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Abstract: This thesis provides some theoretical and phenomenological work on

two of the outstanding problems in modern physics, namely, the extreme smallness

of neutrino masses and the relative abundance of matter over antimatter. A theorem

is developed relating the smallness of the light neutrino masses to the degree of

lepton number violation in some seesaw extensions of the Standard Model of particle

physics. It is shown that for exactly massless light neutrinos there must be an

exact lepton number symmetry. Then the viability of thermal leptogenesis as a

resolution to the baryon asymmetry problem at different scales is assessed using

more sophisticated numerical tools than have previously been applied. It is shown

that, if fine-tuned solutions are allowed, the scale may be lowered to ∼ 106 GeV.

Using these results, it is shown that, if CP violation comes purely from the phases

of the PMNS matrix, thermal leptogenesis may still be viable over a range of scales

covering 106 — 1013 GeV. It is also shown that thermal leptogenesis is viable in

the Neutrino Option, in which the Higgs potential has its dimensionful parameter

provided by loop corrections from the heavy Majorana neutrinos in the type I seesaw

at a mass scale ∼ 106 GeV.
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Chapter 1

Introduction

Elementary particle physics and cosmology are mature fields — they both have

a standard model that elegantly explains most observations. However, there are

experimental observations which do not fit in these standard models. Unexplained

phenomena include: the identity of dark matter, the origin of dark energy, the baryon

asymmetry of the universe, the strong CP problem, the existence of neutrino masses,

the hierarchy problem, etc.1 Solutions to any of these questions will necessarily

constitute profound revisions to the established body of scientific knowledge. This

thesis addresses two of them in detail:

1. The origin of neutrino masses. Massive fermions must have left- and right-

chiral components but the Standard Model of particle physics, in its most

minimal form, does not include right-chiral neutrino fields. Thus the observed

neutrino masses are without explanation. Simply including these fields in the

Standard Model is not very satisfactory, as the observed neutrino masses are

very small and would thus require exceedingly small couplings. In order to

avoid such fine-tuned parameters, more nuanced extensions of the Standard

Model have been proposed that naturally explain the smallness of these masses.

1A glance over new submissions to arXiv.org on any given weekday gives some indication of
which problems attract the most attention.
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2. The baryon asymmetry of the universe or the measured excess of matter over

antimatter in the universe. The Standard Model of particle physics does

not predict a quantitatively correct asymmetry and thus extensions must be

sought that can remedy this. A particularly appealing feature of some of these

extensions is that they can simultaneously explain the baryon asymmetry and

the origin of the small neutrino masses.

This thesis is written from my current perspective on the subjects I touched during

my PhD and assumes the level of knowledge I had as a PhD student when I began

my research in particle physics. There are two introductory chapters, Chapters 2

and 3, which provide the necessary background for the original research presented in

Chapters 4, 5, 6 and 7. It concludes in Chapter 8 with a discussion of its relevance

to the body of particle physics knowledge at large. Chapter 2 introduces the basic

ideas of neutrino physics that are necessary for this thesis. Chapter 3 introduces

one mechanism by which the baryon asymmetry is produced, namely leptogenesis.

Following the convention for most particle physics PhD theses, the middle chapters

are heavily based on my research papers. Chapter 4 introduces a theorem relating

lepton number violation and neutrino masses in some Standard Model extensions

(based on [4]). Chapter 5 looks at the energy scales for which thermal leptogenesis

may be viable (based on [5]). Chapter 6 explores the possible origins of CP violation

in thermal leptogenesis (based on [6]). Chapter 7 asks if successful leptogenesis is

possible in the context of a model called the Neutrino Option [2,8] which purports

to simultaneously solve the hierarchy problem and to explain neutrino masses (based

on [7]).



Chapter 2

Massive neutrinos

The observed neutrinos are exceedingly light elementary fermions whose weak inter-

actions are described by the Standard Model (SM) of particle physics. Their small

masses have the rare property of being an experimental fact that is not comfortably

explained by the Standard Model. Naturally, much contemporary research aims to

provide mechanisms by which neutrinos may obtain such small masses.

In this chapter, we shall review both the successes and failures of the Standard

Model in explaining neutrino phenomena. We shall then take a panoramic survey

of the relevant extensions of the Standard Model before focusing in on the type I

seesaw extension which is prominent in the later chapters of this thesis.

2.1 The Standard Model and neutrinos

The Standard Model

The Standard Model is a quantum field theory described by a path integral with gauge

symmetry group SU(3)c × SU(2)L × U(1)Y and with a renormalisable Lagrangian

which may be decomposed according to its field content as

LSM = LGauge + LHiggs + LFermion + LYukawa. (2.1.1)
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This field content is summarised in Table 2.1. The Standard Model is the current best

explanation of electromagnetism, the weak interactions and the strong interactions.

Gravitation, the remaining fundamental interaction is not incorporated into it.

The strong interactions result from the local SU(3)c symmetry whose colour charge

is carried by the quarks, Qi, uiR and diR [9–11]; and the gluons G which are the

corresponding gauge boson. The gauge coupling runs to zero with increasing energies

and is large at small energies. This means that high-energy processes are amenable

to a perturbative analysis whereas the low-energy processes require fundamentally

different techniques. At low energies, composite objects with overall zero colour

charge will emerge — the mesons and baryons, with the quarks being permanently

confined within them [12,13].

The electroweak interactions are the result of the local SU(2)L × U(1)Y symmetry

whose gauge bosons are W and B respectively. The quarks Qi, uiR and diR, the

leptons Lα, lαR and the Higgs φ carry the hypercharge of U(1)Y . Under SU(2)L,

the doublets are: Qi = (uiL, diL)T containing left-chiral up and down type quarks;

Lα = (ναL, lαL)T which contains the left-chiral neutrino and charged lepton fields

and φ = (φ±, φ0). In the SM, the Higgs field dynamically breaks the SU(2)L×U(1)Y
symmetry to the symmetry of electromagnetism: U(1)em. After this electroweak

symmetry breaking, the massless W and B bosons are no longer mass eigenstates

but instead mix to form the massive W± and Z bosons of the weak interactions and

the massless photon A of electromagnetism.

Let us examine the terms in Eq. (2.1.1):

LGauge contains purely gauge-boson fields G, W , B in kinetic or self-interaction

terms:

LGauge = −1
4G

a
µνG

µν
a −

1
4W

i
µνW

µν
i −

1
4BµνB

µν , (2.1.2)

in which

Ga
µν ≡ ∂µG

a
ν − ∂νGa

µ − g1f
abcGb

µG
c
ν , (2.1.3)

W i
µν ≡ ∂µW

i
ν − ∂νW i

µ − g2εijkW
j
µW

k
ν , (2.1.4)
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SU(3)c SU(2)L U(1)Y
Qi 3 2 +1

3
Lα 1 2 −1
uiR 3 1 +4

3
diR 1 1 −2

3
lαR 1 1 −2
G 8 1 0
W 1 3 0
B 1 1 0
φ 1 2 1

Table 2.1: The field content of the Standard Model. For SU(3)c
and SU(2)L, the non-Abelian groups, the dimension of
the representation is shown. For U(1)Y the charge under
that group (hypercharge, Y) is shown. The generational
indices are i ∈ {1, 2, 3} and α ∈ {e, µ, τ} and subscripts
L and R denote left and right chirality respectively.

Bµν ≡ ∂µBν − ∂νBµ. (2.1.5)

Where here the roman alphabet is used for SU(2)L, SU(3)c indices (in W and G),

g1, g2 and g3 are coupling constants of SU(3)c, SU(2)L and U(1)Y respectively and

εijk, fabc are the structure constants for SU(2)L and SU(3)c respectively.

LFermion contains the kinetic and gauge-interaction terms of the fermionic field con-

tent:

LFermion = Qi /DQ+ uRi /DuR + dRi /DdR + Li /DL+ lRi /DlR, (2.1.6)

in which the generational indices are hidden and

Dµ = ∂µ + ig1G
a
µ

λa

2 + ig2W
i
µ

τ i

2 + ig3Bµ
Y

2 , (2.1.7)

where λ is the generator of SU(3)c, τ i are SU(2)L generators (the Pauli matrices), Y

is the hypercharge operator. A field which is a singlet of a given gauge group should

have the generator taken as 0.

LHiggs contains the kinetic and self-interaction terms for the Higgs field φ:

LHiggs = (Dµφ)† (Dµφ) + λφ†φ
(
v2 − φ†φ

)
, (2.1.8)

in which v is the vacuum expectation value (VEV) of the Higgs field. When it



6 Chapter 2. Massive neutrinos

acquires a VEV, the Higgs field gives masses to the gauge bosons through

|Dµ〈φ〉|2 =

∣∣∣∣∣∣∣∣
1
2

 g3Bµ + g2W
3
µ g2

(
W 1
µ − iW 2

µ

)
g2
(
W 1
µ + iW 2

µ

)
g3Bµ − g2W

3
µ


 0

v


∣∣∣∣∣∣∣∣
2

,

= g2
2v

2

2 W+
µ W

−µ + v2

4
(
g2

2 + g2
3

)
ZµZ

µ,

(2.1.9)

where W±
µ ≡ (W 1

µ ∓ iW 2
µ)/
√

2 and Zµ ≡ (g3Bµ − g2W
3
µ)/

√
g2

2 + g2
3. The linearly

independent counterpart to Zµ is the photon Aµ ≡ (g2Bµ + g3W
3
µ)/

√
g2

2 + g2
3.

LYukawa is the fermion-Higgs interaction terms or Yukawa terms (with hidden gener-

ational indices)

LYukawa = −
(
Qφ̃

)
YuuR −

(
Qφ

)
YddR −

(
Lφ
)
YllR + h.c., (2.1.10)

where φ̃ ≡ iτ2φ
∗ and through which the fermions can gain a mass once the Higgs

acquires a VEV:

LFermion mass = −vY αβ
u uαLu

β
R − vY

αβ
d dαLd

β
R − vY

αβ
l l

α

Ll
β
R + h.c.,

= −mαβ
u uαLu

β
R −m

αβ
d dαLd

β
R −m

αβ
l l

α

Ll
β
R + h.c.,

(2.1.11)

where mαβ
a is the mass matrix for field a.

The Lagrangian of the Standard Model written in Eq. (2.1.1) includes all renormal-

isable terms consistent with the imposed symmetries. However, one can construct

higher-dimensional operators consistent with the imposed symmetries of the Stand-

ard Model that are suppressed by a large mass scale (see for example Eq. (2.3.2)).

The restriction to the renormalisable part is justified as an effective low-energy

approximation.1 When the non-renormalisable terms are neglected, the remaining

operators exhibit some extra accidental symmetries beyond those imposed. That is

because the violation of these symmetries only occurred in the non-renormalisable

1Renormalisability is not a requirement of a theory in itself: effective theories are not generally
renormalisable but may be handled by assuming a cutoff in energy beyond which they are not
accurate. This cutoff suppresses the non-renormalisable terms and this is the spirit in which they
are ignored in Eq. (2.1.1). These terms have dimensions higher than four and include, for example,
the dimension six operators which lead to proton decay and which are suppressed by the inverse
square of the cutoff.
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terms. Examples include the baryon and lepton numbers, B and L, that count the

charge of baryons and leptons (where quarks carry B = 1/3). In fact, at the level

of the Lagrangian both B − L and B + L are symmetries, however, of these two,

the path integral of the SM is only invariant under B − L and not B + L (which

is therefore anomalous). Violation of the latter occurs only in non-perturbative

processes, an example of which is discussed in Appendix C.

The historical successes of the Standard Model include its prediction of the tau

lepton [14], the W± and Z bosons [15–18], the top quark [19, 20] and the Higgs

boson [21,22]. In fact, the Standard Model along with the general theory of relativity

constitute our best theories of the fundamental interactions — in principle, all

physical phenomena of everyday life are explained by these two theories. However

there are good reasons to think that the Standard Model needs modification. Among

them: it does not correctly predict the abundance of matter over antimatter in the

universe; it does not account for the accelerating expansion of the universe; none

of its particle content is a good candidate for a dark matter particle; it incorrectly

predicts that neutrinos are without mass.

This thesis is primarily about the two of these shortcomings — the problem of the

matter-antimatter asymmetry and the problem of neutrino masses. Let us turn now

to the Standard Model prediction of massless neutrinos and the evidence against it.

Neutrinos in the Standard Model

In the Standard model there are three distinct left-handed fermionic fields to describe

the neutrinos: νeL, νµL and ντL which are incorporated into a left-handed SU(2)L

doublet with the corresponding charged lepton le, lµ or lτ . Consider a typical neutrino

produced by tritium beta decay in a weak interaction in an atomic nucleus with an

energy Eν ∼ 5 keV. At these low energies, the mediating W boson mass is extremely

large, mW ∼ 80 GeV� Eν and we can use the Fermi effective theory [23] to describe
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subsequent interactions of the neutrino with matter. The effective coupling is [24]

GF =
√

2
8

g2
2

m2
W

≈ 1.1663787(6)× 10−5 GeV−2, (2.1.12)

so from dimensional analysis we expect the neutrino-matter cross-sections to behave

as

σ ∝ G2
F s, (2.1.13)

where s is the squared centre-of-mass energy Mandelstam variable, which gives us

an extremely small interaction cross-section σ ∼ 10−21 GeV−2. Thus, the Standard

Model neutrinos come as a set of three left-handed fields that very rarely interact

with matter, and that are created or destroyed in weak interactions, each associated

with a charged lepton.

The Standard Model (in its simplest form) does not have any right-handed neutrino

fields. For this reason one cannot write down a fermionic mass term for the neutrinos

and so the Standard Model predicts that neutrinos have no mass (notice the lack

of an mν in Eq. (2.1.11)). Historically this picture of massless neutrinos was first

challenged in experiments intended to count the number of neutrinos from the sun.

Neutrinos in the sun would be produced in the electron flavour and a detector would

capture them via inverse beta decay [25, 26]. Although the number of neutrinos

produced in the solar cycle was known, it was found that the number of detected

neutrinos was lower than predicted. Later on, a similar anomaly was discovered in

the flux of neutrinos from the upper atmosphere. Here the ratio of muon neutrinos to

electron neutrinos was smaller than the prediction. With further experimental and

theoretical work it was shown that the phenomenon of neutrino oscillations [27–31]

could explain these experimental anomalies. This is when a neutrino created in a

given flavour state may change flavour as it propagates (and thus cause detectors

sensitive to only one flavour to undercount the total number of neutrinos). To make

this explanation work at least two of the observed neutrinos must be massive with an

extremely small mass scale at least O(106) times smaller than the electron mass. In

addition the mass and flavour states of neutrinos must be misaligned. Let us consider
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the implications of these extremely small masses now (however it is that they come

about). In particular let us try to understand in some detail the phenomenon of

neutrino oscillations through which the massive nature of neutrinos was discovered.

2.2 Properties of massive neutrinos

The neutrinos created or destroyed in weak interactions are not identical with the

eigenstates of mass. To be totally general we can start in a basis in which the charged

lepton masses are not diagonalised and write

ναL = V ν
αkνkL, (2.2.1)

where V ν is a unitary matrix used to relate the mass νkL and flavour ναL eigenstates

of neutrinos and

lαL = V l
αklkL, (2.2.2)

where V l is the equivalent of V ν for charged leptons. The charged current interaction

terms coming from Eq. (2.1.6) are

LCC = − g2√
2
∑
α,k,j

(
V ν∗
αk νkLγ

ρV l
αjljLWρ + h.c.

)
(2.2.3)

and so V ν and V l always appear in the combination

V † ≡ V ν†V l. (2.2.4)

Thus we lose no information by making the simplifying choice of defining V l to be

an identity matrix. Then we have [27,28,31]2

ναL = VαkνkL, (2.2.5)

Let us attempt to find a general parametrisation of the matrix V by counting the

number of physical parameters on which it depends.

2A similar story exists for the quark sector where one finds the CKM matrix relating down-type
quark flavour and mass eigenstates [32,33].
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A 3 × 3 unitary matrix has 3 × 3 = 9 complex parameters or 18 real parameters.

Unitarity imposes the constraint

V †V = 1, (2.2.6)

which means that each column of U has Euclidean norm of 1 and are each orthogonal.

The former imposes 3 real constraints (one for each column), the latter imposes 3

complex constraints (one for each pair of columns). Thus there are

18− 3− 2× 3 = 9, (2.2.7)

real parameters in this matrix. We need not add in extra constraints by consideration

of rows as these are derived from transposition of the constraints already considered.

A completely general parametrisation of the 3× 3 unitary matrix may be written as

V = diag
(
e−i(ψ+ρe), e−i(ψ+ρµ), e−iψ

)
U,

for some real phases ψ, ρe, ρµ where by convention [24]

U ≡
c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




1 0 0

0 ei
α21

2 0

0 0 ei
α31

2

 ,
(2.2.8)

with cij ≡ cos θij and sij ≡ sin θij for some real parameters θij and is called the

PMNS matrix. We define PM ≡ diag(1, ei
α21

2 , ei
α31

2 ) to be the matrix containing the

Majorana phases α21 and α31. Together with the Dirac phase δ, these parameters

control CP violation in the light neutrino sector. If we insert this form for V into

the charged current Lagrangian, written schematically as

(ν1, ν2, ν3) eiψU †


eiρe 0 0

0 eiρµ 0

0 0 1


︸ ︷︷ ︸
General 3× 3 unitary matrix


le

lµ

lτ

 , (2.2.9)



2.2. Properties of massive neutrinos 11

we can see that the diagonal matrix containing the phase factors eiρe and eiρµ can

be absorbed into the charged lepton fields on the right along with the overall phase

eiψ. This leaves just U with its 6 real parameters as the physically relevant matrix

transforming between the neutrino flavour and mass bases:

ναL = UαkνkL. (2.2.10)

The accurate determination of the parameters of this matrix constitute one of the

main goals of experimental neutrino physics. Now that we have a precise under-

standing of the mass-flavour mixing, we are in a position to understand neutrino

oscillations.
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Oscillations

The essential physical ideas of neutrino oscillations can be best explained by calculat-

ing the probability for transition of a neutrino from one flavour α to a distinct flavour

β after traversing some distance D. To compute the amplitude for this probability,

we should expand a one-particle neutrino state of flavour α into its constituent mass

states, evolve the state to the space-time location of observation, and project a state

of flavour β on to it [26,34,35].

Ordinarily, we assume that free particles travelling large distances are well-described

by plane waves with only one possible value of momentum. For propagating neutrinos

in oscillation experiments, it is physically clearer and more accurate to use a wave

packet description in which a neutrino with mass mi has amplitudes to propagate

with momentum in a small spread around some value Pi. This might arise because

the neutrino results from a decay π+ → µ+νi, where the initial pion is confined in a

box and thus has amplitude to decay with different momenta34. Thus we write

|να〉 = 1
π

3
4σ

3
2

∑
i

∫
d3pe−

(p−Pi)2

2σ2 Uαi|νi, p〉, (2.2.11)

where the Gaussian factor was chosen merely as a mathematically convenient way

to describe the wave packet. The precise shape of the wave packet will be irrelevant

to our final result. Evolving this in space and time, it becomes

|να(x, t)〉 = 1
π

3
4σ

3
2

∑
i

∫
d3pe−

(p−Pi)2

2σ2 e−i(Eit−px)Uαi|νi, p〉, (2.2.12)

where Ei ≡
√
p2 +m2

i . We choose to project this onto the final state of flavour β:

|νβ〉 = 1
π

3
4σ

3
2

∑
i

∫
d3qe−

(q−Qi)2

2σ2 Uβi|νi, q〉, (2.2.13)

3If the initial pion were a plane wave such that the momentum is definite, then one could
determine the pion and muon mass to infer the mass of the emitted neutrino and the interference
necessary for oscillation would be lost — only one neutrino contributes. This is because the
creation point is now very widely (infinitely) spread out in space over a region much larger than
the oscillation length and so no oscillation pattern could be detected.

4The finite lifetime of the unstable pion produces an additional spread that may be incorporated
similarly to our inclusion of the spatial momentum spread.
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which, for simplicity has been written with the same wave packet structure. After

doing so and simplifying the integrals and summations with the resulting Dirac and

Kronecker deltas, we arrive at

〈νβ|να(x, t)〉 = 1
π

3
2σ3

∑
i

∫
d3pe−

(p−Pi)2

σ2 e−i(Eit−px)UαiU
∗
βi. (2.2.14)

We now take advantage of the relative smallness of neutrino masses compared with

their energies and use

Ei ≈ p+ m2
i

2p , (2.2.15)

to obtain

〈νβ|να(x, t)〉 = 1
π

3
2σ3

∑
i

∫
d3pe−

(p−Pi)2

σ2 e−ip(t−x)e−i
m2
i

2p tUαiU
∗
βi. (2.2.16)

When, t− x is large, the factor e−ip(t−x) will rapidly oscillate with p and cause the

integral to vanish, thus we evaluate the amplitude for t = x = D

〈νβ|να(x = D, t = D)〉 = 1
π

3
2σ3

∑
i

∫
d3pe−

(p−Pi)2

σ2 e−i
m2
i

2p xUαiU
∗
βi. (2.2.17)

If the Gaussians are narrow, then we may take e−i
m2
i

2p x outside of the integral with

p→ Pi and perform the integral, to obtain

〈νβ|να(x = D, t = D)〉 ≈ e
−i

m2
1

2P1
∑
i

e
−i
(
m2
i

2Pi
−
m2

1
2P1

)
D
UαiU

∗
βi. (2.2.18)

Taking the pion decay example to be concrete, we have

P 2
i = m2

π

4

(
1−

m2
µ

m2
π

)2

− m2
i

2

(
1 +

m2
µ

m2
π

)
+ m4

i

4m2
π

, (2.2.19)

such that

m2
i

2Pi
− m2

1
2P1
≈ m2

i −m2
1(

m2
µ−m2

π

mπ

) +O
(
m4
i

)
≈ m2

i −m2
1

2E +O
(
m4
i

)
(2.2.20)

with E the energy when the neutrino mass is neglected. This corresponds to an
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oscillation probability

P (να → νβ) ≈
∣∣∣∣∣∑
i

e−i
∆m2

i1
2E DUαiU

∗
βi

∣∣∣∣∣
2

, (2.2.21)

with ∆m2
ij ≡ m2

i −m2
j .

We see that it is the presence both of different neutrino masses and their misalign-

ment with the flavour basis that leads to the phenomenon of neutrino oscillations.

Observing such a phenomenon with the charged leptons is much more difficult (if

we do not define them to be diagonal) due to the large uncertainty of energies that

would be necessary to create a coherent superposition of mass states.

From Eq. (2.2.21) we see why it is that the differences in the squared masses for

neutrinos are measured in the oscillation experiments and not the absolute masses.

This is no surprise — being an interference phenomenon, neutrino oscillations are not

sensitive to the absolute mass scale as this is appears as a common phase. Further

we can see that if the exponentials were put into the form of a diagonal matrix E ,

then the oscillation probability is

P (να → νβ) ≈
∣∣∣∣(UEU †)αβ

∣∣∣∣2 , (2.2.22)

and so the Majorana phase matrix PM in U will cancel out of the description(
PMEP

†
M = PMP

†
ME = E

)
.

The individual mass states of neutrinos travel at slightly different speeds v with the

difference in speed ∆v given, in terms of the squared mass splitting ∆m2 and energy

E by

∆v ≈ ∆m2

2E2 . (2.2.23)

This means that the different components will spread out and no longer overlap after

some time. For accelerator neutrinos with energy E = 1 GeV, and a wave packet

of length determined by the pion decay width, using ∆m2 = 2.4 × 10−3 eV2, the

wave packets separate after 1020 km. We can ignore this and assume oscillation is

always present. However, in a supernova, E ∼ 10 MeV and the wave packet width
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is about the same as the inter-nucleon distance. Separation occurs at 103 km and

so neutrinos from supernovae are not oscillating by the time they get to us. With

SN 1987 A the time difference in the arrival of the different components could have

been as large as 10−4 s.

Direct mass bounds

As we have seen, neutrino oscillation experiments can only provide information on

the differences of the squares of the neutrino masses. The absolute mass scale must

be determined by other means. Two such complementary probes of neutrino masses

are cosmological observations and beta decay experiments.

The cosmological bound may be determined from the fact that the evolution of the

universe is sensitive to the sum of the light neutrino masses. After making certain

assumptions about the cosmological model, the bound is [36]

∑
i

mi < [0.120, 0.160] eV

at the 95% confidence level. Given the dependence on assumptions about cosmology

in this bound, it has been worthwhile to turn to a separate means of determining

the neutrino mass scale.

An alternative method is the beta decay experiments which study the kinematics of

beta decay processes. KATRIN [37] for example, the most sensitive such experiment

at present, looks at the process

3H → 3He + e− + ν i (2.2.24)

with i = 1, 2, 3, although the principle is the same no matter the particular beta

decay reaction. The larger the mass of mi, the smaller the maximum electron energy

with each neutrino mass state providing a different energy threshold. The current

experimental limits do not distinguish the different neutrino thresholds but rather
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an averaged quantity

〈mβ〉 =
√∑

i

|Uei|2m2
i . (2.2.25)

The current bounds come from the Troitsk and Mainz experiments [38, 39] and give

〈mβ〉 ≤ 2.05 eV.

Dirac or Majorana?

Due to their electrical neutrality, neutrinos are the only elementary fermions that may

be their own antiparticles making them Majorana fermions. A Majorana neutrino

field may be written

ν = νL + νcL (2.2.26)

where for some field ψ

ψc ≡ CνT , (2.2.27)

with C the charge conjugation matrix. That is to say that the left- and right- chiral

components of a Majorana field are not independent but that one may be constructed

from the other. In the mass basis, a mass term in the Lagrangian connects the left-

and right-handed fields as

Lνm = −
∑
i

miνiLνiR + h.c. (2.2.28)

If these particles are Dirac, we may use the Majorana phase matrix to define new

fields such that νiL = PM ν̃iL and νiR = PM ν̃iR. The mass term is invariant under

this and so if we work with ν̃i in place of νi, the Majorana phases are stripped from

the PMNS matrix. That is to say, they are rendered unphysical. This is not the

case for Majorana particles for which νR = CνTL and so the left- and right-chiral field

redefinitions cannot be made independently. In this case the Majorana phases are

physical as no convention can remove them — this is why we call them Majorana

phases (see Appendix B for further properties of Majorana fermions).

Generically, the distinction between Dirac and Majorana particles must vanish when
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their masses go to zero. This means that the difference in amplitudes for processes

involving one or the other must be suppressed by powers of m/E (the mass over the

energy). This parameter is exceptionally small for neutrinos and would appear to

make the experimental verification of the Dirac or Majorana nature very difficult.

Adding to that, as we have seen, neutrino oscillation experiments cannot determine

the Majorana phases and so provide no information either.

However it may be possible to resolve the nature of neutrinos by looking for lepton

number violation. One may rephase the Dirac fields with a constant factor: νL →

eiθνL and νR → eiθνR and leave the Lagrangian invariant. This global symmetry

at the level of the action corresponds to the conservation of lepton number. In

the Majorana case, because of the interdependence of the chiral components, this

symmetry no longer holds and the Majorana mass term violates lepton number by

two units.

W

W

νL

νL

e−

e−

n

n

p

p

Figure 2.1: Schechter-Valle theorem: If in some theory, neutrinoless
double beta decay may occur, then an effective Majorana
mass exists for the light neutrinos.

An experimental test of this is neutrinoless double beta decay (0νββ). This is the

simultaneous occurrence of a pair of beta decays in one nucleus in which there

are no neutrinos in the final state — thus violating lepton number by two units.
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Experiments probing double beta decay can provide information on the CP-violating

Majorana phases of the PMNS matrix.

The rate of neutrinoless double beta decay is given by [40]

Γ0νββ

log 2 = G01

m2
e

|A|2, (2.2.29)

where G01 is a kinematic factor, me the electron mass and A, the amplitude for the

process. One finds that

A ∝ 〈mν〉 ≡ m1U
2
e1 +m2|Ue2|2eiα21 +m3|Ue3|2ei(α31−2δ), (2.2.30)

where 〈mν〉 is the neutrinoless double beta decay effective Majorana mass in the case

of 3-neutrino mixing. The most stringent upper bound on |〈mν〉| was reported by

the KamLAND-Zen collaboration [41] searching for neutrinoless double beta decay

of 136Xe:

|〈mν〉| < (0.061 – 0.165) eV, (2.2.31)

where the uncertainty in the knowledge of the nuclear matrix element of 136Xe decay

have been accounted for. The best lower limits on the half-lives for neutrinoless

double beta decay are T 0ν
1/2 > 8.0 × 1025 yr (GERDA-II collaboration), T 0ν

1/2 >

1.5 × 1025 yr (Cuoricino, CUORE-0, and CUORE), and T 0ν
1/2 > 1.07 × 1026 yr

(KamLAND-Zen collaboration), with all these limits given at the 90% CL. A new

generation of experiments aims to be sensitive to |〈mν〉| ∼ [0.01, 0.05] eV [42,43].

In complete generality, as can be seen in Fig. 2.1, no matter the mechanism by

which it is allowed, the presence of double beta decay implies an effective Majorana

mass (barring fine-tuned cancellations between contributions). Although this is

a four-loop process and hence well-suppressed, its implications for the nature of

neutrinos is significant. Notice that no amount of non-observation of neutrinoless

double beta decay can prove that neutrinos are Dirac as it is possible for instance

that the amplitudes contributing to the decay rate cancel.
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Status of neutrino measurements

θ13 θ12 θ23 δ ∆m2
21 ∆m2

31
(◦) (◦) (◦) (◦) (10−5eV2) (10−3eV2)

8.61+0.12
−0.13 33.82+0.78

−0.76 49.7+0.9
−1.1 217+40

−28 7.39+0.21
−0.20 2.525+0.033

−0.031

Table 2.2: Normal ordering best fit values and 1σ ranges from a
global fit to neutrino data [1].

θ13 θ12 θ23 δ ∆m2
21 ∆m2

32
(◦) (◦) (◦) (◦) (10−5eV2) (10−3eV2)

8.65+0.12
−0.13 33.82+0.78

−0.75 49.7+0.9
−1.0 280+25

−28 7.39+0.21
−0.20 −2.512+0.034

−0.031

Table 2.3: Inverted ordering best fit and 1σ ranges from a global fit
to neutrino data [1].

In Table 2.2 and Table 2.3, we have the best fit values for the neutrino parameters.

Currently, the ordering of the masses is not determined and there are two possibilities:

normal ordering, in which m1 < m2 < m3 and inverted ordering in which m3 <

m1 < m2, hence the duplication of tables. It is useful to realise that ν1 is the

neutrino with the largest amount of νe, ν2, the second highest and ν3 the third

highest. The values of |〈mν〉| probed by the new generation of 0νββ experiments

correspond to quasi-degenerate light neutrino spectra and inverted ordering [44]. The

angle θ23 has large enough errors that the octant is still somewhat undetermined.

Accurate measurements of this angle are of significance to flavour models for which

the particular octant is of great significance. Recently, some information about the

CP-violating phase δ has been obtained, but it is very poorly constrained as may be

seen by examination of the corresponding errors in Table 2.2 and Table 2.3. Finally

we note that the Majorana phases remain completely undetermined.

2.3 Overview of speculative theories of neutrinos

By modifying the features of the SM, a large set of speculative theories, many of

which predict light neutrino masses, has been generated. Such modifications may
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affect the particle content or the symmetry structure or both. In this section we

provide a cursory summary of these extensions of the SM.

Theories which retain the gauge structure of the SM

Perhaps the simplest extension is to add right-handed neutrinos νR to the SM particle

content. Then, a neutrino Yukawa-term with coupling y is permitted which provides

a mass term
v√
2
yνLνR, (2.3.1)

corresponding to a neutrino mass mν = v√
2y after electroweak symmetry breaking.

If we assume, based on the cosmological mass bounds or on the oscillation data,

that mν ∼ O (10−11) GeV, then we require y ∼ 10−13. When the goal of the theory

is to explain the smallness of the neutrino masses, a theory in which the extreme

smallness is merely transferred from m to y is unsatisfying. Furthermore, this theory

has no explanation as to why one would exclude the Majorana mass term νRν
c
R.

A set of simple extensions to the Standard Model can be formulated by considering

the lowest-dimension non-renormalisable operator of the Standard Model — the

dimension-5 Weinberg operator [45, 46]

1
2cαβ

(
Lcαφ̃

∗
) (
φ̃†Lβ

)
+ h.c., (2.3.2)

where the coefficient cαβ has dimensions 1/energy. This can generate a Majorana

mass for neutrinos once the Higgs gains a vacuum expectation value.

A more complete theory than the SM might generate this term after integrating out a

new field S. As a reminder, integrating out a field means assuming that it is massive

enough that its derivative terms, proportional to the momentum, may be neglected

in comparison with its mass. Its appearance in the action of a path integral is then of

the same form as ordinary Gaussian integrals and may be performed analytically by

the usual technique of completing the square and changing variables. In schematic
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form, we would like to generate a term (Lφ)2 in the Lagrangian5 by integrating out

the field S which has mass term6 BS2. This means that we have something of the

form ∫
dSeAS+BS2

, (2.3.3)

with A some coefficient of S potentially containing fields. After completing the

square we have ∫
dSeB(S+ 1

2BA)2
− 1

4BA
2 ∝ e−

1
4BA

2
. (2.3.4)

In this toy model, we wish for this resultant term to contain (Lφ)2. Thus we may

choose

AS → y (Lφ)S + h.c, (2.3.5)

or

AS → y1 (LL)S + y2 (φφ)S + h.c. (2.3.6)

In Eq. (2.3.5), Lφ may be an SU(2)L singlet or a triplet, meaning that S must be

a singlet or triplet also. From Lorentz invariance we are required to take S to be

fermionic.

In Eq. (2.3.6) we may similarly have LL and φφ singlet or triplet meaning that S

must be a scalar singlet or triplet. Consider the case of a scalar singlet field S. In

the quadratic L term, in order that it is not zero as a result of two fields of the same

chirality multiplying, it must have a form LcLS which requires S to have hypercharge

2. The Higgs has hypercharge 1 and so to form a structure with hypercharge −2

in the second term of Eq. (2.3.6) we can have φ∗ or φ̃ leading to the combinations:

φ†φ∗, φ†φ̃ and their Hermitian conjugates. The former is not invariant under SU(2)L
transformations and so we must select φ†φ̃S which gives zero when the Higgs takes

on its VEV and thus does not contribute to the neutrino mass [47].

In summary there are three possibilities that may generate neutrino masses, conven-

5We trust from context this L will not be confused with lepton number.
6This is meant schematically, such that S2 maybe be the square of a scalar field, and B the

mass squared, or S2 may be a fermionic product ψψ and B simply the mass.
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tionally named

• Type I Seesaw: An SU(2)L singlet fermion [48],

• Type II Seesaw: An SU(2)L triplet scalar [49,50],

• Type III Seesaw: An SU(2)L triplet fermion [51].

The seesaw mechanisms mentioned above provide an ultraviolet completion of the

Weinberg operator. Due to the method in which we constructed them, they connect

the lepton and Higgs through a new particle propagator at tree-level. Integrating out

these new fields is equivalent to contracting the propagator line to a point and using

an effective vertex corresponding to the Weinberg operator coupling. These are not

the only possibilities for increasing the particle content however. For example, there

exist theories of neutrino masses in which the new particle content provides neutrino

masses at loop-level in Feynman diagrams [52,53].
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Theories with modified symmetries

There are many ways one may choose to modify the symmetries of the Standard

Model and many of these introduce new particle content at the same time. We

mention a handful of important theories here:

• The left-right symmetric model which contains the gauge group SU(2)L ×

SU(2)R × U(1)B−L [54–56], has the property that all left-handed fermions

have a right-handed partner and thus automatically leads to the possibility

neutrino mass terms. Alternatively, some models contain the gauge-group

SU(2)L×U(1)B−L and allow for the breaking of U(1)B−L to generate naturally

small neutrino masses [57] (see also [58] and the references within).

• Grand unified theories are those in which the Standard Model gauge structure

is a subset of a larger and simpler group. A common example is SU(5),

which, in its simplest form contains an exact B − L symmetry and predicts

massless neutrinos. Another example is SO(10) which contains the gauge group

SU(2)L × SU(2)R × SU(4) and thus contains right-handed neutrinos allowing

for the natural generation of their masses [59–61].

• Supersymmetric theories are those in which a symmetry between bosons and

fermions is introduced. If one does not allow for the violation of a symmetry

called R-parity, which among other things prevents proton decay, then the

minimal supersymmetric standard model conserves lepton and baryon number

to all orders in perturbation theory and therefore predicts massless neutrinos.

However, if one does allow for a small violation, lepton and baryon number

may be violated and naturally small neutrino masses may be generated [62–64].

This small violation must be done without introducing too large a proton decay

rate.

• Theories with extra dimensions may include right-handed neutrinos with a

wave function that has only a small overlap with the leptonic doublet thus

explaining the smallness of the neutrino masses [65–67].
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2.4 Aspects of the type I seesaw

Light and heavy neutrinos

We have now completed our survey of neutrino theory. For the purposes of explaining

the work presented in this thesis, let us look in more detail at the type I seesaw.

As already mentioned, the type I seesaw adds some number nN of heavy gauge

singlet neutrinos Ni (i ∈ {1, 2, . . . nN}) to the Standard Model. After electroweak

symmetry breaking the neutrino mass terms of the Lagrangian are given by

Lm = −1
2
(
ν̄L, N c

R

) 0 vY

vY T mR


 νcL

NR

+ h.c.,

= −1
2
(
ν̄L, N c

R

) 0 mD

mT
D mR


 νcL

NR

+ h.c.,

(2.4.1)

where Y is the neutrino Yukawa matrix which couples the heavy Majorana neutrinos

to the leptonic and Higgs doublets and mR is the nN × nN Majorana mass matrix

which is usually assumed to be much larger than the Dirac mass terms mD ≡ vY .

If we call the mass matrix appearing in Eq. (2.4.1)M, and the vector of neutrino

fields simply XL ≡ (νL, N c
R)T , then we may write

Lm = −1
2X LMX c

L + h.c., (2.4.2)

and define YL ≡ UXL with U a unitary matrix (a generalisation of the PMNS matrix

U), then we may write

Lm = −1
2YLU

†MU∗YcL + h.c. (2.4.3)

If we choose U so as to perform a singular value decomposition (in this case a Takagi

factorisation), to makeM into the positive diagonal matrix of masses M̂, then we

have

Lm = −1
2YLM̂Y

c
L + h.c. (2.4.4)

but the Hermitian conjugate term can be simply combined with the first term to
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give

Lm = −1
2
(
YL + YcL

)
M̂ (YL + YcL) . (2.4.5)

And thus we may use the field ψm ≡ YL +YcL which satisfies the Majorana condition

ψM = ψcM to describe the massive neutrinos in this theory. That is to say that the

neutrinos are Majorana in the generic type I seesaw.

