a tendency to overestimate
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a) c)b)

/2 /2 /2

Figure 3.7: Concurrence measurements calculated from data (blue) and numerical simulations
(orange) from projection measurements at the University of Witwatersrand. The polarisation

basis is r̂, l̂. The LG modes used are, in the format [`0, p0; `1, p1], a) [1,3;-1,3], b) [3,1;-3,1] and c)
[4,0;-4,0].

concurrence, which suggests that it is also susceptible to noise issues. Our collaborators generated

beams of a form similar to ours in 3.5 but using the |R〉 − |L〉 polarisation basis,

E = cos(θ/2)LG`RpR r̂ + sin(θ/2)LG`LpL l̂. (3.14)

It can be seen that their results also agree very well with the theoretical predictions. However, to

achieve these results a subset of spatial modes that contain the ones that make up the vector beams

needed to be known a priori, which would be difficult to guarantee if the beams to be characterised

would be unknown.
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Figure 3.8: Concurrence evaluated for sub-areas
of a maximally correlated beam. The inset shows
some example sub-areas. Notice how concurrence
reaches its maximum value as soon as all polari-
sation directions are included in the sub-area.

Let us return briefly to the idea that based on

concurrence measurement we cannot tell the

difference between structured polarisation and

unpolarised light. The difference between the

two cases is, of course, that for structured po-

larisation the polarisation state at any point in

space, and more critically any transverse plane,

is well-defined, whereas for unpolarised light it

is not. So we can tell the difference between

the two cases if we test the polarisation at a

single point. Of course for such a scenario con-

currence would be zero, since there would be

no spatial information to support a correlation.

This leads to a question: if we look at a single

pixel in our spatially resolved Stokes measure-

ments for a maximally correlated beams, we

measure zero concurrence, but if we integrate over the entire beam we measure maximal concur-

rence, so how exactly does the observed area influence our measured concurrence? We investigated

this question numerically with one example of a maximally correlated beam that was radially po-

larised. We evaluated the concurrence for growing sub-areas of the beam, as shown in figure 3.8.

While the exact shape of the curve in the figure depends on the polarisation structure of the beam

in question, the key observation is that the concurrence reaches its maximal value as soon as all

polarisation directions are included in the sub-area. This suggests that for beams with certain

symmetries it is not necessary to integrate over the entire beam, but it is sufficient to interrogate

a small area which contains all polarisations. This should be the case for vector vortex beams, for

example, but not for full Poincaré beams [54].
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3.5 In summary

We have shown that Stokes measurements can be used to calculate concurrence for the internal

degrees of freedom (polarisation and spatial modes) of vector beams. We have experimentally

demonstrated the effectiveness of this approach for quantifying correlations in vector beams. We

also compared our method to the estabilished technique of projection measurements on both de-

grees of freedom.
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Chapter 4

Fluorescence and the optical

Bloch equations

4.1 Introduction

So far in this thesis we have exclusively dealt with optics, in manipulating light using dynamic

and static elements, and saw how we can extract information about correlation between degrees of

freedom of photons using only such things. It is time to turn our attention to the effects of light on

the material world, and look into how light-matter interactions can be used to manipulate matter,

especially through using properties of structured light.

The system we will be concerned with is rubidium atoms under the influence of resonant, and later

near resonant, coherent laser radiation. Atoms are nice for the study of light-matter interactions

because they interact rather strongly with electromagnetic radiation near resonance to an atomic

transition (and in some cases even far from resonance the effects can be surprisingly strong [55]).

Atoms of the same species and isotope are absolutely identical so they also interact with a light

field in the same way,1 enhancing or suppressing interaction when working in concert [56, 57, 58].

Rubidium is a particularly experiment-friendly species of atoms for two reasons. First, rubidium

has only one electron in its outermost shell, which leads to a rather simple, almost hydrogen-like

electronic level structure. Despite being simple, there are enough levels to provide a rich system

with many opportunities to investigate new physics even today, when atomic physics has been at

the centre of significant research efforts for a century.

Second, some very useful rubidium transitions are in the near infrared (IR), extremely close in

frequency to that of laser diodes found in DVD drives, which used to make laser sources extremely

cheap until DVDs went out of style in favour of online streaming services2. Coincidentally, detec-

tors such as CCDs and photodiodes are usually very sensitive to near-IR light, which makes the

detection and analysis of radiation scattered/transmitted by rubidium atoms easy. Liquid crystal

devices developed for visible light are also an excellent base technology on which to build spatial

light modulators and Q-plates for near-IR.

1Provided that they do not experience different external environmental parameters, such as magnetic fields.
2Isn’t it interesting how two such seemingly unconnected fields as atomic physics and the entertainment industry

can have connections? The history of technology is, I’m sure, full of such fascinating connections.

49
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In this part of this thesis we will first look at scattering phenomena, using the scattering properties

and electronic level structure of rubidium to learn something about the intensity structure of

shaped laser beams, and in turn dictate the electronic state of atoms in three dimensions. Then,

we will describe methods of cooling atoms to extremely low temperatures, and exploit the very slow

thermal motion of cold atoms and the magnetic coupling of electronic levels to gain information

about magnetic fields.

4.2 Rubidium level structure

Figure 4.1 summarises the structure of the electronic states of both relevant isotopes of rubidium.

Throughout Part II of this thesis we will need to consider different structures of these levels, so

it makes sense to discuss all of the details here. We will look at energy level shifts due to various

effects in order of magnitude.

In a very rudimentary picture of an atom one can consider electrons to orbit the nucleus3. For our

purposes here it is sufficient to consider two orbital angular momentum states of the outermost

electron of the rubidium atom, or two orbitals. These are the S and P orbitals, with angular

momentum quantum numbers L = 0 and L = 1, respectively. The S orbital is the ground state for

this electron, and is separated by the P orbital by roughly 380 THz4 [59], or in units of wavelength,

790 nm.

The electron, being a spin 1/2 particle, carries its own spin angular momentum as well as orbital

angular momentum. The spin angular momentum quantum number can take the values S = ±1/2.

The two angular momenta can interact, an effect that is known as spin-orbit coupling. The total

electronic angular momentum can then be expressed as J = L + S (since angular momenta are

vectors) [60]. |J| can take values between |L− S| ≤ J ≤ L+ S, which means that for the S state

J = 1/2. However, for the P state, with L = 1, J can take two values: J = 1/2 and J = 3/2.

This is known the fine splitting, indicated in figure 4.1 by the spectroscopic notation LJ . This fine

splitting is of the order of 7 THz, or, expressed in more conventional units for this range, 15 nm.

The electron is not the only particle with angular momentum in the atom, however. The nucleus

carries its own angular momentum I, which also couples to the electronic angular momentum,

leading to a total atomic angular momentum F = J+ I, the magnitude of which again takes values

between |J − I| ≤ F ≤ J + I. Therefore the fine structure levels also contain sublevels labelled by

F , an effect known as the hyperfine splitting. This is where we encounter the first major difference

between the two relevant isotopes of rubidium. The nuclear angular momentum quantum number

is different for the isotopes: I85 = 5/2, while I87 = 3/2. This means that the F quantum numbers

for 85Rb are higher by 1 when compared to 87Rb. There are too many hyperfine levels to list

here, but they are clearly labelled in figure 4.1. In any dipole-allowed transition |∆F | ≤ 1. The

hyperfine levels are separated by a few gigahertz in the ground state S, and by energies from a few

tens to a few hundreds of megahertz for the excited P levels.

The last structure we need to consider is the magnetic structure of the hyperfine levels. Each

hyperfine level contains 2F + 1 magnetic sublevels, labelled by the quantum number mF , which

can take values between −F ≤ mF ≤ F . The magnetic sublevels are degenerate in the absence of

external magnetic fields, but they undergo Zeeman shift in the presence of one. This shift is given

3It is well known that this picture is inaccurate, but for this discussion this simple and intuitive picture will
work.

4When we refer to some energy E in units of frequency ω, we mean that E = ~ω. Wavelength is meant in a
similar way.
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Figure 4.1: Electronic level structure of the outermost electron (5s) of two isotopes of rubidium,
85Rb and 87Rb. Energy increases from the bottom to the top, although level spacings are not
to scale. Fine and hyperfine structure are shown, with splitting energies expressed in nanometres
for fine structure and units of frequency for hyperfine splitting. Magnetic (mF ) sublevels are also
shown, with the Zeeman shift per mF indicated on the right.
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by

∆EmF = µBgFmFBz, (4.1)

where µB is the Bohr magneton, as usual, Bz is the z-component of the magnetic field, with z

being the atomic quantisation axis, and gF is the hyperfine Landé g-factor, given by

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
(4.2)

with gJ = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
,

where on the first line we omitted a factor proportional to the nuclear g-factor due to its three

orders of magnitude smaller effect, and on the second line we took the approximate values for the

spin and orbital g-factors gS ≈ 2 and gL ≈ 1. Because of the weakness of magnetic interaction

the energy shift due to the Zeeman effect is usually rather small. Neighbouring mF states tend to

shift by around 0.5 MHz per Gauss external field, and even the difference between the two furthest

magnetic sublevels P3/2 manifold of 85Rb is, at 1 G, less than 7 MHz, which is on the scale of

the linewidth of these transitions. The scales of the energy separations between adjacent levels in

orbital, fine, hyperfine and Zeeman levels in rubidium is shown for interest in figure 4.2.
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Figure 4.2: Scales of energy separations
between adjacent levels in orbitals, fine,
hyperfine and Zeeman levels in rubid-
ium.

Fine and hyperfine levels are separated in energy enough

to be easily resolved even by cheap, home-made lasers,

which will be described in the following experimental

chapter. In fact, it is not the laser linewidth that prevents

us from resolving the magnetic sublevels, but rather the

natural transition linewidth. However, just because the

mF levels are not resolvable, it does not mean that they

cannot be addressed. They are, in fact, crucial to our

work on cold atoms.

4.3 Absorption and emission

As we have mentioned a few times already, the electronic

structure of atoms can be influenced by the presence of light5. Perhaps the most obvious interaction

between atoms and light is the absorption of light. In everyday life we are familiar with opaque

materials (which are, of course, made of atoms) that absorb light; this is usually a solid state

phenomenon, however, and has quite different properties compared to atomic interactions.

An atom can only absorb photons from a light field whose energy is equal to the energy difference

between two electronic energy levels of the atom, ~ω = ∆E. Even this can only happen when the

atom is in the lower energy state. In such a scenario the photon is removed from the external light

field, and the atom is excited to the higher energy state6. Excited states have a finite lifetime,

meaning that atoms decay to lower energy states over some time with the emission of a photon of

the same energy. This is known as spontaneous emission. The finite lifetime τ leads to a broadening

of the emission spectrum due to the uncertainty relationship between the energy and lifetime of

the state, ∆Eτ ≈ ~. The naturally broadened emission line has the shape of a Lorentzian [60] with

a width related to the inverse of the lifetime of the excited state Γ = 1/τ , which is the radiative

decay rate. Γ gives the rate of spontaneous emission from an atom if there are enough photons in

5This should come as no surprise, since the electrons are bound to the nucleus through electromagnetic interaction,
which is, in a way, not very different from light.

6In a more accurate description the photon and atom become a single ”thing”, but this makes little difference
here.
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Figure 4.3: Lorentzian shape of natural broadening (left) and Gaussian shape of Doppler broad-
ening (right). Their relative width for the rubidium transitions considered here is shown on the
right.

the external light field to excite it from the lower state over a time that is much shorter than the

excited state lifetime. We also ignore the time it takes for an atom to enter the excited state, since

this is extremely short for atoms7 It is also possible to de-excite an atom by using an external light

field. This process is called stimulated emission. This process is crucial to the operation of lasers,

but we will not consider it here as it is not relevant to the processes we study.

During absorption and emission processes a number of quantities are conserved. In subsequent

chapters the conservation of linear momentum during absorption (and emission) of radiation will

be of great importance. It can be expressed as

pfinal = pinitial + ~kphoton, (4.3)

where the p is the linear momentum of the atom. Naturally, energy is also conserved, so

∆Etotal =
(
Ee +

pfinal · pfinal

2M

)
−
(
~ω + Eg +

pinitial · pinitial

2M

)
, (4.4)

so ~ω = ~ω0 +
~kphoton · pinitial

M
+

~2kphoton · kphoton

2M
,

where Ee −Eg = ~ω0 is the energy difference between the atomic states, ~ω is the photon energy,

M is the total atomic mass. The second and third terms on the right hand side in the second line

of equations 4.4 correspond to the Doppler shift and recoil energy, respectively. Since the recoil

energy varies strongly with photon energy, it is significant only for high frequency transitions, and

for the optical transitions considered here it is insignificant and so we ignore it.

In a thermal gas of temperature T the atomic momentum distribution follows the Maxwell-

Boltzmann law, so it has a Gaussian profile with a width of ωDoppler ≈ kphoton

√
kBT/M . The

absorption and emission spectra are broadened by this momentum distribution, and they also have

a Gaussian shape8 with a width ~ωDoppler. For room temperature rubidium this broadening is

on the order of 500 MHz. The shapes and relative widths of natural and Doppler broadening are

shown in figure 4.3.

7But the transition can be observed in other analogue systems, and it has been shown that the evolution from
one state to another is a continuous, coherent process that can even be reversed with appropriately high temporal
resolution in the experiment control [61].

8Technically speaking their profile is the convolution of the Doppler Gaussian with the natural Lorentzian known
as the Voigt profile, but the natural width is so narrow compared to the Doppler width that this hardly matters.
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Polarisation ∆mF

σ+ +1
π 0
σ− -1

Table 4.1: Changes in magnetic quantum numbers under the influence of different light polarisa-
tions.

We should note that for absorption the photon momentum k is dictated by the laser, both in

magnitude and direction. For spontaneous emission, however, there is no constraint on its direction

and so spontaneous emission is isotropic.

σ+πσ-

-2 -1 0 +1 +2

-1 0 +1

Figure 4.4: Polarisation selection rules
for dipole-allowed transitions, illus-
trated here for the S1/2F = 1 →
P1/2F

′ = 2 transition of 87Rb. All pos-
sible decay and excitation channels are
shown. Notice that the m′F = ±2 can
only be reached by (and decay through)
σ∓ respectively.

Angular momentum is also conserved during absorption

and emission. This leads to selection rules on the possible

transitions for different polarisations of the light field [62].

Here we only consider dipole-allowed transitions. In this

situation we need to consider three types of light polari-

sations: σ+, σ− and π. Depending on the angle between

the atomic quantisation axis9 and the light propagation

direction these map to different light polarisations. In the

case when the two axes are aligned σ+ = l̂, σ− = r̂ and

π corresponds to polarisation along the z-direction (or,

alternatively, linear polarisation emitted orthogonally to

the atomic quantisation axis, where the polarisation di-

rection is along the quantisation axis).

Interaction with these polarisations affects the magnetic

mF sublevels differently. For all of the transitions consid-

ered here the electronic orbital angular momentum changes by 1, ∆L = 1. During such interactions

∆mF = 0, ±1. How these correspond to the three light polarisations is summarised in table 4.1.

These selection rules are extremely important as they make it possible to manipulate the internal

structure of atoms simply by an appropriate choice of light polarisation, which we have excellent

control over (see chapters 1 and 2).

Figure 4.4 illustrates the polarisation selection rules for the S1/2F = 1 → P1/2F
′ = 2 transition

of 87Rb. Note that most mF levels can be excited, and can decay to, a number of other levels.

Usually the laser field, in conjunction with the atomic quantisation axis, dictates which excitation

channels are utilised in any experiment. The polarisation of spontaneous emission depends on the

specific decay channel. The probability of following any specific transition is proportional to the

overlap of the angular momenta of the start and end states, which is quantified by square of the

Clebsch-Gordan coefficients. These numbers can be found in data tables.

We would like to draw attention to a configuration of magnetic sublevels that can be found in

F → F ′ = F + 1 transitions. In such transitions there exist two pairs of magnetic sublevels,

|mF | = F → |m′F | = F + 1, which are connected by only one possible excitation and decay

channel, through σ± polarisation. An example is shown in colour in figure 4.4. Such mF = ±F ′

states are often called stretched states, and the transitions to them are known as cycling transitions,

because if an atom can undergo one such transition once, it can only decay to a level from which

it must undergo the same transition, provided that the polarisation of the driving light does not

9The quantisation axis is the direction onto which angular momenta are projected to find values of quantum
numbers.
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contain polarisation that can drive the other transitions. The redistribution of atomic populations

between states by interaction with light is called optical pumping.

4.4 Fluorescence and the optical Bloch equations

The discussion in this chapter follows the work outlined in [63] and [59].

When illuminated by a continuous stream of coherent photons, in other words, CW laser radiation

near resonance, atoms continuously absorb and spontaneously emit light. As we have said before,

the emission is isotropic, and is called fluorescence. We are interested in the rate at which fluores-

cence photons are emitted by the atoms. This, of course, depends on the intensity of the incoming

light field as well as properties of the states. To find this rate we need to introduce the optical

Bloch equations. Here we will consider only two levels, which requires a bit of justification. All

levels apart from the magnetic sublevels are easily resolved by the narrow linewidth lasers we use,

because their separation is large compared to the atomic linewidth.

This is not the case for the magnetic sublevels. However, there are several scenarios in which we do

not have to worry about treating them as separate levels. If the laser field carries polarisation that

contains σ+, σ− and π polarisation simultaneously,10 then there is no selectivity in the interaction

between the magnetic sublevels and they can be all addressed and the interaction is averaged over

them. In the case of atoms optically pumped into a stretched state the interaction can only happen

between two Zeeman sublevels, so the 2-level approximation makes sense again.

We begin by introducing the quantum mechanical density operator for a state of a two-level atom

|Ψ〉 = cg|g〉+ce|e〉, where the ground |g〉 and excited |e〉 states have complex probability amplitudes.

The density operator is then defined as ρ̂ = |Ψ〉〈Ψ|. It is, however, more commonly written in the

form of a matrix, the well-known density matrix:

ρ̂ =

(
ρee ρge

ρeg ρgg

)
=

(
cec
∗
e cgc

∗
e

cec
∗
g cgc

∗
g

)
. (4.5)

The diagonal elements of the density matrix, ρgg and ρee, are known as populations of the states

|g〉 and |e〉 respectively. They represent to the probability of finding the atom in the corresponding

state, and for ensembles of atoms they can represent the occupation of the states in the ensemble.

The off-diagonal elements are called coherences, and depend on the relative phases between the

complex amplitudes associated with the states. The density matrix formalism can be readily

extended to multiple levels, where the elements contain pairwise coherences between levels in the

off-diagonal elements. The diagonal always contains the populations of the levels.

Of course absorption and spontaneous emission processes are all time-dependent, so we need to

be able to express the evolution of the density matrix under the influence of an external radiation

field. The von Neumann equation gives this time evolution, if the interaction can be written as a

Hamiltonian operator Ĥ:
dρ̂

dt
=
i

~

[
ρ̂, Ĥ

]
. (4.6)

Unfortunately, spontaneous emission cannot be described in terms of a Hamiltonian. However, the

power of the density matrix approach is that it allows us to incorporate even such processes. In

the previous section (4.3) we stated that excited states decay at a rate given by the inverse lifetime

of the state, Γ. After this decay a two-level atom must be in the ground state, so it fills up at the

10This is achievable with an appropriate angle between the atomic quantisation axis and the laser direction.
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same rate. So we can write, for the populations, that

dρee
dt

= −dρgg
dt

= −Γρee. (4.7)

We also need to describe the evolution of the coherences. It turns out that they also depend on

the decay rate,
dρeg
dt

= −Γ

2
ρeg and

dρge
dt

= −Γ

2
ρge. (4.8)

We can thus write down the entire time evolution of the density matrix as

dρ

dt
=
i

~

[
ρ̂, Ĥ

]
+

(
Γρee −Γ

2 ρge

−Γ
2 ρeg −Γρee

)
. (4.9)

All we have to do now is obtain an expression for the interaction Hamiltonian, and we can write

down the complete time-evolution of the populations. To do this, we start with the Schrödinger

equation,

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t), (4.10)

with the atomic wavefunction

|Ψ〉(r, t) = cg(t)|g〉+ ce(t)|e〉e−iω0t. (4.11)

The Hamiltonian in equation 4.10 is constructed from two parts, one corresponding to the bare

atom (with eigenstates |g〉 and |e〉), and one to the external field, which is due to the atomic dipole

interacting with the external field: d̂ · Ê. Using these with equations 4.10 and 4.11, we obtain

time-evolution equations for the complex amplitudes cg,e,

i~
dcg
dt

= ce〈g|d̂ · Ê|e〉e−iω0t (4.12)

i~
dce
dt

= cg〈e|d̂ · Ê|g〉e+iω0t.

The laser field that we consider here is a monochromatic plane wave, which we can write as the

expression at the beginning of this thesis, equation 1.3, recast to the form E = E exp[i(k ·r−ωt)]ê.
Then, we can write equations 4.12 as

i~
dcg
dt

= ce~Ω∗
(
ei(ω−ω0)t + e−i(ω+ω0)t

2

)
(4.13)

i~
dce
dt

= cg~Ω

(
ei(ω+ω0)t + e−i(ω−ω0)t

2

)
,

where we have defined the Rabi frequency Ω = E/~〈e|d̂ · ê|g〉, which charaterises the strength of

the interaction between the light field and the atom. It depends on the light intensity11 and the

dipole matrix element d̂ · ê, but because the latter is fixed for each transition we often consider the

Rabi frequency analogous to intensity.

Note that on the right-hand side of equations 4.13 there are oscillations with two frequencies, ω−ω0

and ω + ω0. Close to resonance the former is small whereas the latter is very large. Because of

this we can make the approximation that over the slow evolution of the complex amplitudes terms

with the large frequency undergo many oscillations and their value averages to 0. This is known

11Recall that I = |E|2.
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the Rotating Wave Approximation. We can then write equations 4.13 in the much simpler form

i~
dcg
dt

= ce~Ω∗
ei∆t

2
(4.14)

i~
dce
dt

= cg~Ω
e−i∆t

2

by defining the detuning ∆ = ω−ω0, the difference between the frequency of the driving field and

that of the atomic transition.

Comparing these expressions with 4.10 we could read off the matrix form of the Hamiltonian, but

at this point it would contain time-dependent terms. We can move the time-dependence to the

complex amplitudes by moving into a new, time-dependent basis (in a reference frame co-rotating

with the light field). This can be done by making the new definitions c′g = cg and c′e = cee
i∆t,

which allows us to rewrite equations 4.14 as

i~
dc′g
dt

= c′e
~Ω

2
(4.15)

i~
dc′e
dt

= c′g
~Ω

2
− c′e~∆.

We can thus write down the time-independent Hamiltonian:

Ĥ =
~
2

(
−2∆ Ω

Ω 0

)
. (4.16)

We are finally at the stage where we can substitute Ĥ into equation 4.9 and write down the optical

Bloch equations in full glory,

˙̃ρee = − iΩ
2

(ρ̃ge − ρ̃eg)− Γρ̃ee

˙̃ρgg =
iΩ

2
(ρ̃ge − ρ̃eg) + Γρ̃ee (4.17)

˙̃ρge = − iΩ
2

(ρ̃ee − ρ̃gg)− i∆ρ̃ge
Γ

2
ρ̃ge

˙̃ρeg =
iΩ

2
(ρ̃ee − ρ̃gg) + i∆ρ̃eg

Γ

2
ρ̃eg,

where we transformed the density matrix to the co-rotating reference frame as well, indicated by

the tilde above the matrix elements, e.g. ρ̃ge = ρgee
−i∆t. Note that the trace of the density matrix

is 1, so ρee + ρgg = 1 at all times, because there are no other states that the atom could occupy.

The same logic can be used to extend these equations for any number of levels, although they

do get quite messy very quickly. Solving the optical Bloch equations is another matter entirely;

analytical solutions are known for a few special cases, but usually we solve them numerically. We

also note that it is possible to incorporate the decohering effect of collisions into these equations

by an additional term, −iρ̃ge/egγc, in the equations for the coherences, where the collisional decay

rate γc can be obtained from various models for collisions. For the densities and temperatures that

we work with collisions between atoms are negligible, so we need not worry about this.

Luckily, in order to obtain an expression for the steady-state fluorescence rate all we need to know

is the population in the excited state ρee, since only atoms in the excited state can fluoresce, so

the fluorescence (or scattering) rate is just Γρ̃ee. Setting ˙̃ρee = 0 (steady state) we find that the

fluorescence rate is

Rf = Γρ̃ee =
Γ

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
, (4.18)
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Figure 4.5: Rabi oscillations of the ground and excited state populations using a CW laser.

where we have defined the saturation intensity

Isat =
cε0Γ2~2

4|ê · d̂|2
(4.19)

such that I/Isat = 2(Ω/Γ)2. We will revisit the expression for the fluorescence rate in a subsequent

chapter on controlling the populations in a warm vapour in a spatially resolved manner.

4.5 Rabi flops

Let us return briefly to equations 4.14. It is possible to find solutions to these equations by

differentiation, which gives

d2cg
dt2
− i∆dcg

dt
+

Ω2

4
cg = 0 (4.20)

d2ce
dt2

+ i∆
dce
dt

+
Ω2

4
ce = 0.

It is interesting to look at how the populations, |ce|2 and |cg|2, vary with time in the presence of

the external radiation field. Taking the initial condition that at t = 0 cg = 1 (and consequently

ce = 0) yields the solution

|cg(t)|2 =
Ω2

Ω′2
cos2

(
Ω′t

2

)
(4.21)

|ce(t)|2 =
Ω2

Ω′2
sin2

(
Ω′t

2

)
,

where we have defined Ω′ =
√

Ω2 + ∆2. figure 4.5 shows the time-evolution of the two states. The

probability to find the atom in either state varies sinusoidally, an effect known as Rabi oscillation,

or Rabi flops.

Note that if the radiation field was turned on for a time tπ = 2π/Ω′ the population of the ground

state would be completely and coherently transferred to the excited state. A pulse of this length is

known as a π-pulse. The other notable pulse length is tπ/2 = π/Ω′ for a π/2-pulse, which transfers

the population to an equal superposition of the ground and excited states. Sequences of such pulses

are extremely important in optical clocks and quantum information processing, but they are less

critical for our work and so will not be considered further12.

12Despite the rich possibilities... It’s a shame that there is finite time for PhDs.
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4.6 In summary

We have introduced enough concepts of atom-light interactions to allow us to understand the more

advanced techniques of subsequent chapters. We looked at the electronic and magnetic structure

of energy levels of the 5s electron in two isotopes of rubidium, 85Rb and 87Rb. We have described

the absorption and spontaneous emission of (near-)resonant light by atoms. We have obtained the

optical Bloch equations and used them to find an expression for the scattering rate. In the next

chapter we will look at ways of obtaining resonant laser light for use in atom optics experiments.



