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A B S T R A C T

Socio-Ecological Systems (SESs) are the systems in which our everyday lives are embedded, so understanding
them is important. The complex properties of such systems make modelling an indispensable tool for their
description and analysis. Human actors play a pivotal role in SESs, but their interactions with each other and
their environment are often underrepresented in SES modelling. We argue that more attention should be given to
social aspects in models of SESs, but this entails additional kinds of complexity. Modelling choices need to be as
transparent as possible, and to be based on analysis of the purposes and limitations of modelling. We recommend
thinking in terms of modelling projects rather than single models. Such a project may involve multiple models
adopting different modelling methods. We argue that agent-based models (ABMs) are an essential tool in an SES
modelling project, but their expressivity, which is their major advantage, also produces problems with model
transparency and validation. We propose the use of formal ontologies to make the structure and meaning of
models as explicit as possible, facilitating model design, implementation, assessment, comparison and extension.

1. Introduction

Socio-Ecological Systems (SESs) consist of interacting biogeophy-
sical components and social actors (individual and collective). They are
invariably complex in their dynamics. Most if not all of the systems
providing essential ecosystem services to humanity can be classified as
SESs; examples include fisheries, agricultural and food systems, and
managed forestry systems. The study and governance of SESs have at-
tracted considerable attention, because many are under increasing
pressure from anthropogenic sources: growing population, over-utili-
zation, pollution, and climate change (Rist et al., 2014; Steffen et al.,
2011). Many concepts currently in use in relation to SESs, including
that of resilience, and related notions such as tipping points, arise from
study of the complex dynamics of these systems. Computational models
can help to unravel how these system properties emerge. Modelling
guidelines are available for instance in the fields of water management
(Jakeman et al., 2006; Liu et al., 2008; STOWA/RIZA, 1999) and en-
vironmental policy modelling (Janssen et al., 2005; Schmolke et al.,

2010; van der Sluijs et al., 2005; van Voorn et al., 2016), often based on
the generic cycle of model development and analysis described by
Refsgaard and Henriksen (2004). However, the human side of SES
modelling has been given relatively little attention in comparison to the
ecological side, and models where social and ecological components are
fully integrated are rare. This paper focuses on how to remedy that
situation.

Environmental models used for policy assessments generally include
social actors and institutions only implicitly, e.g., as parameters to in-
crease or decrease certain system drivers, or as output indicators re-
garding the fulfillment of certain requirements. For example, many
assessments of ecosystem services assume economic rationality, which
implies that pricing mechanisms and technological innovations can
adequately ensure system resilience. Such assessments often include
social drivers and impacts among those they consider, but without
modelling the decision-making or social interactions of relevant groups
of actors, see for example Vidal-Abarca et al. (2014). This is regrettable
from both a scientific and a governance point of view considering that
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policy usually targets social actors. For example, a farmer may directly
affect biogeophysical system components through the use of fertilizer or
pesticides, but policy targets the farmer, and not all farmers behave in
the same way (see Feola and Binder, 2010, and references therein).
More generally, not only do different societies organize themselves in
different ways (Hofstede et al., 2010), but psychological processes and
attributes vary systematically across cultures (Smith et al., 2006). These
differences are of the utmost importance to the functioning of SESs. The
resilience and sustainability of social and organizational systems, is as
important as those of natural systems (Cutter et al., 2010). For instance,
social norms have developed among fishers in the Philippines tuna
fishery that prevent the simultaneous use of all available fishing sites,
creating ’safe patches’ for tuna that may thus improve resilience against
over-fishing (Libre et al., 2015). If these norms were to collapse, per-
haps due to external pressures for “economic rationality”, the fishery
itself could follow.

Even where the need to use social science approaches is conceded,
their role is frequently unduly limited. For example, Daily et al. (2009)
say of the assessment of ecosystem services: “[t]he biophysical sciences
are central to elucidating the link between actions and ecosystems, and
that between ecosystems and services (biophysical models of ‘ecological
production functions’). The social sciences are central to measuring the
value of services to people (‘economic and cultural models’). But this
does not do justice to the role of social processes in SES. They are more
resistant to modelling than biogeophysics, as we discuss. Nevertheless,
as indicated by the examples above, and more broadly work such as
that of Ostrom (2009), we consider explicit inclusion of social compo-
nents in SES models essential.

The inclusion of social behaviour raises legitimate concerns in
modelling circles about the consequent demands for data, and the ob-
jection that with many tuneable parameters, they can produce any
desired output. This forces us to think more explicitly about how we
model, why we model and the context of modelling in order to choose
the most appropriate approach. In this paper, we consider key issues in
modelling SESs that arise when including social actors in models, and
suggest ways to deal with them. We conclude that agent-based models
(ABMs), in which the decision-making of human actors is explicitly
represented, are key to SES modelling that does justice to the social
aspect of such systems. We concede, however, that agent-based mod-
elling currently suffers significant limitations and drawbacks, particu-
larly with regard to validating, comparing and combining models
(Schulze et al., 2017). We therefore propose an approach to amelior-
ating these disadvantages, based on a shift of focus from models to
modelling projects, and on the use of formal ontologies (Gruber, 1993).

The paper is structured as follows. In Section 2 we review the
properties of SESs, and approaches to assessing them. In Section 3 we
look at the roles of data and theory, the significance of modelling aims,
and a range of modelling approaches. Section 4 outlines methodological
issues concerning agent-based modelling, focusing on the role of

ontologies. A summary of our conclusions, and some directions for fu-
ture work, follow in Section 5.

2. Why SES modelling is needed, but difficult

2.1. The complexity of SES

SESs are characterized by considerable human influence (it is
doubtful if there are now any ecosystems on the planet where such
influence can be discounted). SESs display additional kinds (not just
degrees) of complexity resulting from social interactions among human
individuals or collectives. We first specify what we mean by the com-
plexity of a system.

Systemic complexity has no generally agreed definition, but one
useful approach is that of Auyang (1999), according to whom a com-
plex system can be defined as one that “cannot be successfully ap-
proximated as a collection of (similar) constituents each responding
independently to the situation jointly created by all”. A clear counter-
example is a molecular gas in equilibrium: each molecule can be re-
garded as responding to the temperature and pressure of the whole,
which in turn are simple outcomes of the spatial and velocity dis-
tributions of the collection of molecules. Another example - at least in
theory - is a “perfect market”: each agent is assumed to act in-
dependently, and to respond to price signals which it cannot sig-
nificantly affect by its own behaviour. Adopting such a definition of
systemic complexity puts the emphasis on the system’s mereology – the
relationships of its parts to each other and to the whole
(Gruszczyński and Varzi, 2015), rather than on computational proper-
ties of algorithms needed to simulate it or reproduce data streams from
it, or other properties of observed quantitative variables. When a re-
duction to independently responding components is not possible, un-
derstanding the system requires the identification of intermediate levels
of structure. Focusing on the system’s mereological features allows us to
identify subclasses of systemic complexity, which illuminate the mod-
elling challenges associated with each kind (see Fig. 1).

All ecosystems can be classified as Complex Systems (the outermost
ellipse), i.e., systems in which system components interact to generate
emergent behaviour that cannot be adequately understood without the
description of intermediate, interacting levels of structure. Complex
systems generally display the additional features listed in Fig. 1:

• path-dependence (events at one time can determine or constrain the
state of the system for an indefinitely long period);

• resilience and phase shifts: the system has two or more relatively
stable states, tending to remain in one such state until internal or
external pressures reach a certain tipping point, when it switches
rather quickly into another state (Bitterman and Bennett, 2016;
Holling, 1973);

• leptokurtic (fat-tailed) distributions of the size of system

Fig. 1. Classes of complex systems. For further explanation see main text.
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disturbances: while large disturbances are less common than small
ones, their numbers tail off more slowly than an exponential dis-
tribution (Zurlini et al., 2006).

All ecosystems are also Complex Adaptive Systems (CAS; the next
ellipse, Holland, 1992), meaning that they include interacting decision-
making components: actors, or agents, the term we use here. Some of an
agent’s decisions at least can affect its survival, or some other measure
of success, such as inclusive fitness, wealth, or happiness. Agents can
adapt through evolution or learning. Their decisions may be based on
some form of cognitive processing, as with humans, other social ani-
mals, human collectives (such as households, firms or governments) or
even human artefacts (such as robots or pieces of software); or be
simply reactive - perennial plants, for example, may “decide” whether
to flower in a given year, depending on the weather and their stored
resources.