The matrix U may be factorised into two unitary matrices U ′ and U ′′ such that

U = U ′U ′′ = U ′

 Uν 0

0 UN

 , (2.4.6)

where U ′ performs the block-diagonalisation

U ′TMU ′ =

 mν 0

0 mN

 , (2.4.7)

where mν and mN are the light and heavy neutrino mass matrices respectively and

the matrix U ′′ acts to diagonalise the light and heavy mass matrices via Uν and UN

respectively:

(U ′U ′′)TM (U ′U ′′) =

 m̂ν 0

0 m̂N

 , (2.4.8)

where m̂ν = diag (m1,m2,m3) and m̂N = diag (m4, . . . ,mnN+3).

The light neutrino mass matrix is given by the approximate tree-level expression

mν ≈ −mDm
−1
R mT

D, (2.4.9)

where we have neglected terms of higher order in mD/mR. For the heavy neutrinos

we have tree-level expression

mN ≈ mR, (2.4.10)

which is correct to lowest order in mD/mR.

Note of course that it is the PMNS matrix U that puts the light neutrino mass

matrix mν in diagonal form through the relation

m̂ν = UTmνU. (2.4.11)
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Radiative corrections to the light masses

Here we consider the one-loop corrections contributing to the neutrino mass. When

we are being careful, we shall use mν and mN to denote the light and heavy neutrino

mass matrices andmi
ν andmi

N to denote the ith loop contribution to these quantities.

In particular we have mν = m0
ν +m1

ν + · · · where m0
ν is the tree-level contribution.

A self-energy correction for the light neutrinos may be generated at one-loop as

described in Appendix A and is given by [68–70]

m1
νij = αW

16πm2
W

CikCjkf (mk) , (2.4.12)

with i, j ∈ {1, 2, 3}, k ∈ {1, . . . , nN}, αW ≡ g2
2/4π and C ≡ UTLU∗L, where UL ≡

(H, I) which comes from the block-decomposition of U

U ≡

 H I

J K

 , (2.4.13)

with H a 3 × 3 matrix and K an nN × nN matrix. The function f appearing in

Eq. (2.4.12) is given by

f (mk) = mk

(
3m2

ZgkZ +m2
HgkH

)
(2.4.14)

where

gab = m2
a

m2
a −m2

b

log m
2
a

m2
b

. (2.4.15)

It is useful to define a diagonal matrix

F ≡ diag(f(m1), ..., f(mm+3)), (2.4.16)

such that Eq. 2.4.12 may be rewritten in matrix form as

m1
νij = αW

16πm2
W

(
CFCT

)
ij
. (2.4.17)

If we expand this result in mD/mR and take only the first term, we find, in the basis
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where mR is diagonal, the approximate matrix expression

m1
ν ≈ mD

mR

32π2v2

 log
(
m2
R

m2
H

)
m2
R

m2
H
− 1

+ 3
log

(
m2
R

m2
Z

)
m2
R

m2
Z
− 1

mT
D, (2.4.18)

such that the light neutrino mass to one-loop is approximately7

mν ≈ −mD

(
m−1
R − h (mR)

)
mT
D, (2.4.19)

where

h ≡ mR

32π2v2

 log
(
m2
R

m2
H

)
m2
R

m2
H
− 1

+ 3
log

(
m2
R

m2
Z

)
m2
R

m2
Z
− 1

 . (2.4.20)

The Casas-Ibarra parametrisation

When there are three heavy Majorana neutrinos, the neutrino Yukawa couplings can

be parametrised as [71]

Y = i

v
U
√
m̂νR

T
√
m̂R, (2.4.21)

by consideration of the tree-level light mass matrix Eq. 2.4.9. In this expression, R

is a 3× 3 complex orthogonal matrix and m̂ν may be constructed with one free mass

parameter and the measured mass squared differences in the normal ordered (NO)

or inverted ordered (IO) cases. Explicitly, we may write

m̂ν = diag (m1,m2,m3) = diag
(
m1,

√
∆m2

21 +m2
1,
√

∆m2
31 +m2

1

)
NO,

m̂ν = diag (m1,m2,m3) = diag
(√
−∆m2

32 +m2
3 −∆m2

21,
√
−∆m2

32 +m2
3,m3

)
IO,

(2.4.22)

and use the general parametrisation for a complex orthogonal matrix

R =


1 0 0

0 c1 s1

0 −s1 c1




c2 0 s2

0 1 0

−s2 0 c2




c3 s3 0

−s3 c3 0

0 0 1

 , (2.4.23)

7Usually a loop-correction is smaller than the tree-level contribution because there are two extra
factors of a coupling and the loop factor 1/(16π2). However, for the light neutrinos there is only the
additional loop factor because the tree-level result was already quadratic in the Yukawa couplings.
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where ci = coswi, si = sinwi and the complex angles are given by wi = xi + iyi

(i ∈ {1, 2, 3}).

By simple analogy, it is possible to extend the Casas-Ibarra parametrisation to

include both the tree-level and one-loop correction to the light neutrino masses

Eq. (2.4.19) with [72]

Y = i

v
U
√
m̂νR

T
√
h(m̂R)−1. (2.4.24)

If one is working in a theory with only two heavy Majorana neutrinos, then it is

possible to use a simpler expression for the R-matrix that depends on only one

complex parameter θ by assuming that N3 is decoupled from all other particles. The

assumption of N3 decoupling implies that we may take m1 = 0 for the NO spectrum

(at tree-level). Correspondingly we have for the R−matrix:

R =


0 cos θ sin θ

0 − sin θ cos θ

1 0 0

 , (2.4.25)

where θ = x + iy. This in turn leads to (after dropping the column of zeroes

corresponding to N3)

U †Y = i

v


0 0

√
M1
√
m2 cos θ −

√
M2
√
m2 sin θ

√
M1
√
m3 sin θ

√
M2
√
m3 cos θ

 . (2.4.26)

Similarly, for IO spectrum we have m3 = 0 and subsequently

R =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 . (2.4.27)

In this case

U †Y = i

v



√
M1
√
m1 cos θ −

√
M2
√
m1 sin θ

√
M1
√
m2 sin θ

√
M2
√
m2 cos θ

0 0

 . (2.4.28)
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Low-scale seesaw variants

The type I seesaw predicts a light neutrino mass with size mν ∼ m2
D/mR. Assuming

O(1) Yukawa couplings, yields mD ≡ vY ∼ O(100) GeV and assuming mν ∼ 10−11

GeV, yields mR ∼ 1015 GeV. This suggests that type I seesaw scenarios are far

beyond the reach of current colliders. In particular, it is impossible to produce an

on-shell heavy Majorana neutrino if their masses are as large as this and on top of

that the active-heavy mixing is O(mD/mR) ∼ 10−13.

The seesaw scenario as we have considered it makes three neutrinos light by making

the other neutrinos very heavy. It is the 1/mR dependence of the light neutrino

masses that ensures they are small. However, another possibility is that each heavy

neutrino contributes to the mass in such a way that there are cancellations between

contributions. Then they do not need to be extremely heavy in order to make the

light neutrinos so light.

Constructing a toy-model to do this is easy. Let us take one light neutrino and two

heavy — the (1 + 2) scenario. The mass matrix in the basis where mR is diagonal is

M =


0 vy1 vy2

vy1 a 0

vy2 0 b

 , (2.4.29)

and the corresponding tree-level light neutrino mass is

mν ≈ −v2
(
y2

1
a

+ y2
2
b

)
.

This can be made as small as we like, even exactly zero if we choose y1/
√
a = ±iy2/

√
b.

Once the tree-level light neutrino masses are set to zero, the one-loop contribution

to the mass is the dominant contribution. However, as may be understood by

substitution into Eq. (2.4.18), the one-loop mass may be set to zero if, in addition

to y1/
√
a = ±iy2/

√
b, we impose a = b. This leads to the radiatively stable mass
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matrix

M =


0 vy1 ±ivy1

vy1 a 0

±ivy1 0 a

 . (2.4.30)

A change of basis puts this in the form

M′ =


1 0 0

0 ∓1√
2

∓1√
2

0 i√
2 −

i√
2




0 vy1 ±ivy1

vy1 a 0

±ivy1 0 a




1 0 0

0 ∓1√
2

i√
2

0 ∓1√
2 −

i√
2

 ,

=


0 ∓

√
2vy1 0

∓
√

2vy1 0 a

0 a 0

 .
(2.4.31)

If we take the neutrinos in this basis to be νL, νcR, Xc, where X is a right-handed

gauge-singlet, then we may assign lepton numbers −1, +1, +1 respectively (to the

fields with conjugations as stated) and find that lepton number is a symmetry of

the mass terms when the mass matrix is as given in Eq. (2.4.31). This symmetry

ensures that all higher-order loop corrections to the light neutrino masses are also

zero.

Classes of models exist, called low-scale seesaws [73–77] based around the mass

matrix of Eq. (2.4.31). Generally they promote the elements to matrices of the

appropriate size to describe realistic (3 + nN) situations. In order to make the

cancellation in the light neutrino masses incomplete, such that they acquire some

mass, all that is needed is small lepton-number violating parameters, for instance,

the inverse seesaw [73–75] (a prominent low-scale seesaw model) has the texture

M =


0 vyT1 0

vy1 µ M

0 MT µ′

 ,

with µ, µ′ � vy1 �M and predicts a tree-level light neutrino mass matrix propor-
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tional to the lepton number violating parameter µ′

mν ≈ v2
(
M−1y1

)T
µ′M−1y1.

The neutrino masses are naturally small because they are due to a small violation of

a symmetry. In this context the Yukawas may be O (1) and the heavy neutrinos as

light as 1 TeV. The low-scale seesaws are much more easily testable than the naive

type I seesaw scenario due to their enhanced active-heavy mixing and their lowered

mass scale for production of on-shell heavy neutrinos.

In the (3 + 2) scenario, with νR and X, we see that when there is an exact lepton

number symmetry, µ = µ′ = 0, the mass terms of the Lagrangian are

Lm 3 −
1
2M

(
νcRX +XνcR +XcνR + νRX

c
)
, (2.4.32)

= −M
(
XcνR + νRX

c
)
, (2.4.33)

= −MψDψD, (2.4.34)

where ψD ≡ νR +Xc. This means that the physical heavy neutrino here is a Dirac

neutrino ψD with a Dirac mass term and no Majorana mass term. When there is

a small amount of lepton number violation by the parameters µ and µ′, the two

Majorana components have a mass splitting ≈ µ and are called a pseudo-Dirac

neutrino. More generally, the (3 + nN) scenario leads to multiple pseudo-Dirac

neutrinos in the inverse seesaw.





Chapter 3

Baryogenesis through leptogenesis

The world is composed of matter and not antimatter. In everyday life, objects are

made of atoms and never anti-atoms. Even at cosmological scales where the galaxies

are the infinitesimal constituents of structures, we find the same thing: matter

galaxies not antimatter galaxies. Precise cosmological observations have quantified

this excess of matter in the baryonic component of the universe and show that it

is orders of magnitude larger than predicted by the Standard Model. Therefore a

successful explanation of the observed matter-antimatter asymmetry of the universe

requires new physical ideas beyond those of the Standard Model.

In this chapter we review leptogenesis — one class of mechanisms by which the

baryon asymmetry may have been produced. First we shall examine the evidence

for a cosmological baryon asymmetry, then introduce a quantitative description of

leptogenesis distilled to its essential features. For its relevance to the original research

to be presented later in this thesis, we then incorporate decoherence due to flavour

effects into the description.
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3.1 The baryon asymmetry

The baryon asymmetry is often expressed in terms of the parameter ηB which is

defined in terms of particle number densities n to be

ηB ≡
nB − nB

nγ

∣∣∣∣∣
0

with the subscripts B, B and γ referring to baryons, antibaryons and photons and

the subscript 0 indicating the present-day value. There appears to be no antimatter

component to the universe: if there were patches of matter and patches of antimatter

of any size, there would be gamma rays resulting from annihilation at their boundaries

but these are not observed [78]. Furthermore cosmic rays which originate far away

in our galaxy or even in other galaxies are almost entirely matter particles. The

tiny proportion, about 0.01%, of antiparticle cosmic rays are consistently explained

as being produced by matter particles undergoing interactions on their way to the

Earth [79]. So we reasonably conclude that presently nB = 0.

We imagine that the matter-antimatter asymmetry was created very early in the

history of the universe and that the antimatter component subsequently vanished

in annihilations with some of the matter component. This annihilation process

conserves the baryon number and so it is the density of the remaining baryons that

quantifies the excess of matter over antimatter.1 That is to say that nB − nB is

unaffected by the annihilations that take nB → 0. The baryon number density

nB and hence the baryon-to-photon ratio ηB = nB/nγ|0 can be ascertained from

studying the processes of big bang nucleosynthesis (BBN) [80–84] and baryon acoustic

oscillations (BAO) [85,86] which occurred long after the creation of the asymmetry.

Big bang nucleosynthesis occurred when the temperature of the universe fell below

1Of course, there may be an asymmetry in the leptons too. This lepton asymmetry would
exist in the electrons and neutrinos of the universe at the present time given that heavier leptons
would decay in to them. Given that we do not know the number nor the nature of neutrinos, the
lepton asymmetry is unknown and poorly constrained although one might deduce the electronic
component from the observed electrical neutrality of the universe. Given the uncertainties on the
leptonic asymmetry, the baryon asymmetry is of primary interest currently in investigating the
fundamental distinction between matter and antimatter in the universe.



3.2. Simplest version of leptogenesis 35

T ∼ 1 MeV. The mass fraction of the resulting 4He, D, 3He and 7Li has been

determined and it is known theoretically how each of these is dependent upon the

baryon number density. Matching the predicted value to the measured one it has

been determined that the 1σ range [87] is

ηBBBN = (5.80− 6.60)× 10−10.

The cosmic microwave background (CMB) contains information on the presence of

sound waves (baryon acoustic oscillations) in the plasma of the early universe at the

time when neutral hydrogen formed (T . 1 eV). As the plasma contained protons,

electrons and photons, the sound speed, which determined the size of the structures

in the CMB, was a function of the baryon number density. It has been inferred that

the 1σ range [88] is

ηBCMB = (6.02− 6.18)× 10−10.

The excellent agreement of the BBN and CMB values is remarkable given that they

are determined from independent processes occurring at temperatures differing by a

factor of 106.

3.2 Simplest version of leptogenesis

Baryogenesis — the production of the excess of baryons over antibaryons — has

been explained through various theoretical processes. We focus on one such category:

leptogenesis, in which lepton number violating processes produce a lepton asymmetry

which is subsequently converted in part into the baryon asymmetry. Leptogenesis

is often appealing because of its ability to explain the baryon asymmetry using

extensions of the Standard Model which also explain the smallness of neutrino

masses.

In general, a baryon asymmetry may only be created in a theory if it satisfies

Sakharov’s conditions: C and CP violation, out-of-equilibrium processes and baryon

number violation [89]. The Standard Model satisfies each of these with C violation in
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the weak interactions, CP violation in the quark sector, out-of-equilibrium thermal

processes in the electroweak phase transition and baryon number in the sphaleron

processes [90–92]. However, when Standard Model baryogenesis is scrutinised, it

is found to fail on the quantitative level. The CP violation is insufficient2 and the

electroweak phase transition is not sudden enough (see Fig. 3.1) [98–104]. This is

why it must be new physics, beyond the Standard Model, that explains baryogenesis.
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Figure 3.1: The phase diagram of the Higgs. A discontinuous first-
order transition is only possible when the Higgs mass
is less than about 72 GeV. Thus, the out-of-equilibrium
condition is not realised in the purely SM baryogenesis
processes.

In this thesis, we will only consider thermal leptogenesis [48,105–107] in which the

heavy neutrinos of the type I seesaw (Section 2.4) undergo lepton-number, C- and

CP-violating decays out-of-equilibrium. We begin by developing the very simplest

description of this kind of leptogenesis containing only the relevant physics to explain

the mechanism of production of the baryon asymmetry and neglecting that which

only tweaks the precision of the numerical predictions [108].

2One can estimate the size of the asymmetry by constructing a quantity called the Jarlskog
invariant J [93, 94] (depending on the quark masses) which is zero when CP violation is zero. The
dimensionless ratio J/v12 ∼ 10−20 is far too small to account for ηB ∼ 10−10 [95–97].
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The basic rate equations for particles in an expanding universe

We begin very generically and consider a particle species X with number density ρX

which may be affected either by the expansion of the universe with Hubble parameter

H or through inelastic collision processes with quantum mechanical probability

amplitudes M (X, Y → Z) or M (Z → X, Y ) where by Y , Z we could mean a

whole set of particles X = a, b, . . ., Z = i, j, . . . Then the Boltzmann equation (more

properly the rate equation) describing the evolution of the number density is (see

for example [109])

ρ̇X + 3HρX = −
∑
Y,Z

γ (X, Y → Z) +
∑
Y,Z

γ (Z → X, Y ) , (3.2.1)

where the γ is the averaged rate of inelastic collision processes

γ (X, Y → Z) =
∫
dπ (2π)4 δ4 (pX + pY − pZ) |M (X, Y → Z)|2 fXfY gZ , (3.2.2)

and δ4(pX +pY −pZ) conserves four-momentum when one integrates over the density

of states dπ = dπXdπY dπZ in which

dπA = d3pA
(2π)32EA

.

The factors of fX , fY are the phase space densities (with fY possibly a product

fafb . . . since Y may be a set of particles) and gZ is the quantum statistical factor

(1± fi) (1± fj) . . ., for i, j, . . . ∈ Z — the plus sign for bosons and the minus for

fermions. An exactly similar expression holds for the inverse processes.

The collision terms can be made more manageable by eliminating the phase space

densities in favour of the particle numbers. A pair of approximations make this

possible. Firstly, let us assume that the phase space densities are small enough that

the factors 1± f may be replaced with unity3:

γ (X, Y → Z) =
∫
dπ (2π)4 δ4 (pX + pY − pZ) |M (X, Y → Z)|2 fXfY . (3.2.3)

3On the basis that f eq ≈ e−E/T and 〈E〉 ∼ 3T such that f ≈ 0.05 and can be neglected in
comparison with 1 at the expense of O (0.1) errors.
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Secondly, we assume that although inelastic collisions are changing particle numbers

from their equilibrium value (ρX 6= ρeqX in general), the elastic collisions quickly

redistribute the energy such that the particles immediately return to the equilibrium

distribution in energy ∝ e−βEX . This means that we retain the Maxwell-Boltzmann

distribution but give it a new normalisation

fX = ρX
ρeqX

e−βEX .

Equivalently, we could say that we have introduced a chemical potential µ =

log(ρX/ρeqX )/β to control the particle numbers.

This means that the rates may be expressed as

γ (X, a, b, . . .→ i, j, . . .) = γeq (X, a, b, . . .→ i, j, . . .) ρXρaρb . . .

ρeqXρ
eq
a ρ

eq
b . . .

γ (i, j, . . .→ X, a, b, . . .) = γeq (i, j, . . .→ X, a, b, . . .) ρiρj . . .

ρeqi ρ
eq
j . . .

,

(3.2.4)

where γeq is the same as γ for a given process but with the equilibrium distributions

in the integrand. This is advantageous because the equilibrium distributions are

just the standard ones of statistical mechanics. This leaves us with just the particle

densities ρ to determine (as opposed to both particle densities and phase space

densities). At this point it is natural to introduce the simplifying notation for

normalised reaction rates

Γ (X, a, b, . . .→ i, j, . . .) ≡ γeq (X, a, b, . . .→ i, j)
ρeqXρ

eq
a ρ

eq
b . . .

. (3.2.5)

Before specialising to the case of leptogenesis, we make one further simplification

by ridding ourselves of the term 3HρX describing the dilution of particles due to

the expansion of the universe, by normalising the densities such that they represent

the number of particles in a comoving volume containing one ultra-relativistic heavy

neutrino in thermal equilibrium (following the conventions of [110]). We denote the

normalised density n and eliminate the ρ densities in favour of them.4

4When we defined ηB previously we did not specify the normalisation of the particle densities
n because it cancels from the definition.
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Heavy Majorana neutrinos in the expanding universe

In leptogenesis the heavy neutrinos undergo a decay N → l φ with (normalised) rate

Γ ≡ Γ
(
N → l φ

)
or the conjugated equivalent N → l φ with rate Γ ≡ Γ

(
N → l φ

)
in which φ is the Higgs doublet and l is a superposition of the different flavour lepton

doublets Le, Lµ and Lτ and l is the same but for antiparticles:

|l〉 ≡
∑
α

c1α|Lα〉,

|l〉 ≡
∑
α

c1α|Lα〉,
(3.2.6)

where c1α and c1α are some model-dependent coefficients. Recall that this is before

electroweak symmetry is broken and so the leptons and Higgs are essentially massless5.

This also means that there is a charged Higgs so that the processes N → l− φ+ and

N → l+φ− are possible in addition to those involving the neutral Higgs and neutrinos.

If CP is a symmetry, then Γ = Γ, however, if CP is violated, the two decays of N

may occur at different rates and their difference Γ− Γ is a measure of CP violation

— a requirement for the production of a matter-antimatter asymmetry.6 At tree-level

(only) these rates are equal with Γ = (Y †Y )11M/(8π).

An initial population of heavy Majorana neutrinos will decay to leptons or antileptons

in these two processes at different rates provided there is CP violation. In this way,

a volume initially populated with equal numbers of particles and antiparticles may

develop an excess of one or the other in the leptonic and Higgs components.

For simplicity let us assume that only one heavy Majorana neutrino undergoes such

a decay. Then applying the Boltzmann equations to this physical scenario we have

ṅN = Γ
(
N → l φ

)
nN + Γ

(
N → l φ

)
nN

− Γ
(
l φ→ N

)
nnφ − Γ

(
l φ→ N

)
nnφ,

5Except for an effective mass acquired from their propagation through a thermal bath.
6In general we may always use CPT to define antiparticles as it is always a symmetry of

relativistic QFT. We have that
∣∣M (

N → l φ
)∣∣ =

∣∣M (
l φ→ N

)∣∣ from CPT symmetry. Then,
if we also have CP symmetry, which implies T symmetry, we can reverse the ordering and find∣∣M (

N → l φ
)∣∣ =

∣∣M (
N → l φ

)∣∣. We see that, if there is a CP symmetry, the amplitudes of these
processes would be equal and so would the rates in this case. If they are not equal then there is
CP violation.
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where here, nN , n and nφ are the normalised densities for heavy neutrinos, leptons

and Higgs and those with overbars are the antiparticle densities. We emphasise that

these densities are normalised such that they represent the particle numbers in a

comoving volume containing one ultrarelativistic heavy neutrino (such that, e.g.,

neqN (T �M) = 1). We choose not to use a subscript on the lepton densities in order

to make the equations more graceful later on.

The particles l and φ are essentially in equilibrium due to their fast gauge interactions;

their small deviations from equilibrium being negligible in comparison with that of

N . Later, when deriving equations for the asymmetry in the leptons, these small

deviations will be essential features, but for now we neglect them by using the

equilibrium distributions for l and φ. Further simplification is achieved by a pair

of observations: we may relate the Γ factors by noting, firstly, that CPT invariance

imposes ∣∣∣M (
N → l φ

)∣∣∣2 =
∣∣∣M (

l φ→ N
)∣∣∣2 ,

and secondly that the exponential form of the Maxwell-Boltzmann phase space

densities and the conservation of energy give

f eqN = f eql f
eq
φ ,

(e−βEle−βEφ = e−βEN ). Using these in the definitions of γ and Γ, (Eq. (3.2.2) and

Eq. (3.2.5)) we get
Γ
(
N → l φ

)
neqN = Γ

(
l φ→ N

)
neq,

Γ
(
N → lφ

)
neqN = Γ

(
l φ→ N

)
neq,

(3.2.7)

where we have eliminated neq in the last step by using neq = neq. We conclude

dnN
dt

= −
(
Γ
(
N → l φ

)
+ Γ

(
N → l φ

))
(nN − neqN ) . (3.2.8)

We recast this once more by changing from the time variable to the more useful

z ≡ M/T , M being the heavy neutrino mass, which has the nice property of

increasing with time. This allows for a direct comparison of the temperature with

the other physical scale M making z ∼ 1 the point at which leptogenesis processes
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are typically most fervent. In practice, this means introducing factors 1/Hz for

every rate Γ(A→ B) so that the equation above is written

dnN
dz

= −Γ + Γ
Hz

(nN − neqN ) ,

= −D (nN − neqN ) ,
(3.2.9)

where we have defined

D ≡ Γ + Γ
Hz

= Kz
K1 (z)
K2 (z) , (3.2.10)

in which

K ≡ Γ
H(M) = m̃

m∗
, (3.2.11)

is called the decay parameter. The effective neutrino mass is defined by [111]

m̃ ≡

(
Y †Y

)
11
v2

M
, (3.2.12)

and

m∗ ≡
16π2v2

3MPlanck

√
g∗π

5 ≈ 10−3 eV. (3.2.13)

A simple recipe gives the averaged decay rate Γ: first compute the vacuum decay

rate at rest using the usual Feynman rules; multiply by the mass over energy M/E

for N to boost it into the frame of a moving particle; finally take the thermal

average by integrating it with a factor f eqN . The result for Γ contains a factor

〈E−1〉/neq ∝ K1 (z) /K2 (z) (Ki being modified Bessel functions of the second kind)

and the Hubble parameter H ∝ 1/z

Equation for B − L asymmetry evolution

Now we should consider the evolution of the normalised lepton density n and anti-

lepton density n as it is their difference nB−L = n − n that we ultimately want to

calculate. Their individual evolutions are

dn

dz
= Γ
Hz

nN −
ΓID

Hz
n,

dn

dz
= Γ
Hz

nN −
ΓID

Hz
n,

(3.2.14)
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where ΓID ≡ Γ
(
l φ→ N

)
and ΓID ≡ Γ

(
l φ→ N

)
. In the above, the Higgs has been

taken to be in equilibrium for simplicity — we do not lose any essential physics

for the production of a lepton asymmetry in doing so. This isn’t an option for the

leptons as the equilibrium distributions are the same for leptons and antileptons and

it would be the same as setting the lepton asymmetry to zero for all time.

The production of nB−L depends on the CP-violating difference Γ − Γ. Let us try

to be precise about the relative size of terms involving CP violation. If we consider

the transition matrix T = i(1− S) where the S matrix being just e−iHt is unitary,

then the unitarity condition for S leads to

Tij − T ∗ji = i
∑
k

TikT †kj.

Seeing as CP symmetry would imply that

|Tij|2 = |Tji|2 ,

we can consider CP violation by looking at

|Tij|2 − |Tji|2 =
∣∣∣∣i (T T †)ij + T ∗ji

∣∣∣∣2 − |Tji|2
= −2=

[(
T T †

)
ij
T ∗ji
]

+
∣∣∣∣(T T †)ij

∣∣∣∣2 ,
(3.2.15)

and from this determine that whatever order in the perturbative expansion T appears

at, the CP asymmetries only appear at the next order or higher.

For leptogenesis, at tree-level, the two rates Γ and Γ are given by the absolute square

of Yukawa matrix elements or the absolute square of their complex conjugates. These

must be equal and so the tree-level CP-violation is zero. And so, in accordance with

Eq. (3.2.15), we are forced to compute the decay rates to the level of loops which is of

fourth order in Yukawa couplings. The loop-level corrections to the decay process are

depicted in Fig. 3.2 where we can clearly see an unavoidable dependence on all the

heavy Majorana neutrinos in the theory. In fact, if there is only one heavy Majorana

neutrino, there is no CP violation because the combination of Yukawa couplings

becomes real — two or more heavy Majorana neutrinos are needed if leptogenesis is
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to work7.

l

φ

Ni Ni Ni

l

φ

l

φ

l

φ

Nj

Nj

φ

l

Figure 3.2: The diagrams contributing to the CP asymmetry of the
Ni → l φ decay process. The loop-level contributions
are necessary for a non-vanishing asymmetry.

If we define

ε ≡ −Γ− Γ
Γ + Γ

,

to be the CP asymmetry and use the amplitudes calculated from the diagrams of

Fig. 3.2 we find [112–116]

ε = 3
16π

∑
k 6=i

=
[(
Y †Y

)2

ik

]
(Y †Y )ii

ξ (xki)√
xki

,

with xki =
(
Mk

Mi

)2
and

ξ (x) ≡ 2
3x
[
(1 + x) log

(1 + x

x

)
− 2− x

1− x

]
.

In these diagrams we need to include the contributions of at least one other heavy

Majorana neutrino Nj = N2, N3, . . . as intermediate states. We don’t need to

consider these other heavy Majorana neutrinos in the initial or final states in order

to get a framework that predicts a lepton asymmetry so for now we ignore their

contributions except when they appear here as virtual particles — we are only hoping

to arrive at the very simplest functioning description of leptogenesis. For those who

doubt that the self-energy contribution is necessary, then notice that in the limit

where the Nj are much heavier than N = N1, contraction of the propagators in the

7At least two heavy Majorana neutrinos are also needed in the type I seesaw if one is to match
the neutrino oscillation data on the squared mass differences.
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self-energy and vertex contributions of Fig. 3.2 make the diagrams identical and thus

both are to be included if either is.

Using the relations of Eq. (3.2.7) in Eq. (3.2.14) to get an expression for dn/dz−dn/dz

gives
dnB−L
dz

= εDnN + neqN
neq

Γn− neqN
neq

Γn. (3.2.16)

This is not yet satisfactory as it depends not just on nB−L but also on n and n.

One way to view this is that we are looking to change variables from n and n to a

new pair of variables including nB−L ≡ n − n. The other variable being of course

n + n — the linearly independent combination. Taking this view, we should write

the previous equation as

dnB−L
dz

= εDnN −
neqN
neq

Γ
(1

2nB−L + 1
2 (n+ n)

)
+ neqN
neq

Γ
(1

2 (n+ n)− 1
2nB−L

)
,

= εD

(
nN + 1

2
neqN
neq

(n+ n)
)
− 1

2
neqN
neq

nB−L
(
Γ + Γ

)
.

At this stage we have an equation for the evolution of nN in addition to the above

equation for the evolution of nB−L. For a closed set of differential equations that

may actually be solved, we must find one for n+n. We find this equation by adding

dn/dz and dn/dz:

d (n+ n)
dz

= DnN −D
neqN
neq

n+ n

2 + 1
2εD

neq

neq
nB−L.

Neglecting the last term as it is O
(
εnB−L

)
, we arrive at

d (n+ n)
dz

= D

(
nN −

neqN
neq

n+ n

2

)
.

Technically, we now have a complete set of equations describing leptogenesis, however,

from the 1↔ 2 processes, we know that

∆nN = − (∆n+ ∆n) ,

from which we see that, by comparison with dnN/dz

n+ n

2 = neq +O
(
εnB−L

)
.
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Then by substitution in the equation for nB−L, we can eliminate n+ n altogether:

n = 1
2 (n+ n) + 1

2 (n− n) ≈ neq − 1
2nB−L,

n = 1
2 (n+ n)− 1

2 (n− n) ≈ neq + 1
2nB−L,

and arrive at
dnB−L
dz

= εD (nN + neqN )−WnB−L, (3.2.17)

where

W ≡ 1
2

ΓID + ΓID

Hz
= 1

4KK1 (z) z3, (3.2.18)

is called the washout term and is expressed in terms of the washout parameter K

Eq. (3.2.11).

Addressing the overcounting

As the CP asymmetries force us to go to fourth order in the Yukawa couplings for

one process, we need to be consistent and incorporate other processes at the same

order. So we include 2↔ 2 scattering processes (show in Fig. 3.3) in the Boltzmann

equations. In these 2 ↔ 2 processes, when the intermediate states go on shell, we

end up double counting the 1↔ 2 processes, so it is then necessary to subtract these

on-shell contributions from the decays. In other words, when the intermediate N

that mediates lφ→ lφ goes on shell, the process is the same as lφ→ N followed by

N → lφ which we have already accounted for. Without fixing this counting error

our equations produce an asymmetry even when the heavy neutrinos are in thermal

equilibrium, in contradiction with the general rules of Sakharov (think about setting

nN = neqN in Eq. (3.2.17)) [109,117,118].

Figure 3.3: 2→ 2 scatterings involving only N , l and φ.

Now we should add in the l φ ↔ l φ and ll ↔ φφ processes. For the former, we



46 Chapter 3. Baryogenesis through leptogenesis

must subtract from these the real intermediate states which instead contribute to

N → l φ. The on-shell part is

γeq, OS
(
l φ→ l φ

)
= γeq

(
l φ→ N

)
BR

(
N → l φ

)
.

Substituting BR
(
N → l φ

)
= (1 + ε)/2 and γeq

(
N → l φ

)
= γeq

(
lφ→ N

)
= (1 +

ε)γD/2, where γD = HzneqND, then the corrected 2→ 2 rate is

γeq, sub
(
l φ→ l φ

)
= γeq

(
l φ→ l φ

)
− (1 + ε)2

4 γD. (3.2.19)

Similarly for the conjugate process

γeq, sub
(
l φ→ l φ

)
= γeq

(
l φ→ l φ

)
− (1− ε)2

4 γD. (3.2.20)

If we now use the unitarity relation8

∣∣∣M (
l φ→ l φ

)∣∣∣2 +
∣∣∣M (

l φ→ l φ
)∣∣∣2 =

∣∣∣M (
l φ→ l φ

)∣∣∣2 +
∣∣∣M (

l φ→ l φ
)∣∣∣2 ,

we find that the first terms on the right-hand sides of Eq. (3.2.19) and Eq. (3.2.20)

are equal: γeq
(
l φ→ l φ

)
= γeq

(
l φ→ l φ

)
. And consequently, the new ∆L = 2

terms to add to Eq. (3.2.17) are

dn

dz
= · · · − 2 γ∆L=2

neqHz
n+ 1

2Dn
eq + εDneq,

dn

dz
= · · · − 2 γ∆L=2

neqHz
n+ 1

2Dn
eq − εDneq.

This modifies Eq. (3.2.17) to

dnB−L
dz

= · · · − 2γ∆L=2

neq
nB−L − 2εDneq.

The new washout term 2γ∆L=2
neq nB−L can be safely neglected in most regimes and so

we drop it (at least for the sake of simplicity). We finally write [109]

dnB−L
dz

= εD (nN − neqN )−WnB−L,

which is now consistent with Sakharov’s conditions and therefore an acceptable

8Consider SS† and S†S.
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description of leptogenesis.

Solutions of the equations

Now we have a pair of equations with a single model-dependent parameter K:

dnN
dz

= −D (nN − neqN ) ,
dnB−L
dz

= εD (nN − neqN )−WnB−L.

(3.2.21)

Approximate analytical solutions may be found for the two extreme cases, K � 1

called the weak washout regime, and K � 1 called the strong washout regime. Here

we will study these limiting cases in order to gain some intuition.

The first equation in Eq. (3.2.21) says that, the heavy Majorana neutrinos, which

are taken to begin at some initial z = z0 with value nN (z0), are driven towards the

equilibrium distribution neqN (z) (which evolves with z)9, generally overshooting and

performing an overdamped oscillation about it. The larger the value of K, the more

quickly this process plays out. The choice of numerical values z0 and nN (z0) depends

on the physical assumptions by which the initial state is produced but, as we shall

see, in the strong washout regime these choices are very significant. Typically the

initial temperature is somewhat higher than the mass of some of the heavy neutrinos

so that z0 ∼ 0.1.

In the second equation in Eq. (3.2.21), we can regard the asymmetry as being

produced by a source term S (z) = εD (nN − n
eq
N ) and diminished by a sink term

W (z)nB−L:
dnB−L
dz

= S (z)−W (z)nB−L.

In the strong washout regime, this can settle into a balanced situation — analogous

to reaching a state of terminal velocity where nB−L is the velocity, WnB−L is a

velocity-dependent resistance and S (z) is the weight. In this case, the acceleration

9In the special case that nN (z0) = neq
N (z0), the evolving nature of the equilibrium distribution

means that this condition won’t be maintained at later values of z and so even here a lepton
asymmetry may be generated.
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dnB−L/dz is nearly zero and we have S (z) ≈ W (z)nB−L or

nB−L ≈
S (z)
W (z) = − ε

W

dnN
dz
≈ − ε

W

dneqN
dz

.

After some sufficiently large z (call it zf), W (zf ) < 1, and the processes affecting

nB−L fall out of equilibrium, essentially ceasing. The asymmetry is fixed after this

point at10

nB−L ≈ −
ε

W

dneqN
dz

∣∣∣∣∣
z=zf

= 3
2Kzf

ε. (3.2.22)

In the weak washout regime, this balance cannot be established and so the final asym-

metry is dynamical (as opposed to an equilibrium value) and necessarily dependent

upon the choice of initial conditions as well as the value of K.11

The source term has all the features one would expect from Sakharov’s conditions for

producing a lepton asymmetry: C and CP violation in ε; lepton number violation in

D describing the rate of N → l φ or its conjugate; dependence on out-of-equilibrium

particles in needing nN − neqN 6= 0 to produce an asymmetry. The washout term

can reduce the asymmetry even without needing to treat particles and antiparticles

differently — a box with 100 antiparticles and 90 particles can undergo decays of

both kinds of particle so that they halve in number at the same rate, the asymmetry

of 100 − 90 = 10 is reduced to 50 − 45 = 5. This is reflected in the sufficiency of

treating the inverse decays at tree-level and not incorporating the CP violations in

them (after all such a correction would be O (εnB−L)).

Even once nB−L has been generated we still predict nB = 0 as we have not included

any baryon number violating processes. However sphalerons (which are in equilibrium

below T ∼ 1012 GeV) quickly process part of the lepton asymmetry into a baryon

asymmetry with efficiency nB = (28/79)nB−L (see Appendix C). To convert to ηB

we must divide by the photon density, accounting for the change in density between

10In Chapter 5, we argue that this implies a lower bound on M for successful leptogenesis. This
was originally derived in [119], (see also [120,121]).

11Taking the terminal velocity idea further we’d have an equation dv
dt = g − ξv with solution

v = g
ξ (1− e−ξt). Scaling g and ξ by a factor α is like changing K to Kα and gives v = g

ξ (1− e−αξt).
If α > 1 the terminal velocity g/ξ is reached faster. This suggests that for small washout, the
terminal value of nB−L won’t be reached before zf .
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the end of leptogenesis and recombination:

ηB ≈ 0.013nB−L.

