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Abstract 

Chronic wounds in the elderly often become infected, leading to substantial 

morbidity and mortality. Impaired healing in the elderly is mediated by age-related 

changes in steroid hormones, particularly declining levels of estrogen with 

increasing age. Although the anti-inflammatory activity of estrogen has been 

defined, very little is known about the effects of estrogen deprivation (ageing 

processes) on bacterial clearance. The aim of this study was to determine the effect 

of ageing (estrogen deprivation) on the ability of in vitro human U937-derived 

macrophages and ex vivo human peripheral blood monocyte (HPBM)-derived 

macrophages to eliminate bacteria via phagocytosis. 

Host-pathogen assays were used to measure macrophage-mediated phagocytosis 

of two major wound pathogens, methicillin-resistant Staphylococcus aureus (MRSA) 

and Pseudomonas aeruginosa, under in vitro and ex vivo conditions that model 

estrogen levels in the elderly, young adults and following exogenous estrogen 

supplementation. Epifluorescence, confocal and scanning electron microscopy were 

used to visualise host-pathogen interactions and protein mediators of phagocytosis 

were measured by immunoblotting. Estrogen at concentrations typical of youth or 

supraphysiological levels significantly (P<0.05) increased the phagocytosis and 

effective killing of MRSA and P. aeruginosa in a dose-dependent manner compared 

to estrogen deprivation with significantly enhanced clearance of bacteria by M1 

macrophages compared to M2 or M0 macrophages. Epifluorescence, confocal and 

scanning electron microscopy confirmed estrogen increases co-localisation of 

fluorescent GFP-S. aureus or mCherry-P. aeruginosa within macrophages and 

promotes bacterial internalisation. Activation of estrogen receptor (ER)-alpha (ER-

α) mirrored the stimulatory effect of estrogen on phagocytosis whilst ER-α 

antagonism significantly (n=6; P<0.05) blocked the phagocytic effect of estrogen. In 

contrast, activation of ER-beta (ER-β) had no significant (n=6; P>0.05) effect on 

phagocytosis, confirming estrogen mediates bacterial clearance via specifically 

through ER-α. Immunoblotting analysis demonstrated that enhanced phagocytosis 

by estrogen is associated with altered levels of mediators involved in the actin 



XV 

cytoskeleton of phagocytes including increased levels of FAK, Rac1, Cdc42 and 

RhoG, but reduced levels of RhoA. 

Collectively the findings suggest estrogen may promote the resolution of wound 

bacterial infections during youth but this protection is lost as estrogen levels 

decline with increasing age, resulting in increased propensity and progression of 

wound infections in the elderly. Thus, novel wound dressings that provide local 

estrogen supplementation or selective activation of ER-α and/or specific targeting 

of downstream mediators of the actin cytoskeleton may provide effective 

treatment options for infected wounds in the elderly. 
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1.1 Acute Wound Healing 

Acute wound healing is a complex and dynamic biological process divided into four 

sequential, overlapping phases; haemostasis, inflammation, tissue proliferation and 

remodelling of the tissue scar (Figure 1.1). Immediately after trauma, healing 

initiates with haemostasis (coagulation). This phase is characterised by the 

formation of a fibrin clot within minutes following injury to prevent further blood 

loss and provide a temporary, protective barrier over the wound. The inflammatory 

phase occurs within minutes after injury, with neutrophils being the first 

inflammatory cells recruited from circulation, followed by the recruitment of 

monocytes. The primary objective of inflammation is to localise and eradicate the 

causative irritant or stimuli (e.g. bacteria). Neutrophils peak in numbers at 24 to 36 

hours post wounding whereas monocytes peak at around 5 to 7 days after injury. 

Monocytes undergo a series of changes to differentiate into tissue macrophages. 

Macrophages carry out phagocytosis and release cytokines that encourage the 

recruitment and activation of leukocytes at the injury site. Upon the clearance of 

apoptotic cells, macrophages undergo a phenotypic change from a pro-

inflammatory to a reparative state that encourages the initiation of the 

proliferation phase (Mosser and Edwards, 2010). 

Three to ten days after injury, the proliferation phase starts enabling granulation 

tissue formation, re-epithelialisation and angiogenesis. Proliferation is 

characterised by the creation of a new extracellular matrix (ECM) by fibroblasts, 

angiogenesis by endothelial cells and re-epithelialisation by keratinocytes. The final 

phase is remodelling of a mature tissue scar, which can take several months or, in 

some cases, up to a year post-injury. It is characterised by the remodelling of 

collagen and the vascular maturation of newly formed capillaries, allowing vascular 

density to return to normal within the wound (Guo and DiPietro, 2010). 

For successful healing, wound repair requires progression through all four phases in 

the correct order and timeframe (Singer and Clark, 1999; Guo and DiPietro, 2010). 
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Figure 1.1 Diagrammatic illustration of typical timescale and phases of acute wound 
healing stages. 0 = day of wounding/injury. Figure drawn based on information in Gosain 
and DiPietro (2004) and  Olczyk et al. (2014). 
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1.1.1 Haemostasis 

Immediately after injury, degranulating platelets adhere to damaged blood vessels 

and start a haemostatic reaction, increasing the coagulation cascade to prevent 

extreme blood loss and to provide temporary protection for the wound against 

foreign bodies (Figure 1.2). This is accomplished by vasoconstriction and the 

creation of a platelet plug (Vaughan et al., 2000; Weyrich and Zimmerman, 2004; 

Gilliver et al., 2007). When the platelets come into contact with exposed collagen, 

they become adherent and activated, producing a platelet plug at the wound site.  

This involves a coagulation cascade  in which fibrinogen is transformed to fibrin by 

thrombin, creating a clot of insoluble fibres bound to platelets (Fang et al., 2005). 

The clot forms a provisional matrix rich in fibronectin that acts as a scaffold over 

which cells can migrate during the wound healing process. Platelets in the clot 

release a variety of pro-inflammatory cytokines and growth factors including 

platelet-derived growth factor (PDGF), transforming growth factors β (TGF-β), 

fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF) and 

epidermal growth factor (EGF) (Bauer et al., 1985; Guo and DiPietro, 2010). These 

factors induce the recruitment of inflammatory cells from circulation and cells 

involved in the proliferative phase of wound repair including keratinocytes, 

endothelial cells and  fibroblasts (Singer and Clark, 1999; Guo and DiPietro, 2010). 
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Figure 1.2. Schematic illustration of haemostasis in acute wound healing. Following an 
injury, platelets adhere to damaged blood vessels and start a haemostatic reaction, 
increasing the coagulation cascade to prevent extreme blood loss. A platelet plug forms 
that provides temporary protection against colonisation of the wound by microorganisms.  
The provisional fibrin matrix also provides a scaffold over which cells can migrate during 
the wound healing process. Figure drawn based on information in Singer and Clark (1999) 
and Guo and DiPietro (2010). 

1.1.2 Inflammatory Phase 

Following injury, the release of cytokines and chemokines by platelets and resident 

immune cells attracts inflammatory cells from circulation to the wound site (Figure 

1.3). Large numbers of circulating neutrophils are recruited to the wound site by 

chemokine and cytokine expression of endothelial surface cellular adhesion 

molecules (CAMs), such as CD11 and CD18 (Ley et al., 2007). Neutrophils are the 

first immune cells to arrive at the wound site within minutes of injury. They peak in 

numbers at 24 to 36 hours post-injury (Mosser and Edwards, 2010). Neutrophils 

start to remove foreign substances and invading microorganisms, such as bacteria, 

via the release of reactive oxygen species (ROS) and lysosomal enzymes, and 

degrade damaged matrix tissues by collagenases and proteinases (Singer and Clark, 

1999). The majority of neutrophils are enclosed in the wound clot and are either 

eliminated with the eschar or by macrophages via phagocytosis (Newman et al., 
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1982). In response to chemoattractants such as TGF-β, macrophage 

chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein (MIP), 

monocytes from the bloodstream subsequently arrive at the wound area and 

differentiate into tissue macrophages, peaking in number around days 5 to day 7 

post-injury (Lorenz and Longaker, 2003; Sen and Roy, 2008). Growth factors mainly 

TGF-β and residues of the remaining extra cellular matrix (ECM) including collagen, 

elastin, fibronectin, and thrombin induce circulating monocytes to adhere to the 

endothelium of blood vessels and migrate into the tissue. Macrophages replace 

neutrophils as the predominant inflammatory cells at the wound site and carry out 

the process of phagocytosis of invading microorganisms, removal of damaged 

tissues and dead neutrophils and the release of growth factors such as PDGF and 

TGF-β (Beanes et al., 2003). Damaged extracellular matrix is degraded by the action 

of macrophage-derived proteolytic enzymes such as metalloproteases. 

Macrophages stimulate re-epithelialisation by releasing insulin-like growth factor-1 

(IGF-1), keratinocyte growth factor (KGF) and EGF (Chen et al., 2004) and 

angiogenesis via the secretion of VEGF (Shaw et al., 1990). During wound clearance, 

macrophages experience a balanced switch from pro-inflammatory (classically 

activated) M1 macrophages to anti-inflammatory (alternately activated) M2 

macrophages (Mosser and Edwards, 2008). 

Adaptive immunity plays a major role in regulating inflammation and improving 

wound healing (Falanga, 2005). The adaptive immune response is late, but specific, 

compared to the innate immune response. It has the capacity to memorise 

invaders/pathogens and induce prompt reactions to later immunological tasks. The 

key cells linked with adaptive immune responses are T cells and B cells (Jameson et 

al., 2002). They are initiated in reaction to antigens or cells presenting antigens. 

When activated, B cells produce specific antibodies that label pathogens for 

destruction, activate the complement system, ingest bacteria, and activate toxins. T 

cells are induced by the major histocompatibility complex (MHC) molecule that 

presents antigens. Antigens presented by MHC class I are detected by CD8+ 

cytotoxic T cells, whereas antigens presented by MHC class II are recognised by 

CD4+ helper T lymphocytes. CD8+ cells are more specialised in targeting cells than 
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CD4+ cells, which are more involved in cytokine production and paracrine signalling 

to adjacent cells. T cells are suggested to play a role in tissue repair (Jameson et al., 

2002). A specific group of T cells known as gamma delta (γδ) T cells, or dendritic 

epidermal T cells, are cells that are able to recognize antigens expressed by 

damaged and/or stressed keratinocytes (Jameson et al., 2002). Research 

demonstrated that (γδ) T cells enhance re-epithelialisation via producing growth 

factors such as Keratinocyte growth factor-7 (KGF-7) and keratinocyte growth 

factor-10 (KGF-10). This has been reported in an animal study where γδT cell 

deficiency led to a delay in wound repair (Jameson et al., 2002). CD4+ and CD8+ 

cells have also been shown to have an impact on the infiltration of neutrophils and 

macrophages to the wound site, which has an evident impact on the regulation of 

the inflammatory phase in wound healing. Furthermore, an induced deficit of CD4+ 

cells is linked with an increase in the levels of interferon gamma (IFN-γ), interleukin-

1 beta (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17) and a diminution in 

interleukin-4 (IL-4). However, an induced deficit of CD8+ cells has the opposite 

effect on these inflammatory factors (Chen et al., 2004). A balanced 

innate/adaptive immune reaction is essential for an appropriate inflammatory 

phase and wound healing. 
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Figure 1.3. Representation of the inflammatory phase of acute wound healing. Cytokines 
released by platelets initially attract neutrophils and then monocytes to the wound site. 
Monocytes subsequently differentiate into tissue macrophages. Figure drawn based on 
information in Singer and Clark (1999) and Guo and DiPietro (2010). 

 

1.1.3 Proliferative Phase 

The third phase of the acute wound healing is called the proliferative phase. The 

major events during this phase are ECM formation, re-epithelialisation and 

angiogenesis (Kirsner and Eaglstein, 1993). 

 ECM Formation 

Granulation tissue formation occurs approximately between 3 and 10 days post-

injury. The temporary matrix produced during haemostasis is replaced with a more 

defined granulation tissue, consisting of newly formed blood vessels and various 

cell types including fibroblasts, macrophages and granulocytes within loose 

connective tissue (El Ghalbzouri et al., 2004; El Ghalbzouri and Ponec, 2004). 

Fibroblasts exert several functions during wound healing processes such as wound 

contraction and ECM deposition. Fibroblasts are activated by PDGF and FGF-2, and 
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are encouraged to proliferate by insulin-like growth factor 1 (IGF-1) and TGF-β1 

(Singer and Clark, 1999). TGFβ1, released by macrophages during inflammation and 

induced by mechanical pressure in the ECM, directs fibroblasts to differentiate into 

contractile myofibroblasts (Gabbiani, 1999; Serini and Gabbiani, 1999). Fibroblasts 

attach together and to the extracellular matrix,  producing stress fibres of 

contractile actin bundles that close the wound (Hinz, 2007). Fibroblasts synthesise 

new ECM through the generation of collagen, fibronectin, elastin, 

glycosaminoglycans, proteoglycans and hyaluronic acid (Hinz, 2007). 

 Re-epithelialisation 

Re-epithelialisation is the process of restoring an intact epidermis after cutaneous 

injury, and it involves an orderly series of events including the detachment, 

migration and proliferation of adjacent epidermal keratinocytes across the wound, 

the differentiation of the neo-epithelium into a stratified epidermis, and the 

restoration of an intact epidermal barrier function (Li et al., 2007). Keratinocytes at 

the wound borders proliferate to replace the cells that migrate across the 

temporary wound matrix (Li et al., 2007). The main factors inducing keratinocyte 

migration are EGF, keratinocyte growth factor (KGF), Insulin-like growth factor 1 

(IGF-1) and nerve-growth factor (NGF) (Marikovsky et al., 1993; Tokumaru et al., 

2000). Growth factors that induce re-epithelialisation are released by activated 

platelets during haemostasis and by inflammatory cells, mainly macrophages, 

during inflammation (Li et al., 2007). Keratinocytes upregulate the production of 

proteolytic enzymes including matrix metalloproteinases (MMPs) that contribute to 

create a path between the scab and tissue below. Migration of cells then stops 

causing a rearrangement of the actin cytoskeleton (Jacinto et al., 2001; Mayor and 

Carmona-Fontaine, 2010). 

 Angiogenesis 

Angiogenesis is the revascularisation procedure that re-establishes a blood supply 

to regenerate tissues following wounding. Angiogenesis is induced by growth 

factors including members of the TGF-β family, VEGF, FGF-2 and PDGF, which are 

released during haemostasis, and by inflammatory cells in response to injury  
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(Adams and Alitalo, 2007). Recruited endothelial cells release proteolytic enzymes 

that facilitate their entrance to the wound site, where they multiply and assemble 

into tubular canals, and secrete MMPs, leading to lysis of adjacent tissue. 

Endothelial cells increase in number and reinforce their vessel walls by recruiting 

smooth muscle cells and pericytes, reinstating blood flow to the injured tissue 

(Clark et al., 1982). 

 

Figure 1.4. Schematic illustration of the proliferative phase in wound repair. As the 
inflammatory phase resolves, the overlapping proliferative phase includes the synthesis of 
granulation tissue that is characterised by blood vessel formation and contains recruited 
fibroblasts and macrophages. Keratinocytes at the wound edge migrate over the wound to 
restore the epidermis. Figure drawn based on information in Singer and Clark (1999) and 
Guo and DiPietro (2010). 

1.1.4 Remodelling Phase 

Remodelling is the last phase of wound repair that can endure for many months 

after wounding. It is characterised by a termination of the inflammatory response 

and the continuous remodelling of the ECM. The production/release of cytokines 

stops and inflammatory cells are removed from the wound area by apoptosis 

and/or phagocytosis (Serhan et al., 2008). The new ECM is remodelled over several 
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months to generate a robust dermal structure in which collagen III is gradually 

replaced by collagen I leading to the formation of a mature tissue scar (Singer and 

Clark, 1999). Blood vessels also degenerate during the remodelling phase (Singer 

and Clark, 1999). 

 

Figure 1.5. Schematic representation of the remodelling phase of wound healing. Blood 
vessels degenerate. The provisional extracellular matrix of fibronectin and fibrin is replaced 
with connective tissue, including collagen, and the formation of a mature scar. Figure 
drawn based on information in  Singer and Clark (1999) and Guo and DiPietro (2010). 

1.2 Abnormal Wound Healing 

After an injury, wound healing is vital in re-establishing a new cutaneous barrier 

and preventing infection by invading foreign microorganisms. The speed and quality 

of wound repair are influenced by several factors, with age being a key factor that  

is known to markedly delay healing in the elderly (Ashcroft et al., 2002). 

Pathological circumstances such as, diabetes, contribute directly to the 

development of chronic wounds, with foot ulcers being the most common cause of 

hospitalisation in diabetic patients. The treatments for chronic wounds are often 
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ineffective and place a substantial financial burden on the world’s health 

organisations (Harding et al., 2002; Boulton et al., 2005). 

1.2.1 Age-Related Impaired Healing 

With increasing age, acute wound healing proceeds but becomes delayed. This 

detrimental change in acute wound healing in the elderly is called age-related 

impaired healing and is linked with an increase in skin fragility, reduced immune 

responses and cellular aging (Thomas, 2001). Delayed wound healing in the elderly 

is associated with delayed haemostasis (Ashcroft et al., 1999b), prolonged and 

excessive inflammatory response, delayed re-epithelialisation, impaired 

angiogenesis, and reduced matrix deposition (Ashcroft et al., 1997b; Ashcroft et al., 

2002). Although the inflammatory response becomes more pronounced with 

increasing age, the propensity for wound infections increases in the elderly 

(Ashcroft et al., 2002; Cooper et al., 2015), in part due to the delay in wound repair. 

Moreover, despite the pronounced inflammatory response, evidence suggests that 

increasing age may result in an impaired ability of inflammatory cells to eliminate 

bacteria from the wound site (Emori et al., 1991; Thomas, 2001). It is suggested 

that an excessive presence of macrophages lead to an excessive matrix demolition 

due to the production of great amounts of nitric oxide (NO) and ROS which can 

delay wound healing and cause damage to the wound zone (Sen and Roy, 2008). 
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Figure 1.6. Schematic representation of the effect of age on wound healing. Age-related 
impaired healing is linked with delayed haemostasis, delayed and excessive inflammatory 
response and enhanced pro-inflammatory cytokine production, impaired platelet function 
and delayed re-epithelialisation, in addition to decreased fibroblast proliferation and matrix 
deposition. Figure drawn based on information in Gosain and DiPietro (2004). 

1.2.2 Chronic Wounds 

A chronic wound develops when a wound fails to proceed through an orderly set of 

wound healing phases within an expected timeframe. Chronic wounds can take 



14 

several months or even years to heal (if they heal at all) properly. Wounds are 

considered chronic if they do not heal within three months (Mustoe, 2005; Adeyi et 

al., 2009). Chronic wounds are mainly linked to an underlying disease that is 

common in the elderly (over 65 years of age). Chronic wounds represent a major 

clinical issue that causes an enormous burden to healthcare services, demanding 

huge medical efforts and a substantial amount of healthcare funds (Harding et al., 

2002; Boulton et al., 2005). Chronic wound treatment costs the UK National Health 

Service (NHS) about £5 billion per annum (Guest et al., 2015). At present, effective 

therapies/treatments for chronic wounds are somewhat limited, making this an 

area of research that needs urgent attention. Chronic wounds are typically trapped 

within the inflammatory phase of wound repair and are characterised by an 

excessive, unabated inflammatory response that leads to tissue breakdown 

(Snyder, 2005; Taylor et al., 2005; Fazli et al., 2009). They are also characterised by 

a loss in the specific balance between the formation and degradation of the 

extracellular matrix (ECM), particularly  collagen and elastin, with a gross shift to 

ECM destruction  (Edwards et al., 2004; Schönfelder et al., 2005).  Chronic wounds 

are characterised by  increased pro-inflammatory cytokine production, decreased 

tissue growth factor secretion, reduced matrix production, delayed but excessive 

inflammation, decreased angiogenesis, delayed re-epithelialisation, bacterial 

infection and defective macrophage function (Hohn et al., 1976; Harding et al., 

2002). There are several underlying pathologies associated with chronic wounds, 

with more than 90 % of chronic wounds being venous, diabetic or pressure ulcers 

(Boulton et al., 2005). Moreover, it has been reported that diabetic foot ulcers and 

venous leg ulcers have an increased number of B cells and an inferior CD4+/CD8+ 

ratio in comparison with acute wounds, mainly due to a lower number of CD4+ cells 

(Moore et al., 1997). 
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Figure 1.7. Patients with a chronic wound. A typical example of; (A) diabetic foot ulcer, (B) 
diabetic foot ulcer developing gangrene (Jeffcoate and Harding, 2003), (C) venous leg ulcer 
and (D) pressure foot sore (Grey et al., 2006). 

  Venous Ulcers 

Venous ulcers (Figure 1.7c) are most frequently observed in the elderly and 

represent approximately 70 % of chronic wounds of the lower leg (Baker et al., 

1991). Venous ulcers mainly develop in the gaiter area of the leg and signify a 

clinical manifestation of sustained venous hypertension, typically characterised by 

excessive vascularisation and unhealthy granulation tissue formation. At an 

advanced stage, venous ulcers can  impair the function of the calf muscle (Cockett, 

1955; Grey et al., 2006). 
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Research has suggested the delay in healing and development of venous ulcers is 

connected with an inappropriately excessive inflammatory response (White and 

Ryjewski, 2005). It is thought that leukocytes recruited during the inflammatory 

phase are trapped in the microcirculation of the wounded leg (Moyses et al., 1987) 

and release inflammatory mediators that lead to further recruitment and 

accumulation of leukocytes. Inflammatory cells release proteolytic enzymes that 

break down  the dermal structure, leading to the development of an ulcer (Wysocki 

and Grinnell, 1990; Grinnell et al., 1992). 

 Diabetic Ulcers 

It has been reported that 15 % of diabetic patients in the UK are at risk of 

developing a chronic diabetic foot ulcer (Guo and DiPietro, 2010), and around 85 % 

of diabetic ulcer patients will require an amputation of their lower leg due to the 

development of gangrene (Figure 1.7b) (Apelqvist and Larsson, 2000; Boulton, 

2004; Clinton and Carter, 2015). Diabetes is characterised by an alteration of blood 

sugar levels  which can cause nerve damage leading to autonomic neuropathy and 

vasculopathy (microcirculation dysfunction) (Boulton, 2004). This can generate local 

hypertension and hypoxia, resulting in an ulcer due to tissue necrosis. A diabetic 

ulcer (Figure 1.7a) typically develops on feet and ankle regions that are repetitively 

exposed to mechanical pressures. Diabetic ulcers occur frequently in patients who 

develop diabetic neuropathy, because they are incapable of sensing and relieving 

cutaneous pressure and pain (Boulton et al., 1983; Boulton, 2004). Like many 

chronic wounds, diabetic wounds exhibit impaired macrophage and neutrophil 

function, in turn increasing the risk of infection and prolonging healing time. 

  Pressure Ulcers 

A pressure ulcer, also called a pressure sore (Figure 1.7d), is local damage of the 

skin and/or underlying tissues, resulting from pressure, or pressure combined with 

shear (Black et al., 2007). Pressure ulcers are mostly hospital-acquired chronic 

wounds, occurring predominantly in the elderly and particularly in patients who 

remain stationary for a long period of time, such as paralysed or disabled patients 

(Allman et al., 1995). Pressure ulcers are usually small ulcers caused by the 
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interruption of blood flow to the tissue by persistent pressure. The absence of 

oxygen at the pressure site results in necrosis of the tissue and the development of 

a pressure sore (Black et al., 2007). 

1.3 Wounds and Bacteria 

1.3.1 Wound Infection 

It is believed that low levels of bacteria in a wound have a beneficial impact on 

acute wound healing by stimulating the inflammatory response and improving 

granulation tissue formation (Robson, 1997).  However, chronic wounds, that take 

months or years to heal, typically have microbes surviving and proliferating within 

the wound site. Research has indicated that all chronic wounds are subject to 

colonisation with a varied range of bacteria (Bowler and Davies, 1999).  When the 

bacteria outweigh the host’s immune system, the result is infection (Friedman and 

Su, 1984). It has been reported that the environment of chronic wounds is 

potentially favourable to bacterial infections, particularly when the wound tissue is 

ischaemic and dry (Rubinstein et al., 1983; Whiston et al., 1994). 

1.3.2 Bacterial Species in Chronic Wounds 

Numerous studies have demonstrated that the main bacterial species found in 

chronic wounds are S. aureus, P. aeruginosa, S. epidermidis, Streptococcus spp, 

Enterococcus spp. and coliform bacteria (Hansson et al., 1995; Bowler, 1999; 

Gjødsbøl et al., 2006; Kirketerp-Møller et al., 2008; Rybtke et al., 2015). Research 

has identified bacterial species present in infected surgical wounds of 676 patients. 

The most dominant pathogen was S. aureus (28.2 %), followed by P. aeruginosa 

(25.2 %), E. coli (7.8 %), S. epidermidis (7.1 %) and Enterococcus faecalis (5.6 %) 

(Giacometti et al., 2000). The most frequent bacteria cultured from chronic wounds 

are illustrated in Table 1.1. 
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Table 1.1. Bacteria frequently associated with chronic wounds.  

Information in table adapted from (Robson, 1997; Bowler and Davies, 1999). 

Gram-positive Gram-negative 

Aerobe Anaerobe Aerobe Anaerobe 

Staphylococcus Peptostreptococcus Pseudomonas Bacteriodes 

Streptococcus Clostridium Escherichia Prevotella 

Enterococcus   Klebsiella Fusobacterium 

It has been reported that chronic wounds are notably susceptible to S. aureus 

infections (Bowler and Davies, 1999; Beasley and Hirst, 2004). Along with anaerobic 

bacteria, S. aureus is known to be the most predominant bacteria found in chronic 

wounds, followed by P. aeruginosa, Peptostreptococcus spp. and Bacteriodes spp. 

(Louie et al., 1976; Lookingbill et al., 1978; Stephens et al., 2003; Davies et al., 

2004). 

Staphylococcus spp. and Pseudomonas spp. are the aerobic species most frequently 

detected in all wound types, with a great predominance in chronic wounds (Davies 

et al., 2004). 

  Staphylococcus aureus 

S. aureus is a facultative anaerobic Gram-positive cocci, typically 1 µm in diameter. 

It is commonly found on the skin, nose and in the respiratory tract (Stryjewski and 

Corey, 2014; Chambers, 2001). In normal healthy and immunocompetent people, S. 

aureus colonisation of the skin, intestinal tract, or nasopharynx is not pathogenic. 

However, it is considered the classic opportunist since it is frequently associated 

with wound infections and abscesses (Chambers, 2001; Missiakas and Schneewind, 

2016). 

Subpopulations of S. aureus comprise antibiotic resistant strains, such as 

methicillin-resistant S. aureus (MRSA). Penicillin was the antibiotic of choice to treat 

infections with S. aureus. After the acquisition of a resistance to penicillin, 

methicillin was introduced in 1959 as a treatment for penicillin-resistant S. aureus 

(Jevons, 1961; Jessen et al., 1969). However, reports from the UK indicated the first 

case of MRSA just two years later (in 1961) and, during the period between the 

1960s and the 1990s, hospital-acquired MRSA cases became increasingly common, 
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leading to a serious worldwide health problem (Enright et al., 2002). MRSA is now 

recognised as a nosocomial pathogen (hospital acquired-MRSA) throughout the 

world (Diekema et al., 2001). However, cases of MRSA in healthy, community-

resident individuals have been recorded towards the end of the 1990s, with such 

infections referred to as community-acquired MRSA (Naimi et al., 2001). MRSA has 

the ability to live and survive undetected in a host without provoking any symptoms 

(Stryjewski and Corey, 2014). Nevertheless, the pathogen can cause endocarditis, 

sepsis, and meningitis if it is introduced into the bloodstream, or if the host is 

incapable of developing a normal immune response (i.e. immunocompromised). 

Vancomycin was the only antibiotic used as a treatment for MRSA. However, 

resistance to this antibiotic has also been reported in recent years (Hiramatsu et al., 

1997; Cardona and Wilson, 2015). 

MRSA is frequently linked with chronic wounds. Giacometti et al. (2000) reported 

that 54.4 % of S. aureus isolated from surgical wounds were discovered to be 

methicillin-resistant. The treatment of chronic wounds infected with MRSA 

represents a big challenge for the modern healthcare organisations (Beasley and 

Hirst, 2004). When chronic wounds are heavily infected with MRSA, or other 

hospital-acquired pathogens, treatment may necessitate aggressive medication 

with last line of defence antibacterial therapies (Beasley and Hirst, 2004). 

  Pseudomonas aeruginosa 

P. aeruginosa is a Gram-negative bacillus, typically 3 µm × 0.5 µm in diameter. It is 

an opportunistic pathogen and a causative agent of a wide range of diseases in both 

immunocompromised and otherwise healthy patients (Passador et al., 1993; Ryan 

and Ray, 2004). It is a typical-multidrug-resistant (MDR) organism known for its 

ubiquity, its fundamentally advanced antibiotic resistance mechanisms, and its link 

with serious diseases, particularly nosocomial infections such as sepsis (Cross et al., 

1983). It is also considered to be a serious danger to patients with impaired host 

defences, such as patients with burn wounds and cystic fibrosis (CF) (Hachem et al., 

2007). 
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P. aeruginosa has the ability to produce a biofilm in several environments (O'Toole 

and Kolter, 1998; Costerton et al., 1999; Yoon et al., 2002). Biofilms are surface-

attached bacterial communities in which microbial aggregates are enclosed in a 

self-formed, extracellular polymeric matrix (Whitchurch et al., 2002; Matsukawa 

and Greenberg, 2004; Fazli et al., 2009). Biofilms have a specific complex 

architecture and structure with biochemical characteristics that lead to increased 

bacterial resistance against host immune mechanisms and antibiotics (O'Toole and 

Kolter, 1998; Costerton et al., 1999; Mah et al., 2003). Thus, it is usually difficult to 

treat such biofilms effectively with antibiotics since the biofilm structure appears to 

protect the bacteria from diverse environmental factors (Stover et al., 2000). 

Biofilms of P. aeruginosa can be the cause of many chronic opportunistic infections 

in immunocompromised and elderly patients. It is the main cause of mortality and 

morbidity in CF patients, since it adapts, persists and produces biofilms in anaerobic 

CF environments, as opposed to the aerobic biofilms typically formed under 

laboratory conditions (Oliver et al., 2000; Singh et al., 2000). 

P. aeruginosa are resistant to a wide range of antibiotics and has the ability to 

acquire additional resistance after failed treatments. Resistance of P. aeruginosa to 

many common first-line antibiotics, such as carbapenems, polymyxins, and more 

lately tigecycline, has been demonstrated (Strateva and Yordanov, 2009). However, 

such antibiotics are still in use in cases where resistance has not yet been 

determined. The antibiotic fluoroquinolone is one of the few antibiotics that are 

efficient against P. aeruginosa. In some hospitals, treatment with this drug is 

severely controlled to avoid the progress of resistant strains (Köhler et al., 1997; 

Pesci et al., 1999). Although S. aureus has been established as a main participant in 

chronic wounds, recent evidence has demonstrated that P. aeruginosa infects the 

deeper layers of the chronic wounds (Fazli et al., 2011; Rybtke et al., 2015). 

1.3.3 Chronic Wounds and Biofilms 

The growth of microorganisms in chronic wounds has been shown to take the form 

of irregularly shaped micro-colonies that can comprise hundreds of bacteria 

(Bjarnsholt et al., 2008; Rybtke et al., 2015).  
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It is becoming increasingly apparent that biofilms play an important role in the 

production and maintenance of the chronic wound environment (Davis et al., 2008; 

James et al., 2008a; Kirketerp-Møller et al., 2008; Fazli et al., 2009). Nevertheless, 

the role of biofilms in chronic wounds is still not entirely understood, but it is 

supposed that their presence could be one of many causes of non-healing wounds 

(Bjarnsholt et al., 2005; Jensen et al., 2007; Fazli et al., 2009). Chronic impaired 

wounds are frequently colonised with biofilms of multiple bacterial species 

including S. aureus and P. aeruginosa (Clinton and Carter, 2015). Treatment of 

biofilm-infected wounds is extremely difficult due to the polymicrobial nature of 

these biofilms, and their high resistance to traditional antibiotic combinations 

(Clinton and Carter, 2015). Compared to normal wounds, chronic wounds are highly 

susceptible to colonisation with biofilms (James et al., 2008b). This makes wound 

infection one of the main factors that delay wound healing in chronic wounds 

(James et al., 2008b). 

Antimicrobial genes of biofilms, composed of one or multiple bacterial species, can 

interact with each other leading to an increased virulence of the overall biofilm 

(James et al., 2008b). Moreover, the metabolism of these multi-species biofilms can 

contribute to the development of antibacterial resistance, leading to auto-

regeneration of the biofilm after treatment with antibiotics (Fauvart et al., 2011). 

When established, biofilms become difficult to eradicate leading to a higher 

persistence of chronic wounds (James et al., 2008b). 