The difficulty of modelling a CAS has additional dimensions beyond
those of complex systems lacking agents, in that adaptive behaviours
and interactions between the decisions of multiple agents have to be
considered, as does agent diversity. Of course a CAS may be modelled
without including these aspects, but the modeller should be aware of
them. CASs can be further differentiated according to the range of
capabilities displayed by the agents acting within them, as described
below.

Managed CASs or MCASs (next ellipse) form a subset of CASs, in
which at least one agent is able to assess and attempt to regulate the
system at a non-local level. Many SESs are MCASs. In an MCAS, global
events and structures may, as in any complex system, emerge from the
aggregate of local interactions among components, without any agent
intending it – a feature that is frequently stressed in the literature on
system complexity; but such events and structures may also be mod-
ified, controlled or designed by one or more agents, perhaps using ex-
ternal symbol systems such as written plans, blueprints and charts.
Notably, extreme events (such as an ecological catastrophe or stock-
market crash) may prompt such agents to undertake restructuring of the
system, to recover from (or take advantage of) the extreme event, and
prevent (or encourage) a recurrence. The capacity of actors to change a
system deliberately to create a new organization is commonly referred
to in the literature as “transformability” (van Apeldoorn et al., 2011;
Folke et al., 2010). Modelling MCASs adequately requires ways to re-
present agents themselves capable of representing at least some non-
local aspects of the system, and their own actions, and of planning.
However, it is possible to model some aspects of such sophisticated
agents without attempting to simulate them in full - such a full simu-
lation being an unsolved problem in artificial intelligence.

Finally, contested CASs or CCASs (innermost ellipse) are MCASs that
include multiple (influential) agents that can come into conflict because
of differing goals. Many SESs fall into this category, including all suf-
ficiently large ones. Here, strategic considerations come into play, and
the mathematics of non-cooperative game theory, and the areas of ar-
tificial intelligence used in the design of game-playing programs be-
come relevant. Work on social dilemmas, cooperation and altruism is
also of significance here, and there is already a considerable amount of
work on these topics that can be drawn on, including in the agent-based
modelling field (Gotts et al., 2003; van Lange et al., 2013). Additional
complexity comes from the diverse types of interactions between
competing strategic agents. For example, ten Broeke et al. (2018) (this
issue) present a suite of models in which different agents cooperate or
defect in their interactions, which affects the resilience properties of the
system as a whole. It is fair to say that wholly adequate ways to model
CCASs are likely to be a long way off, but again, it is possible to model
some aspects of strategic interactions.

In addition to being highly complex, all SESs are open, in the sense
that factors operating from outside the SES have significant causal in-
fluence. This raises a significant issue for validation in models of SESs
(Oreskes et al., 1994). It also raises questions of where to draw the

system boundary when conceptualizing the empirical world
(Hofstede, 1995). Sometimes modelling pragmatics mean that feedback
loops involving “slow” variables (Carpenter and Turner, 2001; Crépin,
2007; Walker et al., 2012) are ignored because their effects are negli-
gible over the model’s time-frame; we could expect agreement in
modelling communities that this is appropriate. However, decisions
about whether to include phenomena, and if so, whether to do so as
endogenous, or as exogenous driving variables, are also based on more
context-specific criteria: the availability of data, or considerations of
“elegance” or feasibility and tractability of analysis in the chosen
modelling approach. Here, a consensus is less obviously achievable.

There is a further complication to beware of in designing a model of
a CCAS: stakeholders will generally attribute perceptions and goals to
each other - but these will often be, at least in part, misrepresentations,
deliberate or otherwise (Milner-Gulland, 2011). The very fact that
stakeholders with opposing views and interests tend to misunderstand
and misrepresent each other is a key part of the difficulty of SES
modelling. The approach of participatory modelling (discussed in
Section 3.3) is relevant here.

2.2. Terminology, indicators and models

As scientists, we want to understand SES dynamics; as policy-ma-
kers or concerned citizens we want to preserve or improve them, and
hence need to assess their current state, and how it is changing in re-
lation to those goals. Many contemporary assessments of SESs revolve
around the concepts “resilience”, “sustainability” and “ecosystem
health”. These concepts are ill-defined and contested, due both to the
fact that different fields of application require different concepts, and to
the independent development of these ideas in different disciplines
(Fleurbaey, 2015; Janssen et al., 2006; Redman, 2014).

Resilience (in the ecological sense) refers to the capacity of an
ecosystem (or socio-ecosystem) to maintain structure, function and
feedbacks in the face of disturbance (Folke et al., 2010), but the state
maintained may be judged desirable, undesirable or neither. Resilience
needs to be evaluated as “resilience of what, to what?” (Carpenter et al.,
2001), as not all pressures affect SESs in a similar fashion. The closely
related “tipping point” concept emerged from the realization that an
ecosystem could have more than one stable state, or “basin of attrac-
tion”, and that internal or external disturbances could shift it between
basins. The - such as the amount of a nutrient available. A lake may
shift rapidly from an “oligotrophic” (low-nutrient) state, with clear
water and oxygen levels high, to a “eutrophic” one, in which algal
growth makes it opaque and reduces oxygen levels, as dissolved nu-
trient levels rise. Nutrient levels may then need to fall considerably
below the threshold at which the switch occurred in order to switch it
back - the phenomenon of hysteresis (Scheffer et al., 2009; 2001; 2012).

Ecosystem health is frequently defined in terms of the absence of
toxins; the roster of species present relative to what would be expected;
and the ecosystem’s ability to recycle waste products. However, for a
socio-ecosystem, the welfare of the human inhabitants must also be
considered (Costanza, 2012; Lu et al., 2015; O’Brien et al., 2016); and
speaking of a system’s “health” is in any case best regarded as meta-
phorical, as ecosystems are not organisms, and what kills some com-
ponents of an ecosystem may (generally, will) encourage others to
flourish.

Finally, the idea of sustainability is linked to human use of the en-
vironment, without damaging it in ways that undermine its ability to
provide ecosystem services: clean air and water, flood control, recrea-
tion, etc. There is, however, extensive argument about what constitutes
sustainability, and even whether it is a meaningful term, particularly in
combinations such as “sustainable growth”, widely regarded as self-
contradictory (Bell and Morse, 2008; Bjørn et al., 2015;
Sarvajayakesavalu, 2015).

Lack of agreement about how to operationalize the above concepts
makes measuring them hard, but more fundamentally, the systemic
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complexity of CCASs and MCASs makes it inherently difficult to develop
simple measures for them. Certain measures may serve as indicators,
just as temperature may be an indicator of the health of an individual.
Indeed, many indicators have been proposed; a distinction can be made
between ecological indicators, i.e., indicators regarding the ecological
side of SESs, social indicators, those regarding the social side, and socio-
ecological indicators, those relevant to both. However, such indicators
will usually not show a one-to-one correlation with emergent SES
properties, because they only touch on single facets of the SES - much as
temperature is an indicator of fever, but not all aspects of human health
are correlated with temperature.

Ecological indicators include physical quantities (temperatures,
light levels, hydrological measurements, concentrations of chemical
species), biophysical measures (biomass, respiration, detritus), species
abundance and biodiversity, network measures (food webs, trophic
levels, biophysical measures at different trophic levels), maximum
disturbance from which recovery is possible, and time to recovery
(González et al., 2016; Siddig et al., 2015). Social indicators include
individual health and well-being, social capital, and measures of in-
equality, trust and social cohesion, crime and violence, misuse of al-
cohol and other drugs, and family structure and functioning (Abbott
and Wallace, 2012; Hicks et al., 2016; Jacob et al., 2013; Klomp and
de Haan, 2013). Finally, socio-ecological indicators include thermo-
dynamic measures (from “ecological economics”), “footprint” mea-
sures, sustainability indicators, and assessments of system resilience,
ecosystem services and resource efficiency (Banos-González et al.,
2015; 2016; Coscieme et al., 2013; Eisenmenger et al., 2016; Estoque
and Murayama, 2014; Li et al., 2014; Lu et al., 2015; Recanatesi et al.,
2016).