3.3 The density matrix approach

So far the only leptons we have considered are the left-handed |l〉 (and |l〉) that

are produced in the decay of N and which are a superposition of flavour states

|l〉 = ∑
α c1α|α〉, α ∈ {e, µ, τ}. However, once an l is produced, Higgs particles in

the early universe plasma can scatter different flavour components out of l (and

into their right-handed counterparts via the fermion-Higgs couplings of the SM)

at different rates, with τ being the most frequently scattered due to it having the

largest SM Yukawa coupling. Let us assume that there are only τ scatterings for

now. The result is that the coherent combination of e, µ, τ that constituted l is

spoiled and the e/µ- (which we’ll call β) and τ -components of l behave as separate

particles [117,118,122–139].

It is quite difficult to include interactions of this kind in the description we have

given so far because we are simply counting the number of l particles in some volume

as a function of time. In order to write things in terms of flavour states, we should

rework our description into one that explicitly mentions the single-particle quantum

states |l〉 and the orthogonal state |m〉 (defined by 〈l|m〉 = 0). Once we have this, we

may transform to the flavour basis which we take to consist of |τ〉 and its orthogonal

|β〉. Then we can easily include these flavour-dependent interactions.

Let us introduce the density matrix

n = n

 1 0

0 0

 ,
in the basis of the vectors |l〉 and |m〉. We may alternatively write it in terms of

dyads as n = n|l〉〈l|+ 0|l〉〈m|+ 0|m〉〈l|+ 0|m〉〈m|.
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If we want to describe the time-evolution of the density matrix due to forward decays

on the heavy Majorana neutrinos (we’ll consider the inverse decays in a moment),

then we simply need to embed them in the (l, l) component of the matrix as

dn
dz

= Γ
Hz

nNS + . . . ,

dn
dz

= Γ
Hz

nNS + . . . ,

(3.3.1)

where S ≡ diag (1, 0) in the basis |l〉 |m〉 and n is the antilepton density matrix

defined in analogy to n with S ≡ diag (1, 0) in the basis |l〉 |m〉. There is no new

physics in this because we do not include the heavy Majorana neutrino states in the

density matrix. All that has happened is we have written the forward decay terms

in a more complicated way than we previously did.

The evolution of the density matrix is given by n (t) = e−iHtn (0) eiH†t (as a result

of the dyad structure). By taking the time t to be infinitesimal, we can find the

differential equation for the time evolution of the density matrix

ṅ = i[n,HR] + {n,HI}, (3.3.2)

where H = HR + iHI is the Hamiltonian partitioned into its real and imaginary

parts. Now we can include inverse decays by considering them to be a dissipative or

imaginary part of the Hamiltonian, we write

dn
dz

= Γ
Hz

nNS −
1
2

ΓID

Hz
{S,n}, (3.3.3)

and
dn
dz

= Γ
Hz

nNS −
1
2

ΓID

Hz
{S,n}. (3.3.4)

To transform these equations to the particle flavour basis |τ〉, |β〉 (〈β|τ〉 = 0)

and antiparticle flavour basis |τ〉, |β〉 (〈β|τ〉 = 0) requires two unitary matrices

C (|l〉, |m〉 → |τ〉, |β〉) and C (|l〉, |m〉 → |τ〉, |β〉). Explicitly

C ≡

 〈τ |l〉 −〈β|l〉
〈l|β〉 〈l|τ〉

 =

 c1τ −c1β

c∗1β c∗1τ

 = 1√
(Y †Y )11

 Yτ1 −Yβ1

Y ∗β1 Y ∗τ1


︸ ︷︷ ︸

at tree-level
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and

C ≡

 〈τ |l〉 −〈β|l〉
〈l|β〉 〈l|τ〉

 =

 c1τ −c1β

c∗1β c∗1τ

 = 1√
(Y †Y )11

 Y ∗τ1 −Y ∗β1

Yβ1 Yτ1


︸ ︷︷ ︸

at tree-level

,

with which we define
P ≡ CSC†,

P ≡ CSC†.
(3.3.5)

Taking the difference to get an equation in nB−L ≡ CnC† − CnC† and neglecting

terms of O(εnB−L) we find

dnB−L
dz

= εD (nN + neqN )P 0 + P − P
2 D (nN − n

eq
N )− 1

2W{P
0,nB−L}, (3.3.6)

where P 0 is P or P computed using the tree-level approximations for C or C. To

compute the lepton asymmetry from this, one solves for the matrix nB−L and takes

the trace nB−L = Tr(nB−L).

Clearly the physics of this equation is incorrect. When nN = neqN , no asymmetry can

be produced according to Sakharov’s conditions, but the asymmetry generating term

(containing ε) in Eq. (3.3.6) is not zero. This is the same problem as was found in

the derivation of Eq. (3.2.21). Namely, the issue of consistently incorporating 2→ 2

scatterings by carefully subtracting the real intermediate states to avoid double-

counting [117]. When this is done, the equation is corrected to [110,117,118,136,140]

dnB−L
dz

= εD (nN − neqN )
(
P 0 + P − P

2ε

)
− 1

2W{P
0,nB−L}.

This gives a generalisation of the CP asymmetry to the matrix expression [110,118,

123,140]

εεε = ε

(
P 0 + P − P

2ε

)
.
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Thermal widths

Now we’ve made it to the flavour basis, we can include the flavour effects which

scatter the left-handed τ with rate Γτ .12 Using Eq. (3.3.2), we get a contribution

C dn
dz
C† = . . .− 1

2
Γτ
Hz
{S,n},

C dn
dz
C† = . . .− 1

2
Γτ
Hz
{S,n}.

(3.3.7)

In taking the difference, we get,

dnB−L
dz

= . . .− 1
2

Γτ
Hz
{S,nB−L},

where
1
2

Γτ
Hz
{S,nB−L} = 1

2
Γτ
Hz

 2nB−Lττ nB−Lτβ

nB−Lβτ 0

 .
However, if we are including the transition of left-handed to right-handed taus,

then the inverse process should also be accounted for by tracking asymmetry in the

right-handed taus. This changes the expression for nB−L by adding

dnB−L
dz

= . . .− Γτ
Hz

 nτRτR − nτRτR 0

0 0

 , (3.3.8)

and also produces an extra Boltzmann equation for the asymmetry in τR [141]

d(nτRτR − nτRτR)
dz

= 1
2

Γτ
Hz

((nττ − nττ )− 2(nτRτR − nτRτR)) . (3.3.9)

Below from T ∼ 1012 GeV, Γτ/Hz is large and we have to a good approximation

d(nτRτR − nτRτR)
dz

= 0, (3.3.10)

which provides the condition

(nττ − nττ ) = 2(nτRτR − nτRτR),

12It may be worth mentioning that there is also a real non-dissipative contribution to the
Hamiltonian from the thermal self-energy which we neglect. It ends up in a commutator, as
opposed to anticommutator, with C(n + n)C† and it may be argued to be negligible due to the
diagonalising effects of gauge interactions.
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leaving us with the simple expression [110,117,118,136,140,141]

dnB−L
dz

= εεεD (nN − neqN )− 1
2W{P

0,nB−L} − 1
2

Γτ
Hz

 0 nB−Lτβ

nB−Lβτ 0

 ,
= εεεD (nN − neqN )− 1

2W{P
0,nB−L} − 1

2
Γτ
Hz

[S, [S,nB−L]].

(3.3.11)

The nature of the solutions of the density matrix equations

Let us expand the density matrix equations into its components

dnB−Lττ

dz
= εττD(nN − neqN )−W

(
|c1τ | 2nB−Lττ + <

[
c∗1τc1βn

B−L
τβ

])
dnB−Lββ

dz
= εββD(nN − neqN )−W

(
|c1β| 2nB−Lββ + <

[
c∗1βc1τ

(
nB−Lτβ

)∗])
dnB−Lτβ

dz
= ετβD(nN − neqN )− 1

2W
(
nB−Lτβ

(
|c1τ | 2 + |c1β| 2

)
+ c∗1βc1τ

(
nB−Lττ + nB−Lββ

))
− 1

2
Γτ
Hz

nB−Lτβ .

(3.3.12)

Let us consider two extreme cases: Γτ → 0 and Γτ →∞. In the former, when the

flavour effects are negligible, it is not immediately clear if Eq. (3.3.12) is equivalent to

Eq. (3.2.21), where we recall nB−L = nττ +nββ. In Appendix J, we demonstrate that

this is indeed the case, and that the physical distinction between the two equations

comes from flavour effects.

In the opposite limit where Γτ →∞, the flavour effects kill the off-diagonal density

matrix elements. Crudely this goes as e−(Γτ/Hz)z, where Γτ/Hz is constant with z

(see Fig. 3.4). The surviving equations are [117] [118,122,123]

dnB−Lττ

dz
= εττD(nN − neqN )−W |c1τ | 2nB−Lττ ,

dnB−Lββ

dz
= εββD(nN − neqN )−W |c1β| 2nB−Lββ ,

(3.3.13)

which are called the two-flavour Boltzmann equations. The τ and β components of l

no longer interfere in the processes of leptogenesis and instead act like independent

particles. One way to imagine this, which is not totally captured in the equations, is

that the l particle is produced in the decays of N as a wave packet which propagates
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through the early universe. Then, upon encountering a Higgs particle, the left-handed

τ component is scattered as a right-handed τ and can no longer contribute to the

amplitude for the inverse decay process. For this reason a projection probability

factor must appear multiplying the washout terms in Eq. (3.3.13).

Aside from the interesting particle physics and cosmology in the above equations,

there is also a worthwhile remark about quantum mechanics to be made. We note

the analogy with a simple two-state quantum mechanical system s with state vector

|s〉 = α|u〉+ β|d〉,

and density matrix

|s〉〈s| = |α|2|u〉〈u|+ |β|2|d〉〈d|+ αβ∗|u〉〈d|+ α∗β|d〉〈u|, (3.3.14)

which interacts with a measuring device that determines the state of this system.

We describe the measuring device S as another quantum mechanical system with

the defining property
|u〉|S〉 = |u〉|U〉,

|d〉|S〉 = |d〉|D〉,
(3.3.15)

that is, it is forced into distinguishable states by interaction with the microscopic

system — this is what is meant by measurement in quantum mechanics. Then the

density matrix of the combined system is

|s, S〉〈s, S| = |α|2|u〉〈u||U〉〈U |+|β|2|d〉〈d||D〉〈D|+αβ∗|u〉〈d||U〉〈D|+α∗β|d〉〈u||D〉〈U |.

If we now want to describe only the microscopic system, we should trace out the

detector states13 to find the reduced density matrix which is an effective density

matrix for the microscopic system

|s〉〈s|eff ≡ TrS|s, S〉〈s, S| = |α|2|u〉〈u|+ |β|2|d〉〈d|.

13Imagine the density matrix of two non-interacting systems. To get the density matrix of just
one, we could trace out the other.
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Thus, the act of measurement of a microscopic system is one in which the off-diagonal

elements of the density matrix are reduced to zero by some means (compare with

Eq. (3.3.14)). What we have in Eq. (3.3.11) is an explicit description of the same in

which the dynamical processes that lead to this state of measurement, a system with

diagonal density matrix, have been included in the system, rather than assumed as

in Eq. (3.3.15). In other words, the plasma of the early universe acts as a measuring

device determining the τ or β nature of the leptons.14

1 2 5 10 20 50

10-12

10-11

10-10

10-9

10-8

10-7

10-6

Figure 3.4: The evolution of the different components of the lepton
asymmetry density matrix nB−L demonstrating in par-
ticular the damping of the off-diagonal elements of n.

14In terms of measurement devices and microscopic systems, we should interpret this as there
being identical measuring devices (and corresponding experimenters) one of which encounters
|u〉 and the other encountering |d〉. After some interactions between system and measurement
device, the microscopic system has caused one measuring device to be in the |U〉 state where the
experimenter reads “U” and the other |D〉 with the experimenter reading “D”.
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Adding in more heavy Majorana neutrinos and flavour effects

Allowing all the heavy Majorana neutrinos to decay and adding the muon and

electron flavour effects is very straightforward as it is mostly a matter of duplication

of terms. In this scenario, we’re allowing

Ni → liφ, Ni → liφ,

and

liφ→ Ni, liφ→ Ni,

where

|li〉 =
∑
α

ciα|lα〉, |li〉 =
∑
α

ciα|lα〉.

We add indices to the different quantities appearing in the equations of leptogenesis

to indicate which heavy Majorana neutrino they each correspond to. We now have

nNi (i = 1, 2, 3, . . .) as the abundance of the ith heavy Majorana neutrinos, neqNi as

the equilibrium distribution of the ith heavy Majorana neutrino, Di (Wi) denoting

the decay (washout) corresponding to the ith heavy Majorana neutrino, which are

given by [142]

Di(z) = Kixiz
K1(zi)
K2(zi)

, (3.3.16)

and

Wi(z) = 1
4Ki

√
xiK1(zi)z3

i , (3.3.17)

with K1 and K2 the modified Bessel functions of the second kind with

xi ≡M2
i /M

2
1 , zi ≡

√
xiz,

where m̂N ≈ m̂R = diag(M1,M2, · · · ) and

Ki ≡
Γi

H(T = Mi)
, Γi =

Mi

(
Y †Y

)
ii

8π . (3.3.18)

Finally, the P 0(i)
αβ ≡ ciαc

∗
iβ, are the projection matrices. The CP-asymmetry matrix

describing the decay asymmetry generated by Ni is denoted by ε(i)αβ.
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The general density matrix equations of leptogenesis are15 [110,117,118,136,140]

dnNi
dz

=−Di(nNi − n
eq
Ni

)

dnB−Lαβ

dz
=
∑
i

(
ε

(i)
αβDi(nNi − n

eq
Ni

)− 1
2Wi

{
P 0(i), nB−L

}
αβ

)

− Γτ
2Hz




1 0 0

0 0 0

0 0 0

 ,



1 0 0

0 0 0

0 0 0

 , n
B−L




αβ

− Γµ
2Hz




0 0 0

0 1 0

0 0 0

 ,



0 0 0

0 1 0

0 0 0

 , n
B−L




αβ

− Γe
2Hz




0 0 0

0 0 0

0 0 1

 ,



0 0 0

0 0 0

0 0 1

 , n
B−L




αβ

.

(3.3.19)

Where we note that the flavour effects for τ , µ and e come into equilibrium when

M ∼ 6× 1011 GeV, M ∼ 2× 109 GeV, M ∼ 1× 107 GeV respectively.

The CP-asymmetry parameters are [110,118,123,140]

ε
(i)
αβ = 3

32π (Y †Y )ii

∑
j 6=i

i[YαiY ∗βj(Y †Y )ji − Y ∗βiYαj(Y †Y )ij]f1

(
xj
xi

)

+ i[YαiY ∗βj(Y †Y )ij − Y ∗βiYαj(Y †Y )ji]f2

(
xj
xi

),
(3.3.20)

where

f1

(
xj
xi

)
≡
ξ
(
xj
xi

)
√

xj
xi

, f2

(
xj
xi

)
≡ 2

3
(
xj
xi
− 1

) . (3.3.21)

The diagonal components of the ε(i) matrix simplify to the following form

ε(i)αα = 3
16π (Y †Y )ii

∑
j 6=i

= [Yαi∗Yαj(Y †Y )ij
]
f1

(
xj
xi

)
+ =

[
Yαi
∗Yαj(Y †Y )ji

]
f2

(
xj
xi

).
(3.3.22)

15We’re using a notation where the matrices nB−L and εεε are in bold-face unless their indices are
shown where it is obvious that they are matrices. This is to make it difficult to mistake them for
nB−L and ε.
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The flavoured Boltzmann equations in this new notation are

dnNi
dz

= −Di(nNi − n
eq
Ni

),

dnB−Lαα

dz
=
∑
i

(
ε(i)ααDi(nNi − n

eq
Ni

)− piαWin
B−L
αα

)
.

(3.3.23)

where piα ≡ |ciα|2, piα ≡ |ciα|2 are the projection probabilities. If the τ interactions

are in equilibrium then α = τ, β and these are the two flavoured Boltzmann equations.

If τ and µ are both in equilibrium then α = τ, µ, e and these are the three-flavoured

Boltzmann equations.

3.4 Summary

In this chapter we have derived the basic equations of thermal leptogenesis (Eq. (3.2.21))

where heavy Majorana neutrinos N decay into leptons: lφ or lφ. In doing so we made

a number of simplifying assumptions with the justification that we were looking for

the simplest description of leptogenesis. The resulting pair of equations describe the

evolution of heavy Majorana neutrino densities and the lepton asymmetry, which,

after accounting for a technical difficulty of over-counting, satisfy Sakharov’s condi-

tions.

We then developed the formalism to incorporate flavour effects and extra heavy

Majorana neutrinos and to arrive at Eq. (3.3.19). The flavour effects come from

purely SM interactions between leptons and the Higgs in the early universe plasma.

The interactions have a strength that depends on the flavour component in the

leptons and that causes decoherence between these components. These equations

are sufficiently accurate for a variety of phenomenological studies. In Appendix D,

we make some attempt to discuss what was left out and justify the approximations

made in this chapter.



Chapter 4

Massless neutrinos

In the type I seesaw, the largeness of the mass scale of the heavy Majorana neutrinos

makes testing the theory very difficult. This is because the right-handed neutrinos

provide only a very small contribution to the light mass states and because they are

too massive to produce on-shell in experiments.

Low-scale variants of the type I seesaw have been proposed [68,73,74,76,77,143–164]

(see also [165,166] and references therein) which do not suppress the active component

of the heavy neutrinos. This is possible because they allow for cancellations between

the mass contributions from the different heavy Majorana neutrinos such that any

one contribution (and therefore the active-heavy mixing) may be large. This also

means that the heavy neutrino mass scale may be lower than in the naive type I

seesaws — the smallness of the light masses is achieved by cancellation of potentially

large contributions and not because of division by the large mass scale. This opens

up the possibility of observable signatures of the heavy neutrinos at current colliders

or in low-energy experiments studying meson decays or lepton flavour violation.

A natural way to test the type I seesaw and its variants is by looking for lepton

number violation (LNV). LNV does not occur in the SM and so searches for LNV

signatures have very low backgrounds [167–172]. The inverse [73–75] and linear [68,

144] seesaws introduce an approximate lepton number symmetry in order to achieve

the aforementioned cancellation in the light neutrino masses but this usually leads to
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a reduced rate for LNV signals (see Eq. (2.4.31) and the surrounding discussion). In

the extended seesaw [155] there is an accidental cancellation (not associated with a

symmetry) of the light neutrino masses. Here though, radiative corrections may spoil

these cancellations and lead to large light neutrino masses so that one would need to

impose restrictions on the mixing in order to stay within experimental constraints.

In this case the LNV signatures are again suppressed1.

Kersten and Smirnov showed that, in models with three or fewer heavy neutrinos

of equal mass, requiring an exact radiatively stable cancellation of the first term

of the seesaw expansion is equivalent to requiring the conservation of lepton num-

ber [174]. This extends earlier results which did not consider the effects of radiative

corrections [175,176]. However, their result cannot be directly applied or extended

to many phenomenologically important models such as the inverse seesaw model

which require a larger number of heavy neutrinos. Additionally, the requirement

of equal masses is obtained from the running of the Weinberg operator under the

assumption that the Higgs boson is lighter than all heavy neutrinos.

In this chapter, we show that for models with an arbitrary number of sterile neut-

rinos that may or may not be lighter than the Higgs boson, then the masslessness

of light neutrinos requires lepton number conservation (LNC) at the level of the

Lagrangian. This provides a basis to the requirement of a nearly conserved lepton

number symmetry in low-scale seesaw models and implies that any symmetry leading

to massless light neutrinos contains lepton number as a subgroup or an accidental

symmetry.

4.1 A brief overview of the argument

As the full argument is somewhat technical, it is best to give a schematic version of

it here along with some general remarks. We remember that we want to consider

1A possible exception exists in the form of resonances in the Breit-Wigner distribution when
pairs of heavy Majorana neutrinos have mass splitting close to their decay rates (see, e.g. [173]).
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the type I seesaw with an arbitrary number of right-handed neutrinos and in which

cancellations lead to three exactly massless light neutrinos to all orders in the

radiative expansion.

We expand the light neutrino mass mν in a radiative expansion in mi
ν , where i

denotes the number of loops of the given contribution:

mν = m0
ν +m1

ν +m2
ν + ...

This is then set to zero:

mν = 0.

In order to avoid fine-tuned solutions, we do not allow cancellations between different

orders of the expansion, e.g. m1
ν = −m2

ν . Instead we must have that at each order i,

mi
ν = 0. We take that this condition is equivalent to requiring that one can rescale

the heavy neutrino masses mN → ΛmN without ruining mν = 0 (note that each

mi
ν is a function of mN). By considering the explicit forms of the tree-level light

neutrino masses m0
ν and the one-loop masses m1

ν , we show that the only solution

for which both are equal to zero independently of the scaling parameter Λ is one in

which the total mass matrix exhibits a lepton number symmetry.

4.2 Theorem

Under the assumption that conditions 1), 2) and 3) (below) are obeyed, the necessary

and sufficient condition for three exactly massless neutrinos to all radiative orders

when an arbitrary number of gauge-singlet neutrino fields are added to the SM is

that the neutrino mass matrix is given by

M̃ =



0 α ±iα 0

αT A 0 0

±iαT 0 A 0

0 0 0 B


, (4.2.1)
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in which A and B are diagonal matrices with positive entries and α is a generic

complex matrix. The conditions that must hold are:

1. there is no cancellation between different orders of the seesaw expansion,

2. there are no cancellations between different orders of the loop expansion,

3. a rescaling of the neutrino mass matrix cannot affect the condition for massless

light neutrinos2.

The former is a necessary requirement to satisfy phenomenological constraints as

mixing cannot be of order one (see appendix F.1). The latter means that these fine-

tuned cancellations cannot be achieved solely by specific textures of the neutrino

mass matrix (see appendix F.2).

The mass matrix of Eq. (4.2.1) may be related to those arising in the common

low-scale seesaw variants [68,73,74,76,77,143–166]. Starting with the neutrino mass

matrix M̃ , one can always find a unitary matrix

Q =



1 0 0 0

0 ± i√
2D

1√
2D 0

0 1√
2D ± i√

2D 0

0 0 0 1


, (4.2.2)

with D unitary. This may be used to change basis and perform a congruent trans-

formation from the matrix of Eq. (4.2.1) to

QTM̃Q =



0 ±i
√

2(DTαT )T 0 0

±i
√

2DTαT 0 ±iDTAD 0

0 ±iDTAD 0 0

0 0 0 B


. (4.2.3)

2It is likely that this condition this is equivalent to the requirement that there is no fine-tuned
cancellation between different orders of the loop expansion —- assumption 2). An updated version
of [4] will make the connection precise.
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The latter is of the form  MLNC 0

0 B

 , (4.2.4)

where MLNC is of the same form as the lepton number conserving mass matrixM′

in Eq. (2.4.31).

Thus, there is a one-to-one correspondence between the lepton number conserving

limit of the low-scale seesaw variants and the non-decoupled block of the mass matrix

M̃ of the theorem here presented. The lepton number of the decoupled singlet

neutrinos may be arbitrarily chosen without any phenomenological consequences,

with zero leading to a lepton number conserving model. Therefore the theorem we are

going to prove is equivalent to: The most general gauge-singlet neutrino extensions

of the SM with no cancellation between different seesaw or radiative orders, and

which lead to three massless neutrinos (independently of rescaling the total neutrino

mass matrix) are lepton number conserving.3.

4.2.1 Proof

The light neutrino masses receive contributions from both tree-level and radiative

corrections and can be expanded in two convenient ways: i) in the perturbative

series in the couplings of the interaction Lagrangian giving radiative corrections

where each of these terms can be further expanded in ii) the expansion in mD/mR

(the seesaw expansion).

If one chooses to cancel terms in the radiative expansion with one another then one

finds that an extreme fine-tuning is necessary [72] (see appendix F.2). We shall

3It is worth emphasizing that we do not extend the Standard Model gauge group and thus no
symmetry forbids a (Majorana) mass term for the right-handed neutrinos in our initial assumptions.
More importantly, one of the hypotheses of our theorem requires the seesaw expansion to remain
perturbative (see appendix F.1) and we do not concern ourselves with the trivial scenario where
this expansion and thus the mixing between active and sterile neutrinos is zero. Our theorem
thus applies to seesaw models where by construction light neutrinos are Majorana particles. In
particular, this excludes the scenario that apparently contradicts our theorem where light neutrinos
are massive and Dirac particles.
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ignore such fine-tuned solutions and conclude that we must set the light masses to

zero at tree-level, then set them to zero at one-loop and so on. It shall turn out to

be necessary only to consider up to one-loop to achieve an all-orders massless result.

This is because, once the one-loop result is considered, a lepton number symmetry

is imposed on the model and from this symmetry we conclude that the massless

condition must be true to all orders.

At each order of the perturbative expansion we disregard the possibility of having a

cancellation between different orders of the seesaw expansion since it would lead to an

active-heavy mixing larger than the experimental upper bounds (see appendix F.1).

This problem does not occur if each term of the expansion is set to zero and we

proceed to impose this condition in our proof.

The matrix M̃ as a sufficient condition for massless light neutrinos:

M̃ =⇒ m̂ν = 0

The matrix M̃ automatically leads to mν = 0 due to conservation of lepton number

as demonstrated in section 4.2. We provide an explicit proof below.

Consider the first term of the seesaw expansion at tree-level for the light neutrinos

using the mass matrix of Eq. (4.2.1). Here we have,

mD = (α,±iα, 0) , (4.2.5)

and

m−1
R =


A−1 0 0

0 A−1 0

0 0 B−1

 . (4.2.6)

Thus, the tree-level light mass at first order is

mDm
−1
R mT

D = (α,±iα, 0)


A−1 0 0

0 A−1 0

0 0 B−1




αT

±iαT

0

 (4.2.7)
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= αA−1αT + (±i)2 αA−1αT (4.2.8)

= 0. (4.2.9)

Therefore, from Eq. (2.4.9) we have

m0
ν = 0, (4.2.10)

considering only the first term of the seesaw expansion. Following [177, 178], we

define

Z = m−1
R mT

D (4.2.11)

and take

U ′ =


(
1 + Z†Z

)− 1
2 Z†

(
1 + ZZ†

)− 1
2

−
(
1 + ZZ†

)− 1
2 Z

(
1 + ZZ†

)− 1
2

 , (4.2.12)

which is unitary and block-diagonalisesM provided that Eq. (4.2.16) holds. With

this notation, we find that

m0
ν = −

(
1 + ZTZ∗

)− 1
2 mDZ

(
1 + Z†Z

)− 1
2 , (4.2.13)

where the presence of mDZ = mDm
−1
R mT

D = 0 ensures that the entire seesaw

expansion is zero. That is that m0
ν = 0 to all orders in the seesaw expansion.

Now lepton number conservation implies that this massless condition is maintained

at all orders in the loop expansion. We conclude from this that the mass matrix of

Eq. (4.2.1) leads to three massless neutrinos to all orders.

The matrix M̃ as a necessary condition for massless light neutrinos:

m̂ν = 0 =⇒ M̃

From

m̂ν = 0, (4.2.14)
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and the fact that we may always perform the singular value decomposition of mν

(that is, Uν always exists), we have that

mν = U∗ν m̂νU
†
ν = 0. (4.2.15)

Thus by consideration only of the first order in both expansions we have the condi-

tion4

mDm
−1
R mT

D = 0, (4.2.16)

which, as stated above is sufficient to obtain m̂0
ν = 0 to all orders in the seesaw

expansion.

Let us now consider the one-loop contribution to m̂ν . We computed the one-loop

induced mass for neutrinos and found it to agree with [68], giving

m1
νij = αW

16πm2
W

CikCjkf (mk) , (4.2.17)

which is written in terms of quantities defined in Section 2.4. Let us define

F ≡ diag(f(m1), ..., f(mm+3)), (4.2.18)

=

 0 0

0 Fh

 , (4.2.19)

such that Eq. (4.2.17) may be rewritten in matrix form as

m1
ν = αW

16πm2
W

CFCT . (4.2.20)

Imposing zero masses for the light neutrinos implies that the total one-loop self-

energy must be set to zero5. This implies that the (1, 1) block of CFCT = 0, that

is (
CFCT

)
11

= HTI∗FhI†H = 0, (4.2.21)

4Recall that we bar cancellations between different orders of the radiative and seesaw expansions.
5Massless neutrinos must have zero imaginary parts for their self energy as they cannot decay

and thus they have zero total self-energy.
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which may equivalently be written as

UT
ν

(
1 + ZTZ∗

)−1
ZTU∗NFhU

†
NZ

(
1 + Z†Z

)−1
Uν = 0. (4.2.22)

This reduces to

ZTU∗NFhU
†
NZ = 0 (4.2.23)

upon the left and right multiplication by

(
1 + ZTZ∗

)
U∗ν

and

U †ν
(
1 + Z†Z

)
respectively.

Since mR is diagonal and positive, we have to the first order in the seesaw expansion

UN ≈ 1. (4.2.24)

Thus, again treating the terms of the seesaw expansion independently, from Eq. (4.2.23)

we arrive at

ZTFhZ = 0, (4.2.25)

from the first term.

We shall now consider the implication of Eq. (4.2.25) for the form of the neutrino

mass matrix and prove that it leads to Eq. (4.2.1). We use the tree-level expression

for Z. Allowing for degenerate masses in mR, in the flavour-basis the mass matrix

can be written

M =



0 mD1 mD2 . . . mDn

mT
D1 µ1I1 0 . . . 0

mT
D2 0 µ2I2 . . .

...
... ... ... . . . 0

mT
Dn 0 . . . 0 µnI3


, (4.2.26)
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where Ii is an ni × ni identity matrix. Correspondingly, we may write

Z = m−1
R mT

D (4.2.27)

=



µ−1
1 mT

D1

µ−1
2 mT

D2
...

µ−1
n mT

Dn


. (4.2.28)

In this notation Eq. (4.2.25) becomes

ZTFhZ =
n∑
i=1

µ−2
i mDim

T
Dif (µi) = 0. (4.2.29)

Now, if the texture of the neutrino mass matrix is to determine the condition for

massless neutrinos, an overall scaling

M→ ΛM (4.2.30)

does not affect the form of the mass matrix or the condition6 m̂ν = 0. We shall show

that this scaling leads to the condition

mDim
T
Di = 0. (4.2.31)

In fact the above scaling implies

U∗M̂U † → ΛU∗M̂U † = U∗ΛM̂U †, (4.2.32)

and since U is unitary by construction it cannot be redefined to absorb the scaling.

As a consequence, the scaling promotes

f (mi)→ f (Λmi) (4.2.33)

6Such a scaling removes the possibility of fine-tuned solutions in which a particular numerical
choice of entries (in given units) for the mass matrix may lead to a cancellation. We attempt to
quantify the degree of fine-tuning in appendix F.2.
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and, in the limit of the first term of the seesaw expansion in which m̂N = mR

f (µi)→ f (Λµi) . (4.2.34)

We notice that f is a monotonically increasing strictly convex function, as shown in

appendix E.2. Thus one may choose k > n (with n defined in Eq. (4.2.26)) distinct

values for Λ and obtain as many distinct equations of the form

n∑
i=1

µ−2
i mDim

T
Dif (Λµi) = 0 (4.2.35)

These equations form a system of linearly independent equations for the coefficients

µ−2
i mDim

T
Dif (µi) .

Since none of the µi are zero by construction, the only solution of this system of

equations is7

mDim
T
Di = 0. (4.2.36)

We shall now see that the condition of Eq. (4.2.36) is equivalent to having the

neutrino mass take the form of Eq. (4.2.1). First, we express each mDi in terms of

vectors ui, vi, wi as

mT
Di =

(
ui, vi, wi

)
. (4.2.37)

Then, we have

mDim
T
Di =


uiTui uiTvi uiTwi

viTui viTvi viTwi

wiTui wiTvi wiTwi

 (4.2.38)

and

uiTui = 0 (4.2.39)

7It may appear here that we are are neglecting cancellations at a given order in the loop expansion
and thus restricting ourselves further than the two caveats require. However, cancellations at each
given order in the loop expansion impose an infinite set numerical constraints on the parameters of
the theory and leave only the trivial solution of decoupled neutrinos. We neglect these solutions.
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viTvi = 0

wiTwi = 0

uiTvi = 0

uiTwi = 0

wiTvi = 0.

From a vector ui such that uiTui = 0, it is always possible to construct an orthogonal

block-diagonal matrix Ru = diag (R1
u, . . . , R

n
u) (appendix E.1) such that

(
ui, vi, wi

)
→
(
ui
′
, vi
′
, wi

′) (4.2.40)

=
(
Ri
uu

i, Ri
uv

i, Ri
uw

i
)
, (4.2.41)

in which

ui
′ =

(
ui
′

1 ,±iui
′

1 , 0, . . . , 0
)T
. (4.2.42)

As a special case, if the original vector ui has only real components, then ui′ = 0.

Such a transformation leaves mR unaffected as

m′R = diag
(
R1
uµ1I1R

1T
u , . . . , Rn

uµnInR
nT
u

)
= diag (µ1I1, . . . , µnIn)

= mR. (4.2.43)

Under this transformation, we have

uiTvi = 0→ ui
′Tvi

′ = 0, (4.2.44)

leading us to conclude that

vi
′ =

(
vi
′

1 ,±ivi
′

1 , v
i′

3 , v
i′

4 , . . . , v
i′

ni

)T
. (4.2.45)

Similarly, we construct a second matrix Rv acting on
(
vi
′

3 , v
i′
4 , . . . , v

i′
ni

)T
such that vi′

is reduced to

vi
′′ =

(
vi
′

1 ,±ivi
′

1 , v
i′′

3 ,±ivi
′′

3 , 0, . . . , 0
)T
. (4.2.46)
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Finally, this process is repeated with Rw such that

wi
′′′ =

(
wi
′

1 ,±iwi
′

1 , w
i′′

3 ,±iwi
′′

3 , w
i′′′

5 ,±iwi′′′5 . . . , 0
)T
. (4.2.47)

Each block of mD thus takes the form

mDi =


ui
′

1 ±iui′1 0 0 0 0 0 . . . 0

vi
′

1 ±ivi′1 vi
′′

3 ±ivi′′3 0 0 0 . . . 0

wi
′

1 ±iwi′1 wi
′′

3 ±iwi′′3 wi
′′′

5 ±iwi′′′5 0 . . . 0

 . (4.2.48)

By rearranging the columns and rows, we may write the flavour-basis mass matrix

as

M =



0 α ±iα 0

αT A 0 0

±iαT 0 A 0

0 0 0 B


= M̃, (4.2.49)

where α are blocks constructed from a permutation of the columns of mD and A and

B are positive diagonal matrices made from the same permutation of the diagonal

entries of the µiIi.

We conclude that this neutrino mass matrix appears in any extensions of the Standard

Model which introduce only new fermionic gauge singlets and in which the three

light neutrinos are exactly massless (subject to the conditions previously discussed).

4.3 Conclusions

In this chapter we have shown that having all three light neutrinos massless at all

orders in perturbation theory is equivalent to taking the neutrino mass matrix to

be that of Eq. (4.2.1). As a corollary, we found that this is equivalent to requiring

lepton number conservation. This extends the result of Kersten and Smirnov which

was limited to three heavy neutrinos or fewer with equal masses. This is particularly

important since it provides the basis to the requirement of a nearly conserved lepton

number symmetry in low-scale seesaw models. It also implies that any symmetry
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leading to massless light neutrinos contains lepton number as a subgroup or an

accidental symmetry.

Since neutrino oscillations imply that at least two of the three light neutrinos are

not massless, then lepton number is not conserved. And indeed many low-scale

seesaw models relate the smallness of the light neutrino masses to the size of lepton

number violation. Because of the smallness of the light neutrino masses, this means

that one necessarily has either suppression of LNV signatures from a large mass

scale or due to an approximate lepton number symmetry. The observability of LNV

in neutrinoless double beta decay was discussed in [72, 179–183] but the collider

implications we defer to a later article.



Chapter 5

Intermediate scale leptogenesis

The final baryon asymmetry in leptogenesis is ordinarily proportional to the CP

asymmetry (Eq. (3.2.22)),

ε(i) ≡ −Γi − Γi
Γi + Γi

.

As discussed in Chapter 3, the numerator depends on the sensitive loop-level cancel-

lation at O(Y 4) whereas the denominator, which does not depend on a cancellation,

is dominated by O(Y 2) tree-level contributions. This means that as the Yukawas are

reduced in size, the maximum possible CP asymmetry and therefore the maximum

final baryon asymmetry must reduce with them. From the seesaw relation, lowering

the heavy Majorana neutrino mass scale M1 requires a reduction in the Yukawas

in order to keep the light neutrino masses within experimental bounds, then there

must be a smallest value of M1 for which successful leptogenesis is compatible with

the observed neutrino masses.1 In this chapter we explore the assumptions behind

this bound and the possibility of going below it within thermal leptogenesis.

1It might be objected that actually ηB ∝ ε/K but naively K varies like the light neutrino masses
which we are taking to be constant to keep them within experimental bounds.
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5.1 The lower bound on thermal leptogenesis

This bound, the Davidson-Ibarra bound, was found to have a value M1 ≈ 109 GeV

[119]. Detailed numerical studies have confirmed the original estimate and require

M1 ≥ 109 GeV [120,121] when the light neutrino mass is m1 ≤ 0.1 eV [120,142,184].

Three assumptions limit the applicability of the Davidson-Ibarra bound:

• Only N1, the lightest heavy Majorana neutrino, decays,

• The heavy Majorana neutrino mass spectrum is hierarchical: M1 �M2, M3,

• Flavour effects are ignored.

In this chapter, we relax all of these conditions, although we shall require a mild hier-

archy of heavy masses2, and perform a numerical search for a bound on the scale of

viable leptogenesis, by the application of the density matrix equations (Eq. (3.3.19)).

Our main conclusion will be that the viable parameter space becomes extremely con-

stricted for scales below M1 ≈ 106 GeV. Given the existence of leptogenesis models

at the TeV scale, we shall refer to leptogenesis atM1 ∼ 106 GeV as intermediate-scale

leptogenesis.

There are multiple reasons to consider intermediate-scale leptogenesis. For example,

the addition of heavy neutrinos to the SM leads to a loop-level correction to the

Higgs mass which may be unnaturally large. The correction to m2
H is proportional

to the light neutrino masses and to M3, with M the heavy Majorana neutrino

mass scale [185]. Avoiding corrections to m2
H larger than ∼ 1 TeV2 requires the

lightest pair of heavy Majorana neutrino masses to satisfy M1 < 4× 107 GeV and

M2 < 7 × 107 GeV [186]. Alternatively, baryogenesis models tend to reside at the

GeV- or GUT-scales such that intermediate scales are under-explored.

