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Abstract. In this work, nanocrystalline Cu/TiO2 catalysts have been synthesized by using 

pulsed direct current (DC) reactive magnetron sputtering of Cu targets in an Ar atmosphere 

onto P25-TiO2 support. The oscillating bowl was used to make the uniform coating on the 

substrate. The Cu doping content was varied by adjusting the coating time. The thus-obtained 

catalysts were characterized by using the X-ray diffraction (XRD), UV-Vis spectroscopy, 

scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The 

photocatalytic activities of all catalysts were studied via the photocatalytic reduction of CO2 

and H2O to CH4 under UV irradiation, and compared with the pure TiO2 support and 

conventional-impregnation-made Cu/TiO2. The results showed that the photocatalytic 

performance of sputtering-made Cu/TiO2 catalyst was much better than the pure TiO2 support. 

Therefore, reactive magnetron sputtering was a promising technique for deposition of metal 

onto the support and use as the catalytic process. 

1. Introduction 

Presently, the environmental problem from the emission of pollutant gases became much more serious. 

CO2 (Carbon dioxide) is the main product from human activates such as combustion of industrial fuels 

and vehicle engine. The solution to the problems is reduction of releasing gas into the atmosphere or 

takes advantage from it. CO2 can used for generate the important products by direct and indirect 

process. In direct process, it is widely used in cooler system, extinguisher, dry ice and so on. In 

indirect process, it is used for generate chemical commercial such as urea, polycarbonate, methanol, 

acetic acid, formaldehyde and so on [1-2].  
Photocatalytic reduction of CO2 is one of the interesting processes. This technology will convert 

photocatalytic CO2 reduction with water as a reducing agent into hydrocarbon fuels and useful 

chemical compounds such as carbon Monoxide (CO), methane (CH4), methanol (CH3OH), formic 

Acid (HCOOH)  and formaldehyde (HCHO) by irradiation with UV light at room temperature and 

atmospheric pressure [3-4]. Photo-chemical technique is more attractive because of its relatively low 

cost, environmental friendly, generate none pollution, no requirement of thermal energy. Moreover, it 

http://www.orangeth.com/GasArticles/Carbon-Monoxide-%E0%B8%81%E0%B9%8A%E0%B8%B2%E0%B8%8B%E0%B8%84%E0%B8%B2%E0%B8%A3%E0%B9%8C%E0%B8%9A%E0%B8%AD%E0%B8%99%E0%B8%A1%E0%B8%AD%E0%B8%99%E0%B8%AD%E0%B8%81%E0%B9%84%E0%B8%8B%E0%B8%94%E0%B9%8C.html
https://dict.longdo.com/search/methanol
http://creativecommons.org/licenses/by/3.0
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is easy for control process because photochemical reaction need only light to activate substrate to 

generate products. 

Many photocatalytic CO2 reduction catalysts  have been attentively studied such as TiO2 , ZnO, ZrO2 , 

CeO2 , WO3, SnO2, GaP, SiC, SrTiO3 [5]. Among various semiconductor materials, the most 

extensively used photocatalysts is TiO2, because its high stability, high photosensitivity, non-toxic 

nature, wide availability and low cost [6]. However, TiO2 has wider bandgap, high electron-hole 

recombination rate and weak CO2 adsorption. Therefore, it has very low photocatalytic activity for 

CO2 reduction in the water. So, it is interesting to modify the crystal structure, particle size, electronic 

structure, lifetime of charge carrier, electron-hole (e-h) recombination probability of TiO2 for increase 

photocatalytic activity for CO2 conversion [8]. There are several pathway for improve its quality such 

as doping with metals or non-metals. Some metal such as platinum (Pt), silver (Ag), copper (Cu), 

nickel (Ni) or metal oxide such as  copper oxide (CuXO), nickel oxide (NiO) were deposited on 

semiconductor. For increased lifetime of the photogenerated electrons and hole via effective charge 

carrier separation and retardation of electron-hole recombination rate and increasing quantum yield [7-

8]. In several studies, Cu nanoparticles deposited on the TiO2 surface can reduced the band gap energy 

of TiO2 and shifted the band edge from the UV region to the visible region (strongly absorb visible 

light) and facilitate the separation of photoexcited e
-
 h

+
 pairs that showed effectiveness in CO2 

photoreduction [9-10]. 