The very range and variety of indicators makes SES assessment a
problematic business. Modelling can guide the choice of indicators for
specific assessment purposes. Models represent codified, integrated
system knowledge, and can be used to “grow” emergent properties,
explore scenarios, and identify distributions of outcomes. However, SES
modelling faces at least two major challenges deriving from the in-
trinsic properties of the systems concerned:

1. It is difficult to untangle the webs of interactions at various spatial,
temporal and organizational scales sufficiently to draw a system
boundary. There is a trade-off between including too much detail,
with the resulting model having too many parameters to feasibly
calibrate it or explore its dynamics, or too little detail, over-
simplifying. The kinds of dynamics associated with complex sys-
tems, discussed above, make data difficult to replicate, with the
result that models are left simulating “stylized facts” or “patterns”
(Grimm et al., 2005) rather than conforming to data validation
criteria associated with traditional statistical measures of model
performance. That, and typically limited access to data, mean con-
fidence in model predictions is difficult to establish.

2. Many SESs, as noted above, are Contested Complex Adaptive
Systems: they include agents capable of thinking about the dynamics
of the system as a whole, but differing among themselves over just
what those dynamics are, and how, if at all, they should be changed.
Typically, at least in cases where a CCAS is contemporary rather
than historical, the modeller will be confronted with choices which
have political implications: if they adopt the viewpoint favoured by
one agent or group of agents, they will quite reasonably be per-
ceived as siding with that agent or agents. Such political implica-
tions of modelling choices may occur with respect to historical
systems, and indeed to systems other than CCASs, but they are at
their most stark for contemporary CCASs. Issues that confront re-
searchers or policy-makers with such clashes between stakeholders
(see also Section 3.3) are sometimes referred to as “wicked”
(Churchman, 1967).

3. Choosing SES modelling methods

An SES model, in the broadest sense, is anything that is used to
understand a real-world SES through some (real or supposed) resem-
blance between them. Models can be constructed in different ways,
have different requirements for data and relationships to theory, and be
used for different purposes. This section discusses these matters.

3.1. Availability of data and theory

The ecological aspect of SES modelling is by no means simple, given
the sheer number and variety of organisms living just on and below a
square meter of grassland or woodland, but as argued above, it is the
social aspect that is most in need of development. Yet data collection on
human decision-making and social networks, and their effects on SESs,
is frequently given far less in the way of attention and resources than
collection of data from the biophysical environment.

In addition, there are practical limits to data acquisition. One lim-
itation results from scale mismatches (e.g. feedback responses to human
decision-making typically occur on a much slower time-scale and much
larger spatial scale than that of the human decision-making itself, as in
the case of climate change). Another is the difficulty of extracting re-
liable data from observations about human behaviour (e.g. people often
do not accurately reveal their motivations for doing things, even when
they intend to). Again, data on social networks and the interactions
taking place within them, and longitudinal data, are often far from
adequate.

Hence, in modelling an SES there are often no good data about at
least some of the human elements one wishes to include. This does not
always invalidate the modelling effort. In the absence of data for a
specific element of the model, one can work with estimates, backed up
by theory. If an appropriate theory is used, one could for instance show
potential emergent behaviours or tipping points that could happen if
certain future developments occurred. Determining what data and/or
theory to base the model on is therefore an important step in its own
right, and one that is linked to the choice of modelling goals and scope.
Within psychology and the social sciences, there are abundant theories
which are sufficiently articulated to form the basis of a model of a social
system, and it is sometimes possible to apply them to SES modelling
(Hofstede, 2017; Jager et al., 2000). Conversely, designing and im-
plementing models can assist theory development (Zellner et al., 2014).

However, there are certainly difficulties with this approach.
Theories of human behaviour and decision-making are scattered across
psychology and the social sciences, most of them focus on isolated as-
pects of these multifaceted phenomena, they often lack a clear causal
basis (Schlüter et al., 2017), and frequently leave unstated many details
which must be specified for a working simulation (Polhill and
Gotts, 2017). Moreover, there is still no generally accepted framework
for dealing with key social concepts such as values and norms
(Chan et al., 2012), because the social sciences remain methodologi-
cally contested disciplines. Thus, the inclusion of human behaviour and
decision-making in SES models can require making many assumptions
about the relevant actors (Müller-Hansen et al., 2017), even when some
support is available from theory.

3.2. Modelling aims

There are many different kinds of purpose for a model and these are
not always distinguished. We focus here on five principle kinds: pre-
diction, explanation, theoretical exploration, illustration and analogy
(or a way of thinking about things). For more about different modelling
purposes and their implications, see Edmonds (2017).

The essence of prediction is anticipating aspects of unknown data
before they are known. Once a predictive model has been tried on
multiple different cases and different conditions successfully one can
start to rely upon it. Developing a model for prediction can be quite
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different from building one for other purposes (Silver, 2012). The gas
laws are a simple case of a predictive model - which does not, and need
not, explain why it works in order to predict. An example of a predictive
social model is Nate Silver’s model of the US presidential elections
(Silver, 2016). This does not predict a specific result but rather the
probability distribution of outcomes, so its accuracy can only be as-
sessed by considering multiple cases (different years, or the results in
the various states in a single year, for example). Of course, this ap-
proach is not specific to social models.

The second kind of purpose is supporting an explanation - showing
how a set of plausible mechanisms might produce outcomes that match
some known data (in some well-defined way). If it succeeds, then the
workings of the model explain the outcomes (or at least certain aspects
of the outcomes). We can test our understanding of the mechanisms
with experiments on the model. A typical example of an explanatory
model is the Fitzhugh-Nagumo model for spiking neurons (FitzHugh,
1955; Nagumo et al., 1962), which gives no predictions of the mem-
brane potential of neural cells at all but simply illustrates how a spike in
this potential develops. Many ABMs and the very similar individual-
based models (IBMs) in ecology are aimed at explanation, trying to
explain emergent system properties from micro-level processes (Grimm
and Railsback, 2012; Macal and North, 2005).

Both prediction and explanation are empirical uses of models: the
connection between the model parameters, mechanisms and outcomes
should be well-defined and verifiable. However they are very different.
The workings of a predictive model do not have to be plausible; it just
has to predict successfully. The workings of an explanatory model are
the constituents of the explanation that results; if the workings are
implausible so is the explanation. It is a mark of mature science when
we know how predictive and explanatory models relate so we know
why predictions work but often in science one kind of model is devel-
oped before the other. For example, the gas laws were discovered be-
fore we knew why they worked (random gas molecules bouncing
around) while Darwin’s explanatory theory of evolution was discovered
before any predictions from genetics were possible.

The remaining purposes are not empirical. Theoretical exploration
or exposition takes a set of mechanisms and tries to understand the
resulting system properties in terms of some theory. If the mathematics
is analytically solvable one might obtain a general solution - which may
be possible for some models of ordinary or partial differential equa-
tions, such as the logistic growth model and the heat equation
(Kot, 2001), but in more complicated cases one might just have to
calculate or simulate the outcomes, exploring the space of outcomes as
thoroughly as is feasible, and testing any theoretically-derived hy-
potheses about the overall behaviour. For example, a “minimal” model
of agents harvesting a renewable and diffusing common-pool resource
has been used to study the effects of natural selection (ten Broeke et al.,
2017) and cooperation (ten Broeke et al., 2018) (this issue) on resi-
lience, using sensitivity analysis to identify contributing factors. Theo-
retical models do not tell us how observed reality is; to show that a set
of theoretical results holds for what is observed, we would then have to
establish this as also an explanatory or predictive model. More usually,
the theory is not straightforwardly applied, but forms the core of a more
extensive model.

Illustrative use of a model just aims to show an idea or particular
case. Axelrod’s “evolution of cooperation” models (Axelrod, 1984) did
not give a general outline of cooperative behaviour in formal games,
but did illustrate how cooperation might evolve. The purpose of illus-
tration is to be clear, so illustrative models tend to be simple, but may
not meet the rigorous standards of theoretical exposition (and might
turn out to capture a vanishingly special case, for example).

A fifth case is to use a model as an analogy - as a way of thinking
about things. This is not empirical, because how it relates to what we
observe will change with each case it is applied to in a flexible and
creative manner. Analogies, whether verbal, visual or encapsulated in a
formal model are essential for thinking. We need them to guide the

direction of our efforts, they might suggest new hypotheses but they are
not reliable pictures of the world.