Chapter 5

Resonant laser light for working

with atoms

5.1 Introduction

In the previous chapter we saw that the internal state of atoms can be manipulated by (near-

)resonant electromagnetic fields. Through the conservation of linear and angular momentum ex-

ternal, motional states are also controllable by such fields, which leads to various cooling and

trapping schemes, some of which are described later in this thesis. All such manipulations require

monochromatic coherent radiation with tunable frequency. Sometimes internal state manipulation

can be done by microwave radiation (a good example is in the operation of caesium clocks), but

usually useful atomic transitions require optical frequencies ranging from the ultraviolet to the

infrared. For example, the rubidium transitions we work with are all in the near IR. At these

wavelengths we use lasers to obtain coherent radiation.

There are many different tunable laser designs, and the experimental requirements1 should deter-

mine which one is to be used. On the most versatile end of the scale we have Ti:Sapphire lasers

with extremely large frequency ranges (typically ∼ 300 nm [64] that can be increased by frequency

conversion [65]), low linewidths (a few dozen kilohertz) and high output powers in the range of a

few watts. However, for many important applications much simpler laser systems are sufficient.

In our experiments we use external cavity diode lasers (ECDLs), which still provide wavelength

tunability over a few nanometres, with a couple of hundred kilohertz linewidth and around 100 mW

of output power [66]. Let us look into how they work in more detail.

5.2 External cavity diode lasers

Bare laser diodes are not very useful for atomic physics applications because of their broad

linewidth, on the scale of 100s of megahertz, and the difficulty of precisely controlling their fre-

quency. One can introduce a frequency-selective feedback to reduce the linewidth of diode lasers by

placing the diode in an external cavity. The frequency selectivity is provided by a reflective grating

completing the cavity. The grating splits the relatively broadband laser light into a spectrum. By

carefully tuning the angle of the grating with respect to the laser propagation direction one can

1and available funding...

60
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direct a specific frequency component back to the diode, completing the cavity for that wavelength

and thus forcing the gain medium in the diode to amplify the selected wavelength.

It can then be seen that for a given grating period greater cavity lengths lead to narrower linewidths.

This is because the grating dispersion angle is fixed by the period, and so for shorter cavities more

wavelengths are allowed to circulate in the cavity. This is illustrated in figure 5.1. A competing

effect is that the free spectral range of a cavity is inversely proportional to its length, ∆ν =

c/2L. This translates to a reduced mode-hop-free tuning range for ECDLs, essentially limiting the

scannable frequency range. Longer cavities are also more sensitive to angle noise on the grating.

As a result in practice one needs to find an optimal external cavity length that yields an acceptable

linewidth and tuning range.

L
Figure 5.1: Frequency selective feed-
back in an ECDL. Initially the laser
is relatively broadband (white beam),
which is dispersed by the grating, and
diffracted back towards the diode on
the left. Only a limited wavelength
range, dependent on the external cav-
ity length L, is captured by the colli-
mating lens and are amplified by the
gain medium in the diode. The output
is then narrow-band (red beam).

The ECDL frequency can obviously be tuned by chang-

ing the grating angle, selecting a different frequency for

feedback. There are, however, other parameters that

need to be considered. The diode gain properties are

temperature-dependent, which means that their output

spectra vary with temperature. The gain medium is elec-

trically pumped, which makes the spectrum depend on

the driving current as well. As a result stable control

of these three parameters (grating angle, diode current

and temperature) is desirable if one wishes to have good

control over the output frequency of an ECDL.

5.2.1 Older ECDL design

The older ECDLs used in our cold atom experiments were

constructed from collimator tubes and gratings fixed to

kinematic mirror mounts attached to large aluminium

blocks. The laser diode and its collimating lens were

contained in the collimator tube, which was attached to

the kinematic mirror mount back plate by screws, with

thermal paste between them ensuring good thermal contact. A holographic diffraction grating

(1800 lines/mm) was glued to an aluminium spacer which was screwed to the kinematic mount front

plate. The external cavity length was chosen to be close to 20 mm, which gives a sub-MHz linewidth

and reasonably large (> 7 GHz) mode-hop-free tuning range. A hole was drilled into the mirror

mount front plate opposite to the horizontal angle adjustment screw, and a piezoelectric transducer

(PZT2) was fixed into this hole for electronic fine control of the grating angle. The kinematic mount

assembly was screwed to large (approximately 10×10×5 cm) aluminium blocks used as heat sinks,

with a Peltier cooler between the mount and aluminium block for active temperature control. A

thermistor was attached to the mirror mount for feedback to the temperature controller. This

construction is shown in figure 5.2. The electronic control of diode current and temperature was

handled by commercial Thorlabs diode laser driver boards.

These older ECDLs are in the so-called Littrow configuration, where the grating angle provides the

frequency control, but unfortunately the beam output direction also depends on the grating angle.

This results in unwanted beam deflection as the frequency is tuned. To be fair, the deflection is

2We realise that the abbreviation is often used to refer to lead zirconate titanate, a specific piezoelectric material.
Apologies for the confusion.
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Figure 5.2: Schematic ECDL design for the older models used in our experiments. LD: laser diode;
PZT: piezo-electric transducer.
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Figure 5.3: Schematic diagram of the new generation ECDLs, excluding the Peltier unit and the
adjustable height platform.

extremely small once the laser is set up to emit close to the desired frequency, and is usually barely

detectable even after metres of propagation.

5.2.2 New generation ECDLs

Recently a new generation of ECDLs were constructed and used for our warm atom work. The

design is based on work by Robert Wylie, Ewan MacLagan, Paul Griffin and Erling Riis. The

operating principle of this new design is very similar to that of the older design detailed above,

with one modification. A mirror is inserted opposite and parallel to the grating, and its angle is

tuned in unison with the grating (they are mounted together). This ensures that the beam output

direction is independent of the laser frequency [67] because the additional deflection caused by a

change in the grating angle is exactly compensated by the rotation of the parallel mirror. Note

that while the beam output direction is unchanged under tuning, there is a very small lateral

displacement. This is negligible for all our experiments.

Another change for the new designs is the lack of commercial parts. Most parts of the extended

cavity were machined from aluminium at the local workshop. The design comprises 5 main parts:

a collimating tube, a housing for the collimating tube, a grating and mirror mount, a front plate,

and an adjustable height mounting platform. These parts are shown in figure 5.3. Collimation

tube contained a threaded mounted 6.24 mm focal length aspheric collimating lens (Thorlabs

C110TME-B). The laser diode was secured to the aluminium tube by a brass back plate screwed

to the tube with 3 screws. The collimation tube tightly fit into the aluminium housing block, which

provides adequate thermal contact. It was secured by a plastic-ended grub screw. The grating and
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the mirror were glued to the machined mount, which was attached to the aluminium front plate

via two tight springs. The front plate and grating mount assembly was secured to the collimation

tube housing via another two springs.

The front plate assembly was allowed to pivot around a vertically aligned metal cylinder glued to

the housing held between two identical cylinders glued to the front plate. The horizontal angle of

the front plate assembly was controlled by a long ball-ended brass screw going through the housing.

The ball end rested against a sapphire pad attached to a PZT, which pressed against a screwed-on

retainer plate on the front plate. On the other side of the housing, near the horizontal pivot point,

a spring-loaded ball-ended screw rested against the front plate to increase the plate movement

stability at high frequencies. The vertical tilt of the front plate assembly was adjusted by a small

ball-ended brass screw going through the front plate above the laser output port, resting between

two small metal cylinders glued to the housing. The front plate can be tilted through less than

10◦ in both horizontal and vertical directions.

The ECDL assembly was mounted on a bespoke adjustable height mounting platform by four

screws. A Peltier thermal control unit was inserted between the mounting platform and the laser

housing, with the thermistor supplying temperature feedback inserted into a small drilled hole

in the laser housing immediately above the Peltier unit, surrounded by ample thermal paste to

provide reliable information on the housing temperature.

5.2.3 Setting up an ECDL for spectroscopy

Once basic construction is complete, setting up an ECDL is a multi-stage process taking a few

hours for a practiced operator. The first step is collimation, followed by setting up the external

cavity for feedback at the desired operating temperature, then a rough frequency calibration takes

place. After this the laser can usually be operated with only occasional minimal adjustments for

many years, unless something breaks. We will now give a detailed walkthrough for the above stages.

We refer to the new generation ECDLs in details, but the principles translate straightforwardly to

the older versions. Most of the observations should be equivalent for other ECDL designs as well.

For collimation the collimation tube is removed from the housing and secured in a position that

allows the output beam to propagate several metres, either in a straight line, or using mirrors to

fold the beam path. We usually clamp the collimation tube in a V-mount, for example Thorlabs

VC3C/M. Straight propagation is preferred because adjusting the collimating lens causes it to shift

laterally slightly in the tube, which changes the beam output direction significantly, potentially

causing it to miss the mirrors. Because of this it is advisable to place signs outside the area in

use warning of possible stray light. The laser diode should be driven at currents such that the

output power is low, between 2-5 mW should do. Because of the beam direction changing during

collimation we usually compare the beam size in two planes, on an infrared detector card, by eye3

first. The collimating lens position is adjusted4 such that the beam size is the same in two plane

separated by as much distance as practically achievable. Since the size of the beam changes less

close to the diode, matching the far plane size to the close plane size is the way to go. We make

sure that there is no focal point between the two planes by scanning the detector card along the

entire propagation. The beam size of diode lasers is usually difficult to determine with accuracy

because they change shape on propagation (they are highly elliptical, with axis ratios changing

3This should not need saying, but just in case, NEVER look directly into a laser beam or a specular reflection
of it! This is a bad idea even with safety goggles on.

4Usually this is done by poking the lens tube with a small precision screwdriver because we find that in practice
this tool gives the best control, provided that the operator has decent steady hands.
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significantly over long distances). One can use beam profilers, either commercial devices or home

made ones built of a camera and a software that fits gaussians to the recorded beam profile, to get

more quantitative metrics of beam size along different axes in the two planes. However, we find

that in practice very good results can be achieved just by eye; often, intuition about equivalent

beam sizes is better than trying to compare the widths of differently shaped beams.

Once satisfactory collimation has been achieved, the collimation tube is placed back in the housing

and secured in such a way that the laser polarisation is vertical (the elliptical beam should have

its major axis horizontal to sample most of the grating for good frequency selectivity). This can

be checked with a polarising beam splitter, by maximising the reflected (not diffracted) power

from the grating, or by noting that the major axis of the elliptical beam profile corresponds to the

direction of polarisation for most diodes. Vertical polarisation is chosen to minimise the grating

efficiency. Only a small amount of diffracted light is necessary in the external cavity, because the

laser gain will quickly suppress other wavelengths, and we usually want as much output power in

the 0th order of the grating as we can get. This is also the time to set the external cavity length.

We set this by aligning the brass retainer plate of the laser diode to be co-planar with the back

plane of the housing. This gives an approximately 2 cm long external cavity, which seems to be

optimal for tunability and stability. Once the collimation tube is secure we bring the laser assembly

to operating temperature using the Peltier unit.

At this point the external cavity is very likely to be misaligned. To align it, the diode current

is lowered to just above lasing threshold. For our diodes5 this is around 40-45 mA, where the

ECDL output power is around 1 mW. The output power is then observed on a power meter or

an oscilloscope using a photodiode. The goal is to maximise the output power. A jump to at

least twice, but likely 3 or 4 times the output power is a hallmark of good feedback and hence

cavity alignment. This is because the external cavity enhances the diode laser operation, pushing

it further past threshold. First, the horizontal direction is adjusted to maximise laser power. We

observe a wide power curve with a slow change in output power. A scan of a few degrees is usually

necessary to find this maximum. Then, the vertical direction is optimised. This is a much harder

process, and may need repeating for a couple of horizontal alignments. The power curve along the

vertical direction is mostly flat with a few jumps to much higher laser powers, and it is extremely

sensitive to the vertical angle. Sometimes it can be difficult to find one peak in power that is

obviously larger than the rest; this indicates a need to change the horizontal direction a bit. A

correctly aligned cavity produces dramatically more power than the other configurations for which

power peaks are seen.

When feedback is achieved, or in doubt, the power meter is replaced with a spectrometer. The

cavity is aligned correctly if when the horizontal adjustment screw is carefully rotated the laser

spectral line moves smoothly and continuously, without jumps and secondary spectral lines ap-

pearing, over several nanometres. A good diode, cavity length and alignment allows scanning at

least 3-5 nm. If the tuning range is narrower and the spectral line jumps, sometimes this can be

fixed by adjusting the vertical screw just after a jump has occurred, such that the spectral line

jumps back to the last position along the smooth scan. If this is doable, one can try to scan back

and forth again and see if the scanning range is extended. This is difficult to do and does not

always work. If it does not, the alignment should be started from the beginning again, looking at

the output power near threshold.

This process assumes that the vertical and horizontal screws tilt the grating in orthogonal direc-

5Unfortunately their make and model is unknown, nobody remembers what they are and they are in an unlabeled
box.
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tions. This is not the case if the grating was glued on tilted in such a way so as to couple these

directions. If this is the case it might be impossible to get very good tunability, but even then it

should be possible to achieve 1-2 nm tuning range, unless the tilt is excessive. If the tuning range

does not reach 1 nm the grating needs re-mounting. When satisfactory tunability is achieved at low

powers the driving current should be increased smoothly to operating current, while monitoring

the laser spectrum. We frequently see small secondary spectral lines appearing around 100 mA

driving current, and sometimes all power concentrates in these at operating currents of > 130 mA.

Do not exceed 150 mA for long periods of time with these diodes, it is likely that their lifetime

shortens considerably above those currents. We observe that sometimes in this power range previ-

ously good tunability deteriorates, or completely disappears. When this is observed the feedback

needs to be optimised at low powers again, before ramping up to operating current again. If the

ECDL tunes well at operating power we tune it within a few gigahertz of its intended frequency.

In our experiments this is done by picking off a small amount (< 10 mW) of the laser light and

direct it through a rubidium reference cell. We observe the cell, either through an IR viewer or

by an IR camera, while slowly scanning the laser frequency over the expected resonance frequency

using the horizontal screw. When fluorescence is detected the laser is ready for stabilisation to a

rubidium transition via Doppler-free spectroscopy, a process described in the following sections.

We built three copies of the new generation ECDLs. Only two were ever stabilised, but both of

those showed identical performance. As far as deterioration is concerned, we have observed laser

diodes ceasing operation only after several years; also, on one occasion a PZT needed replacing as

well, after around 10 years of operation. We have observed glued gratings becoming loose early in

the life of the new generation ECDLs, but after re-gluing three years ago they seem to be stable.

At the time we observed that the gratings had an oval pattern on their surface, likely dust or glue

fumes burned on by the laser. However, this does not seem to affect operation in any way. The

new generation ECDLs were built in 2015, with one laser diode last replaced in 2017 because of

the then high temperature operation. The older designs had their diodes replaced in 2018. We

expect that under normal operating conditions all lasers should function adequately until at least

2022.

5.3 Doppler-free Spectroscopy

The ECDLs described above provide narrow linewidth monochromatic coherent light to interact

with the atoms. The task that is left is to tune their frequencies to match that of atomic transitions.

One advantage of working with neutral atoms is that it is easy to get a frequency reference.

We use glass cells filled with low pressure rubidium vapour at room temperature (e.g. Thorlabs

GC25075-RB). As described in section 4.3, the natural linewidth of the transitions of interest is

∼ 2π × 6 MHz and the hyperfine separation for the excited states is a couple dozen megahertz,

so the few hundred kilohertz laser linewidth should allow us to resolve all of them. Unfortunately

the Doppler broadening at room temperature of around 500 MHz makes it impossible to resolve

the excited hyperfine states without doing something more clever than just pointing a laser beam

through the vapour cell and looking at the absorption signal with changing laser wavelength.

The standard technique to get around the Doppler broadening issue is saturated absorption spec-

troscopy [68]. This requires two laser beams propagating in opposite directions, called the pump

and probe beams, and can be easily achieved by placing a mirror behind the reference cell, as

shown in figure 5.4. We can look at the returning probe beam by placing a non-polarising beam

splitter before the reference cell and placing a photodiode into its reflected arm.
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Figure 5.4: Doppler-free spectroscopy
setup.

The role of the pump beam is to excite atoms, reducing

the ground state population, when the laser frequency

is resonant with a transition. This condition is satis-

fied for atoms with velocity v1 = (ω − ω0)/k, where ω

is the laser frequency, ω0 is the transition frequency and

k is laser wavenumber. The probe beam interacts with

atoms in a similar manner, but because of the inverted

propagation direction it is absorbed by atoms with veloc-

ity v2 = −(ω − ω0)/k. An atom can interact with both

beams, but in this case v1 = v2
6, which implies that ω = ω0 (or ω = 0, which is not the case

because light has a finite frequency). This means that for atoms interact with both beams the

Doppler shift is eliminated, essentially they travel in a transverse direction to the beam axes. The

probe beam sees less such atoms in the ground state because they have been excited by the pump

beam, and so the absorption of the probe beam is reduced. Thus we observe narrow dips in the

absorption spectrum, or peaks in the oscilloscope trace (since the photodiode detects transmission,

not absorption), at the hyperfine resonances, which have a width of only the natural linewidth.

If there are multiple excited states within the laser scan range, it is possible that the probe beam

sees a depleted ground state population not just for stationary atoms, but also atoms moving with

a velocity such that the pump beam depleted them on a transition different from what the probe

beam is probing [69]. This translates to the condition that ω+kv = ω0,1 and ω−kv = ω0,2, in the

case where an atom is moving at such a speed that 2kv = ω0,1 − ω0,2. Thus we observe another

transmission peak at a frequency ω = (ω0,1 + ω0,2)/2, halfway between the two actual transition

frequencies. These crossover peaks are usually much stronger than the peaks corresponding to the

actual resonances.

In saturated absorption spectroscopy the pump beam is much more intense than the probe beam,

which could be achieved in a setup like figure 5.4 by placing a neutral density (ND) filter between

the cell and mirror, but in practice we find that this does not improve the signal, so we keep

both beams at comparable intensity. To avoid confusion we simply call this setup Doppler-free

spectroscopy.

In the experiments we scan the laser frequency by supplying a time-dependent voltage signal to

the PZTs in the ECDLs. In the older ECDLs the PZTs were driven with a triangle wave at 30 Hz

with an amplitude of 5-10 V, while the new ones were driven with a sawtooth wave at 19 Hz

with an amplitude up to 100 V. The scan range could be adjusted by changing the amplitude of

the voltage signal, and the centre of the scan range could be chosen by applying a DC offset to

the signal. Example oscilloscope traces for all relevant transitions are shown in figure 5.5, with

hyperfine transitions labelled by their F quantum number.

Let us give some more practical remarks on obtaining the absorption spectra shown in figure 5.5.

In the following we assume that the laser temperature is stabilised to a reasonable value. For the

D2 lines (780 nm) room temperature, or slightly below room temperature, is satisfactory, whereas

for the D1 lines (795 nm) a higher temperature of around 50◦C is required. The first step is always7

to use the ECDL wavelength tuning screw while monitoring fluorescence from the reference cell,

while the piezo scan is on and scanning a wide range. This helps the operator to spot fluorescence.

The laser should be roughly tuned to produce some fluorescence, at which point the oscilloscope

trace should show one or more absorption dips. If this is seen, but hyperfine peaks cannot be seen,

6Since it is the same atom, it has only one velocity.
7Unless absorption spectra have already been observed recently.
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Figure 5.5: Measured oscilloscope traces showing hyperfine transition and crossover peaks within
a Doppler-broadened envelope. The top row (87Rb) shows relevant transitions for our cold atom
experiments, and the bottom row (85Rb) is relevant for our warm atom work.
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a) b)

Figure 5.6: Oscilloscope traces showing absorption spectra (yellow) in the case when (a) a laser
side-mode or (b) the main mode is resonant with atomic transitions. The two spectra were taken
one minute apart, only the laser diode current was changed by about 5 mA.

two things can be done. The laser current can be slowly adjusted in a small range. This changes

the diode gain characteristics and changes the spectral composition of its output, so can help if

the gain properties were not favourable to lasing on the required frequencies. If this does not help,

the retroreflector mirror in figure 5.4 needs to be fine-tuned. To do this, set the oscilloscope to AC

coupled mode, and adjust the mirror angle to get maximum peak visibility.

We observe that at high operating currents (130-150 mA) the diodes are often slightly multimode,

lasing on usually a few distinct frequency modes that are fairly close together, so our spectrometers

have a hard time resolving them. Changing the diode gain characteristics a little can have a

dramatic effect on the power distribution in these modes, but the key effect is that it is possible

to observe a decent-looking absorption spectrum while most of the output power is in the wrong

mode, which makes experimental results rather poor. We observe that in these cases there usually is

another absorption spectrum identical in shape but with much better contrast less than a milliamp

(or few mA) of diode current away. Slowly adjusting the current, often towards higher currents,

results in a sort of ’front’ sweeping across the absorption spectrum. On either sides of this ’front’

the contrasts are different. An example of two spectra, one on a side-mode and one on the main

mode, are shown in figure 5.6. In this specific case the good spectrum was found at about 5 mA

higher current, which is an unusually large difference.

5.4 Laser locking

With our ECDLs we clearly have the ability to address single hyperfine transitions of rubidium,

since the laser linewidth is narrow enough to resolve them. We can also tune the lasers onto

resonance with individual hyperfine transitions, as shown by the absorption spectra in figure 5.5.

It is still a challenge to keep the laser frequency tuned to a hyperfine transition, because the laser

frequency drifts more than the atomic linewidth on the scale of seconds due to small temperature

and diode current fluctuations in the ECDL. However, on a good day the amplitude of these drifts

is relatively small, below 100 MHz8, which is well within the mode-hop-free tuning range of the

ECDL, which means that it should be possible to correct the drift by active feedback via the PZT.

In the following we describe how we lock our lasers to hyperfine transitions.

The idea is to supply a drift-dependent voltage to the PZT, which would act to compensate the

frequency drift. Therefore this so-called error signal should be zero when the laser is resonant

with a transition, add a negative voltage if the laser frequency is too low and a positive voltage

8And even on bad days, when the air conditioning system is acting up, the drift is not more than a few gigahertz.
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Figure 5.7: (a) Generating a derivative signal by adding a small frequency scan with amplitude ∆ν
to the laser. Scanning a relatively flat part of the spectrum leads to a small intensity amplitude
(∆I1), whereas scanning over a steep feature gives a large intensity amplitude (∆I2). The scan
ranges are vastly exaggerated for illustrative effect. (b) An example absorption spectrum with the
corresponding derivative signal calculated numerically using this method.

if it is too high. This is because a positive voltage decreases the laser frequency with our PZT

configuration.

The simplest idea would be to use the absorption spectrum directly as the error signal. A DC offset

can be added to the absorption signals such that the chosen hyperfine peak crosses zero. Then the

laser can be locked to the side of the absorption feature, specifically the right side of the peaks in

figure 5.5 since these have the correct slope. There are two problems with this approach. First, the

laser frequency is some 3 MHz detuned from the actual transition, because the laser is locked to

the side of the absorption feature. This can be a problem if the light frequency is not manipulated

further in the experiment, since the laser is not resonant with the atomic transition. Second, by

looking at the oscilloscope traces in figure 5.5, we can see that the peaks corresponding to the

actual transitions are small, with a relatively small side slope, so the lock stability is expected to

be rather weak, especially if the measured intensity at the photodiode varies, which can happen

due to air currents, for example.

A much better idea is to obtain the derivative signal of the absorption spectrum. This has the

advantages of crossing zero at the centre of the absorption features and large slopes even for

small peaks. A derivative signal can be obtained by adding a small amplitude, high frequency

voltage signal to the piezo drive. The frequency of this signal should be high compared to the

scan frequency, but low compared to the atomic linewidth. In the older ECDLs we use 20.3 kHz,

while the newer ones were supplied with 250 kHz. This fast scan essentially probes the amplitude

range of the absorption signal. If the gradient of the absorption feature is high, a small scan in

laser frequency will result in large changes in the photodiode signal, and for small gradients the

photodiode signal becomes flat. So the amplitude of the photodiode signal at the high frequency

scan corresponds to the slope, or derivative, of the absorption signal. This concept is illustrated in

figure 5.7. The amplitude of the photodiode signal at the scan frequency can be extracted using a

lock-in amplifier, which has the added benefit of rejecting detector noise at frequencies other than

that the modulation frequency.

We operated the two sets of ECDLs (the older and newer designs) with different electronics. The
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current to the laser diodes in the older ECDLs was supplied by Thorlabs laser diode drivers (ITC-

102 with ITC-100D). These drivers supplied temperature control as well, except in one case where

the temperature control circuit has been burned out. For this laser temperature was stabilised

by an ILX Lightwave LDT-5412. The low frequency triangle wave scan signal was supplied to all

old ECDLs by a TTI TG1010 programmable function generator9. The high frequency scan signal

was supplied from the internal oscillator of an EG&G 5208 lock-in amplifier. This lock-in, along

with an EG&G 5210 and a Femto LIA-MV-150, also performed the extraction of the derivative

signal from the photodiode signal. Two of the older ECDLs were locked to their error signals by

home-built integrators, the circuit diagrams of which can be found in [70, 71]. The third laser of

that design was locked using a Sacher LB2001 servo controller10. The new generation ECDLs were

controlled entirely by MOGLabs DLC202s (MOGBoxes). These units provided current control,

temperature stabilisation, error signal generation and PZT feedback, which made experimental

control a bit easier11.

In an attempt to abstract away the different electronics for all the different ECDLs, wires to

the ECDL components (laser diode, Peltier unit, thermistor and piezoelectric transducer) were

bundled together into a convenient serial port connector. For historical reasons the older ECDLs’

PZT control was separate to the serial connectors. In the case of the MOGBoxes the output was

already bundled into a DVI connector, which we built a converter for. The pinout of the serial

connectors is shown in figure 5.8. These common connectors turned out to be a very good idea

when the EG&G 5210 lock-in amplifier was destroyed by overcurrent, and one of the home-built

integrators failed in 2018 and two of the older ECDLs had to be controlled by the MOGBoxes.

5.5 Frequency control after the laser: acousto-optic modu-

lators

We should mention one more way of controlling light frequency that is completely external to the

laser, using acousto-optic modulators (AOMs). These devices contain an acousto-optic crystal,

tellurium dioxide or quartz in the ones we use, a piezoelectric transducer on one side of the crystal

and an acoustic absorber on the other. The PZT is driven with some radio frequency (RF) signal,

typically ranging from a few dozen to a few hundred megahertz. The PZT strikes the crystal, and

sets up a standing acoustic wave of changing density and hence refractive index. This acts as a

diffraction grating due to Brillouin scattering.