It has been found that the scale of leptogenesis may be lowered below the Davidson-

Ibarra bound through the introduction of a symmetry to the Standard Model. In

2Without the assumption of some hierarchy in the heavy Majorana neutrino masses there is
technically no lower bound on M1 if one uses the expressions for the CP asymmetry of Chapter 3.
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[187], non-resonant thermal leptogenesis is explored at intermediate scales in the

context of small B−L violation. It is shown that the Davidson-Ibarra bound may be

evaded with the scale lowered to 106 GeV, in this context because, the lepton number

conserving part of the CP asymmetries, which are not related to light neutrino masses,

may be enhanced. An alternative approach is to introduce supersymmetry in which

one may also find viable leptogenesis at intermediate scales. In this context, the

bound on the magnitude of the CP asymmetry is greatly enhanced over that found

by Davidson and Ibarra. Consequently, the mass scale bound is lowered allowing

for the possibility of intermediate scale leptogenesis [188]. Thermal leptogenesis

at intermediate scales may solve a problem that arises in theories with gravitinos

in their particle spectrum. The interaction strength of gravitinos is suppressed by

the Planck scale and so they are long-lived particles that tend to persist into the

nucleosynthesis era. Their decay products can destroy 4He and D nuclei [189, 190]

and spoil the successful predictions of nucleosynthesis. In order reduce the number

of gravitinos present during nucleosynthesis, one requires a reheating temperature

less than O(109) GeV (depending on the gravitino mass) [191].

In this chapter, we ask the question how low can the scale of thermal leptogenesis

go when we do not make the simplifying assumptions of Davidson and Ibarra? We

present an in-depth numerical study of the dependence of the baryon asymmetry

produced from non-supersymmetric thermal leptogenesis on the low and high-scale

model parameters and produce a new bound on the lowest scales for successful

leptogenesis.

5.2 Physical assumptions of this chapter

In our work, we shall assume that:

• There are three heavy Majorana neutrinos Ni, with a mildly hierarchical mass

spectrum in which M2 > 3M1 and M3 > 3M2 [192]. This avoids the possibility

of resonant enhancement of the CP asymmetries [193].
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• We shall parametrise the light neutrino mass matrices according to Eq. (2.4.22),

using the best-fit data for the mass splittings.

• The sum of the neutrino masses is constrained by the cosmological bound.

To account for varying analyses and underlying cosmological models we shall

impose a constraint3 ∑
mν ≤ 1.0 eV,

throughout this work.

• We safely neglect lepton number-changing scatterings on the basis that we are

in the strong-washout regime (see Appendix D).

• We include the flavour effects due to tau, muon and electron Yukawa couplings

on the charged lepton products of heavy Majorana neutrino decay (see the

discussion of Section 3.3).

Before presenting our results it is useful to make a few definitions.

The parameter space, which is determined by the Casas-Ibarra parametrisation

of Eq. (2.4.24), is 18-dimensional. We denote a point in this parameter space by

p ≡ (θ12, θ23, θ13, δ, α21, α31, xi, yi,mi,Mi) with i ∈ {1, 2, 3}.

Anticipating our results, we define a parameter that quantifies the degree of fine-

tuning for a given p:

F ≡
∑3
i=1 m̂

1
νii∑3

i=1 m̂νii

. (5.2.1)

To the accuracy of our calculations, the neutrino mass matrix mν is the sum of the

tree- and one-loop contributions: mν = m0
ν + m1

ν . A cancellation between the two

leads to F > 1 whereas in the limit that the tree-level contribution dominates, F

tends to zero. Thus F fulfills some of the requirements of a measure of fine-tuning.

As the higher-order radiative corrections are not incorporated into the Casas-Ibarra

parametrisation we must take care that the two-loop contribution is not large in

3None of our best-fit points exceed
∑
mν = 0.63 eV (see Appendix G) and thus all are in within

the more stringent cosmological bound
∑
mν < 0.72 eV provided by Planck TT + lowP [88].
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comparison with the one-loop correct light neutrino mass matrix. In Appendix G

we make some estimates to justify that this has been achieved in our results.

5.3 Computational methods

The computational core of this work involves solving the set of coupled differential

equations of Eq. (3.3.19), namely the density matrix equations of thermal lepto-

genesis with flavour effects. We use the Python interface for complex differential

equations [194] to the LSODA algorithm [195] that is available in Scientific

Python [196].

We aim to find regions of the parameter space in which ηB(p) is consistent with

ηBCMB = (6.10±0.04)×10−10. This necessitates the use an efficient sampling method.

This is mainly for two reasons. Firstly, there are enough independent parameters

that naive brute-force approaches will not suffice. Secondly, the function ηB(p) tends

to vary rapidly with some of the parameters in p. This is especially true of the fine-

tuned solutions which rely on precise numerical relations between the parameters

and where the predicted final asymmetry may change by orders of magnitude or sign

after a small shift in a parameter value.

We used Multinest [197–199], in particular, pyMultiNest [200] which is a wrap-

per around Multinest written in Python. The Multinest algorithm is a nested

sampling algorithm that calculates Bayesian posterior distributions. We shall use

the latter to define our regions of confidence.

In all our scenarios, Multinest uses a flat prior and the following log-likelihood

logL = −1
2

(
ηB(p)− ηBCMB

∆ηBCMB

)2

. (5.3.1)

When a Multinest run was finished, we used SuperPlot [201] to visualise the

projection of the posterior onto a two-dimensional plane.
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Figure 5.1: A typical plot showing the evolution of the different
flavour components of the lepton asymmetry and the
total asymmetry as a function of z. Leptogenesis is
typically finished after z ∼ 10.

5.4 Results

We present the viable solutions for thermal leptogenesis at intermediate scales for

the case of one and two decaying heavy Majorana neutrinos in Section 5.4.1 and

Section 5.4.2, respectively, the latter being a better approximation. The inclusion

of both allows for a comparison of the effects of different numbers of decaying heavy

Majorana neutrinos. Adding the decays of the third heavy Majorana neutrino does

not appreciably affect the numerics and so we do not present those results.
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θ23 δ α21 α31 x1 y1 x2 y2 x3 y3 m1(3) M1 M2 M3
(◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (eV) (GeV) (GeV) (GeV)

S1 46.24 281.21 181.90 344.71 132.23 179.88 87.81 2.88 −30.25 177.5 0.120 106.0 106.5 107.0

S2 46.57 88.26 116.07 420.44 44.36 171.78 86.94 2.96 97.01 174.30 0.079 106.5 107 107.5

S3 46.63 31.71 130.95 649.65−72.33 170.54 86.96 2.22 −1.86 178.31 0.114 106.5 107.2 107.9

S1 40.56 158.51 157.48 511.0 −16.23 179.29 90.04 1.29 −107.14 179.22 0.0047 106.0 106.5 107.0

S2 43.67 201.02 238.77 658.33−39.88 178.68 88.12 2.46 53.97 158.01 0.0133 106.5 107.0 107.5

S3 43.64 57.28 179.87 292.95 86.58 174.40 91.11 1.61 134.48 173.74 0.012 106.5 107.2 107.9

Sm1
ν

44.59 140.04 537.15 291.89 164.06 −149.85 178.99 49.15 93.39 −14.50 0.15882 109.0 109.5 1010

Sm0
ν

43.81 31.59 681.96 276.19 271.56 −125.27 14.95 −11.50 344.87 5.22 0.0041 109.0 109.5 1010

Table 5.1: The best-fit points for the leptogenesis scenarios in
Fig. 5.4-Fig. 5.11, corresponding to S1 to S3, are given
and are all consistent with ηB = (6.10± 0.04) × 10−10,
θ13 = 8.52◦ and θ12 = 33.63◦. The upper (lower) three
rows are the best-fit points for normal (inverted) order-
ing. The final two rows are the best fit points for normal
ordering in the loop and tree-level dominated scenarios.

5.4.1 Results from N1 Decays

In this section we solve the density matrix equations Eq. (3.3.19) under the approxim-

ation that we may neglect the contributions of N2 and N3 except in the expressions

for the CP asymmetry. As explained in Section 5.3, solving the density matrix

equations Eq. (3.3.19) over regions of 18-dimensional parameter space is numerically

challenging. However, given that the solar (θ12) and reactor (θ13) mixing angles are

relatively precisely measured so we can fix them at their best-fit values from global

fit data [202]. Similarly, although we allow the lightest neutrino mass (m1 for NO

and m3 for IO) to vary within the constraints from the sum of neutrino masses,

the other two light masses are determined from the best-fit values of ∆m2
21, ∆m2

31

and ∆m2
32 from global fit data [202]. Finally, in any one parameter scan, but not

between them, we fix the heavy Majorana mass spectrum leaving only 11 of the 18

parameters to be varied.

In all scenarios we choose a set of initial values for M1, M2 and M3, then explore the

parameter space to find the regions consistent with ηBCMB to 1σ and 2σ confidence.

By calculating the fine-tuning F in the regions of 1σ agreement, we decide either

to lower the scale of M1 or not (while keeping the ratios M2/M1 and M3/M2 fixed).

As the scale is lowered the fine-tuning increases the significance of higher-order
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Figure 5.2: The top (bottom) three plots from left to right show
the fine-tuning F for regions of the model parameter
space within 1σ of measured ηB for S1, S2 and S3 (S1,
S2 and S3) respectively.

corrections in the light neutrino masses is greater. We do not further lower the

scale when either the two-loop contributions becomes greater than a few percent or

when the fine-tuning exceeds O(1000) (see Appendix G). If one were to incorporate

the effects of higher radiative orders, the parameter space could be explored at

even lower scales where the fine-tuning is greater. Thus, the lower bounds that we

ultimately find are somewhat approximate as they depend upon the degree of fine-

tuning. However, as we shall show, the viable parameter space rapidly diminishes

with lowering scale and so our lower bounds must be approximations to the true

lower bounds.

We choose to present the results of six scenarios for a single decaying heavy Majorana

neutrino called

• S1, S1: M1 = 106 GeV, M2/M1 ' 3.15, M3/M2 ' 3.15,

• S2, S2: M1 = 106.5 GeV, M2/M1 ' 3.15, M3/M2 ' 3.15,
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• S3, S3: M1 = 106.5 GeV, M2/M1 ' 5, M3/M2 ' 5,

where no overline indicates NO and an overline indicates IO. Scenarios S1 (S1) and

S2 (S2) have the same mass ratios, but with the former at the lowest acceptable

mass scale and the latter presented for comparison at a higher mass scale. S3 (S3)

corresponds to the lowest scale for its given set of mass ratios.

In Fig. 5.1, we provide the temperature evolution of the absolute magnitude of the

lepton asymmetry number densities, |nαα|, α = e, µ, τ typical to each scenario. In

particular, with this plot we justify our numerical choice to take the final value of

z ≥ 100 as nB−L has long-since stopped appreciably evolving by this point. We solve

the density matrix equations assuming a vanishing initial abundance of N1.

Parameter space of S1

The plots in Fig. 5.4 show two-dimensional projections of the eleven-dimensional

posterior corresponding to S1
4. The dark (light) blue contours correspond to the

regions of parameter space consistent with 68% (95%) confidence levels. In addition

to the two-dimensional posterior plots we provide the best-fit point for each heavy

Majorana neutrino mass spectrum scenario as shown in Table 5.1 where the upper

(lower) three rows of the table correspond to normal (inverted) ordering.

We allow the PMNS matrix parameters to vary within a 3σ range of their best-

fit value: δ ∈ [0, 360]◦, θ23 ∈ [38.6, 52.5]◦ and α21, α31 ∈ [0, 720]◦. For the two-

dimensional posterior plots of scenario S1 shown in Fig. 5.4, the 1σ region favours

larger values of the CP-violating Dirac phase: 120 ≤ δ(◦) ≤ 360. The likelihood

function is more sensitive to α21 than α31: from Fig. 5.4, we observe 80 ≤ α21(◦) ≤

270 while 65 ≤ α31(◦) ≤ 720 is consistent with the measured baryon asymmetry to

a 1σ level. Although θ23 may take most values within its 3σ range, the likelihood

function prefers values near to 45◦ and in the upper octant. The values of the

4As each individual plot of the triangle plots is relatively small, we provide the following link to
view each individually: https://gitlab.dur.scotgrid.ac.uk/leptogenesis-public/thermal/
wikis/home

https://gitlab.dur.scotgrid.ac.uk/leptogenesis-public/thermal/wikis/home
https://gitlab.dur.scotgrid.ac.uk/leptogenesis-public/thermal/wikis/home
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lightest neutrino mass tend to be close to the upper limit, which for normal ordering

is m1 ' 0.332 eV. The strong dependence of ηB on the lightest neutrino mass agrees

with work which investigated two-flavoured thermal leptogenesis [203].

The likelihood function is somewhat insensitive to the values of x1 and x3 (hence

their exclusion from the posterior plots5) but highly sensitive to x2 with preferred

values of approximately 90◦. The complex components of the R-matrix are likely to

be within a small range: y1 ' 180◦, y2 ' 3◦ and y3 ' 180◦ where the explanation

for this structure has been given in Section 5.5. The mass of the decaying heavy

Majorana neutrino is relatively small and so it might be expected that large phases of

the PMNS and R-matrix are needed to compensate by keeping the Yukawa couplings

sufficiently large.

Parameter space of S2 and S3

The parameter plots for largerM1 and the more hierarchical heavy Majorana neutrino

spectra of S2 and S3 are shown in Fig. 5.6 and Fig. 5.8 respectively. Unsurprisingly,

on comparison of scenario S1 and S2 (which share the same mass splitting but

different absolute scales) we observe the scenario with the larger heavy Majorana

neutrino masses has a larger viable region of the model parameter space. Moreover,

the constraints on the R- and PMNS-matrix parameters in scenario S2 are weaker yet

qualitatively similar to S1. In particular, the m1-dependence in S2 is less severe than

in the scenario of S1. For example in Fig. 5.4 the 2σ allowed region for the lightest

neutrino mass is 0.125 ≤ m1(eV) ≤ 0.332 while for Fig. 5.6, 0.0316 ≤ m1(eV) ≤ 0.332.

For smaller values of m1, successful leptogenesis is possible for larger values of the

heavy Majorana neutrino mass M1. For larger heavy Majorana neutrino mass

splittings, we anticipate a reduction of the viable parameter space because the CP

asymmetry is increasingly suppressed for larger mass splittings. This is confirmed

upon comparison of Fig. 5.6 and Fig. 5.8 where the former has milder mass splitting.

5Although they are included in the plots found by following the aforementioned link.
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Finally, note that in contrast to S1, in the case of both S2 and S3, the likelihood

function prefers values of θ23 close to 45◦ and in the lower octant.

Parameter space of S1

The triangle plot showing the two-dimensional posterior distributions of the 11-

dimensional model parameter space for S1 is shown in Fig. 5.5. The dark (light)

red contours correspond to the regions of parameter space consistent with 68%

(95%) confidence levels. As anticipated, the points of the model space consistent

with the measurement are different from the normal ordering case and the volume of

parameter space consistent with the measured ηBCMB is less constrained. In particular

we observe that the likelihood function is relatively insensitive to changes of δ, α31

and θ23. This scenario displays a similar feature to S1, where the likelihood function

favours values of α21 ≤ 360◦.

Additionally, the likelihood has a flat direction in the x1 and x3 parameters of the

R-matrix (as discussed in Section 5.5). We observe that all values of x1 and x3

are consistent to a 2σ level with the measured ηB but that, again, the likelihood is

very sensitive to x2 with x2 ' 90◦. Similarly, to the normal ordering scenario the

imaginary phases of R are constrained with y1 ' 180◦, y2 ' 2◦ and y3 ' 180◦.

Parameter space of S2 and S3

The triangle plots for larger values of M1 and the more hierarchical spectra of S2

and S3 are shown in Fig. 5.7 and Fig. 5.9 respectively. As seen in the case of normal

ordering, the scenario with the slightly more hierarchical mass spectrum (M2 = 5M1,

M3 = 5M2) has a slightly smaller volume of parameter space consistent with the

data than the case of the milder hierarchy.
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The fine-tuning of the scenarios

Although we allow for the possibility there exists a certain level of cancellation

between the tree- and one-loop level contributions to the light neutrino masses,

we avoid regions of the parameter space where the perturbative series no longer

converges. We present the fine-tuning measure defined in Eq. (5.2.1) for the regions

of the model parameter space within 1σ of the measured ηB. To be explicit, the top

(bottom) three plots of Fig. 5.2 shows the distribution of the fine-tuning measure

within the 1σ region of S1, S2 and S3 (S1, S2 and S3) shown in Fig. 5.4, Fig. 5.6

and Fig. 5.8 (Fig. 5.5, Fig. 5.7 and Fig. 5.9) respectively. Moreover increasing the

spread from 1σ to 5σ would allow for a broader spread of fine-tuning values, both

smaller and larger.

In general, for normal ordering, the fine-tuning measure for points within 1σ is

O (100) with minimal fine-tuning value in S1 of F ≈ 330. Somewhat unsurprisingly,

the scenario with the larger mass of decaying heavy Majorana neutrino, S2, has

smaller fine-tuning due to the fact the complex phases of the R-matrix may attain a

broader range of values, and the minimum value of F ≈ 180. However, in the case

of S3 (where the decaying heavy Majorana neutrino mass is the same as S2 the mass

splitting between the heavy Majorana neutrinos is larger) the fine-tuning values are

in general larger due to the increased mass of N3.

The fine-tuning present in the case of inverted ordering is, in general, less than in

the case of normal ordering, with minimum value in S1 of F ' 100. Again, the same

pattern emerges as in the case of normal ordering where the fine-tuning in S2 (S3)

is less (greater) than S1. In fact, for S2 the minimum F ≈ 40. Again, we emphasise

the fine-tuning we present here is for points p within 1σ of the best fit value of ηBCMB

and allowing for an increase in the spread around the best fit value would allow for

smaller (and larger) values of fine-tuning.
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Tree- and loop-dominated scenarios

At such scales, T � 109 GeV, it is impossible to have successful leptogenesis without

some degree of cancellation between the tree- and one-loop-level contributions. How-

ever, we did investigate if there existed regions of parameter space such that thermal

leptogenesis was viable (within 1σ of the central value of ηBCMB) where either the

tree- or one-loop-level contribution dominates. In the latter scenario, where the radi-

ative corrections dominate over the tree-level contributions, the fine-tuning measure

should be close to unity as |m1
ν |/|(m0

ν +m1
ν)| ≈ 1 for m0

ν � m1
ν . We applied the

same numerical procedure to solve the density matrix equations with one decaying

heavy Majorana neutrino and vetoed points p if the fine-tuning measure was not

within 0.9 ≤ F ≤ 1.1. After scanning a series of differing heavy Majorana neutrino

mass spectra, we found the loop-dominated scenario was possible, assuming normal

ordering, forM1 = 109 GeV withM2 = 3.15M1 andM3 = 3.15M2. The best-fit point

is denoted as Sm1
ν
in Table 5.1 and the triangle plot of the two-dimensional posterior

distributions may be found on the provided webpage. In the former scenario, where

the tree-level contributions dominates, the fine-tuning measure will be close to zero.

Using Multinest to search for regions of p consistent with tree-domination we

required the fine-tuning to be within 0 ≤ F ≤ 0.2. We found no solutions com-

patible with this condition for M1 < 109 GeV. However, we did find a single single

point consistent with a fine-tuning F ≈ 0.18 for a mass spectrum of M1 = 109 GeV,

M2 ≈ 3.15M1 and M3 ≈ 3.15M2. Note that a two-dimensional projection of the

posterior is not possible and we simply provide the value of this point as Sm0
ν
in

Table 5.1. For larger values of M1 more points will exist that satisfy the condition

and so we regard Sm0
ν
as the solution of lowest M1 in which the tree-level is the

dominant contribution. The absolute values of the Yukawa matrix elements are

listed, for reference, for all scenarios in Appendix G.2.

We note that it is possible to reduce the fine-tuning by considering the scenario where

M2 = M3. Such a scenario may result from the introduction of a partial symmetry
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into the type-I seesaw. In this section, we are considering the approximation that

only N1 decays so this does not lead to resonant leptogenesis. As an example,

consider S1 but with M2 = M3 ≈ 5.05 × 106 GeV. A point p satisfying this leads

to ηB = 6.1 × 10−10, which is in good agreement with the experimental value. In

this case, N2 and N3 act as two Majorana components of a pseudo-Dirac pair. The

contribution of N2 and N3 to the tree-level mass is cancelled (as together they are

lepton number conserving) and a dramatic reduction in our fine-tuning measure

occurs, resulting in F ≈ 2.1. This is similar to the scenarios considered in [187] and

will not be further discussed in this paper.

In summary, foregoing fine-tuning of the light neutrino masses & O(10), it is pos-

sible to lower the scale of non-resonant thermal leptogenesis to T ∼ 106 GeV with

a mildly hierarchical heavy Majorana neutrino mass spectrum. At such intermedi-

ate scales, interactions mediated by the SM charged lepton Yukawa couplings are

greater than the Hubble rate. We have properly accounted for such effects as we

calculated the lepton asymmetry from three-flavoured density matrix equations. In

the case of normally ordered light neutrinos, larger values of the δ are favoured in

conjunction with an atmospheric mixing angle close to θ23 = 45◦ (slightly above or

below depending on the scenario, see Table 5.1). We observe that larger masses

of m1 are favoured as this compensates for decreasing M1. In the scenario of an

inverted ordered mass spectrum, the likelihood function shows little sensitivity to

changes in the low-energy neutrino parameters. On the other hand, the R-matrix

is comparatively highly constrained. In addition, we present the distribution of the

fine-tuning measure within 1σ of the measured ηB and found the fine-tuning was

in general smaller for inverted ordering than it was for normal ordering and usually

took values ∼ O (100). We find that the minimum observed value of the fine-tuning

measure in the vicinity of the best-fit is F ∼40. However, at the most likely point,

F assumes values ∼ O(100).
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Figure 5.3: The left and right plots show the fine-tuning for regions
of the model parameter space within 1σ of the measured
ηB for S4 and S4 respectively.

θ23 δ α21 α31 x1 y1 x2 y2 x3 y3 m1(3) M1 M2 M3
(◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (eV) (GeV) (GeV) (GeV)

S4 47.85 105.65 133.40 367.99−99.50 178.77 94.22 0.12 −9.59 172.53 0.208 106.7 107.5 108.1

S4 44.11 243.0 347.54 437.04 14.94 167.76 90.79 1.42 132.12 178.29 0.0084 106.7 107.5 108.1

Table 5.2: The best-fit points for the leptogenesis scenarios in
Figs 5.10-5.11 are given and are all consistent with
ηB = (6.10± 0.04)× 10−10, θ13 = 8.52◦ and θ12 = 33.63◦.
The upper (lower) row is the best-fit points for normal
(inverted) ordering.

5.4.2 Results from N2 Decays

In this section, we explore the possibility that the decay of two heavy Majorana

neutrinos contributes to the baryon asymmetry. In this setup, the density mat-

rix equations follow rather straightforwardly from Eq. (3.3.19) and the numerical

procedure to find the two-dimensional posterior plots is the same as discussed in Sec-

tion 5.4.1. The qualitative difference between this case and the former as discussed

in Section 5.3 is that now N2 may decay in addition to N1. As M2 > M1, N2 will

decay before N1 with the average time between the two decays determined by the

hierarchy of their masses.

In [204] the authors explored thermal leptogenesis using the decay of two heavy Ma-

jorana neutrinos in the limit the third is decoupled from the theory. Using analytic

estimates, they found the minimal mass of the lightest heavy Majorana neutrino, for
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successful leptogenesis, to be M1 ∼ 1.3 × 1011 GeV assuming a mildly hierarchical

mass spectrum. In this scenario, we explored a number of heavy Majorana neutrino

mass scenarios and found the lowest mass of N1 which allowed for successful lepto-

genesis was M1 = 106.7 GeV with M2 ≈ 6.3M1 and M3 ≈ 4M2. We denote these two

scenarios as S4 and S4 for normal and inverted ordering respectively and the best-fit

point and corresponding triangle plots are shown in Fig. 5.10 and Fig. 5.11. These

results should be considered as more reliable than those of the previous section as

they produced under the same set of approximations except the neglect of N2 decays.

Naively, one would think that the decay of two heavy Majorana neutrinos would

further lower the scale of leptogenesis as both may contribute to the final asymmetry.

However, this is not the case as there may be cancellations between the contributions

of N1 and N2. We note that contribution of the third heavy Majorana neutrino to

the lepton asymmetry in these scenarios is negligible as the CP-asymmetry ε(3)
αβ is

several orders of magnitude lower than that of the other two and its washout term

W3 decays far faster.

Unlike in the previous section, we find the two-dimensional posterior projections

in this case for both orderings do not appear to be too dissimilar. In both cases,

the likelihood function is insensitive to δ. In addition, the atmospheric mixing

angle can be in the lower or upper octant and there is strong dependence on large

values of m1 (m3) in S4 (S4). The dependence of the likelihood on the R-matrix

parameters is similar to the cases discussed in Section 5.4.1; we find x1 and x3 may

take any values while x2 ' 90◦. Likewise, two of the imaginary components of the R-

matrix are constrained to be large y1, y3 ' 180◦ while the other is nearly vanishing

y2 ' 2.5◦. For reference, the corresponding absolute value Yukawa matrices are

given in Section G.2. In a similar fashion to Section 5.4.1, we present the fine-tuning

measure for the regions of the model parameter space within 1σ of the measured ηB.

We observe for normal and inverted ordering the fine-tuning ∼ O (100).
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5.5 Discussion of Fine-tuned Results

We may gain an understanding of why fine-tuned solutions were found by the nu-

merical machinery through inspection of the structure of the Yukawa matrix at the

best-fit points. Looking at the solutions for one and two decaying heavy Majorana

neutrino scenarios, we observe that generically |y1| ≈ 180◦, y2 ≈ 0◦, |y3| ≈ 180◦ and

|x2| ≈ 90◦. Consider as a typical example S1, for which the orthogonal R-matrix

assumes the following form

R ≈


− i

2e
y3 cosx2

1
2e
y3 cosx2 sin x2

i
2e
y1+y3 −1

2e
y1+y3 1

2e
y1 cosx2

1
2e
y1+y3 i

2e
y1+y3 − i

2e
y1 cosx2

 ,

which has the structure

R ≈


R11 R12 R13

−iR22 R22 R23

−R22 −iR22 −iR23

 . (5.5.1)

The appearance of y1 and y3 in the exponentials, and the proximity of x2 to 90◦,

result in |R13| ∼ 1, |R1i| � |R22| and |Ri3| � |R22|.

In the case of the asymmetries ε(1)
αα, generated in the N1 decays, and for the best-fit

values of the parameters listed in Table 5.1, the leading term in the expansion of

the function f1(xj/x1) in powers of xj/x1 = M2
1/M

2
j � 1, j = 2, 3, as can be shown,

gives a sub-dominant contribution. The dominant contribution is generated by the

next-to-leading term in the expansion of f1(xj/x1) as well as by the leading term in

the expansion of the self-energy function f2(xj/x1) in powers of xj/x1 = M2
1/M

2
j � 1.

Under the approximation m1 = m2, the part of the asymmetry proportional to f1

(which we call ε(1)
αα (f1)) is

ε(1)
αα (f1) = 3

16π (Y †Y )11

M2
1

v4
5
9
M2

1
M2

2

(
m2

1|Uα1 + iUα2|2=
[
(R∗11R21)2

]
+m1

√
m1m3=

[
R∗11R

2
21U

∗
l3R
∗
13 (Uα1 + iUα2)

])
.
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and

ε(1)
αα (f2) = 3

16π (Y †Y )11

M2
1

v4
2
3m

3
2
1
√
m3|R21|2

∑
j=2,3

M1

Mj

= [R11R
∗
13U

∗
l3 (Uα1 + iUα2)] .

Numerical estimates at the best-fit values of Table 5.1 show that this second con-

tribution (the resonance function contribution) is somewhat larger than the first

one, although the baryon asymmetry in the cases studied by us is produced in the

non-resonance regime.

In the density matrix equations, the CP-asymmetry parameters enter in the combin-

ations

ε(1)
αα(f1) + ε(1)

αα(f2),

for α = e, µ, τ in the three-flavour regime.

Thus, although for our best-fit scenarios ε(1)
ee (f2) + ε(1)

µµ(f2) + ε(1)
ττ (f2) may be zero,

this does not mean that the ε(1)
αα(f2) give a negligible contribution in the generation

of the lepton (baryon) asymmetry.

We note that there is a factor (Y †Y )−1
11 in the diagonal CP-asymmetries ε(1)

αα (Eq. (3.3.20))

for the lightest heavy Majorana neutrino and a factor (Y †Y )11 (Eq. (3.3.17)) appears

in the washout term W1. Thus, we naively expect that in order achieve successful

leptogenesis, by reducing the washout, (Y †Y )11 should be made small. Expanding

this quantity, in terms of the R-matrix elements and the remaining CI parameters,

we find (
Y †Y

)
11

= M1

v2

(
m1|R11|2 +m2|R12|2 +m3|R13|2

)
.

Thus, with the assumption that this quantity should be small, the relative smallness

of the elements R1i is explained and with it the values of x2 and y2.

Similarly, given the dependence on |R21| in ε(1)
αα(f2), it may be expected that we

should maximise the values of y1 and y3. With these imaginary parts of ω1 and ω3

large, the values of the corresponding real parts x1 and x3 is immaterial. This is

reflected in the relative flatness of their directions in the parameter space plots. The



5.5. Discussion of Fine-tuned Results 91

dependence on m1 in (Y †Y )11 may initially lead one to expect m1 to be minimised.

That this is not the case is due to the factors m2
1 or m3/2

1
√
m3 appearing in the

expressions for ε(1)
αα. In order to maximise these CP-asymmetries, one would expect

m1 to be found at its largest allowed value (determined by the constraint on the

sum of the neutrino masses).

Let us now examine how these choices of parameters affect the expressions for the

tree- and one-loop light neutrino masses. We may estimate the light masses using

the largest value of the Yukawa matrix (∼ 10−2 in the case of S1, see Appendix G.2)

and the smallest heavy mass M1 = 106 GeV:

m0
ν ∼ v2 Y

2

M1
∼ O

(
10−6 GeV

)
.

This mass is too large from the point of view of the experimental bound and yet

the numerical machinery is enforcing neutrino masses which sum to < 1 eV. Let

us investigate why this estimate fails. This structure of the R-matrix leads to the

following structure for the Dirac mass matrix:

mD

√
f =

(
δ1, u, −iu+ δ2

)
,

in which |δ2| � |δ1| � |u| where each of δ1, δ2 and u are 3-component complex

vectors. We may rewrite the tree- and one-loop masses in terms of this relatively

simple matrix mD

√
f

m0
ν =

(
mD

√
f
)
M−1f−1

(
mD

√
f
)T

,

where the commutativity of the diagonal matrices M and f has been exploited. For

the one-loop contribution we find

m1
ν =

(
mD

√
f
) (

f −M−1
)
f−1

(
mD

√
f
)T

.
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This ensures that their sum is

mν = mD

√
f
(
mD

√
f
)T

= δ1δ
T
1 + uδT2 + δ2u

T + δ2δ
T
2 .

Due to the relative smallness of the elements of δi, the light neutrino mass matrix

may be considerably smaller than would be expected from a naive estimate based

on the size of u. Neglecting terms containing a δi, we find that

m0
ν = −m1

ν .

This is the mechanism by which the fine-tuned mass matrices are arrived at.

Although in this analysis, the results of S1 were used, the other solutions differ

essentially only in the sign used for yi. This introduces a different pattern of minus

signs in the matrix of Eq. 5.5.1 (and hence also in the expression for mD

√
f) which

does not affect the overall argument. Note that this argument is true even for the

solutions of the two-decaying heavy Majorana neutrinos equations.

5.6 Summary and Conclusions

In this work we have explored the viable model parameter space of thermal lepto-

genesis associated with a type-I seesaw mechanism. To do so, we numerically solved

the three-flavoured density matrix equations [110] for one and two-decaying heavy

Majorana neutrinos. Of the eighteen dimensional model parameter space, seven

parameters were fixed from neutrino oscillation data, cosmological constraints and

consideration of a mildly hierarchical heavy Majorana neutrino mass spectrum.

To find the regions of parameter space consistent with the measured baryon-to-

photon ratio we used pyMultiNest which implements a nested sampling algorithm

to calculate Bayesian posterior distributions which are utilised to find regions of con-

fidence. In addition, we ensured the Yukawa matrix entries respected perturbativity
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and we protected against resonance effects by assuming a mildly hierarchical heavy

Majorana neutrino mass spectrum. In the case of one decaying heavy Majorana

neutrino, we found the lightest heavy Majorana neutrino mass that could success-

fully generate the baryon asymmetry, with our choice of upper bound on R-matrix

components, to be M1 ' 106 GeV. This is possible as regions of the parameter space

which have levels of fine-tuning in the light neutrino mass matrix > O(10) were

explored. In conjunction, eleven parameters were allowed to vary thus compensating

for the smaller heavy Majorana neutrino masses. Moreover, with normal ordering,

maximally CP-violating values of δ and θ23 close to 45◦ (in most cases slightly larger

than 45◦, see Table 5.1) is preferred. In addition, there was strong dependence on the

mass of the lightest neutrino. On the other hand, we found in the case of inverted

ordering there were no strong constraints on low energy neutrino parameters. For

this scenario, the level of fine-tuning was ∼ O (100). In the case of one decaying

heavy Majorana neutrino, we found the scenario with the smallest fine-tuning, at

intermediate scales, was S2, (F ∼ 40) with a heavy Majorana neutrino spectrum

M1 = 106.5 GeV, M2 ≈ 3.15M1 and M3 ≈ 3.15M2. We showed also that fine tuning

would not be necessary at all if M2 = M3, when the one loop contribution to the

light Majorana neutrino mass matrix is strongly suppressed. We also explored the

possibility that either the tree or one-loop radiative corrections dominate the neut-

rino mass matrix. We found the lowest scale possible for this scenario, assuming

a mildly hierarchical spectrum, was M1 = 109 GeV. As discussed, a motivation for

exploring leptogenesis at intermediate scales is to avoid large corrections to the Higgs

mass. Although, we found regions of the parameter space of three-flavoured thermal

leptogenesis consistent with the observed baryon asymmetry, we did not seek to

minimise ∆m2
H and relegate this to a future study.

Finally, we investigated the case of two decaying heavy Majorana neutrinos. We

found the lowest scale for both normal and inverted ordering to be M1 = 106.7 GeV.

This scale is higher than in the one decaying heavy Majorana neutrino case because

the scale of the washout is larger for N2 and its CP-asymmetry is small in comparison
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with N1. Although the washout for N2 decays much more quickly than for N1, it

still has an appreciable effect on the final lepton asymmetry and so one must raise

the scale of the heavy Majorana neutrino masses to achieve successful leptogenesis.

We did not include spectator effects which could potentially further lower the scale

of thermal leptogenesis and may be investigated in future work.
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Figure 5.4: S1: Triangle plot showing the two-dimensional projec-
tion of the 11-dimensional model parameter space for
posterior distributions using normal ordering with one-
decaying heavy Majorana neutrino and heavy Majorana
neutrino mass spectrum: M1 = 106 GeV,M2 = 3.15M1,
M3 = 3.15M2. The contours correspond to 68% and
95% confidence levels respectively.
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Figure 5.5: S1: Triangle plot showing the two-dimensional projec-
tion of the 11-dimensional model parameter space for
posterior distributions using inverted ordering and with
one-decaying heavy Majorana neutrino mass spectrum:
M1 = 106 GeV, M2 = 3.15M1, M3 = 3.15M2. The
contours correspond to 68% and 95% confidence levels
respectively.
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Figure 5.6: S2: Triangle plot showing the two-dimensional pro-
jection of the 11-dimensional model parameter space
for posterior distributions using normal ordering with
one-decaying heavy Majorana neutrino and heavy Ma-
jorana neutrino mass spectrum: M1 = 106.5 GeV,
M2 = 3.15M1, M3 = 3.15M2. The contours corres-
pond to 68% and 95% confidence levels respectively.
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Figure 5.7: S2: Triangle plot showing the two-dimensional pro-
jection of the 11-dimensional model parameter space
for posterior distributions using inverted ordering with
one-decaying heavy Majorana neutrino and heavy Ma-
jorana neutrino mass spectrum: M1 = 106.5 GeV,
M2 = 3.15M1, M3 = 3.15M2. The contours corres-
pond to 68% and 95% confidence levels respectively.
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Figure 5.8: S3: Triangle plot showing the two-dimensional projec-
tion of the 11-dimensional model parameter space for
posterior distributions using normal ordering with one-
decaying heavy Majorana neutrino and heavy Majorana
neutrino mass spectrum: M1 = 106.5 GeV, M2 = 5M1,
M3 = 5M2. The contours correspond to 68% and 95%
confidence levels respectively.
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Figure 5.9: S3: Triangle plot showing the two-dimensional projec-
tion of the 11-dimensional model parameter space for
posterior distributions using inverted ordering with one-
decaying heavy Majorana neutrino and heavy Majorana
neutrino mass spectrum: M1 = 106.5 GeV, M2 = 5M1,
M3 = 5M2. The contours correspond to 68% and 95%
confidence levels respectively.
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Figure 5.10: S4: Triangle plot showing the two-dimensional pro-
jection of the 11-dimensional model parameter space
for posterior distributions using normal ordering, with
two-decaying steriles neutrinos and mass spectrum:
M1 = 106.7 GeV, M2 = 5.0M1, M3 = 5.0M2. The
contours correspond to 68% and 95% confidence levels
respectively.
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Figure 5.11: S4: Triangle plot showing the two-dimensional projec-
tion of the 11-dimensional model parameter space for
posterior distributions using inverted ordering, with
two-decaying steriles and mass spectrum: M1 = 106.7

GeV, M2 = 5.0M1, M3 = 5.0M2. The contours corres-
pond to 68% and 95% confidence levels respectively.



Chapter 6

Leptogenesis from low-energy CP

violation

CP violation is a necessary feature of any theory explaining the creation of a matter-

antimatter asymmetry. In thermal leptogenesis, the CP asymmetry comes from

the heavy Majorana neutrinos whose decay rates Γ and Γ are not equal. The

source of this CP violation in the Lagrangian is the complex phases of the neutrino

Yukawa matrix. Recalling the Casas-Ibarra parametrisation of the Yukawa matrix

(Eq. (2.4.21) or Eq. (2.4.24)), we can label two distinct sources of CP violation: the

low-energy CP violating phases of the PMNS matrix and the high-scale CP violation

from the R-matrix. In this chapter, we explore the possibility of viable leptogenesis

when the CP violation comes only from the low-energy phases.