1.3.4 Bacterial Invasion of Host Tissues 

Invading bacteria adhere to host cells, generally epithelial cells, and start colonising 

host tissues. Bacteria develop complex strategies to successfully invade and survive 

inside the host (Cossart and Sansonetti, 2004). The key mechanisms by which 

bacteria invade the host include adhesion to host cells, release of toxins causing 

tissue damage, and development of resistance against host antimicrobial defences, 

thus assuring effective growth and survival (Finlay and Falkow, 1989; Galan, 1994; 

Ofek and Doyle, 2012). Such resistance mechanisms are particularly important in 

establishing a persistent, chronic infection. 
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Bacteria bind to host cells using filamentous proteins named adhesins, such as pili 

and fimbriae. Lipopolysaccharide (LPS), M proteins, capsule, glycocalyx and 

lipoteichoic acids all act directly or indirectly as adhesins  (Ofek and Doyle, 2012). It 

is known that the membrane surface of host cells and bacteria are negatively 

charged, leading them to repel each other (Gottenbos et al., 2001). However, when 

bacteria use adhesins, their hydrophobicity changes, which is a key feature that 

allows them to adhere to host cells (Peschel, 2002). Bacteria release a range of 

molecules, such as enzymes and endotoxins, which cause host tissue damage. 

Endotoxins are produced by both Gram-positive and Gram-negative bacteria and 

act mainly to disturb host cell functions. Endotoxins, produced by Gram-negative 

bacteria including, P. aeruginosa, are normally expressed on their cell wall and are 

typically released in huge quantities after bacterial lysis (Shenep and Mogan, 1984). 

LPS is a component of the Gram-negative bacterial membrane and is the most 

common endotoxin (Ulevitch and Tobias, 1999). The over-reaction to LPS can cause 

severe inflammatory diseases such as sepsis (Peyssonnaux et al., 2007) 

  Host-Pathogen Interactions 

Research has largely described the immune system response to free-living (not in a 

biofilm arrangement) pathogenic infection. It is essential to understand the 

immune system’s response to bacteria and apply that understanding to acute and 

chronic wound infections (Wolcott et al., 2008; Mahla et al., 2013). 

The host has highly developed approaches to recognise and identify bacteria and 

other microorganisms. Innate immunity (Figure 1.8) is initiated by pathogen-

associated molecular patterns (PAMPs), which are molecules expressed on the cell 

membrane of bacteria and microorganisms. PAMPs are recognised by pattern 

recognition receptors (PRRs) expressed on the membrane of immune cells 

(Hoffmann et al., 1999; Janeway and Medzhitov, 2002; Broz and Monack, 2013; 

Fukata and Arditi, 2013). PAMPs, such as LPS, bind to PRRs including Toll-like 

receptors (TLRs), and initiate a signalling cascade normally, via activation of nuclear 

transcription factor kappa beta (NF-κB) (Aliprantis et al., 1999; Kopp and 

Medzhitov, 1999). This event initiates the immune system to release a variety of 
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pro-inflammatory cytokines, such as granulocyte colony-stimulating factor (G-CSF), 

granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-

stimulating factor (M-CSF), interferon-gamma (IFN-γ), tumour necrosis factor alpha 

(TNF-α), interleukin-1 (IL-1), interleukin-8 (IL-8) and interleukin-6 (IL-6) (Wolcott et 

al., 2008). These cytokines, particularly IL-8, are responsible for regulating the 

recruitment and the activation of neutrophils, and upregulating antibacterial 

activity in macrophages and dendritic cells. As the innate immune response 

progresses, pathogenic invaders are labelled with complement, allowing 

neutrophils and macrophages to identify, bind, engulf and finally digest them 

(Shepherd, 1986). Neutrophils are then digested by tissue macrophages to avoid 

host tissue destruction that could result from excessive secretion of neutrophil-

derived proteases.  

The PRRs are distributed into four functional families: Toll-like receptors (TLRs), 

nucleotide-binding oligomerisation domain-like receptors (NLRs), C-type lectin 

receptors (CLRs), and RIG-1 like receptors (RLRs) (Kopp and Medzhitov, 1999). 

Several TLRs respond to constituents of Gram-positive and Gram-negative bacteria 

and stimulate the immune inflammatory reaction (Hoffmann et al., 1999). 
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Figure 1.8. Innate immunity in host-pathogen interaction. When TLRs are activated, the 
innate immune response is initiated through the release of chemokines and cytokines. The 
acquired immune response is initiated by cytokines of Th1 and Th2, resulting in the 
production of antibodies. Figure drawn based on information in Basset et al. (2003). 

 

The activated complement system (Figure 1.9) consists of three main pathways: 

classical pathway, alternative pathway and lectin pathway. Complement is a key 

player of the innate immune system, providing a quick, robust response against 

foreign invaders, but it also has a very significant impact on the acquired immune 

system involving T and B cells to remove invaders (Dunkelberger and Song, 2010). 

Thirty proteins are involved in the complement pathways (Sarma and Ward, 2011). 

One of their main roles is to lyse microorganisms and to encourage the production 

of inflammatory mediators that attract phagocytes  and initiate the inflammatory 

response (Sarma and Ward, 2011). The main complement components involved in 

host cell recruitment at the infection site are C3a, C4a and C5a. Even though the 

complement system comprises several proteins, they all finally converge in the 

production of C3, which is the most abundant complement protein in the blood. C3 

is converted into various active forms including C3a, C3b, C5a and the membrane 

attack complex (C5b-9) (Sarma and Ward, 2011). 

The alternative pathway is an antibody independent pathway and represents a key 

element of innate immunity. It is initiated by molecules such as carbohydrates and 
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endotoxins found on foreign invaders (Qu et al., 2009). The classical pathway 

depends on the production of antibodies, and is a key element of the adaptive 

specific immune system (Sarma and Ward, 2011). The lectin pathway is activated by 

the binding of either mannose binding lectin (MBL) or ficolin to carbohydrates 

present on the membrane of invaders, including bacteria, viruses and parasites 

(Sarma and Ward, 2011). 

During bacterial infection, C3 is cleaved to opsonin (C3b), which binds to the 

pathogen to enable the immune phagocytic cells to remove the foreign invader 

(Walport, 2001; Sarma and Ward, 2011). Key cells of the innate immunity are 

epithelial, mast and dendritic cells in addition to phagocytic cells such as 

neutrophils, monocytes and macrophages. 

 

Figure 1.9. Representation of the complement system in host-pathogen interactions. 
Proteins of the complement system all converge at C3, which is then cleaved into C3b. C3b 
binds to the pathogen, resulting in its recognition and removal by immune cells, mainly via 
phagocytosis. Figure drawn based on information in Dumitru et al. (2000). 

  The Phagocytosis Process 

Phagocytosis is a complex process whereby a phagocyte eliminates or engulfs large 

cargo 0.5> µm by an actin-dependent mechanism (Mukherjee et al., 1997; Aderem 

and Underhill, 1999). The term “professional phagocytes” was first introduced by  

Rabinovitch (1995). It includes a specialised subset of host cells such as monocytes, 

macrophages, neutrophils and dendritic cells (Ginhoux and Guilliams, 2016). 
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Phagocytosis serves as a system to clear away the cellular and non-cellular 

materials from the extracellular space. It also removes microorganisms, such as 

bacteria, via opsonisation (antibody or complement) binding or pathogen-specific 

receptors (Arandjelovic and Ravichandran, 2015). 

Phagocytes are attracted to an infection site via chemotaxis in response to 

chemokines, cytokines such as IL-8, and bacterial elements such as LPS (Aliprantis et 

al., 1999). The process of phagocytosis begins with recognition of foreign invaders 

by a phagocytic cell. Microorganisms, such as bacteria, associate with the surface of 

the phagocyte resulting in actin polymerisation (Freeman and Grinstein, 2016; 

Garcia-Gomez et al., 2016), arrangement of the actin cytoskeleton followed by 

engulfment, phagosome and phagolysosome formation. Bacterial destruction is 

mediated by lysosomal enzymes and ROS (Pauwels et al., 2017). 

Many receptors contribute to phagocytosis with many particles being detected by 

several receptors such as antibody receptors (e.g. Fc receptor) and/or complement 

receptors (CR), in addition to the dual function of some receptors in  internalisation 

and adhesion (Freeman and Grinstein, 2014; Freeman and Grinstein, 2016). It is 

important that immune cells can distinguish harmful invaders from self (Randow et 

al., 2013), which is achieved through recognition of pathogen-associated 

particulates by phagocytic receptors (Santoni et al., 2015; Silva-Gomes et al., 2016). 

These particulates are recognised by pattern recognition receptors (PRRs) on the 

membrane of phagocytes (Broz and Monack, 2013; Fukata and Arditi, 2013). 

Pathogen-associated molecular patterns (PAMPs) that are recognised by PRRs 

include lipopolysaccharides (LPS) from Gram-negative bacteria, lipoteichoic acid 

(LTA) from Gram-positive bacteria, mannans from yeast and formulated bacterial 

peptides (Bæk et al., 2016; Galinari et al., 2017; Lam et al., 2017; Pauwels et al., 

2017). 

When the innate system is functioning appropriately, the eradication of bacteria 

and pathogens occurs quickly but when the system is compromised by host 

comorbidities, bacteria can become difficult to eradicate. After eliminating an 

invading pathogen, the immune system memorises the pathogen and develops 
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long-term defences against it, known as adaptive immunity (acquired immune 

response) (discussed in 1.1.2) (Wolcott et al., 2008).  

  Monocytes/Macrophages 

Monocytes are cells that circulate in the blood, spleen, and bone marrow, and 

represent around 10% of the entire population of human leukocytes (Geissmann et 

al., 2010). They are the biggest white blood cells, and have distinctive 

morphological structures, such as irregular cell shape, a folded or kidney-shaped 

nucleus, and cytoplasmic vesicles. Monocytes remain circulating in the bloodstream 

for about 1 to 3 days before moving into tissues, where they differentiate into 

macrophages or dendritic cells. If they are not recruited into tissues by a stimulus, 

they die and are removed by other immune cells. Monocytes are created in the 

bone marrow from hematopoietic stem cells (HSCs) and mature over successive 

differentiation phases: the common myeloid progenitor (CMP) (Akashi et al., 2000), 

the granulocyte-macrophage progenitor (GMP) (Akashi et al., 2000), the 

macrophage and dendritic cell precursors (MDP) (Fogg et al., 2006), and the 

committed monocyte progenitor (cMoP) (Hettinger et al., 2013; Italiani and 

Boraschi, 2014). Monocytes are considered to be the main reservoir of myeloid 

precursors for the regeneration of tissue macrophages and dendritic cells. 

However, some subpopulations of macrophages and dendritic cells (for instance 

skin Langerhans cells (LC), lymphoid organ dendritic cells and brain microglia) are 

generated originally from the MDP instead of monocytes (Liu et al., 2009; Boltjes 

and Van Wijk, 2014), and in some circumstances, they can be directly generated 

from the bone marrow (Ajami et al., 2007).  

Human peripheral blood monocytes are a heterogeneous population of cells 

(Passlick et al., 1989; Italiani and Boraschi, 2014). Recent studies have indicated 

that human monocytes are divided into three functional subsets (Italiani and 

Boraschi, 2014). The characterisation of these subsets is under investigation since it 

remains largely unclear, as do the exact functions they play in inflammation in vivo, 

in comparison with activated macrophages (see below).  
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Macrophages are heterogeneous phagocytic cells that reside in lymphoid and non-

lymphoid tissues of all adult humans and animals. When they are inactive (under 

normal healthy conditions), they represent up to 15 % of the entire number of 

immune cells. However, this percentage becomes higher in reaction to 

inflammatory stimuli. Depending on their tissue location, macrophages have 

various designations such as alveolar macrophages (lung), osteoclasts (bone), 

Küpffer cells (liver), histiocytes (connective tissue), and skin Langerhans cells (skin) 

(Gautier et al., 2012). Macrophages exert the same functions in all tissues. They are 

crucial in the immune response to pathogens (by producing and directing the 

inflammatory response), in tissue development, in monitoring tissue changes, and 

in the maintenance of steady-state tissue homeostasis (by elimination of apoptotic 

cells, by remodelling and repairing tissues, and by the production of growth 

factors). Macrophages are equipped with a broad range of pathogen-recognition 

receptors that make them efficient at phagocytosis, and they induce the production 

of inflammatory cytokines (Lin et al., 2008). 

Macrophages are characterised by the ability to engulf and digest cellular debris, 

microbes, cancer cells, and any other substance that does not express on its surface 

the normal, healthy-cell specific proteins, via a process known as phagocytosis 

(Duque and Descoteaux, 2015). In addition to phagocytosis, macrophages play a 

crucial role in both innate (non-specific) and adaptive (specific) immunity as they 

have the capacity to present antigens to other immune cells, such as T cells, to 

release cytokine (pro-inflammatory/anti-inflammatory mediators) and to move in 

response to chemokines in a process called chemotaxis (Duque and Descoteaux, 

2015). Macrophages are also crucial for the secretion of growth factors and 

cytokines. Growth factors and cytokines cause the attraction and division of cells 

involved in tissue repair (Werner and Grose, 2003), leading to angiogenesis, re-

epithelialisation of wounds, and the formation of new extracellular matrix 

(Greenhalgh, 1998; Stashak et al., 2004). 

Evidence has shown that there are numerous, activated forms of macrophages 

(Mosser and Edwards, 2010). There are two subtypes of macrophages, designated 

as M1 and M2. M1 macrophages encourage inflammation through the secretion of 
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pro-inflammatory cytokines whereas M2 macrophages reduce inflammation and 

encourage tissue repair (Mills, 2012). Lipopolysaccharide (LPS) and interferon-

gamma (IFN-γ) are typically present in infected wounds and lead to the generation 

of M1 macrophages. In contrast, M2 macrophages that stimulate tissue formation 

(e.g. during wound healing), are promoted by factors such as  by interleukin-4 (IL-4) 

(Biswas and Mantovani, 2010; Sica and Mantovani, 2012). 
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Table 1-2. Main functions of tissue resident macrophages.  

Apart from tissue-specific roles, tissue macrophages exert a series of common roles including removal of cellular debris, immune surveillance, wound 
repair, defence against microorganisms including bacteria, and the origination and resolution of inflammation. Figure adapted from Italiani and Boraschi 
(2014). 

Tissue Macrophages Tissue location Functions 

Heart macrophages Heart Surveillance. 

Osteoclasts Bone Bone modelling and remodelling, support to haematopoiesis  (Pollard, 2009; Blin-Wakkach et al., 2014). 

Microglia Brain Brain progress, immune surveillance, synaptic remodelling (Paolicelli et al., 2011; London et al., 2013). 

Alveolar macrophages Lung Clearance of surfactant and inhaled pathogens (Maus et al., 2002). 

Intestinal 

macrophages 

Gut 
Tolerance to microbiota, defence against pathogens, intestinal haemostasis (Zigmond and Jung, 2013). 

Bone marrow 

macrophages 

Bone marrow 
Reservoir of monocytes, waste removal (Davies et al., 2013). 

Langerhans cells Skin Immune surveillance. 

Küpffer cells 
Liver Toxin elimination, lipid metabolism, erythrocyte, microbes’ clearance, and cell debris clearance from blood (Kle 

(Klein et al., 2007; Ganz, 2012). 

Adipose tissue 

associated 

macrophages 

Adipose tissue 

Metabolism, adipogenesis, adaptive thermogenesis (Nguyen et al., 2011). 

Marginal zone, red 

pulp macrophages 

Spleen 
Erythrocyte clearance, iron recycling, uptake of microorganisms from blood (Den Haan and Kraal, 2012). 

Inflammatory 

macrophages 

All tissues 
Protection against pathogens and harmful stimuli (Labonte et al., 2014). 

Healing macrophages All tissues Angiogenesis, branched morphology (Mantovani et al., 2013). 
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U937 monocytes are an eternal human cell line commonly used to generate  

macrophage-like cells for in vitro studies. U937 cells exhibit characteristics of 

immature monocytes and, after conversion into macrophages, these cells display 

similar features and characteristics to human tissue macrophages (Minafra et al., 

2011).  Phorbol 12‐Myristate 13‐Acetate (PMA), also known as TPA, is a phorbol 

ester used to transform monocytes into macrophage-like cells in vitro. PMA‐treated 

U937 cells express high levels of CD11b, CD11c and protein kinase-C (PKC) 

(Sintiprungrat et al., 2010). When treated with PMA, U937 monocytes upregulate 

their cell adhesion molecules, such us beta‐2 integrins (CD11a, CD11c, CD18 and 

CD11b) allowing the cells to attach to cell culture flask surfaces. PMA triggers 

calcium and phospholipid‐dependent isoforms of PKC and encourages cyclic AMP 

metabolism, initiating maturation into a macrophage-like morphology (Luscinskas 

et al., 1994). 

1.4 Estrogen 

Estrogens are a group of sex steroid hormones which were first discovered by Edgar 

Allen and Edward Doisy in 1923 (MacCorquodale et al., 1936). In humans, three 

main forms of estrogen are described; estradiol, estrone and estriol with 17-β-

estradiol being the most potent and biologically active form. Estrogen is involved in 

several physiological roles such as the regulation of ovulation and fertility, 

development of female secondary sexual characteristics, synthesis of lipoproteins, 

regulation of insulin sensitivity, maintenance of bone mass, and conservation of cell 

growth and cognitive function (Cagnacci et al., 1992). Estrogen is also important in 

males as it is involved in spermatogenesis (Gladen et al., 1996; Miura et al., 1999; 

O’donnell et al., 2001), maintaining the density of bone (Stĕpán et al., 1989; Daniell, 

1997) and cardiovascular health (Group, 1973; Eriksson et al., 1989). Evidence has 

suggested that estrogen deficit is a key regulator of delayed wound healing in the 

elderly (Ashcroft et al., 1997b; Ashcroft and Ashworth, 2003). Estrogen has 

protective anti-inflammatory proprieties in several tissues, such as the brain 

(Straub, 2007). Despite the anti-inflammatory effect of estrogen on the skin, 

mediated via macrophage migration inhibitory factor (MIF) (Hardman et al., 2005), 

estrogen has been reported to stimulate wound repair independently from its anti-
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inflammatory effects in both genders. Systemic and peripheral levels of estrogen 

decline with increasing age in both males and females (with this diminution highly 

noticeable in post-menopausal females) (Ashcroft et al., 1997b). HRT-treated post-

menopausal females heal acute wounds faster than their age-matched control 

counterparts, who take no estrogen supplementation (Ashcroft et al., 1997b). 

Another study indicated that topical estrogen supplementation enhanced wound 

healing in elderly male and female patients, connected with a reduced 

inflammatory response  (Ashcroft et al., 1997b; Ashcroft et al., 1999b). Accordingly, 

these findings collectively indicate that estrogen has notably beneficial effects on 

wound healing. 

1.4.1 Estrogen Biosynthesis 

Estrogens are produced from cholesterol (Figure 1.10). Cholesterol is converted by 

several enzymes to androgens, such as testosterone and androstenedione, which 

are then converted to estrogens through the action of the P450 enzyme aromatase, 

in the endoplasmic reticulum of estrogen-producing cells (Payne and Hales, 2004). 

In adipose tissues, androstendione is converted to estrone whilst in ovarian 

granulosa cells testosterone is converted into estradiol. Aromatase is found in many 

peripheral tissues such as bone (Nawata et al., 1995), adipose tissue (Simpson, 

2000), brain  (Azcoitia et al., 2001) and vascular smooth muscle (Ling et al., 2004). 

In females at the age of reproduction, systemic estrogen is produced mainly by the 

ovary. It is fundamentally biosynthesised in the granulose cells of the ovarian 

follicles and the corpora lutea. In males, the gonad produces the largest quantity of 

systemic estrogen. However, a substantial amount of estrogen is also produced 

locally in peripheral tissues, acting in an autocrine and paracrine manner (Labrie et 

al., 1998). A substantial amount of inactive steroid precursors including 

dehydroepiandrosterone (DHEA), its sulphate (DHEA-S), and androstenedione (4-

dione) are produced by the adrenals and converted into active steroid hormones in 

peripheral tissues (Labrie et al., 1998). Several peripheral human tissues, such as 

adipose tissue, bone and skin can produce active estrogens and androgens locally 

from conversion of adrenal-derived precursors (Nelson and Bulun, 2001). The 

reduction in the formation of DHEA-S by the adrenals during aging results in a 
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dramatic fall in the formation of androgens and estrogens in peripheral target 

tissues, a situation which could be associated with age-related diseases (Labrie et 

al., 1998). 

Estrogen is synthesised locally in both young and old females and becomes 

progressively more important after postmenopause, when systemic levels are lost. 

After the menopause, estrogen biosynthesis changes from a systemic source 

produced by the ovaries, to a local source, synthesised in peripheral tissues (Picard 

et al., 2000). However, the rapid decline in the local production of estrogens with 

increasing age means peripheral estrogen is still insufficient to compensate for the 

loss in systemic estrogen levels. 
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Figure 1.10. Estrogen biosynthesis from cholesterol and androgen precursors. CYP = 
Cytochrome P450, HSD = Hydroxysteroid dehydrogenase and AKR = Aldo-keto reductase 
enable hormone synthesis. Figure adapted from Blair (2010). 

1.4.2 Estrogen Receptors 

Estrogen has multiple functions, such as the regulation of haemostasis, 

inflammation, cell growth and differentiation. Over the past decades, the existence 

of two nuclear and membrane-bound estrogen receptor (ER) proteins have been 
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identified: ER-alpha (ER-α) and ER-beta (ER-β). ER-α was first discovered in 1958 

(Jensen and Jacobson, 1960), whereas ER-β was first identified in rat prostate and 

ovary in 1996 (Mosselman et al., 1996). The biological effects of estrogens are 

mediated by the binding of estrogen to ER homodimers or heterodimers (Matthews 

and Gustafsson, 2003), and subsequent activation or repression of gene 

transcription and  signalling pathways, including ligand-dependent/independent 

pathways (Paige et al., 1999), estrogen response element (ERE)-independent 

pathways and non-genomic pathways. The ligand-dependent pathway is the central 

pathway. Interestingly, estrogen signalling can directly target specific ER genes and 

upregulate the expression of mRNA (Gruber et al., 2002; Ascenzi et al., 2006). 

Recent research also suggests estrogen could have a direct influence on 

inflammatory cells, such as monocytes and macrophages, and other cells in the 

human skin such as keratinocytes, due to the nuclear and membrane-bound 

localisation of ER proteins. (Weusten et al., 1986; Stimson, 1988; Cocchiara et al., 

1990). The response of these particular inflammatory cells depends on the local 

levels of estrogen and the maturity (stage of differentiation) of the cells (Ashcroft 

and Ashworth, 2003). 

1.4.3 Effect of Estrogen on Skin 

It is commonly accepted that the age-related reduction in estrogen levels is linked 

with skin degeneration. Estrogen deficiency results in detrimental effects on skin’s 

appearance (dry fragile skin, sagging, wrinkling) with decreased thickness and 

collagen(Ashcroft et al., 1999b; Shah and Maibach, 2001). Estrogen has been shown 

to have an opposite effect, improving collagen quality, improving skin thickness and 

augmenting vascularisation. The link between menopause and wound healing has 

been investigated where it was reported that systemic estrogen supplementation 

results in an intensification of collagen deposition in post-menopausal women 

(Savvas et al., 1993; Ashcroft et al., 1997b), whereas topical estrogen increases 

collagen I and III deposition in the skin of postmenopausal women, conserving skin 

thickness (Savvas et al., 1993; Sauerbronn et al., 2000). Another study on post-

menopausal women reported that there was a reduction in collagen type I and 

mainly type III in the skin of post-menopausal women compared to pre-menopausal 
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women, and a decrease in type III/type I ratio within the dermis. This alteration is 

predominantly associated with estrogen deficiency (Affinito et al., 1999; Horng et 

al., 2017). It has also been reported that estrogen replacement therapy can 

improve skin elasticity by 5% per year (Brincat et al., 1987). When locally applied on 

the skin of post-menopausal women, estradiol significantly increased the 

production of hydroxyproline and collagen fibres (Albright et al., 1941; Affinito et 

al., 1999; Sator et al., 2001; Horng et al., 2017). 

Additionally, topical estrogen improves the fibres elasticity in the dermis (Albright 

et al., 1941; Sator et al., 2001). Estrogen also augments the deposition of 

glycosaminoglycans in the ECM, enhances skin turgor and water retention, 

stimulates keratinocytes and inhibits matrix metalloproteinase (MMP) synthesis 

(Brincat, 2000). 

1.4.4 Estrogen and Wound Healing 

Recent research has demonstrated the key role of sex-steroid hormones in 

inflammation and wound healing process (Guo and DiPietro, 2010; Gilliver et al., 

2007). This is particularly observed in age-related impaired wound healing research 

where there is an important impact of these hormones on the inflammatory 

response in vivo. 

The impact of estrogen on wound healing was first studied in animals in 1947 

(Sjövall, 1947; Horng et al., 2017) and then in humans in 1953 (Sjöstedt, 1953; 

Horng et al., 2017). Afterwards, there has been an accumulating body of evidence 

supporting that estrogen has a key impact on wound healing (Brincat et al., 1987; 

Varila et al., 1995) (Affinito et al., 1999; Sauerbronn et al., 2000; Mills et al., 2005; 

Hardman and Ashcroft, 2008; Brufani et al., 2009; W.-L. Lee et al., 2013; Midgley et 

al., 2016; Mukai et al., 2016; Chenu et al., 2017; Leblanc et al., 2017; Horng et al., 

2017; Pepe et al., 2017; Wilkinson and Hardman, 2017). It has been indicated that 

estrogen deficiency contributes to cutaneous aging and delayed and/or impaired 

wound healing (Mukai et al., 2016; Wilkinson and Hardman, 2017). It has also been 

reported that estrogen replacement therapy could improve the skin elasticity by 5% 

in one year (Brincat et al., 1987). When locally applied on the skin of 
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postmenopausal women, estradiol significantly increases the production of 

hydroxyproline and collagen fibres (Affinito et al., 1999; Horng et al., 2017). Similar 

effects on the skin and collagen fibres were observed with systemic oral estrogen 

replacement therapy (Sauerbronn et al., 2000). 

Variance in  the human immune system between male and female subjects have 

been identified in some epidemiological and medical studies (McGowan et al., 

1975; Bone, 1992), with evidence indicating women have an improved immune 

system compared to men (Gulshan et al., 1990; Wichmann et al., 1996). This 

enhanced immune system in women is attributed to the hormonal regulation of the 

immune system. Other experiments have indicated that estrogen has an immune-

improving impact during stress and by contributing resistance to several pathogenic 

infections (Yamamoto, 1999). Ashcroft et al. (1997b) have reported that both 

systemic and topical estrogen treatments enhance wound healing in elderly men 

and women. Estrogen has been shown to accelerate re-epithelialisation, encourage 

angiogenesis, promote matrix deposition and wound contraction, dampen the 

inflammatory response and the inhibit expression of pro-inflammatory cytokines 

and proteolytic mediators (Ashcroft and Ashworth, 2003). 

  Effect of Estrogen on the Inflammatory Phase of Wound healing 

It is commonly known that age-related impaired healing is associated with an 

excessive and prolonged inflammatory response, linked with increased 

inflammatory cell migration and adhesion, and increased pro-inflammatory 

cytokines such as TNFα (Ashcroft and Ashworth, 2003). Recent research has 

indicated that chronic wounds are associated with elevated levels of elastase and 

MMPs, which are released by neutrophils/macrophages and linked with extreme 

tissue destruction (Gosain and DiPietro, 2004). Estrogen controls and dampens the 

early inflammatory response during acute wound healing by inhibiting neutrophil 

infiltration to the wound by reducing the expression of neutrophil adhesion 

molecules (Ashcroft et al., 1999b).  Estrogen causes a decrease in tissue-damaging 

proteases levels, such as elastase, and an increase in the content of collagen and 

fibronectin in the dermis (Ashcroft et al., 1999b). Furthermore,  estrogen increases 
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the oxidative metabolism of neutrophils, suggesting estrogen deprivation should 

lead to diminished phagocytic capability of neutrophils, an increased risk of 

infection and a postponement in healing (Ashcroft and Ashworth, 2003). Estrogen is 

also believed to have a direct influence on monocytes and macrophages, due to 

their possession of nuclear and membrane-bound ER (Weusten et al., 1986; 

Suenaga et al., 1996; Suenaga et al., 1998). Macrophage migration inhibitory factor 

(MIF) is a pro-inflammatory cytokine released by monocytes, macrophages, 

neutrophils, endothelial cells and keratinocytes. This cytokine is known to be a 

major regulator of the effects of estrogen on wound healing (Gilliver et al., 2010). 

Ashcroft et al. (2003) reported that mice with estrogen deficiency have higher MIF 

levels, resulting in an  elevated inflammatory response and delayed wound healing, 

whereas MIF null-mice displayed enhanced wound healing, with lower 

inflammation and greater matrix formation. Estrogen causes a down-regulation of 

MIF expression leading to a decline in inflammation, enhanced matrix deposition, 

increased re-epithelialisation and an overall accelerated wound repair (Ashcroft and 

Ashworth, 2003; Ashcroft et al., 2003). 

  Effect of Estrogen on the Proliferative Phase of Wound Healing 

Estrogen improves the proliferative phase of wound healing by enhancing re-

epithelisation, wound contraction, granulation tissue construction and 

angiogenesis. Estrogen enhances the mitogenesis of keratinocytes and increases 

the speed of re-epithelialisation and wound contraction in post-menopausal 

women (Ashcroft et al., 1997b). The rate of wound re-epithelialisation of post-

menopausal women treated with HRT for more than 3 months was similar to levels 

of re-epithelialisation in pre-menopausal females, whereas a non-HRT post-

menopausal group showed diminished re-epithelialisation. One feature of this 

improved re-epithelialisation following estrogen supplementation is due to 

increased proliferation of epidermal keratinocytes (Raja et al., 2007). Estrogen 

promotes PDGF expression by monocytes and macrophages (Mendelsohn and 

Karas, 1999), leading to mitogenesis and chemotaxis of fibroblasts and a 

subsequent increase in wound contraction and ECM deposition (Seppä et al., 1982). 

Estrogen also enhances fibrosis by increasing wound TGF-β1 levels (Ashcroft et al., 
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1997b; Ashcroft et al., 1999b), resulting in enhanced formation of ECM, particularly 

collagen deposition (Ashcroft and Ashworth, 2003). Estrogen promotes 

angiogenesis, leading to increased granulation tissue (Iyer et al., 2012) through a 

direct stimulation of endothelial cells (Rubanyi et al., 2002). Estrogen increases 

endothelial cell attachment to laminin, collagen I and IV, laminin, and fibronectin. In 

addition, estrogen enhances the creation of capillary-like structures by endothelial 

cells, when positioned on a reconstructed basement membrane (Morales et al., 

1995). 

  Effect of Estrogen on the Remodelling Phase of Acute Wound Healing 

Estrogen improves wound remodelling by controlling the degradation of collagen 

through wound proteases. Topical estrogen supplementation increases the 

deposition of collagen in during the remodelling phase of wound repair in elderly 

patients (Ashcroft et al., 1997b; Ashcroft et al., 1999b). Estrogen also acts by 

stimulating the expression of TGF-β1 to improve collagen deposition in the dermis 

(Ashcroft et al., 1997b; Ashcroft et al., 1999b). Matrix collagen deposition at 7 and 

84 days post-wounding was decreased in post-menopausal women lacking HRT 

treatment. In contrast, post-menopausal females who took HRT for more than 3 

months had similar levels of matrix collagen deposition and wound remodelling as 

younger pre-menopausal females (Ashcroft et al., 1997b; Ashcroft et al., 1999b). 

1.4.5 Estrogen and Chronic Wounds 

Since systemic estrogens decline with age, it has been suggested that estrogen 

deprivation in the elderly could possibly be linked with pathological wound healing. 

Margolis et al. (2002) performed a case-cohort study to investigate the protective 

effects estrogen on chronic wounds. Patients aged oved 65 years receiving HRT 

treatment were shown to be 30-40% less likely to develop a venous leg ulcer than 

age-matched patients lacking HRT supplementation (Margolis et al., 2002). Chronic 

wounds are characterised by an excessive and chronic prolonged inflammation. 

High levels of  inflammatory mediators, including TNFα, TGFβ,  IL-1, IL-6, IGF-1 and 

MMPs, present in chronic wound exudate (Ashcroft et al., 1997b; Ashcroft et al., 



40 

1999b) are downregulated via the action of estrogen (Straub, 2007; Wira et al., 

2015). 

1.5 Aim and Objectives 

Despite its anti-inflammatory activity in wound healing, the effect of estrogen on 

bacterial clearance from acute or chronic wounds remains largely unknown. 

Moreover, it is not known whether estrogen deprivation in the elderly exacerbates 

chronic wound infections. However, there is a vital need to develop novel 

therapeutic strategies to treat bacterial wound infections in the elderly and one 

exciting approach is to enhance innate host responses so the immune system is 

better able to eradicate potential pathogens. Thus, the aim of this study was to 

determine the effects of estrogen on the phagocytic function of macrophages using 

in vitro and ex vivo host-pathogen models of the inflammatory phase of age-related 

impaired healing. 

Specific objectives of this study were to: 

 Generate an in vitro model of HPBM and U937 monocyte differentiation into 

M0-like, M1-like and M2-like macrophages. 

 

 Determine the effect of estrogen on the phagocytosis of Gram-positive 

(MRSA) and Gram-negative (P. aeruginosa) wound pathogens by U937- and 

HPBM-derived macrophages. 

 

 Compare the effect of age-related changes in estrogen levels on the 

phagocytic activity of M0-like, M1-like and M2-like macrophages against 

Gram-positive and Gram-negative bacteria. 

