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Abstract: Scaffolds are physical substrates for cell attachment, proliferation, and differentiation,
ultimately leading to the regeneration of tissues. They must be designed according to specific
biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface
characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a
specific tissue strongly depends on both materials and manufacturing processes, as well as surface
treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue
engineering by modulating cell proliferation and differentiation. This paper investigates the use of
an extrusion-based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/pristine
graphene scaffolds for bone tissue applications and the influence of chemical surface modification
on their biological behaviour. Scaffolds with the same architecture but different concentrations of
pristine graphene were evaluated from surface property and biological points of view. Results show
that the addition of pristine graphene had a positive impact on cell viability and proliferation, and
that surface modification leads to improved cell response.

Keywords: biofabrication; composite materials; graphene; hydrophilicity; polycaprolactone;
scaffolds; surface modification; tissue engineering

1. Introduction

Three-dimensional (3D) scaffolds fabricated by additive manufacturing are a promising strategy
in tissue engineering for the replacement and regeneration of damaged tissue. Such scaffolds should
ideally be stimulatory, as well as biocompatible, degradable, and designed according to specific
requirements to create a highly porous structure with interconnected pores [1–3]. These characteristics
can provide an appropriate environment for cells and play an important role as a physical substrate
for cell attachment, proliferation, and differentiation, as well as integration to the host tissue in order
to regenerate the defect [4–6]. Although some new methods using shape memory materials, such as
bioprinting and 4D printing, are under development [7–10], they are very much at infancy and less
mature than scaffold technology.
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An ideal approach is to combine porous scaffolds with living progenitor cells, especially
for elderly people whose cell growth and cell differentiation are age-compromised. Cellularised
scaffolds, as previously reported using human adipose-derived mesenchymal stem cells (ADSCs) in
a bone regeneration animal model [11], might stimulate the tissue around the damage area towards
regeneration whilst playing an important role to support cell migration, cell attachment, proliferation,
and differentiation.

Achieving suitable cell attachment to the scaffold is key to success; however, it is challenging with
highly hydrophobic scaffold matrices, which may result in inefficient cell colonisation. Material surface
modification such as plasma, laser and chemical treatment, and protein coating is commonly used in
order to improve cell attachment, leading to more efficient scaffold colonisation [12–17]. However, some
of these techniques are expensive, require long times, and in some cases are non-reproducible [12–14].

Pristine graphene, a two-dimensional carbon nanofiller, could play an important role in enhancing
polymer material properties because it can improve solubility, processability, and mechanical and
conductivity properties. Furthermore, it is suggested that graphene composites are able to provide a
dramatic improvement in these properties with very low filler content [18–22]. Controversial discussion
about graphene usage to develop and produce biomaterials has been reported in terms of cytotoxicity.
Some research works have presented graphene-based composites as materials that might have potential
cytotoxicity risks [23–25], while other studies report good cytocompatibility and the ability to stimulate
cell proliferation, for example, with graphene coatings [26,27].

In order to enhance cell attachment and biological performance of poly(ε-caprolactone) (PCL)
scaffolds, this paper investigates the addition of three different small concentrations of pristine
graphene, as well as a simple sodium hydroxide (NaOH) surface treatment, to render the scaffolds more
hydrophilic. Two major effects were considered: the effect of pristine graphene in small concentrations
on the cell viability/proliferation rate and the effect of NaOH chemical treatment on the surface
properties such that the hydrophobic feature of PCL scaffolds is changed.