Illustrative and analogical models are frequently used as a tool for
either communication or negotiation (a boundary object). In the case of
communication the model is designed to encapsulate a point that
someone wants others to understand. Models can be very useful to
communicate examples that are too complex to be adequately described
using other mechanisms - because the recipient can then play with the
model gaining rich experience about the interactions, emergence and
dynamics. A more complicated use is where a model is used to develop
a shared representation or a vehicle for discussing issues in common. In
this case the emphasis is not so much on representing an independent
phenomenon but rather on its coherence with the stakeholders’ per-
ceptions of the issue or situation. See Cash et al. (2003), and for a
survey of this kind of use of models Barreteau et al. (2013).

3.3. The system under-determines the model

As we have shown, modellers need to consider multiple factors aside
from the nature of the real-world systems or class of systems they intend
to model (Kelly et al., 2013). These include (but are not limited to):

• What is the purpose of the model?

• What type of data is needed for the development of the model?

• How much data is available for the model?

• What theories are available for use in constructing or constraining
the model?

• Who are the model users? Researchers, policy makers, or stake-
holders?

All these considerations can influence the best boundaries of the
model in regard to content (e.g. which classes, variables and relation-
ships to include and which not), and spatial and temporal scales.

So in general the system under-determines what model, and indeed,
what type of model, would be the right outcome of a modelling process.
The best answer may be: “No model”, at least as far as models in
software are concerned, if the requirements stemming from the purpose
of the model - in terms of data available, theoretical basis, stakeholder
involvement and so on - cannot be met. The possibility also arises that
multiple models, perhaps of different types, may be needed to achieve
the modellers’ goals. Each model may then serve a different purpose.

We recommend thinking primarily in terms of modelling projects,
rather than individual models – see Fulton et al. (2015) and
Forrester et al. (2014) for examples of such an approach. A modelling
project is an investigation of a specific system (in our case, an SES) or
group of systems, in which the design, construction and use of software
models is intended to play an important part. It may involve the con-
struction of a number of such models, and in addition, will typically
include data collection, theoretical analysis, and in many cases stake-
holder involvement. Different models within a project may adopt dif-
ferent modelling methods. They may also adopt different theoretical
viewpoints, e.g. there may be a more economically oriented model that
assumes all agents behave according to economic rationality, and a
socially oriented model that assumes irrational behaviour among
agents. Moreover, since in SESs the usual state of affairs is that many
stakeholders are involved, and the various stakeholders typically have
different views of the system and preferred system states (the system is
a CCAS), the modeller may find it useful to produce different simulation
models to reflect the viewpoints of different groups of stakeholders.

Those who live their lives in an SES may be the most knowledgeable
about it. This makes it desirable to obtain local stakeholder collabora-
tion in model design and refinement. Also, if stakeholders disagree on
desirable outputs, or on feasible interventions, a model created without
the contribution of certain stakeholders or groups, may be cursorily
dismissed by them. So, there are two good reasons for involving sta-
keholders at model development time: system knowledge, and model
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acceptance. This has been recognized by SES researchers, and it has
given rise to the stream of stakeholder-involving ABM-based research
known as companion modelling (Etienne, 2014) or participatory mod-
elling (Voinov et al., 2016). Allison et al. (2018) add a third reason:
preventing models being regarded as predictive oracles, contrary to the
intentions of the modellers themselves: if stakeholders are involved in
designing the models, they may have a better grasp of their limitations,
and this message can be reinforced by the modellers.

Nevertheless, these approaches have their own pitfalls. Stakeholders
are rarely used to thinking in terms of abstract models, so they require
modellers skilled in communication, who build models with under-
standable interfaces. The modellers must also be able to work effec-
tively in situations involving disagreement, competition for their at-
tention and approval, and conflict. Seidl (2015) argues that there is
often insufficient reflection on the processes of participation, and re-
commends the use of common project protocols or templates, both to
facilitate project planning and to improve resulting publications. Sta-
keholders are, almost by definition, biased: they have a stake in seeing
the system in certain ways, ways which justify their own actions.
Voinov et al. (2016) note that: “Participatory processes need mechan-
isms to explicitly recognize human biases and heuristics (i.e. mental
shortcuts) when they occur, and to resolve them or compensate for
them if needed.”, and give a number of recommendations for such
mechanisms, including getting a diverse group of participants, and
using ”structured, accountable, traceable, transparent processes” at all
stages of the modelling process. Yet as Barnaud et al. (2005) describe, it
is extremely difficult to ensure that those who are at the bottom of
social hierarchies (the poor, women, members of ethnic minorities) are
able to voice their viewpoints, and the source of unsustainable practices
in an SES may lie with national authorities, or others remote from the
SES being modelled. Participatory approaches are often valuable, but
no panacea.

3.4. Approaches to modelling

At the most general level, we can divide modelling into conceptual,
statistical, mathematical and simulation modelling.

• Conceptual modelling examples include fuzzy cognitive maps,
conceptual mapping and causal loop diagrams, but they may consist
solely of natural language descriptions. A major advantage of gra-
phically encoded conceptual models is that they are a good com-
munication tool; they can be discussed with other researchers and
stakeholders without a modelling background. A major dis-
advantage is that they cannot be unambiguously applied to observed
systems, but always involve some amount of interpretation when
thus applied.

• Statistical modelling is used for understanding correlation be-
tween variables. Examples include Monte Carlo, Bayesian networks,
regression models, and structural equation modelling. There are two
basic kinds of statistical model: descriptive and generative (Ng and
Jordan, 2002). A descriptive model abstracts certain properties from
a set of data, to give insights into that data or allow different sets of
data to be compared. Generative models allow for projections from
the data to be made. Usually statistical modelling is used in a de-
scriptive manner for SESs.

• Mathematical modelling is generally associated with theoretically
focused models. Most examples are comprised of differential equa-
tions, see for example Kuehn et al. (2013). General conclusions can
sometimes be analytically derived for these kinds of model, allowing
a near complete characterisation of their behaviour. Due to SES
complexity, mathematical models tend to be considerably ab-
stracted from any observed target SES.

• Simulation modelling is used when the outcomes of a system
cannot be derived analytically, but rather each example scenario
needs to be computed individually. They may also be used to

improve transparency and comprehensibility in contexts where
those with an interest in the model do not understand analytical
derivations. Simulation models will typically include adjustable
parameters and stochastic elements, and be run many times, pro-
ducing a range of results. Statistical methods may be applied to this
range, and sensitivity testing may be used to determine the effect of
changing specific parameters.

Conceptual modelling is always part of the modelling process, but
on its own, is insufficient for prediction, explanation, or theoretical
exploration of complex systems such as SESs. Statistical modelling ap-
proaches are very data-driven and typically assume a static system
structure. They are not suitable for understanding emergent properties,
which is clearly relevant when SESs are concerned. Mathematical
models are explicitly dynamical. However, only models of very limited
complexity (in terms of number of state variables, parameters, sto-
chastic and/or spatial components, and types of feedback included) are
analytically tractable, and these are mainly suited to serve as car-
icatures of reality.

Simulation modelling allows for the inclusion of multiple state
variables, many parameters, stochastic and/or spatial components, and
several feedback mechanisms. Simulations can be based on a system
dynamics, cellular automaton or agent-based model approach, or on
combinations of these.

Systems dynamics (SD) is commonly used to describe biogeophy-
sical processes, including population, groundwater, and nutrient flow
dynamics. SD models are based on a mean field approximation of state
variables at an aggregated level. They usually represent a combination
of a mathematically explicit description of processes, such as differ-
ential equations, and simulation using a numerical implementation. A
major advantage of SD models is that there are many model analysis
methodologies available, including methods that can be used to address
concepts such as tipping points and resilience. Major drawbacks are
that these models do not allow for lower-level descriptions and handle
social processes poorly.

Cellular automata models are frequently used in areas such as land
use change prediction and policy (Yang et al., 2014). In these spatially
explicit models, each “cell” has a number of possible states, and in a
pure cellular automaton model, the state of a cell at time +t 1 depends
only on its own state and those of a limited set of neighbours at time t.
Such land use change models can be very useful predictive tools, but
abstract away the agency of actual land managers, and also impose a
fixed spatial structure and set of possible land uses, which take no ac-
count of changes in ownership or management, or of land use options.
Cellular automata simulations involving commons dilemmas go back to
the1980s, e.g. Axelrod (1984), Nowak and Sigmund (1992), but these
focus mainly on the development of optimal or idealised strategies and
not on actors’ external drivers and internal motivations. In other words,
people seldom behave in these idealized ways, which necessitates the
inclusion of theory regarding what internally motivates and externally
drives people’s decisions.