 

 Explore the role of ER-α and ER-β in mediating the effects of estrogen on the 

phagocytosis of bacteria by pro-inflammatory M1-like macrophages. 
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 Investigate the effect of estrogen on downstream mediators of phagocytosis 

including regulating protein levels of FAK, Rac1, RhoA, Cdc42 and RhoG in 

pro-inflammatory M1-like macrophages. 
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2.1 Materials 

Alexa Fluor 647-conjugated anti-human MMR/CD206 (BioLegend, UK) 

Bicinchoninic acid assay reagent (Sigma-Aldrich, UK) 

Bovine serum albumin (Fisher Scientific, UK) 

Brain heart infusion agar (Oxoid, UK) 

Brain heart infusion broth (Oxoid, UK) 

Chloramphenicol (Sigma-Aldrich, UK) 

Diarylpropionitrile (Sigma-Aldrich, UK) 

Dimethylsulphoxide (Sigma-Aldrich, UK) 

Dulbecco's phosphate-buffered saline (Sigma-Aldrich, UK) 

Estrogen (Sigma-Aldrich, UK) 

Ethanol (Fisher Scientific, UK) 

Ethylenediaminetetraacetic acid (Fisher Scientific, UK) 

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (Fisher Scientific, 

UK) 

EZ-ECL chemiluminescence detection kit (Biological Industries IBH Ltd, USA) 

Fluorescein isothiocyanate (FITC)-conjugated anti-human CD11c antibody (Clone 

Bu15; BioLegend, UK) 

Fluorescein isothiocyanate (FITC)-conjugated anti-human CD197 (CCR7) antibody 

(BioLegend, UK) 

Foetal bovine serum (Lonza, UK) 

Fulvestrant (Sigma-Aldrich, UK) 

Gentamicin (Sigma-Aldrich, UK) 

Glutaraldehyde (Sigma-Aldrich, UK) 
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Green fluorescent protein (GFP)-S. aureus strain SH1000 (Kind gift from Paul 

Williams, Professor of Molecular Microbiology, Centre for Biomolecular Sciences, 

Faculty of Medicine & Health Sciences, University of Nottingham, UK) 

Human blood cell culture medium (Cell Applications Inc, San Diego, USA) 

Human peripheral blood CD14+ monocytes (Cell Applications Inc, San Diego, USA) 

Hydrogen chloride (Thermo Fisher Scientific, UK) 

Interferon gamma (Sigma-Aldrich, UK) 

Interleukin-4 (Sigma-Aldrich, UK) 

Interleukin-13 (Sigma-Aldrich, UK) 

Lipopolysaccharide from the membrane of Escherichia coli (Sigma-Aldrich, UK) 

MCherry- P. aeruginosa strain PAO1 (Kind gift from Paul Williams, Professor of 

Molecular Microbiology, Centre for Biomolecular Sciences, Faculty of Medicine & 

Health Sciences, University of Nottingham, UK)  

Methanol (Thermo Fisher Scientific, UK) 

Methicillin Resistant Staphylococcus aureus strain 11 (Hospital isolates, 

Manchester, UK) 

Mouse primary antibody to Cdc42 (Abcam, UK) 

Mouse primary antibody to Cyclophilin (Abcam, UK) 

Mouse primary antibody to Fak (Abcam, UK) 

Mouse primary antibody to Rac1 (Abcam, UK) 

Mouse primary antibody to RhoA (Abcam, UK) 

Mouse primary antibody to β-actin (Abcam, UK) 

Mouse primary antibody to β-tubulin (Abcam, UK) 

Nitrocellulose membrane (GE Healthcare Life Sciences, UK) 

Nutrient agar (Oxoid, UK) 
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Nutrient broth (Oxoid, UK) 

Paraformaldehyde (Sigma-Aldrich, UK) 

Penicillin – streptomycin (Lonza, UK) 

Peroxidase-HRP anti-mouse IgG (produced in A9044 rabbit) (Sigma-Aldrich, UK) 

Peroxidase-HRP anti-rabbit IgG (produced in goat) (Sigma-Aldrich, UK) 

pH meter (Hanna Instruments, UK) 

Phalloidin–tetramethylrhodamine B isothiocyanate conjugate from Amanita 

phalloides (Fluka, Germany) 

Phorbol 12-myristate 13-acetate (Applichem, Germany) 

Propylpyrazoletriol (Sigma-Aldrich, UK) 

Protease inhibitor cocktails (Sigma-Aldrich, UK) 

Pseudomonas aeruginosa strain PAO1 (Hospital isolates, Manchester, UK) 

Pyrazole triol (Sigma-Aldrich, UK) 

Rabbit primary antibody to RhoG (Abcam, UK) 

Roswell Park Memorial Institute Medium (RPMI) (Lonza, UK) 

Saline tablets (Sigma-Aldrich, UK) 

Skimmed milk powder (Premier Foods Group, UK) 

Sodium chloride (Thermo Fisher Scientific, UK) 

Sodium deoxycholate, phenylmethylsulfonyl fluoride (Thermo Fisher Scientific, UK) 

Sodium dodecyl sulfate (Sigma-Aldrich, UK) 

Sodium hydroxide (Fisher Scientific, UK) 

Tamoxifen (Sigma-Aldrich, UK) 

Tetracycline (Sigma-Aldrich, UK) 

Theophylline, 8-[(benzylthio)methyl]-(7CI,8CI) (Sigma-Aldrich, UK) 
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Trypan blue (Lonza, UK) 

Trypsin EDTA (Lonza, Belgium) 

Tris base (Fisher Scientific, UK) 

Tris hydrochloride (Fisher Scientific, UK) 

Tris (hydroxymethyl) aminomethane (THAM) hydrochloride (Fisher Scientific, UK) 

Triton X-100 (Lonza, Belgium) 

Tween-20 (Fisher Scientific, UK) 

U937 Human monocytic cell line (Health Protection Agency Culture Collections, UK) 
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2.2 Methods 

2.2.1 Preparation of RPMI-1640 Complete Medium 

Foetal bovine serum (FBS) was heat-inactivated in a water bath maintained at 56 °C 

for 30 minutes. Roswell Park Memorial Institute (RPMI)-1640 (L-Glutamine, 25 mM 

HEPES) supplemented with 10% FBS and 100 I.U./mL penicillin-streptomycin was 

prepared under aseptic conditions and referred to as RPMI-1640 complete medium 

throughout the study. 

2.2.2 Estrogen Treatment Preparation 

Estrogen (17β-estradiol) was prepared to final concentrations of 1 x 10-7 M, 1 x 10-8 

M, 1 x 10-9 M and zero M in antibiotic-free RPMI-1640 complete medium or human 

blood cell culture medium (HBCCM). Concentrations of estrogen were chosen 

according the previously published models of ageing to represent physiological 

levels of estrogen (1 x 10-8 M) typical of young human adults, supraphysiological 

levels of estrogen (1 x 10-7 M) to model estrogen supplemention, estrogen 

deprivation (1 x 10-9 M) to represent declining levels found in elderly humans and 

an absolute absence of estrogen (zero M) (Ashcroft and Ashworth, 2003; Hardman 

et al., 2005; Sproston et al., 2018). 

2.2.3 Cell Culture 

U937 monocytes were cultured under aseptic conditions at 37 °C and 5% CO2 using 

RPMI-1640 complete medium. CD14+ human peripheral blood monocytes (HPBM) 

were cultured in HBCCM under aseptic conditions at 37 °C and 5% CO2. The U937 

and HPBM cell suspensions were centrifuged at 500 g for 7 minutes before the 

medium was aspirated. U937 monocytes and HPBM were maintained at 0.5 x 106 

cells/mL and 1 x 106 cells/mL respectively by resuspension in fresh medium every 

other day. Sterile filtered 0.4% trypan blue dye was used to check cell viability 

according to published methodologies (Mir et al., 1991) using a 1:1 ratio of cell 

suspension to trypan blue and counting the number of non-viable cells that took up 



48 

the blue dye using a TC10 automated cell counter (Bio-Rad, USA). The viability of 

the cells was above 80% for all experiments. 

2.2.4 Differentiation of Monocytes into M0 Macrophages 

HPBM and U937 monocytes at a concentration of 1 x 106 viable cells/mL were 

differentiated into macrophage-like cells by incubating with 50 ng/mL phorbol 12-

myristate 13-acetate (PMA) in RPMI complete medium for 24 hours at 37 °C and 5% 

CO2. Cells were washed twice with complete medium and then incubated for a 

further 48 hours in PMA‐free complete medium to obtain resting macrophages 

known as M0 macrophages (Daigneault et al., 2010; Rios de la Rosa et al., 2017). 

2.2.5 Generation of M1 and M2 Macrophages 

U937 monocytes and HPBM were cultured as described in 2.2.3. Cells were 

differentiated into resting M0 macrophages as described in 2.2.4. The medium was 

aspirated and the cells washed twice with complete medium. M1 and M2 

macrophages were generated using the method adapted from Rios de la Rosa et al. 

(2017). For M1 differentiation/polarisation, M0 macrophages were incubated with 

100 ng/mL lipopolysaccharide (LPS) and 20 ng/mL interferon gamma (IFN‐γ) in 

PMA‐free complete medium for 24 hours at 37 °C and 5% CO2. The adherent cells 

were washed twice with LPS/IFN‐γ-free complete medium and then incubated with 

complete cell culture medium for 4 days at 37 °C and 5% CO2, with medium changes 

every 48 hours to obtain classically activated resting M1 macrophages. For M2 

differentiation/polarization, M0 macrophages were incubated for 24 hours with 20 

ng/mL interleukin-4 (IL-4) and 20 ng/mL interleukin-13 (IL-13) in complete medium. 

The adherent cells were washed twice with IL-4/IL-13-free complete medium prior 

to incubation in complete medium for 4 days, with medium changes every 48 hours 

to obtain alternatively activated resting M2 macrophages. 
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2.2.6 Flow Cytometry 

  Confirming the Differentiation of Monocytes into M0 Macrophages 

Differentiation of U937 and HPBM monocytes into M0 macrophages was confirmed 

by flow cytometry via analysis of CD11c+ surface marker expression. Monocytes and 

M0 macrophages were seeded in 1 mL of RPMI/HBCCM complete medium at a 

density of 1 × 106 cells/mL in 12-well plates according to methods described in 2.2.3 

and 2.2.4 respectively.  Adherent macrophages were detached from six replicate 

wells by removing the supernatant and adding 250 µL trypsin EDTA for 3 minutes at 

37 °C and 5% CO2. The trypsin EDTA was neutralised by adding 250 µL RPMI/HBCCM 

complete cell culture medium before being washed (centrifugation of well 

constituents at 500 g for 7 minutes and resuspension of the cell pellet) in 1 mL 

complete medium. The monocytes (6 replicate wells) and detached macrophages (6 

replicate wells) were then centrifuged at 500 g for 7 minutes and supernatants 

discarded prior to fixing pelleted cells with 200 µL 4% paraformaldehyde in 

Dulbecco's phosphate-buffered saline (DPBS) for 10 minutes at room temperature 

(RT). Cells were washed twice in 200 µL DPBS. Half the fixed macrophage samples 

(n = 3) and half the fixed monocyte samples (n=3) were stained for 30 minutes at RT 

with FITC-conjugated anti-human CD11c antibody diluted 1:40 with 10% FBS in 

DPBS. The remaining fixed monocyte (n = 3) and fixed macrophage (n = 3) samples 

were prepared as unstained negative controls by incubating at RT for 30 minutes 

with 10% FBS in DPBS lacking antibody. Unbound antibody was removed from 

samples by two sequential wash steps in DPBS, before resuspension in 500 µL DPBS. 

CD11c surface marker expression was assessed on 10,000 events (live, individual 

cells) with a BD Accuri C6F1 cytometer (BD Biosciences, USA). Data were analysed 

with BD Accuri C6 Software after gating events in the forward scattered channel 

(FSC)/side scattered channel (SSC) and fluorescence parameter 1 (FL1-A) windows. 

The average percentage CD11c+ cells (%) and median fluorescence intensity (MFI) 

were determined relative to unstained negative control U937/HPBM monocytes. 



50 

  Polarisation of M0 Macrophages into M1/M2 Macrophages 

Polarisation of U937 and HPBM M0 macrophages into M1/M2 macrophages was 

confirmed by flow cytometry via analysis of CD197+ and CD206+ surface marker 

expression respectively. M0 macrophages were seeded in 1 mL of RPMI/HBCCM 

complete medium at a density of 1 × 106 cells/mL in 12 well plates according to 

methods described in 2.2.4. M0 macrophages were polarised into M1 (n = 6 

replicate wells) and M2 (n = 6 replicate wells) macrophages as described in 2.2.5. 

Adherent M0/M1/M2 macrophages (n = 6 replicate wells) were detached using 

trypsin, fixed with 4% paraformaldehyde and washed twice with DPBS as described 

in 2.2.6.1. Supernatants were discarded and half the M0/M1/M2 samples (n = 3 

replicate wells) were stained for 30 minutes at RT with FITC-conjugated anti-human 

CD197 (CCR7) antibody diluted 1:50 with 10% FBS in DPBS, washed twice with 500 

µL DPBS before being incubated with Alexa Fluor 647-conjugated anti-human 

MMR/CD206 antibody (1:50 with 10% FBS in DPBS) for 30 minutes at RT. The 

remaining M0/M1/M2 samples (n = 3 replicate wells) were incubated at RT for 1 

hour with 10% FBS in DPBS lacking any antibodies (unstained negative controls). 

Two sequential wash steps were performed in DPBS prior to resuspension in 500 µL 

DPBS as described in 2.2.6.1. Samples were analysed as described in 2.2.6.1 after 

gating events in the FSC, SSC, FL1-A and fluorescence parameter 2 (FL2-A) windows.  

The average percentage CD197+/CD206+ cells (%) and median fluorescence intensity 

(MFI) were determined relative to the unstained M0 macrophages. 

2.2.7 Bacterial Culture Preparation 

Methicillin-resistant Staphylococcus aureus (MRSA) strain 11, Pseudomonas 

aeruginosa strain PAO1, green fluorescent protein (GFP) labelled-S. aureus strain 

SH1000WT and mCherry-P. aeruginosa strain PAO1 were used in this project. When 

required, cultures of MRS11 and PAO1 were inoculated onto nutrient agar (NA) 

plates and incubated at 37 °C for 24 hours. Cultures of GFP-S. aureus were 

inoculated onto brain heart infusion (BHI) agar plates supplemented with 10 µg/mL 

chloramphenicol and incubated at 37 °C for 24 hours. Cultures of mCherry- P. 

aeruginosa strain PA01 were inoculated onto NA plates supplemented with 1.25 
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µg/mL tetracycline and incubated at 37 °C for 24 hours. The bacterial inoculated 

agar plates were stored at 4 °C and replaced every four weeks. 

When required for experimental assays, MRSA 11 and P. aeruginosa PAO1 were 

cultured in nutrient broth (NB) overnight at 37 °C on an orbital shaker (New 

Brunswick Scientific, USA). Ten-fold serial dilutions of each broth were prepared in 

saline and 100 µL aliquots were inoculated onto duplicate NA plates with 

subsequent incubation at 37 °C overnight, whilst the broths were refrigerated 

overnight at 4 °C to inhibit further bacterial growth. The colony-forming units (CFU) 

counted on the NA plates were used to calculate the density of bacteria (CFU/mL) 

in each NB, taking into account the dilution factor. The neat broths were 

centrifuged at 3500 rpm for 10 minutes and the bacterial cell pellets washed twice 

with saline prior to re-suspension at 2 x 106, 2 x 105, and 2 x 104 CFU/mL in saline. 

GFP-S. aureus strain SH1000WT was cultured in BHI broth supplemented with 10 

µg/mL chloramphenicol and incubated at 37 °C overnight on an orbital shaker. Ten-

fold serial dilutions of the broth were prepared in saline and 100 µL aliquots of each 

dilution were inoculated onto duplicate BHI agar plates supplemented with 10 

µg/mL chloramphenicol with subsequent incubation at 37 °C overnight. The neat 

broth was refrigerated overnight at 4 °C to inhibit further bacterial growth. The CFU 

counted on the agar plates were used to calculate the density of bacteria (CFU/mL) 

in the neat broth, taking into account the dilution factor. The bacterial broth was 

centrifuged at 3500 rpm for 10 minutes and the cell pellet washed twice with saline 

prior to re-suspending the bacteria at 2 x 105 CFU/mL in saline. 

Red mCherry-P. aeruginosa strain PAO1 was cultured in NB supplemented with 1.25 

µg/mL tetracycline and incubated at 37 °C overnight on an orbital shaker. Ten-fold 

serial dilutions of the broth were prepared in saline and 100 µL aliquots of each 

dilution were inoculated onto duplicate NA plates supplemented with 1.25 µg/mL 

tetracycline with consequent incubation at 37 °C overnight. The neat broth was 

refrigerated overnight at 4 °C to inhibit further bacterial growth. The CFU counted 

on the agar plates were used to calculate the density of bacteria (CFU/mL) in the 

neat broth, taking into account the dilution factor. The bacterial broth was 
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centrifuged at 3500 rpm for 10 minutes and the cell pellet washed twice with saline 

prior to re-suspending the bacteria at 2 x 105 CFU/mL in saline. 

2.2.8 In vitro and Ex vivo Host-Pathogen Interaction Assays 

  Interaction of M0 Macrophages with MRSA and PAO1 

M0 resting macrophages generated from HPBM and U937 monocytes were 

prepared in 24-well plates as described in 2.2.4. The medium was aspirated and 

replicate wells (n = 6) were treated with different concentrations (1 x 10-7 M, 1 x 10-

8 M, 1 x 10-9 M and zero M) of estrogen in corresponding antibiotic-free medium 

(HBCCM or RPMI-1640 for macrophages derived from HPBM and U937 respectively) 

for 24 hours at 37 °C and 5% CO2. In addition, replicate (n = 6) blank control wells 

consisting of antibiotic-free HBCCM or RPMI-1640 medium, but lacking 

macrophages, were prepared and incubated for 24 hours at 37 °C and 5% CO2. 

Replicate negative control wells (n = 6) were prepared by treating macrophage-

containing wells with 1 x 10-7 M bovine serum albumin (BSA) in corresponding 

antibiotic-free medium and incubating for 24 hours at 37 °C and 5% CO2. The 

supernatant was removed from all wells prior to treating with 1 µg/mL LPS and 100 

ng/mL IFN-γ in corresponding antibiotic-free medium for 2 hours at 37 °C and 5% 

CO2. 

The supernatant was removed from all wells before inoculating the macrophages 

with 1 x 104 CFU of bacteria in a total volume of 100 µL antibiotic-free medium 

containing 1 µg/mL LPS and 100 ng/mL IFN-γ (1:1). Plates were incubated for 3 

hours at 37 °C and 5% CO2 to enable host-pathogen interactions (phagocytosis) to 

occur. 

Following the 3 hours host-pathogen interaction period, the supernatant of each 

well was collected. M0 macrophages were released from each well by adding 450 

µL trypsin EDTA and incubating for 3 minutes at 37 °C and 5% CO2. The trypsin EDTA 

was neutralised by adding 450 µL antibiotic-free medium to each well. The 

constituents of each well (900 µL) were collected and added to the previously 

collected supernatant (100 µL) and thoroughly mixed. Aliquots (100 µL) of each 
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sample were then inoculated onto NA plates in duplicate and incubated at 37 °C 

overnight. The number of CFU formed on the agar plates were counted to calculate 

the bacterial recovery in each sample following the period of host-pathogen 

interaction. 

  Interaction of M1/M2 Macrophages with MRSA and PAO1 

Classically activated resting M1 macrophages and alternatively activated resting M2 

macrophages were generated from HPBM and U937 macrophages as described in 

2.2.5. The medium was aspirated and 3-hour host-pathogen interaction assays were 

conducted as described in 2.2.8.1. 

2.2.9 Interaction of M0 Macrophages with GFP- S. aureus 

M0 U937 macrophages were prepared in 50 mL cell culture flasks as described in 

2.2.4. The medium was discarded and the cells washed with complete RPMI 

medium. Flasks were treated with different concentrations (1 x 10-7 M, 1 x 10-8 M, 1 

x 10-9 M and zero M) of estrogen in antibiotic-free RPMI medium for 24 hours at 37 

°C and 5% CO2. A negative control flask was prepared by treating with 1 x 10-7 M 

BSA and incubating at 37 °C and 5% CO2 for 24 hours. The supernatants in all flasks 

were discarded before treating all flasks with 1 µg/mL LPS and 100 ng/mL IFN-γ (all 

in antibiotic-free RPMI medium) for 2 hours at 37 °C and 5% CO2. 

The supernatants were discarded and each flask was then inoculated with 1 x 105 

CFU of GFP-S. aureus in a total volume of 10 mL antibiotic-free RPMI medium 

containing 1 µg/mL LPS and 100 ng/mL IFN-γ. All flasks were incubated for a 3-hour 

period of host-pathogen interaction at 37 °C and 5% CO2 prior to collecting the 

supernatant of each flask. Adherent M0 macrophages were released from each 

flask by adding 5 mL trypsin EDTA and incubating for 3 minutes at 37 °C and 5% CO2 

with gentle detachment using a sterile cell scraper. A volume of 5 mL antibiotic-free 

RPMI medium was added to each flask to neutralise the EDTA and the contents of 

each flask (10 mL) was combined with the previously collected supernatant (10 mL) 

and thoroughly mixed. Each sample (20 mL) was centrifuged at 500 g for 7 minutes 

and the cell pellet re-suspended in 5 mL antibiotic-free RPMI medium. 
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A countess II FL cell counter (Life technologies, USA) was used to detect the GFP 

signals and capture images (n = 10) of bacterial internalisation within macrophages 

from each flask. The phagocyte density, number of internalised bacteria, total 

number of macrophages and total bacterial counts were determined from images in 

order to calculate the total number of phagocytes/mL and the ratio of bacterial 

internalisation/recovery. 

2.2.10 Gentamicin Protection Assay  

U937 monocytes (1 x 106 cell/well) were seeded in a 24-well plate and 

differentiated into resting M0 macrophages as previously described in 2.2.6.1. Cells 

were treated with estrogen (1 x 10-7 M, 1 x 10-8 M, 1 x 10-9 M and zero M) or 1 x 10-7 

M BSA and stimulated with LPS (1 µg/mL) and IFN-γ (100 ng/mL) before being 

incubated with 1 x 104 CFU of MRSA 11 and P. aeruginosa PAO1 for 3 hours as 

described in 2.2.8.1. Protection gentamicin assay was performed according to 

methods detailed by Hockenberry et al. (2016). After a three-hour incubation 

period, the supernatant (100 µL) was collected and the wells were treated with 

0.1% Triton X-100 (100 µL) in DPBS for 5 minutes at 37 °C and 5% CO2 to release the 

membrane-adherent bacteria. The supernatant was collected and the cells were 

washed 10 times with DPBS before being incubated with 50 µg/mL gentamicin in 

antibiotic-free RPMI medium for 1 hour to eradicate extracellular and membrane-

bound gentamicin-sensitive bacteria. The supernatant was discarded and the cells 

were washed 10 times with DPBS. The supernatant was discarded and cells were 

detached after incubation with 400 µL Trypsin EDTA at 37 °C and 5% CO2 for 3 

minutes. A volume of 400 µL antibiotic-free RPMI medium was added to each well 

to neutralise the trypsin EDTA. The constituents of each well (800 µL) were then 

collected and added to the previously collected supernatants (200 µL) and 

thoroughly mixed. CFU/mL were counted after plating 100 µL aliquots on duplicate 

NA plates and incubating at 37 °C overnight. 
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2.2.11 Visualising Host-Pathogen Interactions  

 Fluorescence Microscopy 

Silicon wafers (Montco Technologies, USA) were cut at a diameter of 1 cm2 and 

sterilised with 70% ethanol for 30 minutes before being rinsed with dH2O and 

washed with DPBS for 10 minutes. U937 monocytes (0.5 x 106 cell/well) were 

seeded and differentiated into adherent M0 macrophages on sterile silicon wafers 

inside a 12- well plate. Cells were treated with/without estrogen (1 x 10-7 M) or 1 x 

10-7 M BSA, stimulated with LPS (1 µg/mL) and IFN-γ (100 ng/mL), and incubated 

with GFP S. aureus or mCherry P. aeruginosa (both at 1 x 105 CFU) using methods 

described in 2.2.8.1. The supernatant from each well was removed and the cells 

were fixed with 4% paraformaldehyde in DPBS for 10 minutes at RT. The 

supernatants were discarded and the cells washed three times with DPBS before 

being incubated with Triton X-100 in DPBS (0.1%) for 5 minutes at RT. The cells 

were washed three times with DPBS and treated with a blocking buffer (3% BSA in 

DPBS) for 1h at RT. The supernatants were aspirated and the cells were 

immediately treated with phalloidin–tetramethylrhodamine B isothiocyanate 

conjugate from Amanita phalloides (1:200 in blocking buffer) and incubated in the 

dark at RT overnight. The supernatant was removed and the cells were washed 

three times with DPBS. The silicon wafers with attached cells were removed using 

sterile tweezers and attached to a microscope slide using double-sided tape. 

Samples were observed at 100X on a Nikon E600 epifluorescence microscope 

(Nikon, Japan) and at 63X under a Leica TSC SPE1000 confocal microscope (Leica 

Microsystems, UK). Z-stack analysis was performed on samples to localise the 

bacterial internalisation by macrophages. 

 Scanning Electron Microscopy  

Sterile silicon wafers of 1 cm2 diameter were washed with DPBS for 10 minutes 

before being placed in 12-well plates. Adherent U937 M0 macrophages were 

generated on the silicon wafers. Cells were treated with/without estrogen (1 x 10-7 

M) or 1 x 10-7 M BSA, stimulated with LPS (1 µg/mL) and IFN-γ (100 ng/mL), and 

incubated with 1 x 105 CFU of MRSA 11 or PAO1 for 1 hour at 37 °C and 5% CO2 
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using methods described in 2.2.8.1. Following the 3-hour period of host-pathogen 

interaction, the silicon wafers from each well were collected and fixed with 2.5% 

glutaraldehyde in DPBS. Samples were incubated at 4 °C overnight. The silicon 

wafers were washed twice in DPBS, then soaked in 20% methanol/ethanol for 30 

minutes, 40% methanol/ethanol for 30 minutes, 60% methanol/ethanol for 30 

minutes, 80% methanol/ethanol for 30 minutes, and finally in 100% 

methanol/ethanol for 30 minutes twice before being dried overnight in a vacuum-

assisted desiccator (Sigma-Aldrich, UK). A Supra 40VP scanning electron microscope 

(Zeiss, Germany) was used to capture scanning electron microscopy (SEM) images 

using SmartSEM software (Carl Zeiss Ltd, Germany) to compare the internalisation 

of MRSA strain 11 or P. aeruginosa strain PAO1 by M0 macrophages with/without 

presence of estrogen. 

2.2.12 Estrogen Receptor Stimulation/Blockade 

HPBM and U937 monocytes were differentiated into M1 macrophages as described 

in 2.2.5. Replicate wells (n = 6) were treated with 1 x 10-7 M BSA, 1 x 10-7 M 

estrogen, zero M estrogen, 1 x 10-6 M tamoxifen, 1 x 10-6 M propyl pyrazole triol 

(PPT), and 1 x 10-6 M diarylpropionitrile (DPN) (all prepared in complete RPMI 

medium) and incubated at 37 °C and 5% CO2 for 24 hours. Treatments were 

aspirated and the cells washed with DPBS. A volume of 500 µL of complete RPMI 

medium was added to each well and incubated for 24 hours at 37 °C and 5% CO2. 

Further replicate wells (n = 6) containing M1 macrophages were treated with 1 x 10-

6 M fulvestrant and 1 x 10-6 M theophylline, 8-[(benzylthio)methyl] (TPBM) in 

complete RPMI medium for 24 hours. Treatments were aspirated and the cells 

washed with DPBS. Cells were treated with 1 x 10-7 M estrogen and incubated at 37 

°C and 5% CO2 for 24 hours. 

Host-pathogen interaction assays were then performed for 3 hours in all wells as 

described in 2.2.8 and bacterial (MRSA11 and PAO1) recovery determined. 
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2.2.13 Investigating Mediators of Host-Pathogen Interactions by Immunoblotting 

 Preparation of Buffers 

TBS-Tween buffer, adjusted to pH 7.4 

 10 mM Tris-base 

 140 mM Sodium chloride (NaCl) 

 0.1% Tween-20 

 Distilled water (dH2O) 

Blocking buffer, adjusted to pH 7.4 

 1% BSA in TBS-Tween 

RIPA buffer 

 140 mM Sodium chloride (NaCl) 

 25 mM Tris-hydrochloride (Tris-HCl) 

 1 mM Ethylenediaminetetraacetic acid (EDTA) 

 0.5 mM Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic 

acid (EGTA) 

 0.5% Sodium deoxycholate, phenylmethylsulfonyl fluoride (PMSF) 

 1% Triton X-100 

 0.1% Sodium dodecyl sulfate (SDS) 

 0.1% Protease inhibitors cocktail 

 Ultrapure water 

 Protein Extraction and Quantification 

U937 monocytes were differentiated into M1 macrophages in three T25 flasks (1 x 

107 cells/flask) using methods described in 2.2.5. The medium in all flasks was 

discarded and adherent M1 macrophages were treated with 10 mL of 1 x 10-7 M 

BSA (negative control), zero M estrogen or 1 x 10-7 M estrogen in RPMI complete 

medium in a single flask and incubated at 37 °C and 5% CO2 for 24 hours. The 

treatments were aspirated and cells washed with DPBS before incubation with 3 mL 
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trypsin EDTA for 3 minutes at 37 °C and 5% CO2 to initiate cell detachment. A 

volume of 3 mL complete RPMI medium was added to the flasks to neutralise the 

trypsin EDTA. Cells were transferred into 50 mL centrifuge tubes and centrifuged at 

500 g for 7 minutes. Supernatants were discarded and 200 µL of ice-cold radio 

immunoprecipitation assay (RIPA) buffer containing protease inhibitor cocktail 

(1:1000) was added the cell pellets in order to lyse the cells. Samples were 

transferred to −80 °C for 30 minutes. Cells were defrosted at 37 °C and sonicated 10 

times for 10 seconds, mixing well between each period of sonication. Samples were 

then centrifuged for 5 minutes at 12000 g and the lysates were collected on ice. 

The total protein content of each sample was quantified using the bicinchoninic 

acid (BCA) protein quantification assay according to the manufacturer’s 

instructions. Briefly, a 1 mg/mL stock solution of BSA in dH2O was used to provide a 

set of protein standards (0.8, 0.6, 0.4 and 0.2 mg/mL). A volume of 25 µL of each 

BSA standard was added to a 96-well plate with dH2O (zero mg/mL BSA) used as a 

blank. A working BCA solution, consisting of reagents A and B (1:50) was prepared 

as described in the BCA kit. A volume of 200 µL of this solution was added to all the 

BSA standards and incubated at 37 °C for 30 minutes before measuring the 

absorbance at 562 nm. A standard curve of absorbance against protein 

concentration was generated from the protein standards and used to determine 

the concentration of total protein in cell lysates via interpolation. Protein samples 

were normalised to 20 mg/mL prior to storage at -80 °C for later use. 

 Immunoblotting 

A volume of 5 μL of each of the protein samples (n = 6) was blotted onto 

nitrocellulose membranes. BSA at a concentration of 1 mg/mL (n = 6) was used as a 

negative control. The membranes were allowed to dry before being treated with 

the blocking buffer and then incubated at RT on a rocking shaker (Cole-Parmer, UK) 

for one hour with rocking at 50 rpm. The buffer was discarded and the membranes 

were treated with primary antibodies specific for the proteins Rac1, Fak, RhoG, 

RhoA, Cdc42 and β-tubulin (Table 2.1) overnight at 4 °C with rocking at 30 rpm. The 

primary antibodies were recovered (stored at 4 °C for further use) and the 

membranes washed five times for 5 minutes each with TBS-Tween buffer. The 
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membranes were treated with the horseradish peroxidase (HRP) anti-mouse IgG 

(produced in the A9044 rabbit) or HRP anti-rabbit IgG (produced in goat) secondary 

antibodies as appropriate, made in blocking buffer (1:1000), and incubated at RT for 

1 hour with rocking at 50 rpm. When the primary antibody was raised in mouse, a 

rabbit anti-mouse secondary antibody was used. When the primary antibody was 

raised in rabbit, a goat ant-rabbit secondary was used (Table 2.1). The secondary 

antibodies were removed and membranes were washed five times for 5 minutes  

with TBS-Tween buffer. A working EZ-ECL chemiluminescence detection solution, 

consisting of reagents A and B (1:1) was prepared in the dark according to the 

manufacturer’s instructions provided in the EZ-ECL kit. The membranes were 

covered with EZ-ECL working solution and incubated in the dark for 2 minutes at RT. 

Excess solution was aspirated and the membranes were visualised with a Chemidoc 

Touch Transilluminator (Bio-Rad, USA) using the Image LabTM Touch Software at 1-

minute exposure times. Dot blots were measured and analysed using ImageJ 

Software (Version 1.48). 

Table 2-1. Primary and secondary antibodies used for immunoblotting. 

Primary 
antibody 

Working 
concentration 

Host primary 
species 

Secondary 
antibody 

Host secondary 
species 

β-tubulin  1:5000 Mouse 
HRP anti-

mouse IgG Rabbit 

Rac1 2 μg/mL Mouse 
HRP anti-

mouse IgG Rabbit 

Fak 0.5 μg/mL Mouse 
HRP anti-

mouse IgG Rabbit 

RhoG  1:500 Rabbit 
HRP anti-
rabbit IgG Goat 

RhoA 2 μg/mL Mouse 
HRP anti-

mouse IgG Rabbit 

Cdc42  1:500 Mouse 
HRP anti-

mouse IgG Rabbit 
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3.1 Introduction  

3.1.1 Estrogen Promotes Wound Healing 

Active estrogens are secreted by the gonads into the bloodstream, with smaller 

amounts of active hormones produced by the adrenals. However, a substantial 

amount of inactive steroid precursors, including DHEA, its sulphate DHEA-S and 

androstenedione (4-dione) are produced by the adrenals and converted locally into 

active estrogens (such as 17β-estradiol) in peripheral tissues such as adipose tissue, 

bone and skin (Labrie et al., 1998; Nelson and Bulun, 2001). The reduction in the 

formation of DHEA-S by the adrenals during ageing results in a dramatic fall in the 

formation of active estrogens in peripheral target tissues, a situation which is 

strongly associated with age-related processes such as age-related impaired healing 

(Labrie et al., 1995). 