2. Results and Discussion

2.1. Surface Modification Evaluated by Contact Angle

The apparent water-in-air contact angle on scaffolds untreated and treated with NaOH are
given in Figure 1. As previously reported [28,29], the contact angle indicates the wettability of the
material surface, indicating hydrophilic/hydrophobic characteristics of the material. In general, a
contact angle above 90◦ corresponds to a hydrophobic surface, while a contact angle value below 90◦

represents a hydrophilic surface. In the untreated case, the values slightly decreased with the addition
of pristine graphene, ranging from 96◦ ± 1.50◦ (neat PCL) to 84◦ ± 2.90◦ (0.50 wt % pristine graphene).
Contrary to the common assumption that graphene, as other carbon-based materials, is hydrophobic,
these results are in line with recent observations from Munz and co-workers [30]. Those researchers
investigated the adhesion and friction properties of single-layer and double-layer graphene using
chemical force microscopy with a hydrophobic probe. Results showed a large adhesion force between
the probe and double-layer graphene compared to single-layer, showing that double-layer graphene is
ideal for hydrophobic applications and single-layer graphene for applications where a hydrophilic
surface is required. Figure 1 shows a bar chart with the contact angle values. A statistical difference
was observed between pure PCL scaffolds and both 0.50 wt % and 0.78 wt % pristine graphene
scaffolds before NaOH treatment, indicating that the hydrophilicity of the surface increased with a
small concentration of pristine graphene. After NaOH treatment, neat PCL (61◦ ± 6.50◦), 0.13 wt %
(69◦ ± 6.72◦), and 0.50 wt % (67◦ ± 6.09◦) pristine graphene scaffolds had a significant reduction
in contact angle, compared to untreated scaffolds, and were statistically different from 0.78 wt %
(83◦ ± 7.06◦).
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Figure 1. Summary of the apparent water-in-air contact angle for scaffolds containing different 
pristine graphene concentrations untreated and treated with NaOH 5M. * Statistical evidence (p < 0.05) 
analysed with a one-way ANOVA and Tukey’s post-hoc test. 

2.2. Morphological Evaluation of Scaffolds 

Figure 2 represents the fibre surface of 0.78 wt % pristine graphene and neat PCL scaffolds 
treated and untreated with 5 M NaOH for 3 h. Results show that, for the NaOH chemical treatment 
time considered, there is no negative impact on the fibre structure in the produced scaffolds. Similar 
results were obtained for the other compositions. It is also evident that the produced scaffolds have 
regular, well-defined, and uniform pore distribution. 
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Figure 1. Summary of the apparent water-in-air contact angle for scaffolds containing different pristine
graphene concentrations untreated and treated with NaOH 5M. * Statistical evidence (p < 0.05) analysed
with a one-way ANOVA and Tukey’s post-hoc test.

2.2. Morphological Evaluation of Scaffolds

Figure 2 represents the fibre surface of 0.78 wt % pristine graphene and neat PCL scaffolds treated
and untreated with 5 M NaOH for 3 h. Results show that, for the NaOH chemical treatment time
considered, there is no negative impact on the fibre structure in the produced scaffolds. Similar results
were obtained for the other compositions. It is also evident that the produced scaffolds have regular,
well-defined, and uniform pore distribution.
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Figure 2. Top surface and cross-section scanning electron microscope images of neat PCL and 0.78 wt %
pristine graphene scaffolds treated and untreated with NaOH.

2.3. Biological Evaluation

Cell viability and proliferation on scaffold samples were assessed using an Alamar Blue assay.
Fluorescence intensity is reported in Figure 3. Higher fluorescence intensity corresponds to more
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metabolically active cells. Comparing the three different time points in Figure 3a or Figure 3b, it
can be observed that, for scaffolds both treated and untreated with NaOH, fluorescence intensity
increases from one point in time to another, suggesting that scaffolds fabricated with the additive
manufacturing system are suitable substrates for cell proliferation. Compared with values at the same
point in time in Figure 3a or Figure 3b for untreated scaffolds, the addition of pristine graphene has a
positive impact on the biological behaviour of polymer scaffold, but not a significant one. At Day 14,
the fluorescence intensity of the 0.78 wt % PCL/pristine graphene scaffold was statistically higher
than the neat PCL scaffold, representing a higher cell viability/proliferation rate. For NaOH-treated
scaffolds, it can be observed that the addition of pristine graphene had a significant positive impact
on cell viability/proliferation. According to statistical analysis, at Day 3, 0.50 wt % and 0.78 wt %
scaffolds exhibited greater fluorescence intensity, statistically different from the neat and 0.13 wt %
scaffolds, corresponding to higher cell viability/proliferation rates. At Days 7 and 14, all PCL/pristine
graphene scaffolds exhibited better biological performance over the neat PCL scaffolds.
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Comparing Figure 3a,b, it is evident that, at all three time points, scaffolds treated with NaOH
had higher fluorescence intensity than non-treated scaffolds, presenting an improved biological
performance. After 14 days, results indicated that, after chemical treatment with NaOH, the
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improvements on biological behaviour caused by the addition of pristine graphene still exist. For each
particular time point in Figure 3b, PCL/pristine graphene scaffolds showed higher fluorescence
intensity than neat PCL scaffolds, with cell proliferation rate increasing concomitant to increase
graphene addition.