Agent-based modelling is an approach in which decision-makers
(agents) of some kind are explicitly represented. Their decisions gen-
erally affect both the relative success and inter-relationships of the
agents themselves, and the environment in which they are placed. The
agents may represent individuals, households, firms, states or other
collectives, and typically can differ from each other in terms of moti-
vation, abilities or powers, and knowledge. An ABM may well include
System Dynamics and/or Cellular Automaton elements representing
aspects of the agents’ environment (Gaube et al., 2009; Haase et al.,
2012; Martin and Schlüter, 2015) or governing the agents’ internal
processes (Bradhurst et al., 2015; Schieritz and Größler, 2003).

Ideally, there would be a clear set of guidelines providing a uni-
versally-agreed specification of the appropriate modelling approach to
use based solely on attributes of the empirical world, modelling aims,
and the data available. The choice of modelling approach, however, is
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often more a question of disciplinary norms and individual preferences
than of rigorous analysis of criteria. Kelly et al. (2013) do provide a
decision tree to guide the choice of modelling approach based on the
mix of qualitative and quantitative data available, and availability of
existing models for processes and system components; but the tree’s
decision nodes also require evaluation of modelling purpose, the per-
ceived importance of feedbacks, and the interests of the modeller. Other
reviews of modelling approaches are rather less prescriptive.
Schlüter et al. (2012) do not make specific recommendations about
which approach to use, but instead propose using Ostrom’s framework
(Ostrom, 2007; 2009) as a basis for justifying modelling choices and
making comparisons among various models conceptualising SESs.

A model of a complex system, and in particular of an SES, can range
from very simple to highly complicated (where “complicated” means
“consisting of many components of different types”). Other things being
equal, a simpler model is to be preferred. When a model gets more
complicated or complex three major drawbacks start to play an in-
creasing role:

1. The model may become over-fitted, i.e., it starts to fit noise which
reduces its applicability for other datasets. If there are more free
parameters in the model than can be calibrated using the available
data, then an explanatory model may be too easy to fit to the data -
the ’wiggle room’ to fit anything is just too great. Thus the fact that a
model fits particular data may not be significant.

2. Limitations in available computational power to run the model can
prevent appropriate, adequate exploration of the model.

3. It becomes harder to understand how the model functions.

Furthermore, more complexity does not necessarily mean that the
model is more accurate (Blair and Buytaert, 2016). For the purposes of
analogy, a simple model may give more insights than a more complex
one; if one aims at illustration, then no more is needed than the
minimum of structure and processes to show what is intended. Simi-
larly, for the exposition of theory, one would want to pare down all but
the mechanisms of interest.

If a model has a predictive purpose, then it may be possible to feed
enough data through it to reveal any patterns, which can then be used
to predict new observations. In SESs, however, prediction is rare given
the complexity of the systems and the relative paucity of data. Most
models of SESs tend to be aimed at least in large part at explanation, to
deepen understanding of the system or class of systems modelled in
terms of a set of plausible mechanisms.

As mentioned above, a modelling project may need to include
multiple simulation models of a single system. One more way in which
this may be useful arises out of the problems intrinsic to complex
models: constructing different models to represent different levels of
granularity or of abstraction. A good explanatory model might be very
complex, especially if it integrates both social and ecological aspects. It
may then be necessary to construct a model of this model (a meta-
model), in order to examine some of the mechanisms involved in a more
analytic manner. This theoretical model can then be related to the ex-
planatory model in testable and well-defined ways, gaining some of the
benefit of both (Lafuerza et al., 2016).

4. Agent-Based modelling of SESs

4.1. Advantages of agent-based modelling of SESs

Modelling aimed at explanation of a system’s dynamics in terms of
underlying mechanisms requires the model to represent these me-
chanisms adequately and that means representing them explicitly. Such
models necessarily attempt some structural correspondence to a part of
the observed and/or conceptualised external world. The question then
arises of how much structure and which processes need to be re-
presented in the model. We always have limited resources of time,

computation and understanding, so some compromise in terms of a
model’s faithful representation of the modelled system is almost always
necessary (Grimm et al., 2005). However, if a model is too simple, it is
likely to omit features of crucial importance. For an SES, these features
include the decisions, actions and intentions of human individuals,
along with their institutions, knowledge, beliefs, resources and tech-
nologies. Schlüter et al. (2012) emphasize coevolutionary processes and
micro-level decision-making, while Filatova et al. (2016) stress the
kinds of feedback within and between the social and ecological sub-
systems, links between various organisational scales, and the re-
presentation of nonlinear behaviour.

These factors are demonstrably important in real-world SESs. We
consider that Agent-Based Models have the potential to capture far
more of these key features than any other current approach to SES si-
mulation. They allow for detailed description of heterogeneous in-
dividual actors’ behaviour, which SD models cannot do, and can gen-
erate emergent properties, as the interactions of agents with each other
and their environment produce macro-level patterns such as directional
or cyclical change, and greater or lesser system resilience. In contrast to
typical cellular automata, these macro-level features can in turn be
perceived by and influence the agents. Moreover, unlike typical cellular
automata agents, ABM agents may be given the power to move, to
acquire or lose ownership of or influence on specific parts of that en-
vironment, and to establish links with agents other than immediate
neighbours.

Another advantage is that ABMs lend themselves well to commu-
nicating model structure and behaviour to stakeholders: people in
general are used to thinking in terms of the intentions, actions and
interactions of both other individuals, and collectives such as house-
holds, firms, governments and states. Most people are far less used to
thinking in terms of differential equations, or the kinds of dynamics
typical of cellular automata.

In sum, it is the expressivity of ABMs that leads us to recommend
their use. As we have already noted, ABMs can include systems dy-
namics and/or cellular automata elements. An SES typically links or-
ganisms of very different degrees of behavioural sophistication (such as
plants or bacteria on the one hand and farmers or gatherers on the
other); and the less sophisticated in particular may be present in very
large numbers. Large numbers of comparatively simple agents may be
best represented using differential equations or cellular automata, even
within a model in which human beings (and possibly some other or-
ganisms) are represented as individual agents.

There are different ways to combine SD and ABM models, ranging
from loosely coupled or sequential, where the output of one model
component is fed to the next, to fully integrated, which incorporates
feedbacks between the two (or more) components during a simulation
run (Swinerd and McNaught, 2012). Martin and Schlüter (2015) pro-
vide an example of the latter (including a detailed procedure for
achieving it) with their model of the restoration of a shallow lake being
polluted by untreated sewerage from private households. This SES case
study links an agent-based model of the social sub-system representing
individual house owners and a local authority with a system dynamics
model of the ecological sub-system (the lake with two types of fish in a
predator-prey relationship). A somewhat similar example (FEARLUS-
SPOMM, see Polhill et al., 2013) is examined in Appendix 1.

4.2. Drawbacks of agent-based modelling of SESs

The very expressivity of ABMs, however, is a source of significant
drawbacks. Because every agent can have its own individual properties,
potentially different from those of all other agents in the model, the
number of tunable parameters of an ABM can become enormous, and
indeed, difficult to calculate, once we consider that the number of
agents and the statistical distributions of their properties and relation-
ships with each other can themselves be model parameters. Given en-
ough parameters, it becomes difficult to establish that there is any set of
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outputs that could not be produced. However, work is needed to es-
tablish the change in realizability of outputs introduced by adding an
agent to a model, and how this compares with adding a term to a tra-
ditional model (Polhill and Salt, 2017). Of course, by no means all
ABMs are intended as empirical models of specific systems, but even for
those that are not, the problem of defining the range of acceptable
outputs remains.

ABMs can also suffer from a lack of transparency in that it may be
difficult to determine (even for the modellers themselves) what specific
features of the model represent in the system or type of system being
modelled – or indeed, whether they represent anything at all, rather
than simply being “scaffolding” necessary for the model to function as a
piece of software, and to allow the user to manipulate it. This problem
is not unique to ABMs, but that it is a serious issue is indicated by
attempts at replication which show that altering seemingly minor as-
pects of an ABM can radically change the results (Edmonds and Hales,
2003; Janssen, 2007). The lack of this kind of transparency places
greater emphasis on code sharing and documentation practice
(Edmonds and Polhill, 2015).