As light is diffracted to the mth diffraction order from this acoustic grating its frequency is also

shifted by m · f , where f is the PZT driving frequency. This can be thought of as a consequence

of a three-wave mixing process between laser photons and acoustic phonons in which the energy

and momentum of m phonons are transferred to one photon, which accounts for the deflection as

well. We can use this sum-frequency generation to tune the laser frequency. Positive frequency

shifted orders are always deflected away from the PZT, and negative ones towards the PZT. The

amount of light diffracted into the m 6= 0 orders depends on the amplitude of the PZT drive

signal, for the same reason as a phase grating efficiency depends on its grating depth. This makes

AOMs useful for switching beams on and off fast as well [72], without the need to disturb the laser

diode operation or having mechanical shutters which lead to large mechanical vibrations. They

can also be used for fine electronic control of laser intensities by controlling the power in the RF

9With a broken display, so the settings could not be checked. Fun.
10Although to my knowledge nobody at Glasgow ever really understood how that thing worked.
11Here’s a general rule for experimental science: you can pay either money for complete control solutions, or pay

time in developing/building your own.
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Figure 5.8: Laser driver serial port pinouts.
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Figure 5.9: Circuit diagram for current buffers to provide non-negligble power TTL signals to
mixers. The 500 Ω resistor determines the amount of current (and hence power) this circuit
supplies. If this buffer does not allow one to zero the output signal when the TTL is off, the
22 MΩ resistor can be exchanged for a lower resistance one to give a larger range of voltages to be
added to the TTL.

drive signal. Typically the maximum diffraction efficiency of AOMs in the first order is 80% at

their central frequency, but diminishes when driving the PZT with different frequencies. The exact

curves depend on the AOM design, their manuals should contain this information.

Typically, the AOM is supplied with an RF signal generated by a voltage controlled oscillator

(VCO) passed through an amplifier. The frequency of the signal can be controlled by a12 control

voltage that can be supplied by simple voltage divider circuits using a potentiometer, or by analogue

outputs of computer controlled input/output (I/O) cards. Additionally, the amplitude of the signal,

and hence the diffraction efficiency of the AOM, can be controlled in multiple ways. A common

strategy is to pass the VCO signal through a voltage variable attenuator (VVA), which can be

controlled the same way as a VCO. We have used VVAs in such a way before, but we found them

to behave strangely in some cases, introducing delays on the order of milliseconds to the AOM

response (which is normally on the scale of fractions of microseconds) and changing the polarisation

of the light leaving the AOM. We could not explain these behaviours, but changing to a different

strategy for amplitude control resolved the issues.

We can turn the AOM grating on and off by mixing the VCO signal with a TTL signal from an

I/O card. This allows us to switch the diffracted beams on or off with precise timing, although

to have fine, non-binary, amplitude control we would need an analogue voltage signal from the

I/O card, which is also possible. Unfortunately the I/O cards output negligible current, so there

is no power in the TTL signal, which means that the mixers output no signal, irrespective of the

state of the TTL voltage. For this reason we built a current buffer for each TTL channel. The

circuit diagram for these current buffers is shown in figure 5.9. The purpose of these was to supply

the same voltage as their input (the TTL signal), but provide a non-negligible current. They also

allow the fine-tuning of the zero voltage of their output by adding a small, positive or negative,

voltage to the input TTL, allowing us to make sure that when we want to turn the AOMs off we

can actually supply zero voltage to the mixers.

Of course changing the AOM frequency changes the laser deflection angle, which makes AOMs

difficult to use in experiments that require a range of frequencies and stable beam alignments. A

solution to this is to use them in a double pass configuration, shown in figure 5.10. The laser

beam is directed through a polarising beam splitter and focused13 onto the AOM aperture. The

12You guessed it...
13There is an alternative approach, which can produce a much smaller footprint in an experiment. The interested

reader is directed to [73] for more information.
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AOM λ/4PBSLaser
output

Figure 5.10: AOM in double-pass configuration. The first order of the AOM is reflected straight
back, and the laser frequency is shifted twice (once on passing through in either direction). The
two passes through the λ/4 plate rotate the polarisation by π, so the output is reflected from the
polarising beam splitter rather than transmitted. Due to the geometry of the two diffractions the
beam output direction is independent of the frequency shift.

AOM produces diffraction orders which are collimated by a second lens. The diffracted orders are

parallel after the lens, but spatially separated, so we can place an aperture around the first order,

blocking the others. This first order is reflected straight back by a mirror, and passes through a

λ/4 plate twice. This rotates its polarisation to the orthogonal polarisation. The retroreflected

beam enters the AOM at an angle, and is diffracted again. Because the deflection direction of a

diffraction order depends on the frequency shift applied to that order, the first order on the way

back is deflected to the same path as the original input. We can place an aperture around this

order as well after the input side lens collimates the beams. The orthogonally polarised, doubly

frequency shifted beam leaves the polarising beam splitter at the other output instead of being

directed back towards the laser. The two deflections due to the two frequency shifts cancel out,

and so the output direction of such a setup is independent of the frequency shift.

Aligning AOMs in such a setup can be deceptively difficult. After the PBS the first focusing lens

should be inserted, centered on the beam such that it does not change the beam propagation

direction. The AOM should be turned on and placed at the focus of the first lens. The task at this

point is to align it for maximum diffraction efficiency by translating it in the plane transverse to

the beam propagation, and rotating it around two axes (horizontal and vertical) while monitoring

the output initially on a screen (piece of paper or detector card). Because of the many degrees

of freedom the initial placement can be a bit tricky. To make this easier, the AOM should be

kept horizontal. Then aligning the laser with the AOM aperture should not be too difficult, which

leaves rotation around the vertical axis as a free parameter. This should be adjusted, along with

small adjustments to the transverse position to keep the beam centred on the AOM aperture, until

multiple orders are observed on the screen. At this point all degrees of freedom should be slowly

optimised while monitoring power in the first order14 using a power meter. A particularly good

indicator of the quality of the initial placement is the AOM tilt in the z−y plane. If it needs to be

rotated more than a degree to find maximum diffraction efficiency the height of the AOM is likely

to be wrong, and should be adjusted instead of the tilt.

Once the AOM is placed the second lens should be inserted, ideally such that it is centered on

the zeroth order, but if this configuration would place the first order too close to the edge of the

lens it is more important to keep this order. An aperture should be placed around the first order

after the lens, and the waveplate and mirror should be inserted. The quarter-wave plate should be

rotated to 45◦ with respect to the laser polarisation. The mirror should then be aligned such that

the beam is propagating along the same path back through the AOM. The second lens position

should be optimised to minimise the deflection of the output beam with changing AOM frequency.

14Or negative first order, if a negative frequency shift is desired.
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The power in the output of the PBS should be monitored and optimised last by small changes to

the mirror alignment and, to a smaller extent, the waveplate angle. The AOM angle can also be

adjusted slightly to optimise for double-pass efficiency over single-pass efficiency.

5.6 In summary

In this chapter we explained the operation principle of external cavity diode lasers, described the

two ECDL designs we used in our experiments and looked in detail at the procedure for setting them

up. We also examined Doppler-free spectroscopy as a method for obtaining reference frequencies

for atomic transitions to tune the ECDLs to. We described ways of using the absorption spectrum

of a reference vapour to provide an error signal for laser locking, either by using the absorption

spectrum itself, or its derivative. We briefly described how a derivative signal can be obtained.

We also described how to use AOMs to switch lasers on and off and shift their frequency without

the need to change the ECDL lock. In the next chapter we will combine our understanding of

light shaping from Part 1, atomic structure from Chapter 4 and laser control from this chapter to

generate and measure three-dimensional population structures in a room temperature rubidium

vapour.



Chapter 6

Experiment: 3D population

patterns

6.1 Introduction

The idea of this experiment came about to follow on from a previous work by Radwell, et al.

[74]. In that paper the 3D structure of a shaped light field was reconstructed using fluorescence

from room temperature rubidium vapour. This worked because at intensities below the saturation

intensity (I/Isat << 1) the fluorescence rate is linear with intensity, i.e. equation 4.18 becomes,

on resonance,

Rf =
Γ

2
I/Isat. (6.1)

Then, in the homogeneous vapour in a reference cell the fluorescence from each point is proportional

to the laser intensity at that point. This assumes that the atoms act as passive scatterers, which

is a reasonable assumption in the case when there is only one low intensity beam present.

Here we show that simultaneously, the internal state of the atoms can change due to the interaction

with the laser. Specifically, in the electronic level structure of rubidium there are two hyperfine S

ground states (see figure 4.1) separated far enough in energy that it is possible to drive atoms from

one state to the other via excitation to a P state from which spontaneous emission to both ground

states is possible. In such a situation fluorescence from the driving laser, exciting atoms from

the upper ground state, is not proportional to its local intensity, because eventually the atom will

decay to a lower energy ground state which is not accessible for the laser and fluorescence stops. At

the same time, in a thermal vapour the upper ground state is repopulated by atoms entering from

outside the laser beam, and the volume outside the laser acts as a reservoir of atoms distributed

between the ground states. Fluorescence from a separate, spatially uniform laser driving a cycling

transition from the same ground state as the first laser can be used to interrogate the internal

state of the atoms. In this chapter we investigate the atomic physics in this two-laser system, and

describe the tomographic technique we used for reconstructing 3D atomic state structures. This

work has been recently published [75].

75
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Figure 6.1: a) Simplified energy level scheme of 85Rb showing spectroscopic notation. D1 and D2

transitions are shown in red and blue, respectively. b) Interpretation in terms of electron shelving.
Detection of fluorescence of the probe light indicates that an atom was in |1〉, and excitation by
the control beam and subsequent spontaneous decay transfers atoms from |1〉 to |0〉.

6.2 Atomic states in motion: structured light in warm atoms

We will study the interaction of room-temperature rubidium with two laser beams addressing

two transitions in a configuration reminiscent to electron shelving. A ubiquitous technique in ion

trapping, electron shelving is used to probe the quantum state of an atom [76, 77]. Typically two

lasers are used, one for the control of the state and one for detection. The strong control laser is

resonant with a transition of the atom between a stable ground state and a metastable (long-lived)

excited state. The probe laser, usually much weaker, is resonant with a transition to a short-lived

excited state. When the control laser is on, the atom produces fluorescence from the probe beam,

indicating that it is in the ground state. Shining the control beam onto the particle induces Rabi

oscillation between the metastable and ground states, so there is no interaction with the probe and

fluorescence stops.

Our analogues to the control and probe lasers drive the D1 and D2 transitions of rubidium-85

at 795 nm and 780 nm respectively as shown in figure 6.1, coupling to the excited states 5sP1/2

F’=3 (denoted as |C〉) and 5sP3/2 F’=4 (denoted as |P 〉). These two transitions share the ground

state 5sS1/2 F=3, which we refer to as |1〉. The control beam is shaped by an SLM and the

probe beam retains a simple Gaussian profile, expanded to a waist that is larger than the control

beam. Selection rules permit |C〉 to decay to either of the ground states |1〉 and |0〉 (5sS1/2 F=2),

with branching ratio 2:1. This means that where the control laser is bright atoms quickly decay

into |0〉, which is a dark state of both lasers. As a result fluorescence from the probe ceases.

Conversely, in volumes of zero intensity in the control beam the probe beam produces fluorescence.

By monitoring the probe fluorescence in 3D we can, in principle, characterise darkness structures

within the control beam. Crucially, this is done at a wavelength different from that of the control

beam, which enables the use of this technique in cases where light from the control laser is difficult

to detect.

Inside a room temperature vapour things are slightly more complicated since rubidium atoms

move at ∼170 ms−1 under such conditions. They collide with the walls of the vapour cell, which

randomly resets their ground state before they reenter the interaction regions. This process leads

to an effective repopulation of |1〉, so the probe produces some fluorescence even in regions of

high intensity volumes in the control beam. Before we get into the details we would like to thank

our internship student Sylvain Fayard who derived and calculated equation 6.3 during his stay in

Glasgow during the summer of 2016.
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Initially, in the absence of light, atoms are distributed between states |0〉 and |1〉 with a ratio of

5:7. This ratio comes from the fact that atoms in |0〉 can be in any one of the 5 Zeeman sublevels,

and similarly in one of 7 for |1〉, and the energy difference between |0〉 and |1〉 is too small to

lead to a noticable difference in thermal population. As we said before, the control beam rapidly

drives atoms into the dark state |0〉, in regions of high intensity in the control beam. Of course

where the control beam has no intensity atoms remain in |1〉. In the presence of the probe beam

the populations in the various states could be calculated using the optical Bloch equations, in a

spatially dependent fashion, but this is rather complicated. It turns out that for our purposes

here, however, it is sufficient to consider rate equations, because we assume that coherences do

not matter much in this system. This is a reasonable assumption because at room temperatures

decoherence times are very short.

The rates of change of populations can be written as

Ṗ0 = ΓC0PC ,

Ṗ1 = −(R1C +R1P )P1 + ΓC1PC + ΓPPP ,

ṖC = R1CP1 − (ΓC0 + ΓC1)PC , (6.2)

ṖP = R1PP1 − ΓPPP ,

1 = P0 + P1 + PC + PP ,

where Rij is the transition rate from state i to j, caused by excitation due to a laser and Γi(j)

refers to spontaneous emission from state i (to state j).

We can make a number of simplifying assumptions here. First, the lifetimes of the two excited

states are short compared to the lifetimes of the ground states, so they are essentially never

populated. This means that we can forget about PP completely. PC is still relevant, since atoms

are transferred to |0〉 through |C〉. Because of the assumption that |C〉 is populated for negligible

times, which comes from the short lifetime and hence fast decay of |C〉 (ΓC >> RC , which is

true for low control intensities), we can re-interpret the system as a two-level system, where the

excitation rate from |1〉 to |0〉 incorporates the excitation rate from |1〉 to |C〉 and from |C〉 to |0〉.

In this case we have a system that is essentially identical to the populations in equation 4.17. Then

we can find the spatially dependent depletion rate of |1〉 as d
dtP0 = − d

dtP1 = RdP1. The depletion

rate is essentially given by the fluorescence rate on the control transition, modified because of the

fact that from the excited state |C〉 the atom can decay back to |1〉 as well as |0〉. We have already

derived the fluorescence rate in equation 4.18. Here we need to find the detuning ∆ in terms of

Doppler shifts due to the atoms in motion. This can be done by integrating the Maxwell-Boltzmann

velocity distribution in 3D. Then Rd is given by

Rd(r) =
1

3

Γλ

4
√

3πkbT/mRb85

Γ

2

I(r)/IS√
1 + I(r)/IS

, (6.3)

where I(r) is the intensity of the control beam at a position r, T ' 293 K the temperature in the

cell, mRb85 is the mass of a rubidium 85 atom, λ = 795 nm the wavelength, IS = 4.49 mW/cm2

the saturation intensity and the decay rate is Γ = 2π × 5.75 MHz [78]. The leading factor of 1/3

comes from the branching ratio and relative pumping rate between the probe and control beams,

and represents the probability of the atom decaying to |0〉 rather than back into |1〉.

As we said before, without the two laser beams, the atoms within the cell are distributed between

the hyperfine ground states according to their degeneracy, P0 = 5/12 and P1 = 7/12. This
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distribution is maintained through collisions with the cell wall, which resets their state between

the ground states randomly. The probe beam drives a transition to an excited state that cannot

decay to any other state than the one the same beam excites, so this beam cannot change the

populations between |0〉 and |1〉.

In the presence of resonant light, the local population distribution is determined by two competing

processes. Consider an observation region near the middle of the control beam. The |1〉 population

is depleted at a rate Rd given by equation 6.3, which depends on the local control beam intensity.

At the same time it is repopulated by atoms that have collided with cell walls and drifted back into

the observation region. However, atoms in |1〉 may not reach the observation region, because they

may have had to pass through high intensity regions of the control beam and so may be depleted.

This depends on the exact spatial profile of the control beam and the path atoms take through

the cell. The vapour density in unheated vapour cells is low (on the order of 10−8 Torr), which

means that the mean free path between atom-atom collisions is on the order of kilometres so we

can assume that atoms travel along straight lines.

It is also sufficient to consider atoms travelling in a plane transverse to the beam propagation. This

is because we use laser light resonant with stationary atoms because we lock them to Doppler-free

spectroscopy features. Therefore the atoms which have a component of their velocity along the

beam propagation direction see the laser Doppler-shifted out of resonance. Both the control and

probe beams need to address the same velocity class of atoms in order for us to be able to measure

P1. This means that the combined detuning of the two lasers needs to be within a narrow frequency

band which we measured to be approximately 40 MHz wide, corresponding roughly to the width

of the convolution of the probe and pump transition line profiles.

Considering a 1D slice in a transverse plane these arguments can be combined to show that the

variation of |1〉 population of atoms passing through the cell can be written as

dP1

dr
=

dP1

dt
/

dr

dt
=
−P1Rd
vr

, (6.4)

where vr =
√

2kbT/mRb85 is the most probable transverse speed of atoms. Technically we could

obtain a more accurate expression by integrating the Maxwell-Boltzmann distribution in 2D, but

we find that using this value for vr works very well. Integrating this equation, considering all the

directions an atom can travel along in 2D we find that the |1〉 population at a position (x, y) in a

transverse plane can be expressed as

P1(x, y) ∝ 7

12

2π∫
0

dθP1,θ(θ), with

P1,θ(θ) = exp

 wall∫
0

dr
−Rd(r cos θ + x, r sin θ + y)

vr

 ,

(6.5)

where θ and r are polar coordinates with the origin at (x, y) and the prefactor of 7/12 is the initial

value of P1, as described above.

The population in |1〉 is detected from the fluorescence of the probe beam, so it should have a

uniform intensity throughout the cell, or at least in any transverse plane. In practice it is hard to

make a flat-top beam that propagates a reasonable distance, so we use a beam with a truncated

Gaussian profile with a width exceeding the control beam diameter. This is obtained by passing

a wide Gaussian through a variable aperture. The probe fluorescence is related to the population
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in |1〉 through a rate Rp identical in form to Rd, of course with the appropriate values for the

saturation intensity Isat = 3.90 mW/cm2, decay rate Γ = 2π×6.07 MHz and the prefactor (equal

to 1) due to the branching ratio for this cycling transition. Then the probe fluorescence rate is

proportional to P1Rp. For a spatially uniform Rp the populations can be inferred directly from

the fluorescence, but even for a non-uniform Rp we can recover the population by dividing by the

spatial structure of the probe beam.

We note that this discussion has implications for techniques that rely on measuring the absorption

of laser light due to thermal atoms, such as Doppler-free spectroscopy discussed in chapter 6. As

long as the laser beams used in those techniques have a small1 cross-section and intensity, the

repopulation due to new atoms can be considered homogeneous throughout the beam and leads

to a systematic increase in absorption. However, for extended beams or very high intensities

atoms in the centre of the beam will be depleted while atoms in the outer regions of the beams

still experience repopulation. The result is that one observes different levels of absorption when

measuring different parts of the beam.

In subsequent sections we will experimentally generate light structures in the control beam and

measure the populations these structures imprint on the atoms. We will first look at the experi-

mental methods used.

6.2.1 Tomographic reconstruction

zy

y

x

x

y

θ

θ

Figure 6.2: Illustration of the tomographic recon-
struction process for 3 rotation angles. A column
of pixels is taken from a series of 3 fluorescence
images recorded at different rotation angles of the
control beam. These pixel columns are stretched
into 2D, the resulting squares are rotated to the
appropriate angle and they are summed to pro-
duce a reconstructed cross-section.

Tomography is the reconstruction of 3D struc-

tures from 2D images. We reconstruct the spa-

tial structure of the fluorescence using the to-

mographic technique described in [74]. The flu-

orescence in the cell is imaged from the side,

giving a projection of the intensity onto the

yz plane. While a single image of the fluores-

cence contains information about only a two-

dimensional projection of the populations, we

can also obtain three-dimensional information.

In simple terms, tomographic reconstruction is

the process of obtaining two-dimensional infor-

mation from a series of one-dimensional data2.

Our series of 1D data are columns of pixels from

the images taken from the side of the cell, cor-

responding to a particular distance along the

propagation axis z. The multiple images are

recorded, each after the control beam is rotated

by an angle θ around its propagation axis z.

This is equivalent to using cameras viewing the

cell from different angles, where the spatial off-

set between multiple cameras is translated to a

temporal offset between multiple rotation an-

gles of the beam. Each recorded image correspond to a different projection of the 3D structure of

1What constitutes ’small’ depends on the temperature and size of vapour cell.
2Although mathematically the same ideas can be used to generate N-dimensional data from a series of (N-1)-

dimensional data.
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the fluorescence onto the detector plane. We need to undo this projection. We use a process called

filtered back projection, based on an inverse Radon transform [79, 80]. The Radon transform is the

gives the projection of a 2D structure onto a 1D line by integrating along the direction transverse

to the 1D line, and its inverse allows us to undo such a projection. The process is illustrated in

figure 6.2.

Each n pixel long column from the images is Fourier transformed, and a ramp filter is applied

to the frequency space data in order to compensate for the oversampling of regions closer to the

rotation axis. The inverse Fourier transform is then applied, and the n pixel long 1D column

is ’stretched’ to an n × n square in 2D. These squares are rotated by the angle that the control

beam was rotated at in the given image. The rotated squares are summed together to produce

cross-sections at the corresponding z-coordinate. The full 3D structure within the cell is built up

from all the cross-sections.

6.3 Experimental setup

The experimental setup is shown in figure 6.3. In this experiment two new generation external

cavity diode lasers were used. To achieve the required frequency for the control laser the diode was

heated to close to 48◦C. This required a small modification to one of the MOGBoxes, a variable

resistor needed to be changed to allow setting the temperature controller target so high. The probe

laser was locked to the D2 F=3 F’=2,3 crossover and tuned to the F=3 F’=4 transition using an

acousto-optic modulator (AOM) for fine frequency and power control. Both lasers were linearly

polarised, which was ensured by Faraday isolators placed immediately after the ECDL exit port.

AOM

SLM

λ/2λ/4

λ/2
λ/4

λ/4 λ/2

PD PD

PD

95/5

NPBS

PBS

95/5

Helmholtz coils

780nm
filter

Control

Probe

ECDLs

Camera

NPBS

Figure 6.3: Experimental setup as described in the main text.

The control beam was cleaned through a pinhole and was then directed onto an SLM (Hamamatsu
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LCOS) where it interacted with an amplitude modulated holographic grating to acquire a chosen

shape, for details see chapter 2. All orders except from the first order of the grating were filtered

out by an aperture placed in the Fourier plane of the SLM. After collimation the control beam

passed through a λ/2 and a λ/4 plate for polarisation control, and it entered a non-polarising

beamsplitter used to combine the two beams.

The probe beam was sent through the AOM in double-pass configuration. The AOM frequency

was kept at 76.15 MHz to offset the laser frequency from the crossover to the F=3 F’=4 transition

(the frequency difference between the crossover and the transition is 2×76.15 = 152.3 MHz). This

beam was sent through a λ/2 and a λ/4 plate, it was magnified such that its cross-section was

larger than that of the shaped beam, and then the two beams were combined.

After the beamsplitter the now co-propagating beams passed through a rubidium vapour cell con-

taining both 85Rb and 87Rb in their natural isotopic abundance of 72:28, to produce fluorescence.

The fluorescence from the cell was imaged onto a camera using a camera-mounted imaging lens

(16 mm focal length), chosen for its decent depth of field. The lens was adjusted such that the

centre of the beams were in focus. A narrow-band filter centered on 780 nm (bandwidth ∼10 nm)

was inserted before the imaging lens so that only fluorescence from the probe beam was recorded;

example images are shown in the next section.

6.3.1 Experiment control software

The software used to run the experiment was written in LabVIEW, progressing through many

iterations. The final version3, used to take all data below, was constructed for maximum memory

efficiency, since during the experiments large amounts of image data was recorded, which had

a tendency to fill the available random-access memory. The software had to perform four major

functions: designing of light structures for the control beam and calculating holograms for the SLM;

displaying the holograms, while controlling the frequency and intensity of the probe laser via an

AOM; recording fluorescence images while the control beam is rotating; and finally reconstructing

fluorescence cross-sections.

The holograms were constructed using the techniques in chapter 2. The intensity and phase

structures could be generated in a very flexible manner in the software. There were options

for generating superpositions of Laguerre-Gaussian or Hermite-Gaussian modes, beams with flat

phases, only their amplitude shaped, or beams with completely arbitrary phase and amplitude

structures defined as PNG files, generated in other software. The experiment control software took

care of amplitude and phase correction, although the corresponding profiles of the input beam were

measured with other software written specifically for that purpose.

For each beam several holograms were generated, corresponding to different rotation angles of the

control beam. The software was designed to take into account rotational symmetries of the desired

beams. For example, a HG1
0 has a 2-fold symmetry under rotation by 360◦, in other words, rotation

by 180◦ returns to the beam at 0◦ (up to an unimportant global phase). Therefore it is sufficient to

record data for half the full 360◦ rotation, the second half would contain no new information, since

the holograms would be identical. We can exploit this to either perform experiments faster (using

less rotation angles) or get higher spatial frequencies in the reconstruction (by using a large number

of rotation angles in a smaller overall rotation). These were relevant concerns because during most

of the measurements presented here laser locking stability was rather low, with ECDLs coming

3Access at http://dx.doi.org/10.5525/gla.researchdata.630

http://dx.doi.org/10.5525/gla.researchdata.630
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off lock over periods on the scale of 30 minutes, which limited the available time for recording

fluorescence images from the same control beam under the same conditions.

Each hologram was saved to hard disk to save memory space. During the experiment they were

individually loaded by the control software and displayed on the SLM. Because in this experiment

we had no access to the SLM refresh timings we waited 100 ms after the display request to give

ample time to the SLM to display the required hologram. We have seen in tests that waiting less

would occasionally result in the previous hologram still being displayed. Then the camera exposure

would begin, and on completion of the exposure the fluorescence image was saved to hard disk.

For the reconstruction the images were loaded one by one, and only the columns from a chosen

subset were kept in memory. A bandpass filter was applied to the columns in order to remove high

frequency detector noise. In practice we used quite aggressive smoothing (removed the top 20% of

frequency components) because the beams we used had reasonably low spatial frequencies. Then

the ramp filter was applied to the smoothed pixel columns, the 2D squares were calculated and

they were summed together to produce fluorescence cross-sections.

It was important that the centre of rotation of the beams be identified accurately for the recon-

struction to work. A small displacement (less than 5 pixels) of the reconstruction axis resulted

in completely wrong results. We could identify the rotation axis by generating a known pattern,

measuring the fluorescence of the control beam alone and comparing the reconstruction with the

desired pattern. Great care was taken to make sure that both the control and probe beams prop-

agate horizontally and coaxially, parallel to the camera horizontal, so that the rotation axis would

not change throughout the camera images. This was done by monitoring the fluorescence from

either beam in real time, and fitting Gaussians to two columns of pixels, separated significantly.

We could then match the centres of the Gaussian fits by careful alignment of the beams using the

mirrors and beamsplitters. This has worked very well, giving us an estimated precision of ±0.5

pixels when determining the beam axes.

6.4 Results

First we attempted to determine the ideal combination of beam powers (hence pumping rates)

that produces the best reconstructed images, with the aim of maximising contrast. In order

to quantify the quality of data we introduced different measures for the contrast. First, let us

describe the measurements available to us. We first propagated only the Gaussian-shaped probe

beam through the cell, blocking the control beam, and recorded the fluorescence at some value of

the propagation distance z. This cross-section serves as a reference to which we can compare the

following measurements. We then unblocked the control beam, gave it a simple Gaussian profile

and recorded the fluorescence. Finally we ’threw away’ a part of the shaped beam, making a hole

in it, and recorded the fluorescence. This cycle was repeated for different combinations of powers

in both the probe and shaped beam controlled by the AOM and the grating depth, respectively.