Figure 4 represents the assessment of cells attached on the scaffolds and left on the surface of
the well plate. The measurement was performed at the first time point (3 days) after cell seeding,
which is a representation of the cell attachment rate. It is evident that scaffold samples treated with
NaOH had a higher cell attachment rate than the untreated scaffolds. Scaffolds untreated had around
30% cell attachment, while scaffolds treated with NaOH varied widely among samples. Moreover,
0.50 wt % and 0.78 wt % pristine graphene scaffolds had statistically higher cell attachment rate after
3 days compared to the neat PCL scaffold. Cell attachment is closely related to the surface properties
of the scaffolds. The chemical treatment with NaOH leads to enhanced hydrophilicity and more
cell attachment when compared to the untreated scaffolds. Furthermore, the addition of pristine
graphene (0.50 wt % and 0.78 wt %) improved the cell attachment and proliferation rate even more
after three days.
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As is evident from Figures 3 and 4, pristine graphene has a significant impact on the biological
performance of produced scaffolds, increasing cell attachment and proliferation. This can be attributed
to the high surface area, the elastic modulus, and the stiffness of graphene. It is also related to
the presence of wrinkles and ripples on graphene, created during the production of graphene [31].
Graphene was also found to be useful as a cellular adhesive, preventing implanted cells from reactive
oxygen species (ROS)-mediated cell death, enhancing cell proliferation [32].

2.4. Cell Attachment and Cell Morphology

Cell attachment and morphology on the scaffolds was assessed via scanning electron microscopy
(SEM) and laser confocal microscopy. Extensive cell attachment and cell spreading was observed, as
shown in Figure 5. Confluent cell sheets were also observed, with many cells bridging orthogonal
scaffold filaments. This indicates that the scaffolds are able to provide a suitable environment and
support the growth and proliferation of cells. The confocal images show that cell morphology is
maintained (nuclei stained blue, cell membrane red). Qualitatively, for all types of scaffolds, both SEM
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and confocal images show a greater number of cells present for scaffolds containing pristine graphene.
NaOH-treated scaffolds presented higher cell confluency than untreated scaffolds.
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3. Materials and Methods

3.1. Scaffold Fabrication

Poly (ε-caprolactone) (Mw 50,000, Capa 6500, Perstorp, Warrington, UK) and pristine graphene
were used to produce scaffolds through a screw-assisted additive biomanufacturing system, the
3D Discovery (RegenHU, Villaz-St-Pierre, Switerzland), as previously reported [28]. PCL/pristine
graphene pellets were initially prepared by melt blending in three different pristine graphene
concentrations (0.25, 0.50, and 0.75 wt %) [28]. Briefly, pure PCL pellets were heated above 70 ◦C
in a bowl to ensure all material is in a molten state prior to pristine graphene flake addition, at the
desired concentrations. The materials were mixed for 15 min to guarantee a homogenously dispersion.
After cooling down for 2 h, the blended material was cut into small pellets to be loaded to the
screw-assisted additive biomanufacturing system. As previously reported [28], the obtained pristine
graphene concentrations are 0.13, 0.50, and 0.78 wt %.