6.1 Flavour effects and low-energy CP violation

If leptogenesis occurs at high scales, where the temperature T � 1012 GeV, then it

is usually a justifiable approximation to neglect the flavour effects (see Eq. (3.3.19)

and the following discussion). A basis may be chosen in which essentially only one

flavour of lepton ever appears in the theoretical description. Consequently, it was

expected that the low-energy CP-violating phases contained in the neutrino mixing
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matrix play no physical role in the production of the lepton and therefore baryon

asymmetry [142,205].

If leptogenesis occurs at temperatures somewhat below 1012 GeV (109 GeV), the

Yukawa interactions of the tau charged lepton (of the muon) come into thermal

equilibrium, causing decoherence between this and the remaining flavour components

of the charged lepton state [117, 118, 123, 206, 207] such that two (three) lepton

flavour states must be separately considered and the CP-violating phases of the

PMNS matrix have physical significance. Historically, the possibility that the CP

violation in leptogenesis may be strictly due to Dirac and/or Majorana phases of the

PMNS matrix was first apparent in this regime [129–131,135,208–211] (for a review

see, e.g., [212]).

There have been other works which have investigated the impact of low energy

phases on the BAU. Indeed, CP conservation at the high-scale and CP violation

at the low-scale in the context of leptogenesis can be theoretically motivated by

minimal flavour violation [213, 214], flavour symmetries [215–217] or a generalised

CP symmetry [218–220]. Beyond the type I seesaw mechanism, there have been

other studies which connect the Dirac phase, δ, with the BAU using an extended

Higgs sector [221].

The primary focus of this chapter is to answer the question: at what scales can low-

energy CP-violating phases produce the observed BAU? We shall show that the scale

of successful leptogenesis in the case of interest may indeed vary across many orders

of magnitude from 106 − 1013 GeV, even significantly beyond 1012 GeV where it had

been previously believed that the low-energy CP violating phases played no role. The

observation of low-scale leptonic Dirac CP violation, in combination with the positive

determination of the Majorana nature of the massive neutrinos, would make more

plausible, but will not be a proof of, the existence of high-scale thermal leptogenesis.

These discoveries would indicate that thermal leptogenesis could produce the BAU

with the requisite CP violation provided by the Dirac CP-violating phase in the

neutrino mixing matrix.
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6.2 C and CP properties of Majorana neutrinos

As we focus on the possibility that low-scale CP phases are responsible for the BAU,

we will investigate the C and CP properties of neutrinos in order to determine the

structure of the R-matrices which lead to high-scale CP symmetry. In the type I

seesaw, the light (νi) and the heavy (Ni) neutrino mass states are both Majorana in

nature and thus satisfy the following conditions:

CνTi = νi,

CN
T

i = Ni,

(6.2.1)

where C denotes the charge conjugation matrix.

Following [131], we express the CP-conjugated neutrino fields in terms of the CP

operator UCP as
UCPNi (x)U †CP = iρNi γ0Ni (x′) ,

UCPνi (x)U †CP = iρνi γ0νi (x′) ,
(6.2.2)

where x′ is the parity-transformed coordinate and iρNi = ±i and iρνi = ±i are the

CP parities of the respective Majorana fields. The conditions for CP invariance

impose the following restrictions on the elements of the matrix of neutrino Yukawa

couplings (setting the unphysical phases in the CP transformations of the lepton

and Higgs doublets to 1 and i respectively) is given by,

Y ∗αi = Yαiρ
N
i , (6.2.3)

and on the elements of the PMNS matrix [222]:

U∗αj = Uαjρ
ν
j , j ∈ {1, 2, 3}, α ∈ {e, µ, τ} . (6.2.4)

From the parametrisation of the Yukawa matrix of Eq. (2.4.24), this imposes the

following conditions on the elements of the R-matrix [131]:

R∗ij = Rijρ
N
i ρ

ν
j , i, j ∈ {1, 2, 3} . (6.2.5)

The leptogenesis scenarios considered in this chapter have CP violation provided
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only by the phases of the PMNS matrix. This corresponds to imposing the condition

of Eq. (6.2.5) onto the R-matrix but not the condition Eq. (6.2.4) on U . In these

scenarios the values of the Dirac and Majorana phases of the PMNS matrix determine

the success of leptogenesis. One should bear in mind, however, that there are certain

intuitively unexpected possibilities for CP violation in (non-resonant) leptogenesis

even when the PMNS- and R-matrices are CP-conserving, i.e., conditions Eq. (6.2.4)

and Eq. (6.2.5) are individually fulfilled and the elements Uαj and Rjk are real or

purely imaginary [131].1

CP violation due to the Dirac phase δ can only be practically investigated in neutrino

oscillation experiments. There has been a slight statistical preference from the

existing data for maximally CP-violating δ ∼ 270◦. This hint has been obtained

from the combination of results from long-baseline experiments such as T2K [223]

and NOνA [224] with reactor experiments like Daya-Bay [225], RENO [226] and

Double-Chooz [227]. In principle, the difference in oscillation probabilities [228–230],

Aα,βCP ≡ P (να → νβ)− P (να → νβ) (α 6= β), (6.2.6)

is a measure of CP violation in neutrino oscillations in vacuum and can be measured

experimentally. For vacuum oscillations in the three-neutrino case we have [231]

Ae,µCP = 4JCPF vac
osc , (6.2.7)

F vac
osc ≡ sin

(
∆m2

21
2E D

)
+ sin

(
∆m2

32
2E D

)
+ sin

(
∆m2

13
2E D

)
, (6.2.8)

JCP ≡ =
[
Ue1Uµ2U

∗
e2U

∗
µ1

]
. (6.2.9)

JCP is the analogue of the Jarlskog invariant for the lepton sector, which gives a

parametrisation-independent measure of CP violation in neutrino oscillations, D

is the distance travelled by the neutrinos and E the neutrino energy. In the case

1This unusual possibility is realised when ρNi and ρνj are fixed by conditions Eq. (6.2.3) and
Eq. (6.2.4), but the product of the so fixed values of ρNi and ρνj differs from the value of ρNi ρνj
in (Eq. (6.2.5)) [131]. Under these conditions the low energy PMNS matrix U and the high-scale
R-matrix are individually CP-conserving, but the interplay between the two in leptogenesis is
CP-violating.
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of CP-invariance we have δ = 0, 180◦ and therefore JCP = 0. By measuring, for

example, Ae,µCP , one can determine JCP which has the following expression in the

standard parametrisation of the PMNS matrix:

JCP = 1
4 sin 2θ12 sin 2θ23 cos2 θ13 sin θ13 sin δ . (6.2.10)

The best-fit value and 1σ uncertainty of JCP reported in [202] are

Jmax
CP = 0.0329± 0.0007 (±1σ). (6.2.11)

In the longer term, the next generation of neutrino oscillation experiments such as

DUNE [232] and T2HK [233], will be able to measure the Dirac CP-violating phase

δ with greater precision and determine whether CP-symmetry is indeed violated in

the lepton sector.

As explained in Section 2.2, information on CP-violating Majorana phases can, in

principle, be obtained in neutrinoless double beta decay experiments [234–236] (see,

however, also [237]). These experiments are the most sensitive probes of the possible

Majorana nature of massive neutrinos. They can also provide information on the

neutrino mass ordering [238] (see also [236]). The rate of neutrinoless double beta

decay is given by (see, e.g., [40])

Γ0νββ

log 2 = G01

m2
e

|A|2, (6.2.12)

where G01 is a kinematic factor and A denotes the amplitude which has the following

form

A ∝
3∑
i=1

miU
2
eiM0νββ(mi) +

3∑
i=1

MiV
2
eiM0νββ(Mi). (6.2.13)

The amplitude is dependent on the nuclear matrix elements M0νββ for which

M0νββ(mi) ≈M0νββ(0)�M0νββ(Mi) if Mi � 103 MeV (see, e.g., [40, 42]), which

shall always be the case in this work. The mixing elements Vei for the heavy states

are O (mD/M) and thus the second term of Eq. (6.2.13) is O(m2
D/M)M0νββ(Mi)

∼ O(mi)M0νββ(Mi). As Uei ∼ O(1), the second term is negligible in comparison
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with the first and we find [239] (see e.g., [222]):

A ∝ 〈mν〉 ≡ m1U
2
e1 +m2|Ue2|2eiα21 +m3|Ue3|2ei(α31−2δ), (6.2.14)

where 〈mν〉 is the neutrinoless double beta decay effective Majorana mass in the

case of 3-neutrino mixing. In the case of CP-invariance we have α21 = kπ, α31 = qπ,

k, q = 0, 1, 2, . . . [240–242].2 The most stringent upper bound on |〈mν〉| was reported

by the KamLAND-Zen collaboration [41] searching for neutrinoless double beta

decay of 136Xe:

|〈mν〉| < [0.061, 0.165] eV, (6.2.15)

where the uncertainty in the knowledge of the nuclear matrix element of 136Xe decay

have been accounted for. In terms of the half-lives for neutrinoless double beta

decay the best lower limits are: for germanium-76, tellurium-130, and xenon-136:

T 0ν
1/2 > 8.0× 1025 yr (reported by the GERDA-II collaboration), T 0ν

1/2 > 1.5× 1025 yr

(from the combined results of the Cuoricino, CUORE-0, and CUORE experiments),

and T 0ν
1/2 > 1.07 × 1026 yr (from the KamLAND-Zen collaboration), with all lim-

its given at the 90% CL. Most importantly, a large number of new experiments

aim at sensitivities of |〈mν〉| ∼ [0.01, 0.05] eV (see, e.g., [42, 43]): CUORE (130Te),

SNO+ (130Te), GERDA (76Ge), MAJORANA (76Ge), LEGEND (76Ge), Super-

NEMO (82Se, 150Nd), KamLAND-Zen (136Xe), EXO and nEXO (136Xe), PANDAX-

III (136Xe), NEXT (136Xe), AMoRE (100Mo), MOON (100Mo), CANDLES (48Ca),

XMASS (136Xe), DCBA (82Se, 150Nd), ZICOS (96Zr), etc. The GERDA-II and

KamLAND-Zen experiments have already provided the best lower limits on the

double beta decay half-lives of 76Ge and 136Xe. The experiments listed above aim

to probe the ranges of predictions of |〈mν〉| corresponding to neutrino mass spectra

of quasi-degenerate type and with inverted ordering (see, e.g., [44]).

2 Thus, in order for a value of α21(31) to be CP-violating both sinα21(31)/2 and cosα21(31)/2 at
this value should be different from zero.
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6.2.1 CP-conserving R-matrix and the structure of the

light neutrino mass matrix

If the orthogonal matrix R is allowed to have large elements, then the scale of

leptogenesis may be lowered to M1 ∼ 106 GeV [5,192,243]. In such scenarios, care

must be taken with the radiative corrections to the light neutrino masses which

may grow large (and non-negligible) with the elements of the R-matrix. One can

either impose a near-lepton-number-symmetry to prevent this (see [243]), or more

generically, incorporate the one-loop contribution to the light neutrino masses (in

the manner we have discussed in previous chapters) and remain agnostic about fine-

tuned cancellations between the tree-level and one-loop contributions. We proceed

with this approach following the attitude taken in Chapter 5 which is based on [5],

in which the figure M1 ∼ 106 GeV was first demonstrated.

As discussed in Chapter 5, when there is a fine-tuned cancellation, the R-matrix

takes the form

R ≈


R11 R12 R13

±iR22 R22 R23

−R22 ±iR22 ±iR23

 , (6.2.16)

|R22| � |R1i|, |R23| for i ∈ {1, 2, 3}. The cancellation of large tree-level and large

one-loop light neutrino mass matrices occurs as a result of relations between the

magnitudes and phases of the R-matrix elements which lead to the following structure

for the Dirac mass matrix:

mD

√
f =

(
∆, u, ±iu

)
, (6.2.17)

with

∆ = U (√m1R11,
√
m2R12,

√
m3R13)T

and

u = U (±i√m1R22,
√
m2R22,

√
m3R23)T ,

such that |∆i| � |uj|, i, j ∈ {1, 2, 3}. We may rewrite the tree and one-loop masses
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in terms of this relatively simple matrix mD

√
f , such that

m0
ν =

(
mD

√
f
)
M−1f−1

(
mD

√
f
)T

, (6.2.18)

where the commutativity of the diagonal matrices m̂R and f has been exploited and

m1
ν =

(
mD

√
f
) (

f −M−1
)
f−1

(
mD

√
f
)T

. (6.2.19)

This ensures that the sum of the tree-level and one-loop masses is

mν = mD

√
f
(
mD

√
f
)T

= ∆∆T .

(6.2.20)

Due to the relative smallness of the elements of ∆, the matrixmν may be considerably

smaller than m0
ν . Immediately, we have

m0
ν = −m1

ν +O(∆2), (6.2.21)

which is an explicit expression of the fine-tuned cancellation. As in Chapter 5, we

use F defined as

F ≡
∑3
i=1 m̂

1
νii∑3

i=1 m̂νii

, (6.2.22)

to quantify this fine-tuning.

As the R-matrix structure of Eq. (7.3.1) is required for successful leptogenesis at

intermediate scales, we are tasked with finding the R-matrices which assume this

form and obey the CP-invariance conditions of Eq. (6.2.5). We intend to translate

the conditions in Eq. (7.3.1) and Eq. (6.2.5) into constraints on xi and yi. However,

we know a priori from the work of [5] that one must have y2 ∼ 0◦ and y1 & 180◦,

y3 & 180◦ to produce the relative magnitudes of the elements of R in Eq. (7.3.1),

crucial to the successful production of the observed baryon asymmetry.

We begin with the elements

R22 = cosw1 cosw3 − sinw1 sinw2 sinw3, (6.2.23)
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and

R31 = − cosw1 cosw3 sinw2 + sinw1 sinw3, (6.2.24)

which result from the expansion of the R-matrix parametrised as in Eq. (2.4.23).

The condition of Eq. (7.3.1) that R22 ≈ −R31 implies that sinw2 ≈ 1, which in turn

imposes sin x2 ≈ 1 and y2 ≈ 0◦. In order to simplify future expressions, we promote

the condition on y2 to the exact equality y2 = 0◦. With conditions on x2 and y2

determined, we now examine

R13 = cosx2 (cosx1 cosh y1 − i sin x1 sinh y1) . (6.2.25)

According to the condition Eq. (6.2.5), R13 (like all the elements of R) must be

purely real or imaginary and thus we should choose one of, cosx1 = 0 or sin x1 = 0.

We exclude the possibility of y1 = 0 for the reason given above. Likewise, consider

R11 = cosx2 (cosx3 cosh y3 − i sin x3 sinh y3) , (6.2.26)

and select cosx3 = 0 or sin x3 = 0 by the same reasoning.

In summary, we have the following set of constraints

cosx2 ≈ 0 and y2 = 0,

| cosx1| = 0 or 1,

| cosx3| = 0 or 1,

(6.2.27)

which lead to an R-matrix of purely real and imaginary components and are therefore

good candidates for CP-invariant R-matrices. We shall make use of these conditions

in considerations where enhancement of the R-matrix is necessary for successful

leptogenesis.
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Figure 6.1: The two-dimensional projections for leptogenesis with
M1 = 1010 GeV and CP violation provided only by the
phases of the PMNS matrix. The NO case is coloured
blue/green and the IO one is orange/red. The contours
correspond to 68% and 95% confidence levels. This plot
was created using SuperPlot [201].

6.3 Leptogenesis in the regime

109 < M1 (GeV) < 1012

In this section, we explore the possibility that successful leptogenesis derives solely

from the CP-violating PMNS phases and the mass scale is between 109 ≤M1 (GeV) ≤

1012, which generally corresponds to the two-flavour regime. Historically, the link

between low-energy CP violation and the baryon asymmetry was first established

in this regime and thus our main purpose in this section is to revisit the scenario

with more robust numerical methods than have previously been applied. We shall

perform a comprehensive exploration of the parameter space for a model with three

heavy Majorana neutrinos in both the normal ordered and inverted ordered scenarios.

We shall then investigate a subset of scenarios in which only the Dirac or only the
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Majorana phases are varied.

6.3.1 Results of parameter exploration

In this particular exploration of the parameter space, we fix M1 and vary M2 and

M3 such that M3 > 3M2 > 9M1, ensuring that resonant regimes are avoided

[116,192,193,244–246]. We choose to set M1 = 1010 GeV, this being typical of the

mass window under consideration.

We fix, x1 = 90◦ and x3 = 180◦ and y2 = 0◦ such that there is a complete leptonic

CP-symmetry when δ = 0◦, α21 = 180◦ and α31 = 0◦.3 With the specified parameters

fixed or constrained as stated, we explore the parameter space using a flat prior and

log-likelihood function evaluated at a point p = (δ, α21, α31,m1,3,M2,M3) (varying

m1 or m3 for normal or inverted ordering respectively) by

logL = −1
2

(
η2
B(p)− η2

BCMB

∆η2
BCMB

)
, (6.3.1)

to define regions of 1σ and 2σ agreement with the observed value of the asymmetry.

In addition we impose a bound on the sum of neutrino masses of 1 eV which is con-

sistent with the tritium beta-decay experiments [38,247,248] but more conservative

than recent constraints from Planck [88]. In the numerical work of this section we

allow only for the two lightest heavy Majorana neutrinos to decay (an excellent ap-

proximation) and we neglect lepton number-changing scattering processes, spectator

effects [206,249], thermal corrections [113,250] and the inclusion of quantum statist-

ical factors [251–254] which typically introduces an O (10%) error [135,255–257].

The results of this parameter search are shown in the form of two-dimensional

projections in Fig. 6.1. For points in these regions of parameter space for which

ηB = ηBCMB , the fine-tuning is F ≈ 0.23 which corresponds only to a very slight

enhancement of the R-matrix. The values of lightest neutrino mass for NO (IO)

3This choice of parameters for the low-energy phases is made such that the CP-symmetry holds
for the Yukawa matrix when the R-matrix is taken in to account. It would not suffice to choose,
e.g., δ = α21 = α31 = 0◦.
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δ α21 α31 M1 M2 M3 x1 x2 x3 y2
(◦) (◦) (◦) (GeV) (GeV) (GeV) (◦) (◦) (◦) (◦)
228 447 570 2.82× 1010 1.00× 1013 3.16× 1013 90 18 180 0

Table 6.1: A benchmark point for leptogenesis withM1 = 2.82×1010

GeV, with normal ordering. Here, we have m1 = 0.02 eV
and y1 = y3 = −33◦, corresponding to F = 0.27. This
point produces ηB = 6.1× 10−10.

neutrino mass spectrum corresponding to this case are m1(3) = 0.0215 eV. For

the best-fit values of the fitted parameters in the NO (IO) case we find: δ =

133.8◦ (139.8◦), α21 = 315.5◦ (165.3◦), α31 = 551.0◦ (565.5◦), M2 = 4.90 (4.97)×1011

GeV,M3 = 2.19×1012 GeV, x2 = 113.4◦ (13.9◦). For the case of a NO light neutrino

mass spectrum, we find that the observed baryon asymmetry may be obtained to

within 1σ (2σ) with δ between [95, 265]◦ ([52, 282]◦). For IO, the 1σ (2σ) range is

[60, 338]◦ ([8, 360]◦). Both of these scenarios comfortably incorporate the measured

bounds on δ (Table 2.2). In what follows, we provide some explanation of these

results and plots by introducing an analytical approximation which we use to study

the scenarios where only the Dirac or only the Majorana phases provide CP violation.

6.3.2 Dependence of ηB on the Dirac and Majorana Phases

In the scenario 109 < M1(GeV) < 1012, it is appropriate to apply the two-flavour

Boltzmann equations (namely Eq. (3.3.23) with α ∈ {β, τ}). These equations have

the following analytical solution [258]

nB−L ≈
π2

6zdK1
neqN1(0)

(
ε(1)
ττ

1
p1τ

+ ε
(1)
ββ

1
p1β

)
, (6.3.2)

where it is assumed that the dominant contribution to the final asymmetry is from the

lightest of the heavy Majorana neutrinos and that leptogenesis occurs in the strong

washout regime. As we are interested in those scenarios in which CP violation derives

only from the phases of the PMNS matrix, we have the supplementary condition
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Figure 6.2: The baryon asymmetry withM1 = 5.13×1010 GeV and
CP violation provided solely by δ. The Majorana phases
are fixed at α21 = 180◦ and α31 = 0◦. The red band
indicates the 1σ observed values for ηBCMB with the
best-fit value indicated by the horizontal black dotted
line. Left: The final baryon asymmetry as a function
of δ with exact CP-invariance when δ = 0◦ and 180◦
(vertical black dotted line). Right: A parametric plot of
ηB against JCP as δ is varied. See the text for further
details.

Tr ε(1) = 0 (or ε(1)
ττ = −ε(1)

ββ ) which we may use to simplify the solution to

nB−L = π2

6zdK1
neqN1(0)ε(1)

ττ ∆F, (6.3.3)

with

∆F ≡ 1
p1τ
− 1
p1β

= 1
p1τ
− 1

1− p1τ
. (6.3.4)

At the benchmark point for normal ordering defined in Table 6.1, which we will use

in the further analyses in the present section, we have:

Yτ1 = 1.37× 10−3 − 1.67× 10−4eiδ,

Yτ1 = 6.64× 10−4 − 8.74× 10−4ei
α21+π

2 ,

Yτ1 = 4.71× 10−4 + 1.07× 10−3e
iα31

2 ,

(6.3.5)

for CP violation from δ, α21 and α31 respectively. For the case in which δ provides
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Figure 6.3: The baryon asymmetry with M1 = 3.05×1010 GeV and
CP violation provided solely by α21 (corresponding to
δ = α31 = 0◦). The red band indicates the 1σ observed
values for ηB with the best-fit value indicated by the
horizontal black dotted lines. Here we show the ba-
ryon asymmetry against α21 with exact CP-invariance
at α21 = 180◦ and 540◦ (vertical black dotted lines).
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Figure 6.4: The baryon asymmetry with M1 = 5.13×1010 GeV and
CP violation provided solely by α31 (corresponding to
δ = 0◦, α21 = 180◦). The red band indicates the 1σ
observed values for ηB with the best-fit value indicated
by the horizontal black dotted lines. Here we show
the baryon asymmetry as a function of α31, exact CP-
invariance exists for α31 = 0◦ and 360◦ (vertical black
dotted lines).
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the CP violation in Eq. (6.3.5), this phase gives a subdominant contribution to |Yτ1|.

As can be shown, p1τ is similarly weakly dependent on the phases. Thus, the phase

dependence of the solutions of Eq. (6.3.3) does not come predominantly from the

flavour factor ∆F but from the CP-asymmetry ε(1)
ττ . However, in the case of α21

providing the CP violation, the two terms of Eq. (6.3.5) are similar in magnitude

and we may get a strong enhancement in ∆F . The final case where α31 provides

the CP violation is intermediate and should experience a slight phase-dependent

enhancement from ∆F .

Dirac phase CP violation

In this subsection, we consider deviations from the benchmark point of Table 6.1

where we allow δ to vary but fix α21 = 180◦ and α31 = 0◦. Given the pattern of

R-matrix angles, this ensures that any CP violation comes solely from δ. In this

case, the ττ -component of the CP-asymmetry is given by

ε(1)
ττ = (0.515− 3.94c13) s13 × 10−8 sin δ = −0.501× 10−8 sin δ. (6.3.6)

Thus, given the approximate phase-independence of ∆F , we obtain a sinusoidal

dependence of ηB on δ, with ηB = 0 when δ = 0◦ or 180◦. Keeping all other

parameters fixed, we find that for M1 = 2.82× 1010 GeV no value of δ can produce

the observed baryon asymmetry of the Universe, the maximum value of ηB as a

function of δ is 4.07× 10−11. We might scale the heavy Majorana neutrino masses

by a constant value, as when the two-flavour approximation of Eq. (6.3.3) is valid,

the factor ε(1)
ττ scales in proportion with this constant and thus so does ηB. In doing

so, we find that the final asymmetry rises until M1 = 7.08 × 1011 GeV, where ηB

takes maximum value 4.01× 10−10. After this, the simple scaling fails as one begins

to enter the transition to what is usually the single-flavour regime.

Performing a detailed numerical parameter exploration we find that purely Dirac

phase CP violation leads to successful leptogenesis for M1 = 5.13 × 1010 GeV,

M2 = 2.19× 1012 GeV and M3 = 1.01× 1013 GeV. This is illustrated in Fig. 6.2 in
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which the plotted ηB comes from solving the full density matrix equations. In this

case, we have:

Yτ1 = 1.11× 10−2 − 2.40× 10−4eiδ. (6.3.7)

Given the different orders of magnitude of the two terms in the expression for Yτ1,

the baryon asymmetry should exhibit dependence on δ only from ε(1)
ττ and not from

∆F . Our theoretical expectations are borne out by the approximate sinusoidal

dependence of ηB on δ seen in Fig. 6.2.

CP violation from the Majorana phase α21

Here, we set δ = α31 = 0◦ but allow CP violation from α21. Setting all other

parameters to their benchmark values we find

ε(1)
ττ = 3.14× 10−7 cos α21

2 . (6.3.8)

It follows from this expression for ε(1)
ττ that at the CP-conserving values for α21 =

0◦, 360◦ we have ε(1)
ττ 6= 0 (see also Fig. 6.3). This corresponds to the case of

CP-conserving R-matrix, CP-conserving PMNS matrix, but CP-violating interplay

between the R and PMNS matrix elements in leptogenesis [130]. In a similar way to

the previous subsection, we find that no value of α21 can achieve successful leptogen-

esis using this combination of phases and the benchmark values from Table 6.1. Thus,

we find it necessary to scale all of the heavy Majorana neutrino masses by a common

factor such that M1 = 3.05 × 1010 GeV, as this allows for successful leptogenesis.

With this scaling we obtain the results plotted in Fig. 6.3. The deviation from pure

(co)sinusoidal behaviour is explained by the α21-dependence of ∆F . For α21 < 360◦,

∆F varies relatively slowly exhibiting a global minimum at α21 = 180◦, resulting in

a slightly modified sinusoidal dependence through this point in ηB. A strong peak

exists for ∆F around α21 = 540◦, which results in the peak of ηB occurring before

720◦, as would be expected from the dependence of ε(1)
ττ . The small sign-changing

fluctuation around the zero at α21 = 540◦ is a feature that does not appear in the

solution of two-flavour Boltzmann equations and thus cannot be explained in terms
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of the analytic solution Eq. (6.3.3). However, the extra zeros of ηB that are seen in

Fig. 6.3 are due only to accidental cancellations and do not correspond to cases of

CP-symmetry (unlike those at α21 = 180◦ and α21 = 540◦).

CP violation from the Majorana phase α31

We set δ = 0◦ and α21 = 180◦ such that CP violation is provided by α31. Using the

benchmark values for the other parameters from Table 6.1 we find:

ε(1)
ττ = 2.11× 10−7 sin α31

2 . (6.3.9)

Again we find that without scaling the heavy Majorana neutrino masses, no value of

α31 corresponds to successful leptogenesis. At M1 = 5.13× 1010 GeV we obtain the

first point for which the observed baryon asymmetry is created and this is plotted

in Fig. 6.4. We see that analytical expectation of a sinusoidal dependence of the

baryon asymmetry (ηB ∝ ε(1)
ττ ∝ sin(α31/2)) from Eq. (6.3.9) is present. ∆F exhibits

a broad peak around α31 = 360◦ which results in the slight shift to the centre of the

otherwise sinusoidal peaks.

6.3.3 The case of N3 decoupled

In this section, we review the case that the heaviest Majorana neutrino, N3, physic-

ally decouples. We restrict ourselves to normal ordered light neutrino masses. The

resultant scenario with two relevant heavy Majorana neutrinos is the simplest (min-

imal) type I framework compatible with all neutrino data. In this scenario only two

of the light neutrinos have non-zero masses since m1 = 0. For normal ordering, the

R-matrix may be parametrised as in Eq. (2.4.25) [204,259,260]

R =


0 cos θ sin θ

0 − sin θ cos θ

1 0 0

 . (6.3.10)
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Figure 6.5: The two-dimensional projections for leptogenesis with
M1 = 1011 GeV,M2 = 1012 GeV andN3 decoupled, with
CP violation provided only by the phases of the PMNS
matrix. Here it is assumed that the light neutrino mass
spectrum has normal ordering. Contours correspond to
68% and 95% confidence levels. This plot was created
using SuperPlot [201].

The resulting neutrino Yukawa matrix thus has Yα3 = 0, consistent with the premise

that N3 has decoupled. We choose to take θ in Eq. (6.3.10) to be real in order to

have the condition of Eq. (6.2.5) satisfied. We assume further that at least one of

the three phases in the PMNS matrix has a CP-violating value.

As with the previous sections, we have performed an exhaustive exploration of the

parameter space where again we are primarily concerned with the situation in which

CP violation is provided only by the PMNS phases. We choose to fix M1 = 1011

GeV and M2 = 1012 GeV such that the parameter space to explore is described by

p = (δ, α21, α31, θ). In Fig. 6.5, we present the two-dimensional posterior projection

for the case of normal ordering. Here, it is seen that withM1 = 1011 GeV, for normal

ordering, successful leptogenesis may produce a baryon asymmetry with 1σ (2σ)

agreement with the observed value for δ ∈ [95, 315]◦, (δ ∈ [25, 360]◦).

In Table 6.2, we provide a benchmark point for normal ordered leptogenesis, with

purely low-energy CP violation and N3 decoupled. At this point, the observed BAU

is produced with a corresponding fine-tuning of F = 0.23. In Fig. 6.6, we illustrate

a similar scenario, in which the CP violation is provided only by δ (α21 = 180◦,

α31 = 0◦), and where the observed baryon asymmetry is produced near δ = 270◦.
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δ α21 α31 M1 M2 θ
(◦) (◦) (◦) (GeV) (GeV) (◦)
228 516 100 1011 1012 25.05

Table 6.2: A benchmark point for leptogenesis with M1 = 1011 GeV
and N3 decoupled with a normal ordered light mass spec-
trum.

We conclude that, even for the minimal type I seesaw scenario with two heavy

Majorana neutrinos exhibiting hierarchical mass spectrum, it is possible to generate

the observed value of the baryon asymmetry with the requisite CP violation provided

exclusively by the Dirac phase δ, and/or by the Majorana phase α21 or α31.

Furthermore, we note that, in performing a similar investigation for the inverted

ordering scenario, we find no point in the parameter space which corresponds to

successful leptogenesis with N3 decoupled in this mass window4 with real R-matrix.

If, however, e.g., R11R12 = ±i|R11R12| (R13 = 0 in the case of interest), we can

have successful leptogenesis with the CP violation provided by the Dirac and/or

Majorana phases in PMNS matrix also for the IO spectrum. These conclusions are

in agreement with the results of [130] wherein one may find a detailed discussion of

the cases considered in the present subsection.

Finally, in [130] the following necessary condition for successful leptogenesis in the

case of NO spectrum with the requisite CP violation provided exclusively by the

Dirac phase δ was obtained:

| sin θ13 sin δ| & 0.09 . (6.3.11)

We recall that this condition was derived by using values of the CP-conserving R-

matrix elements maximising the lepton asymmetry and assuming that the transition

from the two-flavour to one-flavour regime starts at T ∼= 5× 1011 GeV, i.e., that at

M1 . 5× 1011 GeV the two-flavour regime is fully effective.

4 For IO light neutrino mass spectrum the decoupling of N3 implies R13 = 0. In this case
m3 = 0 as well.
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Figure 6.6: The baryon asymmetry from leptogenesis with M1 =
1011 GeV and N3 decoupled, where CP violation is
provided only by the Dirac phase δ. The red bands
indicate the values in 1σ agreement with the observed
value ηBCMB . Left: A plot of ηB against δ, showing
successful leptogenesis near the maximal CP-violating
value δ = 270◦. Right: The corresponding parametric
plot of ηB with JCP as δ is varied. See the text for
further details.

6.4 Leptogenesis in the regime M1 < 109 GeV

Successful thermal leptogenesis at intermediate scales may be accomplished through

the combination of flavour effects and fine-tuned Yukawa matrices with F & O(10) [5,

261]. In Section 6.2.1, we first review these fine-tuned scenarios and then proceed to

determine the subset among them in which the R-matrix is CP-conserving while the

PMNS matrix contains CP-violating phases. In Section 6.4.1 we present and analyse

the results of a comprehensive search of the model parameter space for regions with

successful leptogenesis compatible with these subsets where we have numerically

solved the density matrix equations, for two-decaying heavy Majorana neutrinos,

exactly. Following this, we consider in detail the scenarios in which CP violation is

due solely to the Dirac phase in Section 6.4.2, or due only to the Majorana phases

in Section 6.4.2 and Section 6.4.2. In Appendix I, we display results for M1 = 109

GeV, where O(10) fine-tuning is also required.
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Figure 6.7: The two-dimensional projections for intermediate scale
leptogenesis with M1 = 3.16 × 106 GeV for x1 = 0,
y2 = 0, x3 = 180◦, y1 = y2 = 180◦, with CP violation
provided only by the phases of the PMNS matrix. The
normal ordered case is coloured blue/green and inverted
ordering orange/red and contours correspond to 68%
and 95% confidence levels. This plot was created using
SuperPlot [201].

We present an analytic approximation of the baryon asymmetry to find that the

detailed dependence of the baryon asymmetry on the low energy phases may be

roughly explained by the features of Yτ1 and Yµ1. We reiterate that we apply these

approximation simply to illustrate the qualitative behaviour of the solutions but we

numerically solve the density matrix to produce all plots in this chapter.

6.4.1 Results of parameter exploration

The options of Eq. (6.2.27) are satisfied by sixteen distinct R-matrices which may

be divided into four classes according to the corresponding parity vectors ρν , ρN

(see Appendix H for definitions and further details). All such matrices are identical
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Figure 6.8: The two-dimensional projections for intermediate scale
leptogenesis with M1 = 1.29 × 108 GeV for x1 = 0,
y2 = 0, x3 = 180◦, y1 = y2 = 180◦, with CP violation
provided only by the phases of the PMNS matrix. The
normal ordered case is coloured blue/green and inverted
ordering orange/red and contours correspond to 68%
and 95% confidence levels. This plot was created using
SuperPlot [201].

except for the placement of factors ±1 or ±i. The phenomenological implications of

each will be qualitatively similar except for the precise positions in parameter space

that certain features occur. As we are primarily concerned with demonstrating the

viability of leptogenesis with the O(100) fine-tuned Yukawa matrices (of the type in

Eq. (6.2.17)) then we shall focus our numerical efforts on just one possible R-matrix

of the set of sixteen. Namely, we choose a scenario corresponding to cosx1 = 0,

cosx3 = −1 such that ρν = ±(+1,−1,+1)T , ρN = ±(+1,+1,−1)T .

For the numerical analysis, we follow the same procedure outlined in Section 6.3.1

with one additional constraint. At values of F & 1000, higher-order corrections to

the light neutrino mass become important. For this reason we fix y1 = y3 = 180◦
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δ α21 α31 M1 M2 M3 x1 x2 x3 y2
(◦) (◦) (◦) (GeV) (GeV) (GeV) (◦) (◦) (◦) (◦)
228 189 327.6 7.00× 108 1.55× 1010 3.80× 1010 90 110 180 0

Table 6.3: A benchmark point for intermediate scale leptogenesis
with quasi-degenerate (QD) spectrum of the light neut-
rino masses. In addition to the parameters listed we have
m1 = 0.215 eV and y1 = y3 = −140◦ and corresponding
fine-tuning F ≈ 30.

and thereby avoid these problematic regions of the model parameter space.

In the parameter searches of this section, we consider two cases, in one we fix

M1 ∼ 106 GeV (Fig. 6.7) and in the other we fix M1 ∼ 108 GeV (Fig. 6.8). We

note that M2 = 3.5M1 and M3 = 3.5M2 and m1 = 0.21 eV.5 This allows for a

comparison of the effects of two different degrees of fine-tuning, with the former

corresponding usually to F ∼ 500. This is close to the maximum fine-tuning (and

correspondingly, the smallest non-resonant leptogenesis scale) for which second-order

radiative corrections to the mass can be ignored [5].

For the scenario in which M1 = 3.16 × 106 GeV, as anticipated, there is a large

fine-tuning of F = 745. In the normal ordered case, we find that the observed

baryon asymmetry may be obtained to within 1σ (2σ) with δ between [84, 360]◦

([0, 360]◦). For inverted ordering, the 1σ (2σ) range is [134, 350]◦ ([0, 360]◦). With

M1 = 1.29× 108 GeV, the fine-tuning is considerably less, at F = 12. In the normal

ordered case, we find that the observed baryon asymmetry may be obtained to

within 1σ (2σ) with δ between [16, 263]◦ ([0, 360]◦). For inverted ordering, the 1σ

(2σ) range is [0, 305]◦ ([0, 360]◦). As in the previous section, we may explain these

plots in detail by introducing an analytical approximation and then considering the

simpler scenarios in which only the Dirac or only the Majorana phases provide CP

violation. For brevity, we choose to perform this analysis only for M1 ∼ 108 GeV in

the normal ordered scenario.
5In Appendix I, we demonstrate that one may lower m1 as far as 0.05 eV and still have successful

leptogenesis in a albeit rather constrained parameter space.



126 Chapter 6. Leptogenesis from low-energy CP violation

0 50 100 150 200 250 300 350

δ [◦]

−6

−4

−2

0

2

4

6

η B
×

10
10

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03
JCP

−6

−4

−2

0

2

4

6

η B
×

10
10

Figure 6.9: Intermediate scale leptogenesis (M1 = 7.00× 108 GeV),
with CP violation provided solely by δ, with α21 = 180◦
and α31 = 0◦. The red band indicates the 1σ observed
values for ηBCMB with the best-fit value indicated by the
horizontal black dotted line. Left: The final baryon
asymmetry as a function of δ with exact CP-invariance
when δ = 0◦ and 180◦ (vertical black dotted line). Right:
A parametric plot of ηB against JCP as δ is varied at
intermediate scales (M1 = 7.00 × 108 GeV). See the
text for further details.

6.4.2 Dependence of ηB on Dirac and Majorana phases

In this section, we use the benchmark point given in Table 6.3, in order to analytically

study leptogenesis from low-energy CP violation in the case that the lightest heavy

Majorana neutrino has mass M1 < 109 GeV, such that a relatively high degree of

fine-tuning in the light neutrino masses is required. We choose this benchmark point

as it allows us to accurately neglect the contributions from decays of the other heavy

Majorana neutrinos and thus simplify the analysis.