Generally, deposition of metal on TiO2 surface can be mostly done by conventional impregnation 

method, which required the solution of metal precursor, heat treatment and generate waste. Reactive 

magnetron sputtering offers the new direct metal deposition method on catalyst powder, which can be 

done in one-step and no waste generate in the process [11]. 
In this research, Cu/TiO2 catalysts were prepared by using reactive magnetron sputtering to deposit the 

Cu on TiO2 surface. The obtained catalysts were characterized by using the X-ray diffraction (XRD), 

UV-Vis spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray 

spectroscopy (EDX). The photocatalytic activities of all catalysts were studied via the photocatalytic 

reduction of CO2 and H2O to CH4 under UV irradiation and compare it with the catalyst prepared by 

conventional impregnation method. 

2. Experiment 

2.1. Materials 

Commercial Degussa P25 nanocatalyst from AERO-XIDE1 was sourced as a TiO2 powder. Copper(II) 

nitrate trihydrate (Cu(NO3)2·3H2O,>98% purity from Aldrich), and Cu target (Copper Metal, 99.5% 

purity) were used as a chemicals in the surface modification process.Carbon dioxide (CO2 ,≥99.999 %) 

was used as an oxidizing agent  in photocatalytic reaction. 

2.2. Surface modification of TiO2  
There are two preparation methods for Cu/TiO2 catalysts including incipient wetness impregnation 

method and reactive magnetron sputtering method. In incipient wetness impregnation methods, 2 g of 

TiO2 was doped with an aqueous solution of copper (II) nitrate trihydrate (Cu(NO3)2·3H2O) via 

different the weight ratios of dopant/ TiO2 at 1 (Im1) and 3 (Im2) wt%, respectively. The solution of 

the metal precursor was slowly dropped onto the TiO2 support to obtain the desired ratio and dried in 

oven 110 °C overnight before calcined in a box furnace at 400 °C, heating rate 10 °C/min for 2 h with 

air flow. 

In reactive magnetron sputtering method, 2 g of TiO2 was loaded in sputtering chamber. Synthesis 

condition including power 200W, voltage 350V and frequency 200kHz were used. Reactive sputtering 

of Cu target was done in argon atmosphere onto P25-TiO2 support. The oscillating bowl was used to 

make the uniform coating on the substrate. The sputtering time was varied at 2.5 (Sp1) and 7.5 (SP2) 

min respectively. 
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2.3. Photocatalytic reaction 
The photocatalytic reduction of CO2 with water were carried out in a photoreactor system. UV-light 

bulbs (Philips’ Germi-cidal Ozone UV Quartz Glass UVC Bulb : 16 watt, 6 bulbs) were install around 

a cylindrical quartz reactor . A certain amount of each catalyst (0.5 g) dispersed into a stirred slurry 

reactor (SSR), which contained 150 mL of deionized water.  After the reaction system was already, 

compressed CO2 (≥99.999 %) was presented into the system from inlet tube in the cylindrical quartz 

reactor. By using a mass flow controller at a flow rate of 100 ml min
−1

 for 30 min. to purge air and 

saturate the solution. The reactor is closed during the reaction, and a magnetic stirrer agitated the 

catalyst-suspended solution throughout the experiment. The photocatalytic reaction was started by 

turned on the UV light, and irradiation was continued for 6 h.   

The resultant gas samples were analyzed online by using, a GC-14B (Shimadzu) gas chromatograph 

equipped with a flame ionization detector (FID) and a Porapak-Q column for hydrocarbon analysis. 

3. Results and discussion 

3.1. Physiochemical properties of Cu/TiO2 catalysts 

Table 1. The physical properties of thus-obtained catalysts. 

Sample 

Wt% of Cu Crystallite size (nm) 

%Rutile 
ICP EDX Anatase Rutile CuO 

P25 - - 20 23  - 21 

Im1 0.68 3.42 18 22 - 20 

Im2 2.47 5.67 17 21 - 18 

Sp1 0.73 4.89 19 25 n.d.  22 

Sp2 2.21 6.15 19 23 45.00 25 
 

In this paper, nanocrystalline Cu/TiO2 catalysts have successfully been prepared by using magnetron 

sputtering method. The physical properties of thus-obtained catalysts are summarized in table 1. The 

Cu doping content was measured by ICP and EDX techniques. Increasing of sputtering time from 2.5 

to 7.5 min resulted in the increase of Cu doping content from 0.73 to 2.21 wt%. It can be seen that the 

Cu loading content increased linearly with increasing of the sputtering time, which suggested that the 

Cu sputtering from Cu target was directly deposited on the TiO2 support.  To compare the sputtering-

made catalyst, two catalysts with similar Cu content loading were prepared by using conventional 

impregnation method. 