The extrusion-based additive manufacturing technique used in this work allows high
reproducibility and good control over scaffold topology (including pore size, pore shape, and pore
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distribution), which are critical parameters when designing optimised 3D interconnected porous
scaffolds [28,33]. The 0◦/90◦ lay-down pattern was adopted to obtain pores with a regular square
geometry and a constant filament distance of 680 µm. The optimal combination of processing
parameters—melting temperature (90 ◦C), slice thickness (220 µm), screw rotation velocity (22 rpm),
and deposition velocity (20 mm/s)—allows for the filament diameter after extrusion to be close to the
desired diameter of 330 µm [28,33]. As previously reported, the presence of pristine graphene at the
surface of the scaffold filaments was observed using Raman spectroscopy, and micro Raman mapping
showed a uniform distribution of pristine graphene [33].

After fabrication, scaffold samples were cut with fine, double-edged razor blades into small blocks
(~11 mm × 11 mm × 6 mm) to fit in a 24-well culture plate.

3.2. Surface Modification

Scaffold samples for the NaOH-treated group were processed by soaking in 5 M NaOH for 3 h
using 50 mL conical tubes, at room temperature [11]. The scaffolds were washed exhaustively with
distilled water and air-dried for 24 h in an incubator at 37 ◦C.

3.3. Apparent Water-in-Air Contact Angle

Static contact angle measurements were performed on produced scaffolds using an OCA 15
(Data Physics) machine using the sessile drop method. Deionised water droplets of ~4 µL were
deposited via a motorised syringe at a velocity of 1 µL/s. Five measurements per sample type were
performed. The drop shape was recorded with a high speed framing camera. Measurements were
performed 20 s after droplet addition.

3.4. Morphological Characterisation

Scanning electron microscopy (SEM) was used to investigate the morphology of produced
scaffolds treated and untreated with 5 M NaOH. SEM was conducted with a Quanta 200 SEM system,
using an accelerating voltage of 3.0 kV.

3.5. Cell Culture Studies

In vitro cell culture studies were conducted using Human adipose-derived stem cells (ADSCs)
(STEMPRO®, Invitrogen, Waltham, MA, USA) ranging from passage 3 to 5. Cells were cultured in T75
tissue culture flasks (Sigma-Aldrich, Dorset, UK) with MesenPRO RS™ Basal Medium (Invitrogen,
Waltham, MA, USA) until 80% confluence and harvested by the use of a 0.05% trypsin solution
(Invitrogen, Waltham, MA, USA).

3.5.1. Cell Seeding

Scaffolds were sterilised in 70% ethanol for 4 h, rinsed in phosphate buffered saline (PBS) three
times, placed in 24-well plates, and air-dried for 24 h in an incubator at 37 ◦C. The scaffolds were
wet with 200 µL of media containing 10% foetal bovine serum (FBS) and kept in standard conditions
(37 ◦C under 5% CO2 and 95% humidity) for 2 h prior to cell seeding [11]. Cells were seeded on each
scaffold (150 µL of medium containing around 5 × 104 cells). A tissue culture plastic (TCP) control
containing the same amount of cells was included for consideration as 100% of cells seeded to evaluate
the seeding efficiency after 3 days. The cell-seeded scaffolds and control were incubated at standard
conditions (37 ◦C under 5% CO2 and 95% humidity) for 2 h to allow cell attachment, before the addition
of 1 mL of fresh basal media [11,34].