Estrogen declines significantly in postmenopausal women, due to a rapid decline in 

ovarian secretion of estrogens and a loss of both adrenal-derived estrogen and its 

precursors with increasing age. In men, estrogen declines rapidly with increasing 

age, largely due to a loss of adrenal-derived estrogen and its precursors. It is 

believed that the decline in estrogen in both sexes with increasing age results in 

detrimental effects on skin appearance (dry skin, sagging, wrinkling) and wound 

healing (Hardman et al., 2007). However, the detrimental effect of hormone-driven 

ageing (estrogen deprivation) on the development and progression of wound 

infections remains largely unknown. 

Ageing is known to be a key risk factor for impaired wound healing, with the 

declining production of estrogen in the elderly being the main key regulator of age-

related delayed wound healing (Hardman and Ashcroft, 2008). The reduction in 

estrogen that occurs with increasing age has a pronounced effect on cutaneous 

healing in both genders. Ashcroft et al. (1997a) and Ashcroft et al. (1999a) reported 

that estrogen deficiency causes a significant delay in wound healing, with topical 

and systemic estrogen replacement reversing this delay. Moreover, estrogen 

supplementation promoted age-related wound healing in both elderly males and 

females (Ashcroft et al., 1999a; Guo and DiPietro, 2010). 
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Estrogen has been shown to accelerate re-epithelialisation, promote angiogenesis, 

enhance matrix deposition and wound contraction, dampen the inflammatory 

response (Ashcroft and Ashworth., 2003). In particular, the key role of estrogen in 

regulating inflammation has been extensively reviewed (Guo and DiPietro, 2010; 

Gilliver et al., 2007), with estrogen supplementation decreasing the inflammatory 

response in elderly subjects of both genders (Ashcroft et al., 1997b; Ashcroft et al., 

1999a). Delayed wound healing in the elderly is associated with a delayed but 

prolonged and excessive inflammatory response, with dysregulated expression of 

pro-inflammatory cytokines and proteolytic mediators. However, despite the 

pronounced inflammatory response, evidence suggests increasing age may result in 

an impaired ability of inflammatory cells to eliminate bacteria from the wounds 

(Emori et al., 1991; Thomas, 2001). Indeed, the propensity for wound infections 

increases in the elderly, in part due to the delay in wound repair (Cooper et al., 

2015). 

Impaired wounds often become colonised with a variety of microbial species, such 

as S. aureus, P. aeruginosa, Proteus species and anaerobic bacteria (Gjødsbøl et al., 

2006; Kirketerp-Møller et al., 2008; Rybtke et al., 2015). When innate immunity 

functions appropriately, the eradication of wound bacteria is generally successful 

without intervention. However, if the host immune system becomes compromised 

by comorbidities, particularly in the elderly, clearance of wound bacteria can fail in 

the absence of effective treatments. In particular, if wounds become heavily 

infected with MRSA, P. aeruginosa or other hospital-acquired pathogens, treatment 

might necessitate aggressive medication with last line of defence antibacterial 

therapies (Beasley and Hirst, 2004). Indeed, the treatment of wounds infected with 

MRSA or P. aeruginosa represent a big challenge for the modern healthcare 

organisations (Beasley and Hirst, 2004). 

This study used in vitro and ex vivo assays to investigate the effects and potential 

mechanisms by which estrogen can affect the clearance of MRSA and/or P. 

aeruginosa. Previous work suggests the sex steroid hormones, particularly estrogen 

and testosterone, play a role in regulating host responses to infection. Findings 

indicate testosterone acts as an immunosupressor, whereas estrogen activates the 
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immune system (Cutolo et al., 2004). These effects are linked with sexual 

dimorphism found in bacterial infections, where males (human and animal) are 

more vulnerable to bacterial infections than females (Klein and Roberts, 2010). In 

addition, changes in estrogen levels during menstrual cycles and pregnancy can 

influence  bacterial infections (García-Gómez et al., 2012). Administration of sex 

steroid hormones, such as estrogen, in models of ovariectomized mice can control 

the progression of bacterial infections, acting as a supplement to antibiotic 

therapies. In line with this, some bacteria have developed potential mechanisms to 

degrade sex steroid hormones or reduce their effectiveness(García-Gómez et al., 

2012). 

3.1.2 Macrophages and Wound Healing 

Macrophages are amongst the main inflammatory cell types present in age-related 

impaired wounds where inflammation is typically pronounced and prolonged. The 

phenotype of macrophages changes during the phases of wound healing (Mosser 

and Edwards, 2010). Following injury, pro-inflammatory macrophages, known as 

“M1” macrophages, arrive at the wound site in order to remove foreign invaders 

such us bacteria, debris and dead cells. During acute wound healing, as the tissue 

starts to heal, M1 macrophages undergo a process of conversion into macrophages 

that promote anti-inflammatory effects, referred to as “M2” macrophages, to 

resolve inflammation (Koh and DiPietro, 2011). Macrophages also have key roles in 

vascularisation, arranging themselves nearby restored blood vessels in order to 

support their fusion and stability (Ogle et al., 2016). Macrophages release matrix 

metalloproteinases (MMPs) to breakdown the provisional extracellular matrix prior 

to undergoing apoptosis in order to bring about the deposition of mature matrix in 

the dermis as the wound progresses through the proliferative phase of wound 

repair (Vannella and Wynn, 2017). However, in  non-healing wounds, macrophages 

persist in a pro-inflammatory state and the transition to an anti-inflammatory 

phenotype is blocked (Hesketh et al., 2017). 

Macrophages in the skin are either derived from a resident tissue-macrophage 

population established before birth or from circulating bone marrow-derived 
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monocytes that are recruited to the site of injury and differentiate into 

macrophages (Malissen et al., 2014; Vannella and Wynn, 2017). When the wound 

site is infiltrated by microorganisms such as bacteria, monocyte-derived 

macrophages are systemically recruited within 24 hours post-injury in order to carry 

out phagocytosis (Minutti et al., 2017). 

Tissue-resident macrophages serve as early indicators of an injury or foreign 

invading pathogens (Malissen et al., 2014) by recognizing PAMPs such as LPS via 

binding to TLRs. Responses to PAMPs include initial recruitment of neutrophils to 

the wound area within minutes of the injury to eliminate foreign invaders (Malissen 

et al., 2014). Monocytes are subsequently recruited to the wound area to intensify 

the inflammatory response and become the predominant inflammatory cell type at 

around 3-7 days post-injury (Davies et al., 2013). Dermal tissue-resident 

macrophages can be identified by numerous surface markers, such as CD64, CD11c, 

CD14, CD16, CD68, CD71 and CCR5 (Malissen et al., 2014). Close to the resolution of 

injury, dermal tissue macrophages self-renew, and eliminate apoptotic cells as the 

tissue returns to homeostasis (Davies et al., 2013). 

Dendritic cells in the skin can also be derived from monocytes (e.g. Langerhans 

cells). Langerhans cells and macrophages share many similarities such as expressing 

similar surface markers (e.g. F4/80, CD14, and IL-10), which makes it difficult to 

distinguish between these two types of cell (Malissen et al., 2014). Many 

researchers consider Langerhans cells as a type of tissue-resident macrophage, as 

they also have a very similar gene expression profile (Davies et al., 2013; Doebel et 

al., 2017; Minutti et al., 2017). Interestingly, it has been reported that there is a link 

between healing diabetic foot ulcers and augmented numbers of Langerhans cells 

(Stojadinovic et al., 2013). However, the exact function of Langerhans cells in 

wound repair (particularly impaired wound healing) has not been clarified yet 

(Stojadinovic et al., 2013). 

3.1.3 Effect of Estrogen on Macrophages 

Estrogen is believed to be a key player in regulating immune responses against 

bacterial infections (Cutolo et al., 2004). Known for its anti-inflammatory 
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proprieties, estrogen is reported to resolve excessive inflammation by directly 

effecting inflammatory responses of monocytes and macrophages (Ashcroft et al., 

2003; Guo and DiPietro, 2010). Previous research reported that ovariectomized 

mice expressed high numbers of macrophages in injured tissues compared to 

normal healthy mice during the wound healing process (Ashcroft et al., 2003). 

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine, 

produced by many cell types (Calandra and Roger, 2003). MIF induces the 

production of other cytokines and growth factors by inflammatory cells such as 

TNF-α, IL-1 and IL-6 (Ashcroft et al., 2003; Hardman et al., 2005). MIF is a key pro-

inflammatory mediator inhibited by estrogen during wound healing (Ashcroft et al., 

2003; Hardman et al., 2005). MIF is  upregulated in human and murine impaired 

wounds in vivo (Ashcroft et al., 2003; Hardman et al., 2005; Emmerson et al., 2009), 

whereas MIF is decreased in wounds following exposure to estrogen (Ashcroft et 

al., 2003). Recent research indicated that estrogen inhibits MIF production by tissue 

macrophages (Ashcroft et al., 2003; Hardman et al., 2005). 

TNF-α is a key pro-inflammatory cytokine released by activated macrophages and is 

associated with chronic wounds in the elderly (Emmerson et al., 2009). After a 

pathogenic infection, bacterial clearance is reliant on effective regulation of TNF-α, 

and abnormal expression of the cytokine may cause substantial morbidity and 

mortality (Billiau and Vandekerckhove, 1991). Uncontrolled TNF-α production is 

also associated with the progression of several autoimmune diseases, such as 

rheumatoid arthritis, which are more dominant in females than males (Zandman-

Goddard et al., 2007). TNF-α wound levels are reduced in healthy premenopausal 

females and young males in comparison with postmenopausal females and elderly 

males (Vural et al., 2006). Research suggests that estradiol suppresses the 

production of TNF-α in murine macrophages (Deshpande et al., 1997; Srivastava et 

al., 1999). 

Long-time exposure of ex vivo macrophages to estrogen augments the expression 

of iNOS and the production of numerous cytokines, particularly IL-1β, IL-12 and IL-6 

following TLR4 activation by LPS. Other studies have reported anti-inflammatory 

effects of estrogens on macrophages in vitro (Deshpande et al., 1997; Ghisletti et 
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al., 2005). For example, a 2-hour estrogen treatment of macrophages (RAW 264.7 

cell line) in vitro caused a substantial reduction in the expression of the 

inflammatory mediators IL-1α, IL-6, and TNF-α by splenic macrophages following 

TLR4 activation (Deshpande et al., 1997; Ghisletti et al., 2005). 

In summary, estrogen accelerates wound healing and is associated with a reduced 

inflammatory response. Estrogen inhibits the recruitment of monocytes to the 

wound and reduces the production of macrophage-derived pro-inflammatory 

mediators. However, the precise role estrogen plays in macrophage-mediated 

bacterial clearance has not been elucidated to date. Thus, this study used in vitro 

and ex vivo models of host-pathogen interaction to investigate estrogen-mediated 

phagocytosis of bacteria by human U937- and HPBM-derived macrophages. 

Macrophage-mediated phagocytosis of two major wound pathogens, MRSA and P. 

aeruginosa, were assessed under in vitro and ex vivo conditions that model 

estrogen levels in the elderly (estrogen deprivation), physiological concentrations in 

young adults and following exogenous estrogen supplementation. U937 and HPBM-

derived macrophages are routinely used as flexible models of macrophages to study 

numerous aspects of the inflammatory response; including chemotaxis, 

phagocytosis, apoptosis and cytokine production (Hall, 2017). 

3.2 Aim and Objectives 

3.2.1 Aim 

To investigate the effects of age-related changes in estrogen levels on the 

phagocytic function of M0 macrophages using in vitro and ex vivo models of host-

pathogen interactions. 

3.2.2 Objectives 

 To compare the phagocytic function of M0 U937- and HPBM-derived 

macrophages under in vitro and ex vivo conditions of physiological 

(typical of youth) and supraphysiological levels of estrogen, estrogen 

deprivation and the absolute absence of estrogen. 
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 To determine the effect of estrogen on the phagocytosis of Gram 

positive (MRSA) and Gram negative (P. aeruginosa) wound pathogens by 

U937- and HPBM-derived M0 macrophages. 

 To visualise estrogen-mediated internalisation of Gram positive (MRSA) 

and Gram negative (P. aeruginosa) bacteria by U937- and HPBM-derived 

M0 macrophages. 
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3.3 Methods 

3.3.1 Generation of U937- and HPBM-Derived M0 Macrophages 

The differentiation of U937 and HPBM monocytes into macrophages was confirmed 

by flow cytometry as described in Section 2.2.6.1. U937 and HPBM monocytes were 

cultured as described in Sections 2.2.3. Cells were treated with/without 50 ng/mL 

PMA as described in Section 2.2.4 to induce differentiation of monocytes into 

macrophages. Cells were then stained with FITC-conjugated anti-CD11c antibody as 

described in 2.2.6.1. The expression of CD11c (relative MFI and % fluorescence) on 

untreated control monocytes was then compared with PMA-treated M0 

macrophages by flow cytometry as described in Section 2.2.6.1. 

3.3.2 Effect of Estrogen on Bacterial Growth 

Before conducting host-pathogen assays to test the effect of estrogen on the 

macrophage-mediated phagocytosis of MRSA and PAO1, it was important to 

investigate its direct effect  on the growth of both pathogens. 

MRSA 11 and PAO1 were cultured in NB overnight as described in Section 2.2.7. 

Neat broths were centrifuged at 3500 rpm for 10 minutes and the bacterial cell 

pellets washed twice with saline before re-suspension at 1 x 104 CFU/mL (see 

Section 2.2.7) in 1 mL saline alone (zero M estrogen) or 1mL saline containing either 

1 x 10-8 M estrogen or 1 x 10-7 M BSA (negative control). Bacterial suspensions were 

then incubated at 37 °C on an orbital shaker for 3 hours. Aliquots (50 µL) of each 

sample were then inoculated onto NA plates in duplicate and incubated at 37 °C 

overnight. The number of CFU formed on NA plates were counted in order to 

calculate the growth of bacteria in each sample. 

3.3.3 Effect of Estrogen on the Clearance of MRSA/PAO1 by M0 Macrophages  

  Phenol Red-Free Medium Controls 

In order to determine whether the phenol red component of cell culture medium 

had an effect on estrogen-mediated phagocytosis of MRSA/PAO1 by M0 
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macrophages, in vitro host-pathogen assays were conducted using RPMI medium 

containing/lacking phenol red. U937 monocytes were cultured in phenol red-free 

RPMI medium or RPMI complete medium using methods described in Section 2.2.3. 

M0 macrophages generated in Section 3.3.1 were then treated with physiological 

estrogen (1 x 10-8 M), prepared in either phenol-free RPMI medium or RPMI 

complete medium, for 24 hours and then incubated with MRSA or PAO1 for 3 h. 

Recovered bacterial colonies were then determined as described in Section 2.2.8.1. 

  Multiplicity of Infection (MOI) 

The effect of estrogen on phagocytosis over a range of starting bacterial 

inoculations was assessed for both MRSA or PAO1. U937 M0 macrophages 

generated in Section 3.3.1 were treated with 1 x 10-8 M estrogen for 24 hours prior 

to incubation for 3 hours with different concentrations (1 x 103 CFU, 1 x 104 CFU, 1 x 

105 CFU and 1 x 106 CFU) of MRSA or PAO1 to give initial bacteria: macrophage 

ratios of 0.001, 0.01, 0.1 and 1.  Recovered bacterial colonies were then determined 

as described in Section 2.2.8.1. 

  In vitro and Ex Vivo Host-Pathogen Interaction Assays 

U937 and HPBM M0 macrophages generated in Section 3.3.1 were treated in wells 

with different concentrations (1 x 10-7 M, 1 x 10-8 M, 1 x 10-9 M and zero M) of 

estrogen for 24 hours as described in Sections 2.2.2 and 2.2.8.1. Cells were 

incubated with MRSA or PAO1 (1 x 104 CFU) for 3 hours and bacterial recovery was 

determined as described in Section 2.2.8.1. 

3.3.4 Interaction of Estrogen-Treated U937 M0 Macrophages with GFP- S.aureus 

U937 M0 macrophages generated in Section 3.3.1 were incubated in flasks with 

different concentrations (1 x 10-7 M, 1 x 10-8 M, 1 x 10-9 M and zero M) of estrogen 

for 24 hours as described in Sections 2.2.2 and 2.2.8.1. Cells were then incubated 

with GFP- S. aureus (1 x 105 CFU/mL) for 3 hours prior to detection of GFP signal as 

described in Section 2.2.9. 
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3.3.5 Gentamicin Protection Assay 

In order to confirm that internalisation of  MRSA and PAO1 by U937 and HPBM M0 

macrophages was leading to bacterial killing rather than simply bacterial 

sequestration, a gentamicin protection assay was conducted to determine bacterial 

survival within macrophages using methodologies described in Sections  2.2.10 and 

3.3.1. 

The gentamicin protection assay is commonly used in host-pathogen research due 

to the incapability of gentamicin to penetrate the membrane of eukaryotic cells 

(Elsinghorst, 1994). The gentamycin protection assay was performed to investigate 

the effect of estrogen on the killing of intracellular MRSA and PAO1 as gentamicin 

was previously described to eradicate extracellular bacteria, but not intracellular 

bacteria due to its poor ability to permeate the macrophage membrane (Hamad et 

al., 2010; Hockenberry et al., 2016). Moreover, incubating cells with gentamicin kills 

bacteria that fail to penetrate cells, and any bacterial recovery obtained following 

lysis of the macrophages must be due to bacterial survival within the macrophages. 

The gentamicin protection assay is a very sensitive technique that can allow the 

detection of even single colonies of bacteria in cells (Elsinghorst, 1994). 

3.3.6 Visualising Host-Pathogen Interactions 

Internalisation of GFP S. aureus or mCherry- P. aeruginosa by U937 and HPBM M0 

macrophages, with/without estrogen treatment, was confirmed by fluorescence 

microscopy as described in Section 2.2.11.1. Host-pathogen interactions between 

U937 or HPBM M0 macrophages and MRSA/PAO1, with/without estrogen 

treatment, were visualised by SEM as described in Section 2.2.11.2. 
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3.4 Results 

3.4.1 Differentiation of Monocytes into M0 Macrophages 

According to previous research, monocytes (including U937 monocytes) can 

differentiate into macrophage-like cells via stimulation with PMA through PKC 

activation (Gidlund et al., 1981; Koeffler, 1983; Kiley and Parker, 1995). 

Figure 3.1 illustrates alterations in the morphology of U937 cells after treatment 

with PMA at 50 ng/mL for 24 hours. Round floating monocytes were transformed 

into adherent cells characterised by increased adhesion, formation of clumps and 

ruffled cell membranes. 

 
Figure 3.1. Morphological changes of U937 monocytic cells after treatment with 50 ng/mL 
PMA for 24 hours. Round floating monocytes (A) were differentiated into adherent cells (B) 
that formed clumps and had ruffled cell membranes. Images were taken using an Axiovert 
40C inverted phase contrast microscope. Inserts show enlargements of highlighted cells. 

The conversion of U937 and HPBM monocytes into a distinct population of 

macrophages was confirmed via detection of the FITC-conjugated anti-human 

CD11c surface marker (Rios de la Rosa et al., 2017) by flow cytometry (Section 

2.2.6.1). U937 PMA-differentiated cells were almost exclusively (99.6%) CD11c+ 

(Figure 3.2) whereas untreated control U937 monocytes predominantly lacked the 

CD11c surface marker (0.2% CD11c+). The CD11c MFI was significantly (P<0.001) 

higher in PMA-treated U937 cells compared to untreated control U937 monocytes, 

confirming PMA transformed U937 monocytes into adherent U937 M0 

macrophages. 
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There was high expression of CD11c by PMA-differentiated HPBM cells (76% 

CD11c+), whereas the CD11c macrophage surface marker was almost absent (0.3% 

CD11c+) in untreated control HPBM (Figure 3.3). The MFI of CD11c  was significantly 

(P<0.05) greater in PMA-treated HPBM cells compared to untreated control HPBM, 

confirming the transformation of HPBM into adherent M0 macrophages had 

occurred following PMA treatment.  
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Figure 3.2. Flow cytometry confirming U937 monocytes differentiation into Mo macrophages. The conversion of U937 monocytic cells into macrophages 
was established via detection of the CD11c surface marker by flow cytometry. Phorbol 12-myristate 13-acetate (PMA)-differentiated cells almost exclusively 
expressed the CD11c macrophage marker, whereas monocytes predominantly lacked the CD11c surface marker (A). Two distinct populations of U937 cells 
were detected (B) with significantly (P<0.01) higher median fluorescence intensity (MFI) from U937 PMA-treated cells compared to undifferentiated U937 
monocytes (C). Data are presented as average of n = 3 experiments. * Indicates significant difference (One-way ANOVA) in MFI (P<0.01). Error bars 
represent the standard error of the mean (StEM). 
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Figure 3.3Flow cytometry confirming HPBM differentiation into M0 macrophages. The differentiation of HPBM into macrophages was assessed via 
detection of the CD11c surface marker by flow cytometry. Phorbol 12-myristate 13-acetate (PMA)-differentiated cells highly expressed CD11c whereas 
monocytes predominantly lacked the CD11c surface marker (A). Two distinct cell populations were detected (B) with significantly (P<0.05) higher median 
fluorescence intensity (MFI) observed on HPBM PMA-treated cells compared to untreated monocytes (C). Data are presented as average of n = 3 
experiments. * Indicates significant difference (One-way ANOVA) in MFI (P<0.05). Error bars represent the standard error of the mean (StEM). 



75 

 

3.4.2 Effect of Estrogen on the Growth of MRSA and PAO1 

The effect of estrogen (1 x 10-7 M) on the growth of MRSA and PAO1 colonies after 

3 hours incubation was investigated compared to a BSA (1 x 10-7 M) negative 

control and a untreated saline control. Estrogen had no significant effect on the 

MRSA or PA01 growth (P>0.05) (Figure 3.4A and Figure 3.4B) compared to the 

controls. These results indicated that estrogen had no direct effect on the growth of 

MRSA or PAO1 compared to the controls. 

 

Figure 3.4. Effect of estrogen on MRSA and PAO1 growth. Estrogen (1 x 10-7 M) had no 
significant (P>0.05) effect on the growth of MRSA (A) or PA01 (B) compared to the 1 x 10-7 
M bovine serum albumin (BSA) negative control (NC) or the untreated saline control.  Data 
are presented as average of n = 24 experiments. 

3.4.3 The Effect of Phenol Red on Bacterial Clearance 

The effect of phenol red on the clearance of MRSA and PAO1 by U937 M0 

macrophages with/without estrogen treatment was investigated. The findings 

confirmed that phenol red in the RPMI cell culture medium had no significant effect 

on the MRSA (A) and PAO1 (B) recovery compared to RPMI medium lacking phenol 

red (P>0.05), regardless of the presence of estrogen (Figure 3.5). Physiological (1 x 

10-8 M) estrogen levels significantly decreased MRSA and PA01 recovery compared 

to the negative control (P<0.05), both in the presence or absence of phenol red. 
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Figure 3.5. Effect of phenol red on bacterial clearance by M0 macrophages. Phenol red in 
cell culture medium had no significant effect on the recovery of MRSA (A) or PA01 (B) 
compared to the absence of phenol red (P>0.05), regardless of the presence/absence of 
estrogen (1 x 10-8 M). Physiological (1 x 10-8 M) estrogen levels significantly (*: P<0.05) 
decreased the MRSA (A) and PAO1 (B) recovery compared to the negative control (NC), 
with or without phenol red. Data are an average of n = 10 experimental repeats with error 
bars representing the standard error of the mean (StEM). 

3.4.4 Multiplicity of Infection (MOI) 

The effect of physiological estrogen (1 x 10-8 M) on the uptake of MRSA by M0 

macrophages, in vitro, was investigated. Cells were incubated with a range of initial 

MRSA inoculations (1 x 103 CFU, 1 x 104 CFU, 1 x 105 CFU and 1 x 106 CFU) (Figure 

3.6). The absence of estrogen had no significant effect (P>0.05) on the MRSA 

recovery compared to negative control. Physiological estrogen significantly 

decreased (P<0.05) the MRSA recovery, in comparison with the BSA control with all 

MOIs. The bacterial recovery of MRSA significantly increased (P<0.05) following 

estrogen (1 x 10-8 M) supplementation as the MOI [bacteria : macrophage ratio] 

increased from 0.001 to 1. However, the MRSA recovery followed a similar pattern 

throughout, regardless of the MOI ratio, with estrogen consistently increasing 

(P<0.05) MRSA clearance at all MOIs. 
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Figure 3.6. Effect of physiological estrogen on the recovery of MRSA by M0 macrophages 
in vitro. Cells were incubated with MRSA at MOIs of 0.001 (A), 0.01 (B), 0.1 (C) and 1 (D). 
Following treatment of macrophages with physiological estrogen (1 x 10-8 M), MRSA 
recovery significantly decreased (P<0.05), at all MOIs, in comparison with the absence (zero 
M) of estrogen and the negative control (NC). Data represent mean recovery (CFU/mL) ± 
standard error of the mean (StEM), n = 10. *: P<0.05, indicate significant differences in the 
MRSA/PAO1 recovery compared to the NC. 

Figure 3.7 illustrates the effect of physiological estrogen (1 x 10-8 M) on the 

internalisation of PAO1 by macrophages. After incubating the macrophages with a 

varied range of initial PA01 colonies (1 x 103 CFU, 1 x 104 CFU, 1 x 105 CFU and 1 x 

106 CFU), the absence of estrogen had no significant effect (P>0.05) on the recovery 

of in comparison with the BSA control. Interestingly, physiological estrogen 

significantly decreased (P<0.05) the PAO1 recovery, in comparison with the NC 

control at all MOIs. The PAO1 recovery significantly increased (P<0.05) following 

estrogen (1 x 10-8 M) supplementation as the MOI [bacteria : macrophage ratio] 

increased from 0.001 to 1. However, the PAO1 recovery followed a comparable 

pattern throughout, regardless of the MOI ratio, with estrogen consistently 

increasing (P<0.05) PAO1 clearance at all MOIs. 
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Figure 3.7. Physiological estrogen decreases the recovery of PAO1 by M0 macrophages in 
vitro. U937-derived M0 macrophages were incubated with PAO1 at MOIs of 0.001 (A), 0.01 
(B), 0.1 (C) and 1 (D). Physiological estrogen (1 x 10-8 M) significantly decreased (P<0.05) the 
PAO1 recovery at all MOIs, in comparison with the absence (zero M) of estrogen and the 
negative control (NC). Data represent mean recovery (CFU/mL) ± standard error of the 
mean (StEM), n = 10. *: P<0.05, indicate significant differences in the MRSA/PAO1 recovery 
compared to the NC. 

3.4.5 Effect of Estrogen on MRSA and PAO1 Clearance 

  Effect of Estrogen on MRSA and PAO1 Clearance by U937 Macrophages 

The effect of estrogen on the clearance of MRSA and PAO1 by U937 M0 

macrophages was investigated. The absolute absence of estrogen (zero M) showed 

no significant (P>0.05) change in the number of recovered MRSA or PA01 colonies 

(Figure 3.8A and Figure 3.8B) compared to the BSA negative control (NC). 

Estrogen significantly (P<0.01) reduced the recovery of MRSA colonies compared to 

the negative control in a dose-dependent manner. The MRSA recovery (Figure 3.8A) 

was significantly (P<0.01) reduced from 1886 CFU/mL in the NC to 1759 CFU/mL, 

1295 CFU/mL and 936 CFU/mL with estrogen at a concentrations of 1 x 10-9 M, 1 x 

10-8 M and 1 x 10-7 M respectively. The MRSA recovery decreased significantly 
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(P<0.01) between increasing estrogen concentrations, with physiological estrogen 

concentrations (1 x 10-8 M) significantly reducing MRSA recovery compared to 

estrogen deprivation, and supraphysiological estrogen concentrations (1 x 10-7 M) 

significantly reducing MRSA recovery compared to physiological estrogen levels. 

Physiological estrogen (1 x 10-8 M) and supraphysiological estrogen (1 x 10-7 M) 

significantly (P<0.05) reduced the PAO1 recovery (Figure 3.8.B) from 2410 CFU/mL 

in the NC to 2105 CFU and 1960 CFU respectively. The PAO1 recovery also 

decreased significantly (P<0.05) between physiological and supraphysiological 

estrogen levels. 
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Figure 3.8. Estrogen enhances the uptake of MRSA11 (A) and PAO1 (B) by U937 M0 
macrophages. Following treatment of U937 M0 macrophages with estrogen (1 x 10-7 M, 1 x 
10-8 M) MRSA (A) and PAO1 (B) recovery significantly decreased in a concentration-
dependant manner in comparison to the absence (zero M) of estrogen and the negative 
control (NC). Data represent mean recovery (CFU/mL) ± standard error of the mean (StEM), 
n = 48. *: P<0.05, **: P<0.01 indicate significant differences in the MRSA/PAO1 recovery 
compared to the NC. 

  Effect of Estrogen on MRSA and PAO1 Clearance by Ex Vivo M0 

Macrophages 

Host-pathogen assays were repeated with human peripheral blood monocytes 

(HPBM) in order to determine whether estrogen has similar effects on the MRSA 
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and PAO1 recovery with macrophages derived from primary human monocytes. In 

the absence of estrogen (zero M estrogen) there was no significant difference 

(P>0.05) in the clearance of MRSA or PA01 compared to the negative control 

(Figure 3.9.A and Figure 3.9.B). In contrast, estrogen treatment significantly 

reduced (P<0.05) MRSA recovery compared to the negative control in a dose-

dependent manner. Physiological (1x10-8 M) and particularly supraphysiological 

(1x10-7 M) levels of estrogen were highly effective at increasing MRSA clearance, 

significantly decreasing (P<0.01) MRSA recovery (1775 CFU/mL, 1246 CFU/mL 

respectively) compared to the negative control (2692 CFU/mL). Estrogen had similar 

effects on the clearance of PAO1 when treated with physiological (1x10-8 M) or 

supraphysiological (1x10-7 M) levels, significantly (P<0.05) reducing PA01 recovery 

(2252 CFU/mL and 1817 CFU/mL respectively) compared to the negative control 

(2631 CFU/mL). 
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Figure 3.9. Estrogen enhances the uptake of MRSA11 (A) and PAO1 (B) by HPBM M0 
macrophages. Following treatment of HPBM M0 macrophages wth estrogen (1 x 10-7 M, 1 x 
10-8 M) the recovery of MRSA/PAO1 was significantly reduced in comparison to the 
negative control (NC). Error bars represent the mean ± standard error of the mean (SEM), n 
= 6. *: P<0.05, **: P<0.01 indicate significant differences in the MRSA/PAO1 recovery 
compared to the NC. 

3.4.6 GFP S. aureus Host-Pathogen Assay 

  Effect of Estrogen on The Recovery of GFP- S. aureus 

The effect of estrogen on the recovery of fluorescent GFP-labelled S. aureus 

colonies was investigated. U937-derived M0 Macrophages were incubated with 
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GFP-S. aureus for 3 hours. The bacterial colonies were tracked via detection of GFP 

signals inside and outside the macrophages using a countess II fluorescent cell 

counter. Images (n = 10) of bacterial internalisation within macrophages were 

captured. The phagocyte density, number of internalised bacteria, total number of 

macrophages and total bacterial counts were determined from images in order to 

calculate the bacterial recovery, total number of phagocytes/mL and the ratio of 

bacterial internalisation. 

Consistent with previous results, physiological and supraphysiological levels of 

estrogen significantly reduced the S. aureus recovery (P<0.05) in a concentration-

dependant manner in comparison with the absence of estrogen and BSA controls 

(Figure 3.10). 
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Figure 3.10. Estrogen increases the uptake of GFP-S. aureus by U937 M0 macrophages. 
Following treatment of U937 M0 macrophages with physiological and suppraphysiological 
estrogen (1 x 10-9 M, 1 x 10-7 M), the S. aureus recovery was significantly reduced in a 
concentration-dependant manner in comparison to the absence (zero M) of estrogen and 
the BSA control (NC). Data represent mean recovery (CFU/mL ± standard error of the mean 
(StEM), n = 10. **: P<0.01 indicate significant differences in the GFP-S. aureus recovery 
compared to the NC. 

  Effect of Estrogen on Phagocyte Density 

The effect of estrogen on the number of active phagocytes after the 3-hour period 

of host-pathogen interaction was investigated (Figure 3.11). Stimulation of cells 

with 1 x 10-8 M or 1 x 10-9 M estrogen did not have any significant effect (P=0.16 

and P=0.99 respectively) on phagocyte density (3.0 x 105 phagocytes/mL and 2.8 x 

105 phagocytes/mL respectively) compared to the negative control (2.3 x105 

phagocytes/mL) (Figure 3.11). However, supraphysiological (1 x 10-7 M) levels of 

estrogen significantly increased (P < 0.01) the number of active phagocytes (3.7 x 

105 phagocytes/ mL) in comparison to the negative control (NC). 
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Figure 3.11. Estrogen Promotes an Increase in the Number of Active Phagocytes. 
Supraphysiological (1 x 10-7 M) levels of estrogen significantly (*: P<0.05, **: P<0.01) 
increased the detection of GFP signals inside macrophages compared to the negative 
control (NC). Data indicate mean number of active phagocytes per mL (n = 8) ± standard 
error of the mean (StEM). 