We performed this 2D power scan for a number of different polarisations in the beams, and at

different magnetic fields and directions. Sample cross-sections of these fluorescence measurements

are shown in figure 6.4a.

We then calculate the difference between the first and second fluorescence profiles, shown in fig-

ure 6.4b. Here we have a number of choices that we can make in order to find a single value for

the contrast. We can either fit the difference profile with a Gaussian and find its peak, or we can

integrate it. Whichever method we choose we call the result ’bright contrast’, and it measures how
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Figure 6.4: a) Sample cross-sections of fluorescence measurements. Blue: fluorescence from the
probe beam only. Yellow: fluorescence from the probe beam with the Gaussian-shaped beam
turned on. Green: same as yellow, with a imprinting a hole in the shaped beam. b) Sample
contrast profiles. Blue: bright contrast, yellow: dark contrast.

well the depletion process works.

Of more interest is another quantity we call ’dark contrast’, which measures how well we can

differentiate between the shaped beam having a hole or not based on the reconstruction. This is

calculated by first taking the difference between the first and the third profiles, and subtracting

this from the bright contrast profile. Both the bright and dark contrast profiles, calculated from

the data shown in figure 6.4a, are shown in figure 6.4b. Here we again have the choice of finding

the peak of the profile or integrating. The result of both of these is shown in figure 6.5.

From figure 6.5 it can be seen that in general higher power in the shaped beam gives better contrast.

It can be seen that contrast ramps up for low probe powers and then flattens, however this is not

related to the atom-light interactions. It arises simply because the exposure time for the camera

was too short for low probe powers and the profiles were very small. Once there was enough light

so that the CCD would have saturated the exposure was lowered to prevent this, so all profiles

had roughly the same peak values and the contrast flattens. The length of the initial ramp can be

changed significantly by choosing different initial settings for the exposure. These measurements

suggest that overall high powers in both beams are desirable for a good contrast.

Also of note are a set of dispersive features seen in the middle of figure 6.5b (and to a lesser

extent, figure 6.5a). These features are present for the same powers irrespective of relative beam

polarisations (not shown in figures), but shift with changing magnetic fields. This can be seen from

figure 6.5d, taken at a different magnetic field, where the features shifted to higher powers in both

beams. We believe that these features are caused by the difference in saturation intensities for the

two transitions, but the exact mechanism is not understood and was not investigated further.

In order to show the complementarity of the control and probe fluorescences we generated a control

beam with a Yin-yang symbol cross-section show in figure 6.6a. We have used our reconstruction

technique to produce the cross-sections in 6.6b and d. As can be seen in the figure, control

and probe fluorescence cross-sections are indeed visually complementary to each other, with some

notable differences. The the probe cross-section has less sharp edges. From figure 6.6 it also

seems that the technique is less accurate at reproducing population patterns due to dark features

surrounded by brightness than bright regions surrounded by darkness, leading to a loss of contrast.

This contrast loss can be explained by the fact that atoms need to cross high intensity regions in

the control beam to get to dark holes.

We investigated the variation of contrast measured at a dark hole in a beam as a function of the

amount of surrounding control light power. We numerically simulated the populations in a beam
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Figure 6.5: Dark contrast measurement results. Left: contrast measured in terms of fluorescence
peak, right: contrast measured in terms of integrated fluorescence. Top: no applied magnetic field,
bottom: magnetic field of approximately 0.75 G aligned with beam propagation direction

a) b) d)c)

Figure 6.6: Simulated and reconstructed cross-sections from a control beam with a yin-yang symbol
profile, measured in the image plane of the SLM. a) Desired control intensity profile. b) Light
reconstruction from fluorescence of the control beam. c) Simulation of the reconstruction of probe
fluorescence indicating population in |1〉. d) Measured probe fluorescence reconstruction.
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Figure 6.7: Normalised population contrast as a function of varying a) dark core radii R in a
flat-top control beam and b) temperature. In a) radii R are ranging from 0 cm (shown in dark
blue) to the full beam radius of 0.5 cm (cyan) at a temperature of 300 K. In b) the temperature
is ranging from 1 K (shown in red) to 300 K (yellow), for R=0.3. Fits show as black lines are
smoothed spline interpolations calculated from 15 data points in both figures. Inset i) shows the
control beam shape, indicating the definition of R. Insets ii) and iii) show population pattern
cross-sections through the centre of the control beam.

with a central dark core of varying radius R. The outer beam radius was fixed at 0.5 cm and

the local intensity in each pixel of the simulated beam was 0.1IS . To evaluate the population

contrast we defined it as the difference between the minimum |1〉 population within the pattern

and population in the beam centre. The results are shown in figure 6.7. If the hole radius is 0

(no hole), there is of course no contrast, and we see that the population of |1〉 in the centre is

reduced compared to the outer regions. With increasing dark core radii, the contrast peaks at

a radius of approximately 0.3 cm. For larger dark core radii the contrast decreases because the

control beam no longer has enough power to effectively pump atoms into |0〉 during the transit

across the annulus of brightness. For beams of complicated shapes the exact population contrast

structure can become hard to predict without simulations, but these observations should provide

some intuition.

Naturally, the temperature of the atoms in the vapour makes a significant impact on the population

structures we can inscribe. Figure 6.7 b) shows simulations using the same control beam as in the

previous paragraph, but this time with a fixed core radius of R= 0.3 cm and evaluating the contrast

for a range of temperatures. It can be seen that at very low temperatures, below approximately

20 K, the contrast is low. This is because the slow-moving cold atoms traverse the bright control

beam annulus slowly and have a long time to be efficiently transferred to |0〉, and so atoms in |1〉
cannot reach the dark core. For higher temperatures, above around 100 K, contrast becomes low

again because of the opposite reason to the cold atom case: hot, fast atoms do not spend sufficient

time in the control beam to be transferred out of |1〉. So for the parameters used here there is

an optimal temperature range, close to 50 K, for maximising contrast. Again, this generalises to

complicated beam structures, but the exact optimal temperature can be hard to determine without

a lot of numerical simulation.

In order to further investigate the relationship between control beam shape and |1〉 populations

we performed the experiment using a control beam with a linear intensity ramp in the azimuthal

direction. These results are shown in figure 6.8. It is particularly instructive to look at the

measured control and probe azimuthal intensity profile. We expect the control profile to be linear

and increasing with azimuthal angle φ. This is confirmed by the results in figure 6.8. It can

be seen that both control and probe reconstructions possess reasonably linear profiles away from

sharp edges, as expected. However, the probe reconstruction is significantly less sharp near high
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e)
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Figure 6.8: Reconstructed cross-sections from a control beam with a linear azimuthal intensity
ramp. a) Desired control intensity profile. b) Control fluorescence reconstruction. c) Simulated
|1〉 populations. d) Reconstruction of state |1〉 populations. e) Unwrapped control (blue) and
probe (red) fluorescence profiles at a fixed beam radius corresponding to the red dashed circle in
a). Solid lines are simulations. Error bars represent the standard deviation calculated from 10
cross-sections.

contrast edges as can be seen from the smooth curving of the red curve around φ = π. A naive

way of modeling the expected dark intensity profile would be subtracting the control profile from

a constant value, since the intensity of the probe is azimuthally constant. It is apparent from the

measured intensity curve that the probe images, and hence the populations, are blurred. This

blurring is in fact a direct consequence of the fact that at points within the control beam atoms

sample areas of varying intensity from different directions, as expressed in equation 6.5.

Figure 6.9 shows full 3D control and probe reconstructions. The control beams used here were a

3-by-3 array of discs, and a superposition of Laguerre-Gaussian modes with l1 = 3 and l2 = 11.

The waists and relative amplitudes corresponding to the two modes are chosen such that the

superposition gives a so-called optical ferris wheel [81]. Both the control and probe beams were

focused by a lens with focal length 75 mm placed immediately after the recombining beam splitter.

The cross-sections used to build up the 3D structures were peak normalised. The halo due to the

larger diameter of the probe beam, seen in the probe cross-sections in 6.9b), was removed from the

corresponding 3D reconstruction where possible for clarity.

It can be seen that the control reconstruction retains good resolution throughout most of the

propagation. The dark lobes are still clearly resolved 2 cm from the focus. In contrast, the probe

reconstruction does not show the corresponding bright lobes at the same distance. As can be seen

in the 3D image the ability to resolve these lobes within the bright halo is lost near a distance of 4

cm from the focus. Furthermore, the overall contrast between the bright lobes and the background

is also lower than the contrast observed in the control cross-sections. This illustrates the resolution

limit at which we can manipulate atomic population structures in a warm vapour. In our case the

transverse resolution limit is around 200 µm. We made this estimate by convolving a sawtooth by

a Gaussian, and fit the result to the measured population shown in figure 6.8. Using a Gaussian

with a width of 200 µm gave a very good fit.
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Figure 6.9: Full 3D reconstructions from focused control (top) and probe (bottom) beams. The
control beams had a cross-section of a) a 3-by-3 array of discs and b) an optical Ferris wheel.
Sample cross-sections are also shown. The dimensions of the boxes are approximately 1 cm x 1
cm x 7 cm. Propagation distances z are measured from the focus. For clarity, isosurfaces were
plotted at intensities indicated in the colourboxes. In these figures the beams propagate in the −z
direction.
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6.5 In summary

We have described an experiment that uses all our expertise with beam shaping and atomic physics

to inscribe 3D population patterns into a room temperature rubidium vapour. We reconstructed

the inscribed population patterns using fluorescence imaging and tomographic techniques. We

paid particular attention the the limitations of resolution and contrast in the achievable atomic

populations due to the competition between local population depletion and globally sampled re-

population, developing numerical simulations based on rate equations that match our experimental

results extremely well. We note that all the work here, both theoretical and experimental was done

using CW lasers, and it might be interesting to consider the possibilities of a pulsed control beam,

which would allow us to effectively generate a short-lived 3D image memory. In any case, in the

next chapter we look at a completely different regime of atomic physics in setting up a cold atom

trap.



Chapter 7

Cold atom physics: optical traps

7.1 Introduction

Widely accessible warm atomic vapours already offer an interesting and useful platform to study

atom-light interactions, and they can be used very practically for example in high-sensitivity mag-

netometry [82] or quantum information storage [83]. The main issue with using warm vapours for

such applications used to be the very short coherence times of the atoms at these temperatures,

essentially because they frequently collide with the cell walls which causes decoherence. While re-

cently this issue has been somewhat resolved by the use of anti-relaxation coatings [84, 85] and/or

buffer gases [86], the classic approach of cooling and trapping atoms in a small volume is widely

used, for example in high-stability optical clocks [87]. We need cold atoms for their slow movement,

to avoid smearing out spatial structures when atoms interact with shaped light. Slow atoms also

enhance atom-light interaction because the lack of Doppler shift allows the light to be resonant

with more atoms. Here we look at the basic theory of magneto-optical traps, their construction and

operation, and we describe a more advanced trapping configuration known as a dark spontaneous

force optical trap.

In section 7.2 I describe the theory of magneto-optical traps, and in the subsequent sections in this

chapter I describe my work on building and optimising such a trap.

7.2 Magneto-optical trap

Consider a two-level atom at rest in its electronic ground state, with a laser beam shining on it.

The atom will only interact with photons in the beam with the appropriate wavelength to match

the difference in energy between the two atomic levels (on resonance). Such a photon will be

absorbed, and in line with the conservation of momentum cause the atom to move in the direction

of travel of the photon. During the absorption process the atom will be promoted to its excited

state and after a short time decay back to the ground state through the spontaneous emission of

a photon of identical wavelength in a random direction. If the spontaneously emitted photon is

emitted in the same direction as the absorbed photon the atom will end up at rest. However, in

all other cases its kinetic energy will be higher compared to that before the interaction.

The same process can be used to cool the atom if the laser beam is red-detuned1 and the atoms

1The laser wavelength is tuned slightly off-resonant towards longer wavelengths.

89
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Figure 7.1: Velocity-dependent acceleration in Doppler cooling for rubidium-87 and different de-
tunings δ and I=Isat.

are in thermal motion [88, 89]. In this case in the frame of atoms moving towards the laser source

photons will be blue-shifted to resonance with the internal transition and be readily absorbed. Due

to the geometry of the situation this reduces the momentum of the absorbing atom. Since the effect

of spontaneous emission is, averaged over a large number of interaction cycles, zero, the net effect

is the slowing of atoms moving towards the laser source. On the other hand in the frame of atoms

not moving towards the laser there will not be resonant photons to be absorbed provided that the

laser spectrum is narrow enough, and hence will not be affected. This process ’burns a hole’ in the

velocity distribution, but does not slow all atoms if the laser linewidth is narrow. One can choose

the speeds affected by selecting the laser detuning. In the case of two counter-propagating laser

beams the acceleration experienced by atoms is given by [90]

a(v) =
~k
m

Γ

2

(
I/Isat

1 + 4(δ − kv)2/Γ2 + 2I/Isat
− I/Isat

1 + 4(δ + kv)2/Γ2 + 2I/Isat

)
, (7.1)

where ~k is the photon momentum and m is the atomic mass. This expression essentially amounts

to the statement that absorbed photons change the momentum of the atom, and photons are

absorbed at the scattering rate.

As we said before, this velocity-dependent acceleration burns a hole in the velocity distribution

around the speed where the Doppler shift brings the atoms exactly to resonance. For room tem-

perature rubidium the detuning would be close to 800 MHz if we wanted to slow the most atoms2.

However, in that case atoms with lower speeds would not be affected, and the velocity distribution

would not be compressed appropriately. At low detunings the acceleration is pretty much linear

around 0 m/s, up to a peak at some speed vc known as the capture velocity. This is shown in

figure 7.1. In this regime cooling can be modelled as linear damping, and it allows us to efficiently

achieve low temperatures. We chose a detuning of around 16 MHz because we find that it is

optimal for trapping, even though the highest capture velocity with proper cooling would occur

at around 10 MHz higher detuning. As we will see in the next paragraph, in the presence of a

magnetic field gradient needed for trapping there is an extra detuning due to energy level shifts,

which optimises the capture velocity for the lower laser detuning we set here. The downside of this

is that the lasers are talking to a relatively small fraction of all velocity classes, but for rubidium

this is still sufficient to capture a good number of atoms.

2The most probable speed is around 100 m/s.
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Figure 7.3: X marks the MOT: fluorescence from the trap beams is visible when the vapour pressure
is high.

Doppler-cooling allows us to slow atoms down to a few 100 µK, and other effects can cool even

further [91, 92, 93], but they do not readily allow us to collect atoms in a small volume. In magneto-

optical traps (MOTs) this is achieved by a quadrupole magnetic field generated by a pair of anti-

Helmholtz coils [94], see figure 7.2. The quadrupole field results in a spatially-dependent force seen

by the atoms because of the Zeeman effect [95]. The magnetic sublevels of the hyperfine structure

of the atomic energy levels are not degenerate in the presence of an external magnetic field. In fact

the magnetic sublevels are split proportionally to the supplied magnetic field strength and direction.

Atoms at different positions within the quadrupole field experience different laser detunings because

their energy levels are shifted closer to resonance, provided that the lasers are circularly polarised.

This effectively increases the capture velocity and cooling efficiency, but slow atoms are also pushed

towards the trap centre. Since the quadrupole magnetic field gets stronger away from the trap

centre the Zeeman shifted levels of slow atoms get closer to resonance, and so such atoms will scatter

more light farther out, experiencing a restoring force pushing them towards the middle. In the case

of neutral atom traps one normally needs counter-propagating lasers in three orthogonal directions

with appropriately balanced intensities to slow all atoms, compressing their velocity distribution

and so cooling them. This is shown in figure 7.3. Several other configurations also exist [96, 97].

The intensities of lasers in different configurations can be calculated by following [98], for example.

Figure 7.2: Quadrupole magnetic field centered
on the trapping region. Represented area is
1 cm×1 cm, and the maximum field magnitude
in this region is close to 2 G and it is 0 G in the
centre.

Another important point to consider is that

to efficiently cool atoms a suitable set of en-

ergy levels needs to exist in the atoms. This

is because after scattering events atoms need

to return to their original ground state in or-

der to interact with the laser again in a closed

loop transition; otherwise the energy difference

between the new ground state and the upper

state does not match that of the photons, and

interaction stops. If the atoms do fall into

such a dark state, another ’repump’ laser can

be used to excite them from the dark state of

the trap laser into another excited state, from

which they can again decay back into the orig-

inal ground state. In general the more com-

plicated the (hyper)fine structure of an atomic

species is the more repump lasers are necessary
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Figure 7.4: Simplified level scheme of 87Rb D2 line showing a) MOT transitions. Red: trap laser,
green: repump. Curved lines indicate decays and thin solid lines indicate off-resonant pumping.
ECDL lock points are shown for b) trap (F=2→F’=3) and c) repump (F=1→F’=1) transitions,
indicating frequency shifts in MHz from the lock point to the transition. DP indicates that the
AOM is in double pass configuration, so its frequency shift should be half of the indicated number.

and the less efficient cooling becomes; for ru-

bidium 87 used in our experiments one repump beam is sufficient. This is because we address the

F=2 F’=3 D2 transition with our trap laser, which can only decay back to the F=2 ground state;

however, because of the finite line width of the atomic levels and the laser, occasionally atoms are

off-resonantly excited to the F’=2 excited state, from which they can decay into the F=1 ground

state as well. A repump tuned to the F=1 F’=1 transition can return these atoms to the cooling

cycle. This level scheme is illustrated in figure 7.4a.

7.3 Aligning the MOT

QWP

QWP
QWP

QWP

L3

L1

L2

Figure 7.5: Schematic diagram of the current
MOT setup, top view. Red lasers are respon-
sible for forming the trap and the orange beam
is used for probing the atoms. Quarter-wave
plates placed in front of mirrors ensure the cor-
rect polarisation of the returning beams. Note the
highly exaggerated refraction through the vac-
uum cell walls. Lenses L1 and L2 in the horizon-
tal beams before they enter the cell are respon-
sible for correcting the returning beam intensity.
Quadrupole (brown) and compensation (copper)
magnetic coils are also shown.

The correct alignment of the trapping beams is

essential to the good operation of the trap. A

schematic model of the key components of the

trap setup are shown in figure 7.5. Previously,

the alignment was done simply by aligning the

horizontal beams to pass directly over a set of

holes in the optical table in a 90◦ cross pattern,

and aligning the vertical beam with the cen-

ter hole. The anti-Helmholtz coils were placed

such that the magnetic field zero would be at

the beam crossing point. Then, the trap qual-

ity was iteratively improved by making small

changes to the beam alignment. This process

does not explicitly take into account refraction

at the vacuum chamber walls, nor power loss

through reflection, so it was a slow, difficult

and non-rigorous process. Since the experi-

ment was recently disassembled for cleaning,

we performed calculations of the above effects

to speed up alignment and potentially improve

trap quality.

Firstly, we calculated the effect of refraction at

the vacuum cell walls on the beam travel paths.

We found that inside the vacuum chamber the horizontal beams, propagating at 45◦ to the cell

walls, are displaced by about 2.7 mm on a single refraction. This means that after exiting the
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Figure 7.6: 3D printed alignment aids. The tall ones were used for the vertical MOT beam. The
various smaller ones were used for aligning the horizontal arms and other beam paths.

cell they are displaced by approximately 5.4 mm compared to going straight through (without any

glass present). As a result the magnetic field zero needs to be displaced from its previous position

by 2.7 mm3. To guarantee this we 3D printed support structures for the coils that ensure the

correct magnetic field zero position. The vertical beam also needed to be displaced by the same

amount, to do this we again 3D printed a small indicator plate that keys into holes in the optical

table, with the correct beam position marked on it. The vertical beam was then aligned with this

indicator.

We also need to be able to accurately align the horizontal beams with the magnetic field zero. For

this purpose we again 3D printed alignment markers that could be screwed to the optical table in

various positions. They had holes at the correct height and transverse location at the corresponding

position on the optical table. The trap and repump beams could be aligned through these holes by

maximising transmission monitored on a power meter. This allowed very quick alignment of these

beams. Because the beams were not perfectly symmetric Gaussians, however, it was difficult to

judge when they were aligned best through the holes. As a result the beam alignments all could be

optimised after this initial alignment. However, we estimate that the improvements to the initial

alignment technique reduced alignment time by about 75%, to about one hour. Figure 7.6 shows

the 3D printed alignment aids used in our experiments.

We then turned our attention to the effect of power loss through reflection from the vacuum chamber

walls. We found that approximately 5% of light is lost per surface in the horizontal beams. This

means that beam intensities between the incident and returning beams are imbalanced, resulting

a shift of trap position and change in the trap shape. Since this shift moves the optical trapping

region away from the magnetic field zero it reduces trap quality. This effect can be minimised if

we reduce the returning beam size such that intensity is the same in the retroreflected beam at

3Since it is within the cell.
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the trap location as it was on the first pass of the beam. This was achieved by placing lenses in

front of the cell (see figure 7.5).

f

d1 d2

z

d2

Figure 7.7: Compensating intensity losses on re-
flection in the MOT vacuum chamber by using
lenses, decreasing beam area to compensate for
lost power.

The beams pass through the glass walls four

times after the MOT region, once on exiting

the vacuum cell and once entering again af-

ter retroreflection. Thus the returning power

is P2 = 0.954P1. This means that the radius of

the returning beam needs to be R2 = 0.952R1.

The lens we need is going to be of a very long

focal length, so we can treat the focusing of the

beam as linear. Then, using similar triangles, the distance between the lens and the trap position

d1 and the distance from the trap to the mirror d2 are related to the lens focal length f as

(f − d1)− 2d2 = 0.952(f − d1), so

2d2 + 0.05d1 = 0.05f,
(7.2)

see figure 7.7.

The parameters are constrained by the placement of magnetic field compensation coils (described

later), which imply that we need a focal length that is as long as possible. The longest focal length

commercial lens we could find has f = 2500 mm. In this case 2d2 + 0.05d1 = 125 mm. The closest

we can place the lens to the cell is around 60 mm, in which case 2d2 ≈ 122 mm so d2 ≈ 61 mm.

Unfortunately the mirrors could not be placed in these exact locations, so we placed them as close

to the ideal locations as possible. The error in the placement was no more than 10 mm, which

leads to an intensity error of less than 1%.

After implementing these improvements we measured the number of atoms trapped without any

further optimisation. We determined atom numbers from absorption measurements. Using a

camera we measure the intensity of a probe beam, tuned to resonance with the trap transition, in

the absence of a trapped cloud (Iin) and in its presence (Iout). The atom number N was found by

integrating the two-dimensional projection of the atomic density distribution, assuming low optical

density. The density distribution is related to the measured images via

N =
1 + I/IS + 4∆2/Γ2

A

∫ ∫
ln

(
Iin(x, y)

Iout(x, y)

)
dxdy, (7.3)

where I is the average intensity of the probe beam, ∆ is the probe detuning, which in our experiment

was zero, Γ is the natural linewidth of the probe transition, and the resonant scattering cross-section

is A = 2.90× 10−13 m−2 and the saturation intensity of the transition is IS = 1.67 mW/cm2 [59].

The absorption imaging process is illustrated in figure 7.8. After the initial alignment of the trap

with the new technique, without further optimisation, we find atom numbers of approximately

2.5×108, which are consistent with the best results that were previously achieved after lengthy

alignment. The shape of the cloud, shown in figure 7.9, is also qualitatively better, more symmetric.

We also measured the MOT temperature. This is done by loading a MOT, turning the trapping

beams and quadrupole field off and letting the cloud expand for some time δt, then turning the

probe beam on and recording a absorption image. The size of the expanded cloud is estimated by

fitting it as a 3D Gaussian. This process is repeated with a number of different δt, and from the

series of cloud sizes after different times of expansion the most probable atomic speed is estimated.
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Figure 7.8: Absorption imaging proces. The natural logarithm of the ratio of the background-
subtracted probe beam images without and with the atom cloud present is the optical density, or
absorption image, up to a constant factor. The greyscale images were scaled to show detail; the
background is usually barely perceptible when view on the same scale as the probe beam.

5mm 10mm

Figure 7.9: Fluorescence images of a MOT when viewed a) along the probe direction and b)
perpendicular to the probe direction. The two images are not to the same scale. The green circles
were meant to help alignment in the experiment, and are not intended to indicate the same volume.

This can be related to temperature by

Tj =
m

kB

σ2
j2 − σ2

j1

δt22 − δt21
,

j ∈ {x, y}
(7.4)

where m is the atomic mass, and σs are the cloud widths along the j direction at times δt. We

find initial temperatures of Tx ≈ 220µK and Ty ≈ 385µK, which are on the warm side, but similar

to previously measured results.

7.4 Magnetic field control

There are numerous sources of magnetic fields affecting the atomic clouds used in the experiments.

The largest contribution likely comes from the magnetic field of the Earth, but the control electron-

ics, and especially the vacuum pump located in close proximity to the experiment volume, provide

significant contributions. These must be accounted for, and compensated, in order to perform all

experiments presented in this thesis.

Magnetic fields in and around the trap region are controlled by 4 sets of coils. A pair of circular

coils in anti-Helmholtz configuration provide the quadrupole field necessary for the MOT, and

three pairs of rectangular coils in Helmholtz configuration are responsible for cancelling the Earth’s
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Figure 7.10: Location and orientation of the four pairs of coils around the vacuum cell of the trap.
Coil dimensions and the number of turns N in each coil are indicated. Inset shows the labelling of
the compensation coils and the directions of the magnetic fields generated by them.

residual magnetic field and providing a small bias field determining the quantisation axis of the

atoms. The location and orientation of these coils are shown in figure 7.10.

The magnetic fields generated by the coils depends on the current driven through them. In practice

we do this by setting a voltage, which sets a current through Ohm’s law, V = IR. The problem

is that the resistance of the wires that make up the coil is temperature dependent, and the coils

heat up considerably when driven at the high currents we use. This means that if the set voltage

is constant the current is temperature dependent, and stabilises to different values depending on

external factors such as the room temperature and air currents. The current also takes a long time

to stabilise, because the coils thermalise on the order of several minutes. This is not acceptable if

we need fast switching of fields, which we do.

This issue is solved by a current driver shown in figure 7.11. The current in the coil is monitored

by the voltage across a 1Ω resistance. If a TTL signal is on, switching the coils on, this voltage

is compared to a reference set either by a potentiometer or an analogue voltage from an I/O card

connected to the experiment control computer. The difference between the reference and monitor

voltages passes through a low-pass filter to reduce ringing and is used to control the resistance of

a FET in series with the coil, thus feeding back to the current through the coil.

7.4.1 Field strengths and coil currents

It is useful to be able to determine the transverse and longitudinal components of the bias field in

the frame of the probe direction. Assuming that the Earth’s field is properly compensated, coil 3

does not contribute to either of these since the bias field is applied only by coils 1 and 2. Then, the

two components of interest, longitudinal and transverse, can be found in a straightforward fashion:

Blong = B1 sin 25◦ +B2 cos 25◦

Btrans = B1 cos 25◦ −B2 sin 25◦.
(7.5)
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Figure 7.11: Coil current driver circuit diagram. The PSU supplies a constant voltage, and the
current in the coil-side circuit is adjusted by feeding back to a BUK9575 FET in series with the
coil.