3.5.2. Cell Viability/Proliferation

In order to study the cell viability/proliferation and the percentage of cells attached in the
scaffolds (cell-seeding efficiency), the Alamar Blue assay (also termed the Resazurin assay) was used
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(reagents from Sigma-Aldrich, Dorset, UK) [35,36]. Briefly, cell viability/proliferation was measured at
3, 7, and 14 days after cell seeding to PCL and PCL/pristine graphene scaffolds treated and untreated
with NaOH. After 3 days of cell seeding, but before the Alamar Blue test, the cell-seeded scaffolds
were moved to a new 24-well plate and 1 mL of the Alamar Blue solution was added to each well
and the control. Cells attached on the surface of the wells were also quantified on the 3rd time point.
The plates were incubated for 4 h under standard conditions. After incubation, 150 µL of each sample
was transferred to a 96-well plate, and the fluorescence intensity was measured at 540 nm excitation
wavelength and 590 nm emission wavelength with a spectrophotometer (Sunrise, Tecan, Männedorf,
Zurich, Switzerland). Experiments were performed three times in duplicate.

3.5.3. Cell Morphology and Attachment

Samples of scaffolds used in the cell viability/proliferation study were kept in culture up to
21 days to assess cell morphology and qualitative attachment to the scaffolds via scanning electron
microscopy (SEM). For SEM preparation, scaffolds were fixed with a 3% glutaraldehyde solution
(Sigma-Aldrich, UK) for 30 min at room temperature, rinsed twice with PBS, dehydrated with a
graded ethanol series (50%, 70%, 80%, 90%, and 100% (twice)), in 50:50 ethanol/hexamethyldisilazane
(HMDS, Sigma-Aldrich, Dorset, UK) and then in 100% HMDS (with 10 min exposure at each step),
and then air dried for HMDS removal [11]. Thin cross-section layers of each sample (around 1 mm)
was cut and platinum-coated for imaging using a Gatan Model 682 Precision Etching Coating System,
to an approximate thickness of 7 nm. SEM images were obtained using a Hitachi S300N microscope
(Hitachi, Maidenhead, UK).

Cell morphology was further assessed using laser confocal microscopy with scaffolds cultured
up to 28 days, with cell membranes and nuclei stained. Samples were removed from the cell culture
plate, rinsed twice in PBS, fixed using 4% paraformaldehyde for 40 min, and then washed twice
with PBS prior to immersion for 30 min in an immunocytochemistry blocking buffer comprised
of 2% goat serum and 1% bovine serum albumin in PBS. Samples were again rinsed twice in
PBS. Cell nuclei were stained blue by soaking them in a PBS solution containing Hoescht 33342
(C62249, ThermoFisher, Waltham, MA, USA) at a 2 µM concentration; the cell membranes stained using
CellMask™ Orange plasma membrane stain (C10045, ThermoFisher, Waltham, MA, USA) were diluted
to the manufacturer recommended level [37,38]. Samples were left in the staining solution for 10 min
prior to removal, rinsed twice thoroughly with PBS, and mounted using ProLong® Diamond Antifade
(P36962, ThermoFisher, Waltham, MA, USA). Confocal images were obtained on a Leica TCS SP5
(Leica, Milton Keynes, UK) confocal microscope.

3.6. Data Analysis

All data were represented as mean ± standard deviation. A one-way analysis of variance
(one-way ANOVA) and Tukey’s post-hoc test using GraphPad Prism software was applied. Significance
levels were set at p < 0.05.

4. Conclusions

Scaffolds with filaments containing well dispersed pristine graphene produced by an additive
manufacturing system presented good biological behaviour in terms of cell viability and proliferation,
making them a good substrate for bone tissue regeneration. The addition of low concentrations of
pristine graphene exhibited no cytoxicity, and enhanced cell viability/proliferation.

The addition of pristine graphene, served to moderately reduce the apparent water-in-air contact
angle compared to the neat PCL filaments. Chemical treatment with 5 M NaOH further increased the
hydrophilicity, leading to better cell attachment and enhanced biological behaviour. Test results also
proved that the NaOH treating process did not change the enhancement in biological performance
due to the addition of pristine graphene.
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It can be concluded that PCL/pristine graphene scaffolds fabricated by an extrusion-based
additive manufacturing system could be a promising substrate for bone tissue engineering,
and that NaOH chemical treatment could effectively improve the biological behaviour of these
composite scaffolds.
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