In modelling any complex adaptive system, and in particular in
modelling SESs, we can be effectively certain that our model will not
include all the layers of intermediate structure, or all the kinds of in-
teraction between agents, which are relevant to the behaviour of the
real-world system being modelled; any model (not just those that are
agent-based) will inevitably be partial in this sense, but this partiality
may not be evident to the model’s users, and is easily forgotten by its
developers.

To keep ourselves as honest as possible as modellers, we propose
making as explicit as feasible what we have knowingly left out of our
models. (The qualifier”knowingly” is a necessary one; given our very
limited knowledge of SESs and their “components” (particularly, of
people), we can also be pretty certain that we are leaving out more than
we are aware of.) “As explicit as feasible” is an elastic term, and de-
liberately so. We know, as modellers, the pressure to produce a model
rapidly, and the space limitations and other constraints of journals and
conference papers: emphasising what your model does not cover may
not assist you in getting published. But there are now model re-
positories such as OpenABM2, where model code and documentation
can be archived and made available to other researchers. This doc-
umentation should, we suggest, include an explicit statement of the
model’s known limitations, along with its purpose, data requirements,
theoretical basis (if any), and stakeholder involvement (if any). The
ODD format (Grimm et al., 2006; 2010) is helpful in putting together
the necessary documentation for ABMs - similar formats exist for other
types of models. In Section 4.3, however, we propose a somewhat dif-
ferent although perhaps complementary approach, which we believe
will also help in dealing with the other drawbacks of ABMs due to their
expressivity: the use of formal ontologies.

4.3. Ontologies for agent-based models

An ontology (in the sense relevant here) is a formal account of the
entities considered to be involved in some system or type of system, and
the relationships between them (Gruber, 1993). For example, con-
sidering farming land use, one might distinguish people, households,
farms, fields, animals and crops, and specific subtypes of these broad
categories. In an ontology each such concept is given an obvious and
unique label, which is then used in defining some of the relationships
between them. Thus “people run businesses”; “farm businesses own
farms”; “a field is part of a farm”; “arable and grazing are types of land
use”; and “each field has a land use applied to it”. This is illustrated in
the (much simplified) ontology depicted in Fig. 2.

Ontologies are already in use in many areas of work, including

ecosystems research. Up to now, their main use in this area has been for
data integration (Coetzer et al., 2017; Poelen et al., 2014), including
semi-automated processing of remote sensing data (Myers and
Atkinson, 2013), rather than in simulation modelling. Usually an ABM
(or any other software model of an ecosystem or SES) is described in
natural language, sometimes accompanied by tables and diagrams, and
possibly structured according to some protocol such as ODD (Grimm
et al., 2006; 2010). The real world system, situation or scenario (or type
of system, situation or scenario) the model is intended to represent will
also be described in some combination of natural language, tables and
diagrams. Particularly for non-specialists, ontologies cannot replace
clear and well-structured natural language descriptions of either models
or modelling targets, but we believe they are a promising “mediating
formalism” (Gotts and Polhill, 2009) to assist in bridging the gap be-
tween program code and natural language description, with major ad-
vantages in the process of designing, implementing and assessing a si-
mulation model:

• Formal ontologies can be used to constrain and check complex si-
mulations. Complex simulations have many degrees of freedom and
ensuring a simulation is consistent with an ontology helps constrain
these degrees. In this way ontologies can be seen as an extension of
type-checking in programming languages which is well known to
reduce programming errors.

• There are often fundamental differences as to what types of entities
and relationships should or can usefully be distinguished in any
particular system. Formalizing ontologies helps reveal these differ-
ences, which are often implicit. This is particularly important where
there are experts from several disciplines, or multiple stakeholders,
involved in a modelling project.

• Ontologies in diagrammatic form can also be useful in explaining
the model to stakeholders and domain experts, although here, care
is needed to present no more complexity than will be helpful to the
intended audience.

• Polhill and Salt (2017) argue that for any complex model, showing
that it can reproduce in its outputs the empirical measurements from
the target system does not prove that it captures the underlying
processes producing those measurements. They point out that a
neural network model, in which no attempt is made to capture such
underlying processes, can always be tuned to produce an arbitrary
set of outputs if it has enough nodes. For any kind of model which
does aim to capture the mechanisms responsible for measured
system outputs, therefore, its ontological structure (its components
and their interactions, whether or not expressed in a formal on-
tology) must be considered in attempting to validate the model. So if
this structure was not specified as part of the model design process,
it must be derived from the model itself – Polhill (2015) shows how,
for a particular software system often used for ABMs (NetLogo,
Wilensky, 1999), this process can be partially automated, resulting
in a formal ontology. Polhill and Salt (2017) suggest four ways in
which such a model-specific ontology can be validated: logical
consistency; populating it with instances from the modeled domain
(if this proves difficult, it indicates that the ontology is not a good
fit); stakeholder and/or expert evaluation (by experts or stake-
holders not involved in the original design of the model or its ac-
companying ontology); and comparison with existing ontologies.

• Ontologies can both be about a view of a system (making them a
formalized kind of conceptual model) and be applied to simulation
models such as ABMs themselves. But generally, the entities and
relationships that exist within such a model are a subset of those
pertaining to the modellers’ conceptual model of the observed
system. Thus when simulating farming land use one might omit the
people and conflate these with the farms, thus to focus on what each
farm household or business (as a unit) does with the fields on its
farm. As noted above, there will also typically be aspects of the si-
mulation model that have no direct counterpart in the system2 http://openabm.org.
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modelled, but are necessary to the model’s operation or helpful for
the user. The use of ontologies can help to keep the relationships
between the simulation model and the system clear, primarily for
the modellers themselves. This advantage is discussed in more detail
below.

While the most human-accessible representation of ontologies is in
diagrams such as Fig. 2 they are fully expressed for computational
purposes in languages designed for the task, the most common of which
is OWL (Cuenca Grau et al., 2008; Horrocks et al., 2003). OWL and
similar languages are in turn based on description logics (Baader et al.,
2017), formal systems which aim to maximise expressivity while re-
taining desirable computational properties such as decidability (which
guarantees that the process of determining whether or not a statement
in the logic follows from a given set of premises will be finite). Software
exists for OWL ontology construction and display (Horridge, 2011), for
checking that ontologies are well-formed (Bagosi et al., 2014; Shearer
et al., 2008; Sirin et al., 2007; Tsarkov and Horrocks, 2006) and for
comparison (structural matching) between ontologies (Faria et al.,
2013; Hu and Qu, 2008).

The hierarchy of concepts in an ontology will often be a “tangled
hierarchy”, where a concept may have multiple links to superiors
(sheep are ruminants as well as farm animals). An ontology may or may
not include specific instances of its classes. If it does, it may also include
relationships between these instances: an ontology could specify that
Paris is the capital of France, for example. The possible relationships
between instances of concepts may themselves also form a tangled

hierarchy, which is part of the ontology. Since relationships represented
in ontologies may be spatio-temporal, an ontology can encode a spatial
layout, or a scenario taking place over time (Gotts and Polhill, 2009).

Ontologies have been used in conjunction with multiple models
within a modelling project (not, as it happens, including ABM) in
agricultural systems research (Janssen et al., 2011), and in conjunction
with integrated assessment models (de Vos et al., 2010). Although
de Vos et al. (2010) focus on systems dynamics models, they raise the
issues of model validation and transparency noted in Section 4.2 as
difficulties encountered in using and assessing ABMs. Neither
Janssen et al. (2011) nor de Vos et al. (2010), however, use ontologies
to clarify how the software ABM relates to the system it attempts to
capture, as proposed here: their ontologies aim to capture the structure
of a software model or set of connected models, while leaving the
conceptual model to be described only in natural language.
Beck et al. (2010), in contrast, describe a software environment for
constructing systems dynamics models from ontologies in the agri-
cultural domain. However, we cannot find subsequent examples of
work within this environment.

Here, we propose a somewhat different approach, with the focus on
maintaining clarity and transparency in modelling projects that may
involve multiple models and multiple modelled systems. In order to
specify which aspects of the real world are represented (and which not)
in a simulation model, and how, we propose the use of several linked
formal ontologies, drawing on ideas from Polhill and Gotts (2006),
Polhill and Gotts (2009) and Gotts and Polhill (2009), but adapted to
deal with the issues discussed in this paper.