However, in the experiment we can directly control B1 and B2. Equations 7.5 can be inverted to

find how the experimentally controllable parameters depend on the ones of theoretical interest:

B1 =
Blong tan 25◦ +Btrans

cos 25◦ + sin 25◦ tan 25◦
= Blong sin 25◦ +Btrans cos 25◦

B2 =
Blong cot 25◦ −Btrans

sin 25◦ + cos 25◦ cot 25◦
= Blong cos 25◦ −Btrans sin 25◦.

(7.6)

Experimentally these fields are generated by pairs of rectangular coils. For such coils with N turns,

dimensions a, b and separation h the current I required to generate a desired magnetic field is given

by

I =
5B

8N

(
a2 + h2

) (
b2 + h2

)√
a2 + b2 + h2

ab (a2 + b2 + 2h2)
. (7.7)

The direction of the current in the coils required to give the desired magnetic field direction can

easily be determined using the right-hand rule. In the experiment the compensation coils have

been wired to produce magnetic fields in the directions indicated in figure 7.10. Coil 3 provides a

magnetic field pointing upwards.

7.4.2 Magnetic field rise-time

Figure 7.12: Time-dependence of the currents driven in the
different coils used for the MOT. Blue: compensation coils,
orange: quadrupole field coils. Vertical dashed lines in-
dicate experimentally measured times by which magnetic
fields reach their intended value.

Because of the non-zero inductance

of the coils used to generate mag-

netic fields in the experiment it takes

a finite time for the current in the

coils, and hence the magnetic fields,

to reach their intended value after

supplying the coils with a voltage.

The current at time t after switching

a voltage V0 on is given by equation

7.8,

I =
V0

R

(
1− e−t

R
Lcoil

)
, (7.8)

where R is the coil resistance and L

is the inductance of the coil. These

can be determined from experimen-

tally measurable quantities, listed in
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Quantity Symbol Value Unit
Number of loops per layer n 20 -
Number of layers m 4 -
Coil radius r 0.04 [m]
Coil length l 0.015 [m]
Wire diameter d 0.0075 [m]
Material resistivity ρ 1.724× 10−8 [Ωm]

Table 7.1: Physical parameters of the quadrupole field coils.

Quantity Symbol Value Unit
Number of loops per layer n 15 -
Number of layers m 2 -
Coil radius4 r 0.0575 [m]
Coil length l 0.005 [m]
Wire diameter d 0.0045 [m]
Material resistivity ρ 1.724× 10−8 [Ωm]

Table 7.2: Physical parameters of the compensation field coils.

tables 7.1 and 7.2, as described in equations 7.9 and 7.10.

R =
2Nρr

(d/2)
2 . (7.9)

To find the total inductance Lcoil of a multi-layered cylindrical coil with n current loops in m

layers we need to consider the self-inductances L of each circular current loop as well as the

mutual inductance Mj,k of all pairs j, k of circular loops,

Lcoil =

n×m∑
i=1

Li +

n×m∑
j=1

n×m∑
k=1,k 6=j

Mj,k. (7.10)

The self-inductance of a current loop can be expressed as [99]

L =
8µ0r

3

3d2

(
2k2
s − 1

k3
s

E(ks) +
1− k2

s

k3
s

K(ks)− 1

)
with ks =

√
4r2

4r2 + d2
, (7.11)

where r is the loop radius, d is the wire diameter and K(k) and E(k) are the complete elliptic

integrals of the first and second kind, respectively. The mutual inductance of a pair of coaxial

circular loops is given by [100]

Mj,k =
8π
√
rjrk√
km

(K(km)− E(km)) with km =

√
(rj + rk)

2
+ x2 −

√
(rj − rk)

2
+ x2√

(rj + rk)
2

+ x2 +
√

(rj − rk)
2

+ x2

, (7.12)

where rj and rk are the radii of the two current loops and x is the separation of their centres.

These formulae hold for a single coil and do not take into account the fact that in the experiment

coils come in pairs and the pairs are near other coil pairs. However, experimentally measured

rise-times agree nicely with the results obtained using these expressions, see figure 7.12.

4Since the compensation coils are rectangular, and each has different dimensions, it is incorrect to use the
equations for cylindrical coils. However, it turns out that one can use an approximate radius, calculated as the
mean of the side lengths, and get a rise-time that agrees well with the experimentally measured rise-time.
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Figure 7.13: Schematic diagram showing magnetic coil parameters, labeled as in tables 7.1 and
7.2, relevant for calculating rise-times.

7.5 Background field compensation

The quadrupole magnetic field due to a pair of cylindrical coils in anti-Helmholtz configuration,

Taylor-expanded to 3rd order around the origin, is given by

Bquad(r, y) = (Br(r, y), By(r, y)) = B1I

(
−1

2
, y

)
+B3I

(
3r3

8
− 3r2y

2
, y3 − 3r2y

2

)
, (7.13)

with

B1 =
24πNd2s

5(d2 + s2)5/2
, B3 =

96πNd2s(4s2 − 3d2)

(d2 + s2)9/2
, (7.14)

where N is the number of turns of the coils, d is their diameter, s is their separation and I is the

current throught them.

Figure 7.2 a few pages ago shows this quadrupole magnetic field in the x − y plane centered on

the trap location in a region roughly corresponding to the area imaged by a camera in the actual

experiment for a typical trapping current I = 2.5A. In this region for this current the field is very

close to being linear, with a gradient of approximately 4 Gcm−1 in the y-direction and 2 Gcm−1

in the x-direction (and equivalently in the z-direction).

Since a MOT forms around the absolute zero of the magnetic field, in the absence of any background

fields the trap would be located at the origin of the quadrupole field. However, any background

field will offset the MOT, as it forms where the quadrupole field exactly cancels the background

field. Naturally, for different quadrupole field gradients this occurs at different positions. This

effect can be used to determine the background field which in turn can be used to cancel it. In the

regime where the linear part of the quardupole field dominates (which we define as Bquad,linear >

10Bquad,non−linear, which corresponds to a transverse area with dimensions 14.6cm x 0.55cm for

the lowest field, 0.5G, that can be supplied by the quadupole coils and still obtain a decent MOT),

the MOT position in the radial r-directions and vertical y direction respectively are given simply

by rearranging equation 7.13, omitting the higher order terms:

r = 2Bbg,r/B1I

y = Bbg,y/B1I.
(7.15)

So the MOT position offset is inversely proportional to the current supplied to the coils. In principle

this makes the measurement of the background field rather straightforward, all one has to do is

record the MOT position recorded by two orthogonal cameras for a known coil current, and the

background field can be directly obtained. However in reality this is slightly complicated by the

fact that the location of the quadrupole field zero, the origin of the above system, is not known to

begin with, and as a result the offset position cannot be immediately determined. Happily, this is
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not an insurmountable problem, as equations 7.16 are only slightly modified by this situation:

r = 2Bbg,r/B1I − r0

y = Bbg,y/B1I − y0,
(7.16)

where r0 and y0 are the unknown coordinates of the quadrupole field zero in the cameras’ frame

of reference. Loading a series of MOTs for a series of different coil currents and monitoring their

position by centre-of-mass estimation of their fluorescence allows one to produce r and y plots

agains I, and fitting these for I−1 it is straightforward to obtain r0 and y0 and hence calculate the

background field.

Figure 7.14a) shows a set of measurements used to determine the background field. The data for

these graphs was obtained with an arbitrary known level of compensation field applied, because

without such a field the MOT formed outside the field of view (FOV) of the cameras observing

the trapping region. The arbitrary additional field applied to keep the MOT visible even for low

quadrupole coil currents was B(x, y, z) = (1.4 G, 4.5 G, 2 G). Using the fits shown in the figure,

we determined that the additional compensation field required to cancel all background magnetic

fields was (0.1 G, 0.69 G, 0.33 G), giving a total compensation field of (1.5 G, 5.19 G, 2.33 G). It

can be seen that the measured positions in the x and y directions match the expected curve, but

the z-displacements are not a good match. This was because the MOT shape changed as a function

of atoms in the trap, and for larger quadrupole field gradients more atoms were trapped. This

made it very difficult to estimate the MOT position when the shape was not symmetric. To reduce

this effect we ran a similar experiment with a very short MOT loading time of 2 s, such that the

trap would contain a small, and hopefully consistent, number of atoms for each quadrupole field

gradient. The downside of this approach was that because of the low atom numbers background

light threw off the centre-of-mass estimations. Figure 7.14b) shows these results, which gave a

compensation field estimate of (1.48 G, 5.15 G, 2.48 G).

In practice a good approximation to zero background field can also be achieved by simply observing

the MOT position using a high coil current, and adjusting the compensation coil fields until the

MOT forms in the same place for low quadrupole coil currents. We needed to do this, because the

results obtained above were not good enough to achieve satisfactory compensation. The reason

for this is that in practice it was exceedingly difficult to determine the position at which the MOT

forms, as the trapped cloud was asymmetrical in our case, being highly elongated in the z direction

with bulges in both the x and y direction. As a result the position measurements were not quite

as precise as we would have needed them to be for a good compensation. However, the measured

compensation field was very close to the one deemed good enough, which was (1.6 G, 5.35 G,

2.57 G). In the end these values were confirmed by the most sensitive test we have access to, which

is based on spatially dependent electromagnetically induced transparency, which will be detailed

in the next chapter. It is unclear whether the background magnetic field changes on the scale we

measure it over periods longer than a few weeks, but it certainly appears to be constant for at

least two weeks, which was the length of the longest continuous experimental run.

7.6 Dark spontaneous force optical trap

In our experiment we have the ability to holographically shape our laser beams using an SLM. This

allows us to use different trapping configurations other than the standard MOT. One particularly

useful configuration is the so-called dark spontaneous-force optical trap (SpOT) [101, 102, 103].

In a standard MOT temperatures and densities are limited by recoil heating and radiation trap-

ping [104]. Ideally, hot atoms should be exposed to a high light intensity so that they cool quickly.
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Figure 7.14: MOT displacement as a function of quadrupole field gradient, written here in terms of
current in the quadrupole coils, with uncompensated background magnetic field. The top row (a)
was measured using a long MOT loading time of 10 s, which allowed us to collect a large number
of atoms. The bottom row (b) was measured using a short loading time, 2 s, so that the MOT was
as symmetric as possible.

However, cold atoms should not encounter large photon numbers because at temperatures where

the kinetic energy of atoms is comparable to that provided by the absorption-emission cycles laser

cooling turns into heating. At the same time the scattered trapping light from the trapped, cold

cloud produces radiation pressure pushing the atoms apart, limiting density. The dark SpOT ap-

proach is one way to combat this. In such a trap the repump laser has a dark core in its middle,

where atoms slowly decay to the F=1 ground state via off-resonant excitation by the trap laser to

the F’=2 excited state. These atoms no longer interact with any light as the trap beam does not

drive transitions from this level and the repump beam is dark. In practice this decay in rubidium

is too slow, especially since the cooling beam is off-resonant for cold atoms. This is helpful for a

MOT, but undesirable for the SpOT. We introduce another laser called the ’depump’ to encourage

atoms to decay to the F=1 ground state, shown in figure 7.15a. The depump beam drives the

F=2 F’=2 transition, and it has the opposite purpose to that of the repump laser. The depump is

shaped to fit exactly in the dark core of the repump beam. Using the dark SpOT trap has several

benefits, such as increased density and a different electronic state for the trapped atoms, which is

the main benefit for us.

There is a downside to using a SpOT, though, in that loading the trap from background pressure

is not very efficient, in contrast with the MOT. This is because the lack of repump light severely

limits the number of atoms that we can load into the trap. This is where using an SLM gives us a

remarkable advantage. We can first load a standard MOT with high atom numbers at an already

low temperature, then holographically shape the repump beam into one with a dark core filled with

depump light. Such a loading sequence allows us to retain most of the atoms from the MOT with

all the advantages of the SpOT. This advantage comes with its own challenges, however. Aligning

the MOT well is already not trivial as discussed above, but optimising a SpOT requires precise

control over three new degrees of freedom: the size of the hole in the repump, the intensity of the
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Figure 7.15: Simplified level scheme of 87Rb D2 line showing a) SpOT transitions. Red: trap
laser, green: repump, blue: depump. Curved lines indicate decays and thin solid lines indicate off-
resonant pumping. ECDL lock points are shown for b) trap and depump (F=2→F’=3 and F’=2)
and c) repump (F=1→F’=1) transitions, indicating frequency shifts in MHz from the lock point to
the transition. DP indicates that the AOM is in double pass configuration, so its frequency shift
should be half of the indicated number.

depump, and the SpOT loading time (the time for which the trap is in the SpOT configuration

after loading a MOT but before any probing). We find that the SpOT is much more sensitive to

beam alignment accuracy compared to the MOT. It is also harder to characterise the SpOT, since

the atoms in this trap are in the F=1 ground state from which there are no cycling transitions,

because any σ± or π polarised light on the F=1→F’=0 transition would drive the atoms into a

dark state, so we cannot use absorption imaging to determine atom numbers. This problem can

be alleviated somewhat by either mixing different polarisations in the probe beam or applying

a magnetic field that mixes the Zeeman sublevels. In either of these cases, however, it is more

difficult to calculate the saturation intensity with any accuracy.

A simple solution is to transfer the atoms back to the F=2 ground state and measure their numbers

there. The issue with this approach is that there are MOT atoms in the F=2 ground state at all

times because of the presence of the repump light around the edges. To illustrate this, consider a

very small dark core in the repump. In this case we effectively still have a MOT, with a little bit

of a SpOT. So we need to somehow determine how many atoms are still in the MOT to be able to

determine how many are in the SpOT. The procedure for this is as follows. We first load a MOT

for 10 seconds, then transfer to a SpOT, and measure atom numbers using absorption imaging on

the usual F=2→F’=3 probe transition. This gives us the number of atoms left in the MOT after

changing over to the SpOT configuration. Second, we load a MOT again, transfer to the SpOT,

but this time we apply repump light for a short time to get all atoms back into the F=2 ground

state, and perform absorption imaging to determine the total number of atoms in both the MOT

and the SpOT. The difference of the two numbers gives us the number of atoms in the SpOT. Of

course all of these measurements need to be done several times and the results averaged, because

there is a small but noticeable difference in numbers from one trap to the next. The SpOT density

could be measured by using a repump beam along the probe path for absorption imaging. This

is a good approach for recording the shape and size of the SpOT cloud, but cannot be used to

measure atom numbers. The SpOT size can then be calculated by fitting a 2D Gaussian to the

recorded SpOT image, and assuming that the depth is similar to the width of one of the transverse

Gaussians, e.g. σz = σx, we can estimate the volume as V = (2π)3/2σxσyσz, where σj is the j

direction. The SpOT density is then

n =
Ntotal −NMOT

(2π)3/2σxσyσz
. (7.17)

Now that we have some diagnostics for the SpOT, we can proceed to discuss how to optimise
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the trap. A well-aligned MOT with high atom numbers is paramount to getting a good SpOT.

The MOT should be built such that the repump beam comes from the first order of a blazed

grating displayed on the SLM, without any amplitude shaping to maximise power. The shape of

the repump is not critical for a good MOT, a large size, at least covering the trap beam volume, is

much more important. In our traps the repump beams are only included in the horizontal arms,

but not in the vertical. This has purely practical reasons; for the SpOT we need to image the

SLM plane onto the atoms, which we did with a single lens, but in this case the path lengths for

all arms containing repump light needed to be the same. This was manageable for the horizontal

arms, but difficult to include the vertical arm as well, and since a tiny amount of repump light

is enough for effective trapping, it was not critical to have repump light in the vertical direction

anyway. The depump laser was then directed onto the same area of the SLM as the repump, but

under a slightly different angle. This angle was chosen such that the zeroth order reflection of the

grating for the depump coincided with the first order diffraction for the repump. This is shown in

figure 7.16.

Trap

Repump

Depump

0th

1st

1st+0th

SpOT

SLM

Figure 7.16: Schematic diagram of
SpOT beam alignments, with emphasis
on the SLM orders. The arrangement is
a bit different in the actual experiment,
see figure 7.19.

The co-linear alignment of the repump and depump

beams was important for the effective operation of the

SpOT, requiring precision beyond what could be achieved

by looking at the beams on a detector card. Instead, we

constructed a telescope to image the MOT centre onto

a camera. The camera could also be placed into the far

field of the telescope. We then iteratively aligned the

depump into the hole of the repump using the combining

beamsplitter and a mirrors before it, observing the align-

ment of the two beams in the image and far field planes.

We could use the same camera setup to precisely align

the repump-depump combination with the trap beam,

although this was much harder since in the image plane

both the trap and repump were very large, making it

hard to estimate the position of their centres5.

Confident in the alignment we turned our attention to the new degrees of freedom. Our strategy

was to perform a rough scan for each property in order, keeping the rough optimal value from

each scan to the next, then optimised around the best values found this way. We decided that for

our experiments atom number in the SpOT was more important than density, so we optimised for

atom number. The experiment timing sequence is shown in figure 7.17. In all experiments a MOT

is loaded first for about 10 seconds (trap and repump beams and quadrupole coils on, everything

else off). Then the SLM is commanded to switch to the SpOT configuration, cutting a hole in

the repump. Unfortunately we do not have direct access to the internal clock of the SLM, so it

is challenging to synchronise the experiments to the SLM refresh. We manage this by utilising a

small section of the SLM as a separate grating from the repump shaping grating. A small beam

(derived from the first order of the depump AOM) is diffracted off this part of the SLM, whose first

order is detected by a photodiode. When the SLM is in MOT mode (unshaped repump) there is

no grating on this ’trigger’ part of the SLM and the photodiode signal is low. The SpOT hologram

contains a grating in the trigger area, so when the SLM is displaying this the photodiode signal

is high. The photodiode signal is sent through a Schmitt trigger, connected to the experiment

control electronics and used as a trigger signal for the rest of the experiment.

5And their messy, non-Gaussian shapes did not help either.
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Depump
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Repump Probe

Camera exposure

t=0 tload

trise trepump

texpand tprobe tprobetdrop tprobe

Figure 7.17: Experiment timings for loading and characterising a SpOT. The graphs indicate
when the respective beams, magnetic fields, or cameras are on (high) or off (low). Time axis is not
uniform or to scale.

Table 7.3: Typical timings for loading and characterising a SpOT.

Pulse tload trise texpand trepump tprobe tdrop

Duration (µs) 250000 800 1500 1000 2000 150000

When the SLM switched over to the SpOT configuration and triggered the timing electronics, the

SpOT loading begins (t=0 on figure 7.17). The depump is turned on at this time, and remains on

while the SpOT is loading, for tload. After this time all trapping beams and the quadrupole field

are turned off. The quantisation field, supplied by the compensation coils, needs to be on at this

time, so it is turned on slightly earlier as determined by the coil risetime trise (see figure 7.12).

The cloud of atoms is allowed to expand and fall under gravity for a time texpand to reduce density

to a point where the cloud does not absorb all photons from the probe beam6. In this time the

repump probe beam may be turned on for trepump to repump all atoms to the F=2 ground state

when required (see above about measuring SpOT numbers). Then the probe beam is turned on for

tprobe and the camera is exposed to record an absorption image. Afterwards all beams are turned

off and the cloud is allowed to drop out of the detection region over tdrop. The probe beam is

then turned back on and the camera is exposed for another tprobe to record an image of the probe

beam in the absence of atoms. After another delay (typically tdrop) the camera is exposed again

without any beams on for tprobe to measure the background illumination. Typical durations of

these ’pulses’ are shown in table 7.3.

For the optimisation, first we set the depump power and SpOT loading times to some reasonable

value based on [103] and changed the radius of the dark core in the repump at the SLM in 10

pixel increments from 100 to 200 pixels. The SLM is imaged onto the atoms with a magnifaction

dictated by the lens focal length and the distance between the trap and the SLM. 100 SLM pixels

are magnified to approximately 4 mm at the trap (which corresponds to a 2× magnification). The

optimal was usually found between a 150 to 180 pixel radius, depending on the alignment of the

beams. We then kept the depump hole size at the rough optimal value and scanned the depump

6If it was allowed to absorb all photons we would not be able to measure accurate numbers, but an estimate of
the lowest possible number.
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Figure 7.18: Sample data from the SpOT optimisation process from May 2017.

power using a variable ND filter7. Too little depump power would lead to too small atom numbers

in the SpOT because atoms would not decay to the MOT dark state (F=1) efficiently. At too high

depump powers we again find very few atoms in the SpOT because then the depump overwhelms

even the small amount of repump light and we are left with no trap. We typically found that

very small amounts of depump power were sufficient, but it was strongly dependent on alignment

and the optimum was within a broad range, between 45 and 1600 µW measured before the SLM.

Lastly, we adjusted the SpOT loading time tload from 50000 µs to 350000 µs in 50000 µs steps.

We expected behaviour similar to the depump power scan for similar reasons: at too short loading

times we don’t have enough atoms, and at too long times atoms diffuse out of the trap. We found

the optimal load time to be around 250000 µs. Before further experiments these parameters were

optimised around these best values, although we almost always found that there was no noticeable

benefit to departing from the rough values. We found beam alignment (influencing the dark core

radius and depump power required) to be the most critical parameter for a good SpOT. Sample

data from such scans is shown in figure 7.18.

7.7 In summary

In this chapter we have looked at the basics of the theory of neutral atom trapping, describing the

operation of a standard magneto-optical trap. We paid a lot of attention to the practical operation

of our MOT, including the alignment of the setup and absorption imaging as the primary means of

measuring atom numbers, density and temperature in the trap. We have looked at the control of

magnetic fields with the available coils in great detail, which, we will see, is extremely important

for experiments in the next chapter. We also described our improvement on the standard MOT

in the form of a MOT-loaded dynamic dark spontaneous force optical trap, and examined our

method for optimising atom numbers in the SpOT. In the next chapter we will put this trap to use

in our investigation of the interaction of atomic states and magnetic fields, driven by laser light

with structured polarisation.

7Originally a stack of fixed ND filters were used, and the increments were highly discretised by the available ND
filters.
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Chapter 8

Experiment: atomic compass

8.1 Introduction

In this last chapter on our work with atoms we finally gather all our knowledge of structured light

and atoms to investigate the interaction of atomic states in a modified Λ level configuration with

light with structured polarisation. In particular, we are interested in the absorption (or lack of

absorption) of resonant laser light in electromagnetically induced transparency (EIT). EIT is a

quantum effect arising in atoms when two electronic states are coupled to a third state by two

exciting light fields. Usually studied in terms of the detuning of one of these beams while the other

is kept on resonance, under certain conditions the excitation amplitudes on the two transitions

cancel such that the atoms become transparent to resonant radiation they would absorb if it was

on its own, hence the name. In our system this picture is slightly modified because of the presence

of a fourth atomic level. It turns out that we can incorporate this level to manipulate the EIT

condition, making it dependent on the relative phase between the two driving laser fields. It has

been shown [105] that EIT dependent on the local polarisation direction can be observed in such a

system. It was observed that small magnetic fields transverse to the propagation direction of the

laser light is required for this polarisation dependence to manifest. Here we investigate in detail the

role of this magnetic field, and show that its direction influences the observed pattern of absorption

produced by the atom-light interaction. The magnetic field dependence can be exploited to deduce

the direction of a magnetic field from a single absorption image. In this sense the atoms act as a

sort of compass needle.

Since we develop a technique for measuring the direction of magnetic fields it is sensible to give

an overview of current technologies used for this. There are a wide variety of techniques used to

measure magnetic fields that can be used as a compass, with various sensitivities and complexi-

ties, such as Hall effect, search coil, anisotropic magnetoresistance, SQUID and optically pumped

magnetometers to name only a few. For a recent review of magnetic sensors see [106]. It is worth

discussing the operation of optically pumped magnetometers (OPMs) since they exploit similar

physics to what we will look at in section 8.4.

OPMs use warm alkali vapours to probe magnetic fields. A circularly polarised laser beam with

a frequency matching a F → F’=F transition is directed through the vapour cell. Provided that

any background magnetic field is not exactly perpendicular to the beam propagation direction this

light drives σ+ (or σ−) transitions in the atoms, which drives the atoms into a dark state (similar

107
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to pumping into a stretched state, as discussed in section 4.3). This is called a dark state because

atoms in this state can no longer absorb photons from the laser because there is no mF state in the

excited state reachable by a σ+ (or σ−) transition. If a large population of atoms in the vapour

can be maintained in such a state, for example by suppressing spin-exchange relaxation [107], the

atomic medium becomes highly sensitive to magnetic fields because the atomic dipole precesses

around the magnetic field vector, redistributing populations in the mF states, destroying the dark

state. The absorption of the laser beam through the cell in this a regime is then related to the

strength of the magnetic field. Using laser amplitude modulation and lock-in techniques (e.g. Bell-

Bloom method [108], analogous to the error signal generation in the dither laser lock in chapter 5)

this dependence can be made linear within a narrow range of magnetic field strengths [109]. OPMs

have exquisite sensitivity, achieving 1 pT/
√

Hz [110]. Our system is not dissimilar to that used in

OPMs, although we interpret it in different ways, considering EIT.

In this chapter we will first look at why EIT arises in the first place, studied in the common

Λ system in terms of detuning. Then we introduce a fourth level present in the real rubidium

system we use, and investigate how its presence affects absorption. We first do this by following

the arguments of Thomas Clark1 [111], then from a different perspective that is, in our opinion,

simpler. We then show that recently obtained data agrees with the predictions of both theoretical

approaches. Lastly we describe how we can deduce the direction of a magnetic field from an

absorption image, and also how we can use multiple absorption images to very accurately cancel

residual magnetic fields.

8.2 Electromagnetically induced transparency

 

 |1
 |2

 |3

p c

 |2

Δ

Figure 8.1: Λ-type EIT level
scheme. The ground states are
coupled to the excited state via op-
tical transitions.

The following discussion roughly follows [112] and [113]. Con-

sider a 3-level atom in a Λ configuration shown in figure 8.1. In

this system there are two ground states (|1〉 and |2〉) coupled

to a common excited state (|3〉) by two optical transitions (c

for coupling and p for probe), but crucially there is no dipole-

allowed transition between the ground states. Let us have two

lasers driving these transitions with Rabi frequencies Ωc and

Ωp respectively, and the probe beam detuned from resonance

by a frequency ∆. We keep the control beam on resonance.

We can describe the evolution of the states using a Hamilto-

nian, but of course in the presence of (near-)resonant radiation

we need to augment the bare atomic Hamiltonian H0 with a

Hamiltonian describing the interaction, Hint: H = H0 +Hint.

Unfortunately the eigenstates of the bare atomic Hamiltonian,

|1〉, |2〉 and |3〉, are not, in general, eigenstates of H. It makes

sense then to find at the eigenstates of the interaction Hamil-

tonian. It is actually fairly straightforward to write down the H [114] in the basis (|1〉, |2〉, |3〉),

H = −~
2

 0 0 Ωp

0 0 Ωc

Ωp Ωc −2∆

 , (8.1)

where we have taken the rotating wave approximation as usual.