With M1 < 109 GeV, leptogenesis occurs in the three-flavour regime for which the

three-flavoured Boltzmann equations are a good approximation to the density matrix

equations and have approximate analytical solution [258]:

nB−L = π2

6zdK1
neqN1 (0)

(
ε(1)
ττ

p1τ
+
ε(1)
µµ

p1µ
+ ε(1)

ee

p1e

)
, (6.4.1)

where we take into account the decays of only the lightest heavy Majorana neutrino.
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As we are most interested in the scenarios in which CP violation is due to PMNS

phases only, i.e. Tr ε(1) = 0, then we can re-express Eq. (6.4.1) as

nB−L = π2

6zdK1
neqN1 (0)

(
ε(1)
ττ ∆Fτe + ε(1)

µµ∆Fµe
)
, (6.4.2)

where the asymmetry depends on the low-energy phases via ε(1)
ττ and ε(1)

µµ and from

the difference of the inverse flavour projections:

∆Fτe ≡
1
p1τ
− 1
p1e

, ∆Fµe ≡
1
p1µ
− 1
p1e

. (6.4.3)

However, for the case of Table 6.3, the two and three-flavour regime Boltzmann

equations, to a high degree of accuracy give the same value of ηB. Given the

comparative simplicity of the two-flavour solution Eq. (6.3.3), we choose to use this

for the practical purpose of simplifying the analysis.

For the benchmark parameter values listed in Table 6.3, we may find analytical ap-

proximations for the CP-asymmetries ε(1)
αα. Under the relatively good approximation,

that m1 = m2
6, the asymmetry is given by

ε(1)
αα = 3

16π (Y †Y )11

M2
1

v4 m1
√
m1m3(ey3 sin 2x2)|R21|2(

2
3

(
M1

M2
+ M1

M3

)
=
[
e−ix3 (Uα1 + iUα2)U∗α3

]
− 5

9
M2

1
M2

2
=
[
e−2i(x1+x3)e−ix3(Uα1 + iUα2)U∗α3

])
.

(6.4.4)

Selecting x1 = (2k1 + 1)π/2 and x3 = k3π for k1, k3 ∈ Z, such that cosx1 = 0 and

| cosx3| = 1 and cosx3 = (−1)k3 is satisfied, we find the CP-asymmetry ε(1)
αα to be

ε(1)
αα = 3

16π (Y †Y )11

M2
1

v4 m
3
2
1m

1
2
3 (ey3 sin 2x2)(−1)k3 |R21|2

×
(

2
3

(
M1

M2
+ M1

M3

)
+ 5

9
M2

1
M2

2

)
= [(Uα1 + iUα2)U∗α3] ,

(6.4.5)

where, at our benchmark point, the coefficient of = [U∗α3 (Uα1 + iUα2)] has magnitude

approximately equal to 3.7 × 10−6. This form is particularly useful in order to

isolate the dependence of the CP-asymmetry on the PMNS phases in the factor

= [U∗α3 (Uα1 + iUα2)].

6The approximation m1 = m2 is sufficiently precise as long as m2
1 � 0.5∆m2

21
∼= 3.7×10−5 eV2.
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Figure 6.10: Intermediate scale leptogenesis (M1 = 7.00× 108 GeV)
with CP violation provided solely by α21 and with
δ = α31 = 0. The red band indicates the 1σ ob-
served values for ηB with the best-fit value indicated
by the horizontal black dotted lines. Left: The ba-
ryon asymmetry against α21 with exact CP-invariance
at α21 = 180◦ and 540◦ (vertical black dotted lines).
Right: A parametric plot of ηB against the effective
neutrino mass |〈mν〉| as α21 is varied with the ver-
tical dashed black line denoting the upper value of the
KamLAND-Zen bound 0.165 eV [41]. Successful lep-
togenesis is achieved for |〈mν〉| = 0.0877 eV. See the
text for further details.

Dirac phase CP violation

We consider the possibility that the Majorana phases are CP-conserving: α21 = 180◦,

α31 = 0◦ (given the R-matrix under consideration). The sole source of CP violation

is δ and there is exact CP-invariance if δ = 0◦, 180◦. The corresponding ηB is plotted

in Fig. 6.9 alongside a parametric plot of ηB against JCP with parameter δ.7

From the CP-asymmetry, one expects to find ηB proportional to

= [U∗τ3 (Uτ1 + iUτ2)] = s13c13c
2
23(s12 − c12) sin δ ≈ −0.0178 sin δ, (6.4.6)

and thus sinusoidal in δ. However, the phase-dependent efficiency (flavour-factor)

7All plots involving ηB in this chapter have been obtain by solving the full density matrix
equations, allowing for the lightest pair of heavy Majorana neutrinos to decay and possibly (if
indicated) include scattering effects.
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∆F exhibits a sharp maximum around the region δ = 0◦ or δ = 360◦. This modifies

the sinusoidal dependence from the CP-asymmetries such that the extrema of ηB are

shifted towards the extreme values of δ, as in seen in Fig. 6.9. The small fluctuations

around δ = 0◦, δ = 360◦ are not captured by the Boltzmann equations (neither

two-flavoured nor three-flavoured) and are only present when solving the full density

matrix equations which take account of the finite size of the lepton thermal widths.

The result is the addition of some accidental zeros in the variation of ηB which do

not correspond to CP-conserving values of δ.

CP violation from the Majorana phase α21

Alternatively, consider the case of CP violation from α21, where δ = 0◦, α31 = 0◦

and all other parameters are set to the benchmark values of Table 6.3. The variation

of ηB with α21 in this scenario is plotted on the left of Fig. 6.10. On the right of

the same figure, we parametrically plot ηB against |〈mν〉| with parameter α21. The

baryon asymmetry ηB vanishes at the CP-conserving values of α21 = 180◦ and 540◦.

However, as is seen in Fig. 6.10, ηB 6= 0 at the CP-conserving values of α21 = 0◦,

360◦ and 720◦ since at these values the interplay between the CP-conserving R and

PMNS matrices leads to CP violation in leptogenesis [130].

The efficiency function ∆F , when plotted as a function of α21, exhibits a very strong

narrow peak at α21 = 180◦ and a much less pronounced peak at α21 = 540◦. As a

consequence, the corresponding ηB is modified from the simple cosine curve expected

from the dependence of ε(1)
ττ and ε(1)

µµ on α21, which arises in the factors:

= [U∗τ3 (Uτ1 + iUτ2)] = −c13c23(c12s23 + s12c23s13) cos α21

2 ≈ −0.444 cos α21

2 ,

(6.4.7)

Thus, there is a sharp transition around α21 = 180◦. We can conclude then that

the strong peak in ∆F is what has allowed the observed baryon asymmetry of the

Universe to be reproduced. This peak originates in an accidental cancellation of

terms in the function p1τ . There is no a priori reason to expect such a cancellation
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Figure 6.11: Leptogenesis at intermediate scales (M1 = 7.00× 108

GeV) when CP violation is provided solely by α31 with
δ = 0◦, α21 = 180◦. The red band indicates the 1σ
observed values for ηB with the best-fit value indicated
by the horizontal black dotted lines. Left: The baryon
asymmetry as a function of α31. Exact CP-invariance
exists for α31 = 180◦ and 360◦ (vertical black dotted
lines). Right: A parametric plot of ηB against the
effective neutrino mass |〈mν〉| as α31 is varied with
successful leptogenesis at |〈mν〉| = 0.0856 eV. See the
text for further details.

and it should be understood as a feature of the fine-tuned solutions that are being

here studied. Thus, we see that the flavour-effects introduce a pair of accidental

zeros of ηB, one in the range [180, 540]◦ and the other in [0, 180]◦.

CP violation from the Majorana phase α31

Finally, consider the case of CP violation from α31 where δ = 0◦, α21 = 180◦ and for

which the baryon asymmetry is plotted in the left plot of Fig. 6.11 and on the right

we show the parametric dependence of the effective neutrino mass |〈mν〉| with α31

against that of ηB. The baryon asymmetry ηB vanishes at the CP-conserving values

of α31 = 0◦, 360◦ and 720◦.

The efficiency function ∆F in this case is qualitatively similar to that for the case

of δ: CP violation only strongly peaks at α31 close to 0◦ and to 720◦. Thus, we do
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not observe, in the left plot of Fig. 6.11, the simple dependence, ηB ∝ sin (α31/2) as

may be expected from the expression for εττ ,

= [U∗τ3 (Uτ1 + iUτ2)] = c13c23((c12 − s12)s23 + (c12 + s12)s13c23) sin α31

2
≈ −0.662 sin α31

2 .

(6.4.8)

Rather, we find an enhanced positive peak near α31 = 0◦ and an enhanced negative

peak near α31 = 720◦.

Summary of fine-tuned solutions with high-energy CP-Symmetry

The fine-tuned solutions we have discussed in this section share the property that

they enhance ηB through the production of a peak in the efficiency factor ∆F . In

each projection coefficient,

p1α = |Yα1|2

(Y †Y )11
, (6.4.9)

the PMNS matrix cancels from the denominator such that all phase-dependence

comes from that of |Yα1|2 in the numerator. In this subsection, we may safely use the

usual Casas-Ibarra parametrisation (obtained by the replacement of f with
√
M−1

in Eq. (2.4.24)), to obtain

Yα1 =
√
M1 (√m1R11Uα1 +√m2R12Uα2 +√m3R13Uα3) . (6.4.10)

The absolute value |Yα1| is extremised when each term in the parentheses in Eq. (6.4.10)

has a common complex phase or when terms may differ in complex phase by π. This

occurs at CP-conserving values of the PMNS phases and so the enhancement ex-

pected in the functions ∆F is likely to occur at CP-conserving phases also. As

an example, around the benchmark point of Table 6.3, we find that with only α21

contributing to CP violation (δ = α31 = 0◦),

Yτ1 =
(

2.16 + 2.23ei
α21+π

2

)
× 10−3. (6.4.11)

The absolute value of this function has extrema when α21 = 180◦ or α21 = 540◦ -

the CP-conserving values. Moreover, the cancellation that occurs at α21 = 180◦ is
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strong because of the similarity in magnitude of the two terms in Eq. (6.4.11). As a

result of this there are strong peaks in ∆F which enhance ηB.

This is why the solutions are considered to be fine-tuned as there is no reason

to expect these two terms to be so similar in size. At these same points, the

asymmetries ε(1)
αα are vanishing as CP is a symmetry in the leptonic sector. Thus ηB,

being proportional to the product of ε(1)
ττ and ∆F , is strongly enhanced on either

side of the CP-invariant points (for instance, around α21 = 180◦ in the left plot of

Fig. 6.10). Thus the fine-tuned solutions tend to achieve large ηB of one-sign on

one side of a CP-invariant point and large ηB of the opposite sign on the other side.

Similarly, this effect persists when all phases may contribute together to CP violation

(Fig. 6.7 and Fig. 6.8). Thus, successful leptogenesis tends to occur near α21 ∼ 180◦,

α31 ∼ 0◦, 720◦ when leptogenesis is achieved with fine-tuned light neutrino masses,

as it is at intermediate scales (M1 . 109 GeV). Note that although we made these

arguments based on the two-flavoured Boltzmann equations, very similar conclusions

are reached based on considerations of ∆Fτe and ∆Fµe for the solutions of the three-

flavoured Boltzmann equations. For this reason, one expects similar behaviour to

hold even for lower values M1 such as in Fig. 6.7.

Furthermore, one may usually argue that Dirac-phase leptogenesis suffers a sup-

pression not present in Majorana phase leptogenesis due to the factors of s13 that

appear in the CP-asymmetries as shown in Eq. (6.4.6). However, for Dirac-phase

leptogenesis ηB ∝ sin δ∆F (δ), where the maximum absolute value of ∆F (δ) is ∼ 408,

whereas for α21 leptogenesis, ηB ∝ cos α21
2 ∆F (α21) with maximum absolute value

∼ 77. Thus, what is more relevant when leptogenesis occurs intermediate scales, is

the degree of enhancement from ∆F that occurs due to fine-tuning.

Finally, as we observe in Fig. 6.8, the contours for α21, α31 show a strong dependence

on α31 − α21. A rough explanation of this is given by the dependence of ε(1)
ττ on the

Majorana phases. With δ fixed at its benchmark value, but α21 and α31 free to vary,
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this CP-asymmetry is given by

ε(1)
ττ ≈

(
1.46 cos (α31 − α21)

2 + 0.869 sin α31

2

)
× 10−7, (6.4.12)

which exhibits a slightly dominant, (α31 − α21)-dependent contribution. This contri-

bution is maximised when α31 = α21.

6.5 Leptogenesis in the regime M1 > 1012 GeV

In previous studies in which a connection between low-energy CP violation (CP-

conserving R) and leptogenesis was established [131], the scale of leptogenesis was

limited toM1 ≤ 5×1011 GeV. This allowed for the use of the two-flavour Boltzmann

equations (Eq. (3.3.23) with α ∈ {β, τ}) where the CP-asymmetries ε(1)
ττ and ε

(1)
ββ

appear separately. The expectation had been that for M1 � 1012 GeV, the single-

flavour Boltzmann equation Eq. (3.2.21) would be appropriate. In this equation,

the CP-asymmetries appear only in the factor Tr ε(1) = 0 and hence no baryon

asymmetry may be produced. In Section 6.5.1 we argue that even at high scales

M1 � 1012 GeV, if R is CP-conserving, then flavour effects are significant and that

the density matrix equations do not reduce to the single flavour Boltzmann equations.

Hence we conclude that viable leptogenesis may result from low energy CP violation.

Finally, in Section 6.5.2 we proceed to numerically analyse this possibility in detail.

6.5.1 Flavour effects with M1 � 1012 GeV and High Energy

CP-Symmetry

In Appendix J, we demonstrate that the complete formal solution of the density

matrix equations Eq. (3.3.19), with only tau lepton flavour effects and one decaying

heavy Majorana neutrino is

nB−L(zf ) =
∫ zf

0
e−
∫ zf
z′ W1(z′′)dz′′

(
Tr ε(1)D1(z′)(nN1(z′)− neqN1(z′)) +W1(z′)λ(z′)

)
dz′,

(6.5.1)
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Figure 6.12: The two-dimensional projections for high-scale lep-
togenesis with M1 = 1013 GeV with CP violation
provided only by the phases of the PMNS matrix. The
NO case is coloured blue/green and the IO one is or-
ange/red. The contours correspond to 68% and 95%
confidence levels. This plot was created using Super-
Plot [201].

with

λ(z) ≡ 2
∫ z

0
dz′<

[
c1βc

∗
1τ

Γτ
2Hz′nτβ(z′)

]
. (6.5.2)

In a typical leptogenesis scenario, if M1 � 1012 GeV, flavour effects are negligible

and one obtains the well-known result:

nB−L(zf ) =
∫ zf

0
e−
∫ zf
z′ W1(z′′)dz′′ Tr ε(1)D1(z′)(nN1(z′)− neqN1(z′))dz′, (6.5.3)

which may be found by solving the single flavour Boltzmann equation. However,

with a CP-conserving R-matrix, such that CP violation is provided solely by the

PMNS phases, one has Tr ε(1) = 0 and so the λ term in Eq. (6.5.1) becomes the
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δ α21 α31 M1 M2 M3 x1 x2 x3
(◦) (◦) (◦) (GeV) (GeV) (GeV) (◦) (◦) (◦)
228 200 175 1013 1.2× 1015 1016 −96.55−105.2 141.4

Table 6.4: The benchmark values for high-scale leptogenesis with
normal ordering. Here we have m1 = 0.0159 eV and
y1 = y2 = y3 = 0◦.

dominant one:

nB−L(zf ) =
∫ zf

0
e−
∫ zf
z′ W1(z′′)dz′′W1(z′)λ(z′)dz′. (6.5.4)

If this is the case, then the baryon asymmetry is produced purely through flavour-

effects from Γτ/2Hz.

The physical effect of Tr ε(1) = 0 is that opposite asymmetries are produced in the τ

and β flavours due to the decay of N1: ε(1)
ττ = −ε(1)

ββ . However, with flavour effects, the

lepton asymmetries ε(1)
ττ and ε(1)

ββ produced in the decay experience differing washouts

such that nττ 6= −nββ and nB−L = nττ + nββ 6= 0. It is an asymmetry produced by

this method that is described in Eq. (6.5.4). The obvious question at this point is

whether this can ever be large enough to produce the observed baryon asymmetry

when M1 � 1012 GeV.

The density matrix equations may be conveniently expressed in terms of the vectors

n ≡ (nββ, nτβ, nβτ , nττ )T , (6.5.5)

E(1) ≡ (ε(1)
ββ , ε

(1)
τβ , ε

(1)
βτ , ε

(1)
ττ )T , (6.5.6)

as
dn

dz
= E(1)D1

(
nN1 − n

eq
N1

)
− 1

2W1n−
Γτ

2HzIn, (6.5.7)
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where

W1 ≡ W1



2|c1β|2 c∗1τc1β c1τc
∗
1β 0

c1τc
∗
1β 0 1 c1τc

∗
1β

c∗1τc1β 0 1 c∗1τc1β

0 c∗1τc1β c1τc
∗
1β 2|c1β|2


and I ≡



0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


.

(6.5.8)

In terms of these quantities, the formal solution, with flavour effects neglected is:

n (zf ) =
∫ zf

0
e
∫ zf
z′

1
2W1(z′′)dz′′E(1)D(z′)(nN1(z′)− neqN1(z′))dz′. (6.5.9)

Although flavour effects in high-scale leptogenesis may be negligible, this solution

may not be accurately applied for finding ηB in the case that Tr ε(1) = 0. This is

because there is a strong cancellation of components of the density matrix when

computing nB−L = nββ + nττ , such that the errors made in neglecting flavour effects

are dominant. For this reason, we make use of it only for finding the approximate

behaviour of individual components of the density matrix and avoid applying it to

situations where this cancellation occurs.

If the heavy Majorana neutrino masses Mi are scaled by a common factor x, such

that Mi → xMi, then: ε(1) scales in proportion with x, D1 and W1 do not scale with

x and Γτ
2Hz varies inversely with x. Consequently, according to Eq. (6.5.9), nαβ(z)

scales in proportion to x, (with increasing precision for larger x since we can better

neglect the thermal widths). In λ the scaling of Γτ
2Hz cancels that of nτβ and so λ

does not scale with x if M1 � 1012 GeV. Thus, at sufficiently large values of M1, ηB,

given by Eq. (6.5.4), asymptotically approaches a non-zero constant. This is shown

in Fig. 6.13 (d) over a range of M1 values in which the ratios M1/M2 and M2/M3

are fixed. The curve increases ever more slowly for larger M1 as the approximation

leading to Eq. (6.5.9) becomes ever more precise. This may be interpreted as the

transition region between the two flavour regime and the single flavour having grown

infinitely large.8 In each of the plots of Fig. 6.13, we see a dip in the density matrix

8If, contrary to our scenario of interest, R is CP-violating (Tr ε(1) 6= 0), then the first term in
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solution curve near 1012 GeV. This feature is due to the difference in sign of the

two-flavour solutions, for which ηB ∝ ε(1)
ττ /p1τ + ε

(1)
ββ/p1β = 3.99× 10−4, compared to

that of the single flavour solutions, where ηB ∝ ε(1)
ττ + ε

(1)
ββ = −7.5×10−6 (where these

numbers are valid for plot (a) of Fig. 6.13 corresponding to CP-violating R-matrix).

The dip appears as a result of plotting the absolute value of ηB on a logarithmic

scale when ηB passes through zero during the transition between these regimes.

In Appendix K, we discuss the robustness of the plateau that forms for large heavy

Majorana neutrino masses when the effects of scattering and when a more realistic

treatment of the right-handed taus are incorporated. In the next section we explore

the parameter space of the three heavy Majorana neutrino type I seesaw with regard

to the solutions of Eq. (K.0.1) with CP-conserving R-matrix and M1 � 1012 GeV.

6.5.2 Results of parameter exploration

At values of M1 � 1012 GeV, fine-tuning through large elements of the R-matrix is

not required for successful leptogenesis (if Majorana phases are allowed to play a

role, otherwise large fine-tuning is required if only Dirac phases take effect). Thus, in

this section we analyse the parameter space corresponding to real, and therefore CP-

conserving, R-matrices (yi = 0◦), using the same numerical technique as described

in Section 6.4.1. In order to perform this analysis we fix M1 = 1013 GeV and again

requireM3 > 3M2 > 9M1 in order to avoid the resonant regime. With a much higher

value ofM1, one would need a correspondingly a higher temperature of inflation. For

this reason, we choose to illustrate the possibility of successful thermal leptogenesis

at just one order of magnitude beyond the two-flavour to single-flavour transition

temperature of 1012 GeV. In Fig. 6.12, we display the two-dimensional projection

plots for both normal ordering and inverted ordering.

In the NO case, we find that the observed baryon asymmetry may be obtained to

within 1σ (2σ) with δ between [240, 331]◦ ([0, 360]◦). In the IO one, the 1σ (2σ) range

parentheses of Eq. (6.5.1) eventually dominates the second for sufficiently large x and the single
flavour regime is entered.
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is [50, 304]◦ ([20, 352]◦). In what follows, we analyse these results by considering

separately the cases of purely Dirac or purely Majorana CP violation. For brevity

we consider only the case of NO spectrum.

6.5.3 Dependence of ηB on the Dirac and Majorana phases

As the final value of the baryon asymmetry becomes approximately constant for

M1 � 1012 GeV (see Fig. 6.13) with a CP-conserving R-matrix, then one can can

use the value of ηB that is predicted by the two-flavour Boltzmann equations (2FBE)

at the start of the transition M1 ∼ 1012 GeV as a proxy for the full solution of the

density matrix equations (DME). That is,

ηDME
B

(
M1 � 1012 GeV

)
≈ η2FBEB

(
M1 ∼ 1012 GeV

)
, (6.5.10)

provided that the ratios M2/M1 and M3/M1 are fixed. This has the advantage that

we may again make use of the result in Eq. (6.3.3)

nB−L ≈ n2FBEB

(
M1 ∼ 1012 GeV

)
= π2

6zdK1
neqN1(0)ε(1)

ττ ∆F, (6.5.11)

in order to gain an analytical understanding of the numerical solutions.

As in the analysis of Section 6.4.1, we investigate the cases where CP violation

comes from precisely one of δ, α21 or α31. Unlike the fine-tuned scenario previously

considered, p1τ and consequently ∆F are approximately constant with the PMNS

phases as would be expected from our discussion of the fine-tuned solutions in

Section 6.4.2. Hence the phase-dependence of the ηB can be understood by reference

to ε(1)
ττ alone. This may also be understood by reference to the Yukawa couplings

when CP violation comes only from δ, α21 or α31 respectively:

Yτ1 = −0.0476− 0.000364eiδ,

Yτ1 = −0.0541 + 0.00614ei
α21

2 ,

Yτ1 = 0.00972− 0.0576ei
α31

2 .

(6.5.12)

The difference in scale of the two terms means that the cancellation is never strong
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for any value of the phase and so the peaks in ∆F are not large. In this high scale

case, ∆F is approximately constant and thus the plots of ηB exhibit a nearly pure

sinusoidal variation given by the CP-asymmetries below.

Dirac phase CP violation

In this case, with a real R, we have α21 = α31 = 0◦ such that δ is the sole provider

of all CP violation. The asymmetry is given by

ε(1)
ττ = −1.25× 10−6 sin δ, (6.5.13)

in this scenario. Thus we obtain a sinusoidal dependence with ηB = 0 when δ = 0◦

or 180◦. Fixing all other parameters at their benchmark value with y1 = y2 = y3 = 0,

no value of δ can produce the observed baryon asymmetry of the Universe. Unlike

in the case of intermediate scale leptogenesis, a small scaling of the heavy Majorana

neutrino masses will not much increase the value of ηB because of the plateau of

Fig. 6.13. At the best-fit point of Table 6.4, with α21 = α31 = 0◦, allowing CP

violation only from δ, the largest ηB achieved is a factor ∼ 9 smaller than the

observed value. This is large enough that even enormously larger scales of the heavy

masses cannot make δ-only leptogenesis a viable option.

An alternative for producing the observed baryon asymmetry of the Universe with

CP violation only from δ is to work with an R-matrix containing both zero and

purely imaginary components which are CP-conserving and may potentially be large

in magnitude. If for example, we choose xi = 0◦ such that all wi are either purely

imaginary or zero, and take y2 = 0◦ also, then by setting α21 = 180◦ and α31 = 0◦, all

CP violation will be due to δ. Varying y1 and y2 together in this setup, we find that

y1 = y2 = 169◦ is the smallest value for which the observed baryon asymmetry of the

Universe is produced. With all other parameters equal to the values in Table 6.4, this

corresponds to F = 105. Hence a noticeable degree of fine-tuning is required even at

high scales to make δ the sole contributor to CP violation with viable leptogenesis.

In Fig. 6.14, we plot the variation of ηB with pure δ CP violation for this fine-tuned
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scenario in the left plot, and on the right we parametrically plot ηB against JCP as

a function of δ.

CP Violation from the Majorana phase α21

Similarly, when δ = α31 = 0◦, the CP-asymmetry is

ε(1)
ττ = 1.98× 10−5 sin α21

2 . (6.5.14)

It follows from the preceding expression for ε(1)
ττ that at the CP-conserving values of

α21 = 180◦, 540◦ we have ε(1)
ττ 6= 0. This corresponds to the case of CP-conserving

R-matrix (yi = 0), CP-conserving PMNS matrix, but CP-violating interplay between

the R and PMNS matrix elements in leptogenesis [130].

The corresponding ηB, plotted in the left plot of Fig. 6.15 is thus a factor of O(10)

higher and of opposite sign than in the previous case without fine-tuning. Thus,

we obtain the observed baryon asymmetry of the Universe (or higher) for values of

α21 between about 450◦ and 650◦. In the right plot of Fig. 6.15 is ηB for the same

scenario parametrically plotted against the effective neutrino mass with parameter

α21.

CP Violation from the Majorana phase α31

Finally, we turn to the scenario in which CP violation is provided entirely by α31,

plotted on the left in of Fig. 6.16 for which

ε(1)
ττ = −3.22× 10−5 sin α31

2 . (6.5.15)

Similarly to the case discussed in the preceding subsection, we see that ε(1)
ττ 6= 0 at

the CP-conserving values of α31 = 180◦, 540◦. This again corresponds to the case

of CP violation in leptogenesis due to the interplay of the CP-conserving R-matrix

(yi = 0) and CP-conserving PMNS matrix [130].
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Compared with the previous scenario, there is a sign flip and an enhancement by a

factor ∼ 1.6 of the resulting baryon asymmetry of the Universe. Thus, the observed

BAU is achieved and exceeded for smaller values of α31, between about 50◦ and 300◦.

On the right of Fig. 6.16, we display a parametric plot for the same scenario with

ηB against the effective neutrino Majorana mass with the parameter α31.

6.6 Conclusions

In this chapter we have investigated the connection between leptogenesis and low

energy leptonic CP violation over a large range of scales (106 < M1 (GeV) < 1013).

We summarise our main findings below:

• Firstly, we revisited the question of the possibility of successful thermal lep-

togenesis at scales 109 < M1 (GeV) < 1012. At such scales, tau-Yukawa

interactions are in equilibrium, such that there are sufficiently frequent interac-

tions between the leptons and the early Universe plasma causing decoherence

between the tau flavour from the other flavour components. We show that

successful leptogenesis is indeed possible in this range of scales in the case that

the PMNS phases provide all of the CP violation in the model. By performing

parameter explorations at M1 = 109 GeV and M1 = 1010 GeV, we found that

some degree of fine-tuning, F ∼ 10, is required for these particular mass scales

(with the degree of fine-tuning diminishing as one goes to higher values of M1).

• By demanding pure Dirac phase or pure Majorana phase CP violation, we

found that each phase alone can produce the correct CP-asymmetry, with the

cases of Majorana phases requiring, in general, a somewhat lower value of M1

than those required for the Dirac phase.

• If leptogenesis takes place at scales M1 � 109 GeV, then all three of the

leptonic flavour components involved in leptogenesis will decohere. For masses

in this range (M1 ∼ 106 GeV andM1 ∼ 108 GeV), we determined the regions of
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parameter space in which low energy leptonic CP violation, provided by either

the Dirac or the Majorana phases individually, leads to successful intermediate

scale leptogenesis. At these scales a large amount of fine-tuning (F ∼ O (100))

is required between the tree-level and one-loop neutrino masses. We restricted

ourselves to fine-tuning such that F < 1000 and in doing so have found an

approximate lower bound ofM1 ≈ 3×106 GeV (consistent with the conclusions

of [5]).

• We studied the possibility of pure Dirac phase CP violation and showed that

for F < 1000, M1 & 8 × 106 GeV in order to produce the observed baryon

asymmetry. Similarly for the purely Majorana phase CP violation and again

F < 1000, for α21, we obtain a bound M1 ≈ 4.5 × 106 GeV whereas for α31

we obtained M1 ≈ 3 × 106 GeV. Observables depending on the Dirac and

Majorana phases, for example JCP or 〈mν〉, may be well within experimental

bounds in the same parts of parameter space in which leptogenesis is successful.

The Dirac phase δ is only very weakly constrained, with the tightest constraint

being δ ∈ [16, 263]◦, for 1σ agreement with the observed BAU, which comes

from assuming normal ordering and M1 = 1.29× 108 GeV.

• If leptogenesis takes place at high scales, with M1 � 1012 GeV, interactions

between the leptons and the early Universe plasma only very weakly decohere

the tau flavour from the other flavour components. Normally, this leads to

the conclusion that the single flavour Boltzmann equations are an appropriate

description of the process. However, we have demonstrated that, if CP violation

arises only in the low energy leptonic sector, the effects of decoherence cannot

be neglected. Therefore, one should not ignore the phenomenology of high-scale

leptogenesis with purely low-energy CP violation.

• We explored the parameter space at M1 ∼ 1013 GeV, finding regions in which

thermal leptogenesis is a viable explanation of the BAU. We found that the

strongest constraint on δ is for normal ordering, for which we require δ ∈
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[240, 331]◦ to produce a baryon asymmetry within 1σ of the observed value.

With only Dirac phase CP violation, we have concluded that it is not possible

produce the observed baryon asymmetry of the Universe unless one introduces

significant fine-tuning (F ∼ 100) in the light neutrino masses. We argued that

there is no scale of the heavy Majorana neutrino masses beyondM1 � 1012 GeV

for which Dirac phase leptogenesis may be made to work without this fine-

tuning. However, with pure Majorana phase violation, we found that successful

leptogenesis is possible with essentially no fine-tuning.

The results of this chapter underscore the significance of understanding leptonic

CP violation through experimental searches for Dirac and/or Majorana leptonic CP

violation. We have departed from previous literature by concluding that low energy

leptonic CP-violating phases may always be relevant to the production of the baryon

asymmetry in the thermal leptogenesis scenario. It has commonly been thought

that their relevance was limited to the window of masses 109 . M1 (GeV) . 1012.

However, we have shown this window to be significantly wider: Dirac and Majorana

phases may be crucial to thermal leptogenesis even at scales as low asM1 ∼ 106 GeV

(provided there are fine-tuned cancellations), or as high as M1 � 1012 GeV, where

in both cases, the R-matrix is CP-conserving.
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Figure 6.13: The magnitude of the baryon asymmetry as a function
of the heavy Majorana neutrino masses at a specific
point in parameter space. The dotted orange line cor-
responds to solutions of the single-flavour Boltzmann
equations, the dashed green line to those of the two-
flavour Boltzmann equation, the red dot-dashed line
to those of the three-flavour Boltzmann equations and
the solid blue line to solutions of the density matrix
equations. The horizontal black dotted line is the ob-
served value of ηBCMB and the vertical dotted lines to
the values of the muon and tau thermal widths. We
vary y3 such that in (a) y3 = 30◦, in (b) y3 = 5◦,
in (c) y3 = 0.3◦ and in (d) y3 = 0◦. As y3 is the
only complex parameter of the R-matrix for this para-
meter point, then plot (d) corresponds to the case of
purely low-energy CP violation. As the CP violation
becomes solely low energy (going from (a) to (d)), then
the transition of the density matrix equations to the
single-flavour regime becomes longer. This culminates
in an infinite transition width in plot (d) — a plateau
in the baryon asymmetry for high-scale leptogenesis.
The dip in all of the blue lines occurs as a consequence
of the change in sign of the produced asymmetry.
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Figure 6.14: Leptogenesis at high scales (M1 = 3.16 × 1013 GeV)
with CP violation provided solely by δ, with α21 = 0◦
and α31 = 0◦. The red band indicates the 1σ ob-
served values for ηB with the best-fit value indicated
by the horizontal black dotted lines. Left: The baryon
asymmetry as a function of δ with exact CP-invariance
exists for δ = 0◦ and 180◦ (vertical black dotted lines).
In order to make the maximum value touch on the
observed baryon asymmetry, an amount of fine-tuning
F = 105 is needed. Right: The corresponding vari-
ation of ηB against JCP parametrically plotted with δ.
See the text for further details.
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Figure 6.15: Leptogenesis at high scales (M1 = 3.16 × 1013 GeV)
when CP violation is provided solely by α21, with
δ = 0◦, α31 = 0◦. The red bands indicate the 1σ
observed values for ηB with the best-fit value indic-
ated by the horizontal black dotted lines. Left: The
baryon asymmetry as a function of α21 with exact CP-
invariance at α21 = 0◦ and 360◦ (vertical black dot-
ted lines). Right: The variation of ηB against |〈mν〉|
parametrically plotted as a function of α21. Success-
ful leptogenesis occurs for α21 ≈ 449◦ and α21 ≈ 653◦
for which |〈mν〉| = 0.0171 eV and |〈mν〉| = 0.0166 eV
respectively. See text for further details.
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Figure 6.16: High-scale leptogenesis (M1 = 3.16× 1013 GeV) with
CP violation is provided solely by α31, with δ = 0◦,
α21 = 0◦. The red bands indicate the 1σ observed
values for ηB with the best-fit value indicated by the
horizontal black dotted lines. Left: The baryon asym-
metry as a function of α31, with exact CP-invariance
when α31 = 0◦ and 360◦ (vertical black dotted lines).
Right: The parametric plot of ηB against the effective
neutrino Majorana mass |〈mν〉| as α31 is varied. At
the values α31 = 17◦, 43◦, ηB takes on its observed
values corresponding to |〈mν〉| = 0.0131 eV, 0.0149 eV
respectively. See the text for further details.





Chapter 7

Leptogenesis in the Neutrino

Option

There exists a tension between leptogenesis within the type I seesaw mechanism and

the naturalness of the Higgs potential. This is because radiative corrections to the

Higgs potential increase monotonically with the mass scale of the heavy Majorana

neutrinos. In a natural scenario, where the corrections to the Higgs mass do not

exceed 1 TeV, the heavy Majorana neutrino mass scale must satisfy M < 3 × 107

GeV [185, 186], which is considerably lower than the Davidson-Ibarra bound for

successful leptogenesis M & 109 GeV 1 [119–121].

A different perspective on this problem is brought by the so-called Neutrino Option

scenario [2, 8] which is based on the idea that the Higgs potential is generated

by the radiative corrections of the heavy Majorana neutrinos, starting from an

approximately conformal scalar potential at the seesaw scale. The Neutrino Option

scenario can be realised for instance within a conformal UV theory as shown in

[262,263]. In the Neutrino Option framework the heavy Majorana neutrino masses

are the only dimensionful parameters of the theory and they effectively control both

the breaking of the conformal symmetry and that of lepton number.

1We recall that the Davidson-Ibarra bound is valid for hierarchical heavy Majorana neutrino
mass spectrum and in the case of absence of flavour effects in leptogenesis.
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In this chapter we will investigate the possibility of successful leptogenesis within

the Neutrino Option framework and focus on the minimal scenario where there are

only two heavy Majorana neutrinos providing both the Higgs mass and the baryon

asymmetry. We show that in order for leptogenesis to be successful within the

Neutrino Option approach to electroweak symmetry breaking, it is necessary for

the two heavy neutrinos to be close in mass (forming a pseudo-Dirac pair [264,265]

at the lowest viable mass scales) and their masses to be in the range M ∼ 106 −

107 GeV. From these considerations, we derive an upper and lower bound on this

mass scale. The upper bound coincides with that found for the Neutrino Option

alone [2], while the lower bound comes from the additional requirement of viable

leptogenesis. We explore the naturalness in the neutrino sector in terms of the

presence of an approximately conserved lepton charge. We investigate also the

production of the baryon asymmetry when the requisite CP violation in leptogenesis

is provided exclusively by the low energy phases of the PMNS matrix.

7.1 The Neutrino Option

It has been recently suggested that the heavy Majorana fields, Ni, introduced in the

type I seesaw model could be responsible for the dynamical generation of the scalar

potential of the Standard Model, in addition to that of neutrino masses [2, 8]. In

this scenario, dubbed the Neutrino Option, the classical potential is given by

V0(φ) = −m
2
H0
2 φ†φ+ λ0(φ†φ)2, (7.1.1)

and is assumed to be nearly conformal at the seesaw scale: mH0(µ & M) ' 0,

λ0(µ & M) 6= 0, µ being the renormalisation scale. Radiative corrections to both

m2
H and λ are generated via the diagrams of Fig. 7.1, thus breaking scale invariance at

the quantum level. At scales µ < M theNi fields can be integrated out and decoupled

from the spectrum. One is then left with an Effective Field Theory (EFT) in which

the leading seesaw contributions are encoded in the Weinberg operator for neutrino
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Figure 7.1: The dominant one-loop contribution generating the
Higgs potential in the type-I seesaw model.

masses (stemming from the seesaw-EFT matching at tree-level) and in finite threshold

matching contributions to the Higgs potential parameters ∆m2
H , ∆λ (stemming from

the one-loop matching). The latter are identified as the zeroth order term in the

E/M expansion of the loops, computed with dimensional regularisation within the

MS renormalisation scheme. For the case of two heavy Majorana neutrinos with

M2 = xMM1, xM ≥ 1 they read [2]:

∆m2
H = M2

1
8π2

(
|Y1|2 + x2

M |Y2|2
)
,

∆λ = − 1
32π2

[
5|Y1|4 + 5|Y2|4 + 2 Re(Y1 · Y ∗2 )2

(
1− 2 log x2

M

1− xM

)

+2 Im(Y1 · Y ∗2 )2
(

1− 2 log x2
M

1 + xM

)]
,

(7.1.2)

with Yi the ith column of the matrix of neutrino Yukawa couplings. In the limit

M2 = M1 (xM = 1) these reduce to 2:

∆m2
H = M2

1
8π2

(
|Y1|2 + |Y2|2

)
,

∆λ = − 5
32π2

(
|Y1|4 + |Y2|4 + 2 Re(Y1 · Y ∗2 )2

)
− 1

16π2 Im(Y1 · Y ∗2 )2 .