  Effect of Estrogen on the Proportion of Total GFP S. aureus Internalised by 

U937-Derived Macrophages 

Figure 3.12 illustrates the proportion of total GFP- S. aureus internalised by U937-

derived macrophages following treatment with 17β-estradiol. When the cells were 

treated with zero M and 1 x 10-9 M estrogen, there was no significant (P=0.89) 

effect on the proportion of GFP- S. aureus internalised (0.58) in comparison to the 

negative control (NC). However, when U937-derived macrophages were treated 

with physiological (1 x 10 -8 M) or supraphysiological (1 x 10 -7 M) levels of estrogen, 

there was a significant increase (P< 0.05) in the proportion of internalised bacteria 

(0.66 and 0.78 respectively) compared to the NC. 
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Figure 3.12. Effect of estrogen on the ratio of GFP- S. aureus internalisation. Data are 
presented as average of n = 8 experiments. * P<0.05, **: P<0.01 Indicate significant 
differences (One-way ANOVA) in bacterial recovery (P<0.05). Error bars represent the 
StEM. 

3.4.7 Effect of Estrogen on Bacterial (MRSA and P. aeruginosa) Killing by U937-

Derived Macrophages. 

In order to determine the effect of estrogen on bacterial killing by U937-derived 

macrophages, a gentamicin protection assay was performed. The gentamycin 

protection assay is commonly used to confirm the killing of internalised bacteria by 

phagocytes, or recover viable bacteria from inside phagocytes when pathogens are 

able to evade host cell responses and grow within phagocytes (Elsinghorst, 1994). 

The assay utilised gentamycin to eliminate non-internalised (extracellular) bacteria 

after a 3-hour period of host-pathogen interaction, followed by the lysis of washed 

macrophages to recover internalised bacteria. Gentamycin is unable to pass across 

the host cell membrane so only bacteria that have been successfully internalised 
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(phagocytosed) by immune cells but remain viable within phagocytes at the end of 

the host-pathogen interaction are recovered by the assay (Elsinghorst, 1994., 

Waldbeser et al., 1994; Hess et al., 2004; Oelschlaeger, 2010). 

Similar to previous assays, physiological (1 x 10 -8 M) and supraphysiological (1 x 10 -

7 M) levels of estrogen significantly (P<0.05) decreased the recovery of viable 

internalised MRSA and PAO1 by U937 M0 macrophages in a dose-dependent 

manner (Figure 3.13) compared to the BSA (NC) and untreated controls. The data 

confirmed estrogen was not simply promoting internalisation of bacteria, but was 

also increasing the killing of phagocytosed MRSA and PAO1 by U937-derived 

macrophages. The absence of estrogen or estrogen deprivation (1 x 10 -9 M) did not 

significantly (P>0.05) effect the killing of internalised MRSA and PAO1 by U937-

derived macrophages compared to the NC. 

Physiological (1 x 10-8 M) and supraphysiological estrogen (1 x 10-7 M) significantly 

(P<0.05) reduced the MRSA recovery (Figure 3.12.A) from 976 CFU/mL in the NC to 

787 CFU and 692 CFU respectively. The PAO1 recovery also decreased significantly 

(P<0.05) from 1019 CFU/mL in the BSA control to 822 CFU/mL and 692 CFU/mL 

following treatment with physiological (typical of youth) and supraphysiological 

levels of estrogen respectively. 
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Figure 3.13. Estrogen promotes the killing of MRSA (A) and PAO1 (B) by U937-Derived 
Macrophages. Physiological (1 x 10 -8 M) and supraphysiological (1 x 10 -7 M) levels of 
estrogen significantly (*: P<0.05, **: P<0.01) promoted the killing of internalised MRSA (A) 
and PAO1 (B) by M0 macrophages compared to the negative control (NC). Data indicate 
mean (n = 6) viable internalised bacteria (CFU/mL) ± standard error of the mean (StEM). 

3.4.8 Visualisation of Bacterial Internalisation 

  Epifluorescence Microscopy 

In order to visualise and compare the phagocytosis of pathogens, with and without 

estrogen treatment, U937-derived macrophages were incubated with GFP S. aureus 
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or mCherry P. aeruginosa prior to staining for phalloidin–tetramethylrhodamine B 

isothiocyanate conjugate from Amanita phalloides (Figure 3.14.A), or labelling with 

CD18 mouse monoclonal antibody and stained for goat anti-mouse IgG (H+L) 

superclonal secondary antibody, alexa fluor® 488 conjugate (Figure 3.14.B). Images 

were captured using a 100X objective on a Nikon E600 epifluorescence microscope 

(Section 2.2.11.1). 

The absence of estrogen (A2 and B2) had no effect on the bacterial internalisation 

compared to the BSA negative controls (A1 and B1). However, it is clear that 

estrogen treated macrophages internalised more of the S. aureus and P. aeruginosa 

colonies (A3 and B3) than untreated cells. 
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Figure 3.14. Effect of estrogen on the internalisation of GFP labelled-S, aureus (A) and mCherry-P. aeruginosa by U937 macrophages. U937-derived 
macrophages were treated with/without supraphysiological (1 x 10-7 M) estrogen supplementation for 24 hours prior to incubation with GFP labelled-S, 
aureus SH1000 (A) or mCherry labeled-PAO1 (B) for 3 hours. U937-derived macrophages were stained for phalloidin–tetramethylrhodamine B 
isothiocyanate conjugate from Amanita phalloides (A) or mouse anti-human CD18 monoclonal antibody followed by a goat anti-mouse IgG (H+L) 
superclonal secondary antibody, alexa fluor® 488 conjugate (B). The internalisation of S. aureus and P. aeruginosa by U937-derived macrophages (white 
arrows) was promoted by treatment with estrogen (A3 and B3) compared to negative control (NC) (A1 and B1) or macrophages lacking estrogen exposure 
(A2 and B2). 
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  Z-Stack Analysis by Confocal Microscopy 

To confirm the internalisation of bacteria by estrogen-treated U937 macrophages, 

Z-stacks were performed on phalloidin-stained phagocytes to visualise a series of 

layers through the interior of phagocytes and identify  intracellular GFP-S. aureus 

colonies using a 63X objective on a Leica TSC SPE1000 confocal microscope.  Z-

stacks (example layer shown in (Figure 3.15) spanning the mid-intracellular region 

of estrogen-treated U937 macrophages (stained red) contained GFP-S. aureus 

colonies that fluoresced green, confirming the intracellular localisation of GFP-S. 

aureus inside (red) macrophages (Panel C). The size of Z-steps was set at 0.04 µm in 

this experiment. 
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Figure 3.15. Z-Stack Demonstrating GFP-S. aureus Localisation inU937-Derived M0 macrophages Following Estrogen Supplementation. Bright green 
fluorescence was observed from GFP labeled S. aureus SH1000 (A). U937-derived M0 macrophages stained with phalloidin–tetramethylrhodamine B 
isothiocyanate conjugate from Amanita phalloides fluoresced red (B). The merged image confirmed several GFP-S. aureus colonies were located in the mid-
intracellualr region of estrogen-treated U937 M0 macrophages after 3 hours of host-pathogen interaction (C). 
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  Scanning Electron Microscopy 

In order to visualise and compare detailed features of the interactions between 

MRSA or PAO1 and macrophages, samples were visualised using a Supra 40VP 

scanning electron microscope as described in 2.2.11.2 (Figure 3.16). The moment of 

the MRSA and PAO1 uptake shows in the images (Panels B and C) as the estrogen 

treated macrophage sends out pseudopodia to engulf the invading bacteria. 

Surprisingly, the morphological response of macrophages toward PAO1 (Panewl B) 

was distinct to and somewhat more pronounced than  the response to MRSA (Panel 

C) in terms of the formation of membrane extensions, warranting further 

investigation. In concordance with these findings, PAO1 recovery was consistently 

higher than MRSA recovery in all host-pathogen experiments, supporting the notion 

of bacteria-specific interactions. 
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Figure 3.16. The Interaction of U937-derived M0 Macrophages with Gram Positive (MRSA11) and Gram Negative (PAO1) Bacteria Following Estrogen 
Supplementation. SEM images illustrating morphological changes in membrane extensions in estrogen-treated, U937-derived M0 macrophages after a 1h 
period of host-pathogen interaction with MRSA11 and PAO1. Control U937-derived M0 macrophages (Aa, Ab), MRSA11 (Ac) and PAO1 (Ad) were visualised 
before conducting the host-pathogen assay. Following the 1-hour period of host-pathogen interaction, estrogen-treated U937 M0 macrophages sent out 
morphologically distinct pseudopodial extensions to engage PAO1 (B) and MRSA (C) bacteria (yellow arrows). 
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3.5 Discussion 

Wound infection is commonly quoted as a significant cause of delayed wound 

healing in the elderly and chronic wounds (Yotis, 1967). Chronic wounds are 

frequently colonised with a diverse range of Gram-positive and Gram-negative 

bacteria particularly S. aureus and P. aeruginosa (Dowd et al., 2008). Studies of age-

related impaired wound healing suggest that sex steroid hormones, particularly 

estrogen, may have a significant impact on the inflammatory response in vivo. 

Treatments with topical and systemic estrogen have been indicated to enhance the 

rate of acute wound healing in both elderly men, and particularly post-menopausal 

women, by reducing the inflammatory response (Gilliver et al., 2007). Although 

estrogen has been shown to promote human acute wound healing in the elderly 

(Ashcroft et al., 1999a), the effect of this hormone on bacterial clearance and 

wound infections has received little attention to date. 

First, it was very important to develop and generate a successful in vitro model of 

monocyte-derived macrophages. PMA induced the differentiation of both U937 and 

human peripheral blood monocytes (HPBM) into M0 macrophages (Figure 3.2 and 

figure 3.3). This was confirmed via a high expression of the CD11c surface marker 

by macrophages, with monocytes lacking the marker. U937 and HPBM are known 

precursors of tissue macrophages and dentritic cells in vitro (Sintiprungrat et al., 

2010). PMA was described to induce the conversion of monocytes into 

macrophage-like cells in vitro (Martinez et al., 2008; Rios de la Rosa et al., 2017). 

Our results are supported by several reports as recent research reported that PMA‐

treated monocytes express high levels of CD11b, CD11c and protein kinase-C (PKC) 

(Sintiprungrat et al., 2010). When treated with PMA, monocytes were shown to 

upregulate cell adhesion molecules including the beta‐2integrins (CD11a, CD11c, 

CD18 and CD11b) allowing the cells to attach to cell culture flask surfaces in vitro. 

PMA triggers calcium and phospholipid‐dependent isoforms of PKC and encourages 

cyclic AMP metabolism, initiating maturation into a macrophage-like morphology 

(Luscinskas et al., 1994). 
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A 3-hour incubation of both MRSA and P. aeruginosa with estrogen had no 

significant effect on their rate of growth. Therefore, any direct effect of estrogen on 

MRSA and PAO1 could be excluded during the host-pathogen assays in this study, 

with any changes in the number of bacteria instead arising solely due to the effect 

of estrogen on the interaction of macrophages with bacteria. These results are 

supported with many previous studies showing steroids, particularly estrogen and 

progesterone, have no effect on bacterial growth (Lev, 1959). However, some non-

endogenous steroids have been reported to decrease the growth of many Gram-

positive bacteria (Casas-Campillo et al., 1961; Yotis, 1967), but the exposure to 

these steroids periods was for substantially longer periods than 3 hours.  

The effect of phenol red on the host-pathogen interaction assays was investigated. 

Phenol red in the RPMI cell culture medium had no significant effect on  MRSA and 

PAO1 recovery compared to RPMI medium lacking phenol red, regardless of the 

presence or absence of estrogen.  Phenol red was shown to have very weak 

estrogenic effects on MCF-7 human breast cancer cells, with an affinity that was 

0.001% that of 17β-estradiol (Berthois et al., 1986). Other studies reported that 

phenol red had no effect on estrogen-sensitive T47D breast cancer cells, primary 

immature rat pituitary cells or immature rat uterine cells (Welshons et al., 1988). 

Thus, published findings are in concordance with the data in this study, 

demonstrating phenol red in the cell culture medium has negligible influence on 

host-pathogen interactions. 

Multiplicity of infection (MOI) assays were then performed to investigate the effect 

of physiological estrogen (1 x 10-8 M) on phagocytosis over a range of starting 

bacterial inoculations (1 x 103 CFU, 1 x 104 CFU, 1 x 105 CFU and 1 x 106 CFU) for 

both MRSA or PAO1. The SERM tamoxifen, an estrogen-like molecule was found to 

enhance the bactericidal activity of neutrophils against P. aeruginosa in vitro and 

MRSA in vivo where (Corriden et al., 2015) conducted in vitro host-pathogen assays 

at MOIs of 0.1. Findings in this study agree with published reports. The bacterial 

recovery of MRSA and PA01 following estrogen (1 x 10-8 M) supplementation 

significantly increased as the MOI [bacteria: macrophage ratio] increased from 

0.001 to 1. However, the bacterial recovery followed a similar pattern throughout, 
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regardless of the MOI ratio, with estrogen consistently increasing (P<0.05) bacterial 

clearance at all MOIs. 

The effect of estrogen on the phagocytosis of the two major wound pathogens 

MRSA and P. aeruginosa by macrophages was investigated in this study. The results 

of the initial in vitro host-pathogen interaction assays (3.4.5.1) demonstrated novel 

data showing estrogen significantly (P<0.05) enhances the internalisation of both 

MRSA and P. aeruginosa in a dose-dependent manner following exposure to 

activated U937-derived M0 macrophages in vitro. 

Li et al. (2000) extracted microglial cells from brain tissues of patients with 

Alzheimer disease. Similar to experimental procedures in this chapter, the 

macrophages were treated with 1 x 10-7 M estrogen for 24 hours and 48 hours prior 

to incubation with amyloid β‐peptide (Aβ) for 24 hours. Estrogen was found to 

enhance the uptake of Aβ by brain macrophages (microglia) in a time‐ and dose-

dependent manner. In order to confirm that estrogen enhances the phagocytic 

activity of microglia via a general engulfment mechanism, not specific to Aβ only, Li 

et al. (2000) re-conducted the same experiments replacing Aβ with Escherichia coli. 

Intriguingly, estrogen significantly increased the internalisation of E.coli in a 

concentration-dependent manner in comparison with the vehicle  controls. These 

findings highlight the beneficial effects of estrogen on the phagocytic ability of 

microglia in the brain. However, other types of macrophages were not  assessed 

and only E.coli was investigated so it remains unclear whether the effects of 

estrogen could be observed with varied bacterial species and strains, especially 

antibiotic-resistant strains. 

Crompton et al. (2016) investigated  the effect of estrogen on  cutaneous murine 

wound healing following exposure to LPS derived from Klebsiella pneumoniae. 

Exposure of immune cells to LPS caused a  substantial delay in wound healing. They 

then co-treated LPS-treated wounds with 17β-estradiol, and interestingly, the delay 

in wound repair was reversed, with accelerated healing noted in mice  following 

estrogen treatment (Crompton et al., 2016). The results of this report were 

interesting but Crompton et al. (2016) only used locally applied K. pneumonia-

derived LPS in their model of infection. In order to generate realistic models of 
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infected wounds  it is important to develop assays that infect wounds with live 

bacterial strains, not just bacterial-derived factors such as LPS. It is also important 

to consider both Gram-positive and Gram-negative models of infection.  Moreover, 

K. pneumoniae is not a major wound pathogen compared to S. aureus and P. 

aeruginosa, which are the most frequently  isolated bacterial species from infected 

wounds (Giacometti et al., 2000; Gjødsbøl et al., 2006; Kirketerp-Møller et al., 2008; 

Rybtke et al., 2015). 

In vitro studies using cell lines provide only limited evidence to predict effective 

effects in humans. Thus, this study also confirmed findings in ex vivo primary 

human peripheral blood monocytes (HPBM) to establish a body of evidence using 

both a Gram-positive and a Gram-negative bacterium. Similar to results obtained 

with U937-derived macrophages in vitro, physiological and supraphysiological 

estrogen significantly increased (P<0.05) the internalisation of both MRSA and 

PAO1 in comparison to the negative control. 

Li et al. (2000) investigated the effect of estrogen on the uptake of fluorescent- 

E.coli by microglial cells using a fluorescence microplate reader, and showed 

estrogen enhanced the internalisation of E.coli in a concentration- and time-

dependant manner. In line with this, and using similar experimental settings, data 

from the M0 macrophages-GFP S. aureus interaction assay strengthened the host-

pathogen in vitro and ex vivo findings, indicating greater bacterial uptake following 

treatment with physiological and suppraphysiological estrogen. Ashcroft and co-

researchers reported that ovariectomized mice presented with high numbers of 

macrophages in injured tissues compared to wounds of normal healthy mice. 

Interestingly, in this thesis estrogen increased the number of macrophages that 

become active phagocytes following exposure to pathogens, thereby providing a 

justifiable reason for enhanced bacterial clearance described by Gilliver et al. 

(2007). 

The effect of estrogen on the absolute killing of bacteria was investigated in the  

gentamycin protection assay. Gentamicin eradicates extracellular bacteria but it has 

no effect on intracellular bacteria due to poor ability to permeate the macrophage 

membrane (Waldbeser et al., 1994; Hess et al., 2004; Oelschlaeger, 2010; Hamad et 
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al., 2010). Interestingly, there was a significant decrease in the number of viable 

intracellular viable bacteria recovered following treatment of macrophages with 

physiological or supraphysiological estrogen, demonstrating estrogen promotes the 

killing of internalised pathogens, not just the uptake of bacteria by phagocytes. 

Published research demonstrated that extended exposure of ex vivo macrophages 

to estrogen augments the expression of iNOS and the production of numerous 

cytokines, particularly IL-1β, IL-12 and IL-6 following TLR4 activation by LPS  in vitro 

(Deshpande et al., 1997; Ghisletti et al., 2005). The findings of this report combined 

with findings in Crompton et al. (2016) and Li et al. (2000) support the data in this 

Chapter, showing estrogen promotes the microbicidal activities of macrophages 

against bacteria. 

In order to visualise the phagocytosis of S. aureus and P. aeruginosa with/without 

estrogen treatment, host-pathogen assays were conducted using fluorescent GFP S. 

aureus or mCherry P. aeruginosa. Visualisation of host-pathogen interactions was 

conducted via epifluorescent microscopy (Figure 3.14) and confocal microscopy 

(Figure 3.15). The findings demonstrated estrogen increased the internalisation of  

S. aureus and P. aeruginosa by macrophages, in concordance with the bacterial 

recovery data obtained from in vitro host-pathogen assays. 

Images captured by SEM also confirmed increased host-pathogen interaction 

following treatment of macrophages with estrogen. It was noted that estrogen-

treated macrophages had distinct morphological responses to MRSA and PAO1, in 

terms of pseudopodial formation. This finding was in concordance with data in the 

host-pathogen assays showing PAO1 recovery was consistently higher than MRSA 

recovery. The SEM images represent novel results that merit further investigation 

to determine the underlying mechansisms that might lead to pathogen-specific 

differences in pseudopdial formation. In order to better understand the 

biochemical processes occurring at the host-pathogen interface, future work could 

determine the effect of estrogen on physical and chemical changes in phagocytes. 

Fourier Transform Infra-Red (FTIR), spectroscopy and Raman spectroscopy can be 

used to determine changes in the functional groups on the cell surface of active 

phagocytes treated with estrogen. 
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The underlying mechanism by which estrogen affects bacterial phagocytosis has not 

been investigated yet. It is possible that estrogen promotes bacterial clearance by 

inducing genes or pathways involved in the processes of phagocytosis via activation 

of ER proteins. Future investigations will determine the precise ER pathways 

involved in estrogen-enhanced phagocytosis. Determining the mechanisms by 

which estrogen induces phagocytosis my lead to  novel therapeutic strategies that 

combat wound infections in the elderly by modulating the host immune response. 

One potential avenue will be to use selective estrogen receptor modulators 

(SERMs) such as tamoxifen that act as agonists of ER proteins in a tissue-specific 

manner.  

Tissue macrophages exist in different activation states: either pro-inflammatory 

(classically activated) by LPS or IFN-γ, referred to as M1 macrophages, or anti-

inflammatory (alternatively activated) by IL-13 or IL-4, referred to as M2 

macrophages (Aron-Wisnewsky et al., 2009). Preliminary assays in this study were 

performed on PMA-differentiated M0 macrophages. Further work will investigate 

M1 and M2 macrophages to determine whether estrogen influences phagocytosis 

in an activation-dependent manner. 

Images from the SEM (Figure 3.16) illustrated major morphological changes in the 

membrane of phagocytes (macrophages) following estrogen treatment, with the 

establishment of multiple pseudopodial structures suggesting estrogen induces 

significant alterations in the actin cytoskeleton of phagocytes. These findings 

suggested the downstream genes mediated by estrogen may include mediators of 

the actin cytoskeleton. Thus, further investigations could measure differences in 

activated/total levels of proteins involved in the regulation of the actin 

cytoskeleton, such as members of the Rho GTPase family. 

Findings of this study are novel and support the preliminary work performed by 

Crompton et al. (2016). In summary, bacterial phagocytosis by macrophages was 

elevated following stimulation with physiological (typical of youth) and 

supraphysiological estrogen levels compared to estrogen deprivation and an 

absolute absence of estrogen. This suggests that the ageing process (age-related 

decline in estrogen levels) may increase the propensity and progression of wound 
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infections in the elderly, in line with the findings of Ashcroft et al. (1999a). The 

findings of this study suggest local and/or systemic hormone replacement therapy 

(HRT) might resolve or reduce the likelihood of Gram-positive and Gram-negative 

wound infections in the elderly. 
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4.1 Introduction 

4.1.1 Macrophages Polarisation and Plasticity  

The plasticity of macrophages is established by acquisition of distinct functional and 

morphological characteristics directed by particular tissues, and/or immunological 

and environmental stimuli (Mantovani et al., 2005; Gordon and Martinez, 2010; 

Wynn et al., 2013). Macrophages in tissues have several similar characteristics but 

they are an extremely heterogeneous population of cells in relation to their 

function and expression of surface markers (Figure 4.1) (Mackaness, 1964; Nathan 

et al., 1983; Stein et al., 1992; Mantovani et al., 2005; Murray and Wynn, 2011; 

Murray et al., 2014). Macrophages are key effectors of the innate immune system, 

providing an initial defence against foreign invaders such as bacteria (Duque and 

Descoteaux, 2015). They also play key roles in initiating and controlling the adaptive 

immune responses (Duque and Descoteaux, 2015). Macrophages are crucial in 

tissue repair, haemostasis, inflammation and remodelling (Mosser and Edwards, 

2010). As a condition of a favourable resolution of inflammation, macrophages 

remove apoptotic leukocytes, and dysregulation in this particular macrophage role 

leads to chronic inflammatory and autoimmune diseases (Balhara and Gounni, 

2012). Macrophages have multiple functions and characteristics (pro-inflammatory 

or anti-inflammatory) in immunity, depending on the type of stimulation and  

resulting functional phenotype (Martinez et al., 2008). Macrophages were initially 

classified into two major phenotypes based on type 1 helper T-cell (Th1) and type 2 

helper T-cell (Th2) polarisation (Hesse et al., 2001; Puig-Kröger et al., 2004; Yona et 

al., 2013; Martinez and Gordon, 2014). Cytokines mainly released by Th1 cells, such 

as IFN-γ differentiate macrophages to pro-inflammatory M1 macrophages. 

However, cytokines released by Th2 cells such as IL-4 have been reported to 

dampen macrophage activation, resulting in M2 anti-inflammatory macrophages 

(Raes et al., 2002; Kzhyshkowska et al., 2006). 
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  Classically Activated Macrophages 

In response to cytokines such as IFN-γ, and/or bacterial components such as LPS, 

macrophages are polarized to a pro-inflammatory phenotype and are referred to as 

classically activated or M1 macrophages. Classical activation or M1 polarisation are 

terms that were first used during the 1960s when studies on mice reported 

macrophages with enhanced anti-bacterial activities towards infections with 

Mycobacterium bovis bacillus Calmette-Guerin (BCG) or Listeria monocytogenes 

(Mackaness, 1964). The cytokine IFN-γ produced by TH1 cells was described as the 

main activator of antimicrobial and cytotoxic activities of macrophages (Mosmann 

et al., 1986). Genetic deficiencies of IFN-γ and/or its receptors confirmed that 

macrophages polarisation to the M1 phenotype is essential for host defence against 

pathogenic infections in knockout mice models and in humans. Components of 

intracellular pathogens (e.g. LPS), TNF, GM-CSF and TLR4 ligands were also 

described to encourage M1 polarisation (Mantovani et al., 2005). 

M1 macrophages stimulate TH1 immunity by releasing high levels of IL-12 

(Mantovani et al., 2004), producing microbicide enzymes such as inducible NO 

synthase (iNOS) to destroy pathogenic invaders, secreting pro-inflammatory 

cytokines, such as, IL-1β, IL-6, IL-12, IL-23, TNF-α, and releasing chemokines to 

attract immune cells to the infection site and MMPs (Mantovani et al., 2004). 

  Alternatively Activated Macrophages 

In 1990, a study reported for the first time the inhibition of M1 polarisation. This 

study revealed that the production of IFN-γ induced superoxide (O2
-) by IL-4 was 

inhibited (Abramson and Gallin, 1990). Later on the 1990s, Gordon and colleagues 

described the term “alternatively activated macrophages (Stein et al., 1992). It is 

commonly believed that M2 macrophages are involved in tissue repair, fibrosis and 

tumour progression (Wynn, 2004). They are identified by expression of surface 

markers, mainly the macrophage mannose receptor CD206 (Stein et al., 1992) and 

CD163 (Zeyda et al., 2007). Arginase (Arg-1) is an enzyme that is involved in the 

production of proline via conversion of arginine to ornithine (Martinez et al., 2008). 

Proline has been linked with ECM formation and collagen deposition (Hesse et al., 
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2001). M2 macrophages release anti-inflammatory cytokines, such as, IL-10, and 

are crucial in resolving chronic inflammation, stimulating angiogenesis and 

fibrogenesis and promoting tissue remodelling (Mosser and Edwards, 2008). 

Depending on the stimuli that induces polarisation of macrophages to the M2 

phenotype, M2 macrophages were divided into three subpopulations: M2a 

encouraged by stimulation with IL-4 and/or IL-13, M2b encouraged by TLR lignans, 

immune complexes (ICs), or IL-1R and M2c induced by IL-10/TGF-β  (Mantovani et 

al., 2004). 

 

Figure 4.1. Plasticity of macrophages in wound healing. Following an injury, monocytes  
infiltrate to the wound site and become macrophages (M0). During the early stage of 
inflammation, macrophages switch to the M1 phenotype. M1 macrophages have a 
microbiocidal activity and induce TH1 responses via release of IL-12. Close to the end of the 
inflammatory stage, the microenvironment of the wound changes and the process of 
clearing apoptotic cells initiates the polarisation of macrophages toward M2 macrophages. 
M2 cells play a key role in the resolution of inflammation and progression to subsequent 
stages of wound healing. Both M1 and M2 macrophages are key players in switching from 
inflammation to proliferation (angiogenesis, re-epithelialisation and matrix production). 
Figure drawn based on information in (Benoit et al., 2008; Krzyszczyk et al., 2018). 

4.1.2 Macrophage Phenotypes and Plasticity in Wound Healing 

The proliferation of primary monocytes is limited in vitro but evidence suggests skin 

macrophages can auto-renew in vivo (Davies et al., 2013). In contrast, it remains 

unclear if macrophages are only recruited to the wound site when required and 
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removed after wound repair, or if macrophages deriving from monocytes can 

proliferate in vivo (Italiani and Boraschi, 2014). 

Macrophages were initially classified into two major phenotypes referred to as M1 

and M2 macrophages. M1 macrophages are commonly linked with pro-

inflammatory events, while M2 macrophages are known to be anti-inflammatory 

and pro-regenerative. It is essential to understand that M1 and M2 macrophages 

are not separate types of cells, but they form a scale in which they take varying 

degrees of M1 or M2 properties. In addition, in vivo studies propose that 

macrophages are a heterogeneous group of cells all displaying a diversity of M1 and 

M2 characteristics (Martinez and Gordon, 2014; Murray et al., 2014; Ogle et al., 

2016). 

Distinct M1 and M2 macrophages classification is not applied when comparing 

wound healing macrophages in vivo. However, this classification is widely used in 

vitro when molecules inducing the polarisation are known and experimentally 

introduced to the system (Novak and Koh, 2013). The types and suggested roles of 

macrophages related with wound healing in vitro and in vivo are illustrated (figure 

4.2). 

 

Figure 4.2. The role of macrophage phenotypes in wound repair. During haemostasis and 
inflammation, pro-inflammatory macrophages invade the wound area and start removing 
dead cells and bacteria. During the proliferative stage, pro-wound healing macrophages are 
present and release factors such VEGF, PDGF, TGF-β to aid angiogenesis, ECM and scar 
formation and re-epithelialization. During remodelling, pro-resolving macrophages are 
involved in strengthening the new skin barrier. 

In line with the wound healing process, pro-inflammatory macrophages are 

dominant at the wound site after an injury, followed by pro-wound healing 
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macrophages that stimulate the growth of cells during  the proliferative phase, and 

finally pro-resolving macrophages that dampen immune responses and stimulate 

the remodelling and maturation of collagen (Vannella and Wynn, 2017). 

During wound healing, pro-inflammatory macrophages are a source of NO, ROS, IL-

1, IL-6, and TNF-α. They release MMPs in order to disrupt the extracellular matrix 

and create a space for inflammatory cells to infiltrate the wound (Murray and 

Wynn, 2011). They also release important levels of growth factors such as PDGF, 

VEGF, insulin-like growth factor 1 (IGF-1) and TGF-β1 which facilitate the 

proliferation of cells involved in angiogenesis and ECM deposition (Murray and 

Wynn, 2011). Pro-resolving macrophages dampen inflammation by upregulating IL-

10 and produce MMPs to remodel and reinforce the ECM (Vannella and Wynn, 

2017). The main roles of pro-resolving macrophages are to reinstate homeostasis 

and minimize fibrosis via apoptosis of myofibroblasts, and suppression T cell 

proliferation (Murray and Wynn, 2011). 

Knowing that wound healing is a sequence of overlapping phases, all types of 

macrophages share many characteristics simultaneously. This is particularly true for 

pro-wound healing macrophages as they fluctuate between the early and late 

stages of wound repair, and therefore display similar features to pro-inflammatory 

and pro-resolving macrophages. 

M1 macrophages are the dominant pro-inflammatory macrophages during the 

early pro-inflammatory stage of wound repair. They are phagocytic, and serve as 

cleaners of the wound site by removing foreign invaders and dead tissue. In vitro, 

M1 macrophages are induced by intracellular cytokines such as IFN-γ, and/or 

bacterial elements, such as LPS and peptidoglycans. M1 macrophages are 

distinguished in vitro by the expression of the chemokine receptor CCR7 (CD197) 

and high levels of the co‐stimulatory molecules CD80 and CD86, resulting in 

efficient antigen presentation capacity (Mantovani et al., 2004). 

M2 macrophages play a regenerative role in wound healing. They are induced by IL-

4 and IL-13 and characterised by a high expression of the mannose receptor 

(CD206) (Stein et al., 1992), the haemoglobin scavenger receptor (CD163) (Zeyda et 
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al., 2007), IL-10, and TGF-β. M2 macrophages release only very low levels of pro-

inflammatory mediators such as TNF-α, IL-12, and IL-8. In wounds M2 macrophages 

have been divided into three subtypes (M2a, M2b and M2c) relating to expression 

of different surface markers. The three subtypes are commonly identified and used 

in vitro to investigate M2 phenotype characteristics. However, distinct M2 

macrophages classification is not widely applied when referring to wound healing in 

vivo. This is due to the heterogeneous populations present, which are generated 

from a variety of stimuli within wounds (Novak and Koh, 2013). Studies have 

reported that the wound healing M2 macrophages align with the well-defined 

subset of M2a (Ogle et al., 2016). M2a macrophages are induced by IL-4/IL-13 and 

distinguished by the expression of CD206. They produce arginase-1, IGF-1, PDGF-BB 

and a variety of chemokines (CCL17, CCL18, CCL22) (Ogle et al., 2016). They are 

crucial in the proliferative stage of wound healing by aiding ECM formation via 

production of collagen precursors and stimulation of fibroblasts.  M2 macrophages 

also release high levels of PDGF, which is involved in angiogenesis (Vannella and 

Wynn, 2017). 

Overall, macrophage classification is complex and not yet fully understood with 

uncertainty whether macrophage phenotypes are distinct, or even appropriate to in 

vivo models of wound healing (Martinez and Gordon, 2014). Although the 

mechanism is not understood, a balance between the M1 and M2 phenotypes is 

essential to preserve a homeostatic environment, and imbalance leads to disturbed 

inflammation. 