1Previously PhD student at Glasgow, at the time of writing postdoc at the Wigner Institute, Budapest.
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The eigenstates of H are then

|+〉 = sin θ sinφ|1〉+ cos θ sinφ|2〉+ cosφ|3〉,

|−〉 = sin θ cosφ|1〉+ cos θ cosφ|2〉 − sinφ|3〉,

|0〉 = cos θ|1〉 − sin θ|2〉,

(8.2)

where we have defined the so-called mixing angles θ and φ, given by

tan θ =
Ωp
Ωc

and tanφ =

√
Ω2
p + Ω2

c√
Ω2
p + Ω2

c + ∆2 + ∆
. (8.3)

These dressed states correspond to viewing the atomic states in a basis more appropriate in the

presence of light, and we could express the bare states in terms of them. The interesting thing

about these new states is that one of them, |0〉, does not couple to the atomic excited state |3〉.
Since there are no optical transitions from |0〉 it is a dark state. The idea is that the coupling

beam transfers the atoms into this dark state via spontaneous emission from |3〉, at which point

the atoms cannot interact with the beams anymore, and they become transparent. Of course

the presence of the probe beam is entirely necessary for this process. The definition of state |0〉
intimately involves the intensity of the probe beam through its Rabi frequency. The downside of

the dressed state approach is that often it is quite difficult to intuitively interpret what the dressed

states and transitions between them mean, since the dressed states mix the bare atomic states that

are easy to understand.

The most intriguing aspects of EIT are revealed when we consider the phenomenon in terms of the

detuning ∆. For the proper treatment we need to include spontaneous emission, which the above

discussion does not include. We do this the same way as we did in chapter 4, through the density

matrix approach. As always, the time evolution of the density matrix is given by equation 4.6.

We have all the necessary components already with the Hamiltonian given in equation 8.1, so we

can write down the optical Bloch equations for our 3-level system, adding in the decay terms γ as

before,

˙̃ρ11 = −iΩp
2

(ρ̃13 − ρ̃31) + γ1ρ̃33,

˙̃ρ22 = −iΩc
2

(ρ̃23 − ρ̃32) + γ32ρ̃33,

˙̃ρ33 = i
Ωc
2

(ρ̃23 − ρ̃32) + i
Ωp
2

(ρ̃13 − ρ̃31)− (γ1 + γ2)ρ33,

˙̃ρ12 = ˙̃ρ∗21 = (−γ12 + i∆)ρ̃12 − i
Ωc
2
ρ̃13 + i

Ωp
2
ρ̃32,

˙̃ρ13 = ˙̃ρ∗31 = (−γ13 + i∆)ρ̃13 − i
Ωc
2
ρ̃12 + i

Ωp
2

(ρ̃33 − ρ̃11),

˙̃ρ23 = ˙̃ρ∗32 = −γ23ρ̃23 + i
Ωc
2

(ρ̃33 − ρ̃22)− iΩp
2
ρ̃21,

(8.4)

where the off-diagonal decay rates γij are given by γij = (γi + γj)/2. These equations would be

rather cumbersome to work with as is, but thankfully under certain conditions we can simplify

things quite a bit. Looking at equations 8.2 and 8.3, we can see that if the probe intensity is much

lower than that of the coupling beam then sin θ ≈ 0, cos θ ≈ 1 and so |0〉 → |1〉. So in such a

configuration the bare atomic state |1〉 becomes the dark state and we expect that over time most

of the population accumulates there. Thus ρ11 ≈ 1 and ρ22 = ρ33 ≈ 0. This allows us to write
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equation 8.4 as

˙̃ρ12 = (−γ12 + i∆)ρ̃12 − i
Ωc
2
ρ̃13 + i

Ωp
2
ρ̃32,

˙̃ρ13 = (−γ13 + i∆)ρ̃13 − i
Ωc
2
ρ̃12 − i

Ωp
2
,

˙̃ρ23 = −γ23ρ̃23 − i
Ωp
2
ρ̃21,

(8.5)

where we do not show the complex conjugates for simplicity. The advantage of these expressions

is that now ˙̃ρ23 depends on Ωp linearly, so the term i
Ωp
2 ρ̃32 in ˙̃ρ12 is quadratic in Ωp. This is

great, because the low probe intensity assumption allows us to drop this very small term. This

decouples ˙̃ρ12 and ˙̃ρ23, leaving us with a much simpler pair of coupled equations (since ˙̃ρ23 is now

independent of the other two equations),

˙̃ρ12 = (−γ12 + i∆)ρ̃12 − i
Ωc
2
ρ̃13,

˙̃ρ13 = (−γ13 + i∆)ρ̃13 − i
Ωc
2
ρ̃12 − i

Ωp
2
.

(8.6)

A symbolic algebra package like Mathematica has no trouble solving these in steady state, giving

ρ̃12 = − ΩcΩp
Ω2
c − 4(iγ12 + ∆)(iγ13 + ∆)

,

ρ̃13 =
2(iγ12 + ∆)Ωp

−Ω2
c + 4(iγ12 + ∆)(iγ13 + ∆)

.

(8.7)

This is all well and good, but density matrix elements are not directly measurable in an experiment.

We need to relate them to observable parameters, such as absorption. We do this by noting that

the complex linear susceptibility of an ensemble of atoms as perceived by a light field driving the

j → k transition is proportional to ρ̃jk. The imaginary part of the linear susceptibility is related to

absorption and its real part to the refractive index of the ensemble at the driving frequency. The

imaginary and real parts of ρ̃13 are plotted figure 8.2 in the presence and absence of coupling light.

The absorption and dispersion profiles follow these curves. Notice that absorption goes to zero on

resonance. At the same time the large negative gradient of the dispersion leads to a dramatically

increased refractive index of the atoms. This can be exploited to produce slow, or even stopped

light2 [115, 116, 117].

8.3 Spatially dependent EIT

All right, let us complicate things a bit more by adding one extra level into the mix. In our SpOT

we have atoms trapped in the F=1 ground state, from which we can drive transitions to the F’=0

excited state. If we use circularly polarised light we can have a system very much like the one

shown in figure 8.1, if we consider the mf = ∓1 levels to be |1〉 and |2〉, respectively. The mf = 0

excited state corresponds to |3〉, shown in figure 8.3. The complication is that there is one more

ground state, mf = 0. Let us relabel these states as follows: F=1, mf = ∓1, 0 → |g∓〉, |g0〉 and

F’=0, mf = 0→ |e〉.

The original reason for considering this system was to see if EIT can be made dependent on the

optical phase difference between the two driving fields. In this section we will follow this logic,

summarising the thinking outlined in [111]. An easy way to see this phase difference dependence

in an experiment would be to give one or both of the light fields a spatially varying phase. Then

EIT should vary in space, which would be visible in an absorption image, hence the name spatially

2Although in a sense on interaction with the atoms the light and atoms stop being separate things.
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Figure 8.2: Absorption (proportional to Im(ρ13)) and dispersion (proportional to Re(ρ13)) curves
(a) in the absence of coupling light and (b) in EIT.

dependent EIT (SEIT). But for the phase dependence to manifest in this atomic system the tran-

sitions involved should form a closed loop [118]. Therefore we need to provide a coupling between

|g∓〉, which can be achieved using magnetic fields. Specifically, any magnetic field transverse to

the quantisation axis set by the two beams’ propagation direction will introduce magnetic coupling

between all ground states |g〉. This is shown by green arrows in figure 8.3.

This complicates the interaction Hamiltonian a bit. It now has two components, corresponding to

the electric and magnetic interactions:

Ĥint = ĤE + ĤB . (8.8)

Let us define the magnetic field in spherical coordinates, pointing in some direction relative to the

quantisation axis ẑ, B = B0(cos θB ẑ + sin θB cosφBx̂ + sin θB sinφB ŷ). This magnetic field then

contributes to the total interaction Hamiltonian via

HB =
~
2


ΩL cos θB −e+iφB 1√

2
ΩL sin θB 0 0

e−iφB 1√
2
ΩL sin θB 0 −e+iφB 1√

2
ΩL sin θB 0

0 −e−iφB 1√
2
ΩL sin θB −ΩL cos θB 0

0 0 0 0

 , (8.9)

where we have defined the Larmor frequency ΩL = gFµBB0, with gF = −1/2 the hyperfine

Landé g-factor and µB the Bohr magneton. The basis here is (|g−〉, |g0〉, |g+〉, |e〉). This matrix

incorporates two effects of the magnetic field. The energies of |g∓〉 are Zeeman shifted due to the

magnetic field component along the quantisation axis, captured in the diagonal elements. The off-

diagonal elements indicate a new coupling between |g0〉 and |g∓〉 due to the transverse component

of the magnetic field. The direction of the transverse component breaks the cylindrical symmetry

set up by the ẑ quantisation direction, defining an azimuthal direction φB = 0.

The light fields are also a bit different from the ones considered so far in this chapter, in that they

acquire a spatially varying phase. We use light fields described by

E(r, φ) =
E0(r)√

2

(
l̂e−i`φ + r̂e+i`φ

)
, (8.10)
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Figure 8.3: EIT level scheme on the 87Rb D2 line,
with the quantisation axis along the beam direc-
tion. The mf = ∓1 ground states are coupled
to the mf = 0 excited state via optical transi-
tions. In the presence of a transverse magnetic
field they are also coupled to the mf = 0 ground
state magnetically. The central ground state is
not optically coupled.

which can easily be generated using Q-plates

(see chapter 1). Such beams comprise two or-

thogonal circularly polarised components cor-

responding to σ±, each with ±`~ orbital angu-

lar momentum, represented by the azimuthal

phase exp±i`φ. An alternative way of inter-

preting these beams is that they are linearly

polarised, but the polarisation direction rotates

azimuthally. For example, the ` = 1 Q-plate

beam is radially polarised. The intensity of

these beams is allowed to vary radially, and in

reality it does vary quite a bit, for simplicity we

will not take this into account in the following,

restricting our analysis to some r = r0. With

this in mind, the Hamiltonian for the electric

interaction can be written, similarly to before

but including the azimuthal phase, as

HE =
~
2


0 0 0 1√

6
ei`φΩ

0 0 0 0

0 0 0 1√
6
e−i`φΩ

1√
6
e−i`φΩ 0 1√

6
ei`φΩ 0

 ,

(8.11)

where we have assumed that both beams are resonant and have the same intensity (hence Rabi

frequency Ω). The factors of 1/
√

6 = 1/
√

2Finitial + 1 are geometrical coefficient coming from the

Wigner-Eckart theorem, arising from the orientation of the atomic dipole. We can now write down

the total interaction Hamiltonian,

Hint =
~
2


ΩL cos θB −e+iφB 1√

2
ΩL sin θB 0 1√

6
ei`φΩ

e−iφB 1√
2
ΩL sin θB 0 −e+iφB 1√

2
ΩL sin θB 0

0 −e−iφB 1√
2
ΩL sin θB −ΩL cos θB

1√
6
e−i`φΩ

1√
6
e−i`φΩ 0 1√

6
ei`φΩ 0

 . (8.12)

This is a rather complicated Hamiltonian, which is difficult to manipulate. The associated Bloch

equations can be solved numerically relatively painlessly, which we did using the AtomicDensity-

Matrix Mathematica package3 and we show some results from such a solution at the end of this

section. But it is possible to simplify the Hamiltonian by a clever choice of basis, allowing some

level of analytic solution. We can construct a system in which new levels, built from the bare

atomic states, are coupled by the optical and magnetic interactions in a sort of cascade. Let us

define the following new levels:

|gC,NC〉 =
1√
2

(
ei`φ|g−〉 ∓ e−i`φ|g+〉

)
,

|Ψ0〉 =
1

N(φ)
(cos θB |gNC〉+ sin θB sin(`φ− φB)|g0〉) ,

|ΨNC〉 =
1

N(φ)
(i sin θB sin(`φ− φB)|gNC〉 − cos θB |g0〉) ,

(8.13)

with the normalisation done by N(φ) =
√

cos2 θB − sin2 θB cos2(`φ− φB). Using this basis, the

3http://rochesterscientific.com/ADM/

http://rochesterscientific.com/ADM/
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a) b) c)

Figure 8.5: Comparison of SEIT patterns predicted by numerical solutions of the optical Bloch
equations (yellow) and Fermi’s golden rule (orange, dashed) for ` = 1 at magnetic field inclination
angle (a) θB = π/36, (b) θB = π/3 and (c) θB = π/2. The Bloch equations were evaluated with
experimentally relevant parameters, B0 = 0.2 G, Itot = 200 mW/cm2. Curves are individually
peak-normalised.

interaction Hamiltonian can be written in a simpler form in the new basis (|ΨNC〉, |Ψ0〉, |gC〉, |e〉),

HE =
~
2


0 iΩL sin θB cos(`φ− φB) 0 0

−iΩL sin θB cos(`φ− φB) 0 −ΩLN(φ) 0

0 −ΩLN(φ) 0 1
2
√

3
Ω

0 0 1
2
√

3
Ω 0

 . (8.14)

|e>
|gC>
|Ψ0>
|ΨNC>

Figure 8.4: Ladder
basis for SEIT.

In this basis the states are pairwise coupled. The excited state is optically

coupled to the coupling state |gC〉. This in turn is magnetically coupled

to the intermediate state |Ψ0〉, which is also magnetically coupled to the

(sometimes) non-coupling state |ΨNC〉, forming the ladder system shown in

figure 8.4. Notice how the coupling between |Ψ0〉 and |ΨNC〉 turns off at

certain angles φ− φB = nπ/`, n ∈ N. At these angles |ΨNC〉 is a dark state

which allows EIT, and we can see that the phase dependence between the

two circular polarisation components of the driving light sets whether EIT

occurs or not. Since this relative phase is space dependent, EIT also follows

this.

For the weak driving fields considered here we can estimate the absorption

using Fermi’s golden rule, since the excited state population then remains negligible and so the

absorption is proportional to the probability of excitation from the sometimes non-coupling state,

TΨNC→e ∝
(

2π

~

)3

| ~
4
√

3
Ω|2|1

2
ΩL|4| sin θB cos(`φ− φB)|2|1

2
ΩLN(φ)|2, (8.15)

which can be written, after expanding N(φ), as

TΨNC→e ∝
~π3

96
Ω4
LΩ2

R sin2 θB cos2(`φ− φB)
(
cos2 θB + sin2 θB sin2(`φ− φB)

)
. (8.16)

The azimuthal variation of absorption is shown in figure 8.5 at different magnetic field inclination

angles θB . At small θB we see a (squared) sinusoidal variation in transmission, with 2` lobes.

Strikingly, however, at larger θB the lobes of EIT split, transitioning to 4` lobes at θB = π/2. We

will get a more intuitive picture in the next section as to why this happens.
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The absorption pattern also shifts with φB , rotating from one lobe to the next in ∆φB = π. This

is very easy to see from equation 8.16, where φB only appears alongside `φ, and can be understood

as the azimuthal angle of the magnetic field being the origin of the azimuthal component of the

coordinate system. This is because in this picture it is the magnetic field that breaks the cylindrical

symmetry.

Figure 8.5 also shows the absorption patterns predicted by a numerical solution of the optical

Bloch equations following from equation 8.12. In this picture we consider the absorption to be

proportional to the excited state population, since the only way to populate the excited state is via

the absorption of photons. We can see that the general, qualitative behaviour is very similar: 2`

lobes at small θB and 4` lobes at θB = π/2. At intermediate values of θB the absorption patterns

are similar in character, but the depth of the lobe splitting is slightly different. This effect is

sensitive to beam intensity; the figure shows results calculated for the intensity measured in the

experiment. This result highlights the fact the Fermi’s golden rule is only applicable when certain

assumptions, mainly low beam intensity, are met.

8.4 SEIT: a simpler model

mf = 0

ΔB

σ-σ+

F=0

F=1

D2

mf = 0 mf = +1mf = -1

π

Figure 8.6: EIT level scheme on the 87Rb D2

line, with the quantisation axis along the mag-
netic field. The mf = ∓1 ground states are cou-
pled to the mf = 0 excited state via σ+ + σ−
transitions and the mf = 0 ground state is cou-
pled to the excited state via a π transition.

Another way to look at the SEIT process in-

volves a different choice of quantisation axis.

Instead of the probe direction ẑ, we can also

choose the magnetic field direction4. Again,

the magnetic field is given by

B = B0

sin θB cosφB

sin θB sinφB

cos θB

 . (8.17)

The electric field vector of the vector vortex

beams we are considering here point in a direc-

tion given by

E(r, φ, z) = E0

cos `φ

sin `φ

0

 , (8.18)

which is all in a plane transverse to the prop-

agation of the beam. If our quantisation axis follows the magnetic field, however, the electric

field does not necessarily oscillate in a transverse plane to the quantisation axis. It is well-known

that linear polarisation transverse to the quantisation axis drives superpositions of σ+ and σ−

transitions, just like we had in the previous section. The component of the electric field along the

quantisation axis, however, drives a π transition, for which ∆mf = 0. The intensities of the π

and σ+ and σ− superposition driving fields can be calculated from the parallel and perpendicular

components of the electric field to the magnetic field,

I‖ =
1

2
cε0

(
E ·B
B0

)2

=
1

2
cε0E

2
0 cos2(`φ− φB) sin2 θB ,

I⊥ =
1

2
cε0

(
E2

0 −
(
E ·B
B0

)2
)

=
1

2
cε0E

2
0

(
1− cos2(`φ− φB) sin2 θB

)
.

(8.19)

4In fact we could choose any direction we like, but these two are probably the most obvious options.
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The atomic states are very simple when viewed along this quantisation axis, because the ground

states are not coupled by magnetic fields, shown in figure 8.6. We can use the bare states, although

it makes sense to make a small modification. Since the magnetic field is now along the quantisation

axis, it does not mix the Zeeman sublevels, but it does introduce a Zeeman shift. However, if

the laser is tuned to resonance with the un-shifted levels, then the Zeeman shifts are equal and

opposite for the mf = ±1 states, so the effective laser detuning is the same for both of them,

although with a different sign, but that will not matter for our discussion. Then it is perhaps

more sensible to consider their superposition states, |+〉 = (1/
√

2)(|mf = 1〉 + |mf = −1〉) and

|−〉 = (1/
√

2)(|mf = 1〉 − |mf = −1〉). |+〉 is driven by the σ+ + σ− light, whereas |−〉 is not

accessible by spontaneous emission, which we consider to be by far the dominant decay process

from the excited state, so we assume that its population is 0. These states should be familiar from

the previous section, where they were called the coupling and non-coupling ground states, |gC,NC〉.

Then we can write down rate equations for the populations in the atomic states. We calculate the

Rabi frequency as [59]

Ω‖ =
Γ

2

√
I‖

Isat
=

E · d
~

cos2(`φ− φB) sin2 θB

and

Ω⊥ =
Γ

2

√
I⊥
Isat

=
E · d
~

(1− cos2(`φ− φB) sin2 θB),

(8.20)

with Isat = cε0Γ2~2/(4|E · d/E0|2). The rate equations for the populations Pi in this system are

ṖE = Ω0 cos2(`φ− φB) sin2 θBP0 + (Ω0(1− cos2(`φ− φB) sin2 θB) + ΩL)P+ − ΓPE ,

Ṗ0 = −Ω0 cos2(`φ− φB) sin2 θBP0 +
1

3
ΓPE ,

Ṗ+ = −
(
Ω0(1− cos2(`φ− φB) sin2 θB) + ΩL

)
P+ +

2

3
ΓPE ,

1 = PE + P0 + P+

(8.21)

where we have defined Ω0 = E · d/~, and the Larmor frequency ΩL represents the detuning due

to Zeeman shift for |+〉. The steady-state solutions for the populations are rather involved:

P0 =

(
1 +

2Ω0

−Ω0 + (Ω0 + ΩL) csc2 θB sec2(`φ− φB)
+

3Ω0 cos2(`φ− φB) sin2 θB
Γ

)−1

,

P+ =
2Ω0Γ

(Ω0 + ΩL)Γ csc2 θB sec2(`φ− φB) + Ω0(3(Ω0 + ΩL) + Γ− 3Ω0 cos2(`φ− φB) sin2 θB
,

PE =
−3Ω0 cos2(`φ− φB) sin2 θB(−ΩL − Ω0 + Ω0 cos2(`φ− φB) sin2 θB)

(Ω0 + ΩL)Γ + Ω0 cos2(`φ− φB) sin2 θB(3(Ω0 + ΩL) + Γ− 3Ω0 cos2(`φ− φB) sin2 θB)
.

(8.22)

We can relate the absorption to these populations through noting that the only way to get from

either ground state to the excited state is via the absorption of a photon. Hence the absorption

is proportional to the excited state population PE , although the excited state population itself is

very small; the maximum excited state population is approximately 0.02 for a reasonable choice

of parameters (Γ ≈ 10Ω0 ≈ 100ΩL). Figure 8.7 compares the predictions of this result with

the absorption obtained using Fermi’s Golden Rule in the previous section. The two results are

extremely similar in appearance, and they both produce the expected behaviour with changing

magnetic field direction. This is shown explicitly only for the peak splitting, since the rotation is

trivial.
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a) b) c)

Figure 8.7: Comparison of SEIT patterns predicted by rate equations (blue) and Fermi’s Golden
Rule (orange, dashed) for ` = 1 at magnetic field inclination angle (a) θB = π/36, (b) θB = π/3
and (c) θB = π/2. In these simulations the magnetic field strength was small, ΩL = 0.1Ω0, and
the decay was fast, Γ = 100Ω0.

The two models are in nearly perfect agreement at small and large magnetic field inclination angles

θ. The slightly different splitting depth seen in figure 8.7 b) for intermediate θs is not entirely

unexpected, since the very same behaviour can be seen if we numerically solve the full optical

Bloch equations for this system at intermediate probe intensities (I < Isat but not I � Isat). A

comparison of such numerical solutions with the absorption obtained from Fermi’s Golden Rule was

shown in figure 8.5. We see that the absorption pattern obtained from the excited state population

in the numerical solutions is again very similar to the pattern obtained from the rate equation

model.

This investigation suggests that all of these methods are valid ways of analysing SEIT. They are

perhaps useful in different situations. I think it is easiest to think about the situation when the

quantisation axis follows the magnetic field, since in this case we can think about populations in

the bare atomic states. It is easy to see how the dark states arise, and how they are populated

via optical pumping. In this picture it is easier to think of the SEIT as polarisation dependent

absorption. The populations in this picture are analytic, so can be used in fast calculations.

The Fermi’s golden rule picture is also analytic, and its predictions are remarkable in their sim-

plicity. It is worth noting that the Fourier transform of the absorption profile predicted by Fermi’s

golden rule is analytic. As we will see in the next section, this gives very simple and reliable

predictions for the experiments so it is preferable for investigating the experimental results. While

the absorption profile obtained from rate equations can also be Fourier transformed analytically,

the result is too complicated to be of any practical use5. I would not use the full optical Bloch

equations, because its solution is cumbersome, but in our investigations it, too, gave similar results

to the other two methods.

8.5 Experimental results

As we discussed above, the four-level tripod shown in figures 8.3 and 8.6 is realised in rubidium 87

on the F=1→F’=0 transition on the D2 line. Our SpOT collects cold atoms in the ground state of

this transition, which is excellent since we can ignore the Doppler effect for the probing, because

its effects are minimal. We generate optical fields much like those in equation 8.18 using Q-plates

introduced in chapter 2. The Q-plate and a lens are placed such that the atoms are in the far field

5It took Mathematica about an hour to come up with the transform, and it is far too complicated for me to
interpret in any meaningful way.
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of the Q-plate, because in this case the beam from the plate becomes a good approximation of

a superpositon of circularly polarised Laguerre-Gaussian beams with ` = ±2q due to diffraction.

This helps clean up the phase as well. This far field plane is imaged onto a camera by a single lens.

The complete experiment setup can be seen in figure 7.19 at the end of the previous chapter.

The magnetic field used to set the quantisation direction is controlled by the coils responsible for

compensating background magnetic fields. On their own these coils only allow the quantisation

axis to point in π/2 sr solid angle defined by their axes and the direction of current flow through

them. In the experiment we had no way of reversing the current flow, which causes this limitation.

However, because the coils were designed to work against the background magnetic field, if we turn

them off we get a field pointing in a direction opposite to what the coils can generate. Therefore

as long as we use small enough fields6 we can exploit the background field to give us access to full

4π sr of pointing direction. This gives us all the tools we need to experimentally investigate the

models derived in sections 8.3 and 8.4.

We performed absorption imaging (see chapter 7) using the Q-plate beam as the probe at different

quantisation field angles, using a magnetic field of 0.2 G. The atom cloud was allowed to expand

for 2 ms to grow to a large enough size to encompass the Q-plate beam. This also reduced the

density of the cloud to a point where the absorption would not be saturated by the atoms. If the

cloud was too dense parts of the beam which had a low probability to be absorbed by a single

atom would still be absorbed, which would change the observed absorption pattern compared to

what we would expect from theory. A sample set of absorption images are shown in figure 8.8,

showing the splitting and rotation of the EIT lobes. These absorption images are extremely noisy

where the beam has no appreciable intensity because of the division in equation 7.3. This is not a

problem for the analysis of the absorption.

During the analysis absorption images were azimuthally unwrapped around the beam centre. We

found the beam centre by assuming that the outer edge of the beam was circular due to diffraction

from a pinhole in the beam path. The central vortex of the beams was not useful for determining

the beam centre, because the Q-plates did not work very well near their centre so the central dark

region was rather asymmetric. We then took the Fourier transform of the azimuthal variation of

absorption at a radius of choice, usually at the peak intensity. The 2` and 4` components of the

complex Fourier transform contain information about the quantisation magnetic field direction,

and we can relate them easily to the absorption function given by Fermi’s golden rule. The Fourier

transform is calculated along φ, F(T (φ)) = t(Φ). The argument of the 2` is immediately related

to φB via

arg(F(Φ = 2`)) = 2φB , (8.23)

where the factor of 2 comes from the symmetry of the specific beams we used, i.e. the fact that

all specific linear polarisations appear an even number of times in the beam cross section.

The splitting of the EIT lobes can be seen in the Fourier transform as the appearance of a 4`

component as a function of the inclination angle θB ,

|F(Φ = 4`)| = 1

4

√
π

2
sin4 θB . (8.24)

It could be interesting to look at the variation of the 2` component with θB as well. This is given

6The magnitude of the desired magnetic field is less than that of the background magnetic field.
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Figure 8.8: SEIT absorption images, demonstrating the rotation and splitting of the EIT lobes
with magnetic field angles θB and φB . The images have been thresholded to enhance the visibility
of the absorption lobes.
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by a very similar expression,

|F(Φ = 2`)| =
√
π

2
cos2 θB sin2 θB . (8.25)

This has twice the frequency of the 4` component amplitude, being zero for θB = 0 and θB = π/2

and maximum for θB = π/4 and θB = 3π/4.