Fig. 2. A Simple ontology.
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Formal ontologies only encode the structural relationships between
the concepts (and maybe individuals) represented - this is all they can
do. For example, if an ontology records that farmers grow crops on land
they own or rent, neither the ontology, nor any software used to build
or manipulate it, knows anything about what a farmer, a crop or land is,
or what owning and renting mean, beyond what is explicitly encoded in
the terminology used: the same information could be encoded using the
labels: X, Y and Z for farmers, crops and land - the use of meaningful
terms is simply an aid to interpretation. If we place model entities and
relationships, and the real-world entities and relationships they are
intended to represent, into distinct but linked ontologies, it may be
easier to avoid any confusion between those observed and those in the
model. It should also help modellers to keep in mind that the ontologies
themselves are just descriptive tools which, inevitably, will leave out or
distort many aspects of what they describe.

Fig. 3 illustrates the set of ontologies that might be used in a
modelling project, and the relationships between them. Here there are
four kinds of ontology: the project ontology, the system ontology (or
ontologies), the model ontology (or ontologies) and the representation
ontology.

The most general is the project ontology, which combines the
conceptual, primarily qualitative model of a domain of discourse, en-
quiry or research - such as SESs – with concepts encoding the general
approach taken to modelling the domain – such as ABM. It will include
the more abstract, high-level terms that are fundamental to con-
ceptualizing the domain, including both terms that apply to real-world
items, and those which apply to items within models.

A system ontology would contain concepts, and individuals, in-
tended to capture the entities, relationships and processes present in a
specific part of the real world. Primarily, it would encode the modellers’
conceptual model; if stakeholders’ conceptual models were in-
compatible with this, the differences would be captured by notations
describing these stakeholders’ beliefs about the system. The additional
ovals represent the fact that a modelling project may cover multiple
systems, situations or scenarios. A system ontology imports the project
ontology - meaning that the terms in the project ontology are available
for use in defining terms in the system ontology. The figure illustrates

that there may be multiple system ontologies, one for each system
modelled within the project; but different system ontologies within a
modelling project may encode incompatible conceptual models.
However, each must be compatible with the project ontology, and the
project ontology may thus require amendment when a new target
system is added to the project.

A model ontology is concerned with the entities in a specific model
and their relationships. A model ontology, like a system ontology, will
import the project ontology. There may be several within a modelling
project, and even several corresponding to different models of the same
system – for example, models at different levels of detail, or attempting
to capture the views of different groups of stakeholders. Again, different
model ontologies may not be compatible with each other, so again, the
project ontology may need amendment when a new model is added to
the project.

The representation ontology encodes the relationships between
the system and project ontologies and the model ontology or ontologies.
It imports all the other ontologies, and adds only the links between
items in the project and system ontologies, and the items that represent
them in one or more model ontologies.

A hypothetical example drawn from a real land use change mod-
elling project, FEARLUS (Polhill et al., 2001), and its enhancement to
include a species metacommunity model as FEARLUS-SPOMM
(Polhill et al., 2013) is described in Appendix 1. A much more detailed
account of the use of ontologies in a large-scale research project in-
volving ABM (alongside quantitative and qualitative empirical
methods) is available in Salt et al. (2016), although this does not em-
ploy quite the same approach as proposed here.

5. Summary and conclusions

We have argued that the social aspects of SES need to be modelled
explicitly (Sections 1 and 2). Given this, however, modelling SESs raises
particular problems because:

1. Additional kinds of complexity are involved when a system includes
human agents - who may attempt to change the structure and dy-
namics of the SES they are part of, in conflict, in competition or in
cooperation with each other (Section 2.1);

2. The terminology used in the assessment of SESs is ill-defined and
contested. Important concepts in the assessment of SESs, like “resi-
lience”, “sustainability” and “health”, are highly discipline-depen-
dent, ambiguous, problematic, and contested (Section 2.2). These
concepts cannot be measured directly, and a wide range of in-
dicators have been used.

3. Closely connected to point 1, much SES modelling takes place in
adversarial political contexts, so that modelling decisions them-
selves become political (Section 2.2).

4. Good data on social aspects of SESs are often unavailable
(Section 3.1), and although theory can sometimes compensate for
absent data, theories of human behaviour are scattered across psy-
chology and the social sciences, generally contested, and often
lacking causal mechanisms.

Considering these problems, and the range of possible modelling
aims (Section 3.2), we conclude that on its own, the nature of the
modelled system does not determine the model or models required, and
advocate thinking in terms of modelling projects, which may involve
one or many simulation models, or even none at all (Section 3.3).
However, for at least those modelling projects where explanation
(deepening the understanding of the system or systems modelled) is an
important aim, we consider that among the range of possible ap-
proaches to modelling SESs, which we briefly outline (Section 3.4), the
expressivity of agent-based models (ABMs) is necessary to successful
SES modelling, although ABMs may include elements of systems dy-
namics (SD) and cellular automata (CA) modelling within them

Fig. 3. Ontologies for SES modelling.
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(Section 4.1).
Along with their advantage in expressivity, and indeed as a con-

sequence of it, ABMs do have significant drawbacks: their numerous
tunable parameters pose difficulties for validation and their complex
structure for transparency (Section 4.2). We suggest a number of ways
in which the use of formal ontologies can ameliorate these problems
(Section 4.3) in the context of modelling projects, covering the pro-
cesses of design, implementation, stakeholder involvement, and vali-
dation. We argue in particular that it is vital to make as clear as possible
what each model is for, what it includes and what it is known to leave
out, and therefore recommend the use of ontologies to encode re-
lationships between the overall project, its models, and the systems
modelled.

It should be said that even ABMs have difficulty capturing cross-
scale interactions between local, regional, national, continental and
global levels. SESs which would once have been relatively self-con-
tained are today increasingly affected, often adversely, by distant
events, or by the sum of events over large areas or the entire globe.
Changes in the supply of or demand for commodities in one country can
lead to the destruction (or at least temporary preservation) of forests in
another; species accidentally or deliberately introduced, particularly
but not exclusively to isolated regions such as small islands, can de-
vastate local ecosystems; and of course anthropogenic climate change is
affecting or will affect every SES on the planet. The need to model such
cross-scale networks of causal connections reinforces the need to think
in terms of modelling projects, using ABMs on different spatio-temporal
and organizational scales, linked through a project ontology.

Similarly, there has been little progress in modelling the kind of
social complexity that people inhabit daily and routinely, if by no
means always easily. People frequently belong to or take part in mul-
tiple social formations, both formal and informal: as members of a
household, immediate and extended family, friendship networks, so-
cial, professional, political and religious groups. They act as employees

or employers, tenants or landlords, buyers and sellers, students and
teachers, citizens – to name only a few broad classes of social role. As
individuals, we somehow handle these complexities; yet no model,
ABM or otherwise, ever deals with more than a small number of the
groupings we belong to or the roles we adopt, let alone the complex
interactions between them. Progress in developing ABM representations
of human agency, and in particular, the way in which the decisions and
actions of collectives such as households, firms and states emerge out of
those of the individuals belonging to them, is therefore essential if
agent-based modelling is to fulfill the potential we believe it has.

The over-riding message of this paper is that SES modellers need to
make use of agent-based modelling approaches, and to work on ex-
tending the capabilities of these approaches to deal with types of
complexity beyond their current scope. We recommend the use of
formal ontologies as a means to maintain and improve transparency as
both individual models and modelling projects grow in complexity. But
above all, whether they choose to follow this recommendation or not,
they need to make as clear and explicit as they can, to themselves and
others – fellow-researchers, policy-makers, stakeholders, and concerned
citizens – the aims, the claims, the context, and the limitations of their
models. This is both a scientific and a social obligation for all modellers;
but the special features of SES modelling (both scientific and political),
and the challenges sketched in the preceding paragraphs, make it par-
ticularly necessary in that domain.

Acknowledgements

J. Gareth Polhill receives funding from the Scottish Government’s
Rural Affairs, Food and the Environment Strategic Research Programme
2016–2021, the funding number is RDs 3.3.1/2.4.1. The work by
George A.K. van Voorn and Gert Jan Hofstede was funded by the
Wageningen University and Research Resilience investment theme, the
funding number is Kennisbasis programma van LNV: KB29 Resilience.