Exogenous estrogen supplementation enhances healing in elderly people, indicating 

that the systemic and peripheral age-related decrease in endogenous estrogen 

levels impairs healing in both sexes (Ashcroft et al., 1997b; Hardman and Ashcroft, 

2005). Known for its anti-inflammatory proprieties, estrogen is reported to resolve 

excessive inflammation by directly effecting inflammatory responses of monocytes 

and macrophages (Ashcroft et al., 2003; Guo and DiPietro, 2010). Estrogen has 

been reported to accelerate re-epithelialisation, promote angiogenesis, increase 

matrix deposition and wound contraction, dampen the inflammatory response and 

inhibit the release of pro-inflammatory cytokines (Ashcroft and Ashworth, 2003). 
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These findings suggest estrogen modulated both pro-inflammatory (M1) and anti-

inflammatory / pro-regenerative (M2) macrophages during wound repair. Estrogen 

is also believed to be a key player in regulating immune responses against bacterial 

infections in wounds (Cutolo et al., 2004). Data in the previous chapter showed that 

estrogen significantly enhanced the phagocytosis of MRSA and P. aeruginosa by 

classical M0 macrophages, in a concentration-dependant manner when above 

levels described as estrogen deprivation. Using models of macrophage polarisation 

into M1 and M2 phenotypes, the effect of estrogen on the phagocytosis of MRSA 

and P. aeruginosa by M1-like and M2-like macrophages was investigated. 

4.2 Aim and Objectives 

4.2.1 Aim 

To investigate the effect of estrogen (age-related changes in estrogen 

concentrations) on the phagocytic function of both pro-inflammatory (M1) and 

anti-inflammatory (M2) macrophages using in vitro and ex vivo models of host-

pathogen interactions. 

4.2.2 Objectives 

 

 Generate an in vitro model of HPBM and U937 monocyte differentiation into 

M1-like and M2-like macrophages. 

 

 Compare the phagocytic function of M1 and M2 macrophages under 

conditions of physiological and supraphysiological levels of estrogen with 

conditions of estrogen deprivation or an absolute absence of estrogen. 
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 Compare the effect of age-related changes in estrogen levels on the 

phagocytosis of Gram-positive and Gram-negative bacteria by M1-like and 

M2-like macrophages. 
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4.3 Methods 

4.3.1 Flow Cytometry 

U937 and HPBM were differentiated into M1-like and M2-like macrophages in vitro 

(Figure 4.3) as described in section 2.2.5. The expression of surface markers specific 

for M1 (CD197) and M2 (CD206) macrophages (relative MFI and % fluorescence) on 

M1- and M2-like cells were compared with untreated M0 control macrophages. 

4.3.2 In vitro and Ex Vivo Models of Host-Pathogen Interactions 

U937 and HPBM M1-like/M2-like macrophages were adhered to wells and treated 

with different concentrations (1 x 10-7 M, 1 x 10-8 M, 1 x 10-9 M and zero M) of 

estrogen in antibiotic-free medium for 24 hours to represent the models of age-

related changes in estrogen levels described in Sections 2.2.2 and 2.2.8.2. Cells 

were incubated with MRSA or P. aeruginosa (1 x 104 CFU) for 3 hours at 37 °C and 

5% CO2 prior to counting bacterial colonies (CFU/mL) following the methods 

described in Section 2.2.8.2. 
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Figure 4.3. Experimental Generation of M1 and M2 Macrophages. U937 and CD14+ HPBM were differentiated into adherent M0 macrophages using PMA 
for 24 hours (with medium being changed after 24 hours). Further polarisation into classically activated (M1) or alternatively activated (M2) macrophages 
was performed using LPS + IFN-γ or IL-4 + IL-13 for 24 hours, respectively. The medium was changed every other day to generate resting M1-like and M2-
like macrophages. 
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4.4 Results 

4.4.1 Differentiation of Monocytes into M1 and M2 Macrophages  

The expression of CD197 and CD206, which are surface markers for M1 (Mantovani 

et al., 2004) and M2 (Stein et al., 1992) macrophages respectively, were examined 

by flow cytometry (Figure 4.4). The findings confirmed the successful conversion of 

U937 M0 macrophages into CD197+ M1 and CD206+ M2 macrophages. The U937 

macrophages treated with LPS/IFN‐γ were 94.7% CD197+ and 0.4% CD206+, 

whereas the U937 macrophages treated with IL-4/IL-13 were 6.6% CD197+ and 

79.8% CD206+. The MFI for M1 surface marker CD197 was significantly (P<0.01) 

higher in U937 macrophages treated with LPS/IFN‐γ compared to untreated U937 

macrophages or U937 macrophages treated with IL-4/IL-13. In contrast, the MFI for 

the M2 surface marker CD206 was significantly (P<0.01) higher in U937 

macrophages treated with IL-4/IL-13 compared to untreated U937 macrophages or 

macrophages treated with LPS/IFN‐γ. 

Similarly, the findings confirmed the successful conversion of HPBM-derived 

macrophages into CD197+ M1 and CD206+ M2 macrophages (Figure 4.5). There was  

substantial expression of the M1 surface marker CD197 (67.2%) by HPBM-derived 

macrophages treated with LPS/IFN‐γ, whereas CD197 was almost absent in HPBM-

derived M0 macrophages (1%) and at very low levels (5.7%) in HPBM-derived 

macrophages treated with IL-4/IL-13. The M2 surface marker CD206 was 

substantially expressed (73.4%) by HPBM-derived macrophages treated with IL-

4/IL-13 whereas CD206 was almost absent from HPBM-derived M0 macrophages 

(0.1%) and HPBM-derived macrophages treated with LPS/IFN‐γ (0.2%). The MFI for 

CD197 from HPBM-derived macrophages treated with LPS/IFN‐γ was significantly 

(P<0.01) greater than from HPBM-derived M0 macrophages or HPBM-derived 

macrophages treated with IL-4/IL-13.In contrast, the MFI  for CD206 from HPBM-

derived macrophages treated with IL-4/IL-13 was significantly (P<0.01) higher than 

from HPBM-derived M0 macrophages or HPBM-derived macrophages treated with 

LPS/IFN‐γ.
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Figure 4.4. Differentiation of U937 M0 macrophages onto M1/M2 macrophages. The polarisation of U937 M0 macrophages into M1-like and M2-like 
macrophages was confirmed by through detection of CD197 and CD206 surface markers by flow cytometry respectively. M0 macrophages did not express 
CD197 or CD206 markers (0.2% and 0.4% respectively). U937 macrophages treated with LPS/IFN‐γ expressed high levels of CD197 (94.7%) but almost lacked 
CD206 (0.4%). U937 macrophages treated with IL-4/IL-13 expressed CD206 (79.8%) but very low levels of CD197 (6.6%) (A). Three distinct populations of 
U937 macrophages were identified (D) with significantly higher MFI for CD197 from M1 macrophages compared to M0 and M2 macrophages (B), and a 
significantly higher MFI for CD206 from M2 macrophages compared to M0 and M1 macrophages. Data represent averages of n = 3 experiments. ** 
Indicates significant difference (One-way ANOVA) in MFI (P<0.01) compared to M0 macrophages. Error bars represent the standard error of the mean 
(StEM).  
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Figure 4.5. Polarisation of HPBM M0 macrophages into M1/M2 macrophages. The polarisation of HPBM M0 macrophages into M1 and M2 macrophages 
was confirmed via detection of CD197 and CD206 surface markers by flow cytometry respectively. PMA-differentiated M0 macrophages almost lacked both 
CD197 (1%) and CD206 (0.1%). In contrast, macrophages treated with LPS/IFN‐γ expressed CD197 (67.2%) but almost lacked CD206 (0.2%). Macrophages 
treated with IL-4/IL-13 expressed CD206 (73.4%) but very low levels of CD197 (5.7%) (A). Three distinct populations of HBPM macrophages were detected 
(D) with significantly higher MFI for CD197 from M1 macrophages compared to M0 and M2 macrophages (B), and significantly higher MFI for CD206 from 
M2 macrophages compared to M0 and M1 macrophages. Data represent an average of n = 3 experiments. ** Indicates significant difference (One-way 
ANOVA) in MFI (P<0.01) compared to M0 macrophages. Error bars represent the standard error of the mean (StEM). 



116 

 

4.4.2 Effect of Age-Related Changes in Estrogen Levels on In vitro Phagocytosis 

of MRSA and P. aeruginosa by U937-derived M1 and M2 Macrophages 

The effect of age-related changes in estrogen levels on the clearance of MRSA and 

P. aeruginosa by U937-derived M1 and M2 macrophages was investigated (Figure 

4.6). Compared to the negative control, conditions representing an absolute 

absence of estrogen (zero M) and estrogen deprivation (1 x 10-9 M)  had no 

significant effect (P>0.05) on the clearance of MRSA or PAO1 by both U937-derived 

M1 and M2 macrophages. 

In contrast, physiological and supraphysiological levels of estrogen significantly 

(P<0.01) reduced the recovery of MRSA and P. aeruginosa by both U937-derived 

M1 and M2 macrophages in a dose-dependent manner compared to the negative 

control. After a 3-hour incubation with U937-derived M1 macrophages, the MRSA 

recovery was significantly (P<0.05) reduced to 1586 CFU/mL and 1476 CFU/mL 

following treatment with physiological and supraphysiological levels of estrogen 

respectively, compared to the negative control (2117 CFU/mL). Although somewhat 

less effective, after a 3-hour incubation with U937-derived M2 macrophages with 

physiological or supraphysiological levels of estrogen still significantly (P<0.05) 

reduced the recovery of MRSA to 2927 CFU/mL and 2533 CFU/mL respectively 

compared to the negative control (3538 CFU/ml).  

Similarly, treating U937-derived M1 macrophages with physiological or 

supraphysiological levels of estrogen significantly (P<0.05) reduced PAO1 recovery 

to 2405 CFU/mL and 1920 CFU/mL respectively compared to the negative control 

(2660 CFU/mL). Although somewhat less effective, treating U937-derived M2 

macrophages with physiological or supraphysiological levels of estrogen still 

significantly (P<0.05) reduced the recovery of PA01 to 3052 CFU/mL and 2594 

CFU/mL respectively compared to the negative control (3790 CFU/mL). 
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Figure 4.6. Estrogen enhances the phagocytosis of MRSA (A) and PAO1 (B) by U937-
derived M1/M2 macrophages in vitro. The recovery of MRSA (A) and PAO1 (B) after 
incubation with  U937-derived M1/M2 macrophages were significantly (*: P<0.05, **: 
P<0.01) decreased following treatment with physiological (1 x 10-8 M) or supraphysiological 
(1 x 10-7 M) levels of estrogen compared to the negative control. U937-derived M1 
macrophages internalised significantly (P<0.05) more MRSA/PAO1 respectively than U937-
derived M2 macrophages. Data is mean ± StEM, n = 10. 

4.4.3 Effect of Age-Related Changes in Estrogen Levels on the Phagocytosis of 

MRSA and P. aeruginosa by Ex Vivo M1 and M2 Human Macrophages 

The effect of estrogen on the phagocytosis of MRSA and P. aeruginosa by ex vivo 

HPBM-derived M1/M2 macrophages was investigated (Figure 4.7). After a 3-hour 
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incubation of MRSA or P. aeruginosa  with HPBM-derived M1/M2 macrophages, the 

number of recovered MRSA and P. aeruginosa under conditions representing an 

absolute absence of estrogen (zero M) and estrogen deprivation (1 x 10-9 M) were 

not significantly different (P>0.05) to the negative control. 

Physiological and supraphysiological levels of estrogen significantly (P<0.05) 

reduced MRSA and P. aeruginosa recovery by HPBM-derived M1 and M2 

macrophages compared to the negative control. After a 3-hour incubation with 

HPBM-derived M1 macrophages, the MRSA recovery significantly (P<0.05) 

decreased from 2825 CFU/mL in the negative control to 2023 CFU/mL and 1343 

CFU/mL following treatment with physiological and supraphysiological levels of 

estrogen respectively. Although significantly less effective than M1 macrophages, 

treatment of HPBM-derived M2 macrophages with physiological or 

supraphysiological levels of estrogen still significantly (P<0.05) reduced the recovery 

of MRSA to 2745 CFU/mL and 2437 CFU/mL respectively compared to the negative 

control (3635 CFU/mL). 

Similarly, treating HPBM-derived M1 macrophages with physiological or 

supraphysiological levels of estrogen significantly (P<0.05) reduced P. aeruginosa 

recovery to 2430 CFU/mL and 2083 CFU/mL respectively compared to the negative 

control (3352 CFU/mL). Although somewhat less effective, treating HPBM-derived 

M2 macrophages with physiological or supraphysiological levels of estrogen still 

significantly (P<0.05) reduced the recovery of P. aeruginosa to 3062 CFU/mL and 

2339 CFU/mL respectively compared to the negative control (4052 CFU/mL). 

Intriguingly, the MRSA and P. aeruginosa uptake was significantly (P<0.05) greater 

with both U937-derived and HPBM-derived M1 macrophages compared to M2 

macrophages. 
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Figure 4.7. Estrogen improves the phagocytosis of MRSA (A) and PAO1 (B) by ex vivo 
HPBM-derived M1/M2 macrophages. The recovery of MRSA (A) and P. aeruginosa (B) after 
incubation with HPBM-derived M1/M2 macrophages were significantly (*: P<0.05, **: 
P<0.01) decreased following treatment with physiological (1 x 10-8 M) or supraphysiological 
(1 x 10-7 M) levels of estrogen compared to the negative control. HPBM-derived M1 
macrophages internalised significantly (P<0.05) more MRSA/PAO1 respectively than HPBM-
derived M2 macrophages. Data is mean ± StEM, n = 10. 
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4.5 Discussion 

Plasticity of macrophages is a crucial process for an effective inflammatory phase 

during wound healing. Macrophages ability to continuously switch from a 

phenotype to another was demonstrated in mice (Thomas et al., 1992; Erwig et al., 

1998). Experiments in this study were conducted using pro-inflammatory (M1-like) 

and anti-inflammatory (M2-like) macrophages. In vitro M1 macrophages can be 

induced by differentiation with IFN-γ and/or LPS, and distinguished through the 

expression of the surface markers CD197 and/or CD86 (Mantovani et al., 2004). In 

contrast, M2 macrophages can be induced by differentiation with IL-4 and/or IL-13, 

and distinguished through the expression of the macrophage mannose receptors, 

CD206 (Stein et al., 1992; Daigneault et al., 2010) and/or CD163 (Zeyda et al., 2007). 

Successful polarisation of U937-derived, and HPBM-derived M0 macrophages into 

M1-like and M2-like macrophages was achieved in this study, with high expression 

of CD197 confirming polarisation into M1-like macrophages by IFN-γ/LPS, and high 

CD206 expression confirming polarisation into M2-like macrophages by IL-4/IL-13. 

The effect of estrogen on the phagocytosis of MRSA and P. aeruginosa by U937-

derived M1-like and M2-like macrophages was investigated in vitro. In line with 

findings of chapter 3, the results from this chapter demonstrated that the 

physiological and supraphysiological levels of estrogen enhanced the clearance of 

both MRSA and PAO1 in a dose-dependent manner in both U937-derived M1 and 

M2 macrophages. Interestingly, the bacterial recovery followed a similar pattern 

throughout, regardless of the macrophage phenotype, with estrogen consistently 

increasing (P<0.05) the phagocytosis of bacteria. These results are supported by the 

findings of Crompton et al. (2016), when estrogen was found to significantly 

enhance the rate of wound repair in mice in a K. pneumonia LPS model of infection, 

and by Li et al. (2000) when a 48-hour stimulation with estrogen was found to 

enhance the uptake of amyloid β‐peptide and E. coli by macrophages extracted 

from human brain tissues (microglial cells). Cutolo et al. (2004) also described 

estrogen as a key regulator of immune responses against bacterial infections in 

macrophages as estrogen was found to enhance the expression of growth and 

proliferation markers in macrophages in patients with autoimmune diseases. 
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It is believed that during early stages of wound healing, M1 macrophages are highly 

phagocytic, and serve as cleaners of the wound site by removing foreign invaders 

and dead tissue (Stein et al., 1992) whereas M2 macrophages have anti-

inflammatory properties and play a more regenerative role as the inflammatory 

response phase subsides (Mantovani et al., 2004). In line with this, M1 

macrophages were described to be highly phagocytic in vitro, and produce 

microbicide enzymes such as iNOS, essential for pathogen destruction. They also 

release many pro-inflammatory cytokines, such as, IL-1β, IL-6, IL-12, IL-23 and TNF-

α (Mantovani et al., 2004). Werner and Grose (2003) reported an up-regulation of 

these cytokines during the inflammatory phase of wound repair. In addition, 

research indicated that genetic deficiencies of IFN-γ and/or its receptors confirmed 

that macrophages polarisation to the M1 phenotype is essential for host defence 

against pathogenic infections in knockout mice models and in humans. Components 

of intracellular pathogens (e.g. LPS), TNF, GM-CSF and TLR4 ligands were also 

described to encourage M1 polarisation (Mantovani et al., 2005). Collectively, data 

from the host-pathogen assays support these reports, with significantly enhanced 

clearance of MRSA and P. aeruginosa by M1 macrophages compared to M2 

macrophages or M0 macrophages (results in chapter 3). 

The assays were conducted first using the immortal cell line “U937 monocytes”. In 

vitro results would provide an insufficient evidence to predict effects in vivo. To 

avoid this limitation, primary monocytes derived from human peripheral blood 

were used to conduct an ex vivo model of host-pathogen interactions. 

Unsurprisingly, the findings were consistent with the in vitro assays. The bacterial 

recovery was shown to decrease with increasing estrogen concentrations with both 

HPBM-derived M1 and M2 macrophages, with a significantly greater uptake of 

bacteria with M1 macrophages compared to M2 macrophages. This suggests 

enhanced phagocytosis is a feature of M1 macrophages, regardless of their source. 

In support of these results, Deshpande et al. (1997) reported that estrogen causes 

an increase in the production of iNOS by murine macrophages as well as many 

other cytokines, particularly, IL-1β, IL-12 and IL-6. This is due to TLR4 activation with 

LPS in murine macrophages. In contrast, other studies reported many anti-
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inflammatory effects of estrogens on macrophages in vitro. Indeed, a 2-hour 

estrogen treatment of macrophages (RAW 264.7 cell line) in vitro caused a 

substantial diminution in the expression of inflammatory mediators, mainly NF-κB, 

subsequent to TLR4 activation (Ghisletti et al., 2005). Long-time (chronic) exposure 

to estrogen was found to promote the alternative activation of macrophages and to 

dampen the IFN-γ/LPS actions on human macrophages (Campbell et al., 2014; 

Toniolo et al., 2015). In this study, a 24-hour incubation with estrogen was shown 

to increase the rate of bacterial phagocytosis in all macrophages regardless the 

macrophage subtype. Further investigations are warranted to determine whether 

estrogen have an effect on the polarisation of macrophages in vitro. One 

application will be to measure the expression of the M1-like and M2-like specific 

markers (e.g. CD197 and CD206 respectively) before and after treatment of 

macrophages with estrogen. 

Human trials have confirmed that estrogen supplementation accelerates healing by 

reducing inflammatory response in the elderly (Deshpande et al., 1997; Srivastava 

et al., 1999) but further in vivo investigations are needed to demonstrate the effect 

of estrogen on bacterial clearance in elderly subjects. Investigations could also be 

conducted using existing animal models of age-related impaired healing 

(Deshpande et al., 1997; Ghisletti et al., 2005) to confirm in vivo effects of estrogen 

on the phagocytic function of M1 and M2 macrophages. 

Billiau and Vandekerckhove (1991) reported that bacterial clearance in wounds is 

reliant on good regulation of TNF-α. Interestingly, estradiol was shown to suppress 

the production of TNF-α in murine macrophages (Deshpande et al., 1997; Srivastava 

et al., 1999). The work presented in this chapter suggests that TNF-α could be 

associated with the mechanism of estrogen-enhanced phagocytosis in M1 

macrophages. Further research is warranted to investigate the change in TNF-α 

levels and other pro-inflammatory cytokines (e.g. MIF) involved in the estrogen-

increased phagocytosis in macrophages. 

Compared to results reported in chapter 3, M1-like macrophages were shown to be 

more phagocytic than M0-like macrophages regardless of the source of 

macrophage. Further work investigating mechanisms of estrogen-enhanced 
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phagocytosis in this thesis will therefore be conducted using pro-inflammatory M1-

like macrophages instead of M0-like or M2-like macrophages. Investigations were 

conducted (chapter 5) to determine the ER pathways linked with the estrogen-

mediated enhancement of phagocytosis through the use of: selective estrogen 

receptor modulators (SERMs) (e.g. Tamoxifen), selective estrogen receptor 

degraders (SERDs) (e.g. Fulvestrant), selective ER-α and/or ER-β agonists (e.g. PPT, 

DPN) to determine the exact ER activation profile involved in the estrogen-

enhanced phagocytosis. In order to investigate the mechanism by which estrogen 

enhanced bacterial clearance in M1 macrophages, the changes in the levels of 

proteins that regulate the actin cytoskeleton dynamics including Rho GTPase 

proteins, and focal adhesion proteins on the cell membrane of estrogen-treated M1 

macrophages are presented (detailed in chapter 6). 

In summary, these findings confirm for the first time that estrogen 

deprivation inhibits phagocytosis by both M1-like and M2-like human macrophages 

whereas physiological/supraphysiological levels of estrogen stimulate the 

phagocytic function of M2 but particularly M1 human macrophages against Gram-

positive and Gram-negative wound pathogens. Together, the results suggest topical 

or systemic estrogen supplementation may potentially resolve or reduce the 

likelihood of wound infections in the elderly. 
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5.1 Introduction 

5.1.1 Estrogen Receptors 

Estrogen signals principally through the estrogen receptor (ER) proteins that are 

part of the nuclear receptor (NR) family. ERs display a structure that is typical of the 

NR family, containing six domains (A-F) (Kuiper et al., 1998; Klinge, 2000; Begam et 

al., 2017) (Figure 5.1). 

ER-alpha (ER-α) was first discovered in 1958 and cloned in 1985 (Jensen, 1962; 

Kuiper et al., 1998). However, ER-beta (ER-β) was first characterised in 1996 in rat 

prostate and ovary. Later in 1998, a human ER-β was identified (Mosselman et al., 

1996; Kuiper et al., 1998). Both ERs are located in various tissues (Campbell et al., 

2010). ER-α is highly expressed in ovaries, cancer breast tissues and reproductive 

tissues (Kuiper et al., 1997; Ali and Coombes, 2000; Campbell et al., 2010).  ER-β is 

mainly found in peripheral tissues such as bone, heart and hypothalamus, but it can 

also be found in healthy breast tissue, the prostate and testis (Kuiper et al., 1997; 

Ali and Coombes, 2000; Campbell et al., 2010). ERs are expressed in the skin, 

suggesting that estrogen regulates skin functions and development (Ashworth, 

2005). Both ER-α and ER-β have been identified in the epidermis of young and old 

women, with isoforms observed in epithelial cells of the hair follicles (Ashworth, 

2005). 

 

Figure 5.1. Schematic representation comparing the structure of human ER-α with ER-β. 
Homology between domains (A-F) is represented as percentage (%) similarity. NHD = N- 
terminal homology domain, DBD = DNA-binding domain, LBD = ligand-binding domain. 
Figure adapted from (Webb et al., 1999; Klinge, 2000; Begam et al., 2017). 

Estrogen signals predominantly by binding to inactive ERs in the nucleus of the cell 

(Klinge, 2000). When estrogen binds to ERs, they become activated and dimerize 

(Klinge, 2000). Each ER has a DNA-binding domain (DBD) which binds to the target 
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gene at a site called the estrogen response element (ERE) (Kuiper et al., 1998; 

Klinge, 2000). In cells expressing a single ER subtype, homodimers of ER-α or ER-β 

are formed (Kuiper et al., 1998). In cells that express both ER subtypes, a 

heterodimer containing one ER-α and one ER-β may form (Kuiper et al., 1998). ERs 

heterodimers and ER-α homodimers bind to DNA with a similar affinity. However, 

ER-β homodimers bind to DNA with a lower affinity (Kuiper et al., 1998). DNA-

bound homodimers and heterodimers bind to steroid receptor coactivator-1 and 

trigger gene transcription (Marino et al., 2006). 

Both ER-α and ER-β enhance acute wound repair, however, their functions are 

different; ER-α is described to control and regulate inflammation, however, ER-β is 

linked with the modulation of wound healing (Campbell et al., 2010). While ER-α 

and ER-β express a 97% homology in the DBD region, they only have 55% homology 

in the LBD region (Barkhem et al., 1998; Webb et al., 1999; Klinge, 2000). This made 

possible the design of artificial estrogens such as SERMs with specific binding 

affinity to one isoform over another. 

5.1.2 Estrogen Receptor Agonists 

Estrogen receptor agonists are molecules that induce one or both ER subtypes in 

order to partially or fully induce a pharmacological effect (Sun et al., 1999). 

Selective agonists of ER-α and ER-β are extensively used to investigate the distinct 

functions of the ERs in several human diseases. Propyl pyrazole triol (PPT) and 

Diarylpropionitrile (DPN) are the most frequently used selective ERs agonists. PPT is 

a selective ER-α agonist (Thammacharoen et al., 2009) that has 410-fold more 

selectivity for ER-α than ER-β (Thammacharoen et al., 2009). In 1999, PPT was used 

for the first time to investigate the role of ER-α in several tissues (Sun et al., 1999). 

DPN is a selective ER-β agonist (Minutolo et al., 2011) that has 70-fold more 

selectivity for ER-β than ER-α (Meyers et al., 2001). DPN was first used in 1999 in a 

purpose  to develop new ligands selective for ER-β (Sun et al., 1999; Meyers et al., 

2001) (Figure 5.2). 
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Figure 5.2. Structure of DPN (A) and PPT (B). 

5.1.3 Estrogen Receptor Antagonists 

Estrogen receptor antagonists are compounds characterised to have high affinity to 

bind to one or both of the ER subtypes, without the potential of inducing the 

normal pharmacological effects typically mediated by the receptors (Wakeling et 

al., 1991; Barkhem et al., 1998). ER antagonists compete with estrogen to bind to 

the specific receptor site (Morris and Wakeling, 2002; Osborne et al., 2004). 

Therefore, the physiological effect produced in response to estrogen will be 

dampened in the presence of ER antagonists. ER antagonists have been used 

clinically to control fertility or treat various cancers (Morris and Wakeling, 2002; 

Osborne et al., 2004). 
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Theophylline, 8-[(benzylthio)methyl]-(7CI,8CI) (TPBM) is a potent inhibitor of ER-α 

via blocking the binding of ER-α to the ERE DNA (Mao et al., 2008). TPBM is highly 

selective for ER-α compared to ER-β, with a greater selectivity for blocking gene 

transcription mediated by ER-α  relative to ER-β (Mao et al., 2008). TPBM has been 

used  to investigate the role of ER-α in many biological processes and disorders 

including cancer (Mann, 2008; Plant and Zeleznik, 2014). 

 

Figure 5.3. Structure of TPBM.  

5.1.4 Selective Estrogen Receptor Modulators (SERMs) 

Selective estrogen receptor modulators (SERMs) are ER-interacting molecules that 

have the ability to bind the ERs and act as agonists in specific tissues whilst acting as  

antagonists in different tissues (Cho and Nuttall, 2001). SERMs have been used 

clinically to promote the beneficial effects of estrogen in target tissues whilst 

avoiding/decreasing detrimental effects of estrogen in other non-target tissues 

such as increasing the risk of breast cancer in breast tissues (Mirkin and Pickar, 

2015). SERMs can be differentiated from ER agonists/antagonists due to their 

opposing effects in tissues (Park and Jordan, 2002). SERMs are structurally different 

to estrogens but their chemical structures allow them to bind to the LBD of ERs 

(Brzozowski et al., 1997). 
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Tamoxifen (Figure 5.4) is one of the most documented and frequently used SERMs. 

It is known to have estrogenic effects in numerous peripheral tissues such as bone, 

but is anti-estrogenic in the breast tissue and therefore used extensively in breast 

cancer research (Furr and Jordan, 1984; Morris and Wakeling, 2002; Park and 

Jordan, 2002; Mirkin and Pickar, 2015). Tamoxifen was discovered and reported by 

the Food and Drug Administration (FDA) in 1977 (Park and Jordan, 2002; Jordan, 

2006; Mirkin and Pickar, 2015; Quirke, 2017). Tamoxifen binds to both ERs, and its 

effects depend on the cell and tissue types. It is anti-estrogenic in the breast, and is 

therefore commonly used to prevent and/or treat breast cancer in postmenopausal 

and premenopausal females (Zidan et al., 2004; Quirke, 2017). Tamoxifen has also 

been reported to maintain the density of bone in rats and humans (Jordan et al., 

1987; Zidan et al., 2004). However, it has multiple side effects and is frequently 

linked with endometrial cancer due to its estrogenic effects in the uterus (Kedar et 

al., 1994). 

 

Figure 5.4. Structure of Tamoxifen. 

5.1.5 Selective Estrogen Receptor Degraders (SERDs) 

Selective estrogen receptor degraders (SERDs) are molecules that have high affinity 

to bind ERs but lead to their degradation, leading to reduced levels of functional 
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ERs (Lee et al., 2017). Along with SERMs and aromatase inhibitors, SERDs are mainly 

used to treat breast cancer (Lee et al., 2017).  Fulvestrant, the most commonly used 

SERD, was officially discovered in 2002 (Lee et al., 2017). In November 2016, other 

SERDs such as elacestrant and brilanestrant were developed (Lai and Crews, 2017). 

Fulvestrant is an analogue and competitive inhibitor of 17β-estradiol (Osborne et 

al., 2004), with a high selective binding affinity (89% that of estrogen) to the ER 

(Morris and Wakeling, 2002). The binding of fulvestrant to the ER weakens the 

receptor dimerization and blocks the nuclear localisation of ER (Morris and 

Wakeling, 2002; Osborne et al., 2004). In addition, the fulvestrant-ER complex is 

unstable, which leads to its rapid degradation leading to enhanced cellular ER 

deprivation compared with estrogen or other SERMs (e.g. tamoxifen) (Morris and 

Wakeling, 2002). The reduced levels of functional ER protein does not cause any 

decrease in the levels of ER mRNA. Therefore, after binding to, blocking and 

accelerating the destruction of the ER protein, fulvestrant inhibits estrogen 

signalling (Morris and Wakeling, 2002; Osborne et al., 2004). 

 

Figure 5.5. Structure of Fulvestrant. 

5.1.6 Estrogen Receptors and Wound Infection 

ER-α and ER-β are both expressed by inflammatory cells, including neutrophils and 

macrophages (Ashcroft et al., 2003). More widely, ER-α is expressed in human skin, 

fibroblasts and the adipose tissue (Kuiper et al., 1997; Kuiper et al., 1998; Campbell 

et al., 2010; Campbell et al., 2014). ER-β is expressed in the dermis, epidermis, 

fibroblasts, endothelial cells  and muscle cells (Thornton et al., 2003). 

Estrogen is key molecule that enhances wound healing in both genders and these 

actions appear to be mediated via the ERs (Ashcroft et al., 1999a). Age-related 
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estrogen deprivation is frequently linked with delayed wound healing and might 

contribute to the development of chronic wounds in the elderly (Ashcroft and 

Ashworth., 2003). In particular, polymorphisms of the ER-β gene are associated 

with venous ulceration and a pronounced inflammatory response (Ashworth, 2005). 

ER-α has been implicated in reducing the inflammatory response in wounds by 

dampening levels of pro-inflammatory cytokines such as macrophage migration 

inhibitory factor (MIF) (Campbell et al., 2010). In contrast, ER-α activation by PPT 

has been shown to considerably reduce early wound strength in models of 

ovariectomized mice compared to untreated ovariectomized mice, whereas 

activation of ER-β  with DPN had no effect on early wound strength (Gál et al., 

2010). Although the involvement of ER subtypes in the wound healing process is 

documented, there is a lack in knowledge regarding the precise roles of ER-α and 

ER-β in the clearance of bacteria from infected wounds. 

Ashcroft et al. (1999a) showed that estrogen replacement therapy accelerates 

wound repair in postmenopausal females. Furthermore, this study has showed 

estrogen enhances the clearance of the typical wound pathogens MRSA and P. 

aeruginosa (chapter 3 and 4). However, Anderson et al. (2004) reported that 

estrogen supplementation in postmenopausal females is associated with a higher 

risk of breast cancer and heart diseases. Thus, rather than using systemic estrogen 

supplementation, the use of appropriate ERs agonists/antagonists, SERDs and 

particularly SERMs could be beneficial in treatment of age related impaired healing 

and infected wounds. 
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5.2 Aim and Objectives 

5.2.1 Aim 

To investigate the involvement of ERs in mediating the beneficial effects of 

estrogen on promoting phagocytosis by human M1 macrophages using in vitro and 

ex vivo models of host-pathogen interactions. 