Figure 8.9 shows the argument of the 2` and the amplitude of the 4` Fourier components, both

for data and the above expressions. The data presented in figure 8.9b) were all normalised to the

` = 1 data set. Error bars are only shown for the ` = 1 case, and we assume the uncertainty for

the other beams is comparable. We calculated the uncertainty by repeating each experiment 10

times and calculating the standard deviation of the calculated Fourier components. Note that the

φB-dependence was negative because of a mistake in the definition of the coordinate system used

to generate magnetic fields in the experiment; the x-axis was reversed. We take this into account

when calculating the model dependence.

In any case, the data and theory are generally in very good agreement. A small discrepancy

can be seen in both the 2` and the 4` components. The arguments of the 2` component were

consistently too large for φB < π/2 and too small (although by a smaller amount) for φB > π/2.

The amplitude of the 4` component changed slightly with φB as shown in the inset in figure 8.9a),

which was not expected. We attribute these phenomena to either a slightly incorrect background

field compensation, or imprecisely generated magnetic fields. A small offset magnetic field would

displace the origin of the coordinate system for the quantisation axis rotation, which can explain

the systematic discrepancies between theory and data. The magnetic field generated was never

measured, we only measured the coil currents from which we could calculate the magnetic field

generated. However, given experimental uncertainties in the dimensions and alignment of the coils

it is possible that the actually generated fields differed somewhat from the intended fields, but this

was not measured.

It is possible to introduce further uncertainty to the Fourier components when unwrapping the

absorption images. If the centre around which the unwrapping is performed is chosen slightly off

the actual beam axis, or the pattern is not circularly symmetric, then the unwrapped profile will

have additional low frequency components not due to the absorption pattern. However, we expect

that these effects would have a diminishing effect with spatial frequency. In any case, care was

taken to find the centre for unwrapping by iteratively choosing a range of centre points and making

sure that the unwrapped profile was as azimuthally symmetric as possible (which assumes that

the beams themselves were azimuthally symmetric). Image noise can be neglected as a source of

uncertainty, because it is at very high spatial frequencies and so does not affect the low Fourier

components we are concerned with here.

We can also see that for larger values of ` the results were somewhat less in agreement with theory,

especially in the case of the amplitudes of the 4` component. There were a couple of reasons for

this. Firstly, beams with higher ` are larger in the far field, meaning that they overlapped with

fewer atoms at the edge of the cloud leading to lower signal-to-noise ratio. To counteract this we

could expand the cloud for longer, but this lead to other issues. During a longer expansion the

cloud slightly shifts under gravity, meaning that if the beam was centered on the trap location

the absorption images would be slightly less symmetric, which leads to undesired variations in the

Fourier components, distorting the results. A more expanded cloud is also less dense, although it

is at least more uniformly so. Technically these effects could all be compensated with careful beam
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a) b)
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Figure 8.9: Fourier transform components of SEIT as a function of magnetic field angles. Model
curves were obtained from Fermi’s golden rule.

alignment and by adjusting the beam power to account for fewer atoms in a larger cloud or at the

edge of the cloud. However, we decided that such adjustments between data sets would make their

comparison more difficult because of the new free parameters, so we performed all experiments

with the same expansion and beam power. Note that keeping beam power constant did change

the intensity of the beams, as larger beams had slightly less intensity.

Another reason for the data for different ` to look somewhat different is that the Q-plates we used

were, at this point, quite old, over 4 years old. Q-plates degrade over time, their phase retardation

changes. As a result, some of the beams we used were better representations of equation 8.18 than

others. This can be seen in figure 8.8. For example, the ` = 2 beam looks markedly worse than

the others in the figure, with a strange radial variation in absorption, and non-uniform azimuthal

variation. Even so, the corresponding Fourier components behaved remarkably similar to theory,

which demonstrates that the Fourier method of analysis is rather robust. This is likely because we

specifically analyse spatial frequency components of interest, and so the method is insensitive to

noise at other frequencies.

8.6 An atomic compass

The results in the previous sections show that the absorption patterns that appear when a vector

vortex beam interacts with our rubidium SpOT in the presence of a magnetic field depend on

the direction of the magnetic field. This means that we can deduce the direction of the magnetic

field just by looking at an absorption image, or, more precisely, the Fourier components of the

unwrapped absorption images. In this sense the atoms can be used more or less as a compass.

We can calculate the azimuthal and inclination angles of the magnetic field from the Fourier

components by inverting equations 8.23 and 8.24. The results of this calculation are shown in

figure 8.10. The error bars here are calculated from the uncertainties shown in figure 8.9 by adding

and subtracting the uncertainty from the corresponding Fourier component before performing the

inverse of equations 8.23 and 8.24.

The average error in our measured angles is ±2.4◦. It is difficult to compare this value to other

currently available devices that can be used to measure the direction of magnetic fields, because

their specifications are stated in terms of sensitivity. As an example we take a commercially

available OPM from QuSpin7. They quote the heading error, the error in the measured field due

to the alignment between the device axis and the total magnetic field, as 3 nT in the 1-100 µT

7https://quspin.com/qtfm/

https://quspin.com/qtfm/
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Figure 8.10: Measuring magnetic field angles using SEIT. Model curves were obtained from Fermi’s
golden rule.

range for their device. Since we used a 20 µT field we can compare our results to this OPM.

Let us assume an unfavourable configuration for the OPM, where we use two devices at right

angles to measure the direction of a 20µT magnetic field in the plane of the two devices, aligned

with the magnetic field such that the heading error is large for both, i.e. at 45◦ to both. In

this case both devices would measure a 20/
√

2 ± 0.003 = 14.142 ± 0.003 µT field, where we have

taken the maximum heading error for worst case scenario. Then the uncertainty in the measured

field angle is 45◦ − tan−1 ((14.142− 0.003)/(14.142 + 0.003)) = 0.01◦. This shows that even in an

scenario unfavourable to commercial devices our method of measuring magnetic field angle cannot

yet compete with their sensitivity.

In fact cheap commercially available orienteering sensors are available at a direction accuracy

comparable to our atomic sensor, with a far lower complexity [106]. Having said that, our sensor

has very low maturity with room for improvement, discussed below. We also note that we exploit

a new approach that, to our knowledge, has not been used to measure magnetic fields before.

Because of this we believe there is inherent scientific interest in our technique.

There are a couple of things to notice about the deduced angles, some of which indicate sources of

our uncertainty. First, the measured values of φB have twice the periodicity of the generated φB

because of the even symmetry of the polarisation patterns in the beams we used. This means that

with such beams this technique cannot tell the difference between a rotation by Φ and Φ + nπ,

n ∈ N. This limitation is quite easy to remove, however. One only needs to use beams where

the polarisation has an odd azimuthal symmetry. These can be generated by specially designed

Q-plates, but are easy to make using any of the dynamic polarisation shaping setups discussed in

chapter 2.

A similar issue exists for determining the inclination angle θB . We can see from equation 8.24, and

figures 8.9 and 8.10, that the technique cannot differentiate between θB and π/2− mod (θB , π/2).

This is because to determine θB we are essentially looking at how split the absorption lobes are,

which monitors how transverse the magnetic field is to the beam propagation direction. Unfortu-

nately there is no easy way around this.

There was a suggestion by Thomas Clark8 that detuning the beam from resonance with the mf =

0→mf = 0 transition would be able to lift this degeneracy. The logic was that the Zeeman shifted

mf = ±1 states would lead to different absorption on the σ+ and σ− transitions if the beam is

detuned, because one or the other would be closer to resonance. This should be detectable as a

8Personal communication.
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Figure 8.11: Polarisation of vector vortex beams before and after interacting with the SpOT.

change of ellipticity of the polarisation of the beam as it passes through the atoms. We investigated

this by using spatially resolved Stokes polarimetry as described in chapter 3. Sample plots of the

recorded polarisation patterns are shown in figure 8.11.

Because the atom numbers in the SpOT changed somewhat between experiments we performed

the experiment with the same settings 14 times, and averaged the absorption images for each

polarisation projection (ĥ, v̂, â, d̂, r̂ and l̂). Unfortunately the results were still inconclusive. We

saw no obvious pattern in the way polarisation patterns change as a function of detuning. It would

perhaps be more useful to compare the absorption of the two circular polarisation components,

since a detuning of the laser beam would bring one of the σ± components closer to resonance when

the ground state levels are Zeeman shifted, so we expect to see a difference in the absorption of the

circular polarisation components. This could give us an experimental improvement, too: we could

use a quarter wave plate and a Wollaston prism to simultaneously record absorption images for the

two orthogonal circular polarisation components using the same atom cloud. We expect that such

a method should show some difference between the components. We attempted this experiment,

but, at the time of writing, there are no results to speak of due to unexpected experimental issues.

The Wollaston prism we used has a large (20◦) beam separation angle, which lead to one of the

beams being compressed in one dimension, see figure 8.12. New, small angle Wollaston prisms

have since been purchased, but the experiment has not yet been done with them. Of course, the

stretched images could be rescaled in post-processing, but this could introduce further unnecessary
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a) b)

Figure 8.12: Compressing effect of a large separation angle Wollaston prism, shown in (a) the
absorption image of two orthogonal polarisation components, where the shape of the two beams
appear different and (b) conceptually, showing how two rays are separated by a Wollaston prism.

complications.

Returning to figure 8.10, we note that our observations about figure 8.9 still hold, in that the

deduced φB values are not linear, and the measured θB values have a ’shoulder’, we never measured

values less than π/8. We attribute these effects to incorrect background field compensation. In

fact it seems like there was a small remaining field lying mostly in the x−y plane. We suspect that

it had basically no component along the z axis, because such a component would make measured

θB values asymmetric around π/2, which we do not see. It is also possible that Fermi’s golden

rule is simply not an accurate enough approximation to the real system with the parameters we

used. Looking at the absorption images in figure 8.8, we can see that at θB = π/2 the absorption

patterns are not completely azimuthally symmetric. This feature appears in both the numerical

solutions to the optical Bloch equations and the solutions to the rate equations, but is missing

from Fermi’s golden rule. Since in the two more complete solutions the splitting (and so the 4`

component) appears for lower θB using Fermi’s golden rule would overestimate this angle for low

angles. Figure 8.13 shows an example where shoulders appear in the angles measured when θB

is calculated from the numerical fast Fourier transform of the absorption pattern using the rate

equations solution. The graph was obtained by violating the low intensity assumption (Ω0 =

50Γ) and with an uncompensated transverse background magnetic field with strength of 0.5B0.

Figure 8.13: Measured θB (orange) can be over-
estimated if beam intensities are too high and/or
there is an uncompensated background magnetic
field. The blue curve is calculated from Fermi’s
golden rule. Compare with figure 8.10b.

Nevertheless, our observations suggest that

SEIT can also be used to very accurately com-

pensate background magnetic fields, as long as

we have precise control over the magnetic field

generated by the coils. In our experiments we

attempted to cancel the background magnetic

field by the following process. First, we applied

no quantisation field, and iteratively adjusted

the compensation field (in the x-y plane) until

the azimuthal absorption contrast (given by the

difference between the maximum and minimum

absorption at a chosen radius) was minimised.

This way we set the compensation such that

the remaining field was along the z direction.

It can be seen from equations 8.22 that the ex-

cited state population, and so the absorption,
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is zero irrespective of φ if θB = mπ, m ∈ N, i.e. the magnetic field is axial. Then, we applied a

quantisation field such that θquant = π/2. We then maximised the azimuthal absorption contrast

by iteratively adjusting the axial compensation field strength.

This process can actually be made much more efficient. Consider a controlled quantisation field

of strength Bq. Let us set the direction of this field to φq1,q2 = 0, θq1 = π/4 and θq2 = 3π/4, and

measure θB1,2 of the total magnetic field using the 4` Fourier component according to equation 8.24.

The geometry of the situation is shown in figure 8.14. The x and y components of the total magnetic

field are the same for both cases, so we can write down

tan θB1 =

√
2Bq +B0 sin θ0 sinφ0√

2Bq +B0 cos θ0

and

tan θB2 =

√
2Bq +B0 sin θ0 sinφ0

−
√

2Bq +B0 cos θ0

.

(8.26)

We can calculate the ratio
tan θB1

tan θB2
=
−
√

2Bq +B0 cos θ0√
2Bq +B0 cos θ0

, (8.27)

which we can rearrange to find the z-component of the background field B0,

B0,z = B0 cos θ0 =
2
√

2Bq

1 + tan θB1

tan θB2

−
√

2Bq. (8.28)

π/4 π/4
θB1θB2

Bq Bq

B0sinθ0sinφ0 B0sinθ0sinφ0

Figure 8.14: Measuring the z-
component of a background magnetic
field (blue) using SEIT by setting a
controlled quantisation field (green) to
two inclination angles θq1 = π/4 and
θq2 = 3π/4 = π − π/4.

This is then easily compensated by adjusting the z-

component of the compensation field by −B0,z. To de-

termine the azimuthal angle of the remaining background

field we generate a series of controlled quantisation fields

with 0 ≤ φq < 2π and retrieve the measured φB using

equation 8.23. φB lie on a curve that crosses the φB = φq

line when φq = φ0 or φq = −φ0, because in these cases

the background field is collinear with the generated quan-

tisation field, so the measured direction is the same as

the one set by the quantisation field. This way we can

directly read off |φ0|. The transverse part of the back-

ground field can be compensated by adding a component in the |φ0| direction to the compensation

field, and varying its strength until the absorption contrast goes to zero. At that point the back-

ground field will be exactly compensated.

Of course we could measure the background field direction simply by turning any compensation

or quantisation field off. In this case we would be uncertain about the θ0 direction as discussed

above, and we would have no information about the strength of the field. We could try setting

the compensation field against one of the possible B0 directions and vary the strength of the

compensation field, attempting to minimise the absorption contrast. Unfortunately if we choose

the wrong θ0 we would never achieve zero contrast. We could monitor the rate of change of the

splitting with positive and negative compensation fields, since the total magnetic field direction

θB would change slower with the compensation field pointing in a direction close to B0 than away

from it if they are not collinear.

It is perhaps worthwhile to point out that the system presented here cannot compete in sensitivity
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with existing magnetometers, whether based on atoms [82, 119] or other technologies [120]. We

think that SEIT is interesting from a fundamental scientific point of view, allowing us to deduce

(with some ambiguity) the direction of a magnetic field from an absorption image. This can be done

because our cloud of atoms maps the projection of an electric field vector (in the light field) onto

the magnetic field vector onto the transmitted intensity of the probe light. Having said that, the

technique for compensating stray magnetic fields outlined in the preceding few paragraphs could

be of practical use in atom traps, where it is impractical or impossible to place magnetometers of

other kinds close to the trap volume.

8.7 In summary

In this chapter we have described electromagnetically induced transparency, and developed the-

oretical descriptions for investigating EIT in a 4-level tripod system. This system is realised in

our experiments comprising the Zeeman sublevels in the F=1→F’=0 D2 manifold of rubidium 87.

We found that in this system absorption depends on the angle between the polarisation direction

and the quantisation axis set by an external magnetic field. We can exploit this, in conjunction

with beams with structured polarisation, such as the vector vortex beams used here, to deduce

the direction of the magnetic field. Here we were only sensitive to magnetic field direction within

π sr solid angle because of the even azimuthal symmetry of the beams and the degeneracy of the

system with magnetic field inclination angle. By using beams with an odd azimuthal symmetry we

can extend the detection range to 2π sr, which is equivalent to a compass with an added orthog-

onal alignment measurement. We have shown data obtained from vector vortex beams generated

from Q-plates. We also described how to use this system to measure and compensate an unknown

background magnetic field.

For further study it would be interesting to investigate dispersion in SEIT. We showed in figure 8.2

that the reduced absorption is accompanied by an increased dispersion. This effect reflects the

Kramers-Kronig relations for the real and imaginary parts of complex functions. The same relations

must hold for our spatial EIT, in which case we should be able to engineer the dispersion by

structuring the light field driving SEIT. If so, we can perhaps engineer the dispersion profile in

a spatially structured manner, in a scheme that could be used as a spatial quantum memory.

We think that we can investigate the dispersion by looking at the rotation of beam polarisation,

since polarisation components experiencing EIT ought to experience a different refractive index

compared to polarisation components that are more absorbed, and so should be phase shifted.



The end

The previous chapter marked the end of the core chapters of this thesis. In Part I we learned about

light as electromagnetic radiation, and learned to control the amplitude, phase and polarisation

nearly arbitrarily in any plane transverse to optical beam propagation. These light structures

extend into three dimensions via propagation, and we described a simple way of calculating this in

the paraxial limit. We explored in detail methods of controlling light using digital devices, spatial

light modulators and digital micromirror devices, their advantages and disadvantages, and their

optimal use through calibration and aberration correction. In the last chapter of the first part we

used our knowledge of beam shaping and analysis to quantify correlations between spatial and po-

larisation degrees of freedom in vector vortex beams. These correlations mimic the mathematics of

quantum entanglement, although they are physically distinct in that entanglement can involve non-

local effects whereas classical correlations cannot. Nevertheless, quantum entanglement measures

can be adapted to these correlations. In particular we related concurrence to Stokes parameter

measurements. Quantifying correlations this way may be useful, apart from their pure scientific

interest, for quantum algorithms that require correlations, but not non-locality.

We began Part II by introducing basic atomic physics, including absorption and scattering of (near-

)resonant coherent light. We introduced the optical Bloch equations for a 2-level atom. Then we

described in quite a lot of detail how to generate the resonant coherent light using external cavity

diode lasers. We detailed the construction of the ECDLs used in the experiments in the subsequent

chapters, and explained how to stabilise the laser frequency to atomic transitions of rubidium, the

atomic species of choice for our experiments. We described an experiment in which we combined

the knowledge gained in Part I about structured light with the atomic state control via interaction

between atoms and light. We used structured light to drive atoms to dark states in specific volumes

in a warm rubidium vapour, and probed the populations of atoms remaining in bright states using

a separate probe beam. We reconstructed the population structures tomographically from the

fluorescence of the probe beam. We also modelled the populations using rate equations, taking

into account the transverse velocity of atoms in the warm cell, which yielded good predictions

matched by the experimental results.

We then turned up the complexity another notch, exploring cold atom traps. We described how

the Doppler effect can be exploited to cool atoms with red-detuned laser light. We introduced

magneto-optical traps, in which cold atoms are collected around the zero of a quadrupole mag-

netic field. We discussed in detail experimental considerations in our trap, mostly considering

alignment and magnetic field control. We also introduced a more advanced trap configuration,

where atoms are trapped in a dark state, leading to higher densities because of the elimination

of re-radiation pressure from scattered photons within the cold atom cloud. This spontaneous-

force optical trap formed the backbone of our next, most complicated experiment, where we once

again used structured light and atoms, this time of the cold variety. We developed a theory of

126
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polarisation-dependent EIT, where the absorption of the cold atom cloud is controlled by the an-

gle between a magnetic field setting the quantisation axis for the atoms and the polarisation of a

vector vortex beam. We showed that this system allows us to deduce the magnetic field direction,

acting like a 3D compass, although with some restrictions that lead to sensitivity to only 2π sr

solid angle.

In the remainder of this thesis we report on short projects we took part in that are tangentially

related to the main matter of this thesis. I feel they are worth including because they helped build

my intuition about topics that form the core of this work9. There will be some more talk of atoms

when we look at single ion trapping in an experiment to measure the longitudinal component of

a focused radially polarised beam. We will also briefly investigate the diffraction of vector vortex

beams.

9And because I think they are interesting.



Part III

Short projects



Chapter 9

Short projects

9.1 Introduction

In this short chapter we describe two projects we worked on that are tangentially related to the

preceding core chapters of this thesis. The first of these projects is related to our work on spatial

polarisation control (chapter 2), here put to use in the context of single ion trapping. The physics

of ion trapping is similar to atom trapping (chapter 7), although it is possible to manipulate the

motion of ions with higher precision than the motion of neutral atoms in a magneto-optic trap1.

In the project described in section 9.2.2 we combined our expertise in beam shaping with the

ion trapping expertise in the Schmidt-Kaler group at the Johannes Gutenberg University, Mainz,

Germany. I visited the Schmidt-Kaler group in March 2017, and the work described here was

carried out then. I also present a detailed discussion of ion trapping theory; while I only did minor

work on the construction and operation of ion traps, I find the concept exciting, which is why the

theory is included here.

Our work in the project described in section 9.3 involved simulations of double-slit diffraction of

vector vortex beams, using methods described in chapter 1. This work complemented student

projects carried out in the experiments we built to generate arbitrary polarisation structures, as

described in chapter 2. We include the simulation results here out of interest, as well as future

reference. I built the experiment and wrote the simulations during the summer of 2018, alongside

the work presented in chapter 8.

9.2 Ion traps

In chapter 1 we briefly touched on the fact that in the paraxial limit the electric (and magnetic)

fields of a propagating light field oscillate transverse to the propagation direction. In strongly

focusing, high numerical aperture systems this is no longer necessarily valid. For example, at a

tight focus radially polarised beams have a strong longitudinal electric field component oscillating

in the propagation direction. Due to the extremely small focal spots in such situations the electric

field distributions are difficult to measure. Previously, gold nanoparticles were used to perform

such measurements [122, 123]. In collaboration with the Schmidt-Kaler group at the Johannes

Gutenberg University of Mainz we intended to measure the distribution of the various polarisation

1Although it is possible to exert comparable level of control over neutral atoms, for example in optical lattices [121]

129
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components of tightly focused radially and azimuthally polarised beams using single ytterbium

ions.

Today laser cooling is routinely used to prepare experiments investigating the properties of single

atoms or ions, and recently using both individual ions and ion strings for quantum computing and

quantum simulation. However, just sixty years ago such experiments were considered to never be

feasible; this is well illustrated by the famous statement by Rutherford in 1952: ”... we never

experiment with just one electron or atom or (small) molecule. In thought experiments, we some-

times assume that we do; this invariably entails ridiculous consequences...” Indeed, the difficulty

of isolating single particles and performing measurements on it would be insurmountable without

tunable lasers. The first tunable dye lasers were invented in the 1960s, and two decades after

Rutherford’s statement the first narrow-band tunable laser was reported[124]. This development

led to the first ion trapping experiments performed by Neuhauser et al. [125] and Wineland et

al. [126] in 1978. Soon after experiments with single trapped ions were realised. Today experi-

ments with single trapped ions are used as accurate time and frequency standards, for precision

spectroscopy and quantum computing and simulation.

The early experiments used tunable lasers to cool the ions in conjunction with static quadrupole

electromagnetic fields to form the trap. This configuration is known as a Penning trap, proposed

in 1936 [127]. In this essay we will focus on a different setup proposed by Paul in 1990 [128].

Paul traps use a dynamic electric field, oscillating at a radio frequency, to generate the quadrupole

trapping potential. We will first describe the quantum-mechanical treatment of this potential. We

will then look at the interactions between the trapped ions and laser fields. Finally, we apply

the concepts developed in these sections to describe laser cooling in this context. This section is

largely based on the reviews of Leibfried, et al. [129] and Eschner, et al. [130], and the PhD thesis

of Cornelius Hempel [131].

9.2.1 Cooling to the motional ground state in a linear Paul trap

Let us first look at the form of the potential in a Paul trap. It is easy to see that in order to trap

a particle we require a restoring force that is proportional to the distance from the trap centre.

This condition is satisfied by the quadrupole potential in a Paul trap, which has the form

Φ = U
1

2

(
αx2 + βy2 + γz2

)
+ URF cos(ωRF t+ φRF )

1

2

(
α′x2 + β′y2 + γ′z2

)
(9.1)

where U,URF correspond to voltages applied to the trap electrodes, ωRF is the trap drive frequency

and coefficients α, β, γ determine the shape of the potential. Note that the potential is a sum of

separate time-dependent and time-independent parts. To constrain the coefficients one has to solve

the Laplace equation ∇2Φ = 0. Doing so yields the relations α+ β + γ = 0 and α′ + β′ + γ′ = 0.

A common choice for these coefficients is

− (α+ β) = γ, α′ = −β′ (9.2)

which results in a potential that generates confinement in the x-y plane via the oscillating field

and by a static field in the z direction; this configuration is known as a linear Paul trap, shown in

Fig. 9.1. Such traps are attractive because they can be used to trap strings of ions, for example for

applications in quantum computing. Note that the sign difference between the different coefficients

indicates that there is no static minimum of the potential in all three dimensions, hence ions will

be trapped dynamically.
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Figure 9.1: Diagram of a linear Paul
trap. The trap consists of four blade
electrodes and two end-cap electrodes.
RF voltage is applied to two oppo-
site blade electrodes (shown in copper)
while the rest of the electrodes are held
at a constant voltage (grey).

We now transform into a quantum mechanical picture by

replacing the coordinates with their respective operators.

Since the potential in different dimensions can be decou-

pled it is sufficient to look at the part of the potential

in the x direction; the other directions can be treated

analogously. So the potential V (t) can be written as

V (t) =
1

2
mW 2x̂2 +

1

2
mW 2

RF x̂
2 (9.3)

where m is the ion mass and we have made the substitu-

tions

W =
Uα

m

WRF =
URFα

′ cos(ωRF t+ φRF )

m
(9.4)

First, let us look at the time-independent part. It is

straightforward to write down the Hamiltonian for this

part of the ion motion

Ĥh.o. =
p̂

2m
+
m

2
Wx̂2 (9.5)

We recognise this Hamiltonian as that of the familiar harmonic oscillator. In fact we can introduce

the creation and annihilation operators

â† =

√
mW

2~

(
x̂− i

mW
p̂

)
and â =

√
mW

2~

(
x̂+

i

mW
p̂

)
(9.6)

Using these operators we can rewrite the time-independent part of equation 9.3 as

Ĥh.o. = ~W
(
â†â+

1

2

)
≡ ~W

(
N̂ +

1

2

)
(9.7)

The simultaneous eigenstates of Ĥh.o. and N̂ are known as number states or Fock states, and they

are evenly spaced with a ground state |0〉 with energy E0 = ~W/2. The repeated application of

the creation operator to the ground state yields all possible eigenstates. The eigenvalues n of N̂

corresponding to |n〉 give the number of motional states or phonons. The motion described by

these states is known as secular motion.

We can now consider the time-dependent part of the potential. The total Hamiltonian is given by

Ĥ = Ĥh.o. + ĤRF (9.8)

where ĤRF is the perturbing Hamiltonian corresponding to the time-dependent potential. This

induces a driven oscillation at the trap drive frequency; the resultant motion is called micromotion.