Appendix A

To illustrate the potential advantages of the multi-ontology approach in ABM projects, we take as an example the “FEARLUS-SPOMM” model
(Polhill et al., 2013), which was designed and implemented as part of the long-running FEARLUS (Framework for Evaluation and Assessment of
Regional Land Use Scenarios) project, first described in Polhill et al. (2001). Several versions of the FEARLUS model were developed, the latest being
FEARLUS-SPOMM, which coupled a species metacommunity model, SPOMM (Stochastic Patch Occupancy Metacommunity Model), which is an
enhanced version of SPOMSIM (Moilanen, 2004), to the FEARLUS core. The purpose of FEARLUS-SPOMM was to examine the consequences of
different possible government incentive schemes aimed at preserving and increasing biodiversity on farmers’ lands. By the time FEARLUS-SPOMM
was implemented, a prototype feature had been added to FEARLUS (Polhill et al., 2008) to produce what is called here a model ontology, and a
partial project ontology, and Polhill et al. (2013) includes a model ontology encoded as a UML diagram, but FEARLUS-SPOMM was designed and
implemented without use of a separate system ontology. We aim to show here that, even devised in retrospect, such an ontology can significantly
improve ABM transparency.

Fig. 4 shows an adapted version of the FEARLUS-SPOMM model ontology, at lower left, along with versions of a FEARLUS project ontology (top),
and a FEARLUS-SPOMM system ontology (lower right). The FEARLUS project ontology is a (partial) representation of the modellers’ conceptual
model of the FEARLUS project domain – regional land use scenarios – prior to the work leading up to the coupling of FEARLUS and SPOMM. The
FEARLUS-SPOMM model ontology is a (partial) representation of the addition to this conceptual model needed to include the species meta-
community model, and the types of government incentive schemes to be explored.

Links between the three ontologies are shown by the thicker, dotted lines. There are four types of relation between concepts in the ontologies.
Three of these occur both within the three labelled ontologies, and linking nodes in different ontologies: “subclass-of”, “part-of”, and “relates-to”.
The node at the tail of a “subclass-of” link names a subclass, or subconcept, of the concept named by the node at the head of the link. Instances of the
concept named at the tail of a “part-of” link are, or can be, parts of instances of the concept named at its head. The “relates-to” link stands for any
other type of relationship between instances of the concepts named at its head and tail; these links are labelled to identify the relationship (in the full
version of the ontology, these relationships would themselves be formally defined). The fourth type of link, “represents”, runs between a node in the
model ontology, and a node in either the system or project ontology, specifying that an instance of the model ontology concept at the link tail is
intended to represent an instance of the system or project ontology concept at the link head. We draw attention to the following points in the figure:

• All three ontologies shown contain fewer nodes, links, and types of links than full ontologies would require. The representation ontology is not
shown separately; it is visualized as the set of “represents” links. Within the project ontology, only “subclass-of” and “part-of” links are shown. A
few “relates-to” links are shown in the model ontology and system ontology.

• Names of nodes within the model ontology are given a final “M” as a reminder that they are pieces of software. All the nodes in this ontology
stand for “classes” in the object-oriented language Objective C, in which FEARLUS-SPOMM is written. Just two of these nodes identify classes of
SoftwareAgent: pieces of software that encode procedures for making decisions and assessing the results of those decisions as a program runs.
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(The distinction between “software agents” and other pieces of code depends on how they are viewed by the modeller as much as on their
intrinsic properties.)

• The two classes of SoftwareAgent within the model ontology (LandManagerM and GovernmentM) also have “subclass-of” links to the node
IndividualAgent in the project ontology. An “individual agent” contrasts with a “collective agent”: the decisions of the latter, but not the former,
emerge out of the interactions of other agents that they (in some sense) comprise. Thus in reality, the decisions of a government – even in a
dictatorship – arise as a result of interactions between multiple individuals, and indeed, smaller collective agents such as committees and
departments – but the FEARLUS-SPOMM GovernmentM agent has no such internal structure. The situation with regard to the other class of
IndividualAgent within FEARLUS-SPOMM, the LandManagerM, is more complicated: it is unclear whether a LandManagerM represents a human
individual (a farmer), or a farm business, which generally includes more than one person, and has a distinct legal existence (in the normal
FEARLUS context of the UK). In the formal representation ontology, these links would be annotated with classificatory terms, themselves part of a
hierarchy of types of representation, designed to elucidate both those features of the link head which the link tail captures, and those it does not.

• Turning to parts of the physical world, a LandParcelM represents a Field (in the project ontology: fields are common to all systems modelled in the
FEARLUS project). But features attached to LandParcelM show that its spatial position can be specified by a single pair of integer coordinates,
indicating that the LandParcelMs form a grid, and are all of the same size. Real fields do not in general conform to this pattern, and have many
other conceptually important features which FEARLUS’s LandParcelMs lack. Of course, even the project ontology cannot include all the features
even of something as relatively simple as fields, but features and relationships can be added to those ontologies as they become significant in
ongoing work, for example through being mentioned in a stakeholder or expert interview. They would then serve as a reminder of what a model
leaves out, and a source of suggestions for enhancing it.

• The EnvironmentM is shown as representing a project ontology Landscape, but in this case, the model ontology concept actually contains
elements that do not correspond to anything in a real-world landscape, but to the prices of farm products. The project ontology as shown omits
these; if constructed in advance, it would certainly have included them, but this illustrates another general point: a simulation model itself can
suggest lacunae in the conceptual model encoded in a project or system ontology. Conversely, the fact that EnvironmentM has no straightforward
counterpart in the project or system ontology at least casts some doubt on the way the simulation model is structured.

• Other nodes in the model have no “represents” links at all. All except the top-level FearlusSpommThing node, which is a notational convenience,
relate to the way in which a LandManagerM decides what LandUseM to apply to a LandParcelM. This feature of the model (encoded in the
FEARLUS-SPOMM classes StateM, CaseM and CaseBaseM) is intended to implement a simplied version of “Case-Based Reasoning” (Aamodt and
Plaza, 1994), an artificial intelligence technique in turn claimed to capture features of human expert decision-making; but how far the FEARLUS-
SPOMMmodel is intended to represent how real farmers (or farm businesses – see above) choose land uses is not clear. CaseBaseM could be taken
to represent either the personal memory of a Farmer, or the “institutional memory” of a FarmBusiness. It is worth noting that earlier versions of

Fig. 4. FEARLUS-SPOMM ontologies.
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FEARLUS employed different decision-making methods, see for example Polhill et al. (2001).

• The links between the system and project ontologies also point up interesting issues, in this case with regard to the integration of two conceptual
models. The Government node in the system ontology has three links to nodes in the project ontology. One is a “subclass-of” link to the
CollectiveAgent node, the others are “relates-to” links noting that a Government governs an EarthSurfaceRegion (the project ontology does not
include more specific nodes for polities, this might suggest adding at least one such node, but the model ontology does not appear to need to
include this concept), and that a Government pays Subsidy (again, this might suggest the need for additional nodes and in this case, more
information about how the model represents this fact seems desirable).

• The other system-project links concern the system concepts Species and Habitat. Species is linked to the project node Collective as a subclass, but
this raises the question of what “species” means in the context of a species metacommunity model. The individual members of a species are not in
fact represented, only the presence or absence of some members of the species in specific areas, and their ability to persist there, and spread to
neighbouring areas, so the species is treated more like an amorphous mass than a collective – which is, in the context of this type of conceptual
model, quite valid. But this suggests that the concept does not fit easily into the conceptual model underlying FEARLUS, so modellers should
beware of problems arising from this imperfect fit. Similarly, “subclass-of” links going the other way, from the project to the system ontology, link
UnimprovedGrasslandField and ImprovedGrasslandField to Habitat. That seems unexceptionable – unimproved and improved grassland fields are
both surely types of habitat. But should there also be a subclass-of link from Field to Habitat? Or perhaps habitats should not be encoded in nodes
at all, but in links: a given type of field being a “habitat-for” a particular range of species.

The foregoing examples demonstrate how the use of ontologies can bring to the surface deep issues that arise in modelling, concerning the
relationships between conceptual and software models, and between conceptual models themselves. Such issues arise particularly when comparing
models (Cioffi-Revilla and Gotts, 2003), when extending the domain of a modelling project (as in the case of FEARLUS-SPOMM), and when com-
bining existing software or conceptual models (again, as in the FEARLUS-SPOMM case). Of course, we do not claim such tasks are impossible without
the use of ontologies, but that, particularly with a modelling approach as expressive as ABM, they have great potential to assist in model devel-
opment, assessment, comparison, extension and combination.
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