5.2.2 Objectives 

 Determine the effect of ERs agonists and antagonists, SERDs and SERMs on 

the phagocytosis of Gram-positive (MRSA) and Gram-negative (P. 

aeruginosa) bacteria by U937- and HPBM-derived M1 macrophages. 
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5.3 Methods 

5.3.1 Estrogen Receptors Stimulation/Blockade 

In order to test the effect of ERs agonists/antagonists, SERMs and SERDs on the 

MRSA and P. aeruginosa clearance, in vitro and ex vivo host-pathogen assays were 

conducted as described in section 2.2.12. 
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5.4 Results 

Similar to previous results, supraphysiological estrogen levels significantly 

decreased (P<0.01) MRSA and P. aeruginosa recovery compared to the negative 

control and the absence of estrogen (Figure 5.6). Treatment with the ER agonist 

tamoxifen mirrored the effects of estrogen, significantly (P<0.01) decreasing the 

bacterial recovery of both MRSA and P. aeruginosa. In contrast, treatment with the 

ER degrader fulvestrant blocked the effects of supraphysiological levels of estrogen 

on the phagocytosis of MRSA and P. aeruginosa, with no significant difference in 

bacterial recovery (P>0.05) detected compared to the negative control and the 

absence of estrogen. Of interest, ER-α agonism with PPT significantly reduced 

(P<0.01) the recovery of both MRSA and P. aeruginosa in fashion similar to 

supraphysiological estrogen levels when compared to the negative control and the 

absence of estrogen.  In contrast, ER-β stimulation with DPN did not significantly 

(P>0.05) affect the uptake of MRSA and P. aeruginosa by M1 macrophage 

compared to the negative control or the absence of estrogen. Intriguingly, the 

selective ER-α antagonist, TPBM, reversed the effect of estrogen and PPT on the 

phagocytosis of MRSA and P. aeruginosa, with no significant difference (P>0.05) in 

bacterial recovery detected compared to the negative control or the absence of 

estrogen. 
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Figure 5.6. Estrogen, tamoxifen and the selective ER-α agonist, PPT, enhances the 
phagocytosis of MRSA (A) and P. aeruginosa (B) by U937 M1 macrophages. Estrogen, 
tamoxifen and PPT significantly decreased the MRSA (A) and P. aeruginosa (B) recovery 
compared to the negative control or the absence of estrogen (E 0M). Fulvestrant and TPBM 
significantly blocked the effects of estrogen on the phagocytosis of both MRSA and P. 
aeruginosa, with no significant difference in bacterial recovery detected compared to the 
negative control or the absence of estrogen. DPN did not significantly affect bacterial 
uptake compared to the negative control or the absence of estrogen. Data represent an 
average of n = 6 experiments. ** Indicates significant difference (P<0.01). Error bars 
represent the standard error of the mean (StEM). 

The in vitro host-pathogen assays were repeated using ex vivo primary HPBM-

derived M1 macrophages in order to confirm these initial findings (Figure 5.7). The 
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results were similar to those obtained with U937-derived M1 macrophages, with 

estrogen, tamoxifen and PPT significantly (P<0.01) reducing MRSA and P. 

aeruginosa recovery compared to the negative control and the absence of 

estrogen. Again, fulvestrant and ER-α antagonism with TPBM blocked the effects of 

estrogen whereas ER-β agonism with DPN had no significant (P>0.05) effect on the 

phagocytosis of MRSA and P. aeruginosa compared to the negative control or the 

absence of estrogen. 
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Figure 5.7. Estrogen, tamoxifen and the selective ER-α agonist, PPT, enhance MRSA (A) 
and P. aeruginosa (B) uptake by HPBM M1 macrophages. Estrogen, tamoxifen and PPT 
significantly decreased the recovery of MRSA (A) and P. aeruginosa (B) compared to the 
negative control and the absence of estrogen (E 0M). Fulvestrant and TPBM significantly 
blocked the effects of estrogen on the phagocytosis of both MRSA and P. aeruginosa, with 
no significant difference in bacterial recovery detected compared to the negative control or 
the absence of estrogen. DPN did not significantly affect bacterial uptake compared to the 
negative control or the absence of estrogen. Data represent an average of n = 6 
experiments. ** Indicates significant difference (P<0.01). Error bars represent the standard 
error of the mean (StEM). 
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5.5 Discussion 

The age-related change in estrogen levels is linked with skin degeneration and 

impaired wound healing (Ashcroft et al., 1999b). Estrogen is frequently linked with 

pathological wounds (Ashcroft and Ashworth., 2003) and a case-cohort study 

reported that elderly (over 65 years old) patients treated with estrogen were 30-

40% less likely to develop a venous leg ulcer than untreated patients (Margolis et 

al., 2002)..  Moreover, estrogen deprivation diminishes the phagocytic capability of 

neutrophils and macrophages, and increases the risk of infection and a 

postponement in healing (Ashcroft and Ashworth., 2003).  

Due to their possession of nuclear ERs, the function of inflammatory cells such as 

macrophages are known to be influenced directly by estrogen (Weusten et al., 

1986; Suenaga et al., 1996; Suenaga et al., 1998) through its binding to ER-α and/or 

ER-β (Kuiper et al., 1998; Klinge, 2000). SERMs and SERDs are ER-interacting 

molecules that are able to bind to the ERs and achieve normal mechanisms of 

estrogen signalling to function as agonists or antagonists of estrogen in a tissue-

specific manner (Cho and Nuttall, 2001). SERMs and SERDs are compounds typically 

used to treat several ER-mediated pathologies (e.g. breast cancer) due to their 

tissue-specific responses (Mirkin and Pickar, 2015; Lee et al., 2017). Estrogen 

stimulated the phagocytic function of human macrophages against MRSA and P. 

aeruginosa (Chapter 3 and 4). This study used SERMs and SERDs to investigate 

which ERs are involved in the estrogen-mediated stimulation of bacterial clearance 

by M1-like macrophages. 

An accumulating body of evidence demonstrates that tamoxifen acts as ER 

antagonist in breast tissue, but is agonist in the uterus and peripheral tissues such 

as bone (Fisher et al., 2005; DeMichele et al., 2008). Tamoxifen enhanced the 

phagocytosis of MRSA and P. aeruginosa by human M1 macrophages suggesting 

tamoxifen was acting in a similar manner to estrogen. In support of this, tamoxifen 

was shown to enhance neutrophils chemotaxis and phagocytosis functions, boost 

human neutrophil bactericidal ability against a range of bacteria in vitro and 
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improve clearance of the leading nosocomial antibiotic-resistant bacteria, MRSA, in 

vivo (Corriden et al., 2015). 

Tamoxifen has been shown to accelerate wound healing in ovariectomized mice, 

suggesting that it can potentially be used to treat impaired wound repair in the 

elderly (Hardman et al., 2007). This study adds weight to this theory by showing 

tamoxifen may be beneficial in the treatment of infected wounds in the elderly. 

Pickar et al. (2010) have detailed the beneficial effects of SERMs on females health 

after menopause, SERMs such as tamoxifen are more beneficial during wound 

healing when they are applied locally on wounds rather than orally. A new group of 

SERMs, such as Ophena, are now developed to mimic the positive biological and 

tissue specific estrogen functions but not the undesirable side effects such as the 

risk of breast and uterine cancers (Pickar et al., 2010). 

Fulvestrant is a compound structurally different to SERMs that due to its high 

binding affinity to the ERs, binds in competition with estrogen to the ERs (Morris 

and Wakeling, 2002). When bound to ERs, fulvestrant deteriorates the receptor 

dimerization and blocks nuclear localisation of the ERs (Morris and Wakeling, 2002; 

Osborne et al., 2004). The findings showed that, unlike treatment with estrogen or 

tamoxifen, pre-treatement of M1 macrophages with fulvestrant blocked 

stimulation of bacterial clearance by estrogen. This provided additional evidence 

that estrogen may be acting through the ERs to promote phagocytosis and that 

disruption of the ERs prevents the beneficial effect of estrogen on bacterial 

clearance. Collectively, data generated from the use of tamoxifen and fulvestrant 

provide evidence that estrogen is enhancing the phagocytosis of bacteria, by pro-

inflammatory M1 macrophages via binding and activation of the ERs. 

It has been reported that the anti-proliferative effects of fulvestrant on cells in 

breast are due to the degradation of the ER-α protein (Long and Nephew, 2006). 

Interestingly, it has been reported that ER-α is the key receptor in regulating the 

thickness of epidermis during wound healing (Stumpf et al., 1974; Bidmon et al., 

1990). Toutain et al. (2009) reported that ER-α is also the main isoform involved in 

promoting the beneficial effects of 17β-estradiol in a model of skin necrosis. On the 

other hand, ER-β was described to be the key receptor in the protection against 
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skin damage resulted from exposure to UV (Chang et al., 2010). Both ER subtypes 

are expressed on fibroblasts and inflammatory cells such as neutrophils and 

macrophages (Campbell et al., 2010). ER-α has been noted to control and regulate 

inflammation, whereas ER-β is mainly linked with modulating the later phases of 

wound healing (Campbell et al., 2010). This study used two major agonists of ER-α 

(PPT) and ER-β (DPN) to investigate the effect of activating ER isoforms on the 

phagocytosis of MRSA and P. aeruginosa. PPT is an ER-α agonist that is 410-fold 

more selective for ER-α than ER-β  whereas DPN is an ER-β agonist with a 70-fold 

higher selectivity for ER-β than ER-α (Campbell et al., 2010). Intriguingly, selective 

activation of ER-α with PPT mirrored the effects of estrogen by significantly (P<0.01) 

increasing the phagocytosis of both MRSA and P. aeruginosa by U937-derived and 

HPBM-derived M1 macrophages. In contrast, stimulation with the ER-β agonist DPN 

failed to improve the phagocytosis of either MRSA or P. aeruginosa by 

macrophages. Of interest, blocking the ER-α with TPBM overturned the effect of 

PPT on the bacterial clearance. The results of this study are in concordance with 

published findings implicating ER-α as the key mediator of the inflammatory 

response, with activation of ER-α in M1 macrophages with PPT increasing bacterial 

clearance whereas activation of ER-β by DPN had no effect on the phagocytosis of 

MRSA and PAO1. Moreover, blockade of ER-α with TPBM reversed the effect of 

PPT. Collectively, these novel findings suggest that estrogen stimulates promotion 

of phagocytosis by human macrophages through ER-α rather than ER-β. 

Tamoxifen is estrogenic in the uterus, therefore, this molecule is frequently linked 

with a high risk of uterine cancer (Jordan and Morrow, 1999; Bergman et al., 2000). 

Another commonly used SERM, called raloxifene, is in contrast estrogenic in bone 

(Heaney and Draper, 1997) and ovaries (Neven et al., 2002), but displays anti-

estrogenic effects in the uterus (Bryant et al., 1996). Hardman and Ashcroft (2008) 

indicated that estrogen, tamoxifen and raloxifen all accelerated wound healing in 

ovariectomised mice. Future research could investigate a range of SERMs including 

raloxifen to determine the most effective mediator(s) of bacterial clearance in 

macrophages. This might potentially help detecting the most promising topical 

SERM to treat wound infections in the elderly. 
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In summary, novel findings reported in this chapter provide clear evidence that ER-

α is the ER isoform through which estrogen stimulates phagocytosis by U937- and 

HPBM-derived M1 macrophages. Selective targeting of ER-α with agents such as 

PPT may potentially lead to the development of therapeutic approaches to combat 

wound infections in the elderly. 
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6.1 Introduction 

Macrophages are immune cells characterised by the ability to engulf and digest 

bacteria, damaged cells and any foreign substance that does not express on its 

surface normal host-cell specific proteins via a process known as phagocytosis 

(Duque and Descoteaux, 2015). Phagocytosis is a vital process for protecting the 

host against foreign dangers such as bacterial invasion (Desjardins et al., 2005). This 

process needs to be performed efficiently because unsuccessful or imperfect 

clearance of bacteria can have detrimental circumstances on the host, and is linked 

with the progression of several pathological conditions such as chronic 

inflammation, wound infections and several autoimmune diseases (Engelich et al., 

2001). Attracted to sites of infection via chemotaxis, phagocytes such as 

macrophages recognize and attach to microorganisms. This results in actin 

polymerisation within the phagocyte, re-arrangement of the actin cytoskeleton to 

form pseudopodia followed by engulfment of the microorganism to form a 

phagosome and subsequent phagolysosome formation on fusion with a lysosome 

(Freeman and Grinstein, 2016; Garcia-Gomez et al., 2016). Finally, the destruction 

of bacteria is mediated by lysosomal enzymes and ROS within the phagolysosome 

(Pauwels et al., 2017). Successful engulfment of pathogens requires continuous 

reorganization of the phagocyte cell membrane that involves dynamic 

rearrangement of the actin cytoskeleton. The control of these mechanical changes 

on the cell membrane during cell movement and pathogen engulfment involves 

Rho GTPase proteins that regulate the polymerisation of actin filaments (Etienne-

Manneville and Hall, 2002; Groves et al., 2008). 

In this study it has been shown that estrogen enhances the phagocytosis of both 

MRSA and P. aeruginosa by human macrophages. The interaction between 

macrophages and bacteria were visualised by SEM (Figure 3.16), demonstrating 

estrogen promotes the formation of pseudopodia by macrophages during the 

uptake of both MRSA and P. aeruginosa. These findings suggest estrogen may be 

regulating the levels or activation of one or more proteins involved in the regulation 

of the actin cytoskeleton during phagocytosis. 
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6.1.1 The Actin Cytoskeleton and Phagocytosis: 

The process of engulfing a foreign particles, phagocytosis, is a crucial process for 

the wide diversity of organisms. From simple unicellular organisms that use 

phagocytosis for nutrition, to complex ones in which phagocytic cells play a 

fundamental role in the immune response. Phagocytosis is a step-wise process in 

which particles are first recognized and bind to the cell surface, followed by 

internalisation and formation of membrane‐bound vacuoles known as phagosomes 

(Jilkine, 2009). After a target particle is recognised the phagocytic process requires 

a dynamic assemblage of the actin cytoskeleton to promote the formation of 

pseudopodia (Alberts et al., 2008; Freeman and Grinstein, 2016; Garcia-Gomez et 

al., 2016; Pollard et al., 2016; Pauwels et al., 2017). 

The actin cytoskeleton is constructed by a wide range of proteins (Insall and 

Machesky, 2009). Actin is an abundant protein found in all cells and it exists in two 

different forms; globular monomers named G-actin, and polymeric chains of the 

two G-actin subunits, F-actin and filamentous actin (Holmes et al., 1990). The F-

actin filaments are structurally polarised (Wegner, 1976). The negative (known as 

“pointed”) end holds a subunit with an open ATP binding site, whereas the positive 

(known as “barbed”) end is open to adjacent G-actin monomers (Wegner, 1976). 

The polymerisation/depolymerisation of actin is a continuous constant process 

(Wegner, 1976) during which, the energy generated from ATP conversion to ADP 

stimulates the accumulation of G-actin monomers at the barbed end before 

polymerisation to F-actin filaments (Wegner, 1976; Alberts et al., 2008) (Figure 6.1). 

After the complete establishment of F-actin filaments, actin-binding proteins add an 

extra layer of control over the actin cytoskeleton network. For instance, actin 

severing proteins, such as profilin and cofilin, can bind the actin polymers and alter 

the filaments length and strength (T. D. Pollard and Borisy, 2003), and 

increase/decrease the amount of barbed ends by cleaving actin filaments 

(Devreotes and Horwitz, 2015). 

Capping proteins can also bind to the termination of the filaments regulating their 

attachment and detachment (Isenberg et al., 1980). Additionally, F-actin filaments 
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bind to integrin and myosin II filaments producing focal adhesive complexes, which 

allow cells to slide past each other and connect with the extracellular matrix and 

other adjacent cells via the cytoskeleton network, therefore allowing cell-cell and 

cell-matrix exchange (Burridge et al., 1988; Peskin et al., 1993; Pollard and Borisy., 

2003; Alberts et al., 2008). 

 

Figure 6.1. Actin cycle. F-actin filaments are separated due to Cofilin binding at the pointed 
end. Profilin binds to F-actin filaments at the barbed end before capping proteins are 
attached, allowing the attachment and detachment of filaments. Figure drawn based on 
details of the actin cycle described by Brown (2016). 

6.1.2 Regulation of the Cytoskeleton Organisation by Rho GTPases 

Estrogen was shown to promote the phagocytosis of the two major wound 

pathogens MRSA and P. aeruginosa (Chapters 3, 4 and 5). However, the link 

between estrogen and regulators of the actin cytoskeleton such as Rho GTPases 

during phagocytosis has not been investigated to date. 
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The organised movement of membranes and actin cytoskeleton are coordinated in 

phagocytosis by a family of proteins known as Rho GTPase (Etienne-Manneville and 

Hall, 2002). The small GTPases of the Rho-family (Rho-GTPases) are members of the 

Ras superfamily of small GTPases. The Rho-GTPase family includes 20 members 

distributed into 8 subfamilies (Figure 6.2) (Etienne-Manneville and Hall, 2002). 

While RhoA, Cdc42 and Rac1 are the most highly conserved and well-studied 

members in eukaryotic species, the 17 other members of the Rho GTPase family are 

less studied and their functions and effects have not been fully investigated and 

understood yet (Etienne-Manneville and Hall, 2002). Rac1, Cdc42 and RhoA are best 

known for their functions in regulating the actin cytoskeleton (Nobes and Hall, 

1995; Machesky and Hall, 1996; A. Hall, 1998; Machesky and Insall, 1999; Etienne-

Manneville and Hall, 2002). Working on 2D tissue-culture fibroblast models, (Ridley 

and Hall, 1992; Nobes and Hall, 1995) it has been reported that RhoA was mainly 

involved in rearranging actin and myosin filaments to form new stress fibres, 

however, Cdc42 and Rac1 induced actin polymerisation causing the formation of 

lamellipodia and filopodia. RhoA, Cdc42 and Rac1 have all emerged as master 

regulators of cell polarity and contractility, progression of the G1 cell cycle, gene 

transcription and microtubule dynamics (Etienne-Manneville and Hall, 2002). In 

addition to regulating the actin cytoskeleton dynamics, Rho GTPases have been 

linked with many biological functions such as cytoskeletal regulation, phagocytosis, 

cell polarity establishment, cell proliferation and motility, reactive oxygen species 

(ROS) production, and tumorigenesis (Etienne-Manneville and Hall, 2002; Jaffe and 

Hall, 2005). 

Proteins of the Rho GTPase family are key regulators of the polymerisation of actin 

filaments resulting in cytoskeleton reorganisation (Etienne-Manneville and Hall, 

2002). These proteins are parts of the GTP-binding proteins (G-proteins) family, 

which are conserved in eukaryotic organisms from yeast and amoeba to mammals 

(Etienne-Manneville and Hall, 2002). G-proteins contain a GTP-binding domain and 

function as molecular switches (Raftopoulou and Hall, 2004). In order to become 

active, the protein must bind to GTP causing its hydrolysation (Raftopoulou and 

Hall, 2004). The process of GTP hydrolysation is the origin of the name GTPase. As a 
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consequence of GTP hydrolysation to GDP, the protein changes structurally and 

converts into an inactive form (Raftopoulou and Hall, 2004). The Rho GTPase 

proteins receive signals from cell surface receptors, and interact indirectly with 

actin, via binding to effector molecules, which causes rearrangement of the 

cytoskeleton and enable phagocytosis (Raftopoulou and Hall, 2004). 

 

Figure 6.2. Phylogenetic tree representation of the Rho GTPases family. Rho GTPases 
family comprises 20 proteins divided into eight major groups according to sequence and 
phylogenetic similarities:  Rho, Rac, Cdc42, RhoD/F, Rnd, RhoU/V, RhoH and RhoBTB. Figure 
based on published details of Rho GTPases (Aspenström et al., 2007; Heasman and Ridley, 
2008). 

  Cdc42 

Cdc42 is an important Rho GTPase protein that controls signalling pathways 

regulating many cell functions essentially phagocytosis, cell cycle development and 

cell migration (Ridley et al., 1992; Kozma et al., 1995; Qadir et al., 2015). Cdc42 is a 

key regulator of the cytoskeleton dynamics, which is essential for the phagocytosis 

process (Ridley et al., 1992; Kozma et al., 1995). In order to elucidate the functions 

of Cdc42 in humans, researchers studied the dominant negative (DN) and the 

constitutively active (CA) forms of Cdc42 (Van Aelst and D’Souza-Schorey, 1997), 

and demonstrated that cdc42 is potentially required in the initiation of cell signals 
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crucial for the regulation of actin cytoskeleton (Van Aelst and D’Souza-Schorey, 

1997; Johnson, 1999). The Cdc42-related proteins stimulate the formation of 

filopodia, through binding to and activation of an effector protein known as 

“Wiskott Aldrish Syndrome Protein (WASP)” via Cdc42- and Rac-interacting and 

binding domain (CRID) (Johnson, 1999; Rohatgi et al., 1999; Carlier et al., 2003). 

This leads to the recruitment of G-actin and a specific actin protein called the 

“Arp2/3 complex”, which bind to the existing actin filaments resulting in a new 

filament (Rohatgi et al., 1999; Carlier et al., 2003). 

Similar to WASP, other proteins such as the tyrosine p21-activated kinases (PAK1 

and PAK2) and focal adhesive kinase (FAK), attach to Cdc42 via the CRIB domain and 

initiate the cytoskeleton reorganisation leading to membrane deformation, 

essential for phagocytosis (Hofmann et al., 2004). 

Cdc42 treadmills continuously and reversibly from an active GTP-bound form to an 

inactive GDP-bound form. This balance is initiated and controlled by guanine 

nucleotide exchange factors (GEFs) which encourage the conversion of GDP-bound 

molecules to unbound GTP (Van Aelst and D’Souza-Schorey, 1997). GTPase 

activating proteins (GAPs) promote GTP hydrolysis to GDP (Lamarche and Hall, 

1994), whereas guanine nucleotide dissociation inhibitors (GDIs) block the 

detachment of the nucleotide from Cdc42 and result in deactivation of the protein 

(Olofsson, 1999; Valdés-Mora et al., 2009). 

  Rac1 

The GTPase Rac1 is one of the most documented and well-studied members of the 

Rho family (Bishop and HALL, 2000; Etienne-Manneville and Hall, 2002). Rac1 is a 

member of the Rac subfamily that comprises RhoG, Rac1b, Rac2, and Rac3 

(Aspenström et al., 2007; Heasman and Ridley, 2008). The Rac proteins all share 

more than 80% sequence homology and differ principally in the C-terminal region 

(Wennerberg, 2004). Rac1 is known for being a master regulator of the actin 

cytoskeleton organisation. Rac1 participates in the initial step of pseudopodia 

formation (Etienne-Manneville and Hall, 2002) during phagocytsosis, but is also 

involved in many other cell functions including cell killing mediation via ROS, cell 
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differentiation, cell adhesion, apoptosis, signalling transcription factors and gene 

expression (Jaffe and Hall, 2005). The activity of Rac1 has been extensively studied 

in recent years, with findings showing active Rac1 induces the formation of 

membrane extensions called lamellipodium (Ridley et al., 1992). In addition, RAC1 is 

essential in moderating several signalling pathways linked with cell growth and cell 

division (Bid et al., 2013). Similar to Cdc42, the activities of Rac1 are mediated via 

interaction with specific effectors such as the protein kinase PAK that changes from 

an inactive to active state after interacting directly with GTP-Rac1 (Bid et al., 2013). 

 RhoG 

RhoG is a member of the Rac subgroup of the Rho GTPase family that was reported 

for the first time in 1992 (Vincent et al., 1992). It shares 72% sequence identity with 

Rac1 but is characterised by its incapability to bind to proteins such as PAKs (Leung 

et al., 1996; Gauthier-Rouviere et al., 1998). Similar to most Rho GTPase proteins, 

RhoG is involved in a various cell signalling mechanisms including the regulation of 

actin cytoskeleton (Katoh et al., 2006), phagocytosis (Prieto-Sánchez et al., 2006), 

gene transcription (Vigorito et al., 2003) and the regulation of NADPH oxidase in 

neutrophils (Condliffe et al., 2006). 

Both Rac1 and RhoG are able to signal downstream effectors after binding to GTP 

and become inactive when bound to GDP. Three protein families interact with Rac1 

or RhoG to control the GTP/GDP balance: 1) GEFs are involved in facilitating the 

conversation of GDP for GTP, leading to the promotion of RhoA/RhoG-mediated 

signalling (Van Aelst and D’Souza-Schorey, 1997); 2) GAPs promote hydrolysis of 

GTP to GDP, thereby ending RhoA/RhoG-mediated signalling (Lamarche and Hall, 

1994); 3) GDIs inhibit the GDP dissociation and lock the G protein in its inactive 

state (Olofsson, 1999). 

It has been reported that the activation of RhoG  provokes Rac1- and Cdc42-like 

activities such as lamellipodia and filopodia formation (Gauthier-Rouviere et al., 

1998). Activated Rac1 and/or RhoG are believed to be coupled with numerous 

downstream effectors, leading to the control of several signalling pathways. The 

mechanism by which RhoG signals is not fully understood. However, a detailed 
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signalling pathway of RhoG leading to activation of Rac proteins, via GEFs, has been 

described. This mechanism of RhoG-dependent Rac signalling was reported to 

encourage the phagocytosis of apoptotic cells in C. elegans (Katoh and Negishi, 

2003; Nakaya et al., 2006). 

  RhoA 

RhoA is a small protein member of the Rho GTPase family. Like the other GTPases, 

RhoA acts as a molecular switch to regulate signalling pathways that mediate the 

actin cytoskeleton dynamics and organisation (Hall, 1998). RhoA was initially 

reported to be a key player in the regulation of the cytoskeletal dynamics, and the 

formation of actin stress fibres in fibroblasts stimulated with growth factors (Ridley 

and Hall, 1992). It was later shown by Hackam and Grinstein in 1997 that RhoA is an 

essential requirement in phagocytosis. Olson et al. (1995) also demonstrated that 

RhoA regulates the growth of cells and triggers cell cycle progression via the phase 

G1. 

The majority of downstream targets of RhoA are serine-threonine kinases, including 

ROCK1 which binds to RhoA in a GTP-dependant manner (Leung et al., 1995). RhoA 

was also demonstrated to form actin stress fibres and focal adhesion complexes via 

binding to the ROCK kinase, an isoform of Rho kinase. Another Rho kinase known as 

Rho kinase-alpha or ROK was also shown to bind to RhoA in a GTP-dependent 

manner, leading to the assembly of actin filaments and the cytoskeleton 

organisation (Leung et al., 1996). 

The interaction between estrogen and Rac1 in cardiovascular disease has been 

documented, with estrogen downregulating the expression and activity of Rac1 in 

monocytes and vascular smooth muscle cells and resulting in a decrease in the 

production of ROS in the cardiovascular system (Laufs et al., 2003). Estrogen 

enhances the phagocytic activity of rat peritoneal macrophages (Csaba, 2017) but 

inhibits monocyte recruitment and adhesion in the cardiovascular system (Friedrich 

et al., 2006) 
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6.1.3 Focal Adhesion Kinase (FAK) 

The focal adhesion kinase (FAK) was first discovered in the early 1990s (Kanner et 

al., 1990; Schaller et al., 1992) as a new tyrosine kinase that does not possess a 

receptor but is expressed in several tissues (Hanks et al., 1992). FAK  is highly 

conserved among different species with human FAK sharing high percentage 

homology with mice (97%) and zebrafish (90%) (Schaller, 2010). It has been 

reported that FAK plays a key role in integrin signalling which regulates 

phagocytosis, cell adhesion and cell survival (Schlaepfer et al., 2004). The gene 

protein tyrosine kinase 2 (PTK2) encodes for FAK (André and Beckerandre, 1993). It 

has been demonstrated that blockage of FAK in breast cancer cells reduce their 

metastatic ability by decreasing cell mobility (Chan et al., 2009). 

FAK is expressed in all cell types except some blood cells, and is naturally localised 

in structures called focal adhesions. Focal adhesions are sites where the 

cytoplasmic cytoskeleton interact with the ECM (Chrzanowska-Wodnicka and 

Burridge, 1996). When FAK tyrosine kinase is activated, intracellular signalling 

pathways involved in cell migration are initiated (Hanks et al., 1992; Schaller et al., 

1992). Estrogen is a known regulator of cytoskeletal constituents (Sapino et al., 

1986), mainly actin fibres via the control of actin dynamism and organisation 

(Giretti et al., 2008; Flamini et al., 2009). Estrogen also regulates cell morphology 

and cell interaction with the ECM, a key process in phagocytosis (Giretti et al., 2008; 

Flamini et al., 2009; Flamini et al., 2011). Flamini et al. (2011) investigated the effect 

of estrogen on the remodelling of actin cytoskeleton in the Ishikawa endometrial 

adenocarcinoma cell line and endometrial stromal cells (ESC). This study showed 

remodelling estrogen promotes FAK phosphorylation in Ishikawa and ESC cells in a 

dose-dependent manner, resulting in an enhancement of actin and membrane 

remodelling, and phagocytosis. 
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6.2 Aim and Objectives 

6.2.1 Aim 

To investigate the effect of estrogen on regulating protein levels of Rac1, RhoA, 

Cdc42, RhoG and FAK in U937-derived M1 macrophages. 

6.2.2 Objectives 

To compare protein levels of Rac1, RhoA, Cdc42, RhoG and FAK in U937-derived M1 

macrophages treated with/without supraphysiological levels of estrogen for 24 

hours against BSA-treated negative control. 
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6.3 Methods 

6.3.1 Generation of U937-derived M1 Macrophages 

U937 monocytes were differentiated into M0 macrophages and polarised into M1-

like macrophages using methods described in Section 2.2.5. 

6.3.2 Immunoblotting  

U937-derived M1 macrophages were treated with 1 x 10-7 M BSA, zero M estrogen 

(17β-estradiol) or 1 x 10-7 M estrogen for 24 hours. Macrophages were retrieved 

and lysed prior to extracting and quantifying proteins following methods described 

in Section 2.2.13.1. Immunoblotting assays were conducted as described in Section 

2.2.13.2 to quantify levels of Rac1, RhoA, Cdc42, RhoG and FAK with protein 

normalisation conducted against the housekeeping gene β-tubulin. 
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6.4 Results 

6.4.1 Estrogen Enhances Rac1 by U937-Derived M1 Macrophages 

The effect of estrogen on levels of the GTPase Rac1 by U937-derived M1 

macrophages was investigated (Figure 6.3). Estrogen had no significant effect 

(P>0.05) on levels of β-tubulin in U937-derived M1 macrophages compared to 

untreated macrophages (zero M estrogen) and the negative control (Figure 6.3.A 

and C). However, estrogen supplementation (Figure 6.3. B and C) significantly 

(P<0.01) increased relative Rac1 levels (1.9-fold change) compared to the negative 

control (NC). There was no significant difference (P>0.05) between Rac1 levels in 

the NC and untreated macrophages that lacked estrogen supplementation.  

 

Figure 6.3. Rac1 levels in U937-derived M1 macrophages increase following exposure to 
supraphysiological estrogen. Rac1 levels were assessed by immunoblotting with β-tubulin 
used as loading control. Estrogen (E) had no effect on the β-tubulin levels in macrophages 
(P>0.05) (A and C), but significantly (P<0.01) increased Rac1 levels compared to the 
negative control (NC) and untreated (E 0M) macrophages (B and C). Results represent an 
average of n = 12 experimental repeats. ** Indicates significant difference in protein levels 
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(fold-change) compared to the NC (P<0.01). Error bars represent the standard error of the 
mean (StEM). 

6.4.2 Estrogen Decreases RhoA in U937-Derived M1 Macrophages 

Estrogen had no significant (P>0.05) effect on the housekeeping protein β-tubulin 

(Figure 6.4.A and C) but significantly (P<0.01) reduced relative levels of RhoA (0.7-

fold change) in U937-derived M1 macrophages compared to the negative control 

(NC). There was no significant (P>0.05) difference in RhoA levels between the NC 

and untreated macrophages lacking estrogen supplementation (Figure 6.4.B and C).   

 

Figure 6.4. RhoA levels in U937-derived M1 macrophages reduce following treatment 
with supraphysiological estrogen. RhoA levels were measured by immunoblotting using β-
tubulin as the housekeeping protein. Estrogen (E) had no significant (P>0.05) effect on 
levels of β-tubulin (A and C) but significantly (P<0.01) decreased RhoA levels compared to 
the negative control (NC) and untreated (E 0M) macrophages (B and C). Results represent 
an average of n = 12 experimental repeats. ** Indicates significant difference (P<0.01) in 
protein levels (fold-change) compared to the NC. Error bars represent the standard error of 
the mean (StEM). 
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6.4.3 Estrogen Increases Levels of Cdc42 in U937-Derived M1 Macrophages 

Estrogen had no significant (P>0.05) effect on levels of the housekeeping protein β-

tubulin (Figure 6.5.A and B). In comparison to the negative control (NC), the 

absence of estrogen in untreated macrophages had no significant (P>0.05) effect on 

Cdc42 levels (1.0-fold change). However, estrogen induced a significant (P< 0.01) 

increase in levels of Cdc42 (2.3-fold change) compared to the NC (Figure 6.5.B and 

C). 

 

Figure 6.5. Cdc42 levels in U937-derived M1 macrophages increase following  exposure to 
supraphysiological estrogen. Cdc42 levels were assessed by immunoblotting with β-tubulin 
used as loading control. Estrogen (E) had no effect on the β-tubulin levels in macrophages 
(P>0.05) (A and C), but significantly (P<0.01) increased Cdc42 levels compared to the 
negative control (NC) and untreated (E 0M) macrophages (B and C).  Results represent an 
average of n = 12 experimental repeats. ** Indicates significant difference in protein levels 
(fold-change) compared to the NC (P<0.01). Error bars represent the standard error of the 
mean (StEM). 

6.4.4 Estrogen Increases Levels of RhoG in U937-Derived M1 Macrophages 

The effect of estrogen on levels of RhoG in U937-derived M1 macrophages was 

investigated (Figure 6.6). Estrogen had no significant effect on levels of β-tubulin in 
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U937-derived M1 macrophages, compared to negative control (NC) and untreated 

macrophages (E 0M) (Figure 6.6.A and C). Compared to the NC, the level of RhoG 

was not significantly (P>0.05) altered in untreated (E 0M) macrophages (1.1-fold 

change). However, estrogen significantly (P< 0.01) increased relative levels of RhoG 

(2.3-fold change) in comparison to the NC (Figure 6.6.B and C). 

 

Figure 6.6. RhoG levels in U937-derived M1 macrophages increase following treatment 
with supraphysiological estrogen. RhoG levels were assessed by immunoblotting with β-
tubulin used as loading control. Estrogen (E) had no effect on the β-tubulin levels in 
macrophages (P>0.05) (A and C), but significantly (P<0.01) increased RhoG levels compared 
to the negative control (NC) and untreated (E 0M) macrophages (B and C).  Results 
represent an average of n = 12 experimental repeats. ** Indicates significant difference in 
protein levels (fold-change) compared to the NC (P<0.01). Error bars represent the 
standard error of the mean (StEM). 