The magnitude of micromotion is much smaller than that of secular motion, and its frequency is

normally much higher, which is why it is often neglected. However, because of its large frequency

it does contribute to the energy in the system[132]. It is easy to find the effect of the micromotion

Hamiltonian by performing the transformation

Ĥint = Û†0 ĤRF Û0, (9.9)

where Û0 = e−iĤh.o.t/~ is simply the time-evolution of the unperturbed system. This transforma-

tion to the so-called interaction picture separates the perturbing Hamiltonian from the unperturbed
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(harmonic oscillator) system. It is convenient to express the RF Hamiltonian in terms of a time-

dependent force:

ĤRF = −(â+ â†)x0
A

2i

(
ei(ωRF t+φRF ) + e−i(ωRF t+φRF )

)
≡ − (â+ â†)x0F, (9.10)

where we have expressed x̂ in terms of the creation and annihilation operators, with the char-

acteristic length scale of the harmonic oscillator x0 =
√
~/(2mW ). We have also replaced the

time-dependent trigonometric function by its exponential form. Having done this, the full interac-

tion Hamiltonian can be written down:

Ĥint = x0
A

2i

(
âe−i((W+ωRF )t+φRF ) + âe−i((W−ωRF )t−φRF )

+â†ei((W−ωRF )t−φRF ) + â†ei((W+ωRF )t+φRF )
)
. (9.11)

To obtain this we have used the identities

eiθâ
†ââe−iθâ

†â = e−iθâ,

eiθâ
†ââ†e−iθâ

†â = eiθâ†.

One can now perform the rotating wave approximation neglecting terms with frequency sums to

simplify this to

Ĥint = x0
A

2i

(
âe−i((W−ωRF )t−φRF ) + â†ei((W−ωRF )t−φRF )

)
. (9.12)

On resonance (i.e. when the trap drive frequency is the same as that of the harmonic oscillator)

this further simplifies to

Ĥint = x0
A

2i

(
âeiφRF + â†e−iφRF

)
. (9.13)

The time evolution corresponding to this Hamiltonian can be re-written as a displacement operator

D(α) = eαâ
†−α∗â, (9.14)

where we have introduced the dimensionless amplitude α = e−iφRFAx0t/(2~). Applying the dis-

placement operator to the ground (vacuum) state creates a coherent state[133]. Coherent states

have a Gaussian probability distribution with the same shape as the ground state wave packet in

the harmonic oscillator, but their centre follows the trajectory of the ion (including micromotion)

and do not spread.

To describe the dynamics of ion-laser interactions we will assume that the internal electronic level

structure of the ion is well approximated by that of a two-level atom, with states |g〉 and |e〉 the

ground and excited states respectively. This simple model is adequate in most experiments, where

the energy separation of two electronic levels addressed by the laser is very different compared to

other level separations (i.e. the laser detuning is small only for these two levels) and the Rabi

frequencies (and consequently laser intensities) are small compared to this difference as well.

Let us revisit the two-level atom introduced in chapter 4. The Hamiltonian describing the internal

states of a two-level atom is given by

Ĥe = ~
ωe + ωg

2
(|e〉 〈e|+ |g〉 〈g|) + ~

ωe − ωg
2

(|e〉 〈e| − |g〉 〈g|) , (9.15)

where ~ωg and ~ωe are the energies of the ground and excited states respectively. It is convenient

to re-cast this expression in terms of the familiar Pauli matrices. This can be done because the
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algebra of two-level operators is identical to the spin-1/2 algebra if one maps ground and excited

states |g〉 , |e〉 to the down- and up-spin states |↓〉 , |↑〉 respectively. We perform the change of basis

|e〉 〈e|+ |g〉 〈g| 7→ σ̂0, |g〉 〈e|+ |e〉 〈g| 7→ σ̂x,

i (|g〉 〈e| − |e〉 〈g|) 7→ σ̂y, |e〉 〈e| − |g〉 〈g| 7→ σ̂z,

with σ̂0 the 2x2 identity matrix to write Eq. 9.15 as

Ĥe = ~
ω0

2
σ̂z, (9.16)

where ~ω0 is the energy difference between the ground and excited states. The first part of

equation 9.15 could be removed because it is state-independent and does not influence the analysis

that follows (its removal can be considered a choice of a zero energy level halfway between the

two levels). In the spin-1/2 formalism one can define the electronic raising and lowering operators

σ± = (σx ± iσy) /2 which will be of use later.

Having described the energy of the two-level atom on its own let us now consider the effect of an

incident laser field. Such a light field will induce a flipping between the two states at the Rabi

frequency Ω, proportional to the electric field amplitude of the incoming field:

Ĥl = ~Ωσ̂x cos(ωt+ φ), (9.17)

where ω is the frequency of the incident (monochromatic) light field and φ is its phase, and t is the

duration of the laser pulse. We note that in our definition the Rabi frequency corresponds to the

frequency at which populations are exchanged between the ground and excited levels. The total

atomic Hamiltonian is the sum of the two Hamiltonians in equations 9.16 and 9.17

Ĥt = ~
ω0

2
σ̂z + ~Ωσ̂x cos(ωt+ φ). (9.18)

Once again it is useful to transform to an interaction picture to look at the dynamics induced by

the laser pulse. The transformation again takes the form U†0 ĤlU0 with U0 = e−iĤet/~ = e−iω0tσz/2,

and expressing cos(ωt+ φ) = 1
2

(
ei(ωt+φ) + e−i(ωt+φ)

)
yields, after quite some algebra,

Ĥint =
~Ω

4

(
ei((ω−ω0)t+φ)σx + e−i((ω−ω0)t+φ)σx

+iei((ω−ω0)t+φ)σy − ie−i((ω−ω0)t+φ)σy

)
, (9.19)

where we performed a rotating wave approximation to drop terms with frequency sums since,

considering the optical frequencies involved, they oscillate too fast to affect the time evolution of

the remainder. Finally, we make use of the electronic raising and lowering operators defined above

and trigonometric identities to arrive to

Ĥint =
~Ω

2

(
e−i(∆t+φ)σ+ + ei(∆t+φ)σ−

)
, (9.20)

where we also introduced the laser detuning ∆ = ω−ω0. Unsurprisingly, for a resonant laser beam

(∆ = 0) during the time evolution of the interaction Hamiltonian e−iĤintt/~ populations in the

ground and excited states are exchanged periodically.

In order to adequately describe the interaction between ions in a trap with incident laser beams

we have to combine the motional and electronic Hamiltonians. We start with combining the

Hamiltonian corresponding to the motion in a quantum harmonic oscillator (equation 9.7) and the
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Hamiltonian corresponding to the energy of the unperturbed two-level atom (equation 9.16) to

obtain a description of the unperturbed system

Ĥ0 = ~W
(
â†â+

1

2

)
+ ~

ω0

2
σ̂z. (9.21)

The laser-ion interaction is described as a perturbation on this system, which takes the form of

equation 9.20 modified by the inclusion of a factor coupling the motional and electronic states:

Ĥ1 =
~Ω

2
(σ+ + σ−)

(
eiη(â+â†)e−i(ωt+φ) + e−iη(â+â†)ei(ωt+φ)

)
, (9.22)

where we have defined the Lamb-Dicke parameter η = 2π
λ

√
~

2mωRF
cos(θ), which includes the laser

wavelength λ and the angle of incidence θ relative to the motion of the ion.

To investigate this perturbation we transform to the interaction picture with U0 = e−iĤ0t/~:

Ĥint =
~Ω

2

(
ei
ω0
2 tσz (σ+ + σ−)e−i

ω0
2 tσz

)
×
(
eiWtâ†âeiη(â+â†)e−iWtâ†âe−i(ωt+φ)

+ eiWtâ†âe−iη(â+â†)e−iWtâ†âei(ωt+φ)
)
. (9.23)

This can be simplified using the following relations:

ei
θ
2σzσ±e

−i θ2σz = e±iθσ±

eiθâ
†âeiη(â+â†)e−iθâ

†â = eiη(âe
−iθ+â†eiθ).

Performing the simplifications, recognising the laser detuning ∆ = ω−ω0 and performing a rotating

wave approximation leaves us with

Ĥint =
~Ω

2
σ+e

−i(∆t−φ)eiη(âe
−iWt+â†eiWt) +H.c. (9.24)

where H.c. denotes the Hermitian conjugate.

In the so-called Lamb-Dicke regime the spatial extent of the wavepacket of the ion is much smaller

than the laser wavelength and the following inequality is satisfied:

η
√
〈(â+ â†)2〉 ≡ η

√
2n+ 1� 1 (9.25)

where n is the mean phonon number. We can then Taylor-expand the second exponential in

equation 9.24,

eiη(âe
−iWt+â†eiWt) = 1 + iη

(
âe−iWt + â†eiWt

)
+O

(
η2
)
. (9.26)

We can justify the omission of terms of order η2 in the case when n < 20 which is normally satisfied

after Doppler cooling in experiments. We can then rewrite equation 9.24 in its final form

Ĥint =
~Ω

2
σ+e

−i(∆t−φ)
(
1 + iη

(
âe−iWt + â†eiWt

))
+H.c. (9.27)

This Hamiltonian contains three resonances. The first one at ∆ = 0 takes the form

Ĥcar =
~Ω0

2

(
eiφσ+ + e−iφσ−

)
, (9.28)

where we have defined the Rabi frequency Ω0 as the coupling strength at n = 0 and where we
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assumed the resolved sideband limit Ω � W to neglect terms with W (this is another rotating

wave approximation). This carrier transition couples the states |g, n〉 ↔ |e, n〉; this means that it

induces (de-)excitation in the internal electronic states but does not affect the motional state of

the ion.

The condition ∆ = −W leads to a transition of the form

Ĥrsb =
i~Ωn,n−1η

2

(
âeiφσ+ + â†e−iφσ−

)
(9.29)

with Rabi frequency Ωn,n−1 = η
√
nΩ0. This red sideband transition couples |g, n〉 ↔ |e, n− 1〉,

i.e. it lowers the phonon number of the motional state by one unit.

Finally, the third resonance, at ∆ = W gives rise to

Ĥbsb =
i~Ωn,n+1η

2

(
â†eiφσ+ + âe−iφσ−

)
(9.30)

coupling |g, n〉 ↔ |e, n+ 1〉, with Rabi frequency Ωn,n−1 = η
√
n+ 1Ω0. It raises the phonon

number by one unit. The level scheme described here is shown in Fig. 9.2.

bsb rsb
car

hW

n-1
n

n+1

Figure 9.2: Resolved side-
band level structure in a har-
monic oscillator. The mo-
tional states |m〉 form a lad-
der with energy offset ~W ,
and each motional state has
an electronic ground and ex-
cited state. The electronic
states are coupled by the car-
rier (car) transition, and the
motional states are coupled
to the internal states via the
blue sideband (bsb) and red
sideband (rsb) transitions.

The red sideband transition is of interest in general because it

entangles the motional and electronic states of the ion, and is in

fact equivalent in form to the well-known Jaynes-Cummings Hamil-

tonian describing the interaction between a two-level atom and

optical cavity modes, widely used in quantum optics. The blue

sideband transition is sometimes known as anti-Jaynes-Cummings

coupling, and is not analogous to any cavity QED phenomenon (in

fact an analogous interaction would violate energy conservation).

However, the red sideband transition can also be used for the pur-

pose of cooling; this shall be our focus for the next few paragraphs.

In many ion trapping experiments it is desirable to bring ions to

their motional ground state. In most cases this is achieved by a two-

stage cooling process. First, after ions are released into the trap

volume they are slowed down by Doppler cooling; this is no different

from Doppler cooling for neutral atoms described in chapter 7.

This allows for an ion (or chain of ions) to be confined in the trap,

where they are cooled by the same process until they reach the

Lamb-Dicke regime. Then resolved sideband cooling is applied to

bring the ion to its motional ground state. Let us look at this

procedure in more detail.

The principle of resolved sideband cooling is very similar to that of Doppler cooling. Provided that

the linewidth of the decay on the cooling transition is narrower than the frequency of the motional

state of the ion the red and blue sidebands are resolved (hence the name resolved sideband cooling).

We can neglect the sidebands due to micromotion here because they are at a much higher frequency

and so they are far from resonance. It is then possible to tune the cooling laser to the (secular) red

sideband transition. In the Lamb-Dicke regime the ion will absorb photons on this transition but

spontaneous emission will predominantly occur on the carrier transition which does not change the

motional state, so in the cooling cycle the motional state of the ion will be lowered. This process

can be repeated until the ion will be in its motional ground state with high probability. This can
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be seen relatively easily by looking at rate equations, as we shall do in what follows.

If there were no heating mechanisms present, after a sufficiently large number of cooling cycles

the ion would arrive to the motional ground state |n = 0〉, and since this is a dark state for red

sideband detuning the ion would stay in this state indefinitely. However, there are two obvious

heating effects, namely excitation on the carrier and on the blue sideband. Carrier excitation occurs

with probability (Ω/ (2W ))
2

and will decay on the blue sideband with probability (Ω/ (2W ))
2
η̃Γ,

where Γ is the decay rate of the excited state in a given motional state. The Lamb-Dicke factor η̃

is different from that of the excitation (and the red sideband excitation) because the decay is not

restricted in direction to that of the cooling beam. Note that there is a much higher probability

that the carrier excitation will decay on the carrier transition, but since that does not change the

motional state we ignore it. Also note that we consider the detuning of transitions from the red

sideband. The probability of excitation on the blue sideband is (ηΩ/ (4W ))
2

and decay on the

carrier after this excitation occurs with probability (ηΩ/ (4W ))
2

Γ. Here we ignore the process of

excitation and decay both happening on the blue sideband because the net effect is no change in

the motional state.

We can now write down the rate equations for the motional ground state and the first excited state

|0〉 , |1〉:

ṗ0 = p1
(ηΩ)

2

Γ
− p0

[(
Ω

2W

)2

η̃2Γ +

(
ηΩ

4W

)2

Γ

]
ṗ1 = −ṗ0 (9.31)

In the case of a steady state (i.e. the rates being equal to zero) the probability of finding the ion

in the motion ground state is given by

p0 = 1−
(

Γ

2W

)2
(

1

4
+

(
η̃

η

)2
)

(9.32)

where Γ�W so the first bracketed term is close to zero meaning that the ion reaches the motional

ground state with a probability close to unity.

State-of-the-art experiments with trapped ions, used in a wide variety of contexts ranging from

high-precision time standards to quantum computing, require precise, high-fidelity state prepa-

ration and control. This includes the treatment of both motional and internal electronic states

of ions. State preparation is routinely achieved through a multi-stage cooling process, including

Doppler cooling and resolved sideband cooling. So far we have described the quantum mechanical

treatment of ion motion in the harmonic potential of a linear Paul trap as well as the coupling of

the internal states of a two-level ion to its motion via the red and blue sideband transitions. We

have also outlined the principles involved in the standard method of cooling via Doppler cooling

and sideband cooling in the Lamb-Dicke regime. We note that other cooling processes have been

proposed (some also experimentally realised) that were not discussed here; these include cooling

via electromagnetically induced transparency (EIT), Sisyphus cooling, and state selection cooling.

The interested reader is referred to [130] and references therein for more details.

9.2.2 Experiment: single ion in a vector vortex

In 2017 we proposed an experiment with Christian Schmiegelow from the University of Buenos

Aires, Argentina, during his visit at Glasgow. In this experiment we measured the polarisation
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components of strongly focused radially and azimuthally polarised vector beams by observing their

interaction with a dipole transition. Specifically, a DMD-based vector beam generating device

(described in chapter 2) was placed in the repump beam of an ytterbium trap and fluorescence

on the Doppler cooling transition was measured. The experimental setup is shown in figure 9.3.

Whether the repump transition driven by certain polarisations is allowed or forbidden depends on

the Zeemann sublevels. The selection rules for the different magnetic sublevels in turn depend on

the projection of the field components on the quantisation direction given by an external magnetic

field. This is very similar to our understanding of SEIT in chapter 8. A light field parallel to

the magnetic field (a π field) cannot exert torque so only transition with ∆m = 0 are allowed. A

linearly polarised field perpendicular to the magnetic field (a field containing equal amounts of σ+

and σ− polarisations) exerts torque but in no specific direction so the allowed transitions are both

∆m = ±1. A field perpendicular and rotating with respect to the magnetic field (a σ+ or σ− field)

exerts torque in its sense of rotation so the allowed transition will be either ∆m = 1 or ∆m = −1.

Figure 9.3: Experimental setup used to measure
polarisation components of vector beams using
single ions. The dichroic mirror transmits 935 nm
light and reflects 370 nm.

As a result different polarisation components

can drive different transitions depending on the

angle between the beam propagation direction

and the external magnetic field. In simple cases

of parallel and perpendicular magnetic fields

the following situations can arise:

• Parallel magnetic field and beam propa-

gation direction.

– circular polarisation is seen as σ+ or

σ− field respectively.

– linear polarisation is seen as a σ+ +

σ− mixture.

– longitudinal polarisation is seen as a

π field.

• Perpendicular magnetic field and beam

propagation direction.

– circular polarisation is seen as σ+ + σ− + π mixture.

– linear polarisation is seen as a σ+ + σ− mixture or as a π field depending whether it

is polarised perpendicular parallel to the plane formed by the magnetic field and the

propagation direction.

– longitudinal polarisation is seen as a σ+ + σ− mixture.

Figure 9.4 shows the energy levels of singly charged Yb+ ions. In the Zeeman sublevel structure of

the levels involved in the repump transition π, σ− or σ+ light drives the ion into a dark state where

it cannot be repumped so cannot produce fluorescence. Consequently only σ−+σ+ light can drive

the repump transition. In particular, the interesting longitudinal component of radially polarised

beams can be measured by observing the difference of fluorescence for the two magnetic field

directions described above. The experiment can be repeated for an azimuthally polarised repump

beam, in which case we expect no difference of the fluorescences since azimuthally polarised beams

do not have any longitudinal component at a focus. Comparing the radial and azimuthal cases

gives us information about the strength of the longitudinal polarisation component at the position
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DC electrode ring

RF electrode
Yb oven

Yb+ ion

5mm

Figure 9.5: Photograph and schematic diagram of a ring ion trap.

of the ion. Either the ion or the beam can be scanned to build up a 3D structure of longitudinal

polarisation near the focus.

Figure 9.4: Singly charged ytterbium ion level
scheme. Blue and red solid lines indicate Doppler
cooling and repump transitions, respectively, and
dotted lines indicate relevant spontaneous decays.

It is very easy to scan the position of an ion

in a segmented linear Paul trap. Unfortu-

nately one was not available for this experi-

ment. Instead we used a much simpler ring

trap in which ions are confined well only in a

specific spot and cannot be moved. This ring

trap, shown in figure 9.5, was built by Christian

Schmiegelow, Martin Drechsler and Abasalt

Bahrami2. We opted to scan the beam in-

stead, which is straightforward using the DMD

already in the setup. The trap was constructed

in Mainz, but has since been transported to

Buenos Aires to become the first functioning

ion trap in Latin America. Since it was recently

put into operation most components were not

optimised yet, and unfortunately to date no

conclusive measurements of longitudinal polarisation components were made.

9.3 Double slit diffraction of vector vortex beams

a a

b b

Δx

Figure 9.6: Rectangular slits.

The following project was run as a student project on an experi-

ment I built, and I took part in the day-to-day supervision of the

students. I produced the simulations shown below to complement

the students’ work.

In 2012 Li et al. investigated the diffraction patterns produced

by vector vortex beams passing through double slits [134]. They

found that far from the propagation axis along the slit direction

the usual double slit diffraction pattern is recovered. However, near

the propagation axis there is a more intricate interference pattern.

This pattern arises from different, spatially dependent, polarisation

components interfering constructively and destructively in different

places. Of course this means that the interference pattern depends

2... if I remember right. I apologise if this list is inaccurate.
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Horizontal polarisation Vertical polarisation Total

b=0.1ω

b=10ω

Figure 9.7: Simulated double slit interference of a radially polarised beam, where the slit height b
is related to the beam waist ω as shown on the left. The width of the slits was always a = 0.1ω
and their separation was ∆x = 0.4ω. The horizontally and vertically polarised components of the
interference in the far field are also shown.

strongly on how many polarisation directions are transmitted through the slits, which is not dis-

cussed in [134]. We had a setup capable of generating any vector field using a DMD (the same setup

as in chapter 3), as well as arbitrary slit patterns by multiplying the hologram by programmed slit

masks. This prompted us to investigate double slit diffraction.

Consider a radially polarised beam. Placing two slits, shown in figure 9.6 that are small compared

to the beam size along the x axis would mostly admit horizontally polarised light, and we expect

interference pattern very similar to the standard double slit interference. However, if the slits

are larger in the y direction they start to sample more polarisations, and the interference pattern

becomes more intricate. This is shown in figure 9.7, where we numerically evaluated the interference

in the far field. We can see that when the slits are larger additional interference fringes appear with

a different structure. In this case we have a vertically polarised component appearing away from

the x axis in two lobes, which is responsible for the dark, horizontally aligned hole intersecting the

vertically polarised interference fringes. For higher order vector vortex beams the number of lobes

in the vertical direction will depend on the number of polarisation lobes that the slits allow to pass

through.

φ
Δr

φ

r

Figure 9.8: Circular slits.

But this discussion suggests that for vector vortex beams rectan-

gular slits are not ideal, because while they allow us to sample

different polarisations, they oversample certain polarisations be-

cause the intensity of the beams is not uniform. They also never

allow us to sample all polarisations. Since the beams are cylindri-

cally symmetric it would perhaps be better to define the slits in

cylindrical coordinates, shown in figure 9.8. These are just as easy

to generate in our system as the rectangular slits, and numerical

simulations are shown in figure 9.9. Of course when the slit open-

ing angle is set to π we just generated an annular aperture, and so

the diffraction patterns are just the annular diffraction patterns of

the component beams, which, in the case of a radially polarised beam in the horizontal and vertical

polarisations shown in the figures, are just Hermite-Gaussian modes.

Project students also generated these beams and slit patterns in an experiment, and measured

their polarisation structure. The data was in good agreement with our numerical simulations.

Interestingly, we never saw the simple double slit interference patterns emerge far from the x axis
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Horizontal polarisation Vertical polarisation Total

φ=π/2

φ=π

Figure 9.9: Simulated circular slit interference of a radially polarised beam, where the slit opening
angle φ is shown on the left. The radial width of the slits was always related to the beam waist ω
by r = 0.1ω, and their radial separation was ∆r = 0.4ω. The horizontally and vertically polarised
components of the interference in the far field are also shown.

as shown by Li et al., neither in the simulations nor in the experiment. However, a project student

developed analytical expressions for calculating the interference patterns, and in her simulations

those features appeared. We are not quite sure why this is, but due to lack of time we did not

investigate this further.

9.4 In summary

In this chapter we described the theory of cooling a single ion to its motional ground state in a

harmonic trap, discussed in the context of a linear Paul trap. We then described an experiment

that can use selection rules in atomic transitions to measure longitudinal polarisation components

arising from strongly focused radially polarised beams. In this experiment we intended to use a

singly charged ytterbium ion in a simple ring trap with a magnetic field setting its quantisation axis

to which the polarisation of the illuminating strongly focused repump beam would be compared.

This is actually very similar in concept to how we thought about SEIT in chapter 8. Unfortunately

to date the experiment yielded no results.

Then we briefly described far field interference of vector vortex beams when they pass through

double slits, motivated by a study by Li et al. in 2012. We extended study to slits with circular

symmetry, and showed some numerical simulations of far field interference for horizontal and

vertical polarisation components. These are in qualitative agreement with experimental results,

but interestingly enough, are somewhat different from the results of Li et al. Unfortunately due

to a lack of time at the time of writing this was not investigated further.
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M. Mirrahimi, H. Carmichael, and M. Devoret, “To catch and reverse a quantum jump

mid-flight,” arXiv preprint arXiv:1803.00545, 2018.

[62] C. Cohen-Tannoudji and D. Gury-Odelin, Advances in Atomic Physics. WORLD

SCIENTIFIC, 2011. [Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/

6631

[63] M. Jones, “Atom-Light Interactions. Archived lecture notes,” 2015. [Online]. Available:

http://community.dur.ac.uk/thomas.billam/PreviousNotes MPAJones.pdf

[64] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt.

Soc. Am. B, vol. 3, no. 1, pp. 125–133, Jan 1986. [Online]. Available: http:

//josab.osa.org/abstract.cfm?URI=josab-3-1-125

[65] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical

harmonics,” Phys. Rev. Lett., vol. 7, pp. 118–119, Aug 1961. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.7.118

[66] A. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Review

of Scientific Instruments, vol. 69, 03 1998.

[67] C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external

cavity diode laser with fixed direction output beam,” Review of Scientific Instruments,

vol. 72, no. 12, pp. 4477–4479, 2001. [Online]. Available: https://doi.org/10.1063/1.1419217

[68] D. W. Preston, “Doppler-free saturated absorption: Laser spectroscopy,” American Journal

of Physics, vol. 64, no. 11, pp. 1432–1436, 1996.

[69] D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems

exhibiting saturated absorption,” American Journal of Physics, vol. 72, no. 5, pp. 631–637,

2004. [Online]. Available: https://doi.org/10.1119/1.1652039

[70] A. Arnold, “Preparation and Manipulation of an 87Rb Bose-Einstein Condensate,” Ph.D.

dissertation, University of Sussex, 1999.

[71] A. Vernier, “Phase dependent atom optics,” Ph.D. dissertation, University of Glasgow, 2011.

[72] N. Radwell, D. Brickus, T. W. Clark, and S. Franke-Arnold, “High speed switching between

arbitrary spatial light profiles,” Opt. Express, vol. 22, no. 11, pp. 12 845–12 852, Jun 2014.

[Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-22-11-12845

[73] E. A. Donley, T. P. Heavner, F. Levi, M. Tataw, and S. R. Jefferts, “Double-pass acousto-

optic modulator system,” Review of Scientific Instruments, vol. 76, no. 6, p. 063112, 2005.

https://link.aps.org/doi/10.1103/PhysRevLett.116.083601
https://doi.org/10.1038/nphys1178
http://steck.us/alkalidata
https://books.google.co.uk/books?id=_CoSDAAAQBAJ
https://www.worldscientific.com/doi/abs/10.1142/6631
https://www.worldscientific.com/doi/abs/10.1142/6631
http://community.dur.ac.uk/thomas.billam/ PreviousNotes_MPAJones.pdf
http://josab.osa.org/abstract.cfm?URI=josab-3-1-125
http://josab.osa.org/abstract.cfm?URI=josab-3-1-125
https://link.aps.org/doi/10.1103/PhysRevLett.7.118
https://doi.org/10.1063/1.1419217
https://doi.org/10.1119/1.1652039
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-11-12845


BIBLIOGRAPHY 146

[74] N. Radwell, M. A. Boukhet, and S. Franke-Arnold, “3d beam reconstruction by fluorescence

imaging,” Opt. Express, vol. 21, no. 19, pp. 22 215–22 220, 2013.

[75] A. Selyem, S. Fayard, T. W. Clark, A. S. Arnold, N. Radwell, and S. Franke-

Arnold, “Holographically controlled three-dimensional atomic population patterns,”

Opt. Express, vol. 26, no. 14, pp. 18 513–18 522, Jul 2018. [Online]. Available:

http://www.opticsexpress.org/abstract.cfm?URI=oe-26-14-18513

[76] W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observa-

tion of quantum jumps,” Phys. Rev. Lett., vol. 56, p. 2797, 1986.

[77] T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,”

Phys. Rev. Lett., vol. 57, p. 1696, 1986.

[78] D. A. Steck, “Rubidium 85 D Line Data,” http://steck.us/alkalidata, 2013.
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