(7.1.3)

The values of mH , λ at the EW scale can be extrapolated using the renormalisation

group equations (RGEs) of the SM [3] (as the heavy neutrinos are not present in the

2Note that although modified Feynman rules must be used when the heavy Majorana neutrinos
are nearly degenerate in mass, this is only important when results, such as the CP asymmetry,
depend on the difference of masses. In the calculation of the Higgs mass parameter, the contributions
from each heavy Majorana neutrino are summed and any correction depending on the difference of
the masses is negligible.
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spectrum) with the following boundary conditions:

m2
H(µ = M1) ≡ ∆m2

H and λ(µ = M1) ≡ ∆λ+ λ0 . (7.1.4)

The condition on mH places the strongest constraint on the parameter space of the

Neutrino Option, requiring Mi . 107 GeV and |Yαi| ∼ 1TeV/Mi (barring tunings

between the Yukawa entries) in order to reproduce the correct Higgs mass and, at the

same time, be consistent with the constraints from neutrino oscillation experiments.

A similar region of the parameter space has been previously identified as sensitive

in relation with the Higgs mass, although in a different approach, in [185, 266].

In fact, as neither mH nor the light neutrino masses change significantly under

RGE running, this result is consistent to a good approximation with the order-of-

magnitude estimate

m2
H(µ = v) ' ∆m2

H ∼
M2

i |Yi|2

8π2 and mν(µ = v) ' v2|Yi|2

2Mi

. (7.1.5)

Within this region of the parameter space the contribution to the Higgs quartic term

is |∆λ| ≤ 10−7. As a consequence, the threshold matching contribution is always

negligible in comparison to the coupling in the classical potential which has to be

positive and of loop size (λ0 ' 0.01 − 0.05) in order to obtain the correct scalar

potential at the EW scale [2].

7.2 The framework of resonant leptogenesis

Throughout this chapter we use the flavoured Boltzmann equations for thermal

leptogenesis given in Eq. (3.3.23) and restrict ourselves to the case in which only two

heavy Majorana neutrinos are present, or equivalently, the case when the third heavy

Majorana neutrino, N3, decouples. For concreteness, we also assume M1 ≤M2. In

the considered scenario, the sum of neutrino masses is ∑3
i=1mνi

∼= 0.058 (0.10) eV for

NO (IO) neutrino mass spectrum, which is well within the cosmological upper limit

reported by the Planck collaboration, ∑imi < 0.120− 0.160 eV at 95% C.L. [36].
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As will be discussed in further detail in Section 7.3, we find it necessary to take the

two heavy Majorana neutrinos to be nearly-degenerate in mass ∆M = M2 −M1 �

M ≡ 1
2(M1 +M2) and thereby ∆M ∼ Γ. In this case, one is concerned with resonant

leptogenesis [193, 245] where the self-energy contribution to the CP asymmetry

parameter may become large. Such enhancement of the asymmetry can be significant,

allowing the energy scale for successful leptogenesis to be lowered by several orders of

magnitude. For this reason, resonant leptogenesis has been most often explored in the

literature within scenarios with Majorana masses of the order of a few TeV. Here we

apply this paradigm to a wider energy range. The peculiarity of resonant leptogenesis

is that non-negligible contributions to the CP-asymmetries can be induced by mixing

and oscillation of the heavy Majorana neutrinos. The mixing effects come from the

possibility of off-diagonal transitions in the self-energy diagrams at T = 0 which are

included through use of the resummed Yukawa couplings [267]. In the same regime,

∆M ∼ Γ, the thermal contributions to the self-energies are also important. This

provides an extra contribution to the CP asymmetries in processes where on-shell

heavy Majorana neutrinos oscillate in flavour space due to their interactions with

a thermal background [268]. The CP asymmetry which takes account of both the

mixing and oscillation of the heavy Majorana neutrinos has the form [269]:

ε(i)αα =
∑
j 6=i

Im
[
Y †iαYαj

(
Y †Y

)
ij

]
+ Mi

Mj
Im

[
Y †iαYαj

(
Y †Y

)
ji

]
(Y †Y )ii (Y †Y )jj

(
fmix
ij + f osc

ij

)
, (7.2.1)

where

fmix
ij =

(
M2

i −M2
j

)
MiΓj(

M2
i −M2

j

)2
+M2

i Γ2
j

, (7.2.2)

and

f osc
ij =

(
M2

i −M2
j

)
MiΓj(

M2
i −M2

j

)2
+ (MiΓi +MjΓj)2 det[Re(Y †Y )]

(Y †Y )
ii
(Y †Y )

jj

. (7.2.3)
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7.3 Leptogenesis at the scales required for the

Neutrino Option

The largest value of the heavy Majorana neutrino masses compatible with the Stand-

ard Model Higgs mass in the Neutrino Option scenario is Mi ∼ 107 GeV. A lower

bound on the heavy Majorana neutrino masses can be set by the requirement of

perturbativity of the neutrino Yukawa couplings and is Mi & O (102) GeV3. In such

a regime, in order for the neutrino masses to satisfy the existing limits, fine tuned

cancellations must exist between the tree level seesaw and the one-loop contributions

to the light neutrino masses.

From the lower bound derived from perturbativity arguments to the upper bound

from the Neutrino Option itself, there are are two possible mechanisms of leptogenesis

viable in the relevant heavy Majorana neutrino mass range:

1. Thermal leptogenesis with enhanced R-matrices [5] (see also [192,243]).

2. Resonant leptogenesis with nearly degenerate heavy Majorana neutrino masses

[128,193,213,270–275].

In this subsection, we shall argue that the fine-tuned scenario (1) is incompatible with

the Neutrino Option, and therefore justify our exclusive use the resonant method

for the investigations in this work. The arguments we present here are valid in the

more general case of three heavy Majorana neutrinos which we consider below.

In the fine-tuned case the elements of the R-matrix elements tend to be large and the

one-loop contribution to the light neutrino masses should be incorporated through

modification of the Casas-Ibarra parametrisation [72]. In this case, the R-matrix

3 The lower bound on M1 as shown in Fig. (3) of [2] comes from the additional assumption that
|sin(x+ iy)| < 1, that constrains the width of the allowed bands in the figure. This assumption
was introduced in order to forbid explicitly fine tunings in the flavour space, but can be relaxed in
full generality.
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has the structure [5]:

R ≈


R11 R12 R13

±iR22 R22 R23

−R22 ±iR22 ±iR23

 , (7.3.1)

Here |R22| � |R1i|, |R23| for i ∈ {1, 2, 3}, which results, in [5]

m0
ν ≈ −m1

ν . (7.3.2)

A typical fine-tuned leptogenesis solution, which allows for partial cancellations

between the tree and one-loop level contributions to the light neutrino masses,

requires M1 ≈ 5× 106 GeV (see the scenarios of [5]) and correspond to large values√
∆m2

H ∼ 8 × 106 GeV. The latter value owes its magnitude to the dependence of

∆m2
H on the R-matrix elements which are themselves large in order to provide the

fine-tuning of Eq. (7.3.2).

We performed a numerical search of the parameter space with heavy neutrino masses

∼ 106 GeV and found no points which simultaneously satisfy the requirements of

the Neutrino Option and leptogenesis even when we allowed m0
ν and m1

ν to cancel to

∼ 0.1%. When no constraint was placed on the levels of fine-tuning it was possible

to find solutions with the desired value of ηB and
√

∆m2
H ∼ 100 GeV. Such solutions

corresponds to an R-matrix with very large entries, |Rij| ∼ 1012, and very small

(physically unreasonable) heavy neutrino masses Mi ∼ 10−2 GeV. The fine-tuned

cancellation between the tree- and one-loop light neutrino masses is so complete

that the higher-order radiative corrections to the light neutrino masses dominate

and exceed the light neutrino mass bound. Using the estimate that the two-loop

contribution to the light neutrino masses is

∣∣∣m2
ν

∣∣∣ ∼ 1
16π2

∣∣∣m1
ν

∣∣∣max.(|Y |)2 ≈ 1
16π2

∣∣∣m0
ν

∣∣∣max.(|Y |)2,

where max.(|Y |) is the largest element of the matrix of absolute values of neutrino

Yukawa couplings, and where we use the approximate equality of Eq. (7.3.2), we
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estimate

m2
ν ∼ 103 GeV,

which is well-excluded by the experimental constraints. In summary, we found

only physically non-viable solutions involving fine-tuned non-resonant leptogenesis.

For this reason, for the remainder of this work we restrict ourselves to resonant

leptogenesis in which M1 ≈M2 and where N3 is decoupled.

7.4 Results

In this section we present our main results. In Section 7.4.1, we derive the lower

bound on the mass scale M for which leptogenesis is viable within the Neutrino

Option and explore the available parameter space and in Section 7.4.2 we find the

corresponding upper bound.

7.4.1 Lower bound on the heavy Majorana neutrino masses

In this section we determine the range of heavy Majorana neutrino masses in which

both the Neutrino Option and leptogenesis are viable. We shall always work in the

nearly degenerate case ∆M ≡M2−M1 �M where M ≡ (M1 +M2)/2. Evaluating

∆m2
H at µ ∼M as is calculated in [2], the threshold correction is

∆m2
H = 1

8π2Tr
[
YM2Y †

]
. (7.4.1)

By substitution of the Casas-Ibarra parametrisation of Eq. (2.4.26) or Eq. (2.4.28),

this becomes

∆m2
H = 1

8π2v2 cosh (2y)M3 (m1 +m2 +m3) , (7.4.2)

where the neutrino parameters run with the scale M . This effect amounts to a few

percent for the light neutrino masses and is implemented here using the RGEs of

Refs. [276,277]. The remainder of the neutrino parameters change less significantly

when RG evolved, so their scale dependence will be neglected. Note that the x
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inputs value (GeV)

v 174.10
mH 125.09
mt 173.2

RGE boundary conditions at µ = mt

λ 0.1258 mH(GeV) 131.431
g1 0.461 Yt 0.933
g2 0.644 Yb 0.024
g3 1.22029Yτ 0.0102

Table 7.1: Values of the relevant SM parameters adopted in the
numerical analysis, consistent with Ref. [2]. The RGE
boundary conditions are computed at the highest accur-
acy provided in Ref. [3].

parameter (the real part of θ which parametrises the R matrix), cancels in (7.4.2)

due to the near-diagonality of the heavy Majorana mass matrix. The Neutrino Option

is then satisfied if the Standard Model MS Higgs mass, when renormalisation group

evolved to the scale M , matches the values given by ∆m2
H . The running of the SM

parameters is taken into account implementing the RGE of Ref. [3] to the highest

available accuracy and with the numerical inputs reported in Table 7.1.

The lower bound on M for leptogenesis in the Neutrino Option is the lowest scale for

which the correct baryon asymmetry results whilst still satisfying Eq. (7.4.2). We

apply the approximate analytical solution

nB−L ≈
π2

6zd
neq (0)

τ∑
α=e

ε(1)
αα

K1p1α
, (7.4.3)

in the derivation of which we have eliminated ε(2)
αα with the approximation ε(2)

αα/K2p2α ≈

ε(1)
αα/K1p1α. For the lowest heavy Majorana neutrino mass scale M , the value of y

(the imaginary part of θ) will be largest as can be seen from inspection of Eq. (7.4.2).

Approximating the terms in the sum under the assumption that ey � e−y (to be

justified later), we find

ε(1)
αα

K1p1α
≈ 16m∗ (fosc + fmix)

m2 −m3

(m2 +m3)2 e
−4y sin 2x , Normal Ordering ,

ε(1)
αα

K1p1α
≈ 16m∗ (fosc + fmix)

m1 −m2

(m1 +m2)2 e
−4y sin 2x , Inverted Ordering .

(7.4.4)

Using the same approximation, the factor ∝ det[Re(Y †Y )] in the denominator of
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Figure 7.2: The baryon asymmetry as a function of the heavy Major-
ana neutrino mass splitting divided by the decay rate of
N2 at the lower-bound of M for successful leptogenesis
in the Neutrino Option. The plots take an identical form
for both normal ordering (for which Γ2 = 1.62 × 10−2

GeV) and inverted ordering (for which Γ2 = 8.63×10−3

GeV).

fosc (see Eq. (7.2.3)) becomes

det
[
Re

(
Y †Y

)]
(Y †Y )11 (Y †Y )22

≈ 1.

From Eq. (7.4.4) we observe that the parameter y exponentially suppresses the final

asymmetry ηB while enhancing the Higgs mass of Eq. (7.4.2). To the level of accuracy

in the approximation, the contribution of each flavour is identical. Although the

left-hand side carries a flavour index α, the right-hand side is independent of this

index. As the flavour information is contained in the PMNS elements, we expect

that at large y, the solutions for successful leptogenesis in the Neutrino Option

should have only a weak dependence on the PMNS phases (in terms that have been

neglected in Eq. (7.4.4)).
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The lower bound on M may be found by maximising the terms in Eq. (7.4.4) with

respect to all parameters except y and then finding the largest value of y for which

leptogenesis may be successful. From Eq. (7.4.2), we observe the scale of M is

determined from y (recalling that the light neutrino masses are to be run to the

scale M) and may therefore infer the lower bound for successful leptogenesis in the

Neutrino Option. The maximisation of the right-hand side of Eq. (7.4.4) occurs

when x = 135◦ or 315◦ (note the negative prefactors of the trigonometric factors)

and ∆M/Γ2 ≈ 0.61. We find that the values of y that give agreement with ηBCMB

are y = 190.22◦ for normal ordering and y = 118.21◦ for inverted ordering. These

imply lower bounds for viable leptogenesis in the Neutrino Option of

M > 1.2× 106 GeV Normal Ordering,

M > 2.4× 106 GeV Inverted Ordering.

The difference in values for the two bounds is entirely determined by the difference in

the factors (m2−m3)/(m2 +m3)2 and (m1−m2)/(m1 +m2)2 appearing for normal

and inverted ordering respectively. We emphasise that the suppression factor e−4y

occurring in Eq. (7.4.4) is sufficiently strong that the lower bounds are not strongly

affected by the running of the parameters (although the bounds stated include the

running of all SM parameters and the light neutrino masses).

As a cross-check we have also determined the lower bound on M for which lepto-

genesis is viable within the Neutrino Option by numerically solving the resonant

Boltzmann equations (we stress we solve the Boltzmann equations and not the

analytically approximated equations of Eq. (7.4.4)) for both normal and inverted

ordering and scanned the available parameter space for ηB = 6.1 × 10−10. We

performed the parameter space exploration using Multinest [197, 198, 278] for a

fixed scale M but varied the splitting ∆M , with y fixed to the value that satisfies

m2
H (M1) = ∆m2

H (M1). That is, a value of M1 was chosen and y was fixed to make

the Neutrino Option work, then δ, α21, α31, x and M2 were varied (none of which can

spoil the generation of the Higgs potential once M1 and y are determined, provided
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M2 does not differ significantly from M1). We started at the maximum M1 which

was allowed by the Neutrino Option (which occurs when y = 0◦) and lowered it

in small increments, performing a new parameter scan at each of the successively

smaller values of M1. This procedure was stopped when the search no longer yielded

points in the parameter space where leptogenesis was successful. The lowest value

of M1 for which leptogenesis was viable was taken as our lower bound.

At the lowest successful value, for both normal and inverted ordering, we found that

the numerical results, as shown in Fig. 7.3 and Fig. 7.4 (both of which are placed at

lower bound on M), are in broad agreement with the statements made above based

on the analytical approximations.

In the inverted ordered case shown in Fig. 7.4, we can see a dependence on α21 that is

not accounted for in the approximated analytical expressions and that is not present

in the normal ordered case of Fig. 7.3. The reason is that the suppression factor

e−4y is O(100) times smaller for inverted ordering, rendering the approximations

of Eq. (7.4.4) slightly less accurate than for normal ordering. Terms which were

neglected and which depend on α21, contribute to a slight dip in the value of ηB

around α21 ∼ 300◦. The approximate independence from δ is preserved because

terms in δ are multiplied by the relatively small factor s13. Finally, for inverted

ordering, independence of α31 is exact as it does not appear in the Yukawa matrix

when m3 = 0.

Finally, we note that, at the lower bound for both normal ordering and inverted

ordering, the heavy Majorana neutrinos form a pseudo-Dirac pair [264,265]. We can

see this for normal-ordering (for example), with x = 135◦,

Y = U


0 0

−
√
M1m2√

2v (cosh y + i sinh y) −
√
M2m2√

2v (cosh y − i sinh y)
√
M1m3√

2v (cosh y − i sinh y) −
√
M2m3√

2v (cosh y + i sinh y)

 ,

for which Y1 ≈ iY2 when M1 ≈ M2. At the lower bound where ∆M � M , as the

heavy Majorana neutrino mass matrix is diagonal, this condition implies that the CP
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phases of N1 and N2 are approximately opposite (see also Eq. (6.2.3)) such that they

form a Dirac pair whenM1 = M2. Solutions of this kind may be motivated by assum-

ing an approximate lepton number symmetry [68,73,74,76,77,143,144,157,279–285].

7.4.2 Upper bound on the heavy Majorana neutrino

masses

The upper bound on M for the Neutrino Option occurs when y = 0◦ (Eq. (7.4.2)) .

In this case one finds for normal ordering

ε(1)
αα

K1p1α
≈

im∗(m2 −m3)√m2m3 cosx sin x (U∗α2Uα3 − Uα2U
∗
α3) (fosc + fmix)

(m2 cos2 x+m3 sin2 x) (m3 cos2 x+m2 sin2 x)
∣∣∣√m2 cosxUα2 +√m3 sin xUα3

∣∣∣2 ,
(7.4.5)

and for inverted ordering

ε(1)
αα

K1p1α
≈

im∗(m1 −m2)√m1m2 cosx sin x (U∗α1Uα2 − Uα1U
∗
α2) (fosc + fmix)

(m2 cos2 x+m1 sin2 x) (m1 cos2 x+m2 sin2 x)
∣∣∣√m1 cosxUα1 +√m2 sin xUα2

∣∣∣2 .
(7.4.6)

Unlike for the lower bound where these terms had a maximum value that was largely

independent of the PMNS phases, here we find a strong dependence upon these low

energy phases and apparently unrestricted enhancement factors. Thus, leptogenesis

must be successful at the upper bounds of the Neutrino Option. Combining the

lower bounds from requiring the Neutrino Option and leptogenesis to be viable

simultaneously with the upper bounds from the Neutrino Option alone results in4

1.2× 106 < M (GeV) < 8.8× 106 Normal Ordering,

2.4× 106 < M (GeV) < 7.4× 106 Inverted Ordering.

In this case the approximate lepton number symmetry need not be so precise as it

was for the lower bound.

4 The upper bounds quoted here are slightly different from the one reported in Ref. [2] owing to
the running of light neutrino masses having been neglected in the latter. Numerically the difference
amounts to about ∼ 5% and has therefore limited significance.
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7.5 Conclusions

The aim of this chapter is to examine resonant leptogenesis in the context of the

Neutrino Option thereby taking one further step in constructing a self-consistent

theory which simultaneously explains light neutrino masses, the predominance of

matter over anti-matter, and the electroweak scale.

We found that the viable parameter space which can satisfy the Neutrino Option

and leptogenesis are in the ranges 1.2× 106 < M (GeV) < 8.8× 106 and 2.4× 106 <

M (GeV) < 7.4× 106 for normal and inverted ordering respectively, with successful

leptogenesis requiring a pseudo-Dirac pair with masses such that ∆M/M = (M2 −

M1)/M ∼ 10−8. Interestingly, viable solutions for Neutrino Option leptogenesis

allows for θ23 be to in the lower or upper octant (at the 2 σ level) however for normal

ordering there is a slight preference for solutions in the upper octant. In particular,

we found that, generally, there is only a weak dependence on the low energy phases

of the PMNS matrix δ, α21 and α31 at the lower bounds on the viable mass range for

both normal and inverted ordering (see Fig. 7.3 and Fig. 7.4). The minor exception

to this is α21 in the case of inverted ordering which must be approximately in the

range [90◦, 200◦] or [360◦, 600◦] for 1σ agreement with ηBCMB
.

We have further shown successful leptogenesis within the framework of the Neutrino

Option scenario is possible when the requisite CP violation in leptogenesis is provided

exclusively by the Dirac or Majorana low-energy CP violation phases of the PMNS

matrix. This is possible only at the upper bound of the viable mass range and

provides a stark contrast with leptogenesis at the lower bounds where the low-energy

PMNS phases were largely irrelevant.
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Figure 7.3: The triangle plot shows regions of the model parameter
space compatible with the measured ηB within 1σ and
2σ for a normally ordered mass spectrum using reson-
ant leptogenesis with M = 1.2 × 106 GeV. The fixed
parameters were set to be y = 190.22◦, θ12 = 33.63◦ and
θ13 = 8.51◦.
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Figure 7.4: The triangle plot shows regions of the model parameter
space compatible with the measured ηB within one and
two σ for an inverted ordered mass spectrum using res-
onant leptogenesis with M = 2.4× 106 GeV. The fixed
parameters were set to be y = 118.21◦, θ12 = 33.63◦ and
θ13 = 8.51◦.



Chapter 8

Outlook

In this thesis I have introduced two of the outstanding problems in modern physics

and some of the theoretical attempts to address them: the extreme smallness of

neutrino masses (Chapter 2) and the baryon asymmetry (Chapter 3). The later

chapters are based on my own work.

In Chapter 4, we argue that the light neutrino masses are tied to lepton number

violation in the type I seesaw (although the same arguments appear to hold also for

the type III seesaw). If one wants exactly massless light neutrinos, then one must

also have an exact lepton number symmetry. This work emphasises the significance

of radiative corrections to neutrino masses in lepton number violation studies. In

particular, researchers should be careful not to rely on too strong cancellations in the

tree-level neutrino masses in order to provide large lepton number violation without

excessive light neutrino masses.

In Chapter 5, we apply some heavy numerical machinery to the question of the lower

bound on the scale of leptogenesis which had not previously been studied with such

numerical rigour. We find that fine-tuned cancellations are necessary to pass much

below the 109 GeV bound of Davidson and Ibarra, provided one wants to avoid

the resonance regime where the CP asymmetries are enhanced by nearly-degenerate

heavy Majorana neutrino masses. The parameter space rapidly shrinks with the

lowering scale such that we estimate a lower bound M1 ∼ 106 GeV.
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In Chapter 6, we revisited another phenomenological question of leptogenesis —

can one have successful leptogenesis when the CP violation is provided solely by

the low energy phases? Again applying the machinery developed for the work of

Chapter 5, we were able to lower the scale for which this question has a positive

answer to 106 GeV. More surprisingly, we discovered that flavour effects remain

important beyond 1012 GeV when CP violation is purely low-energy. This means

that all previous phenomenological studies of these scenarios may be extended into

the regime M1 � 1012 GeV. We also settle a controversy — it is indeed possible to

have viable leptogenesis when CP violation comes only from the Dirac phase δ.

In Chapter 7, we looked at the possibility that successful leptogenesis is possible

within the Neutrino Option. In this scenario, the heavy Majorana neutrinos are

responsible for generating the Higgs potential and thus resolve issues of naturalness

in this sector. By demonstrating that leptogenesis is viable in this framework, we

have demonstrated that it is possible to resolve the neutrino mass problem, the

baryon asymmetry and the naturalness problem all within the type I seesaw. The

small range of heavy Majorana neutrino masses for which this is possible gives this

explanation an appealing rigidity.

The smallness of neutrino masses is well-explained by the type I seesaw mechanism

which is employed throughout this thesis. However, testing the mechanism may be

very difficult. Ideally one would look in collider experiments for signatures of lepton

number violation such as same-sign dilepton decays. However, as emphasised by the

conclusions of Chapter 4, lepton number violation is suppressed by the smallness of

the the light neutrino masses. If leptogenesis occurs in the Neutrino Option as in

Chapter 7, the range of heavy Majorana neutrino masses must be prohibitively high

at O(106) GeV and so it would be difficult to test this idea directly also. Indeed

for every major problem in particle physics there exist multiple speculative theories

explaining them which are similarly difficult to test. Fundamentally new ideas may

be needed if progress is to be achieved in ruling out the many speculations that

abound in particle physics today.



Appendix A

Calculation of the one-loop light

neutrino masses

Z, W±

νk, Nk, l±k

H0, G0, G±

νi νjνk, Nk, l±k νi νj

Figure A.1: The one-loop contributions to the light neutrino mass.
All permutations of the upper and lower labels compat-
ible with conservation of charge are possible.

The self-energy of the light neutrinos of momentum p may be decomposed as

Σ (p) = /ΣL
(
p2
)
/pPL + /ΣR

(
p2
)
/pPR + ΣL

(
p2
)
PL + ΣR

(
p2
)
PR, (A.0.1)

with PL and PR the left- and right- chiral projection operators. For simplicity, we

shall take p2 = 0 which amounts to setting the neutrino mass to zero — a good

approximation for our purposes. This has the additional advantage that our results

will be finite, as any counterterm in renormalisation would be proportional to the

neutrino mass. The Majorana nature of neutrinos in the type I seesaw places the
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conditions /ΣL =
(
/ΣR
)T

, ΣL =
(
ΣL
)T

and ΣR =
(
ΣR
)T

. When the tree-level mass

matrixM receives loop corrections and is then block-diagonalised, one finds for the

light neutrinos,

mν = m0
ν + δmL, (A.0.2)

where δmL = U∗LΣLU †L is the correction to the mL matrix appearing as the (1, 1)

entry inM and set to zero at tree-level by symmetry considerations. For this reason

we need only compute the left-chiral self-energy correction for the light neutrinos,

that is we want ΣL evaluated with zero external momentum. This may be written

ΣL = ΣL
Z + ΣL

G0 + ΣL
H0 + ΣL

G± + ΣL
W±︸ ︷︷ ︸

equal to zero

∣∣∣∣∣∣∣
p=0

. (A.0.3)

In all integrals we may set p, /p and p2 equal to zero. As a result integrals with /k in

the numerator may be immediately set to zero as they will be proportional to /p. As

we are looking only for ΣL we extract the coefficient of the left projection operator

PL. The contributions to the self-energy are depicted in Fig. A.1.

Starting with ΣL
G0 , the vertices give a factor

(
g

2mW

)2
(Cikmi + C∗ikmk)

(
Ckjmk + C∗kjmj

)
. (A.0.4)

Since mi = mj = 0 as they are the masses of external light neutrinos and p2 = 0, we

are left with

iΣL
ijG0

∣∣∣
p=0

=
(

g

2mW

)2
C∗ikC

∗
ikm

3
k

∫ dDk

(2π)D
1

k2 − ζm2
Z

1
k2 −m2

k

. (A.0.5)

Next we consider

iΣijZ |p2=0 =i2
(
− ig

2cW

)2
(CikPR − C∗ikPL) γµ∫ dDk

(2π)D
mk

k2 −m2
k

1
k2 −m2

k

[
−gµν + kµkν (1− ζ)

k2 − ζm2
Z

]
γν
(
CkjPL − C∗kjPR

)
.

(A.0.6)



169

Extracting the coefficient of PL, we get

iΣL
ijZ

∣∣∣
p2=0

=
(
− ig

2cW

)2
C∗ikC

∗
jkmk

∫ dDk

(2π)D


−

=D︷ ︸︸ ︷
γµgµνγν

k2 −m2
Z

+

=k2︷︸︸︷
/k

2 (1− ζ)
(k2 − ζm2

Z) (k2 −m2
Z)


1

k2 −m2
k

=
(

g

2mW

)2
C∗ikC

∗
jkmk∫ dDk

(2π)D

(
D

k2 −m2
Z

+
(

k2

k2 − ζm2
Z

− k2

k2 −m2
Z

))
1

k2 −m2
k

,

(A.0.7)

where in the second step we make the substitution cw = m2
W/m

2
Z and apply Cm̂CT =

0.

For the Higgs contribution we have

iΣL
ijH0

∣∣∣
p2=0

=
(
− ig

2mW

)2
(C∗ikmk) (Ckjmk)∫ dDk

(2π)D
1

k2 −m2
H

mk

k2 −m2
k

=m3
k

(
g

2mW

)2
C∗ikC

∗
jk

∫ dDk

(2π)D
1

k2 −m2
H

1
k2 −m2

k

.

(A.0.8)

The sum of the Z and G0 contributions is

iΣL
ijZ + iΣL

ijG0

∣∣∣
p=0

=(
g

2mW

)2
C∗ikC

∗
jkmk

∫ dDk

(2π)D
1

k2 −m2
k

[
Dm2

Z

k2 −m2
Z

+
(

k2

k2 − ζm2
Z

− k2

k2 −m2
Z

)]
.

(A.0.9)

But we may use the replacement

∫ dDk

(2π)D
k2

k2 −m2
k

1
k2 − ζm2

Z

→
∫ dDk

(2π)D
m2
k

k2 −m2
k

1
k2 − ζm2

Z

, (A.0.10)

due to Cm̂CT .
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The total one-loop self-energy is
(
iΣZ + iΣG0 + iΣH0|p2=0

)
ij

= −
(

g

2mW

)2
C∗ikC

∗
jkmk

∫ dDk

(2π)D

[
Dm2

Z −m2
k

(k2 −m2
k) (k2 −m2

Z) + m2
k

(k2 −m2
k) (k2 −m2

H)

]

= −
(

g

2mW

)2
C∗ikC

∗
jkmk

∫ dDk

(2π)D

(3− 2ε)m2
Z

k2 −m2
Z

+ m2
H

k2 −m2
H

+ m2
Z −m2

k

k2 −m2
Z︸ ︷︷ ︸

→−1

+ m2
k −m2

H

k2 −m2
H︸ ︷︷ ︸

→1


= −

(
g

2mW

)2
CkiCkjmk

i

24π2

(
3B0 (0,mk,mZ)m2

Z +m2
HB0 (0,mH ,mH)

)
.

(A.0.11)

Upon substitution of the standard integral B0, we obtain
(
iΣZ + iΣG0 + iΣH0 |p2=0

)
ij

=i
(

g

2mW

)2 mk

24π2CkiCkj

(
3m2

Z

(
m2
k

m2
k −m2

Z

logm2
k −

m2
Z logm2

Z

m2
k −m2

Z

)

+m2
H

(
m2
k

m2
k −m2

H

logm2
k −

m2
H logm2

H

m2
k −m2

H

))
.

(A.0.12)

The terms involving logarithms can be simplified using another replacement

m2
k

m2
k −m2

a

logm2
k −

m2
a logm2

a

m2
k −m2

a

→ fka ≡
m2
k

m2
k −m2

a

logm2
a. (A.0.13)

Finally we obtain

m1
νij = δmL = αW

16πm2
W

CkiCkjmk

(
3m2

ZfkZ +m2
HfkH

)
. (A.0.14)



Appendix B

CPT and Majorana particles

B.1 The CPT theorem

In 3 + 1 dimensions or any space-time with an even number of dimensions, CPT acts

on coordinates as the negative identity operation: xµ → −xµ. This is just a com-

plex Lorentz transformation1 and thus is a symmetry of a Lorentz invariant theory.

According to Wigner’s theorem, a symmetry transformation must be represented by

a unitary or antiunitary operator — the latter being necessary if there is a reversal

of the light-cone as is the case with CPT.

If we have a one-particle state of momentum p, total angular momentum j, spin s

and conserved charge Q, then CPT must take p→ p, s→ −s and Q→ Qc with Qc

the conjugate charge. Thus the antiunitary CPT operator Θ must have the action

Θ|p, s,Q〉 = iF (−1)j−s|p,−s,Qc〉, (B.1.1)

where the phase factor is required for consistency in a Lorentz invariant theory and

may not be redefined.

Being antiunitary, we expect the Θ operator to conjugate fields and thus change the

sign of their conserved charges. In a classical context, the electrical current densities

1In Cartesians, it is a rotation of π around the z-axis and a boost of iπ along the z-axis that
results in a Lorentz transformation matrix Λ = −1.
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transform as jµ → −jµ under CPT exactly as would be expected from the change

in sign of charge. Meanwhile the stress-energy tensor T µν sensibly preserves its sign.

B.2 Majorana particles

The concept of an antiparticle is one in which the conserved charges are opposite

to that of the corresponding particle. This would appear to make C, CP and CPT

all transformations that take particle states into antiparticle states. However, we

must remember that of all of these CPT is the only one expected to be a symmetry

in general. Thus, given a particle state, the antiparticle state is made by applying

CPT to it.

For this reason, in defining Majorana particles, we should say that they are eigen-

states not of C or CP but of CPT. 2 Here we must not interpret the word “eigenstate”

too narrowly — CPT inverts the spin of a particle. CPT takes a Majorana particle

and creates a particle which is identical after some Poincaré transformations. In

spite of this, the general condition for a Majorana field is simply

ψ = ψc. (B.2.1)

An equivalent condition is the requirement that there is a basis in which the fields

are real. This justifies the occasional use of the term “real fermion” for Majorana

particles (although this will be spoiled if one transforms to another basis using a

unitary transformation).

The Majorana condition places some restrictions on electromagnetic properties. Con-

sider a particle in a magnetic field. The interaction energy depends on the magnetic

moment µ and spin s as

E = −µsB. (B.2.2)

2If, for example, one started with a C eigenstate |ψ〉, such that C|ψ〉 = η|ψ〉, with η some phase,
then there is no guarantee that at a later time, the state is a C eigenstate because of the factor
eiHt. This can only be the case if [C,H] = 0 and hence if C is a symmetry.
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Under CPT, the magnetic field is unchanged but the spin is flipped. Invariance

under CPT requires the energy to be unchanged and so the magnetic moment must

be opposite for an antiparticle. Majorana particles are supposed to be identical to

Majorana antiparticles and so we conclude that they must have magnetic moment

equal to zero. An exactly similar argument can be made that the electric dipole is

zero.

If a Majorana particle is electrically neutral because it is made of a charge distribution,

positive in some places and negative in others summing to zero, then its antiparticle

would have the positive and negative parts of its distribution switched and would be

distinguishable from the original particle. This would be a contradiction so Majorana

particles must be neutral at all points.

Finally, we note that, the CP phase of a Majorana fermion must be ±i. This can be

seen by applying the definition of the CP operation on both the original field and

the C-conjugated field (which must give the same result).

B.3 Derivation of CPT operator effects

Let us now find explicitly the effect of the antiunitary CPT operator Θ which

transforms a field S as S → S ′ = ΘSΘ†. We use the fact that CPT acts on the

space-time coordinates like a rotation around the z-axis by π and a boost by iπ

around the same axis. Then we shall insist that amplitudes are invariant under θ.

Let us start by finding the effect of the x→ −x Lorentz transformation on a set of

fields. A scalar field transforms as

φ′ (x) = φ (−x) . (B.3.1)

Fermionic fields transform under rotation θ and boost φ as

ψ′L (x) = e
1
2 (iσ·θ−σ·φ)ψL (−x) , (B.3.2)
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and

ψ′R (x) = e
1
2 (iσ·θ+σ·φ)ψR (−x) . (B.3.3)

which, under the Lorentz transformation we are considering is

ψ′L (x) = −ψL (−x) , (B.3.4)

and

ψ′R (x) = ψR (−x) . (B.3.5)

Similarly, a vector field transforms as

A′µ (x) = −Aµ (−x) . (B.3.6)

Now we look at the effect on amplitudes. We start by recalling that under an

antiunitary operator, invariance of amplitudes means that

〈α|β〉 = 〈β|α〉 = 〈α|β〉∗. (B.3.7)

Take a generic set of fields Si to construct

〈0|S1 (x)S2 (x) . . . Sn (x) |0〉. (B.3.8)

and apply the Lorentz transformation involved in CPT to get

(−1)L 〈0|S1 (−x)S2 (−x) . . . Sn (−x) |0〉 (B.3.9)

with L the total number of left-handed fermions and vector fields. We want to relate

this to the conjugate to understand the unitary operator. Complex conjugating

twice gives

iF (−1)L 〈0|S∗1 (−x)S∗2 (−x) . . . S∗n (−x) |0〉∗ (B.3.10)

where F is the number of fermion fields. This factor came from having to switch

the fields back into the original order after complex conjugation and always ends

up being iF = ±1 as F has to be even (or else the amplitude will be zero). When
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comparing with 〈α|β〉 = 〈β|α〉 = 〈α|β〉∗, we can interpret

|α〉 = |0〉,

|β〉 = S1 (x)S2 (x) . . . Sn (x) |0〉,
(B.3.11)

and
|α〉 = Θ|0〉,

|β〉 = ΘS1 (x)S2 (x) . . . Sn (x) |0〉,

= ΘS1 (x) Θ†ΘS2 (x) Θ†Θ . . . Sn (x) Θ†Θ|0〉.

(B.3.12)

Now it is clear that the antiunitary operator Θ that achieves this acts in the following

way:

ΘS (x) Θ† = (−1)L iFS∗ (−x) . (B.3.13)

In terms of the Dirac spinor in the Weyl basis ψ = (ψL, ψR)T

ΘψΘ† = iγ5ψ
∗ (−x) . (B.3.14)

For a field of any type, the action of Θ on the creation and annihilation operators

as(p), bs(p) can be found by explicitly studying the effects of Eq. B.3.13 and is found

to have the effect

Θ|p, s,Q〉 = iF (−1)j−s|p,−s,Qc〉, (B.3.15)

as stated at the beginning of this appendix. The effects on p, s being easily anti-

cipated from the transformation of momentum and angular momentum under space

and time reversal.





Appendix C

Sphalerons

C.1 The electroweak sphaleron process

The electroweak interactions include a non-perturbative process called the sphaleron

process which is a transition between equilibrium states with differing values of B+L.

Neglecting fermions, the picture is that the set of all static classical configurations of

the Higgs and gauge fields form a torus in a space where one axis (let us make it the

vertical axis) corresponds to the energy of the configuration and points that differ by

a gauge-transformation have been brought together. The vacuum state is the point

of lowest energy and therefore the vertically lowest point on the surface of the torus.

A transition from vacuum to vacuum may be drawn as a loop over the surface of the

torus which passes through the lowest point. If this loop is non-contractible, then

the value of B+L has been altered in the transition. For each non-contractible loop,

there is a given maximum energy corresponding to it, and so, from the set of all non-

contractible loops, the lowest maximum energy corresponds to the threshold that

must be reached in order to make a transition from one vacuum state to another. The

static field configuration corresponding to this lowest maximum energy stationary

state is called the sphaleron state.

This whole set-up is similar to a classical pendulum. We consider the energy of a

static pendulum at any given angle and ask — what is the minimum energy required
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to make it swing in a full circle? The answer of course, is given by the potential

energy of the highest configuration. The torus is more complicated in that there are

multiple paths one can take and so this analogy only considers the circle around the

torus (imagined as a 2-torus) that includes the vacuum and sphaleron states.