Figure 1 shows the XRD pattern of P25-TiO2 support and Cu/TiO2 catalysts prepared by magnetron 

sputtering and conventional impregnation methods. All catalysts exhibited the main characteristic peak 

of anatase TiO2 phase (2θ = 25.34°) with small additional peak of rutile TiO2 phase (2θ =27.42°) [12]. 

Small peak of CuO was also observed in sputtering-made samples, which due to the formation of 

larger CuO particles comparing with impregnation one. The crystallite size and phase contents of the 

all samples were calculated by their XRD patterns according to the methods of the Debye–Scherrer 

equation and Spurr (as summarized in table 1). It can be seen that the TiO2 crystallite size and rutile 

phase content did not change much after addition of Cu by both sputtering and conventional 

impregnation methods. 
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Figure 1. XRD pattern of P25-TiO2 support and Cu/TiO2 prepared by 

magnetron sputtering and conventional impregnation methods. 

 

Figure 2 shows UV-Vis spectra of all catalysts. Addition with Cu with both methods resulted in an 

increase in the absorption of the TiO2 photocatalyst in the visible region (400-700nm). Moreover, 

increasing of Cu doping content also improved the visible light adsorption [12-13]. The lowering of 

band gap by the doping may eventually leads to Fermi level reducing, improving the photosensitivity 

of the catalysts. The energy band gaps (Ebg) of all the catalyst samples were obtained from the 

extrapolation of Tauc plot to the abscissa of photon energy and results are presented in table 2. The 

band gap energy of P-25 (3.18 eV) decreased to 2.87 and 3.01 eV after doping with Cu by 

impregnation and sputtering methods, respectively.  

 

 

Figure 2. Presents the UV–Vis absorbance spectra of the P25-TiO2 and Cu/TiO2 

prepared by using the magnetron sputtering and conventional impregnation methods. 

 

SEM was employed to investigate the morphology of the as-synthesized Cu/TiO2 catalysts as 

presented in figure 3. The micrographs clearly showed the agglomeration of nanosized spherical 

particles. There are not much difference between the Cu/TiO2 catalysts prepared by both methods. To 

investigate the elemental composition of thus-obtained catalysts, EDX was employed as also 
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summarized in table 1. The similar trend with ICP was also observed but the Cu content determined by 

EDX was much higher than those determined by ICP methods. This probably due to the formation of 

CuO by both methods mainly occurred on the TiO2 surface and not deposited deep through the TiO2 

pore. 

 

 

Figure 3. SEM images of all Cu/TiO2 catalysts. 

3.2. Photocatalytic activity 

Table 2. The band gap energy of thus-obtained catalysts and CH4 production rate. 

Sample Band gap energy 

(eV) 

CH4 production rate 

(µmole.gcat
-1

.h
-1

) 

P25 3.18 0.27 

Im1 2.81 0.74 

Im2 2.87 0.88 

Sp1 3.09 1.25 

Sp2 3.01 1.86 

 

The catalytic activity of Cu/TiO2 catalysts prepared by magnetron sputtering and conventional 

impregnation methods were tested in photocatalytic reduction of CO2 and H2O to methane at 

atmospheric temperature and pressure for 6 hours. The CH4 production rates are summarized in table 2. 

Lower CH4 production rates of P25 were due to the fast recombination of photo-generated electron-

hole pairs. Doping with Cu into TiO2 resulted in the improvement of CH4 production rate [13-14]. In 

photocatalytic process, electron (e
−
) and hole (h

+
) are generated during the photocatalytic process. Due 

to the short lifetime, they can recombine immediately or can participate in oxidation and reduction 

process. The holes can oxidize H2O or H2 while the photo-excited electrons can reduce CO2 to form 

CO, CH4 and CH3OH. When doping with Cu metals on the TiO2 surface, the Cu can trap the CB 

electrons, which prolong the electron-hole recombination process and improve the photocatalytic 

activity[13-14].  
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4. Conclusion 

Reactive magnetron sputtering technique has successfully been used to deposit nanocrystalline CuO 

on the TiO2 support. The Cu doping content increased linearly with prolong sputtering time. Doping 

with Cu did not changed the catalyst morphology and TiO2 crystallite size, while, it increased the 

adsorption at visible light range[12-13]. The photocatalytic reduction performance of sputtering-made 

Cu/TiO2 catalyst was much better than the pure TiO2 support. Therefore, reactive magnetron 

sputtering was a promising technique for deposition of metal onto the support and use as the catalytic 

process.  
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