6.4.5 Estrogen Increases Levels of Focal Adhesion Kinase (FAK) in U937-Derived 

M1 Macrophages 

Levels of the housekeeping protein β-tubulin did not significantly change (P>0.05) 

following treatment of U937-derived M1 macrophages with supraphysiological 
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estrogen (Figure 6.7.A and C). Levels of FAK in untreated macrophages (1.0-fold 

change) were not significantly (P>0.05) different to levels found in the negative 

control (NC). Intriguingly, relative levels of FAK significantly increased (P<0.01) 

following treatment with estrogen (2.3-fold change) compared to the NC (Figure 

6.6.B and C). 

 

Figure 6.7. FAK levels in U937-derived M1 macrophages increase following treatment 
with supraphysiological estrogen. FAK levels were assessed by immunoblotting with β-
tubulin used as loading control. Estrogen (E) had no effect on the β-tubulin levels in 
macrophages (P>0.05) (A and C), but significantly (P<0.01) increased FAK levels compared 
to the negative control (NC) and untreated (E 0M) macrophages (B and C).  Results 
represent an average of n = 12 experimental repeats. ** Indicates significant difference in 
protein levels (fold-change) compared to the NC (P<0.01). Error bars represent the 
standard error of the mean (StEM). 
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6.5 Discussion 

Estrogen promotes the phagocytosis of both MRSA and P. aeruginosa by human 

macrophages through specific binding to ER-α. (Chapter 5). Moreover, data from 

the SEM (Chapter 3) demonstrated major changes in the morphology of phagocytic 

macrophages following estrogen supplementation, with the formation of 

pseudopodia suggesting estrogen induces substantial changes in the actin 

cytoskeleton. In order to determine whether Estrogen stimulates the phagocytic 

activity of macrophages through changes in the actin cytoskeleton, this study 

measured the protein levels of four major Rho GTPase proteins (Cdc42, Rac1, RhoG 

and RhoA) and the focal adhesion kinase (FAK) in U937-derived M1 macrophages in 

the presence/absence of estrogen for 24 hours. 

Estrogen significantly increased  the level of FAK in M1 macrophages. FAK has been  

shown to be an important regulator of phagocytosis (Tzircotis et al., 2011). Tzircotis 

et al. (2011) transfected macrophages with RNAi against FAK and found that 

macrophages lacking FAK presented a 65% decrease in the number of phagocytes 

produced with FcγR- and CR3-mediated phagocytosis. Activation of FAK was also 

associated with provoking Rac1- and Cdc42-like activities, such as lamellipodia and 

filopodia formation (Gauthier-Rouviere et al., 1998), but not RhoA activities 

(Tzircotis et al., 2011). It has been reported that fibroblasts lacking FAK have 

impaired cell motility. Importantly, FAK is an important regulator of the pathogen-

killing functions of neutrophils (Kasorn et al., 2009). FAK signalling is linked with the 

organisation of integrin-based adhesion sites and the formation of lamellipodia in 

migrating cells, such as neutrophils and macrophages (Kasorn et al., 2009). 

Moreover, FAK deficiency in macrophages reduces cell adhesion, and is associated 

with failure to form lamellipodia and cell migration to sites of infection and 

inflammation in vivo (Owen et al., 2007). 

Estrogen is a known regulator of cytoskeletal constituents, mainly actin fibres 

(Giretti et al., 2008; Flamini et al., 2009) via the control of actin dynamism and 

organisation. Estrogen also regulates cell morphology and interaction with the ECM, 

a key process in phagocytosis (Giretti et al., 2008; Flamini et al., 2009). Flamini et al. 
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(2011) investigated the effect of estrogen on the remodelling of actin cytoskeleton 

and on regulating cell mobility in an Ishikawa cell line and ESC. They showed 

estrogen encourages FAK phosphorylation in Ishikawa and ESC cells in a dose-

dependent manner, resulting in an enhancement of cell mobility, actin and 

membrane remodelling (Flamini et al., 2011). 

Importantly, estrogen has been shown to stimulate the production of membrane 

ruffles and pseudopodia in breast cancer cells via activation of ER-α in concordance 

with the findings (Chapter 3) of this study (Song et al., 2002). Simoncini et al. (2006) 

confirmed that estrogen encourages the migration of endothelial cells via 

phosphorylation and activation of FAK. Song and Santen (2006) indicated that 

estrogen enhances the formation of filopodia and lamellipodia with localisation of 

ER-α in the plasma membrane. Stimulation of cancer cells with estrogen induces 

cell migration and motility via interaction of FAK with ER-α and other factors 

including phosphatidylinositol 3 kinase and p60 Src tyrosine kinase (c-Src) (Li et al., 

2010). Given estrogen stimulated phagocytosis via ER- (Chapter 3) and increased 

levels of FAK further investigations in this area are now warranted to confirm a 

causal link between elevated FAK levels and enhanced phagocytosis in estrogen 

supplemented M1 macrophages. 

In this study, macrophage levels of Rac1 significantly increased following treatment 

with estrogen for 24 hours compared to the negative control or macrophages 

lacking estrogen supplementation. Rac1 is crucial for dynamic rearrangement of the 

actin cytoskeleton that is essential for membrane ruffling and the development of 

focal complexes that are needed for filopodia and lamellipodia formation (Ridley et 

al., 1992; Allen et al., 1997). Rac1 regulates the organisation of actin cytoskeleton 

and cell adhesion in murine macrophages in vitro (Allen et al., 1997). Upregulation 

of active Rac1 have been detected in phagocytic cups (Hoppe and Swanson, 2004) 

while its inhibition was found to reduce the phagocytosis of both C3bi- and IgG-

opsonised molecules (Cox et al., 1997). It is noteworthy that estrogen-like 

molecules such as daidzein have been shown to have an effect on the regulation of 

Rac1 during the phagocytic process. Daidzein, a soy isoflavone extract, was found to 

stimulate the production of estrogen in trophoblast cells (Richter et al., 2009). 
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Moreover, diadzein enhances the macrophage phagocytic capability via 

upregulation of the Rac1 activity (Yen et al., 2014). 

In another report, it has been shown that the estrogen metabolite (2-ME) blocks 

the RhoA/ROCK1 pathway in human smooth muscle cells through downregulation 

of RhoA (Rigassi et al., 2015). It has also been reported that the upregulation of 

RhoA inhibits the process of phagocytosis in macrophages (Tosello-Trampont et al., 

2003; Colucci-Guyon et al., 2005; Nakaya et al., 2006). Results in this study have 

demonstrated that treatment of macrophages with estrogen for 24 hours 

significantly decreased protein levels of RhoA compared to the negative (BSA) 

negative control and macrophages cultured in the absence of estrogen. Whether 

estrogen stimulates phagocytosis by dampening the RhoA/ROCK1 pathway 

warrants further investigation but accumulating evidence has indicated that 

upregulation of RhoA inhibits the process of phagocytosis in macrophages (Tosello-

Trampont et al., 2003; Colucci-Guyon et al., 2005; Nakaya et al., 2006). 

It is worth pointing out that many other reports support the findings of this study 

and show a harmonised balance of Rac1 and RhoA is essential for a successful 

phagocytosis. Research investigations on Candida elegans in mammals have 

reported that Rac1 and RhoA, are antagonistically implicated in the modulation of 

cytoskeleton reorganisation during the process of phagocytosis, as their signalling 

oppose each other (Ohta et al., 2006; Freeman and Grinstein, 2014). To date, their 

exact functions are not fully clear, but recent studies using mutants of Rac1 and 

RhoA specified that upregulation of Rac1 stimulates phagocytes to engulf apoptotic 

cells (Akakura et al., 2004; Nakaya et al., 2008) whereas  RhoA had an opposite 

effect (Kim et al., 2017). Kim et al. (2017) investigated the role of Rac1 and RhoA in 

the clearance of apoptotic cells and showed a dynamic balance between the two 

proteins was needed to regulate efferocytosis, with Rac1 upregulated and RhoA 

downregulated during pseudopodial formation. 

RhoG is associated with the regulation of actin cytoskeleton dynamics (Katoh et al., 

2006), phagocytosis (Prieto-Sánchez et al., 2006), gene transcription (Vigorito et al., 

2003) and the regulation of NADPH oxidase in neutrophils (Condliffe et al., 2006). 

Data in this chapter demonstrates for the first time that treatment of macrophages 
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with estrogen causes an increase in RhoG levels leading to enhanced phagocytosis 

of bacteria. This result supports the findings of Tzircotis et al. (2011) that 

demonstrated that RhoG stimulates phagocytosis of IgG-opsonised (for FcγR) or 

C3bi-opsonised (for CR3) sheep red blood cells (RBCs) in mouse macrophages. 

However, the findings in this chapter are the first to show that estrogen stimulates 

RhoG in human M1 macrophages. Therefore, elevation of RhoG levels could 

potentially be a novel and effective therapeutic approach for the treatment of 

wound. However, further investigations are needed to provide a confirmation of 

this hypothesis. 

In this study, levels of Cdc42 in M1 macrophages following treatment with estrogen 

significantly increased. Resveratrol, a plant-derived polyphenol found in grapes and 

associated products such as wine, has both anti-estrogenic effects in breast cancer 

and but is believed to be estrogenic in peripheral tissues such as bone (Bhat et al., 

2001; Tou, 2015). Azios et al. (2007) investigated the effect of resveratrol in 

estrogen-responsive breast cancer, and found that resveratrol decreased the 

activity of Cdc42 and Rac1 whereas a combination of resveratrol with estrogen 

resulted in a significant upregulation of both Cdc42 and Rac1 in breast cancer cells. 

Cdc42 is linked with the organisation of the actin cytoskeleton, membrane ruffling 

and formation of filopodia in fibroblasts and macrophages (Kozma et al., 1995; Cox 

et al., 1997). Research indicates Cdc42 is crucial for successful phagocytosis of 

Salmonella in COS-1 cells (L.-M. Chen et al., 1996; Cox et al., 1997). In addition, the 

injection of macrophages with activated Cdc42 results in the formation of long and 

indistinct filopodia in vitro (Allen et al., 1997). Cdc42 is an essential requirement for 

Fc receptor-mediated phagocytosis and for the formation of membrane ruffling 

mediated by diverse receptors in macrophages (Allen et al., 1997). 

In summary, estrogen increased levels of Rac1, Cdc42, RhoG and FAK, but reduced 

levels of RhoA in U937-derived M1 macrophages. Further interrogation of pathways 

involved in the actin cytoskeleton could potentially reveal other mediators of 

estrogen-induced phagocytosis. Whilst results presented in this chapter provided 

exciting and novel links between estrogen and proteins of the cytoskeleton during 

the process of phagocytosis, further investigations are warranted to determine the 



163 

effect of estrogen on relative amounts of proteins in their activated 

(phosphorylated) state during the process of phagocytosis. Western blotting, kinase 

activity assays (to measure FAK activation), and intracellular flow cytometry would 

be very robust methods of measuring activated protein levels. Inhibitors of 

phagocytosis pathways could also be exploited to further understand the 

mechanisms by which estrogen induces phagocytosis. In addition, further work is 

required to determine whether the changes in protein levels are mirrored by 

concomitant alterations in gene expression. In order to determine the effect of ER-α 

activation on downstream gene expression in macrophages, RNA sequencing 

(RNAseq) and real time polymerase chain reaction (qPCR) analysis could be 

adopted. Understanding the precise mechanisms by which estrogen promotes 

phagocytosis might reveal key downstream targets to interrogate further and may 

ultimately lead to the development of novel therapies to treat wound infections in 

the elderly with high efficacy and minimal side effects. 
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7.1 Discussion 

Chronic wounds are difficult to treat and often become colonised with bacteria 

leading to substantial mortality and morbidity in the elderly. Impaired wounds can 

become colonised with a varied range of pathogens including S. aureus and P. 

aeruginosa (Gjødsbøl et al., 2006; Kirketerp-Møller et al., 2008; Rybtke et al., 2015). 

Treatment of bacterial infections in wounds requires aggressive medication, and 

the use of last-generation antibiotics (Beasley and Hirst, 2004). Thus, the treatment 

of wound infections in the elderly represents a big challenge for the healthcare 

services (Beasley and Hirst, 2004). The propensity for wound infections increases in 

the elderly, in part due to the delay in wound repair (Cooper et al., 2015). Estrogen 

is a key regulator of the wound healing process and estrogen deprivation in the 

elderly is linked with pathological wound healing (Ashcroft et al., 1999a; Margolis et 

al., 2002). Indeed, impaired healing in the elderly is mediated by changes in steroid 

hormones, particularly declining levels of estrogen with increasing age (Ashcroft et 

al., 1999a; Ashcroft et al., 2003; M. J. Hardman and G. S. Ashcroft, 2008). Estrogen 

deficiency causes a significant delay in wound repair, with topical and systemic 

estrogen replacement reversing this delay (Ashcroft et al., 1997a; Ashcroft et al., 

1999a). Furthermore, estrogen supplementation promotes age-related wound 

healing in both elderly males and females (Ashcroft et al., 1999a; Guo and DiPietro, 

2010). Delayed wound healing in the elderly is associated with a delayed, but 

prolonged and excessive inflammatory response, with dysregulated expression of 

pro-inflammatory cytokines and proteolytic mediators. The key role of estrogen in 

regulating inflammation has been extensively reviewed (Gilliver et al., 2007; Guo 

and DiPietro, 2010), with estrogen supplementation decreasing the inflammatory 

response in elderly subjects of both genders (Ashcroft et al., 1999a). However, 

despite the pronounced inflammatory response, evidence suggests declining levels 

of estrogen with increasing age can result in an impaired ability of inflammatory 

cells to eliminate bacteria from infected wounds (Emori et al., 1991; Thomas, 2001). 

The possible role estrogen plays in macrophage-mediated bacterial clearance has 

not been fully characterised to date. In order to elucidate the effect of age-related 

changes in estrogen levels on the clearance of bacteria by human macrophages, 
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this study conducted host-pathogen interaction assays to investigate the 

phagocytosis  of two major wound pathogens, MRSA and P. aeruginosa by in vitro 

U937-derived macrophages and ex vivo human peripheral blood monocyte (HPBM)-

derived macrophages. Investigations were performed under conditions that model 

estrogen levels found in the elderly (estrogen deprivation), young adults (referred 

to as physiological estrogen in this thesis) and following exogenous estrogen 

supplementation. 

The conversion of monocytes into macrophage-like cells in vitro was an essential 

requirement to conduct all the host-pathogen assays in this study. PMA is reported 

to induce the differentiation of monocytes into macrophages in vitro (Martinez et 

al., 2006; Rios de la Rosa et al., 2017) via upregulation of cell adhesion molecules 

such as beta‐2integrins (CD11a, CD11c, CD18 and CD11b) (Luscinskas et al., 1994), 

enabling cells to adhere to cell culture flasks in vitro. The differentiation of 

monocytes into macrophages was assessed in this study via the detection of the 

CD11c surface marker by flow cytometry. The high expression of CD11c in PMA-

differentiated macrophages, compared with monocytes incubated in the absence of 

PMA, confirmed the successful transformation of U937 monocytes and HPBMs into 

macrophage-like cells in vitro. 

Macrophage stimulation with supraphysiological levels of estrogen increases the 

phagocytic function of human brain macrophages (microglial cells) to take up 

amyloid β‐peptide and E. coli (Li et al., 2000). Evidence has indicated that estrogen 

increases bacterial clearance in an in vitro LPS model of K. pneumoniae infection in 

acute wounds Crompton et al. (2016). In concordance with these reports, novel 

findings presented in this thesis (Chapter 3) have demonstrated that physiological 

(typical of youth) and supraphysiological levels of estrogen promote the engulfment 

of both Gram-positive and Gram-negative live bacteria by both human U937-

derived macrophages and HPBM-derived macrophages. Further, in vitro host-

pathogen assays involving the uptake of fluorescent bacteria (GFP-S. aureus) by 

U937-derived macrophages validated these findings, with significantly increased 

intracellular fluorescence following treatment of phagocytes with estrogen.  Due to 

the poor ability of the antibiotic gentamicin to permeate the macrophage 
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membrane, a gentamicin protection assay was performed to determine the number 

of viable bacteria inside the phagocytes following the killing of extracellular bacteria 

using gentamicin (Hamad et al., 2010; Rios de la Rosa et al., 2017). Novel findings 

from this assay indicated that physiological (typical of youth) and supraphysiological 

levels of estrogen promote not just the internalisation, but also the killing, of both 

MRSA and P. aeruginosa in a dose-dependent manner. Further evidence captured 

by fluorescent microscopy (epifluorescent and confocal microscopes) indicated a 

higher uptake of both GFP-S. aureus and mCherry-P. aeruginosa by estrogen-

treated macrophages in comparison to estrogen-deprived macrophages, with Z-

stack analysis confirming co-localisation of the bacteria within macrophages. 

Images captured by SEM provided additional evidence of enhanced host-pathogen 

interactions following treatment of macrophages with estrogen, with macrophages 

showing pathogen-specific morphological changes in response to MRSA and P. 

aeruginosa. Macrophages generated longer membrane extensions (pseudopodia) in 

response to P. aeruginosa compared to MRSA. This pathogen-specific difference is 

intriguing since the clearance of MRSA was consistently higher than the uptake of P. 

aeruginosa (P<0.05) regardless of the experimentals conditions. The lower bacterial 

uptake and longer pseudopodia produced by macrophages following interaction 

with  P. aeruginosa, may be due to P. aeruginosa’s being a motile bacterium 

(O'Toole and Kolter, 1998) and therefore phagocytes may have reduced success 

when stretching out further to capture a moving target due to increased demands 

on cytoskeleton reorganisation. 

Known for its anti-inflammatory proprieties, estrogen reduces excessive and 

prolonged inflammation by directly affecting the inflammatory response of 

monocytes, macrophages and neutrophils (Ashcroft et al., 2003; Guo and DiPietro, 

2010). Estrogen dampens the inflammatory response via inhibition of pro-

inflammatory cytokines production by tissue macrophages (Ashcroft and 

Ashworth., 2003). However, estrogen also stimulates tissue regeneration and 

remodelling following the resolution of inflammation (Ashcroft et al., 1999b; 

Ashcroft and Ashworth, 2003; Ashcroft et al., 2003). Collectively, these reports 

suggest that estrogen modulates both pro-inflammatory (M1) and pro-regenerative 
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(M2) macrophages during wound repair. The effect of estrogen on the phagocytosis 

of MRSA and P. aeruginosa by U937-derived and HPBM-derived M1/M2 

macrophages was investigated in Chapter 4. High expression of CD197 confirmed 

the polarisation of U937-derived and HPBM-derived M0 macrophages into M1-like 

macrophages by IFN-γ/LPS, whilst high CD206 expression confirmed polarisation 

into M2-like macrophages by IL-4/IL-13 (Stossi et al., 2012; Rios de la Rosa et al., 

2017). Consistent with the data in Chapter 3, physiological (typical of youth) and 

supraphysiological levels of estrogen were found to promote the phagocytosis of 

MRSA and P. aeruginosa in a dose-dependent manner by both M1 and M2 

macrophages compared to estrogen deprivation and the absolute absence of 

estrogen. However, the phagocytosis of bacteria by M1 macrophages was 

significantly (P<0.05) higher than that with M2 or M0 macrophages, regardless of 

whether the macrophages were derived from U937s or HPBMs. This data 

demonstrated the enhanced phagocytosis of bacteria by M1 macrophages which is 

in agreement with published findings  (Mantovani et al., 2004; Benoit et al., 2008; 

Murray and Wynn, 2011; Krzyszczyk et al., 2018).  

Further work assessing potential mechanisms of estrogen-enhanced phagocytosis 

was subsequently conducted using pro-inflammatory M1-like macrophages instead 

of M0-like or M2-like macrophages. In order to elucidate the importance of the ERs 

in mediating the estrogen-enhanced phagocytosis of bacteria by human M1 

macrophages, host-pathogen interaction assays were conducted using the SERM 

tamoxifen and the SERD fulvestrant. Tamoxifen and fulvestrant are mainly used to 

treat breast cancer (Cole et al., 1971; Cummings et al., 1999) owing to their 

antiestrogenic effects in breast tissue (Love et al., 1992; Black et al., 1994). 

Tamoxifen acts as an ER antagonist in the breast, but is agonist in peripheral tissues 

such as the bone and the uterus (Love et al., 1992; Black et al., 1994). Interestingly, 

stimulation of macrophages with tamoxifen mirrored the effects of estrogen by 

significantly (P<0.01) increasing the phagocytosis of both MRSA and P. aeruginosa 

by U937-derived and HPBM-derived M1 macrophages. These results are supported 

by the findings of Corriden et al. (2015) which showed tamoxifen improves the 

phagocytic function of human neutrophils against a range of bacteria, including 
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MRSA. Hardman et al. (2007) also reported that tamoxifen accelerates wound 

healing in ovariectomised mice by exhibiting estrogenic effects, principally by 

reducing the inflammatory response. Collectively, these findings suggest that 

tamoxifen could potentially be a beneficial therapeutic strategy to treat infected 

wounds in the elderly. 

Degradation of the ER by fulvestrant blocked the beneficial effects of estrogen on 

the phagocytosis of MRSA and P. aeruginosa by U937-derived and HPBM-derived 

M1 macrophages. Compared with estrogen, fulvestrant has a higher binding affinity 

to the ER (Morris and Wakeling, 2002), and when fulvestrant is coupled with the ER,  

the nuclear localisation of the ER is blocked leading to its degradation (Morris and 

Wakeling, 2002; Osborne et al., 2004). 

Together, these data from the use of tamoxifen and fulvestrant provide evidence 

that estrogen is promoting phagocytosis via the binding and activation of the ER.  

Consequently, the role of the two estrogen receptor subtypes, ER-α and ER-β, in 

this process was investigated using ER isoform-specific agonists and antagonists. In 

a similar manner to estrogen and tamoxifen, selective activation of ER-α with PPT 

increased the phagocytosis of both MRSA and P. aeruginosa by M1 macrophages. 

However, treatment with the ER-β agonist DPN failed to promote the phagocytosis 

of either MRSA or P. aeruginosa. Intriguingly, blockade of ER-α with TPBM reversed 

the effect of PPT on the bacterial clearance. These novel findings collectively 

indicate that estrogen induces the phagocytosis of bacteria through activation of 

ER-α.  This supports published findings showing that ER-α regulates inflammation, 

with ER-β modulating the later phases of wound healing (Campbell et al., 2010). 

Toutain et al. (2009) identified ER-α as the main isoform involved in promoting the 

beneficial effects of 17β-estradiol in a model of skin necrosis.  ER-α has also been 

shown to be the predominant ER involved in regulating the thickness of epidermis 

during wound healing (Stumpf et al., 1974; Bidmon et al., 1990). In summary, the 

findings described in Chapter 5 provide an indication that ER-α is the ER isoform 

through which estrogen promotes phagocytosis by macrophages. Selective 

targeting of ER-α with agents such as PPT may potentially lead to the development 

of therapeutic strategies to combat wound infections in the elderly. 
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Images from the SEM (Figure 3.16) illustrated major morphological changes in the 

membrane of phagocytes (macrophages) following estrogen treatment, with the 

establishment of multiple pseudopodial structures suggesting estrogen induces 

significant alterations in the actin cytoskeleton of the phagocytes. These findings 

suggested that the downstream genes mediated by estrogen may include 

mediators of the actin cytoskeleton. 

In chapter 6, protein levels of four major Rho GTPase proteins (Cdc42, Rac1, RhoG 

and RhoA) and the focal adhesion kinase (FAK) were measured in M1 macrophages 

following treatment with/without estrogen. 

FAK is a key molecule involved in regulating the actin cytoskeleton during 

phagocytosis (Cote-Vélez et al., 2001; Tzircotis et al., 2011). Immunoblotting 

analysis of FAK levels in this thesis indicated that estrogen supplementation 

significantly induced the levels of FAK in M1 macrophages. The importance of FAK 

in phagocytosis was highlighted by a study showing that in vitro transfection of 

macrophages with RNAi against FAK caused a 65% fall in the number of phagocytes 

during FcγR- and CR3-mediated phagocytosis (Tzircotis et al., 2011). The pathogen-

killing activities of neutrophils and macrophages were mediated by FAK through the 

formation of lamellipodial structures (Kasorn et al., 2009). In contrast, FAK 

deficiency in macrophages is associated with a reduction in cell adhesion, and a 

failure in the formation of lamellipodia (Owen et al., 2007). These findings suggest 

that FAK is a potential therapeutic target that may (at least in part) mirror the 

beneficial effects of estrogen on bacterial clearance by macrophages. 

Whilst estrogen increased the levels of Rac1 in M1 macrophages, an opposite effect 

on RhoA was observed. This was interesting in light of studies showing that Rac1 

enhanced the phagocytosis of apoptotic cells (Akakura et al., 2004; Nakaya et al., 

2008) whereas RhoA was shown to dampen the process (Kim et al., 2017). These 

reports also highlighted the need of a dynamic balance between the two proteins 

to regulate the apoptosis process, with concurrent upregulation of Rac1 and 

downregulation of RhoA required for engulfment of apoptotic cells. Similarly, other 

studies have also shown the opposing  nature of Rac1 and RhoA during 

cytoskeleton reorganisation in Candida elegans (Ohta et al., 2006; Freeman and 
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Grinstein, 2014). The concomitant increase of Rac1 and FAK as inducers of 

phagocytosis is consistent with the fact that Rac1 is downstream from FAK in the 

regulation of actin dynamics (Kallergi et al., 2003; Papakonstanti et al., 2003; 

Siesser and Hanks, 2006; Kallergi et al., 2007). These findings suggest that 

manipulating the balance of Rac1 and RhoA in phagocytes of the elderly may be an 

additional therapeutic strategy to increase the appetite of macrophages to engulf 

bacteria, particularly in individuals where hormone replacement therapy (HRT) is 

contraindicated. 

Similar to Rac1, RhoG is linked with the regulation of the actin cytoskeleton (Katoh 

et al., 2006), phagocytosis (Prieto-Sánchez et al., 2006), gene transcription (Vigorito 

et al., 2003) and the regulation of NADPH oxidase in neutrophils (Condliffe et al., 

2006). Novel data in this study demonstrate that stimulation of macrophages with 

estrogen results in an increase in RhoG levels and enhanced phagocytosis. This 

result is in concordance with the findings of Tzircotis et al. (2011) that showed 

RhoG stimulates phagocytosis of IgG-opsonised (for FcγR) or C3bi-opsonised (for 

CR3) sheep red blood cells (RBCs) in mouse macrophages. However, the findings in 

this thesis are the first to show that estrogen stimulates RhoG in human M1 

macrophages.  Thus, promotion of RhoG may be an effective and extremely novel 

therapeutic strategy for infected wounds since it may recapitulate (at least in part) 

the beneficial effect of estrogen on bacterial clearance. However, further 

investigations are required to confirm this hypothesis.  

Activation of Cdc42 is required for the regulation of the actin cytoskeleton 

dynamics, the formation of membrane ruffling and the formation of filopodia, a 

crucial requirement for effective phagocytosis in macrophages (Kozma et al., 1995; 

Cox et al., 1997). Immunoblotting analysis in this study showed an increase in the 

levels of Cdc42 in M1 macrophages following supplementation with estrogen. The 

concurrent increased levels of both Cdc42 and FAK in M1 macrophages are 

consistent with Cdc42 being downstream of FAK in the signalling cascade that 

promotes pseudopodia formation by phagocytes (Schaller, 2010). The increased 

levels of Cdc42  agrees with the findings of Allen et al. (1997) who showed that 

injection of macrophages with active Cdc42 resulted in the formation of long and 
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indistinct filopodia in vitro. Thus, further investigations are warranted to determine 

whether the longer pseudopodia produced by macrophages in this study, following 

interaction with P. aeruginosa compared with MRSA could be associated with 

higher levels of Cdc42. Such work may lead to novel therapeutics designed to be 

more effective against problematic Gram-negative/motile bacteria such as P. 

aeruginosa. 

7.2 Future Work 

 In order to reinforce the findings of this study, in vitro and ex vivo 

investigations using other phagocytes such as neutrophils (e.g. HL-60 cell 

line or ex vivo neutrophils) are warranted. One development of this would 

be to determine the effect of estrogen on the formation of neutrophil 

extracellular trap (NET) formation during host-pathogen interaction assays. 

This would help build a wider picture of the effects of estrogen on the 

clearance of wound pathogens. 

 

 Bacterial growth in chronic wounds has been reported to take the form of 

irregularly shaped micro-colonies that can comprise hundreds of bacteria 

known as biofilms (Bjarnsholt et al., 2008; Rybtke et al., 2015). Host 

pathogen assays in this study investigated the effect of estrogen on bacterial 

clearance by macrophages. However, only single (planktonic) bacterial 

pathogens were utilised throughout the study. Replicating the in vitro and 

ex vivo experiments using biofilms of MRSA and P. aeruginosa would 

improve our in vitro model of chronic wound infections. 

 

 Unpublished research in the Ashworth laboratory has shown that 

androgens, such as testosterone and dihydrotestosterone (DHT) inhibit the 

phagocytosis of MRSA in U937-derived macrophages. Indeed, the literature 

suggests that testosterone has opposing effects to estrogen (Gilliver et al., 

2007). This creates many opportunities and directions for extending the 
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scope of this research, linking various sex steroid hormones with 

phagocytosis in wounds. Future work could investigate the effect of other 

steroid hormones and steroid hormone precursors such as 

dehydroepiandrosterone (DHEA) and dehydroepiandosterone-sulfate 

(DHEA-S) on the phagocytosis of bacteria by various human phagocytes. 

Moreover, local conversion of testosterone to estrogen could be 

investigated using aromatase inhibitors and conversion of testosterone to 

DHT could be investigated using 5α-reductase inhibitors. 

 

 The findings of this study were obtained from host-pathogen assays 

conducted using in vitro and ex vivo macrophages. Repeating these 

experiments in vivo would provide robust evidence to confirm the beneficial 

effects of estrogen on promoting bacterial clearance during wound 

infections. One application would be to use mouse models that have been 

used previously to study age-related impaired healing (Ashcroft et al., 

1997b; Hardman et al., 2007). In vivo investigations in animal models will be 

needed to develop potential therapeutic approaches for the treatment of 

wound infections before conducting human clinical trials involving chronic 

wounds in the elderly. 

 

 The SEM data in Chapter 3 (Figure 3.16) illustrated distinct morphological 

changes occurring in macrophages when incubated with MRSA and P. 

aeruginosa. Future research is needed to determine the physical and 

biochemical effects induced by estrogen on pathogen-specific interactions 

with host cells. Fourier Transform Infra-Red (FTIR) Spectroscopy and Raman 

Spectroscopy could be used to determine changes in the functional groups 

on the membrane of host cells and cell wall of bacteria during host-

pathogen interactions. 
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 Tamoxifen enhanced the phagocytic activity of macrophages against Gram-

positive and Gram-negative bacteria (Chapter 5). Hardman and Ashcroft 

(2008) indicated that estrogen, tamoxifen and raloxifen all improve wound 

repair in ovariectomised mice. Future work could investigate a range of 

SERMs, including raloxifen, to determine the most effective mediator(s) of 

bacterial clearance. This could help identify the most promising topical 

SERM(s) to treat wound infections in the elderly. 

 

 Several proteins involved in regulating the actin cytoskeleton were found to 

be mediated by estrogen (Chapter 6). Protein levels were measured by 

simple immunoblotting due to time restrictions, but these initial findings 

should now be confirmed by an additional technique, such as Western 

blotting. Moreover, Western blot analysis of phosphorylation (activation) 

patterns of these proteins at different time-points before and after 

stimulation with estrogen would add depth to current findings and 

potentially reveal further details on the mechanisms of estrogen-mediated 

phagocytosis. Intracellular flow cytometry could be used to explore these 

proteins in phagocyte populations, and kinase activity assays could be 

adopted to measure FAK activity. In addition, further investigations are 

required to determine whether the changes in protein levels are mirrored 

by concomitant alterations in gene expression. In order to determine the 

effect of ER-α activation on downstream gene expression in macrophages, 

RNAseq and qPCR analysis could be adopted. Future work would also be to 

replicate the findings using agonist/antagonist treatments to 

stimulate/block the activity of the proteins investigated in chapter 6. 

Inhibitors of phagocytosis could also be exploited to further understand the 

mechanisms by which estrogen induces phagocytosis. 

7.3 Conclusion 

In conclusion, this thesis delivers a body of experimental evidence demonstrating 

that estrogen directly enhances the phagocytosis of the two major wound 
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pathogens, MRSA and P. aeruginosa, by human macrophages via activation of ER-α 

and possible transcription of genes involved in regulating the actin cytoskeleton of 

phagocytes. When translating the findings to the context of wound infections, the 

data suggest that estrogen may promote the clearance of wound infections during 

youth but this protection is lost as estrogen levels decline with increasing age, 

resulting in increased propensity and progression of wound infections in the 

elderly. Understanding the precise mechanisms by which estrogen promotes 

phagocytosis would assist in identifying downstream targets to develop effective 

novel therapies for the treatment of wound infections with minimal side effects. 

Based on the findings in this thesis, novel dressings that provide estrogen 

supplementation or selective activation of ER-α and/or specific targeting of proteins 

that regulate the actin cytoskeleton of phagocytes may provide effective 

therapeutic options for infected wounds in the elderly and warrant further 

investigation. 
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