Figure C.1: A cartoon of the surface of the electroweak static field
configurations with energy increasing in the direction
of the arrow. The black dot represents the sphaleron
configuration. The arrow intersects the torus at the
lowest energy point (the vacuum), the sphaleron saddle-
point, a second saddle-point at the top of the diagram
and finally the highest energy field configuration.

C.2 The sphaleron factor in leptogenesis

In the text, we claim that is is possible to obtain the baryonic part of the B − L

asymmetry once sphalerons have processed it by multiplication by a factor 28/79.



C.2. The sphaleron factor in leptogenesis 179

0

1

Figure C.2: The energy of transition to different vacua in terms
of the sphaleron energy Esp. Dashed vertical lines de-
marcate vacuum states. Sphaleron transitions between
them cause a change in B +L, ∆ (B + L) = 3Ng, with
Ng the number of generations.

Let us demonstrate this now.

By expanding the particle densities in βµi, with β the inverse temperature and µi

the chemical potential for species i, the matter-antimatter asymmetries are

ni − ni = giT
3

6 βµi, (C.2.1)

for fermions and

ni − ni = giT
3

3 βµi, (C.2.2)

for bosons (note the factor 2 difference), where gi is the number of degrees of freedom

for species i.

Then baryon number density is

nB = 3 (2µQ + µuR + µdR) , (C.2.3)
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and lepton number is

nL = 3 (2µL + µlR) , (C.2.4)

where we have absorbed factors gT 3/6 in the definition for brevity. What we are

looking for is the baryonic proportion of nB−L, namely nB/(nB−nL) (so the strange

normalisations don’t matter).

The reaction φ0 ↔ uiL + uiR tells us that

µφ = µuR − µQ. (C.2.5)

We also have φ0 ↔ diL + diR which gives

µφ = µdR − µQ. (C.2.6)

Similarly, there is the charged leptonic version of the first reaction φ0 ↔ lαR + lαL

which gives us

µφ = µlR − µL. (C.2.7)

As there are no right-handed neutrinos in the SM we do not have a second leptonic

equation of this kind.

The sphalerons which we assume to be in equilibrium as effective operators of the

kind qLqLqLlL and can cause the transition

u+ d+ c→ d+ 2s+ 2b+ t+ νe + νµ + ντ , (C.2.8)

which gives the constraint

3µQ + µL = 0. (C.2.9)

Finally, we must consider the total hypercharge neutrality of the universe Y =

ΣiYini = 0. We use that n ∝ µ with an extra factor 2 for bosons in comparison with

fermions

3× 3×
(4

3µuR −
2
3udR + 2× 1

3uQ
)

+ 3× (−2µlR − 2µL) + 2× 2×µφ = 0. (C.2.10)
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All these conditions together give us

nB
nB − nL

= 28
79 . (C.2.11)

We quickly note that some assumptions have been made here. If we assume that

sphalerons remain in equilibrium until after the electroweak phase transition then

this factor should be 12/37. Since the two options are numerically similar, we’ll stick

with the first and not worry about it.

This is part of the conversion factor we need to compute the baryon asymmetry of

the universe. There is also an extra piece which is not related to baryon physics.

Instead this comes from the change in the photon density at the is proportional to

T 3. The temperature is proportional to g−1/3
S where

gS ≡
bosons∑
i

gi +
fermions∑

i

7
8gi. (C.2.12)

Thus

ηB,r = ηB,1
gS,r
gS,l
≈ 3.94

106.75ηB,l (C.2.13)

where subscript l means the quantitiy is evaluated at the time of leptogenesis and

subscript r means evaluated at time of recombination. Ultimately,

ηB = ηB,0 ≈
3.94

106.75
28
79nB−L = 0.013nB−L. (C.2.14)





Appendix D

Further effects in leptogenesis

In Chapter 3 a number of simplifying approximations were made. Here we will

consider what they represent physically and the extent to which they affect the

accuracy of the equations.

D.1 Thermal effects in amplitude calculations

There are a number of effects due to temperature that we did not account for in

Chapter 3. We briefly summarise these here:

• Couplings should be run with the scale Λ ∼ 2πT . These effects will usually

be unimportant except that they may shift the points at which cancellations

occur for the fine-tuned solutions of Chapter 5 and Chapter 6.

• Thermal particle propagators should be used to compute the CP asymmetry.

However, these corrections tend only to be large for T &M .

• A thermal mass is induced for all the particles. For the lepton doublets and

the Higgs, one effect is that the decay rate of a heavy neutrino to these final

state particles may be reduced due to their effectively enlarged mass — recall

that if the decay products were heavier than the heavy neutrino then there

would be no decay at all.
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D.2 Spectator processes

There are Standard Model processes that affect the asymmetry densities of leptons

and Higgs and thus which indirectly affect the rate of leptogenesis — we call these

spectator processes. We consider these processes when they are in equilibrium and

so when the chemical potentials and densities satisfy

∑
initial

µi =
∑
final

µi,

ni − ni = giT
3

(3)6βµi,
(D.2.1)

where the latter applies for fermions (bosons). When spectator processes are added

to the description of leptogenesis, one can relate the new particle species to the lepton

asymmetry nB−L. Thus spectator effects act to change the numerical coefficients

of nB−L in the Boltzmann equations; generically, increasing the washout and thus

reducing the final lepton asymmetry by a factor which turns out to be O (1).

A single example should furnish a full understanding. Take for instance T & 1013

GeV where the electroweak sphaleron is out of equilibrium and only the fermions

with largest Yukawa couplings need to be considered — all others being out of

equilibrium. There is no baryon asymmetry because we assume it is vanishing to

begin with and no process has created it yet:

nB = 2n∆Q3 + n∆t = 0. (D.2.2)

Similarly, the conservation of hypercharge Y tells us ∑i Yini = 0 for all relevant ni:

n∆Q3 + 2n∆t − n∆l + n∆φ = 0, (D.2.3)

and the top-quark Yukawa coupling gives

n∆Q3 + 1
2n∆φ = n∆t. (D.2.4)

Then, for instance, in Eq. (3.2.21) had we not set the Higgs asymmetry to zero the
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washout term would have been

2 (n∆φ + n∆l)W,

but by solving the simultaneous equations above, we can eliminate n∆φ to get

2 (n∆φ + n∆l) = −5
3nB−L with nB−L = −2n∆l. Then we find an equation of the same

form as Eq. (3.2.21) but with a numerical factor weighting the washout W . In the

general, at different temperature scales there are different processes in equilibrium,

so the set of equations to solve will be different but we may always eliminate the

other variables for nB−L.1

D.3 Scattering effects

l

φ

N

tR

Q3

N

tR

l

φ

Q3

Figure D.1: Some Higgs-mediated scatterings in s- and t-channels.

A class of processes we have neglected but which contribute to lepton number

violation are the s- or t-channel Higgs exchanges and top quarks of Fig. D.1. The

inclusion of these effects can be incorporated by the replacement D(z)→ D(z)+S(z)

with and the washoutW (z) is replaced with j(z)W (z) in the equations of Eq. (3.2.21)

(see [141] and the references therein for the explicit form of these functions).

It turns out that in the strong washout regime the by the inverse decay process is

1See [258], upon which this subsection was based, for a more complete discussion and relevant
references.
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dominant such that j(z)W (z) ≈ W (z). Furthermore, the precise structure of the

decay term does not affect the final result (at least in the analytical solution — D

or in this case D + S do not appear). This means that the scattering processes are

safely neglected in the strong washout scenario.

D.4 Quantum statistical effects

In Eq. (3.2.2) are the factors 1±f that we approximated as 1 to arrive at Eq. (3.2.3).

These quantum statistical factors result from the exclusion and anti exclusion prin-

ciples. Consider the bosonic case of n identical particles transitioning to n states.

There are n! ways to arrange them in the final states, all of which are identical.

Thus, if the amplitude is w for any given arrangement, it is n!w for the sum of

all possibilities. The rate, being proportional to the amplitude squared contains

a factor (n!)2 but also a 1/n! from the phase-space factor to avoid over-counting

identical arrangements. This means that there is a factor n! over what we would have

classically. Furthermore, to go from n particles in the final state to n + 1 requires

an extra factor n + 1 (to give the (n + 1)!). So if there are n particles in the state

originally then the probability for another to scatter is n + 1 times higher than if

they were distinguishable. In a thermal distribution we should use 1 + f . Similarly,

for the fermionic case we should use 1− f .
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Properties of Ri and f

E.1 Construction of Ri
u, Ri

v, Ri
w

We provide here a procedure for explicitly constructing the matrices Ri
u, Ri

v and Ri
w

for given vectors ui, vi and wi. We first construct

Y i = ui∗uiT + uiui†. (E.1.1)

As this is a real symmetric matrix, it is possible to choose a set of ni real orthogonal

eigenvectors bi. Then

Ri
u =



biT1

biT2
...

biTni


(E.1.2)

will perform the required transformation for generic ui.

From the relations

rank
(
Y i
)
≤ rank

(
ui∗uiT

)
+ rank

(
uiui†

)
(E.1.3)

and

rank
(
ui∗uiT

)
= rank

(
uiui†

)
= 0 or 1, (E.1.4)
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it follows that the rank of Y i may be at most 2. If it is rank 0 then ui = 0 and this

is a trivial case. If it is rank 1 then ui is a real vector and cannot achieve uiTui = 0

unless ui = 0 in this case. Thus, for non-trivial ui, Y i has rank 2. Consequently it

has ni − 2 eigenvalues equal to zero.

If bik corresponds to eigenvalue zero then Y ibik = 0. Thus,

ui
(
ui†bik

)
+ ui∗

(
uiT bik

)
= 0. (E.1.5)

Multiplying on the left by uT yields

||ui||2
(
uiT bik

)
= 0. (E.1.6)

which implies uiT bik = 0 (excluding the trivial solution ui = 0).

Finally,

ui
′ = Ri

uu
i =



biT1 u
i

biT2 u
i

...

biTniu
i


(E.1.7)

which has components all zero except for two. Taking these components to be ui′1
and ui′2 , the condition ui′Tui′ = 0 is equivalent to

ui
′2

1 + ui
′2

2 = 0, (E.1.8)

which admits the solution

ui
′

2 = ±iui′1 , (E.1.9)

and u′ thus takes the form of eq.(4.2.42).

The matrices Ri
2 and Ri

3 can then be constructed by analogy. In the case of Ri
2 it is

only necessary to repeat the above procedure with the vector

(
vi
′

3 , v
i′

4 , . . .
)

in place of ui from the start. This works as it gives zero upon taking its scalar
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product with itself. Similarly, Ri
3 is constructed by repetition of this argument with

(
wi
′′

5 , w
i′′

6 , . . .
)

in place of ui.

E.2 Properties of f

The function f is composed of the sum of two terms of the form,

h(x) ≡ a
x3

x2 − 1 log
(
x2
)
, (E.2.1)

for x > 0. As h is monotonic increasing and strictly convex then so is f . Since a > 0

and is a constant, it will not affect the monotonicity and curvature of h and we will

drop it for the rest of this study. We demonstrate that h is monotonic increasing

and strictly convex now.

E.2.1 Monotonic increasing

A change of variable x→ eu gives

h (u) = 2u
e2u − 1e

3u, (E.2.2)

for u ∈ IR. From this we obtain

h′ (u) = e2ucschu (1− u(coth u− 2)) . (E.2.3)

Since

h′ (x) = u′ (x)h′ (u) , (E.2.4)

and

u′ (x) = 1
x
, (E.2.5)



190 Appendix E. Properties of Ri and f

which is strictly positive for x > 0, studying the sign of h′(x), requires us to concern

ourselves only with the sign of h′(u). We may drop the factor e2u and consider

cschu (1− u(coth u− 2)) ,

where we recall that

sgn (cschu) = sgn (u) . (E.2.6)

Starting with the result that

e−2u (2u+ 1) < 1 (E.2.7)

for strictly positive u, write

e−2u (2u+ 1)− 1 < 0. (E.2.8)

Recognising the left-hand side as

2ue−2u −
(
1− e−2u

)
, (E.2.9)

we write (
1− e−2u

)( 2ue−2u

1− e−2u − 1
)
< 0, (E.2.10)

for strictly positive u. Using the expression

2e−2uu = u
(
1 + e−2u − 1 + e−2u

)
(E.2.11)

leads to the conclusion

u coth u− 1 < u (E.2.12)

for strictly positive u.

Using the definition of coth, we write

u coth u− 1 = 1 + e2u(u− 1) + u

e2u − 1

= e−u(1 + u) + eu(u− 1)
eu − e−u

. (E.2.13)
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For u > 0, we have eu − e−u > 0 and the sign of u coth u− 1 is given by the sign of

λ(u) = e−u(1 + u) + eu(u− 1). (E.2.14)

Its derivative is

λ′(u) = u(eu − e−u), (E.2.15)

which is strictly positive for u > 0. Thus λ is a strictly increasing function on R+

and its minimum on R+ is

λ(0) = 0. (E.2.16)

From this, we have for u > 0

u coth u− 1 > 0 (E.2.17)

and since u coth u− 1 is an even function of u, we also learn that

u coth u− 1 > u (E.2.18)

for u < 0.

From this follows

u coth u− 1− 2u < 0 (E.2.19)

for strictly positive u and

u coth u− 1− 2u > 0 (E.2.20)

for strictly negative u. We can also evaluate

lim
u→0

h′(u) = 2. (E.2.21)

Thus h′ (u) > 0, the function h (u) is monotonic increasing and so is f (x).
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E.2.2 Strictly convex

The strict convexivity of h may be demonstrated by considering the sign of its second

derivative which may be expressed as

d2h

dx2 = 1
x2

(
d2h

du2 −
dh

du

)
. (E.2.22)

The content of the parentheses written explicitly as a function of u is

2e3u (2e2u(u− 3) + e4u + 6u+ 5)
(e2u − 1)3 . (E.2.23)

The denominator of this expression has sign equal to the sign of u. Our strategy for

proving the convexivity is to prove that this same statement may be made about

the numerator.

Owing to the positivity of e3u, we need only consider now the sign of

s (u) = 2e2u(u− 3) + e4u + 6u+ 5. (E.2.24)

Let us observe that at u = 0,

s (0) = 0, (E.2.25)

s′ (0) = 0, (E.2.26)

s′′ (0) = 0, (E.2.27)

where the primes denote differentiation with respect to u. Consider now

s′′ (u) = 8e2uu− 16e2u + 16e4u. (E.2.28)

As e4u/e2u = e2u, we see that s′′(u) is positive for u > 0 (since e2u > 1) and s′′(u) is

negative for u < 0 (since e2u < 1).

This implies that s′ (u) decreases when u < 0 to the value 0 at u = 0 and increases

for all positive u. That is to say that s′ (u) > 0 for all u 6= 0.

In turn, this implies that s (u) is an increasing function for all negative and positive

values of u. As s (0) = 0, then for u < 0 we have s (u) < 0 and for u > 0 we have
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s (u) > 0.

Therefore
2e3u (2e2u(u− 3) + e4u + 6u+ 5)

(e2u − 1)3 > 0 (E.2.29)

for all u 6= 0. Besides,

lim
u→0

2e3u (2e2u(u− 3) + e4u + 6u+ 5)
(e2u − 1)3 = 5

3 , (E.2.30)

and s is always positive. We conclude that h′′ (x) > 0 for all positive x.





Appendix F

Caveats for the theorem

In this section we discuss the two assumptions made in our derivation of the theorem

of Chapter 4.1

F.1 The cancellation of terms in the seesaw

expansion

Alternatives to the condition of eq.(4.2.16) for the tree-level mass involve the cancel-

lation of terms in the seesaw expansion. Consider the light mass matrix to second

order in the expansion (denoted m0(2)
ν ) [177,178],

m0(2)
ν = −m0(1)

ν + 1
2
(
m0(1)
ν Z†Z + ZTZ∗m0(1)

ν

)
, (F.1.1)

with m0(1)
ν the first order expression.

If this is set to zero by a cancellation of the two terms (as opposed to setting

m0(1)
ν = 0), one finds that

0 = −m̂0(1)
ν + 1

2
(
m̂0(1)
ν Θ + ΘT m̂0(1)

ν

)
, (F.1.2)

1Both caveats would follow as a consequence of taking the ratio of the electroweak scale v and
the heavy Majorana neutrino mass scale mN , a ≡ v/mN to be an independent variable and insist
that mν = 0 no matter the value of a. But I don’t know the significance of this.
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where Θ is Z†Z transformed under a unitary transformation.

From the diagonal elements one finds

− m̂0(1)
νii + m̂

0(1)
νii θii = 0 (F.1.3)

with no summation implied (i ∈ {1, 2, 3}). Thus if one wants to avoid the solution

that all three m̂0(1)
νii = 0, then it follows that at least one Θii = 1.

The Frobenius norm of a matrix Θ is defined by

||Θ||F =
√√√√ 3∑
i=1

3∑
j=1
|Θij|2 =

√
Tr (ΘΘ†). (F.1.4)

Now, Z†Z and Θ differ only by a unitary transformation and thus have the same

Frobenius norm.

Using the 2σ upper bounds on Z†Z from the global fit [286], we find ||Θ||F ≤ 0.0075.

But the matrices resulting from the cancellation of the first pair of terms in the

seesaw expansion have ||Θ||F ≥ 1. This naturally precludes the possibility of having

a cancellation between different orders of the seesaw expansion.

F.2 Fine-tuning of the cancellation between the

tree-level and one-loop contributions to the

light neutrino masses

An explicit caveat to our result is the possibility that the smallness of the light

neutrino masses results from a cancellation between large tree-level and one-loop

contributions as presented in [72]. We will not discuss the radiative stability of this

result. Instead we will show that this type of cancellation does not result from the

texture of the neutrino mass matrix but from an extremely fine-tuned adjustment

of all parameters, including the heavy neutrino masses.

Using the scaling introduced in eq.(4.2.30), we plot in figure F.1 the evolution of the
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Figure F.1: Evolution of the mass (m3) of the heaviest of the light
neutrinos as a function of the rescaling parameter Λ.
Input masses and couplings where chosen to give mν =
mtree +m1-loop = 0.046 eV at Λ = 1.

mass of the heaviest of the light neutrinos as a function of the rescaling parameter Λ.

It is clear that even an extremely small deviation from Λ = 1, less than 10−7 here, is

enough to spoil the cancellation and lead to light neutrino masses in contradiction

with experimental limits from β decay [38,39] and observational cosmology [88]. This

demonstrates that such a cancellation cannot be achieved solely by the choice of a

specific texture for the neutrino mass matrix but relies on an extremely fine-tuned

choice of the input masses.

It is perhaps not surprising that excluding the cancellation across different orders of

the loop expansion lead us to a symmetry. Here is an argument why. If one multiplies

a Lagrangian by a factor Λ, L → ΛL, then in calculating Feynman diagrams the

power of Λ depends only on the number of loops (and not the power of the couplings

or anything more complicated like that). This follows because, if N is the power of

Λ in a diagram, then

N = V − P,

for P propagators and V vertices. But the number of loops L in a diagram is

L = P − V + 1 = −N + 1.
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So that the number of loops and the power of Λ determine one another.

This means that for our expansion of the neutrino mass

mν = m0
ν +m1

ν +m2
ν + . . . ,

then a scaled L would give

mν = Λm0
ν + Λ0m1

ν + Λ−1m2
ν + . . . .

So if we impose mν = 0 and insist that the condition stays true after L → ΛL, then

we need each contribution mi = 0. But a scaling L → ΛL preserves all symmetries

at the Lagrangian level so of all the solutions we excluded in insisting we can rescale,

none of them set the light neutrino masses to zero as a result of Lagrangian level

symmetries.
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Higher-order corrections and the

Yukawas

G.1 Higher-order radiative corrections and

fine-tuning

We have been careful to include the one-loop radiative corrections to the light

neutrino masses. In doing so we have expanded the region of the parameter space in

which we may accurately explore leptogenesis. Of course, there may also be regions

in which the higher-order corrections are important. We may ask the question how

can we be sure that the neglect of two-loops, three-loops etc. was legitimate?

A pragmatic approach is to perform an order-of-magnitude estimate of the effects

of the higher-order corrections for those points in the parameter space of most

significance to our result: the best-fit points for the scenarios S1 to S4 and Sm1
ν
,

Sm0
ν
. If, in these scenarios, the higher-order corrections appear small then our main

conclusions are left untouched.

Our estimate of the two-loop effect (which we shall assume generically dominates

three or more loops) will be given by two extra factors of the Yukawa couplings and
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∑
i (m0

ν +m1
ν)i (eV)∑im

2
νi (eV)

S1 3.70× 10−1 1.69× 10−3

S2 2.52× 10−1 1.12× 10−3

S3 3.53× 10−1 4.25× 10−3

S4 6.30× 10−1 5.81× 10−2

S1 1.13× 10−1 1.98× 10−4

S2 1.16× 10−1 2.22× 10−4

S3 1.14× 10−1 1.95× 10−3

S4 1.09× 10−1 1.91× 10−3

Sm1
ν

8.65× 10−2 1.07× 10−6

Sm0
ν

6.39× 10−2 7.58× 10−8

Table G.1: Comparisons of the (sum of singular values of the) tree
plus one-loop correct light mass matrix to the two-loop
estimate.

the conventional loop factor (4π)−2 to the one-loop effect. Let us use

m2
ν = 1

(4π)2 |Ymax.|2m1
ν , (G.1.1)

with |Ymax.| the largest element of the matrix of absolute values of the Yukawas, as

a conservative estimate (over-estimate) of the second-order radiative correction to

neutrino masses. (This is similar to the estimate used in [72].)

From Table G.1, we see that the two-loop contributions generally provide small

corrections and therefore that corrections beyond one-loop order are safely neglected

at these points.
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G.2 Yukawa matrices

Here we provide a table of the absolute values of the Yukawa matrices (|Y |) for the

best-fit points of each scenario considered in Table 5.1 and Table 5.2.
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|Y |

S1

 1.20501× 10−5 5.84226× 10−3 1.04449× 10−2

6.50743× 10−5 2.0441× 10−2 3.65463× 10−2

7.26332× 10−6 2.11503× 10−2 3.78139× 10−2



S2

 1.78047× 10−5 1.16361× 10−2 2.08046× 10−2

1.00881× 10−5 2.21656× 10−2 3.96322× 10−2

1.02069× 10−4 2.55× 10−2 4.55925× 10−2



S3

 3.07775× 10−5 1.59166× 10−2 2.84583× 10−2

1.23975× 10−5 3.77326× 10−2 6.74663× 10−2

1.14533× 10−4 3.93327× 10−2 7.03289× 10−2



S4

 2.54075× 10−5 3.09962× 10−2 6.2255× 10−2

1.52369× 10−5 7.01974× 10−2 1.40989× 10−1

1.99141× 10−4 8.33171× 10−2 1.67344× 10−1



S1

 5.37412× 10−6 3.81344× 10−3 6.81765× 10−3

4.68081× 10−6 1.03898× 10−2 1.85756× 10−2

2.33498× 10−5 1.28236× 10−2 2.29271× 10−2



S2

 5.37412× 10−6 3.81344× 10−3 6.81765× 10−3

4.68081× 10−6 1.03898× 10−2 1.85756× 10−2

2.33498× 10−5 1.28236× 10−2 2.29271× 10−2



S3

 5.37412× 10−6 3.81344× 10−3 6.81765× 10−3

4.68081× 10−6 1.03898× 10−2 1.85756× 10−2

2.33498× 10−5 1.28236× 10−2 2.29271× 10−2



S4

 5.37412× 10−6 3.81344× 10−3 6.81765× 10−3

4.68081× 10−6 1.03898× 10−2 1.85756× 10−2

2.33498× 10−5 1.28236× 10−2 2.29271× 10−2



Sm1
ν

 6.27292× 10−4 1.68158× 10−2 2.98125× 10−2

2.86893× 10−3 3.06908× 10−2 5.56779× 10−2

9.98924× 10−4 2.62581× 10−2 4.69331× 10−2



Sm0
ν

 2.08179× 10−4 3.44059× 10−3 6.19056× 10−3

3.20671× 10−4 5.48821× 10−3 9.63727× 10−3

2.05748× 10−4 5.38578× 10−3 9.37847× 10−3


Table G.2: Absolute values of the Yukawas for each scenario listed

in Table 5.1 and Table 5.2.
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Classes of CP-conserving R-matrix

With the parameters x2, y1 and y3 left arbitrary, there are 16 possible R-matrices

which lead to the fine-tuned light neutrino masses required for successful leptogenesis

(Eq. (7.3.1)). For any of these matrices, the absolute values of the elements |Rij| are

equal, with the elements themselves differing only by factors ±1 or ±i. When there

is an exact CP-symmetry, then each R-matrix satisfies the condition in Eq. (6.2.5).

This allows for a scheme of classification according the phases ρν , ρN they correspond

to. In this section we present a single example of a matrix for each class1:

ρν = ±(−1,+1,+1)T , ρN = ±(+1,+1,−1)T and x1 = 90◦ and x3 = 90◦:

R ≈


− i

2e
y3 cosx2

1
2e
y3 cosx2 sin x2

i
4e
y1+y3 (sin x2 + 1) −1

4e
y1+y3 (sin x2 + 1) 1

2e
y1 cosx2

1
4e
y1+y3 (sin x2 + 1) i

4e
y1+y3 (sin x2 + 1) − i

2e
y1 cosx2

 ,

in which the second form results from the neglect of terms involving factors e−y1 and

e−y3 . ρν = ±(+1,−1,+1)T , ρN = ±(+1,−1,+1)T and x1 = 0◦ and x3 = 0◦:

R ≈


1
2e
y3 cosx2

i
2e
y3 cosx2 sin x2

− i
4e
y1+y3 (sin x2 + 1) 1

4e
y1+y3 (sin x2 + 1) i

2e
y1 cosx2

−1
4e
y1+y3 (sin x2 + 1) − i

4e
y1+y3 (sin x2 + 1) 1

2e
y1 cosx2

 ,

1Here we neglect terms involving factors e−y1 or e−y3 such that, as given, these matrices are
not strictly orthogonal.
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ρν = ±(+1,−1,+1)T , ρN = ±(+1,+1,−1)T and x1 = 90◦ and x3 = 0◦:

R ≈


1
2e
y3 cosx2

i
2e
y3 cosx2 sin x2

−1
4e
y1+y3 (sin x2 + 1) − i

4e
y1+y3 (sin x2 + 1) 1

2e
y1 cosx2

i
4e
y1+y3 (sin x2 + 1) −1

4e
y1+y3 (sin x2 + 1) − i

2e
y1 cosx2

 ,

ρν = ±(−1,+1,+1)T , ρN = ±(+1,−1,+1)T and x1 = 90◦ and x3 = 0◦:

R ≈


− i

2e
y3 cosx2

1
2e
y3 cosx2 sin x2

−1
4e
y1+y3 (sin x2 + 1) − i

4e
y1+y3 (sin x2 + 1) i

2e
y1 cosx2

i
4e
y1+y3 (sin x2 + 1) −1

4e
y1+y3 (sin x2 + 1) 1

2e
y1 cosx2

 .



Appendix I

Further results for low energy

CP-violation leptogenesis

In Fig. I.1 we demonstrate the possibility of fine-tuned leptogenesis in the case of

normal ordering withM1 = 3.16×106 GeV and m1 = 0.05 eV. This is a variant of the

case considered in the main body for which the light neutrino masses are significantly

reduced below all present cosmological or current generation direct bounds. We note

that lowering the light neutrino masses in this way severely constrains the viable

parameter space over that in Fig. 6.7 such that δ ≈ 296◦, α21 ≈ 143◦ and α31 ≈ 14◦.

Typical fine-tuning in the viable regions is F ≈ 450.

In the cases of m1 = 0 and m1 = 10−3 eV with M1 = 108 GeV, M2 = 3M1 and

M3 = 3M2 we did not find a region in the relevant parameter space in which one

could have successful leptogenesis.

In Fig. I.2 we present results for M1 = 109 GeV. We find that a fine-tuning of the

light neutrino masses F ≈ 14 at the best-fit points. In the normal ordered case,

we find that the observed baryon asymmetry may be obtained to within 1σ (2σ)

with δ between [0, 360]◦ ([0, 360]◦). While for inverted ordering, the 1σ (2σ) range is

[25, 360]◦ ([0, 360]◦). This is significantly higher than the case for which M1 = 1010

GeV where the fine-tuning is considerably less at F ≈ 0.23. In the normal ordered

case, we find that the observed baryon asymmetry may be obtained to within 1σ
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Figure I.1: The two-dimensional projections for intermediate scale
leptogenesis with M1 = 3.16× 106 GeV and m1 = 0.05
eV with CP violation provided only by the phases of the
PMNS matrix. Solid lines correspond to 68% confidence
level and dashed to 95% confidence level in agreement
with the observed value ηBCMB

. This plot was created
using SuperPlot [201].

(2σ) with δ between [95, 265]◦ ([52, 282]◦). For inverted ordering, the 1σ (2σ) range

is [60, 338]◦ ([8, 360]◦).
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Figure I.2: The two-dimensional projections for leptogenesis with
M1 = 1.00×109 GeV with CP violation provided only by
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ange/red and contours correspond to 68% and 95%
confidence levels. This plot was created using Super-
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Appendix J

Single-flavour BE from DMEs

In this appendix we find the conditions under which the density matrix equations

(Eq. (3.3.12)) approximate to the single flavour Boltzmann equations. We begin by

analysing the criteria under which the single flavour Boltzmann equation

dnB−L
dz

= Tr εεεD(nN − n
eq
N )−WnB−L, (J.0.1)

emerges as an approximation from the density matrix equations, which, written in

the (β, τ)-basis are

dnN
dz

= −D (nN − n
eq
N )

dnB−Lββ

dz
= εββD (nN − n

eq
N )− 1

2W
(
2|c1β|2nB−Lββ + c∗1τc1βn

B−L
τβ + c1τc

∗
1βn

B−L
βτ

)
dnB−Lττ

dz
= εττD (nN − n

eq
N )− 1

2W
(
2|c1τ |2nB−Lττ + c∗1τc1βn

B−L
τβ + c1τc

∗
1βn

B−L
βτ

)
dnB−Lβτ

dz
= εβτD (nN − n

eq
N )− 1

2W
(
nB−Lβτ + c∗1τc1β

(
nB−Lββ + nB−Lττ

))
− Γτ
Hz

nB−Lβτ .

(J.0.2)

As nB−L = nB−Lττ + nB−Lββ , we find an equation for the evolution of nB−L by adding

the second and third equations together, obtaining

dnB−L
dz

= D (nN − n
eq
N ) Tr εεε−W

(
|c1τ |2nB−Lττ + |c1τ⊥|2nB−Lββ + 2<[c1βc

∗
1τn

B−L
τβ ]

)
.

(J.0.3)



210 Appendix J. Single-flavour BE from DMEs

If this were to reproduce the single flavour limit, then we should find that the

coefficient of W :

|c1τ |2nB−Lττ + |c1β|2nB−Lββ + 2<[c1βc
∗
1τn

B−L
τβ ], (J.0.4)

is equal to nB−L in the limit that Γτ/Hz is small. Recalling that |c1β|2 + |c1τ |2 = 1,

then one should expect, that in the limit of small thermal widths,

2<
[
c1βc

∗
1τn

B−L
τβ

]
= |c1β|2nB−Lττ + |c1τ |2nB−Lββ . (J.0.5)

In order to demonstrate this equality, first we show that the z-derivative of 2<[c1βc
∗
1τn

B−L
τβ ]

equals the z-derivative of |c1β|2nB−Lττ + |c1τ |2nB−Lββ meaning that the quantities them-

selves may differ only by a constant. Then we note that, since at z = z0 the quantities

are equal, then they must be equal for all z.

By multiplication of the relevant equations in Eq. (J.0.2), we obtain the z-evolution

of |c1β|2nB−Lττ + |c1τ |2nB−Lββ :

|c1β|2
dnB−Lττ

dz
+ |c1τ |2

dnB−Lββ

dz
=

(|c1β|2εττ + |c1τ |2εββ)D(nN − n
eq
N )−W (<[c1βc

∗
1τn

B−L
τβ ] + |c1β|2|c1τ |2(nB−Lττ + nB−Lββ )).

(J.0.6)

By similar means we obtain the z-evolution of <[c1βc
∗
1τn

B−L
τβ ]:

<[c1βc
∗
1τ
dnB−Lτβ

dz
] =< [c1βc

∗
1τ ετβ]D(nN − n

eq
N )

− 1
2W (<

[
c1βc

∗
1τn

B−L
τβ

]
+ |c1β|2|c1τ |2(nB−Lττ + nB−Lββ ))

−<
[
c1βc

∗
1τn

B−L
τβ

] Γτ
Hz

.

Neglecting Γτ/Hz, as we expect this to be small in the single-flavour regime, then

we need only show that

2< [c1βc
∗
1τ ετβ] = |c1β|2εττ + |c1τ |2εββ, (J.0.7)

and then it is demonstrated that the coefficient of W in Eq. (J.0.3) is approximately

equal to nB−L and thus the single flavour equations are recovered.
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The relation of Eq. (J.0.7) can be put into a more suggestive form if we use |c1β|2 =

1− |c1τ |2 to re-express it thus

2<[c1βc
∗
1τ ετβ] + |c1β|2ε1β + |c1τ |2ε1τ = εττ + εββ. (J.0.8)

The right-hand side of this equation is merely the trace of the CP-asymmetry tensor

Tr ε in the (β, τ)-basis. Thus, we suspect that the left-hand side is merely the

trace expressed in an unfamiliar basis. This can be confirmed to be the case by

construction of the unitary matrix

S =

 c1τ −c∗1β

c1β c∗1τ

 , (J.0.9)

then, by explicit calculation it can be seen that the left-hand side is the result of

summing the diagonals (evaluating the trace in a particular basis) of

S†εεεS. (J.0.10)

Thus, we may conclude that, if we set =(Λτ ) = 0, we are left with

2<
[
c1βc

∗
1τ
dnB−Lτβ

dz

]
= |c1β|2

dnB−Lττ

dz
+ |c1τ |2

dnB−Lββ

dz
, (J.0.11)

and so

d

dz
(|c1τ |2nB−Lττ + |c1β|2nB−Lββ + 2<[c1βc

∗
1τn

B−L
τβ ]) = dnB−L

dz
. (J.0.12)

Since nαβ = 0 at the initial z, then we may conclude that, if Γτ = 0, then

dnB−L
dz

= Tr εεεD(nN − n
eq
N )−WnB−L, (J.0.13)

which is the single-flavour limit.

If we don’t set Γτ = 0, then we have

d

dz
(|c1τ |2nB−Lττ + |c1β|2nB−Lββ + 2<[c1βc

∗
1τn

B−L
τβ ]) = dnB−L

dz
− 2<[c1βc

∗
1τ

Γτ
Hz

nB−Lτβ ],

(J.0.14)
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which suggests that we should write the integro-differential equation

dnB−L
dz

= Tr εεεD(nN −n
eq
N )−WnB−L + 2W

∫ z

z0
dz′<

[
c1βc

∗
1τ

Γτ
Hz′

nB−Lτβ (z′)
]
. (J.0.15)

We define

λ(z) ≡ 2
∫ z

z0
dz′<

[
c1βc

∗
1τ

Γτ
Hz′

nB−Lτβ (z′)
]
, (J.0.16)

for brevity, then using the integrating factor method, arrive at a solution

nB−L(zf ) = e
−
∫ zf
z0

W (z)dz
∫ zf

z0
e
∫ z′
z0
W (z′′)dz′′ (Tr εεεD(z′)(nN(z′)− neqN (z′)) +W (z′)λ(z′)) dz′

=
∫ zf

z0
e−
∫ zf
z′ W (z′′)dz′′ (Tr εεεD(z′)(nN(z′)− neqN (z′)) +W (z′)λ(z′)) dz′.

For largeM , the thermal width is very small and so the term in λ is usually neglected

in comparison with the first.



Appendix K

Robustness of the high-scale

plateau

In the transition region, the approximation that left-handed τ leptons are produced

and destroyed at the same rate by flavour effects is somewhat inaccurate. In fact

we should consider a slightly more accurate version of the density matrix equations

in which the asymmetry density of right-handed τ leptons, nτR is computed. Then,

the density matrix equations are

dnN1

dz
= −D1

(
nN1 − n

eq
N1

)
dnB−Lββ

dz
= ε

(1)
ββD1

(
nN1 − n

eq
N1

)
− 1

2W1
(
2|c1β|2nB−Lββ + c∗1τc1βn

B−L
τβ + c1τc

∗
1βnβτ

)
dnB−Lττ

dz
= ε(1)

ττD1
(
nN1 − n

eq
N1

)
− 1

2W1
(
2|c1τ |2nB−Lττ + c∗1τc1βn

B−L
τβ + c1τc

∗
1βnβτ

)
− 2 Γτ

2Hz (nB−Lττ − 2nτR)
dnβτ
dz

= εβτD1
(
nN1 − n

eq
N1

)
− 1

2W1
(
nβτ + c∗1τc1β

(
nB−Lββ + nB−Lττ

))
− Γτ

2Hznβτ
dnτR
dz

= 2 Γτ
2Hz (nB−Lττ − 2nτR).

(K.0.1)

The simpler set we previously considered result from the assumption that Γτ/2Hz

is large enough to enforce nB−Lττ = 2nτR . clearly this is inaccurate for the situation

under consideration whereM1 � 1012 GeV. We should now append to λ(z) an extra
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term such that

λ(z)→ λ′(z) = 2
∫ z

z0
dz′

(
<
[
c1βc

∗
1τ

Γτ
2Hz′n

B−L
τβ (z′)

]
− 2 Γτ

2Hz′ (n
B−L
ττ (z′)− 2nτR(z′))

)
.

(K.0.2)

Now in this solution, there is a term in nB−Lττ Γτ/2Hz which scales approximately

as xx−1 = x0 and a term nτRΓτ/2Hz in which, it may be shown nτR ∝ x and thus

λ′(z) exhibits a approximate invariance under a scaling x as does λ(z).

It may be added that scattering effects can be incorporated by modifying the decay

function D1(z) → D′1(z) = D1(z) + S1(z) and the washout W1(z) → W ′
1(z) =

j(z)W1(z) [142]. The new decay function D′1(z) which depends on a scattering part

S1(z) is still multiplied by zero in the Tr ε = 0 case and is thus unimportant. The new

washout function is multiplied by j(z) which depends on M1 through log(M1/mH).

Thus, the plateau demonstrated in Fig. 6.13 picks up some unimportant logarithmic

dependence on M1 in addition to the small variation when scattering is neglected.

In the numerical calculations of Section 6.5, the effects of scattering are included.
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